WorldWideScience

Sample records for impurity-bound small polarons

  1. O{sup -} bound small polarons in oxide materials

    Energy Technology Data Exchange (ETDEWEB)

    Schirmer, O F [Department of Physics, University of Osnabrueck, D-49076 Osnabrueck (Germany)

    2006-11-01

    Holes bound to acceptor defects in oxide crystals are often localized by lattice distortion at just one of the equivalent oxygen ligands of the defect. Such holes thus form small polarons in symmetric clusters of a few oxygen ions. An overview on mainly the optical manifestations of those clusters is given. The article is essentially divided into two parts: the first one covers the basic features of the phenomena and their explanations, exemplified by several paradigmatic defects; in the second part numerous oxide materials are presented which exhibit bound small polaron optical properties. The first part starts with summaries on the production of bound hole polarons and the identification of their structure. It is demonstrated why they show strong, wide absorption bands, usually visible, based on polaron stabilization energies of typically 1 eV. The basic absorption process is detailed with a fictitious two-well system. Clusters with four, six and twelve equivalent ions are realized in various oxide compounds. In these cases several degenerate optically excited polaron states occur, leading to characteristic final state resonance splittings. The peak energies of the absorption bands as well as the sign of the transfer energy depend on the topology of the clusters. A special section is devoted to the distinction between interpolaron and intrapolaron optical transitions. The latter are usually comparatively weak. The oxide compounds exhibiting bound hole small polaron absorptions include the alkaline earth oxides (e.g. MgO), BeO and ZnO, the perovskites BaTiO{sub 3} and KTaO{sub 3}, quartz, the sillenites (e.g. Bi{sub 12}TiO{sub 20}), Al{sub 2}O{sub 3}, LiNbO{sub 3}, topaz and various other materials. There are indications that the magnetic crystals NiO, doped with Li, and LaMnO{sub 3}, doped with Sr, also show optical features caused by bound hole polarons. Beyond being elementary paradigms for the properties of small polarons in general, the defect species treated

  2. Properties of a Bound Polaron under a Perpendicular Magnetic Field

    International Nuclear Information System (INIS)

    Liu Jia; Chen Ziyu; Xiao Jinglin; Huo Shufen

    2007-01-01

    We investigate the influence of a perpendicular magnetic field on a bound polaron near the interface of a polar-polar semiconductor with Rashba effect. The external magnetic field strongly changes the ground state binding energy of the polaron and the Rashba spin-orbit (SO) interaction originating from the inversion asymmetry in the heterostructure splits the ground state binding energy of the bound polaron. In this paper, we have shown how the ground state binding energy will be with the change of the external magnetic field, the location of a single impurity, the wave vector of the electron and the electron areal density, taking into account the SO coupling. Due to the presence of the phonons, whose energy gives negative contribution to the polaron's, the spin-splitting states of the bound polaron are more stable, and we find that in the condition of week magnetic field, the Zeeaman effect can be neglected.

  3. Bound magnetic polaron in a semimagnetic double quantum well

    Science.gov (United States)

    Kalpana, P.; Jayakumar, K.

    2017-09-01

    The effect of different combinations of the concentration of Mn2+ ion in the Quantum well Cd1-xinMnxin Te and the barrier Cd1-xoutMnxout Te on the Bound Magnetic Polaron (BMP) in a Diluted Magnetic Semiconductors (DMS) Double Quantum Well (DQW) has been investigated. The Schrodinger equation is solved variationally in the effective mass approximation through which the Spin Polaronic Shift (SPS) due to the formation of BMP has been estimated for various locations of the donor impurity in the DQW. The results show that the effect of the increase of Mn2+ ion composition with different combinations on SPS is predominant for On Centre Well (OCW) impurity when compared to all other impurity locations when there is no application of magnetic field (γ = 0), γ being a dimensionless parameter for the magnetic field, and the same is predominant for On Centre Barrier (OCB) impurity with the application of external magnetic field (γ = 0.15).

  4. Multi-impurity polarons in a dilute Bose-Einstein condensate

    International Nuclear Information System (INIS)

    Santamore, D H; Timmermans, Eddy

    2011-01-01

    We describe the ground state of a large, dilute, neutral atom Bose-Einstein condensate (BEC) doped with N strongly coupled mutually indistinguishable, bosonic neutral atoms (referred to as ‘impurity’) in the polaron regime where the BEC density response to the impurity atoms remains significantly smaller than the average density of the surrounding BEC. We find that N impurity atoms with N ≠ 1 can self-localize at a lower value of the impurity-boson interaction strength than a single impurity atom. When the ‘bare’ short-range impurity-impurity repulsion does not play a significant role, the self-localization of multiple bosonic impurity atoms into the same single particle orbital (which we call co-self-localization) is the nucleation process of the phase separation transition. When the short-range impurity-impurity repulsion successfully competes with co-self-localization, the system may form a stable liquid of self-localized single impurity polarons. (paper)

  5. Polarons and Mobile Impurities Near a Quantum Phase Transition

    Science.gov (United States)

    Shadkhoo, Shahriar

    This dissertation aims at improving the current understanding of the physics of mobile impurities in highly correlated liquid-like phases of matter. Impurity problems pose challenging and intricate questions in different realms of many-body physics. For instance, the problem of ''solvation'' of charged solutes in polar solvents, has been the subject of longstanding debates among chemical physicists. The significant role of quantum fluctuations of the solvent, as well as the break down of linear response theory, render the ordinary treatments intractable. Inspired by this complicated problem, we first attempt to understand the role of non-specific quantum fluctuations in the solvation process. To this end, we calculate the dynamic structure factor of a model polar liquid, using the classical Molecular Dynamics (MD) simulations. We verify the failure of linear response approximation in the vicinity of a hydrated electron, by comparing the outcomes of MD simulations with the predictions of linear response theory. This nonlinear behavior is associated with the pronounced peaks of the structure factor, which reflect the strong fluctuations of the local modes. A cavity picture is constructed based on heuristic arguments, which suggests that the electron, along with the surrounding polarization cloud, behave like a frozen sphere, for which the linear response theory is broken inside and valid outside. The inverse radius of the spherical region serves as a UV momentum cutoff for the linear response approximation to be applicable. The problem of mobile impurities in polar liquids can be also addressed in the framework of the ''polaron'' problem. Polaron is a quasiparticle that typically acquires an extended state at weak couplings, and crossovers to a self-trapped state at strong couplings. Using the analytical fits to the numerically obtained charge-charge structure factor, a phenomenological approach is proposed within the Leggett's influence functional formalism, which

  6. Al-bound hole polarons in TiO2

    International Nuclear Information System (INIS)

    Stashans, Arvids; Bermeo, Sthefano

    2009-01-01

    Changes in the structural and electronic properties of TiO 2 (anatase and rutile) due to the Al-doping are studied using a quantum-chemical approach based on the Hartree-Fock theory. The formation of hole polarons trapped at oxygen sites near the Al impurity has been discovered and their spatial configuration are discussed. The occurrence of well-localized one-center hole polarons in rutile may influence its photocatalytic activity. Optical absorption energy for this hole center is obtained, 0.4 eV, using the ΔSCF approach.

  7. Al-bound hole polarons in TiO{sub 2}

    Energy Technology Data Exchange (ETDEWEB)

    Stashans, Arvids, E-mail: arvids@utpl.edu.ec [Grupo de Fisicoquimica de Materiales, Instituto de Quimica Aplicada, Universidad Tecnica Particular de Loja, Apartado 11-01-608, Loja (Ecuador); Bermeo, Sthefano [Grupo de Fisicoquimica de Materiales, Instituto de Quimica Aplicada, Universidad Tecnica Particular de Loja, Apartado 11-01-608, Loja (Ecuador)] [Escuela de Electronica y Telecomunicaciones, Universidad Tecnica Particular de Loja, Apartado 11-01-608, Loja (Ecuador)

    2009-09-18

    Changes in the structural and electronic properties of TiO{sub 2} (anatase and rutile) due to the Al-doping are studied using a quantum-chemical approach based on the Hartree-Fock theory. The formation of hole polarons trapped at oxygen sites near the Al impurity has been discovered and their spatial configuration are discussed. The occurrence of well-localized one-center hole polarons in rutile may influence its photocatalytic activity. Optical absorption energy for this hole center is obtained, 0.4 eV, using the {Delta}SCF approach.

  8. The role of hydrostatic pressure and temperature on bound polaron in semiconductor quantum dot

    International Nuclear Information System (INIS)

    El Moussaouy, A.; Ouchani, N.

    2014-01-01

    We studied theoretically the effects of hydrostatic pressure and temperature on the binding energy of shallow hydrogenic impurity in a cylindrical quantum dot (QD) using a variational approach within the effective mass approximation. The hydrostatic stress was applied along the QD growth axis. The interactions between the charge carriers and confined longitudinal optical (LO) phonon modes are taken into account. The numerical computation for GaAs/Ga 1−x Al x As QD has shown that the binding energy with and without the polaronic correction depends on the location of the impurity and the pressure effect and it is more pronounced for impurities in the QD center. Both the binding energy and the polaronic contribution increase linearly with increasing stress. For each pressure value, these energies are also found to decrease as the temperature increases. The results obtained show that in experimental studies of optical and electronic properties of QDs, the effects of pressure, temperature and polaronic correction on donor impurity binding energy should be taken into consideration

  9. Two Impurities in a Bose-Einstein Condensate: From Yukawa to Efimov Attracted Polarons

    Science.gov (United States)

    Naidon, Pascal

    2018-04-01

    The well-known Yukawa and Efimov potentials are two different mediated interaction potentials. The first one arises in quantum field theory from the exchange of virtual particles. The second one is mediated by a real particle resonantly interacting with two other particles. This Letter shows how two impurities immersed in a Bose-Einstein condensate can exhibit both phenomena. For a weak attraction with the condensate, the two impurities form two polarons that interact through a weak Yukawa attraction mediated by virtual excitations. For a resonant attraction with the condensate, the exchanged excitation becomes a real boson and the mediated interaction changes to a strong Efimov attraction that can bind the two polarons. The resulting bipolarons turn into in-medium Efimov trimers made of the two impurities and one boson. Evidence of this physics could be seen in ultracold mixtures of atoms.

  10. Proton impurity in the neutron matter: a nuclear polaron problem

    Energy Technology Data Exchange (ETDEWEB)

    Kutschera, M [Institute of Nuclear Physics, Cracow (Poland); Wojcik, W [Politechnika Krakowska, Cracow (Poland)

    1992-10-01

    We study interactions of a proton impurity with density oscillations of the neutron matter in a Debye approximation. The proton-phonon coupling is of the deformation-potential type at long wavelengths. It is weak at low density and increases with the neutron matter density. We calculate the proton`s effective mass perturbatively for a weak coupling, and use a canonical transformation technique for stronger couplings. The proton`s effective mass grows significantly with density, and at higher densities the proton impurity can be localized. This behaviour is similar to that of the polaron in solids. We obtain properties of the localized proton in the strong coupling regime from variational calculations, treating the neutron in the Thomas-Fermi approximation. (author). 14 refs, 8 figs.

  11. Small-polaron formation and motion in magnetic semiconductors

    International Nuclear Information System (INIS)

    Emin, D.

    1979-01-01

    The fundamental physical processes associated with small-polaron formation are described with various magnetic semi-conductors being cited as examples. Attention is then directed toward the mechanisms of charge transfer and small-polaron hopping motion in magnetic semiconductors

  12. Small polaron hopping in magnetic semiconductors

    International Nuclear Information System (INIS)

    Emin, D.; Liu, N.L.H.

    1978-01-01

    In a number of magnetic insulators it has been hypothesized that the charge carriers form small polarons. The transfer of an electron between magnetic sites and how the magnetic nature of the material affects the rate which characterizes small-polaron hops between magnetic sites were studied. The basic transfer processes are addressed from a many-electron point in which the itinerant electron is treated as indistinguishable from those which contribute unpaired spins at the magnetic sites

  13. Small-polaron model of light atom diffusion

    International Nuclear Information System (INIS)

    Emin, D.

    1977-01-01

    A number of researchers have treated the diffusion of light interstitials in metals in strict analogy with the theory for the hopping diffusion of electrons in low-mobility insulators. In other words, these authors view the diffusion of light atoms as simply being an example of small-polaron hopping motion. In this paper the motion of a small polaron is introduced, and the mechanism of its motion is described. The experimental results are then succinctly presented. Next the physical assumptions implicit in the theory are compared with the situation which is believed to characterize the existence and motion of light interstitial atoms in metals. Concomitantly, the modifications of the small-polaron theory required in applying it to light atom diffusion are ennumerated

  14. The effects of optical phonon on the binding energy of bound polaron in a wurtzite ZnO/MgxZn1−xO quantum well

    International Nuclear Information System (INIS)

    Zhao, Feng-Qi; Guo, Zi-Zheng; Zhu, Jun

    2014-01-01

    An improved Lee-Low-Pines intermediate coupling method is used to study the energies and binding energies of bound polarons in a wurtzite ZnO/Mg x Zn 1−x O quantum well. The contributions from different branches of long-wave optical phonons, i.e., confined optical phonons, interface optical phonons, and half-space optical phonons are considered. In addition to electron-phonon interaction, the impurity-phonon interaction, and the anisotropy of material parameters, such as phonon frequency, electron effective mass, and dielectric constant, are also included in our computation. Ground-state energies, binding energies and detailed phonon contributions from various phonons as functions of well width, impurity position and composition are presented. Our result suggests that total phonon contribution to ground state and binding energies in the studied wurtzite ZnO/Mg 0.3 Zn 0.7 O quantum wells varies between 28–23 meV and 62–45 meV, respectively, which are much larger than the corresponding values (about 3.2–1.8 meV and 1.6–0.3 meV) in GaAs/Al 0.3 Ga 0.7 As quantum wells. For a narrower quantum well, the phonon contribution mainly comes from interface and half-space phonons, for a wider quantum well, most of phonon contribution originates from confined phonons. The contribution from all the phonon modes to binding energies increases slowly either when impurity moves far away from the well center in the z direction or with the increase in magnesium composition (x). It is found that different phonons have different influences on the binding energies of bound polarons. Furthermore, the phonon contributions to binding energies as functions of well width, impurity position, and composition are very different from one another. In general, the electron-optical phonon interaction and the impurity center-optical phonon interaction play an important role in electronic states of ZnO-based quantum wells and cannot be neglected.

  15. Weak coupling polaron and Landau-Zener scenario: Qubits modeling

    Science.gov (United States)

    Jipdi, M. N.; Tchoffo, M.; Fokou, I. F.; Fai, L. C.; Ateuafack, M. E.

    2017-06-01

    The paper presents a weak coupling polaron in a spherical dot with magnetic impurities and investigates conditions for which the system mimics a qubit. Particularly, the work focuses on the Landau-Zener (LZ) scenario undergone by the polaron and derives transition coefficients (transition probabilities) as well as selection rules for polaron's transitions. It is proven that, the magnetic impurities drive the polaron to a two-state superposition leading to a qubit structure. We also showed that the symmetry deficiency induced by the magnetic impurities (strong magnetic field) yields to the banishment of transition coefficients with non-stacking states. However, the transition coefficients revived for large confinement frequency (or weak magnetic field) with the orbital quantum numbers escorting transitions. The polaron is then shown to map a qubit independently of the number of relevant states with the transition coefficients lifted as LZ probabilities and given as a function of the electron-phonon coupling constant (Fröhlich constant).

  16. Impurity bubbles in a BEC

    Science.gov (United States)

    Timmermans, Eddy; Blinova, Alina; Boshier, Malcolm

    2013-05-01

    Polarons (particles that interact with the self-consistent deformation of the host medium that contains them) self-localize when strongly coupled. Dilute Bose-Einstein condensates (BECs) doped with neutral distinguishable atoms (impurities) and armed with a Feshbach-tuned impurity-boson interaction provide a unique laboratory to study self-localized polarons. In nature, self-localized polarons come in two flavors that exhibit qualitatively different behavior: In lattice systems, the deformation is slight and the particle is accompanied by a cloud of collective excitations as in the case of the Landau-Pekar polarons of electrons in a dielectric lattice. In natural fluids and gases, the strongly coupled particle radically alters the medium, e.g. by expelling the host medium as in the case of the electron bubbles in superfluid helium. We show that BEC-impurities can self-localize in a bubble, as well as in a Landau-Pekar polaron state. The BEC-impurity system is fully characterized by only two dimensionless coupling constants. In the corresponding phase diagram the bubble and Landau-Pekar polaron limits correspond to large islands separated by a cross-over region. The same BEC-impurity species can be adiabatically Feshbach steered from the Landau-Pekar to the bubble regime. This work was funded by the Los Alamos LDRD program.

  17. Small polarons in 2D perovskites

    KAUST Repository

    Cortecchia, Daniele; Yin, Jun; Birowosuto, Muhammad D.; Lo, Shu-Zee A.; Gurzadyan, Gagik G.; Bruno, Annalisa; Bredas, Jean-Luc; Soci, Cesare

    2017-01-01

    We demonstrate that white light luminescence in two-dimensional (2D) perovskites stems from photoinduced formation of small polarons confined at specific sites of the inorganic framework in the form of self-trapped electrons and holes. We discuss their application in white light emitting devices and X-ray scintillators.

  18. Small polarons in 2D perovskites

    KAUST Repository

    Cortecchia, Daniele

    2017-11-02

    We demonstrate that white light luminescence in two-dimensional (2D) perovskites stems from photoinduced formation of small polarons confined at specific sites of the inorganic framework in the form of self-trapped electrons and holes. We discuss their application in white light emitting devices and X-ray scintillators.

  19. Thermoelectric power of small polarons in magnetic semiconductors

    International Nuclear Information System (INIS)

    Liu, N.H.; Emin, D.

    1984-01-01

    The thermoelectric power (Seebeck coefficient) α of a small polaron in both ferromagnetic and antiferromagnetic semiconductors and insulators is calculated for the first time. In particular, we obtain the contribution to the Seebeck coefficient arising from exchange interactions between the severely localized carrier (i.e., small polaron) of charge q and the spins of the host lattice. In essence, we study the heat transported along with a carrier. This heat, the Peltier heat, Pi, is related to the Seebeck coefficient by the Kelvin relation: Pi = qTα, where T is the temperature. The heat per carrier is simply the product of the temperature and the change of the entropy of the system when a small polaron is added to it. The magnetic contribution to the Seebeck coefficient is therefore directly related to the change of the magnetic entropy of the system upon introduction of a charge carrier. We explicitly treat the intrasite and intersite exchange interactions between a small polaron and the spins of a spin-1/2 system. These magnetic interactions produce two competing contributions to the Seebeck coefficient. First, adding the carrier tends to provide extra spin freedom (e.g., spin up or spin down of the carrier). This effect augments the entropy of the system, thereby producing a positive contribution to the Peltier heat. Second, however, the additional exchange between the carrier and the sites about it enhances the exchange binding among these sites. This generally reduces the energetically allowable spin configurations. The concomitant reduction of the system's entropy provides a negative contribution to the Peltier heat. At the highest of temperatures, when kT exceeds the intrasite exchange energy, the first effect dominates. Then, the Peltier heat is simply augmented by kT ln2

  20. Strong-coupling Bose polarons out of equilibrium: Dynamical renormalization-group approach

    Science.gov (United States)

    Grusdt, Fabian; Seetharam, Kushal; Shchadilova, Yulia; Demler, Eugene

    2018-03-01

    When a mobile impurity interacts with a surrounding bath of bosons, it forms a polaron. Numerous methods have been developed to calculate how the energy and the effective mass of the polaron are renormalized by the medium for equilibrium situations. Here, we address the much less studied nonequilibrium regime and investigate how polarons form dynamically in time. To this end, we develop a time-dependent renormalization-group approach which allows calculations of all dynamical properties of the system and takes into account the effects of quantum fluctuations in the polaron cloud. We apply this method to calculate trajectories of polarons following a sudden quench of the impurity-boson interaction strength, revealing how the polaronic cloud around the impurity forms in time. Such trajectories provide additional information about the polaron's properties which are challenging to extract directly from the spectral function measured experimentally using ultracold atoms. At strong couplings, our calculations predict the appearance of trajectories where the impurity wavers back at intermediate times as a result of quantum fluctuations. Our method is applicable to a broader class of nonequilibrium problems. As a check, we also apply it to calculate the spectral function and find good agreement with experimental results. At very strong couplings, we predict that quantum fluctuations lead to the appearance of a dark continuum with strongly suppressed spectral weight at low energies. While our calculations start from an effective Fröhlich Hamiltonian describing impurities in a three-dimensional Bose-Einstein condensate, we also calculate the effects of additional terms in the Hamiltonian beyond the Fröhlich paradigm. We demonstrate that the main effect of these additional terms on the attractive side of a Feshbach resonance is to renormalize the coupling strength of the effective Fröhlich model.

  1. Polaron in the dilute critical Bose condensate

    Science.gov (United States)

    Pastukhov, Volodymyr

    2018-05-01

    The properties of an impurity immersed in a dilute D-dimensional Bose gas at temperatures close to its second-order phase transition point are considered. Particularly by means of the 1/N-expansion, we calculate the leading-order polaron energy and the damping rate in the limit of vanishing boson–boson interaction. It is shown that the perturbative effective mass and the quasiparticle residue diverge logarithmically in the long-length limit, signalling the non-analytic behavior of the impurity spectrum and pole-free structure of the polaron Green’s function in the infrared region, respectively.

  2. First-principles supercell calculations of small polarons with proper account for long-range polarization effects

    Science.gov (United States)

    Kokott, Sebastian; Levchenko, Sergey V.; Rinke, Patrick; Scheffler, Matthias

    2018-03-01

    We present a density functional theory (DFT) based supercell approach for modeling small polarons with proper account for the long-range elastic response of the material. Our analysis of the supercell dependence of the polaron properties (e.g., atomic structure, binding energy, and the polaron level) reveals long-range electrostatic effects and the electron–phonon (el–ph) interaction as the two main contributors. We develop a correction scheme for DFT polaron calculations that significantly reduces the dependence of polaron properties on the DFT exchange-correlation functional and the size of the supercell in the limit of strong el–ph coupling. Using our correction approach, we present accurate all-electron full-potential DFT results for small polarons in rocksalt MgO and rutile TiO2.

  3. Polaronic effects on the off-center donor impurity in AlAs/GaAs/SiO2 spherical core/shell quantum dots

    Science.gov (United States)

    El Haouari, M.; Feddi, E.; Dujardin, F.; Restrepo, R. L.; Mora-Ramos, M. E.; Duque, C. A.

    2017-11-01

    The ground state of a conduction electron coupled to an off-center impurity donor in a AlAS/GaAs spherical core/shell quantum dot is investigated theoretically. The image-charge effect and the influence of the electron-polar-LO-phonon interaction are considered. The electron-impurity binding energy is calculated via a variational procedure and is reported both as a function of the shell width and of the radial position of the donor atom. The polaronic effects on this quantity are particularly discussed.

  4. Mechanism of small-polaron formation in the biferroic YCrO{sub 3} doped with calcium

    Energy Technology Data Exchange (ETDEWEB)

    Duran, A., E-mail: dural@cnyn.unam.mx [Universidad Nacional Autonoma de Mexico, Centro de Nanociencias y Nanotecnologia, Apartado Postal 41, C.P. 22800, Ensenada, B.C. (Mexico); Verdin, E. [Universidad de Sonora, Departamento de Fisica, Apartado Postal 1626, Hermosillo, Sonora C.P. 8300 (Mexico); Escamilla, R.; Morales, F.; Escudero, R. [Universidad Nacional Autonoma de Mexico, Instituto de Investigaciones en Materiales, Apartado Postal 70-360, Mexico D.F. 04510 (Mexico)

    2012-04-16

    Highlights: Black-Right-Pointing-Pointer The Ca doped in the YCrO3 matrix was analyzed by means of complete structural, magnetic and electric properties. Black-Right-Pointing-Pointer E{sub act} deduced by Arrhenius' Law suggests small-polarons as conduction mechanisms in pristine and doped sample. Black-Right-Pointing-Pointer Local non-centrosymmetry in pristine sample is proposed as responsible of small polarons formation. Black-Right-Pointing-Pointer A mechanism of formation of small polarons is proposed supported by experimental evidence. Black-Right-Pointing-Pointer The structural distortion caused by the Ca doped in the YCrO3 matrix is harmful to the Ferroic properties. - Abstract: The effects of Ca substitutions on the structure, magnetism and electrical properties of YCrO{sub 3} ceramics are investigated by X-ray diffraction, magnetic susceptibility and electrical conductivity measurements. The cell volume decrease occurs through the change from Cr(III) to Cr(IV) as a result of the charge compensation of the Ca doping. No changes are observed in the antiferromagnetic transition temperature while strong changes are observed in the transport measurements due to Ca content. The increase of the electrical conductivity as well as the decrease of the activation energy is caused by the formation of the small-polarons localized in the O-Cr-O lattice distortion. The origin of small-polarons in the undoped sample is different in nature from the calcium doped. 'Local non-centrosymmetry' is the source of the small-polaron formation in undoped sample, while the change from Cr(III) to Cr(IV) through the charge compensation of Ca(II) in the Y(III) site is the source of small-polarons formations. The decrease of the average bond length Cr-O as well as effective moments in the paramagnetic state and the increase of the electrical conductivity are clear evidence that the Ca doping induces localized polarons, which in turn, these quasiparticles move from site to

  5. Impurity bound states in mesoscopic topological superconducting loops

    Science.gov (United States)

    Jin, Yan-Yan; Zha, Guo-Qiao; Zhou, Shi-Ping

    2018-06-01

    We study numerically the effect induced by magnetic impurities in topological s-wave superconducting loops with spin-orbit interaction based on spin-generalized Bogoliubov-de Gennes equations. In the case of a single magnetic impurity, it is found that the midgap bound states can cross the Fermi level at an appropriate impurity strength and the circulating spin current jumps at the crossing point. The evolution of the zero-energy mode can be effectively tuned by the located site of a single magnetic impurity. For the effect of many magnetic impurities, two independent midway or edge impurities cannot lead to the overlap of zero modes. The multiple zero-energy modes can be effectively realized by embedding a single Josephson junction with impurity scattering into the system, and the spin current displays oscillatory feature with increasing the layer thickness.

  6. A variational study of the self-trapped magnetic polaron formation in double-exchange model

    International Nuclear Information System (INIS)

    Liu Tao; Feng Mang; Wang Kelin

    2005-01-01

    We study the formation of self-trapped magnetic polaron (STMP) in an antiferro/ferromagnetic double-exchange model semi-analytically by variational solutions. It is shown that the Jahn-Teller effect is not essential to the STMP formation and the STMP forms in the antiferromagnetic material within the region of the order of the lattice constant. We also confirm that no ground state STMP exists in the ferromagnetic background, but the ground state bound MP could appear due to the impurity potential

  7. Continual integration method in the polaron model

    International Nuclear Information System (INIS)

    Kochetov, E.A.; Kuleshov, S.P.; Smondyrev, M.A.

    1981-01-01

    The article is devoted to the investigation of a polaron system on the base of a variational approach formulated on the language of continuum integration. The variational method generalizing the Feynman one for the case of the system pulse different from zero has been formulated. The polaron state has been investigated at zero temperature. A problem of the bound state of two polarons exchanging quanta of a scalar field as well as a problem of polaron scattering with an external field in the Born approximation have been considered. Thermodynamics of the polaron system has been investigated, namely, high-temperature expansions for mean energy and effective polaron mass have been studied [ru

  8. Dynamics of an impurity in a one-dimensional lattice

    International Nuclear Information System (INIS)

    Massel, F; Kantian, A; Giamarchi, T; Daley, A J; Törmä, P

    2013-01-01

    We study the non-equilibrium dynamics of an impurity in a harmonic trap that is kicked with a well-defined quasi-momentum, and interacts with a bath of free fermions or interacting bosons in a one-dimensional lattice configuration. Using numerical and analytical techniques we investigate the full dynamics beyond linear response, which allows us to quantitatively characterize states of the impurity in the bath for different parameter regimes. These vary from a tightly bound molecular state in a strongly interacting limit to a polaron (dressed impurity) and a free particle for weak interactions, with composite behaviour in the intermediate regime. These dynamics and different parameter regimes should be readily realizable in systems of cold atoms in optical lattices. (paper)

  9. Influence of impurities on the polaron effective mass

    International Nuclear Information System (INIS)

    Lima, R.A.T. de.

    1975-01-01

    Using the Green Function formalism, it is verified the Rodriguez's model for the effective mass of the polaron at finite temperature in the presence of 'traps'. Some aspects of this model were discussed. (M.W.O.) [pt

  10. Hole polaron-polaron interaction in transition metal oxides and its limit to p-type doping

    Science.gov (United States)

    Chen, Shiyou; Wang, Lin-Wang

    2014-03-01

    Traditionally the origin of the poor p-type conductivity in some transition metal oxides (TMOs) was attributed to the limited hole concentration: the charge-compensating donor defects, such as oxygen vacancies and cation interstitials, can form spontaneously as the Fermi energy shifts down to near the valence band maximum. Besides the thermodynamic limit to the hole concentration, the limit to the hole mobility can be another possible reason, e.g., the hole carrier can form self-trapped polarons with very low carrier mobility. Although isolated hole polarons had been found in some TMOs, the polaron-polaron interaction is not well-studied. Here we show that in TMOs such as TiO2 and V2O5, the hole polarons prefer to bind with each other to form bipolarons, which are more stable than free hole carriers or separated polarons. This pushes the hole states upward into the conduction band and traps the holes. The rise of the Fermi energy suppresses the spontaneous formation of the charge-compensating donor defects, so the conventional mechanism becomes ineffective. Since it can happen in the impurity-free TMO lattices, independent of any extrinsic dopant, it acts as an intrinsic and general limit to the p-type conductivity in these TMOs. This material is based upon work performed by the JCAP, a US DOE Energy Innovation Hub, the NSFC (No. 61106087 and 91233121) and special funds for major state basic research (No. 2012CB921401).

  11. Inapplicability of small-polaron model for the explanation of infrared absorption spectrum in acetanilide.

    Science.gov (United States)

    Zeković, Slobodan; Ivić, Zoran

    2009-01-01

    The applicability of small-polaron model for the interpretation of infrared absorption spectrum in acetanilide has been critically reexamined. It is shown that the energy difference between the normal and anomalous peak, calculated by means of small-polaron theory, displays pronounced temperature dependence which is in drastic contradiction with experiment. It is demonstrated that self-trapped states, which are recently suggested to explain theoretically the experimental absorption spectrum in protein, cannot cause the appearance of the peaks in absorption spectrum for acetanilide.

  12. Effect of thermodynamic fluctuations of magnetization on the bound magnetic polaron state in ferromagnetic semiconductors

    International Nuclear Information System (INIS)

    Bednarski, Henryk; Spałek, Józef

    2014-01-01

    We extend the theory of the bound magnetic polaron (BMP) in diluted paramagnetic semiconductors to the situation with a ferromagnetic phase transition. This is achieved by including the classical Gaussian fluctuations of magnetization from the quartic (non-Gaussian) term in the effective Ginzburg–Landau Hamiltonian for the spins. Within this approach, we find a ferromagnetically ordered state within the BMP in the temperature range well above the Curie temperature for the host magnetic semiconductor. Numerical results are compared directly with the recently available experimental data for the ferromagnetic semiconductor GdN. The agreement is excellent, given the simplicity of our model, and is because the polaron size (≃1.4 nm) encompasses a relatively large but finite number (N≈400) of quasiclassical spins S=7/2 coming from Gd 3+ ions. The presence of BMP invalidates the notion of critical temperature and thus makes the incorporation of classical Gaussian fluctuations sufficient to realistically describe the situation. (paper)

  13. Small polaron formation and motion of holes in a-SiO2

    International Nuclear Information System (INIS)

    Hughes, R.C.; Emin, D.

    1978-01-01

    X-ray generated holes in SiO 2 are observed to be reduced to low mobility in times of the order of vibrational periods, 10 -12 s. The temperature dependence, electric field dependence and magnitude of this mobility for times up to about 100 ns are consistent with those of hole-like small polarons. The circumstances which favor the occurrence of rapid small polaron formation are a large effective mass (narrow valence band), the presence of the long-range hole-lattice interaction characteristic of an ionic material and the presence of disorder, all of which are found in amorphous SiO 2 . An alternative explanation involving trapping requires an extremely large localized state density and fortuitous temperature and field dependences of the hopping rates

  14. Method of T-products in polaron theory

    International Nuclear Information System (INIS)

    Bogolubov, N.N. Jr.; Kurbatov, A.M.; Kireev, A.N.

    1985-11-01

    T-products method is used for the investigation of equilibrium thermodynamic properties of Frohlich's model in polaron theory. Polaron free energy at finite temperatures is calculated on the basis of Bogolubov's variational principle. A trial function is chosen in the most general form corresponding to arbitrary number of oscillators harmonically interacting with electron. The upper bound to the polaron ground state energy in limiting case of weak interaction and low temperatures is obtained and investigated in detail. It is shown that the result becomes more exact by increasing the number of oscillators. (author)

  15. Raman and optical spectroscopic studies of small-to-large polaron crossover in the perovskite manganese oxides

    International Nuclear Information System (INIS)

    Yoon, S.; Liu, H.L.; Schollerer, G.; Cooper, S.L.; Han, P.D.; Payne, D.A.; Cheong, S.; Fisk, Z.

    1998-01-01

    We present an optical reflectance and Raman-scattering study of the A 1-x A ' x MnO 3 system as a function of temperature and doping (0.2≤x≤0.5). The metal-semiconductor transition in the A 1-x A ' x MnO 3 system is characterized by a change from a diffusive electronic Raman-scattering response in the high-temperature paramagnetic phase, to a flat continuum scattering response in the low-temperature ferromagnetic phase. We interpret this change in the scattering response as a crossover from a small-polaron-dominated regime at high temperatures to a large-polaron-dominated low-temperature regime. Interestingly, we observe evidence for the coexistence of large and small polarons in the low-temperature ferromagnetic phase. We contrast these results with those obtained for EuB 6 , which is a low-T c magnetic semiconductor with similar properties to the manganites, but with a substantially reduced carrier density and polaron energy. copyright 1998 The American Physical Society

  16. In-gap bound states induced by interstitial Fe impurities in iron-based superconductors

    Energy Technology Data Exchange (ETDEWEB)

    Zhang, Degang, E-mail: degangzhang@yahoo.com

    2015-12-15

    Highlights: • We provide an explanation for the interesting STM observation of the robust zero energy bound state on the interstitial Fe impurities in iron-based superconductors. - Abstract: Based on a two-orbit four-band tight binding model, we investigate the low-lying electronic states around the interstitial excess Fe ions in the iron-based superconductors by using T-matrix approach. It is shown that the local density of states at the interstitial Fe impurity (IFI) possesses a strong resonance inside the gap, which seems to be insensitive to the doping and the pairing symmetry in the Fe–Fe plane, while a single or two resonances appear at the nearest neighboring (NN) Fe sites. The location and height of the resonance peaks only depend on the hopping t and the pairing parameter Δ{sub I} between the IFI and the NN Fe sites. These in-gap resonances are originated in the Andreev’s bound states due to the quasiparticle tunneling through the IFI, leading to the change of the magnitude of the superconducting order parameter. When both t and Δ{sub I} are small, this robust zero-energy bound state near the IFI is consistent with recent scanning tunneling microscopy observations.

  17. Direct observation of anisotropic small-hole polarons in an orthorhombic structure of BiV O4 films

    Science.gov (United States)

    Chaudhuri, A.; Mandal, L.; Chi, X.; Yang, M.; Scott, M. C.; Motapothula, M.; Yu, X. J.; Yang, P.; Shao-Horn, Y.; Venkatesan, T.; Wee, A. T. S.; Rusydi, A.

    2018-05-01

    Here, we report an anisotropic small-hole polaron in an orthorhombic structure of BiV O4 films grown by pulsed-laser deposition on yttrium-doped zirconium oxide substrate. The polaronic state and electronic structure of BiV O4 films are revealed using a combination of polarization-dependent x-ray absorption spectroscopy at V L3 ,2 edges, spectroscopic ellipsometry, x-ray photoemission spectroscopies, and high-resolution x-ray diffraction with the support of first-principles calculations. We find that in the orthorhombic phase, which is slightly different from the conventional pucherite structure, the unoccupied V 3d orbitals and charge inhomogeneities lead to an anisotropic small-hole polaron state. Our result shows the importance of the interplay of charge and lattice for the formation of a hole polaronic state, which has a significant impact in the electrical conductivity of BiV O4 , hence its potential use as a photoanode for water splitting.

  18. Photoelectron spectroscopy on the charge reorganization energy and small polaron binding energy of molecular film

    Energy Technology Data Exchange (ETDEWEB)

    Kera, Satoshi, E-mail: kera@ims.ac.jp [Institute for Molecular Science, Myodaiji, Okazaki 444-8585 (Japan); Department of Nanomaterial Science, Graduate School of Advanced Integration Science, Chiba University, Inage-ku, Chiba 263-8522 (Japan); Ueno, Nobuo [Department of Nanomaterial Science, Graduate School of Advanced Integration Science, Chiba University, Inage-ku, Chiba 263-8522 (Japan)

    2015-10-01

    Understanding of electron-phonon coupling as well as intermolecular interaction is required to discuss the mobility of charge carrier in functional molecular solids. This article summarizes recent progress in direct measurements of valence hole-vibration coupling in ultrathin films of organic semiconductors by using ultraviolet photoelectron spectroscopy (UPS). The experimental study of hole-vibration coupling of the highest occupied molecular orbital (HOMO) state in ordered monolayer film by UPS is essential to comprehend hole-hopping transport and small-polaron related transport in organic semiconductors. Only careful measurements can attain the high-resolution spectra and provide key parameters in hole-transport dynamics, namely the charge reorganization energy and small polaron binding energy. Analyses methods of the UPS HOMO fine feature and resulting charge reorganization energy and small polaron binding energy are described for pentacene and perfluoropentacene films. Difference between thin-film and gas-phase results is discussed by using newly measured high-quality gas-phase spectra of pentacene. Methodology for achieving high-resolution UPS measurements for molecular films is also described.

  19. Effect of defects on the small polaron formation and transport properties of hematite from first-principles calculations.

    Science.gov (United States)

    Smart, Tyler J; Ping, Yuan

    2017-10-04

    Hematite (α-Fe 2 O 3 ) is a promising candidate as a photoanode material for solar-to-fuel conversion due to its favorable band gap for visible light absorption, its stability in an aqueous environment and its relatively low cost in comparison to other prospective materials. However, the small polaron transport nature in α-Fe 2 O 3 results in low carrier mobility and conductivity, significantly lowering its efficiency from the theoretical limit. Experimentally, it has been found that the incorporation of oxygen vacancies and other dopants, such as Sn, into the material appreciably enhances its photo-to-current efficiency. Yet no quantitative explanation has been provided to understand the role of oxygen vacancy or Sn-doping in hematite. We employed density functional theory to probe the small polaron formation in oxygen deficient hematite, N-doped as well as Sn-doped hematite. We computed the charged defect formation energies, the small polaron formation energy and hopping activation energies to understand the effect of defects on carrier concentration and mobility. This work provides us with a fundamental understanding regarding the role of defects on small polaron formation and transport properties in hematite, offering key insights into the design of new dopants to further improve the efficiency of transition metal oxides for solar-to-fuel conversion.

  20. Polaronic and dressed molecular states in orbital Feshbach resonances

    Science.gov (United States)

    Xu, Junjun; Qi, Ran

    2018-04-01

    We consider the impurity problem in an orbital Feshbach resonance (OFR), with a single excited clock state | e ↑⟩ atom immersed in a Fermi sea of electronic ground state | g ↓⟩. We calculate the polaron effective mass and quasi-particle residue, as well as the polaron to molecule transition. By including one particle-hole excitation in the molecular state, we find significant correction to the transition point. This transition point moves toward the BCS side for increasing particle densities, which suggests that the corresponding many-body physics is similar to a narrow resonance.

  1. The ground state energy of a bound polaron in the presence of a magnetic field

    Energy Technology Data Exchange (ETDEWEB)

    Zorkani, I [International Centre for Theoretical Physics, Trieste (Italy); Belhissi, R [Faculte des Sciences Dhar Mahraz, Fes (Morocco). Dept. de Physique

    1995-09-01

    A theoretical calculation for the ground state energy of a bound polaron as a function of the magnetic field is presented. The theory is based on a variational approach using a trial wave function proposed by Devreese et al. in the absence of the magnetic field. It was shown that his function is adequate for all electron - phonon coupling {alpha} and all parameter {gamma}{sub 0} which is the ratio between the L.O. phonon energy and the Colombian one. Analytical results are obtained in the weak coupling limit. (author). 27 refs, 4 figs, 1 tab.

  2. Quantum Monte Carlo simulations of the Fermi-polaron problem and bosons with Gaussian interactions

    Energy Technology Data Exchange (ETDEWEB)

    Kroiss, Peter Michael

    2017-02-01

    This thesis deals with the application of current Quantum Monte Carlo algorithms to many-body systems of fermionic and bosonic species. The first part applies the diagrammatic Monte Carlo method to the Fermi polaron problem, a system of an impurity interacting resonantly with a homogeneous Fermi bath. It is numerically shown that the three particle-hole diagrams do not contribute significantly to the final answer in a quasi-two-dimensional setup, thus demonstrating a nearly perfect destructive interference of contributions in subspaces with higher-order particle-hole lines. Consequently, for strong-enough confinement in the third direction, the transition between the polaron and the molecule ground state is found to be in good agreement with the pure two-dimensional case and agrees very well with the one found by the wave-function approach in the two-particle-hole subspace. In three-dimensional Fermi-polaron systems with mass imbalance of impurity and bath atoms, polaron energy and quasiparticle residue can be accurately determined over a broad range of impurity masses. Furthermore, the spectral function of an imbalanced polaron demonstrates the stability of the quasiparticle and also allows us to locate the repulsive polaron as an excited state. The quantitative exactness of two-particle-hole wave functions is investigated, resulting in a relative lowering of polaronic energies in the mass-imbalance phase diagram. Tan's contact coefficient for the mass-balanced polaron system is found to be in good agreement with variational methods. Mass-imbalanced systems can be studied experimentally by ultracold atom mixtures such as {sup 6}Li-{sup 40}K. In the second part of the thesis, the ground state of a two-dimensional system of Bose particles of spin zero, interacting via a repulsive Gaussian-Core potential, is investigated by means of path integral Monte Carlo simulations. The quantum phase diagram is qualitatively identical to that of two-dimensional Yukawa

  3. Polaron as the extended particle model

    International Nuclear Information System (INIS)

    Kochetov, E.A.; Kuleshov, S.P.; Smondyrev, M.A.

    1977-01-01

    The polaron (a moving electron with concomitant lattice distortion) mass and energy are calculated. The problem of finding the Green function in the polaron model is solved. A number of the simplest approximations corresponding to the approximation in the picture of straight-line paths is considered. The case of strong coupling requires more detailed study of the particle motion in the effective field, caused by the significant polarization of vacuum near the particle. As a consequence, a more complex approximation of functional integrals is required. A variation method is used in this case. The bound state of a polaron interacting not only with photons, but also with some external classical field is investigated as well. A classical potential is considered as an example

  4. Formation time of a small electron polaron in LiNbO3: measurements and interpretation

    International Nuclear Information System (INIS)

    Qiu, Yong; Ucer, K.B.; Williams, R.T.

    2005-01-01

    Infrared optical absorption attributed to the electron polaron on a non-defective site in LiNbO 3 and KNbO 3 has previously been observed using pulsed electron and laser techniques. With subpicosecond laser excitation and spectroscopy, it is possible to measure a rise time of the infrared absorption, which may be interpreted as the time for a band-state conduction electron to cool by phonon scattering, collapse its wavefunction around a site made attractive by thermal disorder, and relax vibrationally to a small polaron. This is a process which is of fundamental interest, involving dynamics of self-localization from band states and vibrational relaxation of a localized electron in an otherwise non-defective lattice. For example, Gavartin and Shluger have recently performed calculations on the role of thermal fluctuations in self-trapping of holes in MgO. We report initial measurements on the rise time of infrared absorption at 0.95 eV (Mg-perturbed polaron) in LiNbO 3 :Mg to be τ R ∼230 fs at T=20 K and τ R ∼110 fs at T=296 K. We discuss 2 stages that together may account for the delay and its temperature dependence: free-electron cooling and vibrational relaxation of a ''defect'' (small polaron) in a host. (copyright 2005 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim) (orig.)

  5. Peltier heat of a small polaron in a magnetic semiconductor

    International Nuclear Information System (INIS)

    Liu, N.H.; Emin, D.

    1985-01-01

    For the first time the heat transported with a small polaron in both antiferromagnetic and ferromagnetic semiconductors is calculated. This heat, the Peltier heat, π, is obtained from the change of the entropy of the total system upon introduction of a charge carrier. We explicitly consider both the intrasite and intersite exchange interactions between a small polaron and the interacting spins of a spin-1/2 magnet. There are two competing magnetic contributions to the Peltier heat. First, adding the carrier increases the spin entropy of the system. This provides a positive contribution to π. Second, the exchange between the carrier and the sites about it enhances the exchange binding between these sites. This reduces the energetically allowable spin configurations and provides a negative contribution to π. At extremely high temperatures when kT exceeds the intrasite exchange energy, the first effect dominates. Then π is simply augmented by kT ln 2. However, well below the magnetic transition temperature the second effect dominates. In the experimentally accessible range between these limits both effects are comparable and sizable. The net magnetic contribution to the Peltier heat rises with temperature. Thus, a carrier's interactions with its magnetic environment produces a significant and distinctive contribution to its Peltier heat

  6. Peltier heat of a small polaron in a magnetic semiconductor

    International Nuclear Information System (INIS)

    Liu, N.L.H.; Emin, D.

    1984-01-01

    The heat transported with a small polaron in both antiferromagnetic and ferromagnetic semiconductors is calculated. This heat, the Peltier heat, π, is obtained from the change of the entropy of the total system upon introduction of a charge carrier. We explicitly consider both the intrasite and intersite exchange interactions between a small polaron and the interacting spins of a spin-1/2 magnet. There are two competing magnetic contributions to the Peltier heat. First, adding the carrier increases the spin entropy of the system. This provides a positive contribution to π. Second, the exchange between the carrier and the sites about it enhances the exchange binding between these sites. This reduces the energetically allowable spin configurations and provides a negative contribution to π. At extremely high temperature when kT exceeds the intrasite exchange energy, the first effect dominates. Then π is simply augmented by kTln2. However, well below the magnetic transition temperature the second effect dominates. In the experimentally accessible range between these limits both effects are comparable and sizable. The net magnetic contribution to the Peltier heat rises with temperature. Thus, a carrier's interactions with its magnetic environment produces a significant and distinctive contribution to its Peltier heat

  7. A new DFT approach to model small polarons in oxides with proper account for long-range polarization

    Science.gov (United States)

    Kokott, Sebastian; Levchenko, Sergey V.; Scheffler, Matthias; Theory Department Team

    In this work, we address two important challenges in the DFT description of small polarons (excess charges localized within one unit cell): sensitivity to the errors in exchange-correlation (XC) treatment and finite-size effects in supercell calculations. The polaron properties are obtained using a modified neutral potential-energy surface (PES). Using the hybrid HSE functional and considering the whole range 0 Deutsche Forschungsgemeinschaft).

  8. Polaron interaction energies in reduced tungsten trioxide

    International Nuclear Information System (INIS)

    Iguchi, E.; Salje, E.; Tilley, R.J.D.

    1981-01-01

    Consideration of the properties of reduced tungsten trioxide suggest that the mobile charge carriers are polarons. As it is uncertain how the presence of polarons will influence the microstructures of the crystallographic shear (CS) planes present in reduced tungsten trioxide we have calculated both the polaron-CS plane and polaron-polaron interaction energy for a variety of circumstances. Three CS plane geometries were considered, (102), (103), and (001) CS plane arrays, and the nominal compositions of the crystals ranged from WO 2 70 to WO 3 0 . The polarons were assumed to have radii from 0.6 to 1.0 nm and the polaron-CS plane electrostatic interaction was assumed to be screened. The results suggest that for the most part the total interaction energy is small and is unlikely to be of major importance in controlling the microstructures found in CS planes. However, at very high polaron densities the interaction energy could be appreciable and may have some influence on the existence range of CS phases

  9. Implications of the formation of small polarons in Li2O2 for Li-air batteries

    Science.gov (United States)

    Kang, Joongoo; Jung, Yoon Seok; Wei, Su-Huai; Dillon, Anne C.

    2012-01-01

    Lithium-air batteries (LABs) are an intriguing next-generation technology due to their high theoretical energy density of ˜11 kWh/kg. However, LABs are hindered by both poor rate capability and significant polarization in cell voltage, primarily due to the formation of Li2O2 in the air cathode. Here, by employing hybrid density functional theory, we show that the formation of small polarons in Li2O2 limits electron transport. Consequently, the low electron mobility μ = 10-10-10-9 cm2/V s contributes to both the poor rate capability and the polarization that limit the LAB power and energy densities. The self-trapping of electrons in the small polarons arises from the molecular nature of the conduction band states of Li2O2 and the strong spin polarization of the O 2p state. Our understanding of the polaronic electron transport in Li2O2 suggests that designing alternative carrier conduction paths for the cathode reaction could significantly improve the performance of LABs at high current densities.

  10. Control Strategy for Small Molecule Impurities in Antibody-Drug Conjugates.

    Science.gov (United States)

    Gong, Hai H; Ihle, Nathan; Jones, Michael T; Kelly, Kathleen; Kott, Laila; Raglione, Thomas; Whitlock, Scott; Zhang, Qunying; Zheng, Jie

    2018-04-01

    Antibody-drug conjugates (ADCs) are an emerging class of biopharmaceuticals. As such, there are no specific guidelines addressing impurity limits and qualification requirements. The current ICH guidelines on impurities, Q3A (Impurities in New Drug Substances), Q3B (Impurities in New Drug Products), and Q6B (Specifications: Test Procedures and Acceptance Criteria for Biotechnological/Biological Products) do not adequately address how to assess small molecule impurities in ADCs. The International Consortium for Innovation and Quality in Pharmaceutical Development (IQ) formed an impurities working group (IWG) to discuss this issue. This white paper presents a strategy for evaluating the impact of small molecule impurities in ADCs. This strategy suggests a science-based approach that can be applied to the design of control systems for ADC therapeutics. The key principles that form the basis for this strategy include the significant difference in molecular weights between small molecule impurities and the ADC, the conjugation potential of the small molecule impurities, and the typical dosing concentrations and dosing schedule. The result is that exposure to small impurities in ADCs is so low as to often pose little or no significant safety risk.

  11. Dynamics of the optically-induced properties of a small-polaronic glass

    International Nuclear Information System (INIS)

    Emin, D.

    1979-01-01

    The relaxation and recombination of an electronic excitation created by the absorption of a super-band-gap photon is considered for a system in which excitons and charge carriers find it energetically favorable to self-trap. The notions of a barrier to self-trapping, a short-range repulsion between electrons and holes, and the electromodulation of the small-polaron absorption band play a central role in this discussion. The results are consistent with experiments on chalcogenide glasses

  12. Anisotropic small-polaron hopping in W:BiVO4 single crystals

    International Nuclear Information System (INIS)

    Rettie, Alexander J. E.; Chemelewski, William D.; Zhou, Jianshi; Lindemuth, Jeffrey; McCloy, John S.; Marshall, Luke G.; Emin, David; Mullins, C. Buddie

    2015-01-01

    DC electrical conductivity, Seebeck and Hall coefficients are measured between 300 and 450 K on single crystals of monoclinic bismuth vanadate that are doped n-type with 0.3% tungsten donors (W:BiVO 4 ). Strongly activated small-polaron hopping is implied by the activation energies of the Arrhenius conductivities (about 300 meV) greatly exceeding the energies characterizing the falls of the Seebeck coefficients' magnitudes with increasing temperature (about 50 meV). Small-polaron hopping is further evidenced by the measured Hall mobility in the ab-plane (10 −1  cm 2  V −1  s −1 at 300 K) being larger and much less strongly activated than the deduced drift mobility (about 5 × 10 −5  cm 2  V −1  s −1 at 300 K). The conductivity and n-type Seebeck coefficient is found to be anisotropic with the conductivity larger and the Seebeck coefficient's magnitude smaller and less temperature dependent for motion within the ab-plane than that in the c-direction. These anisotropies are addressed by considering highly anisotropic next-nearest-neighbor (≈5 Å) transfers in addition to the somewhat shorter (≈4 Å), nearly isotropic nearest-neighbor transfers

  13. Small polaron conduction in lead modified lanthanum ferrite ceramics

    Energy Technology Data Exchange (ETDEWEB)

    Bhargav, K.K.; Ram, S.; Majumder, S.B., E-mail: subhasish@matsc.iitkgp.ernet.in

    2015-07-25

    Highlights: • La{sub 0.8}Pb{sub 0.2}FeO{sub 3} (ε{sub r} ∼ 30,000) shows higher dielectric constant than LaFeO{sub 3} (∼14,000). • Lower A-site dopant content, the dielectric maxima shift to higher temperature. • The frequency dependence of ε{sub r} and tan δ vs. temperature exhibit CDC like behavior. • R{sub g} and R{sub gb} of Pb modified LaFeO{sub 3} follow small polaron hopping conduction model. - Abstract: In the present work we have illustrated the physics of the electrical characteristics of nanocrystalline La{sub 1−x}Pb{sub x}FeO{sub 3,} (0 ⩽ x ⩽ 0.2) powder prepared using auto-combustion synthesis. The effect of lead doping on the dielectric, impedance and ac conductivity characteristics of lanthanum ferrite has systematically been investigated. The synthesized powders were phase pure and crystallized into centro-symmetric Pnma space group. As compared to pure LaFeO{sub 3} ceramics (dielectric constant ∼ 14,000), the dielectric constant is grossly increased (∼30,000) in Pb doped LaFeO{sub 3}. The temperature dependence of dielectric constant of 10.0 at.% Pb doped LaFeO{sub 3} exhibits dielectric maxima similar to that observed in ferroelectric ceramics with non-centrosymmetric point group. For La{sub 0.8}Pb{sub 0.2}FeO{sub 3} ceramics, the frequency dependence of the dielectric constant and loss tangent at various temperatures (300–450 K) exhibit typical colossal dielectric constant (CDC) like behavior. From the impedance spectroscopy we have estimated the grain and grain boundary resistance and capacitance of Pb doped LaFeO{sub 3} that follow a small polaron hopping conduction model. Long range movement of the charge carriers govern the CDC behavior.

  14. Observation of Spin Polarons in a Tunable Fermi Liquid of Ultracold Atoms

    Science.gov (United States)

    Zwierlein, Martin

    2009-05-01

    We have observed spin polarons, dressed spin down impurities in a spin up Fermi sea of ultracold atoms via tomographic RF spectroscopy. Feshbach resonances allow to freely tune the interactions between the two spin states involved. A single spin down atom immersed in a Fermi sea of spin up atoms can do one of two things: For strong attraction, it can form a molecule with exactly one spin up partner, but for weaker interaction it will spread its attraction and surround itself with a collection of majority atoms. This spin down atom dressed with a spin up cloud constitutes the spin- or Fermi polaron. We have observed a striking spectroscopic signature of this quasi-particle for various interaction strengths, a narrow peak in the spin down spectrum that emerges above a broad background. The spectra allow us to directly measure the polaron energy and the quasi-particle residue Z. The polarons are found to be only weakly interacting with each other, and can thus be identified with the quasi-particles of Landau's Fermi liquid theory. At a critical interaction strength, we observe a transition from spin one-half polarons to spin zero molecules. At this point the Fermi liquid undergoes a phase transition into a superfluid Bose liquid.

  15. Polaron crossover in molecular solids

    International Nuclear Information System (INIS)

    Zoli, Marco; Das, A N

    2004-01-01

    An analytical variational method is applied to the molecular Holstein Hamiltonian in which the dispersive features of the dimension dependent phonon spectrum are taken into account by a force constant approach. The crossover between a large and a small size polaron is monitored, in one, two and three dimensions and for different values of the adiabatic parameter, through the behaviour of the effective mass as a function of the electron-phonon coupling. By increasing the strength of the intermolecular forces the crossover becomes smoother and occurs at higher e-ph couplings. These effects are more evident in three dimensions. We show that our modified Lang-Firsov method starts to capture the occurrence of a polaron self-trapping transition when the electron energies become of order of the phonon energies. The self-trapping event persists in the fully adiabatic regime. At the crossover we estimate polaron effective masses of order ∼ 5-40 times the bare band mass according to the dimensionality and the value of the adiabatic parameter. Modified Lang-Firsov polaron masses are substantially reduced in two and three dimensions. There is no self-trapping in the antiadiabatic regime

  16. Universality of an Impurity in a Bose-Einstein Condensate

    Directory of Open Access Journals (Sweden)

    Shuhei M. Yoshida

    2018-02-01

    Full Text Available We consider the ground-state properties of an impurity particle (“polaron” resonantly interacting with a Bose-Einstein condensate (BEC. Focusing on the equal-mass system, we use a variational wave function for the polaron that goes beyond previous work and includes up to three Bogoliubov excitations of the BEC, thus allowing us to capture both Efimov trimers and associated tetramers. We find that the length scale associated with Efimov trimers (i.e., the three-body parameter can strongly affect the polaron’s behavior, even at densities where there are no well-defined Efimov states. However, by comparing our results with recent quantum Monte Carlo calculations, we argue that the polaron energy is a universal function of the Efimov three-body parameter for sufficiently low boson densities. We further support this conclusion by showing that the energies of the deepest bound Efimov trimers and tetramers at unitarity are universally related to one another, regardless of the microscopic model. On the other hand, we find that the quasiparticle residue and effective mass sensitively depend on the coherence length ξ of the BEC, with the residue tending to zero as ξ diverges, in a manner akin to the orthogonality catastrophe.

  17. Polarons in advanced materials

    CERN Document Server

    Alexandrov, Alexandre Sergeevich

    2008-01-01

    Polarons in Advanced Materials will lead the reader from single-polaron problems to multi-polaron systems and finally to a description of many interesting phenomena in high-temperature superconductors, ferromagnetic oxides, conducting polymers and molecular nanowires. The book divides naturally into four parts. Part I introduces a single polaron and describes recent achievements in analytical and numerical studies of polaron properties in different electron-phonon models. Part II and Part III describe multi-polaron physics, and Part IV describes many key physical properties of high-temperature superconductors, colossal magnetoresistance oxides, conducting polymers and molecular nanowires, which were understood with polarons and bipolarons. The book is written in the form of self-consistent reviews authored by well-established researchers actively working in the field and will benefit scientists and postgraduate students with a background in condensed matter physics and materials sciences.

  18. Small polaron hopping conduction mechanism in LiFePO4 glass and crystal

    Science.gov (United States)

    Banday, Azeem; Murugavel, Sevi

    2017-01-01

    The optimization of a cathode material is the most important criterion of lithium ion battery technology, which decides the power density. In order to improve the rate capability, a cathode material must possess high electronic and ionic conductivities. Therefore, it is important to understand the charge transport mechanism in such an advanced cathode material in its intrinsic state before modifying it by various means. In this work, we report the thermal, structural, and electrical conductivity studies on lithium iron phosphate, LiFePO4, both in its polycrystalline (LFPC) and glassy (LFPG) counterpart states. The vibrational spectroscopic measurements reveal the characteristic vibrational modes, which are the intrinsic part of LFPC, whereas in LFPG, the phonon modes become broader and overlap with each other due to the lattice disorder. The electrical conductivity measurements reveal that LFPG exhibits a higher polaronic conductivity of 1.6 orders than the LFPC sample. The temperature dependent dc conductivity has been analyzed with the Mott model of polarons and reveals the origin of enhanced polaronic conductivity in LFPG. Based on the analysis, the enhanced polaronic conductivity in LFPG has been attributed to the combined effect of reduced hopping length, decreased activation energy, and enhanced polaron concentration.

  19. Impact of morphology on polaron delocalization in a semicrystalline conjugated polymer

    KAUST Repository

    Steyrleuthner, Robert; Zhang, Yuexing; Zhang, Lei; Kraffert, Felix; Cherniawski, Benjamin P.; Bittl, Robert; Briseno, Alejandro L.; Bredas, Jean-Luc; Behrends, Jan

    2016-01-01

    We investigate the delocalization of holes in the semicrystalline conjugated polymer poly(2,5-bis(3-alkylthiophene-2-yl)thieno[3,2-b]thiophene) (PBTTT) by directly measuring the hyperfine coupling between photogenerated polarons and bound nuclear

  20. Effects of Polaron and Quantum Confinement on the Nonlinear Optical Properties in a GaAs/Ga1-xAlxAs Quantum Well Wire

    Directory of Open Access Journals (Sweden)

    L. Caroline Sugirtham

    2014-01-01

    Full Text Available The binding energy of a polaron confined in a GaAs/Ga1-xAlxAs quantum well wire is calculated within the framework of the variational technique and Lee-Low Pines approach. The polaron-induced photoionization cross section as a function of normalized photon energy for a on-centre donor impurity in the quantum wire is investigated. The oscillator strength with the geometrical effect is studied taking into account the polaron effects in a GaAs/Ga0.8Al0.2As quantum well wire. The effect of polaron on the third-order susceptibility of third harmonic generation is studied. Our theoretical results are shown to be in good agreement with previous investigations.

  1. Bound states in weakly disordered spin ladders

    Energy Technology Data Exchange (ETDEWEB)

    Arlego, M. [Departamento de Fisica, Universidad Nacional de La Plata, CC 67 (1900) La Plata (Argentina)]. E-mail: arlego@venus.fisica.unlp.edu.ar; Brenig, W. [Institut fuer Theoretische Physik, Technische Universitaet Braunschweig (Germany); Cabra, D.C. [Laboratoire de Physique Theorique, Universite Louis Pasteur Strasbourg (France); Heidrich-Meisner, F. [Institut fuer Theoretische Physik, Technische Universitaet Braunschweig (Germany); Honecker, A. [Institut fuer Theoretische Physik, Technische Universitaet Braunschweig (Germany); Rossini, G. [Departamento de Fisica, Universidad Nacional de La Plata, CC 67 (1900) La Plata (Argentina)

    2005-04-30

    We study the appearance of bound states in the spin gap of spin-12 ladders induced by weak bond disorder. Starting from the strong-coupling limit, i.e., the limit of weakly coupled dimers, we perform a projection on the single-triplet subspace and derive the position of bound states for the single impurity problem of one modified coupling as well as for small impurity clusters. The case of a finite concentration of impurities is treated with the coherent-potential approximation (CPA) in the strong-coupling limit and compared with numerical results. Further, we analyze the details in the structure of the density of states and relate their origin to the influence of impurity clusters.

  2. Electric field control of the small-polaron hopping conduction in spatial confined Pr0.7(Ca0.6Sr0.40.3MnO3/PMN-PT heterostructure

    Directory of Open Access Journals (Sweden)

    Hao Kuang

    2017-05-01

    Full Text Available The electric field dependent high-temperature small-polaron hopping conduction was investigated in patterned Pr0.7(Ca0.6Sr0.40.3MnO3 strips. The small-polaronic activation energy EA and the carrier localization were found to decrease with the reduction of the strip size. Meanwhile, a similar dependence on the strip size was also obtained for the calculated small-polaron coupling constants, which could be related to the strain relaxation in strips. These results indicate that the spatial confinement prefers to delocalize the carrier and reduce the electron-phonon interaction. Furthermore, opposite variation trends of EA under negative and positive electric field were found in the strips with small size, which could be attributed to the enhancement of polarization effect induced by the reduction of strip size.

  3. Polaron-mediated surface reconstruction in the reduced Rutile TiO2 (110) surface

    Science.gov (United States)

    Reticcioli, Michele; Setvin, Martin; Hao, Xianfeng; Diebold, Ulrike; Franchini, Cesare

    The role of polarons is of key importance for the understanding of the fundamental properties and functionalities of TiO2. We use density functional theory with an on-site Coulomb interaction and molecular dynamics to study the formation and dynamics of small polarons in the reduced rutile (110) surface. We show that excess electrons donated by oxygen-vacancies (VO) form mobile small polarons that hop easily in subsurface and surface Ti-sites. The polaron formation becomes more favorable by increasing the VO concentration level (up to 20%) due to the progressively lower energy cost needed to distort the lattice. However, at higher VO concentration the shortening of the averaged polaron-polaron distance leads to an increased Coulomb repulsion among the trapped charges at the Ti-sites, which weakens this trend. This instability is overtaken by means of a structural 1 × 2 surface reconstruction, characterized by a distinctively more favorable polaron distribution. The calculations are validated by a direct comparison with experimental AFM and STM data. Our study identifies a fundamentally novel mechanism to drive surface reconstructions and resolves a long standing issue on the origin of the reconstruction in rutile (110) surface.

  4. Appearance of small polaron hopping conduction in iron modified cobalt lithium bismuth borate glasses

    Energy Technology Data Exchange (ETDEWEB)

    Dahiya, M. S.; Khasa, S., E-mail: skhasa@yahoo.com; Yadav, Arti [Physics Department, Deenbandhu Chhotu Ram University of Science and Technology, Murthal, India-131039 (India); Agarwal, A. [Applied Physics Department, Guru Jambheshwara University of Science and Technology, Hisar, India-125001 (India)

    2016-05-23

    Lithium bismuth borate glasses containing different amounts of cobalt and iron oxides having chemical composition xFe{sub 2}O{sub 3}•(20-x)CoO•30Li{sub 2}O•10Bi{sub 2}O{sub 3}•40B{sub 2}O{sub 3} (x = 0, 5, 10, 15 and 20 mol% abbreviated as CFLBB1-5 respectively) prepared via melt quench technique have been investigated for their dc electrical conductivity. The amorphous nature of prepared glasses has been confirmed through X-ray diffraction measurements. The dc electrical conductivity has been analyzed by applying Mott’s small polaron hopping model. Activation energies corresponding to lower and higher temperature region have been evaluated. The iron ion concentration (N), mean spacing between iron ions (R) and polaron radius (R{sub p}) has been evaluated using the values of phonon radius (R{sub ph}) and Debye temperature (θ{sub D}). The glass sample without iron (CFLBB1) shows ionic conductivity but the incorporation of iron in the glass matrix results in the appearance of electronic conductivity.

  5. Spin-polaron theory of high-Tc superconductivity: I, spin polarons and high-Tc pairing

    International Nuclear Information System (INIS)

    Wood, R.F.

    1993-06-01

    The concept of a spin polaron is introduced and contrasted with the more familiar ionic polaron picture. A brief review of aspects of ionic bipolaronic superconductivity is given with particular emphasis on the real-space pairing and true Bose condensation characteristics. The formation energy of spin polarons is then calculated in analogy with ionic polarons. The spin-flip energy of a Cu spin in an antiferromagnetically aligned CuO 2 plane is discussed. It is shown that the introduction of holes into the CuO 2 planes will always lead to the destruction of long-range AF ordering due to the formation of spin polarons. The pairing of two spin polarons can be expected because of the reestablishment of local (short-range) AF ordering; the magnitude of the pairing energy is estimated using a simplified model. The paper closes with a brief discussion of the formal theory of spin polarons

  6. Repulsive polarons and itinerant ferromagnetism in strongly polarized Fermi gases

    DEFF Research Database (Denmark)

    Massignan, Pietro; Bruun, Georg

    2011-01-01

    We analyze the properties of a single impurity immersed in a Fermi sea. At positive energy and scattering lengths, we show that the system possesses a well-defined but metastable excitation, the repulsive polaron, and we calculate its energy, quasiparticle residue and effective mass. From...... polarized (ferromagnetic) domains are then examined for a binary mixture of atoms with a general mass ratio. Our results indicate that mass imbalance lowers the critical interaction strength for phase-separation, but that very short quasiparticle decay times will complicate the experimental observation...

  7. The polaron problem and the Boltzmann equation

    International Nuclear Information System (INIS)

    Devreese, J.

    1979-01-01

    A mobility theory for the Feynman polaron is developed. It is shown that the Boltzmann equation for polarons is valid for weak coupling and not too high electric fields. The analytical results indicate that for E → 0 the relaxation time approximation is valid. A comparison is made of three methods to calculate the mobility in a linear electron transport theory. An approximation to the Kubo formula, a mobility calculation using path integrals by Feynman and a calculation based on the displaced Maxwell distribution function are considered. The three methods lead to equivalent results in the weak scattering and small electric field limit

  8. Ground state energy of a polaron in a superlattice

    International Nuclear Information System (INIS)

    Mensah, S.Y.; Allotey, F.K.A.; Nkrumah, G.; Mensah, N.G.

    2000-10-01

    The ground state energy of a polaron in a superlattice was calculated using the double-time Green functions. The effective mass of the polaron along the planes perpendicular to the superlattice axis was also calculated. The dependence of the ground state energy and the effective mass along the planes perpendicular to the superlattice axis on the electron-phonon coupling constant α and on the superlattice parameters (i.e. the superlattice period d and the bandwidth Δ) were studied. It was observed that if an infinite square well potential is assumed, the ground state energy of the polaron decreases (i.e. becomes more negative) with increasing α and d, but increases with increasing Δ. For small values of α, the polaron ground state energy varies slowly with Δ, becoming approximately constant for large Δ. The effective mass along the planes perpendicular to the superlattice axis was found to be approximately equal to the mass of an electron for all typical values of α, d and Δ. (author)

  9. Giant Optical Polarization Rotation Induced by Spin-Orbit Coupling in Polarons

    Science.gov (United States)

    Casals, Blai; Cichelero, Rafael; García Fernández, Pablo; Junquera, Javier; Pesquera, David; Campoy-Quiles, Mariano; Infante, Ingrid C.; Sánchez, Florencio; Fontcuberta, Josep; Herranz, Gervasi

    2016-07-01

    We have uncovered a giant gyrotropic magneto-optical response for doped ferromagnetic manganite La2 /3Ca1 /3MnO3 around the near room-temperature paramagnetic-to-ferromagnetic transition. At odds with current wisdom, where this response is usually assumed to be fundamentally fixed by the electronic band structure, we point to the presence of small polarons as the driving force for this unexpected phenomenon. We explain the observed properties by the intricate interplay of mobility, Jahn-Teller effect, and spin-orbit coupling of small polarons. As magnetic polarons are ubiquitously inherent to many strongly correlated systems, our results provide an original, general pathway towards the generation of magnetic-responsive gigantic gyrotropic responses that may open novel avenues for magnetoelectric coupling beyond the conventional modulation of magnetization.

  10. Competing pseudogap and impurity effects on the normal-state specific heat properties of cuprate superconductors

    Science.gov (United States)

    Dzhumanov, S.; Karimboev, E. X.

    2014-07-01

    In this paper, we show that the pseudogap in the excitation spectra of high-Tc cuprates together with the impurity phase and charge inhomogeneity plays key roles in determining the essential features of their anomalous specific heat properties observed above Tc. We consider the doped cuprate superconductor as a multi-carrier model system (which consists of intrinsic and extrinsic polarons and pre-formed bosonic Cooper pairs) and study the competing pseudogap and impurity effects on the normal-state electronic specific heat of high-Tc cuprates taking into account charge inhomogeneities. We argue that unconventional electron-phonon interactions are responsible for the precursor Cooper pairing in the polaronic band below a mean-field temperature T∗ and the existence of a pseudogap above Tc in the cuprates. The electronic specific heat Ce(T) of doped cuprates below T∗ is calculated taking into account three contributions coming from the excited components of Cooper pairs, the ideal Bose-gas of incoherent Cooper pairs and the unpaired carriers in the impurity band. Above T∗, two contributions to Ce(T) coming from the unpaired intrinsic and extrinsic polarons are calculated within the two-component degenerate Fermi-gas model. By comparing our results with the experimental Ce(T) data obtained for La- and Y-based cuprates, we find that the observed behaviors of Ce(T) (below and above T∗) are similar to the calculated results for Ce(T) and the BCS-type jumps of Ce(T) at T∗ may be depressed by the impurity effects and may become more or less pronounced BCS-type anomalies in Ce(T) .

  11. Quantitative measurements of magnetic polaron binding on acceptors in CdMnTe alloys

    Science.gov (United States)

    Nhung, Tran Hong; Planel, R.

    1983-03-01

    The acceptor binding energy is measured as a function of Temperature and composition in Cd1-x Mnx Te alloys, by time resolved spectroscopy. The Bound magnetic polaron effect is measured and compared with a theory accouting for magnetic saturation and fluctuations.

  12. Excitonic and Polaronic Properties of 2D Hybrid Organic–Inorganic Perovskites

    KAUST Repository

    Yin, Jun

    2017-01-20

    We theoretically characterize the unusual white-light emission properties of two-dimensional (2D) hybrid organic inorganic perovskites with an APbX(4) structure (where A is a bidentate organic cation and X = Cl, Br). In addition to band structure calculations including corrections due to spin orbit couplings and electron hole interactions, a computationally intensive molecular cluster approach is exploited to describe the excitonic and polaronic properties of these 2D perovskites at the atomistic level. Upon adding or removing an electron from the neutral systems, we find that strongly localized small polarons form in the 2D clusters. The polaron charge density is distributed over just lattice sites, which is consistent with the calculated large polaron binding energies, on the order of similar to 0.4-1.2 eV.

  13. Impact of morphology on polaron delocalization in a semicrystalline conjugated polymer

    KAUST Repository

    Steyrleuthner, Robert

    2016-12-20

    We investigate the delocalization of holes in the semicrystalline conjugated polymer poly(2,5-bis(3-alkylthiophene-2-yl)thieno[3,2-b]thiophene) (PBTTT) by directly measuring the hyperfine coupling between photogenerated polarons and bound nuclear spins using electron nuclear double resonance spectroscopy. An extrapolation of the corresponding oligomer spectra reveals that charges tend to delocalize over 4.0-4.8 nm with delocalization strongly dependent on molecular order and crystallinity of the PBTTT polymer thin films. Density functional theory calculations of hyperfine couplings confirm that long-range corrected functionals appropriately describe the change in coupling strength with increasing oligomer size and agree well with the experimentally measured polymer limit. Our discussion presents general guidelines illustrating the various pitfalls and opportunities when deducing polaron localization lengths from hyperfine coupling spectra of conjugated polymers.

  14. Linear and non-linear infrared response of one-dimensional vibrational Holstein polarons in the anti-adiabatic limit: Optical and acoustical phonon models

    Science.gov (United States)

    Falvo, Cyril

    2018-02-01

    The theory of linear and non-linear infrared response of vibrational Holstein polarons in one-dimensional lattices is presented in order to identify the spectral signatures of self-trapping phenomena. Using a canonical transformation, the optical response is computed from the small polaron point of view which is valid in the anti-adiabatic limit. Two types of phonon baths are considered: optical phonons and acoustical phonons, and simple expressions are derived for the infrared response. It is shown that for the case of optical phonons, the linear response can directly probe the polaron density of states. The model is used to interpret the experimental spectrum of crystalline acetanilide in the C=O range. For the case of acoustical phonons, it is shown that two bound states can be observed in the two-dimensional infrared spectrum at low temperature. At high temperature, analysis of the time-dependence of the two-dimensional infrared spectrum indicates that bath mediated correlations slow down spectral diffusion. The model is used to interpret the experimental linear-spectroscopy of model α-helix and β-sheet polypeptides. This work shows that the Davydov Hamiltonian cannot explain the observations in the NH stretching range.

  15. Hall effect driven by non-collinear magnetic polarons in diluted magnetic semiconductors

    Science.gov (United States)

    Denisov, K. S.; Averkiev, N. S.

    2018-04-01

    In this letter, we develop the theory of Hall effect driven by non-collinear magnetic textures (topological Hall effect—THE) in diluted magnetic semiconductors (DMSs). We show that a carrier spin-orbit interaction induces a chiral magnetic ordering inside a bound magnetic polaron (BMP). The inner structure of non-collinear BMP is controlled by the type of spin-orbit coupling, allowing us to create skyrmion- (Rashba) or antiskyrmion-like (Dresselhaus) configurations. The asymmetric scattering of itinerant carriers on polarons leads to the Hall response which exists in weak external magnetic fields and at low temperatures. We point out that DMS-based systems allow one to investigate experimentally the dependence of THE both on a carrier spin polarization and on a non-collinear magnetic texture shape.

  16. Polaronic and bipolaronic structures in the adiabatic Hubbard-Holstein model involving 2 electrons and its extensions

    International Nuclear Information System (INIS)

    Proville, L.

    1998-01-01

    This thesis brings its contribution to the bipolaronic theory which might explain the origin of superconductivity at high temperature. A polaron is a quasiparticle made up of a localized electron and a deformation in the crystal structure. 2 electrons in singlet states localized on the same site form a bipolaron. Whenever the Coulomb repulsion between the 2 electrons is too strong bipolaron turns into 2 no bound polarons. We study the existence and the mobility of bipolarons. We describe the electron-phonon interaction by the Holstein term and the Coulomb repulsion by the Hubbard term. 2 assumptions are made: - the local electron-phonon interaction is strong and opposes the Coulomb repulsion between Hubbard type electrons - the system is close to the adiabatic limit. The system is reduced to 2 electrons in order to allow an exact treatment and the investigation of some bipolaronic bound states. At 2-dimensions the existence of bipolarons requires a very strong coupling which forbids any classical mobility. In some cases an important tunneling effect appears and we show that mobile bipolarons exist in a particular parameter range. Near the adiabatic limit we prove that polaronic and bipolaronic structures exist for a great number of electrons. (A.C.)

  17. Polaron self-localization in white-light emitting hybrid perovskites

    KAUST Repository

    Cortecchia, Daniele

    2017-02-03

    Two-dimensional (2D) perovskites with the general formula APbX are attracting increasing interest as solution processable, white-light emissive materials. Recent studies have shown that their broadband emission is related to the formation of intra-gap colour centres. Here, we provide an in-depth description of the charge localization sites underlying the generation of such radiative centres and their corresponding decay dynamics, highlighting the formation of small polarons trapped within their lattice distortion field. Using a combination of spectroscopic techniques and first-principles calculations to study the white-light emitting 2D perovskites (EDBE)PbCl and (EDBE)PbBr, we infer the formation of Pb , Pb, and X (where X = Cl or Br) species confined within the inorganic perovskite framework. Due to strong Coulombic interactions, these species retain their original excitonic character and form self-trapped polaron-excitons acting as radiative colour centres. These findings are expected to be relevant for a broad class of white-light emitting perovskites with large polaron relaxation energy.

  18. Dynamics of photogenerated polarons and polaron pairs in P3HT thin films

    Czech Academy of Sciences Publication Activity Database

    Menšík, Miroslav; Pfleger, Jiří; Toman, Petr

    2017-01-01

    Roč. 677, 1 June (2017), s. 87-91 ISSN 0009-2614 R&D Projects: GA MŠk(CZ) LO1507 Institutional support: RVO:61389013 Keywords : poly(3-hexyl thiophene) * transient absorption spectroscopy * polaron and polaron pairs Subject RIV: CD - Macromolecular Chemistry OBOR OECD: Polymer science Impact factor: 1.815, year: 2016

  19. Spin-polarons and high-Tc superconductivity

    International Nuclear Information System (INIS)

    Wood, R.F.

    1994-03-01

    The spin-polaron concept is introduced in analogy to ionic and electronic polarons and the assumptions underlying the author's approach to spin-polaron mediated high-T c superconductivity are discussed. Elementary considerations about the spin-polaron formation energy are reviewed and the possible origin of the pairing mechanism illustrated schematically. The electronic structure of the CuO 2 planes is treated from the standpoint of antiferromagnetic band calculations that lead directly to the picture of holes predominantly on the oxygen sublattice in a Mott-Hubbard/charge transfer insulator. Assuming the holes to be described in a Bloch representation but with the effective mass renormalized by spin-polaron formation, equations for the superconducting gap, Δ, and transition temperature, T c , are developed and the symmetry of Δ discussed. After further simplifications, T c is calculated as a function of the carrier concentration, x. It is shown that the calculated behavior of T c (x) follows the experimental results closely and leads to a natural explanation of the effects of under- and over-doping. The paper concludes with a few remarks about the evidence for the carriers being fermions (polarons) or bosons (bipolarons)

  20. Optical Detection of Polarons in High - Tc Cuprate

    International Nuclear Information System (INIS)

    Calvani, P.; Capizzi, M.; Lupi, S.; Maselli, P.; Paolone, A.; Roy LURE, P.; Berger, H.

    1995-01-01

    The optical conductivity σ (ω) of slightly e-doped single-crystals of (Nd,Gd) 2 CuO 4-y shows local modes in the far-infrared as well as a broad infrared absorption centered at ∼ 0.1 eV (d-band). This latter shows a fine structure, in agreement with recent calculations of Alexandrov et al., which is made up by intense overtones of the local modes observed in the far-infrared. Similar polaronic structures are shown to exist in the normal metallic phase of Nd 2-x Ce x CuO 4-y and even in the σ (ω ) of YBCO crystals, measured by different authors. The present observations provide evidence for the existence of small polarons in all materials with a Cu-O plane

  1. Magnetic Polarons in Anisotropic Quantum Dots

    Science.gov (United States)

    Oszwaldowski, Rafal; Petukhov, Andre; Zutic, Igor

    2010-03-01

    Tunability of confinement in magnetically-doped quantum dots (QDs) allows to tailor magnetism to an extent not available in bulk semiconductors. Versatile control of magnetic ordering, along with piezomagnetism, has been predicted even at a fixed number of carriers [1]. Recent experiments on colloidal QDs revealed strongly bound magnetic polarons (MPs) [2]. Previous studies of MPs in bulk semiconductors showed that the mean-field theory predicts a spurious magnetic phase transition, which is removed by taking into account spin fluctuations [3]. Here we present our theoretical results for MPs forming in QDs with pronounced magnetic anisotropy, which influences the spin fluctuations. We apply our findings to explain some peculiarities of the magnetic behavior of type-II ZnSe/(Zn,Mn)Te QDs, where magnetic polarons are found to persist to at least 200K [4]. Supported by ONR, AFOSR, and NSF-ECCS CAREER. [4pt] [1] R. M. Abolfath, A. G. Petukhov, and I. Zutic, Phys. Rev. Lett. 101, 207202 (2008); I. Zutic and A. G. Petukhov, Nature Mater.4, 623 (2009). [0pt] [2] R. Beaulac et al., Science 325, 973 (2009). [0pt] [3] T. Dietl and J. Spalek, Phys. Rev. Lett. 48, 355 (1982). [0pt] [4] I. R. Sellers, R. Oszwaldowski, et al., preprint; I. R. Sellers et al., Phys. Rev. Lett. 100, 136405 (2008).

  2. Diagrams in the polaron model

    International Nuclear Information System (INIS)

    Smondyrev, M.A.

    1985-01-01

    The perturbation theory for the polaron energy is systematically treated on the diagrammatic basis. Feynman diagrams being constructed allow to calculate the polaron energy up to the third order in powers of the coupling constant. Similar calculations are performed for the average number of virtual phonons

  3. Polaron-electron assisted giant dielectric dispersion in SrZrO{sub 3} high-k dielectric

    Energy Technology Data Exchange (ETDEWEB)

    Borkar, Hitesh; Barvat, Arun; Pal, Prabir; Kumar, Ashok, E-mail: ashok553@nplindia.org [CSIR-National Physical Laboratory, Dr. K. S. Krishnan Marg, New Delhi 110012 (India); Academy of Scientific and Innovative Research (AcSIR), CSIR-National Physical Laboratory (CSIR-NPL) Campus, Dr. K S Krishnan Marg, New Delhi 110012 (India); Shukla, A. K. [CSIR-National Physical Laboratory, Dr. K. S. Krishnan Marg, New Delhi 110012 (India); Pulikkotil, J. J. [CSIR-National Physical Laboratory, Dr. K. S. Krishnan Marg, New Delhi 110012 (India); Academy of Scientific and Innovative Research (AcSIR), CSIR-National Physical Laboratory (CSIR-NPL) Campus, Dr. K S Krishnan Marg, New Delhi 110012 (India); Computation and Networking Facility, CSIR-National Physical Laboratory, New Delhi 110012 (India)

    2016-06-07

    The SrZrO{sub 3} is a well known high-k dielectric constant (∼22) and high optical bandgap (∼5.8 eV) material and one of the potential candidates for future generation nanoelectronic logic elements (8 nm node technology) beyond silicon. Its dielectric behavior is fairly robust and frequency independent till 470 K; however, it suffers a strong small-polaron based electronic phase transition (T{sub e}) linking 650 to 750 K. The impedance spectroscopy measurements revealed the presence of conducting grains and grain boundaries at elevated temperature which provide energetic mobile charge carriers with activation energy in the range of 0.7 to 1.2 eV supporting the oxygen ions and proton conduction. X-ray photoemission spectroscopy measurements suggest the presence of weak non-stoichiometric O{sup 2−} anions and hydroxyl species bound to different sites at the surface and bulk. These thermally activated charge carriers at elevated temperature significantly contribute to the polaronic based dielectric anomaly and conductivity. Our dielectric anomaly supports pseudo phase transition due to high degree of change in ZrO{sub 6} octahedral angle in the temperature range of 650–750 K, where electron density and phonon vibration affect the dielectric and conductivity properties.

  4. Transport and ordering of polarons in CER manganites PrCaMnO

    International Nuclear Information System (INIS)

    Schramm, S; Hoffmann, J; Jooss, Ch

    2008-01-01

    The temperature-dependent resistivity and the colossal resistance effect induced by strong electric fields of the small-band Pr 1-x Ca x MnO 3 (PCMO) manganites are analysed with respect to the influence of the Ca doping, post-annealing, the prehistory of the electric stimulation, and the physical dimensions of the sample. Despite the phase separation between charge and orbital ordered and disordered phases, PCMO reveals the properties of a homogeneous medium with a conductivity governed by the hopping of small polarons if the electric field is not too strong. In contrast, high electric fields induce a structural transition which gives rise to a glassy behaviour in the transient regime. In the low resistance state the small activation energy of charge carrier hopping implies a transition to large polaron hopping

  5. Strong-coupling polaron effect in quantum dots

    International Nuclear Information System (INIS)

    Zhu Kadi; Gu Shiwei

    1993-11-01

    Strong-coupling polaron in a parabolic quantum dot is investigated by the Landau-Pekar variational treatment. The polaron binding energy and the average number of virtual phonons around the electron as a function of the effective confinement length of the quantum dot are obtained in Gaussian function approximation. It is shown that both the polaron binding energy and the average number of virtual phonons around the electron decrease by increasing the effective confinement length. The results indicate that the polaronic effects are more pronounced in quantum dots than those in two-dimensional and three-dimensional cases. (author). 15 refs, 4 figs

  6. Impurity effects on ionic-liquid-based supercapacitors

    International Nuclear Information System (INIS)

    Liu, Kun; Lian, Cheng; Henderson, Douglas; Wu, Jianzhong

    2016-01-01

    Small amounts of an impurity may affect the key properties of an ionic liquid and such effects can be dramatically amplified when the electrolyte is under confinement. Here the classical density functional theory is employed to investigate the impurity effects on the microscopic structure and the performance of ionic-liquid-based electrical double-layer capacitors, also known as supercapacitors. Using a primitive model for ionic species, we study the effects of an impurity on the double layer structure and the integral capacitance of a room temperature ionic liquid in model electrode pores and find that an impurity strongly binding to the surface of a porous electrode can significantly alter the electric double layer structure and dampen the oscillatory dependence of the capacitance with the pore size of the electrode. Meanwhile, a strong affinity of the impurity with the ionic species affects the dependence of the integral capacitance on the pore size. Up to 30% increase in the integral capacitance can be achieved even at a very low impurity bulk concentration. As a result, by comparing with an ionic liquid mixture containing modified ionic species, we find that the cooperative effect of the bounded impurities is mainly responsible for the significant enhancement of the supercapacitor performance.

  7. Impurity effects on ionic-liquid-based supercapacitors

    Science.gov (United States)

    Liu, Kun; Lian, Cheng; Henderson, Douglas; Wu, Jianzhong

    2017-02-01

    Small amounts of an impurity may affect the key properties of an ionic liquid and such effects can be dramatically amplified when the electrolyte is under confinement. Here the classical density functional theory is employed to investigate the impurity effects on the microscopic structure and the performance of ionic-liquid-based electrical double-layer capacitors, also known as supercapacitors. Using a primitive model for ionic species, we study the effects of an impurity on the double layer structure and the integral capacitance of a room temperature ionic liquid in model electrode pores and find that an impurity strongly binding to the surface of a porous electrode can significantly alter the electric double layer structure and dampen the oscillatory dependence of the capacitance with the pore size of the electrode. Meanwhile, a strong affinity of the impurity with the ionic species affects the dependence of the integral capacitance on the pore size. Up to 30% increase in the integral capacitance can be achieved even at a very low impurity bulk concentration. By comparing with an ionic liquid mixture containing modified ionic species, we find that the cooperative effect of the bounded impurities is mainly responsible for the significant enhancement of the supercapacitor performance.

  8. Large polarons in lead halide perovskites

    OpenAIRE

    Miyata, Kiyoshi; Meggiolaro, Daniele; Trinh, M. Tuan; Joshi, Prakriti P.; Mosconi, Edoardo; Jones, Skyler C.; De Angelis, Filippo; Zhu, X.-Y.

    2017-01-01

    Lead halide perovskites show marked defect tolerance responsible for their excellent optoelectronic properties. These properties might be explained by the formation of large polarons, but how they are formed and whether organic cations are essential remain open questions. We provide a direct time domain view of large polaron formation in single-crystal lead bromide perovskites CH3NH3PbBr3 and CsPbBr3. We found that large polaron forms predominantly from the deformation of the PbBr3 ? framewor...

  9. Small polaron hopping conduction in samples of ceramic La1.4Sr1.6Mn2O7.06

    International Nuclear Information System (INIS)

    Nakatsugawa, H.; Iguchi, E.; Jung, W.H.; Munakata, F.

    1999-01-01

    The ceramic sample of La 1.4 Sr 1.6 Mn 2 O 7.06 exhibits the metal-insulator transition and a negative magnetoresistance in the vicinity of the Curie temperature (T C ∼ 100 K). The dc magnetic susceptibility between 100 K and 280 K is nearly constant and decreases gradually with increasing temperature above 280 K. The measurements of dc resistivity and the thermoelectric power indicate that small polaron hopping conduction takes place at T > 280 K. The spin ordering due to the two-dimensional d x 2 -y 2 state occurring at T > 280 K is directly related to the hopping conduction above 280 K, although the spin ordering due to the one-dimensional d 3z 2 -r 2 state takes place at T > T C . The two-dimensional d x 2 -y 2 state extending within the MnO 2 sheets starts to narrow and leads to the carrier localisation at 280 K. The effective number of holes in this sample estimated from the thermoelectric power is considerably smaller than the nominal value. This indicates that the small polaron hopping conduction takes place predominantly within the in-plane MnO 2 sheets. A discussion is given of the experimental results of the ceramic sample of La 2/3 Ca 1/3 MnO 2.98 . Copyright (1999) CSIRO Australia

  10. One dimensional polaron effects and current inhomogeneities in sequential phonon emission

    Energy Technology Data Exchange (ETDEWEB)

    Hellman, E.S.; Harris, J.S.; Hanna, C.; Laughlin, R.B.

    1985-07-01

    We have constructed a physical model to explain the tunneling current oscillations reported by Hickmott et al., for GaAs/AlGaAs heterostructures in high magnetic fields. We propose that the periodic structure observed is due to space charge which builds up in the undepleted layer when electrons enter it with energy just below the phonon emission threshold. Such electrons interact with the lattice to form polarons whose energy is pinned to the phonon energy, and thus has a very small group velocity. The polaron effect is strongly enhanced by the confinement of the electrons by the strong magnetic field. We infer from the current-voltage data that most of the tunneling current flows through a small area of the sample. The combined model gives reasonable quantitative agreement with experiment. 6 refs., 6 figs.

  11. One dimensional polaron effects and current inhomogeneities in sequential phonon emission

    International Nuclear Information System (INIS)

    Hellman, E.S.; Harris, J.S.; Hanna, C.; Laughlin, R.B.

    1985-07-01

    We have constructed a physical model to explain the tunneling current oscillations reported by Hickmott et al., for GaAs/AlGaAs heterostructures in high magnetic fields. We propose that the periodic structure observed is due to space charge which builds up in the undepleted layer when electrons enter it with energy just below the phonon emission threshold. Such electrons interact with the lattice to form polarons whose energy is pinned to the phonon energy, and thus has a very small group velocity. The polaron effect is strongly enhanced by the confinement of the electrons by the strong magnetic field. We infer from the current-voltage data that most of the tunneling current flows through a small area of the sample. The combined model gives reasonable quantitative agreement with experiment. 6 refs., 6 figs

  12. Explanation for the temperature dependence of plasma frequencies in SrTiO3 using mixed-polaron theory

    International Nuclear Information System (INIS)

    Eagles, D.M.; Georgiev, M.; Petrova, P.C.

    1996-01-01

    A theory of mixed polarons is used to interpret the published experimental results of Gervais et al. on temperature-dependent plasma frequencies in Nb-doped SrTiO 3 . For given polaron masses before mixing, the appropriate average mixed-polaron mass at any temperature T depends on two quantities, δ and b, which are measures of the separation between the bottoms of large and nearly small polaron bands before mixing and of a mixing matrix element; δ and b are assumed to have arbitrary linear dependences on T, probably related to a T dependence of the bare mass, and a term quadratic in T is included in δ, determined from the T dependence of large-polaron binding energies. Including a constraint on the ratio δ/|b| at low T from known masses from specific-heat data, satisfactory agreement is obtained with masses determined from plasma frequencies. This gives further support for the theory of mixed polarons in SrTiO 3 in addition to that already published. copyright 1996 The American Physical Society

  13. Large polarons in lead halide perovskites

    Science.gov (United States)

    Miyata, Kiyoshi; Meggiolaro, Daniele; Trinh, M. Tuan; Joshi, Prakriti P.; Mosconi, Edoardo; Jones, Skyler C.; De Angelis, Filippo; Zhu, X.-Y.

    2017-01-01

    Lead halide perovskites show marked defect tolerance responsible for their excellent optoelectronic properties. These properties might be explained by the formation of large polarons, but how they are formed and whether organic cations are essential remain open questions. We provide a direct time domain view of large polaron formation in single-crystal lead bromide perovskites CH3NH3PbBr3 and CsPbBr3. We found that large polaron forms predominantly from the deformation of the PbBr3− frameworks, irrespective of the cation type. The difference lies in the polaron formation time, which, in CH3NH3PbBr3 (0.3 ps), is less than half of that in CsPbBr3 (0.7 ps). First-principles calculations confirm large polaron formation, identify the Pb-Br-Pb deformation modes as responsible, and explain quantitatively the rate difference between CH3NH3PbBr3 and CsPbBr3. The findings reveal the general advantage of the soft [PbX3]− sublattice in charge carrier protection and suggest that there is likely no mechanistic limitations in using all-inorganic or mixed-cation lead halide perovskites to overcome instability problems and to tune the balance between charge carrier protection and mobility. PMID:28819647

  14. Effects of compositional defects on small polaron hopping in micas.

    Science.gov (United States)

    Rosso, Kevin M; Ilton, Eugene S

    2005-06-22

    Hartree-Fock calculations and electron transfer (ET) theory were used to model the effects of compositional defects on ET in the brucite-like octahedral sheet of mica. ET was modeled as an Fe(IIIII) valence interchange reaction across shared octahedral edges of the M2-M2 iron sublattice. The model entails the hopping of localized electrons and small polaron behavior. Hartree-Fock calculations indicate that substitution of F for structural OH bridges increases the reorganization energy lambda, decreases the electronic coupling matrix element V(AB), and thereby substantially decreases the hopping rate. The lambda increase arises from modification of the metal-ligand bond force constants, and the V(AB) decrease arises from reduction of superexchange interaction through anion bridges. Deprotonation of an OH bridge, consistent with a possible mechanism of maintaining charge neutrality during net oxidation, yields a net increase in the ET rate. Although substitution of Al or Mg for Fe in M1 sites distorts the structure of adjacent Fe-occupied M2 sites, the distortion has little net impact on ET rates through these M2 sites. Hence the main effect of Al or Mg substitution for Fe, should it occur in the M2 sublattice, is to block ET pathways. Collectively, these findings pave the way for larger-scale oxidation/reduction models to be constructed for realistic, compositionally diverse micas.

  15. Neutron diffuse scattering in magnetite due to molecular polarons

    International Nuclear Information System (INIS)

    Yamada, Y.; Wakabayashi, N.; Nicklow, R.M.

    1980-01-01

    A detailed neutron diffuse scattering study has been carried out in order to verify a model which describes the property of valence fluctuations in magnetite above T/sub V/. This model assumes the existence of a complex which is composed of two excess electrons and a local displacement mode of oxygens within the fcc primitive cell. The complex is called a molecular polaron. It is assumed that at sufficiently high temperatures there is a random distribution of molecular polarons, which are fluctuating independently by making hopping motions through the crystal or by dissociating into smaller polarons. The lifetime of each molecular polaron is assumed to be long enough to induce an instantaneous strain field around it. Based on this model, the neutron diffuse scattering cross section due to randomly distributed dressed molecular polarons has been calculated. A precise measurement of the quasielastic scattering of neutrons has been carried out at 150 K. The observed results definitely show the characteristics which are predicted by the model calculation and, thus, give evidence for the existence of the proposed molecular polarons. From this standpoint, the Verwey transition of magnetite may be viewed as the cooperative ordering process of dressed molecular polarons. Possible extensions of the model to describe the ordering and the dynamical behavior of the molecular polarons are discussed

  16. Impurity-induced states in superconducting heterostructures

    Science.gov (United States)

    Liu, Dong E.; Rossi, Enrico; Lutchyn, Roman M.

    2018-04-01

    Heterostructures allow the realization of electronic states that are difficult to obtain in isolated uniform systems. Exemplary is the case of quasi-one-dimensional heterostructures formed by a superconductor and a semiconductor with spin-orbit coupling in which Majorana zero-energy modes can be realized. We study the effect of a single impurity on the energy spectrum of superconducting heterostructures. We find that the coupling between the superconductor and the semiconductor can strongly affect the impurity-induced states and may induce additional subgap bound states that are not present in isolated uniform superconductors. For the case of quasi-one-dimensional superconductor/semiconductor heterostructures we obtain the conditions for which the low-energy impurity-induced bound states appear.

  17. Chiral plaquette polaron theory of cuprate superconductivity

    Science.gov (United States)

    Tahir-Kheli, Jamil; Goddard, William A., III

    2007-07-01

    Ab initio density functional calculations on explicitly doped La2-xSrxCuO4 find that doping creates localized holes in out-of-plane orbitals. A model for cuprate superconductivity is developed based on the assumption that doping leads to the formation of holes on a four-site Cu plaquette composed of the out-of-plane A1 orbitals apical Opz , planar Cud3z2-r2 , and planar Opσ . This is in contrast to the assumption of hole doping into planar Cudx2-y2 and Opσ orbitals as in the t-J model. Allowing these holes to interact with the d9 spin background leads to chiral polarons with either a clockwise or anticlockwise charge current. When the polaron plaquettes percolate through the crystal at x≈0.05 for La2-xSrxCuO4 , a Cudx2-y2 and planar Opσ band is formed. The computed percolation doping of x≈0.05 equals the observed transition to the “metallic” and superconducting phase for La2-xSrxCuO4 . Spin exchange Coulomb repulsion with chiral polarons leads to d -wave superconducting pairing. The equivalent of the Debye energy in phonon superconductivity is the maximum energy separation between a chiral polaron and its time-reversed partner. This energy separation is on the order of the antiferromagnetic spin coupling energy, Jdd˜0.1eV , suggesting a higher critical temperature. An additive skew-scattering contribution to the Hall effect is induced by chiral polarons and leads to a temperature dependent Hall effect that fits the measured values for La2-xSrxCuO4 . The integrated imaginary susceptibility, observed by neutron spin scattering, satisfies ω/T scaling due to chirality and spin-flip scattering of polarons along with a uniform distribution of polaron energy splittings. The derived functional form is compatible with experiments. The static spin structure factor for chiral spin coupling of the polarons to the undoped antiferromagnetic Cud9 spins is computed for classical spins on large two-dimensional lattices and is found to be incommensurate with a

  18. Multiphonon generation during photodissociation of slow Landau-Pekar polarons

    International Nuclear Information System (INIS)

    Myasnikov, E. N.; Myasnikova, A. E.; Mastropas, Z. P.

    2006-01-01

    The spectra of the low-temperature photodissociation (photoionization) of Landau-Pekar polarons are calculated using the theory of quantum-coherent states and a new method of variation with respect to the parameters of phonon vacuum deformation. It is shown that the final polaron states upon photodissociation may have different numbers of phonons produced in a single dissociation event and different momenta of charge carriers. The spectrum of optical absorption related to the photodissociation of polarons exhibits a superposition of bands corresponding to various numbers of phonons formed as a result of dissociation of a single polaron. Due to a large width of the energy region corresponding to the final states of charge carriers, the halfwidth of each band is on the order of the energy of polaron coupling and is much greater than the phonon energy. For this reason, the individual phonon bands exhibit strong overlap. The very broad and, probably, structureless band formed as a result of the superposition of all these components begins at an energy equal to the sum of the polaron coupling energy (E p ) and the phonon energy. This band has a maximum at a frequency of about 5.6E p /ℎ and a halfwidth on the order of 5.6E p /ℎ at a unit effective mass (m* = m e ) of band electrons. For an effective charge carrier mass within m* = (1-3)m e , the energy of the polaron band maximum can be estimated as 5E p with an error of about 10%, and the halfwidth falls within 3.4E p 1/2 p . The multiphonon character of this band is related to a decay of the phonon condensate after the escape of charge carrier from a polaron. Such polarons are likely to be observed in the spectra of complex metal oxides, including high-temperature superconductors. Examples of such polaron bands in the reported absorption and photoconductivity spectra of nonstoichiometric cuprates, manganites, nickelates, and titanates are presented. A theory of the formation of Landau-Pekar polarons with the

  19. Holstein polaron in a valley-degenerate two-dimensional semiconductor.

    Science.gov (United States)

    Kang, Mingu; Jung, Sung Won; Shin, Woo Jong; Sohn, Yeongsup; Ryu, Sae Hee; Kim, Timur K; Hoesch, Moritz; Kim, Keun Su

    2018-05-28

    Two-dimensional (2D) crystals have emerged as a class of materials with tunable carrier density 1 . Carrier doping to 2D semiconductors can be used to modulate many-body interactions 2 and to explore novel composite particles. The Holstein polaron is a small composite particle of an electron that carries a cloud of self-induced lattice deformation (or phonons) 3-5 , which has been proposed to play a key role in high-temperature superconductivity 6 and carrier mobility in devices 7 . Here we report the discovery of Holstein polarons in a surface-doped layered semiconductor, MoS 2 , in which a puzzling 2D superconducting dome with the critical temperature of 12 K was found recently 8-11 . Using a high-resolution band mapping of charge carriers, we found strong band renormalizations collectively identified as a hitherto unobserved spectral function of Holstein polarons 12-18 . The short-range nature of electron-phonon (e-ph) coupling in MoS 2 can be explained by its valley degeneracy, which enables strong intervalley coupling mediated by acoustic phonons. The coupling strength is found to increase gradually along the superconducting dome up to the intermediate regime, which suggests a bipolaronic pairing in the 2D superconductivity.

  20. Crossover from Polaronic to Magnetically Phase-Separated Behavior in La1-xSrxCoO3

    Science.gov (United States)

    Phelan, D.; El Khatib, S.; Wang, S.; Barker, J.; Zhao, J.; Zheng, H.; Mitchell, J. F.; Leighton, C.

    2013-03-01

    Dilute hole-doping in La1-xSrxCoO3 leads to the formation of ``spin-state polarons'' where a non-zero spin-state is stabilized on the nearest Co3+ ions surrounding a hole. Here, we discuss the development of electronic/magnetic properties of this system from non-magnetic x=0, through the regime of spin-state polarons, and into the region where longer-range spin correlations and phase separation develop. We present magnetometry, transport, heat capacity, and small-angle neutron scattering (SANS) on single crystals. Magnetometry indicates a crossover with x from Langevin-like behavior (polaronic) to a state with a freezing temperature and finite coercivity. Fascinating correlations with this behavior are seen in transport measurements, the evolution from polaronic to clustered states being accompanied by a crossover from Mott variable range hopping to intercluster hopping. SANS data shows Lorentzian scattering from short-range ferromagnetic clusters first emerging around x = 0.03 with correlation lengths of order two unit cells. We argue that this system provides a unique opportunity to understand in detail the crossover from polaronic to truly phase-separated states.

  1. Bi-Polaron Condensation in High Tc Superconductors

    International Nuclear Information System (INIS)

    Ranninger, J.

    1995-01-01

    On the basis of optical measurements-, photoemission-, EXAFS- and neutron scattering-experiments we conclude that itinerant valence electrons coexist with localized bi-polarons.Entering the metallic phase upon chemical doping, a charge transfer between the two electronic subsystems is triggered off. We show that as the temperature is lowered towards Tc this process leads to a delocalization of bi-polarons due to a precursor effect of superfluidity of those bi-polarons. Upon entering the superconducting phase, these bipolarons ultimately condense into a superfluid state which is expected to largely determine the superconducting properties of high Tc materials. (authors)

  2. Determining a hopping polaron's bandwidth from its Seebeck coefficient: Measuring the disorder energy of a non-crystalline semiconductor

    International Nuclear Information System (INIS)

    Emin, David

    2016-01-01

    Charge carriers that execute multi-phonon hopping generally interact strongly enough with phonons to form polarons. A polaron's sluggish motion is linked to slowly shifting atomic displacements that severely reduce the intrinsic width of its transport band. Here a means to estimate hopping polarons' bandwidths from Seebeck-coefficient measurements is described. The magnitudes of semiconductors' Seebeck coefficients are usually quite large (>k/|q| = 86 μV/K) near room temperature. However, in accord with the third law of thermodynamics, Seebeck coefficients must vanish at absolute zero. Here, the transition of the Seebeck coefficient of hopping polarons to its low-temperature regime is investigated. The temperature and sharpness of this transition depend on the concentration of carriers and on the width of their transport band. This feature provides a means of estimating the width of a polaron's transport band. Since the intrinsic broadening of polaron bands is very small, less than the characteristic phonon energy, the net widths of polaron transport bands in disordered semiconductors approach the energetic disorder experienced by their hopping carriers, their disorder energy

  3. Effect of interchain coupling on the excited polaron in conjugated polymers

    International Nuclear Information System (INIS)

    Li, Xiao-xue; Chen, Gang

    2017-01-01

    Based on the one-dimensional extended Su–Schrieffer–Heeger model, we theoretically investigate the effect of interchain coupling on the formation and polarization of the single-excited state of polaron in conjugated polymers. It is found that there exists a turnover value of the coupling strength, over which the excited polaron could not be formed in either of the two coupled chains. Instead, a polaron-like particle is localized at the center of each chain. In addition, we also find that the reverse polarization of the excited polaron could be enhanced for some cases in polymer when the interchain coupling becomes strong until it exceeds the critical value. - Highlights: • Effect of interchain coupling on the single-excited state of polaron is studied. • When coupling strength exceeds critical value, the excited polaron is dissociated. • Soliton pair could be dissociated into polaron-like particle with strong coupling. • Reverse polarization of excited polaron is enhanced by weak interchain coupling. • Reverse polarization is obtained more easily in solid film of polymer molecules.

  4. Effect of interchain coupling on the excited polaron in conjugated polymers

    Energy Technology Data Exchange (ETDEWEB)

    Li, Xiao-xue, E-mail: sps_lixx@ujn.edu.cn; Chen, Gang, E-mail: ss_cheng@ujn.edu.cn

    2017-02-05

    Based on the one-dimensional extended Su–Schrieffer–Heeger model, we theoretically investigate the effect of interchain coupling on the formation and polarization of the single-excited state of polaron in conjugated polymers. It is found that there exists a turnover value of the coupling strength, over which the excited polaron could not be formed in either of the two coupled chains. Instead, a polaron-like particle is localized at the center of each chain. In addition, we also find that the reverse polarization of the excited polaron could be enhanced for some cases in polymer when the interchain coupling becomes strong until it exceeds the critical value. - Highlights: • Effect of interchain coupling on the single-excited state of polaron is studied. • When coupling strength exceeds critical value, the excited polaron is dissociated. • Soliton pair could be dissociated into polaron-like particle with strong coupling. • Reverse polarization of excited polaron is enhanced by weak interchain coupling. • Reverse polarization is obtained more easily in solid film of polymer molecules.

  5. Impurity energy level in the Haldane gap

    International Nuclear Information System (INIS)

    Wang Wei; Lu Yu

    1995-11-01

    An impurity bond J' in a periodic 1D antiferromagnetic spin 1 chain with exchange J is considered. Using the numerical density matrix renormalization group method, we find an impurity energy level in the Haldane gap, corresponding to a bound state near the impurity bond. When J' J. The impurity level appears only when the deviation dev = (J'- J)/J' is greater than B c , which is close to 0.3 in our calculation. (author). 15 refs, 4 figs

  6. Polarons in acetanilide

    Science.gov (United States)

    Scott, Alwyn C.; Bigio, Irving J.; Johnston, Clifford T.

    1989-06-01

    The best available data are presented of the integrated intensity of the 1650-cm-1 band in crystalline acetanilide as a function of temperature. A concise theory of polaron states is presented and used to interpret the data.

  7. Screening effect on the polaron by surface plasmons

    Science.gov (United States)

    Xu, Xiaoying; Xu, Xiaoshan; Seal, Katyayani; Guo, Hangwen; Shen, Jian; Low Dimensional Materials Physics, Oak Ridge National Lab Team; University of Tennessee Team; Physics Department, Fudan University Team

    2011-03-01

    Surface plasmons occur when the conduction electrons at a metal/dielectric interface resonantly interact with external electromagnetic fields. While surface plasmons in vicinity of a polaron in the dielectric material, a strong screening effect on polaron characteristics is introduced. In this work, we observed the reduction of polarons in multiferroic LuFe2O4, which is mainly contributed by surface plasmons. Research sponsored by the Laboratory Directed Research and Development Program of Oak Ridge National Laboratory, managed by UT-Battelle, LLC, for the U. S. Department of Energy.

  8. Observation of Spin-Polarons in a strongly interacting Fermi liquid

    Science.gov (United States)

    Zwierlein, Martin

    2009-03-01

    We have observed spin-polarons in a highly imbalanced mixture of fermionic atoms using tomographic RF spectroscopy. Feshbach resonances allow to freely tune the interactions between the two spin states involved. A single spin down atom immersed in a Fermi sea of spin up atoms can do one of two things: For strong attraction, it can form a molecule with exactly one spin up partner, but for weaker interaction it will spread its attraction and surround itself with a collection of majority atoms. This spin down atom ``dressed'' with a spin up cloud constitutes the spin-polaron. We have observed a striking spectroscopic signature of this quasi-particle for various interaction strengths, a narrow peak in the spin down spectrum that emerges above a broad background. The narrow width signals a long lifetime of the spin-polaron, much longer than the collision rate with spin up atoms, as it must be for a proper quasi-particle. The peak position allows to directly measure the polaron energy. The broad pedestal at high energies reveals physics at short distances and is thus ``molecule-like'': It is exactly matched by the spin up spectra. The comparison with the area under the polaron peak allows to directly obtain the quasi-particle weight Z. We observe a smooth transition from polarons to molecules. At a critical interaction strength of 1/kFa = 0.7, the polaron peak vanishes and spin up and spin down spectra exactly match, signalling the formation of molecules. This is the same critical interaction strength found earlier to separate a normal Fermi mixture from a superfluid molecular Bose-Einstein condensate. The spin-polarons determine the low-temperature phase diagram of imbalanced Fermi mixtures. In principle, polarons can interact with each other and should, at low enough temperatures, form a superfluid of p-wave pairs. We will present a first indication for interactions between polarons.

  9. Importance of polaron effects for charge carrier mobility above and ...

    Indian Academy of Sciences (India)

    It is shown that the scattering of polaronic charge carriers and bosonic Cooper pairs at acoustic and optical phonons are responsible for the charge carrier mobility above and below the PG temperature. We show that the energy scales of the binding energies of large polarons and polaronic Cooper pairs can be identified by ...

  10. Spectrally resolved hyperfine interactions between polaron and nuclear spins in organic light emitting diodes: Magneto-electroluminescence studies

    Energy Technology Data Exchange (ETDEWEB)

    Crooker, S. A.; Kelley, M. R.; Martinez, N. J. D.; Nie, W.; Mohite, A.; Nayyar, I. H.; Tretiak, S.; Smith, D. L. [Los Alamos National Laboratory, Los Alamos, New Mexico 87545 (United States); Liu, F.; Ruden, P. P. [University of Minnesota, Minneapolis, Minnesota 55455 (United States)

    2014-10-13

    We use spectrally resolved magneto-electroluminescence (EL) measurements to study the energy dependence of hyperfine interactions between polaron and nuclear spins in organic light-emitting diodes. Using layered devices that generate bright exciplex emission, we show that the increase in EL emission intensity I due to small applied magnetic fields of order 100 mT is markedly larger at the high-energy blue end of the EL spectrum (ΔI/I ∼ 11%) than at the low-energy red end (∼4%). Concurrently, the widths of the magneto-EL curves increase monotonically from blue to red, revealing an increasing hyperfine coupling between polarons and nuclei and directly providing insight into the energy-dependent spatial extent and localization of polarons.

  11. Two-phonon bound states in imperfect crystals

    International Nuclear Information System (INIS)

    Behera, S.N.; Samsur, Sk.

    1980-01-01

    The question of the occurrence of two-phonon bound states in imperfect crystals is investigated. It is shown that the anharmonicity mediated two-phonon bound state which is present in perfect crystals gets modified due to the presence of impurities. Moreover, the possibility of the occurrence of a purely impurity mediated two-phonon bound state is demonstrated. The bound state frequencies are calculated using the simple Einstein oscillator model for the host phonons. The two-phonon density of states for the imperfect crystal thus obtained has peaks at the combination and difference frequencies of two host phonons besides the peaks at the bound state frequencies. For a perfect crystal the theory predicts a single peak at the two-phonon bound state frequency in conformity with experimental observations and other theoretical calculations. Experimental data on the two-phonon infrared absorption and Raman scattering from mixed crystals of Gasub(1-c)Alsub(c)P and Gesub(1-c)Sisub(c) are analysed to provide evidence in support of impurity-mediated two-phonon bound states. The relevance of the zero frequency (difference spectrum) peak to the central peak, observed in structural phase transitions, is conjectured. (author)

  12. Quantum vibrational polarons: Crystalline acetanilide revisited

    Science.gov (United States)

    Hamm, Peter; Edler, Julian

    2006-03-01

    We discuss a refined theoretical description of the peculiar spectroscopy of crystalline acetanilide (ACN). Acetanilide is a molecular crystal with quasi-one-dimensional chains of hydrogen-bonded units, which is often regarded as a model system for the vibrational spectroscopy of proteins. In linear spectroscopy, the CO stretching (amide I) band of ACN features a double-peak structure, the lower of which shows a pronounced temperature dependence which has been discussed in the context of polaron theory. In nonlinear spectroscopy, both of these peaks respond distinctly differently. The lower-frequency band exhibits the anharmonicity expected from polaron theory, while the higher-frequency band responds as if it were quasiharmonic. We have recently related the response of the higher-frequency band to that of a free exciton [J. Edler and P. Hamm, J. Chem. Phys. 117, 2415 (2002)]. However, as discussed in the present paper, the free exciton is not an eigenstate of the full quantum version of the Holstein polaron Hamiltonian, which is commonly used to describe these phenomena. In order to resolve this issue, we present a numerically exact solution of the Holstein polaron Hamiltonian in one dimension (1D) and 3D. In 1D, we find that the commonly used displaced oscillator picture remains qualitatively correct, even for relatively large exciton coupling. However, the result is not in agreement with the experiment, as it fails to explain the free-exciton band. In contrast, when taking into account the 3D nature of crystalline acetanilide, certain parameter regimes exist where the displaced oscillator picture breaks down and states appear in the spectrum that indeed exhibit the characteristics of a free exciton. The appearance of these states is a speciality of vibrational polarons, whose source of exciton coupling is transition dipole coupling which is expected to have opposite signs of interchain and intrachain coupling.

  13. Diagrammatic Monte Carlo study of Fröhlich polaron dispersion in two and three dimensions

    Science.gov (United States)

    Hahn, Thomas; Klimin, Sergei; Tempere, Jacques; Devreese, Jozef T.; Franchini, Cesare

    2018-04-01

    We present results for the solution of the large polaron Fröhlich Hamiltonian in 3 dimensions (3D) and 2 dimensions (2D) obtained via the diagrammatic Monte Carlo (DMC) method. Our implementation is based on the approach by Mishchenko [A. S. Mishchenko et al., Phys. Rev. B 62, 6317 (2000), 10.1103/PhysRevB.62.6317]. Polaron ground state energies and effective polaron masses are successfully benchmarked with data obtained using Feynman's path integral formalism. By comparing 3D and 2D data, we verify the analytically exact scaling relations for energies and effective masses from 3 D →2 D , which provides a stringent test for the quality of DMC predictions. The accuracy of our results is further proven by providing values for the exactly known coefficients in weak- and strong-coupling expansions. Moreover, we compute polaron dispersion curves which are validated with analytically known lower and upper limits in the small-coupling regime and verify the first-order expansion results for larger couplings, thus disproving previous critiques on the apparent incompatibility of DMC with analytical results and furnishing useful reference for a wide range of coupling strengths.

  14. Big magnetoresistance: magnetic polarons

    International Nuclear Information System (INIS)

    Teresa, J.M. de; Ibarra, M.R.

    1997-01-01

    By using several macro and microscopic experimental techniques we have given evidence for magnetoresistance in manganese oxides caused by the effect of the magnetic field on the magnetic polarons. (Author) 3 refs

  15. Effect of magnetic field on the donor impurity in CdTe/Cd1-xMnxTe quantum well wire

    Science.gov (United States)

    Kalpana, P.; Reuben, A. Merwyn Jasper D.; Nithiananthi, P.; Jayakumar, K.

    2016-05-01

    The donor impurity binding energy in CdTe / Cd1-xMnxTe QWW with square well confinement along x - direction and parabolic confinement along y - direction under the influence of externally applied magnetic field has been computed using variational principle in the effective mass approximation. The spin polaronic shift has also been computed. The results are presented and discussed.

  16. Theory of resonant donor-impurity magnetopolaron in semiconductor quantum wells

    International Nuclear Information System (INIS)

    Osorio, F.A.P.; Maialle, M.Z.; Hipolito, O.

    1989-11-01

    We report for the first time a theoretical calculation for the resonant donor impurity magnetopolaron in GaAs-GA 1-x Al x As quantum-well structures. The intra donor 1s → 2p, transition frequencies are calculated as a function of the magnetic field, by taking into account the polaron effects and nonparabolicity of the conduction band. We found a pinning behaviour due to interaction with LO phonons as suggested by the experimentalists. Our results for the peak positions of those transitions are in very good agreement with recent experimental data. (author). 18 refs, 1 fig

  17. Bound magnetic polaron in Zn-rich cobalt-doped ZnSe nanowires

    Science.gov (United States)

    Hou, Lipeng; Pan, Longfei; Liang, Bianbian; Liu, Yuting; Zhang, Li; Bukhtiar, Arfan; Shi, Lijie; Liu, Ruibin; Zou, Bingsuo

    2018-02-01

    The micro-luminescence spectra of the diluted magnetic semiconductor (DMS) can reflect the spin-exciton interaction and related relaxation process. Here the micro-photoluminescence (micro-PL) spectra and PL lifetime measurements have been done on an individual ferromagnetic (FM)-coupled cobalt (Co) doped zinc selenide (ZnSe) nanowire. There occurs a double-peak profile in its near bandedge emission spectrum: the first peak is from free exciton (FX) and the second comes from magnetic polaron (MP). In their temperature dependent PL spectra, the MP emission peak demonstrates obviously temperature-independent behavior, in contrast to the behaviors of FX and reported exciton MP in nanobelt. It is found that in this Co(II) doped ZnSe nanowires, this MP’s temperature-independent emission is related to the coupling between exciton and a FM nanocluster (↑↑↓). The nanocluster is likely due to the interaction of Se vacancies of the wide bandgap semiconductors with the antiferromagnetic (AFM) arrangement transition metal (TM) ions in these Se-deficient Co doped ZnSe nanowires. These results reflect that the AFM coupling TM ions pair can give rise to FM behavior with the involvement of positive charge defect, also indicating that the micro-luminescence detection can be used to study the magnetic coupling in DMS.

  18. The Bogolubov Representation of the Polaron Model and Its Completely Integrable RPA-Approximation

    International Nuclear Information System (INIS)

    Bogolubov, Nikolai N. Jr.; Prykarpatsky, Yarema A.; Ghazaryan, Anna A.

    2009-12-01

    The polaron model in ionic crystal is studied in the N. Bogolubov representation using a special RPA-approximation. A new exactly solvable approximated polaron model is derived and described in detail. Its free energy at finite temperature is calculated analytically. The polaron free energy in the constant magnetic field at finite temperature is also discussed. Based on the structure of the N. Bogolubov unitary transformed polaron Hamiltonian a very important new result is stated: the full polaron model is exactly solvable. (author)

  19. The effect of correlations on the non-ohmic behavior of the small-polaron hopping conductivity in 1D and 3D disordered systems

    International Nuclear Information System (INIS)

    Dimakogianni, M; Triberis, G P

    2010-01-01

    According to percolation theory the investigation of charge transport in disordered systems is equivalent to the study of the possibility of the passage of the carriers through a random network of impedances which interconnect the different lattice sites. When the site energies are not the same, the energy of a site affects the incoming as well as the outgoing impedances connected to the given site and this gives rise to correlations between neighboring impedances. This new condition characterizes the transport process and imposes the evaluation of the average number of sites accessible by a bond from a given site for all possible configurations of sites that satisfy the percolation condition. The generalized molecular crystal model, appropriate for the study of small-polaron hopping transport in disordered systems, and the Kubo formula permit the evaluation of these impedances. Taking correlations into account, theoretical percolation considerations applicable to one-dimensional and three-dimensional disordered systems, lead to analytical expressions for the temperature and electric field dependence of the DC conductivity at high (multi-phonon-assisted hopping) and low (few-phonon-assisted hopping) temperatures. The theoretical analysis reveals the effect of correlations on the non-ohmic behavior of the small-polaron hopping conductivity and permits the evaluation of the maximum hopping distance. Quantitative estimates of this effect are presented comparing the theoretical results, including correlations with those ignoring them, previously reported, applying them to recent experimental data for a wide temperature range and from low up to moderate electric fields.

  20. Polaron Self-localization in White-light Emitting Hybrid Perovskites

    OpenAIRE

    Cortecchia, Daniele; Yin, Jun; Bruno, Annalisa; Lo, Shu-Zee Alencious; Gurzadyan, Gagik G.; Mhaisalkar, Subodh; Brédas, Jean-Luc; Soci, Cesare

    2016-01-01

    Two-dimensional (2D) perovskites with general formula $APbX_4$ are attracting increasing interest as solution processable, white-light emissive materials. Recent studies have shown that their broadband emission is related to the formation of intra-gap color centers; however, the nature and dynamics of the emissive species have remained elusive. Here we show that the broadband photoluminescence of the 2D perovskites $(EDBE)PbCl_4$ and $(EDBE)PbBr_4$ stems from the localization of small polaron...

  1. Polaron binding energy in polymers: poly[methyl(phenyl)silylene

    Czech Academy of Sciences Publication Activity Database

    Nožár, Juraj; Nešpůrek, Stanislav; Šebera, Jakub

    2012-01-01

    Roč. 18, č. 2 (2012), s. 623-629 ISSN 1610-2940 R&D Projects: GA AV ČR KAN400720701 Institutional research plan: CEZ:AV0Z40500505 Keywords : polaron * polaron binding energy * polysilane Subject RIV: BM - Solid Matter Physics ; Magnetism Impact factor: 1.984, year: 2012

  2. Polaron binding energy and effective mass in the GaAs film

    International Nuclear Information System (INIS)

    Wu Zhenhua; Yan Liangxing; Tian Qiang; Li Hua; Liu Bingcan

    2012-01-01

    The binding energy and effective mass of a polaron in a GaAs film deposited on the Al 0.3 Ga 0.7 As substrate are studied theoretically by using the fractional-dimensional space approach. Our calculations show that the polaron binding energy and mass shift decrease monotonously with increasing the film thickness. For the film thicknesses with L w ≤ 70Å and the substrate thicknesses with L b ≤ 200Å, the different values of the substrate thickness influence the polaron binding energy and mass shift in the GaAs film. The polaron binding energy and mass shift increase monotonously with increasing the substrate thickness. For the film thickness with L w ≥ 70Å or the substrate thicknesses with L b ≤ 200Å, the different values of the substrate thickness have no significant influence on the polaron binding energy and mass shift in the GaAs film deposited on the Al 0.3 Ga 0.7 As substrate.

  3. Importance of polaron effects for charge carrier mobility above and ...

    Indian Academy of Sciences (India)

    Orifjon Ganiev

    2017-05-30

    May 30, 2017 ... sizes and effective masses are large polarons. According ... nating metallic and insulating domains with mobile ... The mobile polaronic carriers are con- ..... [51] T Kondo, Y Hamaya, A D Palczewski, T Takeuchi, J S Wen,.

  4. Tight-Binding Description of Impurity States in Semiconductors

    Science.gov (United States)

    Dominguez-Adame, F.

    2012-01-01

    Introductory textbooks in solid state physics usually present the hydrogenic impurity model to calculate the energy of carriers bound to donors or acceptors in semiconductors. This model treats the pure semiconductor as a homogeneous medium and the impurity is represented as a fixed point charge. This approach is only valid for shallow impurities…

  5. Proximity effect tunneling into virtual bound state alloys

    International Nuclear Information System (INIS)

    Tang, I.M.; Roongkkeadsakoon, S.

    1984-01-01

    The effects of a narrow virtual bound state formed by transition metal impurities dissolved in the normal layer of a superconducting proximity effect sandwich are studied. Using standard renormalization techniques, we obtain the changes in the transition temperatures and the jumps in the specific heat at T/sub c/ as a function of the thickness of the normal layer, of the widths of the virtual bound states, and of the impurity concentrations. It is seen that narrow virtual bound states lead to decrease in the transition temperatures, while broad virtual bound states do not. It if further seen that the narrow virtual bound state causes the reduced specific heat jump at T/sub c/ to deviate from the BCS behavior expected of the pure sandwich

  6. Long-range ferromagnetic order induced by a donor impurity band exchange in SnO{sub 2}:Er{sup 3+} nanoparticles

    Energy Technology Data Exchange (ETDEWEB)

    Aragón, F. H.; Coaquira, J. A. H. [Núcleo de Física Aplicada, Institute of Physics, University of Brasília, Brasília DF 70910-900 (Brazil); Chitta, V. A. [Instituto de Física, Universidade de São Paulo, São Paulo, SP 05508-000 (Brazil); Hidalgo, P. [Faculdade Gama-FGA, Sector Central Gama, Universidade de Brasília, Brasília, DF72405-610 (Brazil); Brito, H. F. [Instituto de Química, Universidade de São Paulo, São Paulo, SP 05508-000 (Brazil)

    2013-11-28

    In this work, the structural and magnetic properties of Er-doped SnO{sub 2} (SnO{sub 2}:Er) nanoparticles are reported. The SnO{sub 2}:Er nanoparticles have been synthesized by a polymer precursor method with Er content from 1.0% to 10.0%. X-ray diffraction results indicate the formation of only the rutile-type structure in all samples. The estimated mean crystallite size shows a decrease from ∼10 to ∼4 nm when the Er content is increased from 1.0% to 10.0%. The particle size values have been corroborated by transmission electron microscopy technique. The thermal dependence of the magnetization is consistent with the 3+ oxidation state of erbium ions for all samples. A strong paramagnetic-like behavior coexisting with a ferromagnetic phase has been determined for samples with Er content below 5.0%. Above this concentration, only a paramagnetic behavior has been determined. Isothermal magnetization curves are consistent with the occurrence of long-range ferromagnetic order mediated by donor electrons forming bound magnetic polarons which overlap to produce a spin-split impurity band.

  7. Fingerprints of spin-orbital polarons and of their disorder in the photoemission spectra of doped Mott insulators with orbital degeneracy

    Science.gov (United States)

    Avella, Adolfo; Oleś, Andrzej M.; Horsch, Peter

    2018-04-01

    We explore the effects of disordered charged defects on the electronic excitations observed in the photoemission spectra of doped transition metal oxides in the Mott insulating regime by the example of the R1 -xCaxVO3 perovskites, where R = La, ⋯, Lu. A fundamental characteristic of these vanadium d2 compounds with partly filled t2 g valence orbitals is the persistence of spin and orbital order up to high doping, in contrast to the loss of magnetic order in high-Tc cuprates at low defect concentration. We study the disordered electronic structure of such doped Mott-Hubbard insulators within the unrestricted Hartree-Fock approximation and, as a result, manage to explain the spectral features that occur in photoemission and inverse photoemission. In particular, (i) the atomic multiplet excitations in the inverse photoemission spectra and the various defect-related states and satellites are qualitatively well reproduced, (ii) a robust Mott gap survives up to large doping, and (iii) we show that the defect states inside the Mott gap develop a soft gap at the Fermi energy. The soft defect-states gap, which separates the highest occupied from the lowest unoccupied states, can be characterized by a shape and a scale parameter extracted from a Weibull statistical sampling of the density of states near the chemical potential. These parameters provide a criterion and a comprehensive schematization for the insulator-metal transition in disordered systems. Our results provide clear indications that doped holes are bound to charged defects and form small spin-orbital polarons whose internal kinetic energy is responsible for the opening of the soft defect-states gap. We show that this kinetic gap survives disorder fluctuations of defects and is amplified by the long-range electron-electron interactions, whereas we observe a Coulomb singularity in the atomic limit. The small size of spin-orbital polarons is inferred by an analysis of the inverse participation ratio and by

  8. Effect of single interstitial impurity in iron-based superconductors with sign-changed s-wave pairing symmetry

    Energy Technology Data Exchange (ETDEWEB)

    Yu, Xiang-Long, E-mail: xlyu@theory.issp.ac.cn [Key Laboratory of Materials Physics, Institute of Solid State Physics, Chinese Academy of Sciences, P. O. Box 1129, Hefei 230031 (China); Liu, Da-Yong; Quan, Ya-Min; Zheng, Xiao-Jun [Key Laboratory of Materials Physics, Institute of Solid State Physics, Chinese Academy of Sciences, P. O. Box 1129, Hefei 230031 (China); Zou, Liang-Jian, E-mail: zou@theory.issp.ac.cn [Key Laboratory of Materials Physics, Institute of Solid State Physics, Chinese Academy of Sciences, P. O. Box 1129, Hefei 230031 (China); Department of Physics, University of Science and Technology of China, Hefei 230026 (China)

    2015-12-15

    Highlights: • Effects of single interstitial impurity are studied in iron-based superconductors. • Bound states within the superconducting gap can be induced. • The interstitial impurity can induce a π phase shift of pairing order parameter. • For strong magnetic scattering the bound-state peak can appear at the Fermi level. - Abstract: We employ the self-consistent Bogoliubov-de Gennes (BdG) formulation to investigate the effect of single interstitial nonmagnetic/magnetic impurity in iron-based superconductors with s ± -wave pairing symmetry. We find that both the nonmagnetic and magnetic impurities can induce bound states within the superconducting (SC) gap and a π phase shift of SC order parameter at the impurity site. However, different from the interstitial-nonmagnetic-impurity case characterized by two symmetric peaks with respect to zero energy, the interstitial magnetic one only induces single bound-state peak. In the strong scattering regime this peak can appear at the Fermi level, which has been observed in the recent scanning tunneling microscope (STM) experiment of Fe(Te,Se) superconductor with interstitial Fe impurities (Yin et al. 2015 [44]). This novel single in-gap peak feature also distinguishes the interstitial case from the substitutional one with two peaks. These results provide important information for comparing the different impurity effects in the iron-based superconductors.

  9. Donor states in a semimagnetic Cd1 -xinMnxin Te /Cd1 -xoutMnxout Te Double Quantum Well

    Science.gov (United States)

    Kalpana, Panneer Selvam; Nithiananthi, Perumal; Jayakumar, Kalyanasundaram

    2017-02-01

    The theoretical investigation has been carried out on the binding energy of donor associated with the electrons confined in a Cd1 -xinMnxin Te /Cd1 -xoutMnxout Te Double Quantum Well (DQW) as a function of central barrier width for various well dimensions and impurity locations in the barrier and the well. The magnetic field can act as a tool to continuously change the interwell coupling inside this DQW systems and its effect on donor binding has also been studied. Moreover, the polaronic corrections, which is due to the strong exchange interaction between the magnetic moment of Mn2+ ion and the spin of the confined carrier, to the binding energy of the hydrogenic donor impurity has also been estimated with and without the application of magnetic field. The binding energy of the donor impurity is determined by solving the Schrodinger equation variationally in the effective mass approximation and the effect due to Bound Magnetic Polaron (BMP) is included using mean field theory with the modified Brillouin function. The results are reported and discussed.

  10. Trapping, self-trapping and the polaron family

    International Nuclear Information System (INIS)

    Stoneham, A M; Gavartin, J; Shluger, A L; Kimmel, A V; Ramo, D Munoz; Roennow, H M; Aeppli, G; Renner, C

    2007-01-01

    The earliest ideas of the polaron recognized that the coupling of an electron to ionic vibrations would affect its apparent mass and could effectively immobilize the carrier (self-trapping). We discuss how these basic ideas have been generalized to recognize new materials and new phenomena. First, there is an interplay between self-trapping and trapping associated with defects or with fluctuations in an amorphous solid. In high dielectric constant oxides, like HfO 2 , this leads to oxygen vacancies having as many as five charge states. In colossal magnetoresistance manganites, this interplay makes possible the scanning tunnelling microscopy (STM) observation of polarons. Second, excitons can self-trap and, by doing so, localize energy in ways that can modify the material properties. Third, new materials introduce new features, with polaron-related ideas emerging for uranium dioxide, gate dielectric oxides, Jahn-Teller systems, semiconducting polymers and biological systems. The phonon modes that initiate self-trapping can be quite different from the longitudinal optic modes usually assumed to dominate. Fourth, there are new phenomena, like possible magnetism in simple oxides, or with the evolution of short-lived polarons, like muons or excitons. The central idea remains that of a particle whose properties are modified by polarizing or deforming its host solid, sometimes profoundly. However, some of the simpler standard assumptions can give a limited, indeed misleading, description of real systems, with qualitative inconsistencies. We discuss representative cases for which theory and experiment can be compared in detail

  11. Transitions and excitations in a superfluid stream passing small impurities

    KAUST Repository

    Pinsker, Florian

    2014-05-08

    We analyze asymptotically and numerically the motion around a single impurity and a network of impurities inserted in a two-dimensional superfluid. The criticality for the breakdown of superfluidity is shown to occur when it becomes energetically favorable to create a doublet—the limiting case between a vortex pair and a rarefaction pulse on the surface of the impurity. Depending on the characteristics of the potential representing the impurity, different excitation scenarios are shown to exist for a single impurity as well as for a lattice of impurities. Depending on the lattice characteristics it is shown that several regimes are possible: dissipationless flow, excitations emitted by the lattice boundary, excitations created in the bulk, and the formation of large-scale structures.

  12. Transitions and excitations in a superfluid stream passing small impurities

    KAUST Repository

    Pinsker, Florian; Berloff, Natalia G.

    2014-01-01

    We analyze asymptotically and numerically the motion around a single impurity and a network of impurities inserted in a two-dimensional superfluid. The criticality for the breakdown of superfluidity is shown to occur when it becomes energetically favorable to create a doublet—the limiting case between a vortex pair and a rarefaction pulse on the surface of the impurity. Depending on the characteristics of the potential representing the impurity, different excitation scenarios are shown to exist for a single impurity as well as for a lattice of impurities. Depending on the lattice characteristics it is shown that several regimes are possible: dissipationless flow, excitations emitted by the lattice boundary, excitations created in the bulk, and the formation of large-scale structures.

  13. Asymptotic dependence of Gross–Tulub polaron ground-state energy in the strong coupling region

    Directory of Open Access Journals (Sweden)

    N.I. Kashirina

    2017-12-01

    Full Text Available The properties of translationally invariant polaron functional have been investigated in the region of strong and extremely strong coupling. It has been shown that the Gross–Tulub polaron functional obtained earlier using the methods of field theory was derived only for the region , where is the Fröhlich constant of the electron-phonon coupling. Various representations of exact and approximate polaron functionals have been considered. Asymptotic dependences of the polaron energy have been obtained using a functional extending the Gross–Tulub functional to the region of extremely strong coupling. The asymptotic dependence of polaron energies for an extremely strong coupling are (for the one-parameter variational function fk, and (for a two-parameter function . It has been shown that the virial theorem 1:3:4 holds for the two-parameter function . Minimization of the approximate functional obtained by expanding the exact Gross–Tulub functional in a series on leads to a quadratic dependence of the polaron energy. This approximation is justified for . For a two-parameter function , the corresponding dependence has the form . However, the use of approximate functionals, in contrast to the strict variational procedure, when the exact polaron functional varies, does not guarantee obtaining the upper limit for the polaron energy.

  14. Effect of magnetic field on the donor impurity in CdTe/Cd{sub 1-x}Mn{sub x}Te quantum well wire

    Energy Technology Data Exchange (ETDEWEB)

    Kalpana, P.; Nithiananthi, P.; Jayakumar, K., E-mail: kjkumar-gri@rediffmail.com [Nanostructure Lab, Department of Physics, Gandhigram Rural University, Gandhigram – 624 302, Tamilnadu (India); Reuben, A. Merwyn Jasper D. [Department of Physics, School of Engineering, Saveetha University, Thandalam, Chennai-600104, TamilNadu (India)

    2016-05-23

    The donor impurity binding energy in CdTe / Cd{sub 1-x}Mn{sub x}Te QWW with square well confinement along x – direction and parabolic confinement along y – direction under the influence of externally applied magnetic field has been computed using variational principle in the effective mass approximation. The spin polaronic shift has also been computed. The results are presented and discussed.

  15. Parton Theory of Magnetic Polarons: Mesonic Resonances and Signatures in Dynamics

    Science.gov (United States)

    Grusdt, F.; Kánasz-Nagy, M.; Bohrdt, A.; Chiu, C. S.; Ji, G.; Greiner, M.; Greif, D.; Demler, E.

    2018-01-01

    When a mobile hole is moving in an antiferromagnet it distorts the surrounding Néel order and forms a magnetic polaron. Such interplay between hole motion and antiferromagnetism is believed to be at the heart of high-temperature superconductivity in cuprates. In this article, we study a single hole described by the t -Jz model with Ising interactions between the spins in two dimensions. This situation can be experimentally realized in quantum gas microscopes with Mott insulators of Rydberg-dressed bosons or fermions, or using polar molecules. We work at strong couplings, where hole hopping is much larger than couplings between the spins. In this regime we find strong theoretical evidence that magnetic polarons can be understood as bound states of two partons, a spinon and a holon carrying spin and charge quantum numbers, respectively. Starting from first principles, we introduce a microscopic parton description which is benchmarked by comparison with results from advanced numerical simulations. Using this parton theory, we predict a series of excited states that are invisible in the spectral function and correspond to rotational excitations of the spinon-holon pair. This is reminiscent of mesonic resonances observed in high-energy physics, which can be understood as rotating quark-antiquark pairs carrying orbital angular momentum. Moreover, we apply the strong-coupling parton theory to study far-from-equilibrium dynamics of magnetic polarons observable in current experiments with ultracold atoms. Our work supports earlier ideas that partons in a confining phase of matter represent a useful paradigm in condensed-matter physics and in the context of high-temperature superconductivity in particular. While direct observations of spinons and holons in real space are impossible in traditional solid-state experiments, quantum gas microscopes provide a new experimental toolbox. We show that, using this platform, direct observations of partons in and out of equilibrium are

  16. Influence of argon impurities on the elastic scattering of x-rays from imploding beryllium capsules

    Science.gov (United States)

    Saunders, A. M.; Chapman, D. A.; Kritcher, A. L.; Schoff, M.; Shuldberg, C.; Landen, O. L.; Glenzer, S. H.; Falcone, R. W.; Gericke, D. O.; Döppner, T.

    2018-03-01

    We investigate the effect of argon impurities on the elastic component of x-ray scattering spectra taken from directly driven beryllium capsule implosions at the OMEGA laser. The plasma conditions were obtained in a previous analysis [18] by fitting the inelastic scattering component. We show that the known argon impurity in the beryllium modifies the elastic scattering due to the larger number of bound electrons. We indeed find significant deviations in the elastic scattering from roughly 1 at.% argon contained in the beryllium. With knowledge of the argon impurity fraction, we use the elastic scattering component to determine the charge state of the compressed beryllium, as the fits are rather insensitive to the argon charge state. Finally, we discuss how doping small fractions of mid- or high-Z elements into low-Z materials could allow ionization balance studies in dense plasmas.

  17. Absolute instability of polaron mode in semiconductor magnetoplasma

    Science.gov (United States)

    Paliwal, Ayushi; Dubey, Swati; Ghosh, S.

    2018-01-01

    Using coupled mode theory under hydrodynamic regime, a compact dispersion relation is derived for polaron mode in semiconductor magnetoplasma. The propagation and amplification characteristics of the wave are explored in detail. The analysis deals with the behaviour of anomalous threshold and amplification derived from dispersion relation, as function of external parameters like doping concentration and applied magnetic field. The results of this investigation are hoped to be useful in understanding electron-longitudinal optical phonon interplay in polar n-type semiconductor plasmas under the influence of coupled collective cyclotron excitations. The best results in terms of smaller threshold and higher gain of polaron mode could be achieved by choosing moderate doping concentration in the medium at higher magnetic field. For numerical appreciation of the results, relevant data of III-V n-GaAs compound semiconductor at 77 K is used. Present study provides a qualitative picture of polaron mode in magnetized n-type polar semiconductor medium duly shined by a CO2 laser.

  18. On the photo-ionization of impurity centres in semiconductors

    International Nuclear Information System (INIS)

    Tomak, M.

    1982-10-01

    The dependence of the photo-ionization cross-section on photon energy is calculated. The impurity potential is assumed to be of the Hulthen potential type and bound state wave function is calculated variationally. The results show that, at least in some cases, the Hulthen potential may describe the impurity better than the hydrogen or delta function potentials. (author)

  19. Effects of Sample Impurities on the Analysis of MS2 Bacteriophage by Small-Angle Neutron Scattering

    National Research Council Canada - National Science Library

    Elashvili, Ilya; Wick, Charles H; Kuzmanovic, Deborah A; Krueger, Susan; O'Connell, Catherine

    2005-01-01

    .... The impact of small molecular weight impurities of the resolution of structural data obtained by SANS of the bacteriophage MS2 distorts the resolution and sharpness of contrast variation peaks...

  20. A self-consistent theory of the magnetic polaron

    International Nuclear Information System (INIS)

    Marvakov, D.I.; Kuzemsky, A.L.; Vlahov, J.P.

    1984-10-01

    A finite temperature self-consistent theory of magnetic polaron in the s-f model of ferromagnetic semiconductors is developed. The calculations are based on the novel approach of the thermodynamic two-time Green function methods. This approach consists in the introduction of the ''irreducible'' Green functions (IGF) and derivation of the exact Dyson equation and exact self-energy operator. It is shown that IGF method gives a unified and natural approach for a calculation of the magnetic polaron states by taking explicitly into account the damping effects and finite lifetime. (author)

  1. Polaron variable range hopping in TiO2-δ(-0.04=<δ=<0.2) thin films

    International Nuclear Information System (INIS)

    Heluani, S.P.; Comedi, D.; Villafuerte, M.; Juarez, G.

    2007-01-01

    The mechanisms of electrical conduction in TiO 2-δ (-0.04= 2 +Ar gas atmospheres where changes in δ and film structure had been achieved by varying the O 2 flow rate and the substrate temperature. The electrical transport properties of these samples were investigated by measuring the conductivity as a function of temperature between 17K and room temperature. At the temperature range between 200 and 290K the best fit to the experimental data was obtained assuming a dependence characteristic of adiabatic variable range hopping. At lower temperature the activation energy for the conductivity tends to zero. The results suggest that the conduction mechanism is adiabatic small polaron hopping, which switches to conduction in a polaron band at low temperatures

  2. Investigation of impurity-helium solid phase decomposition

    International Nuclear Information System (INIS)

    Boltnev, R.E.; Gordon, E.B.; Krushinskaya, I.N.; Martynenko, M.V.; Pel'menev, A.A.; Popov, E.A.; Khmelenko, V.V.; Shestakov, A.F.

    1997-01-01

    The element composition of the impurity-helium solid phase (IHSP), grown by injecting helium gas jet, involving Ne, Ar, Kr, and Xe atoms and N 2 molecules, into superfluid helium, has been studied. The measured stoichiometric ratios, S = N H e / N I m, are well over the values expected from the model of frozen together monolayer helium clusters. The theoretical possibility for the freezing of two layers helium clusters is justified in the context of the model of IHSP helium subsystem, filled the space between rigid impurity centers. The process of decomposition of impurity-helium (IH)-samples taken out of liquid helium in the temperature range 1,5 - 12 K and the pressure range 10-500 Torr has been studied. It is found that there are two stages of samples decomposition: a slow stage characterized by sample self cooling and a fast one accompanied by heat release. These results suggest, that the IHSP consists of two types of helium - weakly bound and strongly bound helium - that can be assigned to the second and the first coordination helium spheres, respectively, formed around heavy impurity particles. A tendency for enhancement of IHSP thermo stability with increasing the impurity mass is observed. Increase of helium vapor pressure above the sample causes the improvement of IH sample stability. Upon destruction of IH samples, containing nitrogen atoms, a thermoluminescence induced by atom recombination has been detected in the temperature region 3-4,5 K. This suggests that numerous chemical reactions may be realized in solidified helium

  3. Ionic Impurity in a Bose-Einstein Condensate at Submicrokelvin Temperatures

    Science.gov (United States)

    Kleinbach, K. S.; Engel, F.; Dieterle, T.; Löw, R.; Pfau, T.; Meinert, F.

    2018-05-01

    Rydberg atoms immersed in a Bose-Einstein condensate interact with the quantum gas via electron-atom and ion-atom interaction. To suppress the typically dominant electron-neutral interaction, Rydberg states with a principal quantum number up to n =190 are excited from a dense and tightly trapped micron-sized condensate. This allows us to explore a regime where the Rydberg orbit exceeds the size of the atomic sample by far. In this case, a detailed line shape analysis of the Rydberg excitation spectrum provides clear evidence for ion-atom interaction at temperatures well below a microkelvin. Our results may open up ways to enter the quantum regime of ion-atom scattering for the exploration of charged quantum impurities and associated polaron physics.

  4. Gross–Tulub polaron functional in the region of intermediate and strong coupling

    Directory of Open Access Journals (Sweden)

    N.I. Kashirina

    2017-10-01

    Full Text Available Properties of the polaron functional obtained as a result of averaging the Fröhlich Hamiltonian on the translation-invariant function have been investigated. The polaron functional can be represented in two different forms. It has been shown that the functional of translationally invariant Gross–Tulub polaron cannot be applied in the strong coupling region, where the real part of the complex quantity takes negative values. The function coincides in its structure with the dynamic susceptibility of degenerate electron gas. The necessary condition for obtaining correct results is investigation of the region of admissible values of the Gross–Tulub functional depending on properties of the function , variational parameters, and the electron-phonon interaction parameter α (Fröhlich coupling constant. A simple and exact formula for the recoil energy of the translationally invariant polaron has been derived, which makes it possible to extend the range of admissible values of the parameters of the electron-phonon interaction to the region of extremely strong coupling (α > 10, where . Numerical investigation of different forms of polaron functionals obtained using the field theory methods has been carried out.

  5. Polaronic transport in polysilanes

    Czech Academy of Sciences Publication Activity Database

    Nešpůrek, Stanislav; Nožár, Juraj; Kadashchuk, A.; Fishchuk, I. I.

    2009-01-01

    Roč. 193, č. 1 (2009), s. 1-4 ISSN 1742-6588. [International Conference on Electron Dynamics in Semiconductors, Optoelectronics and Nanostructures /16./. Montpellier, 24.08.2009-28.08.2009] R&D Projects: GA AV ČR IAA100100622; GA AV ČR KAN400720701 Institutional research plan: CEZ:AV0Z40500505 Keywords : polaronic transport * polysilanes * charge carrier mobility Subject RIV: CD - Macromolecular Chemistry

  6. Polarons induced electronic transport, dielectric relaxation and magnetodielectric coupling in spin frustrated Ba{sub 2}FeWO{sub 6}

    Energy Technology Data Exchange (ETDEWEB)

    Pezhumkattil Palakkal, Jasnamol [Academy of Scientific and Innovative Research (AcSIR), CSIR—National Institute for Interdisciplinary Science and Technology (CSIR-NIIST) Campus, Trivandrum 695 019 (India); Materials Science and Technology Division, National Institute for Interdisciplinary Science and Technology, CSIR, Trivandrum 695 019 (India); Lekshmi, P. Neenu; Thomas, Senoy [Materials Science and Technology Division, National Institute for Interdisciplinary Science and Technology, CSIR, Trivandrum 695 019 (India); Valant, Matjaz [Materials Research Laboratory, University of Nova Gorica, Nova Gorica 5000 (Slovenia); Suresh, K.G. [Department of Physics, Indian Institute of Technology Bombay, Mumbai 400 076 (India); Varma, Manoj Raama, E-mail: manoj@niist.res.in [Academy of Scientific and Innovative Research (AcSIR), CSIR—National Institute for Interdisciplinary Science and Technology (CSIR-NIIST) Campus, Trivandrum 695 019 (India); Materials Science and Technology Division, National Institute for Interdisciplinary Science and Technology, CSIR, Trivandrum 695 019 (India)

    2016-04-15

    Highlights: • Ordered double perovskite Ba{sub 2}FeWO{sub 6} synthesized in reducing atmosphere possess a tetragonal I4/m crystal structure with mixed valent Fe/W cations. • Ba{sub 2}FeWO{sub 6} has an antiferromagnetic structure with T{sub N} at 19 K. • Insulating Ba{sub 2}FeWO{sub 6} shows different conducting mechanisms at different temperature regions and dielectric relaxation. • The polarons invoked by the mixed valence state of cations and their disordered arrangements are solely responsible for the various physical phenomena observed in Ba{sub 2}FeWO{sub 6}. - Abstract: Mixed valent double perovskite Ba{sub 2}FeWO{sub 6}, with tetragonal crystal structure, synthesized in a highly controlled reducing atmosphere, shows antiferromagnetic transition at T{sub N} = 19 K. A cluster glass-like transition is observed around 30 K arising from the competing interactions between inhomogeneous magnetic states. The structural distortion leads to the formation of polarons that are not contributing to DC conduction below charge ordering temperature, T{sub CO} = 279 K. Above T{sub CO}, small polarons will start to hop by exploiting thermal energy and participate in the conduction mechanism. The polarons are also responsible for the dielectric relaxor behavior, in which the dielectric relaxation time follows non-linearity in temperature as proposed by Fulcher. The material also exhibits a small room temperature magnetoresistance of 1.7% at 90 kOe. An intrinsic magnetodielectric coupling of ∼4% near room temperature and at lower temperatures, as well as an extrinsic magnetodielectric coupling change from +4% to −6% at around 210 K are reported.

  7. Polaronic and bipolaronic structures in the adiabatic Hubbard-Hostein model involving 2 electrons and in its extensions; Structures polaroniques et bipolaroniques dans le modele de hostein hubbard adiabatique a deux electrons et ses extensions

    Energy Technology Data Exchange (ETDEWEB)

    Proville, L

    1998-03-30

    This thesis brings its contribution to the bipolaronic theory which might explain the origin of superconductivity at high temperature. A polaron is a quasiparticle made up of a localized electron and a deformation in the crystal structure. 2 electrons in singlet states localized on the same site form a bipolaron. Whenever the Coulomb repulsion between the 2 electrons is too strong bipolaron turns into 2 no bound polarons. We study the existence and the mobility of bipolarons. We describe the electron-phonon interaction by the Holstein term and the Coulomb repulsion by the Hubbard term. 2 assumptions are made: - the local electron-phonon interaction is strong and opposes the Coulomb repulsion between Hubbard type electrons - the system is close to the adiabatic limit. The system is reduced to 2 electrons in order to allow an exact treatment and the investigation of some bipolaronic bound states. At 2-dimensions the existence of bipolarons requires a very strong coupling which forbids any classical mobility. In some cases an important tunneling effect appears and we show that mobile bipolarons exist in a particular parameter range. Near the adiabatic limit we prove that polaronic and bipolaronic structures exist for a great number of electrons. (A.C.) 33 refs.

  8. Tracking polaron generation in electrochemically doped polyaniline thin films

    Science.gov (United States)

    Kalagi, S. S.; Patil, P. S.

    2018-04-01

    Electrochemically deposited polyaniline films on ITO substrates have been studied for their optical properties. π-π*transitions inducing the formation of polarons and bipolarons have been studied from the optical spectra. The generation of these quasiparticles and the corresponding quantum of energy stored has been analysed and calculated from the experimental data. The evolution of polaron with increased levels of protonation has been identified and the necessary energy required for the transitions have been explained with the help of band structure diagram.

  9. Investigation of impurity defects in α-iron by molecular dynamics method

    International Nuclear Information System (INIS)

    Kevorkyan, Yu.R.

    1986-01-01

    Investigation of the configuration of impurity defects in α-iron by the molecular dynamics method is presented. The Jhonson model potential has been used to calculate the interaction of matrix atoms. The impurity-matrix atom interaction is described by the same form of the potential shifted along the axis of interatomic distances for a definite value. The correspondence between the shift value and change in the radius of the impurity defect is established on the basis of calculation of the relaxation volume. Possible configurations of the impurity - interstitial matrix atom complexes are obtained for the given model of the impurity defect, dimensional boundaries of possible transitions between different configurations are determined. Formation and bound energies, relaxation volumes of impurity defects are calculated

  10. Magnetic polarons in a nonequilibrium polariton condensate

    Science.gov (United States)

    Mietki, Paweł; Matuszewski, Michał

    2017-09-01

    We consider a condensate of exciton polaritons in a diluted magnetic semiconductor microcavity. Such a system may exhibit magnetic self-trapping in the case of sufficiently strong coupling between polaritons and magnetic ions embedded in the semiconductor. We investigate the effect of the nonequilibrium nature of exciton polaritons on the physics of the resulting self-trapped magnetic polarons. We find that multiple polarons can exist at the same time, and we derive a critical condition for self-trapping that is different from the one predicted previously in the equilibrium case. Using the Bogoliubov-de Gennes approximation, we calculate the excitation spectrum and provide a physical explanation in terms of the effective magnetic attraction between polaritons, mediated by the ion subsystem.

  11. Impurity diffusion in transition-metal oxides

    International Nuclear Information System (INIS)

    Peterson, N.L.

    1982-06-01

    Intrinsic tracer impurity diffusion measurements in ceramic oxides have been primarily confined to CoO, NiO, and Fe 3 O 4 . Tracer impurity diffusion in these materials and TiO 2 , together with measurements of the effect of impurities on tracer diffusion (Co in NiO and Cr in CoO), are reviewed and discussed in terms of impurity-defect interactions and mechanisms of diffusion. Divalent impurities in divalent solvents seem to have a weak interaction with vacancies whereas trivalent impurities in divalent solvents strongly influence the vacancy concentrations and significantly reduce solvent jump frequencies near a trivalent impurity. Impurities with small ionic radii diffuse more slowly with a larger activation energy than impurities with larger ionic radii for all systems considered in this review. Cobalt ions (a moderate size impurity) diffuse rapidly along the open channels parallel to the c-axis in TiO 2 whereas chromium ions (a smaller-sized impurity) do not. 60 references, 11 figures

  12. Electron localization, polarons and clustered states in manganites

    International Nuclear Information System (INIS)

    Mannella, N.

    2004-01-01

    Full text: A recent multi-spectroscopic study of prototypical colossal magnetoresistance (CMR) compounds La 1-x Sr x MnO 3 (LSMO, x = 0.3, 0.4) using photoemission (PE), x-ray absorption (XAS), x-ray emission (XES) and extended x-ray absorption e structure (EXAFS) has exposed a dramatic change in the electronic structure on crossing the ferromagnetic-to-paramagnetic transition temperature (T C ). In particular, this investigation revealed an increase of the Mn magnetic moment by ca. 1 Bohr magneton and charge transfer to the Mn atom on crossing T C concomitant with the presence of Jahn-Teller distortions, thus providing direct evidence of lattice polaron formation. These results thus challenge the belief of some authors that the LSMO compounds are canonical double-exchange (DE) systems in which polaron formation is unimportant, and thus help to unify the theoretical description of the CMR oxides. The relationship of these data to other recent work suggesting electron localization, polarons and phase separation, along with additional measurements of magnetic susceptibility indicating the formation of ferromagnetic clusters in the metallic paramagnetic state above T C will be discussed

  13. Problems of linear electron (polaron) transport theory in semiconductors

    CERN Document Server

    Klinger, M I

    1979-01-01

    Problems of Linear Electron (Polaron) Transport Theory in Semiconductors summarizes and discusses the development of areas in electron transport theory in semiconductors, with emphasis on the fundamental aspects of the theory and the essential physical nature of the transport processes. The book is organized into three parts. Part I focuses on some general topics in the theory of transport phenomena: the general dynamical theory of linear transport in dissipative systems (Kubo formulae) and the phenomenological theory. Part II deals with the theory of polaron transport in a crystalline semicon

  14. Zn vacancy-donor impurity complexes in ZnO

    Science.gov (United States)

    Frodason, Y. K.; Johansen, K. M.; Bjørheim, T. S.; Svensson, B. G.; Alkauskas, A.

    2018-03-01

    Results from hybrid density functional theory calculations on the thermodynamic stability and optical properties of the Zn vacancy (VZn) complexed with common donor impurities in ZnO are reported. Complexing VZn with donors successively removes its charge-state transition levels in the band gap, starting from the most negative one. Interestingly, the presence of a donor leads only to modest shifts in the positions of the VZn charge-state transition levels, the sign and magnitude of which can be interpreted from a polaron energetics model by taking hole-donor repulsion into account. By employing a one-dimensional configuration coordinate model, luminescence lineshapes and positions were calculated. Due to the aforementioned effects, the isolated VZn gradually changes from a mainly nonradiative defect with transitions in the infrared region in n -type material, to a radiative one with broad emission in the visible range when complexed with shallow donors.

  15. Impurity-generated non-Abelions

    Science.gov (United States)

    Simion, G.; Kazakov, A.; Rokhinson, L. P.; Wojtowicz, T.; Lyanda-Geller, Y. B.

    2018-06-01

    Two classes of topological superconductors and Majorana modes in condensed matter systems are known to date: one in which disorder induced by impurities strongly suppresses topological superconducting gap and is detrimental to Majorana modes, and another where Majorana fermions are protected by a disorder-robust topological superconductor gap. Observation and control of Majorana fermions and other non-Abelions often requires a symmetry of an underlying system leading to a gap in the single-particle or quasiparticle spectra. In semiconductor structures, impurities that provide charge carriers introduce states into the gap and enable conductance and proximity-induced superconductivity via the in-gap states. Thus a third class of topological superconductivity and Majorana modes emerges, in which topological superconductivity and Majorana fermions appear exclusively when impurities generate in-gap states. We show that impurity-enabled topological superconductivity is realized in a quantum Hall ferromagnet, when a helical domain wall is coupled to an s -wave superconductor. As an example of emergence of topological superconductivity in quantum Hall ferromagnets, we consider the integer quantum Hall effect in Mn-doped CdTe quantum wells. Recent experiments on transport through the quantum Hall ferromagnet domain wall in this system indicated a vital role of impurities in the conductance, but left unresolved the question whether impurities preclude generation of Majorana fermions and other non-Abelions in such systems in general. Here, solving a general quantum-mechanical problem of impurity bound states in a system of spin-orbit coupled Landau levels, we demonstrate that impurity-induced Majorana modes emerge at boundaries between topological and conventional superconducting states generated in a domain wall due to proximity to an s superconductor. We consider both short-range disorder and a smooth random potential. The phase diagram of the system is defined by

  16. Quantum transition and decoherence of levitating polaron on helium film thickness under an electromagnetic field

    Science.gov (United States)

    Kenfack, S. C.; Fotue, A. J.; Fobasso, M. F. C.; Djomou, J.-R. D.; Tiotsop, M.; Ngouana, K. S. L.; Fai, L. C.

    2017-12-01

    We have studied the transition probability and decoherence time of levitating polaron in helium film thickness. By using a variational method of Pekar type, the ground and the first excited states of polaron are calculated above the liquid-helium film placed on the polar substrate. It is shown that the polaron transits from the ground to the excited state in the presence of an external electromagnetic field in the plane. We have seen that, in the helium film, the effects of the magnetic and electric fields on the polaron are opposite. It is also shown that the energy, transition probability and decoherence time of the polaron depend sensitively on the helium film thickness. We found that decoherence time decreases as a function of increasing electron-phonon coupling strength and the helium film thickness. It is seen that the film thickness can be considered as a new confinement in our system and can be adjusted in order to reduce decoherence.

  17. Logarithmic corrections in a quantization rule. The polaron spectrum

    International Nuclear Information System (INIS)

    Karasev, M.V.; Pereskokov, A.V.

    1994-01-01

    A nonlinear integrodifferential equation that arises in polaron theory is considered. The integral nonlinearity is given by a convolution with the Coulomb potential. Radially symmetric solutions are sought. In the semiclassical limit, an equation for the self-consistent potential is found and studied. The potential has a logarithmic singularity at the origin, and also a turning point at 1. The phase shifts at these points are determined. The quantization rule that takes into account the logarithmic corrections gives a simple asymptotic formula for the polaron spectrum. Global semiclassical solutions of the original nonlinear equation are constructed. 18 refs., 1 tab

  18. On the Mott transition and the new metal-insulator transitions in doped covalent and polar crystals

    International Nuclear Information System (INIS)

    Dzhumanov, S.; Begimkulov, U.; Kurbanov, U.T.; Yavidov, B.Y.

    2001-10-01

    The Mott transition and new metal-insulator transitions (MIT's) and their distinctive features in doped covalent semiconductors and polar compounds are studied within the continuum model of extrinsic carrier self-trapping, the Hubbard impurity band model (with on-site Coulomb repulsion and screening effects) and the extrinsic (bi)polaronic band model (with short- and long-range carrier-impurity, impurity-phonon and carrier-phonon interactions and intercarrier correlation) using the appropriate tight-binding approximations and variational methods. We have shown the formation possibility of large-radius localized one- and two-carrier impurity (or defect) states and narrow impurity bands in the band gap and charge transfer gap of these carrier-doped systems. The extrinsic Mott-Hubbard and (bi)polaronic insulating gaps are calculated exactly. The proper criterions for Mott transition, extrinsic excitonic and (bi)polaronic MIT's are obtained. We have demonstrated that the Mott transition occurs in doped covalent semiconductors (i.e. Si and Ge) and some insulators with weak carrier-phonon coupling near the large-radius dopants. While, in doped polar compounds (e.g. oxide high-T c superconductors (HTSC) and related materials) the MIT's are new extrinsic (or intrinsic) (bi)polaronic MIT's. We have found that the anisotropy of the dielectric (or (bi)polaronic) properties of doped cuprate HTSC is responsible for smooth (or continuous) MIT's, stripe formation and suppression of high-T c superconductivity. Various experimental results on in-gap states, bands and MIT's in doped covalent semiconductors, oxide HTSC and related materials are in good agreement with the developed theory of Mott transition and new (bi)polaronic MIT's. (author)

  19. Fano-type coupling of a bound paramagnetic state with 2D continuum

    International Nuclear Information System (INIS)

    Rozhansky, I. V.; Averkiev, N. S.; Lähderanta, E.

    2013-01-01

    We analyze an effect of a bound impurity state located at a tunnel distance from a quantum well (QW). The study is focused on the resonance case when the bound state energy lies within the continuum of the QW states. Using the developed theory we calculate spin polarization of 2D holes induced by paramagnetic (Mn) delta-layer in the vicinity of the QW and indirect exchange interaction between two impurities located at a tunnel distance from electron gas

  20. Microscopic observation of magnon bound states and their dynamics.

    Science.gov (United States)

    Fukuhara, Takeshi; Schauß, Peter; Endres, Manuel; Hild, Sebastian; Cheneau, Marc; Bloch, Immanuel; Gross, Christian

    2013-10-03

    The existence of bound states of elementary spin waves (magnons) in one-dimensional quantum magnets was predicted almost 80 years ago. Identifying signatures of magnon bound states has so far remained the subject of intense theoretical research, and their detection has proved challenging for experiments. Ultracold atoms offer an ideal setting in which to find such bound states by tracking the spin dynamics with single-spin and single-site resolution following a local excitation. Here we use in situ correlation measurements to observe two-magnon bound states directly in a one-dimensional Heisenberg spin chain comprising ultracold bosonic atoms in an optical lattice. We observe the quantum dynamics of free and bound magnon states through time-resolved measurements of two spin impurities. The increased effective mass of the compound magnon state results in slower spin dynamics as compared to single-magnon excitations. We also determine the decay time of bound magnons, which is probably limited by scattering on thermal fluctuations in the system. Our results provide a new way of studying fundamental properties of quantum magnets and, more generally, properties of interacting impurities in quantum many-body systems.

  1. Optical nonlinearity and bistability in the bound exciton energy range of CdS

    International Nuclear Information System (INIS)

    Hoenig, T.; Gutowski, J.

    1988-01-01

    Under high excitation conditions thick CdS samples show pronounced broad-band nonlinear transmission in the bound exciton region and up to a wavelength of about 515 nm at cryo-temperatures. This behavior is only explainable in a model based on impurity neutralization and bound exciton creation. The suitability of these nonlinearities to yield optical bistability will be shown. Bistable operation is investigated in dependence of crystal thickness, impurity concentration, excitation density, wavelength, and temperature. A strong correlation to acceptor-bound exciton generation is obtained, and the explanation of this bistable operation fits well with that of the above mentioned transmission behavior. (author)

  2. Size dependent polaronic conduction in hematite

    International Nuclear Information System (INIS)

    Sharma, Monika; Banday, Azeem; Murugavel, Sevi

    2016-01-01

    Lithium Ion Batteries have been attracted as the major renewable energy source for all portable electronic devices because of its advantages like superior energy density, high theoretical capacity, high specific energy, stable cycling and less memory effects. Recently, α-Fe_2O_3 has been considered as a potential anode material due to high specific capacity, low cost, high abundance and environmental benignity. We have synthesized α-Fe_2O_3 with various sizes by using the ball milling and sol-gel procedure. Here, we report the dc conductivity measurement for the crystallite size ranging from 15 nm to 50 nm. It has been observed that the enhancement in the polaronic conductivity nearly two orders in magnitude while reducing the crystallite size from bulk into nano scale level. The enhancement in the conductivity is due to the augmented to compressive strain developed in the material which leads to pronounced decrease in the hopping length of polarons. Thus, nanocrystaline α-Fe_2O_3 may be a better alternative anode material for lithium ion batteries than earlier reported systems.

  3. Breakdown of the lattice polaron picture in La0.7Ca0.3MnO3 single crystals

    International Nuclear Information System (INIS)

    Chun, S. H.; Salamon, M. B.; Tomioka, Y.; Tokura, Y.

    2000-01-01

    When heated through the magnetic transition at T C , La 0.7 Ca 0.3 MnO 3 changes from a band metal to a polaronic insulator. The Hall constant R H , through its activated behavior and sign anomaly, provides key evidence for polaronic behavior. We use R H and the Hall mobility to demonstrate the breakdown of the polaron phase. Above 1.4T C , the polaron picture holds in detail, while below, the activation energies of both R H and the mobility deviate strongly from their polaronic values. These changes reflect the presence of metallic, ferromagnetic fluctuations, in the volume of which the Hall effect develops additional contributions tied to quantal phases. (c) 2000 The American Physical Society

  4. Polaron scattering by an external field

    International Nuclear Information System (INIS)

    Kochetov, E.A.

    1980-01-01

    The problem of polaron scattering by an external field is studied. The problem is solved using the stationary scattering theory formalism based on two operators: the G Green function operator and the T scattering operator. The dependence of the scattering amplitude on the quasi particle structure is studied. The variation approach is used for estimation of the ground energy level

  5. Stability and Polaronic Motion of Self-Trapped Holes in Silver Halides

    DEFF Research Database (Denmark)

    Loftager, Simon; Garcia-Fernandez, P.; Aramburu, J. A.

    2016-01-01

    Polarons and their associated transport properties are a field of great current interest both in chemistry and physics. To further our understanding of these quasi-particles, we have carried out first-principles calculations of self-trapped holes (STHs) in the model compounds AgCl and AgBr, for w......Polarons and their associated transport properties are a field of great current interest both in chemistry and physics. To further our understanding of these quasi-particles, we have carried out first-principles calculations of self-trapped holes (STHs) in the model compounds AgCl and Ag...

  6. Size dependent polaronic conduction in hematite

    Energy Technology Data Exchange (ETDEWEB)

    Sharma, Monika; Banday, Azeem; Murugavel, Sevi [Department of Physics and Astrophysics, University of Delhi, Delhi – 110 007 (India)

    2016-05-23

    Lithium Ion Batteries have been attracted as the major renewable energy source for all portable electronic devices because of its advantages like superior energy density, high theoretical capacity, high specific energy, stable cycling and less memory effects. Recently, α-Fe{sub 2}O{sub 3} has been considered as a potential anode material due to high specific capacity, low cost, high abundance and environmental benignity. We have synthesized α-Fe{sub 2}O{sub 3} with various sizes by using the ball milling and sol-gel procedure. Here, we report the dc conductivity measurement for the crystallite size ranging from 15 nm to 50 nm. It has been observed that the enhancement in the polaronic conductivity nearly two orders in magnitude while reducing the crystallite size from bulk into nano scale level. The enhancement in the conductivity is due to the augmented to compressive strain developed in the material which leads to pronounced decrease in the hopping length of polarons. Thus, nanocrystaline α-Fe{sub 2}O{sub 3} may be a better alternative anode material for lithium ion batteries than earlier reported systems.

  7. Lower Bound for the Radiation $Q$ of Electrically Small Magnetic Dipole Antennas With Solid Magnetodielectric Core

    DEFF Research Database (Denmark)

    Kim, Oleksiy S.; Breinbjerg, Olav

    2011-01-01

    A new lower bound for the radiation $Q$ of electrically small spherical magnetic dipole antennas with solid magnetodielectric core is derived in closed form using the exact theory. The new bound approaches the Chu lower bound from above as the antenna electrical size decreases. For $ka, the new...... bound is lower than the bounds for spherical magnetic as well as electric dipole antennas composed of impressed electric currents in free space....

  8. First-Principles Modeling of Polaron Formation in TiO2 Polymorphs.

    Science.gov (United States)

    Elmaslmane, A R; Watkins, M B; McKenna, K P

    2018-06-21

    We present a computationally efficient and predictive methodology for modeling the formation and properties of electron and hole polarons in solids. Through a nonempirical and self-consistent optimization of the fraction of Hartree-Fock exchange (α) in a hybrid functional, we ensure the generalized Koopmans' condition is satisfied and self-interaction error is minimized. The approach is applied to model polaron formation in known stable and metastable phases of TiO 2 including anatase, rutile, brookite, TiO 2 (H), TiO 2 (R), and TiO 2 (B). Electron polarons are predicted to form in rutile, TiO 2 (H), and TiO 2 (R) (with trapping energies ranging from -0.02 eV to -0.35 eV). In rutile the electron localizes on a single Ti ion, whereas in TiO 2 (H) and TiO 2 (R) the electron is distributed across two neighboring Ti sites. Hole polarons are predicted to form in anatase, brookite, TiO 2 (H), TiO 2 (R), and TiO 2 (B) (with trapping energies ranging from -0.16 eV to -0.52 eV). In anatase, brookite, and TiO 2 (B) holes localize on a single O ion, whereas in TiO 2 (H) and TiO 2 (R) holes can also be distributed across two O sites. We find that the optimized α has a degree of transferability across the phases, with α = 0.115 describing all phases well. We also note the approach yields accurate band gaps, with anatase, rutile, and brookite within six percent of experimental values. We conclude our study with a comparison of the alignment of polaron charge transition levels across the different phases. Since the approach we describe is only two to three times more expensive than a standard density functional theory calculation, it is ideally suited to model charge trapping at complex defects (such as surfaces and interfaces) in a range of materials relevant for technological applications but previously inaccessible to predictive modeling.

  9. Three-body bound states of two bosonic impurities immersed in a Fermi sea in 2D

    DEFF Research Database (Denmark)

    Bellotti, F. F.; Frederico, T.; Yamashita, M. T.

    2016-01-01

    We consider two identical impurities immersed in a Fermi sea for a broad range of masses and for both interacting and non-interacting impurities. The interaction between the particles is described through attractive zero-range potentials and the problem is solved in momentum space. The two...

  10. Monte Carlo method for magnetic impurities in metals

    Science.gov (United States)

    Hirsch, J. E.; Fye, R. M.

    1986-01-01

    The paper discusses a Monte Carlo algorithm to study properties of dilute magnetic alloys; the method can treat a small number of magnetic impurities interacting wiith the conduction electrons in a metal. Results for the susceptibility of a single Anderson impurity in the symmetric case show the expected universal behavior at low temperatures. Some results for two Anderson impurities are also discussed.

  11. Correlation between excited d-orbital electron lifetime in polaron dynamics and coloration of WO3 upon ultraviolet exposure

    Science.gov (United States)

    Lee, Young-Ahn; Han, Seung-Ik; Rhee, Hanju; Seo, Hyungtak

    2018-05-01

    Polarons have been suggested to explain the mechanism of the coloration of WO3 induced by UV light. However, despite the many experimental results that support small polarons as a key mechanism, direct observation of the carrier dynamics of polarons have yet to be reported. Here, we investigate the correlation between the electronic structure and the coloration of WO3 upon exposure to UV light in 5% H2/N2 gas and, more importantly, reveal photon-induced excited d-electron generation/relaxation via the W5+ oxidation state. The WO3 is fabricated by radio-frequency magnetron sputtering. X-ray diffraction patterns show that prepared WO3 is amorphous. Optical bandgap of 3.1 eV is measured by UV-vis before and after UV light. The results of Fourier transform infrared and Raman exhibit pristine WO3 is formed with surface H2O. The colored WO3 shows reduced state of W5+ state (34.3 eV) by using X-ray photoelectron spectroscopy. The valence band maximum of WO3 after UV light in H2 is shifted from mid gap to shallow donor by using ultraviolet photoelectron spectroscopy. During the exploration of the carrier dynamics, pump (700 nm)-probe (1000 nm) spectroscopy at the femtosecond scale was used. The results indicated that electron-phonon relaxation of UV-irradiated WO3, which is the origin of the polaron-induced local surface plasmonic effect, is dominant, resulting in slow decay (within a few picoseconds); in contrast, pristine WO3 shows fast decay (less than a picosecond). Accordingly, the long photoinduced carrier relaxation is ascribed to the prolonged hot-carrier lifetime in reduced oxides resulting in a greater number of free d-electrons and, therefore, more interactions with the W5+ sub-gap states.

  12. Frequency and temperature dependence of the electrical conductivity of KTaO3; Li and PbTiO3; La, Cu: Indication of a low temperature polaron mechanism

    International Nuclear Information System (INIS)

    Levstik, A.; Filipic, C.; Bidault, O.; Maglione, M.

    2008-01-01

    Recently, the concept of polarons has again been at the focus of solid-state research, as it can constitute the basis for understanding the high-temperature superconductivity or the colossal magnetoresistance of materials. More than a decade ago there were some indications that polarons play an important role in explaining low temperature maxima in imaginary part of the dielectric constant ε '' (T) in ABO 3 perovskites. In the present work we report the ac electrical conductivities of KTaO 3 ; Li and PbTiO 3 ; La, Cu and their frequency and temperature dependence. The real part of the complex ac conductivity was found to follow the universal dielectric response σ ' ∝ν s . A detailed theoretical analysis of the temperature dependence of the parameter s revealed that, at low temperatures, the tunnelling of small polarons is the dominating charge transport mechanism in ABO 3 perovskites

  13. Polaron self-localization in white-light emitting hybrid perovskites

    KAUST Repository

    Cortecchia, Daniele; Yin, Jun; Bruno, Annalisa; Lo, Shu Zee Alencious; Gurzadyan, Gagik G.; Mhaisalkar, Subodh; Bredas, Jean-Luc; Soci, Cesare

    2017-01-01

    within the inorganic perovskite framework. Due to strong Coulombic interactions, these species retain their original excitonic character and form self-trapped polaron-excitons acting as radiative colour centres. These findings are expected to be relevant

  14. Zero-Magnetic-Field Spin Splitting of Polaron's Ground State Energy Induced by Rashba Spin-Orbit Interaction

    International Nuclear Information System (INIS)

    Liu Jia; Xiao Jingling

    2006-01-01

    We study theoretically the ground state energy of a polaron near the interface of a polar-polar semiconductor by considering the Rashba spin-orbit (SO) coupling with the Lee-Low-Pines intermediate coupling method. Our numerical results show that the Rashba SO interaction originating from the inversion asymmetry in the heterostructure splits the ground state energy of the polaron. The electron areal density and vector dependence of the ratio of the SO interaction to the total ground state energy or other energy composition are obvious. One can see that even without any external magnetic field, the ground state energy can be split by the Rashba SO interaction, and this split is not a single but a complex one. Since the presents of the phonons, whose energy gives negative contribution to the polaron's, the spin-splitting states of the polaron are more stable than electron's.

  15. Observations of long impurity confinement times in the ISX tokamak

    Energy Technology Data Exchange (ETDEWEB)

    Burrell, K H; Wong, S K; Muller, III, C H; Hacker, M P [General Atomic Co., San Diego, CA (USA); Ketterer, H E; Isler, R C; Lazarus, E A [Oak Ridge National Lab., TN (USA)

    1981-08-01

    The transport of small amounts of silicon and aluminium injected into plasmas in the Impurity Study Experiment (ISX) tokamak is studied. By monitoring the time behaviour of ultra-violet spectral lines emitted by various charge states of those impurities and comparing this behaviour to the predictions of a multi-species impurity transport code, it is found that both impurity penetration times and impurity containment times are consistent with neoclassical predictions. The observed impurity containment times, which are greater than three times the energy containment time, are consistent with the inward convection predicted by neoclassical theory.

  16. Size Exclusion HPLC Detection of Small-Size Impurities as a Complementary Means for Quality Analysis of Extracellular Vesicles

    Directory of Open Access Journals (Sweden)

    Tao Huang

    2015-07-01

    Full Text Available For extracellular vesicle research, whether for biomarker discoveries or therapeutic applications, it is critical to have high-quality samples. Both microscopy and NanoSight Tracking Analysis (NTA for size distribution have been used to detect large vesicles. However, there is currently no well-established method that is convenient for routine quality analysis of small-size impurities in vesicle samples. In this paper we report a convenient method, called ‘size-exclusion high-performance liquid chromatography’ (SE-HPLC, alongside NTA and Microscopy analysis to guide and qualify the isolation and processing of vesicles. First, the SE-HPLC analysis was used to detect impurities of small-size proteins during the ultra-centrifugation process of vesicle isolation; it was then employed to test the changes of vesicles under different pH conditions or integrity after storage. As SE-HPLC is generally accessible in most institutions, it could be used as a routine means to assist researchers in examining the integrity and quality of extracellular vesicles along with other techniques either during isolation/preparation or for further engineering and storage.

  17. Localized polarons and doorway vibrons in finite quantum structures

    Czech Academy of Sciences Publication Activity Database

    Fehske, H.; Wellein, G.; Loos, Jan; Bishop, A. R.

    2008-01-01

    Roč. 77, č. 8 (2008), 085117/1-085117/6 ISSN 1098-0121 Institutional research plan: CEZ:AV0Z10100521 Keywords : quantum dots * electron - phonon interaction * polarons Subject RIV: BM - Solid Matter Physics ; Magnetism Impact factor: 3.322, year: 2008

  18. Effect of base-pair inhomogeneities on charge transport along the DNA molecule, mediated by twist and radial polarons

    International Nuclear Information System (INIS)

    Palmero, F; Archilla, J F R; Hennig, D; Romero, F R

    2004-01-01

    Some recent results for a three-dimensional, semi-classical, tight-binding model for DNA show that there are two types of polarons, namely radial and twist polarons, which can transport charge along the DNA molecule. However, the existence of two types of base pairs in real DNA makes it crucial to find out if charge transport also exists in DNA chains with different base pairs. In this paper, we address this problem in its simple case, a homogeneous chain except for a single different base pair, which we call a base-pair inhomogeneity, and its effect on charge transport. Radial polarons experience either reflection or trapping. However, twist polarons are good candidates for charge transport along real DNA. This transport is also very robust with respect to weak parametric and diagonal disorder

  19. Non-canonical distribution and non-equilibrium transport beyond weak system-bath coupling regime: A polaron transformation approach

    Science.gov (United States)

    Xu, Dazhi; Cao, Jianshu

    2016-08-01

    The concept of polaron, emerged from condense matter physics, describes the dynamical interaction of moving particle with its surrounding bosonic modes. This concept has been developed into a useful method to treat open quantum systems with a complete range of system-bath coupling strength. Especially, the polaron transformation approach shows its validity in the intermediate coupling regime, in which the Redfield equation or Fermi's golden rule will fail. In the polaron frame, the equilibrium distribution carried out by perturbative expansion presents a deviation from the canonical distribution, which is beyond the usual weak coupling assumption in thermodynamics. A polaron transformed Redfield equation (PTRE) not only reproduces the dissipative quantum dynamics but also provides an accurate and efficient way to calculate the non-equilibrium steady states. Applications of the PTRE approach to problems such as exciton diffusion, heat transport and light-harvesting energy transfer are presented.

  20. DFT+U study of polaronic conduction in Li2O2 and Li2CO3

    DEFF Research Database (Denmark)

    García Lastra, Juan Maria; Myrdal, J.S.G.; Christensen, Rune

    2013-01-01

    The main discharge products formed at the cathode of nonaqueous Li-air batteries are known to be Li2O2 and residual Li2CO3. Recent experiments indicate that the charge transport through these materials is the main limiting factor for the battery performance. It has been also shown...... that the performance of the battery decreases drastically when the amount of Li2CO3 at the cathode increases with respect to Li2O2. In this work, we study the formation and transport of hole and electron polarons in Li2O2 and Li2CO3 using density functional theory (DFT) within the PBE+U approximation. For both...... materials, we find that the formation of polarons (both hole and electron) is stabilized with respect to the delocalized states for all physically relevant values of U. We find a much higher mobility for hole polarons than for the electron polarons, and we show that the poor charge transport in Li2CO3...

  1. The role of deep acceptor centers in the oxidation of acceptor-doped wide-band-gap perovskites ABO{sub 3}

    Energy Technology Data Exchange (ETDEWEB)

    Putilov, L.P., E-mail: lev.putilov@gmail.com; Tsidilkovski, V.I.

    2017-03-15

    The impact of deep acceptor centers on defect thermodynamics and oxidation of wide-band-gap acceptor-doped perovskites without mixed-valence cations is studied. These deep centers are formed by the acceptor-bound small hole polarons whose stabilization energy can be high enough (significantly higher than the hole-acceptor Coulomb interaction energy). It is shown that the oxidation enthalpy ΔH{sub ox} of oxide is determined by the energy ε{sub A} of acceptor-bound states along with the formation energy E{sub V} of oxygen vacancies. The oxidation reaction is demonstrated to be either endothermic or exothermic, and the regions of ε{sub A} and E{sub V} values corresponding to the positive or negative ΔH{sub ox} are determined. The contribution of acceptor-bound holes to the defect thermodynamics strongly depends on the acceptor states depth ε{sub A}: it becomes negligible at ε{sub A} less than a certain value (at which the acceptor levels are still deep). With increasing ε{sub A}, the concentration of acceptor-bound small hole polarons can reach the values comparable to the dopant content. The results are illustrated with the acceptor-doped BaZrO{sub 3} as an example. It is shown that the experimental data on the bulk hole conductivity of barium zirconate can be described both in the band transport model and in the model of hopping small polarons localized on oxygen ions away from the acceptor centers. Depending on the ε{sub A} magnitude, the oxidation reaction can be either endothermic or exothermic for both mobility mechanisms.

  2. Influence of iron impurities on defected graphene

    Energy Technology Data Exchange (ETDEWEB)

    Faccio, Ricardo; Pardo, Helena [Centro NanoMat, Cryssmat-Lab, DETEMA, Polo Tecnológico de Pando, Facultad de Química, Universidad de la República, Cno. Saravia s/n, CP 91000 Pando (Uruguay); Centro Interdisciplinario en Nanotecnología, Química y Física de Materiales, Espacio Interdisciplinario, Universidad de la República, Montevideo (Uruguay); Araújo-Moreira, Fernando M. [Materials and Devices Group, Department of Physics, Universidade Federal de São Carlos, SP 13565-905 (Brazil); Mombrú, Alvaro W., E-mail: amombru@fq.edu.uy [Centro NanoMat, Cryssmat-Lab, DETEMA, Polo Tecnológico de Pando, Facultad de Química, Universidad de la República, Cno. Saravia s/n, CP 91000 Pando (Uruguay); Centro Interdisciplinario en Nanotecnología, Química y Física de Materiales, Espacio Interdisciplinario, Universidad de la República, Montevideo (Uruguay)

    2015-03-01

    Highlights: • The interaction among a multivacancy graphene system and iron impurities is studied. • The studied iron impurities were single atom and tetrahedral and octahedral clusters. • DFT calculations using the VASP code were performed. • The embedding of Fe affects the structure and electronic behavior in the graphene. • Half metal or semimetal behavior can be obtained, depending on the Fe impurities. - Abstract: The aim of this work is to study the interaction of selected iron cluster impurities and a multivacancy graphene system, in terms of the structural distortion that the impurities cause as well as their magnetic response. While originally, the interaction has been limited to vacancies and isolated metallic atoms, in this case, we consider small iron clusters. This study was undertaken using Density Functional Theory (DFT) calculations. The influence of the iron impurities in the electronic structure of the vacant graphene system is discussed. The main conclusion of this work is that the presence of iron impurities acts lowering the magnetic signal due to the occurrence of spin pairing between carbon and iron, instead of enhancing the possible intrinsic carbon magnetism.

  3. Influence of iron impurities on defected graphene

    International Nuclear Information System (INIS)

    Faccio, Ricardo; Pardo, Helena; Araújo-Moreira, Fernando M.; Mombrú, Alvaro W.

    2015-01-01

    Highlights: • The interaction among a multivacancy graphene system and iron impurities is studied. • The studied iron impurities were single atom and tetrahedral and octahedral clusters. • DFT calculations using the VASP code were performed. • The embedding of Fe affects the structure and electronic behavior in the graphene. • Half metal or semimetal behavior can be obtained, depending on the Fe impurities. - Abstract: The aim of this work is to study the interaction of selected iron cluster impurities and a multivacancy graphene system, in terms of the structural distortion that the impurities cause as well as their magnetic response. While originally, the interaction has been limited to vacancies and isolated metallic atoms, in this case, we consider small iron clusters. This study was undertaken using Density Functional Theory (DFT) calculations. The influence of the iron impurities in the electronic structure of the vacant graphene system is discussed. The main conclusion of this work is that the presence of iron impurities acts lowering the magnetic signal due to the occurrence of spin pairing between carbon and iron, instead of enhancing the possible intrinsic carbon magnetism

  4. Possibility of observation of polaron normal modes at the far-infrared spectrum of acetanilide and related organics

    Science.gov (United States)

    Kalosakas, G.; Aubry, S.; Tsironis, G. P.

    1998-10-01

    We use a stationary and normal mode analysis of the semiclassical Holstein model in order to connect the low-frequency linear polaron modes to low-lying far-infrared lines of the acetanilide spectrum and through parameter fitting we comment on the validity of the polaron results in this system.

  5. Impurity dependence of superconductivity in niobium

    International Nuclear Information System (INIS)

    Laa, C.

    1984-04-01

    Jump temperatures, the critical fields Hsubc and Hsubc 2 and specific heats were measured on niobium samples where the impurity content was systematically varied by loading with nitrogen. Quantities could thus be extrapolated to lattice perfection and absolute purity. Comparisons with theories were made and some parameters extracted. Agreement was found with Gorkov theory for small impurities. A new value of the Ginsburg-Landau parameter Ko was determined to be just above 1/sqrt2 which proves that niobium is an elementary Type II semiconductor. By comparisons with the BCS and the CLAC theory the values of the mean Fermi velocity, the London penetration depth, the BCS coherence length and the impurity parameter were extracted. (G.Q.)

  6. Finite temperature dynamics of a Holstein polaron: The thermo-field dynamics approach

    Science.gov (United States)

    Chen, Lipeng; Zhao, Yang

    2017-12-01

    Combining the multiple Davydov D2 Ansatz with the method of thermo-field dynamics, we study finite temperature dynamics of a Holstein polaron on a lattice. It has been demonstrated, using the hierarchy equations of motion method as a benchmark, that our approach provides an efficient, robust description of finite temperature dynamics of the Holstein polaron in the simultaneous presence of diagonal and off-diagonal exciton-phonon coupling. The method of thermo-field dynamics handles temperature effects in the Hilbert space with key numerical advantages over other treatments of finite-temperature dynamics based on quantum master equations in the Liouville space or wave function propagation with Monte Carlo importance sampling. While for weak to moderate diagonal coupling temperature increases inhibit polaron mobility, it is found that off-diagonal coupling induces phonon-assisted transport that dominates at high temperatures. Results on the mean square displacements show that band-like transport features dominate the diagonal coupling cases, and there exists a crossover from band-like to hopping transport with increasing temperature when including off-diagonal coupling. As a proof of concept, our theory provides a unified treatment of coherent and incoherent transport in molecular crystals and is applicable to any temperature.

  7. Soliton scatterings by impurities in a short-length sine-Gordon chain

    International Nuclear Information System (INIS)

    Dikande, A.M.; Kofane, T.C.

    1995-07-01

    The scattering of soliton by impurities at the frontiers of a finite-length region of an infinite sine-Gordon chain is analyzed. The impurities consist of two isotopic inhomogeneities installed at the boundaries of the finite-length region. The soliton solution in the region is found in term of snoidal sine-Gordon soliton which properly takes into account the effects of the boundaries. By contrast, the soliton solutions in the neighboring sides of the region are obtained in terms of the so-called large-amplitude, localized kinks with limiting spatial extensions at x → ± ∞, which is equal ±π. Using the continuity of these soliton solutions at the frontiers as well as appropriate boundary conditions, it is shown that the soliton may be either i) reflected by the incident impurity; ii) trapped (with oscillating motions) between the two impurities (i.e. inside the infinite region); or iii) transmitted by the second impurity into the third, infinitely extended region. The threshold velocities for the reflection and transmission into different regions are found and shown to vary exponentially as a function of the length of the bounded region. The frequency of soliton oscillations between the impurities has also been calculated in some acceptable limit. (author). 28 refs, 1 fig

  8. Energy Migration in Organic Thin Films--From Excitons to Polarons

    Science.gov (United States)

    Mullenbach, Tyler K.

    The rise of organic photovoltaic devices (OPVs) and organic light-emitting devices has generated interest in the physics governing exciton and polaron dynamics in thin films. Energy transfer has been well studied in dilute solutions, but there are emergent properties in thin films and greater complications due to complex morphologies which must be better understood. Despite the intense interest in energy transport in thin films, experimental limitations have slowed discoveries. Here, a new perspective of OPV operation is presented where photovoltage, instead of photocurrent, plays the fundamental role. By exploiting this new vantage point the first method of measuring the diffusion length (LD) of dark (non-luminescent) excitons is developed, a novel photodetector is invented, and the ability to watch exciton arrival, in real-time, at the donor-acceptor heterojunction is presented. Using an enhanced understanding of exciton migration in thin films, paradigms for enhancing LD by molecular modifications are discovered, and the first exciton gate is experimentally and theoretically demonstrated. Generation of polarons from exciton dissociation represents a second phase of energy migration in OPVs that remains understudied. Current approaches are capable of measuring the rate of charge carrier recombination only at open-circuit. To enable a better understanding of polaron dynamics in thin films, two new approaches are presented which are capable of measuring both the charge carrier recombination and transit rates at any OPV operating voltage. These techniques pave the way for a more complete understanding of charge carrier kinetics in molecular thin films.

  9. Time Domain View of Liquid-like Screening and Large Polaron Formation in Lead Halide Perovskites

    Science.gov (United States)

    Joshi, Prakriti Pradhan; Miyata, Kiyoshi; Trinh, M. Tuan; Zhu, Xiaoyang

    The structural softness and dynamic disorder of lead halide perovskites contributes to their remarkable optoelectronic properties through efficient charge screening and large polaron formation. Here we provide a direct time-domain view of the liquid-like structural dynamics and polaron formation in single crystal CH3NH3PbBr3 and CsPbBr3 using femtosecond optical Kerr effect spectroscopy in conjunction with transient reflectance spectroscopy. We investigate structural dynamics as function of pump energy, which enables us to examine the dynamics in the absence and presence of charge carriers. In the absence of charge carriers, structural dynamics are dominated by over-damped picosecond motions of the inorganic PbBr3- sub-lattice and these motions are strongly coupled to band-gap electronic transitions. Carrier injection from across-gap optical excitation triggers additional 0.26 ps dynamics in CH3NH3PbBr3 that can be attributed to the formation of large polarons. In comparison, large polaron formation is slower in CsPbBr3 with a time constant of 0.6 ps. We discuss how such dynamic screening protects charge carriers in lead halide perovskites. US Department of Energy, Office of Science - Basic Energy Sciences.

  10. Structural correlations in the generation of polaron pairs in low-bandgap polymers for photovoltaics

    Science.gov (United States)

    Tautz, Raphael; da Como, Enrico; Limmer, Thomas; Feldmann, Jochen; Egelhaaf, Hans-Joachim; von Hauff, Elizabeth; Lemaur, Vincent; Beljonne, David; Yilmaz, Seyfullah; Dumsch, Ines; Allard, Sybille; Scherf, Ullrich

    2012-07-01

    Polymeric semiconductors are materials where unique optical and electronic properties often originate from a tailored chemical structure. This allows for synthesizing conjugated macromolecules with ad hoc functionalities for organic electronics. In photovoltaics, donor-acceptor co-polymers, with moieties of different electron affinity alternating on the chain, have attracted considerable interest. The low bandgap offers optimal light-harvesting characteristics and has inspired work towards record power conversion efficiencies. Here we show for the first time how the chemical structure of donor and acceptor moieties controls the photogeneration of polaron pairs. We show that co-polymers with strong acceptors show large yields of polaron pair formation up to 24% of the initial photoexcitations as compared with a homopolymer (η=8%). π-conjugated spacers, separating the donor and acceptor centre of masses, have the beneficial role of increasing the recombination time. The results provide useful input into the understanding of polaron pair photogeneration in low-bandgap co-polymers for photovoltaics.

  11. Magnon Polarons in the Spin Seebeck Effect.

    Science.gov (United States)

    Kikkawa, Takashi; Shen, Ka; Flebus, Benedetta; Duine, Rembert A; Uchida, Ken-Ichi; Qiu, Zhiyong; Bauer, Gerrit E W; Saitoh, Eiji

    2016-11-11

    Sharp structures in the magnetic field-dependent spin Seebeck effect (SSE) voltages of Pt/Y_{3}Fe_{5}O_{12} at low temperatures are attributed to the magnon-phonon interaction. Experimental results are well reproduced by a Boltzmann theory that includes magnetoelastic coupling. The SSE anomalies coincide with magnetic fields tuned to the threshold of magnon-polaron formation. The effect gives insight into the relative quality of the lattice and magnetization dynamics.

  12. Multiphonon contribution to the polaron formation in cuprates with strong electron correlations and strong electron-phonon interaction

    Science.gov (United States)

    Ovchinnikov, Sergey G.; Makarov, Ilya A.; Kozlov, Peter A.

    2017-03-01

    In this work dependences of the electron band structure and spectral function in the HTSC cuprates on magnitude of electron-phonon interaction (EPI) and temperature are investigated. We use three-band p-d model with diagonal and offdiagonal EPI with breathing and buckling phonon mode in the frameworks of polaronic version of the generalized tight binding (GTB) method. The polaronic quasiparticle excitation in the system with EPI within this approach is formed by a hybridization of the local multiphonon Franck-Condon excitations with lower and upper Hubbard bands. Increasing EPI leads to transfer of spectral weight to high-energy multiphonon excitations and broadening of the spectral function. Temperature effects are taken into account by occupation numbers of local excited polaronic states and variations in the magnitude of spin-spin correlation functions. Increasing the temperature results in band structure reconstruction, spectral weight redistribution, broadening of the spectral function peak at the top of the valence band and the decreasing of the peak intensity. The effect of EPI with two phonon modes on the polaron spectral function is discussed.

  13. Soliton and polaron generation in polyacetylene

    International Nuclear Information System (INIS)

    Su, Zhao-bin; Yu, Lu.

    1984-07-01

    The nonradiative decay of an e-h pair into soliton pair and that of an electron (hole) into polaron as well as the photoproduction of soliton pairs are considered using the lattice relaxation theory of multiphonon processes generalized to include the self-consistency of the multi-electron states with the lattice symmetry breaking. The selection rule which forbids the direct process of photogeneration for neutral pair is derived from the symmetry arguments. The branching ratio of the photogenerated neutral to charged soliton pairs is estimated. The recent related experiments are discussed. (author)

  14. Polaron-Driven Surface Reconstructions

    Directory of Open Access Journals (Sweden)

    Michele Reticcioli

    2017-09-01

    Full Text Available Geometric and electronic surface reconstructions determine the physical and chemical properties of surfaces and, consequently, their functionality in applications. The reconstruction of a surface minimizes its surface free energy in otherwise thermodynamically unstable situations, typically caused by dangling bonds, lattice stress, or a divergent surface potential, and it is achieved by a cooperative modification of the atomic and electronic structure. Here, we combined first-principles calculations and surface techniques (scanning tunneling microscopy, non-contact atomic force microscopy, scanning tunneling spectroscopy to report that the repulsion between negatively charged polaronic quasiparticles, formed by the interaction between excess electrons and the lattice phonon field, plays a key role in surface reconstructions. As a paradigmatic example, we explain the (1×1 to (1×2 transition in rutile TiO_{2}(110.

  15. Influence of quasi-particle density over polaron mobility in armchair graphene nanoribbons.

    Science.gov (United States)

    Silva, Gesiel Gomes; da Cunha, Wiliam Ferreira; de Sousa Junior, Rafael Timóteo; Almeida Fonseca, Antonio Luciano; Ribeiro Júnior, Luiz Antônio; E Silva, Geraldo Magela

    2018-06-20

    An important aspect concerning the performance of armchair graphene nanoribbons (AGNRs) as materials for conceiving electronic devices is related to the mobility of charge carriers in these systems. When several polarons are considered in the system, a quasi-particle wave function can be affected by that of its neighbor provided the two are close enough. As the overlap may affect the transport of the carrier, the question concerning how the density of polarons affect its mobility arises. In this work, we investigate such dependence for semiconducting AGNRs in the scope of nonadiabatic molecular dynamics. Our results unambiguously show an impact of the density on both the stability and average velocity of the quasi-particles. We have found a phase transition between regimes where increasing density stops inhibiting and starts promoting mobility; densities higher than 7 polarons per 45 Å present increasing mean velocity with increasing density. We have also established three different regions relating electric field and average velocity. For the lowest electric field regime, surpassing the aforementioned threshold results in overcoming the 0.3 Å fs-1 limit, thus representing a transition between subsonic and supersonic regimes. For the highest of the electric fields, density effects alone are responsible for a stunning difference of 1.5 Å fs-1 in the mean carrier velocity.

  16. Interpretation of plasma impurity deposition probes. Analytic approximation

    Science.gov (United States)

    Stangeby, P. C.

    1987-10-01

    Insertion of a probe into the plasma induces a high speed flow of the hydrogenic plasma to the probe which, by friction, accelerates the impurity ions to velocities approaching the hydrogenic ion acoustic speed, i.e., higher than the impurity ion thermal speed. A simple analytic theory based on this effect provides a relation between impurity fluxes to the probe Γimp and the undisturbed impurity ion density nimp, with the hydrogenic temperature and density as input parameters. Probe size also influences the collection process and large probes are found to attract a higher flux density than small probes in the same plasma. The quantity actually measured, cimp, the impurity atom surface density (m-2) net-deposited on the probe, is related to Γimp and thus to nimp by taking into account the partial removal of deposited material caused by sputtering and the redeposition process.

  17. Collision of impurities with Bose–Einstein condensates

    Science.gov (United States)

    Lingua, F.; Lepori, L.; Minardi, F.; Penna, V.; Salasnich, L.

    2018-04-01

    Quantum dynamics of impurities in a bath of bosons is a long-standing problem in solid-state, plasma, and atomic physics. Recent experimental and theoretical investigations with ultracold atoms have focused on this problem, studying atomic impurities immersed in an atomic Bose–Einstein condensate (BEC) and for various relative coupling strengths tuned by the Fano‑Feshbach resonance technique. Here, we report extensive numerical simulations on a closely related problem: the collision between a bosonic impurity consisting of a few 41K atoms and a BEC of 87Rb atoms in a quasi one-dimensional configuration and under a weak harmonic axial confinement. For small values of the inter-species interaction strength (regardless of its sign), we find that the impurity, which starts from outside the BEC, simply causes the BEC cloud to oscillate back and forth, but the frequency of oscillation depends on the interaction strength. For intermediate couplings, after a few cycles of oscillation the impurity is captured by the BEC, and strongly changes its amplitude of oscillation. In the strong interaction regime, if the inter-species interaction is attractive, a local maximum (bright soliton) in the BEC density occurs where the impurity is trapped; if, instead, the inter-species interaction is repulsive, the impurity is not able to enter the BEC cloud and the reflection coefficient is close to one. However, if the initial displacement of the impurity is increased, the impurity is able to penetrate the cloud, leading to the appearance of a moving hole (dark soliton) in the BEC.

  18. Study on impurity screening in stochastic magnetic boundary of the Large Helical Device

    International Nuclear Information System (INIS)

    Kobayashi, M.; Morita, S.; Feng, Y.

    2008-10-01

    The impurity transport characteristics in the scrape-off layer associated with a stochastic magnetic boundary of LHD are analyzed. The remnant islands with very small internal field line pitch in the stochastic region play a key role in reducing the impurity influx. The thermal force driven impurity influx is significantly suppressed when the perpendicular energy flux exceeds the parallel one inside the islands due to the small pitch. Application of the 3D edge transport code, EMC3-EIRENE, confirmed the impurity retention (screening) effect in the edge region. It is also found that the edge surface layers are the most effective region to retain (screen) impurities because of the flow acceleration and plasma cooling via short flux tubes. The carbon emission obtained in experiments is in good agreement with the modelling results, showing the impurity retention (screening) potential of the stochastic magnetic boundary. (author)

  19. Variational method for magnetic impurities in metals: impurity pairs

    Energy Technology Data Exchange (ETDEWEB)

    Oles, A M [Max-Planck-Institut fuer Festkoerperforschung, Stuttgart (Germany, F.R.); Chao, K A [Linkoeping Univ. (Sweden). Dept. of Physics and Measurement Technology

    1980-01-01

    Applying a variational method to the generalized Wolff model, we have investigated the effect of impurity-impurity interaction on the formation of local moments in the ground state. The direct coupling between the impurities is found to be more important than the interaction between the impurities and the host conduction electrons, as far as the formation of local moments is concerned. Under certain conditions we also observe different valences on different impurities.

  20. Excitonic and Polaronic Properties of 2D Hybrid Organic–Inorganic Perovskites

    KAUST Repository

    Yin, Jun; Li, Hong; Cortecchia, Daniele; Soci, Cesare; Bredas, Jean-Luc

    2017-01-01

    calculations including corrections due to spin orbit couplings and electron hole interactions, a computationally intensive molecular cluster approach is exploited to describe the excitonic and polaronic properties of these 2D perovskites at the atomistic level

  1. Electronic structures and magnetic properties of 3d and 4d transition-metal impurities in ferromagnetic Fe

    CERN Document Server

    Park, J H; Min, B I; Cho, H S

    2000-01-01

    Employing the self-consistent local approach, the tight-binding linear-muffin-tin orbital recursion method, we have investigated the electronic structures and the magnetic properties of 3d and 4d transition-metal (TM) impurities in ferromagnetic bcc Fe. In both 3d and 4d TM impurities, virtual bound states appear and are characterized by a high density of states in the energy spectrum. The characters of the states are studied by calculating the bond order between interaction orbitals. For early TM impurities, the states at the impurity sites have more antibonding characters, while the states at neighboring Fe sites have more bonding characters. For late TM impurities, the situation is reversed. late TM impurities of both the 3d and the 4d TM series have the same magnetic ordering as the host Fe atoms whereas early TM impurities have magnetic moments antiparallel to that of the host. As for the Mn impurity, an inward relaxation of neighboring Fe atoms stabilizes the antiferromagnetic ordering with respect to t...

  2. DFT +U Modeling of Hole Polarons in Organic Lead Halide Perovskites

    Science.gov (United States)

    Welch, Eric; Erhart, Paul; Scolfaro, Luisa; Zakhidov, Alex

    Due to the ever present drive towards improved efficiencies in solar cell technology, new and improved materials are emerging rapidly. Organic halide perovskites are a promising prospect, yet a fundamental understanding of the organic perovskite structure and electronic properties is missing. Particularly, explanations of certain physical phenomena, specifically a low recombination rate and high mobility of charge carriers still remain controversial. We theoretically investigate possible formation of hole polarons adopting methodology used for oxide perovskites. The perovskite studied here is the ABX3structure, with A being an organic cation, B lead and C a halogen; the combinations studied allow for A1,xA2 , 1 - xBX1,xX2 , 3 - xwhere the alloy convention is used to show mixtures of the organic cations and/or the halogens. Two organic cations, methylammonium and formamidinium, and three halogens, iodine, chlorine and bromine are studied. Electronic structures and polaron behavior is studied through first principle density functional theory (DFT) calculations using the Vienna Ab Initio Simulation Package (VASP). Local density approximation (LDA) pseudopotentials are used and a +U Hubbard correction of 8 eV is added; this method was shown to work with oxide perovskites. It is shown that a localized state is realized with the Hubbard correction in systems with an electron removed, residing in the band gap of each different structure. Thus, hole polarons are expected to be seen in these perovskites.

  3. Evidence for polaron conduction in nanostructured manganese ferrite

    International Nuclear Information System (INIS)

    Gopalan, E Veena; Anantharaman, M R; Malini, K A; Saravanan, S; Kumar, D Sakthi; Yoshida, Yasuhiko

    2008-01-01

    Nanoparticles of manganese ferrite were prepared by the chemical co-precipitation technique. The dielectric parameters, namely, real and imaginary dielectric permittivity (ε' and ε-prime), ac conductivity (σ ac ) and dielectric loss tangent (tanδ), were measured in the frequency range of 100 kHz-8 MHz at different temperatures. The variations of dielectric dispersion (ε') and dielectric absorption (ε-prime) with frequency and temperature were also investigated. The variation of dielectric permittivity with frequency and temperature followed the Maxwell-Wagner model based on interfacial polarization in consonance with Koops phenomenological theory. The dielectric loss tangent and hence ε-prime exhibited a relaxation at certain frequencies and at relatively higher temperatures. The dispersion of dielectric permittivity and broadening of the dielectric absorption suggest the possibility of a distribution of relaxation time and the existence of multiple equilibrium states in manganese ferrite. The activation energy estimated from the dielectric relaxation is found to be high and is characteristic of polaron conduction in the nanosized manganese ferrite. The ac conductivity followed a power law dependence σ ac = Bω n typical of charge transport assisted by a hopping or tunnelling process. The observed minimum in the temperature dependence of the frequency exponent n strongly suggests that tunnelling of the large polarons is the dominant transport process

  4. Self-consistent modeling of plasma response to impurity spreading from intense localized source

    International Nuclear Information System (INIS)

    Koltunov, Mikhail

    2012-07-01

    Non-hydrogen impurities unavoidably exist in hot plasmas of present fusion devices. They enter it intrinsically, due to plasma interaction with the wall of vacuum vessel, as well as are seeded for various purposes deliberately. Normally, the spots where injected particles enter the plasma are much smaller than its total surface. Under such conditions one has to expect a significant modification of local plasma parameters through various physical mechanisms, which, in turn, affect the impurity spreading. Self-consistent modeling of interaction between impurity and plasma is, therefore, not possible with linear approaches. A model based on the fluid description of electrons, main and impurity ions, and taking into account the plasma quasi-neutrality, Coulomb collisions of background and impurity charged particles, radiation losses, particle transport to bounding surfaces, is elaborated in this work. To describe the impurity spreading and the plasma response self-consistently, fluid equations for the particle, momentum and energy balances of various plasma components are solved by reducing them to ordinary differential equations for the time evolution of several parameters characterizing the solution in principal details: the magnitudes of plasma density and plasma temperatures in the regions of impurity localization and the spatial scales of these regions. The results of calculations for plasma conditions typical in tokamak experiments with impurity injection are presented. A new mechanism for the condensation phenomenon and formation of cold dense plasma structures is proposed.

  5. Scattering Theory on Surface Majorana Fermions by an Impurity in ^{3}He-B.

    Science.gov (United States)

    Tsutsumi, Yasumasa

    2017-04-07

    We have formulated the scattering theory on Majorana fermions emerging in the surface bound state of the superfluid ^{3}He B phase (^{3}He-B) by an impurity. By applying the theory to the electron bubble, which is regarded as the impurity, trapped below a free surface of ^{3}He-B, the observed mobility of the electron bubble [J. Phys. Soc. Jpn. 82, 124607 (2013)JUPSAU0031-901510.7566/JPSJ.82.124607] is quantitatively reproduced. The mobility is suppressed in low temperatures from the expected value in the bulk ^{3}He-B by the contribution from the surface Majorana fermions. By contrast, the mobility does not depend on the trapped depth of the electron bubble in spite of the spatial variation of the wave function of the surface Majorana fermions. Our formulated theory demonstrates the depth-independent mobility by considering intermediate states in the scattering process. Therefore, we conclude that the experiment has succeeded in observing Majorana fermions in the surface bound state.

  6. Bound water in Kevlar 49 fibers

    International Nuclear Information System (INIS)

    Garza, R.G.; Pruneda, C.O.; Morgan, R.J.

    1981-01-01

    From elemental analyses, thermogravimetric-mass spectroscopy studies and re-evaluation of previous water diffusion studies in Kevlar 49 fibers it is concluded that these fibers can contain two types of sorbed moisture. The fibers can absorb up to approx. 6 wt % loosely bound water with an activation energy for outgassing by desorption of 6 kcal/mole. This loosely bound water is a direct result of the presence of Na 2 SO 4 impurities and the perturbations they induce on the packing of the rod-like poly (p-phenylene terephthalamide) macromolecules. Kevlar 49 fibers also inherently contain up to 30 wt % additional water which is tightly bound within the crystal lattice. This water exhibits an activation energy for outgassing by diffusion of approx. 40 kcal/mole and is only evolved from the fiber in significant quantities at t > 350 0 C over a period of hours

  7. On neoclassical impurity transport in stellarator geometry

    International Nuclear Information System (INIS)

    García-Regaña, J M; Kleiber, R; Beidler, C D; Turkin, Y; Maaßberg, H; Helander, P

    2013-01-01

    The impurity dynamics in stellarators has become an issue of moderate concern due to the inherent tendency of the impurities to accumulate in the core when the neoclassical ambipolar radial electric field points radially inwards (ion root regime). This accumulation can lead to collapse of the plasma due to radiative losses, and thus limit high performance plasma discharges in non-axisymmetric devices. A quantitative description of the neoclassical impurity transport is complicated by the breakdown of the assumption of small E × B drift and trapping due to the electrostatic potential variation on a flux surface Φ-tilde compared with those due to the magnetic field gradient. This work examines the impact of this potential variation on neoclassical impurity transport in the Large Helical Device heliotron. It shows that the neoclassical impurity transport can be strongly affected by Φ-tilde . The central numerical tool used is the δf particle in cell Monte Carlo code EUTERPE. The Φ-tilde used in the calculations is provided by the neoclassical code GSRAKE. The possibility of obtaining a more general Φ-tilde self-consistently with EUTERPE is also addressed and a preliminary calculation is presented. (paper)

  8. Cloning and Identification of Recombinant Argonaute-Bound Small RNAs Using Next-Generation Sequencing.

    Science.gov (United States)

    Gangras, Pooja; Dayeh, Daniel M; Mabin, Justin W; Nakanishi, Kotaro; Singh, Guramrit

    2018-01-01

    Argonaute proteins (AGOs) are loaded with small RNAs as guides to recognize target mRNAs. Since the target specificity heavily depends on the base complementarity between two strands, it is important to identify small guide and long target RNAs bound to AGOs. For this purpose, next-generation sequencing (NGS) technologies have extended our appreciation truly to the nucleotide level. However, the identification of RNAs via NGS from scarce RNA samples remains a challenge. Further, most commercial and published methods are compatible with either small RNAs or long RNAs, but are not equally applicable to both. Therefore, a single method that yields quantitative, bias-free NGS libraries to identify small and long RNAs from low levels of input will be of wide interest. Here, we introduce such a procedure that is based on several modifications of two published protocols and allows robust, sensitive, and reproducible cloning and sequencing of small amounts of RNAs of variable lengths. The method was applied to the identification of small RNAs bound to a purified eukaryotic AGO. Following ligation of a DNA adapter to RNA 3'-end, the key feature of this method is to use the adapter for priming reverse transcription (RT) wherein biotinylated deoxyribonucleotides specifically incorporated into the extended complementary DNA. Such RT products are enriched on streptavidin beads, circularized while immobilized on beads and directly used for PCR amplification. We provide a stepwise guide to generate RNA-Seq libraries, their purification, quantification, validation, and preparation for next-generation sequencing. We also provide basic steps in post-NGS data analyses using Galaxy, an open-source, web-based platform.

  9. Spin-1 two-impurity Kondo problem on a lattice

    Science.gov (United States)

    Allerdt, A.; Žitko, R.; Feiguin, A. E.

    2018-01-01

    We present an extensive study of the two-impurity Kondo problem for spin-1 adatoms on a square lattice using an exact canonical transformation to map the problem onto an effective one-dimensional system that can be numerically solved using the density matrix renormalization group method. We provide a simple intuitive picture and identify the different regimes, depending on the distance between the two impurities, Kondo coupling JK, longitudinal anisotropy D , and transverse anisotropy E . In the isotropic case, two impurities on opposite (the same) sublattices have a singlet (triplet) ground state. However, the energy difference between the triplet ground state and the singlet excited state is very small and we expect an effectively fourfold-degenerate ground state, i.e., two decoupled impurities. For large enough JK the impurities are practically uncorrelated forming two independent underscreened states with the conduction electrons, a clear nonperturbative effect. When the impurities are entangled in an RKKY-like state, Kondo correlations persist and the two effects coexist: the impurities are underscreened, and the dangling spin-1 /2 degrees of freedom are responsible for the interimpurity entanglement. We analyze the effects of magnetic anisotropy in the development of quasiclassical correlations.

  10. Theory of super-para-electric large polaron for gigantic photo-enhancements of dielectric constant and electronic conductivity in SrTiO3

    International Nuclear Information System (INIS)

    Yu Qiu; Nasu, Keiichiro

    2005-01-01

    In connection with the recent experimental discoveries on gigantic photoenhancements of the electronic conductivity and the quasi-static dielectric susceptibility in SrTiO 3 , we theoretically study a photo-generation mechanism of a charged ferroelectric domain in this quantum dielectric. The photo-generated electron, being quite itinerant in the 3d band of Ti 4+ , is assumed to couple weakly but quadratically with soft-anharmonic T 1u phonons in this quantum dielectric. The photo-generated electron is also assumed to couple strongly but linearly with the breathing type high energy phonons. Using a tight binding model for electron, we will show that these two types of electron-phonon couplings result in two types of polarons, a 'super-para-electric (SPE) large polaron' with a quasi-global parity violation, and an 'off-centre type self-trapped polaron' with only a local parity violation. We will also show that this SPE large polaron is nothing else but a singly charged (e - ) and conductive ferroelectric (or SPE) domain with a quasi macroscopic size. This polaron or domain is also shown to have a high mobility and a large quasi-static dielectric susceptibility

  11. Non-relativistic Limit of a Dirac Polaron in Relativistic Quantum Electrodynamics

    CERN Document Server

    Arai, A

    2006-01-01

    A quantum system of a Dirac particle interacting with the quantum radiation field is considered in the case where no external potentials exist. Then the total momentum of the system is conserved and the total Hamiltonian is unitarily equivalent to the direct integral $\\int_{{\\bf R}^3}^\\oplus\\overline{H({\\bf p})}d{\\bf p}$ of a family of self-adjoint operators $\\overline{H({\\bf p})}$ acting in the Hilbert space $\\oplus^4{\\cal F}_{\\rm rad}$, where ${\\cal F}_{\\rm rad}$ is the Hilbert space of the quantum radiation field. The fibre operator $\\overline{H({\\bf p})}$ is called the Hamiltonian of the Dirac polaron with total momentum ${\\bf p} \\in {\\bf R}^3$. The main result of this paper is concerned with the non-relativistic (scaling) limit of $\\overline{H({\\bf p})}$. It is proven that the non-relativistic limit of $\\overline{H({\\bf p})}$ yields a self-adjoint extension of a Hamiltonian of a polaron with spin $1/2$ in non-relativistic quantum electrodynamics.

  12. Polaron effects on nonlinear optical rectification in asymmetrical Gaussian potential quantum wells with applied electric fields

    International Nuclear Information System (INIS)

    Wu, Jinghe; Guo, Kangxian; Liu, Guanghui

    2014-01-01

    Polaron effects on nonlinear optical rectification in asymmetrical Gaussian potential quantum wells are studied by the effective mass approximation and the perturbation theory. The numerical results show that nonlinear optical rectification coefficients are strongly dependent on the barrier hight V 0 of the Gaussian potential quantum wells, the range L of the confinement potential and the electric field F. Besides, the numerical results show that no matter how V 0 , L and F change, taking into consideration polaron effects, the optical rectification coefficients χ 0 (2) get greatly enhanced.

  13. Shallow trapping vs. deep polarons in a hybrid lead halide perovskite, CH3NH3PbI3.

    Science.gov (United States)

    Kang, Byungkyun; Biswas, Koushik

    2017-10-18

    There has been considerable speculation over the nature of charge carriers in organic-inorganic hybrid perovskites, i.e., whether they are free and band-like, or they are prone to self-trapping via short range deformation potentials. Unusually long minority-carrier diffusion lengths and moderate-to-low mobilities, together with relatively few deep defects add to their intrigue. Here we implement density functional methods to investigate the room-temperature, tetragonal phase of CH 3 NH 3 PbI 3 . We compare charge localization behavior at shallow levels and associated lattice relaxation versus those at deep polaronic states. The shallow level originates from screened Coulomb interaction between the perturbed host and an excited electron or hole. The host lattice has a tendency towards forming these shallow traps where the electron or hole is localized not too far from the band edge. In contrast, there is a considerable potential barrier that must be overcome in order to initiate polaronic hole trapping. The formation of a hole polaron (I 2 - center) involves strong lattice relaxation, including large off-center displacement of the organic cation, CH 3 NH 3 + . This type of deep polaron is energetically unfavorable, and active shallow traps are expected to shape the carrier dynamics in this material.

  14. Study by nuclear techniques of the impurity-defect interaction in implanted metals

    International Nuclear Information System (INIS)

    Thome, Lionel.

    1978-01-01

    The properties of out equilibrium alloys formed by impurity implantation are strongly influenced by radiation damage created during implantation. This work presents a study, via hyperfine interaction and lattice location experiments, of the impurity-defect interaction in ion implanted metals. When the impurity and defect concentrations in the implanted layer are small, i.e. when impurities are uniformly recoil implanted in the whole crystal volume following a nuclear reaction (Aq In experiments), the impurity interacts with its own damage cascade. In this case, a vacancy is found to be trapped by a fraction of impurities during an athermal process. The value of this fraction does not seem to depend critically on impurity and host. When the impurity and defect concentrations are such that defect cascades interact, i.e. when impurities are implanted with an isotope separator (Fe Yb experiments), the observed impurity-vacancy (or vacancy cluster) interactions depend then strongly on the nature of impurity and host. An empirical relation, which indicates the importance of elastic effects, has been found between the proportion of impurities interacting with defects and the difference between impurity and host atom radii. At implantation temperature such that vacancies are mobile, the impurity-defect interaction depends essentially on vacancy migration. A model based on chemical kinetics has been developed to account for the variation with temperature of measured quantities [fr

  15. Decay of Polarons and Molecules in a Strongly Polarized Fermi Gas

    DEFF Research Database (Denmark)

    Bruun, Georg; Massignan, P.

    2010-01-01

    , and that it vanishes much faster than the energy difference between the two states, thereby confirming the first order nature of the polaron-molecule transition. In the regime where each state is metastable, we find quasiparticle lifetimes which are much longer than what is expected for a usual Fermi liquid. Our...

  16. Comparative analysis of magnetic resonance in the polaron pair recombination and the triplet exciton-polaron quenching models

    Science.gov (United States)

    Mkhitaryan, V. V.; Danilović, D.; Hippola, C.; Raikh, M. E.; Shinar, J.

    2018-01-01

    We present a comparative theoretical study of magnetic resonance within the polaron pair recombination (PPR) and the triplet exciton-polaron quenching (TPQ) models. Both models have been invoked to interpret the photoluminescence detected magnetic resonance (PLDMR) results in π -conjugated materials and devices. We show that resonance line shapes calculated within the two models differ dramatically in several regards. First, in the PPR model, the line shape exhibits unusual behavior upon increasing the microwave power: it evolves from fully positive at weak power to fully negative at strong power. In contrast, in the TPQ model, the PLDMR is completely positive, showing a monotonic saturation. Second, the two models predict different dependencies of the resonance signal on the photoexcitation power, PL. At low PL, the resonance amplitude Δ I /I is ∝PL within the PPR model, while it is ∝PL2 crossing over to PL3 within the TPQ model. On the physical level, the differences stem from different underlying spin dynamics. Most prominently, a negative resonance within the PPR model has its origin in the microwave-induced spin-Dicke effect, leading to the resonant quenching of photoluminescence. The spin-Dicke effect results from the spin-selective recombination, leading to a highly correlated precession of the on-resonance pair partners under the strong microwave power. This effect is not relevant for TPQ mechanism, where the strong zero-field splitting renders the majority of triplets off resonance. On the technical level, the analytical evaluation of the line shapes for the two models is enabled by the fact that these shapes can be expressed via the eigenvalues of a complex Hamiltonian. This bypasses the necessity of solving the much larger complex linear system of the stochastic Liouville equations. Our findings pave the way towards a reliable discrimination between the two mechanisms via cw PLDMR.

  17. Optical Characterization of the Hole Polaron in a Series of Diketopyrrolopyrrole Polymers Used for Organic Photovoltaics

    Directory of Open Access Journals (Sweden)

    Evan L. Williams

    2014-12-01

    Full Text Available A strategy that is often used for designing low band gap polymers involves the incorporation of electron-rich (donor and electron-deficient (acceptor conjugated segments within the polymer backbone. In this paper we investigate such a series of Diketopyrrolopyrrole (DPP-based co-polymers. The co-polymers consisted of a DPP unit attached to a phenylene, naphthalene, or anthracene unit. Additionally, polymers utilizing either the thiophene-flanked DPP or the furan-flanked DPP units paired with the naphthalene comonomer were compared. As these polymers have been used as donor materials and subsequent hole transporting materials in organic solar cells, we are specifically interested in characterizing the optical absorption of the hole polaron of these DPP based copolymers. We employ chemical doping, electrochemical doping, and photoinduced absorption (PIA studies to probe the hole polaron absorption spectra. While some donor-acceptor polymers have shown an appreciable capacity to generate free charge carriers upon photoexcitation, no polaron signal was observed in the PIA spectrum of the polymers in this study. The relations between molecular structure and optical properties are discussed.

  18. Influence of Mg doping on the behaviour of polaronic light-induced absorption in LiNbO3

    International Nuclear Information System (INIS)

    Conradi, D.; Merschjann, C.; Schoke, B.; Imlau, M.; Corradi, G.; Polgar, K.

    2008-01-01

    Transient light-induced absorption changes α li (t), caused by optically generated small polarons, are investigated in LiNbO 3 :Mg below and above the optical-damage-resistance threshold (ODRT). The lifetime of α li (t) is reduced by three orders of magnitude above the ODRT while a significantly enhanced amplitude α max li is observed in the infrared. Our observations are in full accordance with the predictions of microscopic models for the ODRT, namely the removal of Nb Li antisite defects upon incorporation of Mg ions, and an enhanced dark conductivity. (copyright 2008 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim) (Abstract Copyright [2008], Wiley Periodicals, Inc.)

  19. Behavior of oxygen impurities in tokamak. Vol. 2

    Energy Technology Data Exchange (ETDEWEB)

    El-Sharif, R N; Beket, A H [Plasma and Nuclear Fusion Department, Nuclear Research Center, Atomic Energy Aurhority, Cairo (Egypt)

    1996-03-01

    Impurity transport in tokamak plasma is a subject of great importance in present day tokamak experiments. The transport of oxygen as an impurity element in small tokamak was studied theoretically. The viscosity coefficient of oxygen has been calculated in different approximation 13 and 21 moment approximation, taking into consideration {chi}>>1,{chi}{omega}{sub c} {tau}. It was found that in 21 moment approximation additional terms added to the perturbation from equilibrium leads to increase in viscosity coefficients than in 13 moments approximation. 9 figs.

  20. Vibronic effects and destruction of exciton coherence in optical spectra of J-aggregates: A variational polaron transformation approach

    Energy Technology Data Exchange (ETDEWEB)

    Bloemsma, E.A.; Silvis, M.H.; Stradomska, A.; Knoester, J., E-mail: j.knoester@rug.nl

    2016-12-20

    Using a symmetry adapted polaron transformation of the Holstein Hamiltonian, we study the interplay of electronic excitation-vibration couplings, resonance excitation transfer interactions, and temperature in the linear absorption spectra of molecular J-aggregates. Semi-analytical expressions for the spectra are derived and compared with results obtained from direct numerical diagonalization of the Hamiltonian in the two-particle basis set representation. At zero temperature, we show that our polaron transformation reproduces both the collective (exciton) and single-molecule (vibrational) optical response associated with the appropriate standard perturbation limits. Specifically, for the molecular dimer excellent agreement with the spectra from the two-particle approach for the entire range of model parameters is obtained. This is in marked contrast to commonly used polaron transformations. Upon increasing the temperature, the spectra show a transition from the collective to the individual molecular features, which results from the thermal destruction of the exciton coherence.

  1. Pfirsch–Schlüter neoclassical heavy impurity transport in a rotating plasma

    International Nuclear Information System (INIS)

    Belli, E A; Candy, J; Angioni, C

    2014-01-01

    In this work, we extend previous analytic theories for the neoclassical transport of a trace heavy impurity in a rotating plasma in the Pfirsch–Schlüter regime. The complete diffusive and convective components of the ambipolar particle flux are derived. The solution is valid for arbitrary impurity charge and impurity Mach number and for general geometry. Inclusion of finite main-ion temperature gradient effects is shown in the small ion Mach number limit. A simple interpolation formula is derived for the case of high impurity charge and circular geometry. While an enhancement of the diffusion coefficient is found for order one impurity Mach number, a reduction due to the rotation-driven poloidal asymmetry in the density occurs for very large Mach number. (paper)

  2. Complexity of Quantum Impurity Problems

    Science.gov (United States)

    Bravyi, Sergey; Gosset, David

    2017-12-01

    We give a quasi-polynomial time classical algorithm for estimating the ground state energy and for computing low energy states of quantum impurity models. Such models describe a bath of free fermions coupled to a small interacting subsystem called an impurity. The full system consists of n fermionic modes and has a Hamiltonian {H=H_0+H_{imp}}, where H 0 is quadratic in creation-annihilation operators and H imp is an arbitrary Hamiltonian acting on a subset of O(1) modes. We show that the ground energy of H can be approximated with an additive error {2^{-b}} in time {n^3 \\exp{[O(b^3)]}}. Our algorithm also finds a low energy state that achieves this approximation. The low energy state is represented as a superposition of {\\exp{[O(b^3)]}} fermionic Gaussian states. To arrive at this result we prove several theorems concerning exact ground states of impurity models. In particular, we show that eigenvalues of the ground state covariance matrix decay exponentially with the exponent depending very mildly on the spectral gap of H 0. A key ingredient of our proof is Zolotarev's rational approximation to the {√{x}} function. We anticipate that our algorithms may be used in hybrid quantum-classical simulations of strongly correlated materials based on dynamical mean field theory. We implemented a simplified practical version of our algorithm and benchmarked it using the single impurity Anderson model.

  3. Coefficients of viscosity for heavy impurity element in tokamak

    Energy Technology Data Exchange (ETDEWEB)

    El-Sharif, R N; Bekhit, A M [Plasma Physics dept., NRC, Atomic energy Authority, Cairo, (Egypt)

    1997-12-31

    The transport of heavy impurity element in to tokamak was studied theoretically. The viscosity coefficients of chromium impurities has been calculated in 13 and 21 moment approximation, in the limit of strong fields where is the gyrofrequency of species it was found that the off diagonal coefficient approximately tends to zero. This means that the friction force in the off-diagonal direction is very small, for the perpendicular viscosity coefficient the two approximation coincide to each other. 3 figs.

  4. Density functional theory + U modeling of polarons in organohalide lead perovskites

    Directory of Open Access Journals (Sweden)

    Eric Welch

    2016-12-01

    Full Text Available We investigate the possible formation of polarons in four organic perovskites (CH3NH3PbI3, CH3NH3PbBr3, CH3NH3PbCl3, and CH3NH3PbI2Cl1 using a density functional theory (DFT calculations with local potentials and hybrid functionals. We show that DFT+U method with U = 8 eV predicts a correct band-gap and matches the forces on ions from hybrid calculations. We then use the DFT + U approach to study the effect of polarons, i.e. to search the configuration space and locate the lowest energy localized band gap state self-trapped hole (STH. STH configurations were found for three pure halides and one mixed halide system. Spin orbit coupling (SOC was also taken into account and the results may be found in the supplementary material. This study focuses on the +U method; however, SOC corrections added to the DFT+U calculations also resulted in STH states in all four systems.

  5. Singlet and triplet polaron relaxation in doubly charged self-assembled quantum dots

    International Nuclear Information System (INIS)

    Grange, T; Zibik, E A; Ferreira, R; Bastard, G; Carpenter, B A; Phillips, P J; Stehr, D; Winnerl, S; Helm, M; Steer, M J; Hopkinson, M; Cockburn, J W; Skolnick, M S; Wilson, L R

    2007-01-01

    Polaron relaxation in self-assembled InAs/GaAs quantum dot samples containing 2 electrons per dot is studied using far-infrared, time-resolved pump-probe measurements for transitions between the s-like ground and p-like first excited conduction band states. Spin-flip transitions between singlet and triplet states are observed experimentally in the decay of the absorption bleaching, which shows a clear biexponential dependence. The initial fast decay (∼30 ps) is associated with the singlet polaron decay, while the decay component with the longer time constant (∼5 ns) corresponds to the excited state triplet lifetime. The results are explained by considering the intrinsic Dresselhaus spin-orbit interaction, which induces spin-flip transitions by acoustic phonon emission or phonon anharmonicity. We have calculated the spin-flip decay times, and good agreement is obtained between the experiment and the simulation of the pump-probe signal. Our results demonstrate the importance of spin-mixing effects for intraband energy relaxation in InAs/GaAs quantum dots

  6. Madelung and Hubbard interactions in polaron band model of doped organic semiconductors

    Science.gov (United States)

    Png, Rui-Qi; Ang, Mervin C.Y.; Teo, Meng-How; Choo, Kim-Kian; Tang, Cindy Guanyu; Belaineh, Dagmawi; Chua, Lay-Lay; Ho, Peter K.H.

    2016-01-01

    The standard polaron band model of doped organic semiconductors predicts that density-of-states shift into the π–π* gap to give a partially filled polaron band that pins the Fermi level. This picture neglects both Madelung and Hubbard interactions. Here we show using ultrahigh workfunction hole-doped model triarylamine–fluorene copolymers that Hubbard interaction strongly splits the singly-occupied molecular orbital from its empty counterpart, while Madelung (Coulomb) interactions with counter-anions and other carriers markedly shift energies of the frontier orbitals. These interactions lower the singly-occupied molecular orbital band below the valence band edge and give rise to an empty low-lying counterpart band. The Fermi level, and hence workfunction, is determined by conjunction of the bottom edge of this empty band and the top edge of the valence band. Calculations are consistent with the observed Fermi-level downshift with counter-anion size and the observed dependence of workfunction on doping level in the strongly doped regime. PMID:27582355

  7. Impurity strength and impurity domain modulated frequency-dependent linear and second non-linear response properties of doped quantum dots

    Energy Technology Data Exchange (ETDEWEB)

    Datta, Nirmal Kumar [Department of Physics, Suri Vidyasagar College, Suri, Birbhum 731 101, West Bengal (India); Ghosh, Manas [Department of Chemistry, Physical Chemistry Section, Visva Bharati University, Santiniketan, Birbhum 731 235, West Bengal (India)

    2011-08-15

    We explore the pattern of frequency-dependent linear and second non-linear optical responses of repulsive impurity doped quantum dots harmonically confined in two dimensions. The dopant impurity potential chosen assumes a Gaussian form and it is doped into an on-center location. The quantum dot is subject to a periodically oscillating external electric field. For some fixed values of transverse magnetic field strength ({omega}{sub c}) and harmonic confinement potential ({omega}{sub 0}), the influence of impurity strength (V{sub 0}) and impurity domain ({xi}) on the diagonal components of the frequency-dependent linear ({alpha}{sub xx} and {alpha}{sub yy}) and second non-linear ({gamma}{sub xxxx} and {gamma}{sub yyyy}) responses of the dot are computed through a linear variational route. The investigations reveal that the optical responses undergo enhancement with increase in both V{sub 0} and {xi} values. However, in the limitingly small dopant strength regime one observes a drop in the optical responses with increase in V{sub 0}. A time-average rate of energy transfer to the system is often invoked to support the findings. (Copyright copyright 2011 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim)

  8. Entanglement of an Impurity in a Few-Body One-Dimensional Ideal Bose System

    DEFF Research Database (Denmark)

    García-March, M. A.; Salami Dehkharghani, Amin; Zinner, N. T.

    2016-01-01

    We study the correlation between an impurity and a small ensemble of bosonic particles in one dimension. Our study analyzes the one-body density matrix and calculates the corresponding von Neumann entanglement entropy as a function of interaction strength between the impurity and the bosons when ...

  9. Electrically Small Magnetic Dipole Antennas With Quality Factors Approaching the Chu Lower Bound

    DEFF Research Database (Denmark)

    Kim, Oleksiy S.; Breinbjerg, Olav; Yaghjian, Arthur D.

    2010-01-01

    We investigate the quality factor Q for electrically small current distributions and practical antenna designs radiating the TE10 magnetic dipole field. The current distributions and the antenna designs employ electric currents on a spherical surface enclosing a magneto-dielectric material...... numerically. It is found that for a given antenna size and permittivity there is an optimum permeability that ensures the lowest possible Q, and this optimum permeability is inversely proportional to the square of the antenna electrical radius. When the relative permittivity is equal to 1, the optimum...... permeability yields the quality factor Q that constitutes the lower bound for a magnetic dipole antenna with a magneto-dielectric core. Furthermore, the smaller the antenna the closer its quality factor Q can approach the Chu lower bound. Simulated results for the TE10-mode multiarm spherical helix antenna...

  10. Defects related room temperature ferromagnetism in Cu-implanted ZnO nanorod arrays

    International Nuclear Information System (INIS)

    Li, D.; Li, D.K.; Wu, H.Z.; Liang, F.; Xie, W.; Zou, C.W.; Shao, L.X.

    2014-01-01

    Highlights: • Room temperature ferromagnetism was observed in Cu-implanted ZnO nanorod arrays. • Cu-implanted ZnO nanorods show a saturation magnetization value of 1.82 μ B /Cu. • The origin of ferromagnetism can be explained by the defects related bound magnetic polarons. -- Abstract: Room temperature ferromagnetism (FM) was observed in Cu-implanted ZnO nanorod arrays. The implantation dose for Cu ions was 1 × 10 16 cm −2 and the implantation energy was 100 keV. The ion implantation induced defects and disorder has been observed by the XRD, PL and TEM experiments. The PL spectrum revealed a dominant luminescence peaks at 390 nm and a broad and strong green emission at 500–700 nm, which is considered to be related to the ionized oxygen vacancy. Cu-implanted ZnO nanorods annealed at 500 °C show a saturation magnetization value of 1.82 μ B /Cu and a positive coercive field of 68 Oe. The carrier concentration is not much improved after annealing and in the order of 10 16 cm −3 , which suggests that FM does not depend upon the presence of a significant carrier concentration. The origin of ferromagnetism behavior can be explained on the basis of electrons and defects that form bound magnetic polarons, which overlap to create a spin-split impurity band

  11. Properties of magnetic impurities embedded into an anisotropic Heisenberg chain with spin gap

    International Nuclear Information System (INIS)

    Schlottmann, P.

    2000-01-01

    We consider a U(1)-invariant model consisting of the integrable anisotropic easy-axis Heisenberg chain of arbitrary spin S embedding an impurity of spin S'. The host chain has a spin gap for all values of S. The ground state properties and the elementary excitations of the host are studied as a function of the anisotropy and the magnetic field. The impurity is located on a link of the chain and interacts only with both neighboring sites. The coupling of the impurity to the lattice can be tuned by the impurity rapidity p 0 (usually playing the role of the Kondo coupling). The impurity model is then integrable as a function of two continuous parameters (the anisotropy and the impurity rapidity) and two discrete variables (the spins S and S'). The Bethe ansatz equations are derived and used to obtain the magnetization of the impurity. The impurity magnetization is non-universal as a function of p 0 . For small fields the impurity magnetization is determined by the spin gap and the van Hove singularity of the rapidity band. For an overcompensated impurity (S'< S) at intermediate fields there is a crossover to non-Fermi-liquid behavior remnant from the suppressed quantum critical point

  12. Trace impurity analyzer

    International Nuclear Information System (INIS)

    Schneider, W.J.; Edwards, D. Jr.

    1979-01-01

    The desirability for long-term reliability of large scale helium refrigerator systems used on superconducting accelerator magnets has necessitated detection of impurities to levels of a few ppM. An analyzer that measures trace impurity levels of condensable contaminants in concentrations of less than a ppM in 15 atm of He is described. The instrument makes use of the desorption temperature at an indicated pressure of the various impurities to determine the type of contaminant. The pressure rise at that temperature yields a measure of the contaminant level of the impurity. A LN 2 cryogenic charcoal trap is also employed to measure air impurities (nitrogen and oxygen) to obtain the full range of contaminant possibilities. The results of this detector which will be in use on the research and development helium refrigerator of the ISABELLE First-Cell is described

  13. Impurity transport during neutral beam injection in the ISX-B tokamak

    International Nuclear Information System (INIS)

    Isler, R.C.; Crume, E.C.; Arnurius, D.E.; Murray, L.E.

    1980-10-01

    In ohmically heated ISX-B discharges, both the intrinsic iron impurity ions and small amounts of argon introduced as a test gas accumulate at the center of the plasma. But during certain beam-heated discharges, it appears that this accumulation does not take place. These results may reflect the conclusion of Stacey and Sigmar that momentum transferred from the beams to the plasma can inhibit inward impurity transport

  14. Effects of quenched impurities on surface diffusion, spreading, and ordering of O/W(110)

    DEFF Research Database (Denmark)

    Nikunen, P.; Vattulainen, Ilpo Tapio; Ala-Nissila, T.

    2002-01-01

    We study how quenched impurities affect the surface diffusion and ordering of strongly interacting adsorbate atoms on surfaces. To this end, we carry out Monte Carlo simulations for a lattice-gas model of O/W(110), including small concentrations of immobile impurities which block their adsorption...

  15. Bose polaron as an instance of quantum Brownian motion

    Directory of Open Access Journals (Sweden)

    Aniello Lampo

    2017-09-01

    Full Text Available We study the dynamics of a quantum impurity immersed in a Bose-Einstein condensate as an open quantum system in the framework of the quantum Brownian motion model. We derive a generalized Langevin equation for the position of the impurity. The Langevin equation is an integrodifferential equation that contains a memory kernel and is driven by a colored noise. These result from considering the environment as given by the degrees of freedom of the quantum gas, and thus depend on its parameters, e.g. interaction strength between the bosons, temperature, etc. We study the role of the memory on the dynamics of the impurity. When the impurity is untrapped, we find that it exhibits a super-diffusive behavior at long times. We find that back-flow in energy between the environment and the impurity occurs during evolution. When the particle is trapped, we calculate the variance of the position and momentum to determine how they compare with the Heisenberg limit. One important result of this paper is that we find position squeezing for the trapped impurity at long times. We determine the regime of validity of our model and the parameters in which these effects can be observed in realistic experiments.

  16. Fractals: Giant impurity nonlinearities in optics of fractal clusters

    International Nuclear Information System (INIS)

    Butenko, A.V.; Shalaev, V.M.; Stockman, M.I.

    1988-01-01

    A theory of nonlinear optical properties of fractals is developed. Giant enhancement of optical susceptibilities is predicted for impurities bound to a fractal. This enhancement occurs if the exciting radiation frequency lies within the absorption band of the fractal. The giant optical nonlinearities are due to existence of high local electric fields in the sites of impurity locations. Such fields are due to the inhomogeneously broadened character of a fractal spectrum, i.e. partial conservation of individuality of fractal-forming particles (monomers). The field enhancement is proportional to the Q-factor of the resonance of a monomer. The effects of coherent anti-Stokes Raman scattering (CARS) and phase conjugation (PC) of light waves are enhanced to a much greater degree than generation of higher harmonics. In a general case the susceptibility of a higher-order is enhanced in the maximum way if the process includes ''subtraction'' of photons (at least one of the strong field frequencies enters the susceptibility with the minus sign). Alternatively, enhancement for the highest-order harmonic generation (when all the photons are ''accumulated'') is minimal. The predicted phenomena bear information on spectral properties of both impurity molecules and a fractal. In particular, in the CARS spectra a narrow (with the natural width) resonant structure, which is proper to an isolated monomer of a fractal, is predicted to be observed. (orig.)

  17. Generalized formula for electron emission taking account of the polaron effect

    Science.gov (United States)

    Barengolts, Yu A.; Beril, S. I.; Barengolts, S. A.

    2018-01-01

    A generalized formula is derived for the electron emission current as a function of temperature, field, and electron work function in a metal-dielectric system that takes account of the quantum nature of the image forces. In deriving the formula, the Fermi-Dirac distribution for electrons in a metal and the quantum potential of the image obtained in the context of electron polaron theory are used.

  18. Finite-temperature behavior of an impurity in the spin-1/2 XXZ chain

    International Nuclear Information System (INIS)

    Yahagi, Ryoko; Deguchi, Tetsuo; Sato, Jun

    2014-01-01

    We study the zero- and the finite-temperature behavior of the integrable spin-1/2 XXZ periodic chain with an impurity by the algebraic and thermal Bethe ansatz methods. We evaluate the local magnetization on the impurity site at zero temperature analytically and derive the impurity susceptibility exactly from it. In the graphs of the impurity specific heat versus temperature, we show how the impurity spin becomes more liberated from the bulk many-body effect as the exchange coupling between the impurity spin and other spins decreases and that at low temperature it couples strongly to them such as in the Kondo effect. Thus, we observe not only the crossover behavior from the high- to the low-temperature regime, but another from the N-site chain to the (N − 1)-site chain with a free impurity spin. We also show that the estimate of the Wilson ratio at a given low temperature is independent of the impurity parameter if its absolute value is small enough with respect to the temperature and the universality class is described by the XXZ anisotropy in terms of the dressed charge. (paper)

  19. Spectroscopic study of sources and control of impurities in TMX-U. Revision 1

    International Nuclear Information System (INIS)

    Yu, T.L.; Allen, S.L.; Moos, H.W.

    1984-11-01

    Two absolutely calibrated euv instruments have been used to study the impurity characteristics in the Tandem Mirror Experiment-Upgrade (TMX-U). One instrument is a spectrograph that measures the time histories of several impurity emission lines in a single plasma shot. The other instrument is a monochromator that measures time-resolved radial profiles of a particular impurity emission line. The common intrinsic impurities found in TMX-U are C, N, O, and Ti. It has been shown that a large fraction of oxygen and nitrogen in the plasma is associated with the neutral beams. The plasma wall is the main source of carbon. In general, the concentration of each of the impurities is low (<1%), and the power radiated by them is less than 10 kW, which is a small portion of the total input power to the plasma. The concentrations of the impurities can be reduced substantially by glow discharge cleaning and titanium gettering

  20. Impurity model for mixed-valent Mn3+/Mn4+ ions

    International Nuclear Information System (INIS)

    Schlottmann, P.; Lee, K.

    1997-01-01

    Intermediate valent tri- and tetravalent manganese ions play an important role in LaMnO 3 -based systems. We consider a Mn impurity with five orbitals in cubic symmetry which hybridize with conduction electrons. The exchange interaction in the d shell maximizes the impurity spin. We study the valence of the Mn impurity as a function of the splitting of the e g to t 2g orbitals in zero magnetic field and for the totally spin-polarized state. The lifting of the degeneracy of the e g levels due to a small quadrupolar field, related to the Mn-O bond length or a Jahn-Teller effect, is also investigated. Possible implications on the magnetoresistance are discussed. copyright 1997 The American Physical Society

  1. Hydrostatic pressure effects on impurity states in InAs/GaAs quantum dot

    International Nuclear Information System (INIS)

    Xia Congxin; Liu Yaming; Wei Shuyi

    2008-01-01

    Within the framework of effective-mass approximation, the hydrostatic pressure effects on the donor binding energy of a hydrogenic impurity in InAs/GaAs self-assembled quantum dot(QD) are investigated by means of a variational method. Numerical results show that the donor binding energy increases when the hydrostatic pressure increases for any impurity position and QD size. Moreover, the hydrostatic pressure has a remarkable influence on the donor binding energy for small QD. Realistic cases, including the impurity in the QD and the surrounding barrier, are considered

  2. Second order approximation for optical polaron in the strong coupling case

    International Nuclear Information System (INIS)

    Bogolubov, N.N. Jr.

    1993-11-01

    Here we propose a method of construction second order approximation for ground state energy for class of model Hamiltonian with linear type interaction on Bose operators in strong coupling case. For the application of the above method we have considered polaron model and propose construction set of nonlinear differential equations for definition ground state energy in strong coupling case. We have considered also radial symmetry case. (author). 10 refs

  3. Effect of impurities in description of surface nanobubbles

    NARCIS (Netherlands)

    Das, S.; Snoeijer, Jacobus Hendrikus; Lohse, Detlef

    2010-01-01

    Surface nanobubbles emerging at solid-liquid interfaces of submerged hydrophobic surfaces show extreme stability and very small (gas-side) contact angles. In a recent paper Ducker [ W. A. Ducker Langmuir 25 8907 (2009)]. conjectured that these effects may arise from the presence of impurities at the

  4. Influence of hydrogen impurities on p-type resistivity in Mg-doped GaN films

    International Nuclear Information System (INIS)

    Yang, Jing; Zhao, Degang; Jiang, Desheng; Chen, Ping; Zhu, Jianjun; Liu, Zongshun; Le, Lingcong; He, Xiaoguang; Li, Xiaojing; Zhang, Y. T.; Du, G. T.

    2015-01-01

    The effects of hydrogen impurities on p-type resistivity in Mg-doped GaN films were investigated. It was found that hydrogen impurities may have the dual role of passivating Mg Ga acceptors and passivating donor defects. A decrease in p-type resistivity when O 2 is introduced during the postannealing process is attributed to the fact that annealing in an O 2 -containing environment can enhance the dissociation of Mg Ga -H complexes as well as the outdiffusion of H atoms from p-GaN films. However, low H concentrations are not necessarily beneficial in Mg-doped GaN films, as H atoms may also be bound at donor species and passivate them, leading to the positive effect of reduced compensation

  5. Lattice site location of electrical dopant impurities in group-III nitrides

    CERN Document Server

    Amorim, Lígia; Temst, Kristiaan; Wahl, Ulrich

    Dopants are impurities introduced in semiconductors in small quantities to tailor the material characteristics, the effects of which depend on the exact site the dopant occupies in the crystal lattice. The lattice location of impurities is, thus, crucial for the overall understanding of the semiconductor characteristics. In general, several techniques can be used to investigate the lattice site of an impurity, the most accurate and dedicated being emission channeling. However, a characteristic of this technique is that it requires the implantation of radioactive probes, usually created and accelerated in a radioactive ion beam facility. In some cases, emission channeling might however be the only technique capable to investigate the lattice sites occupied by the impurity atoms, provided an appropriate isotope for this technique can be used. For instance, the use of other methods such as Rutherford backscattering spectrometry, perturbed angular correlations, Mössbauer spectroscopy and extended X-ray absorptio...

  6. Mobility balance in the light-emitting layer governs the polaron accumulation and operational stability of organic light-emitting diodes

    Science.gov (United States)

    Kim, Jae-Min; Lee, Chang-Heon; Kim, Jang-Joo

    2017-11-01

    Organic light-emitting diode (OLED) displays are lighter and more flexible, have a wider color gamut, and consume less power than conventional displays. Stable materials and the structural design of the device are important for OLED longevity. Control of charge transport and accumulation in the device is particularly important because the interaction of excitons and polarons results in material degradation. This research investigated the charge dynamics of OLEDs experimentally and by drift-diffusion modeling. Parallel capacitance-voltage measurements of devices provided knowledge of charge behavior at different driving voltages. A comparison of exciplex-forming co-host and single host structures established that the mobility balance in the emitting layers determined the amount of accumulated polarons in those layers. Consequently, an exciplex-forming co-host provides a superior structure in terms of device lifetime and efficiency because of its well-balanced mobility. Minimizing polaron accumulation is key to achieving long OLED device lifetimes. This is a crucial aspect of device physics that must be considered in the device design structure.

  7. Modeling of the Microchemistry for Diffusion of Selected Impurities in Uranium

    International Nuclear Information System (INIS)

    Kirkpatrick, J. R.; Bullock, J.S. IV

    2001-01-01

    Unalloyed metallic uranium used in some work done at Y-12 contains small quantities of impurities, the three most significant of which are carbon, iron, and silicon. During metallurgical processing, as the metal cools from a molten condition towards room temperature, the metallic matrix solution becomes supersaturated in each of the impurities whose concentration exceeds the solubility limit. Many impurity atoms form compounds with uranium that precipitate out of the solution, thus creating and growing inclusions. The objective of the present work is to study the distribution of impurity atoms about some of the inclusions, with a view toward examining the effect of the interaction between inclusions on the impurity atom distribution. The method used is time-dependent mass diffusion from the supersaturated solution to the surfaces of the inclusions. Micrographs of metal samples suggest that the inclusions form in successive stages. After each inclusion forms, it begins to draw impurity atoms from its immediate vicinity, thus altering the amounts and distributions of impurity atoms available for formation and growth of later inclusions. In the present work, a one-dimensional spherical approximation was used to simulate inclusions and their regions of influence. A first set of calculations was run to simulate the distribution of impurity atoms about the largest inclusions. Then, a second set of calculations was run to see how the loss of impurity atoms to the largest inclusions might affect the distribution of impurity atoms around the next stage of inclusions. Plots are shown for the estimated distributions of impurity atoms in the region of influence about the inclusions for the three impurities studied. The authors believe that these distributions are qualitatively correct. However, there is enough uncertainty about precisely when inclusions nucleate and begin to grow that one should not put too much reliance on the quantitative results. This work does provide a

  8. DFT+U study of self-trapping, trapping, and mobility of oxygen-type hole polarons in barium stannate

    Science.gov (United States)

    Geneste, Grégory; Amadon, Bernard; Torrent, Marc; Dezanneau, Guilhem

    2017-10-01

    The charge-transfer insulating perovskite oxides currently used as fuel cell electrolytes undergo, at high temperature, an oxidation reaction 1/2 O2(g ) +VO••→OOX+2 h• , that produces oxygen-type holes. Understanding the nature and mobility of these oxygen-type holes is an important step to improve the performance of devices, but presents a theoretical challenge since, in their localized form, they cannot be captured by standard density functional theory. Here, we employ the DFT+U formalism with a Hubbard correction on the p orbitals of oxygen to investigate several properties of these holes, in the particular case of BaSnO3. We describe the small oxygen-type hole polarons, the self-trapping at their origin, and their trapping by trivalent dopants (Ga, Sc, In, Lu, Y, Gd, La). Strong similarities with protonic defects are observed concerning the evolution of the trapping energy with ionic radius of the dopant. Moreover, we show that long-range diffusion of holes is a complex phenomenon, that proceeds by a succession of several mechanisms. However, the standard implementation of DFT+U within the projector augmented-wave (PAW) formalism leads to use very large, unphysical values of U for the O-p orbital. We propose here a slightly modified DFT+U scheme, that takes into account the fact that the O-p is truncated in usual DFT+U implementation in PAW. This scheme yields more physical values of U than the ones traditionally used in the literature, and describes well the properties of the hole polaron.

  9. First-principles thermodynamic calculations of diffusion characteristics of impurities in γ-iron

    International Nuclear Information System (INIS)

    Tsuru, T.; Kaji, Y.

    2013-01-01

    Because solute impurities have an effect on embrittlement through segregation under irradiation, solute stability and the influence of irradiation on the diffusion characteristics of impurities become prominent due to several acceleration effects of high irradiance circumstances in irradiated materials. In this study, the diffusion characteristics of several impurities in non-magnetic fcc iron are investigated using first-principles density functional theory (DFT) calculations. In accordance with classical diffusion and transition state theories, we nonempirically evaluated the contribution to properties of the binding energy between vacancy and each impurity and the migration enthalpy. The migration energy was calculated using the nudged elastic band method with DFT. The vacancy formation energy, including the entropic contributions to free energies in γ-iron, was evaluated by considering vibrational phonon frequencies based on frozen phonons employing the harmonic approximation for the lattice dynamics. Consequently, we confirmed that the binding energy between large-radius impurities and vacancies is larger than that with an equivalent size of the solvent element, and that the migration enthalpies of these impurities are quite small compared with self diffusion. This finding may indicate that the electronic binding states at the saddle point have a large influence on the migration of impurities

  10. Impurity features in Ni-YSZ-H2-H2O electrodes

    DEFF Research Database (Denmark)

    Utz, A.; Hansen, Karin Vels; Norrman, Kion

    2011-01-01

    -of-flight secondary ion mass spectrometry). This analysis yields comprehensive information on composition and lateral distribution of impurity species as well as the size of impurity features. Small impurity striations are found at the triple phase boundary (TPB) as well as on the former electrode......–electrolyte interface and the impurity features were found to be influenced by the electrode configuration and the initial behavior of the Ni electrode during thermal exposure (creep or shrinkage).Furthermore, the electrochemical performance (the line specific resistance LSR) was compared to data reported for Ni point...... anodes. Good agreement was obtained for data with comparable impurity features.Additionally, an order of magnitude estimation of the effect of SiO2 content on surface coverage with an impurity film is performed for different electrode designs (point, patterned and cermet anode) and shows different...

  11. Electromagnetic effects on trace impurity transport in tokamak plasmas

    Science.gov (United States)

    Hein, T.; Angioni, C.

    2010-01-01

    The impact of electromagnetic effects on the transport of light and heavy impurities in tokamak plasmas is investigated by means of an extensive set of linear gyrokinetic numerical calculations with the code GYRO [J. Candy and R. E. Waltz, J. Comput. Phys. 186, 545 (2003)] and of analytical derivations with a fluid model. The impurity transport is studied by appropriately separating diffusive and convective contributions, and conditions of background microturbulence dominated by both ion temperature gradient (ITG) and trapped electron modes (TEMs) are analyzed. The dominant contribution from magnetic flutter transport turns out to be of pure convective type. However it remains small, below 10% with respect to the E ×B transport. A significant impact on the impurity transport due to an increase in the plasma normalized pressure parameter β is observed in the case of ITG modes, while for TEM the overall effect remains weak. In realistic conditions of high β plasmas in the high confinement (H-) mode with dominant ITG turbulence, the impurity diffusivity is found to decrease with increasing β in qualitative agreement with recent observations in tokamaks. In contrast, in these conditions, the ratio of the total off-diagonal convective velocity to the diagonal diffusivity is not strongly affected by an increase in β, particularly at low impurity charge, due to a compensation between the different off-diagonal contributions.

  12. Observation of magnetic polarons in the magnetoresistive pyrochlore Lu2V2O7

    International Nuclear Information System (INIS)

    Storchak, Vyacheslav G; Brewer, Jess H; Eshchenko, Dmitry G; Mengyan, Patrick W; Zhou Haidong; Wiebe, Christopher R

    2013-01-01

    Materials that exhibit colossal magnetoresistance (CMR) have attracted much attention due to their potential technological applications. One particularly interesting model for the magnetoresistance of low-carrier-density ferromagnets involves mediation by magnetic polarons (MP)—electrons localized in nanoscale ferromagnetic ‘droplets’ by their exchange interaction. However, MP have not previously been directly detected and their size has been difficult to determine from macroscopic measurements. In order to provide this crucial information, we have carried out muon spin rotation measurements on the magnetoresistive semiconductor Lu 2 V 2 O 7 in the temperature range from 2 to 300 K and in magnetic fields up to 7 T. Magnetic polarons with characteristic radius R ≈ 0.4 nm are detected below about 100 K, where Lu 2 V 2 O 7 exhibits CMR; at higher temperature, where the magnetoresistance vanishes, these MP also disappear. This observation confirms the MP-mediated model of CMR and reveals the microscopic size of the MP in magnetoresistive pyrochlores. (paper)

  13. Quantum fluctuations of D5d polarons on C60 molecules

    International Nuclear Information System (INIS)

    Wang Chui-Lin; Wang Wenzheng; Liu Yuliang; Su Zhaobin; Yu Lu.

    1994-06-01

    The dynamic Jahn-Teller splitting of the six equivalent D 5d polarons due to quantum fluctuations is studied in the framework of the Bogoliubov-de Gennes formalism. The tunneling induced level splittings are determined to be 2 T 1u + 2 T 2u and 1 A g + 1 H g for C 1- 60 and C -2 60 , respectively, which should give rise to observable effects in experiments. (author). 17 refs, 2 tabs

  14. Integrable quantum impurity models

    International Nuclear Information System (INIS)

    Eckle, H.P.

    1998-01-01

    By modifying some of the local L operators of the algebraic form of the Bethe Ansatz inhomogeneous one dimensional quantum lattice models can be constructed. This fact has recently attracted new attention, the inhomogeneities being interpreted as local impurities. The Hamiltonians of the so constructed one-dimensional quantum models have a nearest neighbour structure except in the vicinity of the local impurities which involve three-site interactions. The pertinent feature of these models is the absence of backscattering at the impurities: the impurities are transparent. (Copyright (1998) World Scientific Publishing Co. Pte. Ltd)

  15. Exotic behavior of elastic scattering differential cross-sections of weakly bound nucleus 17F at small angles

    International Nuclear Information System (INIS)

    Han Jianlong; Hu Zhengguo; Zhang Xueyin; Yuan Xiaohua; Xu Huagen; Qi Huirong; Wang Yue; Jia Fei; Wu Lijie; Ding Xianli; Gao Qi; Gao Hui; Bai Zhen

    2006-01-01

    The differential cross-sections for elastic scattering of 17 F and 17 O on 208 Pb have been measured at Radioactive Ion Beam Line at Lanzhou (RIBLL). The variation of the logarithms of differential cross-sections with the square of scattering angles shows clearly that there exists a turning point in the range of small scattering angles (6 degree-20 degree) for 17 F having exotic structure, while no turning point was observed in the 17 O elastic scattering. The experimental results have been compared with previous data. Systematical analysis on the available data seems to conclude that there is an exotic behavior of elastic scattering differential cross-sections of weakly bound nuclei with halo or skin structure as compared with that of the ordinary nuclei near stable line. Therefore the fact that the turning point of the logarithms of differential cross-sections appears at small angle for weakly bound nuclei could be used as a new probe to investigate the halo and skin phenomenon. (authors)

  16. On Properties of Impurity Spectrum in the Disordered Exactly Solvable Model

    CERN Document Server

    Grinshpun, V

    2006-01-01

    The random point interaction Hamiltonian (H) is considered on L^2(R^d), d=2, or d=3. Existence and certain bounds of the non-empty pure point component and exponential decay of the corresponding eigenfunctions with probability 1, within region of impurity spectrum of H, are rigorously established. In order to prove the localization result, the structure of the generalized eigenfunctions of H is explicitly described, and the relation between its spectral properties, and the properties of spectra of finite-difference infinite-order operators on l^2(Z^d), is established. The multiscale analysis scheme is applied to investigate the point spectrum of finite-difference operators. In addition, the generalized spectral theorem, and absolute continuity of the integrated density of states of H at the negative (impurity) part of the spectrum, rigorously proved. Applications of the new approximation scheme include straightforward analysis of absolutely continuous conductivity spectrum, subject to a possible separate publ...

  17. Nonmagnetic impurity in the spin-gap state

    International Nuclear Information System (INIS)

    Nagaosa, N.; Ng, T.

    1995-01-01

    The effects of nonmagnetic strong scatterers (unitary limit) on magnetic and transport properties are studied for resonating-valence-bond states in both the slave-boson and slave-fermion mean-field theories with the gap for the triplet excitations. In the d-wave pairing state of the slave-boson mean-field theory in two dimensions, there is no true gap for spinons, but the Anderson localization occurs, which leads to the local moment when the repulsive interaction is taken into account. In the slave-fermion mean-field theory, local moments are found bound to nonmagnetic impurities as a result of (staggered) gauge interaction. However, in both theories, localization of spinon does not appear in the resistivity, which shows the classical value for the holon

  18. Semiclassical and quantum polarons in crystalline acetanilide

    Science.gov (United States)

    Hamm, P.; Tsironis, G. P.

    2007-08-01

    Crystalline acetanilide is a an organic solid with peptide bond structure similar to that of proteins. Two states appear in the amide I spectral region having drastically different properties: one is strongly temperature dependent and disappears at high temperatures while the other is stable at all temperatures. Experimental and theoretical work over the past twenty five years has assigned the former to a selftrapped state while the latter to an extended free exciton state. In this article we review the experimental and theoretical developments on acetanilide paying particular attention to issues that are still pending. Although the interpretation of the states is experimentally sound, we find that specific theoretical comprehension is still lacking. Among the issues that that appear not well understood is the effective dimensionality of the selftrapped polaron and free exciton states.

  19. Observation of semiconductor to metallic transition and polaron hopping in double perovskite Pr{sub 2}CoTiO{sub 6} ceramics

    Energy Technology Data Exchange (ETDEWEB)

    Mahato, Dev K., E-mail: drdevkumar@yahoo.com [Department of Physics, National Institute of Technology Patna, Patna 800005 (India); Sinha, T.P. [Department of Physics, Bose Institute, 93/1, APC Road, Kolkata 700009 (India)

    2017-05-01

    This paper describes semiconductor to metal transition and polaron conduction in double perovskite Pr{sub 2}CoTiO{sub 6} (PCTO) ceramics. The XRD pattern recorded at room temperature confirmed the pure phase, single crystalline structure. The semicircle arc in the impedance plot at each temperature can be attributed to the grain boundary contribution, indicating one dominating response in the measurement frequency range. The semiconductor to metallic transition was also confirmed by the variation of grain boundary resistance (R{sub gb}) with temperature. The activation energy estimated from the imaginary part of electrical modulus and impedance are found to be the characteristic of polaron conduction in PCTO. Ac conductivity followed power law dependence σ{sub ac} = Bω{sup n}. The observed variation of the exponent ‘n’ with temperature suggests the typical of charge transport assisted by a hopping process. The observed minimum in the temperature dependence of frequency exponent ‘n’ strongly suggests that the large polaron tunneling is the dominant transport process.

  20. Effects of a delta-attractive impurity in the thermodynamics properties of an one-dimensional ideal Bose gas

    International Nuclear Information System (INIS)

    Ioriatti Junior, L.C.

    1976-01-01

    The thermodynamic behavior of the one-dimensional bose gas-attractive delta impurity system is studied. The system is shown to undergo the Bose-Einstein condensation and the cause of the phase transition is attributed to the bound state introduced by the impurity in the free particle energy spectrum. The condensed phase is composed by particles captured by the impurity, forming a drop of particles well localized in space. This gives to the Bose-Einstein condensation in this system the appearance of the ordinary vapor-liquid phase transition. The order of the phase transition is analized with the aid of the Clausius-Clayperon equation, leading to the conclusion that the transition is a first order one. This reinforces the interpretation of a vapor-liquid transition. The evaluation of the heat capacity at constant length shows the existence of a finite discontinuity at the transition temperature [pt

  1. Perturbation theory of a superconducting 0 - π impurity quantum phase transition.

    Science.gov (United States)

    Žonda, M; Pokorný, V; Janiš, V; Novotný, T

    2015-03-06

    A single-level quantum dot with Coulomb repulsion attached to two superconducting leads is studied via the perturbation expansion in the interaction strength. We use the Nambu formalism and the standard many-body diagrammatic representation of the impurity Green functions to formulate the Matsubara self-consistent perturbation expansion. We show that at zero temperature second order of the expansion in its spin-symmetric version yields a nearly perfect agreement with the numerically exact calculations for the position of the 0 - π phase boundary at which the Andreev bound states reach the Fermi energy as well as for the values of single-particle quantities in the 0-phase. We present results for phase diagrams, level occupation, induced local superconducting gap, Josephson current, and energy of the Andreev bound states with the precision surpassing any (semi)analytical approaches employed thus far.

  2. Impurities in the heavy-fermion superconductor UBe13 (invited)

    International Nuclear Information System (INIS)

    Smith, J.L.; Fisk, Z.; Willis, J.O.; Batlogg, B.; Ott, H.R.

    1984-01-01

    Small amounts of Sc, Lu, Gd, Np, Ce, Th, La, and Ba have been substituted for uranium in UBe 13 to observe their effects on the superconducting and normal state properties. The thorium, which was the most complete study, resulted in an extremely unusual nonmonotonic depression of the transition temperature for a nonmagnetic impurity. This comes from an interplay that exists between the lowest temperature resistivity peak and the transition temperature, as the peak is depressed. These results suggest that heavy Fermion superconductivity is only one of the possible ground states for heavy mass electron systems. All of the impurities tested resulted in a transition temperature depression

  3. Effect of impurities and processing on silicon solar cells. Volume 1: Characterization methods for impurities in silicon and impurity effects data base

    Science.gov (United States)

    Hopkins, R. H.; Davis, J. R.; Rohatgi, A.; Campbell, R. B.; Blais, P. D.; Rai-Choudhury, P.; Stapleton, R. E.; Mollenkopf, H. C.; Mccormick, J. R.

    1980-01-01

    Two major topics are treated: methods to measure and evaluate impurity effects in silicon and comprehensive tabulations of data derived during the study. Discussions of deep level spectroscopy, detailed dark I-V measurements, recombination lifetime determination, scanned laser photo-response, conventional solar cell I-V techniques, and descriptions of silicon chemical analysis are presented and discussed. The tabulated data include lists of impurity segregation coefficients, ingot impurity analyses and estimated concentrations, typical deep level impurity spectra, photoconductive and open circuit decay lifetimes for individual metal-doped ingots, and a complete tabulation of the cell I-V characteristics of nearly 200 ingots.

  4. Numerical renormalization group calculation of impurity internal energy and specific heat of quantum impurity models

    Science.gov (United States)

    Merker, L.; Costi, T. A.

    2012-08-01

    We introduce a method to obtain the specific heat of quantum impurity models via a direct calculation of the impurity internal energy requiring only the evaluation of local quantities within a single numerical renormalization group (NRG) calculation for the total system. For the Anderson impurity model we show that the impurity internal energy can be expressed as a sum of purely local static correlation functions and a term that involves also the impurity Green function. The temperature dependence of the latter can be neglected in many cases, thereby allowing the impurity specific heat Cimp to be calculated accurately from local static correlation functions; specifically via Cimp=(∂Eionic)/(∂T)+(1)/(2)(∂Ehyb)/(∂T), where Eionic and Ehyb are the energies of the (embedded) impurity and the hybridization energy, respectively. The term involving the Green function can also be evaluated in cases where its temperature dependence is non-negligible, adding an extra term to Cimp. For the nondegenerate Anderson impurity model, we show by comparison with exact Bethe ansatz calculations that the results recover accurately both the Kondo induced peak in the specific heat at low temperatures as well as the high-temperature peak due to the resonant level. The approach applies to multiorbital and multichannel Anderson impurity models with arbitrary local Coulomb interactions. An application to the Ohmic two-state system and the anisotropic Kondo model is also given, with comparisons to Bethe ansatz calculations. The approach could also be of interest within other impurity solvers, for example, within quantum Monte Carlo techniques.

  5. Study of spin-polaron formation in 1D systems

    International Nuclear Information System (INIS)

    Arredondo, Y.; Navarro, O.; Vallejo, E.

    2014-01-01

    We study numerically the formation of spin-polarons in low-dimensional systems. We consider a ferromagnetic Kondo lattice model with Hund coupling J H and localized spins interacting antiferromagnetically with coupling constant J. We investigate the ground state phase diagram as a function of the exchange couplings J H and J and as a function of the band filling, since it has been observed that doping either on the ferromagnetic or antiferromagnetic regime lead to formation of magnetic domains [1]. We explore the quasi-particle formation and phase separation using the density-matrix renormalization group method, which is a highly efficient method to investigate quasi-one-dimensional strongly correlated systems

  6. Control of hole localization in magnetic semiconductors by axial strain

    Science.gov (United States)

    Raebiger, Hannes; Bae, Soungmin; Echeverría-Arrondo, Carlos; Ayuela, Andrés

    2018-02-01

    Mn and Fe-doped GaN are widely studied prototype systems for hole-mediated magnetic semiconductors. The nature of the hole states around the Mn and Fe impurities, however, remains under debate. Our self-interaction corrected density-functional calculations show that the charge neutral Mn 0 and positively charged Fe+ impurities have symmetry-broken d5+h ground states, in which the hole is trapped by one of the surrounding N atoms in a small polaron state. We further show that both systems also have a variety of other d5+h configurations, including symmetric, delocalized states, which may be stabilized by axial strain. This finding opens a pathway to promote long-range hole-mediated magnetic interactions by strain engineering and clarifies why highly strained thin-films samples often exhibit anomalous magnetic properties.

  7. Impurity effects on the grain boundary cohesion in copper

    Science.gov (United States)

    Li, Yunguo; Korzhavyi, Pavel A.; Sandström, Rolf; Lilja, Christina

    2017-12-01

    Segregated impurities at grain boundaries can dramatically change the mechanical behavior of metals, while the mechanism is still obscure in some cases. Here, we suggest a unified approach to investigate segregation and its effects on the mechanical properties of polycrystalline alloys using the example of 3 s p impurities (Mg, Al, Si, P, or S) at a special type Σ 5 (310 )[001 ] tilt grain boundary in Cu. We show that for these impurities segregating to the grain boundary, the strain contribution to the work of grain boundary decohesion is small and that the chemical contribution correlates with the electronegativity difference between Cu and the impurity. The strain contribution to the work of dislocation emission is calculated to be negative, while the chemical contribution is calculated to be always positive. Both the strain and chemical contributions to the work of dislocation emission generally become weaker with the increasing electronegativity from Mg to S. By combining these contributions together, we find, in agreement with experimental observations, that a strong segregation of S can reduce the work of grain boundary separation below the work of dislocation emission, thus embrittling Cu, while such an embrittlement cannot be produced by a P segregation because it lowers the energy barrier for dislocation emission relatively more than for work separation.

  8. Transport through a vibrating quantum dot: Polaronic effects

    International Nuclear Information System (INIS)

    Koch, T; Alvermann, A; Fehske, H; Loos, J; Bishop, A R

    2010-01-01

    We present a Green's function based treatment of the effects of electron-phonon coupling on transport through a molecular quantum dot in the quantum limit. Thereby we combine an incomplete variational Lang-Firsov approach with a perturbative calculation of the electron-phonon self energy in the framework of generalised Matsubara Green functions and a Landauer-type transport description. Calculating the ground-state energy, the dot single-particle spectral function and the linear conductance at finite carrier density, we study the low-temperature transport properties of the vibrating quantum dot sandwiched between metallic leads in the whole electron-phonon coupling strength regime. We discuss corrections to the concept of an anti-adiabatic dot polaron and show how a deformable quantum dot can act as a molecular switch.

  9. Polaron effects on the dc- and ac-tunneling characteristics of molecular Josephson junctions

    Science.gov (United States)

    Wu, B. H.; Cao, J. C.; Timm, C.

    2012-07-01

    We study the interplay of polaronic effect and superconductivity in transport through molecular Josephson junctions. The tunneling rates of electrons are dominated by vibronic replicas of the superconducting gap, which show up as prominent features in the differential conductance for the dc and ac current. For relatively large molecule-lead coupling, a features that appears when the Josephson frequency matches the vibron frequency can be identified with an over-the-gap structure observed by Marchenkov [Nat. Nanotech. 1748-338710.1038/nnano.2007.2182, 481 (2007)]. However, we are more concerned with the weak-coupling limit, where resonant tunneling through the molecular level dominates. We find that certain features involving both Andreev reflection and vibron emission show an unusual shift of the bias voltage V at their maximum with the gate voltage Vg as V˜(2/3)Vg. Moreover, due to the polaronic effect, the ac Josephson current shows a phase shift of π when the bias eV is increased by one vibronic energy quantum ℏωv. This distinctive even-odd effect is explained in terms of the different sign of the coupling to vibrons of electrons and of Andreev-reflected holes.

  10. The effect of impurity level on ultrafine-grained microstructures and their stability in low stacking fault energy silver

    International Nuclear Information System (INIS)

    Hegedus, Zoltan; Gubicza, Jeno; Kawasaki, Megumi; Chinh, Nguyen Q.; Fogarassy, Zsolt; Langdon, Terence G.

    2011-01-01

    Highlights: → Effect of impurity content on microstructure in ECAP-processed silver was studied. → There is a lower degree of twinning in the less pure material for high strains. → The samples processed for 4-16 passes showed self-annealing during storage at RT. → Small increase of impurity level resulted in a much better stability at RT. - Abstract: The effect of impurity content on the evolution of microstructure in low stacking fault energy silver processed by severe plastic deformation (SPD) was studied. The SPD-processing was carried out on 4N5 and 4N purity Ag samples by equal-channel angular pressing (ECAP) up to 16 passes. It was found that, although the minimum grain size and the maximum dislocation density were not affected by the different impurity atom content, there is a lower degree of twinning in the less pure material for high number of passes. The small increase of impurity level from 4N5 to 4N in Ag resulted in a significantly better thermal stability at room temperature for the ultrafine-grained microstructures obtained by ECAP.

  11. Impurity solitons with quadratic nonlinearities

    DEFF Research Database (Denmark)

    Clausen, Carl A. Balslev; Torres, Juan P-; Torner, Lluis

    1998-01-01

    We fmd families of solitary waves mediated by parametric mixing in quadratic nonlinear media that are localized at point-defect impurities. Solitons localized at attractive impurities are found to be dynamically stable. It is shown that localization at the impurity modifies strongly the soliton...

  12. Features of transformation of impurity-defect complexes in СdTe:Сl under the influence of microwave radiation

    Directory of Open Access Journals (Sweden)

    Budzulyak S. I.

    2014-08-01

    Full Text Available High-resistance cadmium telluride single crystals are promising material for production of ionizing radiation detectors. To increase crystal resistance, they are doped with chlorine. The detector quality depends on uniformity of chlorine impurity distribution over crystal. It is known that low-dose microwave irradiation can homogenize impurity distribution in a specimen. In the present work, we made an attempt to improve the detector material quality by using such post-technological treatment, as well as to study state variation for impurity-defect complexes. To this end, the effect of microwave irradiation on transformation of impurity-defect complexes in CdTe:Cl single crystals was investigated using low-temperature photoluminescence. It is shown that activation of ClTe donor centers by microwave irradiation for 10 s and presence of VCd acceptor centers in the specimens under investigation effectively facilitate formation of (VNd–ClTe defect centers at which excitons are bound. Detailed investigations of the band form for donor-acceptor pairs (DAPs in CdTe:Cl single crystals made it possible to determine the Huang—Rhys factor (that characterizes electron-phonon interaction in CdTe:Cl DAPs as a function of microwave treatment duration. It is shown for single crystals with NCl = 5·1017 cm–3 and 5·1019 cm–3 that the Huang—Rhys factor grows with microwave irradiation dose. This is related to both homogenization of donor and acceptor centers distribution and increase of donor—acceptor spacing. It is shown that microwave irradiation of CdTe:Cl single crystals results in concentration reduction for separate cadmium vacancies VCd because of formation of (VNd—ClTe defect centers at which excitons are bound.

  13. A new polaronic order-disorder phase transition in magnetite as observed through μSR

    International Nuclear Information System (INIS)

    Boekema, C.; Lichti, R.L.; Denison, A.B.; Brabers, V.A.M.; Cooke, D.W.; Heffner, R.H.; Hutson, R.L.; Schillaci, M.E.

    1986-01-01

    Recent μSr measurements on the Mott-Wigner glass magnetite, as a function of temperature and external magnetic field have shown the existence of two inequivalent magnetic sites below T A = 247 K. These data are being interpreted in terms of the onset or destruction of local order manifested as local atomic correlations (molecular polarons). (orig.)

  14. Phonon-impurity relaxation and acoustic wave absorption in yttrium-aluminium garnet crystals with impurities

    International Nuclear Information System (INIS)

    Ivanov, S.N.; Kotelyanskij, I.M.; Medved', V.V.

    1983-01-01

    The experimental results of investigations of the influence of substitution impurities in the yttrium-aluminium garnet lattice on absorption of high-frequency acoustic waves are presented. It is shown that the phonon-impurity relaxation processses affect at most the wave absorption and have resonance character when the acoustic wave interacts with the thermal phonon group in the vicinity of the perturbed part of the phonon spectrum caused by the impurity. The differences of time values between inelastic and elastic thermal phonons relaxations determined from the data on longitudinal and shear waves in pure and impurity garnet crystals are discussed

  15. Divertor experiment for impurity control in DIVA

    International Nuclear Information System (INIS)

    Nagami, Masayuki

    1979-04-01

    Divertor actions of controlling the impurities and the transport of impurity ions in the plasma have been investigated in the DIVA device. Following are the results: (1) The radial transport of impurity ions is not described only by neoclassical theory, but it is strongly influenced by anomalous process. Radial diffusion of impurity ions across the whole minor radius is well described by a neoclassical diffusion superposed by the anomalous diffusion for protons. Due to this anomalous process, which spreads the radial density profile of impurity ions, 80 to 90% of the impurity flux in the plasma outer edge is shielded even in a nondiverted discharge. (2) The divertor reduces the impurity flux entering the main plasma by a factor of 2 to 4. The impurity ions shielded by the scrape-off plasma are rapidly guided into the burial chamber with a poloidal excursion time roughly equal to that of the scrape-off plasma. (3) The divertor reduces the impurity ion flux onto the main vacuum chamber by guiding the impurity ions diffusing from the main plasma into the burial chamber, thereby reducing the plasma-wall interaction caused by diffusing impurity ions at the main vacuum chamber. The impurity ions produced in the burial chamber may flow back to the main plasma through the scrape-off layer. However, roughly only 0.3% of the impurity flux into the scrape-off plasma in the burial chamber penetrates into the main plasma due to the impurity backflow. (4) A slight cooling of the scrape-off plasma with light-impurity injection effectively reduces the metal impurity production at the first wall by reducing the potential difference between the plasma and the wall, thereby reducing the accumulation of the metal impurity in the discharge. Radiation cooling by low-Z impurities in the plasma outer edge, which may become an important feature in future large tokamaks both with and without divertor, is numerically evaluated for carbon, oxygen and neon. (author)

  16. Two-dimensional electron states bound to an off-plane donor in a magnetic field

    International Nuclear Information System (INIS)

    Bruno-Alfonso, A; Candido, L; Hai, G-Q

    2010-01-01

    The states of an electron confined in a two-dimensional (2D) plane and bound to an off-plane donor impurity center, in the presence of a magnetic field, are investigated. The energy levels of the ground state and the first three excited states are calculated variationally. The binding energy and the mean orbital radius of these states are obtained as a function of the donor center position and the magnetic field strength. The limiting cases are discussed for an in-plane donor impurity (i.e. a 2D hydrogen atom) as well as for the donor center far away from the 2D plane in strong magnetic fields, which corresponds to a 2D harmonic oscillator.

  17. Graphene plasmons: Impurities and nonlocal effects

    Science.gov (United States)

    Viola, Giovanni; Wenger, Tobias; Kinaret, Jari; Fogelström, Mikael

    2018-02-01

    This work analyzes how impurities and vacancies on the surface of a graphene sample affect its optical conductivity and plasmon excitations. The disorder is analyzed in the self-consistent Green's function formulation and nonlocal effects are fully taken into account. It is shown that impurities modify the linear spectrum and give rise to an impurity band whose position and width depend on the two parameters of our model, the density and the strength of impurities. The presence of the impurity band strongly influences the electromagnetic response and the plasmon losses. Furthermore, we discuss how the impurity-band position can be obtained experimentally from the plasmon dispersion relation and discuss this in the context of sensing.

  18. Power exhaust by impurity seeding in fusion reactors

    Energy Technology Data Exchange (ETDEWEB)

    Bernert, Matthias; Kallenbach, Arne; Dux, Ralph; Wischmeier, Marco [Max-Planck-Institut fuer Plasmaphysik, Garching (Germany); Reimold, Felix [Forschungszentrum Juelich GmbH, IEK, Juelich (Germany); Lipschultz, Bruce [University of York, York Plasma Institute, Heslington, York (United Kingdom); Collaboration: the ASDEX Upgrade team; the EUROfusion MST1 Team

    2016-07-01

    Power exhaust is one of the big challenges for future fusion reactors. The power load at the divertor targets, the primary plasma-wall interaction zone, would exceed material limits and, thus, must be reduced. Therefore, 90% of the exhaust power needs to be dissipated and the divertor is anticipated to be in the detached regime, where the interaction of the plasma with the wall is significantly reduced. Radiation is the dominant dissipation process and is increased by impurity seeding. The radiation distribution can be tailored by using different seed impurities (N for radiation outside, Ne and Ar for radiation at the edge of and Kr for radiation inside the confined region). The tailoring of the radiation profile is required in order to maximize the radiated power and at the same time minimize the impact on the energy confinement. Recent experiments with intense impurity seeding at the ASDEX Upgrade tokamak demonstrate operation at highest heat fluxes and detached divertor targets at radiated power fractions of up to 90%. In these scenarios the radiation originates predominantly from the confined region and leads to an unexpectedly small confinement reduction.

  19. Novel sound phenomena in superfluid helium in aerogel and other impure superfluids

    International Nuclear Information System (INIS)

    Brusov, Peter; Brusov, Paul; Lawes, Gavin; Lee, Chong; Matsubara, Akira; Ishikawa, Osamu; Majumdar, Pinaki

    2003-01-01

    During the last decade new techniques for producing impure superfluids with unique properties have been developed. This new class of systems includes superfluid helium confined to aerogel, HeII with different impurities (D 2 , N 2 , Ne, Kr), superfluids in Vycor glasses, and watergel. These systems exhibit very unusual properties including unexpected acoustic features. We discuss the sound properties of these systems and show that sound phenomena in impure superfluids are modified from those in pure superfluids. We calculate the coupling between temperature and pressure oscillations for impure superfluids and for superfluid He in aerogel. We show that the coupling between these two sound modes is governed either by c∂ρ/∂c or σρ a ρ s (for aerogel) rather than thermal expansion coefficient ∂ρ/∂T, which is enormously small in pure superfluids. This replacement plays a fundamental role in all sound phenomena in impure superfluids. It enhances the coupling between the two sound modes that leads to the existence of such phenomena as the slow mode and heat pulse propagation with the velocity of first sound observed in superfluids in aerogel. This means that it is possible to observe in impure superfluids such unusual sound phenomena as slow pressure (density) waves and fast temperature (entropy) waves. The enhancement of the coupling between the two sound modes decreases the threshold values for nonlinear processes as compared to pure superfluids. Sound conversion, which has been observed in pure superfluids only by shock waves should be observed at moderate sound amplitude in impure superfluids. Cerenkov emission of second sound by first sound (which never been observed in pure superfluids) could be observed in impure superfluids

  20. Low Z impurity transport in tokamaks

    International Nuclear Information System (INIS)

    Hawryluk, R.J.; Suckewer, S.; Hirshman, S.P.

    1978-10-01

    Low Z impurity transport in tokamaks was simulated with a one-dimensional impurity transport model including both neoclassical and anomalous transport. The neoclassical fluxes are due to collisions between the background plasma and impurity ions as well as collisions between the various ionization states. The evaluation of the neoclassical fluxes takes into account the different collisionality regimes of the background plasma and the impurity ions. A limiter scrapeoff model is used to define the boundary conditions for the impurity ions in the plasma periphery. In order to account for the spectroscopic measurements of power radiated by the lower ionization states, fluxes due to anomalous transport are included. The sensitivity of the results to uncertainties in rate coefficients and plasma parameters in the periphery are investigated. The implications of the transport model for spectroscopic evaluation of impurity concentrations, impurity fluxes, and radiated power from line emission measurements are discussed

  1. Experimental study of impurity production in the Tokapole II tokamak

    International Nuclear Information System (INIS)

    Brickhouse, N.S.

    1984-01-01

    The release mechanism for low-Z impurities in Tokapole II has been characterized through impurity doping and isotopic exchange experiments. The desorption mechanism responsible for the low-Z impurity concentrations during the rise phase of the plasma current depends on the mass of the plasma ions. Doping with small amounts of any gas studied (H 2 , D 2 , He, N 2 , O 2 , Ne, Ar, Kr, and Xe) increases the early-time radiation of O, C, and N. For exotic gas doping this increase is linear with the dopant concentration, and proportional to the mass of the dopant, as expected for a momentum transfer process. Isotopic exchange experiments confirm the mass-dependence of oxygen production. A time-dependent coronal model is compared with the vacuum ultraviolet spectroscopic signals of the ionizing oxygen. The quantity sigma/tau (desorption cross section divided by particle confinement time) is determined to be 4 x 10 13 cm 2 /msec. The oxygen influx has a large peak early in the start-up

  2. Effect of impurities in niobium on the growth of superconducting Nb/sub 3//Sn. [Al, Cu, Ge, Si, Sn, Zr impurities

    Energy Technology Data Exchange (ETDEWEB)

    Sekizawa, T

    1974-01-01

    In order to examine the possibility of reducing the heat treatment temperature in the manufacturing process of the superconducting intermetallic compounds wire or ribbon by the metallurgical bond method, tin cored specimens of niobium including a small amount of impurity (Al, Cu, Ge, Si, Sn and Zr) have been prepared, and the critical currents measured as a function of the heat treatment temperature and time. Experimental results are summarized as follows. (1) The effect of the impurity added into niobium is to stabilize the dislocation network cell structure in niobium, caused by the cold working, up to the forming temperature of Nb/sub 3/Sn. The stabilized dislocation network structure is considered to serve as diffusion pipes of the tin atom. As this diffusion (microscopic) is predominant over bulk diffusion (macroscopic), the cored specimen made of niobium including impurities has lower forming temperature of Nb/sub 3/Sn compared with the specimen made of pure niobium. (2) The critical current vs. heat treatment temperature characteristics show that the critical current peaks at 900/sup 0/C in the case of niobium including Si, while at 950/sup 0/C in the case of pure niobium. 6 references.

  3. Study of spin-polaron formation in 1D systems

    Energy Technology Data Exchange (ETDEWEB)

    Arredondo, Y.; Navarro, O. [Instituto de Investigaciones en Materiales, Universidad Nacional Autónoma de México, Apartado Postal 70-360, 04510 México D.F. (Mexico); Vallejo, E. [Facultad de Ingeniería Mecánica y Eléctrica, Universidad Autónoma de Coahuila, Carretera Torreón-Matamoros Km. 7.5 Ciudad Universitaria, 27276 Torreón, Coahuila (Mexico)

    2014-05-15

    We study numerically the formation of spin-polarons in low-dimensional systems. We consider a ferromagnetic Kondo lattice model with Hund coupling J{sub H} and localized spins interacting antiferromagnetically with coupling constant J. We investigate the ground state phase diagram as a function of the exchange couplings J{sub H} and J and as a function of the band filling, since it has been observed that doping either on the ferromagnetic or antiferromagnetic regime lead to formation of magnetic domains [1]. We explore the quasi-particle formation and phase separation using the density-matrix renormalization group method, which is a highly efficient method to investigate quasi-one-dimensional strongly correlated systems.

  4. The impurity transport in HT-6B tokamak

    International Nuclear Information System (INIS)

    Huang Rong; Xie Jikang; Li Linzhong; He Yexi; Wang Shuya; Deng Chuanbao; Li Guoxiang; Qiu Lijian

    1992-06-01

    The quasi-stationary profiles of the impurity ionization stages in HT-6B tokamak were determined by monitoring the VUV (vacuum ultraviolet) and visible line emissions from impurities. An impurity transport code was set up. The impurity transport coefficients and other parameters of impurities in that device were simulated and determined. From the measurement of impurity emission profiles and simulation analysis, it is concluded that the impurity confinement is improved and the impurity recycling is reduced by the slow magnetic compression. Some characteristics of impurity transport in that device are also discussed

  5. Impurity gettering in semiconductors

    Science.gov (United States)

    Sopori, Bhushan L.

    1995-01-01

    A process for impurity gettering in a semiconductor substrate or device such as a silicon substrate or device. The process comprises hydrogenating the substrate or device at the back side thereof with sufficient intensity and for a time period sufficient to produce a damaged back side. Thereafter, the substrate or device is illuminated with electromagnetic radiation at an intensity and for a time period sufficient to cause the impurities to diffuse to the back side and alloy with a metal there present to form a contact and capture the impurities. The impurity gettering process also can function to simultaneously passivate defects within the substrate or device, with the defects likewise diffusing to the back side for simultaneous passivation. Simultaneously, substantially all hydrogen-induced damage on the back side of the substrate or device is likewise annihilated. Also taught is an alternate process comprising thermal treatment after hydrogenation of the substrate or device at a temperature of from about 500.degree. C. to about 700.degree. C. for a time period sufficient to cause the impurities to diffuse to the damaged back side thereof for subsequent capture by an alloying metal.

  6. Effect of uniaxial stress on free and bismuth-bound excitons in InP

    International Nuclear Information System (INIS)

    Weber, G.; Ruehle, W.

    1979-01-01

    The reduction of the shear deformation potentials of holes bound to the isoelectronic impurity Bi in InP is determined by piezoluminescence. It is compared with the corresponding reduction for holes bound to the Coulomb-type acceptors C and Zn. The theory for an effective mass acceptor describes well the cases of C and Zn. However, additional effects as local strain and Stark fields must be involved in the case of Bi leading to an extremely large reduction of the deformation potentials. No change in binding energy with applied stress as well as no exchange splitting of the Bi-bound exciton can be detected within experimental accuracy. The stress dependence of the free exciton reflectance reveals values for the band deformation potentials and a value of 0.07 meV for the exchange splitting of the free exciton in InP. (author)

  7. Role of codeposited impurities during growth. II. Dependence of morphology on binding and barrier energies

    Science.gov (United States)

    Sathiyanarayanan, Rajesh; Hamouda, Ajmi Bh.; Pimpinelli, A.; Einstein, T. L.

    2011-01-01

    In an accompanying article we showed that surface morphologies obtained through codeposition of a small quantity (2%) of impurities with Cu during growth (step-flow mode, θ = 40 ML) significantly depends on the lateral nearest-neighbor binding energy (ENN) to Cu adatom and the diffusion barrier (Ed) of the impurity atom on Cu(0 0 1). Based on these two energy parameters, ENN and Ed, we classify impurity atoms into four sets. We study island nucleation and growth in the presence of codeposited impurities from different sets in the submonolayer (θ⩽ 0.7 ML) regime. Similar to growth in the step-flow mode, we find different nucleation and growth behavior for impurities from different sets. We characterize these differences through variations of the number of islands (Ni) and the average island size with coverage (θ). Further, we compute the critical nucleus size (i) for all of these cases from the distribution of capture-zone areas using the generalized Wigner distribution.

  8. Impurity-induced moments in underdoped cuprates

    International Nuclear Information System (INIS)

    Khaliullin, G.; Kilian, R.; Krivenko, S.; Fulde, P.

    1997-01-01

    We examine the effect of a nonmagnetic impurity in a two-dimensional spin liquid in the spin-gap phase, employing a drone-fermion representation of spin-1/2 operators. The properties of the local moment induced in the vicinity of the impurity are investigated and an expression for the nuclear-magnetic-resonance Knight shift is derived, which we compare with experimental results. Introducing a second impurity into the spin liquid an antiferromagnetic interaction between the moments is found when the two impurities are located on different sublattices. The presence of many impurities leads to a screening of this interaction as is shown by means of a coherent-potential approximation. Further, the Kondo screening of an impurity-induced local spin by charge carriers is discussed. copyright 1997 The American Physical Society

  9. Full-counting statistics of energy transport of molecular junctions in the polaronic regime

    International Nuclear Information System (INIS)

    Tang, Gaomin; Yu, Zhizhou; Wang, Jian

    2017-01-01

    We investigate the full-counting statistics (FCS) of energy transport carried by electrons in molecular junctions for the Anderson–Holstein model in the polaronic regime. Using the two-time quantum measurement scheme, the generating function (GF) for the energy transport is derived and expressed as a Fredholm determinant in terms of Keldysh nonequilibrium Green’s function in the time domain. Dressed tunneling approximation is used in decoupling the phonon cloud operator in the polaronic regime. This formalism enables us to analyze the time evolution of energy transport dynamics after a sudden switch-on of the coupling between the dot and the leads towards the stationary state. The steady state energy current cumulant GF in the long time limit is obtained in the energy domain as well. Universal relations for steady state energy current FCS are derived under a finite temperature gradient with zero bias and this enabled us to express the equilibrium energy current cumulant by a linear combination of lower order cumulants. The behaviors of energy current cumulants in steady state under temperature gradient and external bias are numerically studied and explained. The transient dynamics of energy current cumulants is numerically calculated and analyzed. Universal scaling of normalized transient energy cumulants is found under both temperature gradient and external bias. (paper)

  10. Quenching of orbital momentum by crystalline fields in a multichannel Kondo impurity

    International Nuclear Information System (INIS)

    Schlottmann, P.; Lee, K.

    1995-01-01

    We consider an impurity of spin S interacting via an isotropic spin exchange with conduction electrons of spin 1/2. The conduction electrons can be in n different orbital channels. We assume that crystalline fields split the orbital degrees of freedom into two multiplets, the one with lower energy consisting of n * orbitals and the one of higher energy of n-n * orbitals. The exchange coupling is the same for all channels. We derive the thermodynamic Bethe ansatz equations for this model and discuss the ground-state properties of the impurity as a function of the spin S and the magnetic field. The solution of the ground-state Bethe ansatz equations is obtained numerically. Three situations have to be distinguished when the magnetic field is small compared to the Kondo temperature: (i) If S=n/2 or S=n * /2 the conduction electrons exactly compensate the impurity spin into a singlet ground state, (ii) if S>n/2 the impurity is undercompensated, i.e., only partially compensated leaving an effective spin S-n/2 at low temperatures, and (iii) in all other cases the impurity spin is overcompensated giving rise to critical behavior. The quenching of the orbits by the crystalline field dramatically affects the cases S * /2

  11. Effect of impurity elements Al, Mn, and N2 on the corrosion resistance of zircaloy-2 in high temperature water and steam

    International Nuclear Information System (INIS)

    Gadiyar, H.S.

    1978-01-01

    Although the impurity limits are specified in standard zircaloy-2, it is possible that during its manufacture some of the impurities may exceed by a few ppm than the normally set values. It is necessary to understand the corrosion behaviour of such zircaloy-2 which contain a small amount of excessive impurities. This report summarizes some such data of the impurities aluminium, manganese and nitrogen. It is seen that the common impurities which can affect the corrosion of zircaloy-2 significantly are Al and N 2 and to a lesser extent Mn. (author)

  12. Impurities in uranium process solutions

    International Nuclear Information System (INIS)

    Boydell, D.W.

    1980-01-01

    Several uranium purification circuits are presented in tabular form together with the average major impurity levels associated with each. The more common unit operations in these circuits, namely strong- and weak-base ion-exchange, solvent extraction and the precipitation of impurities are then discussed individually. Particular attention is paid to the effect and removal of impurities in each of these four unit operations. (author)

  13. Simulation and measurement of ferromagnetic impurities in non-magnetic aeroengine turbine disks using fluxgate magnetometers

    OpenAIRE

    Sebastian Hantscher; Ruixin Zhou; Albert Seidl; Johann Hinken; Christian Ziep

    2015-01-01

    In this paper, ferromagnetic impurities in paramagnetic aeroengine turbine disks are investigated. Because such inclusions represent a significant threat in aviation, a detailed analysis is required for impured turbine disks. For this purpose, sensitive fluxgate magnetometers are used. After a premagnetisation, this sensor is able to detect small ferromagnetic particles by recording the variation of the magnetic flux density while the disk rotates below the sensor head. This trajectory create...

  14. Effect of doping Ca on polaron hopping in LaSr 2 Mn 2 O 7

    Indian Academy of Sciences (India)

    ... Lecture Workshops · Refresher Courses · Symposia · Live Streaming. Home; Journals; Pramana – Journal of Physics; Volume 58; Issue 5-6. Effect of doping Ca on polaron hopping in LaSr2Mn2O7. S N Bhatia Osama A Yassin. Colossal Magnetoresistance & Other Materials Volume 58 Issue 5-6 May-June 2002 pp 1061- ...

  15. A polaronic model of superconductivity in doped fulleride systems

    International Nuclear Information System (INIS)

    Tiwari, S.C.

    2007-01-01

    Full text: A polaronic model of superconductivity in doped fulleride systems is presented. The normal and anomalous one-particle Green's functions are derived for a system with strong electron phonon coupling. The study of collapse of the electron band and the phonon vacuum is presented within the mean-field approximation. Self consistent equation for the superconducting order parameter is derived using Green's function technique and following Lang and Firsov transformations. Expressions for specific heat, density of states, free energy and critical field based on this model have been derived. The theory is applied to explain the experimental results in the systems K 3 C 60 and Rb 3 C 6 O. These results are in good agreement with the available experimental data. (authors)

  16. Neo-classical impurity transport

    International Nuclear Information System (INIS)

    Stringer, T.E.

    The neo-classical theory for impurity transport in a toroidal plasma is outlined, and the results discussed. A general account is given of the impurity behaviour and its dependence on collisionality. The underlying physics is described with special attention to the role of the poloidal rotation

  17. Interplay of cross-plane polaronic transport and resistive switching in Pt–Pr0.67Ca0.33MnO3–Pt heterostructures

    International Nuclear Information System (INIS)

    Scherff, M; Hoffmann, J; Meyer, B; Danz, Th; Jooss, Ch

    2013-01-01

    The identification of the cross-plane electric transport mechanisms in different resistance states of metal–oxide sandwich structures is essential for gaining insights into the mechanisms of resistive switching (RS). Here, we present a systematic study of cross-plane electric transport properties of Pr 0.67 Ca 0.33 MnO 3 (PCMO) thin films sandwiched by precious Pt metal electrodes. We observe three different transport regimes: ohmic, nonlinear and RS. The nonlinear regime is associated with colossal magneto-resistance (CMR) and colossal electro-resistance (CER) effects. In contrast to RS, the CMR and CER are volatile resistance effects which persist only during application of strong magnetic or electric fields and they are restricted to low temperatures. At low current densities, the device resistance is dominated by small polaron hopping transport of the PCMO film. At higher electric current densities near the switching threshold, the interface resistance starts to dominate and remarkably also exhibits thermally activated transport properties. Our studies also shed light onto the interplay of colossal resistance effects and RS: at low temperatures, RS can be only induced by reduction of the PCMO resistivity through CMR and CER. This clearly demonstrates the key role of the current density for controlling the amplitude of non-volatile resistive changes. Conversely, the CMR can be used as a probe for the switching induced changes in disorder and correlations. At small switching amplitudes, we observe slight changes in polaron activation energy which can be attributed to changes at the interface. If the switching amplitude exceeds 1000% and more, the CMR effect in the device can be reversibly changed. This indicates persistent changes in electronic or lattice structure of large regions within the PCMO film. (paper)

  18. Measuring and controlling method for organic impurities

    International Nuclear Information System (INIS)

    Aizawa, Motohiro; Igarashi, Hiroo

    1995-01-01

    The present invention concerns measurement and control for organic impurities contained in ultrapurified water for use in a nuclear power plant. A specimen containing organic impurities leached out of anionic exchange resins and cationic exchange resins is introduced to an organic material decomposing section to decompose organic impurities into organic carbon and other decomposed products. Sulfate ions, nitrate ions, nitrite ions and carbon dioxide are produced by the decomposition of the organic impurities. As a next step, carbon dioxide in the decomposed products is separated by deaerating with a nitrogen gas or an argon gas and then a TOC concentration is measured by a non-dispersion-type infrared spectrometer. Further, a specimen from which carbon dioxide was separated is introduced to a column filled with ion exchange resins and, after concentrating inorganic ion impurities, the inorganic ion impurities are identified by using a measuring theory of an ion chromatographic method of eluting and separating inorganic ion impurities and detecting them based on the change of electroconductivity depending on the kinds of the inorganic ion impurities. Organic impurities can be measured and controlled, to improve the reliability of water quality control. (N.H.)

  19. Dynamical impurity problems

    International Nuclear Information System (INIS)

    Emery, V.J.; Kivelson, S.A.

    1993-01-01

    In the past few years there has been a resurgence of interest in dynamical impurity problems, as a result of developments in the theory of correlated electron systems. The general dynamical impurity problem is a set of conduction electrons interacting with an impurity which has internal degrees of freedom. The simplest and earliest example, the Kondo problem, has attracted interest since the mid-sixties not only because of its physical importance but also as an example of a model displaying logarithmic divergences order by order in perturbation theory. It provided one of the earliest applications of the renormalization group method, which is designed to deal with just such a situation. As we shall see, the antiferromagnetic Kondo model is controlled by a strong-coupling fixed point, and the essence of the renormalization group solution is to carry out the global renormalization numerically starting from the original (weak-coupling) Hamiltonian. In these lectures, we shall describe an alternative route in which we identify an exactly solvable model which renormalizes to the same fixed point as the original dynamical impurity problem. This approach is akin to determining the critical behavior at a second order phase transition point by solving any model in a given universality class

  20. Dynamical impurity problems

    Energy Technology Data Exchange (ETDEWEB)

    Emery, V.J. [Brookhaven National Lab., Upton, NY (United States); Kivelson, S.A. [California Univ., Los Angeles, CA (United States). Dept. of Physics

    1993-12-31

    In the past few years there has been a resurgence of interest in dynamical impurity problems, as a result of developments in the theory of correlated electron systems. The general dynamical impurity problem is a set of conduction electrons interacting with an impurity which has internal degrees of freedom. The simplest and earliest example, the Kondo problem, has attracted interest since the mid-sixties not only because of its physical importance but also as an example of a model displaying logarithmic divergences order by order in perturbation theory. It provided one of the earliest applications of the renormalization group method, which is designed to deal with just such a situation. As we shall see, the antiferromagnetic Kondo model is controlled by a strong-coupling fixed point, and the essence of the renormalization group solution is to carry out the global renormalization numerically starting from the original (weak-coupling) Hamiltonian. In these lectures, we shall describe an alternative route in which we identify an exactly solvable model which renormalizes to the same fixed point as the original dynamical impurity problem. This approach is akin to determining the critical behavior at a second order phase transition point by solving any model in a given universality class.

  1. Influence of impurities in Beryllium on tritium breeding ratio

    International Nuclear Information System (INIS)

    Yamauchi, M.; Ochiai, K.; Verzilov, Y.; Ito, M.; Wada, M.; Nishitani, T.

    2004-01-01

    Several neutronics experiments simulating fusion blankets have been conducted with 14 MeV neutron source to assess the reliability of nuclear analysis codes. However, the analyses have not always presented good agreements so far between calculated and measured tritium production rates. One of the reasons was considered as impurities in beryllium which has negligibly small neutron absorption cross section in low energy range. Chemical compositions of beryllium were analyzed by Inductively Coupled Plasma (ICP) method, and a pulsed neutron decay experiment discovered that the macroscopic neutron absorption cross section for beryllium medium may be about 30% larger than the value calculated by the data specified by manufacturing company. The influence of the impurities on the calculations was studied on the basis of the fusion DEMO-reactor blanket design. As a result of the study, it was made clear that the impurities affect the local tritium production rates when the size of beryllium medium is more than 20-30 mean free paths (30-40 cm) in thickness. In case of some blanket designs that meet the above condition, the effect on tritium breeding ratio may become as large as about 4%. (author)

  2. Influence of impurities in Beryllium on tritium breeding ratio

    Energy Technology Data Exchange (ETDEWEB)

    Yamauchi, M; Ochiai, K; Verzilov, Y; Ito, M; Wada, M; Nishitani, T [Japan Atomic Energy Research Inst., Tokai, Ibaraki (Japan). Tokai Research Establishment

    2004-03-01

    Several neutronics experiments simulating fusion blankets have been conducted with 14 MeV neutron source to assess the reliability of nuclear analysis codes. However, the analyses have not always presented good agreements so far between calculated and measured tritium production rates. One of the reasons was considered as impurities in beryllium which has negligibly small neutron absorption cross section in low energy range. Chemical compositions of beryllium were analyzed by Inductively Coupled Plasma (ICP) method, and a pulsed neutron decay experiment discovered that the macroscopic neutron absorption cross section for beryllium medium may be about 30% larger than the value calculated by the data specified by manufacturing company. The influence of the impurities on the calculations was studied on the basis of the fusion DEMO-reactor blanket design. As a result of the study, it was made clear that the impurities affect the local tritium production rates when the size of beryllium medium is more than 20-30 mean free paths (30-40 cm) in thickness. In case of some blanket designs that meet the above condition, the effect on tritium breeding ratio may become as large as about 4%. (author)

  3. Radio frequency induced and neoclassical asymmetries and their effects on turbulent impurity transport in a tokamak

    Energy Technology Data Exchange (ETDEWEB)

    Pusztai, I. [Applied Physics, Chalmers University of Technology and Euratom-VR Association, SE-41296 Goeteborg (Sweden); Plasma Science and Fusion Center, Massachusetts Institute of Technology, Cambridge, MA 02139 (United States); Landreman, M. [University of Maryland, College Park, MD 20742 (United States); Mollen, A.; Fueloep, T. [Applied Physics, Chalmers University of Technology and Euratom-VR Association, SE-41296 Goeteborg (Sweden); Kazakov, Ye.O. [Laboratory for Plasma Physics, ERM/KMS, Association ' EURATOM-Belgian State' , TEC Partner, BE-1000 Brussels (Belgium)

    2014-06-15

    Poloidal asymmetries in the impurity density can be generated by radio frequency heating in the core and by neoclassical effects in the edge of tokamak plasmas. In a pedestal case study, using global neoclassical simulations we find that finite orbit width effects can generate significant poloidal variation in the electrostatic potential, which varies on a small radial scale. Gyrokinetic modeling shows that these poloidal asymmetries can be strong enough to significantly modify turbulent impurity peaking. In the pedestal the E x B drift in the radial electric field can give a larger contribution to the poloidal motion of impurities than that of their parallel streaming. Under such circumstances we find that up-down asymmetries can also affect impurity peaking. (copyright 2014 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim) (orig.)

  4. Identification and characterization of potential impurities of donepezil.

    Science.gov (United States)

    Krishna Reddy, K V S R; Moses Babu, J; Kumar, P Anil; Chandrashekar, E R R; Mathad, Vijayavitthal T; Eswaraiah, S; Reddy, M Satyanarayana; Vyas, K

    2004-09-03

    Five unknown impurities ranging from 0.05 to 0.2% in donepezil were detected by a simple isocratic reversed-phase high performance liquid chromatography (HPLC). These impurities were isolated from crude sample of donepezil using isocratic reversed-phase preparative high performance liquid chromatography. Based on the spectral data (IR, NMR and MS), the structures of these impurities were characterised as 5,6-dimethoxy-2-(4-pyridylmethyl)-1-indanone (impurity I), 4-(5,6-dimethoxy-2,3-dihydro-1H-2-indenylmethyl) piperidine (impurity II), 2-(1-benzyl-4-piperdylmethyl)-5,6-dimethoxy-1-indanol (impurity III) 1-benzyl-4(5,6-dimethoxy-2,3-dihydro-1H-2-indenylmethyl) piperidine (impurity IV) and 1,1-dibenzyl-4(5,6-dimethoxy-1-oxo-2,3-dihydro-2H-2-indenylmethyl)hexahydropyridinium bromide (impurity V). The synthesis of these impurities and their formation was discussed.

  5. Enhanced electron/fuel-ion equilibration through impurity ions: Studies applicable to NIF and Omega

    Science.gov (United States)

    Petrasso, R. D.; Sio, H.; Kabadi, N.; Lahmann, B.; Simpson, R.; Parker, C.; Frenje, J.; Gatu Johnson, M.; Li, C. K.; Seguin, F. H.; Rinderknecht, H.; Casey, D.; Grabowski, P.; Graziani, F.; Taitano, W.; Le, A.; Chacon, L.; Hoffman, N.; Kagan, G.; Simakov, A.; Zylstra, A.; Rosenberg, M.; Betti, R.; Srinivasan, B.; Mancini, R.

    2017-10-01

    In shock-driven exploding-pushers, a platform used extensively to study multi-species and kinetic effects, electrons and fuel ions are far out of equilibrium, as reflected by very different temperatures. However, impurity ions, even in small quantities, can couple effectively to the electrons, because of a Z2 dependence, and in turn, impurity ions can then strongly couple to the fuel ions. Through this mechanism, electrons and fuel-ions can equilibrate much faster than they otherwise would. This is a quantitative issue, depending upon the amount and Z of the impurity. For NIF and Omega, we consider the role of this process. Coupled non-linear equations, reflecting the temperatures of the three species, are solved for a range of conditions. Consideration is also given to ablatively driven implosions, since impurities can similarly affect the equilibration. This work was supported in part by DOE/NNSA DE-NA0002949 and DE-NA0002726.

  6. Evaluation of hydrogen and oxygen impurity levels on silicon surfaces

    Energy Technology Data Exchange (ETDEWEB)

    Kenny, M.J.; Wielunski, L.S.; Netterfield, R.P.; Martin, P.J.; Leistner, A. [Commonwealth Scientific and Industrial Research Organisation (CSIRO), Lindfield, NSW (Australia). Div. of Applied Physics

    1996-12-31

    This paper reports on surface analytical techniques used to quantify surface concentrations of impurities such as oxygen and hydrogen. The following analytical techniques were used: Rutherford and Backscattering, elastic recoil detection, time-of-flight SIMS, spectroscopic ellipsometry, x-ray photoelectron spectroscopy. The results have shown a spread in thickness of oxide layer, ranging from unmeasurable to 1.6 nm. The data must be considered as preliminary at this stage, but give some insight into the suitability of the techniques and a general idea of the significance of impurities at the monolayer level. These measurements have been carried out on a small number of silicon surfaces both semiconductor grade <111> crystalline material and silicon which has been used in sphere fabrication. 5 refs., 1 fig.

  7. Evaluation of hydrogen and oxygen impurity levels on silicon surfaces

    Energy Technology Data Exchange (ETDEWEB)

    Kenny, M J; Wielunski, L S; Netterfield, R P; Martin, P J; Leistner, A [Commonwealth Scientific and Industrial Research Organisation (CSIRO), Lindfield, NSW (Australia). Div. of Applied Physics

    1997-12-31

    This paper reports on surface analytical techniques used to quantify surface concentrations of impurities such as oxygen and hydrogen. The following analytical techniques were used: Rutherford and Backscattering, elastic recoil detection, time-of-flight SIMS, spectroscopic ellipsometry, x-ray photoelectron spectroscopy. The results have shown a spread in thickness of oxide layer, ranging from unmeasurable to 1.6 nm. The data must be considered as preliminary at this stage, but give some insight into the suitability of the techniques and a general idea of the significance of impurities at the monolayer level. These measurements have been carried out on a small number of silicon surfaces both semiconductor grade <111> crystalline material and silicon which has been used in sphere fabrication. 5 refs., 1 fig.

  8. Impurity Induced Phase Competition and Supersolidity

    Science.gov (United States)

    Karmakar, Madhuparna; Ganesh, R.

    2017-12-01

    Several material families show competition between superconductivity and other orders. When such competition is driven by doping, it invariably involves spatial inhomogeneities which can seed competing orders. We study impurity-induced charge order in the attractive Hubbard model, a prototypical model for competition between superconductivity and charge density wave order. We show that a single impurity induces a charge-ordered texture over a length scale set by the energy cost of the competing phase. Our results are consistent with a strong-coupling field theory proposed earlier in which superconducting and charge order parameters form components of an SO(3) vector field. To discuss the effects of multiple impurities, we focus on two cases: correlated and random distributions. In the correlated case, the CDW puddles around each impurity overlap coherently leading to a "supersolid" phase with coexisting pairing and charge order. In contrast, a random distribution of impurities does not lead to coherent CDW formation. We argue that the energy lowering from coherent ordering can have a feedback effect, driving correlations between impurities. This can be understood as arising from an RKKY-like interaction, mediated by impurity textures. We discuss implications for charge order in the cuprates and doped CDW materials such as NbSe2.

  9. Polaron Hopping in Nano-scale Poly(dA–Poly(dT DNA

    Directory of Open Access Journals (Sweden)

    Singh Mahi

    2010-01-01

    Full Text Available Abstract We investigate the current–voltage relationship and the temperature-dependent conductance of nano-scale samples of poly(dA–poly(dT DNA molecules. A polaron hopping model has been used to calculate the I–V characteristic of nano-scale samples of DNA. This model agrees with the data for current versus voltage at temperatures greater than 100 K. The quantities G 0 , i 0 , and T 1d are determined empirically, and the conductivity is estimated for samples of poly(dA–poly(dT.

  10. Inelastic scattering in a local polaron model with quadratic coupling to bosons

    DEFF Research Database (Denmark)

    Olsen, Thomas

    2009-01-01

    We calculate the inelastic scattering probabilities in the wide band limit of a local polaron model with quadratic coupling to bosons. The central object is a two-particle Green's function which is calculated exactly using a purely algebraic approach. Compared with the usual linear interaction term...... a quadratic interaction term gives higher probabilities for inelastic scattering involving a large number of bosons. As an application we consider the problem hot-electron-mediated energy transfer at surfaces and use the delta self-consistent field extension of density-functional theory to calculate...

  11. The impurity transport in HT-6M tokamak

    International Nuclear Information System (INIS)

    Xu Wei; Wan Baonian; Xie Jikang

    2003-01-01

    The space-time profile of impurities has been measured with a multichannel visible spectroscopic detect system and UV rotation-mirror system in the HT-6M tokamak. An ideal impurity transport code has been used to simulate impurities (carbon and oxygen) behaviour during the OHM discharge. The profiles of impurities diffusion and convection coefficient, impurities ion densities in different ionized state, loss power density and effective charge number have been derived. The impurity behaviour during low-hybrid current drive has also been analyzed, the results show that the confinement of particles, impurities and energy has been improved, and emission power and effective charge number have been reduced

  12. f-f Magnetic polaron Wigner glass and anomalous superconductivity in U sub 1 sub - sub x Th sub x Be sub 1 sub 3

    CERN Document Server

    Kasuya, T

    2000-01-01

    Mechanisms of the anomalous properties in the heavy fermion superconductor UBe sub 1 sub 3 and its alloys, in particular for the Th dopings, are studied in detail based on the fundamental electronic states to be consistent with all the crucial experimental results. As the reference systems for the magnetic polaron formation, Ce monopnictides, as well as USb and UTe, are mentioned. From detailed systematic studies of the dilute alloy systems, it is postulated that the 5f states in UBe sub 1 sub 3 split into the well-localized core 5f GAMMA sup 2 sub 7 singlet state and other delocalized 5f states situated around the Fermi energy forming the f-f magnetic polarons through the strong intra-atomic ferromagnetic f-f exchange interaction. The accompanied lattice polarons are also shown to play important roles. In the p-d band states, the f-f exchange interaction and the intersite p-f mixing interactions for the p-f Kondo state are of nearly equal strengths causing a rich variety of delicately balanced states. For th...

  13. On impurities transport in a tokamak

    International Nuclear Information System (INIS)

    Rozhanskij, V.A.

    1980-01-01

    Transport of impurity ions is analitically analized in the case when main plasma is in plateau or banana regimes but impurity ions - in the Pfirsch-Schlutter mode. It is shown that in the large region of parameters the impUrity transport represents a drift in a p oloidal electric field, averaged from magnetic surface with provision for disturbance of concentration on it. Therefore, transport velocity does not depend on Z value and impurity type, as well as collision frequency both in the plateau and banana regimes. A value of flows is determined by the value of poloidal rotation velocity. At the rotation velocity corresponding to the electric field directed from the centre to periphery impurities are thrown out of a discharge, in the reverse case the flow is directed inside. Refusal from the assumption that Zsub(eff) > approximately 2, does not considerably change the results of work. The approach developed in the process of work can be applied to the case when impurity ions are in the plateau or banana modes

  14. Mechanisms of impurity diffusion in rutile

    International Nuclear Information System (INIS)

    Peterson, N.L.; Sasaki, J.

    1984-01-01

    Tracer diffusion of 46 Sc, 51 Cr, 54 Mn, 59 Fe, 60 Co, 63 Ni, and 95 Zr, was measured as functions of crystal orientation, temperature, and oxygen partial pressure in rutile single crystals using the radioactive tracer sectioning technique. Compared to cation self-diffusion, divalent impurities (e.g., Co and Ni) diffuse extremely rapidly in TiO 2 and exhibit a large anisotropy in the diffusion behavior; divalent-impurity diffusion parallel to the c-axis is much larger than it is perpendicular to the c-axis. The diffusion of trivalent impurity ions (Sc and Cr) and tetravalent impurity ions (Zr) is similar to cation self-diffusion, as a function of temperature and of oxygen partial pressure. The divalent impurity ions Co and Ni apparently diffuse as interstitial ions along open channels parallel to the c-axis. The results suggest that Sc, Cr, and Zr ions diffuse by an interstitialcy mechanism involving the simultaneous and cooperative migration of tetravalent interstitial titanium ions and the tracer-impurity ions. Iron ions diffused both as divalent and as trivalent ions. 8 figures

  15. Impurity production and transport at limiters

    International Nuclear Information System (INIS)

    Matthews, G.F.

    1989-01-01

    This paper concentrates on the description and evaluation of experiments on the DITE tokamak. These are designed to characterise the processes involved in the production and transport of neutral and ionised impurities near carbon limiters. The need for good diagnostics in the scrape-off layer is highlighted. Langmuir probes are used to provide input data for models of impurity production at limiters. Observations of the radial profiles of carbon and oxygen impurities are compared with the code predictions. Changeover experiments involving hydrogen and helium plasmas are used as a means for investigating the role of the atomic physics and chemistry. The impurity control limiter (ICL) experiment is described which shows how geometry plays an important role in determining the spatial distributions of the neutral and ionised carbon. New diagnostics are required to study the flux and charge state distribution of impurities in the boundary. Preliminary results from an in-situ plasma ion mass-spectrometer are presented. The role of oxygen and the importance of evaluating the wall sources of impurity are emphasised. (orig.)

  16. Optimized auxiliary representation of non-Markovian impurity problems by a Lindblad equation

    International Nuclear Information System (INIS)

    Dorda, A; Sorantin, M; Linden, W von der; Arrigoni, E

    2017-01-01

    We present a general scheme to address correlated nonequilibrium quantum impurity problems based on a mapping onto an auxiliary open quantum system of small size. The infinite fermionic reservoirs of the original system are thereby replaced by a small number N B of noninteracting auxiliary bath sites whose dynamics are described by a Lindblad equation, which can then be exactly solved by numerical methods such as Lanczos or matrix-product states. The mapping becomes exponentially exact with increasing N B , and is already quite accurate for small N B . Due to the presence of the intermediate bath sites, the overall dynamics acting on the impurity site is non-Markovian. While in previous work we put the focus on the manybody solution of the associated Lindblad problem, here we discuss the mapping scheme itself, which is an essential part of the overall approach. On the one hand, we provide technical details together with an in-depth discussion of the employed algorithms, and on the other hand, we present a detailed convergence study. The latter clearly demonstrates the above-mentioned exponential convergence of the procedure with increasing N B . Furthermore, the influence of temperature and an external bias voltage on the reservoirs is investigated. The knowledge of the particular convergence behavior is of great value to assess the applicability of the scheme to certain physical situations. Moreover, we study different geometries for the auxiliary system. On the one hand, this is of importance for advanced manybody solution techniques such as matrix product states which work well for short-ranged couplings, and on the other hand, it allows us to gain more insights into the underlying mechanisms when mapping non-Markovian reservoirs onto Lindblad-type impurity problems. Finally, we present results for the spectral function of the Anderson impurity model in and out of equilibrium and discuss the accuracy obtained with the different geometries of the auxiliary system

  17. Impurity pellet injection experiments at TFTR

    International Nuclear Information System (INIS)

    Marmar, E.S.

    1992-01-01

    Impurity (Li and C) pellet injection experiments on TFTR have produced a number of new and significant results. (1) We observe reproducible improvements of TFTR supershots after wall-conditioning by Li pellet injection ('lithiumization'). (2) We have made accurate measurements of the pitch angle profiles of the internal magnetic field using two novel techniques. The first measures the internal field pitch from the polarization angles of Li + line emission from the pellet ablation cloud, while the second measures the pitch angle profiles by observing the tilt of the cigar-shaped Li + emission region of the ablation cloud. (3) Extensive measurements of impurity pellet penetration into plasmas with central temperatures ranging from ∼0.3 to ∼7 keV have been made and compared with available theoretical models. Other aspects of pellet cloud physics have been investigated. (4) Using pellets as a well defined perturbation has allowed study of transport phenomena. In the case of small pellet perturbations, the characteristics of the background plasmas are probed, while with large pellets, pellet induced effects are clearly observed. These main results are discussed in more detail in this paper

  18. Investigations of impurity control in JET using fuelling, and interpretation of experiments using the LIM impurity code

    International Nuclear Information System (INIS)

    Gondhalekar, A.; Stangeby, P.C.; Elder, J.D.

    1994-01-01

    Inhibition of contamination of the plasma core in JET by edge impurities during high power heating of deuterium plasmas in limiter configuration using fuelling is demonstrated. By injecting deuterium gas during heating, in the presence of a much larger recycling deuterium flux, a reduction of more than a factor of 2 was effected in n z (0)/Φ z , the ratio of central impurity density to impurity influx at the plasma edge. The reduction in n z (0) was obtained without much effect on peak electron temperature and density. Reduction of plasma contamination by gas fuelling was observed also when hot spots formed on the limiter, a condition that without simultaneous gas fuelling culminated in runaway plasma contamination. Detailed analysis of the experiments is undertaken with the purpose of identifying the processes by which plasma contamination was inhibited, employing standard limiter plasma contamination modelling. Processes which might produce the observed impurity inhibiting effects of gas injection include: (a) reduction in impurity production at the limiter; (b) increase in impurity screening in the scrape-off layer; (c) increase in radial impurity transport at the plasma edge; (d) increase in average deuteron flow velocity to the limiter along the scrape-off layer. These are examined in detail using the Monte Carlo limiter impurity transport code LIM. Bearing in mind that uncertainties exist both in the choice of appropriate modelling assumptions to be used and in the measurement of required edge plasma parameters, changes in n z (0)/Φ z by a factor of 2 are at the limit of the present modelling capability. However, comparison between LIM code simulations and measurements of plasma impurity content indicate that the standard limiter plasma contamination model may not be adequate and that other processes need to be added in order to be able to describe the experiments in JET. (author). 24 refs, 2 figs, 8 tabs

  19. Void growth suppression by dislocation impurity atmospheres

    International Nuclear Information System (INIS)

    Weertman, J.; Green, W.V.

    1976-01-01

    A detailed calculation is given of the effect of an impurity atmosphere on void growth under irradiation damage conditions. Norris has proposed that such an atmosphere can suppress void growth. The hydrostatic stress field of a dislocation that is surrounded by an impurity atmosphere was found and used to calculate the change in the effective radius of a dislocation line as a sink for interstitials and vacancies. The calculation of the impurity concentration in a Cottrell cloud takes into account the change in hydrostatic pressure produced by the presence of the cloud itself. It is found that void growth is eliminated whenever dislocations are surrounded by a condensed atmosphere of either oversized substitutional impurity atoms or interstitial impurity atoms. A condensed atmosphere will form whenever the average impurity concentration is larger than a critical concentration

  20. Moessbauer Studies of Implanted Impurities in Solids

    CERN Multimedia

    2002-01-01

    Moessbauer studies were performed on implanted radioactive impurities in semiconductors and metals. Radioactive isotopes (from the ISOLDE facility) decaying to a Moessbauer isotope were utilized to investigate electronic and vibrational properties of impurities and impurity-defect structures. This information is inferred from the measured impurity hyperfine interactions and Debye-Waller factor. In semiconductors isoelectronic, shallow and deep level impurities have been implanted. Complex impurity defects have been produced by the implantation process (correlated damage) or by recoil effects from the nuclear decay in both semiconductors and metals. Annealing mechanisms of the defects have been studied. \\\\ \\\\ In silicon amorphised implanted layers have been recrystallized epitaxially by rapid-thermal-annealing techniques yielding highly supersaturated, electrically-active donor concentrations. Their dissolution and migration mechanisms have been investigated in detail. The electronic configuration of Sb donors...

  1. Metabolism of organically bound tritium

    International Nuclear Information System (INIS)

    Travis, C.C.

    1984-01-01

    The classic methodology for estimating dose to man from environmental tritium ignores the fact that organically bound tritium in foodstuffs may be directly assimilated in the bound compartment of tissues without previous oxidation. We propose a four-compartment model consisting of a free body water compartment, two organic compartments, and a small, rapidly metabolizing compartment. The utility of this model lies in the ability to input organically bound tritium in foodstuffs directly into the organic compartments of the model. We found that organically bound tritium in foodstuffs can increase cumulative total body dose by a factor of 1.7 to 4.5 times the free body water dose alone, depending on the bound-to-loose ratio of tritium in the diet. Model predictions are compared with empirical measurements of tritium in human urine and tissue samples, and appear to be in close agreement. 10 references, 4 figures, 3 tables

  2. Assessment of Embrittlement of VHTR Structural Alloys in Impure Helium Environments

    Energy Technology Data Exchange (ETDEWEB)

    Crone, Wendy; Cao, Guoping; Sridhara, Kumar

    2013-05-31

    The helium coolant in high-temperature reactors inevitably contains low levels of impurities during steady-state operation, primarily consisting of small amounts of H{sub 2}, H{sub 2}O, CH{sub 4}, CO, CO{sub 2}, and N{sub 2} from a variety of sources in the reactor circuit. These impurities are problematic because they can cause significant long-term corrosion in the structural alloys used in the heat exchangers at elevated temperatures. Currently, the primary candidate materials for intermediate heat exchangers are Alloy 617, Haynes 230, Alloy 800H, and Hastelloy X. This project will evaluate the role of impurities in helium coolant on the stress-assisted grain boundary oxidation and creep crack growth in candidate alloys at elevated temperatures. The project team will: • Evaluate stress-assisted grain boundary oxidation and creep crack initiation and crack growth in the temperature range of 500-850°C in a prototypical helium environment. • Evaluate the effects of oxygen partial pressure on stress-assisted grain boundary oxidation and creep crack growth in impure helium at 500°C, 700°C, and 850°C respectively. • Characterize the microstructure of candidate alloys after long-term exposure to an impure helium environment in order to understand the correlation between stress-assisted grain boundary oxidation, creep crack growth, material composition, and impurities in the helium coolant. • Evaluate grain boundary engineering as a method to mitigate stress-assisted grain boundary oxidation and creep crack growth of candidate alloys in impure helium. The maximum primary helium coolant temperature in the high-temperature reactor is expected to be 850-1,000°C.Corrosion may involve oxidation, carburization, or decarburization mechanisms depending on the temperature, oxygen partial pressure, carbon activity, and alloy composition. These corrosion reactions can substantially affect long-term mechanical properties such as crack- growth rate and fracture

  3. Universal many-body response of heavy impurities coupled to a Fermi sea: a review of recent progress

    Science.gov (United States)

    Schmidt, Richard; Knap, Michael; Ivanov, Dmitri A.; You, Jhih-Shih; Cetina, Marko; Demler, Eugene

    2018-02-01

    In this report we discuss the dynamical response of heavy quantum impurities immersed in a Fermi gas at zero and at finite temperature. Studying both the frequency and the time domain allows one to identify interaction regimes that are characterized by distinct many-body dynamics. From this theoretical study a picture emerges in which impurity dynamics is universal on essentially all time scales, and where the high-frequency few-body response is related to the long-time dynamics of the Anderson orthogonality catastrophe by Tan relations. Our theoretical description relies on different and complementary approaches: functional determinants give an exact numerical solution for time- and frequency-resolved responses, bosonization provides accurate analytical expressions at low temperatures, and the theory of Toeplitz determinants allows one to analytically predict response up to high temperatures. Using these approaches we predict the thermal decoherence rate of the fermionic system and prove that within the considered model the fastest rate of long-time decoherence is given by γ=π k_BT/4 . We show that Feshbach resonances in cold atomic systems give access to new interaction regimes where quantum effects can prevail even in the thermal regime of many-body dynamics. The key signature of this phenomenon is a crossover between different exponential decay rates of the real-time Ramsey signal. It is shown that the physics of the orthogonality catastrophe is experimentally observable up to temperatures T/T_F≲ 0.2 where it leaves its fingerprint in a power-law temperature dependence of thermal spectral weight and we review how this phenomenon is related to the physics of heavy ions in liquid {\\hspace{0pt}}3 He and the formation of Fermi polarons. The presented results are in excellent agreement with recent experiments on LiK mixtures, and we predict several new phenomena that can be tested using currently available experimental technology.

  4. Evaluation of cover gas impurities and their effects on the dry storage of LWR [light-water reactor] spent fuel

    International Nuclear Information System (INIS)

    Knoll, R.W.; Gilbert, E.R.

    1987-11-01

    The purposes of this report are to (1) identify the sources of impurity gases in spent fuel storage casks; (2) identify the expected concentrations and types of reactive impurity gases from these sources over an operating lifetime of 40 years; and (3) determine whether these impurities could significantly degrade cladding or exposed fuel during this period. Four potential sources of impurity gases in the helium cover gas in operating casks were identified and evaluated. Several different bounding cases have been considered, where the reactive gas inventory is either assumed to be completely gettered by the cladding or where all oxygen is assumed to react completely with the exposed fuel. It is concluded that the reactive gas inventory will have no significant effect on the cladding unless all available oxygen reacts with the UO 2 fuel to produce U 3 O 8 at one or two cladding breaches. Based on Zircaloy oxidation data, the oxygen inventory in a fully loaded pressurized water reactor cask such as the Castor-V/21 will be gettered by the Zircaloy cladding in about 1 year if the peak cladding temperature within the task is ≥300 0 C. Only a negligible decrease in the thickness of the cladding would result. 24 refs., 4 tabs

  5. Low-Z impurities in PLT

    International Nuclear Information System (INIS)

    Hinnov, E.; Suckewer, S.; Bol, K.; Hawryluk, R.; Hosea, J.; Meservey, E.

    1977-11-01

    Low-Z impurities concentrations (oxygen and carbon) have been measured in different discharges in PLT. The contribution to Z/sub eff/, influx rates and radiation losses by oxygen and carbon were obtained. An inverse correlation was found between the low-Z impurity density (and also the edge ion temperature) and the high-Z impurity (tungsten) density. A one-dimensional computer transport model has been used to calculate the spatial profiles of different oxygen and carbon ionization states. This model predicts that fully stripped oxygen and carbon ions should exist near the plasma periphery

  6. Coupling of ion temperature gradient and trapped electron modes in the presence of impurities in tokamak plasmas

    Science.gov (United States)

    Du, Huarong; Wang, Zheng-Xiong; Dong, J. Q.; Liu, S. F.

    2014-05-01

    The coupling of ion temperature gradient (ITG or ηi) mode and trapped electron mode (TEM) in the presence of impurity ions is numerically investigated in toroidal collisionless plasmas, using the gyrokinetic integral eigenmode equation. A framework for excitations of the ITG modes and TEMs with respect to their driving sources is formulated first, and then the roles of impurity ions played in are analyzed comprehensively. In particular, the characteristics of the ITG and TEM instabilities in the presence of impurity ions are emphasized for both strong and weak coupling (hybrid and coexistent) cases. It is found that the impurity ions with inwardly (outwardly) peaked density profiles have stabilizing (destabilizing) effects on the hybrid (namely the TE-ITG) modes in consistence with previous works. A new finding of this work is that the impurity ions have stabilizing effects on TEMs in small ηi (ηi≤1) regime regardless of peaking directions of their density profiles whereas the impurity ions with density gradient Lez=Lne/Lnz>1 (LezTEMs in large ηi (ηi≥1) regime. In addition, the dependences of the growth rate, real frequency, eigenmode structure, and wave spectrum on charge concentration, charge number, and mass of impurity ions are analyzed in detail. The necessity for taking impurity ion effects on the features of turbulence into account in future transport experimental data analyses is also discussed.

  7. Impurity Correction Techniques Applied to Existing Doping Measurements of Impurities in Zinc

    Science.gov (United States)

    Pearce, J. V.; Sun, J. P.; Zhang, J. T.; Deng, X. L.

    2017-01-01

    Impurities represent the most significant source of uncertainty in most metal fixed points used for the realization of the International Temperature Scale of 1990 (ITS-90). There are a number of different methods for quantifying the effect of impurities on the freezing temperature of ITS-90 fixed points, many of which rely on an accurate knowledge of the liquidus slope in the limit of low concentration. A key method of determining the liquidus slope is to measure the freezing temperature of a fixed-point material as it is progressively doped with a known amount of impurity. Recently, a series of measurements of the freezing and melting temperature of `slim' Zn fixed-point cells doped with Ag, Fe, Ni, and Pb were presented. Here, additional measurements of the Zn-X system are presented using Ga as a dopant, and the data (Zn-Ag, Zn-Fe, Zn-Ni, Zn-Pb, and Zn-Ga) have been re-analyzed to demonstrate the use of a fitting method based on Scheil solidification which is applied to both melting and freezing curves. In addition, the utility of the Sum of Individual Estimates method is explored with these systems in the context of a recently enhanced database of liquidus slopes of impurities in Zn in the limit of low concentration.

  8. Effects of quantum chemistry models for bound electrons on positron annihilation spectra for atoms and small molecules

    International Nuclear Information System (INIS)

    Wang Feng; Ma Xiaoguang; Selvam, Lalitha; Gribakin, Gleb; Surko, Clifford M

    2012-01-01

    The Doppler-shift spectra of the γ-rays from positron annihilation in molecules were determined by using the momentum distribution of the annihilation electron–positron pair. The effect of the positron wavefunction on spectra was analysed in a recent paper (Green et al 2012 New J. Phys. 14 035021). In this companion paper, we focus on the dominant contribution to the spectra, which arises from the momenta of the bound electrons. In particular, we use computational quantum chemistry models (Hartree–Fock with two basis sets and density functional theory (DFT)) to calculate the wavefunctions of the bound electrons. Numerical results are presented for noble gases and small molecules such as H 2 , N 2 , O 2 , CH 4 and CF 4 . The calculations reveal relatively small effects on the Doppler-shift spectra from the level of inclusion of electron correlation energy in the models. For atoms, the difference in the full-width at half-maximum of the spectra obtained using the Hartree–Fock and DFT models does not exceed 2%. For molecules the difference can be much larger, reaching 8% for some molecular orbitals. These results indicate that the predicted positron annihilation spectra for molecules are generally more sensitive to inclusion of electron correlation energies in the quantum chemistry model than the spectra for atoms are. (paper)

  9. Effect of impurity modes with quasilocal and local frequencies on the superconducting transition temperature

    International Nuclear Information System (INIS)

    Zhernov, A.P.; Malov, Yu.A.; Panova, G.Kh.

    1975-01-01

    An anisotropic irregular semiconductor is under consideration. It is believed that the effective parameter of the interaction-lambda-which determines electron coupling is less or about 0.5. The Eliashberg integral equation system is solved for T→Tsub(c). A simple analytic expression is obtained for Tsub(c). The character of a varying critical temperature in superconductors with impurity atoms is analyzed in detail. The dependence of the critical temperature on parameters describing the phonon spectrum of an impurity system is investigated. The existence of impurity modes with quasilocal and local frequencies in the phonon spectra can lead both to relatively small and to rather noticeable variations in Tsub(c). The first case is typical of the situation when an impurity atom is practically an isotopic defect. If an impurity atom is very heavy (Msub(I) 1 0 ) or strongly (γ 1 >>γ 0 ) coupled with matrix atoms. A sharp decrease in the effective force constant γ 1 for an impurity atom results in the growth of delta Tsub(c): delta Tsub(c) approximately cγ0/γ 1 (lambda - μsup((0)). On the contrary a rise in the γ 1 value requires a negative correction to Tsub(c), and delta Tsub(c) approximately c/(lambda - μsup((0)), where c - an impurity concentration, μ - matrix element of the Coulomb screened interaction averaged over the Fermi surface and multiplied for the density of normal electron states on the Fermi level. Comparison with experimental data is made. A qualitative description of the Tsub(c) change due to the impurity presence is given for a set of solutions. There is a satisfactory quantitative agreement between calculated and experimental values of delta Tsub(c)

  10. Influence of complex impurity centres on radiation damage in wide-gap metal oxides

    Energy Technology Data Exchange (ETDEWEB)

    Lushchik, A., E-mail: aleksandr.lushchik@ut.ee [Institute of Physics, University of Tartu, Ravila 14c, 50411 Tartu (Estonia); Lushchik, Ch. [Institute of Physics, University of Tartu, Ravila 14c, 50411 Tartu (Estonia); Popov, A.I. [Institute of Solid State Physics, University of Latvia, Kengaraga 8, Riga LV-1063 (Latvia); Schwartz, K. [GSI Helmholtzzentrum für Schwerionenforschung (GSI), Planckstr. 1, 64291 Darmstadt (Germany); Shablonin, E.; Vasil’chenko, E. [Institute of Physics, University of Tartu, Ravila 14c, 50411 Tartu (Estonia)

    2016-05-01

    Different mechanisms of radiation damage of wide-gap metal oxides as well as a dual influence of impurity ions on the efficiency of radiation damage have been considered on the example of binary ionic MgO and complex ionic–covalent Lu{sub 3}Al{sub 5}O{sub 12} single crystals. Particular emphasis has been placed on irradiation with ∼2 GeV heavy ions ({sup 197}Au, {sup 209}Bi, {sup 238}U, fluence of 10{sup 12} ions/cm{sup 2}) providing extremely high density of electronic excitations within ion tracks. Besides knock-out mechanism for Frenkel pair formation, the additional mechanism through the collapse of mobile discrete breathers at certain lattice places (e.g., complex impurity centres) leads to the creation of complex defects that involve a large number of host atoms. The experimental manifestations of the radiation creation of intrinsic and impurity antisite defects (Lu|{sub Al} or Ce|{sub Al} – a heavy ion in a wrong cation site) have been detected in LuAG and LuAG:Ce{sup 3+} single crystals. Light doping of LuAG causes a small enhancement of radiation resistance, while pair impurity centres (for instance, Ce|{sub Lu}–Ce|{sub Al} or Cr{sup 3+}–Cr{sup 3+} in MgO) are formed with a rise of impurity concentration. These complex impurity centres as well as radiation-induced intrinsic antisite defects (Lu|{sub Al} strongly interacting with Lu in a regular site) tentatively serve as the places for breathers collapse, thus decreasing the material resistance against dense irradiation.

  11. Ash partitioning during the oxy-fuel combustion of lignite and its dependence on the recirculation of flue gas impurities (H{sub 2}O, HCl and SO{sub 2})

    Energy Technology Data Exchange (ETDEWEB)

    Facun Jiao; Juan Chen; Lian Zhang; Yajuan Wei; Yoshihiko Ninomiya; Sankar Bhattacharya; Hong Yao [Monash University, Clayton, Vic. (Australia). Department of Chemical Engineering

    2011-06-15

    Oxy-fuel combustion of a brown coal (i.e. lignite) has been carried out at 1000{sup o}C to experimentally examine the vaporisation of organically bound metals and the agglomeration of ash particles as a function of the concentration of gaseous impurities including H{sub 2}O, HCl and SO{sub 2} in about 27% O{sub 2} balanced with CO{sub 2}. The properties of bulk ash and individual metals were investigated intensively. Particularly, attention was paid to Na which is notorious for fouling and to organically bound Al which has been less studied. The results indicate that, the organically bound metals, although possessing a very low content in the raw coal, are vital for the agglomeration of ash particles, which are also highly sensitive to the loading of gas impurities in flue gas. HCl recirculation is the most crucial factor promoting the vaporisation of metals via chlorination. Apart from alkali metals, the organically bound Al and Ti were also vaporised noticeably. Recirculation of SO{sub 2} promoted the sulfation of Na to condense into liquid droplet which increased fine ash yield. Co-existence of bulk HCl and SO{sub 2} played a synergetic role in the sulfation of Na via an initial chlorination of the char-bound Na. In contrast, co-existence of steam with HCl and SO{sub 2} favored the formation of Na alumino-silicates, which are favorable for ash agglomeration. 34 refs., 15 figs., 3 tabs.

  12. VARIABILITY STUDY TO DETERMINE THE SOLUBILITY OF IMPURITIES IN PLUTONIUM-BEARING, LANTHANIDE BOROSILICATE GLASS

    Energy Technology Data Exchange (ETDEWEB)

    Fox, K; Elizabeth Hoffman, E; Charles Crawford, C; Tommy Edwards, T; David Best, D; James Marra, J

    2007-09-26

    -} concentrations were well below their target values for all of the study glasses. This is likely due to volatilization of these species during melting of the glass batch. Note that the degree of volatilization that occurred in this crucible-scale study may differ from the full-scale melter. The measured HfO{sub 2} concentrations were below their target values for all of the surrogate glasses. It is likely that for HfO{sub 2}, the solubility limit in the glass was exceeded and some of the HfO{sub 2} batch material remained in the bottom of the crucibles after pouring the glasses. X-ray diffraction and scanning electron microscopy (SEM) results indicated that some crystalline HfO2 remained in some of the surrogate glasses with the lowest concentration of impurities. No other crystalline phases were identified. The Product Consistency Test (PCT) results showed that all 60 of the surrogate glass compositions tested were very durable, regardless of thermal history, with the highest normalized release for boron being 0.041 g/L. The pH of the leachate solutions was generally lower than that of conventional waste glasses due to the lack of alkali in the LaBS glass, which likely impacted the PCT results. The normalized release rates for the elements measured were generally too small to attempt to correlate the results with the compositions of the test glasses. The Toxicity Characteristic Leaching Procedure results showed that no hazardous metals were leached from the surrogate glasses in any measurable concentration. A plutonium-containing crystalline phase with a cross-shaped morphology was identified via SEM in the glasses fabricated with plutonium oxide. This phase was identified in a previous study of plutonium-bearing LaBS glasses and may provide an opportunity to intentionally crystallize some of the plutonium oxide into a highly insoluble form with an intrinsic neutron absorber. Additional work is necessary to better characterize the influence that this phase has on durability of

  13. Determination of Impurities of Atrazine by HPLP-MS

    Energy Technology Data Exchange (ETDEWEB)

    Canping, Pan [Department of Applied Chemistry, China Agricultural University Beijing (China)

    2009-07-15

    The determination of the main impurities of the herbicide atrazine by GC/FID, GC/MS and LC/MS is described. The most relevant technical impurities were synthesized and characterized by IR and UV spectroscopy as well. The impurity profiles of different technical grade formulated products were tested and the typical impurities identified. (author)

  14. Hydrogenic impurity in double quantum dots

    International Nuclear Information System (INIS)

    Wang, X.F.

    2007-01-01

    The ground state binding energy and the average interparticle distances for a hydrogenic impurity in double quantum dots with Gaussian confinement potential are studied by the variational method. The probability density of the electron is calculated, too. The dependence of the binding energy on the impurity position is investigated for GaAs quantum dots. The result shows that the binding energy has a minimum as a function of the distance between the two quantum dots when the impurity is located at the center of one quantum dot or at the center of the edge of one quantum dot. When the impurity is located at the center of the two dots, the binding energy decreases monotonically

  15. Models for impurity effects in tokamaks

    International Nuclear Information System (INIS)

    Hogan, J.T.

    1980-03-01

    Models for impurity effects in tokamaks are described with an emphasis on the relationship between attainment of high β and impurity problems. We briefly describe the status of attempts to employ neutral beam heating to achieve high β in tokamaks and propose a qualitative model for the mechanism by which heavy metal impurities may be produced in the startup phase of the discharge. We then describe paradoxes in impurity diffusion theory and discuss possible resolutions in terms of the effects of large-scale islands and sawtooth oscillations. Finally, we examine the prospects for the Zakharov-Shafranov catastrophe (long time scale disintegration of FCT equilibria) in the context of present and near-term experimental capability

  16. Device for removing impurities from liquid metals

    International Nuclear Information System (INIS)

    Naito, Kesahiro; Yokota, Norikatsu; Shimoyashiki, Shigehiro; Takahashi, Kazuo; Ishida, Tomio.

    1984-01-01

    Purpose: To attain highly reliable and efficient impurity removal by forming temperature distribution the impurity removing device thereby providing the function of corrosion product trap, nuclear fission product trap and cold trap under the conditions suitable to the impurity removing materials. Constitution: The impurity removing device comprises a container containing impurity removing fillers. The fillers comprise material for removing corrosion products, material for removing nuclear fission products and material for removing depositions from liquid sodium. The positions for the respective materials are determined such that the materials are placed under the temperature conditions easy to attain their function depending on the temperature distribution formed in the removing device, whereby appropriate temperature condition is set to each of the materials. (Yoshino, Y.)

  17. Magnetic states of single impurity in disordered environment

    Directory of Open Access Journals (Sweden)

    G.W. Ponedilok

    2013-01-01

    Full Text Available The charged and magnetic states of isolated impurities dissolved in amorphous metallic alloy are investigated. The Hamiltonian of the system under study is the generalization of Anderson impurity model. Namely, the processes of elastic and non-elastic scattering of conductive electrons on the ions of a metal and on a charged impurity are included. The configuration averaged one-particle Green's functions are obtained within Hartree-Fock approximation. A system of self-consistent equations is given for calculation of an electronic spectrum, the charged and the spin-polarized impurity states. Qualitative analysis of the effect of the metallic host structural disorder on the observed values is performed. Additional shift and broadening of virtual impurity level is caused by a structural disorder of impurity environment.

  18. Anisotropy effects in superconductors with magnetic impurities. Pt. 2

    International Nuclear Information System (INIS)

    Entel, P.

    1976-01-01

    The influence of Fermi surface anisotropy on the specific heat jumps, ΔC, at the phase transition for superconductors containing magnetic and nonmagnetic impurities is discussed. In the framework of a simple two-band or two-zone model we find for small interband electron-phonon coupling constants characteristic maxima in the ΔC(Tsub(c))-curve. These departures from the corresponding ΔC-curve of a single-band isotropic superconductor are mostly pronounced for weak and strong interband Coulomb scattering of conduction electrons on nonmagnetic ions. There is only a small range of intermediate scattering rates for which the maxima are smeared out. (orig.) [de

  19. Mobile impurities in ferromagnetic liquids

    Science.gov (United States)

    Kantian, Adrian; Schollwoeck, Ulrich; Giamarchi, Thierry

    2011-03-01

    Recent work has shown that mobile impurities in one dimensional interacting systems may exhibit behaviour that differs strongly from that predicted by standard Tomonaga-Luttinger liquid theory, with the appearance of power-law divergences in the spectral function signifying sublinear diffusion of the impurity. Using time-dependent matrix product states, we investigate a range of cases of mobile impurities in systems beyond the analytically accessible examples to assess the existence of a new universality class of low-energy physics in one-dimensional systems. Correspondence: Adrian.Kantian@unige.ch This work was supported in part by the Swiss SNF under MaNEP and division II.

  20. Formation of dust grains with impurities in red giant winds

    Science.gov (United States)

    Dominik, Carsten

    1994-01-01

    Among the several proposed carriers of diffuse interstellar bands (DIB's) are impurities in small dust grains, especially in iron oxide grains (Huffman 1977) and silicate grains (Huffman 1970). Most promising are single ion impurities since they can reproduce the observed band widths (Whittet 1992). These oxygen-rich grains are believed to originate mostly in the mass flows from red giants and in supernovae ejecta (e.g. Gehrz 1989). A question of considerable impact for the origin of DIB's is therefore, whether these grains are produced as mainly clean crystals or as some dirty materials. A formalism has been developed that allows tracking of the heterogeneous growth of a dust grain and its internal structure during the dust formation process. This formalism has been applied to the dust formation in the outflow from a red giant star.

  1. EUV impurity study of the Alcator tokamak

    International Nuclear Information System (INIS)

    Terry, J.L.; Chen, K.I.; Moos, H.W.; Marmar, E.S.

    1978-01-01

    The intensity of resonance line radiation from oxygen, nitrogen, carbon and molybdenum impurities has been measured in the high-field (80kG), high-density (6x10 14 cm -3 ) discharges of the Alcator Tokamak, using a 0.4-m normal-incidence monochromator (300-1300A) with its line of sight fixed along a major radius. Total light-impurity concentrations of a few tenths of a percent have been estimated by using both a simple model and a computer code which included Pfirsch-Schlueter impurity diffusion. The resulting values of Zsub(eff), including the contributions due to both the light impurities and molybdenum, were close to one. The power lost through the impurity line radiation from the lower ionization states accounted for approximately 10% of the total Ohmic input power at high densities. (author)

  2. Interactions of impurities with a moving grain boundary

    Energy Technology Data Exchange (ETDEWEB)

    Bauer, C L [Carnegie-Mellon Univ., Pittsburgh, Pa. (USA)

    1975-01-01

    Most theories developed to explain interaction of impurities with a moving grain boundary involve a uniform excess impurity concentration distributed along a planar grain boundary. As boundary velocity increases, the excess impurities exert a net drag force on the boundary until a level is reached whereat the drag force no longer can balance the driving force and breakaway of the boundary from these impurities occurs. In this investigation, assumptions of a uniform lateral impurity profile and a planar grain boundary shape are relaxed by allowing both forward and lateral diffusion of impurities in the vicinity of a grain boundary. It is found that the two usual regions (drag of impurities by, and breakaway of a planar grain boundary) are separated by an extensive region wherein a uniform lateral impurity profile and a planar grain boundary shape are unstable. It is suspected that, in this unstable region, grain boundaries assume a spectrum of more complex morphologies and that elucidation of these morphologies can provide the first definitive description of the breakaway process and insight to more complex phenomena such as solid-solution strengthening, grain growth and secondary recrystallization.

  3. Lattice dynamics of impurity clusters : application to pairs

    International Nuclear Information System (INIS)

    Chandralekha Devi, N.; Behera, S.N.

    1979-01-01

    A general solution is obtained for the lattice dynamics of a cluster of n-impurity atoms using the double-time Green's function formalism. The cluster is characterized by n-mass defect and m-force constant change parameters. It is shown that this general solution for the Green's function for the n-impurity cluster can also be expressed in terms of the Green's function for the (n-1)-impurity cluster. As an application, the cluster impurity modes for a pair are calculated using the Debye model for the host lattice dynamics. The splitting of the high frequency local modes and nearly zero frequency resonant modes due to pairs show an oscillatory behaviour on varying the distance of separation between the two impurity atoms. These oscillations are most prominent for two similar impurities and get damped for two dissimilar impurities or if one of the impurities produces a force constant change. The predictions of the calculation provide qualitative explanation of the data obtained from the infrared measurements of the resonant modes in mixed crystal system of KBrsub(1-c)Clsub(c):Lisup(+) and KBrsub(1-c)Isub(c):Lisup(+). (author)

  4. Impurity transport in the Wendelstein VII-A stellarator

    International Nuclear Information System (INIS)

    1985-01-01

    Impurity radiation losses in net-current-free neutral-beam-heated plasmas in the Wendelstein W VII-A stellarator are the combined effect of particularly strong impurity sources and improved particle confinement as compared with ohmically heated tokamak-like plasma discharges. Experiments are described and conclusions are drawn about the impurity species, their origin and their transport behaviour. The impurity transport is modelled by a 1-D impurity transport and radiation code. The evolution of the total radiation in time and space deduced from soft-X-ray and bolometer measurements can be fairly well simulated by the code. Experimentally, oxygen was found to make the main contribution to the radiation losses. In the calculations, an influx of cold oxygen desorbed from the walls of the order of 10 13 -10 14 cm -2 .s -1 and a rate of fast injected oxygen corresponding to a 1% impurity content of the neutral beams in combination with neoclassical impurity transport leads to quantitative agreement between the simulation and the observed radiation. The transport of A1 trace impurities injected by the laser blow-off technique was experimentally studied by soft-X-ray measurements using a differential method allowing extraction of the time evolution of A1 XII, XIII radial profiles. These are compared with code predictions, together with additional spectroscopic measurements. The main features of the impurity transport are consistent with neoclassical predictions, which explain particularly the central impurity accumulation. Some details, however, seem to require additional 'anomalous' transport. Such an enhancement is correlated with distortions of the magnetic configuration around resonant magnetic surfaces. (author)

  5. Uranium analysis. Impurities determination by spark mass spectrometry

    International Nuclear Information System (INIS)

    Anon.

    Determination of impurities in uranium, suitable for atomic content greater than 10 -8 , particularly adapted for a low content. The method is quantitative for metallic impurities and qualitative for non metallic impurities [fr

  6. Fluid and gyrokinetic simulations of impurity transport at JET

    DEFF Research Database (Denmark)

    Nordman, H; Skyman, A; Strand, P

    2011-01-01

    Impurity transport coefficients due to ion-temperature-gradient (ITG) mode and trapped-electron mode turbulence are calculated using profile data from dedicated impurity injection experiments at JET. Results obtained with a multi-fluid model are compared with quasi-linear and nonlinear gyrokinetic...... simulation results obtained with the code GENE. The sign of the impurity convective velocity (pinch) and its various contributions are discussed. The dependence of the impurity transport coefficients and impurity peaking factor −∇nZ/nZ on plasma parameters such as impurity charge number Z, ion logarithmic...

  7. Influence of additives and impurities in sweep gas and solid tritium release behaviour from lithium ceramics (review)

    International Nuclear Information System (INIS)

    Tanaka, Satoru

    1991-01-01

    Tritium release from solid breeding material is affected by small amounts of additives or impurities in the sweep gas or solid itself. Addition of hydrogen or water vapor to the sweep gas is reported to enhance the surface reaction of tritium release. Doping to solid breeder with elements of different valence from lithium has a possibility to improve tritium diffusion in the solid. Surface reaction and migration behavior in bulk are believed to be also affected by impurities in the sweep gas and in the solid. In order to model tritium release behavior in the blanket of fusion reactor, the mechanism of interaction with these additives or impurities must be quantitatively formulated. However, the mechanism of these remains to be elucidated. In this paper effects of these additives and impurities on tritium migration are reviewed. The mechanism of surface reaction for He+H 2 sweep gas is also discussed. (orig.)

  8. Quasi-one-dimensional polaronic states due to the preferential reduction in the Li sub 1 sub + sub x V sub 3 O sub 8 insertion electrode

    CERN Document Server

    Onoda, M

    2003-01-01

    The structural and electronic properties of the Li sub 1 sub + sub x V sub 3 O sub 8 insertion electrode, where 0 sup 0.1 with nearly stoichiometric oxygen atoms, small polarons exist without carrier-creation energy at high temperatures, while at low temperatures the conduction may be of variable-range hopping (VRH) type. For x > 0.2, one-dimensional magnetic properties appear due to sizable exchange couplings and order-disorder effects of additional Li ions may lead to significant change of transport properties. For the intermediate composition 0 < x sup<= 0.1, strong randomness of the Li doping and the congenital oxygen deficiency cause VRH states even at high temperatures.

  9. Method for detecting trace impurities in gases

    Science.gov (United States)

    Freund, S.M.; Maier, W.B. II; Holland, R.F.; Beattie, W.H.

    A technique for considerably improving the sensitivity and specificity of infrared spectrometry as applied to quantitative determination of trace impurities in various carrier or solvent gases is presented. A gas to be examined for impurities is liquefied and infrared absorption spectra of the liquid are obtained. Spectral simplification and number densities of impurities in the optical path are substantially higher than are obtainable in similar gas-phase analyses. Carbon dioxide impurity (approx. 2 ppM) present in commercial Xe and ppM levels of Freon 12 and vinyl chloride added to liquefied air are used to illustrate the method.

  10. Process and system for removing impurities from a gas

    Science.gov (United States)

    Henningsen, Gunnar; Knowlton, Teddy Merrill; Findlay, John George; Schlather, Jerry Neal; Turk, Brian S

    2014-04-15

    A fluidized reactor system for removing impurities from a gas and an associated process are provided. The system includes a fluidized absorber for contacting a feed gas with a sorbent stream to reduce the impurity content of the feed gas; a fluidized solids regenerator for contacting an impurity loaded sorbent stream with a regeneration gas to reduce the impurity content of the sorbent stream; a first non-mechanical gas seal forming solids transfer device adapted to receive an impurity loaded sorbent stream from the absorber and transport the impurity loaded sorbent stream to the regenerator at a controllable flow rate in response to an aeration gas; and a second non-mechanical gas seal forming solids transfer device adapted to receive a sorbent stream of reduced impurity content from the regenerator and transfer the sorbent stream of reduced impurity content to the absorber without changing the flow rate of the sorbent stream.

  11. Impurity control in TFTR

    International Nuclear Information System (INIS)

    Cecchi, J.L.

    1980-06-01

    The control of impurities in TFTR will be a particularly difficult problem due to the large energy and particle fluxes expected in the device. As part of the TFTR Flexibility Modification (TEM) project, a program has been implemented to address this problem. Transport code simulations are used to infer an impurity limit criterion as a function of the impurity atomic number. The configurational designs of the limiters and associated protective plates are discussed along with the consideration of thermal and mechanical loads due to normal plasma operation, neutral beams, and plasma disruptions. A summary is given of the materials-related research, which has been a collaborative effort involving groups at Argonne National Laboratory, Sandia Laboratories, and Princeton Plasma Physics Laboratory. Conceptual designs are shown for getterng systems capable of regenerating absorbed tritium. Research on this topic by groups at the previously mentioned laboratories and SAES Research Laboratory is reviewed

  12. Local chemistry of Al and P impurities in silica

    DEFF Research Database (Denmark)

    Lægsgaard, Jesper; Stokbro, Kurt

    2000-01-01

    The local structure around Al and P impurities in silica is investigated using density-functional theory. Two distinct cases are considered: impurities substituting for a Si atom in alpha quartz, and impurities implanted in a stoichiometric alpha-quartz crystal. Both impurity elements are found t...

  13. Impurity transport in internal transport barrier discharges on JET

    International Nuclear Information System (INIS)

    Dux, R.; Giroud, C.; Zastrow, K.-D.

    2004-01-01

    Impurity behaviour in JET internal transport barrier (ITB) discharges with reversed shear has been investigated. Metallic impurities accumulate in cases with too strong peaking of the main ion density profile. The accumulation is due to inwardly directed drift velocities inside the ITB radius. The strength of the impurity peaking increases with the impurity charge and is low for the low-Z elements C and Ne. Transport calculations show that the observed behaviour is consistent with dominant neoclassical impurity transport inside the ITB. In some cases, MHD events in the core flatten the radial profile of the metallic impurity. (author)

  14. Local order dependent impurity levels in alloy semiconductors

    International Nuclear Information System (INIS)

    Silva, C.E.T.G. da; Ecole Normale Superieure, 75 - Paris

    1981-01-01

    We develop a one band/may sites model for an isoelectronic impurity in a semiconductor alloy. The cluster-Bethe-lattice approximation is used to study the dependence of the impurity energy level upon the short range order (SRO) of the alloy. The Kikuchi parametrization is used to describe the latter. We take into account diagonal disorder only, with possible off-diagonal relaxation around the impurity site. All the inequivalent clusters of the impurity site and its first nearest neighbours are considered, thus including the important short range alloy potential fluctuations. Results are presented for the local density of impurity states, for different degrees of SRO in the alloy. (Author) [pt

  15. Dynamics of impurity modes and electron–phonon interaction in Heavy Fermion (HF) systems

    International Nuclear Information System (INIS)

    Shadangi, N.; Sahoo, J.; Mohanty, S.; Nayak, P.

    2014-01-01

    A theoretical explanation is provided to understand the effect of small concentration of impurities characterized by change in mass and nearest neighbor force constants on the phonon spectrum as well as on the electron–phonon interaction in some Heavy Fermion (HF) systems in the normal state within theoretical framework of the Periodic Anderson Model (PAM). Three different mechanisms of the electron–phonon interactions, namely, the usual interaction between the phonons with the electrons in the f-bands, electrons arising from that of hybridization term of PAM and the local electron–phonon coupling at the impurity sites are considered. Coherent Potential Approximation (CPA) is used to evaluate the configuration averaged self–energy and the total Green function. For simplicity of calculation the CPA self–energy is evaluated in Average t -matrix Approximation (ATA). The analytical analysis is carried out for finite T in the long wavelength limit. The influence of impurity mass parameter λ and other system parameters such as d, the position of f-level, the effective coupling strength g on the calculated re-normalized phonon frequency and the excitation spectrum through the spectral function is studied. The numerical analysis of the results does show the influence of impurities as evident from different plots in this paper.

  16. Impurities, temperature, and density in a miniature electrostatic plasma and current source

    International Nuclear Information System (INIS)

    Den Hartog, D.J.; Craig, D.J.; Fiksel, G.; Sarff, J.S.

    1996-10-01

    We have spectroscopically investigated the Sterling Scientific miniature electrostatic plasma source-a plasma gun. This gun is a clean source of high density (10 19 - 10 20 m -3 ), low temperature (5 - 15 eV) plasma. A key result of our investigation is that molybdenum from the gun electrodes is largely trapped in the internal gun discharge; only a small amount escapes in the plasma flowing out of the gun. In addition, the gun plasma parameters actually improve (even lower impurity contamination and higher ion temperature) when up to 1 kA of electron current is extracted from the gun via the application of an external bias. This improvement occurs because the internal gun anode no longer acts as the current return for the internal gun discharge. The gun plasma is a virtual plasma electrode capable of sourcing an electron emission current density of 1 kA/cm 2 . The high emission current, small size (3 - 4 cm diameter), and low impurity generation make this gun attractive for a variety of fusion and plasma technology applications

  17. Extended theory of main ion and impurity rotation and bootstrap current in a shear layer

    International Nuclear Information System (INIS)

    Kim, Y.B.; Hinton, F.L.; St. John, H.; Taylor, T.S.; Wroblewski, D.

    1993-11-01

    In this paper, standard neoclassical theory has been extended into the shear layer. Main ion and impurity ion rotation velocity and bootstrap current within shear layer in H-mode are discussed. Inside the H-mode shear layer, standard neoclassical theory is not valid since the ion poloidal gyroradius becomes comparable to pressure gradient and electric field gradient scale length. To allow for arbitrary ratio of ρθi/L n and ρθi/L Er a new kinetic theory of main ion species within electric field shear layer has been developed with the assumption that ρθi/R o is still small. As a consequence, both impurity flows and bootstrap current have to be modified. We present modified expressions of impurity flows and bootstrap current are presented neglecting ion temperature gradient. Comparisons with DIII-D measurements are also discussed

  18. Achieving improved ohmic confinement via impurity injection

    International Nuclear Information System (INIS)

    Bessenrodt-Weberpals, M.; Soeldner, F.X.

    1991-01-01

    Improved Ohmic Confinement (IOC) was obtained in ASDEX after a modification of the divertors that allowed a larger (deuterium and impurity) backflow from the divertor chamber. The quality of IOC depended crucially on the wall conditions, i.e. IOC was best for uncovered stainless steels walls and vanished with boronization. Furthermore, IOC was found only in deuterium discharges. These circumstances led to the idea that IOC correlates with the content of light impurities in the plasma. To substantiate this working hypothesis, we present observations in deuterium discharges with boronized wall conditions into which various impurities have been injected with the aim to induce IOC conditions. Firstly, the plasma behaviour in typical IOC discharges is characterized. Secondly, injection experiments with the low-Z impurities nitrogen and neon as well as with the high-Z impurities argon and krypton are discussed. Then, we concentrate on optimized neon puffing that yields the best confinement results which are similar to IOC conditions. Finally, these results are compared with eperiments in other tokamaks and some conclusions are drawn about the effects of the impurity puffing on both, the central and the edge plasma behaviour. (orig.)

  19. Many-polaron theory for superconductivity and charge-density waves in a strongly coupled electron-phonon system with quasi-two-dimensionality: An interpolation between the adiabatic limit and the inverse-adiabatic limit

    International Nuclear Information System (INIS)

    Nasu, K.

    1987-01-01

    The phase diagram of a two-dimensional N-site N-electron system (N>>1) with site-diagonal electron-phonon (e-ph) coupling is studied in the context of polaron theory, so as to clarify the competition between the superconducting (SC) state and the charge-density wave (CDW) state. The Fermi surface of noninteracting electrons is assumed to be a complete circle with no nesting-type instability in the case of weak e-ph coupling, so as to focus on such a strong coupling that even the standard ''strong-coupling theory'' for superconductivity breaks down. Phonon clouds moving with electrons as well as a frozen phonon are taken into account by a variational method, combined with a mean-field theory. It covers the whole region of three basic parameters characterizing the system: the intersite transfer energy of electron T, the e-ph coupling energy S, and the phonon energy ω. The resultant phase diagram is given in a triangular coordinate space spanned by T, S, and ω. In the adiabatic region ω >(T,S) near the ω vertex of the triangle, on the other hand, each electron becomes a small polaron, and the SC state is always more stable than the CDW state, because the retardation effect is absent

  20. Effect of impurities and ripple upon power regulation in self-sustained tokamaks

    International Nuclear Information System (INIS)

    Bromberg, L.; Cohn, D.R.

    1981-01-01

    Tokamak power reactors will likely operate in a self sustained heating mode where additional power losses are introduced to permit higher levels of alpha particle heating (and thus higher levels of total fusion power) at thermal equilibrium. Illustrative 0-dimensional calculations are made to assess requirements for power regulation of self sustained tokamak plasmas by the use of impurity radiation. Effects of impurities upon allowable fuel density and thermal stability are determined. Requirements are calculated for passive thermal stability control by temperature driven radial motion in the presence of ripple transport losses; it appears that stability might be attained over a relatively wide temperature range with a small amount of ripple transport loss. Requirements for power regulation by the use of ripple transport are also determined

  1. Influence of impurities on the crystallization of dextrose monohydrate

    Science.gov (United States)

    Markande, Abhay; Nezzal, Amale; Fitzpatrick, John; Aerts, Luc; Redl, Andreas

    2012-08-01

    The effects of impurities on dextrose monohydrate crystallization were investigated. Crystal nucleation and growth kinetics in the presence of impurities were studied using an in-line focused beam reflectance monitoring (FBRM) technique and an in-line process refractometer. Experimental data were obtained from runs carried out at different impurity levels between 4 and 11 wt% in the high dextrose equivalent (DE) syrup. It was found that impurities have no significant influence on the solubility of dextrose in water. However, impurities have a clear influence on the nucleation and growth kinetics of dextrose monohydrate crystallization. Nucleation and growth rate were favored by low levels of impurities in the syrup.

  2. Striped morphologies induced by magnetic impurities in d-wave superconductors

    International Nuclear Information System (INIS)

    Zuo Xianjun

    2011-01-01

    Research Highlights: → We investigate striped morphologies induced by magnetic impurities in d-wave superconductors (DSCs). → For the single-impurity and two-impurity cases, modulated checkerboard pattern and stripe-like structures are induced. → When more magnetic impurities are inserted, more complex modulated structures could be induced, including rectilinear and right-angled stripes and quantum-corral-like structures. → Impurities could induce complex striped morphologies in DSCs. - Abstract: We study striped morphologies induced by magnetic impurities in d-wave superconductors (DSCs) near optimal doping by self-consistently solving the Bogoliubov-de Gennes equations based on the t - t' - U - V model. For the single-impurity case, it is found that the stable ground state is a modulated checkerboard pattern. For the two-impurity case, the stripe-like structures in order parameters are induced due to the impurity-pinning effect. The modulations of DSC and charge orders share the same period of four lattice constants (4a), which is half the period of modulations in the coexisting spin order. Interestingly, when three or more impurities are inserted, the impurities could induce more complex striped morphologies due to quantum interference. Further experiments of magnetic impurity substitution in DSCs are expected to check these results.

  3. Bound and rebound states

    International Nuclear Information System (INIS)

    Orzalesi, C.A.

    1979-01-01

    In relativistic quantum theory, bound states generate forces in the crossed channel; such forces can affect the binding and self-consistent solutions should be sought for the bound-state problem. The author investigates how self-consistency can be achieved by successive approximations, in a simple scalar model and with successive relativistic eikonal approximations (EAs). Within the generalized ladder approximation, some exact properties of the resulting ''first generation'' bound states are discussed. The binding energies in this approximation are rather small even for rather large values of the primary coupling constant. The coupling of the constituent particles to the first-generation reggeon is determined by a suitable EA and a new generalized ladder amplitude is constructed with rungs given either by the primary gluons or by the first-generation reggeons. The resulting new (second-generation) bound states are found in a reggeized EA. The size of the corrections to the binding energies due to the rebinding effects is surprisingly large. The procedure is then iterated, so as to find - again in an EA - the third-generation bound states. The procedure is found to be self-consistent already at this stage: the third-generation bound states coincide with those of second generation, and no further rebinding takes place in the higher iterations of the approximation method. Features - good and bad - of the model are discussed, as well as the possible relevance of rebinding mechanisms in hadron dynamics. (author)

  4. Impact of Bounded Noise and Rewiring on the Formation and Instability of Spiral Waves in a Small-World Network of Hodgkin-Huxley Neurons.

    Science.gov (United States)

    Yao, Yuangen; Deng, Haiyou; Ma, Chengzhang; Yi, Ming; Ma, Jun

    2017-01-01

    Spiral waves are observed in the chemical, physical and biological systems, and the emergence of spiral waves in cardiac tissue is linked to some diseases such as heart ventricular fibrillation and epilepsy; thus it has importance in theoretical studies and potential medical applications. Noise is inevitable in neuronal systems and can change the electrical activities of neuron in different ways. Many previous theoretical studies about the impacts of noise on spiral waves focus an unbounded Gaussian noise and even colored noise. In this paper, the impacts of bounded noise and rewiring of network on the formation and instability of spiral waves are discussed in small-world (SW) network of Hodgkin-Huxley (HH) neurons through numerical simulations, and possible statistical analysis will be carried out. Firstly, we present SW network of HH neurons subjected to bounded noise. Then, it is numerically demonstrated that bounded noise with proper intensity σ, amplitude A, or frequency f can facilitate the formation of spiral waves when rewiring probability p is below certain thresholds. In other words, bounded noise-induced resonant behavior can occur in the SW network of neurons. In addition, rewiring probability p always impairs spiral waves, while spiral waves are confirmed to be robust for small p, thus shortcut-induced phase transition of spiral wave with the increase of p is induced. Furthermore, statistical factors of synchronization are calculated to discern the phase transition of spatial pattern, and it is confirmed that larger factor of synchronization is approached with increasing of rewiring probability p, and the stability of spiral wave is destroyed.

  5. Impurity screening of scrape-off plasma in a tokamak

    International Nuclear Information System (INIS)

    Kishimoto, Hiroshi; Tani, Keiji; Nakamura, Hiroo

    1981-11-01

    Impurity screening effect of a scrape-off layer has been studied in a tokamak, based on a simple model of wall-released impurity behavior. Wall-sputtered impurities are stopped effectively by the scrape-off plasma for a medium-Z or high-Z wall system while major part of impurities enters the main plasma in a low-Z wall system. The screening becomes inefficient with increase of scrape-off plasma temperature. Successive multiplication of recycling impurities in the scrape-off layer is large for a high-Z wall and is enhanced by a rise of scrape-off plasma temperature. The stability of plasma-wall interaction is determined by a multiplication factor of recycling impurities. (author)

  6. Quantum phase transitions in multi-impurity and lattice Kondo systems

    International Nuclear Information System (INIS)

    Nejati, Ammar

    2017-01-01

    The main purpose of this dissertation is to provide a detailed development of a self-consistent perturbative renormalization group (RG) method to investigate the quantum phases and quantum phase transitions of multi-impurity Kondo systems (e.g., two impurities or a lattice of impurities). The essence of the RG method is an extension of the standard ''poor man's scaling'' by including the dynamical effects of the magnetic fluctuations in the Kondo vertex. Such magnetic fluctuations arise due to the indirect carrier-mediated exchange interaction (RKKY interaction) between the impurities and compete with the Kondo effect to determine the ground-state. The aim is to take the most 'economic' route and avoid intensive numerical computations as far as possible. In general, it is shown in detail how a relatively small amount of such magnetic fluctuations can suppress and ultimately, destroy the Kondo-screened phase in a universal manner, and without incurring a magnetic instability in the system. The renormalization group method and its extensions are further applied to several distinct experimental realization of the multi-impurity Kondo effect; namely, Kondo adatoms studied via scanning tunneling spectroscopy, a highly-tunable double-quantum-dot system based on semiconducting heterostructures, and finally, the heavy fermionic compounds as Kondo lattices. We demonstrate the qualitative and quantitative agreement of the RG theory with the experimental findings, which supports the validity of the method. In the case of Kondo lattices, we further include the possibility of a magnetic ordering in the lattice to see whether a magnetic ordering can happen simultaneously with or before the Kondo breakdown (or even prevent it altogether). In the last chapter, we consider the fate of the local moments in the absence of full Kondo screening while Kondo fluctuations are still present. This partially-screened phase needs itself an extensive study

  7. Quantum phase transitions in multi-impurity and lattice Kondo systems

    Energy Technology Data Exchange (ETDEWEB)

    Nejati, Ammar

    2017-01-16

    The main purpose of this dissertation is to provide a detailed development of a self-consistent perturbative renormalization group (RG) method to investigate the quantum phases and quantum phase transitions of multi-impurity Kondo systems (e.g., two impurities or a lattice of impurities). The essence of the RG method is an extension of the standard ''poor man's scaling'' by including the dynamical effects of the magnetic fluctuations in the Kondo vertex. Such magnetic fluctuations arise due to the indirect carrier-mediated exchange interaction (RKKY interaction) between the impurities and compete with the Kondo effect to determine the ground-state. The aim is to take the most 'economic' route and avoid intensive numerical computations as far as possible. In general, it is shown in detail how a relatively small amount of such magnetic fluctuations can suppress and ultimately, destroy the Kondo-screened phase in a universal manner, and without incurring a magnetic instability in the system. The renormalization group method and its extensions are further applied to several distinct experimental realization of the multi-impurity Kondo effect; namely, Kondo adatoms studied via scanning tunneling spectroscopy, a highly-tunable double-quantum-dot system based on semiconducting heterostructures, and finally, the heavy fermionic compounds as Kondo lattices. We demonstrate the qualitative and quantitative agreement of the RG theory with the experimental findings, which supports the validity of the method. In the case of Kondo lattices, we further include the possibility of a magnetic ordering in the lattice to see whether a magnetic ordering can happen simultaneously with or before the Kondo breakdown (or even prevent it altogether). In the last chapter, we consider the fate of the local moments in the absence of full Kondo screening while Kondo fluctuations are still present. This partially-screened phase needs itself an extensive study

  8. Observation of impurity accumulation and concurrent impurity influx in PBX

    International Nuclear Information System (INIS)

    Sesnic, S.S.; Fonck, R.J.; Ida, K.; Couture, P.; Kaita, R.; Kaye, S.; Kugel, H.; LeBlanc, B.; Okabayashi, M.; Paul, S.; Powell, E.T.; Reusch, M.; Takahashi, H.; Gammel, G.; Morris, W.

    1987-01-01

    Impurity studies in L- and H-mode discharges in PBX have shown that both types of discharges can evolve into either an impurity accumulative or nonaccumulative case. In a typical accumulative discharge, Z eff peaks in the center to values of about 5. The central metallic densities can be high, n met /n e ≅ 0.01, resulting in central radiated power densities in excess of 1 W/cm 3 , consistent with bolometric estimates. The radial profiles of metals obtained independently from the line radiation in the soft X-ray and the VUV regions are very peaked. Concurrent with the peaking, an increase in the impurity influx coming from the edge of the plasma is observed. At the beginning of the accumulation phase the inward particle flux for titanium has values of 6x10 10 and 10x10 10 particles/cm 2 s at minor radii of 6 and 17 cm. At the end of the accumulation phase, this particle flux is strongly increased to values of 3x10 12 and 1x10 12 particles/cm 2 s. This increased flux is mainly due to influx from the edge of the plasma and to a lesser extent due to increased convective transport. Using the measured particle flux, an estimate of the diffusion coefficient D and the convective velocity v is obtained. (orig.)

  9. Impurity induced resistivity upturns in underdoped cuprates

    Energy Technology Data Exchange (ETDEWEB)

    Das, Nabyendu, E-mail: nabyendudas@gmail.com; Singh, Navinder

    2016-01-28

    Impurity induced low temperature upturns in both the ab-plane and the c-axis dc-resistivities of cuprates in the pseudogap state have been observed in experiments. We provide an explanation of this phenomenon by incorporating impurity scattering of the charge carriers within a phenomenological model proposed by Yang, Rice and Zhang. The scattering between charge carriers and the impurity atom is considered within the lowest order Born approximation. Resistivity is calculated within Kubo formula using the impurity renormalized spectral functions. Using physical parameters for cuprates, we describe qualitative features of the upturn phenomena and its doping evolution that coincides with the experimental findings. We stress that this effect is largely due to the strong electronic correlations.

  10. Impurity induced resistivity upturns in underdoped cuprates

    International Nuclear Information System (INIS)

    Das, Nabyendu; Singh, Navinder

    2016-01-01

    Impurity induced low temperature upturns in both the ab-plane and the c-axis dc-resistivities of cuprates in the pseudogap state have been observed in experiments. We provide an explanation of this phenomenon by incorporating impurity scattering of the charge carriers within a phenomenological model proposed by Yang, Rice and Zhang. The scattering between charge carriers and the impurity atom is considered within the lowest order Born approximation. Resistivity is calculated within Kubo formula using the impurity renormalized spectral functions. Using physical parameters for cuprates, we describe qualitative features of the upturn phenomena and its doping evolution that coincides with the experimental findings. We stress that this effect is largely due to the strong electronic correlations.

  11. How Diverse are the Protein-Bound Conformations of Small-Molecule Drugs and Cofactors?

    Science.gov (United States)

    Friedrich, Nils-Ole; Simsir, Méliné; Kirchmair, Johannes

    2018-03-01

    Knowledge of the bioactive conformations of small molecules or the ability to predict them with theoretical methods is of key importance to the design of bioactive compounds such as drugs, agrochemicals and cosmetics. Using an elaborate cheminformatics pipeline, which also evaluates the support of individual atom coordinates by the measured electron density, we compiled a complete set (“Sperrylite Dataset”) of high-quality structures of protein-bound ligand conformations from the PDB. The Sperrylite Dataset consists of a total of 10,936 high-quality structures of 4548 unique ligands. Based on this dataset, we assessed the variability of the bioactive conformations of 91 small molecules—each represented by a minimum of ten structures—and found it to be largely independent of the number of rotatable bonds. Sixty-nine molecules had at least two distinct conformations (defined by an RMSD greater than 1 Å). For a representative subset of 17 approved drugs and cofactors we observed a clear trend for the formation of few clusters of highly similar conformers. Even for proteins that share a very low sequence identity, ligands were regularly found to adopt similar conformations. For cofactors, a clear trend for extended conformations was measured, although in few cases also coiled conformers were observed. The Sperrylite Dataset is available for download from http://www.zbh.uni-hamburg.de/sperrylite_dataset.

  12. Low Z impurity transport in tokamaks. [Neoclassical transport theory

    Energy Technology Data Exchange (ETDEWEB)

    Hawryluk, R.J.; Suckewer, S.; Hirshman, S.P.

    1978-10-01

    Low Z impurity transport in tokamaks was simulated with a one-dimensional impurity transport model including both neoclassical and anomalous transport. The neoclassical fluxes are due to collisions between the background plasma and impurity ions as well as collisions between the various ionization states. The evaluation of the neoclassical fluxes takes into account the different collisionality regimes of the background plasma and the impurity ions. A limiter scrapeoff model is used to define the boundary conditions for the impurity ions in the plasma periphery. In order to account for the spectroscopic measurements of power radiated by the lower ionization states, fluxes due to anomalous transport are included. The sensitivity of the results to uncertainties in rate coefficients and plasma parameters in the periphery are investigated. The implications of the transport model for spectroscopic evaluation of impurity concentrations, impurity fluxes, and radiated power from line emission measurements are discussed.

  13. Light impurity production in tokamaks

    International Nuclear Information System (INIS)

    Philipps, V.; Vietzke, E.; Erdweg, M.

    1989-01-01

    A review is given of the different erosion processes of carbon materials with special emphasis on conditions relevant to plasma surface interactions. New results on the chemical erosion and radiation enhanced sublimation of boron-carbon layers are presented. The chemical hydrocarbon formation produced by the interaction of the TEXTOR scrape-off plasma with a carbon target has been investigated up to temperatures of 1500K using a Sniffer probe. The chemical interaction of the plasma with the carbon walls in TEXTOR is also analysed by measuring the hydrocarbon and CO and CO 2 partial pressures built up on the surrounding walls during the discharges. The recycling of oxygen impurities in an all carbon surrounding occurs predominantly in the form of CO and Co 2 molecules and the analysis of both neutral pressures during the discharges has been used as an additional diagnostic for the oxygen impurity situation in TEXTOR. These data are discussed in view of spectroscopic measurements on the influx of carbon and oxygen atoms from the walls and impurity line radiation. CD-band spectroscopy in addition is employed to identify the hydrocarbon chemical carbon erosion. Our present understanding of the oxygen impurity recycling and the oxygen sources are described. Particle induced release of CO molecules from the entire first wall is believed to be the dominant influx process of oxygen in the SOL of plasmas with carbon facing materials. The influence of coating the TEXTOR first wall with a boron-carbon film (B/C ≅1) on the light impurity behaviour is shown. (author)

  14. Quasibound states and transport characteristics of Au chains with a substitutional S impurity

    International Nuclear Information System (INIS)

    Wawrzyniak-Adamczewska, M; Kostyrko, T

    2013-01-01

    Electronic transport properties of short gold atom chains with a single sulfur impurity were studied using density functional theory. It is found that the role of the impurity atom in the transport properties is twofold. First, it acts as a scattering center in the dominating 6s-orbital transmission channel and generally leads to a decrease of the transmission function in a wide energy region around the Fermi level. Second, it gives rise to a quasibound state manifesting as a peak near the Fermi level both in the partial density of states as well as in the transmission function. Because of the hybridization of the sulfur 3p and gold 5d orbitals in its formation, the quasibound state moves locally upward in the gold 5d transmission channel and brings about an enhancement of the transmission function in a narrow energy region near the Fermi level. The height of the peak of the quasibound state in the transmission function depends significantly on the position of the impurity in the chain and its energy varies with the bias voltage. The current–voltage (I–V) characteristics become asymmetric with a departure of the impurity from the central position in the chain and they are nonlinear for small values of the voltage (V < 0.1 V). It is proposed that a careful analysis of the I–V characteristics or the voltage dependence of the differential conductance may be used for unambiguous location of the light impurity in experiments with gold chains. (paper)

  15. Impurity transport in internal transport barrier discharges on JET

    International Nuclear Information System (INIS)

    Dux, R.

    2002-01-01

    In JET plasmas with internal transport barrier (ITB) the behaviour of metallic and low-Z impurities (C, Ne) was investigated. In ITB discharges with reversed shear, the metallic impurities accumulate in cases with too strong peaking of the density profile, while the concentration of low-Z elements C and Ne is only mildly peaked. The accumulation might be so strong, that the central radiation approximately equals the central heating power followed by a radiative collapse of the transport barrier. The radial location with strong impurity gradients (convective barrier) was identified to be situated inside (not at!) the heat flux barrier. Calculations of neo-classical transport were performed for these discharges, including impurity-impurity collisions. It was found, that the observed Z-dependence of the impurity peaking and the location of the impurity 'barrier' can be explained with neo-classical transport. ITB discharges with monotonic shear show less inward convection and seem to be advantageous with respect to plasma purity. (author)

  16. Microscopic models of impurities in silicon

    International Nuclear Information System (INIS)

    Assali, L.V.C.

    1985-01-01

    The study of electronic structure of insulated and complex puntual impurities in silicon responsible by the appearing of deep energy levels in the forbiden band of semiconductor, is presented. The molecular cluster model with the treatment of surface orbitals by Watson sphere within the formalism of Xα multiple scattering method, was used. The electronic structures of three clusters representative of perfect silicon crystal, which were used for the impurity studies, are presented. The method was applied to analyse insulated impurities of substitutional and interstitial hydrogen (Si:H and Si:H i ), subtitutional and interstitial iron in neutral and positive charge states (Si:Fe 0 , + , Si:Fe 0 , + ) and substitutional gold in three charge states(Si,Au - , 0 , + ). The thetraedic interstitial defect of silicon (Si:Si i ) was also studied. The complex impurities: neighbour iron pair in the lattice (Si:Fe 2 ), substitutional gold-interstitial iron pair (Si:Au s Fe) and substitutional boron-interstitial hydrogen pair (Si:B s H i ), were analysed. (M.C.K.) [pt

  17. Numerical studies of impurities in fusion plasmas

    International Nuclear Information System (INIS)

    Hulse, R.A.

    1982-09-01

    The coupled partial differential equations used to describe the behavior of impurity ions in magnetically confined controlled fusion plasmas require numerical solution for cases of practical interest. Computer codes developed for impurity modeling at the Princeton Plasma Physics Laboratory are used as examples of the types of codes employed for this purpose. These codes solve for the impurity ionization state densities and associated radiation rates using atomic physics appropriate for these low-density, high-temperature plasmas. The simpler codes solve local equations in zero spatial dimensions while more complex cases require codes which explicitly include transport of the impurity ions simultaneously with the atomic processes of ionization and recombination. Typical applications are discussed and computational results are presented for selected cases of interest

  18. Electronic structure of light impurities in α-Fe and V

    International Nuclear Information System (INIS)

    Gong Xingao; Zeng Zhi; Zheng Wingqi

    1987-07-01

    The electronic structure of α-Fe and V with hydrogen and carbon as impurities is calculated using the embedded cluster models in the framework of self-consistent local density theory. The results obtained reveal that the charge transfer between the H atom and the host atom is small, but the magnetic moments of neighbouring Fe atoms are reduced. The total energy implies that hydrogen in α-Fe is more easily found to occupy the octahedral interstitial site. On the other hand, there is a charge transfer between the C atom and the host atoms. The distance between the carbon and the nearest neighbour iron atoms is 23% elongated. The interaction between the hydrogen and the carbon impurities was studied using a set of clusters of Fe 10 CH in which the atoms were located in five kinds of configuration. The energy of clusters with hydrogen on octahedral interstitial site is lower than that on the tetrahedral interstitial site. (author). 10 refs, 6 figs, 2 tabs

  19. Impurity study of TMX using ultraviolet spectroscopy

    International Nuclear Information System (INIS)

    Allen, S.L.; Strand, O.T.; Moos, H.W.; Fortner, R.J.; Nash, T.J.; Dietrich, D.D.

    1981-01-01

    An extreme ultraviolet (EUV) study of the emissions from intrinsic and injected impurities in TMX is presented. Two survey spectrographs were used to determine that the major impurities present were oxygen, nitrogen, carbon, and titanium. Three absolutely-calibrated monochromators were used to measure the time histories and radial profiles of these impurity emissions in the central cell and each plug. Two of these instruments were capable of obtaining radial profiles as a function of time in a single shot

  20. Multiscaling Dynamics of Impurity Transport in Drift-Wave Turbulence

    International Nuclear Information System (INIS)

    Futatani, S.; Benkadda, S.; Nakamura, Y.; Kondo, K.

    2008-01-01

    Intermittency effects and the associated multiscaling spectrum of exponents are investigated for impurities advection in tokamak edge plasmas. The two-dimensional Hasagawa-Wakatani model of resistive drift-wave turbulence is used as a paradigm to describe edge tokamak turbulence. Impurities are considered as a passive scalar advected by the plasma turbulent flow. The use of the extended self-similarity technique shows that the structure function relative scaling exponent of impurity density and vorticity follows the She-Leveque model. This confirms the intermittent character of the impurities advection in the turbulent plasma flow and suggests that impurities are advected by vorticity filaments

  1. Contribution to the theory of ultracold highly polarized Fermi gases

    International Nuclear Information System (INIS)

    Giraud, Sebastien

    2010-01-01

    This thesis deals with the N+1 body problem in highly polarized Fermi gases. This is the situation where a single atom of one spin species is immersed in a Fermi sea of atoms of the other species. The first part uses a Hamiltonian approach based on a general expansion for the wave function of the system with any number of particle-hole pairs. We show that the constructed series of successive approximations converges very rapidly and thus we get an essentially exact solution for the energy and the effective mass of the polaron. In one dimension, for two particular cases, this problem can be solved analytically. The excellent agreement with our series of approximations provides a further check of the reliability of this expansion. Finally, we consider more specifically various limiting cases, as well as the effect of the mass ratio between the two spin species. In the second part, we use the Feynman diagrams formalism to describe both the polaron and the bound state. For the polaron, we develop a theory which is equivalent to the Hamiltonian approach. For the bound state, we get again a series of successive approximations whose fast convergence is perfectly understood. Therefore, this approach provides an essentially exact solution to the problem along the whole BEC-BCS crossover. Finally, by comparing the energies of the two quasi-particles, we study the position of the polaron to bound state transition. (author)

  2. Spatiotemporal multiscaling analysis of impurity transport in plasma turbulence using proper orthogonal decomposition

    International Nuclear Information System (INIS)

    Futatani, S.; Benkadda, S.; Del-Castillo-Negrete, D.

    2009-01-01

    The spatiotemporal multiscale dynamics of the turbulent transport of impurities is studied in the context of the collisional drift wave turbulence. Two turbulence regimes are considered: a quasihydrodynamic regime and a quasiadiabatic regime. The impurity is assumed to be a passive scalar advected by the corresponding ExB turbulent flow in the presence of diffusion. Two mixing scenarios are studied: a freely decaying case, and a forced case in which the scalar is forced by an externally imposed gradient. The results of the direct numerical simulations are analyzed using proper orthogonal decomposition (POD) techniques. The multiscale analysis is based on a space-time separable POD of the impurity field. The low rank spatial POD eigenfunctions capture the large scale coherent structures and the high rank eigenfunctions capture the small scale fluctuations. The temporal evolution at each scale is dictated by the corresponding temporal POD eigenfunctions. Contrary to the decaying case in which the POD spectrum decays fast, the spectrum in the forced case is relatively flat. The most striking difference between these two mixing scenarios is in the temporal dynamics of the small scale structures. In the decaying case the POD reveals the presence of 'bursty' dynamics in which successively small (high POD rank) scales are intermittently activated during the mixing process. On the other hand, in the forced simulations the temporal dynamics exhibits stationary fluctuations. Spatial intermittency or 'patchiness' in the mixing process characterizes the distribution of the passive tracer in the decaying quasihydrodynamic regime. In particular, in this case the probability distribution function of the low rank POD spatial reconstruction error is non-Gaussian. The spatiotemporal POD scales exhibit a diffusive-type scaling in the quasiadiabatic regime. However, this scaling seems to be absent in the quasihydrodynamic regime that shows no scaling (in the decaying case) or two

  3. Toroidal asymmetries in divertor impurity influxes in NSTX

    Directory of Open Access Journals (Sweden)

    F. Scotti

    2017-08-01

    Full Text Available Toroidal asymmetries in divertor carbon and lithium influxes were observed in NSTX, due to toroidal differences in surface composition, tile leading edges, externally-applied three-dimensional (3D fields and toroidally-localized edge plasma modifications due to radio frequency heating. Understanding toroidal asymmetries in impurity influxes is critical for the evaluation of total impurity sources, often inferred from measurements with a limited toroidal coverage. The toroidally-asymmetric lithium deposition induced asymmetries in divertor lithium influxes. Enhanced impurity influxes at the leading edge of divertor tiles were the main cause of carbon toroidal asymmetries and were enhanced during edge localized modes. Externally-applied 3D fields led to strike point splitting and helical lobes observed in divertor impurity emission, but marginal changes to the toroidally-averaged impurity influxes. Power coupled to the scrape-off layer SOL plasma during radio frequency (RF heating of H-mode discharges enhanced impurity influxes along the non-axisymmetric divertor footprint of flux tubes connecting to plasma in front of the RF antenna.

  4. Impurities and conductivity in a D-wave superconductor

    International Nuclear Information System (INIS)

    Balatsky, A.V.

    1994-01-01

    Impurity scattering in the unitary limit produces low energy quasiparticles with anisotropic spectrum in a two-dimensional d-wave superconductor. The authors describe a new quasi-one-dimensional limit of the quasiparticle scattering, which might occur in a superconductor with short coherence length and with finite impurity potential range. The dc conductivity in a d-wave superconductor is predicted to be proportional to the normal state scattering rate and is impurity-dependent. They show that quasi-one-dimensional regime might occur in high-T c superconductors with Zn impurities at low temperatures T approx-lt 10 K

  5. Observation of attractive and repulsive polarons in a Bose-Einstein condensate

    DEFF Research Database (Denmark)

    Jørgensen, Nils Byg

    2016-01-01

    (BEC) has not yet been realized. Here, we use radio frequency spectroscopy of ultracold bosonic 39K atoms to experimentally demonstrate the existence of a well-defined quasiparticle state of an impurity interacting with a BEC. We measure the energy of the impurity both for attractive and repulsive...... interactions, and find excellent agreement with theories that incorporate three-body correlations. The spectral response consists of a well-defined quasiparticle peak at weak coupling, while for increasing interaction strength, the spectrum is strongly broadened and becomes dominated by the many-body continuum...

  6. On impurity handling in high performance stellarator/heliotron plasmas

    International Nuclear Information System (INIS)

    Burhenn, R.; Feng, Y.; Ida, K.

    2008-10-01

    The Large Helical Device (LHD) and Wendelstein 7-X (W7-X, under construction) are experiments specially designed to demonstrate long pulse (quasi steady-state) operation, which is an intrinsic property of Stellarators and Heliotrons. Significant progress was made in establishment of high performance plasmas. A crucial point is the increasing impurity confinement towards high density as observed at several machines (TJ-II, W7-AS, LHD) which can lead to impurity accumulation and early pulse termination by radiation collapse at high density. In addition, theoretical predictions for non-axisymmetric configurations prognosticate the absence of impurity screening by ion temperature gradients in standard ion root plasmas. Nevertheless, scenarios were found where impurity accumulation was successfully avoided in LHD and/or W7-AS by the onset of drag forces in the high density and low temperature scrape-off-layer, the generation of magnetic islands at the plasma boundary and to a certain degree also by ELMs, flushing out impurities and reducing the net-impurity influx into the core. Additionally, a reduction of impurity core confinement was observed in the W7-AS High Density H-mode (HDH) regime and by application of sufficient ECRH heating power. The exploration of such purification mechanisms is a demanding task for successful steady-state operation. The impurity transport at the plasma edge/SOL was identified to play a major role for the global impurity behaviour in addition to the core confinement. (author)

  7. Recent trends in the impurity profile of pharmaceuticals

    Directory of Open Access Journals (Sweden)

    Kavita Pilaniya

    2010-01-01

    Full Text Available Various regulatory authorities such as the International Conference on Harmonization (ICH, the United States Food and Drug administration (FDA, and the Canadian Drug and Health Agency (CDHA are emphasizing on the purity requirements and the identification of impurities in Active Pharmaceutical Ingredients (APIs. The various sources of impurity in pharmaceutical products are - reagents, heavy metals, ligands, catalysts, other materials like filter aids, charcoal, and the like, degraded end products obtained during \\ after manufacturing of bulk drugs from hydrolysis, photolytic cleavage, oxidative degradation, decarboxylation, enantiomeric impurity, and so on. The different pharmacopoeias such as the British Pharmacopoeia, United State Pharmacopoeia, and Indian Pharmacopoeia are slowly incorporating limits to allowable levels of impurities present in APIs or formulations. Various methods are used to isolate and characterize impurities in pharmaceuticals, such as, capillary electrophoresis, electron paramagnetic resonance, gas-liquid chromatography, gravimetric analysis, high performance liquid chromatography, solid-phase extraction methods, liquid-liquid extraction method, Ultraviolet Spectrometry, infrared spectroscopy, supercritical fluid extraction column chromatography, mass spectrometry, Nuclear magnetic resonance (NMR spectroscopy, and RAMAN spectroscopy. Among all hyphenated techniques, the most exploited techniques for impurity profiling of drugs are Liquid Chromatography (LC-Mass Spectroscopy (MS, LC-NMR, LC-NMR-MS, GC-MS, and LC-MS. This reveals the need and scope of impurity profiling of drugs in pharmaceutical research.

  8. Striped morphologies induced by magnetic impurities in d-wave superconductors

    Science.gov (United States)

    Zuo, Xian-Jun

    2011-05-01

    We study striped morphologies induced by magnetic impurities in d-wave superconductors (DSCs) near optimal doping by self-consistently solving the Bogoliubov-de Gennes equations based on the t - t‧ - U - V model. For the single-impurity case, it is found that the stable ground state is a modulated checkerboard pattern. For the two-impurity case, the stripe-like structures in order parameters are induced due to the impurity-pinning effect. The modulations of DSC and charge orders share the same period of four lattice constants (4 a), which is half the period of modulations in the coexisting spin order. Interestingly, when three or more impurities are inserted, the impurities could induce more complex striped morphologies due to quantum interference. Further experiments of magnetic impurity substitution in DSCs are expected to check these results.

  9. Disentangling overlapping high-field EPR spectra of organic radicals: Identification of light-induced polarons in the record fullerene-free solar cell blend PBDB-T:ITIC

    Science.gov (United States)

    Van Landeghem, Melissa; Maes, Wouter; Goovaerts, Etienne; Van Doorslaer, Sabine

    2018-03-01

    We present a combined high-field EPR and DFT study of light-induced radicals in the bulk heterojunction blend of PBDB-T:ITIC, currently one of the highest efficiency non-fullerene donor:acceptor combinations in organic photovoltaics. We demonstrate two different approaches for disentangling the strongly overlapping high-field EPR spectra of the positive and negative polarons after charge separation: (1) relaxation-filtered field-swept EPR based on the difference in T1 spin-relaxation times and (2) field-swept EDNMR-induced EPR by exploiting the presence of 14N hyperfine couplings in only one of the radical species, the small molecule acceptor radical. The approach is validated by light-induced EPR spectra on related blends and the spectral assignment is underpinned by DFT computations. The broader applicability of the spectral disentangling methods is discussed.

  10. Biological and chemical interactions excelerating the removal of impurities from fly ashes

    Directory of Open Access Journals (Sweden)

    Štyriaková Iveta

    2002-03-01

    Full Text Available The mesophilic bacteria were isolated from the deposit of fly ash in Chalmová (Slovakia and identified using the BBL identification system. Bacillus cereus was the dominant species in this deposit of aluminosilicate minerals. Under laboratory conditions , Bacillus cereus accelerated the extraction of major and trace impurities in fly ash during bioleaching processes. This process was dependent on bacterial adhesion and production of organic acids. The effect of organic acids produced by bacteria was detected especially in sites where impregnated metals were found in the aluminosilicate structure. Amorphous spherical aluminosilicate particles in allotriomorphic aluminosilicate grains represent a main mineral component of fly-ash in which also elements such as Fe, Ti, Mn, As are bound. The rate of mobilization of Al, Si and Ti from coal fly ash under biochemically relevant conditions in vitro was previously shown to depend on the quantity of the ash microspheres. The qualitative EDS analyse of leachates confirmed the extraction of toxic elements (As and Mn from the initial sample of fly ash.Heterotrophic bacteria of Bacillus genus are capable to remove impurities from deposited fly-ash. A long-term deposition of energy fly-ash causes chemical and mineralogical changes as a result of weathering processes. Depending on the composition of coal concentrate containing SiO2, Al2O3, Fe2O3, CaO, MgO and other oxides, fly ash can provide a useful preliminary batch for the preparation of glass-ceramics or zeolite after extracting of bacterially dissolved elements from it. The mobility of major impurities (Ca and Fe and heavy metals, caused by biochemical leaching of fly ash, suggests the possibility of the development of an alternative way of this raw material treatment. The advantage of bioleaching is relatively low cost and the subsequent low demand for energy compared with conventional technologies.

  11. Correlation between defect and magnetism of low energy Ar+9 implanted and un-implanted Zn0.95Mn0.05O thin films suitable for electronic application

    International Nuclear Information System (INIS)

    Neogi, S.K.; Midya, N.; Pramanik, P.; Banerjee, A.; Bhattacharyya, A.; Taki, G.S.; Krishna, J.B.M.; Bandyopadhyay, S.

    2016-01-01

    The structural, morphological, optical and magnetic properties of Ar +9 implanted 5 at% Mn doped ZnO films have been investigated to detect the correlation between ferromagnetism (FM) and defect. Sol–gel derived films were implanted with fluences 0 (un-implanted), 5×10 14 (low), 10 15 (intermediate) and 10 16 (high) ions/cm 2 . Rutherford back scattering (RBS), X-ray diffraction (XRD), atomic force microscope (AFM) and magnetic force microscope (MFM), UV–visible, photoluminescence and X-ray absorption spectroscopy (XAS) and superconducting quantum interference device vibrating sample magnetometer (SQUID VSM) were employed for investigation. XRD indicated single phase nature of the films. Absence of impurity phase has been confirmed from several other measurements also. Ion implantation induces a large concentration of point defects into the films as identified from optical study. All films exhibit intrinsic FM at room temperature (RT). The magnetization attains the maximum for the film implanted with fluence 10 16 ions/cm 2 with saturation magnetization (M S ) value 0.69 emu/gm at RT. Magnetic properties of the films were interpreted using bound magnetic polaron (BMP). BMP generated from the intrinsic exchange interaction of Mn 2+ ions and V Zn related defects actually controls the FM. The practical utility of these films in transparent spin electronic device has also been exhibited. - Highlights: • Synthesis of transparent 5 at% Mn doped ZnO films was done by sol-gel technique. • Defect induced intrinsic ferromagnetism was observed for Ar 9+ ion implanted films. • The maximum magnetization was attained for highest dose of Ar 9+ implantation. • Zn vacancy may favors intrinsic ferromagnetic ordering. • Intrinsic ferromagnetism was interpreted in terms of bound magnetic polaron model.

  12. Correlation between defect and magnetism of low energy Ar{sup +9} implanted and un-implanted Zn{sub 0.95}Mn{sub 0.05}O thin films suitable for electronic application

    Energy Technology Data Exchange (ETDEWEB)

    Neogi, S.K.; Midya, N. [Department of Physics, University of Calcutta, 92 APC Road, Kolkata 700009 (India); Pramanik, P. [Institute of RadioPhysics and Electronics, University of Calcutta, 92 A.P.C. Road, Kolkata 700009 (India); CRNN, University of Calcutta, JB Block, Sector III, Salt Lake, Kolkata 700098 (India); Banerjee, A. [Department of Physics, University of Calcutta, 92 APC Road, Kolkata 700009 (India); CRNN, University of Calcutta, JB Block, Sector III, Salt Lake, Kolkata 700098 (India); Bhattacharyya, A. [Institute of RadioPhysics and Electronics, University of Calcutta, 92 A.P.C. Road, Kolkata 700009 (India); Taki, G.S. [Variable Energy Cyclotron Centre, 1/AF, Salt Lake, Kolkata 700064 (India); Krishna, J.B.M. [UGC DAE CSR, Kolkata Centre, LB 8, Sector III, Salt Lake, Kolkata 700098 (India); Bandyopadhyay, S., E-mail: sbaphy@caluniv.ac.in [Department of Physics, University of Calcutta, 92 APC Road, Kolkata 700009 (India); CRNN, University of Calcutta, JB Block, Sector III, Salt Lake, Kolkata 700098 (India)

    2016-06-15

    The structural, morphological, optical and magnetic properties of Ar{sup +9} implanted 5 at% Mn doped ZnO films have been investigated to detect the correlation between ferromagnetism (FM) and defect. Sol–gel derived films were implanted with fluences 0 (un-implanted), 5×10{sup 14} (low), 10{sup 15} (intermediate) and 10{sup 16} (high) ions/cm{sup 2}. Rutherford back scattering (RBS), X-ray diffraction (XRD), atomic force microscope (AFM) and magnetic force microscope (MFM), UV–visible, photoluminescence and X-ray absorption spectroscopy (XAS) and superconducting quantum interference device vibrating sample magnetometer (SQUID VSM) were employed for investigation. XRD indicated single phase nature of the films. Absence of impurity phase has been confirmed from several other measurements also. Ion implantation induces a large concentration of point defects into the films as identified from optical study. All films exhibit intrinsic FM at room temperature (RT). The magnetization attains the maximum for the film implanted with fluence 10{sup 16} ions/cm{sup 2} with saturation magnetization (M{sub S}) value 0.69 emu/gm at RT. Magnetic properties of the films were interpreted using bound magnetic polaron (BMP). BMP generated from the intrinsic exchange interaction of Mn{sup 2+} ions and V{sub Zn} related defects actually controls the FM. The practical utility of these films in transparent spin electronic device has also been exhibited. - Highlights: • Synthesis of transparent 5 at% Mn doped ZnO films was done by sol-gel technique. • Defect induced intrinsic ferromagnetism was observed for Ar{sup 9+} ion implanted films. • The maximum magnetization was attained for highest dose of Ar{sup 9+} implantation. • Zn vacancy may favors intrinsic ferromagnetic ordering. • Intrinsic ferromagnetism was interpreted in terms of bound magnetic polaron model.

  13. Impurity confinement and transport in high confinement regimes without edge localized modes on DIII-D

    Energy Technology Data Exchange (ETDEWEB)

    Grierson, B. A., E-mail: bgriers@pppl.gov; Nazikian, R. M.; Solomon, W. M. [Princeton Plasma Physics Laboratory, Princeton University, Princeton, New Jersey 08543 (United States); Burrell, K. H.; Garofalo, A. M.; Belli, E. A.; Staebler, G. M.; Evans, T. E.; Smith, S. P.; Chrobak, C. [General Atomics, P.O. Box 85608, San Diego, California 92186-5608 (United States); Fenstermacher, M. E. [Lawerence Livermore National Laboratory, P.O. Box 808, Livermore, California 94550 (United States); McKee, G. R. [Department of Engineering Physics, University of Wisconsin-Madison, Madison, Wisconsin 53796 (United States); Orlov, D. M. [Center for Energy Research, University of California San Diego, 9500 Gilman Dr., La Jolla, California 92093-0417 (United States); Chrystal, C. [University of California San Diego, 9500 Gilman Dr., La Jolla, California 92093-0417 (United States)

    2015-05-15

    Impurity transport in the DIII-D tokamak [J. L. Luxon, Nucl. Fusion 42, 614 (2002)] is investigated in stationary high confinement (H-mode) regimes without edge localized modes (ELMs). In plasmas maintained by resonant magnetic perturbation (RMP), ELM-suppression, and QH-mode, the confinement time of fluorine (Z = 9) is equivalent to that in ELMing discharges with 40 Hz ELMs. For selected discharges with impurity injection, the impurity particle confinement time compared to the energy confinement time is in the range of τ{sub p}/τ{sub e}≈2−3. In QH-mode operation, the impurity confinement time is shown to be smaller for intense, coherent magnetic, and density fluctuations of the edge harmonic oscillation than weaker fluctuations. Transport coefficients are derived from the time evolution of the impurity density profile and compared to neoclassical and turbulent transport models NEO and TGLF. Neoclassical transport of fluorine is found to be small compared to the experimental values. In the ELMing and RMP ELM-suppressed plasma, the impurity transport is affected by the presence of tearing modes. For radii larger than the mode radius, the TGLF diffusion coefficient is smaller than the experimental value by a factor of 2–3, while the convective velocity is within error estimates. Low levels of diffusion are observed for radii smaller than the tearing mode radius. In the QH-mode plasma investigated, the TGLF diffusion coefficient is higher inside of ρ=0.4 and lower outside of 0.4 than the experiment, and the TGLF convective velocity is more negative by a factor of approximately 1.7.

  14. Effect of divalent impurities on some physical properties of LiF and NaF

    International Nuclear Information System (INIS)

    Laj, C.

    1969-05-01

    The ionic thermo-currents technique is applied to the study of impurity vacancy dipoles in LiF and NaF doped with several divalent cations. In LiF only one ITC band is observed whatever the impurity studied. In NaF on the contrary two ITC bands are present, one corresponding to the one observed in LiF, the other one, intense in the case of small impurities, at lower temperature. A parallel EPR study in the case of Mn 2+ doped samples shows that the band observed in LiF and the corresponding one in NaF are due to the relaxation of dipoles formed by the association of an impurity and a vacancy in the next nearest position. The knowledge of the properties of the dipoles allows to show that the room temperature ionic conductivity of LiF is conditioned by the equilibrium: M ++ □+ → M ++ + □+. It is also shown that the isolated cation vacancy originating from this dissociation is responsible for the enhancement of γ-ray coloration of LiF doped with divalent cation impurities. A paramagnetic center ascribed to the presence of Mn 0 isolated in the lattice is also studied. The value of the hyperfine interaction and its temperature dependence are in good agreement with both the theory and the other experimental results. Finally it is shown that the disappearance of dipoles by annealing is related to the formation of complexes involving OH - ions, probably of the M(OH) 2 type, with the two OH - ions occupying a single fluorine site. (author) [fr

  15. The screening of charged impurities in bilayer graphene

    International Nuclear Information System (INIS)

    Zhang Wenjing; Li, Lain-Jong

    2010-01-01

    Positively charged impurities were introduced into a bilayer graphene (BLG) transistor by n-doping with dimethylformamide. Subsequent exposure of the BLG device to moisture resulted in a positive shift of the Dirac point and an increase of hole mobility, suggesting that moisture could reduce the scattering strength of the existing charged impurities. In other words, moisture screened off the 'effective density' of charged impurities. At the early stage of moisture screening the scattering of hole carriers is dominated by long-range Coulomb scatter, but an alternative scattering mechanism should also be taken into consideration when the effective density of impurities is further lowered on moisture exposure.

  16. Collective impurity effects in the Heisenberg triangular antiferromagnet

    International Nuclear Information System (INIS)

    Maryasin, V S; Zhitomirsky, M E

    2015-01-01

    We theoretically investigate the Heisenberg antiferromagnet on a triangular lattice doped with nonmagnetic impurities. Two nontrivial effects resulting from collective impurity behavior are predicted. The first one is related to presence of uncompensated magnetic moments localized near vacancies as revealed by the low-temperature Curie tail in the magnetic susceptibility. These moments exhibit an anomalous growth with the impurity concentration, which we attribute to the clustering mechanism. In an external magnetic field, impurities lead to an even more peculiar phenomenon lifting the classical ground-state degeneracy in favor of the conical state. We analytically demonstrate that vacancies spontaneously generate a positive biquadratic exchange, which is responsible for the above degeneracy lifting

  17. On the Applicability of Lower Bounds for Solving Rectilinear

    DEFF Research Database (Denmark)

    Clausen, Jens; Karisch, Stefan E.; Perregaard, M.

    1998-01-01

    . Recently, lower bounds based on decomposition were proposed for the so called rectilinear QAP that proved to be the strongest for a large class of problem instances. We investigate the strength of these bounds when applied not only at the root node of a search tree but as the bound function used......The quadratic assignment problem (QAP) belongs to the hard core of NP-hard optimization problems. After almost forty years of research only relatively small instances can be solved to optimality. The reason is that the quality of the lower bounds available for exact methods is not sufficient...

  18. Annealing bounds to prevent further Charge Transfer Inefficiency increase of the Chandra X-ray CCDs

    Energy Technology Data Exchange (ETDEWEB)

    Monmeyran, Corentin, E-mail: comonmey@mit.edu [Department of Materials Science and Engineering, Massachusetts Institute of Technology, 77 Massachusetts Avenue, Cambridge, MA 02139 (United States); Patel, Neil S., E-mail: neilp@mit.edu [Department of Materials Science and Engineering, Massachusetts Institute of Technology, 77 Massachusetts Avenue, Cambridge, MA 02139 (United States); Bautz, Mark W., E-mail: mwb@space.mit.edu [Kavli Institute for Astrophysics and Space Research, Massachusetts Institute of Technology, 77 Massachusetts Avenue, Cambridge, MA 02139 (United States); Grant, Catherine E., E-mail: cgrant@space.mit.edu [Kavli Institute for Astrophysics and Space Research, Massachusetts Institute of Technology, 77 Massachusetts Avenue, Cambridge, MA 02139 (United States); Prigozhin, Gregory Y., E-mail: gyp@space.mit.edu [Kavli Institute for Astrophysics and Space Research, Massachusetts Institute of Technology, 77 Massachusetts Avenue, Cambridge, MA 02139 (United States); Agarwal, Anuradha, E-mail: anu@mit.edu [Microphotonics Center, Massachusetts Institute of Technology, 77 Massachusetts Avenue, Cambridge, MA 02139 (United States); Kimerling, Lionel C., E-mail: lckim@mit.edu [Department of Materials Science and Engineering, Massachusetts Institute of Technology, 77 Massachusetts Avenue, Cambridge, MA 02139 (United States); Microphotonics Center, Massachusetts Institute of Technology, 77 Massachusetts Avenue, Cambridge, MA 02139 (United States)

    2016-12-15

    After the front-illuminated CCDs on board the X-ray telescope Chandra were damaged by radiation after launch, it was decided to anneal them in an effort to remove the defects introduced by the irradiation. The annealing led to an unexpected increase of the Charge Transfer Inefficiency (CTI). The performance degradation is attributed to point defect interactions in the devices. Specifically, the annealing at 30 °C activated the diffusion of the main interstitial defect in the device, the carbon interstitial, which led to its association with a substitutional impurity, ultimately resulting in a stable and electrically active defect state. Because the formation reaction of this carbon interstitial and substitutional impurity associate is diffusion limited, we recommend a higher upper bound for the annealing temperature and duration of any future CCD anneals, that of −50 °C for one day or −60 °C for a week, to prevent further CTI increase.

  19. Lower bounds on Q of some dipole shapes

    DEFF Research Database (Denmark)

    Kim, Oleksiy S.

    2016-01-01

    The lower bound on the radiation Q of an arbitrary electrically small antenna shape can be determined by finding the optimal electric current density on the exterior surface of the shape, such that the Q of this current radiating in free space is minimized, and then augmenting it with a magnetic...... current density cancelling the fields inside the shape's surface. The Q of these coupled electric and magnetic currents radiating in free space is the lower bound on Q for the given shape. The approach is exemplified and its general applicability is substantiated by computing the lower bounds...... of spherically capped dipoles and comparing the results to the known bounds of a sphere and a thin cylinder....

  20. Simulated impurity transport in LHD from MIST

    Energy Technology Data Exchange (ETDEWEB)

    Rice, J.E. [National Inst. for Fusion Science, Toki, Gifu (Japan)

    1998-05-01

    The impurity transport code MIST and atomic physics package LINES are used to calculate the time evolution of charge state density profiles, individual line emissivity profiles and total radiated power profiles for impurities in LHD plasmas. Three model LHD plasmas are considered; a high density, low temperature case, a low density, high temperature case and the initial LHD start-up plasma (500 kW ECH), using impurity transport coefficient profiles from Heliotron E. The elements oxygen, neon, scandium, iron, nickel and molybdenum are considered, both injected and in steady state. (author)

  1. Bounds for nonlinear composites via iterated homogenization

    Science.gov (United States)

    Ponte Castañeda, P.

    2012-09-01

    Improved estimates of the Hashin-Shtrikman-Willis type are generated for the class of nonlinear composites consisting of two well-ordered, isotropic phases distributed randomly with prescribed two-point correlations, as determined by the H-measure of the microstructure. For this purpose, a novel strategy for generating bounds has been developed utilizing iterated homogenization. The general idea is to make use of bounds that may be available for composite materials in the limit when the concentration of one of the phases (say phase 1) is small. It then follows from the theory of iterated homogenization that it is possible, under certain conditions, to obtain bounds for more general values of the concentration, by gradually adding small amounts of phase 1 in incremental fashion, and sequentially using the available dilute-concentration estimate, up to the final (finite) value of the concentration (of phase 1). Such an approach can also be useful when available bounds are expected to be tighter for certain ranges of the phase volume fractions. This is the case, for example, for the "linear comparison" bounds for porous viscoplastic materials, which are known to be comparatively tighter for large values of the porosity. In this case, the new bounds obtained by the above-mentioned "iterated" procedure can be shown to be much improved relative to the earlier "linear comparison" bounds, especially at low values of the porosity and high triaxialities. Consistent with the way in which they have been derived, the new estimates are, strictly, bounds only for the class of multi-scale, nonlinear composites consisting of two well-ordered, isotropic phases that are distributed with prescribed H-measure at each stage in the incremental process. However, given the facts that the H-measure of the sequential microstructures is conserved (so that the final microstructures can be shown to have the same H-measure), and that H-measures are insensitive to length scales, it is conjectured

  2. Scattering of waves by impurities in precompressed granular chains.

    Science.gov (United States)

    Martínez, Alejandro J; Yasuda, Hiromi; Kim, Eunho; Kevrekidis, P G; Porter, Mason A; Yang, Jinkyu

    2016-05-01

    We study scattering of waves by impurities in strongly precompressed granular chains. We explore the linear scattering of plane waves and identify a closed-form expression for the reflection and transmission coefficients for the scattering of the waves from both a single impurity and a double impurity. For single-impurity chains, we show that, within the transmission band of the host granular chain, high-frequency waves are strongly attenuated (such that the transmission coefficient vanishes as the wavenumber k→±π), whereas low-frequency waves are well-transmitted through the impurity. For double-impurity chains, we identify a resonance-enabling full transmission at a particular frequency-in a manner that is analogous to the Ramsauer-Townsend (RT) resonance from quantum physics. We also demonstrate that one can tune the frequency of the RT resonance to any value in the pass band of the host chain. We corroborate our theoretical predictions both numerically and experimentally, and we directly observe almost complete transmission for frequencies close to the RT resonance frequency. Finally, we show how this RT resonance can lead to the existence of reflectionless modes in granular chains (including disordered ones) with multiple double impurities.

  3. Polaronic Nonmetal-Correlated Metal Crossover System β'-CuxV2O5 with Anharmonic Copper Oscillation and Thermoelectric Conversion Performance

    Science.gov (United States)

    Onoda, Masashige; Sato, Takuma

    2017-12-01

    The crystal structures and electronic properties of β'CuxV2O5 are explored through measurements of X-ray four-circle diffraction, electrical resistivity, thermoelectric power, thermal conductivity, magnetization, and electron paramagnetic resonance. For various compositions with 0.243 ≤ x ≤ 0.587, the crystal structures are redetermined through the anharmonic approach of the copper displacement factors, where the anharmonicity is reduced with increasing Cu concentration. The electron transport for x ≤ 0.45 is nonmetallic due to polaron hopping and the random potential of Cu ions, while for x = 0.60, a correlated Fermi-liquid state appears with a Wilson ratio of 1.3 and a Kadowaki-Woods ratio close to the universal value for heavy-fermion systems. At around x = 0.50, the polaronic bandwidth may broaden so that the Hubbard subbands caused by the electron correlation will overlap. The nonmetallic composition in the proximity of the nonmetal-metal crossover shows a dimensionless thermoelectric power factor of 10-2 at 300 K, partly due to the anharmonic copper oscillation.

  4. Breatherlike impurity modes in discrete nonlinear lattices

    DEFF Research Database (Denmark)

    Hennig, D.; Rasmussen, Kim; Tsironis, G. P.

    1995-01-01

    We investigate the properties of a disordered generalized discrete nonlinear Schrodinger equation, containing both diagonal and nondiagonal nonlinear terms. The equation models a Linear host lattice doped with nonlinear impurities. We find different types of impurity states that form itinerant...

  5. The effect of iron and copper impurities on the wettability of sphalerite (110) surface.

    Science.gov (United States)

    Simpson, Darren J; Bredow, Thomas; Chandra, Anand P; Cavallaro, Giuseppe P; Gerson, Andrea R

    2011-07-15

    The effect of impurities in the zinc sulfide mineral sphalerite on surface wettability has been investigated theoretically to shed light on previously reported conflicting results on sphalerite flotation. The effect of iron and copper impurities on the sphalerite (110) surface energy and on the water adsorption energy was calculated with the semi-empirical method modified symmetrically orthogonalized intermediate neglect of differential overlap (MSINDO) using the cyclic cluster model. The effect of impurities or dopants on surface energies is small but significant. The surface energy increases with increasing surface iron concentration while the opposite effect is reported for increasing copper concentration. The effect on adsorption energies is much more pronounced with water clearly preferring to adsorb on an iron site followed by a zinc site, and copper site least favorable. The theoretical results indicate that a sphalerite (110) surface containing iron is more hydrophilic than the undoped zinc sulfide surface. In agreement with the literature, the surface containing copper (either naturally or by activation) is more hydrophobic than the undoped surface. Copyright © 2011 Wiley Periodicals, Inc.

  6. Incorporation, diffusion and segregation of impurities in polycrystalline silicon

    Energy Technology Data Exchange (ETDEWEB)

    Deville, J.P.; Soltani, M.L. (Universite Louis Pasteur, 67 - Strasbourg (France)); Quesada, J. (Laboratoire de Metallurgie-Chimie des Materiaux, E.N.S.A.I.S., 67 - Strasbourg (France))

    1982-01-01

    We studied by means of X-Ray photoelectron Spectroscopy the nature, distribution and, when possible, the chemical bond of impurities at the surface of polycrystalline silicon samples grown on a carbon ribbon. Besides main impurities (carbon and oxygen), always present at concentrations around their limit of solubility in silicon, metal impurities have been found: their nature varies from one sample to another. Their spatial distribution is not random: some are strictly confined at the surface (sodium), whereas others are in the superficial oxidized layer (calcium, magnesium) or localized at the oxide-bulk silicon interface (iron). Metal impurities are coming from the carbon ribbon and are incorporated to silicon during the growth process. It is not yet possible to give a model of diffusion processes of impurities since they are too numerous and interact one with the other. However oxygen seems to play a leading role in the spatial distribution of metal impurities.

  7. Quantum one dimensional spin systems. Disorder and impurities

    International Nuclear Information System (INIS)

    Brunel, V.

    1999-01-01

    This thesis presents three studies that are respectively the spin-1 disordered chain, the non magnetic impurities in the spin-1/2 chain and the reaction-diffusion process. The spin-1 chain of weak disorder is performed by the Abelian bosonization and the renormalization group. This allows to take into account the competition between the disorder and the interactions and predicts the effects of various spin-1 anisotropy chain phases under many different disorders. A second work uses the non magnetic impurities as local probes of the correlations in the spin-1/2 chain. When the impurities are connected to the chain boundary, the author predicts a temperature dependence of the relaxation rate (1/T) of the nuclear spin impurities, different from the case of these impurities connected to the whole chain. The last work deals with one dimensional reaction-diffusion problem. The Jordan-Wigner transformation allows to consider a fermionic field theory that critical exponents follow from the renormalization group. (A.L.B.)

  8. Impurity injection into tokamak plasmas by erosion probes

    International Nuclear Information System (INIS)

    Hildebrandt, D.; Bakos, J.S.; Buerger, G.; Paszti, F.; Petravich, G.

    1987-08-01

    Exposing special erosion probes into the edge plasma of MT-1 the impurities Li and Ti were released and contaminated the plasma. By the use of collector probes the torodial transport of these impurities were investigated. The results indicate a preferential impurity flow into codirection of the plasma current. However, the asymmetric component of this flow is much larger than expected from the toroidal drift correlated to the plasma current. (author)

  9. Bound states in curved quantum waveguides

    International Nuclear Information System (INIS)

    Exner, P.; Seba, P.

    1987-01-01

    We study free quantum particle living on a curved planar strip Ω of a fixed width d with Dirichlet boundary conditions. It can serve as a model for electrons in thin films on a cylindrical-type substrate, or in a curved quantum wire. Assuming that the boundary of Ω is infinitely smooth and its curvature decays fast enough at infinity, we prove that a bound state with energy below the first transversal mode exists for all sufficiently small d. A lower bound on the critical width is obtained using the Birman-Schwinger technique. (orig.)

  10. Fractal growth in impurity-controlled solidification in lipid monolayers

    DEFF Research Database (Denmark)

    Fogedby, Hans C.; Sørensen, Erik Schwartz; Mouritsen, Ole G.

    1987-01-01

    A simple two-dimensional microscopic model is proposed to describe solidifcation processes in systems with impurities which are miscible only in the fluid phase. Computer simulation of the model shows that the resulting solids are fractal over a wide range of impurity concentrations and impurity...... diffusional constants. A fractal-forming mechanism is suggested for impurity-controlled solidification which is consistent with recent experimental observations of fractal growth of solid phospholipid domains in monolayers. The Journal of Chemical Physics is copyrighted by The American Institute of Physics....

  11. Impurity effects in the electrothermal instability

    International Nuclear Information System (INIS)

    Tomimura, A.; Azevedo, M.T. de

    1982-01-01

    A 'impure' plasma model is proposed based on the homogeneous hydrogen plasma used in the theory formulated by Tomimura and Haines to explain the electrothermal instable mode growth with the wave vector perpendicular to the applied magnetic field. The impurities are introduced implicitly in the transport coefficients of the two-fluid model through a effective charge number Z sub(eff). (Author) [pt

  12. Transport and re-deposition of limiter-released metal impurities

    International Nuclear Information System (INIS)

    Claasen, H.A.; Repp, H.

    1983-01-01

    The transport parallel B-vector and re-deposition of limiter- (or divertor-target-)released metal impurities in a given counter-streaming scrape-off layer plasma is studied analytically by using a kinetic approach. Electron impact ionization, Coulomb collisions with the hydrogen ions, and impurity ion acceleration in a pre-sheath electric field are accounted for. The friction and electric-field forces provide the driving forces for impurity re-cycling in front of the limiter. Both hydrogen ion sputtering and self-sputtering are included (the latter for impurity emission perpendicular to the limiter surface). The analytical formulas are numerically evaluated for the example of sputtered iron impurities, assuming a simple model for a scrape-off layer plasma in contact with a stainless-steel poloidal ring limiter. (author)

  13. Profiling extractable and leachable inorganic impurities in ophthalmic drug containers by ICP-MS.

    Science.gov (United States)

    Solomon, Paige; Nelson, Jenny

    2018-03-01

    In this study, we investigated the elemental impurities present in the plastic material of ophthalmic eye drop bottles using inductively coupled plasma-mass spectrometry (ICP-MS). Metallic contaminations, especially localized within the small cavity of the eye, can significantly perturb the ocular metallome. The concern is two-fold: first certain elements, for example heavy metals, can be toxic to humans at even trace levels, and second, these contaminations can have adverse reactions with other medicines or enzymatic processes in the eye. The implication of redox-active metals in cataract formation is one such biological consequence. The analysis demonstrated the effect of aggressive storage and transportation conditions on elemental extractable and leachable contamination, and posits that release of these elemental impurities can disrupt metallome equilibrium in the ocular compartment, leading to toxicity and disease.

  14. Impurity concentration limits and activation in fusion reactor structural materials

    International Nuclear Information System (INIS)

    Zucchetti, M.

    1991-01-01

    This paper examines waste management problems related to impurity activation in first-wall, shield, and magnet materials for fusion reactors. Definitions of low activity based on hands-on recycling, remote recycling, and shallow land burial waste management criteria are discussed. Estimates of the impurity concentration in low-activation materials (elementally substituted stainless steels and vanadium alloys) are reported. Impurity activation in first-wall materials turns out to be critical after a comparison of impurity concentration limits and estimated levels. Activation of magnet materials is then considered: Long-term activity is not a concern, while short-term activity is. In both cases, impurity activation is negligible. Magnet materials, and all other less flux-exposed materials, have no practical limitation on impurities in terms of induced radioactivity

  15. The origin of metal impurities in DIVA

    International Nuclear Information System (INIS)

    Ohasa, Kazumi; Sengoku, Seio; Maeda, Hikosuke; Ohtsuka, Hideo; Yamamoto, Shin

    1978-10-01

    The origin of metal impurities in DIVA (JFT-2a Tokamak) has been studied experimentally. Three processes of metal impurity release from the first wall were identified; i.e. ion sputtering, evaporation, and arcing. Among of these, ion sputtering is the predominant process in the quiet phase of the discharge, which is characterized by no spikes in the loop voltage and no localized heat flux concentrations on the first wall. ''Cones'' formation due to the sputtering is observed on the gold protection plate (guard limiter) exposed to about 10,000 discharges by scanning electron micrograph. In the SEM photographs, the spacial distribution of cones on the shell surface due to the ion sputtering coincides with the spacial distribution of intensity of Au-I line radiation. Gold is the dominant metal impurity in DIVA. The honeycomb structure can decrease release of the metal impurity. (author)

  16. Effects of Thickness of a Low-Temperature Buffer and Impurity Incorporation on the Characteristics of Nitrogen-polar GaN.

    Science.gov (United States)

    Yang, Fann-Wei; Chen, Yu-Yu; Feng, Shih-Wei; Sun, Qian; Han, Jung

    2016-12-01

    In this study, effects of the thickness of a low temperature (LT) buffer and impurity incorporation on the characteristics of Nitrogen (N)-polar GaN are investigated. By using either a nitridation or thermal annealing step before the deposition of a LT buffer, three N-polar GaN samples with different thicknesses of LT buffer and different impurity incorporations are prepared. It is found that the sample with the thinnest LT buffer and a nitridation step proves to be the best in terms of a fewer impurity incorporations, strong PL intensity, fast mobility, small biaxial strain, and smooth surface. As the temperature increases at ~10 K, the apparent donor-acceptor-pair band is responsible for the decreasing integral intensity of the band-to-band emission peak. In addition, the thermal annealing of the sapphire substrates may cause more impurity incorporation around the HT-GaN/LT-GaN/sapphire interfacial regions, which in turn may result in a lower carrier mobility, larger biaxial strain, larger bandgap shift, and stronger yellow luminescence. By using a nitridation step, both a thinner LT buffer and less impurity incorporation are beneficial to obtaining a high quality N-polar GaN.

  17. Impurity dynamics in stellarator W7-AS plasmas

    International Nuclear Information System (INIS)

    Igitkhanov, Yuri; Beidler, Craig D.; Burhenn, Reiner; Polunovsky, Eduard; Yamazaki, Kozo

    2006-01-01

    Numerical efforts to understand the neoclassical transport of impurities in stellarator plasmas have been undertaken. The new code solves the radial continuity equations for each ionization stage of the impurity ions for given background plasma profiles and magnetic configuration. An analytic description of the neoclassical transport coefficients based on numerical results from the DKES (Drift Kinetic Equation Solver) code and monoenergetic Monte-Carlo calculation (C.D. Beidler et al., EPS 1994), is here applied for impurity transport coefficients. The transition between the different charge states due to the ionization and recombination in balance equation is described by using the ADAS (Atomic Data and Analysis Structure) database. The impurity behavior in some typical discharges from W7-AS with moderate (NC) and improved energy confinement (HDH) has been considered. It is shown that the spatial distribution results from the competition between the radial electric field and the thermal force (which together produce a convective flux), and the diffusive term, which flattens the radial impurity distribution. The impurity ions are localized at the radial position where the convective flux goes through zero. It is also shown that for typical stellarator discharges there is no pronounced temperature screening effect as in tokamak plasmas. (author)

  18. Geometry and electronic structure of an impurity-trapped exciton in the Cs2GeF6 crystal doped with U4+. The 5f17s1 manifold

    International Nuclear Information System (INIS)

    Ordejon, B.; Seijo, L.; Barandiaran, Z.

    2007-01-01

    Complete text of publication follows: Excitons trapped at impurity centres in highly ionic crystals were first described by McClure and Pedrini [Phys. Rev. B 32, 8465 (1985)] as excited states consisting of a bound electron-hole pair with the hole localized on the impurity and the electron on nearby lattice sites, and a very short impurity-ligand bond length. In this work we present a detailed microscopic characterization of an impurity - trapped exciton in Cs 2 GeF 6 doped with U 4+ . Its electronic structure has been studied by means of CASSCF/CASPT2/SOCI relativistic ab initio model potential (AIMP) embedded-cluster calculations on (UF 6 ) 2- and (UF 6 Cs 8 ) 6+ clusters embedded in Cs 2 GeF 6 . The local geometry of the impurity-trapped exciton, the potential energy curves, and the multi electronic wavefunctions, have been obtained as direct, non-empirical results of the methods. The calculated excited states appear to be significantly delocalized outside the UF 6 volume and their U-F bond length turns out to be very short, closer to that of a pentavalent uranium defect than to that of a tetravalent uranium defect. The wavefunctions of these excited states show a dominant U 5f 1 7s 1 configuration character. This result has never been anticipated by simpler models and reveals the unprecedented ability of diffuse orbitals of f-element impurities to act as electron traps in ionic crystals

  19. Photophysical properties of novel small acceptor molecules and their application in hybrid small-molecular/polymeric organic solar cells

    Energy Technology Data Exchange (ETDEWEB)

    Inal, Sahika; Castellani, Mauro; Neher, Dieter [Universitaet Potsdam, Institut fuer Physik und Astronomie, Potsdam-Golm (Germany); Sellinger, Alan [Institute of Materials Research and Engineering, Singapore (Singapore)

    2009-07-01

    Recent experimental investigations revealed that the photovoltaic properties of our devices are related to the balance between recombination and field-induced dissociation of interfacial excited states such as exciplexes or geminate polaron pairs. This balance was shown to be affected by the nanomorphology at the heterojunction. We have analyzed the photophysical properties of a new materials couple comprising an electron-donating PPV copolymer and a vinazene-based small molecule acceptor. Steady state and time-resolved photoluminescence (PL) spectroscopy in solution and in the solid state showed the formation of excimers within the acceptor. The associated long-range diffusion promise efficient energy harvesting at the heterojunction. On the other hand, blends of the PPV-derivative and the small molecule revealed strong exciplex formation. Therefore, bilayered hybrid small-molecular/polymeric solar cells have been fabricated by consequently spin-coating the macromolecular donor and the small molecule acceptor from two different solvents. The bilayer architecture limits recombination processes enabling high FFs of around 44% and a technologically important open circuit voltage of 1Volt.

  20. Impurity and trace tritium transport in tokamak edge turbulence

    DEFF Research Database (Denmark)

    Naulin, V.

    2005-01-01

    The turbulent transport of impurity or minority species, as for example tritium, is investigated in drift-Alfven edge turbulence. The full effects of perpendicular and parallel convection are kept for the impurity species. The impurity density develops a granular structure with steep gradients...... and locally exceeds its initial values due to the compressibility of the flow. An approximate decomposition of the impurity flux into a diffusive part and an effective convective part (characterized by a pinch velocity) is performed and a net inward pinch effect is recovered. The pinch velocity is explained...

  1. Impurities in radioactive solutions for gamma spectroscopy

    International Nuclear Information System (INIS)

    Delgado, J.U.

    1990-01-01

    The absolute and relative methods for radioactive sources calibration, like 4 Πβ-γ and 4Πγ ionization chamber respectively, allows to reach 0,1% of exactiness in activity measurement, but cannot distinguish radioactive impurities that interfere in the activity. Then, one of the problems associated to a quality control of calibrated sources furnished to users is the identification and quantification of the impurities. In this work, a routine technical procedure, using the facilities of gamma spectrometry method that allows to identify and to determine the impurities relative contribution to the source main radionuclide activity, is described. (author) [pt

  2. EUV impurity study of the Alcator tokamak

    International Nuclear Information System (INIS)

    Terry, J.L.; Chen, K.I.; Moos, H.W.; Marmar, E.S.

    1977-06-01

    The intensity of resonance line radiation from oxygen, nitrogen, carbon and molybdenum impurities has been measured in the high field (80 kG), high density (6 x 10 14 cm -3 ) discharges of the Alcator tokamak, using a 0.4 m normal incidence monochromator (300 to 1300 A) with its line of sight fixed along a major radius. The total light impurity concentrations were 2 x 10 -3 , 7 x 10 -4 , and 3 x 10 -3 at central electron densities of 4.5 x 10 13 cm -3 (burnout), 4.0 x 10 13 (low density plateau) and 6.0 x 10 14 (high density plateau). Both a simple model and a computer code which included Pfirsch-Schluter impurity diffusion were used to estimate oxygen influxes of 1.6 x 10 13 cm -2 sec -1 and 1.5 x 10 14 cm -2 sec -1 at the plasma edge in the low and high density emission plateaus. The resulting values of Z/sub eff/, including the contributions due to both the light impurities and molybdenum, were close to one. The power lost through the impurity line radiation accounted for approximately equal to 7 percent of the total ohmic input power at high densities

  3. Magnetoresistance of magnetically doped ZnO films

    Energy Technology Data Exchange (ETDEWEB)

    Behan, A J; Mokhtari, A; Blythe, H J; Fox, A M; Gehring, G A [Department of Physics and Astronomy, University of Sheffield, Sheffield S3 7RH (United Kingdom); Ziese, M, E-mail: G.A.Gehring@sheffield.ac.u [Division of Superconductivity and Magnetism, University of Leipzig, D-04103, Leipzig (Germany)

    2009-08-26

    Magnetoresistance measurements have been made at 5 K on doped ZnO thin films grown by pulsed laser deposition. ZnCoO, ZnCoAlO and ZnMnAlO samples have been investigated and compared to similar films containing no transition metal dopants. It is found that the Co-doped samples with a high carrier concentration have a small negative magnetoresistance, irrespective of their magnetic moment. On decreasing the carrier concentration, a positive contribution to the magnetoresistance appears and a further negative contribution. This second, negative contribution, which occurs at very low carrier densities, correlates with the onset of ferromagnetism due to bound magnetic polarons suggesting that the negative magnetoresistance results from the destruction of polarons by a magnetic field. An investigation of the anisotropic magnetoresistance showed that the orientation of the applied magnetic field, relative to the sample, had a large effect. The results for the ZnMnAlO samples showed less consistent trends.

  4. Transport of impurities during H-mode pulses in JET

    International Nuclear Information System (INIS)

    Giannella, R.; Gottardi, N.; Mompean, F.; Mori, H.; Pasini, D.; Stork, D.; Barnsley, R.; Hawkes, N.C.; Lawson, K.

    1990-01-01

    The transport of impurities during the H-mode is very different from that observed in the other regimes. This is clearly evident in the quiescent discharges where the confinement time of impurities τ I are measured in all the quiescent H-mode discharges in spite of the variety of impurity behavior observed corresponding to different plasma parameters and operating scenarios. The condition of the machine has an influence on the role played by the various impurities, but this does not seem to affect the flow patterns of these ions substantially. In particular oxygen, which was often detected as the dominant radiator, can be reduced to a negligible fraction by He conditioning of the carbon X-point tiles or limiters or by evaporating beryllium in the vacuum vessel. Nevertheless the behaviour of the residual impurities in otherwise similar discharges remains substantially unchanged. The transport patterns appear in fact to be affected by the plasma parameters and their profiles. In particular, two extreme transport regimes are presented in the following. These discharges have been modelled with the aid of a recently developed fully time-dependent impurity transport code using heuristic profiles for the impurity diffusion D and the convection velocity v. (author) 4 refs., 5 figs

  5. Highly stable carbon nanotube field emitters on small metal tips against electrical arcing for miniature X-ray tubes

    International Nuclear Information System (INIS)

    Ha, Jun Mok; Kim, Hyun Jin; Kim, Hyun Nam; Raza, Hamid Saeed; Cho, Sung Oh

    2015-01-01

    If CNT emitters are operated at a high voltage or at a high electric field, electrical arcing (or vacuum breakdown) can occur. Arcing can be initiated by the removed CNTs, impurities on the CNTs or substrates, protrusion of CNTs, low operating vacuum, and a very high electric field. Since arcing is accompanied with a very high current flow and it can produce plasma channel near the emitter, CNTs are seriously damaged or sometimes CNTs are almost completely removed from the substrate by the arcing events. Detachment of CNTs from a substrate is an irreversible catastrophic phenomenon for a device operation. In addition to the detachment of CNTs, arcing induces a sudden voltage drop and thus device operation is stopped. The metal mixture strongly attached CNTs to the tip substrate. Due to the strong adhesion, CNT emitters could be pre-treated with electrical conditioning process without seriously damaging the CNTs even though many intense arcing events were induced at the small and sharp geometry of the tip substrate. Impurities that were loosely bound to the substrates were almost removed and CNTs heights became uniform after the electrical conditioning process

  6. Signatures of Majorana bound states in one-dimensional topological superconductors

    International Nuclear Information System (INIS)

    Pientka, Falko

    2014-01-01

    experimental manifestation of Majoranas is a zero-bias peak in the differential conductance. Here we show that in multi-subband wires the Majorana conductance peak can be suppressed compared to a strictly one-dimensional system, thereby providing a plausible explanation for recent experimental results. Based on this analysis, we furthermore predict an enhancement of the signature by deliberately introducing disorder, which could establish strong evidence for a Majorana bound state. A very recent proposal to realize a topological superconductor is based on a chain of magnetic impurities on the surface of a conventional superconductor. Here we derive a microscopic model in terms of the Shiba states bound to the individual impurities in the superconductor. Under realistic experimental conditions, the model involves long-range couplings leading to a new kind of topological phase transition and remarkable localization properties of the Majoranas. Finally, we investigate the tunneling spectroscopy of subgap states in superconductors. We develop a theory to describe the differential tunneling conductance from a superconducting tip into a localized quasiparticle state including relaxation processes present at nonzero temperature. Our result are in good agreement with experimental data on Shiba states and give access to properties of the bound state such as the local density of states and the nature of the relevant relaxation processes.

  7. Circumvention of Parker's bound on galactic magnetic monopoles

    International Nuclear Information System (INIS)

    Dicus, D.A.; Teplitz, V.L.; Maryland Univ., College Park

    1983-01-01

    There is a possibility that a magnetic monopole has been observed. The monopole density implied by the observation appears to violate bounds on the density of such particles derived from the total mass density of the Universe and from the existence of galactic magnetic fields. It is shown that the observation is not inconsistent with these bounds if the monopoles and antimonopoles are bound into positronium like states with principal quantum n high enough so that the Earth's magnetic field will break them apart, but small enough so that the weaker galactic magnetic field will not. A range of values for n are determined and show that lifetimes for such bound states are longer than the current age of the Universe. (author)

  8. Moving discrete breathers in a Klein-Gordon chain with an impurity

    International Nuclear Information System (INIS)

    Cuevas, J; Palmero, F; Archilla, J F R; Romero, F R

    2002-01-01

    We analyse the influence of an impurity in the evolution of moving discrete breathers in a Klein-Gordon chain with non-weak nonlinearity. Three different types of behaviour can be observed when moving breathers interact with the impurity: they pass through the impurity continuing their direction of movement; they are reflected by the impurity; they are trapped by the impurity, giving rise to chaotic breathers, as their Fourier power spectra show. Resonance with a breather centred at the impurity site is conjectured to be a necessary condition for the appearance of the trapping phenomenon. This paper establishes a difference between the resonance condition of the non-weak nonlinearity approach and the resonance condition with the linear impurity mode in the case of weak nonlinearity

  9. Impurity transport studies by means of tracer-encapsulated solid pellet injection in neutral beam heated plasmas on LHD

    International Nuclear Information System (INIS)

    Tamura, N; Sudo, S; Khlopenkov, K V; Kato, S; Sergeev, V Yu; Muto, S; Sato, K; Funaba, H; Tanaka, K; Tokuzawa, T; Yamada, I; Narihara, K; Nakamura, Y; Kawahata, K; Ohyabu, N; Motojima, O

    2003-01-01

    The quantitative properties of impurity transport in large helical device (LHD) plasmas heated by neutral beam injection have been investigated by means of tracer-encapsulated solid pellet (TESPEL) injection. In the case of a titanium (Ti) tracer, the behaviour of the emission lines from the highly ionized Ti impurity, Ti Kα(E He-like ∼ 4.7 keV) and Ti XIX (λ = 16.959 nm), has been observed clearly by a soft x-ray pulse height analyzer and a vacuum ultraviolet spectrometer, respectively. A fairly longer decay time of the Ti Kα emission lines is obtained above the value of a line-averaged electron density, 3.0x10 19 m -3 . The dependence of the behaviour of the Ti tracer impurity on the line-averaged electron density below the value of that, 3.5x10 19 m -3 is in qualitative agreement with the characteristics obtained from the observation of the behaviour of an intrinsic metallic impurity in neutral beam heated plasmas on LHD. In order to estimate the properties of the Ti impurity transport quantitatively, the one-dimensional impurity transport code, MIST has been used. As a result of the transport analysis with the MIST code, even an small inward convection should be necessary to account for the experimental results with the value of the line-averaged electron density, 3.5x10 19 m -3 . In order to examine the experimentally obtained transport coefficients, neoclassical analysis with respect to the radial impurity flux has been performed. The inferred rise of the inward convection cannot be explained solely by neoclassical impurity transport. Therefore, in order to account for the inward convection, the effect of a radial electric field and/or some other effect must be taken into account additionally

  10. Defect-impurity interactions in ion-implanted metals

    International Nuclear Information System (INIS)

    Turos, A.

    1986-01-01

    An overview of defect-impurity interactions in metals is presented. When point defects become mobile they migrate towards the sinks and on the way can be captured by impurity atoms forming stable associations so-called complexes. In some metallic systems complexes can also be formed athermally during ion implantation by trapping point defects already in the collision cascade. An association of a point defect with an impurity atom leads to its displacement from the lattice site. The structure and stability of complexes are strongly temperature dependent. With increasing temperature they dissociate or grow by multiple defect trapping. The appearance of freely migrating point defects at elevated temperatures, due to ion bombardment or thermal annealing, causes via coupling with defect fluxes, important impurity redistribution. Because of the sensitivity of many metal-in-metal implanted systems to radiation damage the understanding of this processes is essential for a proper interpretation of the lattice occupancy measurements and the optimization of implantation conditions. (author)

  11. Glycolic acid physical properties and impurities assessment

    Energy Technology Data Exchange (ETDEWEB)

    Lambert, D. P. [Savannah River Site (SRS), Aiken, SC (United States). Savannah River National Lab. (SRNL); Pickenheim, B. R. [Savannah River Site (SRS), Aiken, SC (United States). Savannah River National Lab. (SRNL); Hay, M. S. [Savannah River Site (SRS), Aiken, SC (United States). Savannah River National Lab. (SRNL); BIBLER, N. E. [Savannah River Site (SRS), Aiken, SC (United States). Savannah River National Lab. (SRNL)

    2017-08-09

    This document has been revised to add analytical data for fresh, 1 year old, and 4 year old glycolic acid as recommended in Revision 2 of this document. This was needed to understand the concentration of formaldehyde and methoxyacetic acid, impurities present in the glycolic acid used in Savannah River National Laboratory (SRNL) experiments. Based on this information, the concentration of these impurities did not change during storage. These impurities were in the glycolic acid used in the testing included in this report and in subsequent testing using DuPont (now called Chemours) supplied Technical Grade 70 wt% glycolic acid. However, these impurities were not reported in the first two versions of this report. The Defense Waste Processing Facility (DWPF) is planning to implement a nitric-glycolic acid flowsheets to increase attainment to meet closure commitment dates during Sludge Batch 9. In fiscal year 2009, SRNL was requested to determine the physical properties of formic and glycolic acid blends.

  12. Impurity and particle control for INTOR

    International Nuclear Information System (INIS)

    Post, D.

    1985-02-01

    The INTOR impurity control system studies have been focused on the development of an impurity control system which would be able to provide the necessary heat removal and He pumping while satisfying the requirements for (1) minimum plasma contamination by impurities, (2) reasonable component lifetime (approx. 1 year), and (3) minimum size and cost. The major systems examined were poloidal divertors and pumped limiters. The poloidal divertor was chosen as the reference option since it offered the possibility of low sputtering rates due to the formation of a cool, dense plasma near the collector plates. Estimates of the sputtering rates associated with pumped limiters indicated that they would be too high for a reasonable system. Development of an engineering design concept was done for both the poloidal divertor and the pumped limiter

  13. Disentangling overlapping high-field EPR spectra of organic radicals: Identification of light-induced polarons in the record fullerene-free solar cell blend PBDB-T:ITIC.

    Science.gov (United States)

    Van Landeghem, Melissa; Maes, Wouter; Goovaerts, Etienne; Van Doorslaer, Sabine

    2018-03-01

    We present a combined high-field EPR and DFT study of light-induced radicals in the bulk heterojunction blend of PBDB-T:ITIC, currently one of the highest efficiency non-fullerene donor:acceptor combinations in organic photovoltaics. We demonstrate two different approaches for disentangling the strongly overlapping high-field EPR spectra of the positive and negative polarons after charge separation: (1) relaxation-filtered field-swept EPR based on the difference in T 1 spin-relaxation times and (2) field-swept EDNMR-induced EPR by exploiting the presence of 14 N hyperfine couplings in only one of the radical species, the small molecule acceptor radical. The approach is validated by light-induced EPR spectra on related blends and the spectral assignment is underpinned by DFT computations. The broader applicability of the spectral disentangling methods is discussed. Copyright © 2018 Elsevier Inc. All rights reserved.

  14. Scaling laws for trace impurity confinement: a variational approach

    International Nuclear Information System (INIS)

    Thyagaraja, A.; Haas, F.A.

    1990-01-01

    A variational approach is outlined for the deduction of impurity confinement scaling laws. Given the forms of the diffusive and convective components to the impurity particle flux, we present a variational principle for the impurity confinement time in terms of the diffusion time scale and the convection parameter, which is a non-dimensional measure of the size of the convective flux relative to the diffusive flux. These results are very general and apply irrespective of whether the transport fluxes are of theoretical or empirical origin. The impurity confinement time scales exponentially with the convection parameter in cases of practical interest. (orig.)

  15. Zirconium analysis. Impurities determination by spark mass specrometry

    International Nuclear Information System (INIS)

    Anon.

    Determination of impurities in zirconium, suitable for atomic content greater than 10 -8 but particularly adapted for low contents. The method is quantitative only if a reference sample is available (metallic impurities) [fr

  16. Isospin impurity and super-allowed β transitions

    International Nuclear Information System (INIS)

    Sagawa, H.; Van Giai Nguyen; Suzuki, T.

    1999-01-01

    We study the effect of isospin impurity on the super-allowed Fermi β decay using microscopic HF and RPA (or TDA) model taking into account CSB and CIB interactions. It is found that the isospin impurity of N = Z nuclei gives enhancement of the sum rule of Fermi transition probabilities. On the other hand, the super-allowed transitions between odd-odd J = 0 nuclei and even-even J = 0 nuclei are quenched because on the cancellation of the isospin impurity effects of mother and daughter nuclei. An implication of the calculated Fermi transition rate on the unitarity of Cabbibo-Kobayashi-Maskawa mixing matrix is also discussed. (authors)

  17. Large polaron tunneling, magnetic and impedance analysis of magnesium ferrite nanocrystallite

    Energy Technology Data Exchange (ETDEWEB)

    Mahato, Dev K., E-mail: drdevkumar@yahoo.com [Department of Physics, National Institute of Technology Patna, Patna 800 005 (India); Majumder, Sumit [Department of Physics, Jadavpur University, Kolkata 700032 (India); Surface Physics and Material Science Division, Saha Institute of Nuclear Physics, 1/AF Bidhannagar, Kolkata 700 064 (India); Banerjee, S. [Surface Physics and Material Science Division, Saha Institute of Nuclear Physics, 1/AF Bidhannagar, Kolkata 700 064 (India)

    2017-08-15

    Graphical abstract: The diffraction peaks corresponding to the planes (111), (220), (311), (222), (400), (422), (511), (440), (620), (533) and (444) provide a clear evidence for the formation of spinel structure of the ferrites. The lattice parameter ‘a’ determined as 8.392 Å matches well with JCPDS (73-2410) file for MgFe{sub 2}O{sub 4.} The volume of the unit cell is 591.012 Å{sup 3}. The crystallite size of the synthesized powder estimated from X-ray peak broadening of (311) highest intensity diffraction peak using Scherer formula was 56.4 nm. - Highlights: • Both the grain and grain boundaries contribution to conductivity of the Mg-ferrite has been observed. • Polydispersive nature of the material is checked using Cole – Cole relation. • The ac conductivity of magnesium ferrite followed σ{sub ac} ∝ ω{sup n} dependence. • The variation of the exponent ‘n’ with temperature suggests that overlapping large polaron tunnelling is the dominant conduction mechanism. • The superparamagnetic behavior of this Mg-ferrite has been observed for sample S1 annealed at 500 °C. - Abstract: Single phase MgFe{sub 2}O{sub 4} (MFO) ferrite was prepared through sol-gel auto-combustion route. The Rietveld analysis of X-ray patterns reveals that our samples are single phase. The increase in average particle size with annealing temperature and formation of nanoparticle agglomerates is observed in MgFe{sub 2}O{sub 4}. The structural morphology of the nanoparticles is studied using Scanning Electron Microscopy (SEM). Formation of spinel structure is confirmed using Fourier transform infrared spectroscopy (FTIR). The Zero-Field-Cooled (ZFC) and Field-Cooled (FC) magnetization measurements show the maximum irreversibility at 700 °C annealing temperature. The formation of a maximum at blocking temperature, T{sub B}∼ 180 K for sample annealed at 500 °C in the ZFC curve shows the superparamagnetic behavior of the sample. The increase of saturation magnetism (M

  18. Dynamics of impurities in the scrape-off layer

    International Nuclear Information System (INIS)

    Stangeby, P.C.; Commission of the European Communities, Abingdon

    1988-01-01

    Impurity modelling of the Scrape-Off Layer, SOL, is reviewed. Simple analytic models are sometimes adequate for relating central impurity levels to edge plasma conditions and for explaining the patterns of net erosion/deposition found on limiters. More sophisticated approaches, which are also necessary, are categorized and reviewed. A plea is made for the acquisition of a more comprehensive data base of edge plasma properties since reliable impurity modelling appears to be dependent on more extensive use of experimental input. (author)

  19. The optimisation of limiter geometry to reduce impurity influx in tokamaks

    International Nuclear Information System (INIS)

    Matthews, G.F.; McCracken, G.M.; Sewell, P.; Goodall, D.H.J.; Stangeby, P.C.; Pitcher, C.S.

    1987-01-01

    Conventional limiters are designed to withstand large power loadings and hence are constructed with surfaces at grazing angles to the toroidal magnetic field. As a result any impurities released from the limiter surface are projected towards the centre of the plasma and are poorly screened from it. The impurity control limiter (ICL), an alternative concept which has an inverted geometry is discussed. The ICL shape is designed to direct the impurities towards the wall. Results are presented from a two-dimensional neutral particle code which maps the ionisation of carbon physically sputtered by deuterons from a carbon limiter. This ionisation source is coupled to a one-dimensional impurity transport code which calculates the implied central impurity density. The results demonstrate that the ICL achieves impurity control in two ways. Firstly, many of the sputtered impurities directed towards the wall are not ionised and return to the wall as neutrals. Secondly, much of the ionisation which does occur is located in the scrape-off layer. Here there is a strong ion sink which may also be enhanced by the flow of hydrogenic ions entraining impurity ions created close to the limiter surface. We conclude that a reduction in central impurity density of a factor of 10 is possible in a Tokamak such as DITE provided that the limiter is the main source of impurities. (author)

  20. Effect of different conductivity between the spin polarons on spin injection in a ferromagnet/organic semiconductor system

    International Nuclear Information System (INIS)

    Mi Yilin; Zhang Ming; Yan Hui

    2008-01-01

    Spin injection across ferromagnet/organic semiconductor system with finite width of the layers was studied theoretically considering spin-dependent conductivity in the organic-semiconductor. It was found that the spin injection efficiency is directly dependent on the difference between the conductivity of the up-spin and down-spin polarons in the spin-injected organic system. Furthermore, the finite width of the structure, interfacial electrochemical-potential and conductivity mismatch have great influence on the spin injection process across ferromagnet/organic semiconductor interface

  1. The analysis of radiolysis impurities in 18F-FDG and methods of repurification

    International Nuclear Information System (INIS)

    Jinming Zhang; Yungang Li; Jian Liu; Xiaojun Zhang; Jiahe Tian

    2010-01-01

    To investigate the radio impurity in the radiolysis of 18 F-FDG at high radiodose and radioconcentrated solutions and develop methods of repurification. The radiolysis of 18 F-FDG was analyzed by TLC. The radio-impurity was confirmed by biodistribution and small animal PET/CT studies. 18 F-FDG was unstable at high radioconcentration over 37 GBq/mL or under basic condition. TLC, biodistribution and PET/CT all indicated that the main autoradiolysis byproduct was free fluoride ion. The radiolyzed 18 F-FDG was repurified by solid-phase extraction (SPE) column. The repurified 18 F-FDG had a radiochemical purity (RCP) of over 99% and significantly lower bone uptake than that was before repurification (P = 0.0003). There was a positive correlation between the recovery yield and the purity of 18 F-FDG (R 2 = 0.66). (author)

  2. Measurements of impurity migration in graphite at high temperatures using a proton microprobe

    International Nuclear Information System (INIS)

    Shroy, R.E.; Soo, P.; Sastre, C.A.; Schweiter, D.G.; Kraner, H.W.; Jones, K.W.

    1978-01-01

    The migration of fission products and other impurities through the graphite core of a High Temperature Gas Cooled Reactor is of prime importance in studies of reactor safety. Work in this area is being carried out in which graphite specimens are heated to temperatures up to 3800 0 C to induce migration of trace elements whose local concentrations are then measured with a proton microprobe. This instrument is a powerful device for such work because of its ability to determine concentrations at a part per million (ppm) level in a circular area as small as 10 μm while operating in an air environment. Studies show that Si, Ca, Cl, and Fe impurities in graphite migrate from hotter to cooler regions. Also Si, S, Cl, Ca, Fe, Mn, and Cr are observed to escape from the graphite and be deposited on cooler surfaces

  3. Mechanisms of charge-state determination in hydrogen-based impurity complexes in crystalline germanium

    International Nuclear Information System (INIS)

    Oliva, J.

    1984-01-01

    Recent experiments suggest that hydrogen may become bound to, and then tunnel around, substitutional carbon, silicon, or oxygen impurities in crystalline germanium. All these complexes are electrically active; [H,C] and [H,Si] are shallow acceptors, while [H,O] is a shallow donor. This paper attempts to elucidate the basic physical mechanisms controlling the charge state of such complexes as a function of the choice of the substitutional atom. A minimal-basis Bethe-cluster approach is used with the cluster comprising the ten-atom tetrahedral cage (including the substitutional atom) and enclosed H site, the latter coupled to all ten atoms of the cage. The important local correlation effect which tends to favor single occupation of the H site is modeled with a Hubbard-type term at that site. The charge state of the [H,C], [H,Si], and [H,O] complexes is associated with double occupation of the H site. Four aspects of the model are involved in favoring double occupation: (1) a low value of the H-site energy, (2) a reduced local correlation effect at the H site, (3) small hybridization between the H site and cage, and (4) a low value of the substitutional-site energy relative to that of the host. Results for the charge state for H at the cage center and for H near the substitutional atom are discussed in detail. Several useful formal results for local self-energies and local Green's functions are presented

  4. Anomalous temperature behavior of Sn impurities

    International Nuclear Information System (INIS)

    Haskel, D.; Shechter, H.; Stern, E.A.; Newville, M.; Yacoby, Y.

    1993-01-01

    Sn impurities in Pb and Ag hosts have been investigated by Moessbauer effect and in Pb by x-ray-absorption fine-structure (XAFS) studies. The Sn atoms are dissolved up to at least 2 at. % in Pb and up to at least 8 at. % in Ag for the temperature ranges investigated. The concentration limit for Sn-Sn interactions is 1 at. % for Pb and 2 at. % for Ag as determined experimentally by lowering the Sn concentration until no appreciable change occurs in the Moessbauer effect. XAFS measurements verify that the Sn impurities in Pb are dissolved and predominantly at substitutional sites. For both hosts the temperature dependence of the spectral intensities of isolated Sn impurities below a temperature T 0 is as expected for vibrating about a lattice site. Above T 0 the Moessbauer spectral intensity exhibits a greatly increased rate of drop-off with temperature without appreciable broadening. This drop-off is too steep to be explained by ordinary anharmonic effects and can be explained by a liquidlike rapid hopping of the Sn, localized about a lattice site. Higher-entropy-density regions of radii somewhat more than an atomic spacing surround such impurities, and can act as nucleation sites for three-dimensional melting

  5. Interaction of ring dark solitons with ring impurities in Bose-Einstein condensates

    International Nuclear Information System (INIS)

    Xue Jukui

    2005-01-01

    The interaction of ring dark solitons/vortexes with the ring-shaped repulsive and attractive impurities in two-dimensional Bose-Einstein condensates is investigated numerically. Very rich interaction phenomena are obtained, i.e., not only the interaction between the ring soliton and the impurity, but also the interaction between vortexes and the impurity. The interaction characters, i.e., snaking of ring soliton, quasitrapping or reflection of ring soliton and vortexes by the impurity, strongly depend on initial ring soliton velocity, impurity strength, initial position of ring soliton and impurity. The numerical results also reveal that ring dark solitons/vortexes can be trapped and dragged by an adiabatically moving attractive ring impurity

  6. Strong quantum scarring by local impurities

    Science.gov (United States)

    Luukko, Perttu J. J.; Drury, Byron; Klales, Anna; Kaplan, Lev; Heller, Eric J.; Räsänen, Esa

    2016-11-01

    We discover and characterise strong quantum scars, or quantum eigenstates resembling classical periodic orbits, in two-dimensional quantum wells perturbed by local impurities. These scars are not explained by ordinary scar theory, which would require the existence of short, moderately unstable periodic orbits in the perturbed system. Instead, they are supported by classical resonances in the unperturbed system and the resulting quantum near-degeneracy. Even in the case of a large number of randomly scattered impurities, the scars prefer distinct orientations that extremise the overlap with the impurities. We demonstrate that these preferred orientations can be used for highly efficient transport of quantum wave packets across the perturbed potential landscape. Assisted by the scars, wave-packet recurrences are significantly stronger than in the unperturbed system. Together with the controllability of the preferred orientations, this property may be very useful for quantum transport applications.

  7. Possible circumvention of Parker's bound on galactic magnetic monopoles

    International Nuclear Information System (INIS)

    Dicus, D.A.; Teplitz, V.L.

    1983-04-01

    There is a possibility that a magnetic monople has observed. The monopole density implied by the observation appears to violate bounds on the density of such particles derived from the total mass density of the universe and from the existence of galactic magnetic fields. We show that the observation is not inconsistent with these bounds if the monopoles and antimonopoles are bound into positronium - like states with principal quantum n high enough so that the earth's magnetic field will break them apart, but small enough so that the weaker galactic mangetic field will not. We determine a range of values for n and show that lifetimes for such bound states are longer than the current age of the universe

  8. Impurities that cause difficulty in stripping actinides from commercial tetraalkylcarbamoylmethylphosphonates

    International Nuclear Information System (INIS)

    Bahner, C.T.; Shoun, R.R.; McDowell, W.J.

    1977-09-01

    Dihexyl[(diethylcarbamoyl)methyl]phosphonate (DHDECMP) in diethylbenzene extracts actinides well from 6 M nitric acid solution, but commercially available DHDECMP contains impurities which interfere with stripping the actinides from the organic extract. DHDECMP purified by molecular distillation does not contain these impurities, but the pot residue contains increased concentrations of them. Heating the purified DHDECMP causes the formation of products which interfere with stripping in the same way, suggesting that high temperatures employed in the manufacture of DHDECMP may produce the offending impurities. These impurities can be separated from the heat-decomposed material or the pot residues by dilution with a large volume of hexanes (causing part of the impurities to separate as a second liquid phase) followed by equilibration of the hexane solution with dilute alkali. After the treatment with hexane and dilute alkali, the DHDECMP is readily recovered and functions well in the actinide extraction process. Dibutyl[(dibutylcarbamoyl)methyl]-phosphonate (DBDBCMP) and di(2-ethylhexyl)[(diethylcarbamoyl)-methyl]phosphonate (DEHDECMP) are purified less effectively by these methods. Similar separation methods using diethylbenzene or CCl 4 as solvent do not remove impurities as completely as the hexane process. Impurities can also be removed from a benzene solution of the DHDECMP pot residue by passing it through a column packed with silica gel or diethylaminoethyl cellulose. These impurities have been separated into fractions for analytical examination by use of various solvents and by column chromatography. Hexyl hydrogen [(diethylcarbamoyl)methyl]-phosphonate has been identified tentatively as a principal objectionable impurity. Dihexyl phosphoric acid and possibly dihexylphosphonate have been identified in other fractions

  9. Effects of impurities on radiation damage in InP

    International Nuclear Information System (INIS)

    Yamaguchi, M.; Ando, K.

    1986-01-01

    Strong impurity effects upon introduction and annealing behavior of radiation-induced defects in InP irradiated with 1-MeV electrons have been found. The main defect center of 0.37-eV hole trap H4 in p-InP, which must be due to a point defect, is annealed even at room temperature. Its annealing rate is found to be proportional to the 2/3 power of the preirradiation carrier concentration in InP. Moreover, the density of the hole trap H5 (E/sub v/+0.52 eV) in p-InP, which must be due to a point defect--impurity complex, increases with increase in the InP carrier concentration. These results suggest that the radiation-induced defects in InP must recover through long-range diffusion mediated by impurity atoms. A model is proposed in which point defects diffuse to sinks through impurities so as to disappear or bind impurities so as to form point defect--impurity complexes. In addition to the long-range diffusion mechanism, the possibility of charge-state effects responsible for the thermal annealing of radiation-induced defects in InP is also discussed

  10. Synthesis, Isolation and Characterization of Process-Related Impurities in Oseltamivir Phosphate

    Directory of Open Access Journals (Sweden)

    Yogesh Kumar Sharma

    2012-01-01

    Full Text Available Three known impurities in oseltamivir phosphate bulk drug at level 0.1% (ranging from 0.05-0.1% were detected by gradient reverse phase high performance liquid chromatography. These impurities were preliminarily identified by the mass number of the impurities. Different experiments were conducted and finally the known impurities were synthesized and characterized.

  11. Improved rigorous upper bounds for transport due to passive advection described by simple models of bounded systems

    International Nuclear Information System (INIS)

    Kim, Chang-Bae; Krommes, J.A.

    1988-08-01

    The work of Krommes and Smith on rigorous upper bounds for the turbulent transport of a passively advected scalar [/ital Ann. Phys./ 177:246 (1987)] is extended in two directions: (1) For their ''reference model,'' improved upper bounds are obtained by utilizing more sophisticated two-time constraints which include the effects of cross-correlations up to fourth order. Numerical solutions of the model stochastic differential equation are also obtained; they show that the new bounds compare quite favorably with the exact results, even at large Reynolds and Kubo numbers. (2) The theory is extended to take account of a finite spatial autocorrelation length L/sub c/. As a reasonably generic example, the problem of particle transport due to statistically specified stochastic magnetic fields in a collisionless turbulent plasma is revisited. A bound is obtained which reduces for small L/sub c/ to the quasilinear limit and for large L/sub c/ to the strong turbulence limit, and which provides a reasonable and rigorous interpolation for intermediate values of L/sub c/. 18 refs., 6 figs

  12. Investigation on structural, magneto-transport, magnetic and thermal properties of La{sub 0.8}Ca{sub 0.2−x}Ba{sub x}MnO{sub 3} (0 ⩽ x ⩽ 0.2) manganites

    Energy Technology Data Exchange (ETDEWEB)

    Manjunatha, S.O. [Department of Physics, Manipal Institute of Technology, Manipal University, Manipal 576104 (India); Rao, Ashok, E-mail: ashokanu_rao@rediffmail.com [Department of Physics, Manipal Institute of Technology, Manipal University, Manipal 576104 (India); Subhashini [Material Processing Laboratory, Department of Physics, National Institute of Technology Karnataka, Surathkal 575025 (India); Okram, G.S. [UGC-DAE Consortium for Scientific Research, Khandwa Road, Indore 452 001, MP (India)

    2015-08-15

    Highlights: • Ba-doped compounds follow small polaron hopping model in high temperature range. • Ba-doping introduces structural phase transformation. • MR (%) decreases with Ba-doping, however T{sub MI} and T{sub C} increase with doping. • High temperature TEP data follows SPH model. • At low temperatures, electron–magnon scattering play role in thermal transport. - Abstract: A systematic study on the structural, electrical, magnetic and thermo-electric properties of La{sub 0.8}Ba{sub x}Ca{sub 0.2−x}MnO{sub 3} (0 ⩽ x ⩽ 0.2) manganites is carried out in the present work. The samples have been prepared using solid state reaction technique. All the samples are single phased. It is seen that Ba-doping introduces a structural phase transformation viz. from rhombohedral to cubic system. Electric and magnetic studies respectively show that the metal–insulator transition temperature, T{sub MI} and Curie temperature, T{sub C} increase with Ba-content. Magneto-resistance (MR) data shows that it decreases with Ba-doping. Analyses of the electrical transport data in metallic region i.e. T < T{sub MI} shows that the electrical transport is governed predominantly by electron–electron scattering process. On the other hand, the adiabatic small polaron hopping (ASPH) model is appropriate in the high-temperature insulating range viz. T > T{sub MI}. We have used the electrical resistivity data in the entire temperature range (50–300 K) and analyzed using the phenomenological percolation model which is based on the phase segregation mechanism. We have analyzed the Seebeck coefficient data which reveals that the small polaron hopping mechanism is operative in high temperature regime and the low temperature region is examined by taking into account the impurity, electron–magnon scattering, and spin wave fluctuation terms. It is established that the electron–magnon scattering is dominating for the thermoelectric transport below T{sub MI}.

  13. Spectroscopic studies of carbon impurities in PISCES-A

    International Nuclear Information System (INIS)

    Ra, Y.; Hirooka, Y.; Leung, W.K.; Conn, R.W.; Pospieszczyk, A.

    1989-08-01

    The graphite used for the limiter of the tokamak reactor produces carbon-containing molecular impurities as a result of the interactions with the edge plasma. The behavior of these molecular impurities has been studied using emission spectroscopy. The present study includes: finding molecular bands and atomic lines in the visible spectral range which can be used for the study of the molecular impurities, studying the breakup processes of the molecular impurities on their way from the source into the plasma, developing a spectroscopic diagnostic method for the absolute measurement of the molecular impurity flux resulting from graphite erosion. For these studies, carbon-containing molecules such as CH 4 , C 2 H 2 , C 2 H 4 , and CO 2 were injected into the tokamak-boundary,like plasma generated by PISCES-A. The spectrograms of these gases were taken. Many useful bands and lines were determined from the spectrograms. The breakup processes of these gases were studied by observing the spatial profiles of the emission of the molecules and their radicals for different plasma conditions. For the absolute measurement of the eroded molecular impurity flux, the photon efficiency of the lines and bands were found by measuring the absolute number of the emitted photons and injected gas molecules. The chemical sputtering yield of graphite by hydrogen plasma was spectroscopically measured using the previously obtained photon efficiencies. It showed good agreement with results obtained by weight loss measurements. 16 refs., 7 figs., 1 tab

  14. Oscillations of quantum transport through double-AB rings with magnetic impurity

    International Nuclear Information System (INIS)

    Gao Yingfang; Liang, J-Q

    2006-01-01

    We have studied the effect of impurity scattering on the quantum transport through double AB rings in the presence of spin-flipper in the middle lead in terms of one-dimensional quantum waveguide theory. The electron interacts with the impurity through the exchange interaction leading to spin-flip scattering. Transmissions in the spin-flipped and non-spin-flipped channels are calculated explicitly. It is found that the overall transmission and the conductance are distorted due to the impurity scattering. The extent of distortion not only depends on the strength of the impurity potential but also on the impurity position. Moreover, the transmission probability and the conductance are modulated by the magnetic flux, the size of the ring and the impurity potential strength as well

  15. Anomalous diffusion, clustering, and pinch of impurities in plasma edge turbulence

    DEFF Research Database (Denmark)

    Priego, M.; Garcia, O.E.; Naulin, V.

    2005-01-01

    The turbulent transport of impurity particles in plasma edge turbulence is investigated. The impurities are modeled as a passive fluid advected by the electric and polarization drifts, while the ambient plasma turbulence is modeled using the two-dimensional Hasegawa-Wakatani paradigm for resistive...... drift-wave turbulence. The features of the turbulent transport of impurities are investigated by numerical simulations using a novel code that applies semi-Lagrangian pseudospectral schemes. The diffusive character of the turbulent transport of ideal impurities is demonstrated by relative...... orientation determined by the charge of the impurity particles. Second, a radial pinch scaling linearly with the mass-charge ratio of the impurities is discovered. Theoretical explanation for these observations is obtained by analysis of the model equations. (C) 2005 American Institute of Physics....

  16. Depolarization of diffusing spins by paramagnetic impurities

    International Nuclear Information System (INIS)

    Schillaci, M.E.; Hutson, R.L.; Heffner, R.H.; Leon, M.; Dodds, S.A.; Estle, T.L.

    1981-01-01

    We study the depolarization of diffusing spins (muons) interacting with dilute paramagnetic impurities in a solid using a simple computational model which properly treats the muon motion and preserves correct muon-impurity distances. Long-range (dipolar) and nearest-neighbor (contact) interactions are treated together. Diffusion parameters are deduced and model comparisons made for AuGd (300 ppm). (orig.)

  17. Innovative sludge pretreatment technology for impurity separation using micromesh.

    Science.gov (United States)

    Mei, Xiaojie; Han, Xiaomeng; Zang, Lili; Wu, Zhichao

    2018-05-23

    In order to reduce the impacts on sludge treatment facilities caused by impurities such as fibers, hairs, plastic debris, and coarse sand, an innovative primary sludge pretreatment technology, sludge impurity separator (SIS), was proposed in this study. Non-woven micromesh with pore size of 0.40 mm was used to remove the impurities from primary sludge. Results of lab-scale tests showed that impurity concentration, aeration intensity, and channel gap were the key operation parameters, of which the optimized values were below 25 g/L, 0.8 m 3 /(m 2  min), and 2.5 cm, respectively. In the full-scale SIS with treatment capacity of 300 m 3 /day, over 88% of impurities could be removed from influent and the cleaning cycle of micromesh was more than 16 days. Economic analysis revealed that the average energy consumption was 1.06 kWh/m 3 treated sludge and operation cost was 0.6 yuan/m 3 treated sludge.

  18. Carbon impurity transport around limiters in the DITE tokamak

    International Nuclear Information System (INIS)

    Pitcher, C.S.; Stangeby, P.C.; Goodall, D.H.J.; Matthews, G.F.; McCracken, G.M.

    1989-01-01

    The transport of impurity ions originating at the limiter in a tokamak is critically dependent on the location of the ion in the boundary plasma. In the confined plasma, just inboard of the limiter, impurity ions will disperse freely into the discharge whilst in the scrape-off layer the pre-sheath plasma flow and the associated ambipolar electric field may tend to sweep impurities back to the limiter surface. In this paper we have studied, both by experiment and by theory, the transport of carbon impurity ions in the vicinity of the limiter. By comparing experimental measurements of the spatial distributions of impurities around the limiter with that predicted from a Monte Carlo computer code it appears that the parallel dispersal on closed field lines in the confined plasma is consistent with classical transport processes and that in the scrape-off layer the dispersal is indeed impeded by the pre-sheath plasma flow. (orig.)

  19. Interactions of Ultracold Impurity Particles with Bose-Einstein Condensates

    Science.gov (United States)

    2015-06-23

    AFRL-OSR-VA-TR-2015-0141 INTERACTIONS OF ULTRACOLD IMPURITY PARTICLES WITH BOSE- EINSTEIN CONDENSATES Georg Raithel UNIVERSITY OF MICHIGAN Final...SUBTITLE Interactions of ultracold impurity particles with Bose- Einstein Condensates 5a. CONTRACT NUMBER FA9550-10-1-0453 5b. GRANT NUMBER 5c...Interactions of ultracold impurity particles with Bose- Einstein Condensates Contract/Grant #: FA9550-10-1-0453 Reporting Period: 8/15/2010 to 2/14

  20. Impurity production and acceleration in CTIX

    Energy Technology Data Exchange (ETDEWEB)

    Buchenauer, D. [Sandia National Laboratories, MS-9161, P.O. Box 969, Livermore, CA 94550 (United States)], E-mail: dabuche@sandia.gov; Clift, W.M. [Sandia National Laboratories, MS-9161, P.O. Box 969, Livermore, CA 94550 (United States); Klauser, R.; Horton, R.D. [CTIX Group, University of California at Davis, Davis, CA 95616 (United States); Howard, S.J. [General Fusion Inc., Burnaby, BC V5A 3H4 (Canada); Brockington, S.J. [HyperV Technologies Corp., Chantilly, VA 20151 (United States); Evans, R.W.; Hwang, D.Q. [CTIX Group, University of California at Davis, Davis, CA 95616 (United States)

    2009-06-15

    The Compact Toroid Injection Experiment (CTIX) produces a high density, high velocity hydrogen plasma that maintains its configuration in free space on a MHD resistive time scale. In order to study the production and acceleration of impurities in the injector, several sets of silicon collector probes were exposed to spheromak-like CT's exiting the accelerator. Elemental analysis by Auger Electron Spectroscopy indicated the presence of O, Al, Fe, and Cu in films up to 200 A thickness (1000 CT interactions). Using a smaller number of CT interactions (10-20), implantation of Fe and Cu was measured by Auger depth profiling. The amount of impurities was found to increase with accelerating voltage and number of CT interactions while use of a solenoidal field reduced the amount. Comparison of the implanted Fe and Cu with TRIM simulations indicated that the impurities were traveling more slowly than the hydrogen CT.

  1. Impurity-induced tuning of quantum-well States in spin-dependent resonant tunneling.

    Science.gov (United States)

    Kalitsov, Alan; Coho, A; Kioussis, Nicholas; Vedyayev, Anatoly; Chshiev, M; Granovsky, A

    2004-07-23

    We report exact model calculations of the spin-dependent tunneling in double magnetic tunnel junctions in the presence of impurities in the well. We show that the impurity can tune selectively the spin channels giving rise to a wide variety of interesting and novel transport phenomena. The tunneling magnetoresistance, the spin polarization, and the local current can be dramatically enhanced or suppressed by impurities. The underlying mechanism is the impurity-induced shift of the quantum well states (QWSs), which depends on the impurity potential, impurity position, and the symmetry of the QWS. Copyright 2004 The American Physical Society

  2. Continuous-time quantum Monte Carlo impurity solvers

    Science.gov (United States)

    Gull, Emanuel; Werner, Philipp; Fuchs, Sebastian; Surer, Brigitte; Pruschke, Thomas; Troyer, Matthias

    2011-04-01

    Continuous-time quantum Monte Carlo impurity solvers are algorithms that sample the partition function of an impurity model using diagrammatic Monte Carlo techniques. The present paper describes codes that implement the interaction expansion algorithm originally developed by Rubtsov, Savkin, and Lichtenstein, as well as the hybridization expansion method developed by Werner, Millis, Troyer, et al. These impurity solvers are part of the ALPS-DMFT application package and are accompanied by an implementation of dynamical mean-field self-consistency equations for (single orbital single site) dynamical mean-field problems with arbitrary densities of states. Program summaryProgram title: dmft Catalogue identifier: AEIL_v1_0 Program summary URL:http://cpc.cs.qub.ac.uk/summaries/AEIL_v1_0.html Program obtainable from: CPC Program Library, Queen's University, Belfast, N. Ireland Licensing provisions: ALPS LIBRARY LICENSE version 1.1 No. of lines in distributed program, including test data, etc.: 899 806 No. of bytes in distributed program, including test data, etc.: 32 153 916 Distribution format: tar.gz Programming language: C++ Operating system: The ALPS libraries have been tested on the following platforms and compilers: Linux with GNU Compiler Collection (g++ version 3.1 and higher), and Intel C++ Compiler (icc version 7.0 and higher) MacOS X with GNU Compiler (g++ Apple-version 3.1, 3.3 and 4.0) IBM AIX with Visual Age C++ (xlC version 6.0) and GNU (g++ version 3.1 and higher) compilers Compaq Tru64 UNIX with Compq C++ Compiler (cxx) SGI IRIX with MIPSpro C++ Compiler (CC) HP-UX with HP C++ Compiler (aCC) Windows with Cygwin or coLinux platforms and GNU Compiler Collection (g++ version 3.1 and higher) RAM: 10 MB-1 GB Classification: 7.3 External routines: ALPS [1], BLAS/LAPACK, HDF5 Nature of problem: (See [2].) Quantum impurity models describe an atom or molecule embedded in a host material with which it can exchange electrons. They are basic to nanoscience as

  3. Theoretical Study of Radiation from a Broad Range of Impurity Ions for Magnetic Fusion Diagnostics

    Energy Technology Data Exchange (ETDEWEB)

    Safronova, Alla [Univ. of Nevada, Reno, NV (United States)

    2014-03-14

    Spectroscopy of radiation emitted by impurities plays an important role in the study of magnetically confined fusion plasmas. The measurements of these impurities are crucial for the control of the general machine conditions, for the monitoring of the impurity levels, and for the detection of various possible fault conditions. Low-Z impurities, typically present in concentrations of 1%, are lithium, beryllium, boron, carbon, and oxygen. Some of the common medium-Z impurities are metals such as iron, nickel, and copper, and high-Z impurities, such as tungsten, are present in smaller concentrations of 0.1% or less. Despite the relatively small concentration numbers, the aforementioned impurities might make a substantial contribution to radiated power, and also influence both plasma conditions and instruments. A detailed theoretical study of line radiation from impurities that covers a very broad spectral range from less than 1 Å to more than 1000 Å has been accomplished and the results were applied to the LLNL Electron Beam Ion Trap (EBIT) and the Sustained Spheromak Physics Experiment (SSPX) and to the National Spherical Torus Experiment (NSTX) at Princeton. Though low- and medium-Z impurities were also studied, the main emphasis was made on the comprehensive theoretical study of radiation from tungsten using different state-of-the-art atomic structure codes such as Relativistic Many-Body Perturbation Theory (RMBPT). The important component of this research was a comparison of the results from the RMBPT code with other codes such as the Multiconfigurational Hartree–Fock developed by Cowan (COWAN code) and the Multiconfiguration Relativistic Hebrew University Lawrence Atomic Code (HULLAC code), and estimation of accuracy of calculations. We also have studied dielectronic recombination, an important recombination process for fusion plasma, for variety of highly and low charged tungsten ions using COWAN and HULLAC codes. Accurate DR rate coefficients are needed for

  4. Impurity transport calculations for the limiter shadow region of a tokamak

    International Nuclear Information System (INIS)

    Claassen, H.A.; Repp, H.

    1981-01-01

    Impurity transport calculations are presented for the scrape-off layer of a tokamak with a poloidal ring limiter. The theory is based on the drift-kinetic equations for the impurity ions in their different ionization states. It is developed in the limit of low impurity concentrations under due consideration of electron impact ionization, Coulomb collisions with hydrogen ions streaming onto a neutralizing surface, a convection along the magnetic field, and a radial drift. The background plasma and the impurity sources at the walls enter the theory as input parameters. Numerical results are given for the radial profiles of density, temperature, particle flux, and energy flux of wall-released impurity ions as well as for the screening efficiency of the scrape-off layer neglecting impurity re-emission from the limiter. (author)

  5. Radiation-chemical disinfection of dissolved impurities and environmental protection

    International Nuclear Information System (INIS)

    Petrukhin, N.V.; Putilov, A.V.

    1986-01-01

    Radiation-chemical neutralization of dissolved toxic impurities formed in the production processes of different materials, while modern plants being in use, is considered. For the first time the processes of deep industrial waste detoxication and due to this peculiarities of practically thorough neutralization of dissolved toxic impurities are considered. Attention is paid to devices and economic factors of neutralization of dissolved toxic impurities. The role of radiation-chemical detoxication for environment protection is considered

  6. Effect of impurity radiation on tokamak equilibrium

    International Nuclear Information System (INIS)

    Rebut, P.H.; Green, B.J.

    1977-01-01

    The energy loss from a tokamak plasma due to the radiation from impurities is of great importance in the overall energy balance. Taking the temperature dependence of this loss for two impurities characteristic of those present in existing tokamak plasmas, the condition for radial power balance is derived. For the impurities considered (oxygen and iron) it is found that the radiation losses are concentrated in a thin outer layer of the plasma and the equilibrium condition places an upper limit on the plasma paraticle number density in this region. This limiting density scales with mean current density in the same manner as is experimentally observed for the peak number density of tokamak plasmas. The stability of such equilibria is also discussed. (author)

  7. [Impurity removal technology of Tongan injection in liquid preparation process].

    Science.gov (United States)

    Yang, Xu-fang; Wang, Xiu-hai; Bai, Wei-rong; Kang, Xiao-dong; Liu, Jun-chao; Wu, Yun; Xiao, Wei

    2015-08-01

    In order to effectively remove the invalid impurities in Tongan injection, optimize the optimal parameters of the impurity removal technology of liquid mixing process, in this paper, taking Tongan injection as the research object, with the contents of celandine alkali, and sinomenine, solids reduction efficiency, and related substances inspection as the evaluation indexes, the removal of impurities and related substances by the combined process of refrigeration, coction and activated carbon adsorption were investigated, the feasibility of the impurity removal method was definited and the process parameters were optimized. The optimized process parameters were as follows: refrigerated for 36 h, boiled for 15 min, activated carbon dosage of 0.3%, temperature 100 degrees C, adsorption time 10 min. It can effectively remove the tannin, and other impurities, thus ensure the quality and safety of products.

  8. Effects of helium impurities on superalloys

    International Nuclear Information System (INIS)

    Selle, J.E.

    1977-07-01

    A review of the literature on the effects of helium impurities on superalloys at elevated temperatures was undertaken. The actual effects of these impurities vary depending on the alloy, composition of the gas atmosphere, and temperature. In general, exposure in helium produces significant but not catastrophic changes in the structure and properties of the alloys. The effects of these treatments on the structure, creep, fatigue, and mechanical properties of the various alloys are reviewed and discussed. Suggestions for future work are presented

  9. Exchange rate and price dynamics in a small open economy - the role of the zero lower bound and monetary policy regimes

    OpenAIRE

    Gregor Bäurle; Daniel Kaufmann

    2014-01-01

    We analyse nominal exchange rate and price dynamics after risk premium shocks with short-term interest rates constrained by the zero lower bound (ZLB). In a small-open-economy DSGE model, temporary risk premium shocks lead to shifts of the exchange rate and the price level if a central bank implements an inflation target by means of a traditional Taylor rule. These shifts are strongly amplified and become more persistent once the ZLB is included in the model. We also provide empirical support...

  10. Standard Deviation for Small Samples

    Science.gov (United States)

    Joarder, Anwar H.; Latif, Raja M.

    2006-01-01

    Neater representations for variance are given for small sample sizes, especially for 3 and 4. With these representations, variance can be calculated without a calculator if sample sizes are small and observations are integers, and an upper bound for the standard deviation is immediate. Accessible proofs of lower and upper bounds are presented for…

  11. Identification and control of unspecified impurity in trimetazidine dihydrochloride tablet formulation

    Science.gov (United States)

    Jefri; Puspitasari, A. D.; Talpaneni, J. S. R.; Tjandrawinata, R. R.

    2018-04-01

    Trimetazidine dihydrochloride is an anti-ischemic metabolic agent which is used as drug for angina pectoris treatment. The drug substance monograph is available in European Pharmacopoeia and British Pharmacopoeia, while the drug product monograph is not available in any of the pharmacopoeias. During development of trimetazidine dihydrochloride tablet formulation, we found increase of an unspecified impurity during preliminary stability study. The unspecified impurity was identified by high performance liquid chromatography coupled with mass spectrometry (LC-MS) and the molecular weight obtained was matching with the molecular weight of N-formyl trimetazidine (m/z 295). Further experiments were performed to confirm the suspected result by injecting the impurity standard and spiking formic acid into the drug substance. The retention time of N-formyl trimetazidine was similar to the unspecified impurity in drug product. Even spiking of formic acid into drug substance showed that the suspected impurity increased with increasing concentration of formic acid. The proposed mechanism of impurity formation is via amidation of piperazine moiety of trimetazidine by formic acid which present as residual solvent in tablet binder used in the formulation. Subsequently, the impurity in our product was controlled by choosing the primary packaging which could minimize the formation of impurity.

  12. Investigation of the impurity transport in the ASDEX tokamak by spectroscopical methods

    International Nuclear Information System (INIS)

    Krieger, K.W.

    1990-12-01

    Plasma impurities: a central problem of controlled thermonuclear fusion; magnetic plasma confinement in a Tokamak; methods to the determination of plasma impurity transport coefficients - by temporally modulated gas admission; the transport equation for impurities; neoclassical and anomalous transport; harmonic analysis of time-dependent signals; solutions of the transport equation; experimental equipment and measurements; measuring results - consistency of simple transport models with radial phase measurements; linearity of the transport processes; plasma disturbance by impurity injection; determination of the diffusion coefficient by simplified transport models; comparison of transport models for impurities and background plasma; measurements of the impurity transport at the plasma edge by high modulation frequencies. (AH)

  13. Impurity effects of hydrogen isotope retention on boronized wall in LHD

    International Nuclear Information System (INIS)

    Oya, Yasuhisa; Okuno, Kenji; Ashikawa, Naoko; Nishimura, Kiyohiko; Sagara, Akio

    2010-11-01

    The impurity effect on hydrogen isotopes retention in the boron film deposited in LHD was evaluated by means of XPS and TDS. It was found that the impurity concentrations in boron film were increased after H-H main plasma exposure in LHD. The ratio of hydrogen retention trapped by impurity to total hydrogen retention during H-H main plasma exposure was reached to 70%, although that of deuterium retention by impurity in D 2 + implanted LHD-boron film was about 35%. In addition, the dynamic chemical sputtering of hydrogen isotopes with impurity as the form of water and / or hydrocarbons was occurred by energetic hydrogen isotopes irradiation. It was expected that the enhancement of impurity concentration during plasma exposure in LHD would induce the dynamic formation of volatile molecules and their re-emission to plasma. These facts would prevent stable plasma operation in LHD, concluding that the dynamic impurity behavior in boron film during plasma exposure is one of key issues for the steady-state plasma operation in LHD. (author)

  14. Threshold energy dependence as a function of potential strength and the nonexistence of bound states

    International Nuclear Information System (INIS)

    Aronson, I.; Kleinman, C.J.; Spruch, L.

    1975-01-01

    The difficulty in attempting to prove that a given set of particles cannot form a bound state is the absence of a margin of error; the possibility of a bound state of arbitrarily small binding energy must be ruled out. At the sacrifice of rigor, one can hope to bypass the difficulty by studying the ground-state energy E(lambda) associated with H(lambda) identical with H/sub true/ + lambda/sub ν/, where H/sub true/ is the true Hamiltonian, ν is an artificial attractive potential, and lambda greater than 0. E(lambda) can be estimated via a Rayleigh-Ritz calculation. If H/sub true/ falls just short of being able to support a bound state, H(lambda) for lambda ''not too small'' will support a bound state of some significant binding. A margin of error is thereby created; the inability to find a bound state for lambda ''not too small'' suggests not only that H(lambda) can support at best a weakly bound state but that H/sub true/ cannot support a bound state at all. To give the argument real substance, one studies E(lambda) in the neighborhood of lambda = lambda 0 , the (unknown) smallest value for lambda for which H(lambda) can support a bound state. A comparison of E(lambda) determined numerically with the form of E(lambda) obtained with the use of a crude bound-state wave function in the Feynman theorem gives a rough self-consistency check. One thereby obtains a believable lower bound on the energy of a possible bound state of H/sub true/ or a believable argument that no such bound state exists. The method is applied to the triplet state of H -

  15. Effect of suprathermal electrons on the impurity ionization state

    International Nuclear Information System (INIS)

    Ochando, M A; Medina, F; Zurro, B; McCarthy, K J; Pedrosa, M A; Baciero, A; Rapisarda, D; Carmona, J M; Jimenez, D

    2006-01-01

    The effect of electron cyclotron resonance heating induced suprathermal electron tails on the ionization of iron impurities in magnetically confined plasmas is investigated. The behaviour of plasma emissivity immediately after injection provides evidence of a spatially localized 'shift' towards higher charge states of the impurity. Bearing in mind that the non-inductive plasma heating methods generate long lasting non-Maxwellian distribution functions, possible implications on the deduced impurity transport coefficients, when fast electrons are present, are discussed

  16. Impurity levels: corrections to the effective mass approximation

    International Nuclear Information System (INIS)

    Bentosela, F.

    1977-07-01

    Some rigorous results concerning the effective mass approximation used for the calculation of the impurity levels in semiconductors are presented. Each energy level is expressed as an asymptotic series in the inverse of the dielectric constant K, in the case where the impurity potential is 1/μ

  17. Photoluminescence studies of ZnO doped with stable and radioactive impurities

    CERN Document Server

    Cullen, Joseph; Martin O, Henry

    In this work the IIb-VI compound semiconductor ZnO is doped, via ion implantation of stable and radioactive isotopes, in order to investigate the chemical nature of exciton re-combinations bound to previously unidentified defects. Photo-luminescence (PL) is discussed and is used extensively as the primary investigative technique. A new defect emission feature, centred around 3.324 eV, is found to be related to Ge impurities occupying substitutional Zn sites in ZnO. This centre is investigated by temperature dependent PL, piezo-spectroscopy and Zeeman spectroscopy. The centre is donor-like in nature. Uniaxial stress measurements indicate that the defect centre has trigonal symmetry and applied magnetic field measurements reveal the neutral charge state of the centre and the donor-like binding mechanism. Subsequent to this, a study is undertaken of the iso-electronic defect Hg in ZnO studying the zero phonon feature at 3.279 eV and its associated phonon replica band. Temperature dependent measurements reveal tw...

  18. Damping of elastic waves in crystals with impurities

    International Nuclear Information System (INIS)

    Lemanov, V.V.; Petrov, A.V.; Akhmedzhanov, F.R.; Nasyrov, A.N.

    1979-01-01

    Elastic wave damping and thermal conductivity of NaCl-NaBr and Y 3 AL 5 O 12 crystals with Er impurity has been examined. The experimental results on a decrease in elastic wave damping in such crystals are analyzed in the framework of the Ahiezer damping theory. The measurements were made in the frequency range of 300-1500 MHz in propagation of longitudinal and transverse elastic waves along the [100] and [110] directions. At 10 % concentration of erbium impurity the transverse wave damping decreases by a factor of three, and for longitudinal waves by a factor of two in NaBr:Cl crystals, and by approximately 10 and 30 % for NaBr:Cl and Y 3 Al 5 O 12 :Er crystals, respectively. In Y 3 Al 5 O 12 crystals, unlike NaCl-NaBr crystals, no noticeable anisotropy of damping is observed. The transVerse wave damping in impurity crystals has been shown to increase significantly with decreasing temperature and increasing the impurity concentration

  19. Impurity investigations in the boundary layer of the DITE tokamak

    International Nuclear Information System (INIS)

    McCracken, G.M.; Partridge, J.W.; Erents, S.K.; Sofield, C.J.; Ferguson, S.M.

    1982-01-01

    The results obtained in the present investigation show large fluctuations both during discharges and from one discharge to the next. The radial density gradient of impurities in the boundary is not large. It is clear that the density and in particular dn/dt can have a strong effect on the impurity level. However there are apparently a number of other factors causing changes in impurity level which have not been well controlled in the present experiments. Possibilities include flaking from the walls, and changes in the level of the light impurities, oxygen and carbon, in the discharges. (orig./RW)

  20. Impurity studies in fusion devices using laser-fluorescence-spectroscopy

    International Nuclear Information System (INIS)

    Husinsky, W.R.

    1980-08-01

    Resonance fluorescence excitation of neutral atoms using tunable radiation from dye lasers offers a number of unique advantages for impurity studies in fusion devices. Using this technique, it is possible to perform local, time-resolved measurements of the densities and velocity distributions of metallic impurities in fusion devices without disturbing the plasma. Velocities are measured by monitoring the fluorescence intensity while tuning narrow bandwidth laser radiation through the Doppler - broadened absorbtion spectrum of the transition. The knowledge of the velocity distribution of neutral impurities is particularly useful for the determination of impurity introduction mechanisms. The laser fluorescence technique will be described in terms of its application to metallic impurities in fusion devices and related laboratory experiments. Particular attention will be given to recent results from the ISX-B tokamak using pulsed dye lasers where detection sensitivities for neutral Fe of 10 6 atoms/cm 3 with a velocity resolution of 600 m/sec (0.1 eV) have been achieved. Techniques for exciting plasma particles (H,D) will also be discussed

  1. Orbit effects on impurity transport in a rotating plasma

    International Nuclear Information System (INIS)

    Wong, K.L.; Cheng, C.Z.

    1988-01-01

    In 1985, very high ion temperature plasmas were first produced in TFTR with co-injecting neutral beams in low current, low density plasmas. This mode of operation is called the energetic ion mode in which the plasma rotates at very high speed. It was found that heavy impurities injected into these plasmas diffused out very quickly. In this paper, the authors calculate the impurity ion orbits in a rotating tokamak plasma based on the equation of motion in the frame that rotates with the plasma. It is shown that heavy particles in a rotating plasma can drift away from magnetic surfaces significantly faster. Particle orbits near the surface of a rotating tokamak are also analyzed. During impurity injection experiments, freshly ionized impurities near the plasma surface are essentially stationary in the laboratory frame and they are counter-rotating in the plasma frame with co-beam injection. The results are substantiated by numeral particle simulation. The computer code follows the impurity guiding center positions by integrating the equation of motion with the second order predictor-corrector method

  2. Resonant scattering on impurities in the quantum Hall effect

    International Nuclear Information System (INIS)

    Gurvitz, A.

    1994-06-01

    We developed a new approach to carrier transport between the edge states via resonant scattering on impurities, which is applicable both for short and long range impurities. A detailed analysis of resonant scattering on a single impurity is performed. The results used for study of the inter-edge transport by multiple resonant hopping via different impurities' site. We found the total conductance can be obtained from an effective Schroedinger equation with constant diagonal matrix elements in the Hamiltonian, where the complex non-diagonal matrix elements are the amplitudes of a carrier hopping between different impurities. It is explicitly shown how the complex phase leads to Aharonov-Bohm oscillations in the total conductance. Neglecting the contribution of self-crossing resonant-percolation trajectories, we found that the inter-edge carrier transport is similar to propagation in one-dimensional system with off-diagonal disorder. Then we demonstrated that each Landau band has an extended state Ε Ν , while all other states are localized, and the localization length behaves as L - 1 Ν (Ε) ∼ (Ε - Ε Ν ) 2 . (author)

  3. Harmful situations, impure people: an attribution asymmetry across moral domains.

    Science.gov (United States)

    Chakroff, Alek; Young, Liane

    2015-03-01

    People make inferences about the actions of others, assessing whether an act is best explained by person-based versus situation-based accounts. Here we examine people's explanations for norm violations in different domains: harmful acts (e.g., assault) and impure acts (e.g., incest). Across four studies, we find evidence for an attribution asymmetry: people endorse more person-based attributions for impure versus harmful acts. This attribution asymmetry is partly explained by the abnormality of impure versus harmful acts, but not by differences in the moral wrongness or the statistical frequency of these acts. Finally, this asymmetry persists even when the situational factors that lead an agent to act impurely are stipulated. These results suggest that, relative to harmful acts, impure acts are linked to person-based attributions. Copyright © 2014 Elsevier B.V. All rights reserved.

  4. Boron, nitrogen, and nickel impurities in GeC nanoribbons: A first-principles investigation

    Energy Technology Data Exchange (ETDEWEB)

    Xu, Zhuo; Li, Yangping, E-mail: liyp@nwpu.edu.cn; Liu, Zhengtang

    2017-07-01

    Highlights: • The impurities preferentially substitutes the Ge atom at the ribbon edge. • The impurities could result in a reduction of the band gap of 7-AGeCNR. • The impurities turns the metallic behavior of 4-ZGeCNR into semiconductor. • The impurities could change the magnetic moment of 4-ZGeCNR. • The impurities could introduce magnetic moments into the non-magnetic 7-AGeCNR. - Abstract: Using first-principles calculations based on the density functional theory we investigated the structural, electronic and magnetic properties of substitutional boron, nitrogen, and nickel impurities in germanium carbide (GeC) nanoribbons. Hydrogen terminated GeC ribbons with armchair and zigzag edges are considered here. We observed that all three impurities preferentially substitutes the Ge atom at the ribbon edge. In addition, the electronic band structures of the doped systems indicate that (i) the impurities could introduce impurity bands in the band gap and resulting in a reduction of the band gap of 7-AGeCNR, (ii) the metallic behavior of 4-ZGeCNR turns into semiconductor because of the incorporation of the impurities, (iii) the impurities could change the magnetic moment of 4-ZGeCNR and even introduce magnetic moment into the non-magnetic 7-AGeCNR.

  5. Effect of impurities and post-experimental purification in SAD phasing with serial femtosecond crystallography data.

    Science.gov (United States)

    Zhang, Tao; Gu, Yuanxin; Fan, Haifu

    2016-06-01

    In serial crystallography (SX) with either an X-ray free-electron laser (XFEL) or synchrotron radiation as the light source, huge numbers of micrometre-sized crystals are used in diffraction data collection. For a SAD experiment using a derivative with introduced heavy atoms, it is difficult to completely exclude crystals of the native protein from the sample. In this paper, simulations were performed to study how the inclusion of native crystals in the derivative sample could affect the result of SAD phasing and how the post-experimental purification proposed by Zhang et al. [(2015), Acta Cryst. D71, 2513-2518] could be used to remove the impurities. A gadolinium derivative of lysozyme and the corresponding native protein were used in the test. Serial femtosecond crystallography (SFX) diffraction snapshots were generated by CrystFEL. SHELXC/D, Phaser, DM, ARP/wARP and REFMAC were used for automatic structure solution. It is shown that a small amount of impurities (snapshots from native crystals) in the set of derivative snapshots can strongly affect the SAD phasing results. On the other hand, post-experimental purification can efficiently remove the impurities, leading to results similar to those from a pure sample.

  6. Experimental study of electron temperature gradient influence on impurity turbulent transport in fusion plasmas

    International Nuclear Information System (INIS)

    Villegas, D.

    2010-01-01

    Understanding impurity transport is a key to an optimal regime for a future fusion device. In this thesis, the theoretical and experimental influence of the electron temperature gradient R/L Te on heavy impurity transport is analyzed both in Tore Supra and ASDEX Upgrade. The electron temperature profile is modified locally by heating the plasma with little ECRH power deposited at two different radii. Experimental results have been obtained with the impurity transport code (ITC) which has been completed with a genetic algorithm allowing to determine the transport coefficient profiles with more accuracy. Transport coefficient profiles obtained by a quasilinear gyrokinetic code named QuaLiKiz are consistent with the experimental ones despite experimental uncertainties on gradients. In the core dominated by electron modes, the lower R/L Te the lower the nickel diffusion coefficient. The latter tends linearly to the neoclassical level when the instability threshold is approached. The experimental threshold is in agreement with the one computed by QuaLiKiz. Further out, where the plasma is dominated by ITG, which are independent of R/L Te , both experimental and simulated results show no modification in the diffusion coefficient profile. Furthermore, the convection velocity profile is not modified. This is attributed to a very small contribution of the thermodiffusion (1/Z dependence) in the total convection. On ASDEX, the preliminary results, very different from the Tore Supra ones, show a internal transport barrier for impurities located at the same radius as the strong ECRH power deposit. (author) [fr

  7. Identification and Structural Characterization of Unidentified Impurity in Bisoprolol Film-Coated Tablets

    Directory of Open Access Journals (Sweden)

    Ivana Mitrevska

    2017-01-01

    Full Text Available The aim of this study is the identification, structural characterization, and qualification of a degradation impurity of bisoprolol labeled as Impurity RRT 0.95. This degradation product is considered as a principal thermal degradation impurity identified in bisoprolol film-coated tablets. The impurity has been observed in the stress thermal degradation study of the drug product. Using HPLC/DAD/ESI-MS method, a tentative structure was assigned and afterwards confirmed by detailed structural characterization using NMR spectroscopy. The structure of the target Impurity RRT 0.95 was elucidated as phosphomonoester of bisoprolol, having relative molecular mass of 406 (positive ionization mode. The structural characterization was followed by qualification of Impurity RRT 0.95 using several different in silico methodologies. From the results obtained, it can be concluded that no new structural alerts have been generated for Impurity RRT 0.95 relative to the parent compound bisoprolol. The current study presents an in-depth analysis of the full characterization and qualification of an unidentified impurity in a drug product with the purpose of properly defining the quality specification of the product.

  8. Characterization of intermittency of impurity turbulent transport in tokamak edge plasmas

    International Nuclear Information System (INIS)

    Futatani, S.; Benkadda, S.; Nakamura, Y.; Kondo, K.

    2008-01-01

    The statistical properties of impurity transport of a tokamak edge plasma embedded in a dissipative drift-wave turbulence are investigated using structure function analysis. The impurities are considered as a passive scalar advected by the plasma flow. Two cases of impurity advection are studied and compared: A decaying impurities case (given by a diffusion-advection equation) and a driven case (forced by a mean scalar gradient). The use of extended self-similarity enables us to show that the relative scaling exponent of structure functions of impurity density and vorticity exhibit similar multifractal scaling in the decaying case and follows the She-Leveque model. However, this property is invalidated for the impurity driven advection case. For both cases, potential fluctuations are self-similar and exhibit a monofractal scaling in agreement with Kolmogorov-Kraichnan theory for two-dimensional turbulence. These results obtained with a passive scalar model agree also with test-particle simulations.

  9. Negative compressibility observed in graphene containing resonant impurities

    International Nuclear Information System (INIS)

    Chen, X. L.; Wang, L.; Li, W.; Wang, Y.; He, Y. H.; Wu, Z. F.; Han, Y.; Zhang, M. W.; Xiong, W.; Wang, N.

    2013-01-01

    We observed negative compressibility in monolayer graphene containing resonant impurities under different magnetic fields. Hydrogenous impurities were introduced into graphene by electron beam (e-beam) irradiation. Resonant states located in the energy region of ±0.04 eV around the charge neutrality point were probed in e-beam-irradiated graphene capacitors. Theoretical results based on tight-binding and Lifshitz models agreed well with experimental observations of graphene containing a low concentration of resonant impurities. The interaction between resonant states and Landau levels was detected by varying the applied magnetic field. The interaction mechanisms and enhancement of the negative compressibility in disordered graphene are discussed.

  10. Modeling of impurity transport in the core plasma

    International Nuclear Information System (INIS)

    Hulse, R.A.

    1992-01-01

    This paper presents a brief overview of computer modeling of impurity transport in the core region of controlled thermonuclear fusion plasmas. The atomic processes of importance in these high temperature plasmas and the numerical formulation of the model are described. Selected modeling examples are then used to highlight some features of the physics of impurity behavior in large tokamak fusion devices, with an emphasis on demonstrating the sensitivity of such modeling to uncertainties in the rate coefficients used for the atomic processes. This leads to a discussion of current requirements and opportunities for generating the improved sets of comprehensive atomic data needed to support present and future fusion impurity modeling studies

  11. Electronic structure of deep impurity centers in silicon

    International Nuclear Information System (INIS)

    Oosten, A.B. van.

    1989-01-01

    This thesis reports an experimental study of deep level impurity centers in silicon, with much attention for theoretical interpretation of the data. A detailed picture of the electronic structure of several centers was obtained by magnetic resonance techniques, such as electron paramagnetic resonance (EPR), electron-nuclear double resonance (ENDOR) and field scanned ENDOR (FSE). The thesis consists of two parts. The first part deals with chalcogen (sulfur, selenium and tellurium) related impurities, which are mostly double donors. The second part is about late transition metal (nickel, palladium and platinum) impurities, which are single (Pd,Pt) or double (Ni) acceptor centers. (author). 155 refs.; 51 figs.; 23 tabs

  12. Tokamak impurity-control techniques

    International Nuclear Information System (INIS)

    Schmidt, J.A.

    1980-01-01

    A brief review is given of the impurity-control functions in tokamaks, their relative merits and disadvantages and some prominent edge-interaction-control techniques, and there is a discussion of a new proposal, the particle scraper, and its potential advantages. (author)

  13. Sodium sampling and impurities determination

    International Nuclear Information System (INIS)

    Docekal, J.; Kovar, C.; Stuchlik, S.

    1980-01-01

    Samples may be obtained from tubes in-built in the sodium facility and further processed or they are taken into crucibles, stored and processed later. Another sampling method is a method involving vacuum distillation of sodium, thus concentrating impurities. Oxygen is determined by malgamation, distillation or vanadium balance methods. Hydrogen is determined by the metal diaphragm extraction, direct extraction or amalgamation methods. Carbon is determined using dry techniques involving burning a sodium sample at 1100 degC or using wet techniques by dissolving the sample with an acid. Trace amounts of metal impurities are determined after dissolving sodium in ethanol. The trace metals are concentrated and sodium excess is removed. (M.S.)

  14. Impurity scattering effect on charge transport in high-Tc cuprate junctions

    International Nuclear Information System (INIS)

    Tanaka, Y.; Asano, Y.; Kashiwaya, S.

    2004-01-01

    It is known that the zero-bias conductance peak (ZBCP) is expected in tunneling spectra of normal-metal/high-Tc cuprate junctions because of the formation of the midgap Andreev resonant states (MARS) at junction interfaces. In the present review, we report the recent theoretical study of impurity scattering effects on the tunneling spectroscopy. In the former part of the present paper, we discuss impurity effects in normal metal. We calculate tunneling conductance for diffusive normal metal (DN)/high Tc cuprate junctions based on the Keldysh Green's function technique. Besides the ZBCP due to the MARS, we can expect ZBCP caused by the different origin, i.e., the coherent Andreev reflection (CAR) assisted by the proximity effect in DN. Their relative importance depends on the angle a between the interface normal and the crystal axis of high-Tc superconductors. At α = 0, we find the ZBCP by the CAR for low transparent junctions with small Thouless energies in DN; this is similar to the case of diffusive normal metal/insulator/s-wave superconductor junctions. Under increase of α from zero to π/4, the contribution of MARS to ZBCP becomes more prominent and the effect of the CAR is gradually suppressed. Such complex spectral features would be observable in conductance spectra of high-Tc junctions at very low temperatures. In the latter part of our paper, we study impurity effects in superconductors. We consider impurities near the junction interface on the superconductor side. The conductance is calculated from the Andreev and the normal reflection coefficients which are estimated by using the single-site approximation in an analytic calculation and by the recursive Green function method in a numerical simulation. We find splitting of the ZBCP in the presence of the time reversal symmetry. Thus the zero-field splitting of ZBCP in the experiment does not perfectly prove an existence of broken time reversal symmetry state

  15. Influence of the impurity-defect and impurity-impurity interactions on the crystalline silicon solar cells conversion efficiency; Influence des interactions impurete-defaut et impurete-impurete sur le rendement de conversion des cellules photovoltaiques au silicium cristallin

    Energy Technology Data Exchange (ETDEWEB)

    Dubois, S

    2007-05-15

    This study aims at understanding the influence of the impurity - defect interaction on the silicon solar cell performances. We studied first the case of single-crystalline silicon. We combined numerical simulations and experimental data providing new knowledge concerning metal impurities in silicon, to quantify the evolution of the conversion efficiency with the impurity concentration. Mainly due to the gettering effects, iron appears to be quite well tolerated. It is not the case for gold, diffusing too slowly. Hydrogenation effects were limited. We transposed then this study toward multi-crystalline silicon. Iron seems rather well tolerated, due to the gettering effects but also due to the efficiency of the hydrogenation. When slow diffusers are present, multi crystalline silicon is sensitive to thermal degradation. n-type silicon could solve this problem, this material being less sensitive to metal impurities. (author)

  16. Impurity states in two - and three-dimensional disordered systems

    International Nuclear Information System (INIS)

    Silva, A.F. da; Fabbri, M.

    1984-01-01

    We investigate the microscopic structure of the impurity states in two-and three-dimensional (2D and 3d) disordered systems. A cluster model is outlined for the donor impurity density of states (DIDS) of doped semiconductors. It is shown that the impurity states are very sensitive to a change in the dimensionality of the system, i.e from 3D to 2D system. It is found that all eigenstates become localized in 2D disordered system for a large range of concentration. (Author) [pt

  17. Extraction process for removing metallic impurities from alkalide metals

    Science.gov (United States)

    Royer, Lamar T.

    1988-01-01

    A development is described for removing metallic impurities from alkali metals by employing an extraction process wherein the metallic impurities are extracted from a molten alkali metal into molten lithium metal due to the immiscibility of the alkali metals in lithium and the miscibility of the metallic contaminants or impurities in the lithium. The purified alkali metal may be readily separated from the contaminant-containing lithium metal by simple decanting due to the differences in densities and melting temperatures of the alkali metals as compared to lithium.

  18. Impurity states in two-and three-dimensional disordered systems

    International Nuclear Information System (INIS)

    Silva, A.F. da; Fabbri, M.

    1984-04-01

    The microscopic structure of the impurity states in two-and three-dimensional (2D and 3D) disordered systems is investigated. A cluster model is outlined for the donor impurity density of states (DIDS) of doped semiconductors. It is shown that the impurity states are very sensitive to a change in the dimensionality of the system, i.e., from 3D to 2D system. It is found that all eigenstates become localized in 2D disordered system for a large range of concentration. (Author) [pt

  19. Effect of HEH[EHP] impurities on the ALSEP solvent extraction process

    Energy Technology Data Exchange (ETDEWEB)

    Holfeltz, Vanessa E. [Nuclear Chemistry and Engineering Group, Pacific Northwest National Laboratory, Richland, WA, USA; School of Nuclear Science and Engineering, Oregon State University, Corvallis, OR, USA; Campbell, Emily L. [Nuclear Chemistry and Engineering Group, Pacific Northwest National Laboratory, Richland, WA, USA; Peterman, Dean R. [Aqueous Separations and Radiochemistry Department, Idaho National Laboratory, Idaho Falls, ID, USA; Standaert, Robert F. [Biosciences Division, Oak Ridge National Laboratory, Oak Ridge, TN, USA; Department of Biochemistry & amp, Cellular and Molecular Biology, University of Tennessee, Knoxville, TN, USA; Biology & amp, Soft Matter Division, Oak Ridge National Laboratory, Oak Ridge, TN, USA; Shull Wollan Center — a Joint Institute for Neutron Sciences, Oak Ridge National Laboratory, Oak Ridge, TN, USA; Paulenova, Alena [School of Nuclear Science and Engineering, Oregon State University, Corvallis, OR, USA; Lumetta, Gregg J. [Nuclear Chemistry and Engineering Group, Pacific Northwest National Laboratory, Richland, WA, USA; Levitskaia, Tatiana G. [Nuclear Chemistry and Engineering Group, Pacific Northwest National Laboratory, Richland, WA, USA

    2017-12-20

    In solvent extraction processes, organic phase impurities can negatively impact separation factors, hydrolytic performance, and overall system robustness. This affects the process-level viability of a separation concept and necessitates knowledge of the behavior and mechanisms to control impurities in the solvent. The most widespread way through which impurities are introduced into a system is through impure extractants and/or diluents used to prepare the solvent, and often development of new purification schemes to achieve the desired level of purity is needed. In this work, the acidic extractant, 2-ethylhexylphosphonic acid mono-2-ethylhexyl ester (HEH[EHP])—proposed for application in extractive processes aimed at separating trivalent minor actinides from lanthanides and other fission products—is characterized with respect to its common impurities and their impact on Am(III) stripping in the Actinide Lanthanide SEParation (ALSEP) system. To control impurities in HEH[EHP], existing purification technologies commonly applied for the acidic organophosphorus reagents are reviewed, and a new method specific to HEH[EHP] purification is presented.

  20. BWR water chemistry impurity studies

    International Nuclear Information System (INIS)

    Ljungberg, L.G.; Korhonen, S.; Renstroem, K.; Hofling, C.G.; Rebensdorff, B.

    1990-03-01

    Laboratory studies were made on the effect of water impurities on environmental cracking in simulated BWR water of stainless steel, low alloy steel and nickel-base alloys. Constant elongation rate tensile (CERT) tests were run in simulated normal water chemistry (NWC), hydrogen water chemistry (HWC), or start-up environment. Sulfate, chloride and copper with chloride added to the water at levels of a fraction of a ppM were found to be extremely deleterious to all kinds of materials except Type 316 NG. Other detrimental impurities were fluoride, silica and some organic acids, although acetic acid was beneficial. Nitrate and carbon dioxide were fairly inoccuous. Corrosion fatigue and constant load tests on compact tension specimens were run in simulated normal BWR water chemistry (NWC) or hydrogen water chemistry (HWC), without impurities or with added sulfate or carbon dioxide. For sensitized Type 304 SS in NWC, 0.1 ppM sulfate increased crack propagation rates in constant load tests by up to a factor of 100, and in fatigue tests up to a factor of 10. Also, cracking in Type 316 nuclear grade SS and Alloy 600 was enhanced, but to a smaller degree. Carbon dioxide was less detrimental than sulfate. 3 figs., 4 tabs