Nanoelectromechanical resonator for logic operations
Kazmi, Syed N. R.; Hafiz, Md A. Al; Chappanda, Karumbaiah N.; Ilyas, Saad; Holguin, Jorge; Da Costa, Pedro M. F. J.; Younis, Mohammad I.
2017-01-01
We report an electro-thermally tunable in-plane doubly-clamped nanoelectromechanical resonator capable of dynamically performing NOR, NOT, XNOR, XOR, and AND logic operations. Toward this, a silicon based resonator is fabricated using standard e
Nanoelectromechanical resonator for logic operations
Kazmi, Syed N. R.
2017-08-29
We report an electro-thermally tunable in-plane doubly-clamped nanoelectromechanical resonator capable of dynamically performing NOR, NOT, XNOR, XOR, and AND logic operations. Toward this, a silicon based resonator is fabricated using standard e-beam lithography and surface nanomachining of a highly conductive device layer of a silicon-on-insulator (SOI) wafer. The performance of this logic device is examined at elevated temperatures, ranging from 25 °C to 85 °C, demonstrating its resilience for most of the logic operations; thereby paving the way towards nano-elements-based mechanical computing.
Noise in nonlinear nanoelectromechanical resonators
Guerra Vidal, Diego N.
Nano-Electro-Mechanical Systems (NEMS), due to their nanometer scale size, possess a number of desirable attributes: high sensitivity to applied forces, fast response times, high resonance frequencies and low power consumption. However, ultra small size and low power handling result in unwanted consequences: smaller signal size and higher dissipation, making the NEMS devices more susceptible to external and intrinsic noise. The simplest version of a NEMS, a suspended nanomechanical structure with two distinct excitation states, can be used as an archetypal two state system to study a plethora of fundamental phenomena such as Duffing nonlinearity, stochastic resonance, and macroscopic quantum tunneling at low temperatures. From a technical perspective, there are numerous applications such nanomechanical memory elements, microwave switches and nanomechanical computation. The control and manipulation of the mechanical response of these two state systems can be realized by exploiting a (seemingly) counterintuitive physical phenomenon, Stochastic Resonance: in a noisy nonlinear mechanical system, the presence of noise can enhance the system response to an external stimulus. This Thesis is mainly dedicated to study possible applications of Stochastic Resonance in two-state nanomechanical systems. First, on chip signal amplification by 1/falpha is observed. The effectiveness of the noise assisted amplification is observed to decrease with increasing a. Experimental evidence shows an increase in asymmetry between the two states with increasing noise color. Considering the prevalence of 1/f alpha noise in the materials in integrated circuits, the signal enhancement demonstrated here, suggests beneficial use of the otherwise detrimental noise. Finally, a nanomechanical device, operating as a reprogrammable logic gate, and performing fundamental logic functions such as AND/OR and NAND/NOR is presented. The logic function can be programmed (from AND to OR) dynamically, by
Tunable nanoelectromechanical resonator for logic computations
Kazmi, Syed N R
2017-02-14
There has been remarkable interest in nanomechanical computing elements that can potentially lead to a new era in computation due to their re-configurability, high integration density, and high switching speed. Here we present a nanomechanical device capable of dynamically performing logic operations (NOR, NOT, XNOR, XOR, and AND). The concept is based on the active tuning of the resonance frequency of a doubly-clamped nanoelectromechanical beam resonator through electro-thermal actuation. The performance of this re-configurable logic device is examined at elevated temperatures, ranging from 25 °C to 85 °C, demonstrating its resilience for most of the logic operations. The proposed device can potentially achieve switching rate in μs, switching energy in nJ, and an integration density up to 10 per cm. The practical realization of this re-configurable device paves the way for nano-element-based mechanical computing.
Tunable nanoelectromechanical resonator for logic computations
Kazmi, Syed N R; Hafiz, Md Abdullah Al; Chappanda, Karumbaiah N.; Ilyas, Saad; Holguin, Jorge; Da Costa, Pedro M. F. J.; Younis, Mohammad I.
2017-01-01
There has been remarkable interest in nanomechanical computing elements that can potentially lead to a new era in computation due to their re-configurability, high integration density, and high switching speed. Here we present a nanomechanical device capable of dynamically performing logic operations (NOR, NOT, XNOR, XOR, and AND). The concept is based on the active tuning of the resonance frequency of a doubly-clamped nanoelectromechanical beam resonator through electro-thermal actuation. The performance of this re-configurable logic device is examined at elevated temperatures, ranging from 25 °C to 85 °C, demonstrating its resilience for most of the logic operations. The proposed device can potentially achieve switching rate in μs, switching energy in nJ, and an integration density up to 10 per cm. The practical realization of this re-configurable device paves the way for nano-element-based mechanical computing.
Investigation based on nano-electromechanical system double Si3N4 resonant beam pressure sensor.
Yang, Chuan; Guo, Can; Yuan, Xiaowei
2011-12-01
This paper presents a type of NEMS (Nano-Electromechanical System) double Si3N4 resonant beams pressure sensor. The mathematical models are established in allusion to the Si3N4 resonant beams and pressure sensitive diaphragm. The distribution state of stress has been analyzed theoretically based on the mathematical model of pressure sensitive diaphragm; from the analysis result, the position of the Si3N4 resonant beams above the pressure sensitive diaphragm was optimized and then the dominance observed after the double resonant beams are adopted is illustrated. From the analysis result, the position of the Si3N4 resonant beams above the pressure sensitive diaphragm is optimized, illustrating advantages in the adoption of double resonant beams. The capability of the optimized sensor was generally analyzed using the ANSYS software of finite element analysis. The range of measured pressure is 0-400 Kpa, the coefficient of linearity correlation is 0.99346, and the sensitivity of the sensor is 498.24 Hz/Kpa, higher than the traditional sensors. Finally the processing techniques of the sensor chip have been designed with sample being successfully processed.
Self-sustained oscillations in nanoelectromechanical systems induced by Kondo resonance
International Nuclear Information System (INIS)
Song, Taegeun; Kiselev, Mikhail N; Kikoin, Konstantin; Shekhter, Robert I; Gorelik, Leonid Y
2014-01-01
We investigate the instability and dynamical properties of nanoelectromechanical systems represented by a single-electron device containing movable quantum dots attached to a vibrating cantilever via asymmetric tunnel contacts. The Kondo resonance in electron tunneling between the source and shuttle facilitates self-sustained oscillations originating from the strong coupling of mechanical and electronic/spin degrees of freedom. We analyze a stability diagram for the two-channel Kondo shuttling regime due to limitations given by the electromotive force acting on a moving shuttle, and find that the saturation oscillation amplitude is associated with the retardation effect of the Kondo cloud. The results shed light on possible ways to experimentally realize the Kondo-cloud dynamical probe by using high mechanical dissipation tunability as well as supersensitive detection of mechanical displacement
Self-sustained oscillations in nanoelectromechanical systems induced by Kondo resonance
Song, Taegeun; Kiselev, Mikhail N.; Kikoin, Konstantin; Shekhter, Robert I.; Gorelik, Leonid Y.
2014-03-01
We investigate the instability and dynamical properties of nanoelectromechanical systems represented by a single-electron device containing movable quantum dots attached to a vibrating cantilever via asymmetric tunnel contacts. The Kondo resonance in electron tunneling between the source and shuttle facilitates self-sustained oscillations originating from the strong coupling of mechanical and electronic/spin degrees of freedom. We analyze a stability diagram for the two-channel Kondo shuttling regime due to limitations given by the electromotive force acting on a moving shuttle, and find that the saturation oscillation amplitude is associated with the retardation effect of the Kondo cloud. The results shed light on possible ways to experimentally realize the Kondo-cloud dynamical probe by using high mechanical dissipation tunability as well as supersensitive detection of mechanical displacement.
High-Q, in-plane modes of nanomechanical resonators operated in air
Waggoner, Philip S.; Tan, Christine P.; Bellan, Leon; Craighead, Harold G.
2009-05-01
Nanomechanical resonators have traditionally been limited to use in vacuum due to low quality factors that come as a result of viscous damping effects in air or liquid. We have fabricated arrays of 90 nm thick trampoline-shaped resonators, studied their resonant frequency spectrum as a function of pressure, and found that some high frequency modes exhibit quality factors over 2000 at atmospheric pressure. We have excited the in-plane resonances of these devices, verified their identities both experimentally and with finite element modeling, and demonstrated their advantageous characteristics for ambient sensing. Even after deposition of a relatively thick polymer layer, the in-plane resonant modes still boast quality factors on the order of 2000. These results show promise for the use of nanomechanical resonant sensors in real-time atmospheric sensing applications.
Design and characterization of AlN-based in-plane microplate resonators
International Nuclear Information System (INIS)
Ruiz-Díez, V; Manzaneque, T; Hernando-García, J; Sánchez-Rojas, J L; Ababneh, A; Kucera, M; Schmid, U; Seidel, H
2013-01-01
In this paper, a design procedure to perform an efficient actuation of in-plane modes in piezoelectric resonators is presented. This procedure is applied to different microplate structures, paying attention to two in-plane mode families: contour modes and flexure-actuated modes. A representative set of devices from both families were used as illustrative examples. These devices were characterized electrically by measuring the impedance and their in-plane modal shapes were measured with a novel technique based on speckle-pattern interferometry. Figures of merit such as the quality factor or the motional resistance were obtained and used to evaluate the different design approaches. (paper)
International Nuclear Information System (INIS)
Singh, Vibhor; Sengupta, Shamashis; Solanki, Hari S; Dhall, Rohan; Allain, Adrien; Dhara, Sajal; Deshmukh, Mandar M; Pant, Prita
2010-01-01
We use suspended graphene electromechanical resonators to study the variation of resonant frequency as a function of temperature. Measuring the change in frequency resulting from a change in tension, from 300 to 30 K, allows us to extract information about the thermal expansion of monolayer graphene as a function of temperature, which is critical for strain engineering applications. We find that thermal expansion of graphene is negative for all temperatures between 300 and 30 K. We also study the dispersion, the variation of resonant frequency with DC gate voltage, of the electromechanical modes and find considerable tunability of resonant frequency, desirable for applications like mass sensing and RF signal processing at room temperature. With a lowering of temperature, we find that the positively dispersing electromechanical modes evolve into negatively dispersing ones. We quantitatively explain this crossover and discuss optimal electromechanical properties that are desirable for temperature-compensated sensors.
Bertke, Maik; Hamdana, Gerry; Wu, Wenze; Marks, Markus; Suryo Wasisto, Hutomo; Peiner, Erwin
2016-10-01
The asymmetric resonance frequency analysis of silicon cantilevers for a low-cost wearable airborne nanoparticle detector (Cantor) is described in this paper. The cantilevers, which are operated in the fundamental in-plane resonance mode, are used as a mass-sensitive microbalance. They are manufactured out of bulk silicon, containing a full piezoresistive Wheatstone bridge and an integrated thermal heater for reading the measurement output signal and stimulating the in-plane excitation, respectively. To optimize the sensor performance, cantilevers with different cantilever geometries are designed, fabricated and characterized. Besides the resonance frequency, the quality factor (Q) of the resonance curve has a high influence concerning the sensor sensitivity. Because of an asymmetric resonance behaviour, a novel fitting function and method to extract the Q is created, different from that of the simple harmonic oscillator (SHO). For testing the sensor in a long-term frequency analysis, a phase- locked loop (PLL) circuit is employed, yielding a frequency stability of up to 0.753 Hz at an Allan variance of 3.77 × 10-6. This proposed asymmetric resonance frequency analysis method is expected to be further used in the process development of the next-generation Cantor.
International Nuclear Information System (INIS)
Bertke, Maik; Hamdana, Gerry; Wu, Wenze; Marks, Markus; Wasisto, Hutomo Suryo; Peiner, Erwin
2016-01-01
The asymmetric resonance frequency analysis of silicon cantilevers for a low-cost wearable airborne nanoparticle detector (Cantor) is described in this paper. The cantilevers, which are operated in the fundamental in-plane resonance mode, are used as a mass-sensitive microbalance. They are manufactured out of bulk silicon, containing a full piezoresistive Wheatstone bridge and an integrated thermal heater for reading the measurement output signal and stimulating the in-plane excitation, respectively. To optimize the sensor performance, cantilevers with different cantilever geometries are designed, fabricated and characterized. Besides the resonance frequency, the quality factor ( Q ) of the resonance curve has a high influence concerning the sensor sensitivity. Because of an asymmetric resonance behaviour, a novel fitting function and method to extract the Q is created, different from that of the simple harmonic oscillator (SHO). For testing the sensor in a long-term frequency analysis, a phase- locked loop (PLL) circuit is employed, yielding a frequency stability of up to 0.753 Hz at an Allan variance of 3.77 × 10 -6 . This proposed asymmetric resonance frequency analysis method is expected to be further used in the process development of the next-generation Cantor. (paper)
Modelling out-of-plane and in-plane resonant modes of microplates in liquid media
International Nuclear Information System (INIS)
Ruiz-Díez, V; Hernando-García, J; Manzaneque, T; Sánchez-Rojas, J L; Kucera, M; Schmid, U
2015-01-01
In this article, the quality factor and the resonant frequency of different vibrating modes of microplates immersed in liquid are simulated by means of a finite element method (FEM) and compared with experimental data. For the in-plane modes, we studied the first extensional mode of mid-point supported microplates, which may be efficiently actuated by a thin piezoelectric film on top of the structure. A comparison of different approaches to account for the viscous loading in computationally efficient 2D finite element models is presented. As an alternative to the harmonic response, a novel multitone excitation in the fluid–structure interaction model allows for the calculation of the frequency response of the structure. For the out-of-plane modes, different modes were simulated and compared to analytical models to validate our approach. Our 2D FEM model yields more accurate estimations of the experimental resonance frequency and quality factors than the available analytical models. With the help of these tools, the applicability of the micro-resonators as viscosity and density sensors is discussed. (paper)
Optical spring effect in nanoelectromechanical systems
International Nuclear Information System (INIS)
Tian, Feng; Zhou, Guangya; Du, Yu; Chau, Fook Siong; Deng, Jie
2014-01-01
In this Letter, we report a hybrid system consisting of nano-optical and nano-mechanical springs, in which the optical spring effect works to adjust the mechanical frequency of a nanoelectromechanical systems resonator. Nano-scale folded beams are fabricated as the mechanical springs and double-coupled one-dimensional photonic crystal cavities are used to pump the “optical spring.” The dynamic characteristics of this hybrid system are measured and analyzed at both low and high input optical powers. This study leads the physical phenomenon of optomechanics in complex nano-opto-electro-mechanical systems (NOEMS) and could benefit the future applications of NOEMS in chip-level communication and sensing
Amorphous metal based nanoelectromechanical switch
Mayet, Abdulilah M.; Smith, Casey; Hussain, Muhammad Mustafa
2013-01-01
Nanoelectromechanical (NEM) switch is an interesting ultra-low power option which can operate in the harsh environment and can be a complementary element in complex digital circuitry. Although significant advancement is happening in this field, report on ultra-low voltage (pull-in) switch which offers high switching speed and area efficiency is yet to be made. One key challenge to achieve such characteristics is to fabricate nano-scale switches with amorphous metal so the shape and dimensional integrity are maintained to achieve the desired performance. Therefore, we report a tungsten alloy based amorphous metal with fabrication process development of laterally actuated dual gated NEM switches with 100 nm width and 200 nm air-gap to result in <5 volts of actuation voltage (Vpull-in). © 2013 IEEE.
Amorphous metal based nanoelectromechanical switch
Mayet, Abdulilah M.
2013-04-01
Nanoelectromechanical (NEM) switch is an interesting ultra-low power option which can operate in the harsh environment and can be a complementary element in complex digital circuitry. Although significant advancement is happening in this field, report on ultra-low voltage (pull-in) switch which offers high switching speed and area efficiency is yet to be made. One key challenge to achieve such characteristics is to fabricate nano-scale switches with amorphous metal so the shape and dimensional integrity are maintained to achieve the desired performance. Therefore, we report a tungsten alloy based amorphous metal with fabrication process development of laterally actuated dual gated NEM switches with 100 nm width and 200 nm air-gap to result in <5 volts of actuation voltage (Vpull-in). © 2013 IEEE.
Resonant enhancement of band-to-band tunneling in in-plane MoS2/WS2 heterojunctions
Kuroda, Tatsuya; Mori, Nobuya
2018-04-01
The band-to-band (BTB) tunneling current J through in-plane MoS2/WS2 heterojunctions is calculated by the nonequilibrium Green function method combined with tight-binding approximation. Types A and B of band configurations are considered. For type-A (type-B) heterojunctions, a potential notch exists (or is absent) at the heterointerface. Both type-A and type-B MoS2/WS2 heterojunctions can support a higher BTB current than MoS2 and WS2 homojunctions. For type-A heterojunctions, the resonant enhancement of J occurs resulting in a significantly higher BTB tunneling current.
Directory of Open Access Journals (Sweden)
J. P. Morgan
2012-06-01
Full Text Available We report X-ray resonant magnetic scattering studies of a Permalloy artificial square ice nanomagnet array, focussing on the field-driven evolution of the sum Σ and difference Δ signals of left and right handed circularly polarized synchrotron X-rays at different lateral positions in reciprocal space Qx. We used X-rays tuned to the Fe L3 resonance energy, with the scattering plane aligned along a principal symmetry axis of the array. Details of the specular Δ hysteresis curve are discussed, following the system magnetization from an initial demagnetized state. The periodic structure gives rise to distinct peaks at in-plane reciprocal Bragg positions, as shown by fitting Σ(Qx to a model based on a simple unit cell structure. Diffraction order-dependent hysteresis in Δ is observed, indicative of the reordering of magnetization on the system's two interpenetrating sublattices, which markedly deviates from an ideal Ising picture under strong applied fields.
Nanoelectromechanical systems: Nanodevice motion at microwave frequencies
Henry Huang, Xue Ming; Zorman, Christian A.; Mehregany, Mehran; Roukes, Michael L.
2003-01-01
It has been almost forgotten that the first computers envisaged by Charles Babbage in the early 1800s were mechanical and not electronic, but the development of high-frequency nanoelectromechanical systems is now promising a range of new applications, including sensitive mechanical charge detectors and mechanical devices for high-frequency signal processing, biological imaging and quantum measurement. Here we describe the construction of nanodevices that will operate with fundamental frequencies in the previously inaccessible microwave range (greater than 1 gigahertz). This achievement represents a significant advance in the quest for extremely high-frequency nanoelectromechanical systems.
Integrated tunneling sensor for nanoelectromechanical systems
DEFF Research Database (Denmark)
Sadewasser, S.; Abadal, G.; Barniol, N.
2006-01-01
Transducers based on quantum mechanical tunneling provide an extremely sensitive sensor principle, especially for nanoelectromechanical systems. For proper operation a gap between the electrodes of below 1 nm is essential, requiring the use of structures with a mobile electrode. At such small...... distances, attractive van der Waals and capillary forces become sizable, possibly resulting in snap-in of the electrodes. The authors present a comprehensive analysis and evaluation of the interplay between the involved forces and identify requirements for the design of tunneling sensors. Based...... on this analysis, a tunneling sensor is fabricated by Si micromachining technology and its proper operation is demonstrated. (c) 2006 American Institute of Physics....
Contact materials for nanowire devices and nanoelectromechanical switches
Hussain, Muhammad Mustafa
2011-02-01
The impact of contact materials on the performance of nanostructured devices is expected to be signifi cant. This is especially true since size scaling can increase the contact resistance and induce many unseen phenomenon and reactions that greatly impact device performance. Nanowire and nanoelectromechanical switches are two emerging nanoelectronic devices. Nanowires provide a unique opportunity to control the property of a material at an ultra-scaled dimension, whereas a nanoelectromechanical switch presents zero power consumption in its off state, as it is physically detached from the sensor anode. In this article, we specifi cally discuss contact material issues related to nanowire devices and nanoelectromechanical switches.
Falub, Claudiu V.; Bless, Martin; Hida, Rachid; MeduÅa, Mojmír; Ammann, Arnold
2018-04-01
We present an innovative, economical method for manufacturing soft magnetic materials that may pave the way for integrated thin film magnetic cores with dramatically improved properties. Soft magnetic multilayered thin films based on the Fe-28%Co20%B (at.%) and Co-4.5%Ta4%Zr (at.%) amorphous alloys are deposited on 8" bare Si and Si/200nm-thermal-SiO2 wafers in an industrial, high-throughput Evatec LLS EVO II magnetron sputtering system. The multilayers consist of stacks of alternating 80-nm-thick ferromagnetic layers and 4-nm-thick Al2O3 dielectric interlayers. Since in our dynamic sputter system the substrate cage rotates continuously, such that the substrates face different targets alternatively, each ferromagnetic sublayer in the multilayer consists of a fine structure comprising alternating CoTaZr and FeCoB nanolayers with very sharp interfaces. We adjust the thickness of these individual nanolayers between 0.5 and 1.5 nm by changing the cage rotation speed and the power of each gun, which is an excellent mode to engineer new, composite ferromagnetic materials. Using X-ray reflectometry (XRR) we reveal that the interfaces between the FeCoB and CoTaZr nanolayers are perfectly smooth with roughness of 0.2-0.3 nm. Kerr magnetometry and B-H looper measurements for the as-deposited samples show that the coercivity of these thin films is very low, 0.2-0.3 Oe, and gradually scales up with the thickness of FeCoB nanolayers, i.e. with the increase of the overall Fe content from 0 % (e.g. CoTaZr-based multilayers) to 52 % (e.g. FeCoB-based multilayers). We explain this trend in the random anisotropy model, based on considerations of grain size growth, as revealed by glancing angle X-ray diffraction (GAXRD), but also because of the increase of magnetostriction with the increase of Fe content as shown by B-H looper measurements performed on strained wafers. The unexpected enhancement of the in-plane anisotropy field from 18.3 Oe and 25.8 Oe for the conventional Co
Directory of Open Access Journals (Sweden)
Claudiu V. Falub
2018-04-01
Full Text Available We present an innovative, economical method for manufacturing soft magnetic materials that may pave the way for integrated thin film magnetic cores with dramatically improved properties. Soft magnetic multilayered thin films based on the Fe-28%Co20%B (at.% and Co-4.5%Ta4%Zr (at.% amorphous alloys are deposited on 8” bare Si and Si/200nm-thermal-SiO2 wafers in an industrial, high-throughput Evatec LLS EVO II magnetron sputtering system. The multilayers consist of stacks of alternating 80-nm-thick ferromagnetic layers and 4-nm-thick Al2O3 dielectric interlayers. Since in our dynamic sputter system the substrate cage rotates continuously, such that the substrates face different targets alternatively, each ferromagnetic sublayer in the multilayer consists of a fine structure comprising alternating CoTaZr and FeCoB nanolayers with very sharp interfaces. We adjust the thickness of these individual nanolayers between 0.5 and 1.5 nm by changing the cage rotation speed and the power of each gun, which is an excellent mode to engineer new, composite ferromagnetic materials. Using X-ray reflectometry (XRR we reveal that the interfaces between the FeCoB and CoTaZr nanolayers are perfectly smooth with roughness of 0.2-0.3 nm. Kerr magnetometry and B-H looper measurements for the as-deposited samples show that the coercivity of these thin films is very low, 0.2-0.3 Oe, and gradually scales up with the thickness of FeCoB nanolayers, i.e. with the increase of the overall Fe content from 0 % (e.g. CoTaZr-based multilayers to 52 % (e.g. FeCoB-based multilayers. We explain this trend in the random anisotropy model, based on considerations of grain size growth, as revealed by glancing angle X-ray diffraction (GAXRD, but also because of the increase of magnetostriction with the increase of Fe content as shown by B-H looper measurements performed on strained wafers. The unexpected enhancement of the in-plane anisotropy field from 18.3 Oe and 25.8 Oe for the
Energy efficient circuit design using nanoelectromechanical relays
Venkatasubramanian, Ramakrishnan
Nano-electromechanical (NEM) relays are a promising class of emerging devices that offer zero off-state leakage and behave like an ideal switch. Recent advances in planar fabrication technology have demonstrated that microelectromechanical (MEMS) scale miniature relays could be manufactured reliably and could be used to build fully functional, complex integrated circuits. The zero leakage operation of relays has renewed the interest in relay based low power logic design. This dissertation explores circuit architectures using NEM relays and NEMS-CMOS heterogeneous integration. Novel circuit topologies for sequential logic, memory, and power management circuits have been proposed taking into consideration the NEM relay device properties and optimizing for energy efficiency and area. In nanoscale electromechanical devices, dispersion forces like Van der Waals' force (vdW) affect the pull-in stability of the relay devices significantly. Verilog-A electromechanical model of the suspended gate relay operating at 1V with a nominal air gap of 5 - 10nm has been developed taking into account all the electrical, mechanical and dispersion effects. This dissertation explores different relay based latch and flip-flop topologies. It has been shown that as few as 4 relay cells could be used to build flip-flops. An integrated voltage doubler based flip flop that improves the performance by 2X by overdriving Vgb has been proposed. Three NEM relay based parallel readout memory bitcell architectures have been proposed that have faster access time, and remove the reliability issues associated with previously reported serial readout architectures. A paradigm shift in design of power switches using NEM relays is proposed. An interesting property of the relay device is that the ON state resistance (Ron) of the NEM relay switch is constant and is insensitive to the gate slew rate. This coupled with infinite OFF state resistance (Roff ) offers significant area and power advantages over CMOS
International Nuclear Information System (INIS)
Seemann, K.; Leiste, H.; Krüger, K.
2013-01-01
Soft ferromagnetic Fe-Co-Hf-N films, produced by reactive r.f. magnetron sputtering, are useful to study the ferromagnetic resonance (FMR) by means of frequency domain permeability measurements up to the GHz range. Films with the composition Fe 33 Co 43 Hf 10 N 14 exhibit a saturation polarisation J s of around 1.35 T. They are consequently considered as being uniformly magnetised due to an in-plane uniaxial anisotropy of approximately μ 0 H u ≈4.5 m T after annealing them, e.g., at 400 °C in a static magnetic field for 1 h. Being exposed to a high-frequency field, the precession of magnetic moments leads to a marked frequency-dependent permeability with a sharp Lorentzian shaped imaginary part at around 2.33 GHz (natural resonance peak), which is in a very good agreement with the modified Landau–Lifschitz–Gilbert (LLG) differential equation. A slightly increased FMR frequency and a clear increase in the resonance line broadening due to an increase of the exciting high-frequency power (1–25.1 mW), considered as an additional perturbation of the precessing system of magnetic moments, could be discovered. By solving the homogenous LLG differential equation with respect to the in-plane uniaxial anisotropy, it was revealed that the high-frequency field perturbation impacts the resonance peak position f FMR and resonance line broadening Δf FMR characterised by a completed damping parameter α=α eff +Δα. Adapted from this result, the increase in f FMR and decrease in lifetime of the excited level of magnetic moments associated with Δf FMR , similar to a spin-½ particle in a static magnetic field, was theoretically elaborated as well as compared with experimental data. - Highlights: • Impact on the resonance frequency and resonance line by the high-frequency power. • Theoretic approach by solving the LLG differential equation. • Experimental verification and magnon processes. • Theoretical and experimental determination of the resonance state
Nano-Electromechanical Systems: Displacement Detection and the Mechanical Single Electron Shuttle
Blick, R. H.; Beil, F. W.; Höhberger, E.; Erbe, A.; Weiss, C.
For an introduction to nano-electromechanical systems we present measurements on nanomechanical resonators operating in the radio frequency range. We discuss in detail two different schemes of displacement detection for mechanical resonators, namely conventional reflection measurements of a probing signal and direct detection by capacitive coupling via a gate electrode. For capacitive detection we employ an on-chip preamplifier, which enables direct measurements of the resonator's disp lacement. We observe that the mechanical quality factor of the resonator depends on the detection technique applied, which is verified in model calculations and report on the detection of sub-harmonics. In the second part we extend our investigations to include transport of single electrons through an electron island on the tip of a nanomachined mechanical pendulum. The pendulum is operated by applying a modulating electromagnetic field in the range of 1 - 200 MHz, leading to mechanical oscillations between two laterally integrated source and drain contacts. Forming tunneling barriers the metallic tip shuttles single electrons from source to drain. The resulting tunneling current shows distinct features corresponding to the discrete mechanical eigenfrequencies of the pendulum. We report on measurements covering the temperature range from 300 K down to 4.2 K. The transport properties of the device are compared in detail to model calculations based on a Master-equation approach.
Shevyrin, A. A.; Pogosov, A. G.; Budantsev, M. V.; Bakarov, A. K.; Toropov, A. I.; Ishutkin, S. V.; Shesterikov, E. V.; Kozhukhov, A. S.; Kosolobov, S. S.; Gavrilova, T. A.
2012-12-01
Mechanical stresses are investigated in suspended nanowires made on the basis of GaAs/AlGaAs heterostructures. Though there are no intentionally introduced stressor layers in the heterostructure, the nanowires are subject to Euler buckling instability. In the wide nanowires, the out-of-plane buckling is observed at length significantly smaller (3 times) than the theoretically estimated critical value, while in the narrow nanowires, the experimentally measured critical length of the in-plane buckling coincides with the theoretical estimation. The possible reasons for the obtained discrepancy are considered. The observed peculiarities should be taken into account in the fabrication of nanomechanical and nanoelectromechanical systems.
Energy reversible switching from amorphous metal based nanoelectromechanical switch
Mayet, Abdulilah M.; Smith, Casey; Hussain, Muhammad Mustafa
2013-01-01
We report observation of energy reversible switching from amorphous metal based nanoelectromechanical (NEM) switch. For ultra-low power electronics, NEM switches can be used as a complementary switching element in many nanoelectronic system applications. Its inherent zero power consumption because of mechanical detachment is an attractive feature. However, its operating voltage needs to be in the realm of 1 volt or lower. Appropriate design and lower Young's modulus can contribute achieving lower operating voltage. Therefore, we have developed amorphous metal with low Young's modulus and in this paper reporting the energy reversible switching from a laterally actuated double electrode NEM switch. © 2013 IEEE.
Energy reversible switching from amorphous metal based nanoelectromechanical switch
Mayet, Abdulilah M.
2013-08-01
We report observation of energy reversible switching from amorphous metal based nanoelectromechanical (NEM) switch. For ultra-low power electronics, NEM switches can be used as a complementary switching element in many nanoelectronic system applications. Its inherent zero power consumption because of mechanical detachment is an attractive feature. However, its operating voltage needs to be in the realm of 1 volt or lower. Appropriate design and lower Young\\'s modulus can contribute achieving lower operating voltage. Therefore, we have developed amorphous metal with low Young\\'s modulus and in this paper reporting the energy reversible switching from a laterally actuated double electrode NEM switch. © 2013 IEEE.
Switch on, switch off: stiction in nanoelectromechanical switches
Wagner, Till J W
2013-06-13
We present a theoretical investigation of stiction in nanoscale electromechanical contact switches. We develop a mathematical model to describe the deflection of a cantilever beam in response to both electrostatic and van der Waals forces. Particular focus is given to the question of whether adhesive van der Waals forces cause the cantilever to remain in the \\'ON\\' state even when the electrostatic forces are removed. In contrast to previous studies, our theory accounts for deflections with large slopes (i.e. geometrically nonlinear). We solve the resulting equations numerically to study how a cantilever beam adheres to a rigid electrode: transitions between \\'free\\', \\'pinned\\' and \\'clamped\\' states are shown to be discontinuous and to exhibit significant hysteresis. Our findings are compared to previous results from linearized models and the implications for nanoelectromechanical cantilever switch design are discussed. © 2013 IOP Publishing Ltd.
Crowe, Iain F; Clark, Nicholas; Hussein, Siham; Towlson, Brian; Whittaker, Eric; Milosevic, Milan M; Gardes, Frederic Y; Mashanovich, Goran Z; Halsall, Matthew P; Vijayaraghaven, Aravind
2014-07-28
We examine the near-IR light-matter interaction for graphene integrated cavity ring resonators based on silicon-on-insulator (SOI) race-track waveguides. Fitting of the cavity resonances from quasi-TE mode transmission spectra reveal the real part of the effective refractive index for graphene, n(eff) = 2.23 ± 0.02 and linear absorption coefficient, α(gTE) = 0.11 ± 0.01dBμm(-1). The evanescent nature of the guided mode coupling to graphene at resonance depends strongly on the height of the graphene above the cavity, which places limits on the cavity length for optical sensing applications.
Nanoelectromechanical Switches for Low-Power Digital Computing
Directory of Open Access Journals (Sweden)
Alexis Peschot
2015-08-01
Full Text Available The need for more energy-efficient solid-state switches beyond complementary metal-oxide-semiconductor (CMOS transistors has become a major concern as the power consumption of electronic integrated circuits (ICs steadily increases with technology scaling. Nano-Electro-Mechanical (NEM relays control current flow by nanometer-scale motion to make or break physical contact between electrodes, and offer advantages over transistors for low-power digital logic applications: virtually zero leakage current for negligible static power consumption; the ability to operate with very small voltage signals for low dynamic power consumption; and robustness against harsh environments such as extreme temperatures. Therefore, NEM logic switches (relays have been investigated by several research groups during the past decade. Circuit simulations calibrated to experimental data indicate that scaled relay technology can overcome the energy-efficiency limit of CMOS technology. This paper reviews recent progress toward this goal, providing an overview of the different relay designs and experimental results achieved by various research groups, as well as of relay-based IC design principles. Remaining challenges for realizing the promise of nano-mechanical computing, and ongoing efforts to address these, are discussed.
Zhang, Zhixin; Wang, Yanyan; Zhang, Hongxiang; Tang, Zifan; Liu, Wenpeng; Lu, Yao; Wang, Zefang; Yang, Haitao; Pang, Wei; Zhang, Hao; Zhang, Daihua; Duan, Xuexin
2017-05-01
Efficient delivery of genes and therapeutic agents to the interior of the cell is critical for modern biotechnology. Herein, a new type of chemical-free cell poration method-hypersonic poration-is developed to improve the cellular uptake, especially the nucleus uptake. The hypersound (≈GHz) is generated by a designed piezoelectric nano-electromechanical resonator, which directly induces normal/shear stress and "molecular bombardment" effects on the bilayer membranes, and creates reversible temporal nanopores improving the membrane permeability. Both theory analysis and cellular uptake experiments of exogenous compounds prove the high delivery efficiency of hypersonic poration. Since target molecules in cells are accumulated with the treatment, the delivered amount can be controlled by tuning the treatment time. Furthermore, owing to the intrinsic miniature of the resonator, localized drug delivery at a confined spatial location and tunable arrays of the resonators that are compatible with multiwell plate can be achieved. The hypersonic poration method shows great delivery efficacy combined with advantage of scalability, tunable throughput, and simplification in operation and provides a potentially powerful strategy in the field of molecule delivery, cell transfection, and gene therapy. © 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Focus on Novel Nanoelectromechanical 3D Structures: Fabrication and Properties
Directory of Open Access Journals (Sweden)
Shooji Yamada, Hiroshi Yamaguchi and Sunao Ishihara
2009-01-01
Full Text Available Microelectromechanical systems (MEMS are widely used small electromechanical systems made of micrometre-sized components. Presently, we are witnessing a transition from MEMS to nanoelectromechanical systems (NEMS, which comprise devices integrating electrical and mechanical functionality on the nanoscale and offer new exciting applications. Similarly to MEMS, NEMS typically include a central transistor-like nanoelectronic unit for data processing, as well as mechanical actuators, pumps, and motors; and they may combine with physical, biological and chemical sensors. In the transition from MEMS to NEMS, component sizes need to be reduced. Therefore, many fabrication methods previously developed for MEMS are unsuitable for the production of high-precision NEMS components. The key challenge in NEMS is therefore the development of new methods for routine and reproducible nanofabrication. Two complementary types of method for NEMS fabrication are available: 'top-down' and 'bottom-up'. The top-down approach uses traditional lithography technologies, whereas bottom-up techniques include molecular self-organization, self-assembly and nanodeposition.The NT2008 conference, held at Ishikawa High-Tech Conference Center, Ishikawa, Japan, between 23–25 October 2008, focused on novel NEMS fabricated from new materials and on process technologies. The topics included compound semiconductors, small mechanical structures, nanostructures for micro-fluid and bio-sensors, bio-hybrid micro-machines, as well as their design and simulation.This focus issue compiles seven articles selected from 13 submitted manuscripts. The articles by Prinz et al and Kehrbusch et al introduce the frontiers of the top-down production of various operational NEMS devices, and Kometani et al present an example of the bottom-up approach, namely ion-beam induced deposition of MEMS and NEMS. The remaining articles report novel technologies for biological sensors. Taira et al have used
Energy Technology Data Exchange (ETDEWEB)
Zou, Li [Dalian Univ. of Technology, Dalian City (China). State Key Lab. of Structural Analysis for Industrial Equipment; Liang, Songxin; Li, Yawei [Dalian Univ. of Technology, Dalian City (China). School of Mathematical Sciences; Jeffrey, David J. [Univ. of Western Ontario, London (Canada). Dept. of Applied Mathematics
2017-06-01
Nonlinear boundary value problems arise frequently in physical and mechanical sciences. An effective analytic approach with two parameters is first proposed for solving nonlinear boundary value problems. It is demonstrated that solutions given by the two-parameter method are more accurate than solutions given by the Adomian decomposition method (ADM). It is further demonstrated that solutions given by the ADM can also be recovered from the solutions given by the two-parameter method. The effectiveness of this method is demonstrated by solving some nonlinear boundary value problems modeling beam-type nano-electromechanical systems.
Rahimi, Z.; Rashahmadi, S.
2017-11-01
The thermo-elastic damping is a dominant source of internal damping in micro-electromechanical systems (MEMS) and nano-electromechanical systems (NEMS). The internal damping cannot neither be controlled nor minimized unless either mechanical or geometrical properties are changed. Therefore, a novel FGMNEM system with a controllable thermo-elastic damping of axial vibration based on Eringen nonlocal theory is considered. The effects of different parameter like the gradient index, nonlocal parameter, length of nanobeam and ambient temperature on the thermo-elastic damping quality factor are presented. It is shown that the thermo-elastic damping can be controlled by changing different parameter.
International Nuclear Information System (INIS)
Kaul, Anupama B.; Megerian, Krikor G.; LeDuc, Henry G.; Epp, Larry; Khan, Abdur R.; Bagge, Leif
2009-01-01
We have demonstrated electrostatic switching in vertically oriented carbon nanofibers synthesized on refractory metallic nitride substrates, where pull-in voltages V pi ranged from 10 to 40 V. A nanoprobe was used as the actuating electrode inside a scanning-electron microscope and van der Waals interactions at these length scales appeared significant, suggesting such structures are promising for nonvolatile memory applications. A finite element model was also developed to determine a theoretical V pi and results were compared to experiment. Nanomanipulation tests also revealed tubes synthesized directly on Si by dc plasma-enhanced chemical-vapor deposition with ammonia and acetylene were electrically unsuitable for dc nanoelectromechanical switching applications.
Energy Technology Data Exchange (ETDEWEB)
Lin, Tong; Chau, Fook Siong; Zhou, Guangya, E-mail: mpezgy@nus.edu.sg [Department of Mechanical Engineering, National University of Singapore, 9 Engineering Drive 1, Singapore 117576 (Singapore); Deng, Jie [Institute of Materials Research and Engineering, A*STAR (Agency for Science, Technology and Research), 3 Research Link, Singapore 117602 (Singapore)
2015-11-30
Fano resonance is a prevailing interference phenomenon that stems from the intersection between discrete and continuum states in many fields. We theoretically and experimentally characterize the asymmetric Fano lineshape in side-coupled waveguide Fabry–Pérot and photonic crystal nanobeam cavities. The measured quality-factor of the Fano resonance before tuning is 28 100. A nanoelectromechanical systems bidirectional actuator is integrated seamlessly to control the shape of the Fano resonance through in-plane translations in two directions without sacrificing the quality-factor. The peak intensity level of the Fano resonance can be increased by 8.5 dB from 60 nW to 409 nW while the corresponding dip intensity is increased by 12.8 dB from 1 nW to 18 nW. The maximum recorded quality-factor throughout the tuning procedure is up to 32 500. Potential applications of the proposed structure include enhancing the sensitivity of sensing, reconfigurable nanophotonics devices, and on-chip intensity modulator.
DEZEST, Denis; MATHIEU, Fabrice; MAZENQ, Laurent; SOYER, Caroline; COSTECALDE, Jean; REMIENS, Denis; THOMAS, Olivier; DEÜ, Jean-François; NICU, Liviu
2013-01-01
In this work, we demonstrate the integration of piezoelectric actuation means on arrays of nanocantilevers at the wafer scale. We use lead titanate zirconate (PZT) as piezoelectric material mainly because of its excellent actuation properties even when geometrically constrained at extreme scale
Experimental characterization of graphene by electrostatic resonance frequency tuning
Sajadi, B.; Alijani, F.; Davidovikj, D.; Goosen, J.F.L.; Steeneken, P.G.; van Keulen, A.
2017-01-01
In the last decade, graphene membranes have drawn tremendous attention due to their potential application in Nano-Electro-Mechanical Systems. In this paper, we show that the frequency response curves of graphene resonators are powerful tools for their dynamic characterization and for extracting
Three-terminal nanoelectromechanical switch based on tungsten nitride—an amorphous metallic material
Mayet, Abdulilah M.; Hussain, Aftab M.; Hussain, Muhammad Mustafa
2015-01-01
© 2016 IOP Publishing Ltd. Nanoelectromechanical (NEM) switches inherently have zero off-state leakage current and nearly ideal sub-threshold swing due to their mechanical nature of operation, in contrast to semiconductor switches. A challenge for NEM switches to be practical for low-power digital logic application is their relatively large operation voltage which can result in higher dynamic power consumption. Herein we report a three-terminal laterally actuated NEM switch fabricated with an amorphous metallic material: tungsten nitride (WNx). As-deposited WNx thin films have high Young's modulus (300 GPa) and reasonably high hardness (3 GPa), which are advantageous for high wear resistance. The first prototype WNx switches are demonstrated to operate with relatively low control voltage, down to 0.8 V for an air gap thickness of 150 nm.
Three-terminal nanoelectromechanical switch based on tungsten nitride—an amorphous metallic material
Mayet, Abdulilah M.
2015-12-04
© 2016 IOP Publishing Ltd. Nanoelectromechanical (NEM) switches inherently have zero off-state leakage current and nearly ideal sub-threshold swing due to their mechanical nature of operation, in contrast to semiconductor switches. A challenge for NEM switches to be practical for low-power digital logic application is their relatively large operation voltage which can result in higher dynamic power consumption. Herein we report a three-terminal laterally actuated NEM switch fabricated with an amorphous metallic material: tungsten nitride (WNx). As-deposited WNx thin films have high Young\\'s modulus (300 GPa) and reasonably high hardness (3 GPa), which are advantageous for high wear resistance. The first prototype WNx switches are demonstrated to operate with relatively low control voltage, down to 0.8 V for an air gap thickness of 150 nm.
Probing VCMA in MTJs with in-plane magnetization
Directory of Open Access Journals (Sweden)
M. Williamson
2017-11-01
Full Text Available Voltage controlled magnetic anisotropy (VCMA is a novel method to switch magnetizations in low-power and ultra-fast applications based on magnetic tunnel junctions (MTJs. Here we explore the ferromagnetic resonance (FMR technique to probe VCMA in situations where other methods cannot be applied. We quantify VCMA in CoFeB/MgO/CoFeB MTJ nanopillars with in-plane magnetizations where our FMR method is unique in providing direct information about VCMA. We observe a quadratic shift of the FMR resonance field when a voltage bias is applied across the MTJ. The VCMA energy corresponding to the quadratic shift varies with an energy factor of 8.2μJ/m2 for 1 V2/nm2. These results are important for understanding magnetodynamics in MTJ-based applications with in-plane magnetizations.
Algebraic Methods in Plane Geometry
Indian Academy of Sciences (India)
Home; Journals; Resonance – Journal of Science Education; Volume 13; Issue 10. Algebraic Methods in ... General Article Volume 13 Issue 10 October 2008 pp 916-928 ... Keywords. Conics; family of curves; Pascal's theorem; homogeneous coordinates; Butterfly theorem; abelian group; associativity of addition; group law.
Yamada, Shooji; Yamaguchi, Hiroshi; Ishihara, Sunao
2009-06-01
Microelectromechanical systems (MEMS) are widely used small electromechanical systems made of micrometre-sized components. Presently, we are witnessing a transition from MEMS to nanoelectromechanical systems (NEMS), which comprise devices integrating electrical and mechanical functionality on the nanoscale and offer new exciting applications. Similarly to MEMS, NEMS typically include a central transistor-like nanoelectronic unit for data processing, as well as mechanical actuators, pumps, and motors; and they may combine with physical, biological and chemical sensors. In the transition from MEMS to NEMS, component sizes need to be reduced. Therefore, many fabrication methods previously developed for MEMS are unsuitable for the production of high-precision NEMS components. The key challenge in NEMS is therefore the development of new methods for routine and reproducible nanofabrication. Two complementary types of method for NEMS fabrication are available: 'top-down' and 'bottom-up'. The top-down approach uses traditional lithography technologies, whereas bottom-up techniques include molecular self-organization, self-assembly and nanodeposition. The NT2008 conference, held at Ishikawa High-Tech Conference Center, Ishikawa, Japan, between 23-25 October 2008, focused on novel NEMS fabricated from new materials and on process technologies. The topics included compound semiconductors, small mechanical structures, nanostructures for micro-fluid and bio-sensors, bio-hybrid micro-machines, as well as their design and simulation. This focus issue compiles seven articles selected from 13 submitted manuscripts. The articles by Prinz et al and Kehrbusch et al introduce the frontiers of the top-down production of various operational NEMS devices, and Kometani et al present an example of the bottom-up approach, namely ion-beam induced deposition of MEMS and NEMS. The remaining articles report novel technologies for biological sensors. Taira et al have used manganese nanoparticles
DEFF Research Database (Denmark)
Petersen, Nils Holger
2014-01-01
A chapter in a book about terminology within the field of medievalism: the chapter discusses the resonance of medieval music and ritual in modern (classical) music culture and liturgical practice.......A chapter in a book about terminology within the field of medievalism: the chapter discusses the resonance of medieval music and ritual in modern (classical) music culture and liturgical practice....
Nano-electro-mechanical pump: Giant pumping of water in carbon nanotubes
Farimani, Amir Barati; Heiranian, Mohammad; Aluru, Narayana R.
2016-05-01
A fully controllable nano-electro-mechanical device that can pump fluids at nanoscale is proposed. Using molecular dynamics simulations, we show that an applied electric field to an ion@C60 inside a water-filled carbon nanotube can pump water with excellent efficiency. The key physical mechanism governing the fluid pumping is the conversion of electrical energy into hydrodynamic flow with efficiencies as high as 64%. Our results show that water can be compressed up to 7% higher than its bulk value by applying electric fields. High flux of water (up to 13,000 molecules/ns) is obtained by the electro-mechanical, piston-cylinder-like moving mechanism of the ion@C60 in the CNT. This large flux results from the piston-like mechanism, compressibility of water (increase in density of water due to molecular ordering), orienting dipole along the electric field and efficient electrical to mechanical energy conversion. Our findings can pave the way towards efficient energy conversion, pumping of fluids at nanoscale, and drug delivery.
Nano-electromechanical switch-CMOS hybrid technology and its applications.
Lee, B H; Hwang, H J; Cho, C H; Lim, S K; Lee, S Y; Hwang, H
2011-01-01
Si-based CMOS technology is facing a serious challenge in terms of power consumption and variability. The increasing costs associated with physical scaling have motivated a search for alternative approaches. Hybridization of nano-electromechanical (NEM)-switch and Si-based CMOS devices has shown a theoretical feasibility for power management, but a huge technical gap must be bridged before a nanoscale NEM switch can be realized due to insufficient material development and the limited understanding of its reliability characteristics. These authors propose the use of a multilayer graphene as a nanoscale cantilever material for a nanoscale NEM switchwith dimensions comparable to those of the state-of-the-art Si-based CMOS devices. The optimal thickness for the multilayer graphene (about five layers) is suggested based on an analytical model. Multilayer graphene can provide the highest Young's modulus among the known electrode materials and a yielding strength that allows more than 15% bending. Further research on material screening and device integration is needed, however, to realize the promises of the hybridization of NEM-switch and Si-based CMOS devices.
Energy Technology Data Exchange (ETDEWEB)
Wang, Mingtao; Feindel, Kirk W.; Bergens, Steven H.; Wasylishen, Roderick E. [Department of Chemistry, University of Alberta, E3-24 Gunning/Lemieux Chemistry Center, Edmonton, Alberta (Canada)
2010-11-01
Spatial, quantitative, and temporal information regarding the water content distribution in the transverse-plane between the catalyst layers of an operating polymer-electrolyte membrane fuel cell (PEMFC) is essential to develop a fundamental understanding of water dynamics in these systems. We report {sup 1}H micro-magnetic resonance imaging (MRI) experiments that measure the number of water molecules per SO{sub 3}H group, {lambda}, within a Nafion {sup registered} -117 membrane between the catalyst stamps of a membrane-electrode assembly, MEA. The measurements were made both ex situ, and inside a PEMFC operating on hydrogen and oxygen. The observed {sup 1}H MRI T{sub 2} relaxation time of water in the PEM was measured for several known values of {lambda}. The signal intensity of the images was then corrected for T{sub 2} weighting to yield proton density-weighted images, thereby establishing a calibration curve that correlates the {sup 1}H MRI density-weighted signal with {lambda}. Subsequently, the calibration curve was used with proton density weighted (i.e., T{sub 2}-corrected) signal intensities of transverse-plane {sup 1}H MRI images of water in the PEM between the catalyst stamps of an operating PEMFC to determine {lambda} under various operational conditions. For example, the steady state, transverse-plane {lambda} was 9 {+-} 1 for a PEMFC operating at {proportional_to}26.4 mW cm{sup -2} ({proportional_to}20.0 mA, {proportional_to}0.661 V, 20 C, flow rates of the dry H{sub 2}(g) and O{sub 2}(g) were 5.0 and 2.5 mL min{sup -1}, respectively). (author)
DEFF Research Database (Denmark)
an impetus or drive to that account: change, innovation, rupture, or discontinuity. Resonances: Historical Essays on Continuity and Change explores the historiographical question of the modes of interrelation between these motifs in historical narratives. The essays in the collection attempt to realize...
Violin bridge mobility analysis under in-plane excitation.
Zhang, Cheng-Zhong; Zhang, Guang-Ming; Ye, Bang-Yan; Liang, Li-Dong
2013-11-08
The vibration of a violin bridge is a dynamic contact vibration with two interfaces: strings-bridge, and bridge feet-top plate. In this paper, the mobility of an isolated bridge under in-plane excitation is explored using finite element modeling based on the contact vibration model. Numerical results show that the dynamic contact stiffness in the two contact interfaces has a great impact on the bridge mobility. A main resonance peak is observed in the frequency range of 2-3 kHz in the frequency response of the isolated bridge when the contact stiffness is smaller than a critical threshold. The main resonance peak frequency is affected by the contact stiffness as well. In order to verify the numerical findings, a novel experimental system is then designed on the basis of a piezoelectric dynamometer for bridge mobility analysis. Experimental results confirm the impact of the dynamic contact stiffness on the bridge mobility.
Violin Bridge Mobility Analysis under In-Plane Excitation
Directory of Open Access Journals (Sweden)
Cheng-Zhong Zhang
2013-11-01
Full Text Available The vibration of a violin bridge is a dynamic contact vibration with two interfaces: strings-bridge, and bridge feet-top plate. In this paper, the mobility of an isolated bridge under in-plane excitation is explored using finite element modeling based on the contact vibration model. Numerical results show that the dynamic contact stiffness in the two contact interfaces has a great impact on the bridge mobility. A main resonance peak is observed in the frequency range of 2–3 kHz in the frequency response of the isolated bridge when the contact stiffness is smaller than a critical threshold. The main resonance peak frequency is affected by the contact stiffness as well. In order to verify the numerical findings, a novel experimental system is then designed on the basis of a piezoelectric dynamometer for bridge mobility analysis. Experimental results confirm the impact of the dynamic contact stiffness on the bridge mobility.
In-plane user positioning indoors
Jovanovic, N.; Özçelebi, T.; Lukkien, J.J.; Skoric, B.; Ignatenko, T.
2014-01-01
Indoor positioning is a service required by many smart environment applications for various purposes, such as activity classification, indoor navigation and context awareness. In this paper, we present a novel approach to the user positioning problem based on in-plane detection enabled by a set of
Guillon, Samuel; Saya, Daisuke; Mazenq, Laurent; Costecalde, Jean; Rèmiens, Denis; Soyer, Caroline; Nicu, Liviu
2012-09-01
The advantage of using lead zirconate titanate (PbZr(0.54)Ti(0.46)O(3)) ceramics as an active material in nanoelectromechanical systems (NEMS) comes from its relatively high piezoelectric coefficients. However, its integration within a technological process is limited by the difficulty of structuring this material with submicrometer resolution at the wafer scale. In this work, we develop a specific patterning method based on optical lithography coupled with a dual-layer resist process. The main objective is to obtain sub-micrometer features by lifting off a 100-nm-thick PZT layer while preserving the material's piezoelectric properties. A subsequent result of the developed method is the ability to stack several layers with a lateral resolution of few tens of nanometers, which is mandatory for the fabrication of NEMS with integrated actuation and read-out capabilities.
In-Plane MEMS Shallow Arch Beam for Mechanical Memory
Hafiz, Md Abdullah Al; Kosuru, Lakshmoji; Ramini, Abdallah; Chappanda, Karumbaiah N.; Younis, Mohammad I.
2016-01-01
We demonstrate a memory device based on the nonlinear dynamics of an in-plane microelectromechanical systems (MEMS) clamped–clamped beam resonator, which is deliberately fabricated as a shallow arch. The arch beam is made of silicon, and is electrostatically actuated. The concept relies on the inherent quadratic nonlinearity originating from the arch curvature, which results in a softening behavior that creates hysteresis and co-existing states of motion. Since it is independent of the electrostatic force, this nonlinearity gives more flexibility in the operating conditions and allows for lower actuation voltages. Experimental results are generated through electrical characterization setup. Results are shown demonstrating the switching between the two vibrational states with the change of the direct current (DC) bias voltage, thereby proving the memory concept.
In-Plane MEMS Shallow Arch Beam for Mechanical Memory
Hafiz, Md Abdullah Al
2016-10-18
We demonstrate a memory device based on the nonlinear dynamics of an in-plane microelectromechanical systems (MEMS) clamped–clamped beam resonator, which is deliberately fabricated as a shallow arch. The arch beam is made of silicon, and is electrostatically actuated. The concept relies on the inherent quadratic nonlinearity originating from the arch curvature, which results in a softening behavior that creates hysteresis and co-existing states of motion. Since it is independent of the electrostatic force, this nonlinearity gives more flexibility in the operating conditions and allows for lower actuation voltages. Experimental results are generated through electrical characterization setup. Results are shown demonstrating the switching between the two vibrational states with the change of the direct current (DC) bias voltage, thereby proving the memory concept.
High-frequency domain wall excitations in magnetic garnet films with in-plane magnetization
International Nuclear Information System (INIS)
Synogach, V.T.; Doetsch, H.
1996-01-01
Magnetic garnet films of compositions (YBi) 3 Fe 5 O 12 and (LuBi) 3 Fe 5 O 12 are grown by liquid-phase epitaxy on [110]- and [100]-oriented substrates of gadolinium gallium garnet, respectively. All films have in-plane magnetization. 180 degree and 90 degree domain walls in these films are studied by microwave technique. In addition to the known low-frequency mode of wall translation new multiple resonant modes of both 90 degree and 180 degree domain walls with very small linewidth (4.2 MHz) are observed at frequencies near 1 GHz. Resonances are effectively excited by an rf magnetic field which is parallel or perpendicular to the wall plane. Resonance frequencies are shown to have nonlinear dispersion dependence on the mode number: they decrease with increasing in-plane magnetic field normal to the wall plane. copyright 1996 The American Physical Society
Optimal Damping of Stays in Cable-Stayed Bridges for In-Plane Vibrations
DEFF Research Database (Denmark)
Jensen, C.N.; Nielsen, S.R.K.; Sørensen, John Dalsgaard
2002-01-01
cable-stayed bridges are often designed as twin cables with a spacing of, say 1m. In such cases, it is suggested in the paper to suppress the mentioned in-plane types of vibrations by means of a tuned mass–damper (TMD) placed between the twin cables at their midpoints. The TMD divides the stay into four......Significant vibrations have been reported in stays of recently constructed cable stayed bridges. The vibrations appear as in-plane vibrations that may be caused by rain–wind- induced aeroelastic interaction or by resonance excitation of the cables from the motion of the pylons. The stays of modern...
Causal inheritance in plane wave quotients
International Nuclear Information System (INIS)
Hubeny, Veronika E.; Rangamani, Mukund; Ross, Simon F.
2003-01-01
We investigate the appearance of closed timelike curves in quotients of plane waves along spacelike isometries. First we formulate a necessary and sufficient condition for a quotient of a general spacetime to preserve stable causality. We explicitly show that the plane waves are stably causal; in passing, we observe that some pp-waves are not even distinguishing. We then consider the classification of all quotients of the maximally supersymmetric ten-dimensional plane wave under a spacelike isometry, and show that the quotient will lead to closed timelike curves iff the isometry involves a translation along the u direction. The appearance of these closed timelike curves is thus connected to the special properties of the light cones in plane wave spacetimes. We show that all other quotients preserve stable causality
Causal inheritance in plane wave quotients
Hubeny, Veronika E.; Rangamani, Mukund; Ross, Simon F.
2004-01-01
We investigate the appearance of closed timelike curves in quotients of plane waves along spacelike isometries. First we formulate a necessary and sufficient condition for a quotient of a general space-time to preserve stable causality. We explicitly show that the plane waves are stably causal; in passing, we observe that some pp waves are not even distinguishing. We then consider the classification of all quotients of the maximally supersymmetric ten-dimensional plane wave under a spacelike isometry, and show that the quotient will lead to closed timelike curves iff the isometry involves a translation along the u direction. The appearance of these closed timelike curves is thus connected to the special properties of the light cones in plane wave space-times. We show that all other quotients preserve stable causality.
Electrostatic Comb-Drive Actuator with High In-Plane Translational Velocity
Directory of Open Access Journals (Sweden)
Yomna M. Eltagoury
2016-10-01
Full Text Available This work reports the design and opto-mechanical characterization of high velocity comb-drive actuators producing in-plane motion and fabricated using the technology of deep reactive ion etching (DRIE of silicon-on-insulator (SOI substrate. The actuators drive vertical mirrors acting on optical beams propagating in-plane with respect to the substrate. The actuator-mirror device is a fabrication on an SOI wafer with 80 μm etching depth, surface roughness of about 15 nm peak to valley and etching verticality that is better than 0.1 degree. The travel range of the actuators is extracted using an optical method based on optical cavity response and accounting for the diffraction effect. One design achieves a travel range of approximately 9.1 µm at a resonance frequency of approximately 26.1 kHz, while the second design achieves about 2 µm at 93.5 kHz. The two specific designs reported achieve peak velocities of about 1.48 and 1.18 m/s, respectively, which is the highest product of the travel range and frequency for an in-plane microelectromechanical system (MEMS motion under atmospheric pressure, to the best of the authors’ knowledge. The first design possesses high spring linearity over its travel range with about 350 ppm change in the resonance frequency, while the second design achieves higher resonance frequency on the expense of linearity. The theoretical predications and the experimental results show good agreement.
DEFF Research Database (Denmark)
Berini, Abadal Gabriel; Boisen, Anja; Davis, Zachary James
1999-01-01
A direct-write laser system and an atomic force microscope (AFM) are combined to modify thin layers of aluminum on an oxidized silicon substrate, in order to fabricate conducting and robust etch masks with submicron features. These masks are very well suited for the production of nanoelectromecha......A direct-write laser system and an atomic force microscope (AFM) are combined to modify thin layers of aluminum on an oxidized silicon substrate, in order to fabricate conducting and robust etch masks with submicron features. These masks are very well suited for the production...... writing, and to perform submicron modifications by AFM oxidation. The mask fabrication for a nanoscale suspended resonator bridge is used to illustrate the advantages of this combined technique for NEMS. (C) 1999 American Institute of Physics. [S0003-6951(99)00221-1]....
Nonlinear Dynamics of Nanomechanical Resonators
Ramakrishnan, Subramanian; Gulak, Yuiry; Sundaram, Bala; Benaroya, Haym
2007-03-01
Nanoelectromechanical systems (NEMS) offer great promise for many applications including motion and mass sensing. Recent experimental results suggest the importance of nonlinear effects in NEMS, an issue which has not been addressed fully in theory. We report on a nonlinear extension of a recent analytical model by Armour et al [1] for the dynamics of a single-electron transistor (SET) coupled to a nanomechanical resonator. We consider the nonlinear resonator motion in both (a) the Duffing and (b) nonlinear pendulum regimes. The corresponding master equations are derived and solved numerically and we consider moment approximations as well. In the Duffing case with hardening stiffness, we observe that the resonator is damped by the SET at a significantly higher rate. In the cases of softening stiffness and the pendulum, there exist regimes where the SET adds energy to the resonator. To our knowledge, this is the first instance of a single model displaying both negative and positive resonator damping in different dynamical regimes. The implications of the results for SET sensitivity as well as for, as yet unexplained, experimental results will be discussed. 1. Armour et al. Phys.Rev.B (69) 125313 (2004).
SWNT array resonant gate MOS transistor
Energy Technology Data Exchange (ETDEWEB)
Arun, A; Salet, P; Ionescu, A M [NanoLab, Ecole Polytechnique Federale de Lausanne, CH-1015, Lausanne (Switzerland); Campidelli, S; Filoramo, A; Derycke, V; Goffman, M F, E-mail: marcelo.goffman@cea.fr [Laboratoire d' Electronique Moleculaire, SPEC (CNRS URA 2454), IRAMIS, CEA, Gif-sur-Yvette (France)
2011-02-04
We show that thin horizontal arrays of single wall carbon nanotubes (SWNTs) suspended above the channel of silicon MOSFETs can be used as vibrating gate electrodes. This new class of nano-electromechanical system (NEMS) combines the unique mechanical and electronic properties of SWNTs with an integrated silicon-based motion detection. Its electrical response exhibits a clear signature of the mechanical resonance of SWNT arrays (120-150 MHz) showing that these thin horizontal arrays behave as a cohesive, rigid and elastic body membrane with a Young's modulus in the order of 1-10 GPa and ultra-low mass. The resonant frequency can be tuned by the gate voltage and its dependence is well understood within the continuum mechanics framework.
SWNT array resonant gate MOS transistor.
Arun, A; Campidelli, S; Filoramo, A; Derycke, V; Salet, P; Ionescu, A M; Goffman, M F
2011-02-04
We show that thin horizontal arrays of single wall carbon nanotubes (SWNTs) suspended above the channel of silicon MOSFETs can be used as vibrating gate electrodes. This new class of nano-electromechanical system (NEMS) combines the unique mechanical and electronic properties of SWNTs with an integrated silicon-based motion detection. Its electrical response exhibits a clear signature of the mechanical resonance of SWNT arrays (120-150 MHz) showing that these thin horizontal arrays behave as a cohesive, rigid and elastic body membrane with a Young's modulus in the order of 1-10 GPa and ultra-low mass. The resonant frequency can be tuned by the gate voltage and its dependence is well understood within the continuum mechanics framework.
SWNT array resonant gate MOS transistor
International Nuclear Information System (INIS)
Arun, A; Salet, P; Ionescu, A M; Campidelli, S; Filoramo, A; Derycke, V; Goffman, M F
2011-01-01
We show that thin horizontal arrays of single wall carbon nanotubes (SWNTs) suspended above the channel of silicon MOSFETs can be used as vibrating gate electrodes. This new class of nano-electromechanical system (NEMS) combines the unique mechanical and electronic properties of SWNTs with an integrated silicon-based motion detection. Its electrical response exhibits a clear signature of the mechanical resonance of SWNT arrays (120-150 MHz) showing that these thin horizontal arrays behave as a cohesive, rigid and elastic body membrane with a Young's modulus in the order of 1-10 GPa and ultra-low mass. The resonant frequency can be tuned by the gate voltage and its dependence is well understood within the continuum mechanics framework.
In-plane inertial coupling in tuned and severely mistuned bladed disks
Crawley, E. F.
1982-01-01
A model has been developed and verified for blade-disk-shaft coupling in rotors due to the in-plane rigid body modes of the disk. An analytic model has been developed which couples the in-plane rigid body modes of the disk on an elastic shaft with the blade bending modes. Bench resonance test were carried out on the M.I.T. Compressor Rotor, typical of research rotors with flexible blades and a thick rigid disk. When the rotor was carefully tuned, the structural coupling of the blades by the disks was confined to zero and one nodal diameter modes, whose modal frequencies were greater than the blade cantilever frequency. In the case of the tuned rotor, and in two cases where severe mistuning was intentionally introduced, agreement between the predicted and observed natural frequencies is excellent. The analytic model was then extended to include the effects of constant angular rotation of the disk.
Ramini, Abdallah
2016-01-20
We present experimental investigation of the nonlinear dynamics of a clamped-clamped in-plane MEMS shallow arch when excited by an electrostatic force. We explore the dynamic behaviors of the in-plane motion of the shallow arches via frequency sweeps in the neighborhood of the first resonance frequency. The shallow arch response is video microscopy recorded and analyzed by means of digital imaging. The experimental data show local softening behavior for small DC and AC loads. For high voltages, the experimental investigation reveals interesting dynamics, where the arch exhibits a dynamic snap-Through behavior. These attractive experimental results verify the previously reported complex behavior of in-plane MEMS arches and show promising results to implement these structures for variety of sensing and actuation applications. © Copyright 2015 by ASME.
VHF NEMS-CMOS piezoresistive resonators for advanced sensing applications
Arcamone, Julien; Dupré, Cécilia; Arndt, Grégory; Colinet, Eric; Hentz, Sébastien; Ollier, Eric; Duraffourg, Laurent
2014-10-01
This work reports on top-down nanoelectromechanical resonators, which are among the smallest resonators listed in the literature. To overcome the fact that their electromechanical transduction is intrinsically very challenging due to their very high frequency (100 MHz) and ultimate size (each resonator is a 1.2 μm long, 100 nm wide, 20 nm thick silicon beam with 100 nm long and 30 nm wide piezoresistive lateral nanowire gauges), they have been monolithically integrated with an advanced fully depleted SOI CMOS technology. By advantageously combining the unique benefits of nanomechanics and nanoelectronics, this hybrid NEMS-CMOS device paves the way for novel breakthrough applications, such as NEMS-based mass spectrometry or hybrid NEMS/CMOS logic, which cannot be fully implemented without this association.
In-plane fluidelastic instability analysis for large steam generators
International Nuclear Information System (INIS)
Mureithi, Njuki; Olala, Stephen; Hadji, Abdallah
2015-01-01
Fluidelastic instability remains the most important vibration excitation mechanism in nuclear steam generators (SGs). Design guidelines, aimed at eliminating the possibility of fluidelastic instability, have been developed over the past 40 years. The design guidelines, based on the Connors equation, depend on a large database on cross-flow fluidelastic instability i.e. instability in the direction transverse to the flow. Past experience had shown that for an axi-symmetrically flexible tube, instability generally occurred in the transverse direction, at least at first. Although often not explicitly stated, there has been an implicit assumption that the in-plane direction was either stable, or would only suffer instability at velocities significantly higher than the transverse direction. This explains why SGs are fitted with anti-vibrations bars (AVBs) to mitigate transverse (out-of-plane) vibrations with no equivalent consideration for potential in-plane instability. This 'oversight' recently came to a head when SG at the San-Onofre NPP suffered in-plane fluidelastic instability. The present paper addresses the question of in-plane fluidelastic instability in large SGs. A historical review is presented to explain why this potential problem was left unresolved (or ignored) over the past 40+ years, and why engineers got away with it - at least until recently. Following the review, some recent work on in-plane fluidelastic instability modeling, using the quasi-steady model is presented. It is shown that in-plane fluidelastic instability can be fully modelled using this approach. The model results are used to propose some changes to existing design guidelines to cover the case of in-plane fluidelastic instability. (author)
Directory of Open Access Journals (Sweden)
Amir R. Askari
2014-01-01
Full Text Available The influence of the Casimir excitation on dynamic pull-in instability of a nanoelectromechanical beam under ramp-input voltage is studied. The ramp-input actuation has applications in frequency sweeping of RF-N/MEMS. The presented model is nonlinear due to the inherent nonlinearity of electrostatics and the Casimir excitations as well as the geometric nonlinearity of midplane stretching. A Galerkin based reduced order modeling is utilized. It is found that the calculated dynamic pull-in ramp input voltage leads to dynamic pull-in step input voltage by increasing the slope of voltage-time diagram. This fact is utilized to verify the results of present study.
A 30 Mbps in-plane full-duplex light communication using a monolithic GaN photonic circuit
Gao, Xumin; Yuan, Jialei; Yang, Yongchao; Li, Yuanhang; Yuan, Wei; Zhu, Guixia; Zhu, Hongbo; Feng, Meixin; Sun, Qian; Liu, Yuhuai; Wang, Yongjin
2017-07-01
We propose, fabricate and characterize photonic integration of a InGaN/GaN multiple-quantum-well light-emitting diode (MQW-LED), waveguide, ring resonator and InGaN/GaN MQW-photodiode on a single chip, in which the photonic circuit is suspended by the support beams. Both experimental observations and simulation results illustrate the manipulation of in-plane light coupling and propagation by the waveguide and the ring resonator. The monolithic photonic circuit forms an in-plane data communication system using visible light. When the two suspended InGaN/GaN MQW-diodes simultaneously serve as the transmitter and the receiver, an in-plane full-duplex light communication is experimentally demonstrated with a transmission rate of 30 Mbps, and the superimposed signals are extracted using the self-interference cancellation method. The suspended photonic circuit creates new possibilities for exploring the in-plane full-duplex light communication and manufacturing complex GaN-based monolithic photonic integrations.
Designing broad phononic band gaps for in-plane modes
Li, Yang Fan; Meng, Fei; Li, Shuo; Jia, Baohua; Zhou, Shiwei; Huang, Xiaodong
2018-03-01
Phononic crystals are known as artificial materials that can manipulate the propagation of elastic waves, and one essential feature of phononic crystals is the existence of forbidden frequency range of traveling waves called band gaps. In this paper, we have proposed an easy way to design phononic crystals with large in-plane band gaps. We demonstrated that the gap between two arbitrarily appointed bands of in-plane mode can be formed by employing a certain number of solid or hollow circular rods embedded in a matrix material. Topology optimization has been applied to find the best material distributions within the primitive unit cell with maximal band gap width. Our results reveal that the centroids of optimized rods coincide with the point positions generated by Lloyd's algorithm, which deepens our understandings on the formation mechanism of phononic in-plane band gaps.
Apparatus and methods for memory using in-plane polarization
Liu, Junwei; Chang, Kai; Ji, Shuai-Hua; Chen, Xi; Fu, Liang
2018-05-01
A memory device includes a semiconductor layer with an in-plane polarization component switchable between a first direction and a second direction. A writing electrode is employed to apply a writing voltage to the semiconductor layer to change the in-plane polarization component between the first direction and the second direction. A reading electrode is employed to apply a reading voltage to the semiconductor layer to measure a tunneling current substantially perpendicular to the polarization direction of the in-plane polarization component. The directions of the reading voltage and the writing voltage are substantially perpendicular to each other. Therefore, the reading process is non-destructive. Thin films (e.g., one unit cell thick) of ferroelectric material can be used in the memory device to increase the miniaturization of the device.
Vertical-Cavity In-plane Heterostructures: Physics and Applications
DEFF Research Database (Denmark)
Taghizadeh, Alireza; Mørk, Jesper; Chung, Il-Sug
2015-01-01
We show that the in-plane heterostructures realized in vertical cavities with high contrast grating(HCG) reflector enables exotic configurations of heterostructure and photonic wells. In photonic crystal heterostructures forming a photonic well, the property of a confined mode is determined...... by the well width and barrier height. We show that in vertical-cavity in-plane heterostructures, anisotropic dispersion curvatures plays a key role as well, leading to exotic effects such as a photonic well with conduction band like well and a valence band like barrier. We investigate three examples...
In-plane laser forming for high precision alignment
Folkersma, Ger; Römer, Gerardus Richardus, Bernardus, Engelina; Brouwer, Dannis Michel; Huis in 't Veld, Bert
2014-01-01
Laser microforming is extensively used to align components with submicrometer accuracy, often after assembly. While laser-bending sheet metal is the most common laser-forming mechanism, the in-plane upsetting mechanism is preferred when a high actuator stiffness is required. A three-bridge planar
Crack Propagation in Plane Strain under Variable Amplitude Loading
DEFF Research Database (Denmark)
Ricardo, Luiz Carlos Hernandes
2010-01-01
. In this paper procedures to determine the crack opening and closure by finite elements analyses in plane strain will be presented. The objective of this paper is also provide a review of retardation models under variable spectrum loading considering plane strain constraint as well as their correlation...
Tunable coupled nanomechanical resonators for single-electron transport
International Nuclear Information System (INIS)
Scheible, Dominik V; Erbe, Artur; Blick, Robert H
2002-01-01
Nano-electromechanical systems (NEMS) are ideal for sensor applications and ultra-sensitive force detection, since their mechanical degree of freedom at the nanometre scale can be combined with semiconductor nano-electronics. We present a system of coupled nanomechanical beam resonators in silicon which is mechanically fully Q-tunable ∼700-6000. This kind of resonator can also be employed as a mechanical charge shuttle via an insulated metallic island at the tip of an oscillating cantilever. Application of our NEMS as an electromechanical single-electron transistor (emSET) is introduced and experimental results are discussed. Three animation clips demonstrate the manufacturing process of the NEMS, the Q-tuning experiment and the concept of the emSET
Chagas-Neto, Francisco A; Taneja, Atul K; Gregio-Junior, Everaldo; Nogueira-Barbosa, Marcello H
2017-06-01
This study aims to describe a technique for in-plane ultrasound-guided knee arthrography through a lateral suprapatellar approach, reporting its accuracy and related complications. A retrospective search was performed for computed tomography and magnetic resonance reports from June 2013 through June 2015. Imaging studies, puncture descriptions, and guided-procedure images were reviewed along with clinical and surgical history. A fellowship-trained musculoskeletal radiologist performed all procedures under sterile technique and ultrasound guidance with the probe in oblique position on the lateral suprapatellar recess after local anesthesia with the patient on dorsal decubitus, hip in neutral rotation, and 30 to 45 degrees of knee flexion. A total of 86 consecutive subjects were evaluated (mean, 55 years). All subjects underwent intra-articular injection of contrast, which was successfully reached in the first attempt in 94.2% of the procedures (81/86), and in the second attempt in 5.8% (5/86) after needle repositioning without a second puncture. There were no postprocedural reports of regional complications at the puncture site, such as significant pain, bleeding, or vascular lesions. Our study demonstrates that in-plane ultrasound-guided injection of the knee in semiflexion approaching the lateral suprapatellar recess is a safe and useful technique to administer intra-articular contrast solution, as an alternative method without radiation exposure.
Coupling of lipid membrane elasticity and in-plane dynamics
Tsang, Kuan-Yu; Lai, Yei-Chen; Chiang, Yun-Wei; Chen, Yi-Fan
2017-07-01
Biomembranes exhibit liquid and solid features concomitantly with their in-plane fluidity and elasticity tightly regulated by cells. Here, we present experimental evidence supporting the existence of the dynamics-elasticity correlations for lipid membranes and propose a mechanism involving molecular packing densities to explain them. This paper thereby unifies, at the molecular level, the aspects of the continuum mechanics long used to model the two membrane features. This ultimately may elucidate the universal physical principles governing the cellular phenomena involving biomembranes.
Bounds on poloidal kinetic energy in plane layer convection
Tilgner, A.
2017-12-01
A numerical method is presented that conveniently computes upper bounds on heat transport and poloidal energy in plane layer convection for infinite and finite Prandtl numbers. The bounds obtained for the heat transport coincide with earlier results. These bounds imply upper bounds for the poloidal energy, which follow directly from the definitions of dissipation and energy. The same constraints used for computing upper bounds on the heat transport lead to improved bounds for the poloidal energy.
An evaluation of in-plane shields during thoracic CT.
Foley, S J; McEntee, M F; Rainford, L A
2013-08-01
The object of this study was to compare organ dose and image quality effects of using bismuth and barium vinyl in-plane shields with standard and low tube current thoracic CT protocols. A RANDO phantom was scanned using a 64-slice CT scanner and three different thoracic protocols. Thermoluminescent dosemeters were positioned in six locations to record surface and absorbed breast and lung doses. Image quality was assessed quantitatively using region of interest measurements. Scanning was repeated using bismuth and barium vinyl in-plane shields to cover the breasts and the results were compared with standard and reduced dose protocols. Dose reductions were most evident in the breast, skin and anterior lung when shielding was used, with mean reductions of 34, 33 and 10 % for bismuth and 23, 18 and 11 % for barium, respectively. Bismuth was associated with significant increases in both noise and CT attenuation values for all the three protocols, especially anteriorly and centrally. Barium shielding had a reduced impact on image quality. Reducing the overall tube current reduced doses in all the locations by 20-27 % with similar increases in noise as shielding, without impacting on attenuation values. Reducing the overall tube current best optimises dose with minimal image quality impact. In-plane shields increase noise and attenuation values, while reducing anterior organ doses primarily. Shielding remains a useful optimisation tool in CT and barium is an effective alternative to bismuth especially when image quality is of concern.
STRUCTURAL ANALYSIS OF IN-PLANE LOADED CLT BEAMS
Directory of Open Access Journals (Sweden)
Mario Jeleč
2017-01-01
Full Text Available Cross laminated timber (CLT is a versatile engineered timber product that is increasingly well-known and of global interest in several applications such as full size plane or linear timber elements. The aim of this study involves investigating the performance of CLT beams loaded in-plane by considering bending and shear stress analysis with a special emphasis on the in-plane shear behavior including the complex internal structure of CLT. Numerical analysis based on 3D-FE models was used and compared with two existing analytical approaches, namely representative volume sub element (method I and composite beam theory (method II. The separate verification of bending and shear stresses including tree different shear failure modes was performed, and a good agreement was obtained. The main difference between the results relates to shear failure mode in the crossing areas between the orthogonally bonded lamellas in which the distribution of shear stresses τzx over the crossing areas per height of the CLT beam is not in accordance with the analytical assumptions. The presented analyses constitute the first attempt to contribute to the on-going review process of Eurocode 5 with respect to CLT beams loaded-in plane. Currently, regulations on designing these types of beams do not exist, and thus experimental and numerical investigations are planned in the future.
Control of the magnetic in-plane anisotropy in off-stoichiometric NiMnSb
International Nuclear Information System (INIS)
Gerhard, F.; Schumacher, C.; Gould, C.; Molenkamp, L. W.
2014-01-01
NiMnSb is a ferromagnetic half-metal which, because of its rich anisotropy and very low Gilbert damping, is a promising candidate for applications in information technologies. We have investigated the in-plane anisotropy properties of thin, molecular beam epitaxy-grown NiMnSb films as a function of their Mn concentration. Using ferromagnetic resonance to determine the uniaxial and four-fold anisotropy fields, (2K U )/(M s ) and (2K 1 )/(M s ) , we find that a variation in composition can change the strength of the four-fold anisotropy by more than an order of magnitude and cause a complete 90° rotation of the uniaxial anisotropy. This provides valuable flexibility in designing new device geometries
Tailoring distributed modal sensors for in-plane modal filtering
International Nuclear Information System (INIS)
Donoso, A; Bellido, J C
2009-01-01
In this note we deal with finding the shape of distributed piezoelectric modal sensors for isolating the in-plane mode shapes of plates. The problem is treated by an optimization approach, in which a binary function is used to model the design variable: the polarization profile of the piezoelectric layer. The numerical procedure proposed here allows us to find polarization profiles which take on two values only, i.e. either positive or negative polarization, that make it possible to isolate particular vibration modes in the frequency domain. (technical note)
Ramini, Abdallah
2015-12-11
We present an experimental investigation for the nonlinear dynamic behaviors of clamped–clamped in-plane MEMS shallow arches when excited by harmonic electrostatic forces. Frequency sweeps are conducted to study the dynamic behaviors in the neighborhoods of the first and third resonance frequencies as well as the super-harmonic resonances. Experimental results show local softening behavior of small oscillations around the first resonance frequency and hardening behavior at the third resonance frequency for small dc and ac loads. Interesting dynamic snap-through cross-well motions are observed experimentally at high voltages for the first time in the micro-scale world. In addition to the dynamic snap-through motion, the MEMS arch exhibits large oscillations of a continuous band of snap-through motion between the super-harmonic resonance regime and the first primary resonance regime. This continuous band is unprecedented experimentally in the micro/macro world, and is promising for a variety of sensing, actuation and communications applications.
Ramini, Abdallah; Bellaredj, Mohammed L F; Al Hafiz, Md Abdullah; Younis, Mohammad I.
2015-01-01
We present an experimental investigation for the nonlinear dynamic behaviors of clamped–clamped in-plane MEMS shallow arches when excited by harmonic electrostatic forces. Frequency sweeps are conducted to study the dynamic behaviors in the neighborhoods of the first and third resonance frequencies as well as the super-harmonic resonances. Experimental results show local softening behavior of small oscillations around the first resonance frequency and hardening behavior at the third resonance frequency for small dc and ac loads. Interesting dynamic snap-through cross-well motions are observed experimentally at high voltages for the first time in the micro-scale world. In addition to the dynamic snap-through motion, the MEMS arch exhibits large oscillations of a continuous band of snap-through motion between the super-harmonic resonance regime and the first primary resonance regime. This continuous band is unprecedented experimentally in the micro/macro world, and is promising for a variety of sensing, actuation and communications applications.
A novel in-plane mode rotary ultrasonic motor
Directory of Open Access Journals (Sweden)
Lu Xiaolong
2014-04-01
Full Text Available Ultrasonic motors have the merits of high ratio of torque to volume, high positioning precision, intrinsic holding torque, etc., compared to the conventional electromagnetic motors. There have been several potential applications for this type of motor in aerospace exploration, but bearings and bonding mechanism of the piezoelectric ring in the motors limit the performance of them in the space operation conditions. It is known that the Langevin type transducer has excellent energy efficiency and reliability. Hence using the Langevin type transducer in ultrasonic motors may improve the reliability of piezoelectric motors for space applications. In this study, a novel in-plane mode rotary ultrasonic motor is designed, fabricated, and characterized. The proposed motor operates in in-plane vibration mode which is excited by four Langevin-type bending vibrators separately placed around a ring-shaped stator. Two tapered rotors are assembled to the inner ring of the stator and clamped together by a screw nut. In order to make the motor more stable and convenient to fix, a thin cylindrical support is placed under the stator ring. Due to its no-bearing structure and Langevin transducer excitation, the prototype ultrasonic motor may operate well in aeronautic and astronautic environments.
Low-Cost High-Speed In-Plane Stroboscopic Micro-Motion Analyzer
Directory of Open Access Journals (Sweden)
Shashank S. Pandey
2017-11-01
Full Text Available Instrumentation for high-speed imaging and laser vibrometry is essential for the understanding and analysis of microstructure dynamics, but commercial instruments are largely unaffordable for most microelectromechanical systems (MEMS laboratories. We present the implementation of a very low cost in-plane micro motion stroboscopic analyzer that can be directly attached to a conventional probe station. The low-cost analyzer has been used to characterize the harmonic motion of 52.1 kHz resonating comb drive microactuators using ~50 ns pulsed light-emitting diode (LED stroboscope exposure times, producing sharp and high resolution (~0.5 μm device images at resonance, which rivals those of several orders of magnitude more expensive systems. This paper details the development of the high-speed stroboscopic imaging system and presents experimental results of motion analysis of example microstructures and a discussion of its operating limits. The system is shown to produce stable stroboscopic LED illumination to freeze device images up to 11 MHz.
Mode Coupling and Nonlinear Resonances of MEMS Arch Resonators for Bandpass Filters
Hajjaj, Amal Z.; Hafiz, Md Abdullah Al; Younis, Mohammad I.
2017-01-01
the passband to the stopband. The concept is demonstrated based on an electrothermally tuned and electrostatically driven MEMS arch resonator operated in air. The in-plane resonator is fabricated from a silicon-on-insulator wafer with a deliberate curvature
In-plane sampling requirements of MR reprojection angiography
International Nuclear Information System (INIS)
MacFall, J.R.; Grist, T.M.; Spritzer, C.E.; Evans, A.J.
1989-01-01
MR angiograms constructed by reprojection of rapid, sequential, thin-section, flow-compensated acquisitions can produce good-quality images of vasculature. When many sections are required, an unrealistic acquisition time of several hours will be needed if the in-plane resolution is 128 x 256. The scan time can be reduced by using a smaller number (Np) of phase-encoding steps. If the reprojection direction is parallel to the phase-encoding direction, the resolution of the resulting angiogram is preserved. The amount of possible reduction of Np was investigated by acquiring data with varying resolution in the phase-encoding direction through reduction of the phase-encoding gradient. The signal of a typical vessel improved by more than a factor of five as the resolution was reduced, with little loss in the quality of the angiogram. This indicated that scan time for this technique could be reduced
In-plane shear test of fibre reinforced concrete panels
DEFF Research Database (Denmark)
Solgaard, Anders Ole Stubbe; Stang, Henrik; Goltermann, Per
2008-01-01
The present paper concerns the investigation of polymer Fiber Reinforced Concrete (FRC) panels subjected to in-plane shear. The use of fibers as primary reinforcement in panels is a new application of fiber reinforcement, hence test methods, design bases and models are lacking. This paper...... contributes to the investigation of fibers as reinforcement in panels with experimental results and a consistent approach to material characterization and modeling. The proposed model draws on elements from the classical yield line theory of rigid, perfectly plastic materials and the theory of fracture...... mechanics. Model panels have been cast to investigate the correlation between the load bearing capacity and the amount of fibers (vol. %) in the mixture. The type of fibers in the mixture was Poly Vinyl Alcohol (PVA) fibers, length 8 mm, diameter 0.04 mm. The mechanical properties of the FRC have been...
Electrothermally Tunable Bridge Resonator
Hajjaj, Amal Z.; Alcheikh, Nouha; Ramini, Abdallah; Hafiz, Md Abdullah Al; Younis, Mohammad I.
2016-01-01
This paper demonstrates experimentally, theoretically, and numerically a wide-range tunability of an in-plane clamped-clamped microbeam, bridge, and resonator compressed by a force due to electrothermal actuation. We demonstrate that a single resonator can be operated at a wide range of frequencies. The microbeam is actuated electrothermally, by passing a DC current through it. We show that when increasing the electrothermal voltage, the compressive stress inside the microbeam increases, which leads eventually to its buckling. Before buckling, the fundamental frequency decreases until it drops to very low values, almost to zero. After buckling, the fundamental frequency increases, which is shown to be as high as twice the original resonance frequency. Analytical results based on the Galerkin discretization of the Euler Bernoulli beam theory are generated and compared to the experimental data and to simulation results of a multi-physics finite-element model. A good agreement is found among all the results.
Electrothermally Tunable Bridge Resonator
Hajjaj, Amal Z.
2016-12-05
This paper demonstrates experimentally, theoretically, and numerically a wide-range tunability of an in-plane clamped-clamped microbeam, bridge, and resonator compressed by a force due to electrothermal actuation. We demonstrate that a single resonator can be operated at a wide range of frequencies. The microbeam is actuated electrothermally, by passing a DC current through it. We show that when increasing the electrothermal voltage, the compressive stress inside the microbeam increases, which leads eventually to its buckling. Before buckling, the fundamental frequency decreases until it drops to very low values, almost to zero. After buckling, the fundamental frequency increases, which is shown to be as high as twice the original resonance frequency. Analytical results based on the Galerkin discretization of the Euler Bernoulli beam theory are generated and compared to the experimental data and to simulation results of a multi-physics finite-element model. A good agreement is found among all the results.
Ramini, Abdallah
2016-05-02
We present theoretical and experimental investigation of the nonlinear behavior of a clamped-clamped in-plane MEMS arch when excited by a DC electrostatic load superimposed to an AC harmonic load. Experimentally, a case study of in-plane silicon micromachined arch is examined and its mechanical behavior is measured using optical techniques. An algorithm is developed to extract the various parameters, such as the induced axial force and the initial rise, needed to model the behavior of the arch. A softening spring behavior is observed when the excitation is close to the first resonance frequency due to the quadratic nonlinearity coming from the arch geometry and the electrostatic force. Also, a hardening spring behavior is observed when the excitation is close to the third (second symmetric) resonance frequency due to the cubic nonlinearity coming from mid-plane stretching. Dynamic snap-through behavior is also reported for larger range of electric loads. Theoretically, a multi-mode Galerkin reduced order model is utilized to simulate the arch behavior. General agreement is reported among the theoretical and experimental data.
Amplitude saturation of MEMS resonators explained by autoparametric resonance
International Nuclear Information System (INIS)
Van der Avoort, C; Bontemps, J J M; Steeneken, P G; Le Phan, K; Van Beek, J T M; Van der Hout, R; Hulshof, J; Fey, R H B
2010-01-01
This paper describes a phenomenon that limits the power handling of MEMS resonators. It is observed that above a certain driving level, the resonance amplitude becomes independent of the driving level. In contrast to previous studies of power handling of MEMS resonators, it is found that this amplitude saturation cannot be explained by nonlinear terms in the spring constant or electrostatic force. Instead we show that the amplitude in our experiments is limited by nonlinear terms in the equation of motion which couple the in-plane length-extensional resonance mode to one or more out-of-plane (OOP) bending modes. We present experimental evidence for the autoparametric excitation of these OOP modes using a vibrometer. The measurements are compared to a model that can be used to predict a power-handling limit for MEMS resonators
Amplitude saturation of MEMS resonators explained by autoparametric resonance
Energy Technology Data Exchange (ETDEWEB)
Van der Avoort, C; Bontemps, J J M; Steeneken, P G; Le Phan, K; Van Beek, J T M [NXP Research, Eindhoven (Netherlands); Van der Hout, R; Hulshof, J [Department of Mathematics, VU University—Faculty of Sciences, De Boelelaan 1081a, 1081 HV Amsterdam (Netherlands); Fey, R H B, E-mail: cas.van.der.avoort@nxp.com [Department of Mechanical Engineering, Eindhoven University of Technology, PO Box 513, 5600 MB, Eindhoven (Netherlands)
2010-10-15
This paper describes a phenomenon that limits the power handling of MEMS resonators. It is observed that above a certain driving level, the resonance amplitude becomes independent of the driving level. In contrast to previous studies of power handling of MEMS resonators, it is found that this amplitude saturation cannot be explained by nonlinear terms in the spring constant or electrostatic force. Instead we show that the amplitude in our experiments is limited by nonlinear terms in the equation of motion which couple the in-plane length-extensional resonance mode to one or more out-of-plane (OOP) bending modes. We present experimental evidence for the autoparametric excitation of these OOP modes using a vibrometer. The measurements are compared to a model that can be used to predict a power-handling limit for MEMS resonators.
CALCULATION OF FOUNDATIONS WITH CIRCULAR (CLOSED IN-PLANE SHAPES
Directory of Open Access Journals (Sweden)
L. S. Khasenevich
2017-01-01
Full Text Available It has been found that four reinforced concrete flue stacks being constructed in late 80-ies and early in 90-ies of the 20th century and being operated at various thermal power stations show practically no settlement, and this fact is not taken into account by any applicable regulatory documents. Foundations of these stacks were designed at the same time and they have been protected by patents of Russian Federation and Republic of Belarus. They represent circular bases made of reinforced concrete piles buried tightly together and forming so-called “slurry wall” with common monolithic reinforced concrete grillage. The grillage presents a direct extension of the stack shaft. One of these stacks has been built in Russia, and three – in Belarus. Due to significant differences in soil conditions and loads in each case, it is a fair assumption to say about regularity of the observed phenomenon. Notwithstanding the fact that circular foundations significantly decrease steel and concrete consumption, construction period and labour input, they have not yet received adequate attention from the side of scientific community and designers. While considering specific examples of the constructed stacks the paper reveals an opportunity to apply calculations which efficiently use passive soil resistance. The presented calculations and designs of the existing foundations make it possible to assess probability of the proposed methodology for the foundations which are analogous in design and which have closed in-plane structure not only for industrial buildings and structures.
In-plane optical response in underdoped YBCO
Kakeshita, Teruhisa; Masui, Takahiko; Tajima, Setsuko
2005-03-01
The recent STM experiments demonstrated that the electronic state in CuO2 plane is inhomogeneous [1], which becomes conspicuous in the underdoped regime. In such an inhomogeneous state, it is not obvious whether a superfluid density is correctly estimated by a conventional way. We investigated the in-plane optical response for underdoped YBCO crystal to discuss the relation between inhomogeneity and superfluid density in the pseudo-gapped state. The a-axis optical spectrum shows a larger residual conductivity than that for the optimum doping. The superfluid density estimated from our optical spectrum at the lowest temperature is substantially smaller than that determined by μSR. We discuss this strongly suppressed superfluid density and the large residual conductivity in terms of the inhomogeneity in real- and k-space. This work was supported by the New Energy and Industrial Technology Development Organization(NEDO) through ISTEC as the Collaborative Research and Development of Fundamental Technologies for Superconductivity Applications. [1]K.M.Lang et al., Nature 415, 412 (2002). *present address: Dept. of Physics, Osaka University, Machikaneyama 1-1, Toyonaka, Osaka 560-0043, Japan
Experimental Investigation of 2:1 and 3:1 Internal Resonances in Nonlinear MEMS Arch Resonators
Ramini, Abdallah
2016-12-05
We demonstrate experimentally internal resonances in MEMS resonators. The investigation is conducted on in-plane MEMS arch resonators fabricated with a highly doped silicon. The resonators are actuated electrostatically and their stiffness are tuned by electrothermal loading by passing an electrical current though the microstructures. We show that through this tuning, the ratio of the various resonance frequencies can be varied and set at certain ratios. Particularly, we adjust the resonance frequencies of two different vibrational modes to 2:1 and 3:1. Finally, we validate the internal resonances at these ratios through frequency-response curves and FFTs.
Experimental Investigation of 2:1 and 3:1 Internal Resonances in Nonlinear MEMS Arch Resonators
Ramini, Abdallah; Hajjaj, Amal Z.; Younis, Mohammad I.
2016-01-01
We demonstrate experimentally internal resonances in MEMS resonators. The investigation is conducted on in-plane MEMS arch resonators fabricated with a highly doped silicon. The resonators are actuated electrostatically and their stiffness are tuned by electrothermal loading by passing an electrical current though the microstructures. We show that through this tuning, the ratio of the various resonance frequencies can be varied and set at certain ratios. Particularly, we adjust the resonance frequencies of two different vibrational modes to 2:1 and 3:1. Finally, we validate the internal resonances at these ratios through frequency-response curves and FFTs.
In-plane deeply-etched optical MEMS notch filter with high-speed tunability
International Nuclear Information System (INIS)
Sabry, Yasser M; Eltagoury, Yomna M; Shebl, Ahmed; Khalil, Diaa; Soliman, Mostafa; Sadek, Mohamed
2015-01-01
Notch filters are used in spectroscopy, multi-photon microscopy, fluorescence instrumentation, optical sensors and other life science applications. One type of notch filter is based on a fiber-coupled Fabry–Pérot cavity, which is formed by a reflector (external mirror) facing a dielectric-coated end of an optical fiber. Tailoring this kind of optical filter for different applications is possible because the external mirror has fewer mechanical and optical constraints. In this paper we present optical modeling and implementation of a fiber-coupled Fabry–Pérot filter based on dielectric-coated optical fiber inserted into a micromachined fiber groove facing a metallized micromirror, which is driven by a high-speed MEMS actuator. The optical MEMS chip is fabricated using deep reactive ion etching (DRIE) technology on a silicon on insulator wafer, where the optical axis is parallel to the substrate (in-plane) and the optical/mechanical components are self-aligned by the photolithographic process. The DRIE etching depth is 150 μm, chosen to increase the micromirror optical throughput and improving the out-of-plane stiffness of the MEMS actuator. The MEMS actuator type is closing-gap, while its quality factor is almost doubled by slotting the fixed plate. A low-finesse Fabry–Pérot interferometer is formed by the metallized surface of the micromirror and a cleaved end of a standard single-mode fiber, for characterization of the MEMS actuator stroke and resonance frequency. The actuator achieves a travel distance of 800 nm at a resonance frequency of 89.9 kHz. The notch filter characteristics were measured using an optical spectrum analyzer, and the filter exhibits a free spectral range up to 100 nm and a notch rejection ratio up to 20 dB around a wavelength of 1300 nm. The presented device provides batch processing and low-cost production of the filter. (paper)
Nano-scale measurement of sub-micrometer MEMS in-plane dynamics using synchronized illumination
International Nuclear Information System (INIS)
Warnat, S; Forbrigger, C; Kujath, M; Hubbard, T
2015-01-01
A method for measuring the sub-micrometer in-plane dynamics of MEMS devices with nano-scale precision using a CCD camera and synchronized pulsating illumination is presented. Typical MEMS actuators have fast responses (generally in the 1–200 kHz range), much faster than typical cameras which record a time averaged motion. Under constant illumination the average displacement is steady state and independent of dynamic amplitude or phase. Methods such as strobe illumination use short light pulses to freeze the motion. This paper develops the use of longer pulses of illumination that do not freeze the image, but make the average displacement depend on dynamic amplitude and phase; thus allowing both properties to be extracted. The expected signal is derived as a function of light pulse width and delay, and short versus longer pulses are compared. Measurements using a conventional microscope with replacement of the lamp with LEDs confirmed the derived equations. The system was used to measure sub-micrometer motion of MEMS actuators with ∼5 nm precision. The time constant of a thermal actuator was measured and found to be 48 µs. A resonant peak of a MEMS device was measured at 123.30 kHz with an amplitude of 238 nm. (paper)
Wireless Open-Circuit In-Plane Strain and Displacement Sensor Requiring No Electrical Connections
Woodard, Stanley E. (Inventor)
2014-01-01
A wireless in-plane strain and displacement sensor includes an electrical conductor fixedly coupled to a substrate subject to strain conditions. The electrical conductor is shaped between its ends for storage of an electric field and a magnetic field, and remains electrically unconnected to define an unconnected open-circuit having inductance and capacitance. In the presence of a time-varying magnetic field, the electrical conductor so-shaped resonates to generate harmonic electric and magnetic field responses. The sensor also includes at least one electrically unconnected electrode having an end and a free portion extending from the end thereof. The end of each electrode is fixedly coupled to the substrate and the free portion thereof remains unencumbered and spaced apart from a portion of the electrical conductor so-shaped. More specifically, at least some of the free portion is disposed at a location lying within the magnetic field response generated by the electrical conductor. A motion guidance structure is slidingly engaged with each electrode's free portion in order to maintain each free portion parallel to the electrical conductor so-shaped.
Performance of monolayer graphene nanomechanical resonators with electrical readout.
Chen, Changyao; Rosenblatt, Sami; Bolotin, Kirill I; Kalb, William; Kim, Philip; Kymissis, Ioannis; Stormer, Horst L; Heinz, Tony F; Hone, James
2009-12-01
The enormous stiffness and low density of graphene make it an ideal material for nanoelectromechanical applications. Here, we demonstrate the fabrication and electrical readout of monolayer graphene resonators, and test their response to changes in mass and temperature. The devices show resonances in the megahertz range, and the strong dependence of resonant frequency on applied gate voltage can be fitted to a membrane model to yield the mass density and built-in strain of the graphene. Following the removal and addition of mass, changes in both density and strain are observed, indicating that adsorbates impart tension to the graphene. On cooling, the frequency increases, and the shift rate can be used to measure the unusual negative thermal expansion coefficient of graphene. The quality factor increases with decreasing temperature, reaching approximately 1 x 10(4) at 5 K. By establishing many of the basic attributes of monolayer graphene resonators, the groundwork for applications of these devices, including high-sensitivity mass detectors, is put in place.
In-Plane Vibrations of Circular Curved Beams with a Transverse Open Crack
Öz, H. R.; Daş, M. T.
2006-01-01
In this study, the in plane vibrations of cracked circular curved beams is investigated. The beam is an Euler-Bernoulli beam. Only bending and extension effects are included. The curvature is in a single plane. In plane vibrations is analyzed using FEM. In the analysis, elongation, bending and rotary inertia effects are included. Four degrees of freedom for in-plane vibrations is assumed. Natural frequencies of the beam with a crack in different locations and depths are calculated using FEM. ...
Micro-and nanoelectromechanical biosensors
Nicu, Liviu
2014-01-01
Most books dedicated to the issues of bio-sensing are organized by the well-known scheme of a biosensor. In this book, the authors have deliberately decided to break away from the conventional way of treating biosensing research by uniquely addressing biomolecule immobilization methods on a solid surface, fluidics issues and biosensing-related transduction techniques, rather than focusing simply on the biosensor. The aim is to provide a contemporary snapshot of the biosensing landscape without neglecting the seminal references or products where needed, following the downscaling (from the micr
Electrothermally Tunable Arch Resonator
Hajjaj, Amal Z.
2017-03-18
This paper demonstrates experimentally, theoretically, and numerically a wide-range tunability of electrothermally actuated microelectromechanical arch beams. The beams are made of silicon and are intentionally fabricated with some curvature as in-plane shallow arches. An electrothermal voltage is applied between the anchors of the beam generating a current that controls the axial stress caused by thermal expansion. When the electrothermal voltage increases, the compressive stress increases inside the arch beam. This leads to an increase in its curvature, thereby increasing its resonance frequencies. We show here that the first resonance frequency can increase monotonically up to twice its initial value. We show also that after some electrothermal voltage load, the third resonance frequency starts to become more sensitive to the axial thermal stress, while the first resonance frequency becomes less sensitive. These results can be used as guidelines to utilize arches as wide-range tunable resonators. Analytical results based on the nonlinear Euler Bernoulli beam theory are generated and compared with the experimental data and the results of a multi-physics finite-element model. A good agreement is found among all the results. [2016-0291
In-plane heterostructures of Sb/Bi with high carrier mobility
Zhao, Pei; Wei, Wei; Sun, Qilong; Yu, Lin; Huang, Baibiao; Dai, Ying
2017-06-01
In-plane two-dimensional (2D) heterostructures have been attracting public attention due to their distinctive properties. However, the pristine materials that can form in-plane heterostructures are reported only for graphene, hexagonal BN, transition-metal dichalcogenides. It will be of great significance to explore more suitable 2D materials for constructing such ingenious heterostructures. Here, we demonstrate two types of novel seamless in-plane heterostructures combined by pristine Sb and Bi monolayers by means of first-principle approach based on density functional theory. Our results indicate that external strain can serve as an effective strategy for bandgap engineering, and the transition from semiconductor to metal occurs when a compressive strain of -8% is applied. In addition, the designed heterostructures possess direct band gaps with high carrier mobility (˜4000 cm2 V-1 s-1). And the mobility of electrons and holes have huge disparity along the direction perpendicular to the interface of Sb/Bi in-plane heterostructures. It is favorable for carriers to separate spatially. Finally, we find that the band edge positions of Sb/Bi in-plane heterostructures can meet the reduction potential of hydrogen generation in photocatalysis. Our results not only offer alternative materials to construct versatile in-plane heterostructures, but also highlight the applications of 2D in-plane heterostructures in diverse nanodevices and photocatalysis.
Energy Technology Data Exchange (ETDEWEB)
Choi, Myungseok; Olshevskiy, Alexander; Kim, Chang-Wan [Konkuk University, Seoul (Korea, Republic of); Eom, Kilho [Sungkyunkwan University, Suwon (Korea, Republic of); Gwak, Kwanwoong [Sejong University, Seoul (Korea, Republic of); Dai, Mai Duc [Ho Chi Minh City University of Technology and Education, Ho Chi Minh (Viet Nam)
2017-05-15
Carbon nanotube (CNT) has recently received much attention due to its excellent electromechanical properties, indicating that CNT can be employed for development of Nanoelectromechanical system (NEMS) such as nanomechanical resonators. For effective design of CNT-based resonators, it is required to accurately predict the vibration behavior of CNT resonators as well as their frequency response to mass adsorption. In this work, we have studied the vibrational behavior of Multi-walled CNT (MWCNT) resonators by using a continuum mechanics modeling that was implemented in Finite element method (FEM). In particular, we consider a transversely isotropic hollow cylinder solid model with Finite element (FE) implementation for modeling the vibration behavior of Multi-walled CNT (MWCNT) resonators. It is shown that our continuum mechanics model provides the resonant frequencies of various MWCNTs being comparable to those obtained from experiments. Moreover, we have investigated the frequency response of MWCNT resonators to mass adsorption by using our continuum model with FE implementation. Our study sheds light on our continuum mechanics model that is useful in predicting not only the vibration behavior of MWCNT resonators but also their sensing performance for further effective design of MWCNT- based NEMS devices.
Ultra-low power hydrogen sensing based on a palladium-coated nanomechanical beam resonator
DEFF Research Database (Denmark)
Henriksson, Jonas; Villanueva Torrijo, Luis Guillermo; Brugger, Juergen
2012-01-01
Hydrogen sensing is essential to ensure safety in near-future zero-emission fuel cell powered vehicles. Here, we present a novel hydrogen sensor based on the resonant frequency change of a nanoelectromechanical clamped-clamped beam. The beam is coated with a Pd layer, which expands in the presence...... of H 2, therefore generating a stress build-up that causes the frequency of the device to drop. The devices are able to detect H2 concentrations below 0.5% within 1 s of the onset of the exposure using only a few hundreds of pW of power, matching the industry requirements for H 2 safety sensors......, whereby the responsivity of the sensors is fully restored and the chemo-mechanical process is accelerated, significantly decreasing response times. The sensors are fabricated using standard processes, facilitating their eventual mass-production. © 2012 The Royal Society of Chemistry....
Efficient primary and parametric resonance excitation of bistable resonators
Ramini, Abdallah
2016-09-12
We experimentally demonstrate an efficient approach to excite primary and parametric (up to the 4th) resonance of Microelectromechanical system MEMS arch resonators with large vibrational amplitudes. A single crystal silicon in-plane arch microbeam is fabricated such that it can be excited axially from one of its ends by a parallel-plate electrode. Its micro/nano scale vibrations are transduced using a high speed camera. Through the parallel-plate electrode, a time varying electrostatic force is applied, which is converted into a time varying axial force that modulates dynamically the stiffness of the arch resonator. Due to the initial curvature of the structure, not only parametric excitation is induced, but also primary resonance. Experimental investigation is conducted comparing the response of the arch near primary resonance using the axial excitation to that of a classical parallel-plate actuation where the arch itself forms an electrode. The results show that the axial excitation can be more efficient and requires less power for primary resonance excitation. Moreover, unlike the classical method where the structure is vulnerable to the dynamic pull-in instability, the axial excitation technique can provide large amplitude motion while protecting the structure from pull-in. In addition to primary resonance, parametrical resonances are demonstrated at twice, one-half, and two-thirds the primary resonance frequency. The ability to actuate primary and/or parametric resonances can serve various applications, such as for resonator based logic and memory devices. (C) 2016 Author(s). All article content, except where otherwise noted, is licensed under a Creative Commons Attribution (CC BY) license
Yudhanto, Arief; Lubineau, Gilles; Ventura, Isaac Aguilar; Watanabe, Naoyuki; Iwahori, Yutaka; Hoshi, Hikaru
2015-01-01
Three-dimensional (3D) reinforcement by stitching is effective in improving the impact resistance of composites. Stitching, however, adversely affects the composite's in-plane mechanical responses, and alters its damage mechanisms due to stitch
Control Demonstration of a Thin Deformable In-Plane Actuated Mirror
National Research Council Canada - National Science Library
Peterson, Gina A
2006-01-01
.... The primary goal of this research is to demonstrate that an in-plane actuated membrane-like deformable optical mirror can be controlled to optical wavelength tolerances in a closed-loop system...
In-plane anisotropic strain of elastically and plastically deformed III-nitrides on lithium gallate
International Nuclear Information System (INIS)
Namkoong, Gon; Huang, Sa; Moseley, Michael; Doolittle, W. Alan
2009-01-01
We have investigated both elastically and plastically deformed GaN films on lithium gallate, LiGaO 2 , by molecular beam epitaxy. The in-plane lattice parameters were determined from high resolution X-ray diffraction and indicated two different groups of in-plane lattice parameters, influenced by the a- and b-axis of LiGaO 2 . The measured in-plane lattice parameters indicate that there exist both compressive and tensile strains of in-plane GaN along the a- and b-axis of LiGaO 2 , respectively. This anisotropic strain in GaN films forms a slight distortion of the basal-plane hexagonal structure of GaN films, leading to a different critical thickness of 4.0 ± 0.17 and 7.8 ± 0.7 nm along the a- and b-axis of LiGaO 2 , respectively.
Measurement of in-plane strain with dual beam spatial phase-shift digital shearography
International Nuclear Information System (INIS)
Xie, Xin; Chen, Xu; Li, Junrui; Yang, Lianxiang; Wang, Yonghong
2015-01-01
Full-field in-plane strain measurement under dynamic loading by digital shearography remains a big challenge in practice. A phase measurement for in-plane strain information within one time frame has to be achieved to solve this problem. This paper presents a dual beam spatial phase-shift digital shearography system with the capacity to measure phase distribution corresponding to in-plane strain information within a single time frame. Two laser beams with different wavelengths are symmetrically arranged to illuminate the object under test, and two cameras with corresponding filters, which enable simultaneous recording of two shearograms, are utilized for data acquisition. The phase information from the recorded shearograms, which corresponds to the in-plane strain, is evaluated by the spatial phase-shift method. The spatial phase-shift shearography system realizes a measurement of the in-plane strain through the introduction of the spatial phase-shift technique, using one frame after the loading and one frame before loading. This paper presents the theory of the spatial phase-shift digital shearography for in-plane strain measurement and its derivation, experimental results, and the technique’s potential. (paper)
Piezoresistive silicon nanowire resonators as embedded building blocks in thick SOI
Nasr Esfahani, Mohammad; Kilinc, Yasin; Çagatay Karakan, M.; Orhan, Ezgi; Hanay, M. Selim; Leblebici, Yusuf; Erdem Alaca, B.
2018-04-01
The use of silicon nanowire resonators in nanoelectromechanical systems for new-generation sensing and communication devices faces integration challenges with higher-order structures. Monolithic and deterministic integration of such nanowires with the surrounding microscale architecture within the same thick crystal is a critical aspect for the improvement of throughput, reliability and device functionality. A monolithic and IC-compatible technology based on a tuned combination of etching and protection processes was recently introduced yielding silicon nanowires within a 10 μ m-thick device layer. Motivated by its success, the implications of the technology regarding the electromechanical resonance are studied within a particular setting, where the resonator is co-fabricated with all terminals and tuning electrodes. Frequency response is measured via piezoresistive readout with frequency down-mixing. Measurements indicate mechanical resonance with frequencies as high as 100 MHz exhibiting a Lorentzian behavior with proper transition to nonlinearity, while Allan deviation on the order of 3-8 ppm is achieved. Enabling the fabrication of silicon nanowires in thick silicon crystals using conventional semiconductor manufacturing, the present study thus demonstrates an alternative pathway to bottom-up and thin silicon-on-insulator approaches for silicon nanowire resonators.
Dynamic range of atomically thin vibrating nanomechanical resonators
International Nuclear Information System (INIS)
Wang, Zenghui; Feng, Philip X.-L.
2014-01-01
Atomically thin two-dimensional (2D) crystals offer attractive properties for making resonant nanoelectromechanical systems (NEMS) operating at high frequencies. While the fundamental limits of linear operation in such systems are important, currently there is very little quantitative knowledge of the linear dynamic range (DR) and onset of nonlinearity in these devices, which are different than in conventional 1D NEMS such as nanotubes and nanowires. Here, we present theoretical analysis and quantitative models that can be directly used to predict the DR of vibrating 2D circular drumhead NEMS resonators. We show that DR has a strong dependence ∝10log(E Y 3/2 ρ 3D -1/2 rtε 5/2 ) on device parameters, in which strain ε plays a particularly important role in these 2D systems, dominating over dimensions (radius r, thickness t). This study formulizes the effects from device physical parameters upon DR and sheds light on device design rules toward achieving high DR in 2D NEMS vibrating at radio and microwave frequencies
DEFF Research Database (Denmark)
Damsgaard, Christian Danvad; Hansen, Mikkel Fougt
2008-01-01
We present a systematic theoretical study of the average in-plane magnetic field on square and rectangular magnetic field sensors from a single magnetic bead and a monolayer of magnetic beads magnetized by an in-plane externally applied homogeneous magnetic field. General theoretical expressions...... are derived such that the sensor response and its dependence on the sensor size, spacer layer thickness, bead diameter, and bead susceptibility can easily be evaluated. The average magnetic field from a single bead close to the sensor shows a strong dependence on the position of the bead and a change of sign...... when the bead passes the edge of the sensor in the direction of the applied field. Analytical approximations are derived for the average field from a homogeneous monolayer of beads for beads much smaller than the sensor dimension and for a bead size chosen to minimize the position sensitivity...
Preliminary Design and Analysis of an In-plane PRSEUS Joint
Lovejoy, Andrew E.; Poplawski, Steven
2013-01-01
As part of the National Aeronautics and Space Administration's (NASA's) Environmentally Responsible Aviation (ERA) program, the Pultruded Rod Stitched Efficient Unitized Structure (PRSEUS) has been designed, developed and tested. However, PRSEUS development efforts to date have only addressed joints required to transfer bending moments between PRSEUS panels. Development of in-plane joints for the PRSEUS concept is necessary to facilitate in-plane transfer of load from PRSEUS panels to an adjacent structure, such as from a wing panel into a fuselage. This paper presents preliminary design and analysis of an in-plane PRSEUS joint for connecting PRSEUS panels at the termination of the rod-stiffened stringers. Design requirements are provided, the PRSEUS blade joint concept is presented, and preliminary design changes and analyses are carried out to examine the feasibility of the proposed in-plane PRSEUS blade joint. The study conducted herein focuses mainly on the PRSEUS structure on one side of the joint. In particular, the design requirements for the rod shear stress and bolt bearing stress are examined. A PRSEUS blade joint design was developed that demonstrates the feasibility of this in-plane PRSEUS joint concept to terminate the rod-stiffened stringers. The presented design only demonstrates feasibility, therefore, some areas of refinement are presented that would lead to a more optimum and realistic design.
International Nuclear Information System (INIS)
Bazinski, S.J.; Wang, X.; Sangeorzan, B.P.; Guessous, L.
2016-01-01
The objective of this research is to experimentally determine the effective in-plane thermal conductivity of a lithium iron phosphate pouch cell. An experimental setup is designed to treat the battery cell as a straight rectangular fin in natural convection. Thermography and heat sensors were used to collect data that yields the temperature distribution and heat transfer rate of the fin, respectively. One-dimensional fin equations were combined with the experimental data to yield the in-plane thermal conductivity through an iterative process that best-fits the data to the model. The experiment was first calibrated using reference plates of different metals. The fin model predicts the thermal conductivity value well with a correction factor of approximately 7%–9%. Using this experimental method, the in-plane thermal conductivity of the pouch cells is measured at different state of charge (SOC) levels. The in-plane thermal conductivity decreases approximately 0.13 Wm"−"1 °C"−"1 per 10% increase in SOC for the LFP cells. This translates to a 4.2% overall decrease in the thermal conductivity as the cell becomes fully charged. - Highlights: • A method is proposed to measure the in-plane thermal conductivity of a pouch cell. • The thermal conductivity decreases slightly with increase in SOC for the LFP cells. • The fin model predicts the thermal conductivity well with a correction factor.
Simulation of in-plane distribution of beam irradiation amount in ion implantation
International Nuclear Information System (INIS)
Sone, Yuki; Sato, Masataka; Yamamoto, Yasuhiro
1994-01-01
In the ion implantation process which is one of the important technologies for making devices, the good controllability and the implantation in a short time aiming at high through put have been demanded. Therefore, the increase of current in implantation beam is planned, but such short time implantation is to worsen the uniformity of dose in wafer plane. The method of quantitatively determining this in-plane uniformity by computer simulation has been established, therefore, it is reported. In the simulation, the method of beam scan was made into raster scan, and the in-plane uniformity of dose was determined when the time of implantation, the with of overscan, and the band width of beam scanning waveform were taken as the parameters. As the result, in the case of assuming the scan waveform being ideal triangular wave, under the supposed condition, by taking the time of implantation as longer than 30s, the in-plane uniformity within 1% was able to be attained. It was found that the scanning device having 175 kHz band must be used for the above conditions. The simulation and as the results, the relation of the time of implantation with the in-plane uniformity, the scanning waveform and the in-plane uniformity and so on are reported. (K.I.)
In-plane and cross-plane thermal conductivities of molybdenum disulfide
International Nuclear Information System (INIS)
Ding, Zhiwei; Pei, Qing-Xiang; Zhang, Yong-Wei; Jiang, Jin-Wu
2015-01-01
We investigate the in-plane and cross-plane thermal conductivities of molybdenum disulfide (MoS 2 ) using non-equilibrium molecular dynamics simulations. We find that the in-plane thermal conductivity of monolayer MoS 2 is about 19.76 W mK −1 . Interestingly, the in-plane thermal conductivity of multilayer MoS 2 is insensitive to the number of layers, which is in strong contrast to the in-plane thermal conductivity of graphene where the interlayer interaction strongly affects the in-plane thermal conductivity. This layer number insensitivity is attributable to the finite energy gap in the phonon spectrum of MoS 2 , which makes the phonon–phonon scattering channel almost unchanged with increasing layer number. For the cross-plane thermal transport, we find that the cross-plane thermal conductivity of multilayer MoS 2 can be effectively tuned by applying cross-plane strain. More specifically, a 10% cross-plane compressive strain can enhance the thermal conductivity by a factor of 10, while a 5% cross-plane tensile strain can reduce the thermal conductivity by 90%. Our findings are important for thermal management in MoS 2 based nanodevices and for thermoelectric applications of MoS 2 . (paper)
International Nuclear Information System (INIS)
Shore, B.W.
1977-01-01
The long-time average of level populations in a coherently-excited anharmonic sequence of energy levels (e.g., an anharmonic oscillator) exhibits sharp resonances as a function of laser frequency. For simple linearly-increasing anharmonicity, each resonance is a superposition of various multiphoton resonances (e.g., a superposition of 3, 5, 7, . . . photon resonances), each having its own characteristic width predictable from perturbation theory
Ferromagnetic resonance features of degenerate GdN semiconductor
Energy Technology Data Exchange (ETDEWEB)
Vidyasagar, Reddithota, E-mail: dr.vidyasagar1979@gmail.com [Department of Electrical and Electronic Engineering, Graduate School of Engineering, Kobe University, 1-1 Rokkodai, Kobe 657-8501 (Japan); Kita, Takashi [Department of Electrical and Electronic Engineering, Graduate School of Engineering, Kobe University, 1-1 Rokkodai, Kobe 657-8501 (Japan); Sakurai, Takahiro; Shimokawa, Tokuro [Centre for Support to Research and Education Activities, Kobe University, 1-1 Rokkodai, Kobe 657-8501 (Japan); Ohta, Hitoshi [Molecular Photoscience Research Center and Graduate School of Science, Kobe University, 1-1 Rokkodai, Kobe 657-8501 (Japan)
2017-06-15
Using X-band Ferromagnetic Resonance (FMR) Spectroscopy, we demonstrate the microscopic ferromagnetic resonance features of degenerated GdN semiconductor. The FMR spectrum suggests a single resonance mode below 10 K; interestingly, this particular structure is found to exhibit a peculiar magnetic resonance (PMR) on the top of the uniform FMR while temperature increases from 12–36 K. The low-field PMR mode attributed to the differently magnetized part of the film with an easy in-plane axis. The narrow-field gap between PMR and uniform FMR suggests the strong coupling owning to the differently magnetized part with easy in-plane axis and the magnetized part with an out-of-plane axis. The saturation magnetization, cubic magnetocrystalline anisotropy, and uniaxial anisotropy of GdN epitaxial film have been evaluated by the angular-dependence FMR. - Highlights: • Observation of peculiar magnetic resonance (PMR) on the top of ferromagnetic resonance (FMR). • Newly evolving PMR manifests differently magnetized part of the film with an easy in-plane axis. • Narrow gap between PMR and FMR owing to the strong interaction between two spin–wave resonances. • Uniaxial anisotropy increases with GdN thickness decreases.
Large amplitude dynamics of micro-/nanomechanical resonators actuated with electrostatic pulses
International Nuclear Information System (INIS)
Juillard, J.; Bonnoit, A.; Avignon, E.; Hentz, S.; Colinet, E.
2010-01-01
In the field of resonant nano-electro-mechanical system (NEMS) design, it is a common misconception that large-amplitude motion, and thus large signal-to-noise ratio, can only be achieved at the risk of oscillator instability. In the present paper, we show that very simple closed-loop control schemes can be used to achieve stable large-amplitude motion of a resonant structure even when jump resonance (caused by electrostatic softening or Duffing hardening) is present in its frequency response. We focus on the case of a resonant accelerometer sensing cell, consisting of a nonlinear clamped-clamped beam with electrostatic actuation and detection, maintained in an oscillation state with pulses of electrostatic force that are delivered whenever the detected signal (the position of the beam) crosses zero. We show that the proposed feedback scheme ensures the stability of the motion of the beam much beyond the critical Duffing amplitude and that, if the parameters of the beam are correctly chosen, one can achieve almost full-gap travel range without incurring electrostatic pull-in. These results are illustrated and validated with transient simulations of the nonlinear closed-loop system.
Co-sputtered Mo/Re superconducting coplanar resonators compatible with carbon nanotube growth
Energy Technology Data Exchange (ETDEWEB)
Blien, Stefan; Stiller, Peter L.; Goetz, Karl; Vavra, Ondrej; Huber, Thomas; Mayer, Thomas; Strunk, Christoph; Huettel, Andreas K. [Institute for Experimental and Applied Physics, University of Regensburg, 93040 Regensburg (Germany)
2016-07-01
Carbon nanotubes are simultaneously prototypical single electron tunneling devices and nano-electromechanical resonators. In particular for ''ultraclean'' devices, where the nanotube is grown in a last fabrication step over pre-existing chip structures, highly regular quantum spectra and high mechanical quality factors emerge. Targeting optomechanical experiments, a coupling of these devices to on-chip superconducting coplanar waveguide resonators is highly desirable. The conditions for in-situ growth of carbon nanotubes over metal contacts are quite detrimental to most superconductors: the CVD growth process takes place in a hydrogen/methane atmosphere heated up to 900 {sup circle} C. We present data on transmission line resonators fabricated of a co-sputtered molybdenum rhenium alloy that withstand CVD and remain superconducting with critical temperatures up to 8K after growth. Resonant operation at cryogenic temperatures is demonstrated, and the behaviour is highly consistent with a combination of Mattis-Bardeen theory and two-level systems in the substrate.
A review on nanomechanical resonators and their applications in sensors and molecular transportation
International Nuclear Information System (INIS)
Arash, Behrouz; Rabczuk, Timon; Jiang, Jin-Wu
2015-01-01
Nanotechnology has opened a new area in science and engineering, leading to the development of novel nano-electromechanical systems such as nanoresonators with ultra-high resonant frequencies. The ultra-high-frequency resonators facilitate wide-ranging applications such as ultra-high sensitive sensing, molecular transportation, molecular separation, high-frequency signal processing, and biological imaging. This paper reviews recent studies on dynamic characteristics of nanoresonators. A variety of theoretical approaches, i.e., continuum modeling, molecular simulations, and multiscale methods, in modeling of nanoresonators are reviewed. The potential application of nanoresonators in design of sensor devices and molecular transportation systems is introduced. The essence of nanoresonator sensors for detection of atoms and molecules with vibration and wave propagation analyses is outlined. The sensitivity of the resonator sensors and their feasibility in detecting different atoms and molecules are particularly discussed. Furthermore, the applicability of molecular transportation using the propagation of mechanical waves in nanoresonators is presented. An extended application of the transportation methods for building nanofiltering systems with ultra-high selectivity is surveyed. The article aims to provide an up-to-date review on the mechanical properties and applications of nanoresonators, and inspire additional potential of the resonators
A review on nanomechanical resonators and their applications in sensors and molecular transportation
Energy Technology Data Exchange (ETDEWEB)
Arash, Behrouz; Rabczuk, Timon, E-mail: timon.rabczuk@uni-weimar.de [Institute of Structural Mechanics, Bauhaus Universität Weimar, Marienstr 15, D-99423 Weimar (Germany); Jiang, Jin-Wu [Shanghai Institute of Applied Mathematics and Mechanics, Shanghai Key Laboratory of Mechanics in Energy Engineering, Shanghai University, Shanghai 200072 (China)
2015-06-15
Nanotechnology has opened a new area in science and engineering, leading to the development of novel nano-electromechanical systems such as nanoresonators with ultra-high resonant frequencies. The ultra-high-frequency resonators facilitate wide-ranging applications such as ultra-high sensitive sensing, molecular transportation, molecular separation, high-frequency signal processing, and biological imaging. This paper reviews recent studies on dynamic characteristics of nanoresonators. A variety of theoretical approaches, i.e., continuum modeling, molecular simulations, and multiscale methods, in modeling of nanoresonators are reviewed. The potential application of nanoresonators in design of sensor devices and molecular transportation systems is introduced. The essence of nanoresonator sensors for detection of atoms and molecules with vibration and wave propagation analyses is outlined. The sensitivity of the resonator sensors and their feasibility in detecting different atoms and molecules are particularly discussed. Furthermore, the applicability of molecular transportation using the propagation of mechanical waves in nanoresonators is presented. An extended application of the transportation methods for building nanofiltering systems with ultra-high selectivity is surveyed. The article aims to provide an up-to-date review on the mechanical properties and applications of nanoresonators, and inspire additional potential of the resonators.
Localized, Non-Harmonic Active Flap Motions for Low Frequency In-Plane Rotor Noise Reduction
Sim, Ben W.; Potsdam, Mark; Kitaplioglu, Cahit; LeMasurier, Philip; Lorber, Peter; Andrews, Joseph
2012-01-01
A first-of-its-kind demonstration of the use of localized, non-harmonic active flap motions, for suppressing low frequency, in-plane rotor noise, is reported in this paper. Operational feasibility is verified via testing of the full-scale AATD/Sikorsky/UTRC active flap demonstration rotor in the NFAC's 40- by 80-Foot anechoic wind tunnel. Effectiveness of using localized, non-harmonic active flap motions are compared to conventional four-per-rev harmonic flap motions, and also active flap motions derived from closed-loop acoustics implementations. All three approaches resulted in approximately the same noise reductions over an in-plane three-by-three microphone array installed forward and near in-plane of the rotor in the nearfield. It is also reported that using an active flap in this localized, non-harmonic manner, resulted in no more that 2% rotor performance penalty, but had the tendency to incur higher hub vibration levels.
12 -μ m -Pitch Electromechanical Resonator for Thermal Sensing
Laurent, Ludovic; Yon, Jean-Jacques; Moulet, Jean-Sébastien; Roukes, Michael; Duraffourg, Laurent
2018-02-01
We provide here a demonstration of 12 -μ m -pitch nanoelectromechanical resonant infrared sensors with fully integrated capacitive transduction. A low-temperature fabrication process is used to manufacture torsional resonator arrays. An H -shaped pixel with 9 -μ m -long nanorods and (250 ×30 )-nm2 cross section is designed to provide high thermal response whose experimental measurements reach up to 1024 Hz /nW . A mechanical dynamic range of over 113 dB is obtained, which leads to an Allan deviation of σA=3 ×10-7 at room temperature and 50-Hz noise bandwidth (σA=1.5 ×10-7 over 10 Hz). These features allow us to reach a sensitivity of (8 - 12 )-μ m radiation of 27 pW / √{Hz } leading to a noise-equivalent temperature difference (NETD) of 2 K for a 50-Hz noise bandwidth (NETD =1.5 K at 10 Hz). We demonstrate that the resolution is no more set by the phonon noise but by the anomalous phase noise already encountered in flexural nanoresonators. By both improving the temperature coefficient of frequency of a factor 10 and using a readout electronics at the pixel level, these resonators will lead to a breakthrough for uncooled infrared detectors. We expect that the NETD will rapidly drop to 180 mK with electronics close to the pixel. As a result of the features of our torsional resonators, an alternative readout scheme of pixels is suggested.
Control of in-plane texture of body centered cubic metal thin films
International Nuclear Information System (INIS)
Harper, J.M.; Rodbell, K.P.; Colgan, E.G.; Hammond, R.H.
1997-01-01
We show that dramatically different in-plane textures can be produced in body centered cubic (bcc) metal thin films deposited on amorphous substrates under different deposition conditions. The crystallographic orientation distribution of polycrystalline bcc metal thin films on amorphous substrates often has a strong left-angle 110 right-angle fiber texture, indicating that {110} planes are parallel to the substrate plane. When deposition takes place under bombardment by energetic ions or atoms at an off-normal angle of incidence, the left-angle 110 right-angle fiber texture develops an in-plane texture, indicating nonrandom azimuthal orientations of the crystallites. Three orientations in Nb films have been observed under different deposition geometries, in which the energetic particle flux coincides with channeling directions in the bcc crystal structure. In-plane orientations in Mo films have also been obtained in magnetron sputtering systems with various configurations. These are described, and an example is given in which the in-plane orientation of Mo films deposited in two different in-line magnetron sputtering systems differs by a 90 degree rotation. In these two cases, there is a strong left-angle 110 right-angle fiber texture, but the in-plane left-angle 100 right-angle direction is oriented parallel to the scan direction in one system, and perpendicular to the scan direction in the other system. The conditions which produce such different in-plane textures in two apparently similar sputtering systems are discussed. copyright 1997 American Institute of Physics
Basic examination of in-plane spatial resolution in multi-slice CT
International Nuclear Information System (INIS)
Hara, Takanori; Kato, Hideki; Akiyama, Mitsutoshi; Murata, Katsutoshi
2002-01-01
In computed tomography (single-slice spiral CT, conventional CT), in-plane (x-y plane) spatial resolution is consistently identified as depending on the detector density of the in-plane (x-y plane). However, we considered that the in-plane (x-y plane) spatial resolution of multi-slice CT (MSCT) was influenced by an error in the detector's sensitivity to the Z-axis and by the frequency of use of direct row data and complementary row data when the image of spiral pitches (SP) was reconstructed. Our goal in this experiment was to analyze the relationship of the in-plane (x-y plane) spatial resolution of an asymmetric-type detector in MSCT to SP, tube current, and rotation time. By employing a tungsten wire phantom of 0.2 mm in diameter, we examined modulation transfer functions (MTF) by point-spread functions (PSF) of CT-images. Next, using the mean-square-root bandwidth theory, we analyzed the MTF of wire phantoms. The analysis of in-plane (x-y plane) spatial resolution revealed that various tube currents had no effect on the value of the mean-square-root bandwidth. However, rotation time and high spiral pitch did have an effect on mean-square-root bandwidth. Considering the results mentioned above, spiral pitch (z-axis reconstruction algorithm) had a slight effect on in-plane (x-y plane) spatial resolution of asymmetric-type detectors in MSCT. Accordingly, we proposed a new general view of VDDz (view/mm) in MSCT that considered view data density on the Z-axis according to spiral pitch (mm/rotation), rotation time (view/rotation), and slice collimation. (author)
The in-plane deformation of a tire carcass: analysis and measurement
Xiong, Yi; Tuononen, Ari
2015-01-01
The deformation of parts of a tire is the direct result of tire–road interactions, and therefore is of great interest in tire sensor development. This case study focuses on the analysis of the deformation of the tire carcass and investigates its potential for the estimation of the in-plane tire force. The deformation of the tire carcass due to applied steady-state in-plane forces is first analyzed with the flexible ring model and then validated through optical tire sensor measurements. Couple...
Specific strain work as a failure criterion in plane stress state
International Nuclear Information System (INIS)
Zuchowski, R.; Zietkowski, L.
1985-01-01
An experimental verification of failure criterion based on specific strain work was performed. Thin-walled cylindrical specimens were examined by loading with constant force and constant torque moment, assuming different values for particular tests, at the same time keeping stress intensity constant, and by subjecting to thermal cycling. It was found that the critical value of failure did not depend on axial-to-shearing stresses ratio, i.e., on the type of state of stress. Thereby, the validity of the analysed failure criterion in plane stress was confirmed. Besides, a simple description of damage development in plane stress was suggested. (orig./RF)
Energy Technology Data Exchange (ETDEWEB)
Biermann, Mark L [Physics Department, 566 Brownson Rd., U.S. Naval Academy, Annapolis, MD 21402 (United States); Walters, Matthew [Physics Department, 566 Brownson Rd., U.S. Naval Academy, Annapolis, MD 21402 (United States); Diaz-Barriga, James [Physics Department, 566 Brownson Rd., U.S. Naval Academy, Annapolis, MD 21402 (United States); Rabinovich, W S [Naval Research Laboratory, Code 5652, 4555 Overlook Ave. SW, Washington, DC 20375-5320 (United States)
2003-10-21
Anisotropic in-plane strain in quantum wells leads to an optical polarization anisotropy that can be exploited for device applications. We have determined that for many anisotropic compressive strain cases, the dependence of the optical anisotropy is linear in the strain anisotropy. This result holds for a variety of well and barrier materials and widths and for various overall strain conditions. Further, the polarization anisotropy per strain anisotropy varies as the reciprocal of the energy separation of the relevant hole sub-bands. Hence, a general result for the polarization anisotropy per strain anisotropy is available for cases of compressive anisotropic in-plane strain.
International Nuclear Information System (INIS)
Biermann, Mark L; Walters, Matthew; Diaz-Barriga, James; Rabinovich, W S
2003-01-01
Anisotropic in-plane strain in quantum wells leads to an optical polarization anisotropy that can be exploited for device applications. We have determined that for many anisotropic compressive strain cases, the dependence of the optical anisotropy is linear in the strain anisotropy. This result holds for a variety of well and barrier materials and widths and for various overall strain conditions. Further, the polarization anisotropy per strain anisotropy varies as the reciprocal of the energy separation of the relevant hole sub-bands. Hence, a general result for the polarization anisotropy per strain anisotropy is available for cases of compressive anisotropic in-plane strain
Highly Tunable Electrostatic Nanomechanical Resonators
Kazmi, Syed Naveed Riaz
2017-11-24
There has been significant interest towards highly tunable resonators for on-demand frequency selection in modern communication systems. Here, we report highly tunable electrostatically actuated silicon-based nanomechanical resonators. In-plane doubly-clamped bridges, slightly curved as shallow arches due to residual stresses, are fabricated using standard electron beam lithography and surface nanomachining. The resonators are designed such that the effect of mid-plane stretching dominates the softening effect of the electrostatic force. This is achieved by controlling the gap-to-thickness ratio and by exploiting the initial curvature of the structure from fabrication. We demonstrate considerable increase in the resonance frequency of nanoresonators with the dc bias voltages up to 108% for 180 nm thick structures with a transduction gap of 1
Highly Tunable Electrostatic Nanomechanical Resonators
Kazmi, Syed Naveed Riaz; Hajjaj, Amal Z.; Hafiz, Md Abdullah Al; Da Costa, Pedro M. F. J.; Younis, Mohammad I.
2017-01-01
There has been significant interest towards highly tunable resonators for on-demand frequency selection in modern communication systems. Here, we report highly tunable electrostatically actuated silicon-based nanomechanical resonators. In-plane doubly-clamped bridges, slightly curved as shallow arches due to residual stresses, are fabricated using standard electron beam lithography and surface nanomachining. The resonators are designed such that the effect of mid-plane stretching dominates the softening effect of the electrostatic force. This is achieved by controlling the gap-to-thickness ratio and by exploiting the initial curvature of the structure from fabrication. We demonstrate considerable increase in the resonance frequency of nanoresonators with the dc bias voltages up to 108% for 180 nm thick structures with a transduction gap of 1
Directory of Open Access Journals (Sweden)
Abdelkrim Khelif
2011-12-01
Full Text Available We present a theoretical analysis of an in-plane confinement and a waveguiding of surface acoustic waves in pillars-based phononic crystal. The artificial crystal is made up of cylindrical pillars placed on a semi-infinite medium and arranged in a square array. With a well-chosen of the geometrical parameters, this pillars-based system can display two kinds of complete band gaps for guided waves propagating near the surface, a low frequency gap based on locally resonant mode of pillars as well as a higher frequency gap appearing at Bragg scattering regime. In addition, we demonstrate a waveguiding of surface acoustic wave inside an extended linear defect created by removing rows of pillars in the perfect crystal. We discuss the transmission and the polarization of such confined mode appearing in the higher frequency band gap. We highlight the strong similarity of such defect mode and the Rayleigh wave of free surface medium. An efficient finite element analysis is used to simulate the propagation of guided waves through silicon pillars on a silicon substrate.
In-plane technologies for transflective mobile displays: A Literature Survey
Strömer, J.F.
2007-01-01
This report discusses the optical design of transflective displaysusing in-plane technologies, such as IPS or FFS. It demonstrates theevolutional develpement of the technology of important companies and Universities that are active in this area. It discusses relevant theoretical studies and
In-plane material continuity for the discrete material optimization method
DEFF Research Database (Denmark)
Sørensen, Rene; Lund, Erik
2015-01-01
When performing discrete material optimization of laminated composite structures, the variation of the in-plane material continuity is typically governed by the size of the finite element discretization. For a fine mesh, this can lead to designs that cannot be manufactured due to the complexity...
In-plane anisotropic strain of elastically and plastically deformed III-nitrides on lithium gallate
Energy Technology Data Exchange (ETDEWEB)
Namkoong, Gon, E-mail: gnamkoon@odu.ed [Old Dominion University, Electrical and Computer Engineering, Applied Research Center, 12050 Jefferson Avenue, Newport News, VA 23606 (United States); Huang, Sa; Moseley, Michael; Doolittle, W. Alan [Georgia Institute of Technology, School of Electrical and Computer Engineering, 777 Atlantic Dr., Atlanta, GA 30332 (United States)
2009-10-30
We have investigated both elastically and plastically deformed GaN films on lithium gallate, LiGaO{sub 2}, by molecular beam epitaxy. The in-plane lattice parameters were determined from high resolution X-ray diffraction and indicated two different groups of in-plane lattice parameters, influenced by the a- and b-axis of LiGaO{sub 2}. The measured in-plane lattice parameters indicate that there exist both compressive and tensile strains of in-plane GaN along the a- and b-axis of LiGaO{sub 2}, respectively. This anisotropic strain in GaN films forms a slight distortion of the basal-plane hexagonal structure of GaN films, leading to a different critical thickness of 4.0 {+-} 0.17 and 7.8 {+-} 0.7 nm along the a- and b-axis of LiGaO{sub 2}, respectively.
Pull-out test of stud bolts embedded in concrete under an in-plane force
International Nuclear Information System (INIS)
Inada, Y.; Saito, H.; Torita, H.; Takiguchi, K.; Ibe, Y.; Taira, T.
1995-01-01
There are many steel plates with stud bolts embedded in the R C walls of a nuclear reactor building to support equipment and piping. Under a earthquake, the steel plates are submitted to an out-of-plane force due to the inertia force acting upon equipment and piping. Furthermore, the walls are submitted to an in-plane force, and cracks may occur. A large number of experimental studies have been carried out on the pull-out strength of stud bolts embedded in concrete. Few studies have been performed to understand the strength of stud bolts embedded in concrete under an in-plane force and, further, not any one on the strength for concrete under in-plane force simultaneously to stud bolts under out-of-plane force. This paper describes a test performed to understand the pull-out strength determined by this interaction of in-plane and out-of-plane forces. (author). 5 refs., 9 figs., 5 tabs
Design and characterization of in-plane MEMS yaw rate sensor
Indian Academy of Sciences (India)
In this paper, we present the design and characterization of a vibratory yaw rate MEMS sensor that uses in-plane motion for both actuation and sensing. The design criterion for the rate sensor is based on a high sensitivity and low bandwidth. The required sensitivity of the yaw rate sensor is attained by using the inplane ...
Field dependence of magnetic viscosity of CoCrTa in-plane media
Phan le kim, P.L.K.; Lodder, J.C.; Popma, T.J.A.
1999-01-01
In this paper we will present a study of magnetic viscosity as a function of applied field of CoCrTa/Cr in-plane media. The viscosity versus applied field curves (viscosity curves) of the samples exhibit a sharp peak at remanence coercivity (Hcr). Their activation volume was found to be close to the
Topologically protected edge states for out-of-plane and in-plane bulk elastic waves
Huo, Shao-Yong; Chen, Jiu-Jiu; Huang, Hong-Bo
2018-04-01
Topological phononic insulators (TPnIs) show promise for application in the manipulation of acoustic waves for the design of low-loss transmission and perfectly integrated communication devices. Since solid phononic crystals exist as a transverse polarization mode and a mixed longitudinal-transverse polarization mode, the realization of topological edge states for both out-of-plane and in-plane bulk elastic waves is desirable to enhance the controllability of the edge waves in solid systems. In this paper, a two-dimensional (2D) solid/solid hexagonal-latticed phononic system that simultaneously supports the topologically protected edge states for out-of-plane and in-plane bulk elastic waves is investigated. Firstly, two pairs of two-fold Dirac cones, respectively corresponding to the out-of-plane and in-plane waves, are obtained at the same frequency by tuning the crystal parameters. Then, a strategy of zone folding is invoked to form double Dirac cones. By shrinking and expanding the steel scatterer, the lattice symmetry is broken, and band inversions induced, giving rise to an intriguing topological phase transition. Finally, the topologically protected edge states for both out-of-plane and in-plane bulk elastic waves, which can be simultaneously located at the frequency range from 1.223 to 1.251 MHz, are numerically observed. Robust pseudospin-dependent elastic edge wave propagation along arbitrary paths is further demonstrated. Our results will significantly broaden its practical application in the engineering field.
Applicability of geometrical optics to in-plane liquid-crystal configurations
Sluijter, M.; Xu, M.; Urbach, H.P.; De Boer, D.K.G.
2010-01-01
We study the applicability of geometrical optics to inhomogeneous dielectric nongyrotropic optically anisotropic media typically found in in-plane liquid-crystal configurations with refractive indices no=1.5 and ne=1.7. To this end, we compare the results of advanced ray- and wave-optics simulations
Extended design method for in-plane stability of haunched sway portal frames
van Hove, B.W.E.M.; Snijder, H.H.; Hofmeyer, H.; Altinga, N.
2017-01-01
In current design rules the effect of a haunch on the sway in-plane stability of a steel portal frame only takes into account the influence of the haunch dimensions on the beam-to-column connection strength and stiffness. The effect of the haunch dimensions on the beam behavior, and thus on the
International Nuclear Information System (INIS)
1977-03-01
At the 1975 Particle Accelerator Conference it was reported that a class of resonances were observed in SPEAR II that had not appeared before in SPEAR I. While the existence of sideband resonances of the main betatron oscillation frequencies has been previously observed and analyzed, the resonances observed in SPEAR do not appear to be of the same variety. Experiments were performed at SPEAR to identify the mechanism believed to be the most likely explanation. Some of the current experimental knowledge and theoretical views on the source of these resonances are presented
International Nuclear Information System (INIS)
Tepikian, S.
1988-01-01
Siberian Snakes provide a practical means of obtaining polarized proton beams in large accelerators. The effect of snakes can be understood by studying the dynamics of spin precession in an accelerator with snakes and a single spin resonance. This leads to a new class of energy independent spin depolarizing resonances, called snake resonances. In designing a large accelerator with snakes to preserve the spin polarization, there is an added constraint on the choice of the vertical betatron tune due to the snake resonances. 11 refs., 4 figs
Nonlinear dynamics in micromechanical and nanomechanical resonators and oscillators
Dunn, Tyler
In recent years, the study of nonlinear dynamics in microelectromechanical and nanoelectromechanical systems (MEMS and NEMS) has attracted considerable attention, motivated by both fundamental and practical interests. One example is the phenomenon of stochastic resonance. Previous measurements have established the presence of this counterintuitive effect in NEMS, showing that certain amounts of white noise can effectively amplify weak switching signals in nanomechanical memory elements and switches. However, other types of noise, particularly noises with 1/falpha spectra, also bear relevance in these and many other systems. At a more fundamental level, the role which noise color plays in stochastic resonance remains an open question in the field. To these ends, this work presents systematic measurements of stochastic resonance in a nanomechanical resonator using 1/f alpha and Ornstein-Uhlenbeck noise types. All of the studied noise spectra induce stochastic resonance, proving that colored noise can also be beneficial; however, stronger noise correlations suppress the effect, decreasing the maximum signal-to-noise ratio and increasing the optimal noise intensity. Evidence suggests that 1/falpha noise spectra with increasing noise color lead to increasingly asymmetric switching, reducing the achievable amplification. Another manifestly nonlinear effect anticipated in these systems is modal coupling. Measurements presented here demonstrate interactions between various mode types on a wide scale, providing the first reported observations of coupling in bulk longitudinal modes of MEMS. As a result of anharmonic elastic effects, each mode shifts in frequency by an amount proportional to the squared displacement (or energy) of a coupled mode. Since all resonator modes couple in this manner, these effects enable nonlinear measurement of energy and mechanical nonlinear signal processing across a wide range of frequencies. Finally, while these experiments address nonlinear
Modeling and analysis of a resonant nanosystem
Calvert, Scott L.
The majority of investigations into nanoelectromechanical resonators focus on a single area of the resonator's function. This focus varies from the development of a model for a beam's vibration, to the modeling of electrostatic forces, to a qualitative explanation of experimentally-obtained currents. Despite these efforts, there remains a gap between these works, and the level of sophistication needed to truly design nanoresonant systems for efficient commercial use. Towards this end, a comprehensive system model for both a nanobeam resonator and its related experimental setup is proposed. Furthermore, a simulation arrangement is suggested as a method for facilitating the study of the system-level behavior of these devices in a variety of cases that could not be easily obtained experimentally or analytically. The dynamics driving the nanoresonator's motion, as well as the electrical interactions influencing the forcing and output of the system, are modeled, experimentally validated, and studied. The model seeks to develop both a simple circuit representation of the nanoresonator, and to create a mathematical system that can be used to predict and interpret the observed behavior. Due to the assumptions used to simplify the model to a point of reasonable comprehension, the model is most accurate for small beam deflections near the first eigenmode of the beam. The process and results of an experimental investigation are documented, and compared with a circuit simulation modeling the full test system. The comparison qualitatively proves the functionality of the model, while a numerical analysis serves to validate the functionality and setup of the circuit simulation. The use of the simulation enables a much broader investigation of both the electrical behavior and the physical device's dynamics. It is used to complement an assessment of the tuning behavior of the system's linear natural frequency by demonstrating the tuning behavior of the full nonlinear response. The
International Nuclear Information System (INIS)
Sun, H.Y.; Hu, H.N.; Sun, Y.P.; Nie, X.F.
2004-01-01
Influence of rotating in-plane field on vertical Bloch lines in the walls of second kind of dumbbell domains (IIDs) was investigated, and a critical in-plane field range [H ip 1 ,H ip 2 ] of which vertical-Bloch lines (VBLs) annihilated in IIDs is found under rotating in-plane field (H ip 1 is the maximal critical in-plane-field of which hard domains remain stable, H ip 2 is the minimal critical in-plane-field of which all of the hard domains convert to soft bubbles (SBs, without VBLs)). It shows that the in-plane field range [H ip 1 , H ip 2 ] changes with the change of the rotating angle Δφ H ip 1 maintains stable, while H ip 2 decreases with the decreasing of rotating angle Δφ. Comparing it with the spontaneous shrinking experiment of IIDs under both bias field and in-plane field, we presume that under the application of in-plane field there exists a direction along which the VBLs in the domain walls annihilate most easily, and it is in the direction that domain walls are perpendicular to the in-plane field
Rajasekar, Shanmuganathan
2016-01-01
This introductory text presents the basic aspects and most important features of various types of resonances and anti-resonances in dynamical systems. In particular, for each resonance, it covers the theoretical concepts, illustrates them with case studies, and reviews the available information on mechanisms, characterization, numerical simulations, experimental realizations, possible quantum analogues, applications and significant advances made over the years. Resonances are one of the most fundamental phenomena exhibited by nonlinear systems and refer to specific realizations of maximum response of a system due to the ability of that system to store and transfer energy received from an external forcing source. Resonances are of particular importance in physical, engineering and biological systems - they can prove to be advantageous in many applications, while leading to instability and even disasters in others. The book is self-contained, providing the details of mathematical derivations and techniques invo...
Influence of the in-plane artefact in chest tomosynthesis on pulmonary nodule size measurements
International Nuclear Information System (INIS)
Soederman, Christina; Allansdotter Johnsson, Aase; Vikgren, Jenny; Rossi Norrlund, Rauni; Molnar, David; Svalkvist, Angelica; Maansson, Lars Gunnar; Baath, Magnus
2016-01-01
The aim of the present study was to investigate how the in-plane artefact present in the scan direction around structures in tomosynthesis images should be managed when measuring the size of nodules in chest tomosynthesis images in order to achieve acceptable measurement accuracy. Data from measurements, performed by radiologists, of the longest diameter of artificial nodules inserted in chest tomosynthesis images were used. The association between the measurement error and the direction of the longest nodule diameter, relative to the scan direction, was evaluated using the Kendall rank correlation coefficient. All of the radiologists had chosen to not include the artefact in the measurements. Significant association between measurement error and the direction of the longest diameter was found for nodules larger than 12 mm, which indicates that, for these nodules, there is a risk of underestimating the nodule size if the in-plane artefact is omitted from manual diameter measurements. (authors)
Electron states in quantum rings with structural distortions under axial or in-plane magnetic fields
International Nuclear Information System (INIS)
Planelles, J; Rajadell, F; Climente, J I
2007-01-01
A comprehensive study of anisotropic quantum rings, QRs, subject to axial and in-plane magnetic field, both aligned and transverse to the anisotropy direction, is carried out. Elliptical QRs for a wide range of eccentricity values and also perfectly circular QRs including one or more barriers disturbing the QR current are considered. These models mimic anisotropic geometry deformations and mass diffusion occurring in the QR fabrication process. Symmetry considerations and simplified analytical models supply physical insight into the obtained numerical results. Our study demonstrates that, except for unusual extremely large eccentricities, QR geometry deformations only appreciably influence a few low-lying states, while the effect of barriers disturbing the QR current is stronger and affects all studied states to a similar extent. We also show that the response of the electron states to in-plane magnetic fields provides accurate information on the structural anisotropy
A standing wave linear ultrasonic motor operating in in-plane expanding and bending modes.
Chen, Zhijiang; Li, Xiaotian; Ci, Penghong; Liu, Guoxi; Dong, Shuxiang
2015-03-01
A novel standing wave linear ultrasonic motor operating in in-plane expanding and bending modes was proposed in this study. The stator (or actuator) of the linear motor was made of a simple single Lead Zirconate Titanate (PZT) ceramic square plate (15 × 15 × 2 mm(3)) with a circular hole (D = 6.7 mm) in the center. The geometric parameters of the stator were computed with the finite element analysis to produce in-plane bi-mode standing wave vibration. The calculated results predicted that a driving tip attached at midpoint of one edge of the stator can produce two orthogonal, approximate straight-line trajectories, which can be used to move a slider in linear motion via frictional forces in forward or reverse direction. The investigations showed that the proposed linear motor can produce a six times higher power density than that of a previously reported square plate motor.
In-plane nuclear field formation investigated in single self-assembled quantum dots
Yamamoto, S.; Matsusaki, R.; Kaji, R.; Adachi, S.
2018-02-01
We studied the formation mechanism of the in-plane nuclear field in single self-assembled In0.75Al0.25As /Al0.3Ga0.7As quantum dots. The Hanle curves with an anomalously large width and hysteretic behavior at the critical transverse magnetic field were observed in many single quantum dots grown in the same sample. In order to explain the anomalies in the Hanle curve indicating the formation of a large nuclear field perpendicular to the photo-injected electron spin polarization, we propose a new model based on the current phenomenological model for dynamic nuclear spin polarization. The model includes the effects of the nuclear quadrupole interaction and the sign inversion between in-plane and out-of-plane components of nuclear g factors, and the model calculations reproduce successfully the characteristics of the observed anomalies in the Hanle curves.
Nonlinear FE analysis of reinforced concrete panels subjected to in-plane force
International Nuclear Information System (INIS)
Lee, H. P.; Lee, S. J.; Jun, Y. S.; Su, J. M.
2003-01-01
Reinforced concrete structures subjected to in-plane force exhibit strong nonlinear behaviour due to complex material properties, cracks, interactions between concrete and steel and shear transfer exists in crack surface. Especially if there is crack formations, nonlinear behaviour increases. Thus the prediction of nonlinear behaviour of reinforced concrete includes failure or crushing is very difficult task. Various constitutive equations for concrete stress-strain relationship to predict nonlinear behaviour of reinforced concrete have been proposed. But the study for reinforced concrete analysis model using plastic material model is still demanded. So the purpose of this research is to formulate standard 8-node shell element using plasticity material model for concrete and to analyze nonlinear behaviour of RC panel subjected to in-plane force
Kim, Hansang
2015-01-01
The in-plane shear property of carbon fiber laminates is one of the most important structural features of aerospace and marine structures. Fiber-matrix debonding caused by in-plane shear loading is the major failure mode of carbon fiber composites because of the stress concentration at the interfaces. In this study, carbon nanotube mats (CNT mat) were incorporated in two different types of carbon fiber composites. For the case of woven fabric composites, mechanical interlocking between the CNTs and the carbon fibers increased resistance to shear failure. However, not much improvement was observed for the prepreg composites as a result of incorporation of the CNT mats. The reinforcement mechanism of the CNT mat layer was investigated by a fractographic study using scanning electron microscopy. In addition, the CNT mat was functionalized by three different methods and the effectiveness of the functionalization methods was determined and the most appropriate functionalization method for the CNT mat was air oxidation.
Contribution to study of interfaces instabilities in plane, cylindrical and spherical geometry
Toque, Nathalie
1996-12-01
This thesis proposes several experiments of hydrodynamical instabilities which are studied, numerically and theoretically. The experiments are in plane and cylindrical geometry. Their X-ray radiographies show the evolution of an interface between two solid media crossed by a detonation wave. These materials are initially solid. They become liquide under shock wave or stay between two phases, solid and liquid. The numerical study aims at simulating with the codes EAD and Ouranos, the interfaces instabilities which appear in the experiments. The experimental radiographies and the numerical pictures are in quite good agreement. The theoretical study suggests to modelise a spatio-temporal part of the experiments to obtain the quantitative development of perturbations at the interfaces and in the flows. The models are linear and in plane, cylindrical and spherical geometry. They preceed the inoming study of transition between linear and non linear development of instabilities in multifluids flows crossed by shock waves.
Active Tuned Mass Dampers for Control of In-Plane Vibrations of Wind Turbine Blades
DEFF Research Database (Denmark)
Fitzgerald, B.; Basu, Biswajit; Nielsen, Søren R.K.
2013-01-01
matrices. The aim of this paper is to determine whether ATMDs could be used to reduce in-plane blade vibrations in wind turbines with better performance than compared with their passive counterparts. A Euler–Lagrangian wind turbine mathematical model based on energy formulation was developed......, centrifugal, and turbulent aerodynamic loadings. Investigations show promising results for the use of ATMDs in the vibration control of wind turbine blades.......This paper investigates the use of active tuned mass dampers (ATMDs) for the mitigation of in-plane vibrations in rotating wind turbine blades. The rotating wind turbine blades with tower interaction represent time-varying dynamical systems with periodically varying mass, stiffness, and damping...
Numerical modelling of micro-plasto-hydrodynamic lubrication in plane strip drawing
DEFF Research Database (Denmark)
Carretta, Y.; Bech, Jakob Ilsted; Legrand, N.
2017-01-01
is conducted. Then, a second simulation highlighting microscopic liquid lubrication mechanisms is achieved using boundary conditions provided by the first model. These fluid-structure interaction computations are made possible through the use of the Arbitrary Lagrangian Eulerian (ALE) formalism.The developed...... methodology is validated by comparison to experimental measurements conducted in plane strip drawing. The effect of physical parameters like the drawing speed, the die angle and the strip thickness reduction is investigated. The numerical results show good agreement with experiments....
In-plane Tire Deformation Measurement Using a Multi-Laser Sensor System
Xiong, Yi
2016-01-01
The interactions between tires and roads are basic mechanisms that alter the dynamic states of vehicles. A fundamental understanding of tire-road interactions is clearly demanded in tire design to achieve performance improvements. The emergence of various tire sensors provides an opportunity to make accurate measurement of the physical quantities that are involved in tire-road interactions. This thesis aims to measure and analyze the in-plane deformation of rolling tires through its direc...
In-plane resolved in-situ measurements of the membrane resistance in PEFCs
Energy Technology Data Exchange (ETDEWEB)
Buechi, F N; Scherer, G G [Paul Scherrer Inst. (PSI), Villigen (Switzerland)
1999-08-01
The conductivity of the membrane is a limiting factor for the efficiency and power density of PEFCs. Because this conductivity is strongly dependent on the membrane hydration, water management is an important aspect of PEFC optimisation. Single cell model experiments were made in order to determine the in-plane hydration of a Nafion{sup R} membrane under fuel cell conditions as function of the gas humidities. (author) 4 fig., 3 refs.
In-plane vibrations of inhomogeneous curved bars having varying cross-section
International Nuclear Information System (INIS)
Suzuki, Katsuyoshi; Kosawada, Tadashi; Takahashi, Shin
1986-01-01
An exact method using power series expansions is presented for solving in-plane free vibration problems of inhomogeneous curved bars having varying curvatures and cross-sections. Equations of motion and boundary conditions are derived from the stationary conditions of the Lagrangian of curved bars. Natural frequencies and mode shapes are presented for elliptical and circular arc bars having both ends clamped and calmped-free ends. (author)
In-plane Shear Joint Capacity of Pracast Lightweight Aggregate Concrete Elements
DEFF Research Database (Denmark)
Larsen, Henning; Goltermann, Per; Scherfig, Søren
1996-01-01
The paper establishes and documents formulas for the in-plane shear capacity between precast elements of lightweight aggregate concrete with open structure. The joints investigated are rough or toothed and have all been precracked prior to the testing in order to obtain realistic test results....... The paper documents the shear force capacity for the joint strength between the most common joint types between precast LAC roof and floor elements used in Scandinavia....
DEFF Research Database (Denmark)
Cagliani, Alberto; Kjær, Daniel; Østerberg, Frederik Westergaard
2017-01-01
The current-in-plane tunneling technique (CIPT) has been a crucial tool in the development of magnetic tunnel junction stacks suitable for magnetic random access memories (MRAM) for more than a decade. The MRAM development has now reached the maturity to make the transition from the R&D phase...... of electrodes on a multi-electrode probe to reach up to 36% improvement on the repeatability for the resistance area product and the tunneling magnetoresistance measurement, without any hardware modification....
In-Plane free Vibration Analysis of an Annular Disk with Point Elastic Support
Bashmal, S.; Bhat, R.; Rakheja, S.
2011-01-01
In-plane free vibrations of an elastic and isotropic annular disk with elastic constraints at the inner and outer boundaries, which are applied either along the entire periphery of the disk or at a point are investigated. The boundary characteristic orthogonal polynomials are employed in the Rayleigh-Ritz method to obtain the frequency parameters and the associated mode shapes. Boundary characteristic orthogonal polynomials are generated for the free boundary conditions of the disk while arti...
Ramini, Abdallah; Al Hennawi, Qais M.; Younis, Mohammad I.
2016-01-01
We present theoretical and experimental investigation of the nonlinear behavior of a clamped-clamped in-plane MEMS arch when excited by a DC electrostatic load superimposed to an AC harmonic load. Experimentally, a case study of in-plane silicon
Ramini, Abdallah; Hafiz, Abdullah; Bellaredj, Mohammed Lamine Faycal; Al Hennawi, Qais M.; Younis, Mohammad I.
2016-01-01
We present experimental investigation of the nonlinear dynamics of a clamped-clamped in-plane MEMS shallow arch when excited by an electrostatic force. We explore the dynamic behaviors of the in-plane motion of the shallow arches via frequency
Laser-Printed In-Plane Micro-Supercapacitors: From Symmetric to Asymmetric Structure.
Huang, Gui-Wen; Li, Na; Du, Yi; Feng, Qing-Ping; Xiao, Hong-Mei; Wu, Xing-Hua; Fu, Shao-Yun
2018-01-10
Here, we propose and demonstrate a complete solution for efficiently fabricating in-plane micro-supercapacitors (MSCs) from a symmetric to asymmetric structure. By using an original laser printing process, symmetric MSC with reduced graphene oxide (rGO)/silver nanowire (Ag-NW) hybrid electrodes was facilely fabricated and a high areal capacitance of 5.5 mF cm -2 was achieved, which reaches the best reports on graphene-based MSCs. More importantly, a "print-and-fold" method has been creatively proposed that enabled the rapid manufacturing of asymmetric in-plane MSCs beyond the traditional cumbersome technologies. α-Ni(OH) 2 particles with high tapping density were successfully synthesized and employed as the pseudocapacitive material. Consequently, an improved supply voltage of 1.5 V was obtained and an areal capacitance as high as 8.6 mF cm -2 has been realized. Moreover, a demonstration of a miniaturized MSC pack was performed by multiply-folding the serial Ag-NW-connected MSC units. As a result, a compact MSC pack with a high supply voltage of 3 V was obtained, which can be utilized to power a light-emitting diode light. These presented technologies may pave the way for the efficiently producing high performance in-plane MSCs, meanwhile offering a solution for the achievement of practical power supply packs integrated in limited spaces.
Simon, W. K.; Akdogan, E. K.; Safari, A.; Bellotti, J. A.
2005-08-01
In-plane dielectric properties of ⟨110⟩ oriented epitaxial (Ba0.60Sr0.40)TiO3 thin films in the thickness range from 25-1200nm have been investigated under the influence of anisotropic epitaxial strains from ⟨100⟩ NdGaO3 substrates. The measured dielectric properties show strong residual strain and in-plane directional dependence. Below 150nm film thickness, there appears to be a phase transition due to the anisotropic nature of the misfit strain relaxation. In-plane relative permittivity is found to vary from as much as 500-150 along [11¯0] and [001] respectively, in 600nm thick films, and from 75 to 500 overall. Tunability was found to vary from as much as 54% to 20% in all films and directions, and in a given film the best tunability is observed along the compressed axis in a mixed strain state, 54% along [11¯0] in the 600nm film for example.
Reduced In-Plane, Low Frequency Helicopter Noise of an Active Flap Rotor
Sim, Ben W.; Janakiram, Ram D.; Barbely, Natasha L.; Solis, Eduardo
2009-01-01
Results from a recent joint DARPA/Boeing/NASA/Army wind tunnel test demonstrated the ability to reduce in-plane, low frequency noise of the full-scale Boeing-SMART rotor using active flaps. Test data reported in this paper illustrated that acoustic energy in the first six blade-passing harmonics could be reduced by up to 6 decibels at a moderate airspeed, level flight condition corresponding to advance ratio of 0.30. Reduced noise levels were attributed to selective active flap schedules that modified in-plane blade airloads on the advancing side of the rotor, in a manner, which generated counteracting acoustic pulses that partially offset the negative pressure peaks associated with in-plane, steady thickness noise. These favorable reduced-noise operating states are a strong function of the active flap actuation amplitude, frequency and phase. The associated noise reductions resulted in reduced aural detection distance by up to 18%, but incurred significant vibratory load penalties due to increased hub shear forces. Small reductions in rotor lift-to-drag ratios, of no more than 3%, were also measured
In-plane impulse response of a curved bar with varying cross-section
International Nuclear Information System (INIS)
Suzuki, Katsuyoshi; Kosawada, Tadashi; Takahashi, Shin; Miyashita, Yasushi.
1984-01-01
The vibration problem of a curved bar, of which the center line is represented with a plane curve, is important for the aseismatic design of the piping system and structures in chemical and nuclear plants. The dynamic response problem of an in-plane curved bar has not been sufficiently examined. In this study, the in-plane impact response of an in-plane curved bar having varying cross section when impact load acts in the direction of the center of curvature was analyzed. First, the Lagrangian of a curved bar with varying cross section when general exciting distributed load acts in the direction of the center of curvature along the center line was determined by the classic theory, and from its stationary condition, the equations of motion and boundary conditions were derived. Next, the equations of motion were analyzed by eigen-function development method. In the example of numerical calculation, the variation of displacement and bending moment in course of time when stepwise concentrated impact load acts on a both ends fixed symmetric semi-elliptic arc bar was determined. Besides, the change of response due to the change of cross section and the change of the point of impact load application was clarified. Displacement and bending moment varied at a certain period with static value at the center. (Kako, I.)
Instability of in-plane vortices in two-dimensional easy-plane ferromagnets
International Nuclear Information System (INIS)
Wysin, G.M.
1994-01-01
An analysis of the core region of an in-plane vortex in the two-dimensional Heisenberg model with easy-plane anisotropy λ=J z /J xy leads to a clear understanding of the instability towards transformation into an out-of-plane vortex as a function of anisotropy. The anisotropy parameter λ c at which the in-plane vortex becomes unstable and develops into an out-of-plane vortex is determined with an accuracy comparable to computer simulations for square, hexagonal, and triangular lattices. For λ c , the in-plane vortex is stable but exhibits a normal mode whose frequency goes to zero as ω∝(λ c -λ) 1/2 as λ approaches λ c . For λ>λ c , the static nonzero out-of-plane spin components grow as (λ-λ c ) 1/2 . The lattice dependence of λ c is determined strongly by the number of spins in the core plaquette, is fundamentally a discreteness effect, and cannot be obtained in a continuum theory
Frequency Equations for the In-Plane Vibration of Circular Annular Disks
Directory of Open Access Journals (Sweden)
S. Bashmal
2010-01-01
Full Text Available This paper deals with the in-plane vibration of circular annular disks under combinations of different boundary conditions at the inner and outer edges. The in-plane free vibration of an elastic and isotropic disk is studied on the basis of the two-dimensional linear plane stress theory of elasticity. The exact solution of the in-plane equation of equilibrium of annular disk is attainable, in terms of Bessel functions, for uniform boundary conditions. The frequency equations for different modes can be obtained from the general solutions by applying the appropriate boundary conditions at the inner and outer edges. The presented frequency equations provide the frequency parameters for the required number of modes for a wide range of radius ratios and Poisson's ratios of annular disks under clamped, free, or flexible boundary conditions. Simplified forms of frequency equations are presented for solid disks and axisymmetric modes of annular disks. Frequency parameters are computed and compared with those available in literature. The frequency equations can be used as a reference to assess the accuracy of approximate methods.
Electrothermally actuated tunable clamped-guided resonant microbeams
Alcheikh, Nouha
2017-06-11
We present simulation and experimental investigation demonstrating active alteration of the resonant and frequency response behavior of resonators by controlling the electrothermal actuation method on their anchors. In-plane clamped-guided arch and straight microbeams resonators are designed and fabricated with V-shaped electrothermal actuators on their anchors. These anchors not only offer various electrothermal actuation options, but also serve as various mechanical stiffness elements that affect the operating resonance frequency of the structures. We have shown that for an arch, the first mode resonance frequency can be increased up to 50% of its initial value. For a straight beam, we have shown that before buckling, the resonance frequency decreases to very low values and after buckling, it increases up to twice of its initial value. These results can be promising for the realization of different wide–range tunable microresonator. The experimental results have been compared to multi-physics finite-element simulations showing good agreement among them.
Electrothermally actuated tunable clamped-guided resonant microbeams
Alcheikh, N.; Hajjaj, A. Z.; Jaber, N.; Younis, M. I.
2018-01-01
We present simulation and experimental investigation demonstrating active alteration of the resonant and frequency response behavior of resonators by controlling the electrothermal actuation method on their anchors. In-plane clamped-guided arch and straight microbeams resonators are designed and fabricated with V-shaped electrothermal actuators on their anchors. These anchors not only offer various electrothermal actuation options, but also serve as various mechanical stiffness elements that affect the operating resonance frequency of the structures. We have shown that for an arch, the first mode resonance frequency can be increased up to 50% of its initial value. For a straight beam, we have shown that before buckling, the resonance frequency decreases to very low values and after buckling, it increases up to twice of its initial value. These results can be promising for the realization of different wide-range tunable microresonator. The experimental results have been compared to multi-physics finite-element simulations showing good agreement among them.
Characterization of complementary electric field coupled resonant surfaces
Hand, Thomas H.; Gollub, Jonah; Sajuyigbe, Soji; Smith, David R.; Cummer, Steven A.
2008-11-01
We present angle-resolved free-space transmission and reflection measurements of a surface composed of complementary electric inductive-capacitive (CELC) resonators. By measuring the reflection and transmission coefficients of a CELC surface with different polarizations and particle orientations, we show that the CELC only responds to in-plane magnetic fields. This confirms the Babinet particle duality between the CELC and its complement, the electric field coupled LC resonator. Characterization of the CELC structure serves to expand the current library of resonant elements metamaterial designers can draw upon to make unique materials and surfaces.
International Nuclear Information System (INIS)
Eom, Kilho; Park, Harold S.; Yoon, Dae Sung; Kwon, Taeyun
2011-01-01
Recent advances in nanotechnology have led to the development of nano-electro-mechanical systems (NEMS) such as nanomechanical resonators, which have recently received significant attention from the scientific community. This is not only due to their capability of label-free detection of bio/chemical molecules at single-molecule (or atomic) resolution for future applications such as the early diagnosis of diseases like cancer, but also due to their unprecedented ability to detect physical quantities such as molecular weight, elastic stiffness, surface stress, and surface elastic stiffness for adsorbed molecules on the surface. Most experimental works on resonator-based molecular detection have been based on the principle that molecular adsorption onto a resonator surface increases the effective mass, and consequently decreases the resonant frequencies of the nanomechanical resonator. However, this principle is insufficient to provide fundamental insights into resonator-based molecular detection at the nanoscale; this is due to recently proposed novel nanoscale detection principles including various effects such as surface effects, nonlinear oscillations, coupled resonance, and stiffness effects. Furthermore, these effects have only recently been incorporated into existing physical models for resonators, and therefore the universal physical principles governing nanoresonator-based detection have not been completely described. Therefore, our objective in this review is to overview the current attempts to understand the underlying mechanisms in nanoresonator-based detection using physical models coupled to computational simulations and/or experiments. Specifically, we will focus on issues of special relevance to the dynamic behavior of nanoresonators and their applications in biological/chemical detection: the resonance behavior of micro/nanoresonators; resonator-based chemical/biological detection; physical models of various nanoresonators such as nanowires, carbon
International Nuclear Information System (INIS)
Hees, J; Heidrich, N; Pletschen, W; Sah, R E; Wolfer, M; Lebedev, V; Nebel, C E; Ambacher, O; Williams, O A
2013-01-01
Unimorph heterostructures based on piezoelectric aluminum nitride (AlN) and diamond thin films are highly desirable for applications in micro- and nanoelectromechanical systems. In this paper, we present a new approach to combine thin conductive boron-doped as well as insulating nanocrystalline diamond (NCD) with sputtered AlN films without the need for any buffer layers between AlN and NCD or polishing steps. The zeta potentials of differently treated nanodiamond (ND) particles in aqueous colloids are adjusted to the zeta potential of AlN in water. Thereby, the nucleation density for the initial growth of diamond on AlN can be varied from very low (10 8 cm −2 ), in the case of hydrogen-treated ND seeding particles, to very high values of 10 11 cm −2 for oxidized ND particles. Our approach yielding high nucleation densities allows the growth of very thin NCD films on AlN with thicknesses as low as 40 nm for applications such as microelectromechanical beam resonators. Fabricated piezo-actuated micro-resonators exhibit enhanced mechanical properties due to the incorporation of boron-doped NCD films. Highly boron-doped NCD thin films which replace the metal top electrode offer Young’s moduli of more than 1000 GPa. (paper)
Nonpolar ZnO film growth and mechanism for anisotropic in-plane strain relaxation
International Nuclear Information System (INIS)
Pant, P.; Budai, J.D.; Narayan, J.
2010-01-01
Using high-resolution transmission electron microscopy (HRTEM) and X-ray diffraction, we investigated the strain relaxation mechanisms for nonpolar (1 1 -2 0) a-plane ZnO epitaxy on (1 -1 0 2) r-plane sapphire, where the in-plane misfit ranges from -1.5% for the [0 0 0 1]ZnO-parallel [1 -1 0 -1]sapphire to -18.3% for the [-1 1 0 0]ZnO-parallel [-1 -1 2 0]sapphire direction. For the large misfit [-1 1 0 0]ZnO direction the misfit strains are fully relaxed at the growth temperature, and only thermal misfit and defect strains, which cannot be relaxed fully by slip dislocations, remain on cooling. For the small misfit direction, lattice misfit is not fully relaxed at the growth temperature. As a result, additive unrelaxed lattice and thermal misfit and defect strains contribute to the measured strain. Our X-ray diffraction measurements of lattice parameters show that the anisotropic in-plane biaxial strain leads to a distortion of the hexagonal symmetry of the ZnO basal plane. Based on the anisotropic strain relaxation observed along the orthogonal in-plane [-1 1 0 0] and [0 0 0 1]ZnO stress directions and our HRTEM investigations of the interface, we show that the plastic relaxation occurring in the small misfit direction [0 0 0 1]ZnO by dislocation nucleation is incomplete. These results are consistent with the domain-matching paradigm of a complete strain relaxation for large misfits and a difficulty in relaxing the film strain for small misfits.
Out- versus in-plane magnetic anisotropy of free Fe and Co nanocrystals
DEFF Research Database (Denmark)
Li, Dongzhe; Barreteau, Cyrille; Castell, Martin R.
2014-01-01
We report tight-binding and density functional theory calculations of magnetocrystalline anisotropy energy (MAE) of free Fe (body-centered-cubic) and Co (face-centered-cubic) slabs and nanocrystals. The nanocrystals are truncated square pyramids which can be grown experimentally by deposition...... of metal on a SrTiO3(001) substrate. For both elements our local analysis shows that the totalMAE of the nanocrystals is largely dominated by the contribution of (001) facets. However, while the easy axis of Fe(001) is out-of-plane, it is in-plane for Co(001). This has direct consequences on the magnetic...
Fermi system with planes and charge reservoir: Anisotropic in-plane resistivity
International Nuclear Information System (INIS)
Levin, G.A.; Quader, K.F.
1992-01-01
The authors explore the normal state in-plane resistivity of a model Fermi system with two planes and a charge reservoir. When the Fermi energy lies near the top of one of the resulting sub-bands, the system can be described by two types of quasiparticle excitations with different energy spectra and relaxation times. They show that for certain stoichiometry, ρ ab is linear in temperature with positive or negative intercepts. A relation between the slopes and intercepts of resistivities in the a and b directions in untwinned crystals is derived. The results are in good agreement with experimental data on YBCO. 7 refs., 1 tab
Effects of texture on shear band formation in plane strain tension/compression and bending
DEFF Research Database (Denmark)
Kuroda, M.; Tvergaard, Viggo
2007-01-01
In this study, effects of typical texture components observed in rolled aluminum alloy sheets on shear band formation in plane strain tension/compression and bending are systematically studied. The material response is described by a generalized Taylor-type polycrystal model, in which each grain ...... shear band formation in bent specimens is compared to that in the tension/compression problem. Finally, the present results are compared to previous related studies, and the efficiency of the present method for materials design in future is discussed....
Feasibility of maintaining in-plane polarization for a storage ring EDM search
Stephenson, Edward; Storage Ring EDM Collaboration
2014-09-01
A search for an electric dipole moment (EDM) on charged particles using a storage ring requires beam polarization lifetimes approaching 1000 s for in-plane polarization. A feasibility study using beam bunching and sextupole field adjustment is underway with a 0.97-GeV/c vector-polarized deuteron beam at COSY. The polarimeter consists of a thick carbon target positioned at the edge of the beam and the EDDA scintillation detectors. The DAQ system assigns a clock time to each polarimeter event. Once calibrated against the RF-cavity, the clock time is used to select events associated with a maximal sideways polarization (precessing at 120 kHz). With this tool, the in-plane polarization magnitude is tracked versus time. Electron cooling reduces the depolarization from finite emittance and second-order momentum spread acting through synchrotron oscillations. Further lifetime improvement to the level of hundreds of seconds is achieved by adjusting sextupole fields located in the COSY ring arcs at places of large transverse beta functions and dispersion. The dependence of the reciprocal of the lifetime on sextupole field strength is nearly linear, permitting an easy location of the best field values. These typically occur near loci of zero chromaticity. A search for an electric dipole moment (EDM) on charged particles using a storage ring requires beam polarization lifetimes approaching 1000 s for in-plane polarization. A feasibility study using beam bunching and sextupole field adjustment is underway with a 0.97-GeV/c vector-polarized deuteron beam at COSY. The polarimeter consists of a thick carbon target positioned at the edge of the beam and the EDDA scintillation detectors. The DAQ system assigns a clock time to each polarimeter event. Once calibrated against the RF-cavity, the clock time is used to select events associated with a maximal sideways polarization (precessing at 120 kHz). With this tool, the in-plane polarization magnitude is tracked versus time. Electron
Incorporation of in-plane interconnects to reflow bonding for electrical functionality
International Nuclear Information System (INIS)
Moğulkoç, B; Jansen, H V; Ter Brake, H J M; Elwenspoek, M C
2011-01-01
Incorporation of in-plane electrical interconnects to reflow bonding is studied to provide electrical functionality to lab-on-a-chip or microfluidic devices. Reflow bonding is the packaging technology, in which glass tubes are joined to silicon substrates at elevated temperatures. The tubes are used to interface the silicon-based fluidic devices and are directly compatible with standard Swagelok® connectors. After the bonding, the electrically conductive lines will allow probing into the volume confined by the tube, where the fluidic device operates. Therefore methods for fabricating electrical interconnects that survive the bonding procedure at elevated temperature and do not alter the properties of the bond interface are investigated
Thermal effects and in-plane magnetic anisotropy in thin-film recording media
International Nuclear Information System (INIS)
Ajan, Antony; Abarra, E.N.; Acharya, B.R.; Inomata, A.; Okamoto, I.; Shinohara, M.
2003-01-01
The effect of thermal activation on the in-plane magnetic anisotropy [measured as orientation ratio (OR)] of granular longitudinal magnetic recording media is investigated. Temperature and time dependent studies were made on media with different magnetic layer thicknesses. We find that OR is independent of temperature for a stable medium but shows a large increase with temperature for thermally unstable media. At low temperatures and high field sweep rates, the OR values are found to be the same, independent of the magnetic layer thickness. The unique value when thermal activation is reduced is consistent with the high population of the cobalt c axes along the texturing direction as the origin of anisotropy
In-plane wavelength division de-multiplexing using photonic crystals
DEFF Research Database (Denmark)
Frandsen, Lars Hagedorn; Harpøth, Anders; Hede, K. K.
We demonstrate a novel concept for in-plane coarse wavelength division de-multiplexing in integrated photonic circuits utilizing planar photonic crystal waveguides (PhCWs) fabricated in a silicon-on-insulator material. The filtering of wavelength channels is realized by shifting the cut......-off frequency of the fundamental photonic bandgap mode. The shift is obtained by modifying the size of the border holes in consecutive sections of the PhCW1. Simulations and experimental proof-of-principle of the four-channel de-multiplexer will be presented. 1A. Adibi et al., Electron. Lett. 36, 1376...
Initiation of Failure for Masonry Subject to In-Plane Loads through Micromechanics
Directory of Open Access Journals (Sweden)
V. P. Berardi
2016-01-01
Full Text Available A micromechanical procedure is used in order to evaluate the initiation of damage and failure of masonry with in-plane loads. Masonry material is viewed as a composite with periodic microstructure and, therefore, a unit cell with suitable boundary conditions is assumed as a representative volume element of the masonry. The finite element method is used to determine the average stress on the unit cell corresponding to a given average strain prescribed on the unit cell. Finally, critical curves representing the initiation of damage and failure in both clay brick masonry and adobe masonry are provided.
In-Plane Impedance Spectroscopy measurements in Vanadium Dioxide thin films
Ramirez, Juan; Patino, Edgar; Schmidt, Rainer; Sharoni, Amos; Gomez, Maria; Schuller, Ivan
2012-02-01
In plane Impedance Spectroscopy measurements have been done in Vanadium Dioxide thin films in the range of 100 Hz to 1 MHz. Our measurements allows distinguishing between the resistive and capacitive response of the Vanadium Dioxide films across the metal-insulator transition. A non ideal RC behavior was found in our thin films from room temperature up to 334 K. Around the MIT, an increase of the total capacitance is observed. A capacitor-network model is able to reproduce the capacitance changes across the MIT. Above the MIT, the system behaves like a metal as expected, and a modified equivalent circuit is necessary to describe the impedance data adequately.
International Nuclear Information System (INIS)
Liang, Huawei; Ruan, Shuangchen; Zhang, Min; Su, Hong; Li, Irene Ling
2015-01-01
We predict the existence of a surface plasmon polariton (SPP) mode that can be guided by a graphene monolayer, regardless of the sign of the imaginary part of its conductivity. In this mode, in-plane electron oscillations along two surfaces of graphene are of opposite directions, which is very different from conventional SPPs on graphene. Significantly, coating graphene with dielectric films yields a way to guide the SPPs with both sub-wavelength mode widths and ultra-long propagation distances. In particular, the mode characteristics are very sensitive to the chemical potential of graphene, so the graphene-based waveguide can find applications in many optoelectronic devices
Energy Technology Data Exchange (ETDEWEB)
Liang, Huawei; Ruan, Shuangchen, E-mail: scruan@szu.edu.cn; Zhang, Min; Su, Hong; Li, Irene Ling [Shenzhen Key Laboratory of Laser Engineering, College of Optoelectronic Engineering, Shenzhen University, Shenzhen 518060 (China); Key Laboratory of Optoelectronic Devices and Systems of Ministry of Education and Guangdong Province, Shenzhen University, Shenzhen 518060 (China)
2015-08-31
We predict the existence of a surface plasmon polariton (SPP) mode that can be guided by a graphene monolayer, regardless of the sign of the imaginary part of its conductivity. In this mode, in-plane electron oscillations along two surfaces of graphene are of opposite directions, which is very different from conventional SPPs on graphene. Significantly, coating graphene with dielectric films yields a way to guide the SPPs with both sub-wavelength mode widths and ultra-long propagation distances. In particular, the mode characteristics are very sensitive to the chemical potential of graphene, so the graphene-based waveguide can find applications in many optoelectronic devices.
Breakthrough In Current In Plane Metrology For Monitoring Large Scale MRAM Production
DEFF Research Database (Denmark)
Cagliani, Alberto; Østerberg, Frederik Westergaard; Hansen, Ole
2017-01-01
The current-in-plane tunneling technique (CIPT) has been a crucial tool in the development of magnetic tunnel junction stacks suitable for Magnetic Random Access Memories (MRAM) for more than a decade. The MRAM development has now reached the maturity to make the transition from R&D to large...... of the Resistance Area product (RA) and the Tunnel Magnetoresistance (TMR) measurements, compared to state of the art CIPT metrology tools dedicated to R&D. On two test wafers, the repeatability of RA and MR was improved up to 350% and the measurement reproducibility up to 1700%. We believe that CIPT metrology now...
Applicability of geometrical optics to in-plane liquid-crystal configurations.
Sluijter, M; Xu, M; Urbach, H P; de Boer, D K G
2010-02-15
We study the applicability of geometrical optics to inhomogeneous dielectric nongyrotropic optically anisotropic media typically found in in-plane liquid-crystal configurations with refractive indices n(o)=1.5 and n(e)=1.7. To this end, we compare the results of advanced ray- and wave-optics simulations of the propagation of an incident plane wave to a special anisotropic configuration. Based on the results, we conclude that for a good agreement between ray and wave optics, a maximum change in optical properties should occur over a distance of at least 20 wavelengths.
One-dimensional transport code for one-group problems in plane geometry
International Nuclear Information System (INIS)
Bareiss, E.H.; Chamot, C.
1970-09-01
Equations and results are given for various methods of solution of the one-dimensional transport equation for one energy group in plane geometry with inelastic scattering and an isotropic source. After considerable investigation, a matrix method of solution was found to be faster and more stable than iteration procedures. A description of the code is included which allows for up to 24 regions, 250 points, and 16 angles such that the product of the number of angles and the number of points is less than 600
Esposito, A.; Polosa, A.D.
2016-01-01
Multiquark resonances are undoubtedly experimentally observed. The number of states and the amount of details on their properties has been growing over the years. It is very recent the discovery of two pentaquarks and the confirmation of four tetraquarks, two of which had not been observed before. We mainly review the theoretical understanding of this sector of particle physics phenomenology and present some considerations attempting a coherent description of the so called X and Z resonances. The prominent problems plaguing theoretical models, like the absence of selection rules limiting the number of states predicted, motivate new directions in model building. Data are reviewed going through all of the observed resonances with particular attention to their common features and the purpose of providing a starting point to further research.
DEFF Research Database (Denmark)
Brooks, Anthony Lewis
2013-01-01
Neuroaesthetic Resonance emerged from a mature body of patient- centered gesture-control research investigating non-formal rehabilitation via ICT-enhanced-Art to question ‘Aesthetic Resonance’. Motivating participation, ludic engagement, and augmenting physical motion in non-formal (fun) treatment...... sessions are achieved via adaptive action-analyzed activities. These interactive virtual environments are designed to empower patients’ creative and/or playful expressions via digital feedback stimuli. Unconscious self- pushing of limits result from innate distractive mechanisms offered by the alternative...... the unencumbered motion-to-computer-generated activities - ‘Music Making’, ‘Painting’, ‘Robotic’ and ‘Video Game’ control. A focus of this position paper is to highlight how Aesthetic Resonance, in this context, relates to the growing body of research on Neuroaesthetics to evolve Neuroaesthetic Resonance....
International Nuclear Information System (INIS)
Oset, E.; Sarkar, S.; Sun Baoxi; Vicente Vacas, M.J.; Ramos, A.; Gonzalez, P.; Vijande, J.; Martinez Torres, A.; Khemchandani, K.
2010-01-01
In this talk I show recent results on how many excited baryon resonances appear as systems of one meson and one baryon, or two mesons and one baryon, with the mesons being either pseudoscalar or vectors. Connection with experiment is made including a discussion on old predictions and recent results for the photoproduction of the Λ(1405) resonance, as well as the prediction of one 1/2 + baryon state around 1920 MeV which might have been seen in the γp→K + Λ reaction.
Simulation of Guided Wave Interaction with In-Plane Fiber Waviness
Leckey, Cara A. C.; Juarez, Peter D.
2016-01-01
Reducing the timeline for certification of composite materials and enabling the expanded use of advanced composite materials for aerospace applications are two primary goals of NASA's Advanced Composites Project (ACP). A key a technical challenge area for accomplishing these goals is the development of rapid composite inspection methods with improved defect characterization capabilities. Ongoing work at NASA Langley is focused on expanding ultrasonic simulation capabilities for composite materials. Simulation tools can be used to guide the development of optimal inspection methods. Custom code based on elastodynamic finite integration technique is currently being developed and implemented to study ultrasonic wave interaction with manufacturing defects, such as in-plane fiber waviness (marcelling). This paper describes details of validation comparisons performed to enable simulation of guided wave propagation in composites containing fiber waviness. Simulation results for guided wave interaction with in-plane fiber waviness are also discussed. The results show that the wavefield is affected by the presence of waviness on both the surface containing fiber waviness, as well as the opposite surface to the location of waviness.
Graphene-based in-plane micro-supercapacitors with high power and energy densities
Wu, Zhong–Shuai; Parvez, Khaled; Feng, Xinliang; Müllen, Klaus
2013-01-01
Micro-supercapacitors are important on-chip micro-power sources for miniaturized electronic devices. Although the performance of micro-supercapacitors has been significantly advanced by fabricating nanostructured materials, developing thin-film manufacture technologies and device architectures, their power or energy densities remain far from those of electrolytic capacitors or lithium thin-film batteries. Here we demonstrate graphene-based in-plane interdigital micro-supercapacitors on arbitrary substrates. The resulting micro-supercapacitors deliver an area capacitance of 80.7 μF cm−2 and a stack capacitance of 17.9 F cm−3. Further, they show a power density of 495 W cm−3 that is higher than electrolytic capacitors, and an energy density of 2.5 mWh cm−3 that is comparable to lithium thin-film batteries, in association with superior cycling stability. Such microdevices allow for operations at ultrahigh rate up to 1,000 V s−1, three orders of magnitude higher than that of conventional supercapacitors. Micro-supercapacitors with an in-plane geometry have great promise for numerous miniaturized or flexible electronic applications. PMID:24042088
In-plane silicon probes for simultaneous neural recording and drug delivery
International Nuclear Information System (INIS)
Seidl, K; Herwik, S; Paul, O; Ruther, P; Spieth, S; Zengerle, R; Steigert, J
2010-01-01
This paper reports on the design, fabrication and characterization of silicon-based microprobes for simultaneous neural recording and drug delivery. The fabrication technology is based on two-stage deep reactive ion etching combined with silicon wafer bonding and grinding to realize channel structures integrated in needle-like probe shafts. Liquids can be supplied to microfluidic devices via in-plane and out-of-plane ports. The liquid is dispensed at circular out-of-plane ports with a diameter of 25 µm and rectangular in-plane ports with dimensions of 50 × 50 µm 2 . Two-shaft probes with a pitch between shafts of 1.0 and 1.5 mm were realized. The probe shafts have a length of 8 mm and rectangular cross-sections of w × h (w = 250 µm and h = 200 or 250 µm). Each shaft contains one or two fluidic channels with a cross-section of 50 × 50 µm 2 . In addition, each probe shaft comprises four recording sites with diameters of 20 µm close to the outlet ports. Mechanical and fluidic characterization demonstrated the functionality of the probes. Typical infusion rates of 1.5 µL min −1 are achieved at a differential pressure of 1 kPa. The Pt-gray electrodes have an average electrode impedance of 260 ± 59 kΩ at 1 kHz
Graphene-based in-plane micro-supercapacitors with high power and energy densities.
Wu, Zhong-Shuai; Parvez, Khaled; Feng, Xinliang; Müllen, Klaus
2013-01-01
Micro-supercapacitors are important on-chip micro-power sources for miniaturized electronic devices. Although the performance of micro-supercapacitors has been significantly advanced by fabricating nanostructured materials, developing thin-film manufacture technologies and device architectures, their power or energy densities remain far from those of electrolytic capacitors or lithium thin-film batteries. Here we demonstrate graphene-based in-plane interdigital micro-supercapacitors on arbitrary substrates. The resulting micro-supercapacitors deliver an area capacitance of 80.7 μF cm⁻² and a stack capacitance of 17.9 F cm⁻³. Further, they show a power density of 495 W cm⁻³ that is higher than electrolytic capacitors, and an energy density of 2.5 mWh cm⁻³ that is comparable to lithium thin-film batteries, in association with superior cycling stability. Such microdevices allow for operations at ultrahigh rate up to 1,000 V s⁻¹, three orders of magnitude higher than that of conventional supercapacitors. Micro-supercapacitors with an in-plane geometry have great promise for numerous miniaturized or flexible electronic applications.
Stresses in a curved pipe subject to an in-plane bending moment
International Nuclear Information System (INIS)
Hofmann, E.; Heeschen, U.
1979-01-01
The design of the KWU-primary component supports is mainly defined by the loads of the postulated pipe breaks. To estimate the maximum loading of a component support it is necessary to know the maximum in-plane bending moment (opening and closing) that can be transmitted by a pipe bend. Another reason for such information is that the displacements and distortions of the components cause higher stresses in elbows than in straight pipes. With a detailed knowledge of the deformation characteristic of a pipe bend an integrity analysis could be done without an expensive plastic system analysis. With this purpose in mind experiments were performed with straight pipes and pipe bends of different dimensions subject to in-plane bending moments. The experimental results give the ratio between the maximum transmittable moment of a pipe bend to that of a straight pipe or, the distortion of the end cross-sections and the flattening of the elbow cross-section. An attempt is made to derive simple expressions for estimating the behaviour at pipe elbows. Parallel to the experiments calculations were done for the straight pipe and elbow with a finite difference code with plastic capabilities. The results of the experiment and calculation are compared with the formulas of the ASME-Code section III subjection NB. (orig.)
Forced in-plane vibration of a thick ring on a unilateral elastic foundation
Wang, Chunjian; Ayalew, Beshah; Rhyne, Timothy; Cron, Steve; Dailliez, Benoit
2016-10-01
Most existing studies of a deformable ring on elastic foundation rely on the assumption of a linear foundation. These assumptions are insufficient in cases where the foundation may have a unilateral stiffness that vanishes in compression or tension such as in non-pneumatic tires and bushing bearings. This paper analyzes the in-plane dynamics of such a thick ring on a unilateral elastic foundation, specifically, on a two-parameter unilateral elastic foundation, where the stiffness of the foundation is treated as linear in the circumferential direction but unilateral (i.e. collapsible or tensionless) in the radial direction. The thick ring is modeled as an orthotropic and extensible circular Timoshenko beam. An arbitrarily distributed time-varying in-plane force is considered as the excitation. The Equations of Motion are explicitly derived and a solution method is proposed that uses an implicit Newmark scheme for the time domain solution and an iterative compensation approach to determine the unilateral zone of the foundation at each time step. The dynamic axle force transmission is also analyzed. Illustrative forced vibration responses obtained from the proposed model and solution method are compared with those obtained from a finite element model.
Dynamic instability of imperfect laminated sandwich plates with in-plane partial edge load
Directory of Open Access Journals (Sweden)
Anupam Chakrabarti
Full Text Available Dynamic instability of laminated sandwich plates having inter-laminar imperfections with in-plane partial edge loading is studied for the first time using an efficient finite element plate model. The plate model is based on a refined higher order shear deformation plate theory, where the transverse shear stresses are continuous at the layer interfaces with stress free conditions at plate top and bottom surfaces. A linear spring-layer model is used to model the inter-laminar imperfection by considering in-plane displacement jumps at the interfaces. Interestingly the plate model having all these refined features requires unknowns at the reference plane only. However, this theory requires C1 continuity of transverse displacement (w i.e., w and its derivatives should be continuous at the common edges between two elements, which is difficult to satisfy arbitrarily in any existing finite element. To deal with this, a new triangular element developed by the authors is used in the present paper.
Yudhanto, Arief
2015-04-01
Three-dimensional (3D) reinforcement by stitching is effective in improving the impact resistance of composites. Stitching, however, adversely affects the composite\\'s in-plane mechanical responses, and alters its damage mechanisms due to stitch-induced irregularities. We experimentally investigate the effect of two important stitch parameters, stitch density and thread diameter, on the damage characteristics of 3D stitched multidirectional composites under in-plane tension using X-ray radiography, X-ray micro-computed tomography and digital image correlation (DIC). Our study shows that composites stitched with thicker thread exhibit improved tensile strength due to effective hindrance of edge-delamination. We also found that stitch thread affects damage behaviors. A higher number of transverse cracks develops in the middle portion of thin 90° fiber tows; the inter-crack distance is reduced by dense stitching. DIC is able to identify the cracks that appear in resin-rich channels and distinguish strain fields due to different stitch densities.
Static in-plane shear behaviour of prefabricated wood-wool panel wallettes
Noh, M. S. Md; Ahmad, Z.; Ibrahim, A.; Kamarudin, A. F.; Mokhatar, S. N.
2018-04-01
The green construction material and technique are the current issue toward improving sustainability in the construction industry in Malaysia. The use of construction material that produced from renewable resources is a part of the effort for greening this industry. WWCP (Wood-wool cement panel) is a wood based product available to the construction industry to be used as a structural building wall element. This renewable material has the potential to replace the less eco-friendly materials such as bricks and other masonry element. However, the behaviour of wall subjected to the different load conditions is not well established and therefore, this study aimed to investigate the structural behaviour of the small scale wall (wallettes) subjected to in-plane lateral load. As a comparison, two types of fabrication technique of wallettes with dimension of 1200 mm × 1200 mm (± 30 mm) were considered. The conventional vertical stacking technique was denoted as W1 and new propose techniques (cross laminated) was denoted as W2. Three replicates of each type were fabricated and tested under in-plane lateral load until failure. The test results revealed that, the wallettes fabricated using the new fabrication technique significantly increased two times in load carrying capacity compared to wallettes with conventional technique.
Numerical simulation of turbulent liquid metal flows in plane channels and annuli
International Nuclear Information System (INIS)
Groetzbach, G.
1980-06-01
The method of direct numerical simulation is used to study heat transfer and statistical data for fully developed turbulent liquid metal flows in plane channels and annuli. Subgrid scale models using one transport equation account for the high wave-number turbulence not resolved by the finite difference grid. A special subgrid-scale heat flux model is deduced together with an approximative theory to calculate all model coefficients. This model can be applied on the total Peclet number range of technical liquid metal flows. Especially it can be used for very small Peclet numbers, where the results are independent on model parameters. A verification of the numerical results for liquid sodium and mercury flows is undertaken by the Nusselt number in plane channels and radial temperature and eddy conductivity profiles for annuli. The numerically determined Nusselt numbers for annuli indicate that many empirical correlations overestimate the influence of the ratio of radii. The numerical results for the eddy conductivity profiles may be used to remove these problems. The statistical properties of the simulated temperature fluctuations are within the wide scatter-band of experimental data. The numerical results give reasonable heat flux correlation coefficients which depend only weakly on the problem marking parameters. (orig.) [de
In-Plane free Vibration Analysis of an Annular Disk with Point Elastic Support
Directory of Open Access Journals (Sweden)
S. Bashmal
2011-01-01
Full Text Available In-plane free vibrations of an elastic and isotropic annular disk with elastic constraints at the inner and outer boundaries, which are applied either along the entire periphery of the disk or at a point are investigated. The boundary characteristic orthogonal polynomials are employed in the Rayleigh-Ritz method to obtain the frequency parameters and the associated mode shapes. Boundary characteristic orthogonal polynomials are generated for the free boundary conditions of the disk while artificial springs are used to account for different boundary conditions. The frequency parameters for different boundary conditions of the outer edge are evaluated and compared with those available in the published studies and computed from a finite element model. The computed mode shapes are presented for a disk clamped at the inner edge and point supported at the outer edge to illustrate the free in-plane vibration behavior of the disk. Results show that addition of point clamped support causes some of the higher modes to split into two different frequencies with different mode shapes.
Effect of isospin degree of freedom on the counterbalancing of collective transverse in-plane flow
International Nuclear Information System (INIS)
Sood, Aman D.
2011-01-01
Isospin degrees of freedom play an important role in heavy-ion collisions (HIC) through both nn collisions and equation of state (EOS). To access the EOS and its isospin dependence it is important to describe observables which are sensitive to isospin degree of freedom. Collective transverse in-plane flow as well as its disappearance has been found to be one such observable where it is well known that there exists a particular incident energy called as balance energy (E bal ) at which in-plane transverse flow disappears. The disappearance of flow occurs due to the counterbalancing of attractive and repulsive interactions. In literature the isospin dependence of collective flow as well as its disappearance has been explained to be a result of complex interplay between various reaction mechanisms, such as nn collisions, symmetry energy, surface properties of colliding nuclei and Coulomb repulsion. Here the aim was to understand the effect of above mentioned mechanisms on the counterbalancing of collective flow. The present study is carried out within the framework of IQMD model
Czech Academy of Sciences Publication Activity Database
Smrčka, Ludvík
2016-01-01
Roč. 77, Mar (2016), s. 108-113 ISSN 1386-9477 Institutional support: RVO:68378271 Keywords : lateral superlattices * commensurability oscillations * in-plane magnetic field Subject RIV: BE - Theoretical Physics Impact factor: 2.221, year: 2016
Morandi, Paolo; Hak, Sanja; Magenes, Guido
2018-02-01
This article contains information related to a recent study "Performance-based interpretation of in-plane cyclic tests on RC frames with strong masonry infills" (Morandi et al., 2017 [1]). Motivated by the necessity to improve the knowledge of the in-plane seismic response of rigid strong masonry infills, a wide experimental campaign based on in-plane cyclic tests on full-scale RC infilled frame specimens, supplemented with a complete characterization of the materials, has been conducted at the laboratory of the Department of Civil Engineering and Architecture of the University of Pavia. The masonry is constituted by vertically perforated 35 cm thick clay units with tongue and groove and dry head-joints and general-purpose mortar bed-joints. The paper reports the results of the mechanical characterization and of the force-displacement hysteretic curves from the in-plane cyclic tests.
Directory of Open Access Journals (Sweden)
Paolo Morandi
2018-02-01
Full Text Available This article contains information related to a recent study “Performance-based interpretation of in-plane cyclic tests on RC frames with strong masonry infills” (Morandi et al., 2017 [1]. Motivated by the necessity to improve the knowledge of the in-plane seismic response of rigid strong masonry infills, a wide experimental campaign based on in-plane cyclic tests on full-scale RC infilled frame specimens, supplemented with a complete characterization of the materials, has been conducted at the laboratory of the Department of Civil Engineering and Architecture of the University of Pavia. The masonry is constituted by vertically perforated 35 cm thick clay units with tongue and groove and dry head-joints and general-purpose mortar bed-joints. The paper reports the results of the mechanical characterization and of the force-displacement hysteretic curves from the in-plane cyclic tests.
Indian Academy of Sciences (India)
IAS Admin
996. RESONANCE. November 2013. Page 2. 997. RESONANCE. November 2013. Page 3. 998. RESONANCE. November 2013. Page 4. 999. RESONANCE. November 2013. Page 5. 1000. RESONANCE. November 2013. Page 6. 1001. RESONANCE. November 2013. Page 7. 1002. RESONANCE. November 2013 ...
Indian Academy of Sciences (India)
IAS Admin
817. RESONANCE ⎜ September 2013. Page 2. 818. RESONANCE ⎜ September 2013. Page 3. 819. RESONANCE ⎜ September 2013. Page 4. 820. RESONANCE ⎜ September 2013. Page 5. 821. RESONANCE ⎜ September 2013. Page 6. 822. RESONANCE ⎜ September 2013. Page 7. 823. RESONANCE ⎜ September ...
Indian Academy of Sciences (India)
IAS Admin
369. RESONANCE ⎜ April 2016. Page 2. 370. RESONANCE ⎜ April 2016. Page 3. 371. RESONANCE ⎜ April 2016. Page 4. 372. RESONANCE ⎜ April 2016. Page 5. 373. RESONANCE ⎜ April 2016. Page 6. 374. RESONANCE ⎜ April 2016. Page 7. 375. RESONANCE ⎜ April 2016.
Ultrasound-Guided Out-of-Plane vs. In-Plane Interscalene Catheters: A Randomized, Prospective Study
Schwenk, Eric S.; Gandhi, Kishor; Baratta, Jaime L.; Torjman, Marc; Epstein, Richard H.; Chung, Jaeyoon; Vaghari, Benjamin A.; Beausang, David; Bojaxhi, Elird; Grady, Bernadette
2015-01-01
Background: Continuous interscalene blocks provide excellent analgesia after shoulder surgery. Although the safety of the ultrasound-guided in-plane approach has been touted, technical and patient factors can limit this approach. We developed a caudad-to-cephalad out-of-plane approach and hypothesized that it would decrease pain ratings due to better catheter alignment with the brachial plexus compared to the in-plane technique in a randomized, controlled study. Objectives: To compare an out-...
Exchange bias energy in Co/Pt/IrMn multilayers with perpendicular and in-plane anisotropy
International Nuclear Information System (INIS)
Czapkiewicz, M.; Stobiecki, T.; Rak, R.; Zoladz, M.; Dijken, S. van
2007-01-01
The magnetization reversal process in perpendicularly biased [Pt/Co] 3 /d Pt Pt/IrMn and in-plane biased Co/d Pt Pt/IrMn multilayers with 0nm= Pt = Pt =0.1nm. In both cases, the existence of large exchange bias fields correlates with a high domain density during magnetization reversal. The interface exchange coupling energy is larger for the in-plane biased films than for the perpendicularly biased multilayers
International Nuclear Information System (INIS)
Anon.
1977-01-01
At the 1975 Particle Accelerator Conference it was reported that a class of resonances were observed in SPEAR II that had not appeared before in SPEAR I. These resonances occur when the betatron oscillation wave numbers ν/sub x/ or ν/sub y/ and the synchrotron wave number ν/sub s/ satisfy the relation (ν/sub x,y/ - mν/sub s/) = 5, with m an integer denoting the m/sup th/ satellite. The main difference between SPEAR II and SPEAR I is the value of ν/sub s/, which in SPEAR II is approximately 0.04, an order of magnitude larger than in SPEAR I. An ad hoc meeting was held at the 1975 Particle Accelerator Conference, where details of the SPEAR II results were presented and various possible mechanisms for producing these resonances were discussed. Later, experiments were performed at SPEAR to identify the mechanism believed to be the most likely explanation. Some of the current experimental knowledge and theoretical views on the source of these resonances are presented
Leavey, Sean; Rae, Katherine; Murray, Adam; Courtial, Johannes
2012-09-01
Autostereograms, or "Magic Eye" pictures, are repeating patterns designed to give the illusion of depth. Here we discuss optical resonators that create light patterns which, when viewed from a suitable position by a monocular observer, are autostereograms of the three-dimensional shape of one of the mirror surfaces.
Novel spectral features of nanoelectromechanical systems
Tahir, M.; MacKinnon, A.; Schwingenschlö gl, Udo
2014-01-01
of freedom. We tune the electronic level of the quantum dot by a gate voltage, where the leads are kept at zero temperature. Due to the nonequilibrium distribution of the electrons in the quantum dot, the spectral function becomes a function of the gate
Novel spectral features of nanoelectromechanical systems
Tahir, M.
2014-02-17
Electron transport through a quantum dot or single molecule coupled to a quantum oscillator is studied by the Keldysh nonequilibrium Green\\'s function formalism to obtain insight into the quantum dynamics of the electronic and oscillator degrees of freedom. We tune the electronic level of the quantum dot by a gate voltage, where the leads are kept at zero temperature. Due to the nonequilibrium distribution of the electrons in the quantum dot, the spectral function becomes a function of the gate voltage. Novel spectral features are identified for the ground and excited states of nanomechanical oscillators that can be used to enhance the measurement sensitivity.
Mode Coupling and Nonlinear Resonances of MEMS Arch Resonators for Bandpass Filters
Hajjaj, Amal Z.
2017-01-30
We experimentally demonstrate an exploitation of the nonlinear softening, hardening, and veering phenomena (near crossing), where the frequencies of two vibration modes get close to each other, to realize a bandpass filter of sharp roll off from the passband to the stopband. The concept is demonstrated based on an electrothermally tuned and electrostatically driven MEMS arch resonator operated in air. The in-plane resonator is fabricated from a silicon-on-insulator wafer with a deliberate curvature to form an arch shape. A DC current is applied through the resonator to induce heat and modulate its stiffness, and hence its resonance frequencies. We show that the first resonance frequency increases up to twice of the initial value while the third resonance frequency decreases until getting very close to the first resonance frequency. This leads to the phenomenon of veering, where both modes get coupled and exchange energy. We demonstrate that by driving both modes nonlinearly and electrostatically near the veering regime, such that the first and third modes exhibit softening and hardening behavior, respectively, sharp roll off from the passband to the stopband is achievable. We show a flat, wide, and tunable bandwidth and center frequency by controlling the electrothermal actuation voltage.
DEFF Research Database (Denmark)
Hjelholt, Morten; Jensen, Tina Blegind
2015-01-01
IT projects are often complex arrangements of technological components, social actions, and organizational transformation that are difficult to manage in practice. This paper takes an analytical discourse perspective to explore the process of legitimizing IT projects. We introduce the concept...... of resonating statements to highlight how central actors navigate in various discourses over time. Particularly, the statements and actions of an IT project manager are portrayed to show how individuals can legitimize actions by connecting statements to historically produced discourses. The case study...... as part of a feedback loop to re-attach the localized IT project to the broader national discourse. The paper concludes with reflections on how to actively build on resonating statements as a strategic resource for legitimizing IT projects...
Water adsorption induced in-plane domain switching on BaTiO{sub 3} surface
Energy Technology Data Exchange (ETDEWEB)
Li, X.; Bai, Y.; Su, Y. J., E-mail: yjsu@ustb.edu.cn [Corrosion and Protection Center, Key Laboratory for Environmental Fracture (MOE), University of Science and Technology Beijing, Beijing 100083 (China); Wang, B. C. [Corrosion and Protection Center, Key Laboratory for Environmental Fracture (MOE), University of Science and Technology Beijing, Beijing 100083 (China); Multiscale Materials Modelling group, Department of Materials and Engineering, Royal Institute of Technology, SE-10044 Stockholm (Sweden)
2015-09-07
In this study, the influences of the adsorption of water molecules on the changes in the atomic and electric structures of BaTiO{sub 3} surface were investigated using ab initio calculation. Water molecules are molecularly and dissociatively adsorbed on the BaTiO{sub 3} surface, which makes electrons transfer from water molecules to the BaTiO{sub 3} surface. The redistribution of electrons in the BaTiO{sub 3} surface layers weakens the Ba-O interactions and strengthens the Ti-O interactions, so that the Ti atom shifts in TiO{sub 2} plane, i.e., an in-plane domain switching. The adsorption of water molecules on BaTiO{sub 3} surfaces also results in a reduction in the surface rumpling.
Recent Progress in Micro-Supercapacitors with In-Plane Interdigital Electrode Architecture.
Liu, Nishuang; Gao, Yihua
2017-12-01
Due to the boom of miniaturized electronic devices in the last decade, there are great demands for ultrathin and flexible on-chip rechargeable energy storage microdevices. Supercapacitor, as one of the most hopeful appearing energy storage devices, can provide a wonderful alternative to batteries or electrolytic capacitors, owing to its fast charge and discharge rates, high power density, and long cycling stability. Especially for the recently developed micro-supercapacitors, the unique in-plane interdigital electrode architecture can fully meet the integration requirements of rapidly developed miniaturized electronic devices, and improve the power density of the unit via shortening the ionic diffusion distance between the interdigital electrodes. This concept introduces the recent advances on the design, fabrication, and application of planar micro-supercapacitors for on-chip energy storage from an overall perspective. Moreover, challenges and future development trends are discussed. © 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
An analysis of a pipe bend subjected to in-plane loads
International Nuclear Information System (INIS)
Hellen, T.K.
1979-01-01
This report describes a set of finite element analyses conducted on a pipe bend subjected to in-plane loads. The pipe is thin-walled, and two types of finite element, shells and solid bricks, are compared elastically. An alternative semi-analytical technique has also been used and experimental results are available, all of which show good correlative agreement. The use of suitable mesh refinement and order of numerical integration is examined. Finally, the solid elements are used to follow a loading sequence incorporating elasto-plastic behaviour as conducted by experiment. This work is an updated version of that used for the CEC benchmark calculations for the Fast Reactor Codes and Standards Working Group, Activity No 2, on Structural Analysis. (author)
Uniaxial in-plane magnetization of iron nanolayers grown within an amorphous matrix
Energy Technology Data Exchange (ETDEWEB)
Ghafari, M., E-mail: mohammad.ghafari@kit.edu; Hahn, H. [Herbert Gleiter Institute of Nanoscience, Nanjing University of Science and Technology, Nanjing 210094 (China); Institute of Nanotechnology, Karlsruhe Institute of Technology (KIT), Hermann-von-Helmholtz-Platz 1, 76344 Eggenstein-Leopoldshafen (Germany); Mattheis, R. [Leibniz Institute for Photonic Technology IPHT, Jena (Germany); McCord, J. [Institute for Materials Science, Kiel University Kiel, Kaiserstraße 2, 24143 Kiel (Germany); Brand, R. A. [Institute of Nanotechnology, Karlsruhe Institute of Technology (KIT), Hermann-von-Helmholtz-Platz 1, 76344 Eggenstein-Leopoldshafen (Germany); Macedo, W. A. A. [Laboratório de Física Aplicada, Centro de Desenvolvimento da Tecnologia Nuclear (CDTN), 31270-901 Belo Horizonte, MG (Brazil)
2014-08-18
Conversion electron Mössbauer spectroscopy is used to determine the magnetic ground state at zero magnetic field of four-monolayer thick amorphous iron layers as part of a CoFeB-Fe multilayer stack. By comparing the intensities of the magnetic hyperfine field, an easy in-plane axis of the amorphous embedded Fe layer is verified, which is collinear to the uniaxial anisotropy axis of the neighboring amorphous CoFeB. Despite the soft magnetic character of the Fe layers, external fields up to 4 T perpendicular to the film plane are insufficient to completely align the embedded Fe moments parallel to the magnetic field due to a local disorder of the magnetic moments of the Fe atoms.
The effect of cracks on the limit load of pipe bends under in-plane bending
International Nuclear Information System (INIS)
Griffiths, J.E.
1976-06-01
The limit analysis of the in-plane bending of curved tubes had received attention previously, but the effect of defects in the tube has not been considered. A lower bound has been established which, with no defects present, is in agreement with previous theoretical work. The method of linear programming allows cracks to be introduced into analysis, and results have been obtained for various geometries of defect. The results show that the presence of cracks in the pipe bend can have a marked effect on the theoretical limit load: a part-through crack penetrating only half the wall thickness will reduce the limit moment by up to 10%. The worst possible case of a through-crack may reduce the limit load by 60%. (author)
Planar intrinsic Josephson junctions with in-plane aligned YBCO films
Zhang, L; Kobayashi, T; Goto, T; Mukaida, M
2002-01-01
Planar type devices were fabricated by patterning in-plane aligned YBa sub 2 Cu sub 3 O sub 7 sub - subdelta (YBCO) films. The current-voltage characteristics along the c-axis at various temperatures and oxygen contents were measured. The current voltage curves showing supercurrent and hysteresis were obtained for the samples annealed at an oxygen pressure of 1.3 x 10 sup 4 Pa, while the supercurrent and hysteresis became smaller and even disappeared as the oxygen pressure decreased. The relationships between the critical currents and temperatures are similar to those of d-wave superconducting tunnel junctions. These results indicate the formation of stacks of intrinsic Josephson junctions, which are useful for developing high-frequency electron devices.
Planar intrinsic Josephson junctions with in-plane aligned YBCO films
International Nuclear Information System (INIS)
Zhang, L; Moriya, M; Kobayashi, T; Goto, T; Mukaida, M
2002-01-01
Planar type devices were fabricated by patterning in-plane aligned YBa 2 Cu 3 O 7-δ (YBCO) films. The current-voltage characteristics along the c-axis at various temperatures and oxygen contents were measured. The current voltage curves showing supercurrent and hysteresis were obtained for the samples annealed at an oxygen pressure of 1.3 x 10 4 Pa, while the supercurrent and hysteresis became smaller and even disappeared as the oxygen pressure decreased. The relationships between the critical currents and temperatures are similar to those of d-wave superconducting tunnel junctions. These results indicate the formation of stacks of intrinsic Josephson junctions, which are useful for developing high-frequency electron devices
One-dimensional in-plane edge domain walls in ultrathin ferromagnetic films
Lund, Ross G.; Muratov, Cyrill B.; Slastikov, Valeriy V.
2018-03-01
We study existence and properties of 1D edge domain walls in ultrathin ferromagnetic films with uniaxial in-plane magnetic anisotropy. In these materials, the magnetization vector is constrained to lie entirely in the film plane, with the preferred directions dictated by the magnetocrystalline easy axis. We consider magnetization profiles in the vicinity of a straight film edge oriented at an arbitrary angle with respect to the easy axis. To minimize the micromagnetic energy, these profiles form transition layers in which the magnetization vector rotates away from the direction of the easy axis to align with the film edge. We prove existence of edge domain walls as minimizers of the appropriate 1D micromagnetic energy functional and show that they are classical solutions of the associated Euler-Lagrange equation with a Dirichlet boundary condition at the edge. We also perform a numerical study of these 1D domain walls and uncover further properties of these domain wall profiles.
The effect of cracks on the limit load of pipe bends under in-plane bending
International Nuclear Information System (INIS)
Griffiths, J.E.
1976-06-01
The limit analysis of the in-plane bending of curved tubes had received attention previously, but the effect of defects in the tube has not been considered. A lower bound is established, which, with no defects present, is in agreement with previous theoretical work. The method of linear programming allows cracks to be introduced into the analysis. and results have been obtained for various geometries of defect. The results show that the presence of cracks in the pipe bend can have a marked effect on the theoretical limit load: a part-through crack penetrating only half the wall thickness will reduce the limit moment by up to 10%. The worst possible case of a through-crack may reduce the limit load by 60% (author)
In-plane propagation of shear microcracks in brittle rocks under triaxial compression
International Nuclear Information System (INIS)
Janach, W.; Guex, L.H.
1980-01-01
The localized separation of the two cracks faces near the tip of a shear microcrack, which is otherwise kept closed by a normal pressure, is suggested as a possible mechanism for the propagation of microcracks in rocks loaded in triaxial compression. Finite element calculations show that when a shear crack runs along a surface of elastic discontinuity (interface between different minerals or between differently oriented domains of an anisotropic mineral), it can remain open at its tip while a normal pressure acts across that part of the crack which has reclosed. Such a separation bubble allows the shear crack to propagate in plane without frictional sliding taking place. It is speculated that dilatancy could be the result of a residual separation of the reclosed crack faces. On the basis this mechanism a heuristic failure model is derived, which can correlate the published trixial failure data of Westerly granite up to a confining pressure of 2000 MPa
In-plane Material Filters for the Discrete Material Optimization Method
DEFF Research Database (Denmark)
Sørensen, Rene; Lund, Erik
2015-01-01
, because the projection filter is a non-linear function of the design variables, the projected variables have to be re-scaled in a final so-called normalization filter. This is done to prevent the optimizer in creating superior, but non-physical pseudo-materials. The method is demonstrated on a series......This paper presents in-plane material filters for the Discrete Material Optimization method used for optimizing laminated composite structures. The filters make it possible for engineers to specify a minimum length scale which governs the minimum size of areas with constant material continuity....... Consequently, engineers can target the available production methods, and thereby increase its manufacturability while the optimizer is free to determine which material to apply together with an optimum location, shape, and size of these areas with constant material continuity. By doing so, engineers no longer...
Energy Technology Data Exchange (ETDEWEB)
Reinthaler, Rolf W.; Tkachov, Grigory; Hankiewicz, Ewelina M. [Faculty of Physics and Astrophysics, University of Wuerzburg, Wuerzburg (Germany)
2015-07-01
Finding signatures of unconventional superconductivity in Quantum Spin Hall systems is one of the challenges of solid state physics. Here we induce superconductivity in a 3D topological insulator thin film to cause the formation of helical edge states, which are protected against backscattering even in finite magnetic fields. Above a critical in-plane magnetic field, which is much smaller than the critical field of typical superconductors, the quasi-particle gap closes, giving rise to energy-dependent spin polarization. In this regime the spin-polarized edge state superconductivity can be detected by Andreev reflection. We propose measurement setups to experimentally observe the spin-dependent excess current and dI/dV characteristics.
Structural and electronic properties of in-plane phase engineered WSe2: A DFT study
Bhart, Ankush; Kapoor, Pooja; Sharma, Munish; Sharma, Raman; Ahluwalia, P. K.
2018-04-01
We present first principal investigations on structural and electronic properties of in-plane phase engineered WSe2 with armchair type interface. The 2H and 1T phases of WSe2, joined along x-direction is a natural metal-semiconductor heterostructure and therefore shows potential for applications in 2D electronics and opto-electronics. The electronic properties transit towards metallic 1T region. No inflections across interface shows negligible mismatch strain which is unlike what has been reported for MoS2. Charge density analysis shows charge accumulation on 1T domain. This can lead to reduction of Schottky barrier heights at the metal-semiconductor junction. STM analysis confirms transition of 1T phase towards distorted 1T' structure. The present results provide essential insights for nano-devices using 2D hybrid materials.
In-plane magnetic penetration depth of superconducting CaKFe4As4
Khasanov, Rustem; Meier, William R.; Wu, Yun; Mou, Daixiang; Bud'ko, Sergey L.; Eremin, Ilya; Luetkens, Hubertus; Kaminski, Adam; Canfield, Paul C.; Amato, Alex
2018-04-01
The temperature dependence of the in-plane magnetic penetration depth (λa b) in an extensively characterized sample of superconducting CaKFe4As4(Tc≃35 K ) was investigated using muon-spin rotation (μ SR ). A comparison of λab -2(T ) measured by μ SR with the one inferred from angle-resolved photoemission spectroscopy (ARPES) data confirms the presence of multiple gaps at the Fermi level. An agreement between μ SR and ARPES requires the presence of additional bands, which are not resolved by ARPES experiments. These bands are characterized by small superconducting gaps with an average zero-temperature value of Δ0=2.4 (2 ) meV . Our data suggest that in CaKFe4As4 the s± order parameter symmetry acquires a more sophisticated form by allowing a sign change not only between electron and hole pockets, but also within pockets of similar type.
In-plane and out-of-plane nonlinear dynamics of an axially moving beam
International Nuclear Information System (INIS)
Farokhi, Hamed; Ghayesh, Mergen H.; Amabili, Marco
2013-01-01
In the present study, the nonlinear forced dynamics of an axially moving beam is investigated numerically taking into account the in-plane and out-of-plane motions. The nonlinear partial differential equations governing the motion of the system are derived via Hamilton’s principle. The Galerkin scheme is then introduced to these partial differential equations yielding a set of second-order nonlinear ordinary differential equations with coupled terms. This set is transformed into a new set of first-order nonlinear ordinary differential equations by means of a change of variables. A direct time integration technique is conducted upon the new set of equations resulting in the bifurcation diagrams of Poincaré maps of the system. The dynamical characteristics of the system are investigated for different system parameters and presented through use of time histories, phase-plane portraits, Poincaré sections, and fast Fourier transforms
One-step fabrication of microfluidic chips with in-plane, adhesive-free interconnections
International Nuclear Information System (INIS)
Sabourin, D; Dufva, M; Jensen, T; Kutter, J; Snakenborg, D
2010-01-01
A simple method for creating interconnections to a common microfluidic device material, poly(methyl methacrylate) (PMMA), is presented. A press-fit interconnection is created between oversized, deformable tubing and complementary, undersized semi-circular ports fabricated into PMMA bonding surfaces by direct micromilling. Upon UV-assisted bonding the tubing is trapped in the ports of the PMMA chip and forms an integrated, in-plane and adhesive-free interconnection. The interconnections support the average pressure of 6.1 bar and can be made with small dead volumes. A comparison is made to a similar interconnection approach which uses tubing to act as a gasket between a needle and port on the microfluidic chip. (technical note)
Gravitoelectromagnetic resonances
International Nuclear Information System (INIS)
Tsagas, Christos G.
2011-01-01
The interaction between gravitational and electromagnetic radiation has a rather long research history. It is well known, in particular, that gravity-wave distortions can drive propagating electromagnetic signals. Since forced oscillations provide the natural stage for resonances to occur, gravitoelectromagnetic resonances have been investigated as a means of more efficient gravity-wave detection methods. In this report, we consider the coupling between the Weyl and the Maxwell fields on a Minkowski background, which also applies to astrophysical environments where gravity is weak, at the second perturbative level. We use covariant methods that describe gravitational waves via the transverse component of the shear, instead of pure-tensor metric perturbations. The aim is to calculate the properties of the electromagnetic signal, which emerges from the interaction of its linear counterpart with an incoming gravitational wave. Our analysis shows how the wavelength and the amplitude of the gravitationally driven electromagnetic wave vary with the initial conditions. More specifically, for certain initial data, the amplitude of the induced electromagnetic signal is found to diverge. Analogous, diverging, gravitoelectromagnetic resonances were also reported in cosmology. Given that, we extend our Minkowski space study to cosmology and discuss analogies and differences in the physics and in the phenomenology of the Weyl-Maxwell coupling between the aforementioned two physical environments.
In-plane and perpendicular exchange bias in [Pt/Co]/NiO multilayers
Energy Technology Data Exchange (ETDEWEB)
Lin, K.W.; Guo, J.Y.; Chang, S.C.; Ouyang, H. [Department of Materials Science and Engineering, National Chung Hsing University, Taichung 402 (China); Kahwaji, S.; Van Lierop, J. [Department of Physics and Astronomy, University of Manitoba, Winnipeg, R3T 2N2 (Canada); Phuoc, N.N.; Suzuki, T. [Information Storage Materials Laboratory, Toyota Technological Institute, Nagoya 468-8511 (Japan)
2007-12-15
Exchange bias in [Pt/Co]/NiO multilayers were studied as a function of film thickness and [Pt/Co] layer repetition. A strong temperature dependence of the coercivity, H{sub c}, and exchange bias field, H{sub ex}, was observed for the thick and thinnest [Pt/Co]/NiO multilayers. While the thinnest [Pt(3 nm)/Co(1.25 nm)]{sub 4}/NiO multilayers exhibits no in-plane exchange bias field, a perpendicular H{sub ex} {sub perpendicular} {sub to} {proportional_to} -150 Oe at 80 K was measured. By contrast, the thickest [Pt(12 nm)/Co(10 nm)]{sub 1}/NiO multilayers exhibited an in-plane H{sub ex//}{proportional_to}-600 Oe (with H{sub ex//}{proportional_to}-1300 Oe at 5 K) with no measurable perpendicular exchange bias field. The estimated interfacial exchange coupling energy implies the effective Co layer thickness contributing to the exchange bias is effective only in Co layer in contact with NiO bottom layer. AC susceptibility and the temperature dependence of H{sub ex} show that the a 1.25 nm thick Co component enables perpendicular exchange bias with a reduced blocking temperature T{sub B}{proportional_to}200 K, compared to that (T{sub B}{proportional_to}250 K) for the thick [Pt/Co]/NiO multilayers. This is attributed to disordered CoPt phases that formed due to intermixing between Co and Pt during deposition. (copyright 2008 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim) (orig.)
On applicability of crack shape characterization rules for multiple in-plane surface cracks
International Nuclear Information System (INIS)
Kim, Jong Min; Choi, Suhn; Park, Keun Bae; Choi, Jae Boong; Huh, Nam Su
2009-01-01
The fracture mechanics assessment parameters, such as the elastic stress intensity factor and the elastic-plastic J-integral, for a surface crack can be significantly affected by adjacent cracks. Regarding such an interaction effect, the relative distance between adjacent cracks, crack aspect ratio and loading condition were known to be important factors for multiple cracks, which affects the fracture mechanics assessment parameters. Although several guidance (ASME Sec. XI, BS7910, British Energy R6 and API RP579) on a crack interaction effect (crack combination rule) have been proposed and used for assessing the interaction effect, each guidance provides different rules for combining multiple surface cracks into a single surface crack. Based on the systematic elastic and elastic-plastic finite element analyses, the present study investigated the acceptability of the crack combination rules provided in the existing guidance, and the relevant recommendations on a crack interaction for in-plane surface cracks in a plate were discussed. To quantify the interaction effect, the elastic stress intensity factor and elastic-plastic J-integral along the crack front were used. As for the loading condition, only axial tension was considered. As a result, BS7910 seems to provide the most relevant crack combination rule for in-plane dual surface cracks, whereas API RP579 provides the most conservative results. In particular, ASME Sec. XI still seems to have some room for a revision to shorten the critical distance between two adjacent cracks for a crack combination. The overall tendency of the elastic-plastic analyses results is identical to that of the elastic analyses results.
Magnetic resonance annual 1986
International Nuclear Information System (INIS)
Kressel, H.Y.
1986-01-01
This book contains papers written on magnetic resonance during 1986. Topics include: musculosketetal magnetic resonance imaging; imaging of the spine; magnetic resonance chemical shift imaging; magnetic resonance imaging in the central nervous system; comparison to computed tomography; high resolution magnetic resonance imaging using surface coils; magnetic resonance imaging of the chest; magnetic resonance imaging of the breast; magnetic resonance imaging of the liver; magnetic resonance spectroscopy of neoplasms; blood flow effects in magnetic resonance imaging; and current and potential applications of clinical sodium magnetic resonance imaging
Seuss, Hannes; Dankerl, Peter; Cavallaro, Alexander; Uder, Michael; Hammon, Matthias
2016-05-20
To evaluate screening and diagnostic accuracy for the detection of osteoblastic rib lesions using an advanced post-processing package enabling in-plane rib reading in CT-images. We retrospectively assessed the CT-data of 60 consecutive prostate cancer patients by applying dedicated software enabling in-plane rib reading. Reading the conventional multiplanar reconstructions was considered to be the reference standard. To simulate clinical practice, the reader was given 10 s to screen for sclerotic rib lesions in each patient applying both approaches. Afterwards, every rib was evaluated individually with both approaches without a time limit. Sensitivities, specificities, positive/negative predictive values and the time needed for detection were calculated depending on the lesion's size (largest diameter 10 mm). In 53 of 60 patients, all ribs were properly displayed in plane, in five patients ribs were partially displayed correctly, and in two patients none of the ribs were displayed correctly. During the 10-s screening approach all patients with sclerotic rib lesions were correctly identified reading the in-plane images (including the patients without a correct rib segmentation), whereas 14 of 23 patients were correctly identified reading conventional multiplanar images. Overall screening sensitivity, specificity, and positive/negative predictive values were 100/27.0/46.0/100 %, respectively, for in-plane reading and 60.9/100/100/80.4 %, respectively, for multiplanar reading. Overall diagnostic (no time limit) sensitivity, specificity, and positive/negative predictive values of in-plane reading were 97.8/92.8/74.6/99.5 %, respectively. False positive results predominantly occurred for lesions <5 mm in size. In-plane reading of the ribs allows reliable detection of osteoblastic lesions for screening purposes. The limited specificity results from false positives predominantly occurring for small lesions.
Breathing-mode resonance of a complex plasma disk
International Nuclear Information System (INIS)
Sheridan, T.E.; Buckey, C.R.; Cox, D.J.; Merrill, R.J.; Theisen, W.L.
2004-01-01
We have experimentally characterized the breathing mode oscillation of a strongly-coupled, dusty plasma disk. Steady-state oscillations are excited by sinusoidally modulating the plasma density, creating a single-frequency, in-plane driving force. Resonance curves agree well with damped harmonic oscillator theory. A response at the second harmonic is observed and found to increase with the square of the driving force, indicating a quadratic nonlinearity
Indian Academy of Sciences (India)
IAS Admin
1004. RESONANCE │ November 2013. Page 2. 1005. RESONANCE │ November 2013. Page 3. 1006. RESONANCE │ November 2013. Page 4. 1007. RESONANCE │ November 2013. Page 5. 1008. RESONANCE │ November 2013. Page 6. 1009. RESONANCE │ November 2013. Page 7. 1010. RESONANCE ...
International Nuclear Information System (INIS)
Lee, S.Y.
1993-01-01
We found that the perturbed spin tune due to the imperfection resonance plays an important role in beam depolarization at snake resonances. We also found that even order snake resonances exist in the overlapping intrinsic and imperfection resonances. Due to the perturbed spin tune shift of imperfection resonances, each snake resonance splits into two
Highly Tunable Electrothermally Actuated Arch Resonator
Hajjaj, Amal Z.
2016-12-05
This paper demonstrates experimentally, theoretically, and numerically a wide-range tunability of electrothermally actuated MEMS arch beams. The beams are made of silicon and are intentionally fabricated with some curvature as in-plane shallow arches. Analytical results based on the Galerkin discretization of the Euler Bernoulli beam theory are generated and compared to the experimental data and results of a multi-physics finite-element model. A good agreement is found among all the results. The electrothermal voltage is applied between the anchors of the clamped-clamped MEMS arch beam, generating a current that passes through the MEMS arch beam and controls its axial stress caused by thermal expansion. When the electrothermal voltage increases, the compressive stress increases inside the arch beam. This leads to increase in its curvature, thereby increases the resonance frequencies of the structure. We show here that the first resonance frequency can increase up to twice its initial value. We show also that after some electro-thermal voltage load, the third resonance frequency starts to become more sensitive to the axial thermal stress, while the first resonance frequency becomes less sensitive. These results can be used as guidelines to utilize arches as wide-range tunable resonators.
Zhao, Cong; Xiao, Jun; Li, Yong; Chu, Qiyi; Xu, Ting; Wang, Bendong
2017-12-01
As one of the most common process induced defects of automated fiber placement, in-plane fiber waviness and its influences on mechanical properties of fiber reinforced composite lack experimental studies. In this paper, a new approach to prepare the test specimen with in-plane fiber waviness is proposed in consideration of the mismatch between the current test standard and actual fiber trajectory. Based on the generation mechanism of in-plane fiber waviness during automated fiber placement, the magnitude of in-plane fiber waviness is characterized by axial compressive strain of prepreg tow. The elastic constants and tensile strength of unidirectional laminates with in-plane fiber waviness are calculated by off-axis and maximum stress theory. Experimental results show that the tensile properties infade dramatically with increasing magnitude of the waviness, in good agreement with theoretical analyses. When prepreg tow compressive strain reaches 1.2%, the longitudinal tensile modulus and strength of unidirectional laminate decreased by 25.5% and 57.7%, respectively.
Directory of Open Access Journals (Sweden)
Tahara T.
2013-03-01
Full Text Available Newly-developed ultraviolet-resonance femtosecond stimulated-Raman spectroscopy was utilized to study the initial structural evolution of photoactive yellow protein chromophore in solution. The obtained spectra changed drastically within 1 ps, demonstrating rapid in-plane deformations of the chromophore.
Ślezak, M.; Ślezak, T.; Matlak, K.; DróŻdŻ, P.; Korecki, J.
2018-05-01
A study of in-plane magnetic anisotropy (MA) in epitaxial bcc Co films and Fe/Co bilayers on a Fe(110) surface is reported. Surface MA of as-deposited Co films and Fe/Co bilayers strongly depends on the Co (dCo) and Fe (dFe) thickness. Adsorption of residual gases drastically modifies in-plane MA of both Co films and Fe/Co bilayers. We present two dimensional MA maps in the (dCo, dFe) space for both as grown and adsorption-modified films. Our results indicate how to precisely engineer in-plane MA that can be controlled by dCo, dFe and is sensitive to the residual gas adsorption.
Estimates of plastic loads for pipe bends under combined in-plane and out-of-plane bending moment
International Nuclear Information System (INIS)
Kim, Nak Hyun; Oh, Chang Sik; Kim, Yun Jae
2008-01-01
This paper provides a method to estimate plastic loads (defined by twice-elastic-slope) for pipe bends under combined in-plane and out-of-plane bending moment, based on detailed 3-D FE limit analyses using elastic-perfectly plastic materials. Because closing bending moment is always lower than opening bending moment, the combination of in-plane closing bending and out-of-plane bending moment becomes the most significant case. Due to conservatism of each bending moments, the resultant moment provided by ASME B and PV code is unduly conservative. However, the concept of the resultant moment is still valid. In this paper, FE results show that the accurate solutions of bending moments provide better estimates of plastic loads of pipe bend under combined in-plane bending and out-of-plane bending moment
Exchange bias energy in Co/Pt/IrMn multilayers with perpendicular and in-plane anisotropy
Energy Technology Data Exchange (ETDEWEB)
Czapkiewicz, M. [Department of Electronics, AGH University of Science and Technology, 30-059 Cracow (Poland)]. E-mail: czapkiew@agh.edu.pl; Stobiecki, T. [Department of Electronics, AGH University of Science and Technology, 30-059 Cracow (Poland); Rak, R. [Department of Electronics, AGH University of Science and Technology, 30-059 Cracow (Poland); Zoladz, M. [Department of Electronics, AGH University of Science and Technology, 30-059 Cracow (Poland); Dijken, S. van [CRANN and School of Physics, Trinity College, Dublin 2 (Ireland)
2007-09-15
The magnetization reversal process in perpendicularly biased [Pt/Co]{sub 3}/d{sub Pt} Pt/IrMn and in-plane biased Co/d{sub Pt} Pt/IrMn multilayers with 0nm=
Magnetic domain pattern asymmetry in (Ga, Mn)As/(Ga,In)As with in-plane anisotropy
Herrera Diez, L.; Rapp, C.; Schoch, W.; Limmer, W.; Gourdon, C.; Jeudy, V.; Honolka, J.; Kern, K.
2012-04-01
Appropriate adjustment of the tensile strain in (Ga, Mn)As/(Ga,In)As films allows for the coexistence of in-plane magnetic anisotropy, typical of compressively strained (Ga, Mn)As/GaAs films, and the so-called cross-hatch dislocation pattern seeded at the (Ga,In)As/GaAs interface. Kerr microscopy reveals a close correlation between the in-plane magnetic domain and dislocation patterns, absent in compressively strained materials. Moreover, the magnetic domain pattern presents a strong asymmetry in the size and number of domains for applied fields along the easy [11¯0] and hard [110] directions which is attributed to different domain wall nucleation/propagation energies. This strong influence of the dislocation lines in the domain wall propagation/nucleation provides a lithography-free route to the effective trapping of domain walls in magneto-transport devices based on (Ga, Mn)As with in-plane anisotropy.
In-Plane Magnetic Field Effect on the Transport Properties in a Quasi-3D Quantum Well Structure
International Nuclear Information System (INIS)
Brooks, J.; Clark, R.; Lumpkin, N.; O'Brien, J.; Reno, J.; Simmons, J.; Wang, Z.; Zhang, B.
1999-01-01
The transport properties of a quasi-three-dimensional, 200 layer quantum well structure are investigated at integer filling in the quantum Hall state. We find that the transverse magnetoresistance R xx , the Hall resistance R xy , and the vertical resistance R zz all follow a similar behavior with both temperature and in-plane magnetic field. A general feature of the influence of increasing in-plane field B in is that the Hall conductance quantization first improves, but above a characteristic value B C in , the quantization is systematically removed. We consider the interplay of the chid edge state transport and the bulk (quantum Hall) transport properties. This mechanism may arise from the competition of the cyclotron energy with the superlattice band structure energies. A comparison of the resuIts with existing theories of the chiral edge state transport with in-plane field is also discussed
Energy Technology Data Exchange (ETDEWEB)
Luo, Feilong [School of Physical and Mathematical Sciences, Nanyang Technological University, 21 Nanyang Link, Singapore 637371 (Singapore); Data Storage Institute, A*STAR Agency for Science, Technology and Research, DSI Building, 5 Engineering Drive 1, Singapore 117608 (Singapore); Goolaup, Sarjoosing; Li, Sihua; Lim, Gerard Joseph; Tan, Funan; Engel, Christian; Zhang, Senfu; Ma, Fusheng; Lew, Wen Siang, E-mail: wensiang@ntu.edu.sg [School of Physical and Mathematical Sciences, Nanyang Technological University, 21 Nanyang Link, Singapore 637371 (Singapore); Zhou, Tiejun [Data Storage Institute, A*STAR Agency for Science, Technology and Research, DSI Building, 5 Engineering Drive 1, Singapore 117608 (Singapore)
2016-08-28
In this work, we present an efficient method for characterizing the spin orbit torque field-like term in an in-plane magnetized system using the harmonic measurement technique. This method does not require a priori knowledge of the planar and anomalous hall resistances and is insensitive to non-uniformity in magnetization, as opposed to the conventional harmonic technique. We theoretically and experimentally demonstrate that the field-like term in the Ta/Co/Pt film stack with in-plane magnetic anisotropy can be obtained by an in-plane transverse field sweep as expected, and magnetization non-uniformity is prevented by the application of fixed magnetic field. The experimental results are in agreement with the analytical calculations.
Parallel ferromagnetic resonance and spin-wave excitation in exchange-biased NiFe/IrMn bilayers
Energy Technology Data Exchange (ETDEWEB)
Sousa, Marcos Antonio de, E-mail: marcossharp@gmail.com [Instituto de Física, Universidade Federal de Goiás, Goiânia, 74001-970 (Brazil); Pelegrini, Fernando [Instituto de Física, Universidade Federal de Goiás, Goiânia, 74001-970 (Brazil); Alayo, Willian [Departamento de Física, Universidade Federal de Pelotas, Pelotas, 96010-900 (Brazil); Quispe-Marcatoma, Justiniano; Baggio-Saitovitch, Elisa [Centro Brasileiro de Pesquisas Físicas, Rio de Janeiro, 22290-180 (Brazil)
2014-10-01
Ferromagnetic Resonance study of sputtered Ru(7 nm)/NiFe(t{sub FM})/IrMn(6 nm)/Ru(5 nm) exchange-biased bilayers at X and Q-band microwave frequencies reveals the excitation of spin-wave and NiFe resonance modes. Angular variations of the in-plane resonance fields of spin-wave and NiFe resonance modes show the effect of the unidirectional anisotropy, which is about twice larger for the spin-wave mode due to spin pinning at the NiFe/IrMn interface. At Q-band frequency the angular variations of in-plane resonance fields also reveal the symmetry of a uniaxial anisotropy. A modified theoretical model which also includes the contribution of a rotatable anisotropy provides a good description of the experimental results.
Zhang, Zhen; Koroleva, I; Manevitch, L I; Bergman, L A; Vakakis, A F
2016-09-01
We study the dynamics and acoustics of a nonlinear lattice with fixed boundary conditions composed of a finite number of particles coupled by linear springs, undergoing in-plane oscillations. The source of the strongly nonlinearity of this lattice is geometric effects generated by the in-plane stretching of the coupling linear springs. It has been shown that in the limit of low energy the lattice gives rise to a strongly nonlinear acoustic vacuum, which is a medium with zero speed of sound as defined in classical acoustics. The acoustic vacuum possesses strongly nonlocal coupling effects and an orthogonal set of nonlinear standing waves [or nonlinear normal modes (NNMs)] with mode shapes identical to those of the corresponding linear lattice; in contrast to the linear case, however, all NNMs except the one with the highest wavelength are unstable. In addition, the lattice supports two types of waves, namely, nearly linear sound waves (termed "L waves") corresponding to predominantly axial oscillations of the particles and strongly nonlinear localized propagating pulses (termed "NL pulses") corresponding to predominantly transverse oscillating wave packets of the particles with localized envelopes. We show the existence of nonlinear nonreciprocity phenomena in the dynamics and acoustics of the lattice. Two opposite cases are examined in the limit of low energy. The first gives rise to nonreciprocal dynamics and corresponds to collective, spatially extended transverse loading of the lattice leading to the excitation of individual, predominantly transverse NNMs, whereas the second case gives rise to nonreciprocal acoutics by considering the response of the lattice to spatially localized, transverse impulse or displacement excitations. We demonstrate intense and recurring energy exchanges between a directly excited NNM and other NNMs with higher wave numbers, so that nonreciprocal energy exchanges from small-to-large wave numbers are established. Moreover, we show the
Engineering in-plane silicon nanowire springs for highly stretchable electronics
Xue, Zhaoguo; Dong, Taige; Zhu, Zhimin; Zhao, Yaolong; Sun, Ying; Yu, Linwei
2018-01-01
Crystalline silicon (c-Si) is unambiguously the most important semiconductor that underpins the development of modern microelectronics and optoelectronics, though the rigid and brittle nature of bulk c-Si makes it difficult to implement directly for stretchable applications. Fortunately, the one-dimensional (1D) geometry, or the line-shape, of Si nanowire (SiNW) can be engineered into elastic springs, which indicates an exciting opportunity to fabricate highly stretchable 1D c-Si channels. The implementation of such line-shape-engineering strategy demands both a tiny diameter of the SiNWs, in order to accommodate the strains under large stretching, and a precise growth location, orientation and path control to facilitate device integration. In this review, we will first introduce the recent progresses of an in-plane self-assembly growth of SiNW springs, via a new in-plane solid-liquid-solid (IPSLS) mechanism, where mono-like but elastic SiNW springs are produced by surface-running metal droplets that absorb amorphous Si thin film as precursor. Then, the critical growth control and engineering parameters, the mechanical properties of the SiNW springs and the prospects of developing c-Si based stretchable electronics, will be addressed. This efficient line-shape-engineering strategy of SiNW springs, accomplished via a low temperature batch-manufacturing, holds a strong promise to extend the legend of modern Si technology into the emerging stretchable electronic applications, where the high carrier mobility, excellent stability and established doping and passivation controls of c-Si can be well inherited. Project supported by the National Basic Research 973 Program (No. 2014CB921101), the National Natural Science Foundation of China (No. 61674075), the National Key Research and Development Program of China (No. 2017YFA0205003), the Jiangsu Excellent Young Scholar Program (No. BK20160020), the Scientific and Technological Support Program in Jiangsu Province (No. BE
Feng, Jun; Sun, Xu; Wu, Changzheng; Peng, Lele; Lin, Chenwen; Hu, Shuanglin; Yang, Jinlong; Xie, Yi
2011-11-09
With the rapid development of portable electronics, such as e-paper and other flexible devices, practical power sources with ultrathin geometries become an important prerequisite, in which supercapacitors with in-plane configurations are recently emerging as a favorable and competitive candidate. As is known, electrode materials with two-dimensional (2D) permeable channels, high-conductivity structural scaffolds, and high specific surface areas are the indispensible requirements for the development of in-plane supercapacitors with superior performance, while it is difficult for the presently available inorganic materials to make the best in all aspects. In this sense, vanadium disulfide (VS(2)) presents an ideal material platform due to its synergic properties of metallic nature and exfoliative characteristic brought by the conducting S-V-S layers stacked up by weak van der Waals interlayer interactions, offering great potential as high-performance in-plane supercapacitor electrodes. Herein, we developed a unique ammonia-assisted strategy to exfoliate bulk VS(2) flakes into ultrathin VS(2) nanosheets stacked with less than five S-V-S single layers, representing a brand new two-dimensional material having metallic behavior aside from graphene. Moreover, highly conductive VS(2) thin films were successfully assembled for constructing the electrodes of in-plane supercapacitors. As is expected, a specific capacitance of 4760 μF/cm(2) was realized here in a 150 nm in-plane configuration, of which no obvious degradation was observed even after 1000 charge/discharge cycles, offering as a new in-plane supercapacitor with high performance based on quasi-two-dimensional materials.
Ultrasound-Guided Out-of-Plane vs. In-Plane Interscalene Catheters: A Randomized, Prospective Study.
Schwenk, Eric S; Gandhi, Kishor; Baratta, Jaime L; Torjman, Marc; Epstein, Richard H; Chung, Jaeyoon; Vaghari, Benjamin A; Beausang, David; Bojaxhi, Elird; Grady, Bernadette
2015-12-01
Continuous interscalene blocks provide excellent analgesia after shoulder surgery. Although the safety of the ultrasound-guided in-plane approach has been touted, technical and patient factors can limit this approach. We developed a caudad-to-cephalad out-of-plane approach and hypothesized that it would decrease pain ratings due to better catheter alignment with the brachial plexus compared to the in-plane technique in a randomized, controlled study. To compare an out-of-plane interscalene catheter technique to the in-plane technique in a randomized clinical trial. Eighty-four patients undergoing open shoulder surgery were randomized to either the in-plane or out-of-plane ultrasound-guided continuous interscalene technique. The primary outcome was VAS pain rating at 24 hours. Secondary outcomes included pain ratings in the recovery room and at 48 hours, morphine consumption, the incidence of catheter dislodgments, procedure time, and block difficulty. Procedural data and all pain ratings were collected by blinded observers. There were no differences in the primary outcome of median VAS pain rating at 24 hours between the out-of-plane and in-plane groups (1.50; IQR, [0 - 4.38] vs. 1.25; IQR, [0 - 3.75]; P = 0.57). There were also no differences, respectively, between out-of-plane and in-plane median PACU pain ratings (1.0; IQR, [0 - 3.5] vs. 0.25; IQR, [0 - 2.5]; P = 0.08) and median 48-hour pain ratings (1.25; IQR, [1.25 - 2.63] vs. 0.50; IQR, [0 - 1.88]; P = 0.30). There were no differences in any other secondary endpoint. Our out-of-plane technique did not provide superior analgesia to the in-plane technique. It did not increase the number of complications. Our technique is an acceptable alternative in situations where the in-plane technique is difficult to perform.
LATCHAROTE; Panon KAI, Yoshiro
2015-01-01
A macroscopic model, macro plate model, was proposed to represent a wall member of RC walls. Both in-plane and out-of-plane behavior were considered for numerical derivations of macro plate model. For out-of-plane behavior, bending deformation was incorporated with shear deformation to consider out-of-plane deformation as same as in-plane behavior. The hysteretic behavior of macro plate model can be directly expressed by stress-strain relationships in any conventional hysteretic rules, which ...
In-plane magnetization behaviors in the Shastry-Sutherland system TbB{sub 4}: Monte Carlo simulation
Energy Technology Data Exchange (ETDEWEB)
Feng, J. J.; Li, W. C. [Institute for Advanced Materials and Laboratory of Quantum Engineering and Quantum Materials, South China Normal University, Guangzhou 510006 (China); Qin, M. H., E-mail: qinmh@scnu.edu.cn, E-mail: liujm@nju.edu.cn [Institute for Advanced Materials and Laboratory of Quantum Engineering and Quantum Materials, South China Normal University, Guangzhou 510006 (China); Department of Physics and TcSUH, University of Houston, Houston, Texas 77204 (United States); Xie, Y. L.; Yan, Z. B.; Liu, J.-M., E-mail: qinmh@scnu.edu.cn, E-mail: liujm@nju.edu.cn [Laboratory of Solid State Microstructures, Nanjing University, Nanjing 210093 (China); Jia, X. T. [School of Physics and Chemistry, Henan Polytechnic University, Jiaozuo 454000 (China)
2015-05-07
The in-plane magnetization behaviors in TbB{sub 4} are theoretically studied using the frustrated classical XY model, including the exchange and biquadratic interactions, and the anisotropy energy. The magnetization curves at various temperatures are simulated, and the magnetic orders are uncovered by the tracking of the spin configurations. In addition, the effects of the in-plane anisotropy and biquadratic interaction on the magnetization curves are investigated in detail. The simulated results suggest that the magnetic anisotropy within the (001) plane owes to the complex interplay between these couplings, and the anisotropy term plays an important role.
Basu, Rajratan; Kinnamon, Daniel; Skaggs, Nicole; Womack, James
2016-05-01
The in-plane switching (IPS) for a nematic liquid crystal (LC) was found to be considerably faster when the LC was doped with dilute concentrations of monolayer graphene flakes. Additional studies revealed that the presence of graphene reduced the rotational viscosity of the LC, permitting the nematic director to respond quicker in IPS mode on turning the electric field on. The studies were carried out with several graphene concentrations in the LC, and the experimental results coherently suggest that there exists an optimal concentration of graphene, allowing a reduction in the IPS response time and rotational viscosity in the LC. Above this optimal graphene concentration, the rotational viscosity was found to increase, and consequently, the LC no longer switched faster in IPS mode. The presence of graphene suspension was also found to decrease the LC's pretilt angle significantly due to the π-π electron stacking between the LC molecules and graphene flakes. To understand the π-π stacking interaction, the anchoring mechanism of the LC on a CVD grown monolayer graphene film on copper substrate was studied by reflected crossed polarized microscopy. Optical microphotographs revealed that the LC alignment direction depended on monolayer graphene's hexagonal crystal structure and its orientation.
International Nuclear Information System (INIS)
Basu, Rajratan; Kinnamon, Daniel; Skaggs, Nicole; Womack, James
2016-01-01
The in-plane switching (IPS) for a nematic liquid crystal (LC) was found to be considerably faster when the LC was doped with dilute concentrations of monolayer graphene flakes. Additional studies revealed that the presence of graphene reduced the rotational viscosity of the LC, permitting the nematic director to respond quicker in IPS mode on turning the electric field on. The studies were carried out with several graphene concentrations in the LC, and the experimental results coherently suggest that there exists an optimal concentration of graphene, allowing a reduction in the IPS response time and rotational viscosity in the LC. Above this optimal graphene concentration, the rotational viscosity was found to increase, and consequently, the LC no longer switched faster in IPS mode. The presence of graphene suspension was also found to decrease the LC's pretilt angle significantly due to the π-π electron stacking between the LC molecules and graphene flakes. To understand the π-π stacking interaction, the anchoring mechanism of the LC on a CVD grown monolayer graphene film on copper substrate was studied by reflected crossed polarized microscopy. Optical microphotographs revealed that the LC alignment direction depended on monolayer graphene's hexagonal crystal structure and its orientation.
Large In-Plane and Vertical Piezoelectricity in Janus Transition Metal Dichalchogenides.
Dong, Liang; Lou, Jun; Shenoy, Vivek B
2017-08-22
Piezoelectricity in 2D van der Waals materials has received considerable interest because of potential applications in nanoscale energy harvesting, sensors, and actuators. However, in all the systems studied to date, strain and electric polarization are confined to the basal plane, limiting the operation of piezoelectric devices. In this paper, based on ab initio calculations, we report a 2D materials system, namely, the recently synthesized Janus MXY (M = Mo or W, X/Y = S, Se, or Te) monolayer and multilayer structures, with large out-of-plane piezoelectric polarization. For MXY monolayers, both strong in-plane and much weaker out-of-plane piezoelectric polarizations can be induced by a uniaxial strain in the basal plane. For multilayer MXY, we obtain a very strong out-of-plane piezoelectric polarization when strained transverse to the basal plane, regardless of the stacking sequence. The out-of-plane piezoelectric coefficient d 33 is found to be strongest in multilayer MoSTe (5.7-13.5 pm/V depending on the stacking sequence), which is larger than that of the commonly used 3D piezoelectric material AlN (d 33 = 5.6 pm/V); d 33 in other multilayer MXY structures are a bit smaller, but still comparable. Our study reveals the potential for utilizing piezoelectric 2D materials and their van der Waals multilayers in device applications.
Ballistic resistance of honeycomb sandwich panels under in-plane high-velocity impact.
Qi, Chang; Yang, Shu; Wang, Dong; Yang, Li-Jun
2013-01-01
The dynamic responses of honeycomb sandwich panels (HSPs) subjected to in-plane projectile impact were studied by means of explicit nonlinear finite element simulations using LS-DYNA. The HSPs consisted of two identical aluminum alloy face-sheets and an aluminum honeycomb core featuring three types of unit cell configurations (regular, rectangular-shaped, and reentrant hexagons). The ballistic resistances of HSPs with the three core configurations were first analyzed. It was found that the HSP with the reentrant auxetic honeycomb core has the best ballistic resistance, due to the negative Poisson's ratio effect of the core. Parametric studies were then carried out to clarify the influences of both macroscopic (face-sheet and core thicknesses, core relative density) and mesoscopic (unit cell angle and size) parameters on the ballistic responses of the auxetic HSPs. Numerical results show that the perforation resistant capabilities of the auxetic HSPs increase as the values of the macroscopic parameters increase. However, the mesoscopic parameters show nonmonotonic effects on the panels' ballistic capacities. The empirical equations for projectile residual velocities were formulated in terms of impact velocity and the structural parameters. It was also found that the blunter projectiles result in higher ballistic limits of the auxetic HSPs.
International Nuclear Information System (INIS)
Trigueiro, João Paulo C.; Lavall, Rodrigo L.; Silva, Glaura G.
2016-01-01
Flexible supercapacitors with large power and energy densities, long life cycles and good operational safety are necessary devices for various applications. In this work, we demonstrate the integration of a composite based on graphene nanosheets/multiwalled carbon nanotubes in an in-plane supercapacitor configuration by using a straightforward preparation involving the filtration of nanomaterials to produce an electrode film. Reduced graphene oxide (RGO) received 15 wt % carbon nanotubes to act as a conducting additive, which led to a flexible and transferable thin film (RGO/MW) with an average conductivity of 20.0 S cm −1 . Three ionic liquids were tested as electrolytes for the supercapacitor, among which 1-ethyl-3-methylimidazolium bis(trifluoromethylsulfonyl)imide (EMITFSI) was observed to exhibit the best performance. The specific capacitance of the supercapacitor based on RGO/MW-EMITFSI reached 153.7 F g −1 at a current density of 0.2 A g −1 and exhibited a capacitance retention of 88% after 2000 cycles. The maximum energy and power densities were calculated to be 41.3 Wh kg −1 and 3.5 kW kg −1 , respectively, for the RGO/MW-EMITFSI supercapacitor.
Crystal plasticity study of monocrystalline stochastic honeycombs under in-plane compression
International Nuclear Information System (INIS)
Ma, Duancheng; Eisenlohr, Philip; Epler, Eike; Volkert, Cynthia A.; Shanthraj, Pratheek; Diehl, Martin; Roters, Franz; Raabe, Dierk
2016-01-01
We present a study on the plastic deformation of single crystalline stochastic honeycombs under in-plane compression using a crystal plasticity constitutive description for face-centered cubic (fcc) materials, focusing on the very early stage of plastic deformation, and identifying the interplay between the crystallographic orientation and the cellular structure during plastic deformation. We observe that despite the stochastic structure, surprisingly, the slip system activations in the honeycombs are almost identical to their corresponding bulk single crystals at the early stage of the plastic deformation. On the other hand, however, the yield stresses of the honeycombs are nearly independent of their crystallographic orientations. Similar mechanical response is found in compression testing of nanoporous gold micro-pillars aligned with various crystallographic orientations. The macroscopic stress tensors of the honeycombs show the same anisotropy as their respective bulk single crystals. Locally, however, there is an appreciable fluctuation in the local stresses, which are even larger than for polycrystals. This explains why the Taylor/Schmid factor associated with the crystallographic orientation is less useful to estimate the yield stresses of the honeycombs than the bulk single crystals and polycrystals, and why the plastic deformation occurs at smaller strains in the honeycombs than their corresponding bulk single crystals. Besides these findings, the observations of the crystallographic reorientation suggest that conventional orientation analysis tools, such as inverse pole figure and related tools, would in general fail to study the plastic deformation mechanism of monocrystalline cellular materials.
A Failure Estimation Method of Steel Pipe Elbows under In-plane Cyclic Loading
Directory of Open Access Journals (Sweden)
Bub-Gyu Jeon
2017-02-01
Full Text Available The relative displacement of a piping system installed between isolated and nonisolated structures in a severe earthquake might be larger when without a seismic isolation system. As a result of the relative displacement, the seismic risks of some components in the building could increase. The possibility of an increase in seismic risks is especially high in the crossover piping system in the buildings. Previous studies found that an elbow which could be ruptured by low-cycle ratcheting fatigue is one of the weakest elements. Fatigue curves for elbows were suggested based on component tests. However, it is hard to find a quantitative evaluation of the ultimate state of piping elbows. Generally, the energy dissipation of a solid structure can be calculated from the relation between displacement and force. Therefore, in this study, the ultimate state of the pipe elbow, normally considered as failure of the pipe elbow, is defined as leakage under in-plane cyclic loading tests, and a failure estimation method is proposed using a damage index based on energy dissipation.
In-plane mechanics of soft architectured fibre-reinforced silicone rubber membranes.
Bailly, L; Toungara, M; Orgéas, L; Bertrand, E; Deplano, V; Geindreau, C
2014-12-01
Silicone rubber membranes reinforced with architectured fibre networks were processed with a dedicated apparatus, allowing a control of the fibre content and orientation. The membranes were subjected to tensile loadings combined with continuous and discrete kinematical field measurements (DIC and particle tracking). These tests show that the mechanical behaviour of the membranes is hyperelastic at the first order. They highlight the influence of the fibre content and orientation on both the membrane in-plane deformation and stress levels. They also prove that for the considered fibrous architectures and mechanical loadings, the motion and deformation of fibres is an affine function of the macroscale transformation. These trends are fairly well described by the micromechanical model proposed recently in Bailly et al. (JMBBM, 2012). This result proves that these materials are very good candidates for new biomimetic membranes, e.g. to improve aortic analogues used for in vitro experiments, or existing textiles used for vascular (endo)prostheses. Copyright © 2014 Elsevier Ltd. All rights reserved.
Energy Technology Data Exchange (ETDEWEB)
Kim, Jae Jin; Suh, Hyo Seon; Zhou, Chun; Mane, Anil U.; Lee, Byeongdu; Kim, Soojeong; Emery, Jonathan D.; Elam, Jeffrey W.; Nealey, Paul F.; Fenter, Paul; Fister, Timothy T.
2018-02-21
Tungsten oxide (WO3-x) nanostructures with hexagonal in-plane arrangements were fabricated by sequential infiltration synthesis (SIS), using the selective interaction of gas phase precursors with functional groups in one domain of a block copolymer (BCP) self-assembled template. Such structures are highly desirable for various practical applications and as model systems for fundamental studies. The nanostructures were characterized by cross-sectional scanning electron microscopy, grazing-incidence small/wide-angle X-ray scattering (GISAXS/GIWAXS), and X-ray absorption near edge structure (XANES) measurements at each stage during the SIS process and subsequent thermal treatments, to provide a comprehensive picture of their evolution in morphology, crystallography and electronic structure. In particular, we discuss the critical role of SIS Al2O3 seeds toward modifying the chemical affinity and free volume in a polymer for subsequent infiltration of gas phase precursors. The insights into SIS growth obtained from this study are valuable to the design and fabrication of a wide range of targeted nanostructures.
A failure estimation method of steel pipe elbows under in-plane cyclic loading
Energy Technology Data Exchange (ETDEWEB)
Jeon, Bub Gyu; Kim, Sung Wan; Choi, Hyoung Suk; Park, Dong Uk [Seismic Simulation Tester Center, Pusan National University, Yangsan (Korea, Republic of); Kim, Nam Sik [Dept. of Civil and Environmental Engineering, Pusan National University, Busan (Korea, Republic of)
2017-02-15
The relative displacement of a piping system installed between isolated and nonisolated structures in a severe earthquake might be larger when without a seismic isolation system. As a result of the relative displacement, the seismic risks of some components in the building could increase. The possibility of an increase in seismic risks is especially high in the crossover piping system in the buildings. Previous studies found that an elbow which could be ruptured by low-cycle ratcheting fatigue is one of the weakest elements. Fatigue curves for elbows were suggested based on component tests. However, it is hard to find a quantitative evaluation of the ultimate state of piping elbows. Generally, the energy dissipation of a solid structure can be calculated from the relation between displacement and force. Therefore, in this study, the ultimate state of the pipe elbow, normally considered as failure of the pipe elbow, is defined as leakage under in-plane cyclic loading tests, and a failure estimation method is proposed using a damage index based on energy dissipation.
Theory of in-plane current induced spin torque in metal/ferromagnet bilayers
Sakanashi, Kohei; Sigrist, Manfred; Chen, Wei
2018-05-01
Using a semiclassical approach that simultaneously incorporates the spin Hall effect (SHE), spin diffusion, quantum well states, and interface spin–orbit coupling (SOC), we address the interplay of these mechanisms as the origin of the spin–orbit torque (SOT) induced by in-plane currents, as observed in the normal metal/ferromagnetic metal bilayer thin films. Focusing on the bilayers with a ferromagnet much thinner than its spin diffusion length, such as Pt/Co with ∼10 nm thickness, our approach addresses simultaneously the two contributions to the SOT, namely the spin-transfer torque (SHE-STT) due to SHE-induced spin injection, and the inverse spin Galvanic effect spin–orbit torque (ISGE-SOT) due to SOC-induced spin accumulation. The SOC produces an effective magnetic field at the interface, hence it modifies the angular momentum conservation expected for the SHE-STT. The SHE-induced spin voltage and the interface spin current are mutually dependent and, hence, are solved in a self-consistent manner. The result suggests that the SHE-STT and ISGE-SOT are of the same order of magnitude, and the spin transport mediated by the quantum well states may be an important mechanism for the experimentally observed rapid variation of the SOT with respect to the thickness of the ferromagnet.
International Nuclear Information System (INIS)
Tian, Wenxiang; Zhong, Zheng; Li, Yaochen
2016-01-01
A two-dimensional fracture problem of periodically distributed interfacial cracks in multilayered piezomagnetic/piezoelectric composites is studied under in-plane magnetic or electric loading. The magnetic permittivity of the piezoelectric material and the dielectric constant of the piezomagnetic material are considered. A system of singular integral equations of the second kind with a Cauchy kernel is obtained by means of Fourier transform and further solved by using Jacobi polynomials. The problem is solved in the real domain by constructing real fundamental solutions. The primary interfacial fracture mechanic parameters, such as the stress intensity factors (SIFs), the electric displacement intensity factors (EDIFs), the magnetic induction intensity factors (MIIFs) and the energy release rates (ERRs) are then obtained. It is found that a magnetic or electric loading normal to the crack surfaces can lead to a mixture of mode I and mode II type stress singularities at the crack tips. Numerical results show that increasing the thickness of the active layer will favor the crack initiation. Inversely, increasing the thickness of the passive layer will retard the crack initiation. Furthermore, the results indicate that the crack initiation can be inhibited by adjusting the direction of the applied magnetic or electric loading. (paper)
Frohn, Peter; Engel, Bernd; Groth, Sebastian
2018-05-01
Kinematic forming processes shape geometries by the process parameters to achieve a more universal process utilizations regarding geometric configurations. The kinematic forming process Incremental Swivel Bending (ISB) bends sheet metal strips or profiles in plane. The sequence for bending an arc increment is composed of the steps clamping, bending, force release and feed. The bending moment is frictionally engaged by two clamping units in a laterally adjustable bending pivot. A minimum clamping force hindering the material from slipping through the clamping units is a crucial criterion to achieve a well-defined incremental arc. Therefore, an analytic description of a singular bent increment is developed in this paper. The bending moment is calculated by the uniaxial stress distribution over the profiles' width depending on the bending pivot's position. By a Coulomb' based friction model, necessary clamping force is described in dependence of friction, offset, dimensions of the clamping tools and strip thickness as well as material parameters. Boundaries for the uniaxial stress calculation are given in dependence of friction, tools' dimensions and strip thickness. The results indicate that changing the bending pivot to an eccentric position significantly affects the process' bending moment and, hence, clamping force, which is given in dependence of yield stress and hardening exponent. FE simulations validate the model with satisfactory accordance.
Vibrations of a connecting system of curved bars, in-plane
International Nuclear Information System (INIS)
Suzuki, Katsuyoshi; Takahashi, Shin; Asakura, Akira.
1979-01-01
Piping systems were simulated with the combined bars with many kinds of curved and straight shapes. The system consists of straight bars and a circular arc bar, an elliptic arc bar and a catenary curved bar. The inplane vibration of a complicated bar system of any shape, which is indicated by two-dimensional center line, was analyzed strictly and simply, utilizing Lagrangean equation. The theoretical and analytical equations of vibration were derived, such as Lagrangean equation, Euler's equation, and those for bending moment, shearing force, tangential force, deformation, inclination, amplitude frequency, etc. The calculations were conducted on the U-shaped bars, namely the elliptic arc bar connected to straight bars and the catenary bar connected to straight bars, with the boundary condition of fixed ends. The analytical in-plane vibrating characteristics including natural frequency and vibration mode are shown. In the relating experiment, the frequency was measured with the U-shaped test pieces, changing the parameters of the length ratio of elliptic arc and straight part. Both ends were fixed. The test result showed that the vibration characteristics were consistent with the analytical result comparatively. This method is advantageous especially for complicated piping systems. The material and the cross section of bars were not varied in this analysis as the analytical condition. (Nakai, Y.)
Theoretical and experimental studies on in-plane stiffness of integrated container structure
Directory of Open Access Journals (Sweden)
Xiaoxiong Zha
2016-03-01
Full Text Available This article presents analytical, numerical, and experimental studies on the in-plane stiffness of container buildings. First, based on diaphragm theory, parallel corrugated direction stiffness of corrugated sheet has been deduced, and based on energy method, shear modulus of two elastic principal directions of orthotropic plate has been deduced, and through stiffness conversion method, the stiffness relationship between parallel corrugated direction and vertical corrugated direction has been obtained. Combined with container frame, the container stiffness of loading end and non-loading end, as bottom side beam fixed, has been obtained. Second, through the software Abaqus, full-scale container model has been established. The loading–displacement curve of finite element model has been compared with theoretical analysis and has a good agreement. Third, through 20 and 40 ft container, corresponding experimental verification has been done, and by comparison of container stiffness, the theoretical analysis and finite element simulation have been verified. Finally, based on verified finite element model, parametric analysis of corrugated sheet size, corrugated sheeting cross section, elasticity modulus of top side beam, and every plate action for container stiffness have been given. Research result has made feasible in design and construction of container buildings and can provide some references to corresponding specification preparation.
International Nuclear Information System (INIS)
Cagliani, A; Kjær, D; Østerberg, F W; Hansen, O; Petersen, D H; Nielsen, P F
2017-01-01
The current-in-plane tunneling technique (CIPT) has been a crucial tool in the development of magnetic tunnel junction stacks suitable for magnetic random access memories (MRAM) for more than a decade. The MRAM development has now reached the maturity to make the transition from the R and D phase to the pilot production phase. This will require an improvement in the repeatability of the CIPT metrology technique. Here, we present an analytical model that can be used to simulate numerically the repeatability of a CIPT measurement for an arbitrary MTJ stack prior to any CIPT measurement. The model describes mathematically the main sources of error arising when a micro multi-electrode probe is used to perform a CIPT measurement. The numerically simulated repeatability values obtained on four different MTJ stacks are verified by experimental data and the model is used to optimize the choice of electrodes on a multi-electrode probe to reach up to 36% improvement on the repeatability for the resistance area product and the tunneling magnetoresistance measurement, without any hardware modification. (paper)
Energy Technology Data Exchange (ETDEWEB)
Basu, Rajratan, E-mail: basu@usna.edu; Kinnamon, Daniel; Skaggs, Nicole; Womack, James [Soft Matter and Nanomaterials Laboratory, Department of Physics, The United States Naval Academy, Annapolis, Maryland 21402 (United States)
2016-05-14
The in-plane switching (IPS) for a nematic liquid crystal (LC) was found to be considerably faster when the LC was doped with dilute concentrations of monolayer graphene flakes. Additional studies revealed that the presence of graphene reduced the rotational viscosity of the LC, permitting the nematic director to respond quicker in IPS mode on turning the electric field on. The studies were carried out with several graphene concentrations in the LC, and the experimental results coherently suggest that there exists an optimal concentration of graphene, allowing a reduction in the IPS response time and rotational viscosity in the LC. Above this optimal graphene concentration, the rotational viscosity was found to increase, and consequently, the LC no longer switched faster in IPS mode. The presence of graphene suspension was also found to decrease the LC's pretilt angle significantly due to the π-π electron stacking between the LC molecules and graphene flakes. To understand the π-π stacking interaction, the anchoring mechanism of the LC on a CVD grown monolayer graphene film on copper substrate was studied by reflected crossed polarized microscopy. Optical microphotographs revealed that the LC alignment direction depended on monolayer graphene's hexagonal crystal structure and its orientation.
In-plane and out-of-plane bending tests on carbon steel pipe bends
International Nuclear Information System (INIS)
Brouard, D.; Tremblais, A.; Vrillon, B.
1979-01-01
The objectives of these tests were to obtain experimental results on bends behaviour in elastic and plastic regime by in plane and out of plane bending. Results were used to improve the computer model, for large distorsion of bends, to be used in a simplified beam type computer code for piping calculations. Tests were made on type ANSI B 169 DN 5 bends in ASTM A 106 Grade B carbon steel. These tests made it possible to measure, for identical bends, in elastic regime, the flexibility factors and, in plastic regime, the total evolution in opening, in closing and out of plane. Flexibility factors of 180 0 bend without flanges are approximately the same in opening and in closing. The end effect due to flanges is not very significant, but it is important for 90 0 bends. In plastic regime, collapse loads or collapse moments of bends depends also of both the end effects and the angle bend. The end effects and the angle bend are more sensitive in opening than in closing. The interest of these tests is to procure some precise evolution curves of identical bends well characterized in geometry and metal strength, deflected in large distorsions. (orig./HP)
The oxygen isotope effect on the in-plane penetration depth in cuprate superconductors
International Nuclear Information System (INIS)
Khasanov, R; Shengelaya, A; Morenzoni, E; Conder, K; Savic, I M; Keller, H
2004-01-01
Muon spin rotation (μSR) studies of the oxygen isotope ( 16 O/ 18 O) effect (OIE) on the in-plane magnetic field penetration depth λ ab in cuprate high-temperature superconductors (HTS) are presented. First, the doping dependence of the OIE on the transition temperature T c in various HTS is briefly discussed. It is observed that different cuprate families show similar doping dependences of the OIE on T c . Then, bulk μSR, low-energy μSR, and magnetization studies of the total and site-selective OIE on λ ab are described in some detail. A substantial OIE on λ ab was observed in various cuprate families at all doping levels, suggesting that cuprate HTS are non-adiabatic superconductors. The experiments clearly demonstrate that the total OIE on T c and λ ab arise from the oxygen sites within the superconducting CuO 2 planes, demonstrating that the phonon modes involving the movement of planar oxygen are dominantly coupled to the supercarriers. Finally, it is shown that the OIE on T c and λ ab exhibit a relation that appears to be generic for different families of cuprate HTS. The observation of these unusual isotope effects implies that lattice effects play an essential role in cuprate HTS and have to be considered in any realistic model of high-temperature superconductivity
Magnetization reversal of in-plane uniaxial Co films and its dependence on epitaxial alignment
Energy Technology Data Exchange (ETDEWEB)
Idigoras, O., E-mail: o.idigoras@nanogune.eu; Suszka, A. K.; Berger, A. [CIC nanoGUNE Consolider, Tolosa Hiribidea 76, E-20018 Donostia-San Sebastian (Spain); Vavassori, P. [CIC nanoGUNE Consolider, Tolosa Hiribidea 76, E-20018 Donostia-San Sebastian (Spain); IKERBASQUE, The Basque Foundation for Science, E-48011 Bilbao (Spain); Obry, B.; Hillebrands, B. [Fachbereich Physik and Landesforschungzentrum OPTIMAS, Technische Universität Kaiserslautern, Erwin-Schrödinger-Straße 56, D-67663 Kaiserslautern (Germany); Landeros, P. [Departamento de Física, Universidad Técnica Federico Santa María, Avenida España 1680, 2390123 Valparaíso (Chile)
2014-02-28
This work studies the influence of crystallographic alignment onto magnetization reversal in partially epitaxial Co films. A reproducible growth sequence was devised that allows for the continuous tuning of grain orientation disorder in Co films with uniaxial in-plane anisotropy by the controlled partial suppression of epitaxy. While all stable or meta-stable magnetization states occurring during a magnetic field cycle exhibit a uniform magnetization for fully epitaxial samples, non-uniform states appear for samples with sufficiently high grain orientation disorder. Simultaneously with the occurrence of stable domain states during the magnetization reversal, we observe a qualitative change of the applied field angle dependence of the coercive field. Upon increasing the grain orientation disorder, we observe a disappearance of transient domain wall propagation as the dominating reversal process, which is characterized by an increase of the coercive field for applied field angles away from the easy axis for well-ordered epitaxial samples. Upon reaching a certain disorder threshold level, we also find an anomalous magnetization reversal, which is characterized by a non-monotonic behavior of the remanent magnetization and coercive field as a function of the applied field angle in the vicinity of the nominal hard axis. This anomaly is a collective reversal mode that is caused by disorder-induced frustration and it can be qualitatively and even quantitatively explained by means of a two Stoner-Wohlfarth particle model. Its predictions are furthermore corroborated by Kerr microscopy and by Brillouin light scattering measurements.
International Nuclear Information System (INIS)
Aoyagi, Yukio; Yamada, Kazuie.
1983-01-01
Reactor containment vessels have been made of steel so far, but since it was decided to adopt a prestressed concrete vessel in the Tsuruga No. 2 plant of Japan Atomic Power Co., the construction of the containment vessels made of prestressed concrete and reinforced concrete has been studied by various electric power companies. However in Japan, there is no standard for the design and construction of concrete structures of this kind. In the standard of foreign countries used for reference, the basis of the stipulation concerning the aseismatic design of concrete containment vessels is not distinct. In this study, the clarification of the strength and deformation when RC vessels are subjected to seismic force only or to internal pressure and seismic force was aimed at, and the result of the loading test by one or two-direction in-plane forces on RC shell elements was examined. Based on this, the method of estimating the strength and deformation of RC shell elements was proposed. The orthogonal reinforcement was adopted, and the strength of shell elements was determined by the yielding of reinforcing bars. (Kako, I.)
Woven type smart soft composite beam with in-plane shape retention
International Nuclear Information System (INIS)
Wu, Renzhe; Han, Min-Woo; Lee, Gil-Yong; Ahn, Sung-Hoon
2013-01-01
Shape memory alloy (SMA) wire embedded composites (SMAECs) are widely used as morphing structures in small-size and high-output systems. However, conventional SMAECs cannot keep deformed shapes without additional energy. In this paper, a new kind of smart structure named the woven type smart soft composite (SSC) beam is introduced, which is not only capable of morphing, but also maintaining its deformed shape without additional energy. The woven type SSC beam consists of two parts: woven wires and matrix. The selected woven wires are nitinol (Ni–Ti) SMA wires and glass fibers, while the matrix part is polydimethylsiloxane (PDMS). In order to evaluate the performance of the woven type SSC beam in areas such as in-plane deformation, blocking force and repeatability, a beam-shape specimen is prepared of size 100 mm (length) × 8 mm (width) ×3 mm (thickness). The fabricated SSC beam achieved 21 mm deformation and 16 mm shape retention. Blocking force was measured using a dynamometer, and was about 60 mN. In the repeatability test, it recovered almost the same position when its cooling time was 90 s more. Consequently, the woven type SSC beam can be applied to bio-mimicking, soft morphing actuators, consuming less energy than traditional SMAECs. (paper)
Tailoring of in-plane magnetic anisotropy in polycrystalline cobalt thin films by external stress
Energy Technology Data Exchange (ETDEWEB)
Kumar, Dileep, E-mail: dkumar@csr.res.in [UGC-DAE Consortium for Scientic Research, Khandwa Road, Indore 452001 (India); Singh, Sadhana [UGC-DAE Consortium for Scientic Research, Khandwa Road, Indore 452001 (India); Vishawakarma, Pramod [School of Nanotechnology, RGPV, Bhopal 462036 (India); Dev, Arun Singh; Reddy, V.R. [UGC-DAE Consortium for Scientic Research, Khandwa Road, Indore 452001 (India); Gupta, Ajay [Amity Center for Spintronic Materials, Amity University, Sector 125, Noida 201303 (India)
2016-11-15
Polycrystalline Co films of nominal thickness ~180 Å were deposited on intentionally curved Si substrates. Tensile and compressive stresses of 100 MPa and 150 MPa were induced in the films by relieving the curvature. It has been found that, within the elastic limit, presence of stress leads to an in-plane magnetic anisotropy in the film and its strength increases with increasing stress. Easy axis of magnetization in the films is found to be parallel/ transverse to the compressive /tensile stresses respectively. The origin of magnetic anisotropy in the stressed films is understood in terms of magneto- elastic coupling, where the stress try to align the magnetic moments in order to minimize the magneto-elastic as well as anisotropy energy. Tensile stress is also found to be responsible for the surface smoothening of the films, which is attributed to the movement of the atoms associated with the applied stress. The present work provides a possible way to tailor the magnetic anisotropy and its direction in polycrystalline and amorphous films using external stress. - Highlights: • Tensile and compressive stresses were induced in Co films by removing the bending force from the substrates after film deposition. • Controlled external mechanical stress is found to be responsible for magnetic anisotropies in amorphous and polycrystalline thin films, where crystalline anisotropy is absent. • Tensile stress leads to surface smoothening of the polycrystalline Co films.
Anisotropic in-plane thermal conductivity observed in few-layer black phosphorus
Luo, Zhe; Maassen, Jesse; Deng, Yexin; Du, Yuchen; Garrelts, Richard P.; Lundstrom, Mark S; Ye, Peide D.; Xu, Xianfan
2015-01-01
Black phosphorus has been revisited recently as a new two-dimensional material showing potential applications in electronics and optoelectronics. Here we report the anisotropic in-plane thermal conductivity of suspended few-layer black phosphorus measured by micro-Raman spectroscopy. The armchair and zigzag thermal conductivities are ∼20 and ∼40 W m−1 K−1 for black phosphorus films thicker than 15 nm, respectively, and decrease to ∼10 and ∼20 W m−1 K−1 as the film thickness is reduced, exhibiting significant anisotropy. The thermal conductivity anisotropic ratio is found to be ∼2 for thick black phosphorus films and drops to ∼1.5 for the thinnest 9.5-nm-thick film. Theoretical modelling reveals that the observed anisotropy is primarily related to the anisotropic phonon dispersion, whereas the intrinsic phonon scattering rates are found to be similar along the armchair and zigzag directions. Surface scattering in the black phosphorus films is shown to strongly suppress the contribution of long mean-free-path acoustic phonons. PMID:26472191
General exact harmonic analysis of in-plane timoshenko beam structures
Directory of Open Access Journals (Sweden)
C. A. N. Dias
Full Text Available The exact solution for the problem of damped, steady state response, of in-plane Timoshenko frames subjected to harmonically time varying external forces is here described. The solution is obtained by using the classical dynamic stiffness matrix (DSM, which is non-linear and transcendental in respect to the excitation frequency, and by performing the harmonic analysis using the Laplace transform. As an original contribution, the partial differential coupled governing equations, combining displacements and forces, are directly subjected to Laplace transforms, leading to the member DSM and to the equivalent load vector formulations. Additionally, the members may have rigid bodies attached at any of their ends where, optionally, internal forces can be released. The member matrices are then used to establish the global matrices that represent the dynamic equilibrium of the overall framed structure, preserving close similarity to the finite element method. Several application examples prove the certainty of the proposed method by comparing the model results with the ones available in the literature or with finite element analyses.
The oxygen isotope effect on the in-plane penetration depth in cuprate superconductors
Energy Technology Data Exchange (ETDEWEB)
Khasanov, R [Physik-Institut der Universitaet Zuerich, CH-8057 Zurich (Switzerland); Shengelaya, A [Physik-Institut der Universitaet Zuerich, CH-8057 Zurich (Switzerland); Morenzoni, E [Laboratory for Muon Spin Spectroscopy, Paul Scherrer Institute, CH-5232 Villigen PSI (Switzerland); Conder, K [Laboratory for Neutron Scattering, ETH Zuerich and PSI Villigen, CH-5232 Villigen PSI (Switzerland); Savic, I M [Faculty of Physics, University of Belgrade, 11001 Belgrade (Serbia and Montenegro); Keller, H [Physik-Institut der Universitaet Zuerich, CH-8057 Zurich (Switzerland)
2004-10-13
Muon spin rotation ({mu}SR) studies of the oxygen isotope ({sup 16}O/{sup 18}O) effect (OIE) on the in-plane magnetic field penetration depth {lambda}{sub ab} in cuprate high-temperature superconductors (HTS) are presented. First, the doping dependence of the OIE on the transition temperature T{sub c} in various HTS is briefly discussed. It is observed that different cuprate families show similar doping dependences of the OIE on T{sub c}. Then, bulk {mu}SR, low-energy {mu}SR, and magnetization studies of the total and site-selective OIE on {lambda}{sub ab} are described in some detail. A substantial OIE on {lambda}{sub ab} was observed in various cuprate families at all doping levels, suggesting that cuprate HTS are non-adiabatic superconductors. The experiments clearly demonstrate that the total OIE on T{sub c} and {lambda}{sub ab} arise from the oxygen sites within the superconducting CuO{sub 2} planes, demonstrating that the phonon modes involving the movement of planar oxygen are dominantly coupled to the supercarriers. Finally, it is shown that the OIE on T{sub c} and {lambda}{sub ab} exhibit a relation that appears to be generic for different families of cuprate HTS. The observation of these unusual isotope effects implies that lattice effects play an essential role in cuprate HTS and have to be considered in any realistic model of high-temperature superconductivity.
A failure estimation method of steel pipe elbows under in-plane cyclic loading
International Nuclear Information System (INIS)
Jeon, Bub Gyu; Kim, Sung Wan; Choi, Hyoung Suk; Park, Dong Uk; Kim, Nam Sik
2017-01-01
The relative displacement of a piping system installed between isolated and nonisolated structures in a severe earthquake might be larger when without a seismic isolation system. As a result of the relative displacement, the seismic risks of some components in the building could increase. The possibility of an increase in seismic risks is especially high in the crossover piping system in the buildings. Previous studies found that an elbow which could be ruptured by low-cycle ratcheting fatigue is one of the weakest elements. Fatigue curves for elbows were suggested based on component tests. However, it is hard to find a quantitative evaluation of the ultimate state of piping elbows. Generally, the energy dissipation of a solid structure can be calculated from the relation between displacement and force. Therefore, in this study, the ultimate state of the pipe elbow, normally considered as failure of the pipe elbow, is defined as leakage under in-plane cyclic loading tests, and a failure estimation method is proposed using a damage index based on energy dissipation
The infinite medium Green's function for neutron transport in plane geometry 40 years later
International Nuclear Information System (INIS)
Ganapol, B.D.
1993-01-01
In 1953, the first of what was supposed to be two volumes on neutron transport theory was published. The monograph, entitled open-quotes Introduction to the Theory of Neutron Diffusionclose quotes by Case et al., appeared as a Los Alamos National Laboratory report and was to be followed by a second volume, which never appeared as intended because of the death of Placzek. Instead, Case and Zweifel collaborated on the now classic work entitled Linear Transport Theory 2 in which the underlying mathematical theory of linear transport was presented. The initial monograph, however, represented the coming of age of neutron transport theory, which had its roots in radiative transfer and kinetic theory. In addition, it provided the first benchmark results along with the mathematical development for several fundamental neutron transport problems. In particular, one-dimensional infinite medium Green's functions for the monoenergetic transport equation in plane and spherical geometries were considered complete with numerical results to be used as standards to guide code development for applications. Unfortunately, because of the limited computational resources of the day, some numerical results were incorrect. Also, only conventional mathematics and numerical methods were used because the transport theorists of the day were just becoming acquainted with more modern mathematical approaches. In this paper, Green's function solution is revisited in light of modern numerical benchmarking methods with an emphasis on evaluation rather than theoretical results. The primary motivation for considering the Green's function at this time is its emerging use in solving finite and heterogeneous media transport problems
International Nuclear Information System (INIS)
Huh, Nam Su; Choi, Suhn; Park, Keun Bae; Kim, Jong Min; Choi, Jae Boong; Kim, Young Jin
2008-01-01
The crack-tip stress fields and fracture mechanics assessment parameters, such as the elastic stress intensity factor and the elastic-plastic J-integral, for a surface crack can be significantly affected by adjacent cracks. Such a crack interaction effect due to multiple cracks can magnify the fracture mechanics assessment parameters. There are many factors to be considered, for instance the relative distance between adjacent cracks, crack shape and loading condition, to quantify a crack interaction effect on the fracture mechanics assessment parameters. Thus, the current guidance on a crack interaction effect (crack combination rule), including ASME Sec. XI, BS7910, British Energy R6 and API RP579, provide different rules for combining multiple surface cracks into a single surface crack. The present paper investigates a crack interaction effect by evaluating the elastic stress intensity factor of adjacent surface cracks in a plate along the crack front through detailed 3-dimensional elastic finite element analyses. The effects of the geometric parameters, the relative distance between cracks and the crack shape, on the stress intensity factor are systematically investigated. As for the loading condition, only axial tension is considered. Based on the elastic finite element results, the acceptability of the crack combination rules provided in the existing guidance was investigated, and the relevant recommendations on a crack interaction for in-plane surface cracks in a plate were discussed
Examination into the maximum rotational frequency for an in-plane switched active waveplate device
International Nuclear Information System (INIS)
Davidson, A J; Elston, S J; Raynes, E P
2005-01-01
An examination of an active waveplate device using a one-dimensional model, giving numerical and analytical results, is presented. The model calculates the director and twist configuration by minimizing the free energy of the system with simple homeotropic boundary conditions. The effect of varying the in-plane electric field in both magnitude and direction is examined, and it is shown that the twist through the cell is constant in time as the field is rotated. As the electric field is rotated, the director field lags behind by an angle which increases as the frequency of the electric field rotation increases. When this angle reaches approximately π/4 the director field no longer follows the electric field in a uniform way. Using mathematical analysis it is shown that the conditions on which the director profile will fail to follow the rotating electric field depend on the frequency of electric field rotation, the magnitude of the electric field, the dielectric anisotropy and the viscosity of the liquid crystal
Reinforced concrete membrane elements subjected to reversed cyclic in-plane shear stress
International Nuclear Information System (INIS)
Ohmori, N.; Tsubota, H.; Inoue, N.; Watanabe, S.; Kurihara, K.
1987-01-01
The response of reinforced concrete elements subjected to reversed cyclic in-plane shear stresses can be predicted by an analytical model, which considers equilibrium, compatibility and stress-strain relationships including hysteresis loop of unloading and reloading stages all expressed in terms of average stresses and average strains. The analytical results show that the dominant hysteretic behaviours in regard to decrease of stiffness during unloading, successive slip phenomena and restoration of compressive stiffness at the reloading stages are well simulated analytically. The results agree quite well with the observed behaviours. As for the envelope curve of the hysteretic response there remain the discrepancies that the stiffness and ultimate strength are a bit larger than the observed results, especially in the case of a panel with a large reinforcement ratio. Such descrepancies are also found in the predicted results of monotonic loading and more precise studies are necessary to evaluate more accurate envelope curves under not only reversed cyclic loading but also monotonic loading. (orig./HP)
Applied neutron resonance theory
International Nuclear Information System (INIS)
Froehner, F.H.
1980-01-01
Utilisation of resonance theory in basic and applications-oriented neutron cross section work is reviewed. The technically important resonance formalisms, principal concepts and methods as well as representative computer programs for resonance parameter extraction from measured data, evaluation of resonance data, calculation of Doppler-broadened cross sections and estimation of level-statistical quantities from resonance parameters are described. (author)
Applied neutron resonance theory
International Nuclear Information System (INIS)
Froehner, F.H.
1978-07-01
Utilisation of resonance theory in basic and applications-oriented neutron cross section work is reviewed. The technically important resonance formalisms, principal concepts and methods as well as representative computer programs for resonance parameter extraction from measured data, evaluation of resonance data, calculation of Doppler-broadened cross sections and estimation of level-statistical quantities from resonance parameters are described. (orig.) [de
International Nuclear Information System (INIS)
Kim, Yun-Jae; Lee, Kuk-Hee; Park, Chi-Yong
2008-01-01
The authors have previously proposed plastic limit load solutions for thin-walled branch junctions under internal pressure and in-plane bending, based on finite element (FE) limit loads resulting from three-dimensional (3-D) FE limit analyses using elastic-perfectly plastic materials [Kim YJ, Lee KH, Park CY. Limit loads for thin-walled piping branch junctions under internal pressure and in-plane bending. Int J Press Vessels Piping 2006;83:645-53]. The solutions are valid for ratios of the branch-to-run pipe radius and thickness from 0.4 to 1.0, and for the mean radius-to-thickness ratio of the run pipe from 10.0 to 20.0. Moreover, the solutions considered the case of in-plane bending only on the branch pipe. This paper extends the previous solutions in two aspects. Firstly, plastic limit load solutions are given also for in-plane bending on the run pipe. Secondly, the validity of the proposed solutions is extended to ratios of the branch-to-run pipe radius and thickness from 0.0 to 1.0, and the mean radius-to-thickness ratio of the run pipe from 5.0 to 20.0. Comparisons with FE results show good agreement
In Plane Loaded Glass Panes in Façades, Temperature Loads in Fixed Bonded Glass Panes
Huveners, E.M.P.; Herwijnen, van F.; Soetens, F.; Hofmeyer, H.; Vitkala, J.
2005-01-01
The author discusses the use of glass panes as transparent stability elements in vertical façade structures subjected to in-plane loads including temperature loads. In the present façade architecture, glass is normally used non-structural. The only mechanical requirement is to resist transversal
Influence of temperature on the critical in-plane field range for VBLs in the walls of hard domains
International Nuclear Information System (INIS)
Nie, X.F.; Guo, G.X.; Xu, J.P.; Liu, S.P.; Wang, L.N.; Huo, S.G.
2006-01-01
The influence of temperature on the critical in-plane field range for vertical Bloch lines in the walls of three kinds of hard domains is investigated experimentally. It is found that for each kind of three hard domains, there exists a critical in-plane field range, i. e. [H ip (1) (T),H ip (2) (T)], which depends on temperatures and in which vertical Bloch lines are unstable. Here, H ip (1) (T) is the initial critical in-plane field where VBLs in the walls of three kinds of hard domains are annihilated, and H ip (2) (T) is the lowest in-plane field where VBLs in their corresponding hard domains are annihilated completely. H ip (1) (T), H ip (2) (T) and [H ip (1) (T),H ip (2) (T)], all decrease as the temperature increase. Furthermore, H ip (1) (T) and H ip (2) (T) reach zero at T 0 1 and T 0 , respectively. In addition, there exists a relationship among them, when T is unchanged, H ip (1) (T) of the three kinds of hard domains (ordinary hard bubbles (OHB), first kind of dumbbell domain (ID) and second kind of dumbbell domains (IID)) decrease successively, and theirH ip (2) (T) are the same
Energy Technology Data Exchange (ETDEWEB)
Zhang, Xiaozhi; Yue, Zhenxing, E-mail: yuezhx@mail.tsinghua.edu.cn; Meng, Siqin; Yuan, Lixin [State Key Laboratory of New Ceramics and Fine Processing, School of Materials Science and Engineering, Tsinghua University, Beijing 100084 (China)
2014-12-28
In-plane c-axis oriented Ba-hexaferrite (BaM) thin films were prepared on a-plane (112{sup ¯}0) sapphire (Al{sub 2}O{sub 3}) substrates by DC magnetron sputtering followed by ex-situ annealing. The DC magnetron sputtering was demonstrated to have obvious advantages over the traditionally used RF magnetron sputtering in sputtering rate and operation simplicity. The sputtering power had a remarkable influence on the Ba/Fe ratio, the hematite secondary phase, and the grain morphology of the as-prepared BaM films. Under 80 W of sputtering power, in-plane c-axis highly oriented BaM films were obtained. These films had strong magnetic anisotropy with high hysteresis loop squareness (M{sub r}/M{sub s} of 0.96) along the in-plane easy axis and low M{sub r}/M{sub s} of 0.03 along the in-plane hard axis. X-ray diffraction patterns and pole figures revealed that the oriented BaM films grew via an epitaxy-like growth process with the crystallographic relationship BaM (101{sup ¯}0)//α-Fe{sub 2}O{sub 3}(112{sup ¯}0)//Al{sub 2}O{sub 3}(112{sup ¯}0)
Lin, Chien-Han; Wang, Chien-Kai; Chen, Yu-An; Peng, Chien-Chung; Liao, Wei-Hao; Tung, Yi-Chung
2016-11-01
In various physiological activities, cells experience stresses along their in-plane direction when facing substrate deformation. Capability of continuous monitoring elasticity of live cell layers during a period is highly desired to investigate cell property variation during various transformations under normal or disease states. This paper reports time-lapsed measurement of live cell layer in-plane elasticity using a pressure sensor embedded microfluidic device. The sensor converts pressure-induced deformation of a flexible membrane to electrical signals. When cells are cultured on top of the membrane, flexural rigidity of the composite membrane increases and further changes the output electrical signals. In the experiments, human embryonic lung fibroblast (MRC-5) cells are cultured and analyzed to estimate the in-plane elasticity. In addition, the cells are treated with a growth factor to simulate lung fibrosis to study the effects of cell transformation on the elasticity variation. For comparison, elasticity measurement on the cells by atomic force microscopy (AFM) is also performed. The experimental results confirm highly anisotropic configuration and material properties of cells. Furthermore, the in-plane elasticity can be monitored during the cell transformation after the growth factor stimulation. Consequently, the developed microfluidic device provides a powerful tool to study physical properties of cells for fundamental biophysics and biomedical researches.
Guo, Qi; Xu, Xiaoguang; Wang, Fang; Lu, Yunhao; Chen, Jikun; Wu, Yanjun; Meng, Kangkang; Wu, Yong; Miao, Jun; Jiang, Yong
2018-06-01
We report the in-plane electric field controlled ferromagnetism of La2/3Sr1/3MnO3 (LSMO) films epitaxially deposited on [Pb(Mg1/3Nb2/3)O3]0.7-(PbTiO3)0.3 (PMN-PT) (001), (011) and (111) single crystal substrates. The in-plane coercivities (H c∥) and remanences of the LSMO films greatly depend on the in-plane electric field applied on the PMN-PT (001) and (011) substrates. The experimental change of H c∥ is consistent with the Stoner–Wohlfarth model and first principle calculation with the electric field varying from ‑10 to 10 kV cm‑1. Moreover, the Curie temperature and anisotropic magnetoresistance of the LSMO films can also be manipulated by an in-plane electric field. Finally, the LSMO/PMN-PT (001) heterostructure is designed to be a new kind of magnetic signal generator with the source of electric field.
Polycrystal plasticity as applied to the problem of in-plane anisotropy in rolled cubic metals
International Nuclear Information System (INIS)
Rollett, A.D.; Stout, M.G.; Kocks, U.F.
1989-01-01
A fundamental property of cubic metals is that slip occurs on close-packed planes in close-packed directions, which for the f.c.c. case results in 12 /111/ slip systems. This crystallographic restriction on the plastic behavior causes significant crystallographic preferred orientation (texture), hence anisotropy, to develop once a large strain has been imposed. Moreover, whereas annealing can generally ''reset'' the flow stress and ductility, it does not generally randomize the texture: therefore most metallic materials have some degree of texture and consequent anisotropy. The problem of tearing in deep drawing can be simply related to the variation of r-value with angle from the rolling direction, i.e. the in-plane anisotropy of the sheet. The r-value can be calculated from a given texture with the use of a polycrystal plasticity model. The Los Alamos polycrystal plasticity (LApp) code is based on the Bishop-Hill single crystal yield surface (SCYS) but with a mildly strain-rate sensitive modification where the stress exponent is of order 30. This modification of the SCYS removes the ambiguity of slip system selection inherent in the Bishop-Hill formulation and permits other phenomena to be treated such as latent hardening and pencil glide. The use of LApp to simulate texture formation and consequent anisotropy is described. Experimental textures in the form of X-ray pole figures are analyzed with a Williams-Imhof-Matthies-Vinel (WIMV) code, as implemented by Kallend, to give full orientation distributions (OD's). The OD obtained this way contains approximately 5000 points on a 5/degree/ by 5/degree/ lattice; this is used to assign weights to approximately 1000 discrete orientations for calculations with LApp. 11 refs., 2 figs
Numerical simulations of the laminar-turbulent transition process in plane Poiseuille flow
International Nuclear Information System (INIS)
Kleiser, L.
1982-04-01
Laminar-turbulent transition in plane Poiseuille flow is simulated by numerical integration of the time-dependent three-dimensional Navier-Stokes equations for incompressible flow. The mathematical model of a spatially periodic, timewise developing flow in a moving frame of reference is used to match vibrating-ribbon experiments of Nishioka et al. The numerical discretisation is based on a spectral method with Fourier and Chebyshev polynomial expansions in space and second order finite differences in time. The pressure is calculated using a new method which enforces incompressibility and boundary conditions exactly. This is achieved by deriving the correct boundary conditions for the pressure Poisson equation. The numerical results obtained for two-dimensional finite amplitude disturbances are consistent with nonlinear stability theory. The time-periodic secondary flow is attained by the time-dependent calculation with reasonable accuracy after a long quasi-steady state. No sign of two-dimensional instability, but strong three-dimensional instability as well of the periodic secondary flow as of the quasi-steady state is found. This secondary three-dimensional instability is shown to be responsible for transition. It is shown that the three-dimensional simulations presented here reproduce the experimentally observed transition process up to the spike stage. Detailed comparisons with measurements of mean velocity, rms-values of fluctuation and instantaneous velocity distribution reveal very satisfactory agreement. The formation of peak-valley structure, longitudinal vortices, local high-shear layers and distinct spike-type signals is shown. In addition, the three-dimensional flow field structure before breakdown is investigated. An array of horseshoe vortices similar to those inferred from boundary layer flow visualization experiments is found. Spike signals are produced by local accumulations of low-speed fluid in the downstream loops of these vortices. (orig.) [de
Kenda, A.; Kraft, M.; Tortschanoff, A.; Scherf, Werner; Sandner, T.; Schenk, Harald; Luettjohann, Stephan; Simon, A.
2014-05-01
With a trend towards the use of spectroscopic systems in various fields of science and industry, there is an increasing demand for compact spectrometers. For UV/VIS to the shortwave near-infrared spectral range, compact hand-held polychromator type devices are widely used and have replaced larger conventional instruments in many applications. Still, for longer wavelengths this type of compact spectrometers is lacking suitable and affordable detector arrays. In perennial development Carinthian Tech Research AG together with the Fraunhofer Institute for Photonic Microsystems endeavor to close this gap by developing spectrometer systems based on photonic MEMS. Here, we review on two different spectrometer developments, a scanning grating spectrometer working in the NIR and a FT-spectrometer accessing the mid-IR range up to 14 μm. Both systems are using photonic MEMS devices actuated by in-plane comb drive structures. This principle allows for high mechanical amplitudes at low driving voltages but results in gratings respectively mirrors oscillating harmonically. Both systems feature special MEMS structures as well as aspects in terms of system integration which shall tease out the best possible overall performance on the basis of this technology. However, the advantages of MEMS as enabling technology for high scanning speed, miniaturization, energy efficiency, etc. are pointed out. Whereas the scanning grating spectrometer has already evolved to a product for the point of sale analysis of traditional Chinese medicine products, the purpose of the FT-spectrometer as presented is to demonstrate what is achievable in terms of performance. Current developments topics address MEMS packaging issues towards long term stability, further miniaturization and usability.
Mitri, F G
2016-03-01
This work proposes a formal analytical theory using the partial-wave series expansion (PWSE) method in cylindrical coordinates, to calculate the acoustic backscattering form function as well as the radiation force-per-length on an infinitely long elliptical (non-circular) cylinder in plane progressive waves. The major (or minor) semi-axis of the ellipse coincides with the direction of the incident waves. The scattering coefficients for the rigid elliptical cylinder are determined by imposing the Neumann boundary condition for an immovable surface and solving a resulting system of linear equations by matrix inversion. The present method, which utilizes standard cylindrical (Bessel and Hankel) wave functions, presents an advantage over the solution for the scattering that is ordinarily expressed in a basis of elliptical Mathieu functions (which are generally non-orthogonal). Furthermore, an integral equation showing the direct connection of the radiation force function with the square of the scattering form function in the far-field from the scatterer (applicable for plane waves only), is noted and discussed. An important application of this integral equation is the adequate evaluation of the radiation force function from a bistatic measurement (i.e., in the polar plane) of the far-field scattering from any 2D object of arbitrary shape. Numerical predictions are evaluated for the acoustic backscattering form function and the radiation force function, which is the radiation force per unit length, per characteristic energy density, and per unit cross-sectional surface of the ellipse, with particular emphasis on the aspect ratio a/b, where a and b are the semi-axes, as well as the dimensionless size parameter kb, without the restriction to a particular range of frequencies. The results are particularly relevant in acoustic levitation, acousto-fluidics and particle dynamics applications. Copyright © 2015 Elsevier B.V. All rights reserved.
Dependence of electronic properties of germanium on the in-plane biaxial tensile strains
Energy Technology Data Exchange (ETDEWEB)
Yang, C.H. [State Key Laboratory of Information Photonics and Optical Communications, Beijing University of Posts and Telecommunications (BUPT), Beijing 100876 (China); Yu, Z.Y., E-mail: yuzhongyuan30@gmail.com [State Key Laboratory of Information Photonics and Optical Communications, Beijing University of Posts and Telecommunications (BUPT), Beijing 100876 (China); Liu, Y.M.; Lu, P.F. [State Key Laboratory of Information Photonics and Optical Communications, Beijing University of Posts and Telecommunications (BUPT), Beijing 100876 (China); Gao, T. [Institute of Atomic and Molecular Physics, Sichuan University, Chengdu 610065 (China); Li, M.; Manzoor, S. [State Key Laboratory of Information Photonics and Optical Communications, Beijing University of Posts and Telecommunications (BUPT), Beijing 100876 (China)
2013-10-15
The hybrid HSE06 functional with the spin–orbit coupling effects is used to calculate the habituation of the electronic properties of Ge on the (0 0 1), (1 1 1), (1 0 1) in-plane biaxial tensile strains (IPBTSs). Our motivation is to explore the nature of electronic properties of tensile-strained Ge on different substrate orientations. The calculated results demonstrate that one of the most effective and practical approaches for transforming Ge into a direct transition semiconductor is to introduce (0 0 1) IPBTS to Ge. At 2.3% (0 0 1) IPBTS, Ge becomes a direct bandgap semiconductor with 0.53 eV band gap, in good agreement with the previous theoretical and experimental results. We find that the (1 1 1) and (1 0 1) IPBTSs are not efficient since the shear strain and inner displacement of atoms introduced by them quickly decrease the indirect gap of Ge. By investigating the dependence of valence band spin–orbit splitting on strain, we prove that the dependency relationship and the coupled ways between the valence-band states of tensile-strained Ge are closely related to the symmetry of strain tensor, i.e., the symmetry of the substrate orientation. The first- and second-order coefficients describing the dependence of indirect gap, direct gap, the valence band spin–orbit coupling splitting, and heavy-hole–light-hole splitting of Ge on IPBTSs have been obtained by the least squares polynomial fitting. These coefficients are significant to quantitatively modulate the electronic properties of Ge by tensile strain and design tensile-strained Ge devices by semiconductor epitaxial technique.
International Nuclear Information System (INIS)
Kajdalov, A.B.
1986-01-01
Experimental data on np interactions indicating to existence of narrow resonances in pp-system are discussed. Possible theoretical interpretations of these resonances are given. Experimental characteristics of the dibaryon resonances with isospin I=2 are considered
MRI (Magnetic Resonance Imaging)
... Procedures Medical Imaging MRI (Magnetic Resonance Imaging) MRI (Magnetic Resonance Imaging) Share Tweet Linkedin Pin it More sharing options Linkedin Pin it Email Print Magnetic Resonance Imaging (MRI) is a medical imaging procedure for ...
Regenerative feedback resonant circuit
Jones, A. Mark; Kelly, James F.; McCloy, John S.; McMakin, Douglas L.
2014-09-02
A regenerative feedback resonant circuit for measuring a transient response in a loop is disclosed. The circuit includes an amplifier for generating a signal in the loop. The circuit further includes a resonator having a resonant cavity and a material located within the cavity. The signal sent into the resonator produces a resonant frequency. A variation of the resonant frequency due to perturbations in electromagnetic properties of the material is measured.
Resonances, resonance functions and spectral deformations
International Nuclear Information System (INIS)
Balslev, E.
1984-01-01
The present paper is aimed at an analysis of resonances and resonance states from a mathematical point of view. Resonances are characterized as singular points of the analytically continued Lippman-Schwinger equation, as complex eigenvalues of the Hamiltonian with a purely outgoing, exponentially growing eigenfunction, and as poles of the S-matrix. (orig./HSI)
Ferromagnetic resonance and spin-wave resonances in GaMnAsP films
Liu, Xinyu; Li, Xiang; Bac, Seul-Ki; Zhang, Xucheng; Dong, Sining; Lee, Sanghoon; Dobrowolska, Margaret; Furdyna, Jacek K.
2018-05-01
A series of Ga1-xMnxAs1-yPy films grown by MBE on GaAs (100) substrates was systematically studied by ferromagnetic resonance (FMR). Magnetic anisotropy parameters were obtained by analyzing the angular dependence of the FMR data. The results clearly show that the easy axis of the films shifts from the in-plane [100] direction to the out-of-plane [001], indicating the emergence of a strong tensile-strain-induced perpendicular anisotropy when the P content exceeds y ≈ 0.07. Multiple resonances were observed in Ga1-xMnxAs1-yPy films with thicknesses over 48 nm, demonstrating the existence of exchange-dominated non-propagating spin-wave modes governed by surface anisotropy.
Srinil, Narakorn; Ma, Bowen; Zhang, Licong
2018-05-01
This study is motivated by an industrial need to better understand the vortex-induced vibration (VIV) of a curved structure subject to current flows with varying directions whose data for model calibration and validation are lacking. In this paper, new experimental investigations on the two-degree-of-freedom in-plane/out-of-plane VIV of a rigid curved circular cylinder immersed in steady and uniform free-stream flows are presented. The principal objective is to examine how the approaching flow direction versus the cylinder curvature plane affects cross-flow and in-line VIV and the associated hydrodynamic properties. This is achieved by testing the curved cylinder in 3 different flow orientations comprising the parallel flows aligned with the curvature vertical plane in convex and concave configurations, and the flows perpendicular to the curvature plane. The case of varying flow velocities in a subcritical flow range with a maximum Reynolds number of about 50,000 is considered for the curved cylinder with a low mass ratio and damping ratio. Experimental results are presented and discussed in terms of the cylinder response amplitudes, inclination angles, mean displacements, motion trajectories, oscillation frequencies, hydrodynamic forces, relative phases, fluid excitation and added inertia coefficients. Comparisons with other experimental results of curved and straight cylinder VIV are also presented. The experiments highlight the important effects of cylinder curvature versus flow orientation on the combined cross-flow/in-line VIV. The maximum (minimum) responses occur in the perpendicular (convex) flow case whereas the extended lower-branch responses occur in the concave flow case. For perpendicular flows, some meaningful features are observed, including the appearances of cross-flow mean displacements and asymmetric eight-shaped motion trajectories due to multiple 2:1:1 resonances where two out-of-plane and one in-plane dominant frequencies are simultaneously
International Nuclear Information System (INIS)
Wellens, Thomas; Shatokhin, Vyacheslav; Buchleitner, Andreas
2004-01-01
We are taught by conventional wisdom that the transmission and detection of signals is hindered by noise. However, during the last two decades, the paradigm of stochastic resonance (SR) proved this assertion wrong: indeed, addition of the appropriate amount of noise can boost a signal and hence facilitate its detection in a noisy environment. Due to its simplicity and robustness, SR has been implemented by mother nature on almost every scale, thus attracting interdisciplinary interest from physicists, geologists, engineers, biologists and medical doctors, who nowadays use it as an instrument for their specific purposes. At the present time, there exist a lot of diversified models of SR. Taking into account the progress achieved in both theoretical understanding and practical application of this phenomenon, we put the focus of the present review not on discussing in depth technical details of different models and approaches but rather on presenting a general and clear physical picture of SR on a pedagogical level. Particular emphasis will be given to the implementation of SR in generic quantum systems-an issue that has received limited attention in earlier review papers on the topic. The major part of our presentation relies on the two-state model of SR (or on simple variants thereof), which is general enough to exhibit the main features of SR and, in fact, covers many (if not most) of the examples of SR published so far. In order to highlight the diversity of the two-state model, we shall discuss several examples from such different fields as condensed matter, nonlinear and quantum optics and biophysics. Finally, we also discuss some situations that go beyond the generic SR scenario but are still characterized by a constructive role of noise
Magnetism in heterogeneous thin film systems: Resonant X-ray scattering studies
International Nuclear Information System (INIS)
Kortright, J.B.; Jiang, J.S.; Bader, S.D.; Hellwig, O.; Marguiles, D.T.; Fullerton, E.E.
2002-01-01
Magnetic and chemical heterogeneity are common in a broad range of magnetic thin film systems. Emerging resonant soft x-ray scattering techniques are well suited to resolve such heterogeneity at relevant length scales. Resonant x-ray magneto-optical Kerr effect measurements laterally average over heterogeneity but can provide depth resolution in different ways, as illustrated in measurements resolving reversible and irreversible changes in different layers of exchange-spring heterostructures. Resonant small-angle scattering measures in-plane heterogeneity and can resolve magnetic and chemical scattering sources in different ways, as illustrated in measurements of granular alloy recording media
Dankerl, Peter; Seuss, Hannes; Ellmann, Stephan; Cavallaro, Alexander; Uder, Michael; Hammon, Matthias
2017-02-01
This study aimed to evaluate the diagnostic performance of using a reformatted single-in-plane image reformation of the rib cage for the detection of rib fractures in computed tomography (CT) examinations, employing different levels of radiological experience. We retrospectively evaluated 10 consecutive patients with and 10 patients without rib fractures, whose CT scans were reformatted to a single-in-plane image reformation of the rib cage. Eight readers (two radiologists, two residents in radiology, and four interns) independently evaluated the images for the presence of rib fractures using a reformatted single-in-plane image and a multi-planar image reformation. The time limit was 30 seconds for each read. A consensus of two radiologist readings was considered as the reference standard. Diagnostic performance (sensitivity, specificity, positive predictive value [PPV], and negative predictive value [NPV]) was assessed and evaluated per rib and per location (anterior, lateral, posterior). To determine the time limit, we prospectively analyzed the average time it took radiologists to assess the rib cage, in a bone window setting, in 50 routine CT examinations. McNemar test was used to compare the diagnostic performances. Single image reformation was successful in all 20 patients. The sensitivity, specificity, PPV, and NPV for the detection of rib fractures using the conventional multi-planar read were 77.5%, 99.2%, 89.9%, and 98.0% for radiologists; 46.3%, 99.7%, 92.5%, and 95.3% for residents; and 29.4%, 99.4%, 82.5%, and 93.9% for interns, respectively. Sensitivity, PPV, and NPV increased across all three groups of experience, using the reformatted single-in-plane image of the rib cage (radiologists: 85.0%, 98.6%, and 98.7%; residents: 80.0%, 92.8%, and 98.2%; interns: 66.9%, 89.9%, and 97.1%), whereas specificity did not change significantly (99.9%, 99.4%, and 99.3%). The diagnostic performance of the interns and residents was significantly better when
Development of In-plane Thermal Conductivity Calculation Methods in Thin Films
Directory of Open Access Journals (Sweden)
A. A. Barinov
2017-01-01
the thermal conductivity for micro - and nanostructures it is necessary to employ a detailed process description of the phonons propagation for different energies (frequencies and polarizations, and consider the real dispersion relations (velocities of their propagation for each concerned temperature and thickness of the sample.The above recommendations can be used to estimate the in-plane thermal conductivity of thin films when simulating the new structures in advanced semiconductor devices.
Synthesis of in-plane aligned a-axis YBa2Cu3O7-δ thin films
International Nuclear Information System (INIS)
Young, K.H.; Sun, J.Z.
1991-01-01
We report the successful synthesis of superconducting YBa 2 Cu 3 O 7-δ (YBCO) (100) thin films with alignment of the in-plane c axis. These films were grown on single crystal NdGaO 3 (110) substrates. The twofold symmetry of the substrate surface is believed to lead to anisotropic alignment of the in-plane c axis of the epitaxial YBCO (100) film. X-ray diffraction studies indicate that over 80% of the film grew epitaxially with the YBCO [100] perpendicular to the substrate surface, and YBCO [001] aligned along one pseudo-cubic axis of the NdGaO 3 . The superconductivity onset of the film was measured to be 89 K by ac susceptibility
Anisotropic in-plane spin splitting in an asymmetric (001 GaAs/AlGaAs quantum well
Directory of Open Access Journals (Sweden)
Zhang Xiuwen
2011-01-01
Full Text Available Abstract The in-plane spin splitting of conduction-band electron has been investigated in an asymmetric (001 GaAs/Al x Ga1-x As quantum well by time-resolved Kerr rotation technique under a transverse magnetic field. The distinctive anisotropy of the spin splitting was observed while the temperature is below approximately 200 K. This anisotropy emerges from the combined effect of Dresselhaus spin-orbit coupling plus asymmetric potential gradients. We also exploit the temperature dependence of spin-splitting energy. Both the anisotropy of spin splitting and the in-plane effective g-factor decrease with increasing temperature. PACS: 78.47.jm, 71.70.Ej, 75.75.+a, 72.25.Fe,
Absence of effects of an in-plane magnetic field in a quasi-two-dimensional electron system
Brandt, F. T.; Sánchez-Monroy, J. A.
2018-03-01
The dynamics of a quasi-two-dimensional electron system (q2DES) in the presence of a tilted magnetic field is reconsidered employing the thin-layer method. We derive the effective equations for relativistic and nonrelativistic q2DESs. Through a perturbative expansion, we show that while the magnetic length is much greater than the confinement width, the in-plane magnetic field only affects the particle dynamics through the spin. Therefore, effects due to an in-plane magnetic vector potential reported previously in the literature for 2D quantum rings, 2D quantum dots and graphene are fictitious. In particular, the so-called pseudo chiral magnetic effect recently proposed in graphene is not realistic.
International Nuclear Information System (INIS)
Fisher, I R; Shen, Z X; Degiorgi, L
2011-01-01
The parent phases of the Fe-arsenide superconductors harbor an antiferromagnetic ground state. Significantly, the Neel transition is either preceded or accompanied by a structural transition that breaks the four-fold symmetry of the high-temperature lattice. Borrowing language from the field of soft condensed matter physics, this broken discrete rotational symmetry is widely referred to as an Ising nematic phase transition. Understanding the origin of this effect is a key component of a complete theoretical description of the occurrence of superconductivity in this family of compounds, motivating both theoretical and experimental investigation of the nematic transition and the associated in-plane anisotropy. Here we review recent experimental progress in determining the intrinsic in-plane electronic anisotropy as revealed by resistivity, reflectivity and angle-resolved photoemission spectroscopy measurements of detwinned single crystals of underdoped Fe-arsenide superconductors in the '122' family of compounds.
Few-layered MnO2/SWCNT hybrid in-plane supercapacitor with high energy density
Dutta, Shibsankar; Pal, Shreyasi; De, Sukanta
2018-05-01
In this present work we have synthesized few layered MnO2 nanosheets by mixed solvent exfoliation process for the application as electrode material of in-plane supercapacitor. The Structure and surface morphology of the as prepared samples are characterized by Raman, Transmission electron microscopy and Scanning electron microscopy. The patterns of the hybrids were directly fabricated by (50: 50 wt %) mixture of MnO2 and SWCNT dispersions with the help of a customized mask, and directly transferred onto a flexible PET substrate. Remarkably, the prepared in-plane supercapacitors deliver high energy density of 2.62mWh/cm2. Furthermore, our supercapacitors shows exceptional flexibility and stable performance under bending conditions
A comprehensive model for in-plane and out-of-plane vibration of CANDU fuel endplate rings
Energy Technology Data Exchange (ETDEWEB)
Yu, S.D., E-mail: syu@ryerson.ca; Fadaee, M.
2016-08-01
Highlights: • Proposed an effective method for modelling bending and torsional vibration of CANDU fuel endplate rings. • Applied successfully the thick plate theory to curved structural members by accounting for the transverse shear effect. • The proposed method is computationally more efficient compared to the 3D finite element. - Abstract: In this paper, a comprehensive vibration model is developed for analysing in-plane and out-of-plane vibration of CANDU fuel endplate rings by taking into consideration the effects of in-plane extension in the circumferential and radial directions, shear, and rotatory inertia. The model is based on Reddy’s thick plate theory and the nine-node isoparametric Lagrangian plate finite elements. Natural frequencies of various modes of vibration of circular rings obtained using the proposed method are compared with 3D finite element results, experimental data and results available in the literature. Excellent agreement was achieved.
DEFF Research Database (Denmark)
Cagliani, Alberto; Østerberg, Frederik Westergaard; Hansen, Ole
2017-01-01
We present a breakthrough in micro-four-point probe (M4PP) metrology to substantially improve precision of transmission line (transfer length) type measurements by application of advanced electrode position correction. In particular, we demonstrate this methodology for the M4PP current-in-plane t......We present a breakthrough in micro-four-point probe (M4PP) metrology to substantially improve precision of transmission line (transfer length) type measurements by application of advanced electrode position correction. In particular, we demonstrate this methodology for the M4PP current......-in-plane tunneling (CIPT) technique. The CIPT method has been a crucial tool in the development of magnetic tunnel junction (MTJ) stacks suitable for magnetic random-access memories for more than a decade. On two MTJ stacks, the measurement precision of resistance-area product and tunneling magnetoresistance...
Energy Technology Data Exchange (ETDEWEB)
Fisher, Ian Randal
2012-05-08
The parent phases of the Fe-arsenide superconductors harbor an antiferromagnetic ground state. Significantly, the Neel transition is either preceded or accompanied by a structural transition that breaks the four fold symmetry of the high-temperature lattice. Borrowing language from the field of soft condensed matter physics, this broken discrete rotational symmetry is widely referred to as an Ising nematic phase transition. Understanding the origin of this effect is a key component of a complete theoretical description of the occurrence of superconductivity in this family of compounds, motivating both theoretical and experimental investigation of the nematic transition and the associated in-plane anisotropy. Here we review recent experimental progress in determining the intrinsic in-plane electronic anisotropy as revealed by resistivity, reflectivity and ARPES measurements of detwinned single crystals of underdoped Fe arsenide superconductors in the '122' family of compounds.
Behzad, Somayeh
2018-04-01
Effects of strain on the electronic and optical properties of graphene on monolayer boron nitride (BN) substrate are investigated using first-principle calculations based on density functional theory. Strain-free graphene/BN has a small band gap of 97 meV at the K point. The magnitude of band gap increases with in-plane biaxial strain while it decreases with the perpendicular uniaxial strain. The ɛ2 (ω ) spectrum of graphene/BN bilayer for parallel polarization shows red and blue shifts by applying the in-plane tensile and compressive strains, respectively. Also the positions of peaks in the ɛ2 (ω ) spectrum are not significantly changed under perpendicular strain. The calculated results indicate that graphene on the BN substrate has great potential in microelectronic and optoelectronic applications.
Energy Technology Data Exchange (ETDEWEB)
Maruyama, R., E-mail: ryuji.maruyama@j-parc.jp [J-PARC Center, Japan Atomic Energy Agency, 2-4 Shirakata Shirane, Tokai, Ibaraki 319-1195 (Japan); Bigault, T.; Wildes, A.R.; Dewhurst, C.D. [Institut Laue Langevin, 71 avenue des Martyrs, 38042 Grenoble (France); Soyama, K. [J-PARC Center, Japan Atomic Energy Agency, 2-4 Shirakata Shirane, Tokai, Ibaraki 319-1195 (Japan); Courtois, P. [Institut Laue Langevin, 71 avenue des Martyrs, 38042 Grenoble (France)
2016-05-21
The in-plane magnetic structure of a layered system with a polycrystalline grain size less than the ferromagnetic exchange length was investigated using polarized neutron off-specular scattering and grazing incidence small angle scattering measurements to gain insight into the mechanism that controls the magnetic properties which are different from the bulk. These complementary measurements with different length scales and the data analysis based on the distorted wave Born approximation revealed the lateral correlation on a length scale of sub- μm due to the fluctuating orientation of the magnetization in the layer. The obtained in-plane magnetic structure is consistent with the random anisotropy model, i.e. competition between the exchange interactions between neighboring spins and the local magnetocrystalline anisotropy.
Yoshida, Hiroyuki; Miura, Yusuke; Tokuoka, Kazuki; Suzuki, Satoshi; Fujii, Akihiko; Ozaki, Masanori
2008-11-10
A controlled helix pitch modulation in the in-plane direction of a planarly aligned cholesteric liquid crystal cell is demonstrated by using photopolymerizable cholesteric liquid crystals. By fabricating artificial domains with a closed volume via two-photon excitation laser-lithography, the degree of pitch modulation could be controlled by adjusting the surface area to volume ratio of the domain. A pitch modulation of over 60 nm was realized by designing the shape of the artificial domain.
Energy Technology Data Exchange (ETDEWEB)
Kalra, Mannudeep K.; Dang, Pragya; Singh, Sarabjeet; Saini, Sanjay; Shepard, Jo Anne O. [Massachusetts General Hospital, Boston (United States)
2009-04-15
To assess effects of off-centering, automatic exposure control, and padding on attenuation values, noise, and radiation dose when using in-plane bismuth-based shields for CT scanning. A 30 cm anthropomorphic chest phantom was scanned on a 64-multidetector CT, with the center of the phantom aligned to the gantry isocenter. Scanning was repeated after placing a bismuth breast shield on the anterior surface with no gap and with 1, 2, and 6 cm of padding between the shield and the phantom surface. The 'shielded' phantom was also scanned with combined modulation and off-centering of the phantom at 2 cm, 4 cm and 6 cm below the gantry isocenter. CT numbers, noise, and surface radiation dose were measured. The data were analyzed using an analysis of variance. The in-plane shield was not associated with any significant increment for the surface dose or CT dose index volume, which was achieved by comparing the radiation dose measured by combined modulation technique to the fixed mAs (p > 0.05). Irrespective of the gap or the surface CT numbers, surface noise increased to a larger extent compared to Hounsfield unit (HU) (0-6 cm, 26-55%) and noise (0-6 cm, 30-40%) in the center. With off-centering, in-plane shielding devices are associated with less dose savings, although dose reduction was still higher than in the absence of shielding (0 cm off-center, 90% dose reduction; 2 cm, 61%) (p < 0.0001). Streak artifacts were noted at 0 cm and 1 cm gaps but not at 2 cm and 6 cm gaps of shielding to the surface distances. In-plane shields are associated with greater image noise, artificially increased attenuation values, and streak artifacts. However, shields reduce radiation dose regardless of the extent of off-centering. Automatic exposure control did not increase radiation dose when using a shield.
Kucukler, M; Gardner, L; Macorini, L
2016-01-01
In this paper, the development and assessment of a stiffness reduction method for the in-plane design of steel frames is presented. The adopted stiffness reduction approach is implemented by reducing the flexural stiffnesses (EI) of the members of a steel frame by considering the first-order forces they are subjected to through the stiffness reduction functions and performing Geometrically Nonlinear Analysis (i.e. second-order elastic analysis). Since the presented approach uses stiffness red...
DEFF Research Database (Denmark)
Jakobsen, Johnny; Jensen, Martin; Andreasen, Jens H.
2013-01-01
The in-plane thermo-mechanical properties and residual stresses of a CSM E-glass/Epoxy material are characterised through the use of DSC and TMA. The measured data is used to generate material models which describe the mechanical behaviour as a function of conversion and temperature. The in-plane...
Electronic in-plane symmetry breaking at field-tuned quantum criticality in CeRhIn5.
Ronning, F; Helm, T; Shirer, K R; Bachmann, M D; Balicas, L; Chan, M K; Ramshaw, B J; McDonald, R D; Balakirev, F F; Jaime, M; Bauer, E D; Moll, P J W
2017-08-17
Electronic nematic materials are characterized by a lowered symmetry of the electronic system compared to the underlying lattice, in analogy to the directional alignment without translational order in nematic liquid crystals. Such nematic phases appear in the copper- and iron-based high-temperature superconductors, and their role in establishing superconductivity remains an open question. Nematicity may take an active part, cooperating or competing with superconductivity, or may appear accidentally in such systems. Here we present experimental evidence for a phase of fluctuating nematic character in a heavy-fermion superconductor, CeRhIn 5 (ref. 5). We observe a magnetic-field-induced state in the vicinity of a field-tuned antiferromagnetic quantum critical point at H c ≈ 50 tesla. This phase appears above an out-of-plane critical field H* ≈ 28 tesla and is characterized by a substantial in-plane resistivity anisotropy in the presence of a small in-plane field component. The in-plane symmetry breaking has little apparent connection to the underlying lattice, as evidenced by the small magnitude of the magnetostriction anomaly at H*. Furthermore, no anomalies appear in the magnetic torque, suggesting the absence of metamagnetism in this field range. The appearance of nematic behaviour in a prototypical heavy-fermion superconductor highlights the interrelation of nematicity and unconventional superconductivity, suggesting nematicity to be common among correlated materials.
Kistanov, Andrey A.; Cai, Yongqing; Zhang, Yong-Wei; Dmitriev, Sergey V.; Zhou, Kun
2017-03-01
By using first-principles calculations, the electronic structure of planar and strained in-plane graphene/silicene heterostructure is studied. The heterostructure is found to be metallic in a strain range from -7% (compression) to +7% (tension). The effect of compressive/tensile strain on the chemical activity of the in-plane graphene/silicene heterostructure is examined by studying its interaction with the H2O molecule. It shows that compressive/tensile strain is able to increase the binding energy of H2O compared with the adsorption on a planar surface, and the charge transfer between the water molecule and the graphene/silicene sheet can be modulated by strain. Moreover, the presence of the boron-nitride (BN)-substrate significantly influences the chemical activity of the graphene/silicene heterostructure upon its interaction with the H2O molecule and may cause an increase/decrease of the charge transfer between the H2O molecule and the heterostructure. These findings provide insights into the modulation of electronic properties of the in-plane free-standing/substrate-supported graphene/silicene heterostructure, and render possible ways to control its electronic structure, carrier density and redox characteristics, which may be useful for its potential applications in nanoelectronics and gas sensors.
International Nuclear Information System (INIS)
Kistanov, Andrey A; Zhou, Kun; Cai, Yongqing; Zhang, Yong-Wei; Dmitriev, Sergey V
2017-01-01
By using first-principles calculations, the electronic structure of planar and strained in-plane graphene/silicene heterostructure is studied. The heterostructure is found to be metallic in a strain range from −7% (compression) to +7% (tension). The effect of compressive/tensile strain on the chemical activity of the in-plane graphene/silicene heterostructure is examined by studying its interaction with the H 2 O molecule. It shows that compressive/tensile strain is able to increase the binding energy of H 2 O compared with the adsorption on a planar surface, and the charge transfer between the water molecule and the graphene/silicene sheet can be modulated by strain. Moreover, the presence of the boron-nitride (BN)-substrate significantly influences the chemical activity of the graphene/silicene heterostructure upon its interaction with the H 2 O molecule and may cause an increase/decrease of the charge transfer between the H 2 O molecule and the heterostructure. These findings provide insights into the modulation of electronic properties of the in-plane free-standing/substrate-supported graphene/silicene heterostructure, and render possible ways to control its electronic structure, carrier density and redox characteristics, which may be useful for its potential applications in nanoelectronics and gas sensors. (paper)
NaCl-assisted one-step growth of MoS2-WS2 in-plane heterostructures
Wang, Zhan; Xie, Yong; Wang, Haolin; Wu, Ruixue; Nan, Tang; Zhan, Yongjie; Sun, Jing; Jiang, Teng; Zhao, Ying; Lei, Yimin; Yang, Mei; Wang, Weidong; Zhu, Qing; Ma, Xiaohua; Hao, Yue
2017-08-01
Transition metal dichalcogenides (TMDs) have attracted considerable interest for exploration of next-generation electronics and optoelectronics in recent years. Fabrication of in-plane lateral heterostructures between TMDs has opened up excellent opportunities for engineering two-dimensional materials. The creation of high quality heterostructures with a facile method is highly desirable but it still remains challenging. In this work, we demonstrate a one-step growth method for the construction of high-quality MoS2-WS2 in-plane heterostructures. The synthesis was carried out using ambient pressure chemical vapor deposition (APCVD) with the assistance of sodium chloride (NaCl). It was found that the addition of NaCl played a key role in lowering the growth temperatures, in which the Na-containing precursors could be formed and condensed on the substrates to reduce the energy of the reaction. As a result, the growth regimes of MoS2 and WS2 are better matched, leading to the formation of in-plane heterostructures in a single step. The heterostructures were proved to be of high quality with a sharp and clear interface. This newly developed strategy with the assistance of NaCl is promising for synthesizing other TMDs and their heterostructures.
Aradhya, Sriharsha; Rowlands, Graham; Shi, Shengjie; Oh, Junseok; Ralph, D. C.; Buhrman, Robert
Magnetic random access memory (MRAM) using spin transfer torques (STT) holds great promise for replacing existing best-in-class memory technologies in several application domains. Research on conventional two-terminal STT-MRAM thus far has revealed the existence of limitations that constrain switching reliability and speed for both in-plane and perpendicularly magnetized devices. Recently, spin torque arising from the giant spin-Hall effect in Ta, W and Pt has been shown to be an efficient mechanism to switch magnetic bits in a three-terminal geometry. Here we report highly reliable, nanosecond timescale pulse switching of three-terminal devices with in-plane magnetized magnetic tunnel junctions. We obtain write error rates (WER) down to ~10-5 using pulses as short as 2 ns, in contrast to conventional in-plane STT-MRAM devices where write speeds were limited to a few tens of nanoseconds for comparable WER. Utilizing micro-magnetic simulations, we discuss the differences from conventional MRAM that allow for this unanticipated and significant performance improvement. Finally, we highlight the path towards practical application enabled by the ability to separately optimize the read and write pathways in three-terminal devices.
Highly Tunable Electrothermally and Electrostatically Actuated Resonators
Hajjaj, Amal Z.
2016-03-30
This paper demonstrates experimentally, theoretically, and numerically for the first time, a wide-range tunability of an in-plane clamped-clamped microbeam, bridge, and resonator actuated electrothermally and electrostatically. Using both actuation methods, we demonstrate that a single resonator can be operated at a wide range of frequencies. The microbeam is actuated electrothermally by passing a dc current through it, and electrostatically by applying a dc polarization voltage between the microbeam and the stationary electrode. We show that when increasing the electrothermal voltage, the compressive stress inside the microbeam increases, which leads eventually to its buckling. Before buckling, the fundamental frequency decreases until it drops to very low values, almost to zero. After buckling, the fundamental frequency increases, which is shown to be as high as twice the original resonance frequency. Adding a dc bias changes the qualitative nature of the tunability both before and after buckling, which adds another independent way of tuning. This reduces the dip before buckling, and can eliminate it if desired, and further increases the fundamental frequency after buckling. Analytical results based on the Galerkin discretization of the Euler Bernoulli beam theory are generated and compared with the experimental data and simulation results of a multi-physics finite-element model. A good agreement is found among all the results. [2015-0341
Electrothermal Frequency Modulated Resonator for Mechanical Memory
Hafiz, Md Abdullah Al
2016-08-18
In this paper, we experimentally demonstrate a mechanical memory device based on the nonlinear dynamics of an electrostatically actuated microelectromechanical resonator utilizing an electrothermal frequency modulation scheme. The microstructure is deliberately fabricated as an in-plane shallow arch to achieve geometric quadratic nonlinearity. We exploit this inherent nonlinearity of the arch and drive it at resonance with minimal actuation voltage into the nonlinear regime, thereby creating softening behavior, hysteresis, and coexistence of states. The hysteretic frequency band is controlled by the electrothermal actuation voltage. Binary values are assigned to the two allowed dynamical states on the hysteretic response curve of the arch resonator with respect to the electrothermal actuation voltage. Set-and-reset operations of the memory states are performed by applying controlled dc pulses provided through the electrothermal actuation scheme, while the read-out operation is performed simultaneously by measuring the motional current through a capacitive detection technique. This novel memory device has the advantages of operating at low voltages and under room temperature. [2016-0043
Andica, C; Hagiwara, A; Hori, M; Nakazawa, M; Goto, M; Koshino, S; Kamagata, K; Kumamaru, K K; Aoki, S
2018-05-01
Segmented brain tissue and myelin volumes can now be automatically calculated using dedicated software (SyMRI), which is based on quantification of R 1 and R 2 relaxation rates and proton density. The aim of this study was to determine the validity of SyMRI brain tissue and myelin volumetry using various in-plane resolutions. We scanned 10 healthy subjects on a 1.5T MR scanner with in-plane resolutions of 0.8, 2.0 and 3.0mm. Two scans were performed for each resolution. The acquisition time was 7-min and 24-sec for 0.8mm, 3-min and 9-sec for 2.0mm and 1-min and 56-sec for 3.0mm resolutions. The volumes of white matter (WM), gray matter (GM), cerebrospinal fluid (CSF), non-WM/GM/CSF (NoN), brain parenchymal volume (BPV), intracranial volume (ICV) and myelin were compared between in-plane resolutions. Repeatability for each resolution was then analyzed. No significant differences in volumes measured were found between the different in-plane resolutions, except for NoN between 0.8mm and 2.0mm and between 2.0mm and 3.0mm. The repeatability error value for the WM, GM, CSF, NoN, BPV and myelin volumes relative to ICV was 0.97%, 1.01%, 0.65%, 0.86%, 1.06% and 0.25% in 0.8mm; 1.22%, 1.36%, 0.73%, 0.37%, 1.18% and 0.35% in 2.0mm and 1.18%, 1.02%, 0.96%, 0.45%, 1.36%, and 0.28% in 3.0mm resolutions. SyMRI brain tissue and myelin volumetry with low in-plane resolution and short acquisition times is robust and has a good repeatability so could be useful for follow-up studies. Copyright © 2017 Elsevier Masson SAS. All rights reserved.
In-plane heterostructures of graphene and hexagonal boron nitride with controlled domain sizes
Liu, Zheng; Ma, Lulu; Shi, Gang; Zhou, Wu; Gong, Yongji; Lei, Sidong; Yang, Xuebei; Zhang, Jiangnan; Yu, Jingjiang; Hackenberg, Ken P.; Babakhani, Aydin; Idrobo, Juan-Carlos; Vajtai, Robert; Lou, Jun; Ajayan, Pulickel M.
2013-02-01
Graphene and hexagonal boron nitride (h-BN) have similar crystal structures with a lattice constant difference of only 2%. However, graphene is a zero-bandgap semiconductor with remarkably high carrier mobility at room temperature, whereas an atomically thin layer of h-BN is a dielectric with a wide bandgap of ~5.9 eV. Accordingly, if precise two-dimensional domains of graphene and h-BN can be seamlessly stitched together, hybrid atomic layers with interesting electronic applications could be created. Here, we show that planar graphene/h-BN heterostructures can be formed by growing graphene in lithographically patterned h-BN atomic layers. Our approach can create periodic arrangements of domains with size ranging from tens of nanometres to millimetres. The resulting graphene/h-BN atomic layers can be peeled off the growth substrate and transferred to various platforms including flexible substrates. We also show that the technique can be used to fabricate two-dimensional devices, such as a split closed-loop resonator that works as a bandpass filter.
Ferromagnetic resonance in a topographically modulated permalloy film
Sklenar, J.; Tucciarone, P.; Lee, R. J.; Tice, D.; Chang, R. P. H.; Lee, S. J.; Nevirkovets, I. P.; Heinonen, O.; Ketterson, J. B.
2015-04-01
A major focus within the field of magnonics involves the manipulation and control of spin-wave modes. This is usually done by patterning continuous soft magnetic films. Here, we report on work in which we use topographic modifications of a continuous magnetic thin film, rather than lithographic patterning techniques, to modify the ferromagnetic resonance spectrum. To demonstrate this technique we have performed in-plane, broadband, ferromagnetic resonance studies on a 100-nm-thick permalloy film sputtered onto a colloidal crystal with individual sphere diameters of 200 nm. Effects resulting from the, ideally, sixfold-symmetric underlying colloidal crystal were studied as a function of the in-plane field angle through experiment and micromagnetic modeling. Experimentally, we find two primary modes; the ratio of the intensities of these two modes exhibits a sixfold dependence. Detailed micromagnetic modeling shows that both modes are quasiuniform and nodeless in the unit cell but that they reside in different demagnetized regions of the unit cell. Our results demonstrate that topographic modification of magnetic thin films opens additional directions for manipulating ferromagnetic resonant excitations.
Hamanaka, Yasushi; Yamada, Kaoru; Hirose, Tatsunori; Kuzuya, Toshihiro
2018-05-01
CuS nanoplates were synthesized by a colloidal method and separated into four fractions of nanoplates with different aspect ratios by a size-selective precipitation. In addition to a strong near infrared absorption band ascribed to the in-plane mode of the localized surface plasmon resonance (LSPR), we found a weak absorption band on the high frequency tail of the in-plane LSPR band. The frequency of the weak absorption band was almost constant and independent of the aspect ratio, while the in-plane LSPR band exhibited a strong aspect ratio dependence. These characteristics suggested that the weak absorption band is ascribed to the out-of-plane LSPR. Although the out-of-plane LSPR was expected to be difficult to observe for CuS nanoplates due to its low intensity and overlap with the strong in-plane resonance, we could successfully identify the out-of-plane mode by reducing the width of the size distribution and spectral broadening caused thereby.
International Nuclear Information System (INIS)
Collins, T.
1985-08-01
A simple criterion governs the beam distortion and/or loss of protons on a fast resonance crossing. Results from numerical integrations are illustrated for simple sextupole, octupole, and 10-pole resonances
Amin, Muhammad; Farhat, Mohamed; Bagci, Hakan
2014-01-01
The resonances with asymmetric Fano line-shapes were originally discovered in the context of quantum mechanics (U. Fano, Phys. Rev., 124, 1866-1878, 1961). Quantum Fano resonances were generated from destructive interference of a discrete state
International Nuclear Information System (INIS)
Chrien, R.E.
1986-10-01
The principles of resonance averaging as applied to neutron capture reactions are described. Several illustrations of resonance averaging to problems of nuclear structure and the distribution of radiative strength in nuclei are provided. 30 refs., 12 figs
Energy Technology Data Exchange (ETDEWEB)
Collins, T.
1985-08-01
A simple criterion governs the beam distortion and/or loss of protons on a fast resonance crossing. Results from numerical integrations are illustrated for simple sextupole, octupole, and 10-pole resonances.
International Nuclear Information System (INIS)
Yuasa, Tetsuya; Hashimoto, Eiko; Maksimenko, Anton; Sugiyama, Hiroshi; Arai, Yoshinori; Shimao, Daisuke; Ichihara, Shu; Ando, Masami
2008-01-01
We discuss the recently proposed computed tomography (CT) technique based on refractive effects for biomedical use, which reconstructs the in-plane refractive-index gradient vector field in a cross-sectional plane of interest by detecting the angular deviation of the beam, refracted by a sample, from the incident beam, using the diffraction-enhanced imaging (DEI) method. The CT has advantages for delineating biological weakly absorbing soft tissues over the conventional absorption-contrast CT because of the use of phase sensitive detection. The paper aims to define the imaging scheme rigidly and to demonstrate its efficacy for non-destructive measurement of biomedical soft-tissue samples without imaging agent. We first describe the imaging principle of in-plane DEI-CT from the physico-mathematical viewpoints in detail, and investigate what physical quantities are extracted from the reconstructed images. Then, we introduce the imaging system using the synchrotron radiation as a light source, constructed at beamline BL-14B in KEK, Japan. Finally, we demonstrate the advantage of the refraction-based image for non-destructive analysis of biological sample by investigating the image of human breast cancer tumors obtained using the imaging system. Here, the refraction- and the apparent absorption-based images obtained simultaneously by the in-plane DEI-CT are compared. Also, the conventional absorption-based image obtained using micro-computed tomography (μCT) imaging system is compared with them. Thereby, it is shown that the refraction contrast much more sensitively delineates the soft tissues than the absorption contrast. In addition, the radiologic-histologic correlation study not only validates the efficacy for imaging soft tissues, but also produces the potential that the pathological inspection for the breast cancer tumors may be feasible non-destructively
International Nuclear Information System (INIS)
Shiohara, K.; Higashikawa, K.; Inoue, M.; Kiss, T.; Iijima, Y.; Saitoh, T.; Yoshizumi, M.; Izumi, T.
2013-01-01
Highlights: ► We have investigated electric field criterion of in-plane critical current density. ► We could measure magnetic relaxation in a remanent state. ► The SHPM results show good agreement with the measurements by the 4-probe method. -- Abstract: We have investigated electric field criterion of in-plane critical current density in a coated conductor characterized by scanning Hall-probe microscopy (SHPM). From remanent field distribution and its relaxation measurements, we could obtain critical current distribution and induced electric field simultaneously by considering the Biot-Savart law and the Faraday’s law, respectively. These results lead us to evaluate a distribution of local critical current density and the corresponding criterion of electric field. As a result, it was found that the electric field criterion for the SHPM analysis was several orders lower than that used in the conventional 4-probe resistive method. However, the data point obtained by the SHPM shows good agreement with E–J curve analytically extended from the measurements by the 4-probe method. This means that we could characterize in-plane distribution of critical current density in a coated conductor at an electric field criterion quantitatively by this method in a nondestructive manner. These findings will be very important information since the uniformity of local critical current density in a coated conductor at extremely low electric fields is a key issue (1) especially for DC applications, (2) for quality control of coated conductors, and (3) for the standardization of the characterization of critical current among different methods
Unconventional Face-On Texture and Exceptional In-Plane Order of a High Mobility n-Type Polymer
Rivnay, Jonathan; Toney, Michael F.; Zheng, Yan; Kauvar, Isaac V.; Chen, Zhihua; Wagner, Veit; Facchetti, Antonio; Salleo, Alberto
2010-01-01
Substantial in-plane crystallinity and dominant face-on stacking are observed in thin films of a high-mobility n-type rylene-thiophene copolymer. Spun films of the polymer, previously thought to have little or no order are found to exhibit an ordered microstructure at both interfaces, and in the bulk. The implications of this type of packing and crystalline morphology are discussed as they relate to thin-film transistors. © 2010 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Unconventional Face-On Texture and Exceptional In-Plane Order of a High Mobility n-Type Polymer
Rivnay, Jonathan
2010-07-09
Substantial in-plane crystallinity and dominant face-on stacking are observed in thin films of a high-mobility n-type rylene-thiophene copolymer. Spun films of the polymer, previously thought to have little or no order are found to exhibit an ordered microstructure at both interfaces, and in the bulk. The implications of this type of packing and crystalline morphology are discussed as they relate to thin-film transistors. © 2010 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
International Nuclear Information System (INIS)
Gisi, B; Sakiroglu, S; Sokmen, İ
2016-01-01
In this work, we investigate the effects of interplay of spin–orbit interaction and in-plane magnetic fields on the electronic structure and spin texturing of parabolically confined quantum wire. Numerical results reveal that the competing effects between Rashba and Dresselhaus spin–orbit interactions and the external magnetic field lead to a complicated energy spectrum. We find that the spin texturing owing to the coupling between subbands can be modified by the strength of spin–orbit couplings as well as the magnitude and the orientation angle of the external magnetic field. (paper)
International Nuclear Information System (INIS)
Moon, Won Joo; Min, Oak Key; Kim, Yong Woo
1998-01-01
To improve the convergence and the accuracy of a finite element, the finite element has to describe not only displacement and stress distributions in a static analysis but also rigid body displacements. In this paper, we consider the in-plane-deformable curved beam element to understand the descriptive capability of rigid body displacements of a finite element. We derive the rigid body displacement fields of a single finite element under various essential boundary conditions when the nodal displacements are caused by the rigid body displacement. We also examine the rigid body displacement fields of a quadratic curved beam element by employing the reduced minimization theory
On the accuracy of analyses for in-plane bending of smooth pipe bends with end constraints
International Nuclear Information System (INIS)
Thomson, G.; Spence, J.
1985-01-01
The accuracy of theoretical analyses for in-plane bending of smooth pipebends with end constraints is discussed and investigated with a view to explaining and reducing the differences between the major works. An earlier theory of the authors is improved to give more accurate answers for bends with rigid flanges. Flanged bends are then examined in some detail, quantifying for the first time the important influence of the flange rigidity on the bend flexibility and stresses. A summary of some finite element analyses is presented from which it is clear that further work is desirable. (orig.)
Energy Technology Data Exchange (ETDEWEB)
Zhang, Vanessa Li; Di, Kai; Lim, Hock Siah; Ng, Ser Choon; Kuok, Meng Hau, E-mail: phykmh@nus.edu.sg [Department of Physics, National University of Singapore, Singapore 117551 (Singapore); Yu, Jiawei; Yoon, Jungbum; Qiu, Xuepeng; Yang, Hyunsoo, E-mail: eleyang@nus.edu.sg [Department of Electrical and Computer Engineering, National University of Singapore, Singapore 117576 (Singapore)
2015-07-13
The nonreciprocal propagation of spin waves in an ultrathin Pt/Co/Ni film has been measured by Brillouin light scattering. The frequency nonreciprocity, due to the interfacial Dzyaloshinskii-Moriya interaction (DMI), has a sinusoidal dependence on the in-plane angle between the magnon wavevector and the applied magnetic field. The results, which are in good agreement with analytical predictions reported earlier, yield a value of the DMI constant which is the same as that obtained previously from a study of the magnon dispersion relations. We have demonstrated that our magnon-dynamics based method can experimentally ascertain the DMI constant of multilayer thin films.
Pediatric magnetic resonance imaging
International Nuclear Information System (INIS)
Cohen, M.D.
1986-01-01
This book defines the current clinical potential of magnetic resonance imaging and focuses on direct clinical work with pediatric patients. A section dealing with the physics of magnetic resonance imaging provides an introduction to enable clinicians to utilize the machine and interpret the images. Magnetic resonance imaging is presented as an appropriate imaging modality for pediatric patients utilizing no radiation
Resonant thermonuclear reaction rate
International Nuclear Information System (INIS)
Haubold, H.J.; Mathai, A.M.
1986-01-01
Basic physical principles for the resonant and nonresonant thermonuclear reaction rates are applied to find their standard representations for nuclear astrophysics. Closed-form representations for the resonant reaction rate are derived in terms of Meijer's G-function. Analytic representations of the resonant and nonresonant nuclear reaction rates are compared and the appearance of Meijer's G-function is discussed in physical terms
International Nuclear Information System (INIS)
Cisneros S, A.; McIntosh, H.V.
1982-01-01
A discussion of the nature of quantum mechanical resonances is presented from the point of view of the spectral theory of operators. In the case of Bohr-Feshbach resonances, graphs are presented to illustrate the theory showing the decay of a doubly excited metastable state and the excitation of the resonance by an incident particle with proper energy. A characterization of resonances is given as well as a procedure to determine widths using the spectral density function. A sufficient condition is given for the validity of the Breit-Wigner formula for Bohr-Feshbach resonances. (author)
International Nuclear Information System (INIS)
Sethi, P.; Murapaka, C.; Lim, G. J.; Lew, W. S.
2015-01-01
Hall cross structures in magnetic nanowires are commonly used for electrical detection of magnetization reversal in which a domain wall (DW) is conventionally nucleated by a local Oersted field. In this letter, we demonstrate DW nucleation in Co/Ni perpendicular magnetic anisotropy nanowire at the magnetic Hall cross junction. The DWs are nucleated by applying an in-plane pulsed current through the nanowire without the need of a local Oersted field. The change in Hall resistance, detected using anomalous Hall effect, is governed by the magnetic volume switched at the Hall junction, which can be tuned by varying the magnitude of the applied current density and pulse width. The nucleated DWs are driven simultaneously under the spin transfer torque effect when the applied current density is above a threshold. The possibility of multiple DW generation and variation in magnetic volume switched makes nucleation process stochastic in nature. The in-plane current induced stochastic nature of DW generation may find applications in random number generation
Energy Technology Data Exchange (ETDEWEB)
Sasidharan, Sumesh; Arunachalam, Veerappan; Subramaniam, Shanmugam [Dept. of Mechanical Engineering, National Institute of Technology, Tiruchirappalli (India)
2017-02-15
Finite-element analysis based on elastic-perfectly plastic material was conducted to examine the influence of structural deformations on collapse loads of circumferential through-wall critically cracked 90 .deg. pipe bends undergoing in-plane closing bending and internal pressure. The critical crack is defined for a through-wall circumferential crack at the extrados with a subtended angle below which there is no weakening effect on collapse moment of elbows subjected to in-plane closing bending. Elliptical and semioval cross sections were postulated at the bend regions and compared. Twice-elastic-slope method was utilized to obtain the collapse loads. Structural deformations, namely, ovality and thinning, were each varied from 0% to 20% in steps of 5% and the normalized internal pressure was varied from 0.2 to 0.6. Results indicate that elliptic cross sections were suitable for pipe ratios 5 and 10, whereas for pipe ratio 20, semioval cross sections gave satisfactory solutions. The effect of ovality on collapse loads is significant, although it cancelled out at a certain value of applied internal pressure. Thinning had a negligible effect on collapse loads of bends with crack geometries considered.
Directory of Open Access Journals (Sweden)
Chao Zhou
2015-09-01
Full Text Available Rain–wind–induced galloping phenomenon often occurs on overhead transmission tower-lines system, just as icing galloping and vortex-excited vibration; this kind of instability oscillation can cause power-line breakage or tower failure. However, the existing theoretical models of rain–wind–induced galloping are mainly based on the hypothesis of the overhead power-lines with fixed ends, which is inconsistent with the actual operation situation. Therefore, this article thus presents a preliminary theoretical study and proposes a new theoretical model taking into account the effect of tower excitations on the in-plane galloping of the overhead power-line and on the motion of the upper rain-line. The theoretical model is solved by Galerkin method and verified by the comparison with the test data obtained in the available literature involved with the overhead power-lines with fixed towers or moving towers. It turns out that the tower excitations may intensify the in-plane galloping amplitude of the overhead power-line within a certain range of frequency ratio and enable better comprehension of rain–wind–induced galloping mechanism.
Li, La; Lou, Zheng; Han, Wei; Shen, Guozhen
2016-08-11
The development of wearable electronic devices in recent decades has brought new opportunities in the exploration of micro-supercapacitors as energy storage units. In this work, we report the fabrication of flexible NiFe2O4 nanofiber based in-plane micro-supercapacitors (MSCs), which can serve as energy storage receptors to drive a portable graphene pressure sensor. The obtained NiFe2O4 nanofiber electrodes exhibited a specific capacitance of 2.23 F cm(-3) at the scan rate of 100 mV s(-1), and excellent rate capability and robust cycling stability with a capacitance retention of 93.6% after 10 000 charge/discharge cycles. Moreover, the in-plane MSCs have superior flexibility and outstanding stability even after repetition of charge/discharge cycles during the convex and concave bending states. The MSCs offered a high energy density of 0.197 mWh cm(-3) and power density up to 2.07 W cm(-3). We also coupled the MSCs with a graphene pressure sensor as a micro-integrated system to implement it's pressure response function and used MATLAB to simulate this system behavior as well. The performance of the designed systems exhibited a stable pressure response, and the simulated results coincide well with the experimental data, demonstrating its feasibility in wearable electronic devices.
In-plane g factor of low-density two-dimensional holes in a Ge quantum well.
Energy Technology Data Exchange (ETDEWEB)
Lu, Tzu-Ming [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Harris, Charles Thomas [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Huang, Shih-Hsien [National Taiwan Univ., Taipei (Taiwan); Chuang, Yen [National Taiwan Univ., Taipei (Taiwan); Li, Jiun-Yun [National Taiwan Univ., Taipei (Taiwan); Liu, CheeWee [National Taiwan Univ., Taipei (Taiwan)
2017-12-01
High-mobility two-dimensional (2D) holes residing in a Ge quantum well are a new electronic system with potentials in quantum computing and spintronics. Since for any electronic material, the effective mass and the g factor are two fundamental material parameters that determine the material response to electric and magnetic fields, measuring these two parameters in this material system is thus an important task that needs to be completed urgently. Because of the quantum confinement in the crystal growth direction (z), the biaxial strain of epitaxial Ge on SiGe, and the valance band nature, both the effective mass and the g factor can show very strong anisotropy. In particular, the in-plane g factor (g_{ip}) can be vanishingly small while the perpendicular g factor (g_{z}) can be much larger than 2. Here we report the measurement of g_{ip} at very low hole densities using in-plane magneto-resistance measurement performed at the NHMFL.
International Nuclear Information System (INIS)
Yoo, Yeon-Sik
2003-01-01
This study is concerned with crack opening displacements (CODs) of cylinders with a circumferential through-crack which is subjected to tension and in-plane bending loads. Most studies about crack opening behavior have performed on membrane and global bending stresses. Moreover, they cannot be valid for large-scale structures. For simplicity on evaluation for structural integrity, crack opening displacement has been often calculated by plate or pipe model considering almost stresses as a membrane component. However, it is important to investigate ones close to real crack opening behaviors under stress states for reliability on evaluation. The results must be directly related to evaluate leakage detection in reactor vessel and the primary piping system of FBR structures. From that purpose, a series of FEM analyses were performed, and hence the characteristics of COD under an in-plane bending stress were compared with those under a membrane stress. In addition, the plate model was indicated to be unreasonable for application on large-scale pipes by comparing the plate model with the pipe model. The results of this study are expected to be valid for leakage evaluation of high temperature structures especially. (author)
International Nuclear Information System (INIS)
Sun, H.Y.; Hu, H.N.; Nie, X.F.
2001-01-01
The annihilation of vertical-Bloch lines in magnetic domain walls of the ordinary hard bubbles, to which both bias fields and in-plane fields are alternately applied, is investigated experimentally. The influence of an in-plane magnetic field on ordinary hard bubbles (OHB), dumbbell domains of the first kind (ID), and dumbbell domains of the second kind (IID) was analyzed, and a critical in-plane field range [H ip 0 ,H ip 2 ] for vertical Bloch line (VBL) annihilation was found. For the three types of hard domains (H ip 0 is the minimum critical in-plane field of VBLs which begin to be unstable, H ip 2 is the minimum critical in-plane field which only needs to be applied one time for collapse of all OHBs), the critical field range is the same with H ip 0 ≅8πM s . We hypothesize that there exists a direction along which the vertical-Bloch lines in the domain walls are annihilated most easily. It is also observed that the stability of vertical-Bloch lines in the domain walls does not depend on the initial state. This provides a more detailed description of the minimum critical in-plane field than previously known
International Nuclear Information System (INIS)
Guo, G.X.; Wang, L.N.; Zhen, C.M.; Nie, X.F.
2006-01-01
The stability of vertical Bloch line (VBL) chains subjected to in-plane field (H ip ) was statistically studied for the ordinary hard bubbles (OHB) in garnet bubble films at various bias fields (H b ). The dumbbell domains were also investigated. We found that (H ip (1) ) IID ip (1) ) ID ip (1) ) OHB and (H ip (2) ) IID =(H ip (2) ) ID =(H ip (2) ) OHB when keeping H b unchanged. With the increasing of H b , the in-plane field H ip (1) , H ip * and H ip (2) all decrease, while the in-plane field range [H ip (1) , H ip * ] and [H ip (1) , H ip (2) ] become narrower. Here, H ip (1) is the initial critical in-plane field where VBLs in the walls of three types of hard domains are annihilated, H ip * stands for the in-plane field where the retention rate of three types of hard domains R reduces to zero, and H ip (2) is the lowest in-plane field where VBLs in their corresponding hard domains are annihilated completely
Microstrip resonators for electron paramagnetic resonance experiments
Torrezan, A. C.; Mayer Alegre, T. P.; Medeiros-Ribeiro, G.
2009-07-01
In this article we evaluate the performance of an electron paramagnetic resonance (EPR) setup using a microstrip resonator (MR). The design and characterization of the resonator are described and parameters of importance to EPR and spin manipulation are examined, including cavity quality factor, filling factor, and microwave magnetic field in the sample region. Simulated microwave electric and magnetic field distributions in the resonator are also presented and compared with qualitative measurements of the field distribution obtained by a perturbation technique. Based on EPR experiments carried out with a standard marker at room temperature and a MR resonating at 8.17 GHz, the minimum detectable number of spins was found to be 5×1010 spins/GHz1/2 despite the low MR unloaded quality factor Q0=60. The functionality of the EPR setup was further evaluated at low temperature, where the spin resonance of Cr dopants present in a GaAs wafer was detected at 2.3 K. The design and characterization of a more versatile MR targeting an improved EPR sensitivity and featuring an integrated biasing circuit for the study of samples that require an electrical contact are also discussed.
Microstrip resonators for electron paramagnetic resonance experiments.
Torrezan, A C; Mayer Alegre, T P; Medeiros-Ribeiro, G
2009-07-01
In this article we evaluate the performance of an electron paramagnetic resonance (EPR) setup using a microstrip resonator (MR). The design and characterization of the resonator are described and parameters of importance to EPR and spin manipulation are examined, including cavity quality factor, filling factor, and microwave magnetic field in the sample region. Simulated microwave electric and magnetic field distributions in the resonator are also presented and compared with qualitative measurements of the field distribution obtained by a perturbation technique. Based on EPR experiments carried out with a standard marker at room temperature and a MR resonating at 8.17 GHz, the minimum detectable number of spins was found to be 5 x 10(10) spins/GHz(1/2) despite the low MR unloaded quality factor Q0=60. The functionality of the EPR setup was further evaluated at low temperature, where the spin resonance of Cr dopants present in a GaAs wafer was detected at 2.3 K. The design and characterization of a more versatile MR targeting an improved EPR sensitivity and featuring an integrated biasing circuit for the study of samples that require an electrical contact are also discussed.
Spatial confinement of ferromagnetic resonances in honeycomb antidot lattices
International Nuclear Information System (INIS)
Krivoruchko, V.N.; Marchenko, A.I.
2012-01-01
We report on a theoretical investigation of the magnetic static and dynamic properties of a thin ferromagnetic film with honeycomb lattice of circular antidots using micromagnetic simulations and analytical calculations. The theoretical model is based on the Landau–Lifshitz equations and directly accounts for the effects of the magnetic state nonuniformity. A direct calculation of local dynamic susceptibility tensor yields that the resonance spectra consist of four different quasi-uniform modes of the magnetization precession related to the confinement of magnetic domains by the hole mesh. Three of four resonant modes follow a two-fold variation with respect to the in-plane orientation of the applied magnetic field. The easy axes of these modes are mutually rotated by 60° and combine to yield the apparent six-fold configurational anisotropy. Additionally, a mode with intrinsic six-fold symmetry behavior exists, as well. Micromagnetic calculations of the local dynamic susceptibility tensor allow identifying the magnetic unit cell areas/domains responsible for each resonance mode. - Highlights: ► We study the magnetic static and dynamic properties of honeycomb antidot lattices. ► Micromagnetic simulation and analytical calculation were used. ► Four quasi-uniform precession modes exist in resonance spectra. ► The antidot unit cell areas responsible for each resonance mode were identified.
Magnetic structure and resonance properties of hexagonal antidot lattice
International Nuclear Information System (INIS)
Marchenko, A.I.; Krivoruchko, V.N.
2012-01-01
Static and resonance properties of ferromagnetic films with an antidot lattice (pores in the film) are studied. The description of the system is based on micromagnetic modeling and analytical solution of the Landau-Lifshitz equation. The dependences of ferromagnetic resonance spectra on the in-plane direction of applied magnetic field and on the lattice parameters are investigated. The dependences of a dynamic system response on frequency at fixed magnetic field and on field at fixed frequency, when the field changes cause the static magnetic order to change are explored. It is found that the specific peculiarities of the system dynamics leave unchange for both of these experimental conditions. Namely, for low damping the resonance spectra contain three quasi-homogeneous modes which are due to the resonance of different regions (domains) of the antidot lattice cell. It is shown the angular field dependences of each mode are characterized by a twofold symmetry and the related easy axes are mutually rotated by 60 degrees. As the result, a hexagonal symmetry of the system static and dynamic magnetic characteristics is realized. The existence in the resonance spectrum of several quasi-homogeneous modes related to different regions of the unit cell could be fundamental for working elements of magnonic devices.
Resonant tunneling across a ferroelectric domain wall
Li, M.; Tao, L. L.; Velev, J. P.; Tsymbal, E. Y.
2018-04-01
Motivated by recent experimental observations, we explore electron transport properties of a ferroelectric tunnel junction (FTJ) with an embedded head-to-head ferroelectric domain wall, using first-principles density-functional theory calculations. We consider a FTJ with L a0.5S r0.5Mn O3 electrodes separated by a BaTi O3 barrier layer and show that an in-plane charged domain wall in the ferroelectric BaTi O3 can be induced by polar interfaces. The resulting V -shaped electrostatic potential profile across the BaTi O3 layer creates a quantum well and leads to the formation of a two-dimensional electron gas, which stabilizes the domain wall. The confined electronic states in the barrier are responsible for resonant tunneling as is evident from our quantum-transport calculations. We find that the resonant tunneling is an orbital selective process, which leads to sharp spikes in the momentum- and energy-resolved transmission spectra. Our results indicate that domain walls embedded in FTJs can be used to control the electron transport.
Carbon Nanofiber-Based, High-Frequency, High-Q, Miniaturized Mechanical Resonators
Kaul, Anupama B.; Epp, Larry W.; Bagge, Leif
2011-01-01
High Q resonators are a critical component of stable, low-noise communication systems, radar, and precise timing applications such as atomic clocks. In electronic resonators based on Si integrated circuits, resistive losses increase as a result of the continued reduction in device dimensions, which decreases their Q values. On the other hand, due to the mechanical construct of bulk acoustic wave (BAW) and surface acoustic wave (SAW) resonators, such loss mechanisms are absent, enabling higher Q-values for both BAW and SAW resonators compared to their electronic counterparts. The other advantages of mechanical resonators are their inherently higher radiation tolerance, a factor that makes them attractive for NASA s extreme environment planetary missions, for example to the Jovian environments where the radiation doses are at hostile levels. Despite these advantages, both BAW and SAW resonators suffer from low resonant frequencies and they are also physically large, which precludes their integration into miniaturized electronic systems. Because there is a need to move the resonant frequency of oscillators to the order of gigahertz, new technologies and materials are being investigated that will make performance at those frequencies attainable. By moving to nanoscale structures, in this case vertically oriented, cantilevered carbon nanotubes (CNTs), that have larger aspect ratios (length/thickness) and extremely high elastic moduli, it is possible to overcome the two disadvantages of both bulk acoustic wave (BAW) and surface acoustic wave (SAW) resonators. Nano-electro-mechanical systems (NEMS) that utilize high aspect ratio nanomaterials exhibiting high elastic moduli (e.g., carbon-based nanomaterials) benefit from high Qs, operate at high frequency, and have small force constants that translate to high responsivity that results in improved sensitivity, lower power consumption, and im - proved tunablity. NEMS resonators have recently been demonstrated using topdown
Wang, Jing-Rong; Liu, Guo-Zhu; Zhang, Chang-Jin
2016-07-01
Angle-resolved upper critical field Hc 2 provides an efficient tool to probe the gap symmetry of unconventional superconductors. We revisit the behavior of in-plane Hc 2 in d -wave superconductors by considering both the orbital effect and Pauli paramagnetic effect. After carrying out systematic analysis, we show that the maxima of Hc 2 could be along either nodal or antinodal directions of a d -wave superconducting gap, depending on the specific values of a number of tuning parameters. This behavior is in contrast to the common belief that the maxima of in-plane Hc 2 are along the direction where the superconducting gap takes its maximal value. Therefore, identifying the precise d -wave gap symmetry through fitting experiments results of angle-resolved Hc 2 with model calculations at a fixed temperature, as widely used in previous studies, is difficult and practically unreliable. However, our extensive analysis of angle-resolved Hc 2 show that there is a critical temperature T*: in-plane Hc 2 exhibits its maxima along nodal directions at T change as other parameters vary, but the existence of π /4 shift of Hc 2 at T* appears to be a general feature. Thus a better method to identify the precise d -wave gap symmetry is to measure Hc 2 at a number of different temperatures, and examine whether there is a π /4 shift in its angular dependence at certain T*. We further show that Landau level mixing does not change this general feature. However, in the presence of Fulde-Ferrell-Larkin-Ovchinnikov state, the angular dependence of Hc 2 becomes quite complicated, which makes it more difficult to determine the gap symmetry by measuring Hc 2. Our results indicate that some previous studies on the gap symmetry of CeCu2Si2 are unreliable and need to be reexamined, and also provide a candidate solution to an experimental discrepancy in the angle-resolved Hc 2 in CeCoIn5.
Evaluation of support loss in micro-beam resonators: A revisit
Chen, S. Y.; Liu, J. Z.; Guo, F. L.
2017-12-01
This paper presents an analytical study on evaluation of support loss in micromechanical resonators undergoing in-plane flexural vibrations. Two-dimensional elastic wave theory is used to determine the energy transmission from the vibrating resonator to the support. Fourier transform and Green's function technique are adopted to solve the problem of wave motions on the surface of the support excited by the forces transmitted by the resonator onto the support. Analytical expressions of support loss in terms of quality factor, taking into account distributed normal stress and shear stress in the attachment region, and coupling between the normal stress and shear stress as well as material disparity between the support and the resonator, have been derived. Effects of geometry of micro-beam resonators, and material dissimilarity between support and resonator on support loss are examined. Numerical results show that 'harder resonator' and 'softer support' combination leads to larger support loss. In addition, the Perfectly Matched Layer (PML) numerical simulation technique is employed for validation of the proposed analytical model. Comparing with results of quality factor obtained by PML technique, we find that the present model agrees well with the results of PML technique and the pure-shear model overestimates support loss noticeably, especially for resonators with small aspect ratio and large material dissimilarity between the support and resonator.
Piezoelectric Lead Zirconate Titanate (PZT) Ring Shaped Contour-Mode MEMS Resonators
Kasambe, P. V.; Asgaonkar, V. V.; Bangera, A. D.; Lokre, A. S.; Rathod, S. S.; Bhoir, D. V.
2018-02-01
Flexibility in setting fundamental frequency of resonator independent of its motional resistance is one of the desired criteria in micro-electromechanical (MEMS) resonator design. It is observed that ring-shaped piezoelectric contour-mode MEMS resonators satisfy this design criterion than in case of rectangular plate MEMS resonators. Also ring-shaped contour-mode piezoelectric MEMS resonator has an advantage that its fundamental frequency is defined by in-plane dimensions, but they show variation of fundamental frequency with different Platinum (Pt) thickness referred as change in ratio of fNEW /fO . This paper presents the effects of variation in geometrical parameters and change in piezoelectric material on the resonant frequencies of Platinum piezoelectric-Aluminium ring-shaped contour-mode MEMS resonators and its electrical parameters. The proposed structure with Lead Zirconate Titanate (PZT) as the piezoelectric material was observed to be a piezoelectric material with minimal change in fundamental resonant frequency due to Platinum thickness variation. This structure was also found to exhibit extremely low motional resistance of 0.03 Ω as compared to the 31-35 Ω range obtained when using AlN as the piezoelectric material. CoventorWare 10 is used for the design, simulation and corresponding analysis of resonators which is Finite Element Method (FEM) analysis and design tool for MEMS devices.
Bykov, Dmitry A; Doskolovich, Leonid L; Soifer, Victor A
2017-01-23
We study resonances of guided-mode resonant gratings in conical mounting. By developing 2D time-dependent coupled-mode theory we obtain simple approximations of the transmission and reflection coefficients. Being functions of the incident light's frequency and in-plane wave vector components, the obtained approximations can be considered as multi-variable generalizations of the Fano line shape. We show that the approximations are in good agreement with the rigorously calculated transmission and reflection spectra. We use the developed theory to investigate angular tolerances of the considered structures and to obtain mode excitation conditions. In particular, we obtain the cross-polarization mode excitation conditions in the case of conical mounting.
Mughabghab, Said
2018-01-01
Atlas of Neutron Resonances: Resonance Properties and Thermal Cross Sections Z= 1-60, Sixth Edition, contains an extensive list of detailed individual neutron resonance parameters for Z=1-60, as well as thermal cross sections, capture resonance integrals, average resonance parameters and a short survey of the physics of thermal and resonance neutrons. The long introduction contains: nuclear physics formulas aimed at neutron physicists; topics of special interest such as valence neutron capture, nuclear level density parameters, and s-, p-, and d-wave neutron strength functions; and various comparisons of measured quantities with the predictions of nuclear models, such as the optical model. As in the last edition, additional features have been added to appeal to a wider spectrum of users. These include: spin-dependent scattering lengths that are of interest to solid-state physicists, nuclear physicists and neutron evaluators; calculated and measured Maxwellian average 5-keV and 30-keV capture cross sections o...
International Nuclear Information System (INIS)
Oh, Chang Sik; Kim, Yun Jae
2006-01-01
In the present paper, approximate plastic limit load solutions for pipe bends under combined internal pressure and bending are obtained from detailed three-dimensional (3-D) FE limit analyses based on elastic-perfectly plastic materials with the small geometry change option. The present FE results show that existing limit load solutions for pipe bends are lower bounds but can be very different from the present FE results in some cases, particularly for bending. Accordingly closed-form approximations are proposed for pipe bends under combined pressure and in-plane bending based on the present FE results. The proposed limit load solutions would be a basis of defective pipe bends and be useful to estimate non-linear fracture mechanics parameters based on the reference stress approach
DEFF Research Database (Denmark)
Jakobsen, Johnny; Jensen, Martin; Andreasen, Jens Henrik
2013-01-01
The in-plane Young’s modulus of a CSM E-glass/epoxy material is characterised through the use of dynamic mechanical analysis (DMA). The measured data is used to generate material models which describe the property behaviour as a function of conversion and temperature. Gelation of the epoxy resin...... plays a major role in the modulus development and is measured directly on the glass/epoxy material. The Young’s modulus is described through a bi-functional model including the liquid/solid transition of the material. The evolution of Young’s modulus is modelled by decoupling modulus increments caused...... by time and temperature, and is graphically illustrated through a Modulus-Temperature- Transformation (MTT) diagram. Based on the established material models presented in this paper and models in Part-1, it is feasible to assess residual stresses and shape distortions of composite parts made from...
Wan, Zhijian; Hu, Hong
2014-03-01
A novel linear ultrasonic motor based on in-plane longitudinal and bending mode vibration is presented in this paper. The stator of the motor is composed of a metal plate and eight piezoelectric ceramic patches. There are four long holes in the plate, designed for consideration of the longitudinal and bending mode coupling. The corresponding model is developed to optimize the mechanical and electrical coupling of the stator, which causes an ellipse motion at the contact tip of the stator when the composite vibrations with longitudinal and bending are excited. Its harmonic and transient responses are simulated and inspected. A prototype based on the model is fabricated and used to conduct experiments. Results show that the amplitude of the stator's contact tips is significantly increased, which helps to amplify the driving force and speed of the motor. It is therefore feasible to implement effective linear movement using the developed prototype. Copyright © 2013 Elsevier B.V. All rights reserved.
Controlling the formation of wrinkles in a single layer graphene sheet subjected to in-plane shear
Duan, Wen Hui
2011-08-01
The initiation and development of wrinkles in a single layer graphene sheet subjected to in-plane shear displacements are investigated. The dependence of the wavelength and amplitude of wrinkles on the applied shear displacements is explicitly obtained with molecular mechanics simulations. A continuum model is developed for the characteristics of the wrinkles which show that the wrinkle wavelength decreases with an increase in shear loading, while the amplitude of the wrinkles is found to initially increase and then become stable. The propagation and growth process of the wrinkles in the sheet is elucidated. It is expected that the research could promote applications of graphenes in the transportation of biological systems, separation science, and the development of the fluidic electronics. © 2011 Elsevier Ltd. All rights reserved.
Performance of current-in-plane pseudo-spin-valve devices on CMOS silicon-on-insulator underlayers
Katti, R. R.; Zou, D.; Reed, D.; Schipper, D.; Hynes, O.; Shaw, G.; Kaakani, H.
2003-05-01
Prior work has shown that current-in-plane (CIP) giant magnetoresistive (GMR) pseudo-spin-valve (PSV) devices grown on bulk Si wafers and bulk complementary metal-oxide semiconductor (CMOS) underlayers exhibit write and read characteristics that are suitable for application as nonvolatile memory devices. In this work, CIP GMR PSV devices fabricated on silicon-on-insulator CMOS underlayers are shown to support write and read performance. Reading and writing fields for selected devices are shown to be approximately 25%-50% that of unselected devices, which provides a margin for reading and writing specific bits in a memory without overwriting bits and without disturbing other bits. The switching characteristics of experimental devices were compared to and found to be similar with Landau-Lifschitz-Gilbert micromagnetic modeling results, which allowed inferring regions of reversible and irreversible rotations in magnetic reversal processes.
An in-plane solid-liquid-solid growth mode for self-avoiding lateral silicon nanowires.
Yu, Linwei; Alet, Pierre-Jean; Picardi, Gennaro; Roca i Cabarrocas, Pere
2009-03-27
We report an in-plane solid-liquid-solid (IPSLS) mode for obtaining self-avoiding lateral silicon nanowires (SiNW) in a reacting-gas-free annealing process, where the growth of SiNWs is guided by liquid indium drops that transform the surrounding a-SiratioH matrix into crystalline SiNWs. The SiNWs can be approximately mm long, with the smallest diameter down to approximately 22 nm. A high growth rate of >10(2) nm/s and rich evolution dynamics are revealed in a real-time in situ scanning electron microscopy observation. A qualitative growth model is proposed to account for the major features of this IPSLS SiNW growth mode.
Directory of Open Access Journals (Sweden)
Jeom Kee Paik
2012-01-01
Full Text Available The Galerkin method is applied to analyze the elastic large deflection behavior of metal plates subject to a combination of in-plane loads such as biaxial loads, edge shear and biaxial inplane bending moments, and uniformly or nonuniformly distributed lateral pressure loads. The motive of the present study was initiated by the fact that metal plates of ships and ship-shaped offshore structures at sea are often subjected to non-uniformly distributed lateral pressure loads arising from cargo or water pressure, together with inplane axial loads or inplane bending moments, but the current practice of the maritime industry usually applies some simplified design methods assuming that the non-uniform pressure distribution in the plates can be replaced by an equivalence of uniform pressure distribution. Applied examples are presented, demonstrating that the current plate design methods of the maritime industry may be inappropriate when the non-uniformity of lateral pressure loads becomes more significant.
Linseis, V.; Völklein, F.; Reith, H.; Woias, P.; Nielsch, K.
2018-06-01
An analytical study has been performed on the measurement capabilities of a 100-nm thin suspended membrane setup for the in-plane thermal conductivity measurements of thin film samples using the 3 ω measurement technique, utilizing a COSMOL Multiphysics simulation. The maximum measurement range under observance of given boundary conditions has been studied. Three different exemplary sample materials, with a thickness from the nanometer to the micrometer range and a thermal conductivity from 0.4 W/mK up to 100 W/mK have been investigated as showcase studies. The results of the simulations have been compared to a previously published evaluation model, in order to determine the deviation between both and thereby the measurement limit. As thermal transport properties are temperature dependent, all calculations refer to constant room temperature conditions.
Sarvari, S. M. Hosseini
2017-09-01
The traditional form of discrete ordinates method is applied to solve the radiative transfer equation in plane-parallel semi-transparent media with variable refractive index through using the variable discrete ordinate directions and the concept of refracted radiative intensity. The refractive index are taken as constant in each control volume, such that the direction cosines of radiative rays remain non-variant through each control volume, and then, the directions of discrete ordinates are changed locally by passing each control volume, according to the Snell's law of refraction. The results are compared by the previous studies in this field. Despite simplicity, the results show that the variable discrete ordinate method has a good accuracy in solving the radiative transfer equation in the semi-transparent media with arbitrary distribution of refractive index.
Cagliani, Alberto; Østerberg, Frederik W; Hansen, Ole; Shiv, Lior; Nielsen, Peter F; Petersen, Dirch H
2017-09-01
We present a breakthrough in micro-four-point probe (M4PP) metrology to substantially improve precision of transmission line (transfer length) type measurements by application of advanced electrode position correction. In particular, we demonstrate this methodology for the M4PP current-in-plane tunneling (CIPT) technique. The CIPT method has been a crucial tool in the development of magnetic tunnel junction (MTJ) stacks suitable for magnetic random-access memories for more than a decade. On two MTJ stacks, the measurement precision of resistance-area product and tunneling magnetoresistance was improved by up to a factor of 3.5 and the measurement reproducibility by up to a factor of 17, thanks to our improved position correction technique.
In-plane and out-of-plane emission of nuclear matter in Au+Au collisions
International Nuclear Information System (INIS)
Bastid, N.; Dupieux, P.; Ramillien, V.; Alard, J.P.; Amouroux, V.; Berger, L.; Boussange, S.; Fraysse, L.; Ibnouzahir, M.; Montarou, G.
1995-01-01
Collective flow effects in Au (E/A = 150 to 800 MeV) on Au collisions measured with the phase I setup of the FOPI detector at GSI - Darmstadt are presented. Directed side ward flow is studied, by the mean transverse momentum in the reaction plane x (y)>, without reaction plane reconstruction. A more quantitative measurement of the global amount of directed side ward flow is also made and some comparisons with the predictions of different QMD versions are given. Experimental results concerning the preferential emission of particles in a direction perpendicular to the reaction plane are also presented. Azimuthal distributions of fragments around the beam axis, with respect to the reaction plane are studied in the mid-rapidity region and the associated R N (out-of-plane/in-plane ratios) are extracted. The dependence of R N upon transverse momentum, centrality, fragment charge and bombarding energy is studied. (authors). 24 refs., 10 figs., 1 tab
Measurement and control of in-plane surface chemistry during the oxidation of H-terminated (111) Si
Gokce, Bilal; Adles, Eric J.; Aspnes, David E.; Gundogdu, Kenan
2010-01-01
In-plane directional control of surface chemistry during interface formation can lead to new opportunities regarding device structures and applications. Control of this type requires techniques that can probe and hence provide feedback on the chemical reactivity of bonds not only in specific directions but also in real time. Here, we demonstrate both control and measurement of the oxidation of H-terminated (111) Si. Control is achieved by externally applying uniaxial strain, and measurement by second-harmonic generation (SHG) together with the anisotropic-bond model of nonlinear optics. In this system anisotropy results because bonds in the strain direction oxidize faster than those perpendicular to it, leading in addition to transient structural changes that can also be detected at the bond level by SHG. PMID:20876145
Closed-form plastic collapse loads of pipe bends under combined pressure and in-plane bending
International Nuclear Information System (INIS)
Oh, Chang Sik; Kim, Yun Jae
2006-01-01
Based on three-dimensional (3-D) FE limit analyses, this paper provides plastic limit, collapse and instability load solutions for pipe bends under combined pressure and in-plane bending. The plastic limit loads are determined from FE limit analyses based on elastic-perfectly plastic materials using the small geometry change option, and the FE limit analyses using the large geometry change option provide plastic collapse loads (using the twice-elastic-slope method) and instability loads. For the bending mode, both closing bending and opening bending are considered, and a wide range of parameters related to the bend geometry is considered. Based on the FE results, closed-form approximations of plastic limit and collapse load solutions for pipe bends under combined pressure and bending are proposed
Electronic in-plane symmetry breaking at field-tuned quantum criticality in CeRhIn5
Energy Technology Data Exchange (ETDEWEB)
Helm, T. [MPI-CPFS (Germany); Bachmann, M. [MPI-CPFS (Germany); Moll, P.J.W. [MPI-CPFS (Germany); Balicas, L. [Los Alamos National Lab. (LANL), Los Alamos, NM (United States). National High Magnetic Field Lab. (MagLab); Chan, Mun Keat [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Ramshaw, Brad [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Mcdonald, Ross David [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Balakirev, Fedor Fedorovich [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Bauer, Eric Dietzgen [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Ronning, Filip [Los Alamos National Lab. (LANL), Los Alamos, NM (United States)
2017-03-23
Electronic nematicity appears in proximity to unconventional high-temperature superconductivity in the cuprates and iron-arsenides, yet whether they cooperate or compete is widely discussed. While many parallels are drawn between high-T_{c} and heavy fermion superconductors, electronic nematicity was not believed to be an important aspect in their superconductivity. We have found evidence for a field-induced strong electronic in-plane symmetry breaking in the tetragonal heavy fermion superconductor CeRhIn_{5}. At ambient pressure and zero field, it hosts an anti-ferromagnetic order (AFM) of nominally localized 4f electrons at TN=3.8K(1). Moderate pressure of 17kBar suppresses the AFM order and a dome of superconductivity appears around the quantum critical point. Similarly, a density-wave-like correlated phase appears centered around the field-induced AFM quantum critical point. In this phase, we have now observed electronic nematic behavior.
International Nuclear Information System (INIS)
Soares, W.A.; Andrade, A.H.P.
1995-01-01
A software package for generating and analyzing photoelastic images on infinite rectangular plates, subjected to in-plane loads, is being presented. It allows the user to generate photoelastic images as produced in a polariscope fed by monochromatic light. Both circular and plane polariscopes in conditions of dark or light field can be selected. Tools for obtaining light intensity distributions along horizontal and vertical lines and for extracting darkest regions of photoelastic fringes are also available. The extraction of such regions can be done by digital image processing (DIP). This process produces thin lines, from which main stresses and intensity factor used in the Fracture Mechanics can be obtained. The software was developed for running on DOS environment in Super VGA mode. The synthetic photoelastic images are generated in 64 gray levels. This software is a useful tool for teaching the fundamentals of photoelasticity and will help the researchers in the development of photoelastic experiments. (author). 6 fefs., 7 figs
Directory of Open Access Journals (Sweden)
F. Berto
2017-07-01
Full Text Available . The fictitious notch rounding concept is applied for the first time to V-notches with root hole subjected to in-plane mixed mode loading. Outof-bisector crack propagation is taken into account. The fictitious notch radius is determined as a function of the real notch radius, the microstructural support length and the notch opening angle. Due to the complexity of the problem, a method based on the simple normal stress failure criterion has been used. It is combined with the maximum tangential stress criterion to determine the crack propagation angle. An analytical method based on Neuber's procedure has been developed. The method provides the values of the microstructural support factor as a function of the mode ratio and the notch opening angle. The support factor is considered to be independent of the microstructural support length. Finally, for comparison, the support factor is determined on a purely numerical basis by iterative analysis of FE models.
Control of in-plane orientation of phthalocyanine molecular columns using vicinal Si(001)-(2x1)-H
International Nuclear Information System (INIS)
Nakamura, Masakazu; Matsunobe, Takeshi; Tokumoto, Hiroshi
2001-01-01
In-plane crystal orientation of copper phthalocyanine (CuPc) films formed by organic molecular-beam epitaxy have been successfully controlled by using vicinal Si(001)-(2x1)-H as a substrate, containing atomic steps of an approximately 4 nm period. A continuous film was grown at 60 degree C and the film thickness ranged between 5 and 8 molecular layers. By observing a frictional force image of the film, 90% of the molecular columns were found to align across the substrate step rows. The preferential orientation is considered to be induced by artificial surface lattices, which result from the striped effective contact area between the rigid CuPc crystals and the stair-like surfaces. The anisotropic optical properties of the film have been also confirmed by polarized reflection measurements. [copyright] 2001 American Institute of Physics
Atomic spin resonance in a rubidium beam obliquely incident to a transmission magnetic grating
International Nuclear Information System (INIS)
Hatakeyama, A; Goto, K
2016-01-01
We studied atomic spin resonance induced by atomic motion in a spatially periodic magnetostatic field. A rubidium atomic beam, with a velocity of about 400 m s −1 , was obliquely incident to a transmission magnetic grating that produced a spatially periodic magnetic field. The magnetic grating was formed by a magnetic thin film on a polyimide substrate that had multiple slits at 150 μm intervals. The atoms experienced field oscillation, depending on their velocity and the field period when passing through the grating, and underwent magnetic resonance. Resonance spectra obtained with a perpendicular magnetization film were in clear contrast to ones obtained with an in-plane magnetization film. The former exhibited resonance peaks at odd multiples of the frequency, determined by the velocity over the period, while the latter had dips at the same frequencies. (paper)
Zitterbewegung of electrons in quantum wells and dots in the presence of an in-plane magnetic field
International Nuclear Information System (INIS)
Biswas, Tutul; Ghosh, Tarun Kanti
2012-01-01
We study the effect of an in-plane magnetic field on the zitterbewegung (ZB) of electrons in a semiconductor quantum well (QW) and in a quantum dot (QD) with the Rashba and Dresselhaus spin-orbit interactions (SOIs). We obtain a general expression of the time-evolution of the position vector and current of the electron in a semiconductor QW. The amplitude of the oscillatory motion is directly related to the Berry connection in momentum space. We find that in presence of the magnetic field the ZB in a QW does not vanish when the strengths of the Rashba and Dresselhaus SOIs are equal. The in-plane magnetic field helps to sustain the ZB in QWs even at a low value of k 0 d (where d is the width of the Gaussian wavepacket and k 0 is the initial wavevector). The trembling motion of an electron in a semiconductor QW with high Landé g-factor (e.g. InSb) is sustained over a long time, even at a low value of k 0 d. Further, we study the ZB of an electron in QDs within the two sub-band model numerically. The trembling motion persists in time even when the magnetic field is absent as well as when the strengths of the SOI are equal. The ZB in QDs is due to the superposition of oscillatory motions corresponding to all possible differences of the energy eigenvalues of the system. This is an another example of multi-frequency ZB phenomenon. (paper)
International Nuclear Information System (INIS)
Zhu, Zhi-Wen; Zhang, Qing-Xin; Xu, Jia
2014-01-01
A kind of shape memory alloy (SMA) hysteretic nonlinear model was developed, and the nonlinear dynamics and bifurcation characteristics of the SMA thin film subjected to in-plane stochastic excitation were investigated. Van der Pol difference item was introduced to describe the hysteretic phenomena of the SMA strain–stress curves, and the nonlinear dynamic model of the SMA thin film subjected to in-plane stochastic excitation was developed. The conditions of global stochastic stability of the system were determined in singular boundary theory, and the probability density function of the system response was obtained. Finally, the conditions of stochastic Hopf bifurcation were analyzed. The results of theoretical analysis and numerical simulation indicate that self-excited vibration is induced by the hysteretic nonlinear characteristics of SMA, and stochastic Hopf bifurcation appears when the bifurcation parameter was changed; there are two limit cycles in the stationary probability density of the dynamic response of the system in some cases, which means that there are two vibration amplitudes whose probabilities are both very high, and jumping phenomena between the two vibration amplitudes appear with the change in conditions. The results obtained in this current paper are helpful for the application of the SMA thin film in stochastic vibration fields. - Highlights: • Hysteretic nonlinear model of shape memory alloy was developed. • Van der Pol item was introduced to interpret hysteretic strain–stress curves. • Nonlinear dynamic characteristics of the shape memory alloy film were analyzed. • Jumping phenomena were observed in the change of the parameters
International Nuclear Information System (INIS)
Kim, Jong Min; Huh, Nam Su
2010-01-01
The crack-tip stress fields and fracture mechanics assessment parameters for a surface crack, such as the elastic stress intensity factor or the elastic-plastic J-integral, can be affected significantly by the adjacent cracks. Such a crack interaction effect due to multiple cracks can alter the fracture mechanics assessment parameters significantly. There are many factors to be considered, for instance the relative distance between adjacent cracks, the crack shape, and the loading condition, to quantify the crack interaction effect on the fracture mechanics assessment parameters. Thus, the current assessment codes on crack interaction effects (crack combination rules), including ASME Sec. XI, BS7910, British Energy R6 and API 579-1/ASME FFS-1, provide different rules for combining multiple surface cracks into a single surface crack. The present paper investigates crack interaction effects by evaluating the elastic stress intensity factor and the elastic-plastic J-integral of adjacent in-plane surface cracks in a plate through detailed 3-dimensional elastic and elastic-plastic finite element analyses. The effects on the fracture mechanics assessment parameters of the geometric parameters, the relative distance between two cracks, and the crack shape are investigated systematically. As for the loading condition, an axial tension is considered. Based on the finite element results, the acceptability of the crack combination rules provided in the existing guidance was investigated, and the relevant recommendations on a crack interaction for in-plane surface cracks are discussed. The present results can be used to develop more concrete guidance on crack interaction effects for crack shape characterization to evaluate the integrity of defective components
Magnetic resonance imaging apparatus
International Nuclear Information System (INIS)
Ehnholm, G.J.
1991-01-01
This patent describes an electron spin resonance enhanced magnetic resonance (MR) imaging (ESREMRI) apparatus able to generate a primary magnetic field during periods of nuclear spin transition excitation and magnetic resonance signal detection. This allows the generation of ESREMRI images of a subject. A primary magnetic field of a second and higher value generated during periods of nuclear spin transition excitation and magnetic resonance signal detection can be used to generate conventional MR images of a subject. The ESREMRI and native MR images so generated may be combined, (or superimposed). (author)
Electron paramagnetic resonance
Al'tshuler, S A
2013-01-01
Electron Paramagnetic Resonance is a comprehensive text on the field of electron paramagnetic resonance, covering both the theoretical background and the results of experiment. This book is composed of eight chapters that cover theoretical materials and experimental data on ionic crystals, since these are the materials that have been most extensively studied by the methods of paramagnetic resonance. The opening chapters provide an introduction to the basic principles of electron paramagnetic resonance and the methods of its measurement. The next chapters are devoted to the theory of spectra an
Ramifide resonators for cyclotrons
International Nuclear Information System (INIS)
Smirnov, Yu.V.
2000-01-01
The resonators with the conductors ramified form for cyclotrons are systematized and separated into the self-contained class - the ramified resonators for cyclotrons (Carr). The ramified resonators are compared with the quarter-wave and half-wave nonramified resonators, accomplished from the transmitting lines fragments. The CRR are classified into two types: ones with the additional structural element, switched in parallel and in series. The CRR may include several additional structural elements. The CRR calculations may be concluded by analytical methods - the method of matrix calculation or the method of telegraph equations and numerical methods - by means of the ISFEL3D, MAFIA and other programs [ru
International Nuclear Information System (INIS)
Xu, J.P.; Liu, S.P.; Guo, G.X.; Zhen, C.M.; Tang, G.D.; Sun, H.Y.; Nie, X.F.
2004-01-01
The stability of vertical Bloch lines (VBLs) in the second kind of dumbbell domain (IIDs) walls in liquid phase epitaxy garnet bubble films subjected to an in-plane field at various temperatures is studied experimentally. It is found that there exists a critical in-plane field range depending on temperature, in which vertical Bloch lines (VBLs) in the second kind of IIDs walls are unstable, i.e., [Hip(1)(T),Hip(2)(T)]. Here, Hip(1)(T) is the initial critical in-plane field at which VBLs in the walls of IIDs annihilate; while Hip(2)(T) is the lowest in-plane field at which all VBLs in the walls of IIDs have annihilated completely. Also, the critical in-plane field range [Hip(1)(T),Hip(2)(T)],Hip(1)(T) and Hip(2)(T) all decrease with the temperature increasing. Hip(1)(T) and Hip(2)(T) reach zero at T0' and T0, respectively
Directory of Open Access Journals (Sweden)
Kaishi Wang
2018-03-01
Full Text Available The ceramic-metal interface is present in various material structures and devices that are vulnerable to failures, like cracking, which are typically due to their incompatible properties, e.g., thermal expansion mismatch. In failure of these multilayer systems, interfacial shear strength is a good measure of the robustness of interfaces, especially for planar films. There is a widely-used shear lag model and method by Agrawal and Raj to analyse and measure the interfacial shear strength of thin brittle film on ductile substrates. The use of this classical model for a type of polymer derived ceramic coatings (thickness ~18 μm on steel substrate leads to high values of interfacial shear strength. Here, we present finite element simulations for such a coating system when it is subjected to in-plane tension. Results show that the in-plane stresses in the coating are non-uniform, i.e., varying across the thickness of the film. Therefore, they do not meet one of the basic assumptions of the classical model: uniform in-plane stress. Furthermore, effects of three significant parameters, film thickness, crack spacing, and Young’s modulus, on the in-plane stress distribution have also been investigated. ‘Thickness-averaged In-plane Stress’ (TIS, a new failure criterion, is proposed for estimating the interfacial shear strength, which leads to a more realistic estimation of the tensile strength and interfacial shear strength of thick brittle films/coatings on ductile substrates.
Wang, Kaishi; Zhang, Fangzhou; Bordia, Rajendra K
2018-03-27
The ceramic-metal interface is present in various material structures and devices that are vulnerable to failures, like cracking, which are typically due to their incompatible properties, e.g., thermal expansion mismatch. In failure of these multilayer systems, interfacial shear strength is a good measure of the robustness of interfaces, especially for planar films. There is a widely-used shear lag model and method by Agrawal and Raj to analyse and measure the interfacial shear strength of thin brittle film on ductile substrates. The use of this classical model for a type of polymer derived ceramic coatings (thickness ~18 μm) on steel substrate leads to high values of interfacial shear strength. Here, we present finite element simulations for such a coating system when it is subjected to in-plane tension. Results show that the in-plane stresses in the coating are non-uniform, i.e., varying across the thickness of the film. Therefore, they do not meet one of the basic assumptions of the classical model: uniform in-plane stress. Furthermore, effects of three significant parameters, film thickness, crack spacing, and Young's modulus, on the in-plane stress distribution have also been investigated. 'Thickness-averaged In-plane Stress' (TIS), a new failure criterion, is proposed for estimating the interfacial shear strength, which leads to a more realistic estimation of the tensile strength and interfacial shear strength of thick brittle films/coatings on ductile substrates.
Sadeghifar, Hamidreza
2018-05-01
The present study experimentally investigates the realistic functionality of in-plane and through-plane pressure drops of layered fibrous media with porosity, fiber diameter, fiber spacing, fiber-fiber angles and fiber-flow angles. The study also reveals that pressure drop may increase with porosity and fiber diameter under specific circumstances. This counter-intuitive point narrows down the validity range of widely-used permeability-porosity-diameter models or correlations. It is found that, for fibrous materials, the most important parameter that impacts the in-plane pressure drop is not their porosities but the number of fibers extended in the flow direction. It is also concluded that in-plane pressure drop is highly dependent upon the flow direction (fiber-flow angles), especially at lower porosities. Contrary to in-plane pressure drop, through-plane pressure drop is a weak function of fiber-fiber angles but is strongly impacted by fiber spacing, especially at lower porosities. At a given porosity, low through-plane pressure drops occur if fiber spacing does not change practically from one layer to another. Through-plane pressure drop also, insignificantly, increases with the intersecting angles between fibers. An optimized microstructure of fibrous media resulting in minimal in-plane and through-plane pressure drops is also offered for the first time in this work.
Controlling Parametric Resonance
DEFF Research Database (Denmark)
Galeazzi, Roberto; Pettersen, Kristin Ytterstad
2012-01-01
the authors review the conditions for the onset of parametric resonance, and propose a nonlinear control strategy in order to both induce the resonant oscillations and to stabilize the unstable motion. Lagrange’s theory is used to derive the dynamics of the system and input–output feedback linearization...
Electron Paramagnetic Resonance Spectroscopy
Indian Academy of Sciences (India)
Home; Journals; Resonance – Journal of Science Education; Volume 20; Issue 11. Electron Paramagnetic Resonance Spectroscopy: Biological Applications. B G Hegde. General Article Volume 20 Issue 11 November 2015 pp 1017-1032. Fulltext. Click here to view fulltext PDF. Permanent link:
Electromagnetic resonance waves
International Nuclear Information System (INIS)
Villaba, J.M.; Manjon, F.J.; Guirao, A.; Andres, M.V.
1994-01-01
We describe in this paper a set of experiments designed to make qualitative and quantitative measurements on electromagnetic resonances of several simple systems. The experiments are designed for the undergraduate laboratory of Electricity and Magnetism in Physics. These experiments can help the students understanding the concept of resonance, which appears in different fields of Physics. (Author) 8 refs
Laser magnetic resonance spectroscopy
International Nuclear Information System (INIS)
Ferrari, C.A.
1985-01-01
The technique of laser resonance magnetic resonance allows one to study the high-resolution spectroscopy of transient paramagnetic species, viz, atoms, radicals, and molecular ions. This article is a brief exposition of the method, describing the principles, instrumentation and applicability of the IR and FIR-LMR and shows results of HF + . (Author) [pt
Resonance and Fractal Geometry
Broer, Henk W.
The phenomenon of resonance will be dealt with from the viewpoint of dynamical systems depending on parameters and their bifurcations. Resonance phenomena are associated to open subsets in the parameter space, while their complement corresponds to quasi-periodicity and chaos. The latter phenomena
Nuclear Magnetic Resonance Spectroscopy
Indian Academy of Sciences (India)
Home; Journals; Resonance – Journal of Science Education; Volume 9; Issue 1. Nuclear Magnetic Resonance Spectroscopy. Susanta Das. General Article Volume 9 Issue 1 January 2004 pp 34-49. Fulltext. Click here to view fulltext PDF. Permanent link: https://www.ias.ac.in/article/fulltext/reso/009/01/0034-0049. Keywords.
Cardiac magnetic resonance imaging
African Journals Online (AJOL)
2011-03-06
Mar 6, 2011 ... Cardiac magnetic resonance imaging. Cardiovascular magnetic resonance imaging is becoming a routine diagnostic technique. BRUCE s sPOTTiswOOdE, PhD. MRC/UCT Medical Imaging Research Unit, University of Cape Town, and Division of Radiology, Stellenbosch University. Bruce Spottiswoode ...
Fundamentals of nanomechanical resonators
Schmid, Silvan; Roukes, Michael Lee
2016-01-01
This authoritative book introduces and summarizes the latest models and skills required to design and optimize nanomechanical resonators, taking a top-down approach that uses macroscopic formulas to model the devices. The authors cover the electrical and mechanical aspects of nano electromechanical system (NEMS) devices. The introduced mechanical models are also key to the understanding and optimization of nanomechanical resonators used e.g. in optomechanics. Five comprehensive chapters address: The eigenmodes derived for the most common continuum mechanical structures used as nanomechanical resonators; The main sources of energy loss in nanomechanical resonators; The responsiveness of micro and nanomechanical resonators to mass, forces, and temperature; The most common underlying physical transduction mechanisms; The measurement basics, including amplitude and frequency noise. The applied approach found in this book is appropriate for engineering students and researchers working with micro and nanomechanical...
Lai, Jih-Sheng; Young, Sr., Robert W.; Chen, Daoshen; Scudiere, Matthew B.; Ott, Jr., George W.; White, Clifford P.; McKeever, John W.
1997-01-01
A resonant, snubber-based, soft switching, inverter circuit achieves lossless switching during dc-to-ac power conversion and power conditioning with minimum component count and size. Current is supplied to the resonant snubber branches solely by the main inverter switches. Component count and size are reduced by use of a single semiconductor switch in the resonant snubber branches. Component count is also reduced by maximizing the use of stray capacitances of the main switches as parallel resonant capacitors. Resonance charging and discharging of the parallel capacitances allows lossless, zero voltage switching. In one embodiment, circuit component size and count are minimized while achieving lossless, zero voltage switching within a three-phase inverter.
Observation of the in-plane spin-dephasing anisotropy in [111]-grown GaAs/AlGaAs quantum well
International Nuclear Information System (INIS)
Zhao, Chunbo; Li, Junbin; Yu, Ying; Ni, Haiqiao; Niu, Zhichuan; Zhang, Xinhui
2014-01-01
The electron density and temperature dependent in-plane spin-dephasing anisotropy in [111]-grown GaAs quantum well (QW) has been investigated by time-resolved magneto-Kerr rotation technique. Due to the specific symmetry of [111]-grown quantum well, the in-plane Rashba and linear Dresselhaus effective spin-orbit magnetic field is parallel to each other for electron wave vectors in all directions. However, an obvious in-plane spin-dephasing anisotropy comparing [2 ¯ 11] with [01 ¯ 1] crystalline orientations has been observed and discussed in this work. Our results demonstrate the innegligible spin dephasing channel through inhomogeneous broadening induced by the out-of-plane non-linear Dresselhaus field, which arises naturally from the C 3 symmetry of [111]-grown GaAs QW
Cui, Chaojie; Hu, Weijin; Yan, Xingxu; Addiego, Christopher; Gao, Wenpei; Wang, Yao; Wang, Zhe; Li, Linze; Cheng, Yingchun; Li, Peng; Zhang, Xixiang; Alshareef, Husam N.; Wu, Tao; Zhu, Wenguang; Pan, Xiaoqing; Li, Lain-Jong
2018-01-01
Enriching the functionality of ferroelectric materials with visible-light sensitivity and multiaxial switching capability would open up new opportunities for their applications in advanced information storage with diverse signal manipulation functions. We report experimental observations of robust intra-layer ferroelectricity in two-dimensional (2D) van der Waals layered -In2Se3 ultrathin flakes at room temperature. Distinct from other 2D and conventional ferroelectrics, In2Se3 exhibits intrinsically intercorrelated out-of-plane and in-plane polarization, where the reversal of the out-of-plane polarization by a vertical electric field also induces the rotation of the in-plane polarization. Based on the in-plane switchable diode effect and the narrow bandgap (~1.3 eV) of ferroelectric In2Se3, a prototypical non-volatile memory device, which can be manipulated both by electric field and visible light illumination, is demonstrated for advancing data storage technologies.
Cui, Chaojie; Hu, Wei-Jin; Yan, Xingxu; Addiego, Christopher; Gao, Wenpei; Wang, Yao; Wang, Zhe; Li, Linze; Cheng, Yingchun; Li, Peng; Zhang, Xixiang; Alshareef, Husam N; Wu, Tom; Zhu, Wenguang; Pan, Xiaoqing; Li, Lain-Jong
2018-02-14
Enriching the functionality of ferroelectric materials with visible-light sensitivity and multiaxial switching capability would open up new opportunities for their applications in advanced information storage with diverse signal manipulation functions. We report experimental observations of robust intralayer ferroelectricity in two-dimensional (2D) van der Waals layered α-In 2 Se 3 ultrathin flakes at room temperature. Distinct from other 2D and conventional ferroelectrics, In 2 Se 3 exhibits intrinsically intercorrelated out-of-plane and in-plane polarization, where the reversal of the out-of-plane polarization by a vertical electric field also induces the rotation of the in-plane polarization. On the basis of the in-plane switchable diode effect and the narrow bandgap (∼1.3 eV) of ferroelectric In 2 Se 3 , a prototypical nonvolatile memory device, which can be manipulated both by electric field and visible light illumination, is demonstrated for advancing data storage technologies.
Cui, Chaojie
2018-01-30
Enriching the functionality of ferroelectric materials with visible-light sensitivity and multiaxial switching capability would open up new opportunities for their applications in advanced information storage with diverse signal manipulation functions. We report experimental observations of robust intra-layer ferroelectricity in two-dimensional (2D) van der Waals layered -In2Se3 ultrathin flakes at room temperature. Distinct from other 2D and conventional ferroelectrics, In2Se3 exhibits intrinsically intercorrelated out-of-plane and in-plane polarization, where the reversal of the out-of-plane polarization by a vertical electric field also induces the rotation of the in-plane polarization. Based on the in-plane switchable diode effect and the narrow bandgap (~1.3 eV) of ferroelectric In2Se3, a prototypical non-volatile memory device, which can be manipulated both by electric field and visible light illumination, is demonstrated for advancing data storage technologies.
Advances in magnetic resonance 10
Waugh, John S
2013-01-01
Advances in Magnetic Resonance, Volume 10, presents a variety of contributions to the theory and practice of magnetic resonance. The book contains three chapters that examine superoperators in magnetic resonance; ultrasonically modulated paramagnetic resonance; and the utility of electron paramagnetic resonance (EPR) and electron-nuclear double-resonance (ENDOR) techniques for studying low-frequency modes of atomic fluctuations and their significance for understanding the mechanism of structural phase transitions in solids.
Harshavardhan, K. S.; Rajeswari, M.; Hwang, D. M.; Chen, C. Y.; Sands, T. D.; Venkatesan, T.; Tkaczyk, J. E.; Lay, K. W.; Safari, A.; Johnson, L.
1992-12-01
Anisotropic surface texturing of the polycrystalline yttria-stabilized zirconia substrates, prior to YBa2Cu3O(7-x) film deposition, is shown to promote in-plane (basal plane) ordering of the film growth in addition to the c-axis texturing. The Jc's of the films in the weak-link-dominated low-field regime are enhanced considerably, and this result is attributed to the reduction of weak links resulting from a reduction in the number of in-plane large-angle grain boundaries.
International Nuclear Information System (INIS)
Elliott, C.J.; Feldman, B.J.
1979-02-01
A detailed theoretical analysis is presented of the interaction of intense near-resonant monochromatic radiation with an N-level anharmonic oscillator. In particular, the phenomenon of multiple photon resonance, the process by which an N-level system resonantly absorbs two or more photons simultaneously, is investigated. Starting from the Schroedinger equation, diagrammatic techniques are developed that allow the resonant process to be analyzed quantitatively, in analogy with well-known two-level coherent phenomena. In addition, multiple photon Stark shifts of the resonances, shifts absent in two-level theory, are obtained from the diagrams. Insights into the nature of multiple photon resonances are gained by comparing the quantum mechanical system with classical coupled pendulums whose equations of motion possess identical eigenvalues and eigenvectors. In certain limiting cases, including that of the resonantly excited N-level harmonic oscillator and that of the equally spaced N-level system with equal matrix elements, analytic results are derived. The influence of population relaxation and phase-disrupting collisions on the multiple photon process are also analyzed, the latter by extension of the diagrammatic technique to the density matrix equations of motion. 11 figures
Properties of spiral resonators
International Nuclear Information System (INIS)
Haeuser, J.
1989-10-01
The present thesis deals with the calculation and the study of the application possibilities of single and double spiral resonators. The main aim was the development and the construction of reliable and effective high-power spiral resonators for the UNILAC of the GSI in Darmstadt and the H - -injector for the storage ring HERA of DESY in Hamburg. After the presentation of the construction and the properties of spiral resonators and their description by oscillating-circuit models the theoretical foundations of the bunching are presented and some examples of a rebuncher and debuncher and their influence on the longitudinal particle dynamics are shown. After the description of the characteristic accelerator quantities by means of an oscillating-circuit model and the theory of an inhomogeneous λ/4 line it is shown, how the resonance frequency and the efficiency of single and double spiral resonators can be calculated from the geometrical quantities of the structure. In the following the dependence of the maximal reachable resonator voltage in dependence on the gap width and the surface of the drift tubes is studied. Furthermore the high-power resonators are presented, which were built for the different applications for the GSI in Darmstadt, DESY in Hamburg, and for the FOM Institute in Amsterdam. (orig./HSI) [de
Magnetic Resonance Force Microscopy System
Federal Laboratory Consortium — The Magnetic Resonance Force Microscopy (MRFM) system, developed by ARL, is the world's most sensitive nuclear magnetic resonance (NMR) spectroscopic analysis tool,...
Kazimierczuk, Marian K
2012-01-01
This book is devoted to resonant energy conversion in power electronics. It is a practical, systematic guide to the analysis and design of various dc-dc resonant inverters, high-frequency rectifiers, and dc-dc resonant converters that are building blocks of many of today's high-frequency energy processors. Designed to function as both a superior senior-to-graduate level textbook for electrical engineering courses and a valuable professional reference for practicing engineers, it provides students and engineers with a solid grasp of existing high-frequency technology, while acquainting them wit
Excitation of Nucleon Resonances
International Nuclear Information System (INIS)
Burkert, Volker D.
2001-01-01
I discuss developments in the area of nucleon resonance excitation, both necessary and feasible, that would put our understanding of nucleon structure in the regime of strong QCD on a qualitatively new level. They involve the collection of high quality data in various channels, a more rigorous approach in the search for ''missing'' resonances, an effort to compute some critical quantities in nucleon resonance excitations from first principles, i.e. QCD, and a proposal focused to obtain an understanding of a fundamental quantity in nucleon structure
Dihadronic and dileptonic resonances
International Nuclear Information System (INIS)
Gareev, F.A.; Barabanov, M.Yu.; Kazacha, G.S.
1997-01-01
Simple phenomenological rules are suggested for calculation of dihadron and dilepton resonance masses. A general interpretation is given for different exotic resonances in nuclear physics: Darmstadt-effect, dibaryon, dipion and other resonances. Information about the inner structure of e ± , proton, neutron, pions and so on can be obtained from the usual reactions of the type e + + e - =>γγ, e ± +γ=>e ± γ, e ± μ ± , e ± N... at low, intermediate and high energies using existing experimental devices
International Nuclear Information System (INIS)
Shahbazian, B.A.
1982-01-01
The invariant mass spectra of forty nine hadronic systems with hypercharge, strangeness and baryon number, varied in wide limits have been studied. Resonance peaks have been found in the invariant mass spectra of Y 2 and #betta#pπ 2495 MeV/c 2 resonant states. Three more candidates for anti qq 4 states were found #bettaπ# + π + : 1705, 2072, 2605 MeV/c 2 . The masses of all these candidates are in good agreement with Bag Model predictions. A hypercharge selection rule is suggested: ''The hypercharge of hadronic resonances in weak gravitational fields cannot exceed one Y <= 1
Resonant halide perovskite nanoparticles
Tiguntseva, Ekaterina Y.; Ishteev, Arthur R.; Komissarenko, Filipp E.; Zuev, Dmitry A.; Ushakova, Elena V.; Milichko, Valentin A.; Nesterov-Mueller, Alexander; Makarov, Sergey V.; Zakhidov, Anvar A.
2017-09-01
The hybrid halide perovskites is a prospective material for fabrication of cost-effective optical devices. Unique perovskites properties are used for solar cells and different photonic applications. Recently, perovskite-based nanophotonics has emerged. Here, we consider perovskite like a high-refractive index dielectric material, which can be considered to be a basis for nanoparticles fabrication with Mie resonances. As a result, we fabricate and study resonant perovskite nanoparticles with different sizes. We reveal, that spherical nanoparticles show enhanced photoluminescence signal. The achieved results lay a cornerstone in the field of novel types of organic-inorganic nanophotonics devices with optical properties improved by Mie resonances.
DEFF Research Database (Denmark)
Meier, Ninna; Wegener, Charlotte
2017-01-01
In this article, we explore what organization and management scholars can do to write with resonance and to facilitate an emotional, bodily, or in other ways sensory connection between the text and the reader. We propose that resonance can be relevant for organization and management scholars in two......, and thus bring forward the field of research in question. We propose that writing with resonance may be a way to further the impact of academic work by extending the modalities with which our readers can relate to and experience our work....
Doubly resonant multiphoton ionization
International Nuclear Information System (INIS)
Crance, M.
1978-01-01
A particular case of doubly resonant multiphoton ionization is theoretically investigated. More precisely, two levels quasi-resonant with two successive harmonics of the field frequency are considered. The method used is based on the effective operator formalism first introduced for this problem by Armstrong, Beers and Feneuille. The main result is to show the possibility of observing large interference effects on the width of the resonances. Moreover this treatment allows us to make more precise the connection between effective operator formalism and standard perturbation theory
Probing in-plane anisotropy in few-layer ReS2 using low frequency noise measurement
Mitra, Richa; Jariwala, Bhakti; Bhattacharya, Arnab; Das, Anindya
2018-04-01
ReS2, a layered two-dimensional material popular for its in-plane anisotropic properties, is emerging as one of the potential candidates for flexible electronics and ultrafast optical applications. It is an n-type semiconducting material having a layer independent bandgap of 1.55 eV. In this paper we have characterized the intrinsic electronic noise level of few-layer ReS2 for the first time. Few-layer ReS2 field effect transistor devices show a 1/f nature of noise for frequency ranging over three orders of magnitude. We have also observed that not only the electrical response of the material is anisotropic; the noise level is also dependent on direction. In fact the noise is found to be more sensitive towards the anisotropy. This fact has been explained by evoking the theory where the Hooge parameter is not a constant quantity, but has a distinct power law dependence on mobility along the two-axes direction. The anisotropy in 1/f noise measurement will pave the way to quantify the anisotropic nature of two-dimensional (2D) materials, which will be helpful for the design of low-noise transistors in future.
Marinescu, D. C.
2017-09-01
We evaluate the quantum corrections to the conductivity of a two-dimensional electron system with competing Rashba (R) and linear and cubic Dresselhaus (D) spin-orbit interactions in the presence of an in-plane magnetic field B . Within a perturbative approximation, we investigate the interplay between the spin-orbit coupling and the magnetic field in determining the transport regime in two different limiting scenarios: when only one of the linear terms, either Rashba or Dresselhaus, dominates, and at equal linear couplings, when the cubic Dresselhaus breaks the spin symmetry. In each instance, we find that for B higher than a critical value, the antilocalization correction is suppressed and the effective dephasing time saturates to a constant value determined only by the spin-orbit interaction. At equal R-D linear couplings, this value is directly proportional with the cubic Dresselhaus contribution. In the same regime, the magnetoconductivity is expressed as a simple logarithmic function dependent only on the cubic Dresselhaus constant.
Kim, Min Su; Bos, Philip J; Kim, Dong-Woo; Yang, Deng-Ke; Lee, Joong Hee; Lee, Seung Hee
2016-10-12
Technology of displaying static images in portable displays, advertising panels and price tags pursues significant reduction in power consumption and in product cost. Driving at a low-frequency electric field in fringe-field switching (FFS) mode can be one of the efficient ways to save powers of the recent portable devices, but a serious drop of image-quality, so-called image-flickering, has been found in terms of the coupling of elastic deformation to not only quadratic dielectric effect but linear flexoelectric effect. Despite of the urgent requirement of solving the issue, understanding of such a phenomenon is yet vague. Here, we thoroughly analyze and firstly report the flexoelectric effect in in-plane switching (IPS) liquid crystal cell. The effect takes place on the area above electrodes due to splay and bend deformations of nematic liquid crystal along oblique electric fields, so that the obvious spatial shift of the optical transmittance is experimentally observed and is clearly demonstrated based on the relation between direction of flexoelectric polarization and electric field polarity. In addition, we report that the IPS mode has inherent characteristics to solve the image-flickering issue in the low-power consumption display in terms of the physical property of liquid crystal material and the electrode structure.
International Nuclear Information System (INIS)
Harrison, N; McDonald, R D
2009-01-01
We propose a quantum oscillation experiment by which the rotation of an underdoped YBa 2 Cu 3 O 6+x sample about two different axes with respect to the orientation of the magnetic field can be used to infer the shape of the in-plane cross-section of corrugated Fermi surface cylinder(s). Deep corrugations in the Fermi surface are expected to give rise to nodes in the quantum oscillation amplitude that depend on the magnitude and orientation of the magnetic induction B. Because the symmetries of electron and hole cylinders within the Brillouin zone are expected to be very different, the topology can provide essential clues as to the broken symmetry responsible for the observed oscillations. The criterion for the applicability of this method to the cuprate superconductors (as well as other layered metals) is that the difference in quantum oscillation frequency 2ΔF between the maximum (belly) and minimum (neck) extremal cross-sections of the corrugated Fermi surface exceeds |B|. (fast track communication)
International Nuclear Information System (INIS)
Srivastava, A.; Prabhakaran, K.M.; Ghosh, A.K.
2011-01-01
Highlights: → Behavior of cracked elbows with part-through crack at intrados under bending moment is studied. → Some part of crack always opens and some part gets closed irrespective of mode of applied moment. → Fraction of the crack that opens basically decides the weakening effect of the cracked elbow. → Results will be useful for fracture studies and limit load estimation especially for LBB. - Abstract: This paper presents the behavior of part-through circumferential crack at intrados in elbows under in-plane bending moment. This is based on detailed non-linear (both material and geometric) finite element analysis performed on various sizes of elbows (generally used in piping industry), having different crack sizes. It is observed that some part of the crack always opens and some part gets closed irrespective of the mode of applied bending moment (opening/closing). The fraction of the crack that opens basically decides the weakening effect of the cracked elbow. It is observed that there is a threshold value of crack length and crack depth, before which no crack opening is observed under opening mode. Also as elbow becomes thinner, the threshold value of above two parameters increases. Quite interestingly, the part of crack which closes in opening mode opens under closing mode. The above mentioned study on the behavior of crack will be useful for fracture studies and limit load estimation especially when leak before break concept is to be employed.
A comparison of plastic collapse and limit loads for single mitred pipe bends under in-plane bending
International Nuclear Information System (INIS)
Neilson, R.; Wood, J.; Hamilton, R.; Li, H.
2010-01-01
This paper presents a comparison of the plastic collapse loads from experimental in-plane bending tests on three 90 o single un-reinforced mitred pipe bends, with the results from various 3D solid finite element models. The bending load applied reduced the bend angle and in turn, the resulting cross-sectional ovalisation led to a recognised weakening mechanism. In addition, at maximum load there was a reversal in stiffness, characteristic of buckling. This reversal in stiffness was accompanied by significant ovalisation and plasticity at the mitre intersection. Both the weakening mechanism and the post-buckling behaviour are only observable by testing or by including large displacement effects in the plastic finite element solution. A small displacement limit solution with an elastic-perfectly plastic material model overestimated the collapse load by more than 40% and could not reproduce the buckling behaviour. The plastic collapse finite element solution, with large displacements, produced excellent agreement with the experiment. Sufficient experimental detail is presented for these results to be used as a benchmark for analysts in this area. Given the robustness of non-linear solutions in commercial finite element codes and the ready availability of computing resources, it is argued that pressure vessel code developers should now be recommending large displacement analysis as the default position for limit and plastic collapse analyses, rather than expecting engineers to anticipate weakening mechanisms and related non-linear phenomena.
Yamaguchi, Akinobu; Nakao, Akiko; Ohkochi, Takuo; Yasui, Akira; Kinoshita, Toyohiko; Utsumi, Yuichi; Saiki, Tsunemasa; Yamada, Keisuke
2018-05-01
The electrical ferromagnetic resonance of micro-scale Ni wires with magnetic anisotropy induced by the heterojunction between the Ni layer and ferroelectric single crystalline LiNbO3 substrate was demonstrated by using rectifying effect. The two resonance modes were observed in the Ni wire aligned parallel to the applied magnetic field in plane. The lower resonance frequency mode is considered to correspond to the normal resonance mode with domain resonance, while the higher resonance mode is attributed to the mode which is contributed by the heterojunction between the Ni layer and LiNbO3 substrate. Our results manifest that the rectifying electrical detections are very useful for understating and evaluating the magnetic properties induced by the heterojunction.
Magnetic Resonance (MR) Defecography
... to a CD or uploaded to a digital cloud server. Magnetic resonance (MR) defecography is a special ... with you. top of page What are the benefits vs. risks? Benefits MR defecography helps assess pelvic ...
International Nuclear Information System (INIS)
Heller, E.J.
1996-01-01
It is well known that at long wavelengths λ an s-wave scatterer can have a scattering cross section σ on the order of λ 2 , much larger than its physical size, as measured by the range of its potential. Very interesting phenomena can arise when two or more identical scatterers are placed close together, well within one wavelength. We show that, for a pair of identical scatterers, an extremely narrow p-wave open-quote open-quote proximity close-quote close-quote resonance develops from a broader s-wave resonance of the individual scatterers. A new s-wave resonance of the pair also appears. The relation of these proximity resonances (so called because they appear when the scatterers are close together) to the Thomas and Efimov effects is discussed. copyright 1996 The American Physical Society
Energy Technology Data Exchange (ETDEWEB)
Lutz, Matthias F.M., E-mail: m.lutz@gsi.de [GSI Helmholtzzentrum für Schwerionenforschung GmbH, D-64291 Darmstadt (Germany); Technische Universität Darmstadt, D-64289 Darmstadt (Germany); Lange, Jens Sören, E-mail: Soeren.Lange@exp2.physik.uni-giessen.de [II. Physikalisches Institut, Justus-Liebig-Universität Giessen, D-35392 Giessen (Germany); Pennington, Michael, E-mail: michaelp@jlab.org [Thomas Jefferson National Accelerator Facility, Newport News, VA 23606 (United States); Bettoni, Diego [Istituto Nazionale di Fisica Nucleare, Sezione di Ferrara, 44122 Ferrara (Italy); Brambilla, Nora [Physik Department, Technische Universität München, D-85747 Garching (Germany); Crede, Volker [Department of Physics, Florida State University, Tallahassee, FL 32306 (United States); Eidelman, Simon [Novosibirsk State University, Novosibirsk 630090 (Russian Federation); Budker Istitute of Nuclear Physics SB RAS, Novosibirsk 630090 (Russian Federation); Gillitzer, Albrecht [Institut für Kernphysik, Forschungszentrum Jülich GmbH, D-52425 Jülich (Germany); Gradl, Wolfgang [Institut für Kernphysik, Johannes Gutenberg-Universität Mainz, D-55128 Mainz (Germany); Lang, Christian B. [Institut für Physik, Universität Graz, A-8010 Graz (Austria); Metag, Volker [II. Physikalisches Institut, Justus-Liebig-Universität Giessen, D-35392 Giessen (Germany); Nakano, Takashi [Research Center for Nuclear Physics, Osaka University, Osaka 567-0047 (Japan); and others
2016-04-15
We report on the EMMI Rapid Reaction Task Force meeting ‘Resonances in QCD’, which took place at GSI October 12–14, 2015. A group of 26 people met to discuss the physics of resonances in QCD. The aim of the meeting was defined by the following three key questions: • What is needed to understand the physics of resonances in QCD? • Where does QCD lead us to expect resonances with exotic quantum numbers? • What experimental efforts are required to arrive at a coherent picture? For light mesons and baryons only those with up, down and strange quark content were considered. For heavy–light and heavy–heavy meson systems, those with charm quarks were the focus. This document summarizes the discussions by the participants, which in turn led to the coherent conclusions we present here.
Magnetic resonance angiography (MRA)
International Nuclear Information System (INIS)
Arlart, I.P.; Guhl, L.
1992-01-01
An account is given in this paper of the physical and technical principles underlying the 'time-of-flight' technique for imaging of vessels by magnetic resonance tomography. Major indications for the new procedure of magnetic resonance angiography at present are intracerebral and extracerebral vessels, with digital subtraction angiography quite often being required to cope with minor alterations (small aneurysms, small occlusions). Magnetic resonance angiography and digital subtraction angiography are compared to each other for advantages and disadvantages. Basically, replacement of radiological angiography by magnetic resonance angiography appears to be possible only within limits, since X-ray diagnostics primarily provides morphological information about vessels, whereas flow dynamics is visualized by the 'time-of-flight' technique. (orig.) [de
Magnetic Resonance Cholangiopancreatography (MRCP)
... radio waves and a computer to evaluate the liver, gallbladder, bile ducts, pancreas and pancreatic duct for disease. It is ... of the hepatobiliary and pancreatic systems, including the liver, gallbladder, bile ducts, pancreas and pancreatic duct . Magnetic resonance imaging (MRI) ...
Piazza, Gianluca
2017-01-01
This book introduces piezoelectric microelectromechanical (pMEMS) resonators to a broad audience by reviewing design techniques including use of finite element modeling, testing and qualification of resonators, and fabrication and large scale manufacturing techniques to help inspire future research and entrepreneurial activities in pMEMS. The authors discuss the most exciting developments in the area of materials and devices for the making of piezoelectric MEMS resonators, and offer direct examples of the technical challenges that need to be overcome in order to commercialize these types of devices. Some of the topics covered include: Widely-used piezoelectric materials, as well as materials in which there is emerging interest Principle of operation and design approaches for the making of flexural, contour-mode, thickness-mode, and shear-mode piezoelectric resonators, and examples of practical implementation of these devices Large scale manufacturing approaches, with a focus on the practical aspects associate...
Lattices of dielectric resonators
Trubin, Alexander
2016-01-01
This book provides the analytical theory of complex systems composed of a large number of high-Q dielectric resonators. Spherical and cylindrical dielectric resonators with inferior and also whispering gallery oscillations allocated in various lattices are considered. A new approach to S-matrix parameter calculations based on perturbation theory of Maxwell equations, developed for a number of high-Q dielectric bodies, is introduced. All physical relationships are obtained in analytical form and are suitable for further computations. Essential attention is given to a new unified formalism of the description of scattering processes. The general scattering task for coupled eigen oscillations of the whole system of dielectric resonators is described. The equations for the expansion coefficients are explained in an applicable way. The temporal Green functions for the dielectric resonator are presented. The scattering process of short pulses in dielectric filter structures, dielectric antennas and lattices of d...
Energy Technology Data Exchange (ETDEWEB)
Lutz, Matthias F. M.; Lange, Jens Sören; Pennington, Michael; Bettoni, Diego; Brambilla, Nora; Crede, Volker; Eidelman, Simon; Gillitzer, Albrecht; Gradl, Wolfgang; Lang, Christian B.; Metag, Volker; Nakano, Takashi; Nieves, Juan; Neubert, Sebastian; Oka, Makoto; Olsen, Stephen L.; Pappagallo, Marco; Paul, Stephan; Pelizäus, Marc; Pilloni, Alessandro; Prencipe, Elisabetta; Ritman, Jim; Ryan, Sinead; Thoma, Ulrike; Uwer, Ulrich; Weise, Wolfram
2016-04-01
We report on the EMMI Rapid Reaction Task Force meeting 'Resonances in QCD', which took place at GSI October 12-14, 2015 (Fig.~1). A group of 26 people met to discuss the physics of resonances in QCD. The aim of the meeting was defined by the following three key questions; what is needed to understand the physics of resonances in QCD?; where does QCD lead us to expect resonances with exotic quantum numbers?; and what experimental efforts are required to arrive at a coherent picture? For light mesons and baryons only those with up, down and strange quark content were considered. For heavy-light and heavy-heavy meson systems, those with charm quarks were the focus.This document summarizes the discussions by the participants, which in turn led to the coherent conclusions we present here.
Accidental degeneracy of resonances
International Nuclear Information System (INIS)
Hernandez, E.; Mondragon, A.; Jauregui, A.
2001-01-01
Full text: It will be shown that a degeneracy of resonances is associated with a second rank pole in the scattering matrix and a Jordan cycle of generalized eigenfunctions of the radial Schrodinger equation. The generalized Gamow-Jordan eigenfunctions are basis elements of an expansion in complex resonance energy eigenfunctions. In this orthonormal basis, the Hamiltonian is represented by a non-diagonal complex matrix with a Jordan block of rank two. Some general properties of the degeneracy of resonances will be exhibited and discussed in an explicit example of degeneracy of resonant states and double poles in the scattering matrix of a double barrier potential. The cross section, scattering wave functions and Jordan-Gamow eigenfunctions are computed at degeneracy and their properties as functions of the control parameters of the system are discussed. (Author)
Resonant diphoton phenomenology simplified
International Nuclear Information System (INIS)
Panico, Giuliano; Vecchi, Luca; Wulzer, Andrea
2016-01-01
A framework is proposed to describe resonant diphoton phenomenology at hadron colliders in full generality. It can be employed for a comprehensive model-independent interpretation of the experimental data. Within the general framework, few benchmark scenarios are defined as representative of the various phenomenological options and/or of motivated new physics scenarios. Their usage is illustrated by performing a characterization of the 750 GeV excess, based on a recast of available experimental results. We also perform an assessment of which properties of the resonance could be inferred, after discovery, by a careful experimental study of the diphoton distributions. These include the spin J of the new particle and its dominant production mode. Partial information on its CP-parity can also be obtained, but only for J≥2. The complete determination of the resonance CP properties requires studying the pattern of the initial state radiation that accompanies the resonant diphoton production.
Directory of Open Access Journals (Sweden)
Robert H. Morris
2014-11-01
Full Text Available Magnetic Resonance finds countless applications, from spectroscopy to imaging, routinely in almost all research and medical institutions across the globe. It is also becoming more frequently used for specific applications in which the whole instrument and system is designed for a dedicated application. With beginnings in borehole logging for the petro-chemical industry Magnetic Resonance sensors have been applied to fields as varied as online process monitoring for food manufacture and medical point of care diagnostics. This great diversity is seeing exciting developments in magnetic resonance sensing technology published in application specific journals where they are often not seen by the wider sensor community. It is clear that there is enormous interest in magnetic resonance sensors which represents a significant growth area. The aim of this special edition of Sensors was to address the wide distribution of relevant articles by providing a forum to disseminate cutting edge research in this field in a single open source publication.[...
Magnetic resonance angiography
... Saunders; 2015:chap 17. Litt H, Carpenter JP. Magnetic resonance imaging. In: Cronenwett JL, Johnston KW, eds. Rutherford's Vascular Surgery . 8th ed. Philadelphia, PA: Elsevier Saunders; 2014:chap ...
International Nuclear Information System (INIS)
Ethier, R.; Melanson, D.; Peters, T.M.
1983-01-01
Ten years following computerized tomography, a new technique called nuclear magnetic resonance revolutionizes the field of diagnostic imaging. A major advantage of nuclear magnetic resonance is that the danger of radiation is non-existent as compared to computerized tomography. When parts of the human body are subject to radio-frequencies while in a fixed magnetic field, its most detailed structures are revealed. The quality of images, the applications, as well as the indications are forever increasing. Images obtained at the level of the brain and spinal cord through nuclear magnetic resonance supercede those obtained through computerized tomography. Hence, it is most likely that myelography, along with pneumoencephalography will be eliminated as a diagnostic means. It is without a doubt that nuclear magnetic resonance is tomorrow's computerized tomography [fr
International Nuclear Information System (INIS)
Robertson, Angus
1990-01-01
An assessment is made of the clinical benefits of expensive diagnostic technology, such as the magnetic resonance imaging. It is concluded that to most radiologists, magnetic resonance imaging has a definite place in the diagnostic scenario, especially for demonstrating central nervous system lesions in multiple sclerosis. While it is recognized that medical and financial resources are limited, it is emphasised that the cost to society must be balanced against the patient benefit. 17 refs
Comment on resonant absorption
International Nuclear Information System (INIS)
Hammerling, P.
1977-01-01
An average over angles of incidence of the usual resonant absorption function is presented. This form is appropriate under experimental conditions where the angles of incidence vary greatly and in an unknown manner. For comparison a lens-ellipsoidal mirror illumination system with a known longitudinal aberration is considered. In the latter example the angles of incidence are readily obtained and the resulting resonance absorption function evaluated. The associated fields are calculated in a similar fashion. (author)
Nuclear magnetic resonance gyroscope
International Nuclear Information System (INIS)
Grover, B.C.
1984-01-01
A nuclear magnetic resonance gyro using two nuclear magnetic resonance gases, preferably xenon 129 and xenon 131, together with two alkaline metal vapors, preferably rubidium, potassium or cesium, one of the two alkaline metal vapors being pumped by light which has the wavelength of that alkaline metal vapor, and the other alkaline vapor being illuminated by light which has the wavelength of that other alkaline vapor
Microwave Resonators and Filters
2015-12-22
1 Microwave Resonators and Filters Daniel E. Oates MIT Lincoln Laboratory 244 Wood St. Lexington, MA 02478 USA Email: oates@ll.mit.edu...explained in other chapters, the surface resistance of superconductors at microwave frequencies can be as much as three orders of magnitude lower than the...resonators and filters in the first edition of this handbook (Z.-Y. Shen 2003) discussed the then state of the art of microwave frequency applications
Resonance phenomena near thresholds
International Nuclear Information System (INIS)
Persson, E.; Mueller, M.; Rotter, I.; Technische Univ. Dresden
1995-12-01
The trapping effect is investigated close to the elastic threshold. The nucleus is described as an open quantum mechanical many-body system embedded in the continuum of decay channels. An ensemble of compound nucleus states with both discrete and resonance states is investigated in an energy-dependent formalism. It is shown that the discrete states can trap the resonance ones and also that the discrete states can directly influence the scattering cross section. (orig.)
Nuclear magnetic resonance imaging
International Nuclear Information System (INIS)
Young, I.R.
1984-01-01
In a method of imaging a body in which nuclear magnetic resonance is excited in a region including part of the body, and the free induction decay signal is measured, a known quantity of a material of known nuclear magnetic resonance properties, for example a bag of water, is included in the region so as to enhance the measured free induction decay signal. This then reduces the generation of noise during subsequent processing of the signal. (author)
Directory of Open Access Journals (Sweden)
Jeremy J. Flint
2016-12-01
Full Text Available The following article contains nine diffusion tensor imaging (DTI datasets acquired with magnetic resonance microscopy (MRM, 15.6 μm in-plane. All data was collected in the region bordering the ventral horn and white matter of cross sections from the spinal cord enlargements along with each sample׳s corresponding tissue histology. These data are collected in fixed spinal cord sections of varying thicknesses taken from rat (2×21 direction DTI datasets, pig (1×21 direction DTI dataset, and human (5×21 direction DTI datasets + 1×6 direction DTI dataset tissue sources. Following MRM acquisition, the sections were histologically processed using Nissl or Black-Gold II (Histo-Chem Inc., 1BGII myelin stain and imaged again using light microscopy techniques. Methodological procedures are an amalgamation of protocol components described previously (doi:10.1016/j.neuroimage.2010.04.031 [1], doi:10.1016/j.neuroimage.2011.04.052 [2].
Czech Academy of Sciences Publication Activity Database
Hamarová, Ivana; Šmíd, Petr; Horváth, P.; Hrabovský, M.
2014-01-01
Roč. 2014, č. 1 (2014), "704368-1"-"704368-12" ISSN 1537-744X R&D Projects: GA ČR GA13-12301S Institutional support: RVO:68378271 Keywords : one-dimensional speckle correlation * speckle * general In-plane translation Subject RIV: BH - Optics, Masers, Lasers Impact factor: 1.219, year: 2013
Renes, S.H.; Bruhn, J.; Gielen, M.J.M.; Scheffer, G.J.; Geffen, G.J. van
2010-01-01
BACKGROUND AND OBJECTIVES: Thoracic paravertebral block (TPVB) can be used for unilateral surgical procedures. Modifications of the classic approach have been proposed to minimize the risk of pleural puncture. In this study, we evaluated the feasibility and success rate of a transverse in-plane
Hoenders, B.J.
1979-01-01
If the wavefunction in the (not necessarily gaussian) image plane of an optical instrument is distorted by an arbitrary number of aberrations, the wavefunction in planes situated between the image plane and the plane of the specimen holder cannot be reconstructed by a Fourier series or a Fourier
Comparison of field swept ferromagnetic resonance methods - A case study using Ni-Mn-Sn films
Modak, R.; Samantaray, B.; Mandal, P.; Srinivasu, V. V.; Srinivasan, A.
2018-05-01
Ferromagnetic resonance spectroscopy is used to understand the magnetic behavior of Ni-Mn-Sn Heusler alloy film. Two popular experimental methods available for recording FMR spectra are presented here. In plane angular (φH) variation of magnetic relaxation is used to evaluate the in plane anisotropy (Ku) of the film. The out of plane (θH) variation of FMR spectra has been numerically analyzed to extract the Gilbert damping coefficient, effective magnetization and perpendicular magnetic anisotropy (K1). Magnetic homogeneity of the film had also been evaluated in terms of 2-magnon contribution from FMR linewidth. The advantage and limitations of these two popular FMR techniques are discussed on the basis of the results obtained in this comparative study.
International Nuclear Information System (INIS)
Olsen, Michael G
2009-01-01
An analytical model for the microscopic particle image velocimetry (microPIV) correlation signal peak in a purely shearing flow was derived for the case of in-plane shearing (out-of-plane shearing was not considered). This model was then used to derive equations for the measured velocity weighting functions for the two velocity components, and the weighting functions were in turn used to define the depths of correlation associated with the two measured velocity components. The depth of correlation for the velocity component perpendicular to the shear was found to be unaffected by the shear rate. However, the depth of correlation for the velocity component in the direction of the shear was found to be highly dependent on the shear rate, with the depth of correlation increasing as the shear rate increased. Thus, in a flow with shear, there is not a single value for the depth of correlation within an interrogation region. Instead, the depth of correlation exhibits directional dependence, with a different depth of correlation for each of the two measured velocity components. The increase in the depth of correlation due to the shear rate is greater for large numerical aperture objectives than for small numerical aperture objectives. This increase in the depth of correlation in a shearing flow can be quite large, with increases in the depth of correlation exceeding 100% being very possible for high numerical aperture objectives. The effects of out-of-plane shear are beyond the capabilities of this analysis, although the possible consequences of out-of-plane shear are discussed
Fan, Zhi-Qiang; Jiang, Xiang-Wei; Luo, Jun-Wei; Jiao, Li-Ying; Huang, Ru; Li, Shu-Shen; Wang, Lin-Wang
2017-10-01
As Moore's law approaches its end, two-dimensional (2D) materials are intensely studied for their potentials as one of the "More than Moore' (MM) devices. However, the ultimate performance limits and the optimal design parameters for such devices are still unknown. One common problem for the 2D-material-based device is the relative weak on-current. In this study, two-dimensional Schottky-barrier field-effect transistors (SBFETs) consisting of in-plane heterojunctions of 1T metallic-phase and 2H semiconducting-phase transition-metal dichalcogenides (TMDs) are studied following the recent experimental synthesis of such devices at a much larger scale. Our ab initio simulation reveals the ultimate performance limits of such devices and offers suggestions for better TMD materials. Our study shows that the Schottky-barrier heights (SBHs) of the in-plane 1T/2H contacts are smaller than the SBHs of out-of-plane contacts, and the contact coupling is also stronger in the in-plane contact. Due to the atomic thickness of the monolayer TMD, the average subthreshold swing of the in-plane TMD-SBFETs is found to be close to the limit of 60 mV/dec, and smaller than that of the out-of-plane TMD-SBFET device. Different TMDs are considered and it is found that the in-plane WT e2-SBFET provides the best performance and can satisfy the performance requirement of the sub-10-nm high-performance transistor outlined by the International Technology Roadmap for Semiconductors, and thus could be developed into a viable sub-10-nm MM device in the future.
Opening complete band gaps in two dimensional locally resonant phononic crystals
Zhou, Xiaoling; Wang, Longqi
2018-05-01
Locally resonant phononic crystals (LRPCs) which have low frequency band gaps attract a growing attention in both scientific and engineering field recently. Wide complete locally resonant band gaps are the goal for researchers. In this paper, complete band gaps are achieved by carefully designing the geometrical properties of the inclusions in two dimensional LRPCs. The band structures and mechanisms of different types of models are investigated by the finite element method. The translational vibration patterns in both the in-plane and out-of-plane directions contribute to the full band gaps. The frequency response of the finite periodic structures demonstrate the attenuation effects in the complete band gaps. Moreover, it is found that the complete band gaps can be further widened and lowered by increasing the height of the inclusions. The tunable properties by changing the geometrical parameters provide a good way to open wide locally resonant band gaps.
Resonance probe; La sonde a resonance
Energy Technology Data Exchange (ETDEWEB)
Lepechinsky, D; Messiaen, A; Rolland, P [Commissariat a l' Energie Atomique, Saclay (France). Centre d' Etudes Nucleaires
1966-07-01
After a brief review of papers recently published on the resonance probe as a tool for plasma diagnostics, the main features of the theory proposed by one of us are recalled. In this theory the geometry of the resonator formed by the probe, the ion sheath and the plasma is explicitly taken into account with the quasi-static and cold plasma approximations. Some new results emerging from this theory are indicated and a comparison with experimental data obtained with a spherical probe placed in a quiescent mercury-vapour plasma is made. A good quantitative agreement has been observed, indicating that the theory is satisfactory and justifying the assumptions involved. Nevertheless it appears that in some cases experimental results can only be interpreted when non collisional damping phenomena are taken into consideration. (author) [French] Apres un apercu des etudes recemment publiees sur la sonde a resonance pour le diagnostic des plasmas, on rappelle l'essentiel de la theorie proposee par l'un de nous ou il est tenu compte explicitement de la geometrie du resonateur forme par le systeme sonde-gaine ionique-plasma dans l'approximation quasi-statique et du plasma froid. On indique quelques resultats nouveaux pouvant etre tires de cette theorie et on la confronte avec les donnees experimentales obtenues pour une sonde spherique placee dans un plasma de mercure en equilibre. Un tres bon accord quantitatif a ete constate, indiquant que la theorie est satisfaisante et justifiant les approximations faites dans celle-ci. Il apparait toutefois que certains resultats experimentaux ne peuvent etre interpretes qu'en tenant compte des phenomenes d'amortissement non collisionnels. (auteur)
Resonant enhancement in leptogenesis
Dev, P. S. B.; Garny, M.; Klaric, J.; Millington, P.; Teresi, D.
2018-02-01
Vanilla leptogenesis within the type I seesaw framework requires the mass scale of the right-handed neutrinos to be above 109 GeV. This lower bound can be avoided if at least two of the sterile states are almost mass degenerate, which leads to an enhancement of the decay asymmetry. Leptogenesis models that can be tested in current and upcoming experiments often rely on this resonant enhancement, and a systematic and consistent description is therefore necessary for phenomenological applications. In this paper, we give an overview of different methods that have been used to study the saturation of the resonant enhancement when the mass difference becomes comparable to the characteristic width of the Majorana neutrinos. In this limit, coherent flavor transitions start to play a decisive role, and off-diagonal correlations in flavor space have to be taken into account. We compare various formalisms that have been used to describe the resonant regime and discuss under which circumstances the resonant enhancement can be captured by simplified expressions for the CP asymmetry. Finally, we briefly review some of the phenomenological aspects of resonant leptogenesis.
Resonant ultrasound spectrometer
Migliori, Albert; Visscher, William M.; Fisk, Zachary
1990-01-01
An ultrasound resonant spectrometer determines the resonant frequency spectrum of a rectangular parallelepiped sample of a high dissipation material over an expected resonant response frequency range. A sample holder structure grips corners of the sample between piezoelectric drive and receive transducers. Each transducer is mounted on a membrane for only weakly coupling the transducer to the holder structure and operatively contacts a material effective to remove system resonant responses at the transducer from the expected response range. i.e., either a material such as diamond to move the response frequencies above the range or a damping powder to preclude response within the range. A square-law detector amplifier receives the response signal and retransmits the signal on an isolated shield of connecting cabling to remove cabling capacitive effects. The amplifier also provides a substantially frequency independently voltage divider with the receive transducer. The spectrometer is extremely sensitive to enable low amplitude resonance to be detected for use in calculating the elastic constants of the high dissipation sample.
Wang, Wenqiang; Wang, Fenglong; Cao, Cuimei; Li, Pingping; Yao, Jinli; Jiang, Changjun
2018-04-01
CoZr/Ru/CoZr synthetic antiferromagnetic trilayers with strong antiferromagnetic interlayer coupling were fabricated by an oblique sputtering method that induced in-plane uniaxial magnetic anisotropy. A microstrip method using a vector network analyzer was applied to investigate the magnetic resonance modes of the trilayers, including the acoustic modes (AMs) and the optical modes (OMs). At zero magnetic field, the CoZr/Ru/CoZr trilayers showed OMs with resonance frequencies of up to 7.1 GHz. By increasing the applied external magnetic field, the magnetic resonance mode can be tuned to various OMs, mixed modes, and AMs. Additionally, the magnetic resonance mode showed an angular dependence between the magnetization and the microwave field, which showed similar switching of the magnetic modes with variation of the angle. Our results provide important information that will be helpful in the design of multifunctional microwave devices.
Josephson junctions array resonators
Energy Technology Data Exchange (ETDEWEB)
Gargiulo, Oscar; Muppalla, Phani; Mirzaei, Iman; Kirchmair, Gerhard [Institute for Quantum Optics and Quantum Information, Innsbruck (Austria)
2016-07-01
We present an experimental analysis of the self- and cross-Kerr effect of extended plasma resonances in Josephson junction chains. The chain consists of 1600 individual junctions and we can measure quality factors in excess of 10000. The Kerr effect manifests itself as a frequency shift that depends linearly on the number of photons in a resonant mode. By changing the input power we are able to measure this frequency shift on a single mode (self-kerr). By changing the input power on another mode while measuring the same one, we are able to evaluate the cross-kerr effect. We can measure the cross-Kerr effect by probing the resonance frequency of one mode while exciting another mode of the array with a microwave drive.
Resonance energy transfer: The unified theory via vector spherical harmonics
Energy Technology Data Exchange (ETDEWEB)
Grinter, Roger, E-mail: r.grinter@uea.ac.uk; Jones, Garth A., E-mail: garth.jones@uea.ac.uk [School of Chemistry, University of East Anglia, Norwich NR4 7TJ (United Kingdom)
2016-08-21
In this work, we derive the well-established expression for the quantum amplitude associated with the resonance energy transfer (RET) process between a pair of molecules that are beyond wavefunction overlap. The novelty of this work is that the field of the mediating photon is described in terms of a spherical wave rather than a plane wave. The angular components of the field are constructed in terms of vector spherical harmonics while Hankel functions are used to define the radial component. This approach alleviates the problem of having to select physically correct solution from non-physical solutions, which seems to be inherent in plane wave derivations. The spherical coordinate system allows one to easily decompose the photon’s fields into longitudinal and transverse components and offers a natural way to analyse near-, intermediate-, and far-zone RET within the context of the relative orientation of the transition dipole moments for the two molecules.
Evaluation of right ventricular volumes measured by magnetic resonance imaging
DEFF Research Database (Denmark)
Møgelvang, J; Stubgaard, M; Thomsen, C
1988-01-01
stroke volume was calculated as the difference between end-diastolic and end-systolic volume and compared to left ventricular stroke volume and to stroke volume determined simultaneously by a classical indicator dilution technique. There was good agreement between right ventricular stroke volume......Right ventricular volumes were determined in 12 patients with different levels of right and left ventricular function by magnetic resonance imaging (MRI) using an ECG gated multisection technique in planes perpendicular to the diastolic position of the interventricular septum. Right ventricular...... determined by MRI and by the indicator dilution method and between right and left ventricular stroke volume determined by MRI. Thus, MRI gives reliable values not only for left ventricular volumes, but also for right ventricular volumes. By MRI it is possible to obtain volumes from both ventricles...
Energy Technology Data Exchange (ETDEWEB)
Dobrescu, Bogdan A.; Fox, Patrick J.; Kearney, John [Fermilab, Theoretical Physics Department, Batavia, IL (United States)
2017-10-15
We study models that produce a Higgs boson plus photon (h{sup 0}γ) resonance at the LHC. When the resonance is a Z{sup '} boson, decays to h{sup 0}γ occur at one loop. If the Z{sup '} boson couples at tree level to quarks, then the h{sup 0}γ branching fraction is typically of order 10{sup -5} or smaller. Nevertheless, there are models that would allow the observation of Z{sup '} → h{sup 0}γ at √(s) = 13 TeV with a cross section times branching fraction larger than 1 fb for a Z{sup '} mass in the 200-450 GeV range, and larger than 0.1 fb for a mass up to 800 GeV. The one-loop decay of the Z{sup '} into lepton pairs competes with h{sup 0}γ, even if the Z{sup '} couplings to leptons vanish at tree level. We also present a model in which a Z{sup '} boson decays into a Higgs boson and a pair of collimated photons, mimicking an h{sup 0}γ resonance. In this model, the h{sup 0}γ resonance search would be the discovery mode for a Z{sup '} as heavy as 2 TeV. When the resonance is a scalar, although decay to h{sup 0}γ is forbidden by angular momentum conservation, the h{sup 0} plus collimated photons channel is allowed. We comment on prospects of observing an h{sup 0}γ resonance through different Higgs decays, on constraints from related searches, and on models where h{sup 0} is replaced by a nonstandard Higgs boson. (orig.)
Magnetic resonance annual, 1988
International Nuclear Information System (INIS)
Kressel, H.Y.
1987-01-01
This book features reviews of high-resolution MRI of the knee, MRI of the normal and ischmeic hip, MRI of the heart, and temporomandibular joint imaging, as well as thorough discussion on artifacts in magnetic resonance imaging. Contributors consider the clinical applications of gadolinium-DTPA in magnetic resonance imaging and the clinical use of partial saturation and saturation recovery sequences. Timely reports assess the current status of rapid MRI and describe a new rapid gated cine MRI technique. Also included is an analysis of cerebrospinal fluid flow effects during MRI of the central nervous system
Amin, Muhammad
2014-07-01
The resonances with asymmetric Fano line-shapes were originally discovered in the context of quantum mechanics (U. Fano, Phys. Rev., 124, 1866-1878, 1961). Quantum Fano resonances were generated from destructive interference of a discrete state with a continuum one. During the last decade this concept has been applied in plasmonics where the interference between a narrowband polariton and a broader one has been used to generate electromagnetically induced transparency (EIT) (M. Rahmani, et al., Laser Photon. Rev., 7, 329-349, 2013).
International Nuclear Information System (INIS)
Snover, K.A.
1989-01-01
Giant nuclear resonances are elementary mods of oscillation of the whole nucleus, closely related to the normal modes of oscillation of coupled mechanical systems. They occur systematically in most if not all nuclei, with oscillation energies typically in the range 10-30 MeV. One of the best - known examples is the giant electric dipole (El) resonance, in which all the protons and all the neutrons oscillate with opposite phase, producing a large time - varying electric dipole moment which acts as an effective antenna for radiating gamma ray. This paper discusses this mode as well as quadrupole and monopole modes
Nanoantenna using mechanical resonance
Chang Hwa Lee,
2010-11-01
Nanoantenna using mechanical resonance vibration is made from an indium tin oxide (ITO) coated vertically aligned nanorod array. Only this structure works as a radio with demodulator without any electrical circuit using field emission phenomenon. A top-down fabrication method of an ITO coated nanorod array is proposed using a modified UV lithography. The received radio frequency and the resonance frequency of nanoantenna can be controlled by the fabrication condition through the height of a nanorod array. The modulated signals are received successfully with the transmission carrier wave frequency (248MHz) and the proposed nanoantenna is expected to be used in communication system for ultra small scale sensor. ©2010 IEEE.
International Nuclear Information System (INIS)
Aguiar, F.M. de
2011-01-01
The Helmholtz equation describing transverse magnetic modes in a closed flat microwave resonator with 60 randomly distributed discs is numerically solved. At lower frequencies, the calculated wave intensity spatially distributed obeys the universal Porter-Thomas form if localized modes are excluded. A superposition of resonant modes is shown to lead to rare events of extreme intensities (freak waves) at localized 'hot spots'. The temporally distributed intensity of such a superposition at the center of a hot spot also follows the Porter-Thomas form. Branched modes are found at higher frequencies. The results bear resemblance to recent experiments reported in an open cavity.
Browning, David
2000-04-01
When force is applied by an athlete to sports equipment resonances can occur. Just a few examples are: the ringing of a spiked volleyball, the strumming of a golf club shaft during a swing, and multiple modes induced in an aluminum baseball bat when striking a ball. Resonances produce acoustic waves which, if conditions are favorable, can be detected off the playing field. This can provide a means to evaluate athletic performance during game conditions. Results are given from the use of a simple hand-held acoustic detector - by a spectator sitting in the stands - to determine how hard volleyballs were spiked during college and high school games.
Directory of Open Access Journals (Sweden)
Wada Masayuki
2012-11-01
Full Text Available The results of resonance particle productions (ρ0, ω, K*, ϕ, Σ*, and Λ* measured by the STAR collaboration at RHIC from various colliding systems and energies are presented. Measured mass, width, 〈pT〉, and yield of those resonances are reviewed. No significant mass shifts or width broadening beyond the experiment uncertainties are observed. New measurements of ϕ and ω from leptonic decay channels are presented. The yields from leptonic decay channels are compared with the measurements from hadronic decay channels and the two results are consistent with each other.
Switch on, switch off: stiction in nanoelectromechanical switches
Wagner, Till J W; Vella, Dominic
2013-01-01
. Particular focus is given to the question of whether adhesive van der Waals forces cause the cantilever to remain in the 'ON' state even when the electrostatic forces are removed. In contrast to previous studies, our theory accounts for deflections with large
CMOS compatible thin-film ALD tungsten nanoelectromechanical devices
Davidson, Bradley Darren
This research focuses on the development of a novel, low-temperature, CMOS compatible, atomic-layer-deposition (ALD) enabled NEMS fabrication process for the development of ALD Tungsten (WALD) NEMS devices. The devices are intended for use in CMOS/NEMS hybrid systems, and NEMS based micro-processors/controllers capable of reliable operation in harsh environments not accessible to standard CMOS technologies. The majority of NEMS switches/devices to date have been based on carbon-nano-tube (CNT) designs. The devices consume little power during actuation, and as expected, have demonstrated actuation voltages much smaller than MEMS switches. Unfortunately, NEMS CNT switches are not typically CMOS integrable due to the high temperatures required for their growth, and their fabrication typically results in extremely low and unpredictable yields. Thin-film NEMS devices offer great advantages over reported CNT devices for several reasons, including: higher fabrication yields, low-temperature (CMOS compatible) deposition techniques like ALD, and increased control over design parameters/device performance metrics, i.e., device geometry. Furthermore, top-down, thin-film, nano-fabrication techniques are better capable of producing complicated device geometries than CNT based processes, enabling the design and development of multi-terminal switches well-suited for low-power hybrid NEMS/CMOS systems as well as electromechanical transistors and logic devices for use in temperature/radiation hard computing architectures. In this work several novel, low-temperature, CMOS compatible fabrication technologies, employing WALD as a structural layer for MEMS or NEMS devices, were developed. The technologies developed are top-down nano-scale fabrication processes based on traditional micro-machining techniques commonly used in the fabrication of MEMS devices. Using these processes a variety of novel WALD NEMS devices have been successfully fabricated and characterized. Using two different WALD fabrication technologies two generations of 2-terminal WALD NEMS switches have been developed. These devices have functional gap heights of 30-50 nm, and actuation voltages typically ranging from 3--5 Volts. Via the extension of a two terminal WALD technology novel 3-terminal WALD NEMS devices were developed. These devices have actuation voltages ranging from 1.5--3 Volts, reliabilities in excess of 2 million cycles, and have been designed to be the fundamental building blocks for WALD NEMS complementary inverters. Through the development of these devices several advancements in the modeling and design of thin-film NEMS devices were achieved. A new model was developed to better characterize pre-actuation currents commonly measured for NEMS switches with nano-scale gate-to-source gap heights. The developed model is an extension of the standard field-emission model and considers the electromechanical response, and electric field effects specific to thin-film NEMS switches. Finally, a multi-physics FEM/FD based model was developed to simulate the dynamic behavior of 2 or 3-terminal electrostatically actuated devices whose electrostatic domains have an aspect ratio on the order of 10-3. The model uses a faux-Lagrangian finite difference method to solve Laplaces equation in a quasi-statatically deforming domain. This model allows for the numerical characterization and design of thin-film NEMS devices not feasible using typical non-specialized BEM/FEM based software. Using this model several novel and feasible designs for fixed-fixed 3-terminal WALD NEMS switches capable for the construction of complementary inverters were discovered.
Uncertainty quantification in resonance absorption
International Nuclear Information System (INIS)
Williams, M.M.R.
2012-01-01
We assess the uncertainty in the resonance escape probability due to uncertainty in the neutron and radiation line widths for the first 21 resonances in 232 Th as given by . Simulation, quadrature and polynomial chaos methods are used and the resonance data are assumed to obey a beta distribution. We find the uncertainty in the total resonance escape probability to be the equivalent, in reactivity, of 75–130 pcm. Also shown are pdfs of the resonance escape probability for each resonance and the variation of the uncertainty with temperature. The viability of the polynomial chaos expansion method is clearly demonstrated.
Magnetic resonance of phase transitions
Owens, Frank J; Farach, Horacio A
1979-01-01
Magnetic Resonance of Phase Transitions shows how the effects of phase transitions are manifested in the magnetic resonance data. The book discusses the basic concepts of structural phase and magnetic resonance; various types of magnetic resonances and their underlying principles; and the radiofrequency methods of nuclear magnetic resonance. The text also describes quadrupole methods; the microwave technique of electron spin resonance; and the Mössbauer effect. Phase transitions in various systems such as fluids, liquid crystals, and crystals, including paramagnets and ferroelectrics, are also
Kellas, S.; Morton, J.; Jackson, K. E.
1991-01-01
The applicability of the +/-45 deg tensile test for the determination of the in-plane shear strength of advanced composite laminates is studied. The assumptions used for the development of the shear strength formulas were examined, and factors such as the specimen geometry and stacking sequence were assessed experimentally. It was found that the strength of symmetric and balanced +/-45 deg laminates depends primarily upon the specimen thickness rather than the specimen width. These findings have important implications for the +/-45 deg tensile test which is recommended by several organizations for the determination of the in-plane shear stress/strain response and the shear strength of continuous fiber reinforced composites. Modifications to the recommended practices for specimen selection and shear strength determination are suggested.
International Nuclear Information System (INIS)
Rhodes, Scott; Perez, Juan; Elborai, Shihab; Lee, Se-Hee; Zahn, Markus
2005-01-01
New flows and instabilities are presented for a ferrofluid drop contained in glass Hele-Shaw cells with simultaneously applied in-plane clockwise rotating and DC axial uniform magnetic fields. When a ferrofluid drop is stressed by a uniform DC axial magnetic field, up to ∼250 G in 0.9-1.4 mm gap Hele-Shaw cells, the drop forms a labyrinth pattern. With subsequent application of an in-plane uniform rotating magnetic field, up to ∼100 G rms at frequency 20-40 Hz, smooth spirals form from viscous shear due to ferrofluid flow. If the rotating magnetic field is applied first, the drop is held together without a labyrinth. Gradual increase of the DC axial magnetic field, to a critical magnetic field value, results in an abrupt phase transformation from a large drop to many small discrete droplets. A preliminary minimum magnetization and surface energy analysis is presented to model the phase transformation
International Nuclear Information System (INIS)
Sasaki, Takuo; Shimomura, Kenichi; Kamiya, Itaru; Ohshita, Yoshio; Yamaguchi, Masafumi; Suzuki, Hidetoshi; Takahasi, Masamitu
2012-01-01
In-plane asymmetric strain relaxation in lattice-mismatched InGaAs/GaAs(001) heteroepitaxy is studied by in situ three-dimensional X-ray reciprocal space mapping. Repeating crystal growth and growth interruptions during measurements allows us to investigate whether the strain relaxation is limited at a certain thickness or saturated. We find that the degree of relaxation during growth interruption depends on both the film thickness and the in-plane directions. Significant lattice relaxation is observed in rapid relaxation regimes during interruption. This is a clear indication that relaxation is kinetically limited. In addition, relaxation along the [110] direction can saturate more readily than that along the [1-bar10] direction. We discuss this result in terms of the interaction between orthogonally aligned dislocations. (author)
International Nuclear Information System (INIS)
Takago, Shigeki; Yasui, Haruyuki; Awazu, Kaoru; Sasaki, Toshihiko; Hirose, Yukio; Sakurai, Kenji
2006-01-01
An in-plane X-ray diffraction technique was used to measure the residual stress of a CVD (chemical vapor deposition) TiN-coated WC-Co alloy. We could obtain the diffraction pattern from a thin film layer, eliminating that of the substrate. In the case of a conventional X-ray diffractometer, the X-ray penetration depth is about few μm. However, for a grazing incidence beam it is only 0.2μm. Depth profiles of residual stress in TiN film layer were evaluated by the present method and the conventional sin 2 ψ technique. We concluded that the in-plane diffraction technique enables us to determine the residual stress in a DVD-TiN film having an oriented texture. It was found that the residual tensile stress generated a mismatch of the coefficient of thermal expansion between the film and the substrate. (author)
Energy Technology Data Exchange (ETDEWEB)
Takago, Shigeki; Yasui, Haruyuki; Awazu, Kaoru [Industrial Research Inst. of Ishikawa, Kanazawa, Ishikawa (Japan); Sasaki, Toshihiko; Hirose, Yukio [Kanazawa Univ., Dept. of Materials Science and Engineering, Kanazawa, Ishikawa (Japan); Sakurai, Kenji [National Inst. for Materials Science, Tsukuba, Ibaraki (Japan)
2006-06-15
An in-plane X-ray diffraction technique was used to measure the residual stress of a CVD (chemical vapor deposition) TiN-coated WC-Co alloy. We could obtain the diffraction pattern from a thin film layer, eliminating that of the substrate. In the case of a conventional X-ray diffractometer, the X-ray penetration depth is about few {mu}m. However, for a grazing incidence beam it is only 0.2{mu}m. Depth profiles of residual stress in TiN film layer were evaluated by the present method and the conventional sin{sup 2}{psi} technique. We concluded that the in-plane diffraction technique enables us to determine the residual stress in a DVD-TiN film having an oriented texture. It was found that the residual tensile stress generated a mismatch of the coefficient of thermal expansion between the film and the substrate. (author)
Zhang, Yi; Huang, Chaojuan; Turghun, Mutellip; Duan, Zhihua; Wang, Feifei; Shi, Wangzhou
2018-04-01
The FeGa film with in-plane uniaxial magnetic anisotropy was fabricated onto different oriented single-crystal lead magnesium niobate-lead titanate using oblique pulsed laser deposition. An enhanced in-plane uniaxial magnetic anisotropy field of FeGa film can be adjusted from 18 Oe to 275 Oe by tuning the oblique angle and polarizing voltage. The competitive relationship of shape anisotropy and strain anisotropy has been discussed, which was induced by oblique angle and polarizing voltage, respectively. The (100)-oriented and (110)-oriented PMN-PT show completely different characters on voltage-dependent magnetic properties, which could be attributed to various anisotropy directions depended on different strain directions.
In-plane thermal conductivity measurements of ZnO-, ZnS-, and YSZ thin-films on glass substrates
Energy Technology Data Exchange (ETDEWEB)
Hartung, David; Gather, Florian; Kronenberger, Achim; Kuhl, Florian; Meyer, Bruno K.; Klar, Peter J. [I. Physikalisches Institut, Justus-Liebig-University, Heinrich-Buff-Ring 16, 35392 Giessen (Germany)
2012-07-01
In this work we present in-plane thermal conductivity measurements of ZnO-, ZnS-, and YSZ thin-films. Borosilicate glass with a thickness of 50 microns and low thermal conductivity for improving the signal to noise ratio was used as substrate material. The above different films are deposited by rf-sputtering and have a thickness of about 1 micron. Our approach is a steady-state measurement. A wide metal wire on the film is used as a heater and two parallel lying narrow wires at distances of 100 microns and 200 microns from the heater wire, respectively, serve as the temperature sensors. The wire structure design is transfered on to the thin films by photolithography and metal evaporation. Measurements of the in-plane thermal conductivities of the above mentioned materials are presented and compared with corresponding results in the literature.
Morscher, Gregory N.; Pujar, Vijay V.
2008-01-01
In-plane tensile stress-strain, tensile creep, and after-creep retained tensile properties of melt-infiltrated SiC-SiC composites reinforced with different fiber types were evaluated with an emphasis on obtaining simple or first-order microstructural design guidelines for these in-plane mechanical properties. Using the mini-matrix approach to model stress-strain behavior and the results of this study, three basic general design criteria for stress and strain limits are formulated, namely a design stress limit, a design total strain limit, and an after-creep design retained strength limit. It is shown that these criteria can be useful for designing components for high temperature applications.
Resonance journal of science education
Indian Academy of Sciences (India)
user
1141 Lotus-Inspired Nanotechnology Applications. B Karthick and Ramesh Maheshwari. 1146 Climate Change, Greenhouse Gases and Aerosols. J Srinivasan. 1156 Algebraic Methods in Plane Geometry. The Use of Mappings. Shailesh A Shirali. BOOK REVIEW. 1173 The Enigmatic Moon. Biman Nath. Index. 1193. 1141.
International Nuclear Information System (INIS)
Duroure, J.F.; Serpolay, H.; Vallens, D.
1995-01-01
Here are described the advanced technology for nuclear magnetic resonance imaging: reduction of acquisition times, and rebuilding times, images quality improvement. The tendency is to open the machines at low and middle field, on a market being at 10% of NMR I sales, with economical, scientifical and ergonomic reasons broadly developed by constructors
Neutron resonance spectroscopy
International Nuclear Information System (INIS)
Gunsing, F.
2005-06-01
The present document has been written in order to obtain the diploma 'Habilitation a Diriger des Recherches'. Since this diploma is indispensable to supervise thesis students, I had the intention to write a document that can be useful for someone starting in the field of neutron resonance spectroscopy. Although the here described topics are already described elsewhere, and often in more detail, it seemed useful to have most of the relevant information in a single document. A general introduction places the topic of neutron-nucleus interaction in a nuclear physics context. The large variations of several orders of magnitude in neutron-induced reaction cross sections are explained in terms of nuclear level excitations. The random character of the resonances make nuclear model calculation predictions impossible. Then several fields in physics where neutron-induced reactions are important and to which I have contributed in some way or another, are mentioned in a first synthetic chapter. They concern topics like parity nonconservation in certain neutron resonances, stellar nucleosynthesis by neutron capture, and data for nuclear energy applications. The latter item is especially important for the transmutation of nuclear waste and for alternative fuel cycles. Nuclear data libraries are also briefly mentioned. A second chapter details the R-matrix theory. This formalism is the foundation of the description of the neutron-nucleus interaction and is present in all fields of neutron resonance spectroscopy. (author)
Neutron resonance spectroscopy
Energy Technology Data Exchange (ETDEWEB)
Gunsing, F
2005-06-15
The present document has been written in order to obtain the diploma 'Habilitation a Diriger des Recherches'. Since this diploma is indispensable to supervise thesis students, I had the intention to write a document that can be useful for someone starting in the field of neutron resonance spectroscopy. Although the here described topics are already described elsewhere, and often in more detail, it seemed useful to have most of the relevant information in a single document. A general introduction places the topic of neutron-nucleus interaction in a nuclear physics context. The large variations of several orders of magnitude in neutron-induced reaction cross sections are explained in terms of nuclear level excitations. The random character of the resonances make nuclear model calculation predictions impossible. Then several fields in physics where neutron-induced reactions are important and to which I have contributed in some way or another, are mentioned in a first synthetic chapter. They concern topics like parity nonconservation in certain neutron resonances, stellar nucleosynthesis by neutron capture, and data for nuclear energy applications. The latter item is especially important for the transmutation of nuclear waste and for alternative fuel cycles. Nuclear data libraries are also briefly mentioned. A second chapter details the R-matrix theory. This formalism is the foundation of the description of the neutron-nucleus interaction and is present in all fields of neutron resonance spectroscopy. (author)
Magnetic resonance fingerprinting.
Ma, Dan; Gulani, Vikas; Seiberlich, Nicole; Liu, Kecheng; Sunshine, Jeffrey L; Duerk, Jeffrey L; Griswold, Mark A
2013-03-14
Magnetic resonance is an exceptionally powerful and versatile measurement technique. The basic structure of a magnetic resonance experiment has remained largely unchanged for almost 50 years, being mainly restricted to the qualitative probing of only a limited set of the properties that can in principle be accessed by this technique. Here we introduce an approach to data acquisition, post-processing and visualization--which we term 'magnetic resonance fingerprinting' (MRF)--that permits the simultaneous non-invasive quantification of multiple important properties of a material or tissue. MRF thus provides an alternative way to quantitatively detect and analyse complex changes that can represent physical alterations of a substance or early indicators of disease. MRF can also be used to identify the presence of a specific target material or tissue, which will increase the sensitivity, specificity and speed of a magnetic resonance study, and potentially lead to new diagnostic testing methodologies. When paired with an appropriate pattern-recognition algorithm, MRF inherently suppresses measurement errors and can thus improve measurement accuracy.