WorldWideScience

Sample records for improved dna biosensor

  1. Hall effect biosensors with ultraclean graphene film for improved sensitivity of label-free DNA detection

    Loan, Phan Thi Kim; Wu, Dongqin; Ye, Chen; Li, Xiaoqing; Tra, Vu Thanh; Wei, Qiuping; Fu, Li; Yu, Aimin; Li, Lain-Jong; Lin, Cheng-Te

    2017-01-01

    The quality of graphene strongly affects the performance of graphene-based biosensors which are highly demanded for the sensitive and selective detection of biomolecules, such as DNA. This work reported a novel transfer process for preparing a

  2. Hall effect biosensors with ultraclean graphene film for improved sensitivity of label-free DNA detection

    Loan, Phan Thi Kim

    2017-07-19

    The quality of graphene strongly affects the performance of graphene-based biosensors which are highly demanded for the sensitive and selective detection of biomolecules, such as DNA. This work reported a novel transfer process for preparing a residue-free graphene film using a thin gold supporting layer. A Hall effect device made of this gold-transferred graphene was demonstrated to significantly enhance the sensitivity (≈ 5 times) for hybridization detection, with a linear detection range of 1 pM – 100nM for DNA target. Our findings provide an efficient method to boost the sensitivity of graphene-based biosensors for DNA recognition.

  3. DNA nanotechnology-enabled biosensors.

    Chao, Jie; Zhu, Dan; Zhang, Yinan; Wang, Lianhui; Fan, Chunhai

    2016-02-15

    Biosensors employ biological molecules to recognize the target and utilize output elements which can translate the biorecognition event into electrical, optical or mass-sensitive signals to determine the quantities of the target. DNA-based biosensors, as a sub-field to biosensor, utilize DNA strands with short oligonucleotides as probes for target recognition. Although DNA-based biosensors have offered a promising alternative for fast, simple and cheap detection of target molecules, there still exist key challenges including poor stability and reproducibility that hinder their competition with the current gold standard for DNA assays. By exploiting the self-recognition properties of DNA molecules, researchers have dedicated to make versatile DNA nanostructures in a highly rigid, controllable and functionalized manner, which offers unprecedented opportunities for developing DNA-based biosensors. In this review, we will briefly introduce the recent advances on design and fabrication of static and dynamic DNA nanostructures, and summarize their applications for fabrication and functionalization of DNA-based biosensors. Copyright © 2015 Elsevier B.V. All rights reserved.

  4. Hall effect biosensors with ultraclean graphene film for improved sensitivity of label-free DNA detection.

    Loan, Phan Thi Kim; Wu, Dongqin; Ye, Chen; Li, Xiaoqing; Tra, Vu Thanh; Wei, Qiuping; Fu, Li; Yu, Aimin; Li, Lain-Jong; Lin, Cheng-Te

    2018-01-15

    The quality of graphene strongly affects the performance of graphene-based biosensors which are highly demanded for the sensitive and selective detection of biomolecules, such as DNA. This work reported a novel transfer process for preparing a residue-free graphene film using a thin gold supporting layer. A Hall effect device made of this gold-transferred graphene was demonstrated to significantly enhance the sensitivity (≈ 5 times) for hybridization detection, with a linear detection range of 1pM to 100nM for DNA target. Our findings provide an efficient method to boost the sensitivity of graphene-based biosensors for DNA recognition. Copyright © 2017 Elsevier B.V. All rights reserved.

  5. Biosensors for DNA sequence detection

    Vercoutere, Wenonah; Akeson, Mark

    2002-01-01

    DNA biosensors are being developed as alternatives to conventional DNA microarrays. These devices couple signal transduction directly to sequence recognition. Some of the most sensitive and functional technologies use fibre optics or electrochemical sensors in combination with DNA hybridization. In a shift from sequence recognition by hybridization, two emerging single-molecule techniques read sequence composition using zero-mode waveguides or electrical impedance in nanoscale pores.

  6. Recent Development of Nano-Materials Used in DNA Biosensors

    Yibin Ying

    2009-07-01

    Full Text Available As knowledge of the structure and function of nucleic acid molecules has increased, sequence-specific DNA detection has gained increased importance. DNA biosensors based on nucleic acid hybridization have been actively developed because of their specificity, speed, portability, and low cost. Recently, there has been considerable interest in using nano-materials for DNA biosensors. Because of their high surface-to-volume ratios and excellent biological compatibilities, nano-materials could be used to increase the amount of DNA immobilization; moreover, DNA bound to nano-materials can maintain its biological activity. Alternatively, signal amplification by labeling a targeted analyte with nano-materials has also been reported for DNA biosensors in many papers. This review summarizes the applications of various nano-materials for DNA biosensors during past five years. We found that nano-materials of small sizes were advantageous as substrates for DNA attachment or as labels for signal amplification; and use of two or more types of nano-materials in the biosensors could improve their overall quality and to overcome the deficiencies of the individual nano-components. Most current DNA biosensors require the use of polymerase chain reaction (PCR in their protocols. However, further development of nano-materials with smaller size and/or with improved biological and chemical properties would substantially enhance the accuracy, selectivity and sensitivity of DNA biosensors. Thus, DNA biosensors without PCR amplification may become a reality in the foreseeable future.

  7. DNA Nanotechnology-Enabled Interfacial Engineering for Biosensor Development.

    Ye, Dekai; Zuo, Xiaolei; Fan, Chunhai

    2018-06-12

    Biosensors represent biomimetic analytical tools for addressing increasing needs in medical diagnosis, environmental monitoring, security, and biodefense. Nevertheless, widespread real-world applications of biosensors remain challenging due to limitations of performance, including sensitivity, specificity, speed, and reproducibility. In this review, we present a DNA nanotechnology-enabled interfacial engineering approach for improving the performance of biosensors. We first introduce the main challenges of the biosensing interfaces, especially under the context of controlling the DNA interfacial assembly. We then summarize recent progress in DNA nanotechnology and efforts to harness DNA nanostructures to engineer various biological interfaces, with a particular focus on the use of framework nucleic acids. We also discuss the implementation of biosensors to detect physiologically relevant nucleic acids, proteins, small molecules, ions, and other biomarkers. This review highlights promising applications of DNA nanotechnology in interfacial engineering for biosensors and related areas.

  8. Electroacoustic miniaturized DNA-biosensor.

    Gamby, Jean; Lazerges, Mathieu; Pernelle, Christine; Perrot, Hubert; Girault, Hubert H; Tribollet, Bernard

    2007-11-01

    A micrometer-sized electroacoustic DNA-biosensor was developed. The device included a thin semi-crystalline polyethylene terephthalate (PET) dielectric layer with two Ag microband electrodes on one side and a DNA thiol-labeled monolayer adsorbed on a gold surface on the other. A resonance wave was observed at 29 MHz with a network analyzer, upon AC voltage application between the two Ag electrodes, corresponding to electromechanical coupling induced by molecular dipoles of the PET polymer chain in the dielectric layer. It was found that the device size and geometry were well adapted to detect DNA hybridization, by measuring the capacity of the resonance response evolution: hybridization induced polarization of the dielectric material that affected the electromechanical coupling established in the dielectric layer. The 0.2 mm(2) sensor sensitive area allows detection in small volumes and still has higher detection levels for bioanalytical applications, the non-contact configuration adopted avoids electric faradic reactions that may damage biosensor sensitive layers, and finally, PET is a costless raw material, easy to process and well adapted for large scale production. The well-balanced technological and economic advantages of this kind of device make it a good candidate for biochip integration.

  9. Improved Biosensors for Soils

    Silberg, J. J.; Masiello, C. A.; Cheng, H. Y.

    2014-12-01

    Microbes drive processes in the Earth system far exceeding their physical scale, affecting crop yields, water quality, the mobilization of toxic materials, and fundamental aspects of soil biogeochemistry. The tools of synthetic biology have the potential to significantly improve our understanding of microbial Earth system processes: for example, synthetic microbes can be be programmed to report on environmental conditions that stimulate greenhouse gas production, metal oxidation, biofilm formation, pollutant degradation, and microbe-plant symbioses. However, these tools are only rarely deployed in the lab. This research gap arises because synthetically programmed microbes typically report on their environment by producing molecules that are detected optically (e.g., fluorescent proteins). Fluorescent reporters are ideal for petri-dish applications and have fundamentally changed how we study human health, but their usefulness is quite limited in soils where detecting fluorescence is challenging. Here we describe the construction of gas-reporting biosensors, which release nonpolar gases that can be detected in the headspace of incubation experiments. These constructs can be used to probe microbial processes within soils in real-time noninvasive lab experiments. These biosensors can be combined with traditional omics-based approaches to reveal processes controlling soil microbial behavior and lead to improved environmental management decisions.

  10. Improved Ion-Channel Biosensors

    Nadeau, Jay; White, Victor; Dougherty, Dennis; Maurer, Joshua

    2004-01-01

    An effort is underway to develop improved biosensors of a type based on ion channels in biomimetic membranes. These sensors are microfabricated from silicon and other materials compatible with silicon. As described, these sensors offer a number of advantages over prior sensors of this type.

  11. FIBER OPTIC BIOSENSOR FOR DNA DAMAGE

    This paper describes a fiber optic biosensor for the rapid and sensitive detection of radiation-induced or chemically-induced oxidative DNA damage. The assay is based on the hybridization and temperature-induced dissociation (melting curves) of synthetic oligonucleotides. The...

  12. Disposable electrochemical DNA biosensor for environmental ...

    been used due to its rapid, easy handling and cost effective responses for the toxicity assessment in real water ... in the application of DNA as biosensors as it is found ... used as a preclinical safety assessment tool to screen ... out the work.

  13. Electrochemical DNA biosensors based on platinum nanoparticles combined carbon nanotubes

    Zhu Ningning; Chang Zhu; He Pingang; Fang Yuzhi

    2005-01-01

    Platinum nanoparticles were used in combination with multi-walled carbon nanotubes (MWCNTs) for fabricating sensitivity-enhanced electrochemical DNA biosensor. Multi-walled carbon nanotubes and platinum nanoparticles were dispersed in Nafion, which were used to fabricate the modification of the glassy carbon electrode (GCE) surface. Oligonucleotides with amino groups at the 5' end were covalently linked onto carboxylic groups of MWCNTs on the electrode. The hybridization events were monitored by differential pulse voltammetry (DPV) measurement of the intercalated daunomycin. Due to the ability of carbon nanotubes to promote electron-transfer reactions, the high catalytic activities of platinum nanoparticles for chemical reactions, the sensitivity of presented electrochemical DNA biosensors was remarkably improved. The detection limit of the method for target DNA was 1.0 x 10 -11 mol l -1

  14. Electrochemical DNA biosensor based on grafting-to mode of terminal deoxynucleoside transferase-mediated extension.

    Chen, Jinyuan; Liu, Zhoujie; Peng, Huaping; Zheng, Yanjie; Lin, Zhen; Liu, Ailin; Chen, Wei; Lin, Xinhua

    2017-12-15

    Previously reported electrochemical DNA biosensors based on in-situ polymerization approach reveal that terminal deoxynucleoside transferase (TdTase) has good amplifying performance and promising application in the design of electrochemical DNA biosensor. However, this method, in which the background is significantly affected by the amount of TdTase, suffers from being easy to produce false positive result and poor stability. Herein, we firstly present a novel electrochemical DNA biosensor based on grafting-to mode of TdTase-mediated extension, in which DNA targets are polymerized in homogeneous solution and then hybridized with DNA probes on BSA-based DNA carrier platform. It is surprising to find that the background in the grafting-to mode of TdTase-based electrochemical DNA biosensor have little interference from the employed TdTase. Most importantly, the proposed electrochemical DNA biosensor shows greatly improved detection performance over the in-situ polymerization approach-based electrochemical DNA biosensor. Copyright © 2017 Elsevier B.V. All rights reserved.

  15. Innovative configurations of electrochemical DNA biosensors (a review)

    Girousi, Stella; Karastogianni, Sofia; Serpi, Constantina

    2011-01-01

    In the field of electrochemical biosensing, transition metal complexes achieved a significant importance as hybridization indicators or electroactive markers of DNA. Their incorporation in electro-chemical DNA biosensors enables to offer a promising perspective in understanding of the biological activity of some chemical compounds. In this context, the development of innovative configurations of electrochemical DNA biosensors applied to life sciences during the last years were reviewed ...

  16. Indicator Based and Indicator - Free Electrochemical DNA Biosensors

    Kerman, Kagan

    2001-01-01

    The utility and advantages of an indicator free and MB based sequence specific DNA hybridization biosensor based on guanine and adenine oxidation signals and MB reduction signals have been demonstrated...

  17. Electrochemical DNA biosensor based on the BDD nanograss array electrode.

    Jin, Huali; Wei, Min; Wang, Jinshui

    2013-04-10

    The development of DNA biosensor has attracted considerable attention due to their potential applications, including gene analysis, clinical diagnostics, forensic study and more medical applications. Using electroactive daunomycin as an indicator, the hybridization detection was measured by differential pulse voltammetry in this study. Electrochemical DNA biosensor was developed based on the BDD film electrode (fBDD) and BDD nanograss array electrode (nBDD). In comparison with fBDD and AuNPs/CA/fBDD electrode, the lower semicircle diameter of electrochemical impedance spectroscopy obtained on nBDD and AuNPs/CA/nBDD electrode indicated that the presence of nanograss array improved the reactive site, reduced the interfacial resistance, and made the electron transfer easier. Using electroactive daunomycin as an indicator, the hybridization detection was measured by differential pulse voltammetry. The experimental results demonstrated that the prepared AuNPs/CA/nBDD electrode was suitable for DNA hybridization with favorable performance of faster response, higher sensitivity, lower detection limit and satisfactory selectivity, reproducibility and stability.

  18. New Catalytic DNA Biosensors for Radionuclides and Metal ions

    Lu, Yi

    2003-01-01

    The goals of the project are to develop new catalytic DNA biosensors for simultaneous detection and quantification of bioavailable radionuclides and metal ions, and apply the sensors for on-site, real-time assessment of concentration, speciation and stability of the individual contaminants during and after bioremediation. A negative selection strategy was tested and validated. In vitro selection was shown to yield highly active and specific transition metal ion-dependent catalytic DNA/RNA. A fluorescence resonance energy transfer (FRET) study of in vitro selected DNA demonstrated that the trifluorophore labeled system is a simple and powerful tool in studying complex biomolecules structure and dynamics, and is capable of revealing new sophisticated structural changes. New fluorophore/quenchers in a single fluorosensor yielded improved signal to noise ratio in detection, identification and quantification of metal contaminants. Catalytic DNA fluorescent and colorimetric sensors were shown useful in sensing lead in lake water and in leaded paint. Project results were described in two papers and two patents, and won an international prize

  19. An ultrasensitive hollow-silica-based biosensor for pathogenic Escherichia coli DNA detection.

    Ariffin, Eda Yuhana; Lee, Yook Heng; Futra, Dedi; Tan, Ling Ling; Karim, Nurul Huda Abd; Ibrahim, Nik Nuraznida Nik; Ahmad, Asmat

    2018-03-01

    A novel electrochemical DNA biosensor for ultrasensitive and selective quantitation of Escherichia coli DNA based on aminated hollow silica spheres (HSiSs) has been successfully developed. The HSiSs were synthesized with facile sonication and heating techniques. The HSiSs have an inner and an outer surface for DNA immobilization sites after they have been functionalized with 3-aminopropyltriethoxysilane. From field emission scanning electron microscopy images, the presence of pores was confirmed in the functionalized HSiSs. Furthermore, Brunauer-Emmett-Teller (BET) analysis indicated that the HSiSs have four times more surface area than silica spheres that have no pores. These aminated HSiSs were deposited onto a screen-printed carbon paste electrode containing a layer of gold nanoparticles (AuNPs) to form a AuNP/HSiS hybrid sensor membrane matrix. Aminated DNA probes were grafted onto the AuNP/HSiS-modified screen-printed electrode via imine covalent bonds with use of glutaraldehyde cross-linker. The DNA hybridization reaction was studied by differential pulse voltammetry using an anthraquinone redox intercalator as the electroactive DNA hybridization label. The DNA biosensor demonstrated a linear response over a wide target sequence concentration range of 1.0×10 -12 -1.0×10 -2 μM, with a low detection limit of 8.17×10 -14 μM (R 2 = 0.99). The improved performance of the DNA biosensor appeared to be due to the hollow structure and rough surface morphology of the hollow silica particles, which greatly increased the total binding surface area for high DNA loading capacity. The HSiSs also facilitated molecule diffusion through the silica hollow structure, and substantially improved the overall DNA hybridization assay. Graphical abstract Step-by-step DNA biosensor fabrication based on aminated hollow silica spheres.

  20. Development of an electrochemical DNA biosensor for detection of ...

    2.4 million of deaths.1,2 Southern hybridization tech- niques, radiographic .... Electrochemical DNA sensors can be greatly affected .... 3.5 Diagnostic performance of the biosensor ... Silva M M S, Cavalcanti I T, Barroso M F, Sales M G F.

  1. DETECTION OF DNA DAMAGE USING A FIBEROPTIC BIOSENSOR

    A rapid and sensitive fiber optic biosensor assay for radiation-induced DNA damage is reported. For this assay, a biotin-labeled capture oligonucleotide (38 mer) was immobilized to an avidin-coated quartz fiber. Hybridization of a dye-labeled complementary sequence was observed...

  2. Biosensors and environmental health

    Preedy, Victor R; Patel, Vinood B

    2012-01-01

    ..., bacterial biosensors, antibody-based biosensors, enzymatic, amperometric and electrochemical aspects, quorum sensing, DNA-biosensors, cantilever biosensors, bioluminescence and other methods and applications...

  3. Multicolor fluorescent biosensor for multiplexed detection of DNA.

    Hu, Rong; Liu, Tao; Zhang, Xiao-Bing; Huan, Shuang-Yan; Wu, Cuichen; Fu, Ting; Tan, Weihong

    2014-05-20

    Development of efficient methods for highly sensitive and rapid screening of specific oligonucleotide sequences is essential to the early diagnosis of serious diseases. In this work, an aggregated cationic perylene diimide (PDI) derivative was found to efficiently quench the fluorescence emission of a variety of anionic oligonucleotide-labeled fluorophores that emit at wavelengths from the visible to NIR region. This broad-spectrum quencher was then adopted to develop a multicolor biosensor via a label-free approach for multiplexed fluorescent detection of DNA. The aggregated perylene derivative exhibits a very high quenching efficiency on all ssDNA-labeled dyes associated with biosensor detection, having efficiency values of 98.3 ± 0.9%, 97 ± 1.1%, and 98.2 ± 0.6% for FAM, TAMRA, and Cy5, respectively. An exonuclease-assisted autocatalytic target recycling amplification was also integrated into the sensing system. High quenching efficiency combined with autocatalytic target recycling amplification afforded the biosensor with high sensitivity toward target DNA, resulting in a detection limit of 20 pM, which is about 50-fold lower than that of traditional unamplified homogeneous fluorescent assay methods. The quencher did not interfere with the catalytic activity of nuclease, and the biosensor could be manipulated in either preaddition or postaddition manner with similar sensitivity. Moreover, the proposed sensing system allows for simultaneous and multicolor analysis of several oligonucleotides in homogeneous solution, demonstrating its potential application in the rapid screening of multiple biotargets.

  4. Dendrimer-based biosensor for chemiluminescent detection of DNA hybridization

    Liu, P.; Hun, X.; Qing, H.

    2011-01-01

    We report on a highly sensitive chemiluminescent (CL) biosensor for the sequence-specific detection of DNA using a novel bio barcode DNA probe modified with gold nanoparticles that were covered with a dendrimer. The modified probe is composed of gold nanoparticles, a dendrimer, the CL reagent, and the DNA. The capture probe DNA was immobilized on magnetic beads covered with gold. It first hybridizes with the target DNA and then with one terminal end of the signal DNA on the barcoded DNA probe. CL was generated by adding H 2 O 2 and Co(II) ions as the catalyst. The immobilization of dendrimer onto the gold nanoparticles can significantly enhance sensitivity and gives a detection limit of 6 fmol L -1 of target DNA. (author)

  5. Simultaneous Profiling of DNA Mutation and Methylation by Melting Analysis Using Magnetoresistive Biosensor Array

    Rizzi, Giovanni; Lee, Jung-Rok; Dahl, Christina

    2017-01-01

    specificity. Genomic (mutation) or bisulphite-treated (methylation) DNA is amplified using nondiscriminatory primers, and the amplicons are then hybridized to a giant magnetoresistive (GMR) biosensor array followed by melting curve measurements. The GMR biosensor platform offers scalable multiplexed detection...

  6. The effect of pH and DNA concentration on organic thin-film transistor biosensors

    Khan, Hadayat Ullah

    2012-03-01

    Organic electronics are beginning to attract more interest for biosensor technology as they provide an amenable interface between biology and electronics. Stable biosensor based on electronic detection platform would represent a significant advancement in technology as costs and analysis time would decrease immensely. Organic materials provide a route toward that goal due to their compatibility with electronic applications and biological molecules. In this report, we detail the effects of experimental parameters, such as pH and concentration, toward the selective detection of DNA via surface-bound peptide nucleic acid (PNA) sequences on organic transistor biosensors. The OTFT biosensors are fabricated with thin-films of the organic semiconductor, 5,5′-bis-(7-dodecyl-9H-fluoren-2-yl)-2,2′-bithiophene (DDFTTF), in which they exhibit a stable mobility of 0.2 cm 2 V -1 s -1 in buffer solutions (phosphate-buffer saline, pH 7.4 or sodium acetate, pH 7). Device performance were optimized to minimize the deleterious effects of pH on gate-bias stress such that the sensitivity toward DNA detection can be improved. In titration experiments, the surface-bound PNA probes were saturated with 50 nM of complementary target DNA, which required a 10-fold increase in concentration of single-base mismatched target DNA to achieve a similar surface saturation. The binding constant of DNA on the surface-bound PNA probes was determined from the concentration-dependent response (titration measurements) of our organic transistor biosensors. © 2011 Elsevier B.V. All rights reserved.

  7. The effect of pH and DNA concentration on organic thin-film transistor biosensors

    Khan, Hadayat Ullah; Roberts, Mark E.; Johnson, Olasupo B.; Knoll, Wolfgang; Bao, Zhenan

    2012-01-01

    Organic electronics are beginning to attract more interest for biosensor technology as they provide an amenable interface between biology and electronics. Stable biosensor based on electronic detection platform would represent a significant advancement in technology as costs and analysis time would decrease immensely. Organic materials provide a route toward that goal due to their compatibility with electronic applications and biological molecules. In this report, we detail the effects of experimental parameters, such as pH and concentration, toward the selective detection of DNA via surface-bound peptide nucleic acid (PNA) sequences on organic transistor biosensors. The OTFT biosensors are fabricated with thin-films of the organic semiconductor, 5,5′-bis-(7-dodecyl-9H-fluoren-2-yl)-2,2′-bithiophene (DDFTTF), in which they exhibit a stable mobility of 0.2 cm 2 V -1 s -1 in buffer solutions (phosphate-buffer saline, pH 7.4 or sodium acetate, pH 7). Device performance were optimized to minimize the deleterious effects of pH on gate-bias stress such that the sensitivity toward DNA detection can be improved. In titration experiments, the surface-bound PNA probes were saturated with 50 nM of complementary target DNA, which required a 10-fold increase in concentration of single-base mismatched target DNA to achieve a similar surface saturation. The binding constant of DNA on the surface-bound PNA probes was determined from the concentration-dependent response (titration measurements) of our organic transistor biosensors. © 2011 Elsevier B.V. All rights reserved.

  8. An ultrasensitive electrochemical DNA biosensor based on a copper oxide nanowires/single-walled carbon nanotubes nanocomposite

    Chen, Mei; Hou, Changjun; Huo, Danqun; Yang, Mei; Fa, Huanbao

    2016-01-01

    Graphical abstract: A novel and sensitive electrochemical biosensor based on hybrid nanocomposite consisting of copper oxide nanowires (CuO NWs) and carboxyl-functionalized single-walled carbon nanotubes (SWCNTs-COOH) was first developed for the detection of the specific-sequence target DNA. This schematic represents the fabrication procedure of our DNA biosensor. - Highlights: • An ultrasensitive DNA electrochemical biosensor was developed. • CuO NWs entangled with the SWCNTs formed a mesh structure with good conductivity. • It is the first time use of CuONWs-SWCNTs hybrid nanocomposite for DNA detection. • The biosensor is simple, selective, stable, and sensitive. • The biosensor has great potential for use in analysis of real samples. - Abstract: Here, we developed a novel and sensitive electrochemical biosensor to detect specific-sequence target DNA. The biosensor was based on a hybrid nanocomposite consisting of copper oxide nanowires (CuO NWs) and carboxyl-functionalized single-walled carbon nanotubes (SWCNTs-COOH). The resulting CuO NWs/SWCNTs layers exhibited a good differential pulse voltammetry (DPV) current response for the target DNA sequences, which we attributed to the properties of CuO NWs and SWCNTs. CuO NWs and SWCNTs hybrid composites with highly conductive and biocompatible nanostructure were characterized by transmission electron microscopy (TEM), scanning electron microscopy (SEM), and cyclic voltammetry (CV). Immobilization of the probe DNA on the electrode surface was largely improved due to the unique synergetic effect of CuO NWs and SWCNTs. DPV was applied to monitor the DNA hybridization event, using adriamycin as an electrochemical indicator. Under optimal conditions, the peak currents of adriamycin were linear with the logarithm of target DNA concentrations (ranging from 1.0 × 10"−"1"4 to 1.0 × 10"−"8 M), with a detection limit of 3.5 × 10"−"1"5 M (signal/noise ratio of 3). The biosensor also showed high selectivity to

  9. An ultrasensitive electrochemical DNA biosensor based on a copper oxide nanowires/single-walled carbon nanotubes nanocomposite

    Chen, Mei [Key Laboratory of Biorheology Science and Technology, Ministry of Education, College of Bioengineering, Chongqing University, Chongqing 400044 (China); Hou, Changjun, E-mail: houcj@cqu.edu.cn [Key Laboratory of Biorheology Science and Technology, Ministry of Education, College of Bioengineering, Chongqing University, Chongqing 400044 (China); National Key Laboratory of Fundamental Science of Micro/Nano-Device and System Technology, Chongqing University, Chongqing 400044 (China); Huo, Danqun [Key Laboratory of Biorheology Science and Technology, Ministry of Education, College of Bioengineering, Chongqing University, Chongqing 400044 (China); National Key Laboratory of Fundamental Science of Micro/Nano-Device and System Technology, Chongqing University, Chongqing 400044 (China); Yang, Mei [Key Laboratory of Biorheology Science and Technology, Ministry of Education, College of Bioengineering, Chongqing University, Chongqing 400044 (China); Fa, Huanbao [College of Chemistry and Chemical Engineering, Chongqing University, Chongqing 400044 (China)

    2016-02-28

    Graphical abstract: A novel and sensitive electrochemical biosensor based on hybrid nanocomposite consisting of copper oxide nanowires (CuO NWs) and carboxyl-functionalized single-walled carbon nanotubes (SWCNTs-COOH) was first developed for the detection of the specific-sequence target DNA. This schematic represents the fabrication procedure of our DNA biosensor. - Highlights: • An ultrasensitive DNA electrochemical biosensor was developed. • CuO NWs entangled with the SWCNTs formed a mesh structure with good conductivity. • It is the first time use of CuONWs-SWCNTs hybrid nanocomposite for DNA detection. • The biosensor is simple, selective, stable, and sensitive. • The biosensor has great potential for use in analysis of real samples. - Abstract: Here, we developed a novel and sensitive electrochemical biosensor to detect specific-sequence target DNA. The biosensor was based on a hybrid nanocomposite consisting of copper oxide nanowires (CuO NWs) and carboxyl-functionalized single-walled carbon nanotubes (SWCNTs-COOH). The resulting CuO NWs/SWCNTs layers exhibited a good differential pulse voltammetry (DPV) current response for the target DNA sequences, which we attributed to the properties of CuO NWs and SWCNTs. CuO NWs and SWCNTs hybrid composites with highly conductive and biocompatible nanostructure were characterized by transmission electron microscopy (TEM), scanning electron microscopy (SEM), and cyclic voltammetry (CV). Immobilization of the probe DNA on the electrode surface was largely improved due to the unique synergetic effect of CuO NWs and SWCNTs. DPV was applied to monitor the DNA hybridization event, using adriamycin as an electrochemical indicator. Under optimal conditions, the peak currents of adriamycin were linear with the logarithm of target DNA concentrations (ranging from 1.0 × 10{sup −14} to 1.0 × 10{sup −8} M), with a detection limit of 3.5 × 10{sup −15} M (signal/noise ratio of 3). The biosensor also showed high

  10. DNA biosensor by self-assembly of carbon nanotubes and DNA to detect riboflavin

    Li Jing [College of Chemistry and Chemical Engineering. Chongqing University, ChongQing, 400044 (China); Zhang Yunhuai, E-mail: xp2031@163.com [College of Chemistry and Chemical Engineering. Chongqing University, ChongQing, 400044 (China); Yang Tongyi [School of Life Science. NanJing University, Nanjing, 210093 (China); Zhang Huai [Liming Research Institute of Chemical Industry, LuoYang, 471001 (China); Yang Yixuan [State Key Laboratory of Chemical Resource Engineering. Beijing University of Chemical Technology, Beijing 100029 (China); Xiao Peng [College of Mathematics and Physics, Chongqing University, Chongqing 400044 (China)

    2009-10-15

    The fabrication of biosensors via self-assembly of single-walled carbon nanotubes (SWNTs) and DNA on a platinum electrode was presented in this paper. The carboxylic SWNTs were assembled on an amine-modified platinum electrode surface and followed by the assembly of NH{sub 2}-DNA with the carboxyl-amine coupling. The decorated surface was characterized by Field Emission Electron Microscopy (FEG-SEM) and electrochemical experiments, which showed that the reaction of DNA-SWNTs biosensor was quasi-reversible. The mechanism of DNA and riboflavin (VB{sub 2}) was studied by cyclic voltammetry and UV-Vis spectroscopy. The fabricated SWNTs-reinforced biosensor exhibits high sensitivity and low detection limit for the tested VB{sub 2} compared to the reported methods.

  11. A DNA biosensor based on the electrocatalytic oxidation of amine by a threading intercalator

    Gao Zhiqiang; Tansil, Natalia

    2009-01-01

    An electrochemical biosensor for the detection of DNA based a peptide nucleic acid (PNA) capture probe (CP) modified indium tin oxide electrode (ITO) is described in this report. After hybridization, a threading intercalator, N,N'-bis[(3-propyl)-imidazole]-1,4,5,8-naphthalene diimide (PIND) imidazole complexed with Ru(bpy) 2 Cl (PIND-Ru, bpy = 2,2'-bipyridine), was introduced to the biosensor. PIND-Ru selectively intercalated to double-stranded DNA (ds-DNA) and became immobilized on the biosensor surface. Voltammetric tests showed highly stable and reversible electrochemical oxidation/reduction processes and the peak currents can directly be utilized for DNA quantification. When the tests were conducted in an amine-containing medium, Tris-HCl buffer for example, a remarkable improvement in the voltammetric response and noticeable enhancements of voltammetric and amperometric sensitivities were observed due to the electrocatalytic activity of the [Ru(bpy) 2 Cl] redox moieties. Electrocatalytic current was observed when as little as 3.0 attomoles of DNA was present in the sample solution

  12. Effect of DNA type on response of DNA biosensor for carcinogens

    Sani, Nor Diyana bt. Md.; Heng, Lee Yook; Surif, Salmijah; Lazim, Azwani Mat

    2013-11-01

    Carcinogens are cancer causing chemicals that can bind to DNA and cause damage to the DNA. These chemicals are available everywhere including in water, air, soil and food. Therefore, a sensor that can detect the presence of these chemicals will be a very useful tool. Since carcinogens bind to DNA, DNA can be used as the biological element in a biosensor. This study has utilized different types of DNA in a biosensor for carcinogen detection. The DNAs include double stranded calf thymus DNA, single stranded calf thymus DNA and guanine rich single stranded DNA. The modified SPE was exposed to a carcinogen followed by interaction with methylene blue which acts as the electroactive indicator. The SPE was then analysed using differential pulse voltammetry (DPV). Optimization studies were conducted for MB concentration and accumulation time, DNA concentration, as well as effect of buffer concentration, buffer pH and ionic strength. The performance of the biosensor was tested on a group 1 carcinogen, formaldehyde. The results indicated that the usage of guanine rich single stranded DNA also gives higher response as carcinogens prefer to bind with guanine compared to other bases.

  13. Application of Gold Nanoparticles for Electrochemical DNA Biosensor

    Ahmed Mishaal Mohammed

    2014-01-01

    Full Text Available An electrochemical DNA biosensor was successfully fabricated by using (3-aminopropyltriethoxysilane (APTES as a linker molecule combined with the gold nanoparticles (GNPs on thermally oxidized SiO2 thin films. The SiO2 thin films surface was chemically modified with a mixture of APTES and GNPs for DNA detection in different time periods of 30 min, 1 hour, 2 hours, and 4 hours, respectively. The DNA immobilization and hybridization were conducted by measuring the differences of the capacitance value within the frequency range of 1 Hz to 1 MHz. The capacitance values for DNA immobilization were 160 μF, 77.8 μF, 70 μF, and 64.6 μF, respectively, with the period of time from 30 min to 4 hours. Meanwhile the capacitance values for DNA hybridization were 44 μF, 54 μF, 55 μF, and 61.5 μF, respectively. The capacitance value of bare SiO2 thin film was 0.42 μF, which was set as a base line for a reference in DNA detection. The differences of the capacitance value between the DNA immobilization and hybridization revealed that the modified SiO2 thin films using APTES and GNPs were successfully developed for DNA detection.

  14. Biosensors.

    Rechnitz, Garry A.

    1988-01-01

    Describes theory and principles behind biosensors that incorporate biological components as part of a sensor or probe. Projects major applications in medicine and veterinary medicine, biotechnology, food and agriculture, environmental studies, and the military. Surveys current use of biosensors. (ML)

  15. Improved biosensor-based detection system

    2015-01-01

    Described is a new biosensor-based detection system for effector compounds, useful for in vivo applications in e.g. screening and selecting of cells which produce a small molecule effector compound or which take up a small molecule effector compound from its environment. The detection system...... comprises a protein or RNA-based biosensor for the effector compound which indirectly regulates the expression of a reporter gene via two hybrid proteins, providing for fewer false signals or less 'noise', tuning of sensitivity or other advantages over conventional systems where the biosensor directly...

  16. Nanostructured ZnO-based biosensor: DNA immobilization and hybridization

    Ahmed Mishaal Mohammed

    2017-09-01

    Full Text Available An electrochemical DNA biosensor was successfully fabricated by using (3-aminopropyl triethoxysilane (APTES with zinc oxide (ZnO nanorods synthesized using microwave-assisted chemical bath deposition method on thermally oxidized SiO2 thin films. The structural quality and morphology of the ZnO nanorods were determined by employing scanning electron microscopy (SEM and X-ray diffraction (XRD, which show a hexagonal wurtzite structure with a preferred orientation along the (101 direction. The surface of the SiO2 thin films was chemically modified with ZnO. Label-free detection DNA immobilization and hybridization were performed using potassium hexacyanoferrate with cyclic voltammetry (CV measurements. The capacitance, permittivity, and conductivity profiles of the fabricated sensor clearly indicate DNA immobilization and hybridization. Results show that the capacitance values of bare, ZnO- modified surface immobilization, and target DNA hybridization were 46×10−12F, 47×10−8F, 27μF, and 17μF, respectively, at 1Hz. The permittivity measurement increased from 3.94×103 to 251×103 and 165×103 at the frequency range of approximately 200 to 1Hz for bare and DNA immobilization and hybridization, respectively. The measured conductivity values for the bare, ZnO, immobilized, and hybridization device were 2.4×10−9, 10×10−8, 1.6×10−7, and 1.3×10−7Scm−1, respectively. Keywords: Zinc oxide, Biosensor, Capacitance, Permittivity, Conductivity

  17. Electrochemical DNA biosensor based on avidin-biotin conjugation for influenza virus (type A) detection

    Chung, Da-Jung; Kim, Ki-Chul; Choi, Seong-Ho

    2011-09-01

    An electrochemical DNA biosensor (E-DNA biosensor) was fabricated by avidin-biotin conjugation of a biotinylated probe DNA, 5'-biotin-ATG AGT CTT CTA ACC GAG GTC GAA-3', and an avidin-modified glassy carbon electrode (GCE) to detect the influenza virus (type A). An avidin-modified GCE was prepared by the reaction of avidin and a carboxylic acid-modified GCE, which was synthesized by the electrochemical reduction of 4-carboxyphenyl diazonium salt. The current value of the E-DNA biosensor was evaluated after hybridization of the probe DNA and target DNA using cyclic voltammetry (CV). The current value decreased after the hybridization of the probe DNA and target DNA. The DNA that was used follows: complementary target DNA, 5'-TTC GAC CTC GGT TAG AAG ACT CAT-3' and two-base mismatched DNA, 5'-TTC GAC AGC GGT TAT AAG ACT CAT-3'.

  18. Fluorescent carbon nanoparticle-based lateral flow biosensor for ultrasensitive detection of DNA.

    Takalkar, Sunitha; Baryeh, Kwaku; Liu, Guodong

    2017-12-15

    We report a fluorescent carbon nanoparticle (FCN)-based lateral flow biosensor for ultrasensitive detection of DNA. Fluorescent carbon nanoparticle with a diameter of around 15nm was used as a tag to label a detection DNA probe, which was complementary with the part of target DNA. A capture DNA probe was immobilized on the test zone of the lateral flow biosensor. Sandwich-type hybridization reactions among the FCN-labeled DNA probe, target DNA and capture DNA probe were performed on the lateral flow biosensor. In the presence of target DNA, FCNs were captured on the test zone of the biosensor and the fluorescent intensity of the captured FCNs was measured with a portable fluorescent reader. After systematic optimizations of experimental parameters (the components of running buffers, the concentration of detection DNA probe used in the preparation of FCN-DNA conjugates, the amount of FCN-DNA dispensed on the conjugate pad and the dispensing cycles of the capture DNA probes on the test-zone), the biosensor could detect a minimum concentration of 0.4 fM DNA. This study provides a rapid and low-cost approach for DNA detection with high sensitivity, showing great promise for clinical application and biomedical diagnosis. Copyright © 2017 Elsevier B.V. All rights reserved.

  19. Voltammetric Detection of Damage to DNA by Arsenic Compounds at a DNA Biosensor

    R. Wennrich

    2005-11-01

    Full Text Available DNA biosensor can serve as a powerfull tool for simple in vitro tests of chemicaltoxicity. In this paper, damage to DNA attached to the surface of screen-printed carbonelectrode by arsenic compounds in solution is described. Using the Co(III complex with1,10-phenanthroline, [Co(phen3]3+ , as an electrochemical DNA marker and the Ru(IIcomplex with bipyridyne, [Ru(bipy3]2+ , as a DNA oxidation catalyst, the portion of originaldsDNA which survives an incubation of the biosensor in the cleavage medium was evaluated.The model cleavage mixture was composed of an arsenic compound at 10-3 mol/Lconcentration corresponding to real contaminated water, 2x10-4 mol/L Fe(II or Cu(II ions asthe redox catalyst, and 1.5x10-2 mol/L hydrogen peroxide. DNA damage by arsenite,dimethylarsinic acid as the metabolic product of inorganic arsenic and widely used herbicide,as well as phenylarsonic acid and p-arsanilic acid as the representatives of feed additives wasfound in difference to arsenate.

  20. Label-free DNA biosensor based on resistance change of platinum nanoparticles assemblies.

    Skotadis, Evangelos; Voutyras, Konstantinos; Chatzipetrou, Marianneza; Tsekenis, Georgios; Patsiouras, Lampros; Madianos, Leonidas; Chatzandroulis, Stavros; Zergioti, Ioanna; Tsoukalas, Dimitris

    2016-07-15

    A novel nanoparticle based biosensor for the fast and simple detection of DNA hybridization events is presented. The sensor utilizes hybridized DNA's charge transport properties, combining them with metallic nanoparticle networks that act as nano-gapped electrodes. The DNA hybridization events can be detected by a significant reduction in the sensor's resistance due to the conductive bridging offered by hybridized DNA. By modifying the nanoparticle surface coverage, which can be controlled experimentally being a function of deposition time, and the structural properties of the electrodes, an optimized biosensor for the in situ detection of DNA hybridization events is ultimately fabricated. The fabricated biosensor exhibits a wide response range, covering four orders of magnitude, a limit of detection of 1nM and can detect a single base pair mismatch between probe and complementary DNA. Copyright © 2016 Elsevier B.V. All rights reserved.

  1. A Graphene-Based Biosensing Platform Based on Regulated Release of an Aptameric DNA Biosensor.

    Mao, Yu; Chen, Yongli; Li, Song; Lin, Shuo; Jiang, Yuyang

    2015-11-09

    A novel biosensing platform was developed by integrating an aptamer-based DNA biosensor with graphene oxide (GO) for rapid and facile detection of adenosine triphosphate (ATP, as a model target). The DNA biosensor, which is locked by GO, is designed to contain two sensing modules that include recognition site for ATP and self-replication track that yields the nicking domain for Nt.BbvCI. By taking advantage of the different binding affinity of single-stranded DNA, double-stranded DNA and aptamer-target complex toward GO, the DNA biosensor could be efficiently released from GO in the presence of target with the help of a complementary DNA strand (CPDNA) that partially hybridizes to the DNA biosensor. Then, the polymerization/nicking enzyme synergetic isothermal amplification could be triggered, leading to the synthesis of massive DNA amplicons, thus achieving an enhanced sensitivity with a wide linear dynamic response range of four orders of magnitude and good selectivity. This biosensing strategy expands the applications of GO-DNA nanobiointerfaces in biological sensing, showing great potential in fundamental research and biomedical diagnosis.

  2. Electrochemical behavior of antioxidants: Part 3. Electrochemical studies of caffeic Acid–DNA interaction and DNA/carbon nanotube biosensor for DNA damage and protection

    Refat Abdel-Hamid

    2016-05-01

    Full Text Available Multi-walled carbon nanotubes-modified glassy carbon electrode biosensor was used for electrochemical studies of caffeic acid–dsDNA interaction in phosphate buffer solution at pH 2.12. Caffeic acid, CAF, shows a well-defined cyclic voltammetric wave. Its anodic peak current decreases and the peak potential shifts positively on the addition of dsDNA. This behavior was ascribed to an interaction of CAF with dsDNA giving CAF–dsDNA complex by intercalative binding mode. The apparent binding constant of CAF–dsDNA complex was determined using amperometric titrations. The oxidative damage caused to DNA was detected using the biosensor. The damage caused by the reactive oxygen species, hydroxyl radical (·−OH generated by the Fenton system on the DNA-biosensor was detected. It was found that CAF has the capability of scavenging the hydroxide radical and protecting the DNA immobilized on the GCE surface.

  3. Droplet-based microscale colorimetric biosensor for multiplexed DNA analysis via a graphene nanoprobe

    Xiang Xia; Luo Ming; Shi Liyang; Ji Xinghu; He Zhike

    2012-01-01

    Graphical abstract: With a microvalve manipulate technique combined with droplet platform, a microscale fluorescence-based colorimetric sensor for multiplexed DNA analysis is developed via a graphene nanoprobe. Highlights: ► A quantitative detection for multiplexed DNA is first realized on droplet platform. ► The DNA detection is relied on a simple fluorescence-based colorimetric method. ► GO is served as a quencher for two different DNA fluorescent probes. ► This present work provides a rapid, sensitive, visual and convenient detection tool for droplet biosensor. - Abstract: The development of simple and inexpensive DNA detection strategy is very significant for droplet-based microfluidic system. Here, a droplet-based biosensor for multiplexed DNA analysis is developed with a common imaging device by using fluorescence-based colorimetric method and a graphene nanoprobe. With the aid of droplet manipulation technique, droplet size adjustment, droplet fusion and droplet trap are realized accurately and precisely. Due to the high quenching efficiency of graphene oxide (GO), in the absence of target DNAs, the droplet containing two single-stranded DNA probes and GO shows dark color, in which the DNA probes are labeled carboxy fluorescein (FAM) and 6-carboxy-X-rhodamine (ROX), respectively. The droplet changes from dark to bright color when the DNA probes form double helix with the specific target DNAs leading to the dyes far away from GO. This colorimetric droplet biosensor exhibits a quantitative capability for simultaneous detection of two different target DNAs with the detection limits of 9.46 and 9.67 × 10 −8 M, respectively. It is also demonstrated that this biosensor platform can become a promising detection tool in high throughput applications with low consumption of reagents. Moreover, the incorporation of graphene nanoprobe and droplet technique can drive the biosensor field one more step to some extent.

  4. Preparation of DNA biosensor application from fuel oil waste by functionalization and characterization of MWCNT

    Ahmed Mishaal Mohammed

    2017-11-01

    Full Text Available The potential of using a multi-wall carbon nanotube (MWCNT synthesized from a fuel oil waste of power plants has discovered for the first time for DNA biosensors application. The MWCNT surface morphologies were examined by field emission scanning electron microscopy (FE-SEM and atomic force microscopy (AFM. The thickness of the MWCNT was found 203nm and confirmed by FESEM. The electrochemical DNA biosensor was successfully developed using a MWCNT modified on SiO2 thin films. The capacitance measurements were performed to detect the sensitivity of DNA detection. The change in capacitance before and after immobilization of the DNA was measured in the frequency range of 1Hz to 1MHz. The results indicate that bare device exhibited the lowest capacitance value, which was 32.7μF. The capacitance value of the DNA immobilization increase to 52μF. The permittivity and conductivity also were examined to study the effect of the DNA immobilization toward the MWCNT modified surface. This present demonstrated that the MWCNT modified SiO2 a thin film was successfully fabricated for DNA biosensor detection. Keywords: Carbon nanotubes, Sensors, Thin films, Electrochemical DNA

  5. Studies on sildenafil citrate (Viagra) interaction with DNA using electrochemical DNA biosensor.

    Rauf, Sakandar; Nawaz, Haq; Akhtar, Kalsoom; Ghauri, Muhammad A; Khalid, Ahmad M

    2007-05-15

    The interaction of sildenafil citrate (Viagra) with DNA was studied by using an electrochemical DNA biosensor. The binding mechanism of sildenafil citrate was elucidated by using constant current potentiometry and differential pulse voltammetry at DNA-modified glassy carbon electrode. The decrease in the guanine oxidation peak area or peak current was used as an indicator for the interaction in 0.2M acetate buffer (pH 5). The binding constant (K) values obtained were 2.01+/-0.05 x 10(5) and 1.97+/-0.01 x 10(5)M(-1) with constant current potentiometry and differential pulse voltammetry, respectively. A linear dependence of the guanine peak area or peak current was observed within the range of 1-40 microM sildenafil citrate with slope=-2.74 x 10(-4)s/microM, r=0.989 and slope=-2.78 x 10(-3)microA/microM, r=0.995 by using constant current potentiometry and differential pulse voltammetry, respectively. Additionally, binding constant values for sildenafil citrate-DNA interaction were determined for the pH range of 4-8 and in biological fluids (serum and urine) at pH 5. The influence of sodium and calcium ions was also studied to elucidate the mechanism of sildenafil citrate-DNA interaction under different solution conditions. The present study may prove to be helpful in extending our understanding of the anticancer activity of sildenafil citrate from cellular to DNA level.

  6. A DNA biosensor for molecular diagnosis of Aeromonas hydrophila using zinc sulfide nanospheres

    M. Negahdary

    2017-07-01

    Full Text Available Today, identification of pathogenic bacteria using modern and accurate methods is inevitable. Integration in electrochemical measurements with nanotechnology has led to the design of efficient and sensitive DNA biosensors against bacterial agents. Here, efforts were made to detect Aeromonas hydrophila using aptamers as probes and zinc sulfide (ZnS nanospheres as signal enhancers and electron transfer facilitators. After modification of the working electrode area (in a screen-printed electrode with ZnS nanospheres through electrodeposition, the coated surface of a modified electrode with ZnS nanospheres was investigated through scanning electron microscopy (SEM. The size of synthesized ZnS nanospheres was estimated at about 20–50 nm and their shape was in the form of porous plates in microscopic observations. All electrochemical measurements were performed using cyclic voltammetry (CV, electrochemical impedance spectroscopy (EIS, and constant potential amperometry (CPA techniques. The designed DNA biosensor was able to detect deoxyribonucleic acid (DNA of Aeromonas hydrophila in the range 1.0  ×  10−4 to 1.0  ×  10−9 mol L−1; the limit of detection (LOD in this study was 1  ×  10−13 mol L−1. This DNA biosensor showed satisfactory thermal and pH stability. Reproducibility for this DNA biosensor was measured and the relative standard deviation (RSD of the performance of this DNA biosensor was calculated as 5 % during 42 days.

  7. Spiky gold shells on magnetic particles for DNA biosensors.

    Bedford, Erin E; Boujday, Souhir; Pradier, Claire-Marie; Gu, Frank X

    2018-05-15

    Combined separation and detection of biomolecules has the potential to speed up and improve the sensitivity of disease detection, environmental testing, and biomolecular analysis. In this work, we synthesized magnetic particles coated with spiky nanostructured gold shells and used them to magnetically separate out and detect oligonucleotides using SERS. The distance dependence of the SERS signal was then harnessed to detect DNA hybridization using a Raman label bound to a hairpin probe. The distance of the Raman label from the surface increased upon complementary DNA hybridization, leading to a decrease in signal intensity. This work demonstrates the use of the particles for combined separation and detection of oligonucleotides without the use of an extrinsic tag or secondary hybridization step. Copyright © 2018 Elsevier B.V. All rights reserved.

  8. Sensitive DNA impedance biosensor for detection of cancer, chronic lymphocytic leukemia, based on gold nanoparticles/gold modified electrode

    Ensafi, Ali A.; Taei, M.; Rahmani, H.R.; Khayamian, T.

    2011-01-01

    Highlights: → Chronic lymphocytic leukemia causes an increase in the number of white blood cells. → We introduced a highly sensitive biosensor for the detection of chronic lymphocytic leukemia. → A suitable 25-mer ssDNA probe was immobilized on the surface of the gold nanoparticles. → We used electrochemical impedance spectroscopy as a suitable tool for the detection. → Detection of chronic lymphocytic leukemia in blood sample was checked using the sensor. - Abstract: A simple and sensitive DNA impedance sensor was prepared for the detection of chronic lymphocytic leukemia. The DNA electrochemical biosensor is worked based on the electrochemical impedance spectroscopic (EIS) detection of the sequence-specific DNA related to chronic lymphocytic leukemia. The ssDNA probe was immobilized on the surface of the gold nanoparticles. Compared to the bare gold electrode, the gold nanoparticles-modified electrode could improve the density of the probe DNA attachment and hence the sensitivity of the DNA sensor greatly. Cyclic voltammetry (CV) and electrochemical impedance spectroscopy were performed in a solution containing 1.0 mmol L -1 K 3 [Fe(CN) 6 ]/K 4 [Fe(CN) 6 ] and 50 mmol L -1 phosphate buffer saline pH 6.87 plus 50 mmol L -1 KCl. In the CV studied, the potential was cycled from 0.0 to +0.65 V with a scan rate of 50 mV s -1 . Using EIS, the difference of the electron transfer resistance (ΔR et ) was linear with the logarithm of the complementary oligonucleotides sequence concentrations in the range of 7.0 x 10 -12 -2.0 x 10 -7 mol L -1 , with a detection limit of 1.0 x 10 -12 mol L -1 . In addition, the DNA sensor showed a good reproducibility and stability during repeated regeneration and hybridization cycles.

  9. A sensitive DNA biosensor based on a facile sulfamide coupling reaction for capture probe immobilization

    Wang, Qingxiang; Ding, Yingtao; Gao, Feng; Jiang, Shulian; Zhang, Bin; Ni, Jiancong; Gao, Fei

    2013-01-01

    Graphical abstract: A novel DNA biosensor was fabricated through a facile sulfamide coupling reaction between probe DNA and the sulfonic dye of 1-amino-2-naphthol-4-sulfonic acid that electrodeposited on a glassy carbon electrode. -- Highlights: •A versatile sulfonic dye of ANS was electrodeposited on a GCE. •A DNA biosensor was fabricated based on a facile sulfamide coupling reaction. •High probe DNA density of 3.18 × 10 13 strands cm −2 was determined. •A wide linear range and a low detection limit were obtained. -- Abstract: A novel DNA biosensor was fabricated through a facile sulfamide coupling reaction. First, the versatile sulfonic dye molecule of 1-amino-2-naphthol-4-sulfonate (AN-SO 3 − ) was electrodeposited on the surface of a glassy carbon electrode (GCE) to form a steady and ordered AN-SO 3 − layer. Then the amino-terminated capture probe was covalently grafted to the surface of SO 3 − -AN deposited GCE through the sulfamide coupling reaction between the amino groups in the probe DNA and the sulfonic groups in the AN-SO 3 − . The step-by-step modification process was characterized by electrochemistry and attenuated total reflectance Fourier transform infrared (ATR-FTIR) spectroscopy. Using Ru(NH 3 ) 6 3+ as probe, the probe density and the hybridization efficiency of the biosensor were determined to be 3.18 × 10 13 strands cm −2 and 86.5%, respectively. The hybridization performance of the biosensor was examined by differential pulse voltammetry using Co(phen) 3 3+/2+ (phen = 1,10-phenanthroline) as the indicator. The selectivity experiments showed that the biosensor presented distinguishable response after hybridization with the three-base mismatched, non-complementary and complementary sequences. Under the optimal conditions, the oxidation peak currents of Co(phen) 3 3+/2+ increased linearly with the logarithm values of the concentration of the complementary sequences in the range from 1.0 × 10 −13 M to 1.0 × 10 −8 M with

  10. Sensitivity analysis for improving nanomechanical photonic transducers biosensors

    Fariña, D; Álvarez, M; Márquez, S; Lechuga, L M; Dominguez, C

    2015-01-01

    The achievement of high sensitivity and highly integrated transducers is one of the main challenges in the development of high-throughput biosensors. The aim of this study is to improve the final sensitivity of an opto-mechanical device to be used as a reliable biosensor. We report the analysis of the mechanical and optical properties of optical waveguide microcantilever transducers, and their dependency on device design and dimensions. The selected layout (geometry) based on two butt-coupled misaligned waveguides displays better sensitivities than an aligned one. With this configuration, we find that an optimal microcantilever thickness range between 150 nm and 400 nm would increase both microcantilever bending during the biorecognition process and increase optical sensitivity to 4.8   ×   10 −2  nm −1 , an order of magnitude higher than other similar opto-mechanical devices. Moreover, the analysis shows that a single mode behaviour of the propagating radiation is required to avoid modal interference that could misinterpret the readout signal. (paper)

  11. Fabrication of Ultrasensitive Field-Effect Transistor DNA Biosensors by a Directional Transfer Technique Based on CVD-Grown Graphene.

    Zheng, Chao; Huang, Le; Zhang, Hong; Sun, Zhongyue; Zhang, Zhiyong; Zhang, Guo-Jun

    2015-08-12

    Most graphene field-effect transistor (G-FET) biosensors are fabricated through a routine process, in which graphene is transferred onto a Si/SiO2 substrate and then devices are subsequently produced by micromanufacture processes. However, such a fabrication approach can introduce contamination onto the graphene surface during the lithographic process, resulting in interference for the subsequent biosensing. In this work, we have developed a novel directional transfer technique to fabricate G-FET biosensors based on chemical-vapor-deposition- (CVD-) grown single-layer graphene (SLG) and applied this biosensor for the sensitive detection of DNA. A FET device with six individual array sensors was first fabricated, and SLG obtained by the CVD-growth method was transferred onto the sensor surface in a directional manner. Afterward, peptide nucleic acid (PNA) was covalently immobilized on the graphene surface, and DNA detection was realized by applying specific target DNA to the PNA-functionalized G-FET biosensor. The developed G-FET biosensor was able to detect target DNA at concentrations as low as 10 fM, which is 1 order of magnitude lower than those reported in a previous work. In addition, the biosensor was capable of distinguishing the complementary DNA from one-base-mismatched DNA and noncomplementary DNA. The directional transfer technique for the fabrication of G-FET biosensors is simple, and the as-constructed G-FET DNA biosensor shows ultrasensitivity and high specificity, indicating its potential application in disease diagnostics as a point-of-care tool.

  12. pH-dependence of the optical bio-sensor based on DNA-carbon nanotube

    Vu Thuy Huong; Quach Kha Quang; Tran Thanh Thuy; Phan Duc Anh; Ngo Van Thanh; Nguyen Ai Viet

    2010-01-01

    In 2006, Daniel A. Heller et al. [1] demonstrated that carbon nanotubes (CNNTs) wrapped with DNA can be placed inside living cells and detect trace amounts of harmful contaminants using near infrared light. This discovery could lead to new types of optical sensors and biomarkers at the sub cellular level. The working principle of this optical bio-sensor from DNA and CNNTs can be explained by a simple theoretical model which was introduced in [3]. In this paper, the pH-dependence of DNA and the pH-dependence of solution around CNNTs are shown by using data analysis method. By substituting them into the same model, the pH-dependence of DNA-wrapped CNNTs was elicited in this paper. The range of parameters for workable conditions of this bio-sensor was indicated that the solution should have pH from 6 to 9 and the concentration of ions should be more than a critical value. These results are according to the experimental data and the deduction about pH and salt concentration in solution. They are very useful as using such a new bio-sensor like this in living environment. (author)

  13. A Highly Sensitive Electrochemical DNA Biosensor from Acrylic-Gold Nano-composite for the Determination of Arowana Fish Gender

    Rahman, Mahbubur; Heng, Lee Yook; Futra, Dedi; Chiang, Chew Poh; Rashid, Zulkafli A.; Ling, Tan Ling

    2017-08-01

    The present research describes a simple method for the identification of the gender of arowana fish ( Scleropages formosus). The DNA biosensor was able to detect specific DNA sequence at extremely low level down to atto M regimes. An electrochemical DNA biosensor based on acrylic microsphere-gold nanoparticle (AcMP-AuNP) hybrid composite was fabricated. Hydrophobic poly(n-butylacrylate-N-acryloxysuccinimide) microspheres were synthesised with a facile and well-established one-step photopolymerization procedure and physically adsorbed on the AuNPs at the surface of a carbon screen printed electrode (SPE). The DNA biosensor was constructed simply by grafting an aminated DNA probe on the succinimide functionalised AcMPs via a strong covalent attachment. DNA hybridisation response was determined by differential pulse voltammetry (DPV) technique using anthraquinone monosulphonic acid redox probe as an electroactive oligonucleotide label (Table 1). A low detection limit at 1.0 × 10-18 M with a wide linear calibration range of 1.0 × 10-18 to 1.0 × 10-8 M ( R 2 = 0.99) can be achieved by the proposed DNA biosensor under optimal conditions. Electrochemical detection of arowana DNA can be completed within 1 hour. Due to its small size and light weight, the developed DNA biosensor holds high promise for the development of functional kit for fish culture usage.

  14. Development of Piezoelectric DNA-Based Biosensor for Direct Detection of Mycobacterium Tuberculosis in Clinical Specimens

    Thongchai KAEWPHINIT

    2010-02-01

    Full Text Available This study was focused on establishment of piezoelectric biosensor for direct detection of Mycobacterium tuberculosis (MTB in clinical specimens. The quartz crystal immobilized via 3-mercaptopropionic acid (MPA/avidin/DNA biotinylated probe on gold surface and hybridization of the DNA target to DNA biotinylated probe. The optimal concentration of MPA, avidin and 5’-biotinylated DNA probe for immobilization of specific DNA probe on gold surface were 15 mM, 0.1 mg/ml and 1.5 μM, respectively. The detection of genomic DNA digestion in the range from 0.5 to 30 μg/ml. The fabricated biosensor was evaluated through an examination of 200 samples. No cross hybridization were observed against M. avium complex (MAC and other microorganism. This target DNA preparation without amplification will reduce time consuming, costs, and the tedious step of amplification. This study can be extended to develop the new method which is high sensitivity, specificity, cheap, easy to use, and rapid for detection of MTB in many fields.

  15. Hydrogen peroxide biosensor based on DNA-Hb modified gold electrode

    Kafi, A.K.M.; Fan Yin; Shin, Hoon-Kyu; Kwon, Young-Soo

    2006-01-01

    A hydrogen peroxide (H 2 O 2 ) biosensor based on DNA-hemoglobin (Hb) modified electrode is described in this paper. The sensor was designed by DNA and hemoglobin dropletting onto gold electrode surface layer by layer. The sensor based on the direct electron transfer of iron of hemoglobin showed a well electrocatalytic response to the reduction of the H 2 O 2 . This sensor offered an excellent electrochemical response for H 2 O 2 concentration below micromole level with high sensitivity and selectivity and short response time. Experimental conditions influencing the biosensor performance such as, pH, potential were optimized and assessed. The levels of the RSD's ( 2 O 2 was observed from 10 to 120 μM with the detection limit of 0.4 μM (based on the S/N = 3)

  16. A single-surface electrochemical biosensor for the detection of DNA triplet repeat expansion

    Fojta, Miroslav; Horáková Brázdilová, Petra; Cahová, Kateřina; Pečinka, Petr

    2006-01-01

    Roč. 18, č. 2 (2006), s. 141-151 ISSN 1040-0397 R&D Projects: GA MPO(CZ) 1H-PK/42; GA AV ČR(CZ) IAA4004402 Institutional research plan: CEZ:AV0Z50040507 Keywords : DNA hybridization * electrochemical biosensor * enzyme-linked assay Subject RIV: BO - Biophysics Impact factor: 2.444, year: 2006

  17. Label-free detection of DNA hybridization and single point mutations in a nano-gap biosensor

    Zaffino, R L; Mir, M; Samitier, J

    2014-01-01

    We describe a conductance-based biosensor that exploits DNA-mediated long-range electron transport for the label-free and direct electrical detection of DNA hybridization. This biosensor platform comprises an array of vertical nano-gap biosensors made of gold and fabricated through standard photolithography combined with focused ion beam lithography. The nano-gap walls are covalently modified with short, anti-symmetric thiolated DNA probes, which are terminated by 19 bases complementary to both the ends of a target DNA strand. The nano-gaps are separated by a distance of 50nm, which was adjusted to fit the length of the DNA target plus the DNA probes. The hybridization of the target DNA closes the gap circuit in a switch on/off fashion, in such a way that it is readily detected by an increase in the current after nano-gap closure. The nano-biosensor shows high specificity in the discrimination of base-pair mismatching and does not require signal indicators or enhancing molecules. The design of the biosensor platform is applicable for multiplexed detection in a straightforward manner. The platform is well-suited to mass production, point-of-care diagnostics, and wide-scale DNA analysis applications. (paper)

  18. Conducting polymer based DNA biosensor for the detection of the Bacillus cereus group species

    Velusamy, Vijayalakshmi; Arshak, Khalil; Korostynska, Olga; Oliwa, Kamila; Adley, Catherine

    2009-05-01

    Biosensor designs are emerging at a significant rate and play an increasingly important role in foodborne pathogen detection. Conducting polymers are excellent tools for the fabrication of biosensors and polypyrrole has been used in the detection of biomolecules due to its unique properties. The prime intention of this paper was to pioneer the design and fabrication of a single-strand (ss) DNA biosensor for the detection of the Bacillus cereus (B.cereus) group species. Growth of B. cereus, results in production of several highly active toxins. Therefore, consumption of food containing >106 bacteria/gm may results in emetic and diarrhoeal syndromes. The most common source of this bacterium is found in liquid food products, milk powder, mixed food products and is of particular concern in the baby formula industry. The electrochemical deposition technique, such as cyclic voltammetry, was used to develop and test a model DNA-based biosensor on a gold electrode electropolymerized with polypyrrole. The electrically conducting polymer, polypyrrole is used as a platform for immobilizing DNA (1μg) on the gold electrode surface, since it can be more easily deposited from neutral pH aqueous solutions of pyrrolemonomers. The average current peak during the electrodeposition event is 288μA. There is a clear change in the current after hybridization of the complementary oligonucleotide (6.35μA) and for the noncomplementary oligonucleotide (5.77μA). The drop in current after each event was clearly noticeable and it proved to be effective.

  19. Detection of DNA and poly-l-lysine using CVD graphene-channel FET biosensors

    Kakatkar, Aniket; Craighead, H G; Abhilash, T S; Alba, R De; Parpia, J M

    2015-01-01

    A graphene channel field-effect biosensor is demonstrated for detecting the binding of double-stranded DNA and poly-l-lysine. Sensors consist of chemical vapor deposition graphene transferred using a clean, etchant-free transfer method. The presence of DNA and poly-l-lysine are detected by the conductance change of the graphene transistor. A readily measured shift in the Dirac voltage (the voltage at which the graphene’s resistance peaks) is observed after the graphene channel is exposed to solutions containing DNA or poly-l-lysine. The ‘Dirac voltage shift’ is attributed to the binding/unbinding of charged molecules on the graphene surface. The polarity of the response changes to positive direction with poly-l-lysine and negative direction with DNA. This response results in detection limits of 8 pM for 48.5 kbp DNA and 11 pM for poly-l-lysine. The biosensors are easy to fabricate, reusable and are promising as sensors of a wide variety of charged biomolecules. (paper)

  20. AFFINITY BIOSENSOR BASED ON SCREEN-PRINTED ELECTRODE MODIFIED WITH DNA FOR GENOTOXIC COMPOUNDS DETECTION

    Bambang Kuswandi

    2010-06-01

    Full Text Available An electrochemical method for the detection of the genotoxic compounds using a DNA-modified electrode was developed. This electrode was successfully used for the electrochemical detection of genotoxic compounds in water samples. The electrochemical results clearly demonstrated that, the development is related to the molecular interaction between the surface-linked DNA obtained from calf thymus and the target compounds, such as pollutants, in order to develop a simple device for rapid screening of genotoxic compounds in environmental samples. The detection of such compounds was measured by their effect on the oxidation signal of the guanine peak of the DNA immobilised on the surface of carbon based Screen-Printed Electrode (SPE in disposable mode, and monitored by square-wave voltametric analysis. The DNA biosensor is able to detect known intercalating and groove-binding genotoxic compounds such as Dioxin, Bisphenol A, PCBs, and Phtalates. Application to real water samples is discussed and reported.   Keywords: electrochemical, screen-printed electrode, DNA biosensor, genotoxic compounds

  1. Signal-off Electrochemiluminescence Biosensor Based on Phi29 DNA Polymerase Mediated Strand Displacement Amplification for MicroRNA Detection.

    Chen, Anyi; Gui, Guo-Feng; Zhuo, Ying; Chai, Ya-Qin; Xiang, Yun; Yuan, Ruo

    2015-06-16

    A target induced cycling strand displacement amplification (SDA) mediated by phi29 DNA polymerase (phi29) was first investigated and applied in a signal-off electrochemiluminescence (ECL) biosensor for microRNA (miRNA) detection. Herein, the target miRNA triggered the phi29-mediated SDA which could produce amounts of single-stranded DNA (assistant probe) with accurate and comprehensive nucleotide sequence. Then, the assistant probe hybridized with the capture probe and the ferrocene-labeled probe (Fc-probe) to form a ternary "Y" structure for ECL signal quenching by ferrocene. Therefore, the ECL intensity would decrease with increasing concentration of the target miRNA, and the sensitivity of biosensor would be promoted on account of the efficient signal amplification of the target induced cycling reaction. Besides, a self-enhanced Ru(II) ECL system was designed to obtain a stable and strong initial signal to further improve the sensitivity. The ECL assay for miRNA-21 detection is developed with excellent sensitivity of a concentration variation from 10 aM to 1.0 pM and limit of detection down to 3.3 aM.

  2. A fractal analysis of protein to DNA binding kinetics using biosensors.

    Sadana, Ajit

    2003-08-01

    A fractal analysis of a confirmative nature only is presented for the binding of estrogen receptor (ER) in solution to its corresponding DNA (estrogen response element, ERE) immobilized on a sensor chip surface [J. Biol. Chem. 272 (1997) 11384], and for the cooperative binding of human 1,25-dihydroxyvitamin D(3) receptor (VDR) to DNA with the 9-cis-retinoic acid receptor (RXR) [Biochemistry 35 (1996) 3309]. Ligands were also used to modulate the first reaction. Data taken from the literature may be modeled by using a single- or a dual-fractal analysis. Relationships are presented for the binding rate coefficient as a function of either the analyte concentration in solution or the fractal dimension that exists on the biosensor surface. The binding rate expressions developed exhibit a wide range of dependence on the degree of heterogeneity that exists on the surface, ranging from sensitive (order of dependence equal to 1.202) to very sensitive (order of dependence equal to 12.239). In general, the binding rate coefficient increases as the degree of heterogeneity or the fractal dimension of the surface increases. The predictive relationships presented provide further physical insights into the reactions occurring on the biosensor surface. Even though these reactions are occurring on the biosensor surface, the relationships presented should assist in understanding and in possibly manipulating the reactions occurring on cellular surfaces.

  3. Progress in Development of Improved Ion-Channel Biosensors

    Nadeau, Jay L.; White, Victor E.; Maurer, Joshua A.; Dougherty, Dennis A.

    2008-01-01

    Further improvements have recently been made in the development of the devices described in Improved Ion-Channel Biosensors (NPO-30710), NASA Tech Briefs, Vol. 28, No. 10 (October 2004), page 30. As discussed in more detail in that article, these sensors offer advantages of greater stability, greater lifetime, and individual electrical addressability, relative to prior ion-channel biosensors. In order to give meaning to a brief description of the recent improvements, it is necessary to recapitulate a substantial portion of the text of the cited previous article. The figure depicts one sensor that incorporates the recent improvements, and can be helpful in understanding the recapitulated text, which follows: These sensors are microfabricated from silicon and other materials compatible with silicon. Typically, the sensors are fabricated in arrays in silicon wafers on glass plates. Each sensor in the array can be individually electrically addressed, without interference with its neighbors. Each sensor includes a well covered by a thin layer of silicon nitride, in which is made a pinhole for the formation of a lipid bilayer membrane. In one stage of fabrication, the lower half of the well is filled with agarose, which is allowed to harden. Then the upper half of the well is filled with a liquid electrolyte (which thereafter remains liquid) and a lipid bilayer is painted over the pinhole. The liquid contains a protein that forms an ion channel on top of the hardened agarose. The combination of enclosure in the well and support by the hardened agarose provides the stability needed to keep the membrane functional for times as long as days or even weeks. An electrode above the well, another electrode below the well, and all the materials between the electrodes together constitute a capacitor. What is measured is the capacitive transient current in response to an applied voltage pulse. One notable feature of this sensor, in comparison with prior such sensors, is a

  4. Modified surface of titanium dioxide nanoparticles-based biosensor for DNA detection

    Nadzirah, Sh.; Hashim, U.; Rusop, M.

    2018-05-01

    A new technique was used to develop a simple and selective picoammeter DNA biosensor for identification of E. coli O157:H7. This biosensor was fabricated from titanium dioxide nanoparticles that was synthesized by sol-gel method and spin-coated on silicon dioxide substrate via spinner. 3-Aminopropyl triethoxy silane (APTES) was used to modify the surface of TiO2. Simple surface modification approach has been applied; which is single dropping of APTES onto the TiO2 nanoparticles surface. Carboxyl modified probe DNA has been bind onto the surface of APTES/TiO2 without any amplifier element. Electrical signal has been used as the indicator to differentiate each step (surface modification of TiO2 and probe DNA immobilization). The I-V measurements indicate extremely low current (pico-ampere) flow through the device which is 2.8138E-10 A for pure TiO2 nanoparticles, 2.8124E-10 A after APTES modification and 3.5949E-10 A after probe DNA immobilization.

  5. Electrochemical DNA biosensor based on MNAzyme-mediated signal amplification

    Diao, Wei; Tang, Min; Ding, Xiaojuan; Zhang, Ye; Yang, Jianru; Cheng, Wenbin; Mo, Fei; Wen, Bo; Xu, Lulu; Yan, Yurong

    2016-01-01

    The authors describe an electrochemical sensing strategy for highly sensitive and specific detection of target (analyte) DNA based on an amplification scheme mediated by a multicomponent nucleic acid enzyme (MNAzyme). MNAzymes were formed by multicomponent complexes which produce amplified “output” signals in response to specific “input” signal. In the presence of target nucleic acid, multiple partial enzymes (partzymes) oligonucleotides are assembled to form active MNAzymes. These can cleave H0 substrate into two pieces, thereby releasing the activated MNAzyme to undergo an additional cycle of amplification. Here, the two pieces contain a biotin-tagged sequence and a byproduct. The biotin-tagged sequences are specifically captured by the detection probes immobilized on the gold electrode. By employing streptavidinylated alkaline phosphatase as an enzyme label, an electrochemical signal is obtained. The electrode, if operated at a working potential of 0.25 V (vs. Ag/AgCl) in solution of pH 7.5, covers the 100 pM to 0.25 μM DNA concentration range, with a 79 pM detection limit. In our perception, the strategy introduced here has a wider potential in that it may be applied to molecular diagnostics and pathogen detection. (author)

  6. DNA-hosted copper nanoclusters/graphene oxide based fluorescent biosensor for protein kinase activity detection.

    Wang, Mengke; Lin, Zihan; Liu, Qing; Jiang, Shan; Liu, Hua; Su, Xingguang

    2018-07-05

    A novel fluorescent biosensor for protein kinase activity (PKA) detection was designed by applying double-strands DNA-hosted copper nanoclusters (dsDNA-CuNCs) and graphene oxide (GO). One DNA strand of the dsDNA consisted of two domains, one domain can hybridize with another complementary DNA strand to stabilize the fluorescent CuNCs and another domain was adenosine 5'-triphosphate (ATP) aptamer. ATP aptamer of the dsDNA-CuNCs would be spontaneously absorbed onto the GO surface through π-π stacking interactions. Thus GO can efficiently quench the fluorescence (FL) of dsDNA-CuNCs through fluorescence resonance energy transfer (FRET). In the present of ATP, ATP specifically combined with ATP aptamer to form ATP-ATP aptamer binding complexes, which had much less affinity to GO, resulting in the fluorescence recovery of the system. Nevertheless, in the presence of PKA, ATP could be translated into ADP and ADP could not combine with ATP aptamer resulting in the fluorescence quenching of dsDNA-CuNCs again. According to the change of the fluorescence signal, PKA activity could be successfully monitored in the range of 0.1-5.0 U mL -1 with a detection limit (LOD) of 0.039 U mL -1 . Besides, the inhibitory effect of H-89 on PKA activity was studied. The sensor was performed for PKA activity detection in cell lysates with satisfactory results. Copyright © 2018 Elsevier B.V. All rights reserved.

  7. A sensitive DNA biosensor fabricated from gold nanoparticles, carbon nanotubes, and zinc oxide nanowires on a glassy carbon electrode

    Wang Jie; Li Shuping; Zhang Yuzhong

    2010-01-01

    We outline here the fabrication of a sensitive electrochemical DNA biosensor for the detection of sequence-specific target DNA. Zinc oxide nanowires (ZnONWs) were first immobilized on the surface of a glassy carbon electrode. Multi-walled carbon nanotubes (MWCNTs) with carboxyl groups were then dropped onto the surface of the ZnONWs. Gold nanoparticles (AuNPs) were subsequently introduced to the surface of the MWNTs/ZnONWs by electrochemical deposition. A single-stranded DNA probe with a thiol group at the end (HS-ssDNA) was covalently immobilized on the surface of the AuNPs by forming an Au-S bond. Scanning electron microscopy (SEM) and cyclic voltammetry (CV) were used to investigate the film assembly process. Differential pulse voltammetry (DPV) was used to monitor DNA hybridization by measuring the electrochemical signals of [Ru(NH 3 ) 6 ] 3+ bounding to double-stranded DNA (dsDNA). The incorporation of ZnONWs and MWCNTs in this sensor design significantly enhances the sensitivity and the selectivity. This DNA biosensor can detect the target DNA quantitatively in the range of 1.0 x 10 -13 to 1.0 x 10 -7 M, with a detection limit of 3.5 x 10 -14 M (S/N = 3). In addition, the DNA biosensor exhibits excellent selectivity, even for single-mismatched DNA detection.

  8. Application of DNA Hybridization Biosensor as a Screening Method for the Detection of Genetically Modified Food Components

    Marian Filipiak

    2008-03-01

    Full Text Available An electrochemical biosensor for the detection of genetically modified food components is presented. The biosensor was based on 21-mer single-stranded oligonucleotide (ssDNA probe specific to either 35S promoter or nos terminator, which are frequently present in transgenic DNA cassettes. ssDNA probe was covalently attached by 5’-phosphate end to amino group of cysteamine self-assembled monolayer (SAM on gold electrode surface with the use of activating reagents – water soluble 1-ethyl-3(3’- dimethylaminopropyl-carbodiimide (EDC and N-hydroxy-sulfosuccinimide (NHS. The hybridization reaction on the electrode surface was detected via methylene blue (MB presenting higher affinity to ssDNA probe than to DNA duplex. The electrode modification procedure was optimized using 19-mer oligoG and oligoC nucleotides. The biosensor enabled distinction between DNA samples isolated from soybean RoundupReady® (RR soybean and non-genetically modified soybean. The frequent introduction of investigated DNA sequences in other genetically modified organisms (GMOs give a broad perspectives for analytical application of the biosensor.

  9. Biosensor for label-free DNA quantification based on functionalized LPGs.

    Gonçalves, Helena M R; Moreira, Luis; Pereira, Leonor; Jorge, Pedro; Gouveia, Carlos; Martins-Lopes, Paula; Fernandes, José R A

    2016-10-15

    A label-free fiber optic biosensor based on a long period grating (LPG) and a basic optical interrogation scheme using off the shelf components is used for the detection of in-situ DNA hybridization. A new methodology is proposed for the determination of the spectral position of the LPG mode resonance. The experimental limit of detection obtained for the DNA was 62±2nM and the limit of quantification was 209±7nM. The sample specificity was experimentally demonstrated using DNA targets with different base mismatches relatively to the probe and was found that the system has a single base mismatch selectivity. Copyright © 2015 Elsevier B.V. All rights reserved.

  10. Development of swine-specific DNA markers for biosensor-based halal authentication.

    Ali, M E; Hashim, U; Kashif, M; Mustafa, S; Che Man, Y B; Abd Hamid, S B

    2012-06-29

    The pig (Sus scrofa) mitochondrial genome was targeted to design short (15-30 nucleotides) DNA markers that would be suitable for biosensor-based hybridization detection of target DNA. Short DNA markers are reported to survive harsh conditions in which longer ones are degraded into smaller fragments. The whole swine mitochondrial-genome was in silico digested with AluI restriction enzyme. Among 66 AluI fragments, five were selected as potential markers because of their convenient lengths, high degree of interspecies polymorphism and intraspecies conservatism. These were confirmed by NCBI blast analysis and ClustalW alignment analysis with 11 different meat-providing animal and fish species. Finally, we integrated a tetramethyl rhodamine-labeled 18-nucleotide AluI fragment into a 3-nm diameter citrate-tannate coated gold nanoparticle to develop a swine-specific hybrid nanobioprobe for the determination of pork adulteration in 2.5-h autoclaved pork-beef binary mixtures. This hybrid probe detected as low as 1% pork in deliberately contaminated autoclaved pork-beef binary mixtures and no cross-species detection was recorded, demonstrating the feasibility of this type of probe for biosensor-based detection of pork adulteration of halal and kosher foods.

  11. SiPM as miniaturised optical biosensor for DNA-microarray applications

    M.F. Santangelo

    2015-12-01

    Full Text Available A miniaturized optical biosensor for low-level fluorescence emitted by DNA strands labelled with CY5 is showed. Aim of this work is to demonstrate that a Si-based photodetector, having a low noise and a high sensitivity, can replace traditional detection systems in DNA-microarray applications. The photodetector used is a photomultiplier (SiPM, with 25 pixels. It exhibits a higher sensitivity than commercial optical readers and we experimentally found a detection limit for spotted dried samples of ∼1 nM. We measured the fluorescence signal in different operating conditions (angle of analysis, fluorophores concentrations, solution volumes and support. Once fixed the angle of analysis, for samples spotted on Al-TEOS slide dried, the system is proportional to the concentration of the analyte in the sample and is linear in the range 1 nM–1 μM. For solutions, the range of linearity ranges from 100 fM to 10 nM. The system potentialities and the device low costs suggest it as basic component for the design and fabrication of a cheap, easy and portable optical system. Keywords: Optical Biosensor, SiPM, DNA microarray, Fluorophore detection

  12. Amperometric biosensor for hydrogen peroxide based on Hemoglobin/DNA/Poly-2,6-pyridinediamine modified gold electrode

    Tong Zhongqiang; Yuan Ruo; Chai Yaqin; Chen Shihong; Xie Yi

    2007-01-01

    An amperometric biosensor for hydrogen peroxide (H 2 O 2 ) was fabricated based on immobilization of hemoglobin (Hb) on DNA/Poly-2,6-pyridinediamine (PPD) modified Au electrode. PPD thin films were firstly electro-deposited on Au electrode surface which provide a template to attach negatively charged DNA molecules by electrostatic attraction. The adsorbed DNA network provides a good microenvironment for the immobilization of biomolecules and promotes electron transfer between the immobilized Hb and the electrode surface. The fabrication process of the biosensor was characterized by electrochemical impedance spectroscopy. Experimental conditions influencing the biosensor performance such as pH, potential and temperature were assessed and optimized. The proposed biosensor displayed a good electrocatalytic response to the reduction of H 2 O 2 , its linear range is 1.7 μM to 3 mM with a detection limit of 1.0 μM based on the signal-to-noise ratio of 3 (S/N = 3) under the optimized conditions. The Michaelis-Menten constant K m app of Hb immobilized on the electrode surface was found to be 0.8 mM. The biosensor shows high sensitivity and stability. Importantly, this deposition methodology could be further developed for the immobilization of other proteins and biocompounds

  13. Real-time detection of TDP1 activity using a fluorophore-quencher coupled DNA-biosensor

    Jensen, Pia Wrensted; Falconi, Mattia; Kristoffersen, Emil Laust

    2013-01-01

    structure of the biosensor. The specific action of TDP1 removes the quencher, thereby enabling optical detection of the fluorophore. Since the enzymatic action of TDP1 is the only “signal amplification” the increase in fluorescence may easily be followed in real-time and allows quantitative analyses of TDP1......Real-time detection of enzyme activities may present the easiest and most reliable way of obtaining quantitative analyses in biological samples. We present a new DNA-biosensor capable of detecting the activity of the potential anticancer drug target tyrosyl-DNA phosphodiesterase 1 (TDP1) in a very...... simple, high throughput, and real-time format. The biosensor is specific for Tdp1 even in complex biological samples, such as human cell extracts, and may consequently find future use in fundamental studies as well as a cancer predictive tool allowing fast analyses of diagnostic cell samples...

  14. The field effect transistor DNA biosensor based on ITO nanowires in label-free hepatitis B virus detecting compatible with CMOS technology.

    Shariati, Mohsen

    2018-05-15

    In this paper the field-effect transistor DNA biosensor for detecting hepatitis B virus (HBV) based on indium tin oxide nanowires (ITO NWs) in label free approach has been fabricated. Because of ITO nanowires intensive conductance and functional modified surface, the probe immobilization and target hybridization were increased strongly. The high resolution transmission electron microscopy (HRTEM) measurement showed that ITO nanowires were crystalline and less than 50nm in diameter. The single-stranded hepatitis B virus DNA (SS-DNA) was immobilized as probe on the Au-modified nanowires. The DNA targets were measured in a linear concentration range from 1fM to 10µM. The detection limit of the DNA biosensor was about 1fM. The time of the hybridization process for defined single strand was 90min. The switching ratio of the biosensor between "on" and "off" state was ~ 1.1 × 10 5 . For sensing the specificity of the biosensor, non-complementary, mismatch and complementary DNA oligonucleotide sequences were clearly discriminated. The HBV biosensor confirmed the highly satisfied specificity for differentiating complementary sequences from non-complementary and the mismatch oligonucleotides. The response time of the DNA sensor was 37s with a high reproducibility. The stability and repeatability of the DNA biosensor showed that the peak current of the biosensor retained 98% and 96% of its initial response for measurements after three and five weeks, respectively. Copyright © 2018 Elsevier B.V. All rights reserved.

  15. Facilitating the indirect detection of genomic DNA in an electrochemical DNA biosensor using magnetic nanoparticles and DNA ligase

    Roozbeh Hushiarian

    2015-12-01

    This technique was found to be reliably repeatable. The indirect detection of genomic DNA using this method is significantly improved and showed high efficiency in small amounts of samples with the detection limit of 5.37 × 10−14 M.

  16. Label-Enhanced Surface Plasmon Resonance: A New Concept for Improved Performance in Optical Biosensor Analysis

    Niko Granqvist

    2013-11-01

    Full Text Available Surface plasmon resonance (SPR is a well-established optical biosensor technology with many proven applications in the study of molecular interactions as well as in surface and material science. SPR is usually applied in the label-free mode which may be advantageous in cases where the presence of a label may potentially interfere with the studied interactions per se. However, the fundamental challenges of label-free SPR in terms of limited sensitivity and specificity are well known. Here we present a new concept called label-enhanced SPR, which is based on utilizing strongly absorbing dye molecules in combination with the evaluation of the full shape of the SPR curve, whereby the sensitivity as well as the specificity of SPR is significantly improved. The performance of the new label-enhanced SPR method was demonstrated by two simple model assays: a small molecule assay and a DNA hybridization assay. The small molecule assay was used to demonstrate the sensitivity enhancement of the method, and how competitive assays can be used for relative affinity determination. The DNA assay was used to demonstrate the selectivity of the assay, and the capabilities in eliminating noise from bulk liquid composition variations.

  17. Label-Enhanced Surface Plasmon Resonance: A New Concept for Improved Performance in Optical Biosensor Analysis

    Granqvist, Niko; Hanning, Anders; Eng, Lars; Tuppurainen, Jussi; Viitala, Tapani

    2013-01-01

    Surface plasmon resonance (SPR) is a well-established optical biosensor technology with many proven applications in the study of molecular interactions as well as in surface and material science. SPR is usually applied in the label-free mode which may be advantageous in cases where the presence of a label may potentially interfere with the studied interactions per se. However, the fundamental challenges of label-free SPR in terms of limited sensitivity and specificity are well known. Here we present a new concept called label-enhanced SPR, which is based on utilizing strongly absorbing dye molecules in combination with the evaluation of the full shape of the SPR curve, whereby the sensitivity as well as the specificity of SPR is significantly improved. The performance of the new label-enhanced SPR method was demonstrated by two simple model assays: a small molecule assay and a DNA hybridization assay. The small molecule assay was used to demonstrate the sensitivity enhancement of the method, and how competitive assays can be used for relative affinity determination. The DNA assay was used to demonstrate the selectivity of the assay, and the capabilities in eliminating noise from bulk liquid composition variations. PMID:24217357

  18. Impedimetric DNA Biosensor Based on a Nanoporous Alumina Membrane for the Detection of the Specific Oligonucleotide Sequence of Dengue Virus

    Chee-Seng Toh

    2013-06-01

    Full Text Available A novel and integrated membrane sensing platform for DNA detection is developed based on an anodic aluminum oxide (AAO membrane. Platinum electrodes (~50–100 nm thick are coated directly on both sides of the alumina membrane to eliminate the solution resistance outside the nanopores. The electrochemical impedance technique is employed to monitor the impedance changes within the nanopores upon DNA binding. Pore resistance (Rp linearly increases in response towards the increasing concentration of the target DNA in the range of 1 × 10−12 to 1 × 10−6 M. Moreover, the biosensor selectively differentiates the complementary sequence from single base mismatched (MM-1 strands and non-complementary strands. This study reveals a simple, selective and sensitive method to fabricate a label-free DNA biosensor.

  19. Impedimetric DNA biosensor based on a nanoporous alumina membrane for the detection of the specific oligonucleotide sequence of dengue virus.

    Deng, Jiajia; Toh, Chee-Seng

    2013-06-17

    A novel and integrated membrane sensing platform for DNA detection is developed based on an anodic aluminum oxide (AAO) membrane. Platinum electrodes (~50-100 nm thick) are coated directly on both sides of the alumina membrane to eliminate the solution resistance outside the nanopores. The electrochemical impedance technique is employed to monitor the impedance changes within the nanopores upon DNA binding. Pore resistance (Rp) linearly increases in response towards the increasing concentration of the target DNA in the range of 1 × 10⁻¹² to 1 × 10⁻⁶ M. Moreover, the biosensor selectively differentiates the complementary sequence from single base mismatched (MM-1) strands and non-complementary strands. This study reveals a simple, selective and sensitive method to fabricate a label-free DNA biosensor.

  20. Development of a Fluorescence Resonance Energy Transfer (FRET)-Based DNA Biosensor for Detection of Synthetic Oligonucleotide of Ganoderma boninense.

    Mohd Bakhori, Noremylia; Yusof, Nor Azah; Abdullah, Abdul Halim; Hussein, Mohd Zobir

    2013-12-01

    An optical DNA biosensor based on fluorescence resonance energy transfer (FRET) utilizing synthesized quantum dot (QD) has been developed for the detection of specific-sequence of DNA for Ganoderma boninense, an oil palm pathogen. Modified QD that contained carboxylic groups was conjugated with a single-stranded DNA probe (ssDNA) via amide-linkage. Hybridization of the target DNA with conjugated QD-ssDNA and reporter probe labeled with Cy5 allows for the detection of related synthetic DNA sequence of Ganoderma boninense gene based on FRET signals. Detection of FRET emission before and after hybridization was confirmed through the capability of the system to produce FRET at 680 nm for hybridized sandwich with complementary target DNA. No FRET emission was observed for non-complementary system. Hybridization time, temperature and effect of different concentration of target DNA were studied in order to optimize the developed system. The developed biosensor has shown high sensitivity with detection limit of 3.55 × 10(-9) M. TEM results show that the particle size of QD varies in the range between 5 to 8 nm after ligand modification and conjugation with ssDNA. This approach is capable of providing a simple, rapid and sensitive method for detection of related synthetic DNA sequence of Ganoderma boninense.

  1. Development of a Fluorescence Resonance Energy Transfer (FRET-Based DNA Biosensor for Detection of Synthetic Oligonucleotide of Ganoderma boninense

    Noremylia Mohd Bakhori

    2013-12-01

    Full Text Available An optical DNA biosensor based on fluorescence resonance energy transfer (FRET utilizing synthesized quantum dot (QD has been developed for the detection of specific-sequence of DNA for Ganoderma boninense, an oil palm pathogen. Modified QD that contained carboxylic groups was conjugated with a single-stranded DNA probe (ssDNA via amide-linkage. Hybridization of the target DNA with conjugated QD-ssDNA and reporter probe labeled with Cy5 allows for the detection of related synthetic DNA sequence of Ganoderma boninense gene based on FRET signals. Detection of FRET emission before and after hybridization was confirmed through the capability of the system to produce FRET at 680 nm for hybridized sandwich with complementary target DNA. No FRET emission was observed for non-complementary system. Hybridization time, temperature and effect of different concentration of target DNA were studied in order to optimize the developed system. The developed biosensor has shown high sensitivity with detection limit of 3.55 × 10−9 M. TEM results show that the particle size of QD varies in the range between 5 to 8 nm after ligand modification and conjugation with ssDNA. This approach is capable of providing a simple, rapid and sensitive method for detection of related synthetic DNA sequence of Ganoderma boninense.

  2. Mixed DNA/Oligo(ethylene glycol) Functionalized Gold Surface Improve DNA Hybridization in Complex Media

    Lee, C.; Gamble, L.; Grainger, D.; Castner, D.

    2006-01-01

    Reliable, direct 'sample-to-answer' capture of nucleic acid targets from complex media would greatly improve existing capabilities of DNA microarrays and biosensors. This goal has proven elusive for many current nucleic acid detection technologies attempting to produce assay results directly from complex real-world samples, including food, tissue, and environmental materials. In this study, we have investigated mixed self-assembled thiolated single-strand DNA (ssDNA) monolayers containing a short thiolated oligo(ethylene glycol) (OEG) surface diluent on gold surfaces to improve the specific capture of DNA targets from complex media. Both surface composition and orientation of these mixed DNA monolayers were characterized with x-ray photoelectron spectroscopy (XPS) and near-edge x-ray absorption fine structure (NEXAFS). XPS results from sequentially adsorbed ssDNA/OEG monolayers on gold indicate that thiolated OEG diluent molecules first incorporate into the thiolated ssDNA monolayer and, upon longer OEG exposures, competitively displace adsorbed ssDNA molecules from the gold surface. NEXAFS polarization dependence results (followed by monitoring the N 1s→π* transition) indicate that adsorbed thiolated ssDNA nucleotide base-ring structures in the mixed ssDNA monolayers are oriented more parallel to the gold surface compared to DNA bases in pure ssDNA monolayers. This supports ssDNA oligomer reorientation towards a more upright position upon OEG mixed adlayer incorporation. DNA target hybridization on mixed ssDNA probe/OEG monolayers was monitored by surface plasmon resonance (SPR). Improvements in specific target capture for these ssDNA probe surfaces due to incorporation of the OEG diluent were demonstrated using two model biosensing assays, DNA target capture from complete bovine serum and from salmon genomic DNA mixtures. SPR results demonstrate that OEG incorporation into the ssDNA adlayer improves surface resistance to both nonspecific DNA and protein

  3. Strip biosensor for amplified detection of nerve growth factor-beta based on a molecular translator and catalytic DNA circuit.

    Liu, Jun; Lai, Ting; Mu, Kejie; Zhou, Zheng

    2014-10-07

    We have demonstrated a new visual detection approach based on a molecular translator and a catalytic DNA circuit for the detection of nerve growth factor-beta (NGF-β). In this assay, a molecular translator based on the binding-induced DNA strand-displacement reaction was employed to convert the input protein to an output DNA signal. The molecular translator is composed of a target recognition element and a signal output element. Target recognition is achieved by the binding of the anti-NGF-β antibody to the target protein. Polyclonal anti-NGF-β antibody is conjugated to DNA1 and DNA2. The antibody conjugated DNA1 is initially hybridized to DNA3 to form a stable DNA1/DNA3 duplex. In the presence of NGF-β, the binding of the same target protein brings DNA1 and DNA2 into close proximity, resulting in an increase in their local effective concentration. This process triggers the strand-displacement reaction between DNA2 and DNA3 and releases the output DNA3. The released DNA3 is further amplified by a catalytic DNA circuit. The product of the catalytic DNA circuit is detected by a strip biosensor. This proposed assay has high sensitivity and selectivity with a dynamic response ranging from 10 fM to 10 pM, and its detection limit is 10 fM of NGF-β. This work provides a sensitive, enzyme-free, and universal strategy for the detection of other proteins.

  4. An Electrochemical DNA Biosensor Developed on a Nanocomposite Platform of Gold and Poly(propyleneimine Dendrimer

    Omotayo Arotiba

    2008-11-01

    Full Text Available An electrochemical DNA nanobiosensor was prepared by immobilization of a 20mer thiolated probe DNA on electro-deposited generation 4 (G4 poly(propyleneimine dendrimer (PPI doped with gold nanoparticles (AuNP as platform, on a glassy carbon electrode (GCE. Field emission scanning electron microscopy results confirmed the codeposition of PPI (which was linked to the carbon electrode surface by C-N covalent bonds and AuNP ca 60 nm. Voltammetric interrogations showed that the platform (GCE/PPI-AuNP was conducting and exhibited reversible electrochemistry (E°′ = 235 mV in pH 7.2 phosphate buffer saline solution (PBS due to the PPI component. The redox chemistry of PPI was pH dependent and involves a two electron, one proton process, as interpreted from a 28 mV/pH value obtained from pH studies. The charge transfer resistance (Rct from the electrochemical impedance spectroscopy (EIS profiles of GCE/PPI-AuNP monitored with ferro/ferricyanide (Fe(CN63-/4- redox probe, decreased by 81% compared to bare GCE. The conductivity (in PBS and reduced Rct (in Fe(CN63-/4- values confirmed PPI-AuNP as a suitable electron transfer mediator platform for voltammetric and impedimetric DNA biosensor. The DNA probe was effectively wired onto the GCE/PPI-AuNP via Au-S linkage and electrostatic interactions. The nanobiosensor responses to target DNA which gave a dynamic linear range of 0.01 - 5 nM in PBS was based on the changes in Rct values using Fe(CN63-/4- redox probe.

  5. Improved sensitivity of a graphene FET biosensor using porphyrin linkers

    Kawata, Takuya; Ono, Takao; Kanai, Yasushi; Ohno, Yasuhide; Maehashi, Kenzo; Inoue, Koichi; Matsumoto, Kazuhiko

    2018-06-01

    Graphene FET (G-FET) biosensors have considerable potential due to the superior characteristics of graphene. Realizing this potential requires judicious choice of the linker molecule connecting the target-specific receptor molecule to the graphene surface, yet there are few reports comparing linker molecules for G-FET biosensors. In this study, tetrakis(4-carboxyphenyl)porphyrin (TCPP) was used as a linker for surface modification of a G-FET and the properties of the device were compared to those of a G-FET device modified with the conventional linker 1-pyrenebutanoic acid succinimidyl ester (PBASE). TCPP modification resulted in a higher density of receptor immunoglobulin E (IgE) aptamer molecules on the G-FET. The detection limit of the target IgE was enhanced from 13 nM for the PBASE-modified G-FET to 2.2 nM for the TCPP-modified G-FET, suggesting that the TCPP linker is a powerful candidate for G-FET modification.

  6. Improved electrochemical nucleic acid biosensor based on polyaniline-polyvinyl sulphonate

    Prabhakar, Nirmal [Biomolecular Electronics and Conducting Polymer Research Group, National Physical Laboratory, Dr. K.S. Krishnan Marg, New Delhi-110012 (India); Centre for Biomedical Engineering, Indian Institute of Technology, Hauz Khas, New Delhi-110016 (India); Sumana, G.; Arora, Kavita [Biomolecular Electronics and Conducting Polymer Research Group, National Physical Laboratory, Dr. K.S. Krishnan Marg, New Delhi-110012 (India); Singh, Harpal [Centre for Biomedical Engineering, Indian Institute of Technology, Hauz Khas, New Delhi-110016 (India); Malhotra, B.D. [Biomolecular Electronics and Conducting Polymer Research Group, National Physical Laboratory, Dr. K.S. Krishnan Marg, New Delhi-110012 (India)], E-mail: bansi.malhotra@gmail.com

    2008-05-01

    DNA biosensor based on polyaniline (PANI)-polyvinyl sulphonate (PVS) has been fabricated using electrochemical entrapment technique for detection of organophosphorus pesticides (chlorpyrifos and malathion). These double stranded calf thymus DNA (dsCT-DNA) entrapped PANI-PVS/indium-tin-oxide (ITO) bioelectrodes have been characterized using square wave voltammetry (SWV), Fourier transform infra-red spectroscopy (FT-IR), scanning electron microscopy (SEM) and electrochemical impedance techniques, respectively. These dsCT-DNA entrapped PANI-PVS/ITO bioelectrodes have been found to have response time of 30 s, stability of about 6 months and detection limit for chlorpyrifos and malathion as 0.5 ppb and 0.01 ppm, respectively.

  7. Improved electrochemical nucleic acid biosensor based on polyaniline-polyvinyl sulphonate

    Prabhakar, Nirmal; Sumana, G.; Arora, Kavita; Singh, Harpal; Malhotra, B.D.

    2008-01-01

    DNA biosensor based on polyaniline (PANI)-polyvinyl sulphonate (PVS) has been fabricated using electrochemical entrapment technique for detection of organophosphorus pesticides (chlorpyrifos and malathion). These double stranded calf thymus DNA (dsCT-DNA) entrapped PANI-PVS/indium-tin-oxide (ITO) bioelectrodes have been characterized using square wave voltammetry (SWV), Fourier transform infra-red spectroscopy (FT-IR), scanning electron microscopy (SEM) and electrochemical impedance techniques, respectively. These dsCT-DNA entrapped PANI-PVS/ITO bioelectrodes have been found to have response time of 30 s, stability of about 6 months and detection limit for chlorpyrifos and malathion as 0.5 ppb and 0.01 ppm, respectively

  8. Comparison of impedimetric detection of DNA hybridization on the various biosensors based on modified glassy carbon electrodes with PANHS and nanomaterials of RGO and MWCNTs.

    Benvidi, Ali; Tezerjani, Marzieh Dehghan; Jahanbani, Shahriar; Mazloum Ardakani, Mohammad; Moshtaghioun, Seyed Mohammad

    2016-01-15

    In this research, we have developed lable free DNA biosensors based on modified glassy carbon electrodes (GCE) with reduced graphene oxide (RGO) and carbon nanotubes (MWCNTs) for detection of DNA sequences. This paper compares the detection of BRCA1 5382insC mutation using independent glassy carbon electrodes (GCE) modified with RGO and MWCNTs. A probe (BRCA1 5382insC mutation detection (ssDNA)) was then immobilized on the modified electrodes for a specific time. The immobilization of the probe and its hybridization with the target DNA (Complementary DNA) were performed under optimum conditions using different electrochemical techniques such as cyclic voltammetry (CV) and electrochemical impedance spectroscopy (EIS). The proposed biosensors were used for determination of complementary DNA sequences. The non-modified DNA biosensor (1-pyrenebutyric acid-N- hydroxysuccinimide ester (PANHS)/GCE), revealed a linear relationship between ∆Rct and logarithm of the complementary target DNA concentration ranging from 1.0×10(-16)molL(-1) to 1.0×10(-10)mol L(-1) with a correlation coefficient of 0.992, for DNA biosensors modified with multi-wall carbon nanotubes (MWCNTs) and reduced graphene oxide (RGO) wider linear range and lower detection limit were obtained. For ssDNA/PANHS/MWCNTs/GCE a linear range 1.0×10(-17)mol L(-1)-1.0×10(-10)mol L(-1) with a correlation coefficient of 0.993 and for ssDNA/PANHS/RGO/GCE a linear range from 1.0×10(-18)mol L(-1) to 1.0×10(-10)mol L(-1) with a correlation coefficient of 0.985 were obtained. In addition, the mentioned biosensors were satisfactorily applied for discriminating of complementary sequences from noncomplementary sequences, so the mentioned biosensors can be used for the detection of BRCA1-associated breast cancer. Copyright © 2015. Published by Elsevier B.V.

  9. Detection of Aeromonas hydrophila DNA oligonucleotide sequence using a biosensor design based on Ceria nanoparticles decorated reduced graphene oxide and Fast Fourier transform square wave voltammetry

    Jafari, Safiye [Center of Excellence in Electrochemistry, University of Tehran, Tehran (Iran, Islamic Republic of); Faridbod, Farnoush, E-mail: faridbodf@khayam.ut.ac.ir [Center of Excellence in Electrochemistry, University of Tehran, Tehran (Iran, Islamic Republic of); Biosensor Research Center, Endocrinology & Metabolism Molecular and Cellular Research Institute, Tehran University of Medical Sciences, Tehran (Iran, Islamic Republic of); Norouzi, Parviz [Center of Excellence in Electrochemistry, University of Tehran, Tehran (Iran, Islamic Republic of); Biosensor Research Center, Endocrinology & Metabolism Molecular and Cellular Research Institute, Tehran University of Medical Sciences, Tehran (Iran, Islamic Republic of); Dezfuli, Amin Shiralizadeh [Center of Excellence in Electrochemistry, University of Tehran, Tehran (Iran, Islamic Republic of); Ajloo, Davood [School of Chemistry, Damghan University, Damghan (Iran, Islamic Republic of); Mohammadipanah, Fatemeh [Department of Microbial Biotechnology, School of Biology and Center of Excellence in Phylogeny of Living Organisms, College of Science, University of Tehran, 14155-6455 Tehran (Iran, Islamic Republic of); Ganjali, Mohammad Reza [Center of Excellence in Electrochemistry, University of Tehran, Tehran (Iran, Islamic Republic of); Biosensor Research Center, Endocrinology & Metabolism Molecular and Cellular Research Institute, Tehran University of Medical Sciences, Tehran (Iran, Islamic Republic of)

    2015-10-01

    A new strategy was introduced for ssDNA immobilization on a modified glassy carbon electrode. The electrode surface was modified using polyaniline and chemically reduced graphene oxide decorated cerium oxide nanoparticles (CeO{sub 2}NPs-RGO). A single-stranded DNA (ssDNA) probe was immobilized on the modified electrode surface. Fast Fourier transform square wave voltammetry (FFT-SWV) was applied as detection technique and [Ru(bpy){sub 3}]{sup 2+/3+} redox signal was used as electrochemical marker. The hybridization of ssDNA with its complementary target caused a dramatic decrease in [Ru(bpy){sub 3}]{sup 2+/3+} FFT-SW signal. The proposed electrochemical biosensor was able to detect Aeromonas hydrophila DNA oligonucleotide sequence encoding aerolysin protein. Under optimal conditions, the biosensor showed excellent selectivity toward complementary sequence in comparison with noncomplementary and two-base mismatch sequences. The dynamic linear range of this electrochemical DNA biosensor for detecting 20-mer oligonucleotide sequence of A. hydrophila was from 1 × 10{sup −15} to 1 × 10{sup −8} mol L{sup −1}. The proposed biosensor was successfully applied for the detection of DNA extracted from A. hydrophila in fish pond water up to 0.01 μg mL{sup −1} with RSD of 5%. Besides, molecular docking was applied to consider the [Ru(bpy){sub 3}]{sup 2+/3+} interaction with ssDNA before and after hybridization. - Highlights: • New DNA biosensor is designed for sub-femtomolar detection of Aeromonas hydrophila DNA sequence. • Reduced graphene oxide decorated Ceria nanoparticles was used as a new immobilization platform. • Biosensor was successfully used to detect A. hydrophila DNA sequence in fish pond water.

  10. Detection of Aeromonas hydrophila DNA oligonucleotide sequence using a biosensor design based on Ceria nanoparticles decorated reduced graphene oxide and Fast Fourier transform square wave voltammetry

    Jafari, Safiye; Faridbod, Farnoush; Norouzi, Parviz; Dezfuli, Amin Shiralizadeh; Ajloo, Davood; Mohammadipanah, Fatemeh; Ganjali, Mohammad Reza

    2015-01-01

    A new strategy was introduced for ssDNA immobilization on a modified glassy carbon electrode. The electrode surface was modified using polyaniline and chemically reduced graphene oxide decorated cerium oxide nanoparticles (CeO_2NPs-RGO). A single-stranded DNA (ssDNA) probe was immobilized on the modified electrode surface. Fast Fourier transform square wave voltammetry (FFT-SWV) was applied as detection technique and [Ru(bpy)_3]"2"+"/"3"+ redox signal was used as electrochemical marker. The hybridization of ssDNA with its complementary target caused a dramatic decrease in [Ru(bpy)_3]"2"+"/"3"+ FFT-SW signal. The proposed electrochemical biosensor was able to detect Aeromonas hydrophila DNA oligonucleotide sequence encoding aerolysin protein. Under optimal conditions, the biosensor showed excellent selectivity toward complementary sequence in comparison with noncomplementary and two-base mismatch sequences. The dynamic linear range of this electrochemical DNA biosensor for detecting 20-mer oligonucleotide sequence of A. hydrophila was from 1 × 10"−"1"5 to 1 × 10"−"8 mol L"−"1. The proposed biosensor was successfully applied for the detection of DNA extracted from A. hydrophila in fish pond water up to 0.01 μg mL"−"1 with RSD of 5%. Besides, molecular docking was applied to consider the [Ru(bpy)_3]"2"+"/"3"+ interaction with ssDNA before and after hybridization. - Highlights: • New DNA biosensor is designed for sub-femtomolar detection of Aeromonas hydrophila DNA sequence. • Reduced graphene oxide decorated Ceria nanoparticles was used as a new immobilization platform. • Biosensor was successfully used to detect A. hydrophila DNA sequence in fish pond water.

  11. An improved amperometric creatinine biosensor based on nanoparticles of creatininase, creatinase and sarcosine oxidase.

    Kumar, Parveen; Jaiwal, Ranjana; Pundir, C S

    2017-11-15

    An improved amperometric biosensor for detection of creatinine was developed based on immobilization of nanoparticles (NPs) of creatininase (CA), creatinase (CI), and sarcosine oxidase (SOx) onto glassy carbon (GC) electrode. Transmission electron microscopy (TEM) and fourier transform infrared spectroscopy (FTIR) were employed for characterization of enzyme nanoparticles (ENPs). The GC electrode was characterized by scanning electron microscopy (SEM), cyclic voltammetry (CV) and electrochemical impedance spectra (EIS) at different stages of its amendment. The biosensor showed optimum response within 2s at pH 6.0 in 0.1 M sodium phosphate buffer and 25 °C, when operated at 1.0 V against Ag/AgCl. Biosensor exhibited wider linear range from 0.01 μM to 12 μM with a limit of detection (LOD) of 0.01 μM. The analytical recoveries of added creatinine in sera were 97.97 ± 0.1% for 0.1 mM and 98.76 ± 0.2% for 0.15 mM, within and between batch coefficients of variation (CV) were 2.06% and 3.09% respectively. A good correlation (R 2  = 0.99) was observed between sera creatinine values obtained by standard enzymic colorimetric method and the present biosensor. This biosensor measured creatinine level in sera of apparently healthy subjects and persons suffering from renal and muscular dysfunction. The ENPs electrode lost 10% of its initial activity within 240 days of its regular uses, when stored at 4 °C. Copyright © 2017 Elsevier Inc. All rights reserved.

  12. Enhanced sensing of dengue virus DNA detection using O{sub 2} plasma treated-silicon nanowire based electrical biosensor

    Rahman, S.F.A., E-mail: siti_fatimah0410@yahoo.com [Institute of Advanced Technology, Universiti Putra Malaysia, 43400, UPM, Serdang, Selangor (Malaysia); Yusof, N.A., E-mail: azahy@upm.edu.my [Institute of Advanced Technology, Universiti Putra Malaysia, 43400, UPM, Serdang, Selangor (Malaysia); Chemistry Department, Faculty of Science, Universiti Putra Malaysia, 43400, UPM, Serdang, Selangor (Malaysia); Hashim, U. [Institute of Nano Electronic Engineering, Universiti Malaysia Perlis, 01000, Kangar, Perlis (Malaysia); Hushiarian, R. [La Trobe Institute for Molecular Science, La Trobe University, Victoria, 3086 (Australia); Nuzaihan, M.N.M. [Institute of Nano Electronic Engineering, Universiti Malaysia Perlis, 01000, Kangar, Perlis (Malaysia); Hamidon, M.N. [Institute of Advanced Technology, Universiti Putra Malaysia, 43400, UPM, Serdang, Selangor (Malaysia); Zawawi, R.M. [Chemistry Department, Faculty of Science, Universiti Putra Malaysia, 43400, UPM, Serdang, Selangor (Malaysia); Fathil, M.F.M. [Institute of Nano Electronic Engineering, Universiti Malaysia Perlis, 01000, Kangar, Perlis (Malaysia)

    2016-10-26

    Dengue Virus (DENV) has become one of the most serious arthropod-borne viral diseases, causing death globally. The existing methods for DENV detection suffer from the late stage treatment due to antibodies-based detection which is feasible only after five days following the onset of the illness. Here, we demonstrated the highly effective molecular electronic based detection utilizing silicon nanowire (SiNW) integrated with standard complementary metal-oxide-semiconductor (CMOS) process as a sensing device for detecting deoxyribonucleic acid (DNA) related to DENV in an early stage diagnosis. To transform the fabricated devices as a functional sensing element, three-step procedure consist of SiNW surface modification, DNA immobilization and DNA hybridization were employed. The detection principle works by detecting the changes in current of SiNW which bridge the source and drain terminal to sense the immobilization of probe DNA and their hybridization with target DNA. The oxygen (O{sub 2}) plasma was proposed as an effective strategy for increasing the binding amounts of target DNA by modified the SiNW surface. It was found that the detection limit of the optimized O{sub 2} plasma treated-SiNW device could be reduced to 1.985 × 10{sup −14} M with a linear detection range of the sequence-specific DNA from 1.0 × 10{sup −9} M to 1.0 × 10{sup −13} M. In addition, the developed biosensor device was able to discriminate between complementary, single mismatch and non-complementary DNA sequences. This highly sensitive assay was then applied to the detection of reverse transcription-polymerase chain reaction (RT-PCR) product of DENV-DNA, making it as a potential method for disease diagnosis through electrical biosensor. - Highlights: • Molecular electronic detection of Dengue Virus (DENV) DNA using SiNW biosensor is presented. • Oxygen plasma surface treatment as an enhancer technique for device sensitivity is highlighted. • The limit of detection (Lo

  13. Enhanced sensing of dengue virus DNA detection using O_2 plasma treated-silicon nanowire based electrical biosensor

    Rahman, S.F.A.; Yusof, N.A.; Hashim, U.; Hushiarian, R.; Nuzaihan, M.N.M.; Hamidon, M.N.; Zawawi, R.M.; Fathil, M.F.M.

    2016-01-01

    Dengue Virus (DENV) has become one of the most serious arthropod-borne viral diseases, causing death globally. The existing methods for DENV detection suffer from the late stage treatment due to antibodies-based detection which is feasible only after five days following the onset of the illness. Here, we demonstrated the highly effective molecular electronic based detection utilizing silicon nanowire (SiNW) integrated with standard complementary metal-oxide-semiconductor (CMOS) process as a sensing device for detecting deoxyribonucleic acid (DNA) related to DENV in an early stage diagnosis. To transform the fabricated devices as a functional sensing element, three-step procedure consist of SiNW surface modification, DNA immobilization and DNA hybridization were employed. The detection principle works by detecting the changes in current of SiNW which bridge the source and drain terminal to sense the immobilization of probe DNA and their hybridization with target DNA. The oxygen (O_2) plasma was proposed as an effective strategy for increasing the binding amounts of target DNA by modified the SiNW surface. It was found that the detection limit of the optimized O_2 plasma treated-SiNW device could be reduced to 1.985 × 10"−"1"4 M with a linear detection range of the sequence-specific DNA from 1.0 × 10"−"9 M to 1.0 × 10"−"1"3 M. In addition, the developed biosensor device was able to discriminate between complementary, single mismatch and non-complementary DNA sequences. This highly sensitive assay was then applied to the detection of reverse transcription-polymerase chain reaction (RT-PCR) product of DENV-DNA, making it as a potential method for disease diagnosis through electrical biosensor. - Highlights: • Molecular electronic detection of Dengue Virus (DENV) DNA using SiNW biosensor is presented. • Oxygen plasma surface treatment as an enhancer technique for device sensitivity is highlighted. • The limit of detection (LoD) as low as 1.985

  14. A novel GMO biosensor for rapid ultrasensitive and simultaneous detection of multiple DNA components in GMO products.

    Huang, Lin; Zheng, Lei; Chen, Yinji; Xue, Feng; Cheng, Lin; Adeloju, Samuel B; Chen, Wei

    2015-04-15

    Since the introduction of genetically modified organisms (GMOs), there has been on-going and continuous concern and debates on the commercialization of products derived from GMOs. There is an urgent need for development of highly efficient analytical methods for rapid and high throughput screening of GMOs components, as required for appropriate labeling of GMO-derived foods, as well as for on-site inspection and import/export quarantine. In this study, we describe, for the first time, a multi-labeling based electrochemical biosensor for simultaneous detection of multiple DNA components of GMO products on the same sensing interface. Two-round signal amplification was applied by using both an exonuclease enzyme catalytic reaction and gold nanoparticle-based bio-barcode related strategies, respectively. Simultaneous multiple detections of different DNA components of GMOs were successfully achieved with satisfied sensitivity using this electrochemical biosensor. Furthermore, the robustness and effectiveness of the proposed approach was successfully demonstrated by application to various GMO products, including locally obtained and confirmed commercial GMO seeds and transgenetic plants. The proposed electrochemical biosensor demonstrated unique merits that promise to gain more interest in its use for rapid and on-site simultaneous multiple screening of different components of GMO products. Copyright © 2014 Elsevier B.V. All rights reserved.

  15. DNA impedance biosensor for detection of cancer, TP53 gene mutation, based on gold nanoparticles/aligned carbon nanotubes modified electrode.

    Fayazfar, H; Afshar, A; Dolati, M; Dolati, A

    2014-07-11

    For the first time, a new platform based on electrochemical growth of Au nanoparticles on aligned multi-walled carbon nanotubes (A-MWCNT) was developed for sensitive lable-free DNA detection of the TP53 gene mutation, one of the most popular genes in cancer research. Electrochemical impedance spectroscopy (EIS) was used to monitor the sequence-specific DNA hybridization events related to TP53 gene. Compared to the bare Ta or MWCNT/Ta electrodes, the synergistic interactions of vertically aligned MWCNT array and gold nanoparticles at modified electrode could improve the density of the probe DNA attachment and resulting the sensitivity of the DNA sensor greatly. Using EIS, over the extended DNA concentration range, the change of charge transfer resistance was found to have a linear relationship in respect to the logarithm of the complementary oligonucleotides sequence concentrations in the wide range of 1.0×10(-15)-1.0×10(-7)M, with a detection limit of 1.0×10(-17)M (S/N=3). The prepared sensor also showed good stability (14 days), reproducibility (RSD=2.1%) and could be conveniently regenerated via dehybridization in hot water. The significant improvement in sensitivity illustrates that combining gold nanoparticles with the on-site fabricated aligned MWCNT array represents a promising platform for achieving sensitive biosensor for fast mutation screening related to most human cancer types. Copyright © 2014. Published by Elsevier B.V.

  16. Molecular beacon based biosensor for the sequence-specific detection of DNA using DNA-capped gold nanoparticles-streptavidin conjugates for signal amplification

    Fang, Xian; Jiang, Wei; Han, Xiaowei; Zhang, Yuzhong

    2013-01-01

    We describe a highly sensitive and selective molecular beacon-based electrochemical impedance biosensor for the sequence-specific detection of DNA. DNA-capped conjugates between gold nanoparticles (Au-NPs) and streptavidin are used for signal amplification. The molecular beacon was labeled with a thiol at its 5′ end and with biotin at its 3′ end, and then immobilized on the surface of a bare gold electrode through the formation of Au-S bonds. Initially, the molecular beacon is present in the “closed” state, and this shields the biotin from being approached by streptavidin due to steric hindrance. In the presence of the target DNA, the target DNA molecules hybridize with the loop and cause a conformational change that moves the biotin away from the surface of the electrode. The biotin thereby becomes accessible for the reporter (the DNA-streptavidin capped Au-NPs), and this results in a distinct increase in electron transfer resistance. Under optimal conditions, the increase in resistance is linearly related to the logarithm of the concentration of complementary target DNA in the range from 1.0 fM to 0.1 μM, with a detection limit of 0.35 fM (at an S/N of 3). This biosensor exhibits good selectivity, and acceptable stability and reproducibility. (author)

  17. An Electrochemical DNA Biosensor for the Detection of Salmonella Using Polymeric Films and Electrochemical Labels

    Diaz Serrano, Madeline

    Waterborne and foodborne diseases are one of the principal public health problems worldwide. Microorganisms are the major agents of foodborne illness: pathogens such as Salmonella, Campylobacter jejuni and Escherichia coli, and parasites such as cryptosporidium. The most popular methods to detect Salmonella are based on culture and colony counting methods, ELISA, Gel electrophoresis and the polymerase chain reaction. Conventional detection methods are laborious and time-consuming, allowing for portions of the food to be distributed, marketed, sold and eaten before the analysis is done and the problem even detected. By these reasons, the rapid, easy and portable detection of foodborne organisms will facilitate the disease treatment. Our particular interest is to develop a nucleic acid biosensor (NAB) for the detection of pathogenic microorganisms in food and water samples. In this research, we report on the development of a NAB prototype using a polymer modified electrode surface together with sequences of different lengths for the OmpC gene from Salmonella as probes and Ferrocene-labeled target (Fc-ssDNA), Ferrocene-labeled tri(ethylene glycol) (Fc-PEG) and Ruthenium-Ferrocene (Ru-Fe) bimetallic complex as an electrochemical labels. We have optimized several PS films and anchored nucleic acid sequences with different lengths at gold and carbon surfaces. Non contact mode AFM and XPS were used to monitor each step of the NAB preparation, from polymer modification to oligos hybridization (conventional design). The hybridization reaction was followed electrochemically using a Fc-ssDNA and Fc-PEG in solution taking advantage of the morphological changes generated upon hybridization. We observed a small current at the potential for the Fe oxidation without signal amplification at +296 mV vs. Ag/AgCl for the Fc-ssDNA strategy and a small current at +524 mV for the Fc-PEG strategy. The immobilization, hybridization and signal amplification of Biotin- OmpC Salmonella genes

  18. Nanotechnology: A Tool for Improved Performance on Electrochemical Screen-Printed (BioSensors

    Elena Jubete

    2009-01-01

    Full Text Available Screen-printing technology is a low-cost process, widely used in electronics production, especially in the fabrication of disposable electrodes for (biosensor applications. The pastes used for deposition of the successive layers are based on a polymeric binder with metallic dispersions or graphite, and can also contain functional materials such as cofactors, stabilizers and mediators. More recently metal nanoparticles, nanowires and carbon nanotubes have also been included either in these pastes or as a later stage on the working electrode. This review will summarize the use of nanomaterials to improve the electrochemical sensing capability of screen-printed sensors. It will cover mainly disposable sensors and biosensors for biomedical interest and toxicity monitoring, compiling recent examples where several types of metallic and carbon-based nanostructures are responsible for enhancing the performance of these devices.

  19. An improved glycerol biosensor with an Au-FeS-NAD-glycerol-dehydrogenase anode.

    Mahadevan, Aishwarya; Fernando, Sandun

    2017-06-15

    An improved glycerol biosensor was developed via direct attachment of NAD + -glycerol dehydrogenase coenzyme-apoenzyme complex onto supporting gold electrodes, using novel inorganic iron (II) sulfide (FeS)-based single molecular wires. Sensing performance factors, i.e., sensitivity, a detection limit and response time of the FeS and conventional pyrroloquinoline quinone (PQQ)-based biosensor were evaluated by dynamic constant potential amperometry at 1.3V under non-buffered conditions. For glycerol concentrations ranging from 1 to 25mM, a 77% increase in sensitivity and a 53% decrease in detection limit were observed for the FeS-based biosensor when compared to the conventional PQQ-based counterpart. The electrochemical behavior of the FeS-based glycerol biosensor was analyzed at different concentrations of glycerol, accompanied by an investigation into the effects of applied potential and scan rate on the current response. Effects of enzyme stimulants ((NH 4 ) 2 SO 4 and MnCl 2 ·4H 2 O) concentrations and buffers/pH (potassium phosphate buffer pH 6-8, Tris buffer pH 8-10) on the current responses generated by the FeS-based glycerol biosensor were also studied. The optimal detection conditions were 0.03M (NH 4 ) 2 SO 4 and 0.3µm MnCl 2 ·4H 2 O in non-buffered aqueous electrolyte under stirring whereas under non-stirring, Tris buffer at pH 10 with 0.03M (NH 4 ) 2 SO 4 and 30µm MnCl 2 ·4H 2 O were found to be optimal detection conditions. Interference by glucose, fructose, ethanol, and acetic acid in glycerol detection was studied. The observations indicated a promising enhancement in glycerol detection using the novel FeS-based glycerol sensing electrode compared to the conventional PQQ-based one. These findings support the premise that FeS-based bioanodes are capable of biosensing glycerol successfully and may be applicable for other enzymatic biosensors. Copyright © 2016 Elsevier B.V. All rights reserved.

  20. Sample preparation methods for quantitative detection of DNA by molecular assays and marine biosensors.

    Cox, Annie M; Goodwin, Kelly D

    2013-08-15

    The need for quantitative molecular methods is growing in environmental, food, and medical fields but is hindered by low and variable DNA extraction and by co-extraction of PCR inhibitors. DNA extracts from Enterococcus faecium, seawater, and seawater spiked with E. faecium and Vibrio parahaemolyticus were tested by qPCR for target recovery and inhibition. Conventional and novel methods were tested, including Synchronous Coefficient of Drag Alteration (SCODA) and lysis and purification systems used on an automated genetic sensor (the Environmental Sample Processor, ESP). Variable qPCR target recovery and inhibition were measured, significantly affecting target quantification. An aggressive lysis method that utilized chemical, enzymatic, and mechanical disruption enhanced target recovery compared to commercial kit protocols. SCODA purification did not show marked improvement over commercial spin columns. Overall, data suggested a general need to improve sample preparation and to accurately assess and account for DNA recovery and inhibition in qPCR applications. Published by Elsevier Ltd.

  1. Multiplexed lateral flow biosensors: Technological advances for radically improving point-of-care diagnoses.

    Li, Jia; Macdonald, Joanne

    2016-09-15

    Lateral flow biosensors are a leading technology in point-of-care diagnostics due to their simplicity, rapidness and low cost. Their primacy in this arena continues through technological breakthroughs such as multiplexing: the detection of more than one biomarker in a single assay. Multiplexing capacity is critical for improving diagnostic efficiency, enhancing the diagnostic precision for specific diseases and reducing diagnostic cost. Here we review, for the first time, the various types and strategies employed for creating multiplexed lateral flow biosensors. These are classified into four main categories in terms of specific application or multiplexing level, namely linear, parameter, spatial and conceptual. We describe the practical applications and implications for each approach and compare their advantages and disadvantages. Importantly, multiplexing is still subject to limitations of the traditional lateral flow biosensor, such as sensitivity and specificity. However, by pushing the limitations of the traditional medium into the multiplex arena, several technological breakthroughs are emerging with novel solutions that further expand the utility of lateral flow biosensing for point-of-care applications. Copyright © 2016 Elsevier B.V. All rights reserved.

  2. Coupling of an indicator-free electrochemical DNA biosensor with polymerase chain reaction for the detection of DNA sequences related to the apolipoprotein E

    Lucarelli, Fausto; Marrazza, Giovanna; Palchetti, Ilaria; Cesaretti, S.; Mascini, Marco

    2002-09-26

    This paper describes a disposable indicator-free electrochemical DNA biosensor applied to the detection of apolipoprotein E (apoE) sequences in PCR samples. In the indicator-free assays, the duplex formation was detected by measuring the electrochemical signal of the guanine base of nucleic acids. The biosensor format involved the immobilisation of an inosine-modified (guanine-free) probe onto a screen-printed electrode (SPE) transducer and the detection of the duplex formation in connection with the square-wave voltammetric measurement of the oxidation peak of the guanine of the target sequence. The indicator-free scheme has been characterised using 23-mer oligonucleotides as model: parameters affecting the hybridisation assay such as probe immobilisation conditions, hybridisation time, use of hybridisation accelerators were examined and optimised. The analysis of PCR samples (244 bp DNA fragments, obtained by amplification of DNA extracted from human blood) required a further optimisation of the experimental procedure. In particular, a lower steric hyndrance of the probe modified surface was essential to allow an efficient hybridisation of the target DNA fragment. Negative controls have been performed using the PCR blank and amplicons unrelated to the immobilised probe. A 10 min hybridisation time allowed a full characterisation of each sample.

  3. Sample preparation methods for quantitative detection of DNA by molecular assays and marine biosensors

    Cox, Annie M.; Goodwin, Kelly D.

    2013-01-01

    Highlights: • DNA extraction methods affected measured qPCR target recovery. • Recovery and variability differed, sometimes by more than an order of magnitude. • SCODA did not offer significant improvement with PCR-inhibited seawater. • Aggressive lysis did appear to improve target recovery. • Reliable and affordable correction methods are needed for quantitative PCR. -- Abstract: The need for quantitative molecular methods is growing in environmental, food, and medical fields but is hindered by low and variable DNA extraction and by co-extraction of PCR inhibitors. DNA extracts from Enterococcus faecium, seawater, and seawater spiked with E. faecium and Vibrio parahaemolyticus were tested by qPCR for target recovery and inhibition. Conventional and novel methods were tested, including Synchronous Coefficient of Drag Alteration (SCODA) and lysis and purification systems used on an automated genetic sensor (the Environmental Sample Processor, ESP). Variable qPCR target recovery and inhibition were measured, significantly affecting target quantification. An aggressive lysis method that utilized chemical, enzymatic, and mechanical disruption enhanced target recovery compared to commercial kit protocols. SCODA purification did not show marked improvement over commercial spin columns. Overall, data suggested a general need to improve sample preparation and to accurately assess and account for DNA recovery and inhibition in qPCR applications

  4. Electrochemical DNA biosensor for detection of porcine oligonucleotides using ruthenium(II) complex as intercalator label redox

    Halid, Nurul Izni Abdullah; Hasbullah, Siti Aishah; Heng, Lee Yook; Karim, Nurul Huda Abd [School of Chemical Sciences and Food Technology, Universiti Kebangsaan Malaysia, 43600 UKM Bangi, Selangor Darul Ehsan (Malaysia); Ahmad, Haslina; Harun, Siti Norain [Chemistry Department, Faculty of Science, Universiti Putra Malaysia, 43400, Serdang, Selangor (Malaysia)

    2014-09-03

    A DNA biosensor detection of oligonucleotides via the interactions of porcine DNA with redox active complex based on the electrochemical transduction is described. A ruthenium(II) complex, [Ru(bpy){sub 2}(PIP)]{sup 2+}, (bpy = 2,2′bipyridine, PIP = 2-phenylimidazo[4,5-f[[1,10-phenanthroline]) as DNA label has been synthesized and characterized by 1H NMR and mass spectra. The study was carried out by covalent bonding immobilization of porcine aminated DNA probes sequences on screen printed electrode (SPE) modified with succinimide-acrylic microspheres and [Ru(bpy){sub 2}(PIP)]{sup 2+} was used as electrochemical redox intercalator label to detect DNA hybridization event. Electrochemical detection was performed by cyclic voltammetry (CV) and differential pulse voltammetry (DPV) over the potential range where the ruthenium (II) complex was active. The results indicate that the interaction of [Ru(bpy){sub 2}(PIP)]{sup 2+} with hybridization complementary DNA has higher response compared to single-stranded and mismatch complementary DNA.

  5. A DNA biosensor based on gold nanoparticle decorated on carboxylated multi-walled carbon nanotubes for gender determination of Arowana fish.

    Saeedfar, Kasra; Heng, Lee Yook; Chiang, Chew Poh

    2017-12-01

    Multi-wall carbon nanotubes (MWCNTs) were modified to design a new DNA biosensor. Functionalized MWCNTs were equipped with gold nanoparticles (GNPs) (~15nm) (GNP-MWCNTCOOH) to construct DNA biosensors based on carbon-paste screen-printed (SPE) electrodes. GNP attachment onto functionalized MWCNTs was carried out by microwave irradiation and was confirmed by spectroscopic studies and surface analysis. DNA biosensors based on differential pulse voltammetry (DPV) were constructed by immobilizing thiolated single-stranded DNA probes onto GNP-MWCNTCOOH. Ruthenium (III) chloride hexaammoniate [Ru(NH 3 ) 6 ,2Cl - ] (RuHex) was used as hybridization redox indicator. RuHex and MWCNT interaction was low in compared to other organic redox hybridization indicators. The linear response range for DNA determination was 1×10 -21 to 1×10 -9 M with a lower detection limit of 1.55×10 -21 M. Thus, the attachment of GNPs onto functionalized MWCNTs yielded sensitive DNA biosensor with low detection limit and stability more than 30days. Constructed electrode was used to determine gender of arowana fish. Copyright © 2017 Elsevier B.V. All rights reserved.

  6. Biosensors for EVA: Improved Instrumentation for Ground-based Studies

    Soller, B.; Ellerby, G.; Zou, F.; Scott, P.; Jin, C.; Lee, S. M. C.; Coates, J.

    2010-01-01

    During lunar excursions in the EVA suit, real-time measurement of metabolic rate is required to manage consumables and guide activities to ensure safe return to the base. Metabolic rate, or oxygen consumption (VO2), is normally measured from pulmonary parameters but cannot be determined with standard techniques in the oxygen-rich environment of a spacesuit. Our group has developed novel near infrared spectroscopic (NIRS) methods to calculate muscle oxygen saturation (SmO 2), hematocrit, and pH, and we recently demonstrated that we can use our NIRS sensor to measure VO 2 on the leg during cycling. Our NSBRI project has 4 objectives: (1) increase the accuracy of the metabolic rate calculation through improved prediction of stroke volume; (2) investigate the relative contributions of calf and thigh oxygen consumption to metabolic rate calculation for walking and running; (3) demonstrate that the NIRS-based noninvasive metabolic rate methodology is sensitive enough to detect decrement in VO 2 in a space analog; and (4) improve instrumentation to allow testing within a spacesuit. Over the past year we have made progress on all four objectives, but the most significant progress was made in improving the instrumentation. The NIRS system currently in use at JSC is based on fiber optics technology. Optical fiber bundles are used to deliver light from a light source in the monitor to the patient, and light reflected back from the patient s muscle to the monitor for spectroscopic analysis. The fiber optic cables are large and fragile, and there is no way to get them in and out of the test spacesuit used for ground-based studies. With complimentary funding from the US Army, we undertook a complete redesign of the sensor and control electronics to build a novel system small enough to be used within the spacesuit and portable enough to be used by a combat medic. In the new system the filament lamp used in the fiber optic system was replaced with a novel broadband near infrared

  7. Gold nanoparticle-based electrochemical biosensors

    Pingarron, Jose M.; Yanez-Sedeno, Paloma; Gonzalez-Cortes, Araceli [Department of Analytical Chemistry, Faculty of Chemistry, University Complutense of Madrid, 28040 Madrid (Spain)

    2008-08-01

    The unique properties of gold nanoparticles to provide a suitable microenvironment for biomolecules immobilization retaining their biological activity, and to facilitate electron transfer between the immobilized proteins and electrode surfaces, have led to an intensive use of this nanomaterial for the construction of electrochemical biosensors with enhanced analytical performance with respect to other biosensor designs. Recent advances in this field are reviewed in this article. The advantageous operational characteristics of the biosensing devices designed making use of gold nanoparticles are highlighted with respect to non-nanostructured biosensors and some illustrative examples are commented. Electrochemical enzyme biosensors including those using hybrid materials with carbon nanotubes and polymers, sol-gel matrices, and layer-by-layer architectures are considered. Moreover, electrochemical immunosensors in which gold nanoparticles play a crucial role in the electrode transduction enhancement of the affinity reaction as well as in the efficiency of immunoreagents immobilization in a stable mode are reviewed. Similarly, recent advances in the development of DNA biosensors using gold nanoparticles to improve DNA immobilization on electrode surfaces and as suitable labels to improve detection of hybridization events are considered. Finally, other biosensors designed with gold nanoparticles oriented to electrically contact redox enzymes to electrodes by a reconstitution process and to the study of direct electron transfer between redox proteins and electrode surfaces have also been treated. (author)

  8. Gold nanoparticle-based electrochemical biosensors

    Pingarron, Jose M.; Yanez-Sedeno, Paloma; Gonzalez-Cortes, Araceli

    2008-01-01

    The unique properties of gold nanoparticles to provide a suitable microenvironment for biomolecules immobilization retaining their biological activity, and to facilitate electron transfer between the immobilized proteins and electrode surfaces, have led to an intensive use of this nanomaterial for the construction of electrochemical biosensors with enhanced analytical performance with respect to other biosensor designs. Recent advances in this field are reviewed in this article. The advantageous operational characteristics of the biosensing devices designed making use of gold nanoparticles are highlighted with respect to non-nanostructured biosensors and some illustrative examples are commented. Electrochemical enzyme biosensors including those using hybrid materials with carbon nanotubes and polymers, sol-gel matrices, and layer-by-layer architectures are considered. Moreover, electrochemical immunosensors in which gold nanoparticles play a crucial role in the electrode transduction enhancement of the affinity reaction as well as in the efficiency of immunoreagents immobilization in a stable mode are reviewed. Similarly, recent advances in the development of DNA biosensors using gold nanoparticles to improve DNA immobilization on electrode surfaces and as suitable labels to improve detection of hybridization events are considered. Finally, other biosensors designed with gold nanoparticles oriented to electrically contact redox enzymes to electrodes by a reconstitution process and to the study of direct electron transfer between redox proteins and electrode surfaces have also been treated

  9. Electrochemical study of quinone redox cycling: A novel application of DNA-based biosensors for monitoring biochemical reactions.

    Ensafi, Ali A; Jamei, Hamid Reza; Heydari-Bafrooei, Esmaeil; Rezaei, B

    2016-10-01

    This paper presents the results of an experimental investigation of voltammetric and impedimetric DNA-based biosensors for monitoring biological and chemical redox cycling reactions involving free radical intermediates. The concept is based on associating the amounts of radicals generated with the electrochemical signals produced, using differential pulse voltammetry (DPV) and electrochemical impedance spectroscopy (EIS). For this purpose, a pencil graphite electrode (PGE) modified with multiwall carbon nanotubes and poly-diallydimethlammonium chloride decorated with double stranded fish sperm DNA was prepared to detect DNA damage induced by the radicals generated from a redox cycling quinone (i.e., menadione (MD; 2-methyl-1,4-naphthoquinone)). Menadione was employed as a model compound to study the redox cycling of quinones. A direct relationship was found between free radical production and DNA damage. The relationship between MD-induced DNA damage and free radical generation was investigated in an attempt to identify the possible mechanism(s) involved in the action of MD. Results showed that DPV and EIS were appropriate, simple and inexpensive techniques for the quantitative and qualitative comparisons of different reducing reagents. These techniques may be recommended for monitoring DNA damages and investigating the mechanisms involved in the production of redox cycling compounds. Copyright © 2016 Elsevier B.V. All rights reserved.

  10. Electrochemical DNA biosensor for the detection of Trichoderma harzianum based on a gold electrode modified with a composite membrane made from an ionic liquid, ZnO nanoparticles and chitosan, and by using acridine orange as a redox indicator

    Siddiquee, S.; Yusof, N.A.; Salleh, A.B.; Tan, S.G.; Bakar, F.A.

    2011-01-01

    An electrochemical DNA biosensor was developed that is based on a gold electrode modified with a nanocomposite membrane made from an ionic liquid, ZnO nanoparticles and chitosan. A single-stranded DNA probe was immobilized on this electrode. Acridine orange was used as the hybridization probe for monitoring the hybridization of the target DNA. The biosensor was capable of detecting target DNA in the concentration range from 1.0 x 10 -14 to 1.8 x 10 -4 mol L -1 , with a detection limit of 1.0 x 10 -15 mol L -1 . The approach towards constructing a DNA biosensor allows studies on the hybridization even with crude DNA fragments and also to analyze sample obtained from real samples. The results show that the DNA biosensor has the potential for sensitive detection of a specific sequence of the Trichoderma harzianum gene and provides a quick, sensitive and convenient method for the study of microorganisms. (author)

  11. DNA directed protein immobilization on mixed ssDNA/oligo /ethylene glycol/ self-assembled monolayers for sensitive biosensors

    Boozer, C.; Ladd, J.; Chen, S.; Yu, Q.; Homola, Jiří; Jiang, S. Y.

    2004-01-01

    Roč. 76, č. 23 (2004), s. 6967-6972 ISSN 0003-2700 Grant - others:US FDA(US) FD-U-002250 Institutional research plan: CEZ:AV0Z2067918 Keywords : arrays * biosensors * surface plasmon resonance * gold Subject RIV: JB - Sensors, Measurment, Regulation Impact factor: 5.450, year: 2004

  12. Investigation of cleaning and regeneration methods for reliable construction of DNA cantilever biosensors

    Quan, Xueling; Yi, Sun; Heiskanen, Arto

    to clean and regenerate the sensing surface of cantilever biosensors. Perchloric acid potential sweep, potassium hydroxide-hydrogen peroxide, and piranha cleaning are investigated here. Peak-current potential differences from cyclic voltammetry, X-ray photo-electron spectroscopy and fluorescence detection...

  13. Electrochemical biosensors

    Cosnier, Serge

    2015-01-01

    "This is an excellent book on modern electrochemical biosensors, edited by Professor Cosnier and written by leading international experts. It covers state-of-the-art topics of this important field in a clear and timely manner."-Prof. Joseph Wang, UC San Diego, USA  "This book covers, in 13 well-illustrated chapters, the potential of electrochemical methods intimately combined with a biological component for the assay of various analytes of biological and environmental interest. Particular attention is devoted to the description of electrochemical microtools in close contact with a biological cell for exocytosis monitoring and to the use of nanomaterials in the electrochemical biosensor architecture for signal improvement. Interestingly, one chapter describes the concept and design of self-powered biosensors derived from biofuel cells. Each topic is reviewed by experts very active in the field. This timely book is well suited for providing a good overview of current research trends devoted to electrochemical...

  14. Synthetic biology for microbial heavy metal biosensors.

    Kim, Hyun Ju; Jeong, Haeyoung; Lee, Sang Jun

    2018-02-01

    Using recombinant DNA technology, various whole-cell biosensors have been developed for detection of environmental pollutants, including heavy metal ions. Whole-cell biosensors have several advantages: easy and inexpensive cultivation, multiple assays, and no requirement of any special techniques for analysis. In the era of synthetic biology, cutting-edge DNA sequencing and gene synthesis technologies have accelerated the development of cell-based biosensors. Here, we summarize current technological advances in whole-cell heavy metal biosensors, including the synthetic biological components (bioparts), sensing and reporter modules, genetic circuits, and chassis cells. We discuss several opportunities for improvement of synthetic cell-based biosensors. First, new functional modules must be discovered in genome databases, and this knowledge must be used to upgrade specific bioparts through molecular engineering. Second, modules must be assembled into functional biosystems in chassis cells. Third, heterogeneity of individual cells in the microbial population must be eliminated. In the perspectives, the development of whole-cell biosensors is also discussed in the aspects of cultivation methods and synthetic cells.

  15. Intrinsic low pass filtering improves signal-to-noise ratio in critical-point flexure biosensors

    Jain, Ankit; Alam, Muhammad Ashraful

    2014-01-01

    A flexure biosensor consists of a suspended beam and a fixed bottom electrode. The adsorption of the target biomolecules on the beam changes its stiffness and results in change of beam's deflection. It is now well established that the sensitivity of sensor is maximized close to the pull-in instability point, where effective stiffness of the beam vanishes. The question: “Do the signal-to-noise ratio (SNR) and the limit-of-detection (LOD) also improve close to the instability point?”, however remains unanswered. In this article, we systematically analyze the noise response to evaluate SNR and establish LOD of critical-point flexure sensors. We find that a flexure sensor acts like an effective low pass filter close to the instability point due to its relatively small resonance frequency, and rejects high frequency noise, leading to improved SNR and LOD. We believe that our conclusions should establish the uniqueness and the technological relevance of critical-point biosensors.

  16. Titanium Dioxide Nanoparticle-Based Interdigitated Electrodes: A Novel Current to Voltage DNA Biosensor Recognizes E. coli O157:H7.

    Sh Nadzirah

    Full Text Available Nanoparticle-mediated bio-sensing promoted the development of novel sensors in the front of medical diagnosis. In the present study, we have generated and examined the potential of titanium dioxide (TiO2 crystalline nanoparticles with aluminium interdigitated electrode biosensor to specifically detect single-stranded E.coli O157:H7 DNA. The performance of this novel DNA biosensor was measured the electrical current response using a picoammeter. The sensor surface was chemically functionalized with (3-aminopropyl triethoxysilane (APTES to provide contact between the organic and inorganic surfaces of a single-stranded DNA probe and TiO2 nanoparticles while maintaining the sensing system's physical characteristics. The complement of the target DNA of E. coli O157:H7 to the carboxylate-probe DNA could be translated into electrical signals and confirmed by the increased conductivity in the current-to-voltage curves. The specificity experiments indicate that the biosensor can discriminate between the complementary sequences from the base-mismatched and the non-complementary sequences. After duplex formation, the complementary target sequence can be quantified over a wide range with a detection limit of 1.0 x 10(-13M. With target DNA from the lysed E. coli O157:H7, we could attain similar sensitivity. Stability of DNA immobilized surface was calculated with the relative standard deviation (4.6%, displayed the retaining with 99% of its original response current until 6 months. This high-performance interdigitated DNA biosensor with high sensitivity, stability and non-fouling on a novel sensing platform is suitable for a wide range of biomolecular interactive analyses.

  17. PNA-PEG modified silicon platforms as functional bio-interfaces for applications in DNA microarrays and biosensors.

    Cattani-Scholz, Anna; Pedone, Daniel; Blobner, Florian; Abstreiter, Gerhard; Schwartz, Jeffrey; Tornow, Marc; Andruzzi, Luisa

    2009-03-09

    The synthesis and characterization of two types of silicon-based biofunctional interfaces are reported; each interface bonds a dense layer of poly(ethylene glycol) (PEG(n)) and peptide nucleic acid (PNA) probes. Phosphonate self-assembled monolayers were derivatized with PNA using a maleimido-terminated PEG(45). Similarly, siloxane monolayers were functionalized with PNA using a maleimido-terminated PEG(45) spacer and were subsequently modified with a shorter methoxy-terminated PEG(12) ("back-filling"). The long PEG(45) spacer was used to distance the PNA probe from the surface and to minimize undesirable nonspecific adsorption of DNA analyte. The short PEG(12) "back-filler" was used to provide additional passivation of the surface against nonspecific DNA adsorption. X-ray photoelectron spectroscopic (XPS) analysis near the C 1s and N 1s ionization edges was done to characterize chemical groups formed in the near-surface region, which confirmed binding of PEG and PNA to the phosphonate and silane films. XPS also indicated that additional PEG chains were tethered to the surface during the back-filling process. Fluorescence hybridization experiments were carried out with complementary and noncDNA strands; both phosphonate and siloxane biofunctional surfaces were effective for hybridization of cDNA strands and significantly reduced nonspecific adsorption of the analyte. Spatial patterns were prepared by polydimethylsiloxane (PDMS) micromolding on the PNA-functionalized surfaces; selective hybridization of fluorescently labeled DNA was shown at the PNA functionalized regions, and physisorption at the probe-less PEG-functionalized regions was dramatically reduced. These results show that PNA-PEG derivatized phosphonate monolayers hold promise for the smooth integration of device surface chemistry with semiconductor technology for the fabrication of DNA biosensors. In addition, our results confirm that PNA-PEG derivatized self-assembled carboxyalkylsiloxane films are

  18. Ultrasensitive electrochemical biosensor for detection of DNA from Bacillus subtilis by coupling target-induced strand displacement and nicking endonuclease signal amplification.

    Hu, Yuhua; Xu, Xueqin; Liu, Qionghua; Wang, Ling; Lin, Zhenyu; Chen, Guonan

    2014-09-02

    A simple, ultrasensitive, and specific electrochemical biosensor was designed to determine the given DNA sequence of Bacillus subtilis by coupling target-induced strand displacement and nicking endonuclease signal amplification. The target DNA (TD, the DNA sequence from the hypervarient region of 16S rDNA of Bacillus subtilis) could be detected by the differential pulse voltammetry (DPV) in a range from 0.1 fM to 20 fM with the detection limit down to 0.08 fM at the 3s(blank) level. This electrochemical biosensor exhibits high distinction ability to single-base mismatch, double-bases mismatch, and noncomplementary DNA sequence, which may be expected to detect single-base mismatch and single nucleotide polymorphisms (SNPs). Moreover, the applicability of the designed biosensor for detecting the given DNA sequence from Bacillus subtilis was investigated. The result obtained by electrochemical method is approximately consistent with that by a real-time quantitative polymerase chain reaction detecting system (QPCR) with SYBR Green.

  19. A ratiometric electrochemical biosensor for the exosomal microRNAs detection based on bipedal DNA walkers propelled by locked nucleic acid modified toehold mediate strand displacement reaction.

    Zhang, Jing; Wang, Liang-Liang; Hou, Mei-Feng; Xia, Yao-Kun; He, Wen-Hui; Yan, An; Weng, Yun-Ping; Zeng, Lu-Peng; Chen, Jing-Hua

    2018-04-15

    Sensitive and selective detection of microRNAs (miRNAs) in cancer cells derived exosomes have attracted rapidly growing interest owing to their potential in diagnostic and prognostic applications. Here, we design a ratiometric electrochemical biosensor based on bipedal DNA walkers for the attomolar detection of exosomal miR-21. In the presence of miR-21, DNA walkers are activated to walk continuously along DNA tracks, resulting in conformational changes as well as considerable increases of the signal ratio produced by target-respond and target-independent reporters. With the signal cascade amplification of DNA walkers, the biosensor exhibits ultrahigh sensitivity with the limit of detection (LOD) down to 67 aM. Furthermore, owing to the background-correcting function of target-independent reporters termed as reference reporters, the biosensor is robust and stable enough to be applied in the detection of exosomal miR-21 extracted from breast cancer cell lines and serums. In addition, because locked nucleic acid (LNA) modified toehold mediate strand displacement reaction (TMSDR) has extraordinary discriminative ability, the biosensor displays excellent selectivity even against the single-base-mismatched target. It is worth mentioning that our sensor is regenerative and stable for at least 5 cycles without diminution in sensitivity. In brief, the high sensitivity, selectivity and reproducibility, together with cheap, make the proposed biosensor a promising approach for exosomal miRNAs detection, in conjunction with early point-of-care testing (POCT) of cancer. Copyright © 2017 Elsevier B.V. All rights reserved.

  20. Ultrasensitive label-free detection of DNA hybridization by sapphire-based graphene field-effect transistor biosensor

    Xu, Shicai; Jiang, Shouzhen; Zhang, Chao; Yue, Weiwei; Zou, Yan; Wang, Guiying; Liu, Huilan; Zhang, Xiumei; Li, Mingzhen; Zhu, Zhanshou; Wang, Jihua

    2018-01-01

    Graphene has attracted much attention in biosensing applications for its unique properties. Because of one-atom layer structure, every atom of graphene is exposed to the environment, making the electronic properties of graphene are very sensitive to charged analytes. Therefore, graphene is an ideal material for transistors in high-performance sensors. Chemical vapor deposition (CVD) method has been demonstrated the most successful method for fabricating large area graphene. However, the conventional CVD methods can only grow graphene on metallic substrate and the graphene has to be transferred to the insulating substrate for further device fabrication. The transfer process creates wrinkles, cracks, or tears on the graphene, which severely degrade electrical properties of graphene. These factors severely degrade the sensing performance of graphene. Here, we directly fabricated graphene on sapphire substrate by high temperature CVD without the use of metal catalysts. The sapphire-based graphene was patterned and make into a DNA biosensor in the configuration of field-effect transistor. The sensors show high performance and achieve the DNA detection sensitivity as low as 100 fM (10-13 M), which is at least 10 times lower than prior transferred CVD G-FET DNA sensors. The use of the sapphire-based G-FETs suggests a promising future for biosensing applications.

  1. Hydrogenated amorphous silicon nitride photonic crystals for improved-performance surface electromagnetic wave biosensors.

    Sinibaldi, Alberto; Descrovi, Emiliano; Giorgis, Fabrizio; Dominici, Lorenzo; Ballarini, Mirko; Mandracci, Pietro; Danz, Norbert; Michelotti, Francesco

    2012-10-01

    We exploit the properties of surface electromagnetic waves propagating at the surface of finite one dimensional photonic crystals to improve the performance of optical biosensors with respect to the standard surface plasmon resonance approach. We demonstrate that the hydrogenated amorphous silicon nitride technology is a versatile platform for fabricating one dimensional photonic crystals with any desirable design and operating in a wide wavelength range, from the visible to the near infrared. We prepared sensors based on photonic crystals sustaining either guided modes or surface electromagnetic waves, also known as Bloch surface waves. We carried out for the first time a direct experimental comparison of their sensitivity and figure of merit with surface plasmon polaritons on metal layers, by making use of a commercial surface plasmon resonance instrument that was slightly adapted for the experiments. Our measurements demonstrate that the Bloch surface waves on silicon nitride photonic crystals outperform surface plasmon polaritons by a factor 1.3 in terms of figure of merit.

  2. A duplex DNA-gold nanoparticle probe composed as a colorimetric biosensor for sequence-specific DNA-binding proteins.

    Ahn, Junho; Choi, Yeonweon; Lee, Ae-Ree; Lee, Joon-Hwa; Jung, Jong Hwa

    2016-03-21

    Using duplex DNA-AuNP aggregates, a sequence-specific DNA-binding protein, SQUAMOSA Promoter-binding-Like protein 12 (SPL-12), was directly determined by SPL-12-duplex DNA interaction-based colorimetric actions of DNA-Au assemblies. In order to prepare duplex DNA-Au aggregates, thiol-modified DNA 1 and DNA 2 were attached onto the surface of AuNPs, respectively, by the salt-aging method and then the DNA-attached AuNPs were mixed. Duplex-DNA-Au aggregates having the average size of 160 nm diameter and the maximum absorption at 529 nm were able to recognize SPL-12 and reached the equivalent state by the addition of ∼30 equivalents of SPL-12 accompanying a color change from red to blue with a red shift of the maximum absorption at 570 nm. As a result, the aggregation size grew to about 247 nm. Also, at higher temperatures of the mixture of duplex-DNA-Au aggregate solution and SPL-12, the equivalent state was reached rapidly. On the contrary, in the control experiment using Bovine Serum Albumin (BSA), no absorption band shift of duplex-DNA-Au aggregates was observed.

  3. An electrochemical impedance biosensor for Hg2+ detection based on DNA hydrogel by coupling with DNAzyme-assisted target recycling and hybridization chain reaction.

    Cai, Wei; Xie, Shunbi; Zhang, Jin; Tang, Dianyong; Tang, Ying

    2017-12-15

    In this work, an electrochemical impedance biosensor for high sensitive detection of Hg 2+ was presented by coupling with Hg 2+ -induced activation of Mg 2+ -specific DNAzyme (Mg 2+ -DNAzyme) for target cycling and hybridization chain reaction (HCR) assembled DNA hydrogel for signal amplification. Firstly, we synthesized two different copolymer chains P1 and P2 by modifying hairpin DNA H3 and H4 with acrylamide polymer, respectively. Subsequently, Hg 2+ was served as trigger to activate the Mg 2+ -DNAzyme for selectively cleavage ribonucleobase-modified substrate in the presence of Mg 2+ . The partial substrate strand could dissociate from DNAzyme structure, and hybridize with capture probe H1 to expose its concealed sequence for further hybridization. With the help of the exposed sequence, the HCR between hairpin DNA H3 and H4 in P1 and P2 was initiated, and assembled a layer of DNA cross-linked hydrogel on the electrode surface. The formed non-conductive DNA hydrogel film could greatly hinder the interfacial electronic transfer which provided a possibility for us to construct a high sensitive impedance biosensor for Hg 2+ detection. Under the optimal conditions, the impedance biosensor showed an excellent sensitivity and selectivity toward Hg 2+ in a concentration range of 0.1pM - 10nM with a detection limit of 0.042pM Moreover, the real sample analysis reveal that the proposed biosensor is capable of discriminating Hg 2+ ions in reliable and quantitative manners, indicating this method has a promising potential for preliminary application in routine tests. Copyright © 2017 Elsevier B.V. All rights reserved.

  4. [Application of DNA-based electrochemical biosensor in rapid detection of Escherichia coli exist in licorice decoction].

    Zhao, Yu-Wen; Wang, Hai-Xia; Bie, Song-Tao; Shao, Qian; Wang, Chun-Hua; Wang, Dong-Heng; Li, Zheng

    2018-03-01

    A new method for detection of Escherichia coli exist in licorice decoction was developed by using DNA-based electrochemical biosensor. The thiolated capture probe was immobilized on a gold electrode at first. Then the aptamer for Escherichia coli was combined with the capture probe by hybridization. Due to the stronger interaction between the aptamer and the E. coli, the aptamer can dissociate from the capture probe in the presence of E. coli in licorice decoction. The biotinylated detection probe was hybridized with the single-strand capture probe. As a result, the electrochemical response to Escherichia coli can be measured by using differential pulse voltammetric in the presence of α-naphthyl phosphate. The plot of peak current vs. the logarithm of concentration in the range from 2.7×10² to 2.7×10⁸ CFU·mL⁻¹ displayed a linear relationship with a detection limit of 50 CFU·mL⁻¹. The relative standard deviation of 3 successive scans was 2.5%,2.1%,4.6% for 2×10²,2×10⁴,2×106:⁶ CFU·mL⁻¹ E. coli, respectively. The proposed procedure showed better specificity to E. coli in comparison to Pseudomonas aeruginosa, Staphylococcus aureus and Bacillus subtilis. In the detection of the real extractum glycyrrhizae, the results between the proposed strategy and the GB assay showed high degree of agreement, demonstrating the designed biosensor could be utilized as a powerful tool for microbial examination for traditional Chinese medicine. Copyright© by the Chinese Pharmaceutical Association.

  5. Biosentinel: Improving Desiccation Tolerance of Yeast Biosensors for Deep-Space Missions

    Dalal, Sawan; Santa Maria, Sergio R.; Liddell, Lauren; Bhattacharya, Sharmila

    2017-01-01

    BioSentinel is one of 13 secondary payloads to be deployed on Exploration Mission 1 (EM-1) in 2019. We will use the budding yeast Saccharomyces cerevisiae as a biosensor to determine how deep-space radiation affects living organisms and to potentially quantify radiation levels through radiation damage analysis. Radiation can damage DNA through double strand breaks (DSBs), which can normally be repaired by homologous recombination. Two yeast strains will be air-dried and stored in microfluidic cards within the payload: a wild-type control strain and a radiation sensitive rad51 mutant that is deficient in DSB repairs. Throughout the mission, the microfluidic cards will be rehydrated with growth medium and an indicator dye. Growth rates of each strain will be measured through LED detection of the reduction of the indicator dye, which correlates with DNA repair and the amount of radiation damage accumulated. Results from BioSentinel will be compared to analog experiments on the ISS and on Earth. It is well known that desiccation can damage yeast cells and decrease viability over time. We performed a screen for desiccation-tolerant rad51 strains. We selected 20 re-isolates of rad51 and ran a weekly screen for desiccation-tolerant mutants for five weeks. Our data shows that viability decreases over time, confirming previous research findings. Isolates L2, L5 and L14 indicate desiccation tolerance and are candidates for whole-genome sequencing. More time is needed to determine whether a specific strain is truly desiccation tolerant. Furthermore, we conducted an intracellular trehalose assay to test how intracellular trehalose concentrations affect or protect the mutant strains against desiccation stress. S. cerevisiae cell and reagent concentrations from a previously established intracellular trehalose protocol did not yield significant absorbance measurements, so we tested varying cell and reagent concentrations and determined proper concentrations for successful

  6. Development of DNA biosensor based on TiO2 nanoparticles

    Nadzirah, Sh.; Hashim, U.; Rusop, M.

    2018-05-01

    A novel technique of DNA hybridization on the TiO2 nanoparticles film was developed by dropping a single droplet of target DNA onto the surface of TiO2 for the study of various concentrations of target DNA. The surface of TiO2 nanoparticle film was functionalized with APTES and covalently immobilized with 1 µM probe DNA on the silanized TiO2 nanoparticles surface. The effect of silanization, immobilization and hybridization were quantitatively measured by the output current signal obtained using a picoammeter. The 1 µM target DNA was found to be the most effective target towards the 1 µM probe DNA as the output current signal was within range; while the output current signal of the 10 µM target DNA was observed to beyond the range of the probe DNA control due to the excessive concentration as compared to the probe DNA. This approach has several advantages such as rapid, simple, low cost, and sensitive current signal during detection of different target DNA concentrations.

  7. Effective immobilization of DNA for development of polypyrrole nanowires based biosensor

    Tran, Thi Luyen; Chu, Thi Xuan, E-mail: xuan@itims.edu.vn; Huynh, Dang Chinh; Pham, Duc Thanh; Luu, Thi Hoai Thuong; Mai, Anh Tuan, E-mail: tuan.maianh@hust.edu.vn

    2014-09-30

    Highlights: • Effective technique to immobilize probe DNA to the conducting polymer Polypyrrole nanowires (PPy NWs). • The PPy-NWs were electrochemically synthesized on the surface of the Pt electrodes using gelatin as the soft mold. • The DNA probe sequences were immobilized easily on the PPy NWs/Pt electrode using the adsorption method. • The DNA sensor has a low detection limit. - Abstract: This paper reports an easy technique for immobilization of the DNA to the conducting polymer polypyrrole nanowires (PPy NWs). The nanowires were electrochemically synthesized on the surface of working electrode in the presence of gelatin as a soft mold. The structure of obtained PPy NWs was investigated by Scanning Electron Microscopy (SEM), Fourier Transform Infrared (FTIR) spectroscopy and Surface Enhanced Raman Spectroscopy (SERS). The DNA strands were directly immobilized on the PPy NWs. The amino groups at the up-end of the PPy nanowires facilitate the linkage with the phosphate groups of the probe DNA. The DNA immobilization and hybridization were characterized by Electrochemical Impedance Spectroscopy (EIS). The initial results show that the sensor responses to 10 pM of DNA sequence in the solution.

  8. Gold-based optical biosensor for single-mismatched DNA detection using salt-induced hybridization

    Zhan, Zongrui; Ma, Xingyi; Cao, Cuong

    2011-01-01

    In this study, a gold nanoparticle (Au-NP)-based detection method for sensitive and specific DNA-based diagnostic applications is described. A sandwich format consisting of Au-NPs/DNA/PMP (Streptavidin-coated MagnetSphere Para-Magnetic Particles) was fabricated. PMPs captured and separated target...

  9. DNA biosensor for detection of Salmonella typhi from blood sample of typhoid fever patient using gold electrode modified by self-assembled monolayers of thiols

    Suryapratiwi, Windha Novita; Paat, Vlagia Indira; Gaffar, Shabarni; Hartati, Yeni Wahyuni

    2017-05-01

    Electrochemical biosensors are currently being developed in order to handle various clinical problems in diagnosing infectious diseases caused by pathogenic bacteria, or viruses. On this research, voltammetric DNA biosensor using gold electrode modified by thiols with self-assembled monolayers had been developed to detect a certain sequence of Salmonella typhi DNA from blood sample of typhoid fever patient. Thiol groups of cysteamines (Cys) and aldehyde groups from glutaraldehydes (Glu) were used as a link to increase the performance of gold electrode in detecting guanine oxidation signal of hybridized S. typhi DNA and ssDNA probe. Standard calibration method was used to determine analytical parameters from the measurements. The result shown that, the detection of S. typhi DNA from blood sample of typhoid fever patient can be carried out by voltammetry using gold electrode modified by self-assembled monolayers of thiols. A characteristic oxidation potential of guanine using Au/Cys/Gluwas obtained at +0.17 until +0.20 V. Limit of detection and limit of quantification from this measurements were 1.91μg mL-1 and 6.35 μg mL-1. The concentration of complement DNA from sample was 6.96 μg mL-1.

  10. The effect of microscopic attractive interactions on piezoelectric coefficients of nanoscale DNA films and its resultant mirocantilever-based biosensor signals

    Wu, Jun-Zheng; Zhang, Neng-Hui; Zhou, Mei-Hong

    2017-01-01

    The adsorption of charged biomolecules on a substrate will trigger a self-induced electric potential field that could deflect microcantilever biosensors in the nanometer regime. The paper is devoted to a multiscale characterization of the piezoelectric coefficient of double-stranded DNA (dsDNA) films with microscopic attractive interactions in multivalence salt solutions, which has a close relationship with biosensor signals. First, two different analytical models of cantilever deflections based on macroscopic piezoelectric theories or mesoscopic liquid crystal theories were combined in the sense of equivalent deformation in order to bridge the relation between the macroscopic piezoelectric coefficient of an adsorbate film and the sensitivity of its microstructure to surrounding conditions. Second, two interaction potentials of the free energy for repulsion-dominated DNA films in NaCl solution or attraction-repulsion-coexisted DNA films in multivalent salt solutions were used to compare the piezoelectric effect and the resultant cantilever deformation at various packing conditions, such as different packing density, various nucleotide numbers and two packing technologies, i.e. nano-grafting or self-assembling technology. The variational tendency of microcantilever deflections predicted by the present multiscale analytical model agrees well with the related DNA-mirocantilever experiments. Negative piezoelectric coefficient of dsDNA film exists in multivalent salt solutions, and its distinctive size effect with different packing densities and nucleotide numbers provides us with an opportunity to obtain a more sensitive microcantilever sensor by careful control of packing conditions. (paper)

  11. Development of a Fish Cell Biosensor System for Genotoxicity Detection Based on DNA Damage-Induced Trans-Activation of p21 Gene Expression

    Huarong Guo

    2012-09-01

    Full Text Available p21CIP1/WAF1 is a p53-target gene in response to cellular DNA damage. Here we report the development of a fish cell biosensor system for high throughput genotoxicity detection of new drugs, by stably integrating two reporter plasmids of pGL3-p21-luc (human p21 promoter linked to firefly luciferase and pRL-CMV-luc (CMV promoter linked to Renilla luciferase into marine flatfish flounder gill (FG cells, referred to as p21FGLuc. Initial validation of this genotoxicity biosensor system showed that p21FGLuc cells had a wild-type p53 signaling pathway and responded positively to the challenge of both directly acting genotoxic agents (bleomycin and mitomycin C and indirectly acting genotoxic agents (cyclophosphamide with metabolic activation, but negatively to cyclophosphamide without metabolic activation and the non-genotoxic agents ethanol and D-mannitol, thus confirming a high specificity and sensitivity, fast and stable response to genotoxic agents for this easily maintained fish cell biosensor system. This system was especially useful in the genotoxicity detection of Di(2-ethylhexyl phthalate (DEHP, a rodent carcinogen, but negatively reported in most non-mammalian in vitro mutation assays, by providing a strong indication of genotoxicity for DEHP. A limitation for this biosensor system was that it might give false positive results in response to sodium butyrate and any other agents, which can trans-activate the p21 gene in a p53-independent manner.

  12. Rapid and label-free electrochemical DNA biosensor for detecting hepatitis A virus.

    Manzano, Marisa; Viezzi, Sara; Mazerat, Sandra; Marks, Robert S; Vidic, Jasmina

    2018-02-15

    Diagnostic systems that can deliver highly specific and sensitive detection of hepatitis A virus (HAV) in food and water are of particular interest in many fields including food safety, biosecurity and control of outbreaks. Our aim was the development of an electrochemical method based on DNA hybridization to detect HAV. A ssDNA probe specific for HAV (capture probe) was designed and tested on DNAs from various viral and bacterial samples using Nested-Reverse Transcription Polymerase Chain Reaction (nRT-PCR). To develop the electrochemical device, a disposable gold electrode was functionalized with the specific capture probe and tested on complementary ssDNA and on HAV cDNA. The DNA hybridization on the electrode was measured through the monitoring of the oxidative peak potential of the indicator tripropylamine by cyclic voltammetry. To prevent non-specific binding the gold surface was treated with 3% BSA before detection. High resolution atomic force microscopy (AFM) confirmed the efficiency of electrode functionalization and on-electrode hybridization. The proposed device showed a limit of detection of 0.65pM for the complementary ssDNA and 6.94fg/µL for viral cDNA. For a comparison, nRT-PCR quantified the target HAV cDNA with a limit of detection of 6.4fg/µL. The DNA-sensor developed can be adapted to a portable format to be adopted as an easy-to- use and low cost method for screening HAV in contaminated food and water. In addition, it can be useful for rapid control of HAV infections as it takes only a few minutes to provide the results. Copyright © 2017. Published by Elsevier B.V.

  13. Plasmonic Nanostructures for Biosensor Applications

    Gadde, Akshitha

    Improving the sensitivity of existing biosensors is an active research topic that cuts across several disciplines, including engineering and biology. Optical biosensors are the one of the most diverse class of biosensors which can be broadly categorized into two types based on the detection scheme: label-based and label-free detection. In label-based detection, the target bio-molecules are labeled with dyes or tags that fluoresce upon excitation, indicating the presence of target molecules. Label-based detection is highly-sensitive, capable of single molecule detection depending on the detector type used. One method of improving the sensitivity of label-based fluorescence detection is by enhancement of the emission of the labels by coupling them with metal nanostructures. This approach is referred as plasmon-enhanced fluorescence (PEF). PEF is achieved by increasing the electric field around the nano metal structures through plasmonics. This increased electric field improves the enhancement from the fluorophores which in turn improves the photon emission from the fluorophores which, in turn, improves the limit of detection. Biosensors taking advantage of the plasmonic properties of metal films and nanostructures have emerged an alternative, low-cost, high sensitivity method for detecting labeled DNA. Localized surface plasmon resonance (LSPR) sensors employing noble metal nanostructures have recently attracted considerable attention as a new class of plasmonic nanosensors. In this work, the design, fabrication and characterization of plasmonic nanostructures is carried out. Finite difference time domain (FDTD) simulations were performed using software from Lumerical Inc. to design a novel LSPR structure that exhibit resonance overlapping with the absorption and emission wavelengths of quantum dots (QD). Simulations of a composite Au/SiO2 nanopillars on silicon substrate were performed using FDTD software to show peak plasmonic enhancement at QD emission wavelength

  14. DNA tetrahedral scaffolds-based platform for the construction of electrochemiluminescence biosensor.

    Feng, Qiu-Mei; Zhou, Zhen; Li, Mei-Xing; Zhao, Wei; Xu, Jing-Juan; Chen, Hong-Yuan

    2017-04-15

    Proximal metallic nanoparticles (NPs) could quench the electrochemiluminescence (ECL) emission of semiconductor quantum dots (QDs) due to Förster energy transfer (FRET), but at a certain distance, the coupling of light-emission with surface plasmon resonance (SPR) result in enhanced ECL. Thus, the modification strategies and distances control between QDs and metallic NPs are critical for the ECL intensity of QDs. In this strategy, a SPR enhanced ECL sensor based on DNA tetrahedral scaffolds modified platform was reported for the detection of telomerase activity. Due to the rigid three-dimensional structure, DNA tetrahedral scaffolds grafting on the electrode surface could accurately modulate the distance between CdS QDs and luminol labelled gold nanoparticles (L-Au NPs), meanwhile provide an enhanced spatial dimension and accessibility for the assembly of multiple L-Au NPs. The ECL intensities of both CdS QDs (-1.25V vs. SCE) and luminol (+0.33V vs. SCE) gradually increased along with the formation of multiple L-Au NPs at the vertex of DNA tetrahedral scaffolds induced by telomerase, bringing in a dual-potential ECL analysis. The proposed method showed high sensitivity for the identification of telomerase and was successfully applied for the differentiation of cancer cells from normal cells. This work suggests that DNA tetrahedral scaffolds could serve as an excellent choice for the construction of SPR-ECL system. Copyright © 2016 Elsevier B.V. All rights reserved.

  15. Rapid DNA multi-analyte immunoassay on a magneto-resistance biosensor

    Koets, M.; Wijk, van der T.; Eemeren, van J.T.W.M.; Amerongen, van A.; Prins, M.W.J.

    2009-01-01

    We present the rapid and sensitive detection of amplified DNA on a giant magneto-resistance sensor using superparamagnetic particles as a detection label. The one-step assay is performed on an integrated and miniaturized detection platform suitable for application into point-of-care devices. A

  16. Multifunctional Dendrimer-templated Antibody Presentation on Biosensor Surfaces for Improved Biomarker Detection.

    Han, Hye Jung; Kannan, Rangaramanujam M; Wang, Sunxi; Mao, Guangzhao; Kusanovic, Juan Pedro; Romero, Roberto

    2010-02-08

    Dendrimers, with their well-defined globular shape and a high density of functional groups, are ideal nanoscale materials for templating sensor surfaces. This work exploits dendrimers as a versatile platform for capturing biomarkers with improved sensitivity and specificity. Synthesis, characterization, fabrication, and functional validation of the dendrimer-based assay platform are described. Bifunctional hydroxyl/thiol functionalized G4-polyamidoamine (PAMAM) dendrimer is synthesized and immobilized on to the polyethylene-glycol (PEG)-functionalized assay plate by coupling PEG-maleimide and dendrimer thiol groups. Simultaneously, part of the dendrimer thiol groups are converted to hydrazide functionalities. The resulting dendrimer-modified surface is coupled to the capture antibody in the Fc region of the oxidized antibody. This preserves the orientation flexibility of the antigen binding region (Fv) of the antibody. To validate the approach, the fabricated plates are further used as a solid phase for developing a sandwich type ELISA to detect IL-6 and IL-1β, important biomarkers for early stages of chorioamnionitis. The dendrimer-modified plate provides assays with significantly enhanced sensitivity, lower nonspecific adsorption, and a detection limit of 0.13 pg ml -1 for IL-6 luminol detection and 1.15 pg ml -1 for IL-1β TMB detection, which are significantly better than those for the traditional ELISA. The assays were validated in human serum samples from normal (non-pregnant) woman and pregnant women with pyelonephritis. The specificity and the improved sensitivity of the dendrimer-based capture strategy could have significant implications for the detection of a wide range of cytokines and biomarkers since the capture strategy could be applied to multiplex microbead assays, conductometric immunosensors and field effect biosensors.

  17. Improved Performance of the Potentiometric Biosensor for the Determination of Creatinine

    Andersen, Jens Enevold Thaulov; Rasmussen, Claus/Dallerup; Zachau-Christiansen, Birgit

    2007-01-01

    The development of potentiometric biosensors for the determination of creatinine is attractive because it is a frequently analysed species in clinical chemistry. Contemporary methods of analysing creatinine engage chemicals harmful to the environment and generate large volumes of waste disposals....... By introducing a membrane-based potentiometric biosensor with immobilised creatinine deaminase, the measurements can be performed by miniaturised portable devices that are easy to handle and allow rapid analysis at a minimum consumption of chemicals. Thus, the enzymatic creatinine biosensors was revisited...... performed by flow injection analysis (FIA) showed that the response time could be lowered to approx. 30 sec. using sample volumes of 30 L. Interferences were corrected for by application of the Nicolsky-Eisenman equation thus allowing determination of creatinine in matrices resembling those of clinical...

  18. Optical biosensors.

    Damborský, Pavel; Švitel, Juraj; Katrlík, Jaroslav

    2016-06-30

    Optical biosensors represent the most common type of biosensor. Here we provide a brief classification, a description of underlying principles of operation and their bioanalytical applications. The main focus is placed on the most widely used optical biosensors which are surface plasmon resonance (SPR)-based biosensors including SPR imaging and localized SPR. In addition, other optical biosensor systems are described, such as evanescent wave fluorescence and bioluminescent optical fibre biosensors, as well as interferometric, ellipsometric and reflectometric interference spectroscopy and surface-enhanced Raman scattering biosensors. The optical biosensors discussed here allow the sensitive and selective detection of a wide range of analytes including viruses, toxins, drugs, antibodies, tumour biomarkers and tumour cells. © 2016 The Author(s). Published by Portland Press Limited on behalf of the Biochemical Society.

  19. Performance Improvement by Layout Designs of Conductive Polymer Microelectrode Based Impedimetric Biosensors

    Rosati, Giulio; Daprà, Johannes; Cherré, Solène

    2014-01-01

    In this work we present a theoretical, computational, and experimental evaluation of the performance of an impedimetric biosensor based on interdigitated conductive polymer (PEDOT:TsO) microelectrodes in a microfluidic system. The influence of the geometry of the electrodes and microchannels on t...

  20. Preparation, characterization and application of urease nanoparticles for construction of an improved potentiometric urea biosensor.

    Jakhar, Seema; Pundir, C S

    2018-02-15

    The nanoparticles (NPs) aggregates of commercial urease from jack beans (Canavalia ensiformis) were prepared by desolvation and glutaraldehyde crosslinking and functionalized by cysteamine dihydrochloride. These enzyme nanoparticles (ENPs) were characterized by transmission electron microscopy (TEM), UV and Fourier transform infrared (FTIR) spectroscopy. The TEM images of urease NPs showed their size in the range, 18-100nm with an average of 51.2nm. The ENPs were more active and stable with a longer shelf life than native enzyme molecules. The ENPs were immobilized onto chitosan (CHIT) activated nitrocellulose (NC) membrane via glutaraldehyde coupling with 32.22% retention of initial activity of free ureaseNPs with a conjugation yield of 1.63mg/cm 2 . This NC membrane was mounted at the lower/sensitive end of the ammonium ion selective electrode (AISE) with O-ring and then electrode was connected to a digital pH meter to construct a potentiometric urea biosensor. The biosensor exhibited optimum response within 10s at pH 5.5and 40°C. The biosensor was employed for measurement of potentiometric determination of urea in sera of apparently healthy and persons suffering from kidney disorders. The biosensor displayed a low detection limit of 1µM/L with a wide working range of 2-80µM/L (0.002-0.08mM) and sensitivity of 23mV/decade. The analytical recovery of added urea in serum was 106.33%. The within and between-batch coefficient of variations (CVs) of present biosensor were 0.18% and 0.32% respectively. There was a good correlation (r = 0.99) between sera urea values obtained by reference method (Enzymic colorimetric kit method) and the present biosensor. The biosensor had negligible interference from Na + ,K + ,NH +4 and Ca 2+ but Mg 2+ ,Cu 2+ and ascorbic acid but had slight interference, which was overcome by specific ion selective electrode. The ENPs bound NC membrane was used maximally 8-9 times per day over a period of 180 days, when stored in 0.01M sodium

  1. A FRET-based DNA biosensor tracks OmpR-dependent acidification of Salmonella during macrophage infection.

    Smarajit Chakraborty

    2015-04-01

    Full Text Available In bacteria, one paradigm for signal transduction is the two-component regulatory system, consisting of a sensor kinase (usually a membrane protein and a response regulator (usually a DNA binding protein. The EnvZ/OmpR two-component system responds to osmotic stress and regulates expression of outer membrane proteins. In Salmonella, EnvZ/OmpR also controls expression of another two-component system SsrA/B, which is located on Salmonella Pathogenicity Island (SPI 2. SPI-2 encodes a type III secretion system, which functions as a nanomachine to inject bacterial effector proteins into eukaryotic cells. During the intracellular phase of infection, Salmonella switches from assembling type III secretion system structural components to secreting effectors into the macrophage cytoplasm, enabling Salmonella to replicate in the phagocytic vacuole. Major questions remain regarding how bacteria survive the acidified vacuole and how acidification affects bacterial secretion. We previously reported that EnvZ sensed cytoplasmic signals rather than extracellular ones, as intracellular osmolytes altered the dynamics of a 17-amino-acid region flanking the phosphorylated histidine. We reasoned that the Salmonella cytoplasm might acidify in the macrophage vacuole to activate OmpR-dependent transcription of SPI-2 genes. To address these questions, we employed a DNA-based FRET biosensor ("I-switch" to measure bacterial cytoplasmic pH and immunofluorescence to monitor effector secretion during infection. Surprisingly, we observed a rapid drop in bacterial cytoplasmic pH upon phagocytosis that was not predicted by current models. Cytoplasmic acidification was completely dependent on the OmpR response regulator, but did not require known OmpR-regulated genes such as ompC, ompF, or ssaC (SPI-2. Microarray analysis highlighted the cadC/BA operon, and additional experiments confirmed that it was repressed by OmpR. Acidification was blocked in the ompR null background in a

  2. Biosensors based on gold nanostructures

    Vidotti,Marcio; Carvalhal,Rafaela F.; Mendes,Renata K.; Ferreira,Danielle C. M.; Kubota,Lauro T.

    2011-01-01

    The present review discusses the latest advances in biosensor technology achieved by the assembly of biomolecules associated with gold nanoparticles in analytical devices. This review is divided in sections according to the biomolecule employed in the biosensor development: (i) immunocompounds; (ii) DNA/RNA and functional DNA/RNA; and (iii) enzymes and Heme proteins. In order to facilitate the comprehension each section was subdivided according to the transduction mode. Gold nanoparticles bas...

  3. A regenerative electrochemical biosensor for mercury(II) by using the insertion approach and dual-hairpin-based amplification

    Jia, Jing; Ling, Yu; Gao, Zhong Feng; Lei, Jing Lei; Luo, Hong Qun; Li, Nian Bing

    2015-01-01

    Highlights: • The dual-hairpin structure as a signal amplifier is label-free and handy. • The strategy uses the insertion approach to improve the hybridization efficiency. • This biosensor has a low detection limit (28 pM) for detection of Hg 2+ . • This biosensor can be easily regenerated by using L-cysteine. - Abstract: A simple and effective biosensor for Hg 2+ determination was investigated. The novel biosensor was prepared by the insertion approach that the moiety-labeled DNA inserted into a loosely packed cyclic-dithiothreitol (DTT) monolayer, improving the hybridization efficiency. Electrochemical impedance spectroscopy studies of two biosensors (single-hairpin and dual-hairpin structure DNA modified electrodes) used for Hg 2+ detection indicated that the dual-hairpin modified electrode had a larger electron transfer resistance change (ΔR ct ). Consequently, the dual-hairpin structure was used as a signal amplifier for the preparation of a selective Hg 2+ biosensor. This biosensor exhibited an excellent selectivity toward Hg 2+ over Cd 2+ , Pd 2+ , Co 2+ etc. Also, a linear relation was observed between the ΔR ct and Hg 2+ concentrations in a range from 0.1 nM to 5 μM with a detection limit of 28 pM under optimum conditions. Moreover, the biosensor can be reused by using L-cysteine and successfully applied for detecting Hg 2+ in real samples

  4. Designed graphene-peptide nanocomposites for biosensor applications: A review

    Wang, Li; Zhang, Yujie; Wu, Aiguo; Wei, Gang

    2017-01-01

    The modification of graphene with biomacromolecules like DNA, protein, peptide, and others extends the potential applications of graphene materials in various fields. The bound biomacromolecules could improve the biocompatibility and bio-recognition ability of graphene-based nanocomposites, therefore could greatly enhance their biosensing performances on both selectivity and sensitivity. In this review, we presented a comprehensive introduction and discussion on recent advance in the synthesis and biosensor applications of graphene-peptide nanocomposites. The biofunctionalization of graphene with specifically designed peptides, and the synthesis strategies of graphene-peptide (monomer, nanofibrils, and nanotubes) nanocomposites were demonstrated. On the other hand, the fabrication of graphene-peptide nanocomposite based biosensor architectures for electrochemical, fluorescent, electronic, and spectroscopic biosensing were further presented. This review includes nearly all the studies on the fabrication and applications of graphene-peptide based biosensors recently, which will promote the future developments of graphene-based biosensors in biomedical detection and environmental analysis. - Highlights: • A comprehensive review on the fabrication and application of graphene-peptide nanocomposites was presented. • The design of peptide sequences for biofunctionalization of various graphene materials was presented. • Multi-strategies on the fabrication of biosensors with graphene-peptide nanocomposites were discussed. • Designed graphene-peptide nanocomposites showed wide biosensor applications.

  5. DNA Antenna Tile-Associated Deoxyribozyme Sensor with Improved Sensitivity.

    Cox, Amanda J; Bengtson, Hillary N; Gerasimova, Yulia V; Rohde, Kyle H; Kolpashchikov, Dmitry M

    2016-11-03

    Some natural enzymes increase the rate of diffusion-limited reactions by facilitating substrate flow to their active sites. Inspired by this natural phenomenon, we developed a strategy for efficient substrate delivery to a deoxyribozyme (DZ) catalytic sensor. This resulted in a three- to fourfold increase in sensitivity and up to a ninefold improvement in the detection limit. The reported strategy can be used to enhance catalytic efficiency of diffusion-limited enzymes and to improve sensitivity of enzyme-based biosensors. © 2016 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  6. Synthesis and Characterization of Polyaniline/Graphene Composite Nanofiber and Its Application as an Electrochemical DNA Biosensor for the Detection of Mycobacterium tuberculosis

    Fatimah Syahidah Mohamad

    2017-12-01

    Full Text Available This article describes chemically modified polyaniline and graphene (PANI/GP composite nanofibers prepared by self-assembly process using oxidative polymerization of aniline monomer and graphene in the presence of a solution containing poly(methyl vinyl ether-alt-maleic acid (PMVEA. Characterization of the composite nanofibers was carried out by Fourier transform infrared (FTIR and Raman spectroscopy, transmission electron microscopy (TEM and scanning electron microscopy (SEM. SEM images revealed the size of the PANI nanofibers ranged from 90 to 360 nm in diameter and was greatly influenced by the proportion of PMVEA and graphene. The composite nanofibers with an immobilized DNA probe were used for the detection of Mycobacterium tuberculosis by using an electrochemical technique. A photochemical indicator, methylene blue (MB was used to monitor the hybridization of target DNA by using differential pulse voltammetry (DPV method. The detection range of DNA biosensor was obtained from of 10−6–10−9 M with the detection limit of 7.853 × 10−7 M under optimum conditions. The results show that the composite nanofibers have a great potential in a range of applications for DNA sensors.

  7. Improved understanding of protein complex offers insight into DNA

    Summer Science Writing Internship Improved understanding of protein complex offers insight into DNA clearer understanding of the origin recognition complex (ORC) - a protein complex that directs DNA replication - through its crystal structure offers new insight into fundamental mechanisms of DNA replication

  8. Use of DNA markers in forest tree improvement research

    D.B. Neale; M.E. Devey; K.D. Jermstad; M.R. Ahuja; M.C. Alosi; K.A. Marshall

    1992-01-01

    DNA markers are rapidly being developed for forest trees. The most important markers are restriction fragment length polymorphisms (RFLPs), polymerase chain reaction- (PCR) based markers such as random amplified polymorphic DNA (RAPD), and fingerprinting markers. DNA markers can supplement isozyme markers for monitoring tree improvement activities such as; estimating...

  9. Improved recovery of DNA from polyacrylamide gels after in situ DNA footprinting

    van Keulen, G; Meijer, WG

    Methods used to date for the isolation of DNA from polyacrylamide gels are elution based, time-consuming and with low yield in DNA. This paper describes an improved system employing polyacrylamide gels made of a meltable matrix. The new system was successfully applied to in situ DNA footprinting

  10. Future of biosensors: a personal view.

    Scheller, Frieder W; Yarman, Aysu; Bachmann, Till; Hirsch, Thomas; Kubick, Stefan; Renneberg, Reinhard; Schumacher, Soeren; Wollenberger, Ulla; Teller, Carsten; Bier, Frank F

    2014-01-01

    Biosensors representing the technological counterpart of living senses have found routine application in amperometric enzyme electrodes for decentralized blood glucose measurement, interaction analysis by surface plasmon resonance in drug development, and to some extent DNA chips for expression analysis and enzyme polymorphisms. These technologies have already reached a highly advanced level and need minor improvement at most. The dream of the "100-dollar" personal genome may come true in the next few years provided that the technological hurdles of nanopore technology or of polymerase-based single molecule sequencing can be overcome. Tailor-made recognition elements for biosensors including membrane-bound enzymes and receptors will be prepared by cell-free protein synthesis. As alternatives for biological recognition elements, molecularly imprinted polymers (MIPs) have been created. They have the potential to substitute antibodies in biosensors and biochips for the measurement of low-molecular-weight substances, proteins, viruses, and living cells. They are more stable than proteins and can be produced in large amounts by chemical synthesis. Integration of nanomaterials, especially of graphene, could lead to new miniaturized biosensors with high sensitivity and ultrafast response. In the future individual therapy will include genetic profiling of isoenzymes and polymorphic forms of drug-metabolizing enzymes especially of the cytochrome P450 family. For defining the pharmacokinetics including the clearance of a given genotype enzyme electrodes will be a useful tool. For decentralized online patient control or the integration into everyday "consumables" such as drinking water, foods, hygienic articles, clothing, or for control of air conditioners in buildings and cars and swimming pools, a new generation of "autonomous" biosensors will emerge.

  11. Microbial biosensors

    Le Yu; Chen, Wilfred; Mulchandani, Ashok

    2006-01-01

    A microbial biosensor is an analytical device that couples microorganisms with a transducer to enable rapid, accurate and sensitive detection of target analytes in fields as diverse as medicine, environmental monitoring, defense, food processing and safety. The earlier microbial biosensors used the respiratory and metabolic functions of the microorganisms to detect a substance that is either a substrate or an inhibitor of these processes. Recently, genetically engineered microorganisms based on fusing of the lux, gfp or lacZ gene reporters to an inducible gene promoter have been widely applied to assay toxicity and bioavailability. This paper reviews the recent trends in the development and application of microbial biosensors. Current advances and prospective future direction in developing microbial biosensor have also been discussed

  12. Synthetic Electric Microbial Biosensors

    2017-06-10

    domains and DNA-binding domains into a single protein for deregulation of down stream genes of have been favored [10]. Initially experiments with... Germany DISTRIBUTION A. Approved for public release: distribution unlimited.   Talk title: “Synthetic biology based microbial biosensors for the...toolbox” in Heidelberg, Germany Poster title: “Anaerobic whole cell microbial biosensors” Link: http://phdsymposium.embl.org/#home   September, 2014

  13. Multi-step surface functionalization of polyimide based evanescent wave photonic biosensors and application for DNA hybridization by Mach-Zehnder interferometer

    Melnik, Eva [Health and Environment Department, Nano Systems, AIT Austrian Institute of Technology GmbH, Donau-City-Strasse 1, 1220 Vienna (Austria); Department of Analytical Chemistry, University of Vienna, Waehringer Strasse 38, 1090 Vienna (Austria); Bruck, Roman [Health and Environment Department, Nano Systems, AIT Austrian Institute of Technology GmbH, Donau-City-Strasse 1, 1220 Vienna (Austria); Hainberger, Rainer, E-mail: rainer.hainberger@ait.ac.at [Health and Environment Department, Nano Systems, AIT Austrian Institute of Technology GmbH, Donau-City-Strasse 1, 1220 Vienna (Austria); Laemmerhofer, Michael, E-mail: michael.laemmerhofer@univie.ac.at [Department of Analytical Chemistry, University of Vienna, Waehringer Strasse 38, 1090 Vienna (Austria)

    2011-08-12

    Highlights: {yields} We realize a biosensing platform for polyimide evanescent photonic wave sensors. {yields} We show that the surface functionalization via silanisation and biotinylation followed by streptavidin immobilization do not destroy or damage the thin polyimide film. {yields} A highly dense streptavidin layer enables the immobilisation of biotinylated ligands such as biotinylated ssDNA for the selective measurement of DNA hybridization. - Abstract: The process of surface functionalization involving silanization, biotinylation and streptavidin bonding as platform for biospecific ligand immobilization was optimized for thin film polyimide spin-coated silicon wafers, of which the polyimide film serves as a wave guiding layer in evanescent wave photonic biosensors. This type of optical sensors make great demands on the materials involved as well as on the layer properties, such as the optical quality, the layer thickness and the surface roughness. In this work we realized the binding of a 3-mercaptopropyl trimethoxysilane on an oxygen plasma activated polyimide surface followed by subsequent derivatization of the reactive thiol groups with maleimide-PEG{sub 2}-biotin and immobilization of streptavidin. The progress of the functionalization was monitored by using different fluorescence labels for optimization of the chemical derivatization steps. Further, X-ray photoelectron spectroscopy and atomic force microscopy were utilized for the characterization of the modified surface. These established analytical methods allowed to derive information like chemical composition of the surface, surface coverage with immobilized streptavidin, as well as parameters of the surface roughness. The proposed functionalization protocol furnished a surface density of 144 fmol mm{sup -2} streptavidin with good reproducibility (13.9% RSD, n = 10) and without inflicted damage to the surface. This surface modification was applied to polyimide based Mach-Zehnder interferometer

  14. Recent advances in transition-metal dichalcogenides based electrochemical biosensors: A review.

    Wang, Yi-Han; Huang, Ke-Jing; Wu, Xu

    2017-11-15

    Layered transition metal dichalcogenides (TMDCs) comprise a category of two-dimensional (2D) materials that offer exciting properties, including large surface area, metallic and semi-conducting electrical capabilities, and intercalatable morphologies. Biosensors employ biological molecules to recognize the target and utilize output elements which can translate the biorecognition event into electrical, optical or mass-sensitive signals to determine the quantities of the target. TMDCs nanomaterials have been widely applied in various electrochemical biosensors with high sensitivity and selectivity. The marriage of TMDCs and electrochemical biosensors has created many productive sensing strategies for applications in the areas of clinical diagnosis, environmental monitoring and food safety. In recent years, an increasing number of TMDCs-based electrochemical biosensors are reported, suggesting TMDCs offers new possibilities of improving the performance of electrochemical biosensors. This review summarizes recent advances in electrochemical biosensors based on TMDCs for detection of various inorganic and organic analytes in the last five years, including glucose, proteins, DNA, heavy metal, etc. In addition, we also point out the challenges and future perspectives related to the material design and development of TMDCs-based electrochemical biosensors. Copyright © 2017 Elsevier B.V. All rights reserved.

  15. Enhancement in sensitivity of graphene-based zinc oxide assisted bimetallic surface plasmon resonance (SPR) biosensor

    Kumar, Rajeev; Kushwaha, Angad S.; Srivastava, Monika; Mishra, H.; Srivastava, S. K.

    2018-03-01

    In the present communication, a highly sensitive surface plasmon resonance (SPR) biosensor with Kretschmann configuration having alternate layers, prism/zinc oxide/silver/gold/graphene/biomolecules (ss-DNA) is presented. The optimization of the proposed configuration has been accomplished by keeping the constant thickness of zinc oxide (32 nm), silver (32 nm), graphene (0.34 nm) layer and biomolecules (100 nm) for different values of gold layer thickness (1, 3 and 5 nm). The sensitivity of the proposed SPR biosensor has been demonstrated for a number of design parameters such as gold layer thickness, number of graphene layer, refractive index of biomolecules and the thickness of biomolecules layer. SPR biosensor with optimized geometry has greater sensitivity (66 deg/RIU) than the conventional (52 deg/RIU) as well as other graphene-based (53.2 deg/RIU) SPR biosensor. The effect of zinc oxide layer thickness on the sensitivity of SPR biosensor has also been analysed. From the analysis, it is found that the sensitivity increases significantly by increasing the thickness of zinc oxide layer. It means zinc oxide intermediate layer plays an important role to improve the sensitivity of the biosensor. The sensitivity of SPR biosensor also increases by increasing the number of graphene layer (upto nine layer).

  16. A protocatechuate biosensor for Pseudomonas putida KT2440 via promoter and protein evolution

    Ramesh K. Jha

    2018-06-01

    Full Text Available Robust fluorescence-based biosensors are emerging as critical tools for high-throughput strain improvement in synthetic biology. Many biosensors are developed in model organisms where sophisticated synthetic biology tools are also well established. However, industrial biochemical production often employs microbes with phenotypes that are advantageous for a target process, and biosensors may fail to directly transition outside the host in which they are developed. In particular, losses in sensitivity and dynamic range of sensing often occur, limiting the application of a biosensor across hosts. Here we demonstrate the optimization of an Escherichia coli-based biosensor in a robust microbial strain for the catabolism of aromatic compounds, Pseudomonas putida KT2440, through a generalizable approach of modulating interactions at the protein-DNA interface in the promoter and the protein-protein dimer interface. The high-throughput biosensor optimization approach demonstrated here is readily applicable towards other allosteric regulators. Keywords: Whole cell biosensor, Aromatic catabolism, Transcription factor, PcaU, Shikimate

  17. Quantitative characterization of conformational-specific protein-DNA binding using a dual-spectral interferometric imaging biosensor

    Zhang, Xirui; Daaboul, George G.; Spuhler, Philipp S.; Dröge, Peter; Ünlü, M. Selim

    2016-03-01

    DNA-binding proteins play crucial roles in the maintenance and functions of the genome and yet, their specific binding mechanisms are not fully understood. Recently, it was discovered that DNA-binding proteins recognize specific binding sites to carry out their functions through an indirect readout mechanism by recognizing and capturing DNA conformational flexibility and deformation. High-throughput DNA microarray-based methods that provide large-scale protein-DNA binding information have shown effective and comprehensive analysis of protein-DNA binding affinities, but do not provide information of DNA conformational changes in specific protein-DNA complexes. Building on the high-throughput capability of DNA microarrays, we demonstrate a quantitative approach that simultaneously measures the amount of protein binding to DNA and nanometer-scale DNA conformational change induced by protein binding in a microarray format. Both measurements rely on spectral interferometry on a layered substrate using a single optical instrument in two distinct modalities. In the first modality, we quantitate the amount of binding of protein to surface-immobilized DNA in each DNA spot using a label-free spectral reflectivity technique that accurately measures the surface densities of protein and DNA accumulated on the substrate. In the second modality, for each DNA spot, we simultaneously measure DNA conformational change using a fluorescence vertical sectioning technique that determines average axial height of fluorophores tagged to specific nucleotides of the surface-immobilized DNA. The approach presented in this paper, when combined with current high-throughput DNA microarray-based technologies, has the potential to serve as a rapid and simple method for quantitative and large-scale characterization of conformational specific protein-DNA interactions.DNA-binding proteins play crucial roles in the maintenance and functions of the genome and yet, their specific binding mechanisms are

  18. A novel electrochemical DNA biosensor based on a modified magnetic bar carbon paste electrode with Fe{sub 3}O{sub 4}NPs-reduced graphene oxide/PANHS nanocomposite

    Jahanbani, Shahriar; Benvidi, Ali, E-mail: abenvidi@yazd.ac.ir

    2016-11-01

    In this study, we have designed a label free DNA biosensor based on a magnetic bar carbon paste electrode (MBCPE) modified with nanomaterial of Fe{sub 3}O{sub 4}/reduced graphene oxide (Fe{sub 3}O{sub 4}NP-RGO) as a composite and 1- pyrenebutyric acid-N- hydroxysuccinimide ester (PANHS) as a linker for detection of DNA sequences. Probe (BRCA1 5382 insC mutation detection) strands were immobilized on the MBCPE/Fe{sub 3}O{sub 4}-RGO/PANHS electrode for the exact incubation time. The characterization of the modified electrode was studied using different techniques such as scanning electron microscopy (SEM), infrared spectroscopy (IR), vibrating sample magnetometer (VSM), electrochemical impedance spectroscopy (EIS) and cyclic voltammetry methods. Some experimental parameters such as immobilization time of probe DNA, time and temperature of hybridization process were investigated. Under the optimum conditions, the immobilization of the probe and its hybridization with the target DNA (Complementary DNA) were tested. This DNA biosensor revealed a good linear relationship between ∆ R{sub ct} and logarithm of the complementary target DNA concentration ranging from 1.0 × 10{sup −18} mol L{sup −1} to 1.0 × 10{sup −8} mol L{sup −1} with a correlation coefficient of 0.9935 and a detection limit of 2.8 × 10{sup −19} mol L{sup −1}. In addition, the mentioned biosensor was satisfactorily applied for discriminating of complementary sequences from non-complementary sequences. The constructed biosensor (MBCPE/Fe{sub 3}O{sub 4}-RGO/PANHS/ssDNA) with high sensitivity, selectivity, stability, reproducibility and low cost can be used for detection of BRCA1 5382 insC mutation. - Highlights: • We have designed a MBCPE/Fe{sub 3}O{sub 4}-RGO/PANHS/ssDNA for determination of BRCA1 5382. • The magnetic bar was used for fabrication of CPE for completely adsorption of Fe3O4-RGO. • The proposed electrode showed a detection limit as low as 2.8 × 10{sup −19} M for target

  19. Biosensors in Clinical Practice: Focus on Oncohematology

    Agostino Cortelezzi

    2013-05-01

    Full Text Available Biosensors are devices that are capable of detecting specific biological analytes and converting their presence or concentration into some electrical, thermal, optical or other signal that can be easily analysed. The first biosensor was designed by Clark and Lyons in 1962 as a means of measuring glucose. Since then, much progress has been made and the applications of biosensors are today potentially boundless. This review is limited to their clinical applications, particularly in the field of oncohematology. Biosensors have recently been developed in order to improve the diagnosis and treatment of patients affected by hematological malignancies, such as the biosensor for assessing the in vitro pre-treatment efficacy of cytarabine in acute myeloid leukemia, and the fluorescence resonance energy transfer-based biosensor for assessing the efficacy of imatinib in chronic myeloid leukemia. The review also considers the challenges and future perspectives of biosensors in clinical practice.

  20. Plasmonic biosensors.

    Hill, Ryan T

    2015-01-01

    The unique optical properties of plasmon resonant nanostructures enable exploration of nanoscale environments using relatively simple optical characterization techniques. For this reason, the field of plasmonics continues to garner the attention of the biosensing community. Biosensors based on propagating surface plasmon resonances (SPRs) in films are the most well-recognized plasmonic biosensors, but there is great potential for the new, developing technologies to surpass the robustness and popularity of film-based SPR sensing. This review surveys the current plasmonic biosensor landscape with emphasis on the basic operating principles of each plasmonic sensing technique and the practical considerations when developing a sensing platform with the various techniques. The 'gold standard' film SPR technique is reviewed briefly, but special emphasis is devoted to the up-and-coming localized surface plasmon resonance and plasmonically coupled sensor technology. © 2014 Wiley Periodicals, Inc.

  1. Highly sensitive "signal-on" electrochemiluminescent biosensor for the detection of DNA based on dual quenching and strand displacement reaction.

    Lou, Jing; Wang, Zhaoyin; Wang, Xiao; Bao, Jianchun; Tu, Wenwen; Dai, Zhihui

    2015-10-07

    A "signal-on" electrochemiluminescent DNA biosensing platform was proposed based on the dual quenching and strand displacement reaction. This novel "signal-on" detection strategy revealed its sensitivity in achieving a detection limit of 2.4 aM and its selectivity in distinguishing single nucleotide polymorphism of target DNA.

  2. DNA biosensor combining single-wavelength colorimetry and a digital lock-in amplifier within a smartphone.

    Wu, Tzu-Heng; Chang, Chia-Chen; Vaillant, Julien; Bruyant, Aurélien; Lin, Chii-Wann

    2016-11-15

    Smartphone camera based gold nanoparticle colorimetry (SCB-AuNP colorimetry) has shown good potential for point-of-care applications. However, due to the use of a camera as a photo-detector, there are major limitations to this technique such as a low bit resolution (∼8 bits mainstream) and a low data acquisition rate. These issues have limited the ultimate sensitivity of smartphone based colorimetry as well as the possibility to integrate efficiently a more sensitive approach such as detection based on a lock-in amplifier (LIA). In this paper, we improve the metrological performance of the smartphone to overcome existing issues by adding the LIA capability to AuNP sensing. In this work, instead of using the camera as a photo-detector, the audio jack is used as a photo-detector reader and function generator for driving a laser diode in order to achieve a smartphone based digital lock-in amplifier AuNP colorimetric (SBLIA-AuNP colorimetry) system. A full investigation on the SBLIA design, parameters and performance is comprehensively provided. It is found that the SBLIA can reduce most of the noise and provides a detection noise-to-signal ratio down to -63 dB, which is much better than the -49 dB of the state-of-the-art SCB based method. A DNA detection experiment is demonstrated to reveal the efficacy of the proposed metrological method. The results are compared to UV-visible spectrometry, which is the gold standard for colorimetric measurement. Based on our results, the SBLIA-AuNP colorimetric system has a detection limit of 0.77 nM on short strand DNA detection, which is 5.7 times better than the 4.36 nM limit of a commercial UV-visible spectrometer. Judging from the results, we believe that the sensitive SBLIA would be further extended to other optical diagnostic tools in the near future.

  3. Real-time monitoring of mycobacterium genomic DNA with target-primed rolling circle amplification by a Au nanoparticle-embedded SPR biosensor.

    Xiang, Yang; Zhu, Xiaoyan; Huang, Qing; Zheng, Junsong; Fu, Weiling

    2015-04-15

    In this study, we developed a surface plasmon resonance (SPR) DNA biosensor array based on target-primed rolling circle amplification (RCA) for isothermal and rapid detection of two pathogenic mycobacteria, Mycobacterium tuberculosis complex (MTBC) and Mycobacterium avium complex (MAC).The species-specific padlock probe (PLP) was designed to target the sequence in 16S-23S rRNA gene internal transcribed spacer (ITS). After ligation, the circularized PLP could be primed by the target sequence to initial RCA. The RCA performed simultaneously with the cleavage reaction to produce small fragments of single strand DNA which immediately hybridized with the probe immobilized on the sensor chip without denaturation. This process caused SPR angle changes on the chip surface, which made the detection for analysis from the solution achievable, and dynamic real-time RCA monitoring of mycobacterium possible. Besides, Au nanoparticles (AuNPs) were directly assembled onto the surface of the sensor chip via hexanedithiol (HDT) for the enhancement of sensitivity as a label-free detection system. Experimental results show that the signal enhancement by the target-primed RCA together with AuNPs-embedded surface caused at least10-fold increased sensitivity as compared with conventional RCA on bare SPR chip method. Within 40min amplification duration as low as 20amol of synthetic targets and 10(4)CFUmL(-1) of genomic DNA from clinical samples can be detected. The proposed method not only provides a simple design idea for liquid-phase amplification monitoring, but also apply it in clinical pathogen detection, which holds great promise in ultrasensitive bioassay in the future. Copyright © 2014. Published by Elsevier B.V.

  4. Rapid amplification/detection of nucleic acid targets utilizing a HDA/thin film biosensor.

    Jenison, Robert; Jaeckel, Heidi; Klonoski, Joshua; Latorra, David; Wiens, Jacinta

    2014-08-07

    Thin film biosensors exploit a flat, optically coated silicon-based surface whereupon formation of nucleic acid hybrids are enzymatically transduced in a molecular thin film that can be detected by the unaided human eye under white light. While the limit of sensitivity for detection of nucleic acid targets is at sub-attomole levels (60 000 copies) many clinical specimens containing bacterial pathogens have much lower levels of analyte present. Herein, we describe a platform, termed HDA/thin film biosensor, which performs helicase-dependant nucleic acid amplification on a thin film biosensor surface to improve the limit of sensitivity to 10 copies of the mecA gene present in methicillin-resistant strains of Staphylococcus. As double-stranded DNA is unwound by helicase it was either bound by solution-phase DNA primers to be copied by DNA polymerase or hybridized to surface immobilized probe on the thin film biosensor surface to be detected. Herein, we show that amplification reactions on the thin film biosensor are equivalent to in standard thin wall tubes, with detection at the limit of sensitivity of the assay occurring after 30 minutes of incubation time. Further we validate the approach by detecting the presence of the mecA gene in methicillin-resistant Staphylococcus aureus (MRSA) from positive blood culture aliquots with high specificity (signal/noise ratio of 105).

  5. Potential of cross-priming amplification and DNA-based lateral-flow strip biosensor for rapid on-site GMO screening.

    Huang, Xin; Zhai, Congcong; You, Qimin; Chen, Hongjun

    2014-07-01

    The requirement to monitor the presence of genetically modified organisms (GMO) in a variety of marked products has generated an increasing demand for reliable, rapid, and time and cost-effective analytical methods. Here we report an on-site method for rapid detection of cauliflower mosaic virus promoter (CaMV 35S), a common element present in most GMO, using cross-priming amplification (CPA) technology. Detection was achieved using a DNA-based contamination-proof strip biosensor. The limit of detection was 30 copies for the pBI121 plasmid containing the CaMV 35S gene. The certified reference sample of GM maize line MON810 was detectable even at the low relative mass concentration of 0.05%. The developed CPA method had high specificity for the CaMV 35S gene, as compared with other GM lines not containing this gene and non-GM products. The method was further validated using nine real-world samples, and the results were confirmed by real-time PCR analysis. Because of its simplicity, rapidity, and high sensitivity, this method of detecting the CaMV 35S gene has great commercial prospects for rapid GMO screening of high-consumption food and agriculture products.

  6. Improvement of Synthetic Biology Tools for DNA Editing

    Cavaleiro, Mafalda

    with the development and improvement of DNA editing strategies,compatible with other DNA assembly methodologies, genome engineering and,eventually, automation processes. Expanding and optimizing the synbio toolkit has important applications in pathway optimization for metabolic engineering, design and characterization...... of gene circuits, synthesis of whole genomes and natural product discovery. In line with this, it is also described in this thesis how discovery of new cytochromes P450 (CYPs) from marine bacteria could benefit industrial processes....

  7. Environmental DNA (eDNA sampling improves occurrence and detection estimates of invasive burmese pythons.

    Margaret E Hunter

    Full Text Available Environmental DNA (eDNA methods are used to detect DNA that is shed into the aquatic environment by cryptic or low density species. Applied in eDNA studies, occupancy models can be used to estimate occurrence and detection probabilities and thereby account for imperfect detection. However, occupancy terminology has been applied inconsistently in eDNA studies, and many have calculated occurrence probabilities while not considering the effects of imperfect detection. Low detection of invasive giant constrictors using visual surveys and traps has hampered the estimation of occupancy and detection estimates needed for population management in southern Florida, USA. Giant constrictor snakes pose a threat to native species and the ecological restoration of the Florida Everglades. To assist with detection, we developed species-specific eDNA assays using quantitative PCR (qPCR for the Burmese python (Python molurus bivittatus, Northern African python (P. sebae, boa constrictor (Boa constrictor, and the green (Eunectes murinus and yellow anaconda (E. notaeus. Burmese pythons, Northern African pythons, and boa constrictors are established and reproducing, while the green and yellow anaconda have the potential to become established. We validated the python and boa constrictor assays using laboratory trials and tested all species in 21 field locations distributed in eight southern Florida regions. Burmese python eDNA was detected in 37 of 63 field sampling events; however, the other species were not detected. Although eDNA was heterogeneously distributed in the environment, occupancy models were able to provide the first estimates of detection probabilities, which were greater than 91%. Burmese python eDNA was detected along the leading northern edge of the known population boundary. The development of informative detection tools and eDNA occupancy models can improve conservation efforts in southern Florida and support more extensive studies of invasive

  8. Environmental DNA (eDNA) sampling improves occurrence and detection estimates of invasive burmese pythons.

    Hunter, Margaret E; Oyler-McCance, Sara J; Dorazio, Robert M; Fike, Jennifer A; Smith, Brian J; Hunter, Charles T; Reed, Robert N; Hart, Kristen M

    2015-01-01

    Environmental DNA (eDNA) methods are used to detect DNA that is shed into the aquatic environment by cryptic or low density species. Applied in eDNA studies, occupancy models can be used to estimate occurrence and detection probabilities and thereby account for imperfect detection. However, occupancy terminology has been applied inconsistently in eDNA studies, and many have calculated occurrence probabilities while not considering the effects of imperfect detection. Low detection of invasive giant constrictors using visual surveys and traps has hampered the estimation of occupancy and detection estimates needed for population management in southern Florida, USA. Giant constrictor snakes pose a threat to native species and the ecological restoration of the Florida Everglades. To assist with detection, we developed species-specific eDNA assays using quantitative PCR (qPCR) for the Burmese python (Python molurus bivittatus), Northern African python (P. sebae), boa constrictor (Boa constrictor), and the green (Eunectes murinus) and yellow anaconda (E. notaeus). Burmese pythons, Northern African pythons, and boa constrictors are established and reproducing, while the green and yellow anaconda have the potential to become established. We validated the python and boa constrictor assays using laboratory trials and tested all species in 21 field locations distributed in eight southern Florida regions. Burmese python eDNA was detected in 37 of 63 field sampling events; however, the other species were not detected. Although eDNA was heterogeneously distributed in the environment, occupancy models were able to provide the first estimates of detection probabilities, which were greater than 91%. Burmese python eDNA was detected along the leading northern edge of the known population boundary. The development of informative detection tools and eDNA occupancy models can improve conservation efforts in southern Florida and support more extensive studies of invasive constrictors

  9. A regenerative electrochemical biosensor for mercury(II) by using the insertion approach and dual-hairpin-based amplification

    Jia, Jing; Ling, Yu; Gao, Zhong Feng [Key Laboratory of Eco-Environments in Three Gorges Reservoir Region (Ministry of Education), School of Chemistry and Chemical Engineering, Southwest University, Chongqing 400715 (China); Lei, Jing Lei [College of Chemistry and Chemical Engineering, Chongqing University, Chongqing 400044 (China); Luo, Hong Qun, E-mail: luohq@swu.edu.cn [Key Laboratory of Eco-Environments in Three Gorges Reservoir Region (Ministry of Education), School of Chemistry and Chemical Engineering, Southwest University, Chongqing 400715 (China); Li, Nian Bing, E-mail: linb@swu.edu.cn [Key Laboratory of Eco-Environments in Three Gorges Reservoir Region (Ministry of Education), School of Chemistry and Chemical Engineering, Southwest University, Chongqing 400715 (China)

    2015-09-15

    Highlights: • The dual-hairpin structure as a signal amplifier is label-free and handy. • The strategy uses the insertion approach to improve the hybridization efficiency. • This biosensor has a low detection limit (28 pM) for detection of Hg{sup 2+}. • This biosensor can be easily regenerated by using L-cysteine. - Abstract: A simple and effective biosensor for Hg{sup 2+} determination was investigated. The novel biosensor was prepared by the insertion approach that the moiety-labeled DNA inserted into a loosely packed cyclic-dithiothreitol (DTT) monolayer, improving the hybridization efficiency. Electrochemical impedance spectroscopy studies of two biosensors (single-hairpin and dual-hairpin structure DNA modified electrodes) used for Hg{sup 2+} detection indicated that the dual-hairpin modified electrode had a larger electron transfer resistance change (ΔR{sub ct}). Consequently, the dual-hairpin structure was used as a signal amplifier for the preparation of a selective Hg{sup 2+} biosensor. This biosensor exhibited an excellent selectivity toward Hg{sup 2+} over Cd{sup 2+}, Pd{sup 2+}, Co{sup 2+} etc. Also, a linear relation was observed between the ΔR{sub ct} and Hg{sup 2+} concentrations in a range from 0.1 nM to 5 μM with a detection limit of 28 pM under optimum conditions. Moreover, the biosensor can be reused by using L-cysteine and successfully applied for detecting Hg{sup 2+} in real samples.

  10. In-Channel-Grown Polypyrrole Nanowire for the Detection of DNA Hybridization in an Electrochemical Microfluidic Biosensor

    Thi Luyen Tran

    2015-01-01

    Full Text Available A triple electrode setup with a Pt pseudo-reference electrode integrated in a polydimethylsiloxane- (PDMS- based microchamber was designed and fabricated. The integrated electrodes were deposited onto SiO2/Si substrate by sputtering. The PDMS microchamber was patterned using an SU-8 mold and sealed with electrodes in oxygen plasma. Polypyrrole nanowires (PPy NWs were electrochemically grown in situ at an accurate position of the working electrode in the sealed microchamber instead of in an open system. The DNA probe sequences were simply introduced into the channel to form bonds with the nanowires. A detection limit of 20 pM was achieved using a lock-in amplifier. The electrochemical characteristics produced by the hybridization of DNA strands in the microchamber showed a good signal/noise ratio and high sensitivity. Measurement of the DNA sensor in narrow space also required much less volume of the analytical sample compared with that in an open measuring cell. Results showed that this simple system can potentially fabricate nanostructures and detect bio/chemical molecules in a sealed system.

  11. A novel probe density controllable electrochemiluminescence biosensor for ultra-sensitive detection of Hg2+ based on DNA hybridization optimization with gold nanoparticles array patterned self-assembly platform.

    Gao, Wenhua; Zhang, An; Chen, Yunsheng; Chen, Zixuan; Chen, Yaowen; Lu, Fushen; Chen, Zhanguang

    2013-11-15

    Biosensor based on DNA hybridization holds great potential to get higher sensitivity as the optimal DNA hybridization efficiency can be achieved by controlling the distribution and orientation of probe strands on the transducer surface. In this work, an innovative strategy is reported to tap the sensitivity potential of current electrochemiluminescence (ECL) biosensing system by dispersedly anchoring the DNA beacons on the gold nanoparticles (GNPs) array which was electrodeposited on the glassy carbon electrode surface, rather than simply sprawling the coil-like strands onto planar gold surface. The strategy was developed by designing a "signal-on" ECL biosensing switch fabricated on the GNPs nanopatterned electrode surface for enhanced ultra-sensitivity detection of Hg(2+). A 57-mer hairpin-DNA labeled with ferrocene as ECL quencher and a 13-mer DNA labeled with Ru(bpy)3(2+) as reporter were hybridized to construct the signal generator in off-state. A 31-mer thymine (T)-rich capture-DNA was introduced to form T-T mismatches with the loop sequence of the hairpin-DNA in the presence of Hg(2+) and induce the stem-loop open, meanwhile the ECL "signal-on" was triggered. The peak sensitivity with the lowest detection limit of 0.1 nM was achieved with the optimal GNPs number density while exorbitant GNPs deposition resulted in sensitivity deterioration for the biosensor. We expect the present strategy could lead the renovation of the existing probe-immobilized ECL genosensor design to get an even higher sensitivity in ultralow level of target detection such as the identification of genetic diseases and disorders in basic research and clinical application. Copyright © 2013 Elsevier B.V. All rights reserved.

  12. CSA: An efficient algorithm to improve circular DNA multiple alignment

    Pereira Luísa

    2009-07-01

    Full Text Available Abstract Background The comparison of homologous sequences from different species is an essential approach to reconstruct the evolutionary history of species and of the genes they harbour in their genomes. Several complete mitochondrial and nuclear genomes are now available, increasing the importance of using multiple sequence alignment algorithms in comparative genomics. MtDNA has long been used in phylogenetic analysis and errors in the alignments can lead to errors in the interpretation of evolutionary information. Although a large number of multiple sequence alignment algorithms have been proposed to date, they all deal with linear DNA and cannot handle directly circular DNA. Researchers interested in aligning circular DNA sequences must first rotate them to the "right" place using an essentially manual process, before they can use multiple sequence alignment tools. Results In this paper we propose an efficient algorithm that identifies the most interesting region to cut circular genomes in order to improve phylogenetic analysis when using standard multiple sequence alignment algorithms. This algorithm identifies the largest chain of non-repeated longest subsequences common to a set of circular mitochondrial DNA sequences. All the sequences are then rotated and made linear for multiple alignment purposes. To evaluate the effectiveness of this new tool, three different sets of mitochondrial DNA sequences were considered. Other tests considering randomly rotated sequences were also performed. The software package Arlequin was used to evaluate the standard genetic measures of the alignments obtained with and without the use of the CSA algorithm with two well known multiple alignment algorithms, the CLUSTALW and the MAVID tools, and also the visualization tool SinicView. Conclusion The results show that a circularization and rotation pre-processing step significantly improves the efficiency of public available multiple sequence alignment

  13. Fiber optic-based biosensor

    Ligler, Frances S.

    1991-01-01

    The NRL fiber optic biosensor is a device which measures the formation of a fluorescent complex at the surface of an optical fiber. Antibodies and DNA binding proteins provide the mechanism for recognizing an analyze and immobilizing a fluorescent complex on the fiber surface. The fiber optic biosensor is fast, sensitive, and permits analysis of hazardous materials remote from the instrumentation. The fiber optic biosensor is described in terms of the device configuration, chemistry for protein immobilization, and assay development. A lab version is being used for assay development and performance characterization while a portable device is under development. Antibodies coated on the fiber are stable for up to two years of storage prior to use. The fiber optic biosensor was used to measure concentration of toxins in the parts per billion (ng/ml) range in under a minute. Immunoassays for small molecules and whole bacteria are under development. Assays using DNA probes as the detection element can also be used with the fiber optic sensor, which is currently being developed to detect biological warfare agents, explosives, pathogens, and toxic materials which pollute the environment.

  14. Improved DNA clamps by stacking to adjacent nucleobases

    Fatthalla, M.I.; Pedersen, Erik Bjerregaard

    2012-01-01

    Three or four aromatic rings interconnected by acetylene bridges form a stiff conjugated system with sufficient conformational freedom to make it useful to link together the two strands of a DNA clamp. Upon targeting a ssDNA, the conformational flexibility allows better stacking of the linker...... to the underlying non-planar base triplet in the formed triplex. This type of triplexes has a substantially higher thermal melting temperature which can be further improved by inserting locked nucleic acids (LNAs) in the Hoogsteen part of the clamp. An extremely high sensitivity to mismatches is observed...

  15. Rapid Detection of Human Immunodeficiency Virus Types 1 and 2 by Use of an Improved Piezoelectric Biosensor

    Severns, Virginia; Branch, Darren W.; Edwards, Thayne L.; Larson, Richard S.

    2013-01-01

    Disasters can create situations in which blood donations can save lives. However, in emergency situations and when resources are depleted, on-site blood donations require the rapid and accurate detection of blood-borne pathogens, including human immunodeficiency virus types 1 and 2 (HIV-1 and HIV-2). Techniques such as PCR and antibody capture by an enzyme-linked immunosorbent assay (ELISA) for HIV-1 and HIV-2 are precise but time-consuming and require sophisticated equipment that is not compatible with emergency point-of-care requirements. We describe here a prototype biosensor based on piezoelectric materials functionalized with specific antibodies against HIV-1 and HIV-2. We show the rapid and accurate detection of HIV-1 and HIV-2 in both simple and complex solutions, including human serum, and in the presence of a cross-confounding virus. We report detection limits of 12 50% tissue culture infective doses (TCID50s) for HIV-1 and 87 TCID50s for HIV-2. The accuracy, precision of measurements, and operation of the prototype biosensor compared favorably to those for nucleic acid amplification. We conclude that the biosensor has significant promise as a successful point-of-care diagnostic device for use in emergency field applications requiring rapid and reliable testing for blood-borne pathogens. PMID:23515541

  16. Polymer Based Biosensors for Medical Applications

    Cherré, Solène; Rozlosnik, Noemi

    2015-01-01

    , environmental monitoring and food safety. The detected element varies from a single molecule (such as glucose), a biopolymer (such as DNA or a protein) to a whole organism (such as bacteria). Due to their easy use and possible miniaturization, biosensors have a high potential to come out of the lab...... and be available for use by everybody. To fulfil these purposes, polymers represent very appropriate materials. Many nano- and microfabrication methods for polymers are available, allowing a fast and cheap production of devices. This chapter will present the general concept of a biosensor in a first part......The objective of this chapter is to give an overview about the newest developments in biosensors made of polymers for medical applications. Biosensors are devices that can recognize and detect a target with high selectivity. They are widely used in many fields such as medical diagnostic...

  17. Electrochemical Aptamer Scaffold Biosensors for Detection of Botulism and Ricin Proteins.

    Daniel, Jessica; Fetter, Lisa; Jett, Susan; Rowland, Teisha J; Bonham, Andrew J

    2017-01-01

    Electrochemical DNA (E-DNA) biosensors enable the detection and quantification of a variety of molecular targets, including oligonucleotides, small molecules, heavy metals, antibodies, and proteins. Here we describe the design, electrode preparation and sensor attachment, and voltammetry conditions needed to generate and perform measurements using E-DNA biosensors against two protein targets, the biological toxins ricin and botulinum neurotoxin. This method can be applied to generate E-DNA biosensors for the detection of many other protein targets, with potential advantages over other systems including sensitive detection limits typically in the nanomolar range, real-time monitoring, and reusable biosensors.

  18. Electronic Biosensors Based on III-Nitride Semiconductors.

    Kirste, Ronny; Rohrbaugh, Nathaniel; Bryan, Isaac; Bryan, Zachary; Collazo, Ramon; Ivanisevic, Albena

    2015-01-01

    We review recent advances of AlGaN/GaN high-electron-mobility transistor (HEMT)-based electronic biosensors. We discuss properties and fabrication of III-nitride-based biosensors. Because of their superior biocompatibility and aqueous stability, GaN-based devices are ready to be implemented as next-generation biosensors. We review surface properties, cleaning, and passivation as well as different pathways toward functionalization, and critically analyze III-nitride-based biosensors demonstrated in the literature, including those detecting DNA, bacteria, cancer antibodies, and toxins. We also discuss the high potential of these biosensors for monitoring living cardiac, fibroblast, and nerve cells. Finally, we report on current developments of covalent chemical functionalization of III-nitride devices. Our review concludes with a short outlook on future challenges and projected implementation directions of GaN-based HEMT biosensors.

  19. Biosensors and preparation thereof

    2008-01-01

    A low-temp. prepn. method for a biosensor device with a layer of reagent on the sensor surface is disclosed. During manufg. biol. interaction between the biosensor substrate and the reagent layer material is reduced, e.g. by cooling the biosensor substrate and depositing the reagent layer on the

  20. Cholinesterase-based biosensors.

    Štěpánková, Šárka; Vorčáková, Katarína

    2016-01-01

    Recently, cholinesterase-based biosensors are widely used for assaying anticholinergic compounds. Primarily biosensors based on enzyme inhibition are useful analytical tools for fast screening of inhibitors, such as organophosphates and carbamates. The present review is aimed at compilation of the most important facts about cholinesterase based biosensors, types of physico-chemical transduction, immobilization strategies and practical applications.

  1. Surface amplification of pencil graphite electrode with polypyrrole and reduced graphene oxide for fabrication of a guanine/adenine DNA based electrochemical biosensors for determination of didanosine anticancer drug

    Karimi-Maleh, Hassan; Bananezhad, Asma; Ganjali, Mohammad R.; Norouzi, Parviz; Sadrnia, Abdolhossein

    2018-05-01

    Didanosine is nucleoside analog reverse transcriptase inhibitors with many side effects such as nausea and vomiting, stomach pain, tingling, burning and numbness and determination of this drug is very important in biological samples. This paper presents a DNA biosensor for determination of didanosine (DDI) in pharmaceutical samples. A pencil graphite electrode modified with conductive materials such as polypyrrole (PPy) and reduced graphene oxide (rGO) (PGE/PPy/rGO) was used for this goal. The double-stranded DNA was successfully immobilized on PGE/PPy/rGO. The PGE/PPy/rGO was characterized by microscopic and electrochemical methods. Then, the interaction of DDI with DNA was identified by decreases in the oxidation currents of guanine and adenine by differential pulse voltammetric (DPV) method. The dynamic range of DDI identified in the range of 0.02-50.0 μM and this electrode provided a low limit of detection (LOD = 8.0 nM) for DDI. The PGE/PPy/rGO loaded with ds-DNA was utilized for the measurement of DDI in real samples and obtained data were compared with HPLC method. The statistical tests such as F-test and t-test were used for confirming ability of PGE/PPy/rGO loaded with ds-DNA for analysis of DDI in real samples.

  2. Electroactive crown ester-Cu2+ complex with in-situ modification at molecular beacon probe serving as a facile electrochemical DNA biosensor for the detection of CaMV 35s.

    Zhan, Fengping; Liao, Xiaolei; Gao, Feng; Qiu, Weiwei; Wang, Qingxiang

    2017-06-15

    A novel electrochemical DNA biosensor has been facilely constructed by in-situ assembly of electroactive 4'-aminobenzo-18-crown-6-copper(II) complex (AbC-Cu 2+ ) on the free terminal of the hairpin-structured molecule beacon. The 3'-SH modified molecule beacon probe was first immobilized on the gold electrode (AuE) surface through self-assembly chemistry of Au-S bond. Then the crow ester of AbC was covalently coupled with 5'-COOH on the molecule beacon, and served as a platform to attach the Cu 2+ by coordination with ether bond (-O-) of the crown cycle. Thus, an electroactive molecule beacon-based biosensing interface was constructed. In comparison with conventional methods for preparation of electroactive molecule beacon, the approach presented in this work is much simpler, reagent- and labor-saving. Selectivity study shows that the in-situ fabricated electroactive molecule beacon remains excellent recognition ability of pristine molecule beacon probe to well differentiate various DNA fragments. The target DNA can be quantatively determined over the range from 0.10pM to 0.50nM. The detection limit of 0.060pM was estimated based on signal-to-noise ratio of 3. When the biosensor was applied for the detection cauliflower mosaic virus 35s (CaMV 35s) in soybean extraction samples, satisfactory results are achieved. This work opens a new strategy for facilely fabricating electrochemical sensing interface, which also shows great potential in aptasensor and immurosensor fabrication. Copyright © 2016 Elsevier B.V. All rights reserved.

  3. Biosensors of bacterial cells.

    Burlage, Robert S; Tillmann, Joshua

    2017-07-01

    Biosensors are devices which utilize both an electrical component (transducer) and a biological component to study an environment. They are typically used to examine biological structures, organisms and processes. The field of biosensors has now become so large and varied that the technology can often seem impenetrable. Yet the principles which underlie the technology are uncomplicated, even if the details of the mechanisms are elusive. In this review we confine our analysis to relatively current advancements in biosensors for the detection of whole bacterial cells. This includes biosensors which rely on an added labeled component and biosensors which do not have a labeled component and instead detect the binding event or bound structure on the transducer. Methods to concentrate the bacteria prior to biosensor analysis are also described. The variety of biosensor types and their actual and potential uses are described. Copyright © 2016 Elsevier B.V. All rights reserved.

  4. Fiber Optic Surface Plasmon Resonance-Based Biosensor Technique: Fabrication, Advancement, and Application.

    Liang, Gaoling; Luo, Zewei; Liu, Kunping; Wang, Yimin; Dai, Jianxiong; Duan, Yixiang

    2016-05-03

    Fiber optic-based biosensors with surface plasmon resonance (SPR) technology are advanced label-free optical biosensing methods. They have brought tremendous progress in the sensing of various chemical and biological species. This review summarizes four sensing configurations (prism, grating, waveguide, and fiber optic) with two ways, attenuated total reflection (ATR) and diffraction, to excite the surface plasmons. Meanwhile, the designs of different probes (U-bent, tapered, and other probes) are also described. Finally, four major types of biosensors, immunosensor, DNA biosensor, enzyme biosensor, and living cell biosensor, are discussed in detail for their sensing principles and applications. Future prospects of fiber optic-based SPR sensor technology are discussed.

  5. Biosensors and bioelectronics

    Karunakaran, Chandran; Benjamin, Robson

    2015-01-01

    Biosensors and Bioelectronics presents the rapidly evolving methodologies that are relevant to biosensors and bioelectronics fabrication and characterization. The book provides a comprehensive understanding of biosensor functionality, and is an interdisciplinary reference that includes a range of interwoven contributing subjects, including electrochemistry, nanoparticles, and conducting polymers. Authored by a team of bioinstrumentation experts, this book serves as a blueprint for performing advanced fabrication and characterization of sensor systems-arming readers with an application-based re

  6. Genetic Approaches to Appearance and Ancestry : Improving Forensic DNA Analysis

    L.C. Chaitanya (Lakshmi)

    2016-01-01

    textabstractTraditionally, routine forensic casework is based on comparative grounds. DNA profiles obtained from crime-scenes are compared with those of potential suspects or DNA profiles deposited in forensic DNA databases. The principal limitation of such comparative approach is that trace

  7. Introduction to Biosensors From Electric Circuits to Immunosensors

    Yoon, Jeong-Yeol

    2013-01-01

    Introduction to Biosensors: From Electric Circuits to Immunosensors discusses underlying circuitry of sensors for biomedical and biological engineers as well as biomedical sensing modalities for electrical engineers while providing an applications-based approach to the study of biosensors with over 13 extensive, hands-on labs. The material is presented using a building-block approach, beginning with the fundamentals of sensor design and temperature sensors and ending with more complicated biosensors. This book also: Provides electrical engineers with the specific knowledge they need to understand biological sensing modalities Provides biomedical engineers with a solid background in circuits and systems Includes complete coverage of temperature sensors, electrochemical sensors, DNA and immunosensors, piezoelectric sensors and immunosensing in a micofluidic device Introduction to Biosensors: From Electric Circuits to Immunosensors aims to provide an interdisciplinary approach to biosensors that will be apprecia...

  8. Introduction to biosensors from electric circuits to immunosensors

    Yoon, Jeong-Yeol

    2016-01-01

    This book equips students with a thorough understanding of various types of sensors and biosensors that can be used for chemical, biological, and biomedical applications, including but not limited to temperature sensors, strain sensor, light sensors, spectrophotometric sensors, pulse oximeter, optical fiber probes, fluorescence sensors, pH sensor, ion-selective electrodes, piezoelectric sensors, glucose sensors, DNA and immunosensors, lab-on-a-chip biosensors, paper-based lab-on-a-chip biosensors, and microcontroller-based sensors. The author treats the study of biosensors with an applications-based approach, including over 15 extensive, hands-on labs given at the end of each chapter. The material is presented using a building-block approach, beginning with the fundamentals of sensor design and temperature sensors, and ending with more complicated biosensors. New to this second edition are sections on op-amp filters, pulse oximetry, meat quality monitoring, advanced fluorescent dyes, autofluorescence, various...

  9. An improved amperometric L-lactate biosensor based on covalent immobilization of microbial lactate oxidase onto carboxylated multiwalled carbon nanotubes/copper nanoparticles/polyaniline modified pencil graphite electrode.

    Dagar, Kusum; Pundir, C S

    2017-01-01

    An improved amperometric l-lactate biosensor was constructed based on covalent immobilization of lactate oxidase (LOx) from Pediococcus species onto carboxylated multiwalled carbon nanotubes (cMWCNT)/copper nanoparticles (CuNPs)/polyaniline (PANI) hybrid film electrodeposited on the surface of a pencil graphite electrode (PGE). The enzyme electrode was characterized by cyclic voltammetry (CV), scanning electron microscopy (SEM), Fourier transform infrared (FTIR) spectroscopy and electrochemical impedance spectroscopy (EIS), while CuNPs synthesized by chemical reduction method, were characterized by transmission electron microscopy (TEM), UV spectrascopy and X-ray diffraction (XRD). The biosensor showed maximum response within 5s at pH 8.0 in 0.05M sodium phosphate buffer and 37°C, when operated at 20mVs -1 . The biosensor had a detection limit of 0.25μM with a wide working range between 1μM-2500μM. The biosensor was employed for measurement of l-lactic acid level in plasma of apparently healthy and diseased persons. Analytical recovery of added lactic acid in plasma was 95.5%. Within- and between-batch coefficients of variations were 6.24% and 4.19% respectively. There was a good correlation (R 2 =0.97) between plasma lactate values as measured by standard enzymatic spectrophotometric method and the present biosensor. The working enzyme electrode was used 180 times over a period of 140 days, when stored at 4°C. Copyright © 2016. Published by Elsevier Inc.

  10. A general strategy to construct small molecule biosensors in eukaryotes.

    Feng, Justin; Jester, Benjamin W; Tinberg, Christine E; Mandell, Daniel J; Antunes, Mauricio S; Chari, Raj; Morey, Kevin J; Rios, Xavier; Medford, June I; Church, George M; Fields, Stanley; Baker, David

    2015-12-29

    Biosensors for small molecules can be used in applications that range from metabolic engineering to orthogonal control of transcription. Here, we produce biosensors based on a ligand-binding domain (LBD) by using a method that, in principle, can be applied to any target molecule. The LBD is fused to either a fluorescent protein or a transcriptional activator and is destabilized by mutation such that the fusion accumulates only in cells containing the target ligand. We illustrate the power of this method by developing biosensors for digoxin and progesterone. Addition of ligand to yeast, mammalian, or plant cells expressing a biosensor activates transcription with a dynamic range of up to ~100-fold. We use the biosensors to improve the biotransformation of pregnenolone to progesterone in yeast and to regulate CRISPR activity in mammalian cells. This work provides a general methodology to develop biosensors for a broad range of molecules in eukaryotes.

  11. A Highly Responsive Silicon Nanowire/Amplifier MOSFET Hybrid Biosensor

    2015-07-21

    Hybrid Biosensor Jieun Lee1,2, Jaeman Jang1, Bongsik Choi1, Jinsu Yoon1, Jee-Yeon Kim3, Yang-Kyu Choi3, Dong Myong Kim1, Dae Hwan Kim1 & Sung-Jin Choi1...This study demonstrates a hybrid biosensor comprised of a silicon nanowire (SiNW) integrated with an amplifier MOSFET to improve the current response...of field-effect-transistor (FET)-based biosensors . The hybrid biosensor is fabricated using conventional CMOS technology, which has the potential

  12. Quantum dot-based microfluidic biosensor for cancer detection

    Ghrera, Aditya Sharma [Biomedical Instrumentation Section, CSIR-National Physical Laboratory, New Delhi-110012 (India); School of Engineering and Technology, ITM University, Gurgaon-122017 (India); Pandey, Chandra Mouli; Ali, Md. Azahar [Biomedical Instrumentation Section, CSIR-National Physical Laboratory, New Delhi-110012 (India); Malhotra, Bansi Dhar, E-mail: bansi.malhotra@gmail.com [Department of Biotechnology, Delhi Technological University, Delhi-110042 (India)

    2015-05-11

    We report results of the studies relating to fabrication of an impedimetric microfluidic–based nucleic acid sensor for quantification of DNA sequences specific to chronic myelogenous leukemia (CML). The sensor chip is prepared by patterning an indium–tin–oxide (ITO) coated glass substrate via wet chemical etching method followed by sealing with polydimethylsiloxane (PDMS) microchannel for fluid control. The fabricated microfluidic chip comprising of a patterned ITO substrate is modified by depositing cadmium selenide quantum dots (QCdSe) via Langmuir–Blodgett technique. Further, the QCdSe surface has been functionalized with specific DNA probe for CML detection. The probe DNA functionalized QCdSe integrated miniaturized system has been used to monitor target complementary DNA concentration by measuring the interfacial charge transfer resistance via hybridization. The presence of complementary DNA in buffer solution significantly results in decreased electro-conductivity of the interface due to presence of a charge barrier for transport of the redox probe ions. The microfluidic DNA biosensor exhibits improved linearity in the concentration range of 10{sup −15} M to 10{sup −11} M.

  13. Quantum dot-based microfluidic biosensor for cancer detection

    Ghrera, Aditya Sharma; Pandey, Chandra Mouli; Ali, Md. Azahar; Malhotra, Bansi Dhar

    2015-05-01

    We report results of the studies relating to fabrication of an impedimetric microfluidic-based nucleic acid sensor for quantification of DNA sequences specific to chronic myelogenous leukemia (CML). The sensor chip is prepared by patterning an indium-tin-oxide (ITO) coated glass substrate via wet chemical etching method followed by sealing with polydimethylsiloxane (PDMS) microchannel for fluid control. The fabricated microfluidic chip comprising of a patterned ITO substrate is modified by depositing cadmium selenide quantum dots (QCdSe) via Langmuir-Blodgett technique. Further, the QCdSe surface has been functionalized with specific DNA probe for CML detection. The probe DNA functionalized QCdSe integrated miniaturized system has been used to monitor target complementary DNA concentration by measuring the interfacial charge transfer resistance via hybridization. The presence of complementary DNA in buffer solution significantly results in decreased electro-conductivity of the interface due to presence of a charge barrier for transport of the redox probe ions. The microfluidic DNA biosensor exhibits improved linearity in the concentration range of 10-15 M to 10-11 M.

  14. Quantum dot-based microfluidic biosensor for cancer detection

    Ghrera, Aditya Sharma; Pandey, Chandra Mouli; Ali, Md. Azahar; Malhotra, Bansi Dhar

    2015-01-01

    We report results of the studies relating to fabrication of an impedimetric microfluidic–based nucleic acid sensor for quantification of DNA sequences specific to chronic myelogenous leukemia (CML). The sensor chip is prepared by patterning an indium–tin–oxide (ITO) coated glass substrate via wet chemical etching method followed by sealing with polydimethylsiloxane (PDMS) microchannel for fluid control. The fabricated microfluidic chip comprising of a patterned ITO substrate is modified by depositing cadmium selenide quantum dots (QCdSe) via Langmuir–Blodgett technique. Further, the QCdSe surface has been functionalized with specific DNA probe for CML detection. The probe DNA functionalized QCdSe integrated miniaturized system has been used to monitor target complementary DNA concentration by measuring the interfacial charge transfer resistance via hybridization. The presence of complementary DNA in buffer solution significantly results in decreased electro-conductivity of the interface due to presence of a charge barrier for transport of the redox probe ions. The microfluidic DNA biosensor exhibits improved linearity in the concentration range of 10 −15 M to 10 −11 M

  15. Exogenous DNA internalisation by sperm cells is improved by combining lipofection and restriction enzyme mediated integration.

    Churchil, R R; Gupta, J; Singh, A; Sharma, D

    2011-06-01

    1. Three types of exogenous DNA inserts, i.e. complete linearised pVIVO2-GFP/LacZ vector (9620 bp), the LacZ gene (5317 bp) and the GFP gene (2152 bp) were used to transfect chicken spermatozoa through simple incubation of sperm cells with insert. 2. PCR assay, Dot Blot hybridisation and Southern hybridisation showed the successful internalisation of exogenous DNA by chicken sperm cells. 3. Lipofection and Restriction Enzyme Mediated Integration (REMI) were used to improve the rate of internalisation of exogenous DNA by sperm cells. 4. Results from dot blot as well as Southern hybridisation were semi-quantified and improved exogenous DNA uptake by sperm cells through lipofection and REMI. Stronger signals were observed from hybridisation of LacZ as well as GFP specific probe with the DNA from lipofected exogenous DNA transfected sperm DNA in comparison with those transfected with nude exogenous DNA.

  16. Development of electrochemical biosensors and solid-phase amplification methods for the detection of human papillomavirus genes

    Civit Pitarch, Laia

    2012-01-01

    A rapid, accurate and reliable diagnosis is crucial for the identification of a disease, like cancer, where an early detection can improve patient survival outcomes. Cervical cancer is the third most commonly diagnosed and the fourth leading cause of cancer death in women. It is well known that persistent infections with high-risk human papillomaviruses (HPV) are the primary cause of cervical cancer. Electrochemical DNA biosensors have received important attention owing to their characterist...

  17. Biosensors for Cell Analysis.

    Zhou, Qing; Son, Kyungjin; Liu, Ying; Revzin, Alexander

    2015-01-01

    Biosensors first appeared several decades ago to address the need for monitoring physiological parameters such as oxygen or glucose in biological fluids such as blood. More recently, a new wave of biosensors has emerged in order to provide more nuanced and granular information about the composition and function of living cells. Such biosensors exist at the confluence of technology and medicine and often strive to connect cell phenotype or function to physiological or pathophysiological processes. Our review aims to describe some of the key technological aspects of biosensors being developed for cell analysis. The technological aspects covered in our review include biorecognition elements used for biosensor construction, methods for integrating cells with biosensors, approaches to single-cell analysis, and the use of nanostructured biosensors for cell analysis. Our hope is that the spectrum of possibilities for cell analysis described in this review may pique the interest of biomedical scientists and engineers and may spur new collaborations in the area of using biosensors for cell analysis.

  18. Impedimetric biosensors and immunosensors

    Prodromidis, M.I.

    2007-01-01

    The development of methods targeting the direct monitoring of antibody-antigen interactions is particularly attractive. The design of label-free affinity-based probing concepts is the objective of much current research, at both academic and industrial levels, towards establishing alternative methods to the already existing ELISA-based immunoassays. Among these, Electrochemical Impedance Spectroscopy (EIS) represents one of the most powerful methods, due to the ability of EIS-based sensors to be more easily integrated into multi-array or microprocessor, controlled diagnostic tools. During the last decade, EIS and the concept of biochemical capacitors have been widely used for probing various types of biomolecular interactions (immunosensors, DNA hybridization, protein-protein interactions). So far, impedimetric or capacitive immunosensors have been successfully applied at the academic level. However, no prototypes have been released into the market, since major fundamental issues still exist. Even though this fact has brought the reliability of impedimetric immunosensors into question, features associated with electrochemical approaches, namely the ability to be miniaturized, remote control of implanted sensors, low cost of electrode mass production and cost effective instrumentation (without need of high-energy sources) keep impedimetric sensors particularly attractive as compared to other approaches based on microbalances, surface plasmon resonance or ellipsometry. This lecture outlines the theoretical background of impedimetric immunosensors and presents different types of impedimetric biosensors as well as the instrumental approaches that have been so far proposed in the literature. (author)

  19. Acetone facilitated DNA sampling from electrical tapes improves DNA recovery and enables latent fingerprints development.

    Feine, Ilan; Shpitzen, Moshe; Geller, Boris; Salmon, Eran; Peleg, Tsach; Roth, Jonathan; Gafny, Ron

    2017-07-01

    Electrical tapes (ETs) are a common component of improvised explosive devices (IEDs) used by terrorists or criminal organizations and represent a valuable forensic resource for DNA and latent fingerprints recovery. However, DNA recovery rates are typically low and usually below the minimal amount required for amplification. In addition, most DNA extraction methods are destructive and do not allow further latent fingerprints development. In the present study a cell culture based touch DNA model was used to demonstrate a two-step acetone-water DNA recovery protocol from ETs. This protocol involves only the adhesive side of the ET and increases DNA recovery rates by up to 70%. In addition, we demonstrated partially successful latent fingerprints development from the non-sticky side of the ETs. Taken together, this protocol maximizes the forensic examination of ETs and is recommended for routine casework processing. Copyright © 2017 Elsevier B.V. All rights reserved.

  20. An improved method of DNA extraction from plants for pathogen ...

    Polymerase chain reaction (PCR)-based applications in plant molecular biology and molecular diagnostics for plant pathogens require good quality DNA for reliable and reproducible results. Leaf tissue is often the choice for DNA extraction, but the use of other sources such as tubers, stems, or seeds, is not uncommon.

  1. IMPLEMENTATION OF DNA MARKERS TO IMPROVE BREEDING OF FORAGE LEGUMES

    S. Grljušić

    2008-09-01

    Full Text Available The low rates of estimated genetic gains in forage legumes breeding have emphasized the need for new breeding methods that would increase efficiency in forage selection and provide reliable improvement. Information on application of molecular methodologies and tools for the enhancement of the current empirical phenotype-based selection moved us toward implementation of DNA markers to our breeding activities. Firstly, attention was given to identification of genetic variability within the forage species involved in program and comparison of conventional and molecular marker efficiency in variability evaluation. RAPDs were used (i to estimate availability of alfalfa (Medicago sativa L. and Medicago falcata L. genetic variation and (ii to identify changes of red clover (Trifolium pratense L. variability after natural selection. SSRs were applied to evaluate diversity within and among field pea (Pisum sativum L. var. arvense and sativum groups/varieties. A total of 90 (alfalfa or 92 (red clover polymorphic bands was found by RAPDs. Total number of SSR alleles recorded was 118. The average Roger's distance per species/genus estimated was 0.29 (red clover, 0.33 (alfalfa and 0.51 (field pea. 2D PCo analysis of each species/genus separated materials into respective groups. A high degree of genetic variation within populations/varieties of each investigated species was found by AMOVA. The correspondence between pairs of matrices based on the morphological and molecular data was significant (p=0.95 only for red clover. RAPD and SSR data have given valuable information on genetic structure of materials and provided a description that determines heterogeneity. Further studies will be focused on identifying quantitative trait loci and marker assisted selection.

  2. Acoustic biosensors.

    Fogel, Ronen; Limson, Janice; Seshia, Ashwin A

    2016-06-30

    Resonant and acoustic wave devices have been researched for several decades for application in the gravimetric sensing of a variety of biological and chemical analytes. These devices operate by coupling the measurand (e.g. analyte adsorption) as a modulation in the physical properties of the acoustic wave (e.g. resonant frequency, acoustic velocity, dissipation) that can then be correlated with the amount of adsorbed analyte. These devices can also be miniaturized with advantages in terms of cost, size and scalability, as well as potential additional features including integration with microfluidics and electronics, scaled sensitivities associated with smaller dimensions and higher operational frequencies, the ability to multiplex detection across arrays of hundreds of devices embedded in a single chip, increased throughput and the ability to interrogate a wider range of modes including within the same device. Additionally, device fabrication is often compatible with semiconductor volume batch manufacturing techniques enabling cost scalability and a high degree of precision and reproducibility in the manufacturing process. Integration with microfluidics handling also enables suitable sample pre-processing/separation/purification/amplification steps that could improve selectivity and the overall signal-to-noise ratio. Three device types are reviewed here: (i) bulk acoustic wave sensors, (ii) surface acoustic wave sensors, and (iii) micro/nano-electromechanical system (MEMS/NEMS) sensors. © 2016 The Author(s). Published by Portland Press Limited on behalf of the Biochemical Society.

  3. Improved chaos-based video steganography using DNA alphabets

    Nirmalya Kar

    2018-03-01

    Full Text Available DNA based steganography plays a vital role in the field of privacy and secure communication. Here, we propose a DNA properties-based mechanism to send data hidden inside a video file. Initially, the video file is converted into image frames. Random frames are then selected and data is hidden in these at random locations by using the Least Significant Bit substitution method. We analyze the proposed architecture in terms of peak signal-to-noise ratio as well as mean squared error measured between the original and steganographic files averaged over all video frames. The results show minimal degradation of the steganographic video file. Keywords: Chaotic map, DNA, Linear congruential generator, Video steganography, Least significant bit

  4. BIOSENSORS FOR ENVIRONMENTAL APPLICATIONS

    A review, with 19 references, is given on challenges and possible opportunities for the development of biosensors for environmental monitoring applications. The high cost and slow turnaround times typically associated with the measurement of regulated pollutants clearly indicates...

  5. Nanochannels Photoelectrochemical Biosensor.

    Zhang, Nan; Ruan, Yi-Fan; Zhang, Li-Bin; Zhao, Wei-Wei; Xu, Jing-Juan; Chen, Hong-Yuan

    2018-02-06

    Nanochannels have brought new opportunities for biosensor development. Herein, we present the novel concept of a nanochannels photoelectrochemical (PEC) biosensor based on the integration of a unique Cu x O-nanopyramid-islands (NPIs) photocathode, an anodic aluminum oxide (AAO) membrane, and alkaline phosphatase (ALP) catalytic chemistry. The Cu x O-NPIs photocathode possesses good performance, and further assembly with AAO yields a designed architecture composed of vertically aligned, highly ordered nanoarrays on top of the Cu x O-NPIs film. After biocatalytic precipitation (BCP) was stimulated within the channels, the biosensor was used for the successful detection of ALP activity. This study has not only provided a novel paradigm for an unconventional nanochannels PEC biosensor, which can be used for general bioanalytical purposes, but also indicated that the new concept of nanochannel-semiconductor heterostructures is a step toward innovative biomedical applications.

  6. Integration of ARTP mutagenesis with biosensor-mediated high-throughput screening to improve L-serine yield in Corynebacterium glutamicum.

    Zhang, Xin; Zhang, Xiaomei; Xu, Guoqiang; Zhang, Xiaojuan; Shi, Jinsong; Xu, Zhenghong

    2018-05-03

    L-Serine is widely used in the pharmaceutical, food, and cosmetics industries. Although direct fermentative production of L-serine from sugar in Corynebacterium glutamicum has been achieved, the L-serine yield remains relatively low. In this study, atmospheric and room temperature plasma (ARTP) mutagenesis was used to improve the L-serine yield based on engineered C. glutamicum ΔSSAAI strain. Subsequently, we developed a novel high-throughput screening method using a biosensor constructed based on NCgl0581, a transcriptional factor specifically responsive to L-serine, so that L-serine concentration within single cell of C. glutamicum can be monitored via fluorescence-activated cell sorting (FACS). Novel L-serine-producing mutants were isolated from a large library of mutagenized cells. The mutant strain A36-pDser was screened from 1.2 × 10 5 cells, and the magnesium ion concentration in the medium was optimized specifically for this mutant. C. glutamicum A36-pDser accumulated 34.78 g/L L-serine with a yield of 0.35 g/g sucrose, which were 35.9 and 66.7% higher than those of the parent C. glutamicum ΔSSAAI-pDser strain, respectively. The L-serine yield achieved in this mutant was the highest of all reported L-serine-producing strains of C. glutamicum. Moreover, the whole-genome sequencing identified 11 non-synonymous mutations of genes associated with metabolic and transport pathways, which might be responsible for the higher L-serine production and better cell growth in C. glutamicum A36-pDser. This study explored an effective mutagenesis strategy and reported a novel high-throughput screening method for the development of L-serine-producing strains.

  7. Triggered optical biosensor

    Song, Xuedong; Swanson, Basil I.

    2001-10-02

    An optical biosensor is provided for the detection of a multivalent target biomolecule, the biosensor including a substrate having a bilayer membrane thereon, a recognition molecule situated at the surface, the recognition molecule capable of binding with the multivalent target biomolecule, the recognition molecule further characterized as including a fluorescence label thereon and as being movable at the surface and a device for measuring a fluorescence change in response to binding between the recognition molecule and the multivalent target biomolecule.

  8. Overexpression of DNA ligase III in mitochondria protects cells against oxidative stress and improves mitochondrial DNA base excision repair

    Akbari, Mansour; Keijzers, Guido; Maynard, Scott

    2014-01-01

    slower than the preceding mitochondrial BER steps. Overexpression of DNA ligase III in mitochondria improved the rate of overall BER, increased cell survival after menadione induced oxidative stress and reduced autophagy following the inhibition of the mitochondrial electron transport chain complex I...

  9. Emerging synergy between nanotechnology and implantable biosensors: a review.

    Vaddiraju, Santhisagar; Tomazos, Ioannis; Burgess, Diane J; Jain, Faquir C; Papadimitrakopoulos, Fotios

    2010-03-15

    The development of implantable biosensors for continuous monitoring of metabolites is an area of sustained scientific and technological interests. On the other hand, nanotechnology, a discipline which deals with the properties of materials at the nanoscale, is developing as a potent tool to enhance the performance of these biosensors. This article reviews the current state of implantable biosensors, highlighting the synergy between nanotechnology and sensor performance. Emphasis is placed on the electrochemical method of detection in light of its widespread usage and substantial nanotechnology based improvements in various aspects of electrochemical biosensor performance. Finally, issues regarding toxicity and biocompatibility of nanomaterials, along with future prospects for the application of nanotechnology in implantable biosensors, are discussed. (c) 2009 Elsevier B.V. All rights reserved.

  10. Review of Micro/Nanotechnologies for Microbial Biosensors

    Ji Won eLim

    2015-05-01

    Full Text Available A microbial biosensor is an analytical device with a biologically integrated transducer that generates a measurable signal indicating the analyte concentration. This method is ideally suited for the analysis of extracellular chemicals and the environment, and for metabolic sensory-regulation. Although microbial biosensors show promise for application in various detection fields, some limitations still remain such as poor selectivity, low sensitivity, and impractical portability. To overcome such limitations, microbial biosensors have been integrated with many recently developed micro/nanotechnologies and applied to a wide range of detection purposes. This review article discusses micro/nanotechnologies that have been integrated with microbial biosensors and summarizes recent advances and the applications achieved through such novel integration. Future perspectives on the combination of micro/nanotechnologies and microbial biosensors will be discussed, and the necessary developments and improvements will be strategically deliberated.

  11. Automation of cDNA Synthesis and Labelling Improves Reproducibility

    Daniel Klevebring

    2009-01-01

    Full Text Available Background. Several technologies, such as in-depth sequencing and microarrays, enable large-scale interrogation of genomes and transcriptomes. In this study, we asses reproducibility and throughput by moving all laboratory procedures to a robotic workstation, capable of handling superparamagnetic beads. Here, we describe a fully automated procedure for cDNA synthesis and labelling for microarrays, where the purification steps prior to and after labelling are based on precipitation of DNA on carboxylic acid-coated paramagnetic beads. Results. The fully automated procedure allows for samples arrayed on a microtiter plate to be processed in parallel without manual intervention and ensuring high reproducibility. We compare our results to a manual sample preparation procedure and, in addition, use a comprehensive reference dataset to show that the protocol described performs better than similar manual procedures. Conclusions. We demonstrate, in an automated gene expression microarray experiment, a reduced variance between replicates, resulting in an increase in the statistical power to detect differentially expressed genes, thus allowing smaller differences between samples to be identified. This protocol can with minor modifications be used to create cDNA libraries for other applications such as in-depth analysis using next-generation sequencing technologies.

  12. Molecular Approaches to Optical Biosensors

    Fierke, Carol

    1998-01-01

    The goal of this proposal was to develop methodologies for the optimization of field-deployable optical biosensors, in general, and, in particular, to optimize a carbonic anhydrase-based fiber optic zinc biosensor...

  13. Construction and characterization of novel stress-responsive Deinococcal biosensors

    Joe, Min Ho; Lim, Sang Youg

    2012-01-01

    In this research, we constructed a recombinant whole-cell biosensor to detect mutagens (H2O2, mitomycin C, MNNG, bleomycin) using Deinococcus radiodurans and evaluated its possibility for actual application. We performed DNA microarray analysis and selected 10 candidate genes for biosensor recombinant plasmid construction. The expression of ddrA, ddrB, DR 0 161, DR 0 589, and pprA was highly increased after treatment of the target mutagens. Putative promoter region of the genes were used for LacZ-based biosensor plasmid construction by replacing groESL promoter of pRADZ3. Pormoter activity and specificity of the five recombinant LacZ-based biosensor strains harboring the recombinant plasmids was measured. The result indicated that the promoter region of ddrA is the most suitable promoter for the biosensor development. Red pigment-based biosensor plasmid was constructed by displacing lacZ with crtI. The sensor strain was constructed by transforming the sensor plasmid into crtI deleted mutant D. radiodurans strain. Finally, macroscopic detection of the target mutagens by the biosensor strain was evaluated. The strength of red pigment biosynthesis by this recombinant strain in response to the target mutagens was weaker than our expectation. Continuous damage to the sensor strain by the mutagens in the medium might be the main reason for this low red-pigment biosynthesis. Therefore, we propose that the LacZ-based biosensor is more effective than the biosensor using red pigment as indicator for the mutagen detection

  14. Construction and characterization of novel stress-responsive Deinococcal biosensors

    Joe, Min Ho; Lim, Sang Youg

    2012-01-15

    In this research, we constructed a recombinant whole-cell biosensor to detect mutagens (H2O2, mitomycin C, MNNG, bleomycin) using Deinococcus radiodurans and evaluated its possibility for actual application. We performed DNA microarray analysis and selected 10 candidate genes for biosensor recombinant plasmid construction. The expression of ddrA, ddrB, DR{sub 0}161, DR{sub 0}589, and pprA was highly increased after treatment of the target mutagens. Putative promoter region of the genes were used for LacZ-based biosensor plasmid construction by replacing groESL promoter of pRADZ3. Pormoter activity and specificity of the five recombinant LacZ-based biosensor strains harboring the recombinant plasmids was measured. The result indicated that the promoter region of ddrA is the most suitable promoter for the biosensor development. Red pigment-based biosensor plasmid was constructed by displacing lacZ with crtI. The sensor strain was constructed by transforming the sensor plasmid into crtI deleted mutant D. radiodurans strain. Finally, macroscopic detection of the target mutagens by the biosensor strain was evaluated. The strength of red pigment biosynthesis by this recombinant strain in response to the target mutagens was weaker than our expectation. Continuous damage to the sensor strain by the mutagens in the medium might be the main reason for this low red-pigment biosynthesis. Therefore, we propose that the LacZ-based biosensor is more effective than the biosensor using red pigment as indicator for the mutagen detection.

  15. Room temperature electrocompetent bacterial cells improve DNA transformation and recombineering efficiency.

    Tu, Qiang; Yin, Jia; Fu, Jun; Herrmann, Jennifer; Li, Yuezhong; Yin, Yulong; Stewart, A Francis; Müller, Rolf; Zhang, Youming

    2016-04-20

    Bacterial competent cells are essential for cloning, construction of DNA libraries, and mutagenesis in every molecular biology laboratory. Among various transformation methods, electroporation is found to own the best transformation efficiency. Previous electroporation methods are based on washing and electroporating the bacterial cells in ice-cold condition that make them fragile and prone to death. Here we present simple temperature shift based methods that improve DNA transformation and recombineering efficiency in E. coli and several other gram-negative bacteria thereby economizing time and cost. Increased transformation efficiency of large DNA molecules is a significant advantage that might facilitate the cloning of large fragments from genomic DNA preparations and metagenomics samples.

  16. Development of mercury (II) ion biosensors based on mercury-specific oligonucleotide probes.

    Li, Lanying; Wen, Yanli; Xu, Li; Xu, Qin; Song, Shiping; Zuo, Xiaolei; Yan, Juan; Zhang, Weijia; Liu, Gang

    2016-01-15

    Mercury (II) ion (Hg(2+)) contamination can be accumulated along the food chain and cause serious threat to the public health. Plenty of research effort thus has been devoted to the development of fast, sensitive and selective biosensors for monitoring Hg(2+). Thymine was demonstrated to specifically combine with Hg(2+) and form a thymine-Hg(2+)-thymine (T-Hg(2+)-T) structure, with binding constant even higher than T-A Watson-Crick pair in DNA duplex. Recently, various novel Hg(2+) biosensors have been developed based on T-rich Mercury-Specific Oligonucleotide (MSO) probes, and exhibited advanced selectivity and excellent sensitivity for Hg(2+) detection. In this review, we explained recent development of MSO-based Hg(2+) biosensors mainly in 3 groups: fluorescent biosensors, colorimetric biosensors and electrochemical biosensors. Copyright © 2015 Elsevier B.V. All rights reserved.

  17. Photoelectrochemical enzymatic biosensors.

    Zhao, Wei-Wei; Xu, Jing-Juan; Chen, Hong-Yuan

    2017-06-15

    Enzymatic biosensors have been valuable bioanalytical devices for analysis of diverse targets in disease diagnosis, biological and biomedical research, etc. Photoelectrochemical (PEC) bioanalysis is a recently emerged method that promptly becoming a subject of new research interests due to its attractive potential for future bioanalysis with high sensitivity and specificity. PEC enzymatic biosensors integrate the inherent sensitivities of PEC bioanalysis and the selectivity of enzymes and thus share their both advantages. Currently, PEC enzymatic biosensors have become a hot topic of significant research and the recent impetus has grown rapidly as demonstrated by increased research papers. Given the pace of advances in this area, this review will make a thorough discussion and survey on the fundamentals, sensing strategies, applications and the state of the art in PEC enzymatic biosensors, followed by future prospects based on our own opinions. We hope this work could provide an accessible introduction to PEC enzymatic biosensors for any scientist. Copyright © 2016 Elsevier B.V. All rights reserved.

  18. Sense and sensitivity in bioprocessing-detecting cellular metabolites with biosensors.

    Dekker, Linda; Polizzi, Karen M

    2017-10-01

    Biosensors use biological elements to detect or quantify an analyte of interest. In bioprocessing, biosensors are employed to monitor key metabolites. There are two main types: fully biological systems or biological recognition coupled with physical/chemical detection. New developments in chemical biosensors include multiplexed detection using microfluidics. Synthetic biology can be used to engineer new biological biosensors with improved characteristics. Although there have been few biosensors developed for bioprocessing thus far, emerging trends can be applied in the future. A range of new platform technologies will enable rapid engineering of new biosensors based on transcriptional activation, riboswitches, and Förster Resonance Energy Transfer. However, translation to industry remains a challenge and more research into the robustness biosensors at scale is needed. Copyright © 2017 Elsevier Ltd. All rights reserved.

  19. Improved inference of taxonomic richness from environmental DNA.

    Matthew J Morgan

    Full Text Available Accurate estimation of biological diversity in environmental DNA samples using high-throughput amplicon pyrosequencing must account for errors generated by PCR and sequencing. We describe a novel approach to distinguish the underlying sequence diversity in environmental DNA samples from errors that uses information on the abundance distribution of similar sequences across independent samples, as well as the frequency and diversity of sequences within individual samples. We have further refined this approach into a bioinformatics pipeline, Amplicon Pyrosequence Denoising Program (APDP that is able to process raw sequence datasets into a set of validated sequences in formats compatible with commonly used downstream analyses packages. We demonstrate, by sequencing complex environmental samples and mock communities, that APDP is effective for removing errors from deeply sequenced datasets comprising biological and technical replicates, and can efficiently denoise single-sample datasets. APDP provides more conservative diversity estimates for complex datasets than other approaches; however, for some applications this may provide a more accurate and appropriate level of resolution, and result in greater confidence that returned sequences reflect the diversity of the underlying sample.

  20. Novel Prostate Specific Antigen plastic antibody designed with charged binding sites for an improved protein binding and its application in a biosensor of potentiometric transduction

    Rebelo, Tânia S.C.R.; Santos, C.; Costa-Rodrigues, J.; Fernandes, M.H.; Noronha, João P.; Sales, M. Goreti F.

    2014-01-01

    Graphical abstract: EF13-201, Novel Prostate Specific Antigen plastic antibody designed with charged binding sites for an improved protein binding and its application in a biosensor of potentiometric transduction. - Abstract: This work shows that the synthesis of protein plastic antibodies tailored with selected charged monomers around the binding site enhances protein binding. These charged receptor sites are placed over a neutral polymeric matrix, thus inducing a suitable orientation the protein reception to its site. This is confirmed by preparing control materials with neutral monomers and also with non-imprinted template. This concept has been applied here to Prostate Specific Antigen (PSA), the protein of choice for screening prostate cancer throughout the population, with serum levels >10 ng/mL pointing out a high probability of associated cancer. Protein Imprinted Materials with charged binding sites (C/PIM) have been produced by surface imprinting over graphene layers to which the protein was first covalently attached. Vinylbenzyl(trimethylammonium chloride) and vinyl benzoate were introduced as charged monomers labelling the binding site and were allowed to self-organize around the protein. The subsequent polymerization was made by radical polymerization of vinylbenzene. Neutral PIM (N/PIM) prepared without oriented charges and non imprinted materials (NIM) obtained without template were used as controls. These materials were used to develop simple and inexpensive potentiometric sensor for PSA. They were included as ionophores in plasticized PVC membranes, and tested over electrodes of solid or liquid conductive contacts, made of conductive carbon over a syringe or of inner reference solution over micropipette tips. The electrodes with charged monomers showed a more stable and sensitive response, with an average slope of -44.2 mV/decade and a detection limit of 5.8 × 10 −11 mol/L (2 ng/mL). The corresponding non-imprinted sensors showed lower

  1. Last Advances in Silicon-Based Optical Biosensors.

    Fernández Gavela, Adrián; Grajales García, Daniel; Ramirez, Jhonattan C; Lechuga, Laura M

    2016-02-24

    We review the most important achievements published in the last five years in the field of silicon-based optical biosensors. We focus specially on label-free optical biosensors and their implementation into lab-on-a-chip platforms, with an emphasis on developments demonstrating the capability of the devices for real bioanalytical applications. We report on novel transducers and materials, improvements of existing transducers, new and improved biofunctionalization procedures as well as the prospects for near future commercialization of these technologies.

  2. Introduction to biosensors.

    Bhalla, Nikhil; Jolly, Pawan; Formisano, Nello; Estrela, Pedro

    2016-06-30

    Biosensors are nowadays ubiquitous in biomedical diagnosis as well as a wide range of other areas such as point-of-care monitoring of treatment and disease progression, environmental monitoring, food control, drug discovery, forensics and biomedical research. A wide range of techniques can be used for the development of biosensors. Their coupling with high-affinity biomolecules allows the sensitive and selective detection of a range of analytes. We give a general introduction to biosensors and biosensing technologies, including a brief historical overview, introducing key developments in the field and illustrating the breadth of biomolecular sensing strategies and the expansion of nanotechnological approaches that are now available. © 2016 The Author(s). Published by Portland Press Limited on behalf of the Biochemical Society.

  3. Biosensors in forensic sciences

    Frederickx, C.

    2011-01-01

    Full Text Available A biosensor is a device that uses biological materials to detect and monitor the presence of specific chemicals in an area. Traditional methods of volatile detection used by law enforcement agencies and rescue teams typically consist of reliance on canine olfaction. This concept of using dogs to detect specific substances is quite old. However, dogs have some limitations such as cost of training and time of conditioning. Thus, the possibility of using other organisms as biosensors including rats, dolphins, honeybees, and parasitic wasps for detecting explosives, narcotics and cadavers has been developed. Insects have several advantages unshared by mammals. Insects are sensitive, cheap to produce and can be conditioned with impressive speed for a specific chemical-detection task. Moreover, insects might be a preferred sensing method in scenarios that are deemed too dangerous to use mammals. The purpose of this review is to provide an overview of the biosensors used in forensic sciences.

  4. An Improved Parallel DNA Algorithm of 3-SAT

    Wei Liu

    2007-09-01

    Full Text Available There are many large-size and difficult computational problems in mathematics and computer science. For many of these problems, traditional computers cannot handle the mass of data in acceptable timeframes, which we call an NP problem. DNA computing is a means of solving a class of intractable computational problems in which the computing time grows exponentially with problem size. This paper proposes a parallel algorithm model for the universal 3-SAT problem based on the Adleman-Lipton model and applies biological operations to handling the mass of data in solution space. In this manner, we can control the run time of the algorithm to be finite and approximately constant.

  5. Biosensors: Future Analytical Tools

    Vikas

    2007-02-01

    Full Text Available Biosensors offer considerable promises for attaining the analytic information in a faster, simpler and cheaper manner compared to conventional assays. Biosensing approach is rapidly advancing and applications ranging from metabolite, biological/ chemical warfare agent, food pathogens and adulterant detection to genetic screening and programmed drug delivery have been demonstrated. Innovative efforts, coupling micromachining and nanofabrication may lead to even more powerful devices that would accelerate the realization of large-scale and routine screening. With gradual increase in commercialization a wide range of new biosensors are thus expected to reach the market in the coming years.

  6. All-Silica Hollow-Core Microstructured Bragg Fibers for Biosensor Application

    Passaro, Davide; Foroni, Matteo; Poli, Federica

    2008-01-01

    The possibility to exploit all-silica hollow-core-microstructured Bragg fibers to realize a biosensor useful to detect the DNA hybridization process has been investigated. A Bragg fiber recently fabricated has been considered for the analysis performed by means of a full-vector modal solver based...... layer on the inner surface of the fiber holes can modify the fundamental mode properties. The numerical analysis results have successfully demonstrated the DNA bio-sensor feasibility in hollow-core Bragg fibers....

  7. Surface stress-based biosensors.

    Sang, Shengbo; Zhao, Yuan; Zhang, Wendong; Li, Pengwei; Hu, Jie; Li, Gang

    2014-01-15

    Surface stress-based biosensors, as one kind of label-free biosensors, have attracted lots of attention in the process of information gathering and measurement for the biological, chemical and medical application with the development of technology and society. This kind of biosensors offers many advantages such as short response time (less than milliseconds) and a typical sensitivity at nanogram, picoliter, femtojoule and attomolar level. Furthermore, it simplifies sample preparation and testing procedures. In this work, progress made towards the use of surface stress-based biosensors for achieving better performance is critically reviewed, including our recent achievement, the optimally circular membrane-based biosensors and biosensor array. The further scientific and technological challenges in this field are also summarized. Critical remark and future steps towards the ultimate surface stress-based biosensors are addressed. Copyright © 2013 Elsevier B.V. All rights reserved.

  8. Electrochemical biosensors for hormone analyses.

    Bahadır, Elif Burcu; Sezgintürk, Mustafa Kemal

    2015-06-15

    Electrochemical biosensors have a unique place in determination of hormones due to simplicity, sensitivity, portability and ease of operation. Unlike chromatographic techniques, electrochemical techniques used do not require pre-treatment. Electrochemical biosensors are based on amperometric, potentiometric, impedimetric, and conductometric principle. Amperometric technique is a commonly used one. Although electrochemical biosensors offer a great selectivity and sensitivity for early clinical analysis, the poor reproducible results, difficult regeneration steps remain primary challenges to the commercialization of these biosensors. This review summarizes electrochemical (amperometric, potentiometric, impedimetric and conductometric) biosensors for hormone detection for the first time in the literature. After a brief description of the hormones, the immobilization steps and analytical performance of these biosensors are summarized. Linear ranges, LODs, reproducibilities, regenerations of developed biosensors are compared. Future outlooks in this area are also discussed. Copyright © 2014 Elsevier B.V. All rights reserved.

  9. Deep-probe metal-clad waveguide biosensors

    Skivesen, Nina; Horvath, Robert; Thinggaard, S.

    2007-01-01

    Two types of metal-clad waveguide biosensors, so-called dip-type and peak-type, are analyzed and tested. Their performances are benchmarked against the well-known surface-plasmon resonance biosensor, showing improved probe characteristics for adlayer thicknesses above 150-200 nm. The dip-type metal-clad...... waveguide sensor is shown to be the best all-round alternative to the surface-plasmon resonance biosensor. Both metal-clad waveguides are tested experimentally for cell detection, showing a detection linut of 8-9 cells/mm(2). (c) 2006 Elsevier B.V. All rights reserved....

  10. Optimizing hyaluronidase dose and plasmid DNA delivery greatly improves gene electrotransfer efficiency in rat skeletal muscle

    Åkerström, Thorbjörn; Vedel, Kenneth; Needham Andersen, Josefine

    2015-01-01

    Transfection of rat skeletal muscle in vivo is a widely used research model. However, gene electrotransfer protocols have been developed for mice and yield variable results in rats. We investigated whether changes in hyaluronidase pre-treatment and plasmid DNA delivery can improve transfection...... with a homogenous distribution. We also show that transfection was stable over five weeks of regular exercise or inactivity. Our findings show that species-specific plasmid DNA delivery and hyaluronidase pre-treatment greatly improves transfection efficiency in rat skeletal muscle....... efficiency in rat skeletal muscle. We found that pre-treating the muscle with a hyaluronidase dose suitable for rats (0.56. U/g b.w.) prior to plasmid DNA injection increased transfection efficiency by >200% whereas timing of the pre-treatment did not affect efficiency. Uniformly distributing plasmid DNA...

  11. A Highly Responsive Silicon Nanowire/Amplifier MOSFET Hybrid Biosensor.

    Lee, Jieun; Jang, Jaeman; Choi, Bongsik; Yoon, Jinsu; Kim, Jee-Yeon; Choi, Yang-Kyu; Kim, Dong Myong; Kim, Dae Hwan; Choi, Sung-Jin

    2015-07-21

    This study demonstrates a hybrid biosensor comprised of a silicon nanowire (SiNW) integrated with an amplifier MOSFET to improve the current response of field-effect-transistor (FET)-based biosensors. The hybrid biosensor is fabricated using conventional CMOS technology, which has the potential advantage of high density and low noise performance. The biosensor shows a current response of 5.74 decades per pH for pH detection, which is 2.5 × 10(5) times larger than that of a single SiNW sensor. In addition, we demonstrate charged polymer detection using the biosensor, with a high current change of 4.5 × 10(5) with a 500 nM concentration of poly(allylamine hydrochloride). In addition, we demonstrate a wide dynamic range can be obtained by adjusting the liquid gate voltage. We expect that this biosensor will be advantageous and practical for biosensor applications which requires lower noise, high speed, and high density.

  12. Introducing improved structural properties and salt dependence into a coarse-grained model of DNA

    Snodin, Benedict E. K., E-mail: benedict.snodin@chem.ox.ac.uk; Mosayebi, Majid; Schreck, John S.; Romano, Flavio; Doye, Jonathan P. K., E-mail: jonathan.doye@chem.ox.ac.uk [Physical and Theoretical Chemistry Laboratory, Department of Chemistry, University of Oxford, South Parks Road, Oxford OX1 3QZ (United Kingdom); Randisi, Ferdinando [Life Sciences Interface Doctoral Training Center, South Parks Road, Oxford OX1 3QU (United Kingdom); Rudolf Peierls Centre for Theoretical Physics, 1 Keble Road, Oxford OX1 3NP (United Kingdom); Šulc, Petr [Center for Studies in Physics and Biology, The Rockefeller University, 1230 York Avenue, New York, New York 10065 (United States); Ouldridge, Thomas E. [Department of Mathematics, Imperial College, 180 Queen’s Gate, London SW7 2AZ (United Kingdom); Tsukanov, Roman; Nir, Eyal [Department of Chemistry and the Ilse Katz Institute for Nanoscale Science and Technology, Ben-Gurion University of the Negev, Beer Sheva (Israel); Louis, Ard A. [Rudolf Peierls Centre for Theoretical Physics, 1 Keble Road, Oxford OX1 3NP (United Kingdom)

    2015-06-21

    We introduce an extended version of oxDNA, a coarse-grained model of deoxyribonucleic acid (DNA) designed to capture the thermodynamic, structural, and mechanical properties of single- and double-stranded DNA. By including explicit major and minor grooves and by slightly modifying the coaxial stacking and backbone-backbone interactions, we improve the ability of the model to treat large (kilobase-pair) structures, such as DNA origami, which are sensitive to these geometric features. Further, we extend the model, which was previously parameterised to just one salt concentration ([Na{sup +}] = 0.5M), so that it can be used for a range of salt concentrations including those corresponding to physiological conditions. Finally, we use new experimental data to parameterise the oxDNA potential so that consecutive adenine bases stack with a different strength to consecutive thymine bases, a feature which allows a more accurate treatment of systems where the flexibility of single-stranded regions is important. We illustrate the new possibilities opened up by the updated model, oxDNA2, by presenting results from simulations of the structure of large DNA objects and by using the model to investigate some salt-dependent properties of DNA.

  13. Introducing improved structural properties and salt dependence into a coarse-grained model of DNA

    Snodin, Benedict E. K.; Mosayebi, Majid; Schreck, John S.; Romano, Flavio; Doye, Jonathan P. K.; Randisi, Ferdinando; Šulc, Petr; Ouldridge, Thomas E.; Tsukanov, Roman; Nir, Eyal; Louis, Ard A.

    2015-01-01

    We introduce an extended version of oxDNA, a coarse-grained model of deoxyribonucleic acid (DNA) designed to capture the thermodynamic, structural, and mechanical properties of single- and double-stranded DNA. By including explicit major and minor grooves and by slightly modifying the coaxial stacking and backbone-backbone interactions, we improve the ability of the model to treat large (kilobase-pair) structures, such as DNA origami, which are sensitive to these geometric features. Further, we extend the model, which was previously parameterised to just one salt concentration ([Na + ] = 0.5M), so that it can be used for a range of salt concentrations including those corresponding to physiological conditions. Finally, we use new experimental data to parameterise the oxDNA potential so that consecutive adenine bases stack with a different strength to consecutive thymine bases, a feature which allows a more accurate treatment of systems where the flexibility of single-stranded regions is important. We illustrate the new possibilities opened up by the updated model, oxDNA2, by presenting results from simulations of the structure of large DNA objects and by using the model to investigate some salt-dependent properties of DNA

  14. Implantable enzyme amperometric biosensors.

    Kotanen, Christian N; Moussy, Francis Gabriel; Carrara, Sandro; Guiseppi-Elie, Anthony

    2012-05-15

    The implantable enzyme amperometric biosensor continues as the dominant in vivo format for the detection, monitoring and reporting of biochemical analytes related to a wide range of pathologies. Widely used in animal studies, there is increasing emphasis on their use in diabetes care and management, the management of trauma-associated hemorrhage and in critical care monitoring by intensivists in the ICU. These frontier opportunities demand continuous indwelling performance for up to several years, well in excess of the currently approved seven days. This review outlines the many challenges to successful deployment of chronically implantable amperometric enzyme biosensors and emphasizes the emerging technological approaches in their continued development. The foreign body response plays a prominent role in implantable biotransducer failure. Topics considering the approaches to mitigate the inflammatory response, use of biomimetic chemistries, nanostructured topographies, drug eluting constructs, and tissue-to-device interface modulus matching are reviewed. Similarly, factors that influence biotransducer performance such as enzyme stability, substrate interference, mediator selection and calibration are reviewed. For the biosensor system, the opportunities and challenges of integration, guided by footprint requirements, the limitations of mixed signal electronics, and power requirements, has produced three systems approaches. The potential is great. However, integration along the multiple length scales needed to address fundamental issues and integration across the diverse disciplines needed to achieve success of these highly integrated systems, continues to be a challenge in the development and deployment of implantable amperometric enzyme biosensor systems. Copyright © 2012 Elsevier B.V. All rights reserved.

  15. An Improved Method for High Quality Metagenomics DNA Extraction from Human and Environmental Samples

    Bag, Satyabrata; Saha, Bipasa; Mehta, Ojasvi

    2016-01-01

    and human origin samples. We introduced a combination of physical, chemical and mechanical lysis methods for proper lysis of microbial inhabitants. The community microbial DNA was precipitated by using salt and organic solvent. Both the quality and quantity of isolated DNA was compared with the existing...... methodologies and the supremacy of our method was confirmed. Maximum recovery of genomic DNA in the absence of substantial amount of impurities made the method convenient for nucleic acid extraction. The nucleic acids obtained using this method are suitable for different downstream applications. This improved...

  16. Technical improvement to prevent DNA degradation of Leptospira spp. in pulsed field gel electrophoresis.

    Ribeiro, R L; Machry, L; Brazil, J M V; Ramos, T M V; Avelar, K E S; Pereira, M M

    2009-08-01

    Leptospirosis is a public health problem. Infection with pathogenic Leptospira occurs by exposure to many environments and is traditionally associated with occupational risk activities. Pulsed-field gel electrophoresis was used to investigate the epidemiological relatedness among Leptospira isolates. However, analysis by PFGE yielded inconclusive data as a result of extensive DNA degradation. This degradation can be significantly reduced by the inclusion of thiourea in the electrophoresis buffer, improving the analysis of DNA banding patterns.

  17. Comparative advantages of mechanical biosensors.

    Arlett, J L; Myers, E B; Roukes, M L

    2011-04-01

    Mechanical interactions are fundamental to biology. Mechanical forces of chemical origin determine motility and adhesion on the cellular scale, and govern transport and affinity on the molecular scale. Biological sensing in the mechanical domain provides unique opportunities to measure forces, displacements and mass changes from cellular and subcellular processes. Nanomechanical systems are particularly well matched in size with molecular interactions, and provide a basis for biological probes with single-molecule sensitivity. Here we review micro- and nanoscale biosensors, with a particular focus on fast mechanical biosensing in fluid by mass- and force-based methods, and the challenges presented by non-specific interactions. We explain the general issues that will be critical to the success of any type of next-generation mechanical biosensor, such as the need to improve intrinsic device performance, fabrication reproducibility and system integration. We also discuss the need for a greater understanding of analyte-sensor interactions on the nanoscale and of stochastic processes in the sensing environment.

  18. Amplified Detection of the Aptamer-Vanillin Complex with the Use of Bsm DNA Polymerase.

    Andrianova, Mariia; Komarova, Natalia; Grudtsov, Vitaliy; Kuznetsov, Evgeniy; Kuznetsov, Alexander

    2017-12-26

    The electrochemical detection of interactions between aptamers and low-molecular-weight targets often lacks sensitivity. Signal amplification improves the detection of the aptamer-analyte complex; Bsm DNA polymerase was used to amplify the signal from the interaction of vanillin and its aptamer named Van_74 on an ion-sensitive field-effect transistor (ISFET)-based biosensor. The aptamer was immobilized on the ISFET sensitive surface. A short DNA probe was hybridized with the aptamer and dissociated from it upon vanillin addition. A free probe interacted with a special DNA molecular beacon initiated the Bsm DNA polymerase reaction that was detected by ISFET. A buffer solution suitable for both aptamer action and Bsm DNA polymerase activity was determined. The ISFET was shown to detect the Bsm DNA polymerase reaction under the selected conditions. Vanillin at different concentrations (1 × 10 -6 -1 × 10 -8 M) was detected using the biosensor with signal amplification. The developed detection system allowed for the determination of vanillin, starting at a 10 -8 M concentration. Application of the Bsm DNA polymerase resulted in a 15.5 times lower LoD when compared to the biosensor without signal amplification (10.1007/s00604-017-2586-4).

  19. Amplified Detection of the Aptamer–Vanillin Complex with the Use of Bsm DNA Polymerase

    Mariia Andrianova

    2017-12-01

    Full Text Available The electrochemical detection of interactions between aptamers and low-molecular-weight targets often lacks sensitivity. Signal amplification improves the detection of the aptamer-analyte complex; Bsm DNA polymerase was used to amplify the signal from the interaction of vanillin and its aptamer named Van_74 on an ion-sensitive field-effect transistor (ISFET-based biosensor. The aptamer was immobilized on the ISFET sensitive surface. A short DNA probe was hybridized with the aptamer and dissociated from it upon vanillin addition. A free probe interacted with a special DNA molecular beacon initiated the Bsm DNA polymerase reaction that was detected by ISFET. A buffer solution suitable for both aptamer action and Bsm DNA polymerase activity was determined. The ISFET was shown to detect the Bsm DNA polymerase reaction under the selected conditions. Vanillin at different concentrations (1 × 10−6–1 × 10−8 M was detected using the biosensor with signal amplification. The developed detection system allowed for the determination of vanillin, starting at a 10−8 M concentration. Application of the Bsm DNA polymerase resulted in a 15.5 times lower LoD when compared to the biosensor without signal amplification (10.1007/s00604-017-2586-4.

  20. Improvement of insertion loss and quality factor of flexural plate-wave-based alpha-fetoprotein biosensor using groove-type reflective grating structures

    Lin, Chang-Yu; Huang, I.-Yu; Lan, Je-Wei

    2013-01-01

    Conventional flexural plate-wave (FPW) transducers have limited applications in biomedical sensing due to their disadvantages such as high insertion loss and low quality factor. To overcome these shortcomings, we propose a FPW transducer on a low phase velocity insulator membrane (5-μm-thick SiO2) with a novel groove-type reflective grating structure design. Additionally, a cystamine self-assembly monolayer and a glutaraldehyde cross-linking layer are implemented on the backside of the FPW device to immobilize alpha-fetoprotein (AFP) antibody. A FPW-based AFP biosensor with low detection limit (5 ng/mL) can be achieved and used to measure the extreme low concentration of AFP antigen in human serum for early detection of hepatocellular carcinoma. The proposed FPW-based AFP biosensor also demonstrates a very high quality factor (206), low insertion loss (-40.854 dB), low operating frequency (6.388 MHz), and high sensing linearity (90.7%).

  1. A protocatechuate biosensor for Pseudomonas putida KT2440 via promoter and protein evolution

    Ramesh K. Jha; Jeremy M. Bingen; Christopher W. Johnson; Theresa L. Kern; Payal Khanna; Daniel S. Trettel; Charlie E.M. Strauss; Gregg T. Beckham; Taraka Dale

    2018-01-01

    Robust fluorescence-based biosensors are emerging as critical tools for high-throughput strain improvement in synthetic biology. Many biosensors are developed in model organisms where sophisticated synthetic biology tools are also well established. However, industrial biochemical production often employs microbes with phenotypes that are advantageous for a target process, and biosensors may fail to directly transition outside the host in which they are developed. In particular, losses in sens...

  2. Improving Probe Immobilization for Label-Free Capacitive Detection of DNA Hybridization on Microfabricated Gold Electrodes

    Sandro Carrara

    2008-02-01

    Full Text Available Alternative approaches to labeled optical detection for DNA arrays are actively investigated for low-cost point-of-care applications. In this domain, label-free capacitive detection is one of the most intensely studied techniques. It is based on the idea to detect the Helmholtz ion layer displacements when molecular recognition occurs at the electrodes/solution interface. The sensing layer is usually prepared by using thiols terminated DNA single-strength oligonucleotide probes on top of the sensor electrodes. However, published data shows evident time drift, which greatly complicates signal conditioning and processing and ultimately increases the uncertainty in DNA recognition sensing. The aim of this work is to show that newly developed ethylene-glycol functionalized alkanethiols greatly reduce time drift, thereby significantly improving capacitance based label-free detection of DNA.

  3. Improved DNA electrophoresis in conditions favoring polyborates and lewis acid complexation.

    Hari Singhal

    2010-06-01

    Full Text Available Spatial compression among the longer DNA fragments occurs during DNA electrophoresis in agarose and non-agarose gels when using certain ions in the conductive buffer, impairing the range of fragment sizes resolved well in a single gel. Substitutions using various polyhydroxyl anions supported the underlying phenomenon as the complexation of Lewis acids to DNA. We saw significant improvements using conditions (lithium borate 10 mM cations, pH 6.5 favoring the formation of borate polyanions and having lower conductance and Joule heating, delayed electrolyte exhaustion, faster electrophoretic run-speed, and sharper separation of DNA bands from 100 bp to 12 kb in a single run.

  4. Electrochemical biosensors in pharmaceutical analysis

    Gil, Eric de Souza; Melo, Giselle Rodrigues de

    2010-01-01

    Given the increasing demand for practical and low-cost analytical techniques, biosensors have attracted attention for use in the quality analysis of drugs, medicines, and other analytes of interest in the pharmaceutical area. Biosensors allow quantification not only of the active component in pharmaceutical formulations, but also the analysis of degradation products and metabolites in biological fluids. Thus, this article presents a brief review of biosensor use in pharmaceutical analysis, fo...

  5. An Improved Methodology to Overcome Key Issues in Human Fecal Metagenomic DNA Extraction

    Jitendra Kumar

    2016-12-01

    Full Text Available Microbes are ubiquitously distributed in nature, and recent culture-independent studies have highlighted the significance of gut microbiota in human health and disease. Fecal DNA is the primary source for the majority of human gut microbiome studies. However, further improvement is needed to obtain fecal metagenomic DNA with sufficient amount and good quality but low host genomic DNA contamination. In the current study, we demonstrate a quick, robust, unbiased, and cost-effective method for the isolation of high molecular weight (>23 kb metagenomic DNA (260/280 ratio >1.8 with a good yield (55.8 ± 3.8 ng/mg of feces. We also confirm that there is very low human genomic DNA contamination (eubacterial: human genomic DNA marker genes = 227.9:1 in the human feces. The newly-developed method robustly performs for fresh as well as stored fecal samples as demonstrated by 16S rRNA gene sequencing using 454 FLX+. Moreover, 16S rRNA gene analysis indicated that compared to other DNA extraction methods tested, the fecal metagenomic DNA isolated with current methodology retains species richness and does not show microbial diversity biases, which is further confirmed by qPCR with a known quantity of spike-in genomes. Overall, our data highlight a protocol with a balance between quality, amount, user-friendliness, and cost effectiveness for its suitability toward usage for culture-independent analysis of the human gut microbiome, which provides a robust solution to overcome key issues associated with fecal metagenomic DNA isolation in human gut microbiome studies.

  6. Carbon nanotube biosensors

    Tîlmaciu, Carmen-Mihaela; Morris, May C.

    2015-01-01

    Nanomaterials possess unique features which make them particularly attractive for biosensing applications. In particular, carbon nanotubes (CNTs) can serve as scaffolds for immobilization of biomolecules at their surface, and combine several exceptional physical, chemical, electrical, and optical characteristics properties which make them one of the best suited materials for the transduction of signals associated with the recognition of analytes, metabolites, or disease biomarkers. Here we provide a comprehensive review on these carbon nanostructures, in which we describe their structural and physical properties, functionalization and cellular uptake, biocompatibility, and toxicity issues. We further review historical developments in the field of biosensors, and describe the different types of biosensors which have been developed over time, with specific focus on CNT-conjugates engineered for biosensing applications, and in particular detection of cancer biomarkers. PMID:26579509

  7. Carbon Nanotube Biosensors

    Carmen-Mihaela eTilmaciu

    2015-10-01

    Full Text Available Nanomaterials possess unique features which make them particularly attractive for biosensing applications. In particular Carbon Nanotubes (CNTs can serve as scaffolds for immobilization of biomolecules at their surface, and combine several exceptional physical, chemical, electrical and optical characteristics properties which make them one of the best suited materials for the transduction of signals associated with the recognition of analytes, metabolites or disease biomarkers. Here we provide a comprehensive review on these carbon nanostructures, in which we will describe their structural and physical properties, discuss functionalization and cellular uptake, biocompatibility and toxicity issues. We further review historical developments in the field of biosensors, and describe the different types of biosensors which have been developed over time, with specific focus on CNT-conjugates engineered for biosensing applications, and in particular detection of cancer biomarkers.

  8. Recent advances in electrochemical biosensors based on graphene two-dimensional nanomaterials.

    Song, Yang; Luo, Yanan; Zhu, Chengzhou; Li, He; Du, Dan; Lin, Yuehe

    2016-02-15

    Graphene as a star among two-dimensional nanomaterials has attracted tremendous research interest in the field of electrochemistry due to their intrinsic properties, including the electronic, optical, and mechanical properties associated with their planar structure. The marriage of graphene and electrochemical biosensors has created many ingenious biosensing strategies for applications in the areas of clinical diagnosis and food safety. This review provides a comprehensive overview of the recent advances in the development of graphene based electrochemical biosensors. Special attention is paid to graphene-based enzyme biosensors, immunosensors, and DNA biosensors. Future perspectives on high-performance graphene-based electrochemical biosensors are also discussed. Copyright © 2015 Elsevier B.V. All rights reserved.

  9. Improved DNA condensation, stability, and transfection with alkyl sulfonyl-functionalized PAMAM G2

    Rata-Aguilar, Azahara, E-mail: azahara@ugr.es; Maldonado-Valderrama, Julia; Jódar-Reyes, Ana Belén; Ortega-Vinuesa, Juan Luis [University of Granada, Biocolloid and Fluid Physics Group, Department of Applied Physics (Spain); Santoyo-Gonzalez, Francisco [University of Granada, Organic Chemistry Department, Institute of Biotechnology (Spain); Martín-Rodríguez, Antonio [University of Granada, Biocolloid and Fluid Physics Group, Department of Applied Physics (Spain)

    2015-04-15

    In this work, we have used a second-generation PAMAM grafted with octadecyl sulfonyl chains to condense plasmid DNA. The influence of this modification at different levels was investigated by comparison with original PAMAM G2. The condensation process and temporal stability of the complexes was studied with DLS, finding that the aliphatic chains influence DNA compaction via hydrophobic forces and markedly improve the formation and temporal stability of a single populated system with a hydrodynamic diameter below 100 nm. Interaction with a cell membrane model was also evaluated with a pendant drop tensiometer, resulting in further incorporation of the C18-PAMAM dendriplexes onto the interface. The improvement observed in transfection with our C18 grafted PAMAM is ascribed to the size, stability, and interfacial behavior of the complexes, which in turn are consequence of the DNA condensation process and the interactions involved.

  10. Improvement in the amine glass platform by bubbling method for a DNA microarray.

    Jee, Seung Hyun; Kim, Jong Won; Lee, Ji Hyeong; Yoon, Young Soo

    2015-01-01

    A glass platform with high sensitivity for sexually transmitted diseases microarray is described here. An amino-silane-based self-assembled monolayer was coated on the surface of a glass platform using a novel bubbling method. The optimized surface of the glass platform had highly uniform surface modifications using this method, as well as improved hybridization properties with capture probes in the DNA microarray. On the basis of these results, the improved glass platform serves as a highly reliable and optimal material for the DNA microarray. Moreover, in this study, we demonstrated that our glass platform, manufactured by utilizing the bubbling method, had higher uniformity, shorter processing time, lower background signal, and higher spot signal than the platforms manufactured by the general dipping method. The DNA microarray manufactured with a glass platform prepared using bubbling method can be used as a clinical diagnostic tool.

  11. Biosensor. Seitai sensa

    Karube, I [The Univ. of Tokyo, Tokyo (Japan). Research Center for Advanced Science and Technology

    1993-06-15

    Present state of the art of biosensors is described by taking taste sensors and odor sensors as examples. Bio-devices that response only to specific chemical substances are made using membranes that recognize particular molecules. Biosensors are constructed in combination of bio-devices with electronics devices that transduce the response of bio-devices to electric signals. Enzymes are used often as bio-devices to recognize molecules. They recognize strictly chemical substances and promote chemical reactions. Devices to measure electrochemically substances consumed or produced in the reactions serve as sensors. For taste sensors, inosinic acid or glutamic acid that is a component of taste, is recognized and measured. Combination of various bio-devices other than enzymes with various transducers makes it possible to produce biosensors based on a variety of principles. Odor sensors recognize odors by measuring frequency change of the electrode of quartz oscillator. The change occurs with weight change due to odorous substances absorbed on the oscillator electrode coated with lipids which exist in olfactory cells. 1 ref., 1 fig.

  12. Stepped piezoresistive microcantilever designs for biosensors

    Ansari, Mohd Zahid; Cho, Chongdu; Urban, Gerald

    2012-01-01

    The sensitivity of a piezoresistive microcantilever biosensor strongly depends on its ability to convert the surface stress-induced deflections into large resistance change. To improve the sensitivity, we present stepped microcantilever biosensor designs that show significant resistance change compared with commonly used rectangular designs. The cantilever is made of silicon dioxide with a u-shaped silicon piezoresistor. The surface stress-induced deflections, bimorph deflection, fundamental resonant frequency and self-heating properties of the cantilever are studied using the FEM software. The surface stress-induced deflections are compared against the analytical model derived in this work. Results show that stepped designs have better signal-to-noise ratio than the rectangular ones and cantilevers with l/L between 0.5 and 0.75 are better designs for improving sensitivity. (paper)

  13. A polyamidoamine dendrimer-streptavidin supramolecular architecture for biosensor development.

    Soda, N; Arotiba, O A

    2017-12-01

    A novel polyamidoamine dendrimer-streptavidin supramolecular architecture suitable as a versatile platform for biosensor development is reported. The dendrimer was electrodeposited on a glassy carbon electrode via cyclic voltammetry. The dendrimer electrode was further modified with streptavidin by electrostatic attraction upon drop coating. The platform i.e. the dendrimer-streptavidin modified electrode was electrochemically interrogated in phosphate buffer, ferrocyanide and H 2 O 2 . The dendrimer-streptavidin platform was used in the preparation of a simple DNA biosensor as a proof of concept. The supramolecular architecture of dendrimer-streptavidin was stable, electroactive and thus lends itself as a versatile immobilisation layer for any biotinylated bioreceptors in biosensor development. Copyright © 2017 Elsevier B.V. All rights reserved.

  14. An Improved Methodology to Overcome Key Issues in Human Fecal Metagenomic DNA Extraction

    Kumar, Jitendra; Kumar, Manoj; Gupta, Shashank

    2016-01-01

    Microbes are ubiquitously distributed in nature, and recent culture-independent studies have highlighted the significance of gut microbiota in human health and disease. Fecal DNA is the primary source for the majority of human gut microbiome studies. However, further improvement is needed to obta...

  15. The use of DNA markers for rapid improvement of crops in Africa ...

    Genetic engineering and biotechnology are providing new tools for genetic improvement of food crops. Molecular DNA markers are some of these tools which can be used in various fields of plant breeding and germplasm management. For example, molecular markers have been used to confirm the identity of hybrids in ...

  16. Immobilization techniques in the fabrication of nanomaterial-based electrochemical biosensors: a review.

    Putzbach, William; Ronkainen, Niina J

    2013-04-11

    The evolution of 1st to 3rd generation electrochemical biosensors reflects a simplification and enhancement of the transduction pathway. However, in recent years, modification of the transducer with nanomaterials has become increasingly studied and imparts many advantages. The sensitivity and overall performance of enzymatic biosensors has improved tremendously as a result of incorporating nanomaterials in their fabrication. Given the unique and favorable qualities of gold nanoparticles, graphene and carbon nanotubes as applied to electrochemical biosensors, a consolidated survey of the different methods of nanomaterial immobilization on transducer surfaces and enzyme immobilization on these species is beneficial and timely. This review encompasses modification of enzymatic biosensors with gold nanoparticles, carbon nanotubes, and graphene.

  17. Highly Sensitive and Selective Potassium Ion Detection Based on Graphene Hall Effect Biosensors

    Xiangqi Liu

    2018-03-01

    Full Text Available Potassium (K+ ion is an important biological substance in the human body and plays a critical role in the maintenance of transmembrane potential and hormone secretion. Several detection techniques, including fluorescent, electrochemical, and electrical methods, have been extensively investigated to selectively recognize K+ ions. In this work, a highly sensitive and selective biosensor based on single-layer graphene has been developed for K+ ion detection under Van der Pauw measurement configuration. With pre-immobilization of guanine-rich DNA on the graphene surface, the graphene devices exhibit a very low limit of detection (≈1 nM with a dynamic range of 1 nM–10 μM and excellent K+ ion specificity against other alkali cations, such as Na+ ions. The origin of K+ ion selectivity can be attributed to the fact that the formation of guanine-quadruplexes from guanine-rich DNA has a strong affinity for capturing K+ ions. The graphene-based biosensors with improved sensing performance for K+ ion recognition can be applied to health monitoring and early disease diagnosis.

  18. DNA dosimetry assessment for sunscreen genotoxic photoprotection.

    André Passaglia Schuch

    Full Text Available Due to the increase of solar ultraviolet radiation (UV incidence over the last few decades, the use of sunscreen has been widely adopted for skin protection. However, considering the high efficiency of sunlight-induced DNA lesions, it is critical to improve upon the current approaches that are used to evaluate protection factors. An alternative approach to evaluate the photoprotection provided by sunscreens against daily UV radiation-induced DNA damage is provided by the systematic use of a DNA dosimeter.The Sun Protection Factor for DNA (DNA-SPF is calculated by using specific DNA repair enzymes, and it is defined as the capacity for inhibiting the generation of cyclobutane pyrimidine dimers (CPD and oxidised DNA bases compared with unprotected control samples. Five different commercial brands of sunscreen were initially evaluated, and further studies extended the analysis to include 17 other products representing various formulations and Sun Protection Factors (SPF. Overall, all of the commercial brands of SPF 30 sunscreens provided sufficient protection against simulated sunlight genotoxicity. In addition, this DNA biosensor was useful for rapidly screening the biological protection properties of the various sunscreen formulations.The application of the DNA dosimeter is demonstrated as an alternative, complementary, and reliable method for the quantification of sunscreen photoprotection at the level of DNA damage.

  19. DNA dosimetry assessment for sunscreen genotoxic photoprotection.

    Schuch, André Passaglia; Lago, Juliana Carvalhães; Yagura, Teiti; Menck, Carlos Frederico Martins

    2012-01-01

    Due to the increase of solar ultraviolet radiation (UV) incidence over the last few decades, the use of sunscreen has been widely adopted for skin protection. However, considering the high efficiency of sunlight-induced DNA lesions, it is critical to improve upon the current approaches that are used to evaluate protection factors. An alternative approach to evaluate the photoprotection provided by sunscreens against daily UV radiation-induced DNA damage is provided by the systematic use of a DNA dosimeter. The Sun Protection Factor for DNA (DNA-SPF) is calculated by using specific DNA repair enzymes, and it is defined as the capacity for inhibiting the generation of cyclobutane pyrimidine dimers (CPD) and oxidised DNA bases compared with unprotected control samples. Five different commercial brands of sunscreen were initially evaluated, and further studies extended the analysis to include 17 other products representing various formulations and Sun Protection Factors (SPF). Overall, all of the commercial brands of SPF 30 sunscreens provided sufficient protection against simulated sunlight genotoxicity. In addition, this DNA biosensor was useful for rapidly screening the biological protection properties of the various sunscreen formulations. The application of the DNA dosimeter is demonstrated as an alternative, complementary, and reliable method for the quantification of sunscreen photoprotection at the level of DNA damage.

  20. DNA Dosimetry Assessment for Sunscreen Genotoxic Photoprotection

    Schuch, André Passaglia; Lago, Juliana Carvalhães; Yagura, Teiti; Menck, Carlos Frederico Martins

    2012-01-01

    Background Due to the increase of solar ultraviolet radiation (UV) incidence over the last few decades, the use of sunscreen has been widely adopted for skin protection. However, considering the high efficiency of sunlight-induced DNA lesions, it is critical to improve upon the current approaches that are used to evaluate protection factors. An alternative approach to evaluate the photoprotection provided by sunscreens against daily UV radiation-induced DNA damage is provided by the systematic use of a DNA dosimeter. Methodology/Principal Findings The Sun Protection Factor for DNA (DNA-SPF) is calculated by using specific DNA repair enzymes, and it is defined as the capacity for inhibiting the generation of cyclobutane pyrimidine dimers (CPD) and oxidised DNA bases compared with unprotected control samples. Five different commercial brands of sunscreen were initially evaluated, and further studies extended the analysis to include 17 other products representing various formulations and Sun Protection Factors (SPF). Overall, all of the commercial brands of SPF 30 sunscreens provided sufficient protection against simulated sunlight genotoxicity. In addition, this DNA biosensor was useful for rapidly screening the biological protection properties of the various sunscreen formulations. Conclusions/Significance The application of the DNA dosimeter is demonstrated as an alternative, complementary, and reliable method for the quantification of sunscreen photoprotection at the level of DNA damage. PMID:22768281

  1. Protein Detection with Aptamer Biosensors

    Regina Stoltenburg

    2008-07-01

    Full Text Available Aptamers have been developed for different applications. Their use as new biological recognition elements in biosensors promises progress for fast and easy detection of proteins. This new generation of biosensor (aptasensors will be more stable and well adapted to the conditions of real samples because of the specific properties of aptamers.

  2. Affinity biosensors: techniques and protocols

    Rogers, Kim R; Mulchandani, Ashok

    1998-01-01

    ..., and government to begin or expand their biosensors research. This volume, Methods in Biotechnology vol. 7: Affinity Biosensors: Techniques and Protocols, describes a variety of classical and emerging transduction technologies that have been interfaced to bioaffinity elements (e.g., antibodies and receptors). Some of the reas...

  3. Roughness effect on the efficiency of dimer antenna based biosensor

    D. Barchiesi

    2012-09-01

    Full Text Available The fabrication process of nanodevices is continually improved. However, most of the nanodevices, such as biosensors present rough surfaces with mean roughness of some nanometers even if the deposition rate of material is more controlled. The effect of roughness on performance of biosensors was fully addressed for plane biosensors and gratings, but rarely addressed for biosensors based on Local Plasmon Resonance. The purpose of this paper is to evaluate numerically the influence of nanometric roughness on the efficiency of a dimer nano-biosensor (two levels of roughness are considered. Therefore, we propose a general numerical method, that can be applied to any other nanometric shape, to take into account the roughness in a three dimensional model. The study focuses on both the far-field, which corresponds to the experimental detected data, and the near-field, responsible for exciting and then detecting biological molecules. The results suggest that the biosensor efficiency is highly sensitive to the surface roughness. The roughness can produce important shifts of the extinction efficiency peak and a decrease of its amplitude resulting from changes in the distribution of near-field and absorbed electric field intensities.

  4. NAD(+) Replenishment Improves Lifespan and Healthspan in Ataxia Telangiectasia Models via Mitophagy and DNA Repair

    Fang, Evandro Fei; Kassahun, Henok; Croteau, Deborah L

    2016-01-01

    and neurodegeneration in A-T patients is unclear. Here we report and examine the significance of increased PARylation, low NAD(+), and mitochondrial dysfunction in ATM-deficient neurons, mice, and worms. Treatments that replenish intracellular NAD(+) reduce the severity of A-T neuropathology, normalize neuromuscular...... function, delay memory loss, and extend lifespan in both animal models. Mechanistically, treatments that increase intracellular NAD(+) also stimulate neuronal DNA repair and improve mitochondrial quality via mitophagy. This work links two major theories on aging, DNA damage accumulation, and mitochondrial...

  5. Combining bleach and mild predigestion improves ancient DNA recovery from bones

    Boessenkool, Sanne; Hanghøj, Kristian Ebbesen; Nistelberger, Heidi M.

    2017-01-01

    library characteristics, such as DNA damage profiles or the composition of microbial communities, are little affected by the pre-extraction protocols. Application of the combined protocol presented in this study will facilitate the genetic analysis of an increasing number of ancient remains...... aimed to improve ancient DNA recovery before library amplification have recently been developed. Here, we test the effects of combining two of such protocols, a bleach wash and a predigestion step, on 12 bone samples of Atlantic cod and domestic horse aged 750-1350 cal. years before present. Using high...

  6. Label-free super sandwich electrogenerated chemiluminescence biosensor for the determination of the HIV gene

    Ruan, Sanpeng; Li, Zhejian; Qi, Honglan; Gao, Qiang; Zhang, Chengxiao

    2014-01-01

    We describe a highly sensitive electrochemiluminescence (ECL) based method for the determination of the human immunodeficiency virus-1 (HIV-1) gene. A long-range self-assembled double strand DNA (ds-DNA) is used as a carrier, and the ruthenium complex Ru(phen) 3 2+ as an ECL indicator for signal amplification. The thiolated ss-DNA serving as a capture probe is firstly self-assembled on the surface of a gold electrode. After the target HIV-1 gene is completely hybridized with the capture probe, two previously hybridized auxiliary probes are hybridized with the target HIV-1 gene to form long-range super sandwich ds-DNA polymers on the surface of the electrode. Finally, the ECL indicator is intercalated into the super sandwich ds-DNA grooves. This results in a strongly increased ECL in tripropylamine solution because a large fraction of the intercalator is intercalated into super sandwich ds-DNA. The results showed that the increased ECL intensity is directly related to the logarithm of the concentration of the HIV-1 gene in the range from 0.1 pM to 0.1 nM, with a detection limit of 0.022 pM and using only 10 μL of analyte samples. The method can effectively discriminate target HIV-1 gene (a perfectly matched ss-DNA) from a 2-base mismatched ss-DNA. This work demonstrates that the high sensitivity and selectivity of an ECL DNA biosensor can be largely improved by using super sandwich ds-DNA along with ECL indicators. (author)

  7. Carbon Nanotube Biosensors for Space Molecule Detection and Clinical Molecular Diagnostics

    Han, Jie

    2001-01-01

    Both space molecule detection and clinical molecule diagnostics need to develop ultra sensitive biosensors for detection of less than attomole molecules such as amino acids for DNA. However all the electrode sensor systems including those fabricated from the existing carbon nanotubes, have a background level of nA (nanoAmp). This has limited DNA or other molecule detection to nA level or molecules whose concentration is, much higher than attomole level. A program has been created by NASA and NCI (National Cancer Institute) to exploit the possibility of carbon nanotube based biosensors to solve this problem for both's interest. In this talk, I will present our effort on the evaluation and novel design of carbon nanotubes as electrode biosensors with strategies to minimize background currents while maximizing signal intensity.The fabrication of nanotube electrode arrays, immobilization of molecular probes on nanotube electrodes and in vitro biosensor testing will also be discussed.

  8. Application of the SSB biosensor to study in vitro transcription.

    Cook, Alexander; Hari-Gupta, Yukti; Toseland, Christopher P

    2018-02-12

    Gene expression, catalysed by RNA polymerases (RNAP), is one of the most fundamental processes in living cells. The majority of methods to quantify mRNA are based upon purification of the nucleic acid which leads to experimental inaccuracies and loss of product, or use of high cost dyes and sensitive spectrophotometers. Here, we describe the use of a fluorescent biosensor based upon the single stranded binding (SSB) protein. In this study, the SSB biosensor showed similar binding properties to mRNA, to that of its native substrate, single-stranded DNA (ssDNA). We found the biosensor to be reproducible with no associated loss of product through purification, or the requirement for expensive dyes. Therefore, we propose that the SSB biosensor is a useful tool for comparative measurement of mRNA yield following in vitro transcription. Copyright © 2018 The Authors. Published by Elsevier Inc. All rights reserved.

  9. Development of Electrochemical Biosensors for Ultrasensitive Detection of Bacteria in the Environment

    Fapyane, Deby

    2018-01-01

    to those conventional methods, are intensively studied. Biosensor technology is one of the strategies for rapid monitoring of pathogens such as bacteria, virus, and parasites in the environment. Among them, the electrochemical biosensor offers simple, rapid, cost-effective and possibility...... for ultrasensitive detection of bacterial cells, DNA and rRNA. Several key operational parameters were assessed such as the optimization of probe design and labeling molecules. Here, more specifically we used two novel labels for the development of the electrochemical biosensor for bacteria detection; cellulase...

  10. Innovations in biomedical nanoengineering: nanowell array biosensor

    Seo, YoungTae; Jeong, Sunil; Lee, JuKyung; Choi, Hak Soo; Kim, Jonghan; Lee, HeaYeon

    2018-04-01

    Nanostructured biosensors have pioneered biomedical engineering by providing highly sensitive analyses of biomolecules. The nanowell array (NWA)-based biosensing platform is particularly innovative, where the small size of NWs within the array permits extremely profound sensing of a small quantity of biomolecules. Undoubtedly, the NWA geometry of a gently-sloped vertical wall is critical for selective docking of specific proteins without capillary resistances, and nanoprocessing has contributed to the fabrication of NWA electrodes on gold substrate such as molding process, e-beam lithography, and krypton-fluoride (KrF) stepper semiconductor method. The Lee group at the Mara Nanotech has established this NW-based biosensing technology during the past two decades by engineering highly sensitive electrochemical sensors and providing a broad range of detection methods from large molecules (e.g., cells or proteins) to small molecules (e.g., DNA and RNA). Nanosized gold dots in the NWA enhance the detection of electrochemical biosensing to the range of zeptomoles in precision against the complementary target DNA molecules. In this review, we discuss recent innovations in biomedical nanoengineering with a specific focus on novel NWA-based biosensors. We also describe our continuous efforts in achieving a label-free detection without non-specific binding while maintaining the activity and stability of immobilized biomolecules. This research can lay the foundation of a new platform for biomedical nanoengineering systems.

  11. Oral antioxidant treatment partly improves integrity of human sperm DNA in infertile grade I varicocele patients.

    Gual-Frau, Josep; Abad, Carlos; Amengual, María J; Hannaoui, Naim; Checa, Miguel A; Ribas-Maynou, Jordi; Lozano, Iris; Nikolaou, Alexandros; Benet, Jordi; García-Peiró, Agustín; Prats, Juan

    2015-09-01

    Infertile males with varicocele have the highest percentage of sperm cells with damaged DNA, compared to other infertile groups. Antioxidant treatment is known to enhance the integrity of sperm DNA; however, there are no data on the effects in varicocele patients. We thus investigated the potential benefits of antioxidant treatment specifically in grade I varicocele males. Twenty infertile patients with grade I varicocele were given multivitamins (1500 mg L-Carnitine, 60 mg vitamin C, 20 mg coenzyme Q10, 10 mg vitamin E, 200 μg vitamin B9, 1 μg vitamin B12, 10 mg zinc, 50 μg selenium) daily for three months. Semen parameters including total sperm count, concentration, progressive motility, vitality, and morphology were determined before and after treatment. In addition, sperm DNA fragmentation and the amount of highly degraded sperm cells were analyzed by Sperm Chromatin Dispersion. After treatment, patients showed an average relative reduction of 22.1% in sperm DNA fragmentation (p = 0.02) and had 31.3% fewer highly degraded sperm cells (p = 0.07). Total numbers of sperm cells were increased (p = 0.04), but other semen parameters were unaffected. These data suggest that sperm DNA integrity in grade I varicocele patients may be improved by oral antioxidant treatment.

  12. Engineering the bioelectrochemical interface using functional nanomaterials and microchip technique toward sensitive and portable electrochemical biosensors.

    Jia, Xiaofang; Dong, Shaojun; Wang, Erkang

    2016-02-15

    Electrochemical biosensors have played active roles at the forefront of bioanalysis because they have the potential to achieve sensitive, specific and low-cost detection of biomolecules and many others. Engineering the electrochemical sensing interface with functional nanomaterials leads to novel electrochemical biosensors with improved performances in terms of sensitivity, selectivity, stability and simplicity. Functional nanomaterials possess good conductivity, catalytic activity, biocompatibility and high surface area. Coupled with bio-recognition elements, these features can amplify signal transduction and biorecognition events, resulting in highly sensitive biosensing. Additionally, microfluidic electrochemical biosensors have attracted considerable attention on account of their miniature, portable and low-cost systems as well as high fabrication throughput and ease of scaleup. For example, electrochemical enzymetic biosensors and aptamer biosensors (aptasensors) based on the integrated microchip can be used for portable point-of-care diagnostics and environmental monitoring. This review is a summary of our recent progress in the field of electrochemical biosensors, including aptasensors, cytosensors, enzymatic biosensors and self-powered biosensors based on biofuel cells. We presented the advantages that functional nanomaterials and microfluidic chip technology bring to the electrochemical biosensors, together with future prospects and possible challenges. Copyright © 2015 Elsevier B.V. All rights reserved.

  13. Improvement in the amine glass platform by bubbling method for a DNA microarray

    Jee SH

    2015-10-01

    Full Text Available Seung Hyun Jee,1 Jong Won Kim,2 Ji Hyeong Lee,2 Young Soo Yoon11Department of Chemical and Biological Engineering, Gachon University, Seongnam, Gyeonggi, Republic of Korea; 2Genomics Clinical Research Institute, LabGenomics Co., Ltd., Bundang-gu, Seongnam-si, Gyeonggi-do, Republic of KoreaAbstract: A glass platform with high sensitivity for sexually transmitted diseases microarray is described here. An amino-silane-based self-assembled monolayer was coated on the surface of a glass platform using a novel bubbling method. The optimized surface of the glass platform had highly uniform surface modifications using this method, as well as improved hybridization properties with capture probes in the DNA microarray. On the basis of these results, the improved glass platform serves as a highly reliable and optimal material for the DNA microarray. Moreover, in this study, we demonstrated that our glass platform, manufactured by utilizing the bubbling method, had higher uniformity, shorter processing time, lower background signal, and higher spot signal than the platforms manufactured by the general dipping method. The DNA microarray manufactured with a glass platform prepared using bubbling method can be used as a clinical diagnostic tool. Keywords: DNA microarray, glass platform, bubbling method, self-assambled monolayer

  14. Saccharomyces boulardii improves humoral immune response to DNA vaccines against leptospirosis.

    Silveira, Marcelle Moura; Conceição, Fabricio Rochedo; Mendonça, Marcelo; Moreira, Gustavo Marçal Schmidt Garcia; Da Cunha, Carlos Eduardo Pouey; Conrad, Neida Lucia; Oliveira, Patrícia Diaz de; Hartwig, Daiane Drawanz; De Leon, Priscila Marques Moura; Moreira, Ângela Nunes

    2017-02-01

    Saccharomyces boulardii may improve the immune response by enhancing the production of anti-inflammatory cytokines, T-cell proliferation and dendritic cell activation. The immunomodulator effect of this probiotic has never been tested with DNA vaccines, which frequently induce low antibody titers. This study evaluated the capacity of Saccharomyces boulardii to improve the humoral and cellular immune responses using DNA vaccines coding for the leptospiral protein fragments LigAni and LigBrep. BALB/c mice were fed with rodent-specific feed containing 108 c.f.u. of Saccharomycesboulardii per gram. Animals were immunized three times intramuscularly with 100 µg of pTARGET plasmids containing the coding sequences for the above mentioned proteins. Antibody titers were measured by indirect ELISA. Expression levels of IL-4, IL-10, IL-12, IL-17, IFN-γ and TGF-β were determined by quantitative real-time PCR from RNA extracted from whole blood, after an intraperitoneal boost with 50 µg of the recombinant proteins.Results/Key findings. Antibody titers increased significantly after the second and third application when pTARGET/ligAni and pTARGET/ligBrep were used to vaccinate the animals in comparison with the control group (PSaccharomyces boulardii. The results suggested that Saccharomyces boulardii has an immunomodulator effect in DNA vaccines, mainly by stimulating the humoral response, which is often limited in this kind of vaccine. Therefore, the use of Saccharomyces boulardii as immunomodulator represents a new alternative strategy for more efficient DNA vaccination.

  15. Instrumental biosensors: new perspectives for the analysis of biomolecular interactions.

    Nice, E C; Catimel, B

    1999-04-01

    The use of instrumental biosensors in basic research to measure biomolecular interactions in real time is increasing exponentially. Applications include protein-protein, protein-peptide, DNA-protein, DNA-DNA, and lipid-protein interactions. Such techniques have been applied to, for example, antibody-antigen, receptor-ligand, signal transduction, and nuclear receptor studies. This review outlines the principles of two of the most commonly used instruments and highlights specific operating parameters that will assist in optimising experimental design, data generation, and analysis.

  16. Microbial biosensors for environmental monitoring

    David VOGRINC

    2015-12-01

    Full Text Available Microbial biosensors are analytical devices capable of sensing substances in the environment due to the specific biological reaction of the microorganism or its parts. Construction of a microbial biosensor requires knowledge of microbial response to the specific analyte. Linking this response with the quantitative data, using a transducer, is the crucial step in the construction of a biosensor. Regarding the transducer type, biosensors are divided into electrochemical, optical biosensors and microbial fuel cells. The use of the proper configuration depends on the selection of the biosensing element. With the use of transgenic E. coli strains, bioluminescence or fluorescence based biosensors were developed. Microbial fuel cells enable the use of the heterogeneous microbial populations, isolated from wastewater. Different microorganisms are used for different pollutants – pesticides, heavy metals, phenolic compounds, organic waste, etc. Biosensing enables measurement of their concentration and their toxic or genotoxic effects on the microbes. Increasing environmental awareness has contributed to the increase of interest for biomonitoring. Although technologies, such as bioinformatics and genetic engineering, allow us to design complex and efficient microbial biosensors for environmental pollutants, the transfer of the laboratory work to the field still remains a problem to solve.

  17. Improving Griffith's protocol for co-extraction of microbial DNA and RNA in adsorptive soils

    Paulin, Mélanie Marie; Nicolaisen, Mette Haubjerg; Jacobsen, Carsten Suhr

    2013-01-01

    Quantification of microbial gene expression is increasingly being used to study key functions in soil microbial communities, yet major limitations still exist for efficient extraction of nucleic acids, especially RNA for transcript analysis, from this complex matrix. We present an improved......-time PCR on both the RNA (after conversion to cDNA) and the DNA fraction of the extracts. Non-adsorptive soils were characterized by low clay content and/or high phosphate content, whereas adsorptive soils had clay contents above 20% and/or a strong presence of divalent Ca in combination with high p......H. Modifications to the co-extraction protocol improved nucleic acid extraction efficiency from all adsorptive soils and were successfully validated by DGGE analysis of the indigenous community based on 16S rRNA gene and transcripts in soils representing low biomass and/or high clay content. This new approach...

  18. Biosensors based on cantilevers.

    Alvarez, Mar; Carrascosa, Laura G; Zinoviev, Kiril; Plaza, Jose A; Lechuga, Laura M

    2009-01-01

    Microcantilevers based-biosensors are a new label-free technique that allows the direct detection of biomolecular interactions in a label-less way and with great accuracy by translating the biointeraction into a nanomechanical motion. Low cost and reliable standard silicon technologies are widely used for the fabrication of cantilevers with well-controlled mechanical properties. Over the last years, the number of applications of these sensors has shown a fast growth in diverse fields, such as genomic or proteomic, because of the biosensor flexibility, the low sample consumption, and the non-pretreated samples required. In this chapter, we report a dedicated design and a fabrication process of highly sensitive microcantilever silicon sensors. We will describe as well an application of the device in the environmental field showing the immunodetection of an organic toxic pesticide as an example. The cantilever biofunctionalization process and the subsequent pesticide determination are detected in real time by monitoring the nanometer-scale bending of the microcantilever due to a differential surface stress generated between both surfaces of the device.

  19. Building Better Biosensors for Exploration into Deep-Space, Using Humanized Yeast

    Liddell, Lauren; Santa Maria, Sergio; Tieze, Sofia; Bhattacharya, Sharmila

    2017-01-01

    1.BioSentinel is 1 of 13 secondary payloads hitching a ride beyond Low Earth Orbit on Exploration Mission 1 (EM-1), set to launch from NASAs Space Launch System in 2019. EM-1 is our first opportunity to investigate the effects of the deep space environment on a eukaryotic biological system, the budding yeast S. cerevisiae. Though separated by a billion years of evolution we share hundreds of genes important for basic cell function, including responses to DNA damage. Thus, yeast is an ideal biosensor for detecting typesextent of damage induced by deep-space radiation.We will fly desiccated cells, then rehydrate to wake them up when the automated payload is ready to initiate the experiment. Rehydration solution contains SC (Synthetic Complete) media and alamarBlue, an indicator for changes in growth and metabolism. Telemetry of LED readings will then allow us to detect how cells respond throughout the mission. The desiccation-rehydration process can be extremely damaging to cells, and can severely diminish our ability to accurately measure and model cellular responses to deep-space radiation. The aim of this study is to develop a better biosensor: yeast strains that are more resistant to desiccation stress. We will over-express known cellular protectants, including hydrophilin Sip18, the protein disaggregase Hsp104, and thioredoxin Trx2, a responder to oxidative stress, then measure cell viability after desiccation to determine which factors improve stress tolerance. Over-expression of SIP18 in wine yeast starter cultures was previously reported to increase viability following desiccation stress by up to 70. Thus, we expect similar improvements in our space-yeast strains. By designing better yeast biosensors we can better prepare for and mitigate the potential dangers of deep-space radiation for future missions.This work is funded by NASAs AES program.

  20. A New Laccase Biosensor For Polyphenols Determination

    M. J.F. Rebelo

    2003-06-01

    Full Text Available The relevance of polyphenols in human health is a well known fact. Prompted by that, a very intensive research has been directed to get a method to detect them, wich will improve the current ones. Laccase (p-diphenol:dioxygen oxidoreductase EC 1.10.3.2 is a multi-copper oxidase, wich couples catalytic oxidation of phenolic substrates with four electron reduction of dioxygen to water [1]. A maximum catalytic response in oxigenated electrolyte was observed between 4.5 and 5.5 [2], while for pH > 6.9 the laccase was found to be inactive [3]. We prepared a biosensor with laccase immobilised on a polyether sulphone membrane, at pH 4.5, wich was applied at Universal Sensors base electrode. Reduction of the product of oxidation of several polyphenols, catalysed by laccase, was done at a potential for wich the polyphenol of interest was found to respond. Reduction of catechol was found to occur at a potential of -200mV, wich is often referred to in the literature for polyphenolic biosensors. However other polyphenols did not respond at that potential. It was observed that (+- catechin produced a very large cathodic current when +100mV were applied to the laccase biosensor, both in aqueous acetate and 12% ethanol acetate buffer, whereas caffeic acid responded at -50mV. Other polyphenols tested were gallic acid, malvidin, quercetin, rutin, trans-resveratrol

  1. Recent advances in ZnO nanostructures and thin films for biosensor applications: Review

    Arya, Sunil K.; Saha, Shibu; Ramirez-Vick, Jaime E.; Gupta, Vinay; Bhansali, Shekhar; Singh, Surinder P.

    2012-01-01

    Graphical abstract: ZnO nanostructures have shown binding of biomolecules in desired orientation with improved conformation and high biological activity, resulting in enhanced sensing characteristics. Furthermore, their compatibility with complementary metal oxide semiconductor technology for constructing integrated circuits makes them suitable candidate for future small integrated biosensor devices. This review highlights various approaches to synthesize ZnO nanostructures and thin films, and their applications in biosensor technology. Highlights: ► This review highlights various approaches to synthesize ZnO nanostructures and thin films. ► Article highlights the importance of ZnO nanostructures as biosensor matrix. ► Article highlights the advances in various biosensors based on ZnO nanostructures. ► Article describes the potential of ZnO based biosensor for new generation healthcare devices. - Abstract: Biosensors have shown great potential for health care and environmental monitoring. The performance of biosensors depends on their components, among which the matrix material, i.e., the layer between the recognition layer of biomolecule and transducer, plays a crucial role in defining the stability, sensitivity and shelf-life of a biosensor. Recently, zinc oxide (ZnO) nanostructures and thin films have attracted much interest as materials for biosensors due to their biocompatibility, chemical stability, high isoelectric point, electrochemical activity, high electron mobility, ease of synthesis by diverse methods and high surface-to-volume ratio. ZnO nanostructures have shown the binding of biomolecules in desired orientations with improved conformation and high biological activity, resulting in enhanced sensing characteristics. Furthermore, compatibility with complementary metal oxide semiconductor technology for constructing integrated circuits makes ZnO nanostructures suitable candidate for future small integrated biosensor devices. This review

  2. Recent advances in ZnO nanostructures and thin films for biosensor applications: Review

    Arya, Sunil K., E-mail: sunilarya333@gmail.com [Bioelectronics Program, Institute of Microelectronics, A-Star 11 Science Park Road, Singapore Science Park II, Singapore 117685 (Singapore); Saha, Shibu [Department of Physics and Astrophysics, University of Delhi, Delhi 110007 (India); Ramirez-Vick, Jaime E. [Engineering Science and Materials Department, University of Puerto Rico, Mayaguez, PR 00681 (United States); Gupta, Vinay [Department of Physics and Astrophysics, University of Delhi, Delhi 110007 (India); Bhansali, Shekhar [Department of Electrical and Computer Engineering, Florida International University, Miami, FL (United States); Singh, Surinder P., E-mail: singh.uprm@gmail.com [National Physical Laboratory, Dr K.S. Krishnan Marg, New Delhi 110012 (India)

    2012-08-06

    Graphical abstract: ZnO nanostructures have shown binding of biomolecules in desired orientation with improved conformation and high biological activity, resulting in enhanced sensing characteristics. Furthermore, their compatibility with complementary metal oxide semiconductor technology for constructing integrated circuits makes them suitable candidate for future small integrated biosensor devices. This review highlights various approaches to synthesize ZnO nanostructures and thin films, and their applications in biosensor technology. Highlights: Black-Right-Pointing-Pointer This review highlights various approaches to synthesize ZnO nanostructures and thin films. Black-Right-Pointing-Pointer Article highlights the importance of ZnO nanostructures as biosensor matrix. Black-Right-Pointing-Pointer Article highlights the advances in various biosensors based on ZnO nanostructures. Black-Right-Pointing-Pointer Article describes the potential of ZnO based biosensor for new generation healthcare devices. - Abstract: Biosensors have shown great potential for health care and environmental monitoring. The performance of biosensors depends on their components, among which the matrix material, i.e., the layer between the recognition layer of biomolecule and transducer, plays a crucial role in defining the stability, sensitivity and shelf-life of a biosensor. Recently, zinc oxide (ZnO) nanostructures and thin films have attracted much interest as materials for biosensors due to their biocompatibility, chemical stability, high isoelectric point, electrochemical activity, high electron mobility, ease of synthesis by diverse methods and high surface-to-volume ratio. ZnO nanostructures have shown the binding of biomolecules in desired orientations with improved conformation and high biological activity, resulting in enhanced sensing characteristics. Furthermore, compatibility with complementary metal oxide semiconductor technology for constructing integrated circuits makes Zn

  3. Guided-Wave Optical Biosensors

    Passaro, Vittorio M. N.; Dell'Olio, Francesco; Casamassima, Biagio; De Leonardis, Francesco

    2007-01-01

    Guided-wave optical biosensors are reviewed in this paper. Advantages related to optical technologies are presented and integrated architectures are investigated in detail. Main classes of bio receptors and the most attractive optical transduction mechanisms are discussed. The possibility to use Mach-Zehnder and Young interferometers, microdisk and microring resonators, surface plasmon resonance, hollow and antiresonant waveguides, and Bragg gratings to realize very sensitive and selective, ultra-compact and fast biosensors is discussed. Finally, CMOS-compatible technologies are proved to be the most attractive for fabrication of guided-wave photonic biosensors.

  4. Development, applications and distribution of DNA markers for genetic information for sorghum and maize improvement

    Lee, M.

    2001-01-01

    This final report summarizes the progress made towards the enhancement and distribution of genetic resources (e.g. genetic stocks, seed and DNA clones) used for basic and applied aspects of the genetic improvement of maize and sorghum. The genetic maps of maize and sorghum were improved through comparative mapping of RFLP loci detected by 124 maize cDNA clones and through the development of a new mapping population of maize. Comparative mapping between maize and sorghum and maize and rice, using the set of 124 maize cDNA clones (and other clones) in each study, substantiated previous observations of extensive conservation of locus order but it also provided strong evidence of numerous large-scale chromosomal rearrangements. The new mapping population for maize (intermated B73xMo17, 'IBM') was created by random intermating during the first segregating generation. Intermating for four generations prior to the derivation of recombinant inbred lines (RILs) increased the frequency of recombinants at many regions of the maize genome and provided better genetic resolution of locus order. Expansion of the maize genetic map was not uniform along the length of a linkage group and was less than the theoretical expectation. The 350 IBM RILs were genotyped at 512 loci detected by DNA clones, including 76 of the 124 supported by this contract. The production of the sorghum mapping population of RILs from the cross CK60xPI229828 has been delayed by weather conditions that were not conducive to plant growth and seed development. Seed of the IBM RILs have been distributed (approximately 5000 RILs in total) to 16 research organizations in the public and private sector. The DNA clones have been distributed (1,206 in total) to nine research labs. Further distribution of the seed and clones will be managed by curators at stock centers in the public domain. (author)

  5. DNA nanomaterials for preclinical imaging and drug delivery.

    Jiang, Dawei; England, Christopher G; Cai, Weibo

    2016-10-10

    Besides being the carrier of genetic information, DNA is also an excellent biological organizer to establish well-designed nanostructures in the fields of material engineering, nanotechnology, and biomedicine. DNA-based materials represent a diverse nanoscale system primarily due to their predictable base pairing and highly regulated conformations, which greatly facilitate the construction of DNA nanostructures with distinct shapes and sizes. Integrating the emerging advancements in bioconjugation techniques, DNA nanostructures can be readily functionalized with high precision for many purposes ranging from biosensors to imaging to drug delivery. Recent progress in the field of DNA nanotechnology has exhibited collective efforts to employ DNA nanostructures as smart imaging agents or delivery platforms within living organisms. Despite significant improvements in the development of DNA nanostructures, there is limited knowledge regarding the in vivo biological fate of these intriguing nanomaterials. In this review, we summarize the current strategies for designing and purifying highly-versatile DNA nanostructures for biological applications, including molecular imaging and drug delivery. Since DNA nanostructures may elicit an immune response in vivo, we also present a short discussion of their potential toxicities in biomedical applications. Lastly, we discuss future perspectives and potential challenges that may limit the effective preclinical and clinical employment of DNA nanostructures. Due to their unique properties, we predict that DNA nanomaterials will make excellent agents for effective diagnostic imaging and drug delivery, improving patient outcome in cancer and other related diseases in the near future. Copyright © 2016 Elsevier B.V. All rights reserved.

  6. Development of biosensor based on imaging ellipsometry and biomedical applications

    Jin, G., E-mail: gajin@imech.ac.c [NML, Institute of Mechanics, Chinese Academy of Sciences, 15 Bei-si-huan west Rd., Beijing 100190 (China); Meng, Y.H.; Liu, L.; Niu, Y.; Chen, S. [NML, Institute of Mechanics, Chinese Academy of Sciences, 15 Bei-si-huan west Rd., Beijing 100190 (China); Cai, Q.; Jiang, T.J. [Institute of Biophysics, Chinese Academy of Sciences, Beijing 100101 (China)

    2011-02-28

    So far, combined with a microfluidic reactor array system, an engineering system of biosensor based on imaging ellipsometry is installed for biomedical applications, such as antibody screen, hepatitis B markers detection, cancer markers spectrum and virus recognition, etc. Furthermore, the biosensor in total internal reflection (TIR) mode has be improved by a spectroscopic light, optimization settings of polarization and low noise CCD which brings an obvious improvement of 10 time increase in the sensitivity and SNR, and 50 times lower concentration in the detection limit with a throughput of 48 independent channels and the time resolution of 0.04 S.

  7. Last Advances in Silicon-Based Optical Biosensors

    Adrián Fernández Gavela

    2016-02-01

    Full Text Available We review the most important achievements published in the last five years in the field of silicon-based optical biosensors. We focus specially on label-free optical biosensors and their implementation into lab-on-a-chip platforms, with an emphasis on developments demonstrating the capability of the devices for real bioanalytical applications. We report on novel transducers and materials, improvements of existing transducers, new and improved biofunctionalization procedures as well as the prospects for near future commercialization of these technologies.

  8. Engineered split in Pfu DNA polymerase fingers domain improves incorporation of nucleotide γ-phosphate derivative

    Hansen, Connie J.; Wu, Lydia; Fox, Jeffrey D.; Arezi, Bahram; Hogrefe, Holly H.

    2011-01-01

    Using compartmentalized self-replication (CSR), we evolved a version of Pyrococcus furiosus (Pfu) DNA polymerase that tolerates modification of the γ-phosphate of an incoming nucleotide. A Q484R mutation in α-helix P of the fingers domain, coupled with an unintended translational termination-reinitiation (split) near the finger tip, dramatically improve incorporation of a bulky γ-phosphate-O-linker-dabcyl substituent. Whether synthesized by coupled translation from a bicistronic (−1 frameshift) clone, or reconstituted from separately expressed and purified fragments, split Pfu mutant behaves identically to wild-type DNA polymerase with respect to chromatographic behavior, steady-state kinetic parameters (for dCTP), and PCR performance. Although naturally-occurring splits have been identified previously in the finger tip region of T4 gp43 variants, this is the first time a split (in combination with a point mutation) has been shown to broaden substrate utilization. Moreover, this latest example of a split hyperthermophilic archaeal DNA polymerase further illustrates the modular nature of the Family B DNA polymerase structure. PMID:21062827

  9. Engineered split in Pfu DNA polymerase fingers domain improves incorporation of nucleotide gamma-phosphate derivative.

    Hansen, Connie J; Wu, Lydia; Fox, Jeffrey D; Arezi, Bahram; Hogrefe, Holly H

    2011-03-01

    Using compartmentalized self-replication (CSR), we evolved a version of Pyrococcus furiosus (Pfu) DNA polymerase that tolerates modification of the γ-phosphate of an incoming nucleotide. A Q484R mutation in α-helix P of the fingers domain, coupled with an unintended translational termination-reinitiation (split) near the finger tip, dramatically improve incorporation of a bulky γ-phosphate-O-linker-dabcyl substituent. Whether synthesized by coupled translation from a bicistronic (-1 frameshift) clone, or reconstituted from separately expressed and purified fragments, split Pfu mutant behaves identically to wild-type DNA polymerase with respect to chromatographic behavior, steady-state kinetic parameters (for dCTP), and PCR performance. Although naturally-occurring splits have been identified previously in the finger tip region of T4 gp43 variants, this is the first time a split (in combination with a point mutation) has been shown to broaden substrate utilization. Moreover, this latest example of a split hyperthermophilic archaeal DNA polymerase further illustrates the modular nature of the Family B DNA polymerase structure.

  10. Improving the Conservation of Mediterranean Chondrichthyans: The ELASMOMED DNA Barcode Reference Library.

    Alessia Cariani

    Full Text Available Cartilaginous fish are particularly vulnerable to anthropogenic stressors and environmental change because of their K-selected reproductive strategy. Accurate data from scientific surveys and landings are essential to assess conservation status and to develop robust protection and management plans. Currently available data are often incomplete or incorrect as a result of inaccurate species identifications, due to a high level of morphological stasis, especially among closely related taxa. Moreover, several diagnostic characters clearly visible in adult specimens are less evident in juveniles. Here we present results generated by the ELASMOMED Consortium, a regional network aiming to sample and DNA-barcode the Mediterranean Chondrichthyans with the ultimate goal to provide a comprehensive DNA barcode reference library. This library will support and improve the molecular taxonomy of this group and the effectiveness of management and conservation measures. We successfully barcoded 882 individuals belonging to 42 species (17 sharks, 24 batoids and one chimaera, including four endemic and several threatened ones. Morphological misidentifications were found across most orders, further confirming the need for a comprehensive DNA barcoding library as a valuable tool for the reliable identification of specimens in support of taxonomist who are reviewing current identification keys. Despite low intraspecific variation among their barcode sequences and reduced samples size, five species showed preliminary evidence of phylogeographic structure. Overall, the ELASMOMED initiative further emphasizes the key role accurate DNA barcoding libraries play in establishing reliable diagnostic species specific features in otherwise taxonomically problematic groups for biodiversity management and conservation actions.

  11. NAD+ Replenishment Improves Lifespan and Healthspan in Ataxia Telangiectasia Models via Mitophagy and DNA Repair.

    Fang, Evandro Fei; Kassahun, Henok; Croteau, Deborah L; Scheibye-Knudsen, Morten; Marosi, Krisztina; Lu, Huiming; Shamanna, Raghavendra A; Kalyanasundaram, Sumana; Bollineni, Ravi Chand; Wilson, Mark A; Iser, Wendy B; Wollman, Bradley N; Morevati, Marya; Li, Jun; Kerr, Jesse S; Lu, Qiping; Waltz, Tyler B; Tian, Jane; Sinclair, David A; Mattson, Mark P; Nilsen, Hilde; Bohr, Vilhelm A

    2016-10-11

    Ataxia telangiectasia (A-T) is a rare autosomal recessive disease characterized by progressive neurodegeneration and cerebellar ataxia. A-T is causally linked to defects in ATM, a master regulator of the response to and repair of DNA double-strand breaks. The molecular basis of cerebellar atrophy and neurodegeneration in A-T patients is unclear. Here we report and examine the significance of increased PARylation, low NAD + , and mitochondrial dysfunction in ATM-deficient neurons, mice, and worms. Treatments that replenish intracellular NAD + reduce the severity of A-T neuropathology, normalize neuromuscular function, delay memory loss, and extend lifespan in both animal models. Mechanistically, treatments that increase intracellular NAD + also stimulate neuronal DNA repair and improve mitochondrial quality via mitophagy. This work links two major theories on aging, DNA damage accumulation, and mitochondrial dysfunction through nuclear DNA damage-induced nuclear-mitochondrial signaling, and demonstrates that they are important pathophysiological determinants in premature aging of A-T, pointing to therapeutic interventions. Published by Elsevier Inc.

  12. Development of a Transcription Factor-Based Lactam Biosensor

    Zhang, Jingwei; Barajas, Jesus F.; Burdu, Mehmet

    2017-01-01

    Lactams are an important class of commodity chemicals used in the manufacture of nylons, with millions of tons produced every year. Biological production of lactams could be greatly improved by high-throughput sensors for lactam biosynthesis. To identify biosensors of lactams, we applied a chemoi......Lactams are an important class of commodity chemicals used in the manufacture of nylons, with millions of tons produced every year. Biological production of lactams could be greatly improved by high-throughput sensors for lactam biosynthesis. To identify biosensors of lactams, we applied...... a chemoinformatic approach inspired by small molecule drug discovery. We define this approach as analogue generation toward catabolizable chemicals or AGTC. We discovered a lactam biosensor based on the ChnR/Pb transcription factor-promoter pair. The microbial biosensor is capable of sensing ε-caprolactam, Î......´-valerolactam, and butyrolactam in a dose-dependent manner. The biosensor has sufficient specificity to discriminate against lactam biosynthetic intermediates and therefore could potentially be applied for high-throughput metabolic engineering for industrially important high titer lactam biosynthesis....

  13. Nanobioengineering and Characterization of a Novel Estrogen Receptor Biosensor

    Wilfrid Boireau

    2008-07-01

    Full Text Available We constructed an original supramolecular assembly on a surface of sensor composed of an innovative combination of an engineered cytochrome b5 and a modified nucleic acid bound to a synthetic lipid hemimembrane. The protein/DNA block, called (PDNA 2, was synthesized and purified before its immobilization onto a hybrid bilayer reconstituted on a gold surface. Surface plasmon resonance (SPR and atomic force microscopy (AFM were engaged in parallel on the same substrates in order to better understand dynamic events that occur at the surface of the biosensor. Good correlations were obtained in terms of specificity and reversibility. These findings allow us to present a first application of such biosensor in the study of the interaction processes between nuclear receptor and DNA.

  14. A reduced graphene oxide based electrochemical biosensor for tyrosine detection

    Wei, Junhua; Qiu, Jingjing; Li, Li; Ren, Liqiang; Zhang, Xianwen; Chaudhuri, Jharna; Wang, Shiren

    2012-08-01

    In this paper, a ‘green’ and safe hydrothermal method has been used to reduce graphene oxide and produce hemin modified graphene nanosheet (HGN) based electrochemical biosensors for the determination of l-tyrosine levels. The as-fabricated HGN biosensors were characterized by UV-visible absorption spectra, fluorescence spectra, Fourier transform infrared spectroscopy (FTIR) spectra and thermogravimetric analysis (TGA). The experimental results indicated that hemin was successfully immobilized on the reduced graphene oxide nanosheet (rGO) through π-π interaction. TEM images and EDX results further confirmed the attachment of hemin on the rGO nanosheet. Cyclic voltammetry tests were carried out for the bare glass carbon electrode (GCE), the rGO electrode (rGO/GCE), and the hemin-rGO electrode (HGN/GCE). The HGN/GCE based biosensor exhibits a tyrosine detection linear range from 5 × 10-7 M to 2 × 10-5 M with a detection limitation of 7.5 × 10-8 M at a signal-to-noise ratio of 3. The sensitivity of this biosensor is 133 times higher than that of the bare GCE. In comparison with other works, electroactive biosensors are easily fabricated, easily controlled and cost-effective. Moreover, the hemin-rGO based biosensors demonstrate higher stability, a broader detection linear range and better detection sensitivity. Study of the oxidation scheme reveals that the rGO enhances the electron transfer between the electrode and the hemin, and the existence of hemin groups effectively electrocatalyzes the oxidation of tyrosine. This study contributes to a widespread clinical application of nanomaterial based biosensor devices with a broader detection linear range, improved stability, enhanced sensitivity and reduced costs.

  15. Detection Limits for Nanoscale Biosensors

    Sheehan, Paul E; Whitman, Lloyd J

    2005-01-01

    We examine through analytical calculations and finite element simulations how the detection efficiency of disk and wire-like biosensors in unmixed fluids varies with size from the micrometer to nanometer scales...

  16. Novel trends in affinity biosensors: current challenges and perspectives

    Arugula, Mary A; Simonian, Aleksandr

    2014-01-01

    Molecular biorecognition processes facilitate physical and biochemical interactions between molecules in all crucial metabolic pathways. Perhaps the target analyte and the biorecognition element interactions have the most impactful use in biosensing applications. Traditional analytical sensing systems offer excellent biorecognition elements with the ability to detect and determine the presence of analytes. High affinity antibodies and DNA play an important role in the development of affinity biosensors based on electrochemical, optical and mass sensitive approaches. Advancements in this area routinely employ labels, label free, nanoparticles, multifunctional matrices, carbon nanotubes and other methods to meet the requirements of its own application. However, despite increasing affinity ceilings for conventional biosensors, the field draws back in meeting specifically important demands, such as long-term stability, ultrasensitivity, rapid detection, extreme selectivity, strong biological base, calibration, in vivo measurements, regeneration, satisfactory performance and ease of production. Nevertheless, recent efforts through this line have produced novel high-tech nanosensing systems such as ‘aptamers’ and ‘phages’ which exhibit high-throughput sensing. Aptamers and phages are powerful tools that excel over antibodies in sensibility, stability, multi-detection, in vivo measurements and regeneration. Phages are superior in stability, screening for affinity-based target molecules ranging from small to proteins and even cells, and easy production. In this review, we focus mainly on recent developments in affinity-based biosensors such as immunosensors, DNA sensors, emphasizing aptasensors and phage-based biosensors basing on novel electrochemical, optical and mass sensitive detection techniques. We also address enzyme inhibition-based biosensors and the current problems associated with the above sensors and their future perspectives. (topical review)

  17. DNA Diagnostics: Optical or by Electronics?

    Khan, Hadayat Ullah; Knoll, Wolfgang

    2016-01-01

    In this paper, we very briefly review DNA biosensors based on optical and electrical detection principles, referring mainly to our past work applying both techniques but here using nearly identical sensor chip surface architectures, i.e., capture

  18. Micro- and nanogap based biosensors

    Hammond, Jules L.

    2017-01-01

    Biosensors are used for the detection of a range of analytes for applications in healthcare, food production, environmental monitoring and biodefence. However, many biosensing platforms are large, expensive, require skilled operators or necessitate the analyte to be labelled. Direct electrochemical detection methods present a particularly attractive platform due to the simplified instrumentation when compared to other techniques such as fluorescence-based biosensors. With modern integrated ci...

  19. Improved protocols to accelerate the assembly of DNA barcode reference libraries for freshwater zooplankton.

    Elías-Gutiérrez, Manuel; Valdez-Moreno, Martha; Topan, Janet; Young, Monica R; Cohuo-Colli, José Angel

    2018-03-01

    Currently, freshwater zooplankton sampling and identification methodologies have remained virtually unchanged since they were first established in the beginning of the XX century. One major contributing factor to this slow progress is the limited success of modern genetic methodologies, such as DNA barcoding, in several of the main groups. This study demonstrates improved protocols which enable the rapid assessment of most animal taxa inhabiting any freshwater system by combining the use of light traps, careful fixation at low temperatures using ethanol, and zooplankton-specific primers. We DNA-barcoded 2,136 specimens from a diverse array of taxonomic assemblages (rotifers, mollusks, mites, crustaceans, insects, and fishes) from several Canadian and Mexican lakes with an average sequence success rate of 85.3%. In total, 325 Barcode Index Numbers (BINs) were detected with only three BINs (two cladocerans and one copepod) shared between Canada and Mexico, suggesting a much narrower distribution range of freshwater zooplankton than previously thought. This study is the first to broadly explore the metazoan biodiversity of freshwater systems with DNA barcodes to construct a reference library that represents the first step for future programs which aim to monitor ecosystem health, track invasive species, or improve knowledge of the ecology and distribution of freshwater zooplankton.

  20. Using Environmental DNA to Improve Species Distribution Models for Freshwater Invaders

    Teja P. Muha

    2017-12-01

    Full Text Available Species Distribution Models (SDMs have been reported as a useful tool for the risk assessment and modeling of the pathways of dispersal of freshwater invasive alien species (IAS. Environmental DNA (eDNA is a novel tool that can help detect IAS at their early stage of introduction and additionally improve the data available for a more efficient management. SDMs rely on presence and absence of the species in the study area to infer the predictors affecting species distributions. Presence is verified once a species is detected, but confirmation of absence can be problematic because this depends both on the detectability of the species and the sampling strategy. eDNA is a technique that presents higher detectability and accuracy in comparison to conventional sampling techniques, and can effectively differentiate between presence or absence of specific species or entire communities by using a barcoding or metabarcoding approach. However, a number of potential bias can be introduced during (i sampling, (ii amplification, (iii sequencing, or (iv through the usage of bioinformatics pipelines. Therefore, it is important to report and conduct the field and laboratory procedures in a consistent way, by (i introducing eDNA independent observations, (ii amplifying and sequencing control samples, (iii achieving quality sequence reads by appropriate clean-up steps, (iv controlling primer amplification preferences, (v introducing PCR-free sequence capturing, (vi estimating primer detection capabilities through controlled experiments and/or (vii post-hoc introduction of “site occupancy-detection models.” With eDNA methodology becoming increasingly routine, its use is strongly recommended to retrieve species distributional data for SDMs.

  1. Recycling microcavity optical biosensors.

    Hunt, Heather K; Armani, Andrea M

    2011-04-01

    Optical biosensors have tremendous potential for commercial applications in medical diagnostics, environmental monitoring, and food safety evaluation. In these applications, sensor reuse is desirable to reduce costs. To achieve this, harsh, wet chemistry treatments are required to remove surface chemistry from the sensor, typically resulting in reduced sensor performance and increased noise due to recognition moiety and optical transducer degradation. In the present work, we suggest an alternative, dry-chemistry method, based on O2 plasma treatment. This approach is compatible with typical fabrication of substrate-based optical transducers. This treatment completely removes the recognition moiety, allowing the transducer surface to be refreshed with new recognition elements and thus enabling the sensor to be recycled.

  2. Electrochemical and AFM Characterization of G-Quadruplex Electrochemical Biosensors and Applications

    2018-01-01

    Guanine-rich DNA sequences are able to form G-quadruplexes, being involved in important biological processes and representing smart self-assembling nanomaterials that are increasingly used in DNA nanotechnology and biosensor technology. G-quadruplex electrochemical biosensors have received particular attention, since the electrochemical response is particularly sensitive to the DNA structural changes from single-stranded, double-stranded, or hairpin into a G-quadruplex configuration. Furthermore, the development of an increased number of G-quadruplex aptamers that combine the G-quadruplex stiffness and self-assembling versatility with the aptamer high specificity of binding to a variety of molecular targets allowed the construction of biosensors with increased selectivity and sensitivity. This review discusses the recent advances on the electrochemical characterization, design, and applications of G-quadruplex electrochemical biosensors in the evaluation of metal ions, G-quadruplex ligands, and other small organic molecules, proteins, and cells. The electrochemical and atomic force microscopy characterization of G-quadruplexes is presented. The incubation time and cations concentration dependence in controlling the G-quadruplex folding, stability, and nanostructures formation at carbon electrodes are discussed. Different G-quadruplex electrochemical biosensors design strategies, based on the DNA folding into a G-quadruplex, the use of G-quadruplex aptamers, or the use of hemin/G-quadruplex DNAzymes, are revisited. PMID:29666699

  3. DNA origami applications in cancer therapy.

    Udomprasert, Anuttara; Kangsamaksin, Thaned

    2017-08-01

    Due to the complexity and heterogeneity of cancer, the development of cancer diagnosis and therapy is still progressing, and a complete understanding of cancer biology remains elusive. Recently, cancer nanomedicine has gained much interest as a promising diagnostic and therapeutic strategy, as a wide range of nanomaterials possess unique physical properties that can render drug delivery systems safer and more effective. Also, targeted drug delivery and precision medicine have now become a new paradigm in cancer therapy. With nanocarriers, chemotherapeutic drugs could be directly delivered into target cancer cells, resulting in enhanced efficiency with fewer side-effects. DNA, a biomolecule with molecular self-assembly properties, has emerged as a versatile nanomaterial to construct multifunctional platforms; DNA nanostructures can be modified with functional groups to improve their utilities as biosensors or drug carriers. Such applications have become possible with the advent of the scaffolded DNA origami method. This breakthrough technique in structural DNA nanotechnology provides an easier and faster way to construct DNA nanostructures with various shapes. Several experiments proved that DNA origami nanostructures possess abilities to enhance efficacies of chemotherapy, reduce adverse side-effects, and even circumvent drug resistance. Here, we highlight the principles of the DNA origami technique and its applications in cancer therapeutics and discuss current challenges and opportunities to improve cancer detection and targeted drug delivery. © 2017 The Authors. Cancer Science published by John Wiley & Sons Australia, Ltd on behalf of Japanese Cancer Association.

  4. Isolation of full-length putative rat lysophospholipase cDNA using improved methods for mRNA isolation and cDNA cloning

    Han, J.H.; Stratowa, C.; Rutter, W.J.

    1987-01-01

    The authors have cloned a full-length putative rat pancreatic lysophospholipase cDNA by an improved mRNA isolation method and cDNA cloning strategy using [ 32 P]-labelled nucleotides. These new methods allow the construction of a cDNA library from the adult rat pancreas in which the majority of recombinant clones contained complete sequences for the corresponding mRNAs. A previously recognized but unidentified long and relatively rare cDNA clone containing the entire sequence from the cap site at the 5' end to the poly(A) tail at the 3' end of the mRNA was isolated by single-step screening of the library. The size, amino acid composition, and the activity of the protein expressed in heterologous cells strongly suggest this mRNA codes for lysophospholipase

  5. A size selective porous silicon grating-coupled Bloch surface and sub-surface wave biosensor.

    Rodriguez, Gilberto A; Ryckman, Judson D; Jiao, Yang; Weiss, Sharon M

    2014-03-15

    A porous silicon (PSi) grating-coupled Bloch surface and sub-surface wave (BSW/BSSW) biosensor is demonstrated to size selectively detect the presence of both large and small molecules. The BSW is used to sense large immobilized analytes at the surface of the structure while the BSSW that is confined inside but near the top of the structure is used to sensitively detect small molecules. Functionality of the BSW and BSSW modes is theoretically described by dispersion relations, field confinements, and simulated refractive index shifts within the structure. The theoretical results are experimentally verified by detecting two different small chemical molecules and one large 40 base DNA oligonucleotide. The PSi-BSW/BSSW structure is benchmarked against current porous silicon technology and is shown to have a 6-fold higher sensitivity in detecting large molecules and a 33% improvement in detecting small molecules. This is the first report of a grating-coupled BSW biosensor and the first report of a BSSW propagating mode. © 2013 Published by Elsevier B.V.

  6. A recoding method to improve the humoral immune response to an HIV DNA vaccine.

    Yaoxing Huang

    Full Text Available This manuscript describes a novel strategy to improve HIV DNA vaccine design. Employing a new information theory based bioinformatic algorithm, we identify a set of nucleotide motifs which are common in the coding region of HIV, but are under-represented in genes that are highly expressed in the human genome. We hypothesize that these motifs contribute to the poor protein expression of gag, pol, and env genes from the c-DNAs of HIV clinical isolates. Using this approach and beginning with a codon optimized consensus gag gene, we recode the nucleotide sequence so as to remove these motifs without modifying the amino acid sequence. Transfecting the recoded DNA sequence into a human kidney cell line results in doubling the gag protein expression level compared to the codon optimized version. We then turn both sequences into DNA vaccines and compare induced antibody response in a murine model. Our sequence, which has the motifs removed, induces a five-fold increase in gag antibody response compared to the codon optimized vaccine.

  7. Sensitivity and fidelity of DNA microarray improved with integration of Amplified Differential Gene Expression (ADGE

    Ile Kristina E

    2003-07-01

    Full Text Available Abstract Background The ADGE technique is a method designed to magnify the ratios of gene expression before detection. It improves the detection sensitivity to small change of gene expression and requires small amount of starting material. However, the throughput of ADGE is low. We integrated ADGE with DNA microarray (ADGE microarray and compared it with regular microarray. Results When ADGE was integrated with DNA microarray, a quantitative relationship of a power function between detected and input ratios was found. Because of ratio magnification, ADGE microarray was better able to detect small changes in gene expression in a drug resistant model cell line system. The PCR amplification of templates and efficient labeling reduced the requirement of starting material to as little as 125 ng of total RNA for one slide hybridization and enhanced the signal intensity. Integration of ratio magnification, template amplification and efficient labeling in ADGE microarray reduced artifacts in microarray data and improved detection fidelity. The results of ADGE microarray were less variable and more reproducible than those of regular microarray. A gene expression profile generated with ADGE microarray characterized the drug resistant phenotype, particularly with reference to glutathione, proliferation and kinase pathways. Conclusion ADGE microarray magnified the ratios of differential gene expression in a power function, improved the detection sensitivity and fidelity and reduced the requirement for starting material while maintaining high throughput. ADGE microarray generated a more informative expression pattern than regular microarray.

  8. Resolution-improved in situ DNA hybridization detection based on microwave photonic interrogation.

    Cao, Yuan; Guo, Tuan; Wang, Xudong; Sun, Dandan; Ran, Yang; Feng, Xinhuan; Guan, Bai-ou

    2015-10-19

    In situ bio-sensing system based on microwave photonics filter (MPF) interrogation method with improved resolution is proposed and experimentally demonstrated. A microfiber Bragg grating (mFBG) is used as sensing probe for DNA hybridization detection. Different from the traditional wavelength monitoring technique, we use the frequency interrogation scheme for resolution-improved bio-sensing detection. Experimental results show that the frequency shift of MPF notch presents a linear response to the surrounding refractive index (SRI) change over the range of 1.33 to 1.38, with a SRI resolution up to 2.6 × 10(-5) RIU, which has been increased for almost two orders of magnitude compared with the traditional fundamental mode monitoring technique (~3.6 × 10(-3) RIU). Due to the high Q value (about 27), the whole process of DNA hybridization can be in situ monitored. The proposed MPF-based bio-sensing system provides a new interrogation method over the frequency domain with improved sensing resolution and rapid interrogation rate for biochemical and environmental measurement.

  9. NANOSCALE BIOSENSORS IN ECOSYSTEM EXPOSURE RESEARCH

    This powerpoint presentation presented information on nanoscale biosensors in ecosystem exposure research. The outline of the presentation is as follows: nanomaterials environmental exposure research; US agencies involved in nanosensor research; nanoscale LEDs in biosensors; nano...

  10. BIOSENSORS FOR ENVIRONMENTAL MONITORING: A REGULATORY PERSPECTIVE

    Biosensors show the potential to complement laboratory-based analytical methods for environmental applications. Although biosensors for potential environmental-monitoring applications have been reported for a wide range of environmental pollutants, from a regulatory perspective, ...

  11. A label-free fluorescent adenosine triphosphate biosensor via overhanging aptamer-triggered enzyme protection and target recycling amplification.

    Wang, Zhaoyin; Zhao, Jian; Dai, Zhihui

    2016-06-20

    Herein, a label-free fluorescent adenosine triphosphate (ATP) aptasensor is fabricated with a DNA hairpin and an overhanging aptamer. In the presence of ATP, the overhanging sequences of the aptamer may form preferred substrates of exo III, and thus trigger the enzyme-assisted amplification, which results in the release of G-rich sequences. Free G-rich sequences subsequently generate an enhanced flourescent signal by binding with thioflavin T. However, if ATP is absent, the overhanging sequence can induce steric hindrance and protect the DNA hairpin against the digestion of exo III, significantly reducing the noise of this biosensor. Accordingly, the signal-to-noise ratio of the sensing system is greatly improved, which ensures the desirable analytical performance of the proposed aptasensor both in pure samples and real samples.

  12. Porous silicon localization for implementation in matrix biosensors

    Benilov, A.; Cabrera, M.; Skryshevsky, V.; Martin, J.-R.

    2007-01-01

    The search of appropriate substrates and methods of surface DNA functionalisation is one of the important tasks of semiconductor biosensors. In this work we develop a method of light-assisted porous silicon etching in order to localize porous silicon spots on silicon substrate for matrix fluorophore-labeled DNA sensors implementation. The principal difference of porous spots localization proposed is considered for n- and p-type Si substrates under the condition of supplementary illumination. The tuning of the porous profile via applying of lateral electric field is proposed and experimentally proved

  13. Reversible sol-gel-sol medium for enzymatic optical biosensors

    Safaryan, S.; Yakovlev, A.; Pidko, E.A.; Vinogradov, A.; Vinogradov, V.

    2017-01-01

    In this paper we for the first time report a reversible sol-gel-sol approach to obtain optical enzymatic biosensors with improved enzyme stability and good sensitivity by using desktop inkjet printing. The developed technique is based on the bio-inorganic inks allowing for a sol-gel-sol transition

  14. The development and application of FET-based biosensors

    Bergveld, Piet

    1986-01-01

    After having considered the general definition of biosensors, the specifications of one type are discussed here in more detail, namely the pH-sensitive ISFET, which is at present being clinically investigated for intravascular blood pH recording. Results, advantages and possible improvements will be

  15. Establishment of dna fingerprinting in clonal tea improved cultivars from yunnan of china using issr markers

    Liu, B.Y.; Zhao, C.M.; Sun, X.M.; Jiang, H.B.

    2015-01-01

    In this study, DNA fingerprints were constructed by using ISSR markers for 20 clonal improved varieties developed by two breeding institutes in Yunnan province. Seven core ISSR primers were selected from 15 primers. A total of 110 bands were generated by PAGE with seven core primers, 93 of which were polymorphic bands, the percentage of polymorphic band (PPB) was 84.54%, and the mean value of polymorphism information content (PIC) reached 0.417; the genetic similarity coefficient of the cultivars was 0.574-0.854. The two primers, UBC835 and ISSR2, had high PIC values, and could be used to distinguish all cultivars, presenting the most efficient single primers. Among the all of primer combinations from the seven core primers, the three combinations, UBC835/UBC811, UBC835/ISSR2, and UBC835/ISSR3 showed lower similar coefficients, and more efficient in identifying the 20 improved varieties than the other primer combinations. Then these three primer combinations were further scored in 15 traditional cultivars. The results showed that UBC835/ISSR2 was the optimal primer combination, which could be used to distinguish each material among the 20 clonal improved varieties and 15 traditional cultivals. Finally, the DNA fingerprints of the 20 clonal improved varieties were constructed based on country and region code, breeding institute, core primer name and ISSR marker data. The established fingerprints could provide reliable scientific base for the protection of intellectual property right for these clonal improved varieties, and the important molecular information contained in these fingerprints would be useful for the authenticity identification and genetic relationship analysis of tea varieties. (author)

  16. Biosensor for metal analysis and speciation

    Aiken, Abigail M.; Peyton, Brent M.; Apel, William A.; Petersen, James N.

    2007-01-30

    A biosensor for metal analysis and speciation is disclosed. The biosensor comprises an electron carrier immobilized to a surface of an electrode and a layer of an immobilized enzyme adjacent to the electrode. The immobilized enzyme comprises an enzyme having biological activity inhibited by a metal to be detected by the biosensor.

  17. DNA methylation–based immune response signature improves patient diagnosis in multiple cancers

    Jeschke, Jana; Bizet, Martin; Calonne, Emilie; Dedeurwaerder, Sarah; Garaud, Soizic; Koch, Alexander; Larsimont, Denis; Salgado, Roberto; Van den Eynden, Gert; Willard Gallo, Karen; Defrance, Matthieu; Sotiriou, Christos

    2017-01-01

    BACKGROUND. The tumor immune response is increasingly associated with better clinical outcomes in breast and other cancers. However, the evaluation of tumor-infiltrating lymphocytes (TILs) relies on histopathological measurements with limited accuracy and reproducibility. Here, we profiled DNA methylation markers to identify a methylation of TIL (MeTIL) signature that recapitulates TIL evaluations and their prognostic value for long-term outcomes in breast cancer (BC). METHODS. MeTIL signature scores were correlated with clinical endpoints reflecting overall or disease-free survival and a pathologic complete response to preoperative anthracycline therapy in 3 BC cohorts from the Jules Bordet Institute in Brussels and in other cancer types from The Cancer Genome Atlas. RESULTS. The MeTIL signature measured TIL distributions in a sensitive manner and predicted survival and response to chemotherapy in BC better than did histopathological assessment of TILs or gene expression–based immune markers, respectively. The MeTIL signature also improved the prediction of survival in other malignancies, including melanoma and lung cancer. Furthermore, the MeTIL signature predicted differences in survival for malignancies in which TILs were not known to have a prognostic value. Finally, we showed that MeTIL markers can be determined by bisulfite pyrosequencing of small amounts of DNA from formalin-fixed, paraffin-embedded tumor tissue, supporting clinical applications for this methodology. CONCLUSIONS. This study highlights the power of DNA methylation to evaluate tumor immune responses and the potential of this approach to improve the diagnosis and treatment of breast and other cancers. FUNDING. This work was funded by the Fonds National de la Recherche Scientifique (FNRS) and Télévie, the INNOVIRIS Brussels Region BRUBREAST Project, the IUAP P7/03 program, the Belgian “Foundation against Cancer,” the Breast Cancer Research Foundation (BCRF), and the Fonds Gaston Ithier

  18. Improved reproducibility in genome-wide DNA methylation analysis for PAXgene® fixed samples compared to restored FFPE DNA

    Andersen, Gitte Brinch; Hager, Henrik; Hansen, Lise Lotte

    2014-01-01

    Chip. Quantitative DNA methylation analysis demonstrated that the methylation profile in PAXgene-fixed tissues showed, in comparison with restored FFPE samples, a higher concordance with the profile detected in frozen samples. We demonstrate, for the first time, that DNA from PAXgene conserved tissue performs better......Formalin fixation has been the standard method for conservation of clinical specimens for decades. However, a major drawback is the high degradation of nucleic acids, which complicates its use in genome-wide analyses. Unbiased identification of biomarkers, however, requires genome-wide studies......, precluding the use of the valuable archives of specimens with long-term follow-up data. Therefore, restoration protocols for DNA from formalin-fixed and paraffin-embedded (FFPE) samples have been developed, although they are cost-intensive and time-consuming. An alternative to FFPE and snap...

  19. Electrochemical sensors and biosensors based on less aggregated graphene.

    Bo, Xiangjie; Zhou, Ming; Guo, Liping

    2017-03-15

    As a novel single-atom-thick sheet of sp 2 hybridized carbon atoms, graphene (GR) has attracted extensive attention in recent years because of its unique and remarkable properties, such as excellent electrical conductivity, large theoretical specific surface area, and strong mechanical strength. However, due to the π-π interaction, GR sheets are inclined to stack together, which may seriously degrade the performance of GR with the unique single-atom layer. In recent years, an increasing number of GR-based electrochemical sensors and biosensors are reported, which may reflect that GR has been considered as a kind of hot and promising electrode material for electrochemical sensor and biosensor construction. However, the active sites on GR surface induced by the irreversible GR aggregations would be deeply secluded inside the stacked GR sheets and therefore are not available for the electrocatalysis. So the alleviation or the minimization of the aggregation level for GR sheets would facilitate the exposure of active sites on GR and effectively upgrade the performance of GR-based electrochemical sensors and biosensors. Less aggregated GR with low aggregation and high dispersed structure can be used in improving the electrochemical activity of GR-based electrochemical sensors or biosensors. In this review, we summarize recent advances and new progress for the development of electrochemical sensors based on less aggregated GR. To achieve such goal, many strategies (such as the intercalation of carbon materials, surface modification, and structural engineering) have been applied to alleviate the aggregation level of GR in order to enhance the performance of GR-based electrochemical sensors and biosensors. Finally, the challenges associated with less aggregated GR-based electrochemical sensors and biosensors as well as related future research directions are discussed. Copyright © 2016 Elsevier B.V. All rights reserved.

  20. Sensing Conformational Changes in DNA upon Ligand Binding Using QCM-D. Polyamine Condensation and Rad51 Extension of DNA Layers

    Sun, Lu; Frykholm, Karolin; Fornander, Louise H.; Svedhem, Sofia; Westerlund, Fredrik; Å kerman, Bjö rn

    2014-01-01

    © 2014 American Chemical Society. Biosensors, in which binding of ligands is detected through changes in the optical or electrochemical properties of a DNA layer confined to the sensor surface, are important tools for investigating DNA interactions

  1. Conjugation of Benzylvanillin and Benzimidazole Structure Improves DNA Binding with Enhanced Antileukemic Properties

    Al-Mudarris, Ban A.; Chen, Shih-Hsun; Liang, Po-Huang; Osman, Hasnah; Jamal Din, Shah Kamal Khan; Abdul Majid, Amin M. S.

    2013-01-01

    Benzyl-o-vanillin and benzimidazole nucleus serve as important pharmacophore in drug discovery. The benzyl vanillin (2-(benzyloxy)-3-methoxybenzaldehyde) compound shows anti-proliferative activity in HL60 leukemia cancer cells and can effect cell cycle progression at G2/M phase. Its apoptosis activity was due to disruption of mitochondrial functioning. In this study, we have studied a series of compounds consisting of benzyl vanillin and benzimidazole structures. We hypothesize that by fusing these two structures we can produce compounds that have better anticancer activity with improved specificity particularly towards the leukemia cell line. Here we explored the anticancer activity of three compounds namely 2-(2-benzyloxy-3-methoxyphenyl)-1H-benzimidazole, 2MP, N-1-(2-benzyloxy-3-methoxybenzyl)-2-(2-benzyloxy-3-methoxyphenyl)-1H-benzimidazole, 2XP, and (R) and (S)-1-(2-benzyloxy-3-methoxyphenyl)-2, 2, 2-trichloroethyl benzenesulfonate, 3BS and compared their activity to 2-benzyloxy-3-methoxybenzaldehyde, (Bn1), the parent compound. 2XP and 3BS induces cell death of U937 leukemic cell line through DNA fragmentation that lead to the intrinsic caspase 9 activation. DNA binding study primarily by the equilibrium binding titration assay followed by the Viscosity study reveal the DNA binding through groove region with intrinsic binding constant 7.39 µM/bp and 6.86 µM/bp for 3BS and 2XP respectively. 2XP and 3BS showed strong DNA binding activity by the UV titration method with the computational drug modeling showed that both 2XP and 3BS failed to form any electrostatic linkages except via hydrophobic interaction through the minor groove region of the nucleic acid. The benzylvanillin alone (Bn1) has weak anticancer activity even after it was combined with the benzimidazole (2MP), but after addition of another benzylvanillin structure (2XP), stronger activity was observed. Also, the combination of benzylvanillin with benzenesulfonate (3BS) significantly improved the

  2. An acetylcholinesterase biosensor based on graphene-gold nanocomposite and calcined layered double hydroxide.

    Zhai, Chen; Guo, Yemin; Sun, Xia; Zheng, Yuhe; Wang, Xiangyou

    2014-05-10

    In this study, a novel acetylcholinesterase-based biosensor was fabricated. Acetylcholinesterase (AChE) was immobilized onto a glassy carbon electrode (GCE) with the aid of Cu-Mg-Al calcined layered double hydroxide (CLDH). CLDH can provide a bigger effective surface area for AChE loading, which could improve the precision and stability of AChE biosensor. However, the poor electroconductibility of CLDHs could lead to the low sensitivity of AChE biosensor. In order to effectively compensate the disadvantages of CLDHs, graphene-gold nanocomposites were used for improving the electron transfer rate. Thus, the graphene-gold nanocomposite (GN-AuNPs) was firstly modified onto the GCE, and then the prepared CLDH-AChE composite was immobilized onto the modified GCE to construct a sensitive AChE biosensor for pesticides detection. Relevant parameters were studied in detail and optimized, including the pH of the acetylthiocholine chloride (ATCl) solution, the amount of AChE immobilized on the biosensor and the inhibition time governing the analytical performance of the biosensor. The biosensor detected chlorpyrifos at concentrations ranging from 0.05 to 150μg/L. The detection limit for chlorpyrifos was 0.05μg/L. Copyright © 2014 Elsevier Inc. All rights reserved.

  3. A Lateral Flow Biosensor for the Detection of Single Nucleotide Polymorphisms.

    Zeng, Lingwen; Xiao, Zhuo

    2017-01-01

    A lateral flow biosensor (LFB) is introduced for the detection of single nucleotide polymorphisms (SNPs). The assay is composed of two steps: circular strand displacement reaction and lateral flow biosensor detection. In step 1, the nucleotide at SNP site is recognized by T4 DNA ligase and the signal is amplified by strand displacement DNA polymerase, which can be accomplished at a constant temperature. In step 2, the reaction product of step 1 is detected by a lateral flow biosensor, which is a rapid and cost effective tool for nuclei acid detection. Comparing with conventional methods, it requires no complicated machines. It is suitable for the use of point of care diagnostics. Therefore, this simple, cost effective, robust, and promising LFB detection method of SNP has great potential for the detection of genetic diseases, personalized medicine, cancer related mutations, and drug-resistant mutations of infectious agents.

  4. Antibody Immobilization on Conductive Polymer Coated Nonwoven Fibers for Biosensors

    Shannon K. MCGRAW

    2011-12-01

    Full Text Available This work is being performed to develop rapid and novel electrochemical biosensors for foodborne pathogen detection. This research focuses on electrotextile platforms to perform both capture and sensing functions in a single component. The biosensor uses nonwoven fiber membranes coated with conductive polymer and functionalized with antibodies for biological capture. This study examines three methods for antibody immobilization: passive adsorption, glutaraldehyde cross-linking, and EDC/Sulfo-NHS cross-linking. Antibodies are immobilized onto the conductive fiber surfaces for the specific capture of a target pathogen. The immobilization and capture capabilities of each method are analyzed through the use of two different fluorescent reporters: FITC and PicoGreen DNA stain. Fluorescence is measured using a fluorescent plate reader and then imaged using a fluorescent microscope. The effect of a blocking agent on specificity is also evaluated. It is found that glutaraldehyde with blocking is the best immobilization method with PicoGreen being the best fluorescent reporter.

  5. Micro-and nanoelectromechanical biosensors

    Nicu, Liviu

    2014-01-01

    Most books dedicated to the issues of bio-sensing are organized by the well-known scheme of a biosensor. In this book, the authors have deliberately decided to break away from the conventional way of treating biosensing research by uniquely addressing biomolecule immobilization methods on a solid surface, fluidics issues and biosensing-related transduction techniques, rather than focusing simply on the biosensor. The aim is to provide a contemporary snapshot of the biosensing landscape without neglecting the seminal references or products where needed, following the downscaling (from the micr

  6. Improved Method for Direct Detection of Environmental Microorganisms Using an Amplification of 16S rDNA Region

    Tsujimura, M.; Akutsu, J.; Zhang, Z.; Sasaki, M.; Tajima, H.; Kawarabayasi, Y.

    2004-12-01

    The thermostable proteins or enzymes were expected to be capable to be utilized in many areas of industries. Many thermophilic microorganisms, which possess the thermostable proteins or enzymes, were identified from the extreme environment. However, many unidentified and uncultivable microorganisms are still remaining in the environment on the earth. It is generally said that the cultivable microorganisms are less than 1% of entire microorganisms living in the earth, remaining over 99% are still uncultivable. As an approach to the uncultivable microorganisms, the PCR amplification of 16S rDNA region using primer sets designed from the conserved region has been generally utilized for detection and community analysis of microorganism in the environment. However, the facts, that PCR amplification introduces the mutation in the amplified DNA fragment and efficiency of PCR amplification is depend on the sequences of primer sets, indicated that the improving of PCR analysis was necessary for more correct detection of microorganisms. As the result of evaluation for the quality of DNA polymerases, sequences of primers used for amplification and conditions of PCR amplification, the DNA polymerase, the primer set and the conditions for amplification, which did not amplify the DNA fragment from the DNA contaminated within the DNA polymerase itself, were successfully selected. Also the rate of mutation in the DNA fragment amplified was evaluated using this conditions and the genomic DNA from cultivable microbes as a template. The result indicated the rate of mutation introduced by PCR was approximately 0.1% to 0.125%. The improved method using these conditions and error rate calculated was applied for the analysis of microorganisms in the geothermal environment. The result indicated that four kinds of dominant microorganisms, including both of bacteria and archaea, were alive within soil in the hot spring in Tohoku Area. We would like to apply this improved method to detection

  7. A luminescent nisin biosensor

    Immonen, Nina; Karp, Matti

    2006-02-01

    Nisin is a lantibiotic, an antibacterial peptide produced by certain Lactococcus lactis strains that kills or inhibits the growth of other bacteria. Nisin is widely used as a food preservative, and its long-time use suggests that it can be generally regarded as safe. We have developed a method for determining the amount of nisin in food samples that is based on luminescent biosensor bacteria. Bacterial luciferase operon luxABCDE was inserted into plasmid pNZ8048, and the construct was transformed by electroporation into Lc. lactis strain NZ9800, whose ability to produce nisin has been erased by deletion of the gene nisA. The operon luxABCDE has been modified to be functional in gram-positive bacteria to confer a bioluminescent phenotype without the requirement of adding an exogenous substrate. In the plasmid pNZ8048, the operon was placed under control of the nisin-inducible nisA promoter. The chromosomal nisRK genes of Lc. lactis NZ9800 allow it to sense nisin in the environment and relay this signal via signal transduction proteins NisK and NisR to initiate transcription from nisA promoter. In the case of our sensor bacteria, this leads to production of luciferase and, thus, luminescence that can be directly measured from living bacteria. Luminescence can be detected as early as within minutes of induction. The nisin assay described here provides a detection limit in the sub-picogram level per ml, and a linear area between 1 - 1000 pg/ml. The sensitivity of this assay exceeds the performance of all previously published methods.

  8. Radioactively labelled DNA probes for crop improvement. Proceedings of a final research co-ordination meeting

    NONE

    2001-11-01

    With the advent of DNA molecular marker technology in the 1980s plant breeding had a new and powerful tool with which to increase its efficacy. Such markers are abundant and directly reveal information about the genotype and therefore are more useful than simple phenotypic markers. In plant breeding applications, molecular markers reveal information about variability and genetic relationships, and enable genetic mapping, which greatly assists the breeder in selection of parents and progeny, as well as in management of breeding strategies. Furthermore, molecular markers linked to phenotypic traits permit very early selection of superior progenies from breeding populations, therefore significantly reducing the need for field testing and greatly increasing efficiency of plant breeding programmes. For this to occur the oligonucleotide probes for labelling genetic markers and/or the primers for polymerase chain reactions to amplify genetic markers needed to be also accessible to scientists in developing Member States. In addition, technical information, training and troubleshooting were needed to support the utilization of DNA markers. In the early 1990s there was a dramatic increase in requests for access to this technology. This co-ordinated research project (CRP) facilitated the transfer of molecular marker technology, in terms of both material and information, from advanced laboratories to assist breeding programmes in developing countries. Two other CRPs were conducted concurrently in order to assist developing Member States to utilise molecular markers - Application of DNA Based Marker Mutations for Improvement of Cereals and other Sexually Reproduced Crop Plants, and Use of Novel DNA Fingerprinting Techniques for the Detection and Characterisation of Genetic Variation in Vegetatively Propagated Crops (IAEA-TECDOC-1010 and IAEA-TECDOC-1047, respectively). The present CRP built upon the success of the former projects by ensuring the availability of probes

  9. Radioactively labelled DNA probes for crop improvement. Proceedings of a final research co-ordination meeting

    2001-11-01

    With the advent of DNA molecular marker technology in the 1980s plant breeding had a new and powerful tool with which to increase its efficacy. Such markers are abundant and directly reveal information about the genotype and therefore are more useful than simple phenotypic markers. In plant breeding applications, molecular markers reveal information about variability and genetic relationships, and enable genetic mapping, which greatly assists the breeder in selection of parents and progeny, as well as in management of breeding strategies. Furthermore, molecular markers linked to phenotypic traits permit very early selection of superior progenies from breeding populations, therefore significantly reducing the need for field testing and greatly increasing efficiency of plant breeding programmes. For this to occur the oligonucleotide probes for labelling genetic markers and/or the primers for polymerase chain reactions to amplify genetic markers needed to be also accessible to scientists in developing Member States. In addition, technical information, training and troubleshooting were needed to support the utilization of DNA markers. In the early 1990s there was a dramatic increase in requests for access to this technology. This co-ordinated research project (CRP) facilitated the transfer of molecular marker technology, in terms of both material and information, from advanced laboratories to assist breeding programmes in developing countries. Two other CRPs were conducted concurrently in order to assist developing Member States to utilise molecular markers - Application of DNA Based Marker Mutations for Improvement of Cereals and other Sexually Reproduced Crop Plants, and Use of Novel DNA Fingerprinting Techniques for the Detection and Characterisation of Genetic Variation in Vegetatively Propagated Crops (IAEA-TECDOC-1010 and IAEA-TECDOC-1047, respectively). The present CRP built upon the success of the former projects by ensuring the availability of probes

  10. Electrochemical and optical biosensors based on nanomaterials and nanostructures: a review.

    Li, Ming; Li, Rui; Li, Chang Ming; Wu, Nianqiang

    2011-06-01

    Nanomaterials and nanostructures exhibit unique size-tunable and shape-dependent physicochemical properties that are different from those of bulk materials. Advances of nanomaterials and nanostructures open a new door to develop various novel biosensors. The present work has reviewed the recent progress in electrochemical, surface plasmon resonance (SPR), surface-enhanced Raman scattering (SERS) and fluorescent biosensors based on nanomaterials and nanostructures. An emphasis is put on the research that demonstrates how the performance of biosensors such as the limit of detection, sensitivity and selectivity is improved by the use of nanomaterials and nanostructures.

  11. The sensitivity research of multiparameter biosensors based on HEMT by the mathematic modeling method

    Tikhomirov, V. G.; Gudkov, A. G.; Agasieva, S. V.; Gorlacheva, E. N.; Shashurin, V. D.; Zybin, A. A.; Evseenkov, A. S.; Parnes, Y. M.

    2017-11-01

    The numerical impact modeling of some external effects on the CVC of biosensors based on AlGaN/GaN heterostructures (HEMT) was carried out. The mathematical model was created that allowed to predict the behavior of the drain current depending on condition changes on the heterostructure surface in the gate region and to start the process of directed construction optimization of the biosensors based on AlGaN/GaN HEMT with the aim of improving their performance. The calculation of the drain current of the biosensor construction was carried out to confirm the reliability of the developed mathematical model and obtained results.

  12. Label-free aptamer biosensor for selective detection of thrombin

    Na, Weidan; Liu, Xiaotong; Wang, Lei; Su, Xingguang, E-mail: suxg@jlu.edu.cn

    2015-10-29

    We fabricated a novel fluorescence biosensor for the selective detection of thrombin by using bovine serum albumin-capped CdS quantum dots (BSA-CdS QDs). Two kinds of designed DNA (DNA1 and DNA2) could bind to CdS QDs through the electrostatic interaction between DNA and Cd{sup 2+} on the surface of CdS QDs. The obtained DNA/BSA-CdS QDs kept stable in the solution with the fluorescence intensity obviously enhanced. Hairpin structure of DNA1contained two domains, one is the aptamer sequence of thrombin and the other is the complementary sequence of DNA2. When thrombin was added, it would bind to DNA1 and induce the hairpin structure of DNA1 changed into G-quadplex structure. Meanwhile, DNA2 would transfer from the surface of CdS QDs to DNA1 via hybridization, which resulted in the removal of DNA1 and DNA2 from the surface of CdS QDs, and led to the fluorescence intensity of CdS QDs reduced. Thus, the determination of thrombin could be achieved by monitoring the change of the fluorescence intensity of CdS QDs. The present method is simple and fast, and exhibits good selectivity for thrombin over other proteins. We have successfully detected thrombin in human serum samples with satisfactory results. - Highlights: • A novel strategy for the detection of thrombin was established based on BSA-CdS QDs. • DNA could serve as the co-ligands to stabilize CdS QDs and enhance the fluorescence intensity. • Thrombin could change the structure of DNA1 and quench the fluorescence of CdS QDs. • Thrombin in real sample was detected with satisfactory results.

  13. Photonic crystal-based optical biosensor: a brief investigation

    Divya, J.; Selvendran, S.; Sivanantha Raja, A.

    2018-06-01

    In this paper, a two-dimensional photonic crystal biosensor for medical applications based on two waveguides and a nanocavity was explored with different shoulder-coupled nanocavity structures. The most important biosensor parameters, like the sensitivity and quality factor, can be significantly improved. By injecting an analyte into a sensing hole, the refractive index of the hole was changed. This refractive index biosensor senses the changes and shifts its operating wavelength accordingly. The transmission characteristics of light in the biosensor under different refractive indices that correspond to the change in the analyte concentration are analyzed by the finite-difference time-domain method. The band gap for each structure is designed and observed by the plane wave expansion method. These proposed structures are designed to obtain an analyte refractive index variation of about 1–1.5 in an optical wavelength range of 1.250–1.640 µm. Accordingly, an improved sensitivity of 136.6 nm RIU‑1 and a quality factor as high as 3915 is achieved. An important feature of this structure is its very small dimensions. Such a combination of attributes makes the designed structure a promising element for label-free biosensing applications.

  14. Locus Reference Genomic sequences: An improved basis for describing human DNA variants

    Dalgleish, Raymond; Flicek, Paul; Cunningham, Fiona; Astashyn, Alex; Tully, Raymond E; Proctor, Glenn; Chen, Yuan; McLaren, William M; Larsson, Pontus; Vaughan, Brendan W; Bé roud, Christophe; Dobson, Glen; Lehvä slaiho, Heikki; Taschner, Peter EM; den Dunnen, Johan T; Devereau, Andrew; Birney, Ewan; Brookes, Anthony J; Maglott, Donna R

    2010-01-01

    As our knowledge of the complexity of gene architecture grows, and we increase our understanding of the subtleties of gene expression, the process of accurately describing disease-causing gene variants has become increasingly problematic. In part, this is due to current reference DNA sequence formats that do not fully meet present needs. Here we present the Locus Reference Genomic (LRG) sequence format, which has been designed for the specifi c purpose of gene variant reporting. The format builds on the successful National Center for Biotechnology Information (NCBI) RefSeqGene project and provides a single-fi le record containing a uniquely stable reference DNA sequence along with all relevant transcript and protein sequences essential to the description of gene variants. In principle, LRGs can be created for any organism, not just human. In addition, we recognize the need to respect legacy numbering systems for exons and amino acids and the LRG format takes account of these. We hope that widespread adoption of LRGs - which will be created and maintained by the NCBI and the European Bioinformatics Institute (EBI) - along with consistent use of the Human Genome Variation Society (HGVS)- approved variant nomenclature will reduce errors in the reporting of variants in the literature and improve communication about variants aff ecting human health. Further information can be found on the LRG web site (http://www.lrg-sequence.org). 2010 Dalgleish et al.; licensee BioMed Central Ltd.

  15. Stock characterization and improvement: DNA fingerprinting and cold tolerance of Populus and Salix clones

    Lin, Dolly; Hubbes, M.; Zsuffa, L. [Toronto Univ., ON (Canada). Faculty of Forestry; Tsarouhas, V.; Gullberg, U. [Swedish Univ. of Agricultural Sciences, Uppsala (Sweden). Dept. of Forest Genetics; Howe, G.; Hackett, W.; Gardner, G.; Furnier, G. [Minnesota Univ., St. Paul, MN (United States). Dept. of Forest Resources; Tuskan, G. [Oak Ridge National Lab., TN (United States)

    1998-12-31

    Molecular characterization of advanced-generation pedigrees and evaluation of cold tolerance are two aspects of Populus and Salix genetic improvement programmes worldwide that have traditionally received little emphasis. As such, chloroplast DNA markers were tested as a means of determining multi-generation parental contributions to hybrid progeny. Likewise, greenhouse, growth chamber and field studies were used to assess cold tolerance in Populus and Salix. Chloroplast DNA markers did not reveal size polymorphisms among four tested Populus species, but did produce sequence polymorphisms between P. maximowiczii and P. trichocarpa. Additional crosses between multiple genotypes from each species are being used to evaluate the utility of the detected polymorphism for ascertaining parentage within interspecific crosses. Short-day, cold tolerance greenhouse studies revealed that bud set date and frost damage are moderately heritable and genetically correlated in Populus. The relationship between greenhouse and field studies suggests that factors other than short days contribute to cold tolerance in Populus. In Salix, response to artificial fall conditioning varied among full-sibling families, with the fastest growing family displaying the greatest amount of cold tolerance 26 refs, 3 tabs

  16. Locus Reference Genomic sequences: An improved basis for describing human DNA variants

    Dalgleish, Raymond

    2010-04-15

    As our knowledge of the complexity of gene architecture grows, and we increase our understanding of the subtleties of gene expression, the process of accurately describing disease-causing gene variants has become increasingly problematic. In part, this is due to current reference DNA sequence formats that do not fully meet present needs. Here we present the Locus Reference Genomic (LRG) sequence format, which has been designed for the specifi c purpose of gene variant reporting. The format builds on the successful National Center for Biotechnology Information (NCBI) RefSeqGene project and provides a single-fi le record containing a uniquely stable reference DNA sequence along with all relevant transcript and protein sequences essential to the description of gene variants. In principle, LRGs can be created for any organism, not just human. In addition, we recognize the need to respect legacy numbering systems for exons and amino acids and the LRG format takes account of these. We hope that widespread adoption of LRGs - which will be created and maintained by the NCBI and the European Bioinformatics Institute (EBI) - along with consistent use of the Human Genome Variation Society (HGVS)- approved variant nomenclature will reduce errors in the reporting of variants in the literature and improve communication about variants aff ecting human health. Further information can be found on the LRG web site (http://www.lrg-sequence.org). 2010 Dalgleish et al.; licensee BioMed Central Ltd.

  17. Optimization of HPV DNA detection in urine by improving collection, storage, and extraction.

    Vorsters, A; Van den Bergh, J; Micalessi, I; Biesmans, S; Bogers, J; Hens, A; De Coster, I; Ieven, M; Van Damme, P

    2014-11-01

    The benefits of using urine for the detection of human papillomavirus (HPV) DNA have been evaluated in disease surveillance, epidemiological studies, and screening for cervical cancers in specific subgroups. HPV DNA testing in urine is being considered for important purposes, notably the monitoring of HPV vaccination in adolescent girls and young women who do not wish to have a vaginal examination. The need to optimize and standardize sampling, storage, and processing has been reported.In this paper, we examined the impact of a DNA-conservation buffer, the extraction method, and urine sampling on the detection of HPV DNA and human DNA in urine provided by 44 women with a cytologically normal but HPV DNA-positive cervical sample. Ten women provided first-void and midstream urine samples. DNA analysis was performed using real-time PCR to allow quantification of HPV and human DNA.The results showed that an optimized method for HPV DNA detection in urine should (a) prevent DNA degradation during extraction and storage, (b) recover cell-free HPV DNA in addition to cell-associated DNA, (c) process a sufficient volume of urine, and (d) use a first-void sample.In addition, we found that detectable human DNA in urine may not be a good internal control for sample validity. HPV prevalence data that are based on urine samples collected, stored, and/or processed under suboptimal conditions may underestimate infection rates.

  18. Utility of T-DNA insertion mutagenesis in arabidopsis for crop improvement

    Feldmann, K A [Arizona Univ., Tucson, AZ (United States). Dept. of Plant Sciences

    1995-11-01

    T-DNA insertion mutagenesis in Arabidopsis is an efficient and expedient method for isolating genes that may have agronomic importance in crop plants. More than 14,000 transformants, with an average of 1.5 inserts per transformant, have been generated in the laboratory at the University of Arizona, Tucson, United States of America. Assuming that the genome of Arabidopsis is 100 Mb and that insertion is random, there is a greater than 50% probability that any particular gene has been tagged in this population. These transformed lines have been screened for any visible alteration in phenotype. In addition, they have been screened under numerous selective regimes such as cold tolerance, auxin and ethylene resistance or sensitivity, and nitrate utilization, among many others. Twenty per cent of these transformants segregate for some type of mutation. Approximately 40% of these are due to T-DNA insertion. Genes have already been cloned from various developmental and biochemical pathways, including flower, root and trichome morphology, light and ethylene regulated growth, fatty acid desaturation and epicuticular wax (EW) production. Some of the isolated genes are being introduced into agronomic species in an attempt to improve specific traits. For example, two genes important in EW production have been introduced into Brassica oleracea (broccoli) to modify the nature of the EW such that engineered plants will show greater resistance to herbivorous insects. Similarly, genes involved in fatty acid desaturation, male sterility, height or nitrogen metabolism, to mention only a few, could also be utilized to improve certain crop traits via genetic engineering. Several of these examples are described. (author). 57 refs, 1 fig., 2 tabs.

  19. A comparative study of enzyme immobilization strategies for multi-walled carbon nanotube glucose biosensors

    Shi, Jin; Jaroch, David; Rickus, Jenna L; Marshall Porterfield, D [Weldon School of Biomedical Engineering, Purdue University (United States); Claussen, Jonathan C; Ul Haque, Aeraj; Diggs, Alfred R [Physiological Sensing Facility, Bindley Bioscience Center and Birck Nanotechnology Center, Purdue University (United States); McLamore, Eric S [Department of Agricultural and Biological Engineering, University of Florida (United States); Calvo-Marzal, Percy, E-mail: porterf@purdue.edu [Department of Chemistry, Purdue University (United States)

    2011-09-02

    This work addresses the comparison of different strategies for improving biosensor performance using nanomaterials. Glucose biosensors based on commonly applied enzyme immobilization approaches, including sol-gel encapsulation approaches and glutaraldehyde cross-linking strategies, were studied in the presence and absence of multi-walled carbon nanotubes (MWNTs). Although direct comparison of design parameters such as linear range and sensitivity is intuitive, this comparison alone is not an accurate indicator of biosensor efficacy, due to the wide range of electrodes and nanomaterials available for use in current biosensor designs. We proposed a comparative protocol which considers both the active area available for transduction following nanomaterial deposition and the sensitivity. Based on the protocol, when no nanomaterials were involved, TEOS/GOx biosensors exhibited the highest efficacy, followed by BSA/GA/GOx and TMOS/GOx biosensors. A novel biosensor containing carboxylated MWNTs modified with glucose oxidase and an overlying TMOS layer demonstrated optimum efficacy in terms of enhanced current density (18.3 {+-} 0.5 {mu}A mM{sup -1} cm{sup -2}), linear range (0.0037-12 mM), detection limit (3.7 {mu}M), coefficient of variation (2%), response time (less than 8 s), and stability/selectivity/reproducibility. H{sub 2}O{sub 2} response tests demonstrated that the most possible reason for the performance enhancement was an increased enzyme loading. This design is an excellent platform for versatile biosensing applications.

  20. A Study of Wearable Bio-Sensor Technologies and Applications in Healthcare

    Amir Mehmood

    2017-06-01

    Full Text Available In today’s world the rapid advancements in Micro-Electromechanical Systems (MEMS and Nano technology have improved almost all the aspects of daily life routine with the help of different smart devices such as smart phones, compact electronic devices etc. The prime example of these emerging developments is the development of wireless sensors for healthcare procedures. One kind of these sensors is wearable bio-sensors. In this paper, the technologies of two types of bio-sensors (ECG, EMG are investigated and also compared with traditional ECG, EMG equipment. We have taken SHIMMERTM wireless sensor platform as an example of wearable biosensors technology. We have investigated the systems developed for analysis techniques with SHIMMERTM ECG and EMG wearable bio-sensors and these biosensors are used in continuous remote monitoring. For example, applications in continuous health monitoring of elderly people, critical chronic patients and Fitness & Fatigue observations. Nevertheless, early fall detection in older adults and weak patients, treatment efficacy assessment. This study not only provides the basic concepts of wearable wireless bio-sensors networks (WBSN, but also provides basic knowledge of different sensor platforms available for patient’s remote monitoring. Also various healthcare applications by using bio-sensors are discussed and in last comparison with traditional ECG and EMG is presented.

  1. Gold nanostar-enhanced surface plasmon resonance biosensor based on carboxyl-functionalized graphene oxide

    Wu, Qiong; Sun, Ying; Ma, Pinyi; Zhang, Di; Li, Shuo; Wang, Xinghua; Song, Daqian

    2016-01-01

    A new high-sensitivity surface plasmon resonance (SPR) biosensor based on biofunctional gold nanostars (AuNSs) and carboxyl-functionalized graphene oxide (cGO) sheets was described. Compared with spherical gold nanoparticles (AuNPs), the anisotropic structure of AuNSs, which concentrates the electric charge density on its sharp tips, could enhance the local electromagnetic field and the electronic coupling effect significantly. cGO was obtained by a diazonium reaction of graphene oxide (GO) with 4-aminobenzoic acid. Compared with GO, cGO could immobilize more antibodies due to the abundant carboxylic groups on its surface. Testing results show that there are fairly large improvements in the analytical performance of the SPR biosensor using cGO/AuNSs-antigen conjugate, and the detection limit of the proposed biosensor is 0.0375 μg mL"−"1, which is 32 times lower than that of graphene oxide-based biosensor. - Highlights: • A sensitive and versatile SPR biosensor was constructed for detection of pig IgG. • Biofunctional gold nanostars were used to amplify the response signals. • The strategy employed carboxyl-functionalized graphene oxide as biosensing substrate. • The detection limit of the proposed biosensor is 32 times lower than that of graphene oxide-based biosensor.

  2. A comparative study of enzyme immobilization strategies for multi-walled carbon nanotube glucose biosensors

    Shi, Jin; Jaroch, David; Rickus, Jenna L; Marshall Porterfield, D; Claussen, Jonathan C; Ul Haque, Aeraj; Diggs, Alfred R; McLamore, Eric S; Calvo-Marzal, Percy

    2011-01-01

    This work addresses the comparison of different strategies for improving biosensor performance using nanomaterials. Glucose biosensors based on commonly applied enzyme immobilization approaches, including sol-gel encapsulation approaches and glutaraldehyde cross-linking strategies, were studied in the presence and absence of multi-walled carbon nanotubes (MWNTs). Although direct comparison of design parameters such as linear range and sensitivity is intuitive, this comparison alone is not an accurate indicator of biosensor efficacy, due to the wide range of electrodes and nanomaterials available for use in current biosensor designs. We proposed a comparative protocol which considers both the active area available for transduction following nanomaterial deposition and the sensitivity. Based on the protocol, when no nanomaterials were involved, TEOS/GOx biosensors exhibited the highest efficacy, followed by BSA/GA/GOx and TMOS/GOx biosensors. A novel biosensor containing carboxylated MWNTs modified with glucose oxidase and an overlying TMOS layer demonstrated optimum efficacy in terms of enhanced current density (18.3 ± 0.5 μA mM -1 cm -2 ), linear range (0.0037-12 mM), detection limit (3.7 μM), coefficient of variation (2%), response time (less than 8 s), and stability/selectivity/reproducibility. H 2 O 2 response tests demonstrated that the most possible reason for the performance enhancement was an increased enzyme loading. This design is an excellent platform for versatile biosensing applications.

  3. Biosensors based on enzyme field-effect transistors for determination of some substrates and inhibitors.

    Dzyadevych, Sergei V; Soldatkin, Alexey P; Korpan, Yaroslav I; Arkhypova, Valentyna N; El'skaya, Anna V; Chovelon, Jean-Marc; Martelet, Claude; Jaffrezic-Renault, Nicole

    2003-10-01

    This paper is a review of the authors' publications concerning the development of biosensors based on enzyme field-effect transistors (ENFETs) for direct substrates or inhibitors analysis. Such biosensors were designed by using immobilised enzymes and ion-selective field-effect transistors (ISFETs). Highly specific, sensitive, simple, fast and cheap determination of different substances renders them as promising tools in medicine, biotechnology, environmental control, agriculture and the food industry. The biosensors based on ENFETs and direct enzyme analysis for determination of concentrations of different substrates (glucose, urea, penicillin, formaldehyde, creatinine, etc.) have been developed and their laboratory prototypes were fabricated. Improvement of the analytical characteristics of such biosensors may be achieved by using a differential mode of measurement, working solutions with different buffer concentrations and specific agents, negatively or positively charged additional membranes, or genetically modified enzymes. These approaches allow one to decrease the effect of the buffer capacity influence on the sensor response in an aim to increase the sensitivity of the biosensors and to extend their dynamic ranges. Biosensors for the determination of concentrations of different toxic substances (organophosphorous pesticides, heavy metal ions, hypochlorite, glycoalkaloids, etc.) were designed on the basis of reversible and/or irreversible enzyme inhibition effect(s). The conception of an enzymatic multibiosensor for the determination of different toxic substances based on the enzyme inhibition effect is also described. We will discuss the respective advantages and disadvantages of biosensors based on the ENFETs developed and also demonstrate their practical application.

  4. Gold nanostar-enhanced surface plasmon resonance biosensor based on carboxyl-functionalized graphene oxide

    Wu, Qiong; Sun, Ying; Ma, Pinyi; Zhang, Di; Li, Shuo; Wang, Xinghua; Song, Daqian, E-mail: songdq@jlu.edu.cn

    2016-03-24

    A new high-sensitivity surface plasmon resonance (SPR) biosensor based on biofunctional gold nanostars (AuNSs) and carboxyl-functionalized graphene oxide (cGO) sheets was described. Compared with spherical gold nanoparticles (AuNPs), the anisotropic structure of AuNSs, which concentrates the electric charge density on its sharp tips, could enhance the local electromagnetic field and the electronic coupling effect significantly. cGO was obtained by a diazonium reaction of graphene oxide (GO) with 4-aminobenzoic acid. Compared with GO, cGO could immobilize more antibodies due to the abundant carboxylic groups on its surface. Testing results show that there are fairly large improvements in the analytical performance of the SPR biosensor using cGO/AuNSs-antigen conjugate, and the detection limit of the proposed biosensor is 0.0375 μg mL{sup −1}, which is 32 times lower than that of graphene oxide-based biosensor. - Highlights: • A sensitive and versatile SPR biosensor was constructed for detection of pig IgG. • Biofunctional gold nanostars were used to amplify the response signals. • The strategy employed carboxyl-functionalized graphene oxide as biosensing substrate. • The detection limit of the proposed biosensor is 32 times lower than that of graphene oxide-based biosensor.

  5. A comparative study of enzyme immobilization strategies for multi-walled carbon nanotube glucose biosensors

    Shi, Jin; Claussen, Jonathan C.; McLamore, Eric S.; Haque, Aeraj ul; Jaroch, David; Diggs, Alfred R.; Calvo-Marzal, Percy; Rickus, Jenna L.; Porterfield, D. Marshall

    2011-09-01

    This work addresses the comparison of different strategies for improving biosensor performance using nanomaterials. Glucose biosensors based on commonly applied enzyme immobilization approaches, including sol-gel encapsulation approaches and glutaraldehyde cross-linking strategies, were studied in the presence and absence of multi-walled carbon nanotubes (MWNTs). Although direct comparison of design parameters such as linear range and sensitivity is intuitive, this comparison alone is not an accurate indicator of biosensor efficacy, due to the wide range of electrodes and nanomaterials available for use in current biosensor designs. We proposed a comparative protocol which considers both the active area available for transduction following nanomaterial deposition and the sensitivity. Based on the protocol, when no nanomaterials were involved, TEOS/GOx biosensors exhibited the highest efficacy, followed by BSA/GA/GOx and TMOS/GOx biosensors. A novel biosensor containing carboxylated MWNTs modified with glucose oxidase and an overlying TMOS layer demonstrated optimum efficacy in terms of enhanced current density (18.3 ± 0.5 µA mM - 1 cm - 2), linear range (0.0037-12 mM), detection limit (3.7 µM), coefficient of variation (2%), response time (less than 8 s), and stability/selectivity/reproducibility. H2O2 response tests demonstrated that the most possible reason for the performance enhancement was an increased enzyme loading. This design is an excellent platform for versatile biosensing applications.

  6. Nanopatterned Bulk Metallic Glass Biosensors.

    Kinser, Emily R; Padmanabhan, Jagannath; Yu, Roy; Corona, Sydney L; Li, Jinyang; Vaddiraju, Sagar; Legassey, Allen; Loye, Ayomiposi; Balestrini, Jenna; Solly, Dawson A; Schroers, Jan; Taylor, André D; Papadimitrakopoulos, Fotios; Herzog, Raimund I; Kyriakides, Themis R

    2017-12-22

    Nanopatterning as a surface area enhancement method has the potential to increase signal and sensitivity of biosensors. Platinum-based bulk metallic glass (Pt-BMG) is a biocompatible material with electrical properties conducive for biosensor electrode applications, which can be processed in air at comparably low temperatures to produce nonrandom topography at the nanoscale. Work presented here employs nanopatterned Pt-BMG electrodes functionalized with glucose oxidase enzyme to explore the impact of nonrandom and highly reproducible nanoscale surface area enhancement on glucose biosensor performance. Electrochemical measurements including cyclic voltammetry (CV) and amperometric voltammetry (AV) were completed to compare the performance of 200 nm Pt-BMG electrodes vs Flat Pt-BMG control electrodes. Glucose dosing response was studied in a range of 2 mM to 10 mM. Effective current density dynamic range for the 200 nm Pt-BMG was 10-12 times greater than that of the Flat BMG control. Nanopatterned electrode sensitivity was measured to be 3.28 μA/cm 2 /mM, which was also an order of magnitude greater than the flat electrode. These results suggest that nonrandom nanotopography is a scalable and customizable engineering tool which can be integrated with Pt-BMGs to produce biocompatible biosensors with enhanced signal and sensitivity.

  7. An electromagnetic system for biosensors

    2008-01-01

    The invention relates to an electromagnetic system for biosensors, in which the system can switch quickly between high magnetic gradients, without the need of movement of mech. elements. This is realized by two independent emu which are sepd. in the region of the pole shoes over a gap, in which a

  8. Development of Biosensors From Graphene

    高瑞红; 孙红; 李霄寒; 于冲

    2017-01-01

    Graphene's success has stimulated great interest and research in the synthesis and characterization of graphene -like 2D materials, single and few -atom -thick layers of van der Waals materials, which show fascinating and technologically useful properties.This review presents an overview of recent electrochemical sensors and biosensors based on graphene and on graphene-like 2D materials.

  9. Biosensors and multiple mycotoxin analysis

    Gaag, B. van der; Spath, S.; Dietrich, H.; Stigter, E.; Boonzaaijer, G.; Osenbruggen, T. van; Koopal, K.

    2003-01-01

    An immunochemical biosensor assay for the detection of multiple mycotoxins in a sample is described.The inhibition assay is designed to measure four different mycotoxins in a single measurement, following extraction, sample clean-up and incubation with an appropriate cocktail of anti-mycotoxin

  10. Use of radioisotopes in agriculture: DNA based molecular markers in crop improvement

    Sivaramakrishnan, S.; Seetharama, N.; Kannan, Seetha

    2001-01-01

    Agriculture has always benefited from the use of radioisotopes in many ways. In the beginning radioisotopes were mostly used for physiological studies to measure photosynthetic efficiency, nutrient uptake, and for mutation breeding. Radioisotopes have now become a part of the biotechnological tools that are being increasingly used in improving crops and production systems. The tools of biotechnology are being increasingly used to hasten breeding and address problems of biotic and abiotic stresses. Some of the non-radioactive methods have replaced radiotracer techniques and thus led to automation often at high cost. However, still there remain many applications where radioisotopes seem almost indispensable. For some of the applications like comparative genome mapping, the confirmation of transgenics, and establishment of gene copy number, use of RFLP with radioisotopes is essential. The following research areas at ICRISAT use radioisotopes: (1) physiological basis of adaptation to abiotic stresses (ii) development and use of appropriate DNA markers crop improvement; (iii) characterization of cytoplasmic male sterile systems and genetic diversity of breeding materials, land races and the wild relatives and (iv) molecular basis of disease resistance; (v) comparative genome mapping across cereals, (vi) isolation and characterization of genes of potential value to genetic improvement and (vii) verification of genetic transformation events. (author)

  11. Improved Methods of Carnivore Faecal Sample Preservation, DNA Extraction and Quantification for Accurate Genotyping of Wild Tigers

    Harika, Katakam; Mahla, Ranjeet Singh; Shivaji, Sisinthy

    2012-01-01

    Background Non-invasively collected samples allow a variety of genetic studies on endangered and elusive species. However due to low amplification success and high genotyping error rates fewer samples can be identified up to the individual level. Number of PCRs needed to obtain reliable genotypes also noticeably increase. Methods We developed a quantitative PCR assay to measure and grade amplifiable nuclear DNA in feline faecal extracts. We determined DNA degradation in experimentally aged faecal samples and tested a suite of pre-PCR protocols to considerably improve DNA retrieval. Results Average DNA concentrations of Grade I, II and III extracts were 982pg/µl, 9.5pg/µl and 0.4pg/µl respectively. Nearly 10% of extracts had no amplifiable DNA. Microsatellite PCR success and allelic dropout rates were 92% and 1.5% in Grade I, 79% and 5% in Grade II, and 54% and 16% in Grade III respectively. Our results on experimentally aged faecal samples showed that ageing has a significant effect on quantity and quality of amplifiable DNA (pDNA degradation occurs within 3 days of exposure to direct sunlight. DNA concentrations of Day 1 samples stored by ethanol and silica methods for a month varied significantly from fresh Day 1 extracts (p0.05). DNA concentrations of fresh tiger and leopard faecal extracts without addition of carrier RNA were 816.5pg/µl (±115.5) and 690.1pg/µl (±207.1), while concentrations with addition of carrier RNA were 49414.5pg/µl (±9370.6) and 20982.7pg/µl (±6835.8) respectively. Conclusions Our results indicate that carnivore faecal samples should be collected as freshly as possible, are better preserved by two-step method and should be extracted with addition of carrier RNA. We recommend quantification of template DNA as this facilitates several downstream protocols. PMID:23071624

  12. A novel method of selective removal of human DNA improves PCR sensitivity for detection of Salmonella Typhi in blood samples.

    Zhou, Liqing; Pollard, Andrew J

    2012-07-27

    Enteric fever is a major public health problem, causing an estimated 21million new cases and 216,000 or more deaths every year. Current diagnosis of the disease is inadequate. Blood culture only identifies 45 to 70% of the cases and is time-consuming. Serological tests have very low sensitivity and specificity. Clinical samples obtained for diagnosis of enteric fever in the field generally have blood, so that even PCR-based methods, widely used for detection of other infectious diseases, are not a straightforward option in typhoid diagnosis. We developed a novel method to enrich target bacterial DNA by selective removal of human DNA from blood samples, enhancing the sensitivity of PCR tests. This method offers the possibility of improving PCR assays directly using clinical specimens for diagnosis of this globally important infectious disease. Blood samples were mixed with ox bile for selective lysis of human blood cells and the released human DNA was then digested with addition of bile resistant micrococcal nuclease. The intact Salmonella Typhi bacteria were collected from the specimen by centrifugation and the DNA extracted with QIAamp DNA mini kit. The presence of Salmonella Typhi bacteria in blood samples was detected by PCR with the fliC-d gene of Salmonella Typhi as the target. Micrococcal nuclease retained activity against human blood DNA in the presence of up to 9% ox bile. Background human DNA was dramatically removed from blood samples through the use of ox bile lysis and micrococcal nuclease for removal of mammalian DNA. Consequently target Salmonella Typhi DNA was enriched in DNA preparations and the PCR sensitivity for detection of Salmonella Typhi in spiked blood samples was enhanced by 1,000 fold. Use of a combination of selective ox-bile blood cell lysis and removal of human DNA with micrococcal nuclease significantly improves PCR sensitivity and offers a better option for improved typhoid PCR assays directly using clinical specimens in diagnosis of

  13. A lateral flow biosensor for detection of single nucleotide polymorphism by circular strand displacement reaction.

    Xiao, Zhuo; Lie, Puchang; Fang, Zhiyuan; Yu, Luxin; Chen, Junhua; Liu, Jie; Ge, Chenchen; Zhou, Xuemeng; Zeng, Lingwen

    2012-09-04

    A lateral flow biosensor for detection of single nucleotide polymorphism based on circular strand displacement reaction (CSDPR) has been developed. Taking advantage of high fidelity of T4 DNA ligase, signal amplification by CSDPR, and the optical properties of gold nanoparticles, this assay has reached a detection limit of 0.01 fM.

  14. Denaturation strategies for detection of double stranded PCR products on GMR magnetic biosensor array

    Rizzi, Giovanni; Lee, Jung-Rok; Guldberg, Per

    2017-01-01

    Microarrays and other surface-based nucleic acid detection schemes rely on the hybridization of the target to surface-bound detection probes. We present the first comparison of two strategies to detect DNA using a giant magnetoresistive (GMR) biosensor platform starting from an initially double...

  15. Printable Electrochemical Biosensors: A Focus on Screen-Printed Electrodes and Their Application

    Keiichiro Yamanaka

    2016-10-01

    Full Text Available In this review we present electrochemical biosensor developments, focusing on screen-printed electrodes (SPEs and their applications. In particular, we discuss how SPEs enable simple integration, and the portability needed for on-field applications. First, we briefly discuss the general concept of biosensors and quickly move on to electrochemical biosensors. Drawing from research undertaken in this area, we cover the development of electrochemical DNA biosensors in great detail. Through specific examples, we describe the fabrication and surface modification of printed electrodes for sensitive and selective detection of targeted DNA sequences, as well as integration with reverse transcription-polymerase chain reaction (RT-PCR. For a more rounded approach, we also touch on electrochemical immunosensors and enzyme-based biosensors. Last, we present some electrochemical devices specifically developed for use with SPEs, including USB-powered compact mini potentiostat. The coupling demonstrates the practical use of printable electrode technologies for application at point-of-use. Although tremendous advances have indeed been made in this area, a few challenges remain. One of the main challenges is application of these technologies for on-field analysis, which involves complicated sample matrices.

  16. Experimental conditions improving in-solution target enrichment for ancient DNA

    Cruz-Dávalos, Diana I.; Llamas, Bastien; Gaunitz, Charleen

    2017-01-01

    High-throughput sequencing has dramatically fostered ancient DNA research in recent years. Shotgun sequencing, however, does not necessarily appear as the best-suited approach due to the extensive contamination of samples with exogenous environmental microbial DNA. DNA capture-enrichment methods ...

  17. Quantification of Cooperativity in Heterodimer-DNA Binding Improves the Accuracy of Binding Specificity Models*

    Isakova, Alina; Berset, Yves; Hatzimanikatis, Vassily; Deplancke, Bart

    2016-01-01

    Many transcription factors (TFs) have the ability to cooperate on DNA elements as heterodimers. Despite the significance of TF heterodimerization for gene regulation, a quantitative understanding of cooperativity between various TF dimer partners and its impact on heterodimer DNA binding specificity models is still lacking. Here, we used a novel integrative approach, combining microfluidics-steered measurements of dimer-DNA assembly with mechanistic modeling of the implicated protein-protein-DNA interactions to quantitatively interrogate the cooperative DNA binding behavior of the adipogenic peroxisome proliferator-activated receptor γ (PPARγ):retinoid X receptor α (RXRα) heterodimer. Using the high throughput MITOMI (mechanically induced trapping of molecular interactions) platform, we derived equilibrium DNA binding data for PPARγ, RXRα, as well as the PPARγ:RXRα heterodimer to more than 300 target DNA sites and variants thereof. We then quantified cooperativity underlying heterodimer-DNA binding and derived an integrative heterodimer DNA binding constant. Using this cooperativity-inclusive constant, we were able to build a heterodimer-DNA binding specificity model that has superior predictive power than the one based on a regular one-site equilibrium. Our data further revealed that individual nucleotide substitutions within the target site affect the extent of cooperativity in PPARγ:RXRα-DNA binding. Our study therefore emphasizes the importance of assessing cooperativity when generating DNA binding specificity models for heterodimers. PMID:26912662

  18. Quantification of Cooperativity in Heterodimer-DNA Binding Improves the Accuracy of Binding Specificity Models.

    Isakova, Alina; Berset, Yves; Hatzimanikatis, Vassily; Deplancke, Bart

    2016-05-06

    Many transcription factors (TFs) have the ability to cooperate on DNA elements as heterodimers. Despite the significance of TF heterodimerization for gene regulation, a quantitative understanding of cooperativity between various TF dimer partners and its impact on heterodimer DNA binding specificity models is still lacking. Here, we used a novel integrative approach, combining microfluidics-steered measurements of dimer-DNA assembly with mechanistic modeling of the implicated protein-protein-DNA interactions to quantitatively interrogate the cooperative DNA binding behavior of the adipogenic peroxisome proliferator-activated receptor γ (PPARγ):retinoid X receptor α (RXRα) heterodimer. Using the high throughput MITOMI (mechanically induced trapping of molecular interactions) platform, we derived equilibrium DNA binding data for PPARγ, RXRα, as well as the PPARγ:RXRα heterodimer to more than 300 target DNA sites and variants thereof. We then quantified cooperativity underlying heterodimer-DNA binding and derived an integrative heterodimer DNA binding constant. Using this cooperativity-inclusive constant, we were able to build a heterodimer-DNA binding specificity model that has superior predictive power than the one based on a regular one-site equilibrium. Our data further revealed that individual nucleotide substitutions within the target site affect the extent of cooperativity in PPARγ:RXRα-DNA binding. Our study therefore emphasizes the importance of assessing cooperativity when generating DNA binding specificity models for heterodimers. © 2016 by The American Society for Biochemistry and Molecular Biology, Inc.

  19. A High-Content Assay for Biosensor Validation and for Examining Stimuli that Affect Biosensor Activity.

    Slattery, Scott D; Hahn, Klaus M

    2014-12-01

    Biosensors are valuable tools used to monitor many different protein behaviors in vivo. Demand for new biosensors is high, but their development and characterization can be difficult. During biosensor design, it is necessary to evaluate the effects of different biosensor structures on specificity, brightness, and fluorescence responses. By co-expressing the biosensor with upstream proteins that either stimulate or inhibit the activity reported by the biosensor, one can determine the difference between the biosensor's maximally activated and inactivated state, and examine response to specific proteins. We describe here a method for biosensor validation in a 96-well plate format using an automated microscope. This protocol produces dose-response curves, enables efficient examination of many parameters, and unlike cell suspension assays, allows visual inspection (e.g., for cell health and biosensor or regulator localization). Optimization of single-chain and dual-chain Rho GTPase biosensors is addressed, but the assay is applicable to any biosensor that can be expressed or otherwise loaded in adherent cells. The assay can also be used for purposes other than biosensor validation, using a well-characterized biosensor as a readout for effects of upstream molecules. Copyright © 2014 John Wiley & Sons, Inc.

  20. Diabetes mellitus: biosensors for research and management.

    Turner, A P; Pickup, J C

    1985-01-01

    The condition of diabetes mellitus is described with particular reference to the parameters that it would be desirable to monitor in order to improve management and understanding of the disease. Previous attention has largely focused on analysis of glucose, but many other intermediates of carbohydrate, fat and protein metabolism are deranged in diabetes and may be alternative measures of control. The need for laboratory analysers, self-monitoring, closed-loop devices and alarms are detailed and the problems associated with implantable sensors discussed. Progress in the development of biosensors is reviewed using glucose sensors as the main example. Electrochemical, optoelectronic and calorimetric approaches to sensing are considered and it is concluded that configurations based either on hydrogen peroxide detection or on mediated electron transfer are most likely to provide a raid route to in vivo monitoring. The extension of biosensor technology to tackle other important substrates is discussed, the principal hurdle to success being seen as the lack of long-term stability of the biological component.

  1. Tyrosinase-Based Biosensors for Selective Dopamine Detection

    Monica Florescu

    2017-06-01

    Full Text Available A novel tyrosinase-based biosensor was developed for the detection of dopamine (DA. For increased selectivity, gold electrodes were previously modified with cobalt (II-porphyrin (CoP film with electrocatalytic activity, to act both as an electrochemical mediator and an enzyme support, upon which the enzyme tyrosinase (Tyr was cross-linked. Differential pulse voltammetry was used for electrochemical detection and the reduction current of dopamine-quinone was measured as a function of dopamine concentration. Our experiments demonstrated that the presence of CoP improves the selectivity of the electrode towards dopamine in the presence of ascorbic acid (AA, with a linear trend of concentration dependence in the range of 2–30 µM. By optimizing the conditioning parameters, a separation of 130 mV between the peak potentials for ascorbic acid AA and DA was obtained, allowing the selective detection of DA. The biosensor had a sensitivity of 1.22 ± 0.02 µA·cm−2·µM−1 and a detection limit of 0.43 µM. Biosensor performances were tested in the presence of dopamine medication, with satisfactory results in terms of recovery (96%, and relative standard deviation values below 5%. These results confirmed the applicability of the biosensors in real samples such as human urine and blood serum.

  2. Development and testing of a fluorescence biosensor for glucose sensing

    Aloraefy, Mamdouh; Pfefer, Joshua; Ramella-Roman, Jessica; Sapsford, Kim

    2012-06-01

    Rapid, accurate, and minimally-invasive biosensors for glucose measurement have the potential to enhance management of diabetes mellitus and improve patient outcome in intensive care settings. Recent studies have indicated that implantable biosensors based on Förster Resonance Energy Transfer (FRET) can provide high sensitivity in quantifying glucose concentrations. However, standard approaches for determining the potential for interference from other biological constituents have not been established. The aim of this work was to design and optimize a FRET-based glucose sensor and assess its specificity to glucose. A sensor based on competitive binding between concanavalin A and dextran, labeled with long-wavelength acceptor and donor fluorophores, was developed. This process included optimization of dextran molecular weight and donor concentration, acceptor to donor ratio, and hydrogel concentration, as well as the number of polymer layers for encapsulation. The biosensor performance was characterized in terms of its response to clinically relevant glucose concentrations. The potential for interference and the development of test methods to evaluate this effect were studied using a potential clinical interferent, maltose. Results indicated that our biosensor had a prediction accuracy of better than 11% and that the robustness to maltose was highly dependent on glucose level.

  3. Nanomaterials-based enzyme electrochemical biosensors operating through inhibition for biosensing applications.

    Kurbanoglu, Sevinc; Ozkan, Sibel A; Merkoçi, Arben

    2017-03-15

    In recent years great progress has been made in applying nanomaterials to design novel biosensors. Use of nanomaterials offers to biosensing platforms exceptional optical, electronic and magnetic properties. Nanomaterials can increase the surface of the transducing area of the sensors that in turn bring an increase in catalytic behaviors. They have large surface-to-volume ratio, controlled morphology and structure that also favor miniaturization, an interesting advantage when the sample volume is a critical issue. Biosensors have great potential for achieving detect-to-protect devices: devices that can be used in detections of pollutants and other treating compounds/analytes (drugs) protecting citizens' life. After a long term focused scientific and financial efforts/supports biosensors are expected now to fulfill their promise such as being able to perform sampling and analysis of complex samples with interest for clinical or environment fields. Among all types of biosensors, enzymatic biosensors, the most explored biosensing devices, have an interesting property, the inherent inhibition phenomena given the enzyme-substrate complex formation. The exploration of such phenomena is making remarkably important their application as research and applied tools in diagnostics. Different inhibition biosensor systems based on nanomaterials modification has been proposed and applied. The role of nanomaterials in inhibition-based biosensors for the analyses of different groups of drugs as well as contaminants such as pesticides, phenolic compounds and others, are discussed in this review. This deep analysis of inhibition-based biosensors that employ nanomaterials will serve researchers as a guideline for further improvements and approaching of these devices to real sample applications so as to reach society needs and such biosensor market demands. Copyright © 2016 Elsevier B.V. All rights reserved.

  4. Development of phage/antibody immobilized magnetostrictive biosensors

    Fu, Liling

    There is an urgent need for biosensors that are able to detect and quantify the presence of a small amount of pathogens in a real-time manner accurately and quickly to guide prevention efforts and assay food and water quality. Acoustic wave (AW) devices, whose performance is defined by mass sensitivity (Sm) and quality factor (Q value), have been extensively studied as high performance biosensor platforms. However, current AW devices still face some challenges such as the difficulty to be employed in liquid and low Q value in practical applications. The objective of this research is to develop magnetostrictive sensors which include milli/microcantilever type (MSMC) and particle type (MSP). Compared to other AW devices, MSMC exhibits the following advantages: (1) wireless/remote driving and sensing; (2) easy to fabricate; (3) works well in liquid; (4) exhibits a high Q value (> 500 in air). The fundamental study of the damping effect on MSMCs from the surrounding media including air and liquids were conducted to improve the Q value of MSMCs. The experiment results show that the Q value is dependent on the properties of surrounding media (e.g. viscosity, density), the geometry of the MSMCs, and the harmonic mode on the resonance behavior of MSMCs, etc. The phage-coated MSMC has high specificity and sensitivity even while used in water with a low concentration of targeted bacteria. Two currently developed phages, JRB7 and E2, respectively respond to Bacillus anthracis spores and Salmonella typhimurium, were employed as bio-recognition elements in this research. The phage-immobilized MSMC biosensors exhibited high performance and detection of limit was 5 x 104 cfu/ml for the MSMC in size of 1.4 x 0.8 x 0.035 mm. The MSMC-based biosensors were indicated as a very potential method for in-situ monitoring of the biological quality in water. The MSP combine antibody was used to detect Staphylococcus aureus in this experiment. The interface between MSPs and antibody was

  5. Improving the yield and quality of DNA isolated from white-rot fungi.

    Kuhad, R C; Kapoor, R K; Lal, R

    2004-01-01

    A new simple method used to eliminate polysaccharides that cause problems during DNA isolation was established for 6 different white-rot fungi using 1% hexadecyltrimethylammonium bromide (CTAB) as wash buffer and followed by centrifugation. Variation in the DNA yield and quality was ascertained using precipitating agents, detergents and cell-wall-hydrolyzing chitinase. Considerable amount of exopolysaccharides from fungal biomass was removed with the use of 1% CTAB wash buffer followed by centrifugation. The DNA varied in terms of yield and quality. For the DNA extraction use of 2% SDS in extraction buffer worked best for Pycnoporus cinnabarinus, Cyathus bulleri, Cyathus striatus and Cyathus stercoreus, while 2% CTAB worked best for Phanerochaete chrysosporium and Pleurotus ostreatus. Elimination of phenol and use of absolute ethanol for precipitating DNA resulted in good yield and quality of DNA. This DNA was amenable to restriction endonuclease digestion.

  6. Recent Progress in Electrochemical Biosensors for Glycoproteins

    Uichi Akiba

    2016-12-01

    Full Text Available This review provides an overview of recent progress in the development of electrochemical biosensors for glycoproteins. Electrochemical glycoprotein sensors are constructed by combining metal and carbon electrodes with glycoprotein-selective binding elements including antibodies, lectin, phenylboronic acid and molecularly imprinted polymers. A recent trend in the preparation of glycoprotein sensors is the successful use of nanomaterials such as graphene, carbon nanotube, and metal nanoparticles. These nanomaterials are extremely useful for improving the sensitivity of glycoprotein sensors. This review focuses mainly on the protocols for the preparation of glycoprotein sensors and the materials used. Recent improvements in glycoprotein sensors are discussed by grouping the sensors into several categories based on the materials used as recognition elements.

  7. TREHALOSE-BASED ADDITIVE IMPROVED INTER-PRIMER BINDING SITE REACTIONS FOR DNA ISOLATED FROM RECALCITRANT PLANTS

    Veronika Lancíková

    2014-02-01

    Full Text Available Trehalose-based (TBT-PAR additive was tested in order to optimize PCR amplification for DNA isolated from recalcitrant plants. Retrotransposon-based inter-primer binding site reactions were significantly improved with TBT-PAR solution using genomic DNA isolated from flax (Linum usitatissimum L., genotypes Kyivskyi, Bethune grown in radio-contaminated and non-radioactive remediated Chernobyl experimental fields. Additionally, similar improvements were observed using 19 recalcitrant genotypes of maize (Zea mays L. and three genotypes of yacon (Smallanthus sonchifolius, Poepp. et Endl., genotypes PER05, ECU45, BOL22 grown in standard field conditions.

  8. cDNA sequencing improves the detection of P53 missense mutations in colorectal cancer

    Szybka, Malgorzata; Kordek, Radzislaw; Zakrzewska, Magdalena; Rieske, Piotr; Pasz-Walczak, Grazyna; Kulczycka-Wojdala, Dominika; Zawlik, Izabela; Stawski, Robert; Jesionek-Kupnicka, Dorota; Liberski, Pawel P

    2009-01-01

    Recently published data showed discrepancies beteween P53 cDNA and DNA sequencing in glioblastomas. We hypothesised that similar discrepancies may be observed in other human cancers. To this end, we analyzed 23 colorectal cancers for P53 mutations and gene expression using both DNA and cDNA sequencing, real-time PCR and immunohistochemistry. We found P53 gene mutations in 16 cases (15 missense and 1 nonsense). Two of the 15 cases with missense mutations showed alterations based only on cDNA, and not DNA sequencing. Moreover, in 6 of the 15 cases with a cDNA mutation those mutations were difficult to detect in the DNA sequencing, so the results of DNA analysis alone could be misinterpreted if the cDNA sequencing results had not also been available. In all those 15 cases, we observed a higher ratio of the mutated to the wild type template by cDNA analysis, but not by the DNA analysis. Interestingly, a similar overexpression of P53 mRNA was present in samples with and without P53 mutations. In terms of colorectal cancer, those discrepancies might be explained under three conditions: 1, overexpression of mutated P53 mRNA in cancer cells as compared with normal cells; 2, a higher content of cells without P53 mutation (normal cells and cells showing K-RAS and/or APC but not P53 mutation) in samples presenting P53 mutation; 3, heterozygous or hemizygous mutations of P53 gene. Additionally, for heterozygous mutations unknown mechanism(s) causing selective overproduction of mutated allele should also be considered. Our data offer new clues for studying discrepancy in P53 cDNA and DNA sequencing analysis

  9. Detection of Target ssDNA Using a Microfabricated Hall Magnetometer with Correlated Optical Readout

    Steven M. Hira

    2012-01-01

    Full Text Available Sensing biological agents at the genomic level, while enhancing the response time for biodetection over commonly used, optics-based techniques such as nucleic acid microarrays or enzyme-linked immunosorbent assays (ELISAs, is an important criterion for new biosensors. Here, we describe the successful detection of a 35-base, single-strand nucleic acid target by Hall-based magnetic transduction as a mimic for pathogenic DNA target detection. The detection platform has low background, large signal amplification following target binding and can discriminate a single, 350 nm superparamagnetic bead labeled with DNA. Detection of the target sequence was demonstrated at 364 pM (<2 target DNA strands per bead target DNA in the presence of 36 μM nontarget (noncomplementary DNA (<10 ppm target DNA using optical microscopy detection on a GaAs Hall mimic. The use of Hall magnetometers as magnetic transduction biosensors holds promise for multiplexing applications that can greatly improve point-of-care (POC diagnostics and subsequent medical care.

  10. Multiple data sources improve DNA-based mark-recapture population estimates of grizzly bears.

    Boulanger, John; Kendall, Katherine C; Stetz, Jeffrey B; Roon, David A; Waits, Lisette P; Paetkau, David

    2008-04-01

    A fundamental challenge to estimating population size with mark-recapture methods is heterogeneous capture probabilities and subsequent bias of population estimates. Confronting this problem usually requires substantial sampling effort that can be difficult to achieve for some species, such as carnivores. We developed a methodology that uses two data sources to deal with heterogeneity and applied this to DNA mark-recapture data from grizzly bears (Ursus arctos). We improved population estimates by incorporating additional DNA "captures" of grizzly bears obtained by collecting hair from unbaited bear rub trees concurrently with baited, grid-based, hair snag sampling. We consider a Lincoln-Petersen estimator with hair snag captures as the initial session and rub tree captures as the recapture session and develop an estimator in program MARK that treats hair snag and rub tree samples as successive sessions. Using empirical data from a large-scale project in the greater Glacier National Park, Montana, USA, area and simulation modeling we evaluate these methods and compare the results to hair-snag-only estimates. Empirical results indicate that, compared with hair-snag-only data, the joint hair-snag-rub-tree methods produce similar but more precise estimates if capture and recapture rates are reasonably high for both methods. Simulation results suggest that estimators are potentially affected by correlation of capture probabilities between sample types in the presence of heterogeneity. Overall, closed population Huggins-Pledger estimators showed the highest precision and were most robust to sparse data, heterogeneity, and capture probability correlation among sampling types. Results also indicate that these estimators can be used when a segment of the population has zero capture probability for one of the methods. We propose that this general methodology may be useful for other species in which mark-recapture data are available from multiple sources.

  11. Improving communication for interdisciplinary teams working on storage of digital information in DNA.

    Hesketh, Emily E; Sayir, Jossy; Goldman, Nick

    2018-01-01

    Close collaboration between specialists from diverse backgrounds and working in different scientific domains is an effective strategy to overcome challenges in areas that interface between biology, chemistry, physics and engineering. Communication in such collaborations can itself be challenging.  Even when projects are successfully concluded, resulting publications - necessarily multi-authored - have the potential to be disjointed. Few, both in the field and outside, may be able to fully understand the work as a whole. This needs to be addressed to facilitate efficient working, peer review, accessibility and impact to larger audiences. We are an interdisciplinary team working in a nascent scientific area, the repurposing of DNA as a storage medium for digital information. In this note, we highlight some of the difficulties that arise from such collaborations and outline our efforts to improve communication through a glossary and a controlled vocabulary and accessibility via short plain-language summaries. We hope to stimulate early discussion within this emerging field of how our community might improve the description and presentation of our work to facilitate clear communication within and between research groups and increase accessibility to those not familiar with our respective fields - be it molecular biology, computer science, information theory or others that might become relevant in future. To enable an open and inclusive discussion we have created a glossary and controlled vocabulary as a cloud-based shared document and we invite other scientists to critique our suggestions and contribute their own ideas.

  12. Improving enrichment of circulating fetal DNA for genetic testing: size fractionation followed by whole gene amplification.

    Jorgez, Carolina J; Bischoff, Farideh Z

    2009-01-01

    Among the pitfalls of using cell-free fetal DNA in plasma for prenatal diagnosis is quality of the recovered DNA fragments and concomitant presence of maternal DNA (>95%). Our objective is to provide alternative methods for achieving enrichment and high-quality fetal DNA from plasma. Cell-free DNA from 31 pregnant women and 18 controls (10 males and 8 females) were size separated using agarose gel electrophoresis. DNA fragments of 100-300, 500-700 and 1,500-2,000 bp were excised and extracted, followed by whole genome amplification (WGA) of recovered fragments. Levels of beta-globin and DYS1 were measured. Distribution of beta-globin size fragments was similar among pregnant women and controls. Among control male cases, distribution of size fragments was the same for both beta-globin and DYS1. Among maternal cases confirmed to be male, the smallest size fragment (100-300 bp) accounted for nearly 50% (39.76 +/- 17.55%) of the recovered DYS1-DNA (fetal) and only 10% (10.40 +/- 6.49%) of beta-globin (total) DNA. After WGA of plasma fragments from pregnant women, DYS1 sequence amplification was best observed when using the 100-300 bp fragments as template. Combination of electrophoresis for size separation and WGA led to enriched fetal DNA from plasma. This novel combination of strategies is more likely to permit universal clinical applications of cell-free fetal DNA. Copyright 2009 S. Karger AG, Basel.

  13. Capacitive Biosensors and Molecularly Imprinted Electrodes.

    Ertürk, Gizem; Mattiasson, Bo

    2017-02-17

    Capacitive biosensors belong to the group of affinity biosensors that operate by registering direct binding between the sensor surface and the target molecule. This type of biosensors measures the changes in dielectric properties and/or thickness of the dielectric layer at the electrolyte/electrode interface. Capacitive biosensors have so far been successfully used for detection of proteins, nucleotides, heavy metals, saccharides, small organic molecules and microbial cells. In recent years, the microcontact imprinting method has been used to create very sensitive and selective biorecognition cavities on surfaces of capacitive electrodes. This chapter summarizes the principle and different applications of capacitive biosensors with an emphasis on microcontact imprinting method with its recent capacitive biosensor applications.

  14. Electrochemical paper-based peptide nucleic acid biosensor for detecting human papillomavirus

    Teengam, Prinjaporn [Program in Petrochemistry, Faculty of Science, Chulalongkorn University, Pathumwan, Bangkok, 10330 (Thailand); Siangproh, Weena [Department of Chemistry, Faculty of Science, Srinakharinwirot University, Bangkok, 10110 (Thailand); Tuantranont, Adisorn [Nanoelectronics and MEMS Laboratory, National Electronics and Computer Technology Center, Pathumthani, 12120 (Thailand); Henry, Charles S. [Department of Chemistry, Colorado State University, Fort Collins, CO, 80523 (United States); Vilaivan, Tirayut [Organic Synthesis Research Unit, Department of Chemistry, Faculty of Science, Chulalongkorn University, Pathumwan, Bangkok, 10330 (Thailand); Chailapakul, Orawon, E-mail: corawon@chula.ac.th [Electrochemistry and Optical Spectroscopy Research Unit, Department of Chemistry, Chulalongkorn University, Pathumwan, Bangkok, 10330 (Thailand); Nanotec-CU Center of Excellence on Food and Agriculture, Bangkok, 10330 (Thailand)

    2017-02-01

    A novel paper-based electrochemical biosensor was developed using an anthraquinone-labeled pyrrolidinyl peptide nucleic acid (acpcPNA) probe (AQ-PNA) and graphene-polyaniline (G-PANI) modified electrode to detect human papillomavirus (HPV). An inkjet printing technique was employed to prepare the paper-based G-PANI-modified working electrode. The AQ-PNA probe baring a negatively charged amino acid at the N-terminus was immobilized onto the electrode surface through electrostatic attraction. Electrochemical impedance spectroscopy (EIS) was used to verify the AQ-PNA immobilization. The paper-based electrochemical DNA biosensor was used to detect a synthetic 14-base oligonucleotide target with a sequence corresponding to human papillomavirus (HPV) type 16 DNA by measuring the electrochemical signal response of the AQ label using square-wave voltammetry before and after hybridization. It was determined that the current signal significantly decreased after the addition of target DNA. This phenomenon is explained by the rigidity of PNA-DNA duplexes, which obstructs the accessibility of electron transfer from the AQ label to the electrode surface. Under optimal conditions, the detection limit of HPV type 16 DNA was found to be 2.3 nM with a linear range of 10–200 nM. The performance of this biosensor on real DNA samples was tested with the detection of PCR-amplified DNA samples from the SiHa cell line. The new method employs an inexpensive and disposable device, which easily incinerated after use and is promising for the screening and monitoring of the amount of HPV-DNA type 16 to identify the primary stages of cervical cancer. - Highlights: • A paper-based DNA biosensor using AQ-PNA probe and G-PANI modified electrode was first developed. • This developed DNA biosensor was highly specific over the non-complementary DNA. • This sensor was successfully applied to detect the HPV-DNA type 16 obtained from cancer cell lines. • This sensor is inexpensive and

  15. Recent Development in Optical Fiber Biosensors

    Catalina Bosch Ojeda

    2007-06-01

    Full Text Available Remarkable developments can be seen in the field of optical fibre biosensors in the last decade. More sensors for specific analytes have been reported, novel sensing chemistries or transduction principles have been introduced, and applications in various analytical fields have been realised. This review consists of papers mainly reported in the last decade and presents about applications of optical fiber biosensors. Discussions on the trends in optical fiber biosensor applications in real samples are enumerated.

  16. Biosensors based on nanomaterials and nanodevices

    Li, Jun

    2013-01-01

    Biosensors Based on Nanomaterials and Nanodevices links interdisciplinary research from leading experts to provide graduate students, academics, researchers, and industry professionals alike with a comprehensive source for key advancements and future trends in nanostructured biosensor development. It describes the concepts, principles, materials, device fabrications, functions, system integrations, and applications of various types of biosensors based on signal transduction mechanisms, including fluorescence, photonic crystal, surface-enhanced Raman scattering, electrochemistry, electro-lumine

  17. Recent Advances in Electrochemical Biosensors Based on Fullerene-C60 Nano-Structured Platforms.

    Pilehvar, Sanaz; De Wael, Karolien

    2015-11-23

    Nanotechnology is becoming increasingly important in the field of (bio)sensors. The performance and sensitivity of biosensors is greatly improved with the integration of nanomaterials into their construction. Since its first discovery, fullerene-C60 has been the object of extensive research. Its unique and favorable characteristics of easy chemical modification, conductivity, and electrochemical properties has led to its tremendous use in (bio)sensor applications. This paper provides a concise review of advances in fullerene-C60 research and its use as a nanomaterial for the development of biosensors. We examine the research work reported in the literature on the synthesis, functionalization, approaches to nanostructuring electrodes with fullerene, and outline some of the exciting applications in the field of (bio)sensing.

  18. Immobilization Techniques in the Fabrication of Nanomaterial-Based Electrochemical Biosensors: A Review

    Niina J. Ronkainen

    2013-04-01

    Full Text Available The evolution of 1st to 3rd generation electrochemical biosensors reflects a simplification and enhancement of the transduction pathway. However, in recent years, modification of the transducer with nanomaterials has become increasingly studied and imparts many advantages. The sensitivity and overall performance of enzymatic biosensors has improved tremendously as a result of incorporating nanomaterials in their fabrication. Given the unique and favorable qualities of gold nanoparticles, graphene and carbon nanotubes as applied to electrochemical biosensors, a consolidated survey of the different methods of nanomaterial immobilization on transducer surfaces and enzyme immobilization on these species is beneficial and timely. This review encompasses modification of enzymatic biosensors with gold nanoparticles, carbon nanotubes, and graphene.

  19. Recent Advances in Optical Biosensors for Environmental Monitoring and Early Warning

    Anna Zhu

    2013-10-01

    Full Text Available The growing number of pollutants requires the development of innovative analytical devices that are precise, sensitive, specific, rapid, and easy-to-use to meet the increasing demand for legislative actions on environmental pollution control and early warning. Optical biosensors, as a powerful alternative to conventional analytical techniques, enable the highly sensitive, real-time, and high-frequency monitoring of pollutants without extensive sample preparation. This article reviews important advances in functional biorecognition materials (e.g., enzymes, aptamers, DNAzymes, antibodies and whole cells that facilitate the increasing application of optical biosensors. This work further examines the significant improvements in optical biosensor instrumentation and their environmental applications. Innovative developments of optical biosensors for environmental pollution control and early warning are also discussed.

  20. Surface plasmon optics for biosensors with advanced sensitivity and throughput

    Toma, M.

    2012-01-01

    Plasmonic biosensors represent a rapidly advancing technology which enables rapid and sensitive analysis of target analytes. This thesis focuses on novel metallic and polymer structures for plasmonic biosensors based on surface plasmon resonance (SPR) and surface plasmon-enhanced fluorescence (SPF). It comprises four projects addressing key challenges concerning the enhancement of sensitivity and throughput. In the project 1, an advanced optical platform is developed which relies on reference-compensated angular spectroscopy of hydrogel-guided waves. The developed optical setup provides superior refractive index resolution of 1.2×10 -7 RIU and offers an attractive platform for direct detection of small analytes which cannot be analyzed by regular SPR biosensors. The project 2 carries out theoretical study of SPR imaging with advanced lateral resolution by utilizing Bragg scattered surface plasmons (BSSPs) on sub-wavelength metallic gratings. The results reveal that the proposed concept provides better lateral resolution and fidelity of the images. This feature opens ways for high-throughput SPR biosensors with denser arrays of sensing spots. The project 3 investigates surface plasmon coupled-emission from fluorophores in the vicinity of plasmonic Bragg-gratings. The experimental results provide leads on advancing the collection efficiency of fluorescence light by controlling the directions of fluorescence emission. This functionality can directly improve the sensitivity of fluorescence-based assays. In the last project 4, a novel sensing scheme with actively tuneable plasmonic structures is developed by employing thermo-responsive hydrogel binding matrix. The hydrogel film simultaneously serves as a large capacity binding matrix and provides means for actuating of surface plasmons through reversible swelling and collapsing of the hydrogel. This characteristic is suitable for multiplexing of sensing channels in fluorescence-based biosensor scheme (author)

  1. BioSentinel: Developing a Space Radiation Biosensor

    Santa Maria, Sergio R.

    2015-01-01

    BioSentinel is an autonomous fully self-contained science mission that will conduct the first study of the biological response to space radiation outside low Earth orbit (LEO) in over 40 years. The 4-unit (4U) BioSentinel biosensor system, is housed within a 6-Unit (6U) spacecraft, and uses yeast cells in multiple independent microfluidic cards to detect and measure DNA damage that occurs in response to ambient space radiation. Cell growth and metabolic activity will be measured using a 3-color LED detection system and a metabolic indicator dye with a dedicated thermal control system per fluidic card.

  2. Glutamate monitoring in vitro and in vivo: recent progress in the field of glutamate biosensors

    Rieben, Nathalie Ines; Rose, Nadia Cherouati; Martinez, Karen Laurence

    2009-01-01

    is currently the most common method for in vivo glutamate sampling. However, the recent development and improvement of enzyme-based amperometric glutamate biosensors makes them a promising alternative to microdialysis for in vivo applications, as well as valuable devices for in vitro applications in basic......, and different techniques have been developed to this end. This review presents and discusses these techniques, especially the recent progress in the field of glutamate biosensors, as well as the great potential of nanotechnology in glutamate sensing. Microdialysis coupled to analytical detection techniques...... neurobiological research. Another interesting group of biosensors for glutamate are fluorescence-based glutamate biosensors, which have unsurpassed spatio-temporal resolution and are therefore important tools for investigating glutamate dynamics during signaling. Adding to this list are biosensors based on nano...

  3. Portable evanescent wave fiber biosensor for highly sensitive detection of Shigella

    Xiao, Rui; Rong, Zhen; Long, Feng; Liu, Qiqi

    2014-11-01

    A portable evanescent wave fiber biosensor was developed to achieve the rapid and highly sensitive detection of Shigella. In this study, a DNA probe was covalently immobilized onto fiber-optic biosensors that can hybridize with a fluorescently labeled complementary DNA. The sensitivity of detection for synthesized oligonucleotides can reach 10-10 M. The surface of the sensor can be regenerated with 0.5% sodium dodecyl sulfate solution (pH 1.9) for over 30 times without significant deterioration of performance. The total analysis time for a single sample, including the time for measurement and surface regeneration, was less than 6 min. We employed real-time polymerase chain reaction (PCR) and compared the results of both methods to investigate the actual Shigella DNA detection capability of the fiber-optic biosensor. The fiber-optic biosensor could detect as low as 102 colony-forming unit/mL Shigella. This finding was comparable with that by real-time PCR, which suggests that this method is a potential alternative to existing detection methods.

  4. A novel gold nanoparticle-DNA aptamer-based plasmonic chip for rapid and sensitive detection of bacterial pathogens

    Sun, Yi; Phuoc Long, Truong; Wolff, Anders

    2016-01-01

    Gold nanoparticles (AuNPs)-based biosensors are emerging technologies for rapid detection of pathogens. However, it is very challenging to develop chip-based AuNP-biosensors for whole cells. This paper describes a novel AuNPs-DNA aptamer-based plasmonic assay which allows DNA aptamers...

  5. Computational design of auxotrophy-dependent microbial biosensors for combinatorial metabolic engineering experiments.

    Tepper, Naama; Shlomi, Tomer

    2011-01-21

    Combinatorial approaches in metabolic engineering work by generating genetic diversity in a microbial population followed by screening for strains with improved phenotypes. One of the most common goals in this field is the generation of a high rate chemical producing strain. A major hurdle with this approach is that many chemicals do not have easy to recognize attributes, making their screening expensive and time consuming. To address this problem, it was previously suggested to use microbial biosensors to facilitate the detection and quantification of chemicals of interest. Here, we present novel computational methods to: (i) rationally design microbial biosensors for chemicals of interest based on substrate auxotrophy that would enable their high-throughput screening; (ii) predict engineering strategies for coupling the synthesis of a chemical of interest with the production of a proxy metabolite for which high-throughput screening is possible via a designed bio-sensor. The biosensor design method is validated based on known genetic modifications in an array of E. coli strains auxotrophic to various amino-acids. Predicted chemical production rates achievable via the biosensor-based approach are shown to potentially improve upon those predicted by current rational strain design approaches. (A Matlab implementation of the biosensor design method is available via http://www.cs.technion.ac.il/~tomersh/tools).

  6. Nanomaterials towards fabrication of cholesterol biosensors: Key roles and design approaches.

    Saxena, Urmila; Das, Asim Bikas

    2016-01-15

    Importance of cholesterol biosensors is already recognized in the clinical diagnosis of cardiac and brain vascular diseases as discernible from the enormous amount of research in this field. Nevertheless, the practical application of a majority of the fabricated cholesterol biosensors is ordinarily limited by their inadequate performance in terms of one or more analytical parameters including stability, sensitivity and detection limit. Nanoscale materials offer distinctive size tunable electronic, catalytic and optical properties which opened new opportunities for designing highly efficient biosensor devices. Incorporation of nanomaterials in biosensing devices has found to improve the electroactive surface, electronic conductivity and biocompatibility of the electrode surfaces which then improves the analytical performance of the biosensors. Here we have reviewed recent advances in nanomaterial-based cholesterol biosensors. Foremost, the diverse roles of nanomaterials in these sensor systems have been discussed. Later, we have exhaustively explored the strategies used for engineering cholesterol biosensors with nanotubes, nanoparticles and nanocomposites. Finally, this review concludes with future outlook signifying some challenges of these nanoengineered cholesterol sensors. Copyright © 2015 Elsevier B.V. All rights reserved.

  7. An improved method for detecting genetic variation in DNA using denaturing gradient gel electrophoresis

    Takahashi, Norio; Hiyama, Keiko; Kodaira, Mieko; Satoh, Chiyoko.

    1990-05-01

    We have examined the feasibility of denaturing gradient gel electrophoresis (DGGE) of RNA:DNA duplexes to detect variations in genomic and cloned DNAs. The result has demonstrated that use of RNA:DNA duplexes makes DGGE much more practical for screening a large number of samples than use of DNA:DNA heteroduplexes, because preparation of RNA probes is easier than that of DNA probes. Three different 32 P-labeled RNA probes were produced. Genomic or cloned DNAs were digested with restriction enzymes and hybridized to labeled RNA probes, and resulting RNA:DNA duplexes were examined by DGGE. The presence of a mismatch(es) was detected as a difference in the mobility of bands on the gel. The experimental conditions were determined using DNA segments from cloned normal and three thalassemic human β-globin genes. The results from experiments on the cloned DNAs suggest that DGGE of RNA:DNA duplexes will detect nucleotide substitutions and deletions in DNA. In the course of these studies, a polymorphism due to a single-base substitution at position 666 of IVS2 (IVS2-666) of the human β-globin gene was directly identified using genomic DNA samples. A study of 59 unrelated Japanese from Hiroshima was undertaken in which the frequency of the allele with C at IVS2-666 was 0.48 and that of the allele with T was 0.52. This approach was found to be very effective for detecting heritable variation and should be a powerful tool for detecting fresh mutations in DNA, which occur outside the known restriction sites. (author)

  8. Dietary supplementation with docosahexaenoic acid (DHA) improves seminal antioxidant status and decreases sperm DNA fragmentation.

    Martínez-Soto, Juan Carlos; Domingo, Joan Carles; Cordobilla, Begoña; Nicolás, María; Fernández, Laura; Albero, Pilar; Gadea, Joaquín; Landeras, José

    2016-12-01

    The purpose of this study was to evaluate the effect of docosahexaenoic acid (DHA) dietary supplementation on semen quality, fatty acid composition, antioxidant capacity, and DNA fragmentation. In this randomized, double blind, placebo-controlled, parallel-group study, 74 subjects were recruited and randomly assigned to either the placebo group (n=32) or to the DHA group (n=42) to consume three 500-mg capsules of oil per day over 10 weeks. The placebo group received 1,500 mg/day of sunflower oil and the DHA group 1,500 mg/day of DHA-enriched oil. Seminal parameters (semen volume, sperm concentration, motility, morphology, and vitality), total antioxidant capacity, deoxyribonucleic acid fragmentation, and lipid composition were evaluated prior to the treatment and after 10 weeks. Finally, 57 subjects were included in the study with 25 in the placebo group and 32 in the DHA group. No differences were found in traditional sperm parameters or lipid composition of the sperm membrane after treatment. However, an increase in DHA and Omega-3 fatty acid content in seminal plasma, an improvement in antioxidant status, and a reduction in the percentage of spermatozoa with deoxyribonucleic acid damage were observed in the DHA group after 10 weeks of treatment.

  9. Using operational research modelling to improve the provision of health services: the case of DNA technology.

    Beech, R

    1995-01-01

    Operational research (OR) analysis provides information and systems to support decision making. In health care there are examples of OR being used to support decisions surrounding both the organization of health services and the treatment of individual patients. However, its uptake is currently low in spite of the increase in potential areas of application. In practice there is a lack of awareness amongst health service staff about what OR is and how it can help. This paper addresses this issue by exposing the contribution that OR made to a programme of research relating to DNA technology. Examples are given of the way it was used to provide information on the costs and outcomes of services and the ways these evolve over time. These examples demonstrate the way OR methods increase the understanding of both analysts and service providers about a problem area. This helps ensure that appropriate and valid approaches to tackling problem areas are developed. When developing these approaches, the problem orientated philosophy of OR means analysts are willing to use a range of methodologies, some originating in OR and some in other disciplines. The broad focus of OR also means that its findings enhance those provided by other disciplines which might seem to be competitors. The conclusion of the paper is that OR has a crucial role to play in the improvement of health services.

  10. Silica suspended waveguide splitter-based biosensor

    Harrison, M. C.; Hawk, R. M.; Armani, A. M.

    2012-03-01

    Recently, a novel integrated optical waveguide 50/50 splitter was developed. It is fabricated using standard lithographic methods, a pair of etching steps and a laser reflow step. However, unlike other integrated waveguide splitters, the waveguide is elevated off of the silicon substrate, improving its interaction with biomolecules in solution and in a flow field. Additionally, because it is fabricated from silica, it has very low optical loss, resulting in a high signal-to-noise ratio, making it ideal for biosensing. By functionalizing the device using an epoxy-silane method using small samples and confining the protein solutions to the device, we enable highly efficient detection of CREB with only 1 μL of solution. Therefore, the waveguide coupler sensor is representative of the next generation of ultra-sensitive optical biosensors, and, when combined with microfluidic capabilities, it will be an ideal candidate for a more fully-realized lab-on-a-chip device.

  11. Miniature Biosensor with Health Risk Assessment Feedback

    Hanson, Andrea; Downs, Meghan; Kalogera, Kent; Buxton, Roxanne; Cooper, Tommy; Cooper, Alan; Cooper, Ross

    2016-01-01

    Heart rate (HR) monitoring is a medical requirement during exercise on the International Space Station (ISS), fitness tests, and extravehicular activity (EVA); however, NASA does not currently have the technology to consistently and accurately monitor HR and other physiological data during these activities. Performance of currently available HR monitor technologies is dependent on uninterrupted contact with the torso and are prone to data drop-out and motion artifact. Here, we seek an alternative to the chest strap and electrode based sensors currently in use on ISS today. This project aims to develop a high performance, robust earbud based biosensor with focused efforts on improved HR data quality during exercise or EVA. A health risk assessment algorithm will further advance the goals of autonomous crew health care for exploration missions.

  12. Accelerating plant DNA barcode reference library construction using herbarium specimens: improved experimental techniques.

    Xu, Chao; Dong, Wenpan; Shi, Shuo; Cheng, Tao; Li, Changhao; Liu, Yanlei; Wu, Ping; Wu, Hongkun; Gao, Peng; Zhou, Shiliang

    2015-11-01

    A well-covered reference library is crucial for successful identification of species by DNA barcoding. The biggest difficulty in building such a reference library is the lack of materials of organisms. Herbarium collections are potentially an enormous resource of materials. In this study, we demonstrate that it is likely to build such reference libraries using the reconstructed (self-primed PCR amplified) DNA from the herbarium specimens. We used 179 rosaceous specimens to test the effects of DNA reconstruction, 420 randomly sampled specimens to estimate the usable percentage and another 223 specimens of true cherries (Cerasus, Rosaceae) to test the coverage of usable specimens to the species. The barcode rbcLb (the central four-sevenths of rbcL gene) and matK was each amplified in two halves and sequenced on Roche GS 454 FLX+. DNA from the herbarium specimens was typically shorter than 300 bp. DNA reconstruction enabled amplification fragments of 400-500 bp without bringing or inducing any sequence errors. About one-third of specimens in the national herbarium of China (PE) were proven usable after DNA reconstruction. The specimens in PE cover all Chinese true cherry species and 91.5% of vascular species listed in Flora of China. It is very possible to build well-covered reference libraries for DNA barcoding of vascular species in China. As exemplified in this study, DNA reconstruction and DNA-labelled next-generation sequencing can accelerate the construction of local reference libraries. By putting the local reference libraries together, a global library for DNA barcoding becomes closer to reality. © 2015 John Wiley & Sons Ltd.

  13. Acid or erythromycin stress significantly improves transformation efficiency through regulating expression of DNA binding proteins in Lactococcus lactis F44.

    Wang, Binbin; Zhang, Huawei; Liang, Dongmei; Hao, Panlong; Li, Yanni; Qiao, Jianjun

    2017-12-01

    Lactococcus lactis is a gram-positive bacterium used extensively in the dairy industry and food fermentation, and its biological characteristics are usually improved through genetic manipulation. However, poor transformation efficiency was the main restriction factor for the construction of engineered strains. In this study, the transformation efficiency of L. lactis F44 showed a 56.1-fold increase in acid condition (pH 5.0); meanwhile, erythromycin stress (0.04 μg/mL) promoted the transformation efficiency more significantly (76.9-fold). Notably, the transformation efficiency of F44e (L. lactis F44 harboring empty pLEB124) increased up to 149.1-fold under the synergistic stresses of acid and erythromycin. In addition, the gene expression of some DNA binding proteins (DprA, RadA, RadC, RecA, RecQ, and SsbA) changed correspondingly. Especially for radA, 25.1-fold improvement was detected when F44e was exposed to pH 5.0. Overexpression of some DNA binding proteins could improve the transformation efficiency. The results suggested that acid or erythromycin stress could improve the transformation efficiency of L. lactis through regulating gene expression of DNA binding proteins. We have proposed a simple but promising strategy for improving the transformation efficiency of L. lactis and other hard-transformed microorganisms. Copyright © 2017 American Dairy Science Association. Published by Elsevier Inc. All rights reserved.

  14. Antibody orientation on biosensor surfaces: a minireview

    Trilling, A.K.; Beekwilder, M.J.; Zuilhof, H.

    2013-01-01

    Detection elements play a key role in analyte recognition in biosensors. Therefore, detection elements with high analyte specificity and binding strength are required. While antibodies (Abs) have been increasingly used as detection elements in biosensors, a key challenge remains – the immobilization

  15. A New Laccase Based Biosensor for Tartrazine

    Siti Zulaikha Mazlan

    2017-12-01

    Full Text Available Laccase enzyme, a commonly used enzyme for the construction of biosensors for phenolic compounds was used for the first time to develop a new biosensor for the determination of the azo-dye tartrazine. The electrochemical biosensor was based on the immobilization of laccase on functionalized methacrylate-acrylate microspheres. The biosensor membrane is a composite of the laccase conjugated microspheres and gold nanoparticles (AuNPs coated on a carbon-paste screen-printed electrode. The reaction involving tartrazine can be catalyzed by laccase enzyme, where the current change was measured by differential pulse voltammetry (DPV at 1.1 V. The anodic peak current was linear within the tartrazine concentration range of 0.2 to 14 μM (R2 = 0.979 and the detection limit was 0.04 μM. Common food ingredients or additives such as glucose, sucrose, ascorbic acid, phenol and sunset yellow did not interfere with the biosensor response. Furthermore, the biosensor response was stable up to 30 days of storage period at 4 °C. Foods and beverage were used as real samples for the biosensor validation. The biosensor response to tartrazine showed no significant difference with a standard HPLC method for tartrazine analysis.

  16. Background reduction in a young interferometer biosensor

    Mulder, H. K P; Subramaniam, V.; Kanger, J. S.

    2014-01-01

    Integrated optical Young interferometer (IOYI) biosensors are among the most sensitive label-free biosensors. Detection limits are in the range of 20 fg/mm2. The applicability of these sensors is however strongly hampered by the large background that originates from both bulk refractive index

  17. A New Laccase Based Biosensor for Tartrazine.

    Mazlan, Siti Zulaikha; Lee, Yook Heng; Hanifah, Sharina Abu

    2017-12-09

    Laccase enzyme, a commonly used enzyme for the construction of biosensors for phenolic compounds was used for the first time to develop a new biosensor for the determination of the azo-dye tartrazine. The electrochemical biosensor was based on the immobilization of laccase on functionalized methacrylate-acrylate microspheres. The biosensor membrane is a composite of the laccase conjugated microspheres and gold nanoparticles (AuNPs) coated on a carbon-paste screen-printed electrode. The reaction involving tartrazine can be catalyzed by laccase enzyme, where the current change was measured by differential pulse voltammetry (DPV) at 1.1 V. The anodic peak current was linear within the tartrazine concentration range of 0.2 to 14 μM ( R ² = 0.979) and the detection limit was 0.04 μM. Common food ingredients or additives such as glucose, sucrose, ascorbic acid, phenol and sunset yellow did not interfere with the biosensor response. Furthermore, the biosensor response was stable up to 30 days of storage period at 4 °C. Foods and beverage were used as real samples for the biosensor validation. The biosensor response to tartrazine showed no significant difference with a standard HPLC method for tartrazine analysis.

  18. A highly performing electrochemiluminescent biosensor for glucose based on a polyelectrolyte-chitosan modified electrode

    Dai Hong; Wu Xiaoping; Xu Huifeng; Wang Youmei; Chi Yuwu; Chen Guonan

    2009-01-01

    A highly performing ECL glucose biosensor was developed by immobilizing glucose oxidase (GOD) onto a membrane modified glassy carbon electrode, which was prepared by using poly(diallyldimethylammonium chloride) (PDDA) doped with chitosan. In order to obtain the optimal performance of the ECL biosensor, the composition of modified membranes and a series of measurement conditions were investigated. Under the optimal conditions, this ECL biosensor was able to detect glucose in the range of 0.5-4.0 x 10 4 nM with a detection limit of 0.1 nM (defined as the concentration that could be detected at the signal-to-noise ratio of 3). The relative standard deviation was 0.99% for 5 x 10 -8 mol/L glucose in repetitive measurements in the primary 12 potential cycles. This ECL biosensor offered the effectively improved stability of the electron transfer mediator and exhibited excellent properties for the ultrasensitive and selective determination of glucose with good reproducibility and stability. The present biosensor has also been used to determine the glucose concentrations in real serum samples. The recovery value for the assay of glucose ranged from 96.2 to 107% in the serum samples. The present biosensor displayed both specificity for glucose and retention of signal response even in a complex environment. Therefore, it provided an approach to the sensitive determination of glucose.

  19. Effects of Gold Nanoparticles on the Response of Phenol Biosensor Containing Photocurable Membrane with Tyrosinase

    Ahmad Musa

    2008-10-01

    Full Text Available The role of incorporation of gold nanoparticles (50-130 nm in diameter into a series of photocurable methacrylic-acrylic based biosensor membranes containing tyrosinase on the response for phenol detection was investigated. Membranes with different hydrophilicities were prepared from 2-hydroxyethyl methacrylate and n-butyl acrylate via direct photocuring. A range of gold nanoparticles concentrations from 0.01 to 0.5 % (w/w was incorporated into these membranes during the photocuring process. The addition of gold nanoparticles to the biosensor membrane led to improvement in the response time by a reduction of approximately 5 folds to give response times of 5-10 s. The linear response range of the phenol biosensor was also extended from 24 to 90 mM of phenol. The hydrophilicities of the membrane matrices demonstrated strong influence on the biosensor response and appeared to control the effect of the gold nanoparticles. For less hydrophilic methacrylic-acrylic membranes, the addition of gold nanoparticles led to a poorer sensitivity and detection limit of the biosensor towards phenol. Therefore, for the application of gold nanoparticles in the enhancement of a phenol biosensor response, the nanoparticles should be immobilized in a hydrophilic matrix rather than a hydrophobic material.

  20. Microbial Fuels Cell-Based Biosensor for Toxicity Detection: A Review

    Tuoyu Zhou

    2017-09-01

    Full Text Available With the unprecedented deterioration of environmental quality, rapid recognition of toxic compounds is paramount for performing in situ real-time monitoring. Although several analytical techniques based on electrochemistry or biosensors have been developed for the detection of toxic compounds, most of them are time-consuming, inaccurate, or cumbersome for practical applications. More recently, microbial fuel cell (MFC-based biosensors have drawn increasing interest due to their sustainability and cost-effectiveness, with applications ranging from the monitoring of anaerobic digestion process parameters (VFA to water quality detection (e.g., COD, BOD. When a MFC runs under correct conditions, the voltage generated is correlated with the amount of a given substrate. Based on this linear relationship, several studies have demonstrated that MFC-based biosensors could detect heavy metals such as copper, chromium, or zinc, as well as organic compounds, including p-nitrophenol (PNP, formaldehyde and levofloxacin. Both bacterial consortia and single strains can be used to develop MFC-based biosensors. Biosensors with single strains show several advantages over systems integrating bacterial consortia, such as selectivity and stability. One of the limitations of such sensors is that the detection range usually exceeds the actual pollution level. Therefore, improving their sensitivity is the most important for widespread application. Nonetheless, MFC-based biosensors represent a promising approach towards single pollutant detection.

  1. Small Microbial Three-Electrode Cell Based Biosensor for Online Detection of Acute Water Toxicity.

    Yu, Dengbin; Zhai, Junfeng; Liu, Changyu; Zhang, Xueping; Bai, Lu; Wang, Yizhe; Dong, Shaojun

    2017-11-22

    The monitoring of toxicity of water is very important to estimate the safety of drinking water and the level of water pollution. Herein, a small microbial three-electrode cell (M3C) biosensor filled with polystyrene particles was proposed for online monitoring of the acute water toxicity. The peak current of the biosensor related with the performance of the bioanode was regarded as the toxicity indicator, and thus the acute water toxicity could be determined in terms of inhibition ratio by comparing the peak current obtained with water sample to that obtained with nontoxic standard water. The incorporation of polystyrene particles in the electrochemical cell not only reduced the volume of the samples used, but also improved the sensitivity of the biosensor. Experimental conditions including washing time with PBS and the concentration of sodium acetate solution were optimized. The stability of the M3C biosensor under optimal conditions was also investigated. The M3C biosensor was further examined by formaldehyde at the concentration of 0.01%, 0.03%, and 0.05% (v/v), and the corresponding inhibition ratios were 14.6%, 21.6%, and 36.4%, respectively. This work provides a new insight into the development of an online toxicity detector based on M3C biosensor.

  2. Improved exogenous DNA uptake in bovine spermatozoa and gene expression in embryos using membrane destabilizing agents in ICSI-SMGT.

    Sánchez-Villalba, Esther; Arias, María Elena; Zambrano, Fabiola; Loren, Pía; Felmer, Ricardo

    2018-02-01

    Sperm-mediated gene transfer (SMGT) is a simple, fast, and economical biotechnological tool for producing transgenic animals. However, transgene expression with this technique in bovine embryos is still inefficient due to low uptake and binding of exogenous DNA in spermatozoa. The present study evaluated the effects of sperm membrane destabilization on the binding capacity, location and quantity of bound exogenous DNA in cryopreserved bovine spermatozoa using Triton X-100 (TX-100), lysolecithin (LL) and sodium hydroxide (NaOH). Effects of these treatments were also evaluated by intracytoplasmic sperm injection (ICSI)-SMGT. Results showed that all treatments bound exogenous DNA to spermatozoa including the control. Spermatozoa treated with different membrane destabilizing agents bound the exogenous DNA throughout the head and tail of spermatozoa, compared with the control, in which binding occurred mainly in the post-acrosomal region and tail. The amount of exogenous DNA bound to spermatozoa was much higher for the different sperm treatments than the control (P Exogenous gene expression in embryos was also improved by these treatments. These results demonstrated that sperm membrane destabilization could be a novel strategy in bovine SMGT protocols for the generation of transgenic embryos by ICSI.

  3. Nanomaterials based biosensors for cancer biomarker detection

    Malhotra, Bansi D; Kumar, Saurabh; Pandey, Chandra Mouli

    2016-01-01

    Biosensors have enormous potential to contribute to the evolution of new molecular diagnostic techniques for patients suffering with cancerous diseases. A major obstacle preventing faster development of biosensors pertains to the fact that cancer is a highly complex set of diseases. The oncologists currently rely on a few biomarkers and histological characterization of tumors. Some of the signatures include epigenetic and genetic markers, protein profiles, changes in gene expression, and post-translational modifications of proteins. These molecular signatures offer new opportunities for development of biosensors for cancer detection. In this context, conducting paper has recently been found to play an important role towards the fabrication of a biosensor for cancer biomarker detection. In this paper we will focus on results of some of the recent studies obtained in our laboratories relating to fabrication and application of nanomaterial modified paper based biosensors for cancer biomarker detection. (paper)

  4. Functionalized Palladium Nanoparticles for Hydrogen Peroxide Biosensor

    H. Baccar

    2011-01-01

    Full Text Available We present a comparison between two biosensors for hydrogen peroxide (H2O2 detection. The first biosensor was developed by the immobilization of Horseradish Peroxidase (HRP enzyme on thiol-modified gold electrode. The second biosensor was developed by the immobilization of cysteamine functionalizing palladium nanoparticles on modified gold surface. The amino groups can be activated with glutaraldehyde for horseradish peroxidase immobilization. The detection of hydrogen peroxide was successfully observed in PBS for both biosensors using the cyclic voltammetry and the chronoamperometry techniques. The results show that the limit detection depends on the large surface-to-volume ratio attained with palladium nanoparticles. The second biosensor presents a better detection limit of 7.5 μM in comparison with the first one which is equal to 75 μM.

  5. Improvement of DNA transfer frequency and transposon mutagenesis of Erwinia carotovora subsp. betavasculorum.

    Rella, M; Axelrood, P E; Weinhold, A R; Schroth, M N

    1989-01-01

    The production of antibiotics and their role in microbial competition under natural conditions can be readily studied by the use of transposon mutants. Several antibiotic-producing strains of Erwinia carotovora subsp. betavasculorum were unable to accept foreign DNA. A plasmid delivery system was developed, using ethyl methanesulfonate mutagenesis, which entailed isolating E. carotovora subsp. betavasculorum mutants able to accept foreign DNA and transfer it to other strains. This enabled tra...

  6. An Improved DNA Extraction Method for Efficient and Quantitative Recovery of Phytoplankton Diversity in Natural Assemblages.

    Jian Yuan

    Full Text Available Marine phytoplankton are highly diverse with different species possessing different cell coverings, posing challenges for thoroughly breaking the cells in DNA extraction yet preserving DNA integrity. While quantitative molecular techniques have been increasingly used in phytoplankton research, an effective and simple method broadly applicable to different lineages and natural assemblages is still lacking. In this study, we developed a bead-beating protocol based on our previous experience and tested it against 9 species of phytoplankton representing different lineages and different cell covering rigidities. We found the bead-beating method enhanced the final yield of DNA (highest as 2 folds in comparison with the non-bead-beating method, while also preserving the DNA integrity. When our method was applied to a field sample collected at a subtropical bay located in Xiamen, China, the resultant ITS clone library revealed a highly diverse assemblage of phytoplankton and other micro-eukaryotes, including Archaea, Amoebozoa, Chlorophyta, Ciliphora, Bacillariophyta, Dinophyta, Fungi, Metazoa, etc. The appearance of thecate dinoflagellates, thin-walled phytoplankton and "naked" unicellular organisms indicates that our method could obtain the intact DNA of organisms with different cell coverings. All the results demonstrate that our method is useful for DNA extraction of phytoplankton and environmental surveys of their diversity and abundance.

  7. Agarose electrophoresis of DNA in discontinuous buffers, using a horizontal slab apparatus and a buffer system with improved properties.

    Zsolnai, A; Orbán, L; Chrambach, A

    1993-03-01

    Using a horizontal slab apparatus with a buffer in the reservoirs at the level of the gel ("sea-level electrophoresis"), the retrograde discontinuous buffer system reported by Wiltfang et al. for sodium dodecyl sulfate-polyacrylamide gel electrophoresis (SDS-PAGE) of proteins was applied to DNA electrophoresis. This application yielded the advantages of an increased displacement rate of the moving boundary front and a decrease in the concentration of the counterion base in the resolving phase, which yielded reduced relative mobility values at equivalent gel concentrations and practicable low buffer concentrations. The change of relative mobilities (Rf) with a variation of field strength is decreased compared to that of the migration rate in the continuous Tris-boric-acid-EDTA (TBE) buffer and thus the robustness of the system is improved, as well as the efficiency of separation. The system of Wiltfang et al. has in common with previously described discontinuous DNA system, that it is able to stack DNA from dilute samples and is insensitive to sample components with lower net mobilities than DNA, such as acetate. However, the variance of Rf at constant current density in the discontinuous buffer system is not improved over that of the migration rate at constant field strength in the continuous TBE buffer.

  8. Better estimation of protein-DNA interaction parameters improve prediction of functional sites

    O'Flanagan Ruadhan A

    2008-12-01

    Full Text Available Abstract Background Characterizing transcription factor binding motifs is a common bioinformatics task. For transcription factors with variable binding sites, we need to get many suboptimal binding sites in our training dataset to get accurate estimates of free energy penalties for deviating from the consensus DNA sequence. One procedure to do that involves a modified SELEX (Systematic Evolution of Ligands by Exponential Enrichment method designed to produce many such sequences. Results We analyzed low stringency SELEX data for E. coli Catabolic Activator Protein (CAP, and we show here that appropriate quantitative analysis improves our ability to predict in vitro affinity. To obtain large number of sequences required for this analysis we used a SELEX SAGE protocol developed by Roulet et al. The sequences obtained from here were subjected to bioinformatic analysis. The resulting bioinformatic model characterizes the sequence specificity of the protein more accurately than those sequence specificities predicted from previous analysis just by using a few known binding sites available in the literature. The consequences of this increase in accuracy for prediction of in vivo binding sites (and especially functional ones in the E. coli genome are also discussed. We measured the dissociation constants of several putative CAP binding sites by EMSA (Electrophoretic Mobility Shift Assay and compared the affinities to the bioinformatics scores provided by methods like the weight matrix method and QPMEME (Quadratic Programming Method of Energy Matrix Estimation trained on known binding sites as well as on the new sites from SELEX SAGE data. We also checked predicted genome sites for conservation in the related species S. typhimurium. We found that bioinformatics scores based on SELEX SAGE data does better in terms of prediction of physical binding energies as well as in detecting functional sites. Conclusion We think that training binding site detection

  9. Fluorescent Biosensors Based on Single-Molecule Counting.

    Ma, Fei; Li, Ying; Tang, Bo; Zhang, Chun-Yang

    2016-09-20

    Biosensors for highly sensitive, selective, and rapid quantification of specific biomolecules make great contributions to biomedical research, especially molecular diagnostics. However, conventional methods for biomolecular assays often suffer from insufficient sensitivity and poor specificity. In some case (e.g., early disease diagnostics), the concentration of target biomolecules is too low to be detected by these routine approaches, and cumbersome procedures are needed to improve the detection sensitivity. Therefore, there is an urgent need for rapid and ultrasensitive analytical tools. In this respect, single-molecule fluorescence approaches may well satisfy the requirement and hold promising potential for the development of ultrasensitive biosensors. Encouragingly, owing to the advances in single-molecule microscopy and spectroscopy over past decades, the detection of single fluorescent molecule comes true, greatly boosting the development of highly sensitive biosensors. By in vitro/in vivo labeling of target biomolecules with proper fluorescent tags, the quantification of certain biomolecule at the single-molecule level is achieved. In comparison with conventional ensemble measurements, single-molecule detection-based analytical methods possess the advantages of ultrahigh sensitivity, good selectivity, rapid analysis time, and low sample consumption. Consequently, single-molecule detection may be potentially employed as an ideal analytical approach to quantify low-abundant biomolecules with rapidity and simplicity. In this Account, we will summarize our efforts for developing a series of ultrasensitive biosensors based on single-molecule counting. Single-molecule counting is a member of single-molecule detection technologies and may be used as a very simple and ultrasensitive method to quantify target molecules by simply counting the individual fluorescent bursts. In the fluorescent sensors, the signals of target biomolecules may be translated to the

  10. Electrochemical biosensors in pharmaceutical analysis

    Eric de Souza Gil

    2010-09-01

    Full Text Available Given the increasing demand for practical and low-cost analytical techniques, biosensors have attracted attention for use in the quality analysis of drugs, medicines, and other analytes of interest in the pharmaceutical area. Biosensors allow quantification not only of the active component in pharmaceutical formulations, but also the analysis of degradation products and metabolites in biological fluids. Thus, this article presents a brief review of biosensor use in pharmaceutical analysis, focusing on enzymatic electrochemical sensors.Em virtude do aumento da demanda por técnicas analíticas simples e de baixo custo, os biossensores têm atraído a atenção para a análise de fármacos, medicamentos e outros analitos de interesse em controle de qualidade de medicamentos. Os biossensores permitem a quantificação não somente de princípio ativo em formulações farmacêuticas, mas também de produtos de degradação e metabólitos em fluídos biológicos, bem como análise de amostras de interesse clínico e industrial, além de possibilitar a determinação de enantiômeros. Desta forma, este artigo objetiva fazer uma breve revisão a respeito do emprego de biossensores em análise farmacêutica, com ênfase em sensores eletroquímicos enzimáticos.

  11. An ATP sensitive light addressable biosensor for extracellular monitoring of single taste receptor cell.

    Wu, Chunsheng; Du, Liping; Zou, Ling; Zhao, Luhang; Wang, Ping

    2012-12-01

    Adenosine triphosphate (ATP) is considered as the key neurotransmitter in taste buds for taste signal transmission and processing. Measurements of ATP secreted from single taste receptor cell (TRC) with high sensitivity and specificity are essential for investigating mechanisms underlying taste cell-to-cell communications. In this study, we presented an aptamer-based biosensor for the detection of ATP locally secreted from single TRC. ATP sensitive DNA aptamer was used as recognition element and its DNA competitor was served as signal transduction element that was covalently immobilized on the surface of light addressable potentiometric sensor (LAPS). Due to the light addressable capability of LAPS, local ATP secretion from single TRC can be detected by monitoring the working potential shifts of LAPS. The results show this biosensor can detect ATP with high sensitivity and specificity. It is demonstrated this biosensor can effectively detect the local ATP secretion from single TRC responding to tastant mixture. This biosensor could provide a promising new tool for the research of taste cell-to-cell communications as well as for the detection of local ATP secretion from other types of ATP secreting individual cells.

  12. Reduction-sensitive lipopolyamines as a novel nonviral gene delivery system for modulated release of DNA with improved transgene expression.

    Byk, G; Wetzer, B; Frederic, M; Dubertret, C; Pitard, B; Jaslin, G; Scherman, D

    2000-11-16

    We have designed and synthesized original cationic lipids for modulated release of DNA from cationic lipid/DNA complexes. Our rationale was that modulated degradation of the lipids during or after penetration into the cell could improve the trafficking of DNA to the nucleus resulting in increased transgene expression. The new reduction-sensitive lipopolyamines (RSL) harbor a disulfide bridge within different positions in the backbone of the lipids as biosensitive function. A useful synthetic method was developed to obtain, with very good yields and reproducibility, unsymmetrical disulfide-bridged molecules, starting from symmetrical disulfides and thiols. The new lipopolyamines are good candidates as carriers of therapeutic genes for in vivo gene delivery. To optimize the transfection efficiency in these novel series, we have carried out structure-activity relationship studies by placing the disulfide bridge at different positions in the backbone of the cationic lipid and by systematic variation of lipid chain length. Results indicate that the transfection level can be modulated as a function of the location of the disulfide bridge in the molecule. We suggest that an early release of DNA during or after penetration into the cell, probably promoted by reduction of a disulfide bridge placed between the polyamine and the lipid, implies a total loss of transfection efficiency. On the other hand, proper modulation of DNA release by inserting the disulfide bridge between one lipid chain and the rest of the molecule brings about increased transfection efficiency as compared to previously described nondegradable lipopolyamine analogues. Finally, preliminary physicochemical characterization of the complexes demonstrates that DNA release from complexes can be modulated as a function of the surrounding reducing conditions of the complexes and of the localization of the disulfide bridge within the lipopolyamine. Our results suggest that RSL is a promising new approach for gene

  13. A new dimension in improved radiation protection by enhanced DNA repair

    Riklis, E.

    1997-01-01

    Radioprotection and photo protection were dependent until now on measures to reduce the amount of damage formed by ionizing and ultraviolet radiations. In both cases the measures are not completely satisfactory: the classical radioprotectors are toxic arid exert serious side effects, and afford a protection factor not higher than around 2. The sunscreens filters are effective for certain wavelength ranges only, and not enough is known about the possible effects of the filters when they absorb light and turn into other chemical entities. Both approaches do not give an answer to damages which are formed in spite of the partial reduction of damage. A new approach offered here is dealing with the damage on a cellular / molecular level, by enhancing the activity of the natural repair enzymes whose task is to remove radiation and photoproducts, rejoin DNA strand breaks and repair the DNA. A combination of vitamins and antioxidants is fulfilling these tasks and provides protection from both ionizing and ultraviolet radiations by enhancing several folds the repair of DNA in living cells. Such a combination which contains the repair enhancers niacinamide and nordihydroguaiaretic acid is employed in preparations named EDNAR ( Enhanced DNA Repair, Patent pending) which demonstrate excellent results of enhancing DNA repair as measured by repair synthesis, and protecting the skin from sunburns as well as skin burns following radiotherapy. These lotions and creams, when not containing any chemical filters yet demonstrating a protective effect, may be called 'the sunscreens without sunscreens'. (author)

  14. In silico engineering and optimization of Transcription Activator-Like Effectors and their derivatives for improved DNA binding predictions.

    Piatek, Marek J.

    2015-12-01

    Transcription Activator-Like Effectors (TALEs) can be used as adaptable DNAbinding modules to create site-specific chimeric nucleases or synthetic transcriptional regulators. The central repeat domain mediates specific DNA binding via hypervariable repeat di-residues (RVDs). This DNA-Binding Domain can be engineered to bind preferentially to any user-selected DNA sequence if engineered appropriately. Therefore, TALEs and their derivatives have become indispensable molecular tools in site-specific manipulation of genes and genomes. This thesis revolves around two problems: in silico design and improved binding site prediction of TALEs. In the first part, a study is shown where TALEs are successfully designed in silico and validated in laboratory to yield the anticipated effects on selected genes. Software is developed to accompany the process of designing and prediction of binding sites. I expanded the functionality of the software to be used as a more generic set of tools for the design, target and offtarget searching. Part two contributes a method and associated toolkit developed to allow users to design in silico optimized synthetic TALEs with user-defined specificities for various experimental purposes. This method is based on a mutual relationship of three consecutive tandem repeats in the DNA-binding domain. This approach revealed positional and compositional bias behind the binding of TALEs to DNA. In conclusion, I developed methods, approaches, and software to enhance the functionality of synthetic TALEs, which should improve understanding of TALEs biology and will further advance genome-engineering applications in various organisms and cell types.

  15. Optimised Pre-Analytical Methods Improve KRAS Mutation Detection in Circulating Tumour DNA (ctDNA) from Patients with Non-Small Cell Lung Cancer (NSCLC)

    Sherwood, James L.; Corcoran, Claire; Brown, Helen; Sharpe, Alan D.; Musilova, Milena; Kohlmann, Alexander

    2016-01-01

    Introduction Non-invasive mutation testing using circulating tumour DNA (ctDNA) is an attractive premise. This could enable patients without available tumour sample to access more treatment options. Materials & Methods Peripheral blood and matched tumours were analysed from 45 NSCLC patients. We investigated the impact of pre-analytical variables on DNA yield and/or KRAS mutation detection: sample collection tube type, incubation time, centrifugation steps, plasma input volume and DNA extraction kits. Results 2 hr incubation time and double plasma centrifugation (2000 x g) reduced overall DNA yield resulting in lowered levels of contaminating genomic DNA (gDNA). Reduced “contamination” and increased KRAS mutation detection was observed using cell-free DNA Blood Collection Tubes (cfDNA BCT) (Streck), after 72 hrs following blood draw compared to EDTA tubes. Plasma input volume and use of different DNA extraction kits impacted DNA yield. Conclusion This study demonstrated that successful ctDNA recovery for mutation detection in NSCLC is dependent on pre-analytical steps. Development of standardised methods for the detection of KRAS mutations from ctDNA specimens is recommended to minimise the impact of pre-analytical steps on mutation detection rates. Where rapid sample processing is not possible the use of cfDNA BCT tubes would be advantageous. PMID:26918901

  16. Optimised Pre-Analytical Methods Improve KRAS Mutation Detection in Circulating Tumour DNA (ctDNA from Patients with Non-Small Cell Lung Cancer (NSCLC.

    James L Sherwood

    Full Text Available Non-invasive mutation testing using circulating tumour DNA (ctDNA is an attractive premise. This could enable patients without available tumour sample to access more treatment options.Peripheral blood and matched tumours were analysed from 45 NSCLC patients. We investigated the impact of pre-analytical variables on DNA yield and/or KRAS mutation detection: sample collection tube type, incubation time, centrifugation steps, plasma input volume and DNA extraction kits.2 hr incubation time and double plasma centrifugation (2000 x g reduced overall DNA yield resulting in lowered levels of contaminating genomic DNA (gDNA. Reduced "contamination" and increased KRAS mutation detection was observed using cell-free DNA Blood Collection Tubes (cfDNA BCT (Streck, after 72 hrs following blood draw compared to EDTA tubes. Plasma input volume and use of different DNA extraction kits impacted DNA yield.This study demonstrated that successful ctDNA recovery for mutation detection in NSCLC is dependent on pre-analytical steps. Development of standardised methods for the detection of KRAS mutations from ctDNA specimens is recommended to minimise the impact of pre-analytical steps on mutation detection rates. Where rapid sample processing is not possible the use of cfDNA BCT tubes would be advantageous.

  17. Improved technique that allows the performance of large-scale SNP genotyping on DNA immobilized by FTA technology.

    He, Hongbin; Argiro, Laurent; Dessein, Helia; Chevillard, Christophe

    2007-01-01

    FTA technology is a novel method designed to simplify the collection, shipment, archiving and purification of nucleic acids from a wide variety of biological sources. The number of punches that can normally be obtained from a single specimen card are often however, insufficient for the testing of the large numbers of loci required to identify genetic factors that control human susceptibility or resistance to multifactorial diseases. In this study, we propose an improved technique to perform large-scale SNP genotyping. We applied a whole genome amplification method to amplify DNA from buccal cell samples stabilized using FTA technology. The results show that using the improved technique it is possible to perform up to 15,000 genotypes from one buccal cell sample. Furthermore, the procedure is simple. We consider this improved technique to be a promising methods for performing large-scale SNP genotyping because the FTA technology simplifies the collection, shipment, archiving and purification of DNA, while whole genome amplification of FTA card bound DNA produces sufficient material for the determination of thousands of SNP genotypes.

  18. Complementing nuclear techniques with DNA vaccine technologies for improving animal health

    Relucio, J.L.V.; Dacanay, M.E.K.; Maligalig, A.C.S.; Ramos, E.A.; Santos, A.D.; Torres-Villanueva, C.A.T.; Osorio, R.G.; Deocaris, C.C.

    2005-01-01

    The use of nuclear methods can enhance several features of DNA vaccines in protecting livestock against pathogens. While DNA vaccines already have several advantages over their traditional predecessors (e.g. cheap production, stability over a wide range of temperature, amenability to genetic manipulation, and no risk of reversion to pathogenicity), conventional gene delivery systems make immunization of livestock and aquaculture populations tedious. For this reason, we are developing radiation-synthesized intelligent delivery systems for DNA vaccines. We encapsulated a reporter construct pCMV·SPORT-β-gal in radiation-synthesized κ-carrageenan-polyvinylpyrrolidone microspheres IP20 (for stomach release) and IP18 (for intestinal release). The DNA-loaded polymers were orally administered to Oreochromis niloticus (black Nile tilapia), and whole organs were stained with X-gal to observe β-galactosidase activity. Intense staining was observed in the stomach regions with IP20, while minimal staining was observed with IP18. The gills, in contrast, did not express β-galactosidase activity. Our results show evidence of the successful gene delivery capabilities of radiation-synthesized microspheres. When monitoring the progress of an animal's immune response after DNA immunization, non-invasive and sensitive methods are preferred. We also evaluated chicken egg-yolk polyclonal antibody response (chIgY) after direct intramuscular inoculation of the Hepatitis B Surface antigen expression vector pRc/CMV-HBs(S). Radioimmunoassay (RIA) was done to maximize sensitivity for determining antibody levels. Polyclonal antibody titres were observed to have increased after six weeks. Results of the RIA using the chIgY were comparable to that of immunized sera. Our findings indicate that chIgY could offer a cheaper and more animal-friendly antibody source and could be derived with the advantage of epitope specificity through DNA vaccination. (author)

  19. Biosensor approach to psychopathology classification.

    Misha Koshelev

    2010-10-01

    Full Text Available We used a multi-round, two-party exchange game in which a healthy subject played a subject diagnosed with a DSM-IV (Diagnostic and Statistics Manual-IV disorder, and applied a Bayesian clustering approach to the behavior exhibited by the healthy subject. The goal was to characterize quantitatively the style of play elicited in the healthy subject (the proposer by their DSM-diagnosed partner (the responder. The approach exploits the dynamics of the behavior elicited in the healthy proposer as a biosensor for cognitive features that characterize the psychopathology group at the other side of the interaction. Using a large cohort of subjects (n = 574, we found statistically significant clustering of proposers' behavior overlapping with a range of DSM-IV disorders including autism spectrum disorder, borderline personality disorder, attention deficit hyperactivity disorder, and major depressive disorder. To further validate these results, we developed a computer agent to replace the human subject in the proposer role (the biosensor and show that it can also detect these same four DSM-defined disorders. These results suggest that the highly developed social sensitivities that humans bring to a two-party social exchange can be exploited and automated to detect important psychopathologies, using an interpersonal behavioral probe not directly related to the defining diagnostic criteria.

  20. Simulation of Biosensor using FEM

    Sheeparamatti, B G; Hebbal, M S; Sheeparamatti, R B; Math, V B; Kadadevaramath, J S

    2006-01-01

    Bio-Micro Electro Mechanical Systems/Nano Electro Mechanical Systems include a wide variety of sensors, actuators, and complex micro/nano devices for biomedical applications. Recent advances in biosensors have shown that sensors based on bending of microfabricated cantilevers have potential advantages over earlier used detection methods. Thus, a simple cantilever beam can be used as a sensor for biomedical, chemical and environmental applications. Here, microfabricated multilayered cantilever beam is exposed to sensing environment. Lower layer being pure structural silicon or polymer and upper layer is of polymer with antigen/antibody immobilized in it. Obviously, it has an affinity towards its counterpart i.e. antibody/antigen. In the sensing environment, if counter elements exists, they get captured by this sensing beam head, and the cantilever beam deflects. This deflection can be sensed and the presence of counter elements in the environment can be predicted. In this work, a finite element model of a biosensor for sensing antibody/antigen reaction is developed and simulated using ANSYS/Multiphysics. The optimal dimensions of the microcantilever beam are selected based on permissible deflection range with the aid of MATLAB. In the model analysis, both weight and surface stress effects on the cantilever are considered. Approximate weights are taken into account because of counter elements, considering their molecular weight and possible number of elements required for sensing. The results obtained in terms of lateral deflection are presented

  1. Electronic transport in methylated fragments of DNA

    Almeida, M. L. de; Oliveira, J. I. N.; Lima Neto, J. X.; Gomes, C. E. M.; Fulco, U. L.; Albuquerque, E. L.; Freire, V. N.; Caetano, E. W. S.; Moura, F. A. B. F. de; Lyra, M. L.

    2015-01-01

    We investigate the electronic transport properties of methylated deoxyribonucleic-acid (DNA) strands, a biological system in which methyl groups are added to DNA (a major epigenetic modification in gene expression), sandwiched between two metallic platinum electrodes. Our theoretical simulations apply an effective Hamiltonian based on a tight-binding model to obtain current-voltage curves related to the non-methylated/methylated DNA strands. The results suggest potential applications in the development of novel biosensors for molecular diagnostics

  2. Electronic transport in methylated fragments of DNA

    Almeida, M. L. de; Oliveira, J. I. N.; Lima Neto, J. X.; Gomes, C. E. M.; Fulco, U. L., E-mail: umbertofulco@gmail.com; Albuquerque, E. L. [Departamento de Biofísica e Farmacologia, Universidade Federal do Rio Grande do Norte, 59072-970 Natal-RN (Brazil); Freire, V. N. [Departamento de Física, Universidade Federal do Ceará, 60455-760 Fortaleza, CE (Brazil); Caetano, E. W. S. [Instituto Federal de Educação, Ciência e Tecnologia do Ceará, 60040-531 Fortaleza, CE (Brazil); Moura, F. A. B. F. de; Lyra, M. L. [Instituto de Física, Universidade Federal de Alagoas, 57072-900 Maceió-AL (Brazil)

    2015-11-16

    We investigate the electronic transport properties of methylated deoxyribonucleic-acid (DNA) strands, a biological system in which methyl groups are added to DNA (a major epigenetic modification in gene expression), sandwiched between two metallic platinum electrodes. Our theoretical simulations apply an effective Hamiltonian based on a tight-binding model to obtain current-voltage curves related to the non-methylated/methylated DNA strands. The results suggest potential applications in the development of novel biosensors for molecular diagnostics.

  3. Design of a macroalgae amperometric biosensor; application to the rapid monitoring of organophosphate insecticides in an agroecosystem.

    Nunes, G S; Lins, J A P; Silva, F G S; Araujo, L C; Silva, F E P S; Mendonça, C D; Badea, M; Hayat, A; Marty, J-L

    2014-09-01

    The immobilization of enzymes onto transducer support is a mature technology and has been successfully implemented to improve biocatalytic processes for diverse applications. However, there exists still need to design more sophisticated and specialized strategies to enhance the functional properties of the biosensors. In this work, a biosensor platform based on innovative fabrication strategy was designed, and employed for the detection of organophosphate (OP) in natural waters. The biosensor was prepared by incorporating acetylcholinesterase enzyme (AChE) to the graphite paste modified with tetracyanoquinodimethane (TCNQ) mediator, along with the use of a macroalgae (Cladaphropsis membranous) as a functional immobilization support. The novel immobilization design resulted in a synergic effect, and led to enhanced stability and sensitivity of the biosensor. The designed biosensor was used to analyze methyl parathion OP insecticide in water samples collected from a demonstrably contaminated lake of São Luis Island, Maranhão, Northeast of Brazil. Water analysis revealed that the aquatic ecosystem was polluted by sub-ppm concentrations of the OP insecticide, and a good correlation was found between values obtained through biosensor and GC-MS techniques. Our results demonstrated that macroalgae-biosensor could be used as a low-cost and sensitive screening method to detect target analyte. Copyright © 2014 Elsevier Ltd. All rights reserved.

  4. Biosensors Used for Quantification of Nitrates in Plants

    Romero-Galindo Raul

    2016-01-01

    Full Text Available Nitrogen is essential for the plant because it is used for the production of chlorophyll, proteins, nucleic acids, amino acids, and other cellular compounds; nitrogen is available in two forms: ammonium and nitrate. Several tools have been used to quantify nitrates in plants such as the Kjeldahl method and Dumas combustion digestion; however, they are destructive and long time-consuming methods. To solve these disadvantages, methods such as selective electrodes, optical sensors, reflectometers, and images based sensors have been developed; nonetheless, all these techniques show interference when carrying out measurements. Currently, biosensors based on genetic constructions, based on the response of promoter gene fused to Gene Fluorescent Protein (GFP, are gaining popularity, because they improve the accuracy of measurements of nitrate by avoiding the interference of carriers ion, high salt conditions, and other factors. The present review shows the different methods to quantify the nitrogen in plants; later, a biosensors perspective is presented, mainly focused on biosensors based on organism genetically modified. The review presents a list of promoter and reporter genes that could be used to develop different kind of sensors, and a perspective of sensors to measure quantitatively the nitrogen is presented.

  5. Applications of polymers for biomolecule immobilization in electrochemical biosensors

    Teles, F.R.R.; Fonseca, L.P.

    2008-01-01

    Polymers are becoming inseparable from biomolecule immobilization strategies and biosensor platforms. Their original role as electrical insulators has been progressively substituted by their electrical conductive abilities, which opens a new and broad scope of applications. In addition, recent advances in diagnostic chips and microfluidic systems, together with the requirements of mass-production technologies, have raised the need to replace glass by polymeric materials, which are more suitable for production through simple manufacturing processes. Conducting polymers (CPs), in particular, are especially amenable for electrochemical biosensor development for providing biomolecule immobilization and for rapid electron transfer. It is expected that the combination of known polymer substrates, but also new transducing and biocompatible interfaces, with nanobiotechnological structures, like nanoparticles, carbon nanotubes (CNTs) and nanoengineered 'smart' polymers, may generate composites with new and interesting properties, providing higher sensitivity and stability of the immobilized molecules, thus constituting the basis for new and improved analytical devices for biomedical and other applications. This review covers the state-of-the-art and main novelties about the use of polymers for immobilization of biomolecules in electrochemical biosensor platforms

  6. Investigation of thin polymer layers for biosensor applications

    Saftics, András; Agócs, Emil [Institute for Technical Physics and Materials Science, Research Centre for Natural Sciences–H-1121 Budapest (Hungary); Fodor, Bálint [Institute for Technical Physics and Materials Science, Research Centre for Natural Sciences–H-1121 Budapest (Hungary); Doctoral School of Physics, Faculty of Science, University of Pécs, 7624 Pécs, Ifjúság útja 6 (Hungary); Patkó, Dániel; Petrik, Péter [Institute for Technical Physics and Materials Science, Research Centre for Natural Sciences–H-1121 Budapest (Hungary); Doctoral School of Molecular- and Nanotechnologies, Faculty of Information Technology, University of Pannonia, H-8200 Egyetem u.10, Veszprém (Hungary); Kolari, Kai; Aalto, Timo [VTT Technical Research Centre of Finland, PL 1000, Tietotie 3, 02044 Espoo (Finland); Fürjes, Péter [Institute for Technical Physics and Materials Science, Research Centre for Natural Sciences–H-1121 Budapest (Hungary); Horvath, Robert [Institute for Technical Physics and Materials Science, Research Centre for Natural Sciences–H-1121 Budapest (Hungary); Doctoral School of Molecular- and Nanotechnologies, Faculty of Information Technology, University of Pannonia, H-8200 Egyetem u.10, Veszprém (Hungary); Kurunczi, Sándor, E-mail: kurunczi.sandor@ttk.mta.hu [Institute for Technical Physics and Materials Science, Research Centre for Natural Sciences–H-1121 Budapest (Hungary); Doctoral School of Molecular- and Nanotechnologies, Faculty of Information Technology, University of Pannonia, H-8200 Egyetem u.10, Veszprém (Hungary)

    2013-09-15

    Novel biosensors made of polymers may offer advantages over conventional technology such as possibility of mass production and tunability of the material properties. With the ongoing work on the polymer photonic chip fabrication in our project, simple model samples were tested parallel for future immobilization and accessing conditions for applications in typical aqueous buffers. The model samples consist of a thin, high refractive index polyimide film on top of TEOS on Si wafer. These model samples were measured by in situ spectroscopic ellipsometry using different aqueous buffers. The experiments revealed a high drift in aqueous solutions; the drift in the ellipsometric parameters (delta, psi) can be evaluated and presented as changes in thickness and refractive index of the polyimide layer. The first molecular layer of immobilization is based on polyethyleneimine (PEI). The signal for the PEI adsorption was detected on a stable baseline, only after a long conditioning. The stability of polyimide films in aqueous buffer solutions should be improved toward the real biosensor application. Preliminary results are shown on the possibilities to protect the polyimide. Optical Waveguide Lightmode Spectroscopy (OWLS) has been used to demonstrate the shielding effect of the thin TiO{sub 2} adlayer in biosensor applications.

  7. Prospects of conducting polymers in biosensors

    Malhotra, Bansi D.; Chaubey, Asha; Singh, S.P.

    2006-01-01

    Applications of conducting polymers to biosensors have recently aroused much interest. This is because these molecular electronic materials offer control of different parameters such as polymer layer thickness, electrical properties and bio-reagent loading, etc. Moreover, conducting polymer based biosensors are likely to cater to the pressing requirements such as biocompatibility, possibility of in vivo sensing, continuous monitoring of drugs or metabolites, multi-parametric assays, miniaturization and high information density. This paper deals with the emerging trends in conducting polymer based biosensors during the last about 5 years

  8. Design Strategies for Aptamer-Based Biosensors

    Han, Kun; Liang, Zhiqiang; Zhou, Nandi

    2010-01-01

    Aptamers have been widely used as recognition elements for biosensor construction, especially in the detection of proteins or small molecule targets, and regarded as promising alternatives for antibodies in bioassay areas. In this review, we present an overview of reported design strategies for the fabrication of biosensors and classify them into four basic modes: target-induced structure switching mode, sandwich or sandwich-like mode, target-induced dissociation/displacement mode and competitive replacement mode. In view of the unprecedented advantages brought about by aptamers and smart design strategies, aptamer-based biosensors are expected to be one of the most promising devices in bioassay related applications. PMID:22399891

  9. Uses of Dendrimers for DNA Microarrays

    Jean-Pierre Majoral

    2006-08-01

    Full Text Available Biosensors such as DNA microarrays and microchips are gaining an increasingimportance in medicinal, forensic, and environmental analyses. Such devices are based onthe detection of supramolecular interactions called hybridizations that occur betweencomplementary oligonucleotides, one linked to a solid surface (the probe, and the other oneto be analyzed (the target. This paper focuses on the improvements that hyperbranched andperfectly defined nanomolecules called dendrimers can provide to this methodology. Twomain uses of dendrimers for such purpose have been described up to now; either thedendrimer is used as linker between the solid surface and the probe oligonucleotide, or thedendrimer is used as a multilabeled entity linked to the target oligonucleotide. In the firstcase the dendrimer generally induces a higher loading of probes and an easier hybridization,due to moving away the solid phase. In the second case the high number of localized labels(generally fluorescent induces an increased sensitivity, allowing the detection of smallquantities of biological entities.

  10. Improvement of in vivo transfer of plasmid DNA in muscle : Comparison of electroporation versus ultrasound

    Kusumanto, Yoka H.; Mulder, Nanno H.; Dam, Wendy A.; Losen, Mario H.; Meijer, Coby; Hospers, Geke A. P.

    Plasmid-based gene delivery to muscle is a treatment strategy for many diseases with potential advantages above viral-based gene delivery methods, however, with a relative low transfection efficiency. We compared two physical methods-electroporation and ultrasound-that facilitate DNA uptake into

  11. Improved sensitivity of circulating tumor DNA measurement using short PCR amplicons

    Andersen, Rikke Fredslund; Spindler, Karen-Lise Garm; Brandslund, Ivan

    2015-01-01

    , however, presents a number of challenges that require attention. The amount of DNA is low and highly fragmented and analyses need to be optimized accordingly. KRAS ARMS-qPCR assays with amplicon lengths of 120 and 85 base pairs, respectively, were compared using positive control material (PCR fragments...

  12. Improving the Analysis of Dinoflagellate Phylogeny based on rDNA

    Murray, Shauna; Jørgensen, Mårten Flø; Ho, Simon Y.W.

    2005-01-01

    Phylogenetic studies of dinoflagellates are often conducted using rDNA sequences. In analyses to date, the monophyly of some of the major lineages of dinoflagellates remain to be demonstrated. There are several reasons for this uncertainty, one of which may be the use of models of evolution that ...

  13. Smartphone based non-invasive salivary glucose biosensor.

    Soni, Anuradha; Jha, Sandeep Kumar

    2017-12-15

    The present work deals with the development of a non-invasive optical glucose biosensor using saliva samples and a smartphone. The sensor was fabricated with a simple methodology by immobilization of Glucose oxidase enzyme along with a pH responsive dye on a filter paper based strip. The strip changes color upon reaction with glucose present in saliva and the color changes were detected using a smartphone camera through RGB profiling. This standalone biosensor showed good sensitivity and low interference while operating within 20 s response time. We used various means for improvements such as the use of slope method instead of differential response; use of a responsive pH indicator and made numerous tweaks in the smartphone app. Calibration with spiked saliva samples with slopes for (R + G + B) pixels revealed an exponentially increasing calibration curve with a linear detection range of 50-540 mg/dL, sensitivity of 0.0012 pixels sec -1 /mg dL -1 and LOD of 24.6 mg/dL. The biosensor was clinically validated on both healthy and diabetic subjects divided into several categories based on sex, age, diabetic status etc. and correlation between blood and salivary glucose has been established for better standardization of the sensor. Correlation of 0.44 was obtained between blood and salivary glucose in healthy individuals whereas it was 0.64 and 0.94 in case of prediabetic and diabetic patients respectively. The developed biosensor has the potential to be used for mass diagnosis of diabetes especially in such areas where people remain prohibited from routine analysis due to high healthcare cost. Apart from that, a smartphone would be the only device the user needs for this measurement, along with a disposable low cost test strip. Copyright © 2017 Elsevier B.V. All rights reserved.

  14. Methods of reducing non-specific adsorption in microfluidic biosensors

    Choi, Seokheun; Chae, Junseok

    2010-01-01

    Non-specific adsorption (NSA) of biomolecules is a persistent challenge in microfluidic biosensors. Microfluidic biosensors often have immobilized bioreceptors such as antibodies, enzymes, DNAs, etc, via linker molecules such as SAMs (self-assembled monolayers) to enhance immobilization. However, the linker molecules are very susceptible to NSA, causing false responses and decreasing sensitivity. In this paper, we present design methods to reduce the NSA of alkanethiol SAMs, which are popular linker molecules on microfluidic biosensors. Three design parameters were studied for two different chain-length SAMs (n = 2 and 10): (i) SAM incubation time, (ii) surface roughness [0.8 nm and 4.4 nm RMS (root mean square)] and (iii) gold crystal re-growth along (1 1 1) the target orientation. NSA was monitored by surface plasmon resonance (SPR). The results suggest that increased SAM incubation time reduces NSA, and that short-chain SAMs respond more favorably than the long-chain SAMs. Both SAMs were shown to be sensitive to surface roughness, and long-chain SAMs reduced NSA by 75%. Gold crystal re-growth along (1 1 1) the target orientation profoundly reduced NSA on the short-chain SAM. On a gold surface where surface roughness was 0.8 nm and there was strong directional alignment along the (1 1 1) gold crystal, final concentrations of nonspecifically bound proteins were 0.05 ng mm −2 (fibrinogen) and 0.075 ng mm −2 (lysozyme)—significantly lower than other known methods. The results show that optimizing three parameters (SAM incubation time, gold surface roughness and gold crystal orientation) improved SAM sensitivity for fibrinogen–anti-fibrinogen conjugates by a factor of 5 in 2.94 pM, suggesting that the methods are effective for reducing NSA in microfluidic biosensors.

  15. The use of caspase inhibitors in pulsed-field gel electrophoresis may improve the estimation of radiation-induced DNA repair and apoptosis

    Balart, Josep; Pueyo, Gemma; Llobet, Lara I de; Baro, Marta; Sole, Xavi; Marin, Susanna; Casanovas, Oriol; Mesia, Ricard; Capella, Gabriel

    2011-01-01

    Radiation-induced DNA double-strand break (DSB) repair can be tested by using pulsed-field gel electrophoresis (PFGE) in agarose-encapsulated cells. However, previous studies have reported that this assay is impaired by the spontaneous DNA breakage in this medium. We investigated the mechanisms of this fragmentation with the principal aim of eliminating it in order to improve the estimation of radiation-induced DNA repair. Samples from cancer cell cultures or xenografted tumours were encapsulated in agarose plugs. The cell plugs were then irradiated, incubated to allow them to repair, and evaluated by PFGE, caspase-3, and histone H2AX activation (γH2AX). In addition, apoptosis inhibition was evaluated through chemical caspase inhibitors. We confirmed that spontaneous DNA fragmentation was associated with the process of encapsulation, regardless of whether cells were irradiated or not. This DNA fragmentation was also correlated to apoptosis activation in a fraction of the cells encapsulated in agarose, while non-apoptotic cell fraction could rejoin DNA fragments as was measured by γH2AX decrease and PFGE data. We were able to eliminate interference of apoptosis by applying specific caspase inhibitors, and improve the estimation of DNA repair, and apoptosis itself. The estimation of radiation-induced DNA repair by PFGE may be improved by the use of apoptosis inhibitors. The ability to simultaneously determine DNA repair and apoptosis, which are involved in cell fate, provides new insights for using the PFGE methodology as functional assay

  16. Creatinine and urea biosensors based on a novel ammonium ion-selective copper-polyaniline nano-composite.

    Zhybak, M; Beni, V; Vagin, M Y; Dempsey, E; Turner, A P F; Korpan, Y

    2016-03-15

    The use of a novel ammonium ion-specific copper-polyaniline nano-composite as transducer for hydrolase-based biosensors is proposed. In this work, a combination of creatinine deaminase and urease has been chosen as a model system to demonstrate the construction of urea and creatinine biosensors to illustrate the principle. Immobilisation of enzymes was shown to be a crucial step in the development of the biosensors; the use of glycerol and lactitol as stabilisers resulted in a significant improvement, especially in the case of the creatinine, of the operational stability of the biosensors (from few hours to at least 3 days). The developed biosensors exhibited high selectivity towards creatinine and urea. The sensitivity was found to be 85 ± 3.4 mAM(-1)cm(-2) for the creatinine biosensor and 112 ± 3.36 mAM(-1)cm(-2) for the urea biosensor, with apparent Michaelis-Menten constants (KM,app), obtained from the creatinine and urea calibration curves, of 0.163 mM for creatinine deaminase and 0.139 mM for urease, respectively. The biosensors responded linearly over the concentration range 1-125 µM, with a limit of detection of 0.5 µM and a response time of 15s. The performance of the biosensors in a real sample matrix, serum, was evaluated and a good correlation with standard spectrophotometric clinical laboratory techniques was found. Copyright © 2015 Elsevier B.V. All rights reserved.

  17. Grading the commercial optical biosensor literature-Class of 2008: 'The Mighty Binders'.

    Rich, Rebecca L; Myszka, David G

    2010-01-01

    Optical biosensor technology continues to be the method of choice for label-free, real-time interaction analysis. But when it comes to improving the quality of the biosensor literature, education should be fundamental. Of the 1413 articles published in 2008, less than 30% would pass the requirements for high-school chemistry. To teach by example, we spotlight 10 papers that illustrate how to implement the technology properly. Then we grade every paper published in 2008 on a scale from A to F and outline what features make a biosensor article fabulous, middling or abysmal. To help improve the quality of published data, we focus on a few experimental, analysis and presentation mistakes that are alarmingly common. With the literature as a guide, we want to ensure that no user is left behind. (c) 2009 John Wiley & Sons, Ltd.

  18. A sensitive glucose biosensor based on Ag@C core–shell matrix

    Zhou, Xuan; Dai, Xingxin; Li, Jianguo; Long, Yumei; Li, Weifeng; Tu, Yifeng

    2015-01-01

    Nano-Ag particles were coated with colloidal carbon (Ag@C) to improve its biocompatibility and chemical stability for the preparation of biosensor. The core–shell structure was evidenced by transmission electron microscope (TEM) and the Fourier transfer infrared (FTIR) spectra revealed that the carbon shell is rich of function groups such as − OH and − COOH. The as-prepared Ag@C core–shell structure can offer favorable microenvironment for immobilizing glucose oxidase and the direct electrochemistry process of glucose oxidase (GOD) at Ag@C modified glassy carbon electrode (GCE) was realized. The modified electrode exhibited good response to glucose. Under optimum experimental conditions the biosensor linearly responded to glucose concentration in the range of 0.05–2.5 mM, with a detection limit of 0.02 mM (S/N = 3). The apparent Michaelis–Menten constant (K M app ) of the biosensor is calculated to be 1.7 mM, suggesting high enzymatic activity and affinity toward glucose. In addition, the GOD-Ag@C/Nafion/GCE shows good reproducibility and long-term stability. These results suggested that core–shell structured Ag@C is an ideal matrix for the immobilization of the redox enzymes and further the construction of the sensitive enzyme biosensor. - Highlights: • Enhanced direct electrochemistry of GOD was achieved at Ag@C modified electrode. • A novel glucose biosensor based on Ag@C core–shell structure was developed. • The designed GOD-Ag@C/Nafion/GCE biosensor showed favorable analysis properties. • The biosensor is easy to prepare and can be applied for real sample assay

  19. A sensitive glucose biosensor based on Ag@C core–shell matrix

    Zhou, Xuan; Dai, Xingxin; Li, Jianguo [College of Chemistry, Chemical engineering and Materials Science, Soochow University, Suzhou, Jiangsu 215123 (China); Long, Yumei, E-mail: yumeilong@suda.edu.cn [College of Chemistry, Chemical engineering and Materials Science, Soochow University, Suzhou, Jiangsu 215123 (China); The Key Lab of Health Chemistry and Molecular Diagnosis of Suzhou (China); Li, Weifeng, E-mail: liweifeng@suda.edu.cn [College of Chemistry, Chemical engineering and Materials Science, Soochow University, Suzhou, Jiangsu 215123 (China); Tu, Yifeng [College of Chemistry, Chemical engineering and Materials Science, Soochow University, Suzhou, Jiangsu 215123 (China); The Key Lab of Health Chemistry and Molecular Diagnosis of Suzhou (China)

    2015-04-01

    Nano-Ag particles were coated with colloidal carbon (Ag@C) to improve its biocompatibility and chemical stability for the preparation of biosensor. The core–shell structure was evidenced by transmission electron microscope (TEM) and the Fourier transfer infrared (FTIR) spectra revealed that the carbon shell is rich of function groups such as − OH and − COOH. The as-prepared Ag@C core–shell structure can offer favorable microenvironment for immobilizing glucose oxidase and the direct electrochemistry process of glucose oxidase (GOD) at Ag@C modified glassy carbon electrode (GCE) was realized. The modified electrode exhibited good response to glucose. Under optimum experimental conditions the biosensor linearly responded to glucose concentration in the range of 0.05–2.5 mM, with a detection limit of 0.02 mM (S/N = 3). The apparent Michaelis–Menten constant (K{sub M}{sup app}) of the biosensor is calculated to be 1.7 mM, suggesting high enzymatic activity and affinity toward glucose. In addition, the GOD-Ag@C/Nafion/GCE shows good reproducibility and long-term stability. These results suggested that core–shell structured Ag@C is an ideal matrix for the immobilization of the redox enzymes and further the construction of the sensitive enzyme biosensor. - Highlights: • Enhanced direct electrochemistry of GOD was achieved at Ag@C modified electrode. • A novel glucose biosensor based on Ag@C core–shell structure was developed. • The designed GOD-Ag@C/Nafion/GCE biosensor showed favorable analysis properties. • The biosensor is easy to prepare and can be applied for real sample assay.

  20. A large response range reflectometric urea biosensor made from silica-gel nanoparticles.

    Alqasaimeh, Muawia; Heng, Lee Yook; Ahmad, Musa; Raj, A S Santhana; Ling, Tan Ling

    2014-07-22

    A new silica-gel nanospheres (SiO2NPs) composition was formulated, followed by biochemical surface functionalization to examine its potential in urea biosensor development. The SiO2NPs were basically synthesized based on sol-gel chemistry using a modified Stober method. The SiO2NPs surfaces were modified with amine (-NH2) functional groups for urease immobilization in the presence of glutaric acid (GA) cross-linker. The chromoionophore pH-sensitive dye ETH 5294 was physically adsorbed on the functionalized SiO2NPs as pH transducer. The immobilized urease determined urea concentration reflectometrically based on the colour change of the immobilized chromoionophore as a result of the enzymatic hydrolysis of urea. The pH changes on the biosensor due to the catalytic enzyme reaction of immobilized urease were found to correlate with the urea concentrations over a linear response range of 50-500 mM (R2 = 0.96) with a detection limit of 10 mM urea. The biosensor response time was 9 min with reproducibility of less than 10% relative standard deviation (RSD). This optical urea biosensor did not show interferences by Na+, K+, Mg2+ and NH4+ ions. The biosensor performance has been validated using urine samples in comparison with a non-enzymatic method based on the use of p-dimethylaminobenzaldehyde (DMAB) reagent and demonstrated a good correlation between the two different methods (R2 = 0.996 and regression slope of 1.0307). The SiO2NPs-based reflectometric urea biosensor showed improved dynamic linear response range when compared to other nanoparticle-based optical urea biosensors.

  1. A Large Response Range Reflectometric Urea Biosensor Made from Silica-Gel Nanoparticles

    Alqasaimeh, Muawia; Heng, Lee Yook; Ahmad, Musa; Raj, A.S. Santhana; Ling, Tan Ling

    2014-01-01

    A new silica-gel nanospheres (SiO2NPs) composition was formulated, followed by biochemical surface functionalization to examine its potential in urea biosensor development. The SiO2NPs were basically synthesized based on sol–gel chemistry using a modified Stober method. The SiO2NPs surfaces were modified with amine (-NH2) functional groups for urease immobilization in the presence of glutaric acid (GA) cross-linker. The chromoionophore pH-sensitive dye ETH 5294 was physically adsorbed on the functionalized SiO2NPs as pH transducer. The immobilized urease determined urea concentration reflectometrically based on the colour change of the immobilized chromoionophore as a result of the enzymatic hydrolysis of urea. The pH changes on the biosensor due to the catalytic enzyme reaction of immobilized urease were found to correlate with the urea concentrations over a linear response range of 50–500 mM (R2 = 0.96) with a detection limit of 10 mM urea. The biosensor response time was 9 min with reproducibility of less than 10% relative standard deviation (RSD). This optical urea biosensor did not show interferences by Na+, K+, Mg2+ and NH4+ ions. The biosensor performance has been validated using urine samples in comparison with a non-enzymatic method based on the use of p-dimethylaminobenzaldehyde (DMAB) reagent and demonstrated a good correlation between the two different methods (R2 = 0.996 and regression slope of 1.0307). The SiO2NPs-based reflectometric urea biosensor showed improved dynamic linear response range when compared to other nanoparticle-based optical urea biosensors. PMID:25054632

  2. Improvement of DNA transfer frequency and transposon mutagenesis of Erwinia carotovora subsp. betavasculorum.

    Rella, M; Axelrood, P E; Weinhold, A R; Schroth, M N

    1989-01-01

    The production of antibiotics and their role in microbial competition under natural conditions can be readily studied by the use of transposon mutants. Several antibiotic-producing strains of Erwinia carotovora subsp. betavasculorum were unable to accept foreign DNA. A plasmid delivery system was developed, using ethyl methanesulfonate mutagenesis, which entailed isolating E. carotovora subsp. betavasculorum mutants able to accept foreign DNA and transfer it to other strains. This enabled transposon mutagenesis of a wild-type antibiotic-producing strain of E. carotovora subsp. betavasculorum. Twelve antibiotic-negative mutants were isolated, and one of these showed a reduction in antibiotic production in vitro. Many of these mutants also showed a reduction in their ability to macerate potato tissue. The mutants were classified into four genetic groups on the basis of their genetic and phenotypic characteristics, indicating that several genes are involved in antibiotic biosynthesis by E. carotovora subsp. betavasculorum. PMID:2543291

  3. An Epidermal Biosensor for Carcinoembryonic Antigen

    Schwartz, Pauline

    2001-01-01

    ...). An epidermal biosensor is a new approach for the early continuous, in vivo detection of the onset of disease by the using genetically modified skin cells to respond to molecules secreted by tumor cells...

  4. An Epidermal Biosensor for Carcinoembryonic Antigen

    Schwartz, Pauline

    2003-01-01

    ...) An epidermal biosensor was conceived as a new approach for the early continuous, in vivo detection of the onset of disease by the using genetically modified skin cells to respond to molecules secreted by tumor cells...

  5. PRINCIPLES OF AFFINITY-BASED BIOSENSORS

    Despite the amount of resources that have been invested by national and international academic, government, and commercial sectors to develop affinity-based biosensor products, little obvious success has been realized through commercialization of these devices for specific applic...

  6. Biosensors in immunology: the story so far

    Pathak, S.S.; Savelkoul, H.F.J.

    1997-01-01

    Optical biosensors are finding a range of applications in immunology. They enable biomolecular interactions to be characterized in real time without the need to label reactants, and, because individual binding steps can be visualized, are particularly suited to complex assays

  7. Biosensors a promising future in measurements

    Saleem, Muhammad

    2013-01-01

    A biosensor is an analytical device which can be used to convert the existence of a molecule or compound into a measurable and useful signal. Biosensors use stimulus to translate changes to recognisable signals and have great importance to society. Applications include diagnosis tools for diseases, security appliances, and other biomedical equipments. Biosensors can also be used in the detection of pathogens and other microbes in foodstuffs, drugs and processing industries. Enormous progress and advancement has been witnessed in this area. Research and development in micro level systems serves to interface biology with novel materials such as nanomaterial. Development of high speed and accurate electronic devices tfor use in medicine and energy storage (such as biofuel cells) is one of the target areas. This paper discusses the importance, use and current and future trend in the application of biosensors

  8. A simple method for normalization of DNA extraction to improve the quantitative detection of soil-borne plant pathogenic oomycetes by real-time PCR.

    Li, M; Ishiguro, Y; Kageyama, K; Zhu, Z

    2015-08-01

    Most of the current research into the quantification of soil-borne pathogenic oomycetes lacks determination of DNA extraction efficiency, probably leading to an incorrect estimation of DNA quantity. In this study, we developed a convenient method by using a 100 bp artificially synthesized DNA sequence derived from the mitochondrion NADH dehydrogenase subunit 2 gene of Thunnus thynnus as a control to determine the DNA extraction efficiency. The control DNA was added to soils and then co-extracted along with soil genomic DNA. DNA extraction efficiency was determined by the control DNA. Two different DNA extraction methods were compared and evaluated using different types of soils, and the commercial kit was proved to give more consistent results. We used the control DNA combined with real-time PCR to quantify the oomycete DNAs from 12 naturally infested soils. Detectable target DNA concentrations were three to five times higher after normalization. Our tests also showed that the extraction efficiencies varied on a sample-to-sample basis and were simple and useful for the accurate quantification of soil-borne pathogenic oomycetes. Oomycetes include many important plant pathogens. Accurate quantification of these pathogens is essential in the management of diseases. This study reports an easy method utilizing an external DNA control for the normalization of DNA extraction by real-time PCR. By combining two different efficient soil DNA extraction methods, the developed quantification method dramatically improved the results. This study also proves that the developed normalization method is necessary and useful for the accurate quantification of soil-borne plant pathogenic oomycetes. © 2015 The Society for Applied Microbiology.

  9. Biosensors for cardiac biomarkers detection: a review

    Qureshi, Anjum; Gürbüz, Yaşar; Gurbuz, Yasar; Kolkar Mohammed, Javed Hussain Niazi

    2012-01-01

    The cardiovascular disease (CVD) is considered as a major threat to global health. Therefore, there is a growing demand for a range of portable, rapid and low cost biosensing devices for the detection of CVD. Biosensors can play an important role in the early diagnosis of CVD without having to rely on hospital visits where expensive and time-consuming laboratory tests are recommended. Over the last decade, many biosensors have been developed to detect a wide range of cardiac marker to reduce ...

  10. Yeast-based biosensors: design and applications.

    Adeniran, Adebola; Sherer, Michael; Tyo, Keith E J

    2015-02-01

    Yeast-based biosensing (YBB) is an exciting research area, as many studies have demonstrated the use of yeasts to accurately detect specific molecules. Biosensors incorporating various yeasts have been reported to detect an incredibly large range of molecules including but not limited to odorants, metals, intracellular metabolites, carcinogens, lactate, alcohols, and sugars. We review the detection strategies available for different types of analytes, as well as the wide range of output methods that have been incorporated with yeast biosensors. We group biosensors into two categories: those that are dependent upon transcription of a gene to report the detection of a desired molecule and those that are independent of this reporting mechanism. Transcription-dependent biosensors frequently depend on heterologous expression of sensing elements from non-yeast organisms, a strategy that has greatly expanded the range of molecules available for detection by YBBs. Transcription-independent biosensors circumvent the problem of sensing difficult-to-detect analytes by instead relying on yeast metabolism to generate easily detected molecules when the analyte is present. The use of yeast as the sensing element in biosensors has proven to be successful and continues to hold great promise for a variety of applications. © FEMS 2015. All rights reserved. For permissions, please e-mail: journals.permission@oup.com.

  11. Biosensors-on-chip: a topical review

    Chen, Sensen; Shamsi, Mohtashim H

    2017-01-01

    This review will examine the integration of two fields that are currently at the forefront of science, i.e. biosensors and microfluidics. As a lab-on-a-chip (LOC) technology, microfluidics has been enriched by the integration of various detection tools for analyte detection and quantitation. The application of such microfluidic platforms is greatly increased in the area of biosensors geared towards point-of-care diagnostics. Together, the merger of microfluidics and biosensors has generated miniaturized devices for sample processing and sensitive detection with quantitation. We believe that microfluidic biosensors (biosensors-on-chip) are essential for developing robust and cost effective point-of-care diagnostics. This review is relevant to a variety of disciplines, such as medical science, clinical diagnostics, LOC technologies including MEMs/NEMs, and analytical science. Specifically, this review will appeal to scientists working in the two overlapping fields of biosensors and microfluidics, and will also help new scientists to find their directions in developing point-of-care devices. (topical review)

  12. Nanostructured Tip-Shaped Biosensors: Application of Six Sigma Approach for Enhanced Manufacturing.

    Kahng, Seong-Joong; Kim, Jong-Hoon; Chung, Jae-Hyun

    2016-12-23

    Nanostructured tip-shaped biosensors have drawn attention for biomolecule detection as they are promising for highly sensitive and specific detection of a target analyte. Using a nanostructured tip, the sensitivity is increased to identify individual molecules because of the high aspect ratio structure. Various detection methods, such as electrochemistry, fluorescence microcopy, and Raman spectroscopy, have been attempted to enhance the sensitivity and the specificity. Due to the confined path of electrons, electrochemical measurement using a nanotip enables the detection of single molecules. When an electric field is combined with capillary action and fluid flow, target molecules can be effectively concentrated onto a nanotip surface for detection. To enhance the concentration efficacy, a dendritic nanotip rather than a single tip could be used to detect target analytes, such as nanoparticles, cells, and DNA. However, reproducible fabrication with relation to specific detection remains a challenge due to the instability of a manufacturing method, resulting in inconsistent shape. In this paper, nanostructured biosensors are reviewed with our experimental results using dendritic nanotips for sequence specific detection of DNA. By the aid of the Six Sigma approach, the fabrication yield of dendritic nanotips increases from 20.0% to 86.6%. Using the nanotips, DNA is concentrated and detected in a sequence specific way with the detection limit equivalent to 1000 CFU/mL. The pros and cons of a nanotip biosensor are evaluated in conjunction with future prospects.

  13. A signal-on electrogenerated chemiluminescent biosensor for lead ion based on DNAzyme

    Ma Fen; Sun Bo; Qi Honglan; Zhang Hongge; Gao Qiang; Zhang Chengxiao

    2011-01-01

    A highly reproducible and sensitive signal-on electrogenerated chemiluminescence (ECL) biosensor based on the DNAzyme for the determination of lead ion was developed. The ECL biosensor was fabricated by covalently coupling 5'-amino-DNAzyme-tagged with ruthenium bis (2,2'-bipyridine) (2,2'-bipyridine-4,4'-dicarboxylic acid)-ethylenediamine (Ru1-17E') onto the surface of graphite electrode modified with 4-aminobenzoic acid, and then a DNA substrate with a ribonucleotide adenosine hybridized with Ru1-17E' on the electrode. Upon binding of Pb 2+ to the Ru1-17E' to form a complex which catalyzed the cleavage of the DNA substrate, the double-stranded DNA was dissociated and thus led to a high ECL signal. The signal linearly increases with the concentration of Pb 2+ in the range from 5.0 to 80 pM with a detection limit of 1.4 pM and a relative standard derivation of 2.3%. This work demonstrates that using DNAzyme tagged with ruthenium complex as an ECL probe and covalently coupling method for the fabrication of the ECL biosensor with high sensitivity, good stability and significant regeneration ability is promising approach.

  14. Improved Yield of High Molecular Weight DNA Coincides with Increased Microbial Diversity Access from Iron Oxide Cemented Sub-Surface Clay Environments

    Hurt, Richard A.; Robeson, Michael S.; Shakya, Migun; Moberly, James G.; Vishnivetskaya, Tatiana A.; Gu, Baohua; Elias, Dwayne A.

    2014-01-01

    Despite over three decades of progress, extraction of high molecular weight (HMW) DNA from high clay soils or iron oxide cemented clay has remained challenging. HMW DNA is desirable for next generation sequencing as it yields the most comprehensive coverage. Several DNA extraction procedures were compared from samples that exhibit strong nucleic acid adsorption. pH manipulation or use of alternative ion solutions offered no improvement in nucleic acid recovery. Lysis by liquid N2 grinding in concentrated guanidine followed by concentrated sodium phosphate extraction supported HMW DNA recovery from clays high in iron oxides. DNA recovered using 1 M sodium phosphate buffer (PB) as a competitive desorptive wash was 15.22±2.33 µg DNA/g clay, with most DNA consisting of >20 Kb fragments, compared to 2.46±0.25 µg DNA/g clay with the Powerlyzer system (MoBio). Increasing PB concentration in the lysis reagent coincided with increasing DNA fragment length during initial extraction. Rarefaction plots of 16S rRNA (V1–V3 region) pyrosequencing from A-horizon and clay soils showed an ∼80% and ∼400% larger accessed diversity compared to the Powerlyzer soil DNA system, respectively. The observed diversity from the Firmicutes showed the strongest increase with >3-fold more operational taxonomic units (OTU) recovered. PMID:25033199

  15. Angle-resolved diffraction grating biosensor based on porous silicon

    Lv, Changwu; Li, Peng [School of Physical Science and Technology, Xinjiang University, Urumqi 830046 (China); Jia, Zhenhong, E-mail: jzhh@xju.edu.cn; Liu, Yajun; Mo, Jiaqing; Lv, Xiaoyi [College of Information Science and Engineering, Xinjiang University, Urumqi 830046 (China)

    2016-03-07

    In this study, an optical biosensor based on a porous silicon composite structure was fabricated using a simple method. This structure consists of a thin, porous silicon surface diffraction grating and a one-dimensional porous silicon photonic crystal. An angle-resolved diffraction efficiency spectrum was obtained by measuring the diffraction efficiency at a range of incident angles. The angle-resolved diffraction efficiency of the 2nd and 3rd orders was studied experimentally and theoretically. The device was sensitive to the change of refractive index in the presence of a biomolecule indicated by the shift of the diffraction efficiency spectrum. The sensitivity of this sensor was investigated through use of an 8 base pair antifreeze protein DNA hybridization. The shifts of the angle-resolved diffraction efficiency spectrum showed a relationship with the change of the refractive index, and the detection limit of the biosensor reached 41.7 nM. This optical device is highly sensitive, inexpensive, and simple to fabricate. Using shifts in diffraction efficiency spectrum to detect biological molecules has not yet been explored, so this study establishes a foundation for future work.

  16. Biosensor

    2002-01-01

    The invention relates to a biochemical assay for wide class of hydrophobic Coenzyme A esters wherein the analyte is caused to react with a specifically binding, modified protein, and thereby causing a detectable signal. A one step assay for hydrophobic carboxylic acid esters in whole blood, serum...

  17. Biosensors

    and an electronic component to transduce and detect the signal. A variety of .... aliphatic aldehyde as fol- lows: FMNH2 + .... microorganisms by the use of high temperature. ... ISFET. The oxidation of hypoxanthine to uric acid by xanthine.

  18. Immobilization of HRP in Mesoporous Silica and Its Application for the Construction of Polyaniline Modified Hydrogen Peroxide Biosensor

    Chien-Chung Chen

    2009-06-01

    Full Text Available Polyaniline (PANI, an attractive conductive polymer, has been successfully applied in fabricating various types of enzyme-based biosensors. In this study, we have employed mesoporous silica SBA-15 to stably entrap horseradish peroxidase (HRP, and then deposited the loaded SBA-15 on the PANI modified platinum electrode to construct a GA/SBA-15(HRP/PANI/Pt biosensor. The mesoporous structures and morphologies of SBA-15 with or without HRP were characterized. Enzymatic protein assays were employed to evaluate HRP immobilization efficiency. Our results demonstrated that the constructed biosensor displayed a fine linear correlation between cathodic response and H2O2 concentration in the range of 0.02 to 18.5 mM, with enhanced sensitivity. In particular, the current approach provided the PANI modified biosensor with improved stability for multiple measurements.

  19. Accurate and precise DNA quantification in the presence of different amplification efficiencies using an improved Cy0 method.

    Guescini, Michele; Sisti, Davide; Rocchi, Marco B L; Panebianco, Renato; Tibollo, Pasquale; Stocchi, Vilberto

    2013-01-01

    Quantitative real-time PCR represents a highly sensitive and powerful technology for the quantification of DNA. Although real-time PCR is well accepted as the gold standard in nucleic acid quantification, there is a largely unexplored area of experimental conditions that limit the application of the Ct method. As an alternative, our research team has recently proposed the Cy0 method, which can compensate for small amplification variations among the samples being compared. However, when there is a marked decrease in amplification efficiency, the Cy0 is impaired, hence determining reaction efficiency is essential to achieve a reliable quantification. The proposed improvement in Cy0 is based on the use of the kinetic parameters calculated in the curve inflection point to compensate for efficiency variations. Three experimental models were used: inhibition of primer extension, non-optimal primer annealing and a very small biological sample. In all these models, the improved Cy0 method increased quantification accuracy up to about 500% without affecting precision. Furthermore, the stability of this procedure was enhanced integrating it with the SOD method. In short, the improved Cy0 method represents a simple yet powerful approach for reliable DNA quantification even in the presence of marked efficiency variations.

  20. Improving DNA double-strand repair inhibitor KU55933 therapeutic index in cancer radiotherapy using nanoparticle drug delivery

    Tian, Xi; Lara, Haydee; Wagner, Kyle T.; Saripalli, Srinivas; Hyder, Syed Nabeel; Foote, Michael; Sethi, Manish; Wang, Edina; Caster, Joseph M.; Zhang, Longzhen; Wang, Andrew Z.

    2015-11-01

    Radiotherapy is a key component of cancer treatment. Because of its importance, there has been high interest in developing agents and strategies to further improve the therapeutic index of radiotherapy. DNA double-strand repair inhibitors (DSBRIs) are among the most promising agents to improve radiotherapy. However, their clinical translation has been limited by their potential toxicity to normal tissue. Recent advances in nanomedicine offer an opportunity to overcome this limitation. In this study, we aim to demonstrate the proof of principle by developing and evaluating nanoparticle (NP) formulations of KU55933, a DSBRI. We engineered a NP formulation of KU55933 using nanoprecipitation method with different lipid polymer nanoparticle formulation. NP KU55933 using PLGA formulation has the best loading efficacy as well as prolonged drug release profile. We demonstrated that NP KU55933 is a potent radiosensitizer in vitro using clonogenic assay and is more effective as a radiosensitizer than free KU55933 in vivo using mouse xenograft models of non-small cell lung cancer (NSCLC). Western blots and immunofluorescence showed NP KU55933 exhibited more prolonged inhibition of DNA repair pathway. In addition, NP KU55933 leads to lower skin toxicity than KU55933. Our study supports further investigations using NP to deliver DSBRIs to improve cancer radiotherapy treatment.

  1. Tagging of blast resistance gene(s) to DNA markers and marker-assisted selection (MAS) in rice improvement

    Zhuang, J.Y.; Lu, J.; Qian, H.R.; Lin, H.X.; Zheng, K.L.

    1998-01-01

    This paper reports progress made on the tagging of blast resistance gene(s) to DNA markers and on the initiation of marker-assisted selection (MAS) for blast resistance in rice improvement. A pair of near isogenic lines, K8OR and K79S, were developed using a Chinese landrace Hong-jiao-zhan as the resistance donor. Ten putatively positive markers were identified by screening 177 mapped DNA markers. Using the F 2 population of 143 plants and the derived F 3 lines, three Restriction Fragment Length Polymorphism (RFLP) markers (RG81, RG869 and RZ397) on chromosome 12 of rice were identified to be closely linked to the blast resistance gene Pi-12(t). The genetic distance between Pi-12(t) and the closest marker RG869 was 5.1 cM. By employing the bulk segregant analysis (BSA) procedure, six of 199 arbitrary primers were found to produce positive Randomly Amplified Polymorphic DNA (RAPD) bands. Tight linkage between Pi-12(t) and three RAPD bands, each from a different primer, was confirmed after amplification of DNA of all F 2 individuals. Two fragments were cloned and sequenced, and two sequence characterised amplified re-ion (SCAR) markers were established. In two other F 3 populations, Xian-feng I/Tetep and Xian-feng, 1/Hong-jiao-zhan, the blast resistance was found to be controlled by interactions of two or more genes. One resistance gene was located in the vicinity of RG81 in both populations. Work to identify other gene(s) is currently under way. Marker assisted selection for blast resistance was initiated. Crosses were made between elite varieties and blast resistance donors to develop populations for DNA marker-assisted selection of blast resistance. In addition, 48 varieties widely used in current rice breeding programs were provided by rice breeders. DNA marker-based polymorphism among, these varieties and resistance donors were analysed to produce a database for future MAS program. (author)

  2. Recovery Based Nanowire Field-Effect Transistor Detection of Pathogenic Avian Influenza DNA

    Lin, Chih-Heng; Chu, Chia-Jung; Teng, Kang-Ning; Su, Yi-Jr; Chen, Chii-Dong; Tsai, Li-Chu; Yang, Yuh-Shyong

    2012-02-01

    Fast and accurate diagnosis is critical in infectious disease surveillance and management. We proposed a DNA recovery system that can easily be adapted to DNA chip or DNA biosensor for fast identification and confirmation of target DNA. This method was based on the re-hybridization of DNA target with a recovery DNA to free the DNA probe. Functionalized silicon nanowire field-effect transistor (SiNW FET) was demonstrated to monitor such specific DNA-DNA interaction using high pathogenic strain virus hemagglutinin 1 (H1) DNA of avian influenza (AI) as target. Specific electric changes were observed in real-time for AI virus DNA sensing and device recovery when nanowire surface of SiNW FET was modified with complementary captured DNA probe. The recovery based SiNW FET biosensor can be further developed for fast identification and further confirmation of a variety of influenza virus strains and other infectious diseases.

  3. New Trends in Impedimetric Biosensors for the Detection of Foodborne Pathogenic Bacteria

    Wang, Yixian; Ye, Zunzhong; Ying, Yibin

    2012-01-01

    The development of a rapid, sensitive, specific method for the foodborne pathogenic bacteria detection is of great importance to ensure food safety and security. In recent years impedimetric biosensors which integrate biological recognition technology and impedance have gained widespread application in the field of bacteria detection. This paper presents an overview on the progress and application of impedimetric biosensors for detection of foodborne pathogenic bacteria, particularly the new trends in the past few years, including the new specific bio-recognition elements such as bacteriophage and lectin, the use of nanomaterials and microfluidics techniques. The applications of these new materials or techniques have provided unprecedented opportunities for the development of high-performance impedance bacteria biosensors. The significant developments of impedimetric biosensors for bacteria detection in the last five years have been reviewed according to the classification of with or without specific bio-recognition element. In addition, some microfluidics systems, which were used in the construction of impedimetric biosensors to improve analytical performance, are introduced in this review. PMID:22737018

  4. Ordered mesoporous polyaniline film as a new matrix for enzyme immobilization and biosensor construction

    Xu Qin; Zhu Junjie; Hu Xiaoya

    2007-01-01

    Ordered mesoporous polyaniline film has been fabricated by electrodepositing from the hexagonal lyotropic liquid crystalline (LCC). Horseradish peroxidase (HRP), as a symbol biomolecule, was successfully immobilized on the film to construct a new kind of hydrogen peroxide biosensor. The biosensor combined the advantages of the good conductivity of polyaniline and the higher surface area of the ordered mesoporous film. Polyaniline could be served as a wire to relay electron between HRP and the electrode. The high surface area of the film supplied more sites for HRP immobilization, therefore increased the catalytic activity of the biosensor. The ordered mesoporous character of the film increased the rate of mass transport, which resulted in the improvement of sensor response and linearity. The biosensor displayed excellent electrocatalytic response to the detection of H 2 O 2 in a concentration range from 1.0 μM to 2.0 mM with a detection limit of 0.63 μM. Good reproducibility, stability, high precision, wide linearity and low detection limit were assessed for the biosensor

  5. Electrochemical Biosensor for Nitrite Based on Polyacrylic-Graphene Composite Film with Covalently Immobilized Hemoglobin

    Raja Zaidatul Akhmar Raja Jamaluddin

    2018-04-01

    Full Text Available A new biosensor for the analysis of nitrite in food was developed based on hemoglobin (Hb covalently immobilized on the succinimide functionalized poly(n-butyl acrylate-graphene [poly(nBA-rGO] composite film deposited on a carbon-paste screen-printed electrode (SPE. The immobilized Hb on the poly(nBA-rGO conducting matrix exhibited electrocatalytic ability for the reduction of nitrite with significant enhancement in the reduction peak at −0.6 V versus Ag/AgCl reference electrode. Thus, direct determination of nitrite can be achieved by monitoring the cathodic peak current signal of the proposed polyacrylic-graphene hybrid film-based voltammetric nitrite biosensor. The nitrite biosensor exhibited a reproducible dynamic linear response range from 0.05–5 mg L−1 nitrite and a detection limit of 0.03 mg L−1. No significant interference was observed by potential interfering ions such as Ca2+, Na+, K+, NH4+, Mg2+, and NO3− ions. Analysis of nitrite in both raw and processed edible bird’s nest (EBN samples demonstrated recovery of close to 100%. The covalent immobilization of Hb on poly(nBA-rGO composite film has improved the performance of the electrochemical nitrite biosensor in terms of broader detection range, lower detection limit, and prolonged biosensor stability.

  6. Decoding spatial and temporal features of neuronal cAMP/PKA signaling with FRET biosensors.

    Castro, Liliana R V; Guiot, Elvire; Polito, Marina; Paupardin-Tritsch, Daniéle; Vincent, Pierre

    2014-02-01

    Cyclic adenosine monophosphate (cAMP) and the cyclic-AMP-dependent protein kinase (PKA) regulate a plethora of cellular functions in virtually all eukaryotic cells. In neurons, the cAMP/PKA signaling cascade controls a number of biological properties such as axonal growth, pathfinding, efficacy of synaptic transmission, regulation of excitability, or long term changes. Genetically encoded optical biosensors for cAMP or PKA are considerably improving our understanding of these processes by providing a real-time measurement in living neurons. In this review, we describe the recent progress made in the creation of biosensors for cAMP or PKA activity. These biosensors revealed profound differences in the amplitude of the cAMP signal evoked by neuromodulators between various neuronal preparations. These responses can be resolved at the level of individual neurons, also revealing differences related to the neuronal type. At the sub-cellular level, biosensors reported different signal dynamics in domains like dendrites, cell body, nucleus, and axon. Combining this imaging approach with pharmacology or genetic models points at phosphodiesterases and phosphatases as critical regulatory proteins. Biosensor imaging will certainly emerge as a forefront tool to decipher the subtle mechanics of intracellular signaling. This will certainly help us to understand the mechanism of action of current drugs and foster the development of novel molecules for neuropsychiatric diseases. Copyright © 2014 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  7. Microfabricated Electrochemical Cell-Based Biosensors for Analysis of Living Cells In Vitro

    Jun Wang

    2012-04-01

    Full Text Available Cellular biochemical parameters can be used to reveal the physiological and functional information of various cells. Due to demonstrated high accuracy and non-invasiveness, electrochemical detection methods have been used for cell-based investigation. When combined with improved biosensor design and advanced measurement systems, the on-line biochemical analysis of living cells in vitro has been applied for biological mechanism study, drug screening and even environmental monitoring. In recent decades, new types of miniaturized electrochemical biosensor are emerging with the development of microfabrication technology. This review aims to give an overview of the microfabricated electrochemical cell-based biosensors, such as microelectrode arrays (MEA, the electric cell-substrate impedance sensing (ECIS technique, and the light addressable potentiometric sensor (LAPS. The details in their working principles, measurement systems, and applications in cell monitoring are covered. Driven by the need for high throughput and multi-parameter detection proposed by biomedicine, the development trends of electrochemical cell-based biosensors are also introduced, including newly developed integrated biosensors, and the application of nanotechnology and microfluidic technology.

  8. Metal Nanoparticles/Porous Silicon Microcavity Enhanced Surface Plasmon Resonance Fluorescence for the Detection of DNA

    Jiajia Wang

    2018-02-01

    Full Text Available A porous silicon microcavity (PSiMC with resonant peak wavelength of 635 nm was fabricated by electrochemical etching. Metal nanoparticles (NPs/PSiMC enhanced fluorescence substrates were prepared by the electrostatic adherence of Au NPs that were distributed in PSiMC. The Au NPs/PSiMC device was used to characterize the target DNA immobilization and hybridization with its complementary DNA sequences marked with Rhodamine red (RRA. Fluorescence enhancement was observed on the Au NPs/PSiMC device substrate; and the minimum detection concentration of DNA ran up to 10 pM. The surface plasmon resonance (SPR of the MC substrate; which is so well-positioned to improve fluorescence enhancement rather the fluorescence enhancement of the high reflection band of the Bragg reflector; would welcome such a highly sensitive in biosensor.

  9. Metal Nanoparticles/Porous Silicon Microcavity Enhanced Surface Plasmon Resonance Fluorescence for the Detection of DNA.

    Wang, Jiajia; Jia, Zhenhong

    2018-02-23

    A porous silicon microcavity (PSiMC) with resonant peak wavelength of 635 nm was fabricated by electrochemical etching. Metal nanoparticles (NPs)/PSiMC enhanced fluorescence substrates were prepared by the electrostatic adherence of Au NPs that were distributed in PSiMC. The Au NPs/PSiMC device was used to characterize the target DNA immobilization and hybridization with its complementary DNA sequences marked with Rhodamine red (RRA). Fluorescence enhancement was observed on the Au NPs/PSiMC device substrate; and the minimum detection concentration of DNA ran up to 10 pM. The surface plasmon resonance (SPR) of the MC substrate; which is so well-positioned to improve fluorescence enhancement rather the fluorescence enhancement of the high reflection band of the Bragg reflector; would welcome such a highly sensitive in biosensor.

  10. Quality standards for DNA sequence variation databases to improve clinical management under development in Australia

    B. Bennetts

    2014-09-01

    Full Text Available Despite the routine nature of comparing sequence variations identified during clinical testing to database records, few databases meet quality requirements for clinical diagnostics. To address this issue, The Royal College of Pathologists of Australasia (RCPA in collaboration with the Human Genetics Society of Australasia (HGSA, and the Human Variome Project (HVP is developing standards for DNA sequence variation databases intended for use in the Australian clinical environment. The outputs of this project will be promoted to other health systems and accreditation bodies by the Human Variome Project to support the development of similar frameworks in other jurisdictions.

  11. Development of an acoustic wave based biosensor for vapor phase detection of small molecules

    Stubbs, Desmond

    For centuries scientific ingenuity and innovation have been influenced by Mother Nature's perfect design. One of her more elusive designs is that of the sensory olfactory system, an array of highly sensitive receptors responsible for chemical vapor recognition. In the animal kingdom this ability is magnified among canines where ppt (parts per trillion) sensitivity values have been reported. Today, detection dogs are considered an essential part of the US drug and explosives detection schemes. However, growing concerns about their susceptibility to extraneous odors have inspired the development of highly sensitive analytical detection tools or biosensors known as "electronic noses". In general, biosensors are distinguished from chemical sensors in that they use an entity of biological origin (e.g. antibody, cell, enzyme) immobilized onto a surface as the chemically-sensitive film on the device. The colloquial view is that the term "biosensors" refers to devices which detect the presence of entities of biological origin, such as proteins or single-stranded DNA and that this detection must take place in a liquid. Our biosensor utilizes biomolecules, specifically IgG monoclonal antibodies, to achieve molecular recognition of relatively small molecules in the vapor phase.

  12. Graphene, carbon nanotubes, zinc oxide and gold as elite nanomaterials for fabrication of biosensors for healthcare.

    Kumar, Sandeep; Ahlawat, Wandit; Kumar, Rajesh; Dilbaghi, Neeraj

    2015-08-15

    Technological advancements worldwide at rapid pace in the area of materials science and nanotechnology have made it possible to synthesize nanoparticles with desirable properties not exhibited by the bulk material. Among variety of available nanomaterials, graphene, carbon nanotubes, zinc oxide and gold nanopartilces proved to be elite and offered amazing electrochemical biosensing. This encourages us to write a review which highlights the recent achievements in the construction of genosensor, immunosensor and enzymatic biosensor based on the above nanomaterials. Carbon based nanomaterials offers a direct electron transfer between the functionalized nanomaterials and active site of bioreceptor without involvement of any mediator which not only amplifies the signal but also provide label free sensing. Gold shows affinity towards immunological molecules and is most routinely used for immunological sensing. Zinc oxide can easily immobilize proteins and hence offers a large group of enzyme based biosensor. Modification of the working electrode by introduction of these nanomaterials or combination of two/three of above nanomaterials together and forming a nanocomposite reflected the best results with excellent stability, reproducibility and enhanced sensitivity. Highly attractive electrochemical properties and electrocatalytic activity of these elite nanomaterials have facilitated achievement of enhanced signal amplification needed for the construction of ultrasensitive electrochemical affinity biosensors for detection of glucose, cholesterol, Escherichia coli, influenza virus, cancer, human papillomavirus, dopamine, glutamic acid, IgG, IgE, uric acid, ascorbic acid, acetlycholine, cortisol, cytosome, sequence specific DNA and amino acids. Recent researches for bedside biosensors are also discussed. Copyright © 2015 Elsevier B.V. All rights reserved.

  13. Comparison of pathogen DNA isolation methods from large volumes of whole blood to improve molecular diagnosis of bloodstream infections.

    Anne J M Loonen

    Full Text Available For patients suffering from bloodstream infections (BSI molecular diagnostics from whole blood holds promise to provide fast and adequate treatment. However, this approach is hampered by the need of large blood volumes. Three methods for pathogen DNA isolation from whole blood were compared, i.e. an enzymatic method (MolYsis, 1-5 ml, the novel non-enzymatic procedure (Polaris, 1-5 ml, and a method that does not entail removal of human DNA (Triton-Tris-EDTA EasyMAG, 200 µl. These methods were evaluated by processing blood spiked with 0-1000 CFU/ml of Staphylococcus aureus, Pseudomonas aeruginosa and Candida albicans. Downstream detection was performed with real-time PCR assays. Polaris and MolYsis processing followed by real-time PCRs enabled pathogen detection at clinically relevant concentrations of 1-10 CFU/ml blood. By increasing sample volumes, concurrent lower cycle threshold (Ct values were obtained at clinically relevant pathogen concentrations, demonstrating the benefit of using larger blood volumes. A 100% detection rate at a concentration of 10 CFU/ml for all tested pathogens was obtained with the Polaris enrichment, whereas comparatively lower detection rates were measured for MolYsis (50-67% and EasyMAG (58-79%. For the samples with a concentration of 1 CFU/ml Polaris resulted in most optimal detection rates of 70-75% (MolYsis 17-50% and TTE-EasyMAG 20-36%. The Polaris method was more reproducible, less labour intensive, and faster (45 minutes (including Qiagen DNA extraction vs. 2 hours (MolYsis. In conclusion, Polaris and MolYsis enrichment followed by DNA isolation and real-time PCR enables reliable and sensitive detection of bacteria and fungi from 5 ml blood. With Polaris results are available within 3 hours, showing potential for improved BSI diagnostics.

  14. DNA Nanobiosensors: An Outlook on Signal Readout Strategies

    Arun Richard Chandrasekaran

    2017-01-01

    Full Text Available A suite of functionalities and structural versatility makes DNA an apt material for biosensing applications. DNA-based biosensors are cost-effective and sensitive and have the potential to be used as point-of-care diagnostic tools. Along with robustness and biocompatibility, these sensors also provide multiple readout strategies. Depending on the functionality of DNA-based biosensors, a variety of output strategies have been reported: fluorescence- and FRET-based readout, nanoparticle-based colorimetry, spectroscopy-based techniques, electrochemical signaling, gel electrophoresis, and atomic force microscopy.

  15. Use of Fe3O4 Nanoparticles for Enhancement of Biosensor Response to the Herbicide 2,4-Dichlorophenoxyacetic Acid

    Loh, Kee-Shyuan; Lee, Yook Heng; Musa, Ahmad; Salmah, Abdul Aziz; Zamri, Ishak

    2008-01-01

    Magnetic nanoparticles of Fe3O4 were synthesized and characterized using transmission electron microscopy and X-ray diffraction. The Fe3O4 nanoparticles were found to have an average diameter of 5.48 ±1.37 nm. An electrochemical biosensor based on immobilized alkaline phosphatase (ALP) and Fe3O4 nanoparticles was studied. The amperometric biosensor was based on the reaction of ALP with the substrate ascorbic acid 2-phosphate (AA2P). The incorporation of the Fe3O4 nanoparticles together with ALP into a sol gel/chitosan biosensor membrane has led to the enhancement of the biosensor response, with an improved linear response range to the substrate AA2P (5-120 μM) and increased sensitivity. Using the inhibition property of the ALP, the biosensor was applied to the determination of the herbicide 2,4-dichlorophenoxyacetic acid (2,4-D). The use of Fe3O4 nanoparticles gives a two-fold improvement in the sensitivity towards 2,4-D, with a linear response range of 0.5-30 μgL-1. Exposure of the biosensor to other toxicants such as heavy metals demonstrated only slight interference from metals such as Hg2+, Cu2+, Ag2+ and Pb2+. The biosensor was shown to be useful for the determination of the herbicide 2, 4-D because good recovery of 95-100 percent was obtained, even though the analysis was performed in water samples with a complex matrix. Furthermore, the results from the analysis of 2,4-D in water samples using the biosensor correlated well with a HPLC method. PMID:27873839

  16. Use of Fe3O4 Nanoparticles for Enhancement of Biosensor Response to the Herbicide 2,4-Dichlorophenoxyacetic Acid

    Ishak Zamri

    2008-09-01

    Full Text Available Magnetic nanoparticles of Fe3O4 were synthesized and characterized using transmission electron microscopy and X-ray diffraction. The Fe3O4 nanoparticles were found to have an average diameter of 5.48 ±1.37 nm. An electrochemical biosensor based on immobilized alkaline phosphatase (ALP and Fe3O4 nanoparticles was studied. The amperometric biosensor was based on the reaction of ALP with the substrate ascorbic acid 2-phosphate (AA2P. The incorporation of the Fe3O4 nanoparticles together with ALP into a sol gel/chitosan biosensor membrane has led to the enhancement of the biosensor response, with an improved linear response range to the substrate AA2P (5-120 μM and increased sensitivity. Using the inhibition property of the ALP, the biosensor was applied to the determination of the herbicide 2,4-dichlorophenoxyacetic acid (2,4-D. The use of Fe3O4 nanoparticles gives a two-fold improvement in the sensitivity towards 2,4-D, with a linear response range of 0.5-30 μgL-1. Exposure of the biosensor to other toxicants such as heavy metals demonstrated only slight interference from metals such as Hg2+, Cu2+, Ag2+ and Pb2+. The biosensor was shown to be useful for the determination of the herbicide 2, 4-D because good recovery of 95-100 percent was obtained, even though the analysis was performed in water samples with a complex matrix. Furthermore, the results from the analysis of 2,4-D in water samples using the biosensor correlated well with a HPLC method.

  17. Studies Regarding the Membranous Support of a Glucose Biosensor Based on Gox

    Otilia Bizerea-Spiridon

    2010-05-01

    Full Text Available To obtain glucose biosensors based on glucose oxidase (GOx, the enzyme can be immobilized on the sensitive surface of a glass electrode by different techniques: deposition on membranous support (cellophane or other macromolecular material or entrapment in a matrix. Deposition on membranous support also involves cross-linking with glutaraldehyde or entrapment in silica gel, following the sol-gel procedure. The aim of this preliminary work was to study the influence of cellophane replacement with a PVA based membranous support on the glucose biosensor performance. The data obtained at pH measurements of buffer solutions with cellophane and PVA membranous supports respectively, show that the PVA based membrane assures superior performances of the biosensor for low glucose concentrations determination (about 10-4 M. These results allow the transition to an improved immobilization technique, namely the enzyme entrapment in membranous material.

  18. Alpha-fetoprotein detection by using a localized surface plasmon coupled fluorescence fiber-optic biosensor

    Chang, Ying-Feng; Chen, Ran-Chou; Li, Ying-Chang; Yu, Chih-Jen; Hsieh, Bao-Yu; Chou, Chien

    2007-11-01

    Alpha-fetoprotein (AFP) detection by using a localized surface plasmon coupled fluorescence (LSPCF) fiber-optic biosensor is setup and experimentally demonstrated. It is based on gold nanoparticle (GNP) and coupled with localized surface plasmon wave on the surface of GNP. In this experiment, the fluorophores are labeled on anti-AFP which are bound to protein A conjugated GNP. Thus, LSPCF is excited with high efficiency in the near field of localized surface plasmon wave. Therefore, not only the sensitivity of LSPCF biosensor is enhanced but also the specific selectivity of AFP is improved. Experimentally, the ability of real time measurement in the range of AFP concentration from 0.1ng/ml to 100ng/ml was detected. To compare with conventional methods such as enzyme-linked immunosorbent assay (ELISA) or radioimmunoassay (RIA), the LSPCF fiber-optic biosensor performs higher or comparable detection sensitivity, respectively.

  19. Fabrication of a sulfite biosensor by the use of conducting polymer

    Hosseini, M.; Bahmani, B; Moztarzadeh, F.; Rabiee, M.

    2008-01-01

    In this research, an enzyme modified electrode has been produced during the electro polymerization of aniline through incorporation of Sulfite oxidase into a conducting polymer. Then the bioelectrochemical response of resulted sulfite biosensor was investigated at different experimental conditions. Study of the stability of the resulted sulfite biosensor revealed that formation of a passive film on the aluminum surface causes improved stability of the electro active films formed on the electrode surface. The bioelectrochemical response of the enzyme-modified electrode as a sulfite biosensor was investigated at different experimental conditions. The optimum p H and temperature were 8.5 and 35 d eg C , respectively. The apparent Michaelis-Menten constant and the activation energy of the enzyme catalyzed reaction were calculated

  20. Facile hydrothermal synthesis of mn doped ZnO nanopencils for development of amperometric glucose biosensors

    Shukla, Mayoorika; Pramila; Agrawal, Jitesh; Dixit, Tejendra; Palani, I. A.; Singh, Vipul

    2018-05-01

    Mn doped ZnO nanopencils were synthesized via low temperature hydrothermal process for fabrication of enzymatic electrochemical glucose biosensor. The KMnO4 was found to play a dual role in modifying morphology and inducing Mn doping. Interestingly, two different types of morphologies viz nanorods and nanopencils along with Mn doping in the later were obtained. Incorporation of Mn has shown a tremendous effect on the morphological variations, repression of defects and electrochemical charge transfer at electrode electrolyte interface. The possible reason behind obtained morphological changes has been proposed which in turn were responsible for the improvement in the different figure of merits of as fabricated enzymatic electrochemical biosensor. There has been a 17 fold enhancement in the sensitivity of the as fabricated glucose biosensor from ZnO nanorods to Mn doped ZnO nanopencils which can be attributed to morphological variation and Mn doping.

  1. Poly(3,4-ethylenedioxythiophene)-based glucose biosensors

    Kros, A.; Hövell, W.F.M. van; Sommerdijk, N.A.J.M.; Nolte, R.J.M.

    2001-01-01

    Amperometric biosensors for the recognition of glucose oxidase (GOx) based on poly(3,4-ethylenedioxythiophene) (PEDOT) were fabricated for the first time. The resulting biosensor has potential applications for long-term glucose measurements.

  2. Nanopore biosensors for detection of proteins and nucleic acids

    Maglia, Giovanni; Soskine, Mikhael

    2014-01-01

    Described herein are nanopore biosensors based on a modified cytolysin protein. The nanopore biosensors accommodate macromoiecules including proteins and nucleic acids, and may additionally comprise ligands with selective binding properties.

  3. Optimization of Xenon Biosensors for Detection of Protein Interactions

    Lowery, Thomas J.; Garcia, Sandra; Chavez, Lana; Ruiz, E.Janette; Wu, Tom; Brotin, Thierry; Dutasta, Jean-Pierre; King, David S.; Schultz, Peter G.; Pines, Alex; Wemmer, David E.

    2005-08-01

    Hyperpolarized 129Xe NMR can detect the presence of specific low-concentration biomolecular analytes by means of the xenon biosensor, which consists of a water-soluble, targeted cryptophane-A cage that encapsulates xenon. In this work we use the prototypical biotinylated xenon biosensor to determine the relationship between the molecular composition of the xenon biosensor and the characteristics of protein-bound resonances. The effects of diastereomer overlap, dipole-dipole coupling, chemical shift anisotropy, xenon exchange, and biosensor conformational exchange on protein-bound biosensor signal were assessed. It was found that optimal protein-bound biosensor signal can be obtained by minimizing the number of biosensor diastereomers and using a flexible linker of appropriate length. Both the linewidth and sensitivity of chemical shift to protein binding of the xenon biosensor were found to be inversely proportional to linker length

  4. Mobility and height detection of particle labels in an optical evanescent wave biosensor with single-label resolution

    Van Ommering, Kim; Koets, Marjo; Schleipen, Jean J H B; Prins, Menno W J [Philips Research Laboratories, 5656 AE Eindhoven (Netherlands); Somers, Philip A; Van IJzendoorn, Leo J, E-mail: menno.prins@philips.co [Department of Applied Physics, Eindhoven University of Technology, 5600 MB Eindhoven (Netherlands)

    2010-04-21

    Particle labels are used in biosensors to detect the presence and concentration of analyte molecules. In this paper we demonstrate an optical technique to measure the mobility and height of bound particle labels on a biosensor surface with single-label resolution. The technique is based on the detection of the particle-induced light scattering in an optical evanescent field. We show that the thermal particle motion in the optical evanescent field leads to intensity fluctuations that can accurately be detected. The technique is demonstrated using 290 bp (99 nm) DNA as an analyte and using polystyrene particles and magnetic particles with diameters between 500 and 1000 nm as labels. The particle intensity histograms show that quantitative height measurements are obtained for particles with uniform optical properties, and the intensity versus position plots reflect the analyte-antibody orientation and the analyte flexibility. The novel optical detection technique will lead to biosensors with very high sensitivity and specificity.

  5. Development of aptamers for in vivo and in vitro biosensor applications

    Lauridsen, Lasse Holm

    block chemicals are now being sustainably produced in bacterial cell-factories. The development of new bacterial cell-factories is a difficult and expensive process, in part due to time required to screen for and optimize productions strains. A new promising way of reducing the development time...... is generating new and faster ways of screening and optimizing using biosensors. In this thesis we develop new functional biological recognition modules for biosensors. These DNA- and RNA-based recognition modules are called aptamers and are developed to interact with targets of choice. Aptamers are developed...... application) and small molecule food additives (for optimization production in cell factories). Additionally, the characterization an all-polymer physicochemical biosensor is presented for the detection of antibiotics in food products. These results have lead to the ongoing development of a high...

  6. Application of Quaternion in improving the quality of global sequence alignment scores for an ambiguous sequence target in Streptococcus pneumoniae DNA

    Lestari, D.; Bustamam, A.; Novianti, T.; Ardaneswari, G.

    2017-07-01

    DNA sequence can be defined as a succession of letters, representing the order of nucleotides within DNA, using a permutation of four DNA base codes including adenine (A), guanine (G), cytosine (C), and thymine (T). The precise code of the sequences is determined using DNA sequencing methods and technologies, which have been developed since the 1970s and currently become highly developed, advanced and highly throughput sequencing technologies. So far, DNA sequencing has greatly accelerated biological and medical research and discovery. However, in some cases DNA sequencing could produce any ambiguous and not clear enough sequencing results that make them quite difficult to be determined whether these codes are A, T, G, or C. To solve these problems, in this study we can introduce other representation of DNA codes namely Quaternion Q = (PA, PT, PG, PC), where PA, PT, PG, PC are the probability of A, T, G, C bases that could appear in Q and PA + PT + PG + PC = 1. Furthermore, using Quaternion representations we are able to construct the improved scoring matrix for global sequence alignment processes, by applying a dot product method. Moreover, this scoring matrix produces better and higher quality of the match and mismatch score between two DNA base codes. In implementation, we applied the Needleman-Wunsch global sequence alignment algorithm using Octave, to analyze our target sequence which contains some ambiguous sequence data. The subject sequences are the DNA sequences of Streptococcus pneumoniae families obtained from the Genebank, meanwhile the target DNA sequence are received from our collaborator database. As the results we found the Quaternion representations improve the quality of the sequence alignment score and we can conclude that DNA sequence target has maximum similarity with Streptococcus pneumoniae.

  7. [Improvement of thermal adaptability and fermentation of industrial ethanologenic yeast by genomic DNA mutagenesis-based genetic recombination].

    Liu, Xiuying; He, Xiuping; Lu, Ying; Zhang, Borun

    2011-07-01

    Ethanol is an attractive alternative to fossil fuels. Saccharomyces cerevisiae is the most important ethanol producer. However, in the process of industrial production of ethanol, both cell growth and fermentation of ethanologenic S. cerevisiae are dramatically affected by environmental stresses, such as thermal stress. In this study, we improved both the thermotolerance and fermentation performance of industrial ethanologenic S. cerevisiae by combined usage of chemical mutagenesis and genomic DNA mutagenesis-based genetic recombination method. The recombinant S. cerevisiae strain T44-2 could grow at 44 degrees C, 3 degrees C higher than that of the original strain CE6. The survival rate of T44-2 was 1.84 and 1.87-fold of that of CE6 when heat shock at 48 degrees C and 52 degrees C for 1 h respectively. At temperature higher than 37 degrees C, recombinant strain T44-2 always gave higher cell growth and ethanol production than those of strain CE6. Meanwhile, from 30 degrees C to 40 degrees C, recombinant strain T44-2 produces 91.2-83.8 g/L of ethanol from 200 g/L of glucose, which indicated that the recombinant strain T44-2 had both thermotolerance and broad thermal adaptability. The work offers a novel method, called genomic DNA mutagenesis-based genetic recombination, to improve the physiological functions of S. cerevisiae.

  8. Graphene-based field-effect transistor biosensors

    Chen; , Junhong; Mao, Shun; Lu, Ganhua

    2017-06-14

    The disclosure provides a field-effect transistor (FET)-based biosensor and uses thereof. In particular, to FET-based biosensors using thermally reduced graphene-based sheets as a conducting channel decorated with nanoparticle-biomolecule conjugates. The present disclosure also relates to FET-based biosensors using metal nitride/graphene hybrid sheets. The disclosure provides a method for detecting a target biomolecule in a sample using the FET-based biosensor described herein.

  9. Integration of Fractal Biosensor in a Digital Microfluidic Platform

    Mashraei, Yousof

    2016-06-08

    The digital microfluidic (DMF) platform introduces many applications in biomedical assays. If it is to be commercially available to the public, it needs to have the essential features of smart sensing and a compact size. In this work, we report on a fractal electrode biosensor that is used for both droplet actuation and sensing C-reactive protein (CRP) concentration levels to assess cardiac disease risk. Our proposed electrode is the first two-terminal electrode design to be integrated into DMF platforms. A simulation of the electrical field distribution shows reduced peak intensities and uniform distribution of the field. When compared to a V-notch square electrode, the fractal electrode shows a superior performance in both aspects, i.e. field uniformity and intensity. These improvements are translated into a successful and responsive actuation of a water droplet with 100V. Likewise, the effective dielectric strength is improved by a 33% increase in the fractal electrode breakdown voltage. Additionally, the capability of the fractal electrode to work as a capacitive biosensor is evaluated with CRP quantification test. Selected fractal electrodes undergo a surface treatment to immobilize anti-CRP antibodies on their surface. The measurement shows a response to the added CRP in capacitance within three minutes. When the untreated electrodes were used for quantification, there was no significant change in capacitance, and this suggested that immobilization was necessary. The electrodes configuration in the fabricated DMF platform allows the fractal electrodes to be selectively used as biosensors, which means the device could be integrated into point-of-care applications.

  10. Pen-on-paper strategy for point-of-care testing: Rapid prototyping of fully written microfluidic biosensor.

    Li, Zedong; Li, Fei; Xing, Yue; Liu, Zhi; You, Minli; Li, Yingchun; Wen, Ting; Qu, Zhiguo; Ling Li, Xiao; Xu, Feng

    2017-12-15

    Paper-based microfluidic biosensors have recently attracted increasing attentions in point-of-care testing (POCT) territories benefiting from their affordable, accessible and eco-friendly features, where technologies for fabricating such biosensors are preferred to be equipment free, easy-to-operate and capable of rapid prototyping. In this work, we developed a pen-on-paper (PoP) strategy based on two custom-made pens, i.e., a wax pen and a conductive-ink pen, to fully write paper-based microfluidic biosensors through directly writing both microfluidic channels and electrodes. Particularly, the proposed wax pen is competent to realize one-step fabrication of wax channels on paper, as the melted wax penetrates into paper during writing process without any post-treatments. The practical applications of the fabricated paper-based microfluidic biosensors are demonstrated by both colorimetric detection of Salmonella typhimurium DNA with detection limit of 1nM and electrochemical measurement of glucose with detection limit of 1mM. The developed PoP strategy for making microfluidic biosensors on paper characterized by true simplicity, prominent portability and excellent capability for rapid prototyping shows promising prospect in POCT applications. Copyright © 2017 Elsevier B.V. All rights reserved.

  11. A universal aptameric biosensor: Multiplexed detection of small analytes via aggregated perylene-based broad-spectrum quencher.

    Hu, Rong; Zhang, Xi; Xu, Qiang; Lu, Dan-Qing; Yang, Yun-Hui; Xu, Quan-Qing; Ruan, Qiong; Mo, Liu-Ting; Zhang, Xiao-Bing

    2017-06-15

    A universal aptameric system based on the taking advantage of double-stranded DNA/perylene diimide (dsDNA/PDI) as the signal probe was developed for multiplexed detection of small molecules. Aptamers are single-stranded DNA or RNA oligonucleotides which are selected in vitro by a process known as systematic evolution of ligands by exponential enrichment. In this work, we synthesized a new kind of PDI and reported this aggregated PDI could quench the double-stranded DNA (dsDNA)-labeled fluorophores with a high quenching efficiency. The quenching efficiencies on the fluorescence of FAM, TAMRA and Cy5 could reach to 98.3%±0.9%, 97.2%±0.6% and 98.1%±1.1%, respectively. This broad-spectrum quencher was then adopted to construct a multicolor biosensor via a label-free approach. A structure-switching-triggered enzymatic recycling amplification was employed for signal amplification. High quenching efficiency combined with autocatalytic target recycling amplification afforded the biosensor with high sensitivity towards small analytes. For other targets, changing the corresponding aptamer can achieve the goal. The quencher did not interfere with the catalytic activity of nuclease. The biosensor could be manipulated with similar sensitivity no matter in pre-addition or post-addition manner. Moreover, simultaneous and multiplexed analysis of several small molecules in homogeneous solution was achieved, demonstrating its potential application in the rapid screening of multiple biotargets. Copyright © 2017 Elsevier B.V. All rights reserved.

  12. BioSentinel: Biosensors for Deep-Space Radiation Study

    Lokugamage, Melissa P.; Santa Maria, Sergio R.; Marina, Diana B.; Bhattacharya, Sharmila

    2016-01-01

    The BioSentinel mission will be deployed on NASA's Exploration Mission 1 (EM-1) in 2018. We will use the budding yeast, Saccharomyces cerevisiae, as a biosensor to study the effect of deep-space radiation on living cells. The BioSentinel mission will be the first investigation of a biological response to space radiation outside Low Earth Orbit (LEO) in over 40 years. Radiation can cause damage such as double stand breaks (DSBs) on DNA. The yeast cell was chosen for this mission because it is genetically controllable, shares homology with human cells in its DNA repair pathways, and can be stored in a desiccated state for long durations. Three yeast strains will be stored dry in multiple microfluidic cards: a wild type control strain, a mutant defective strain that cannot repair DSBs, and a biosensor strain that can only grow if it gets DSB-and-repair events occurring near a specific gene. Growth and metabolic activity of each strain will be measured by a 3-color LED optical detection system. Parallel experiments will be done on the International Space Station and on Earth so that we can compare the results to that of deep space. One of our main objectives is to characterize the microfluidic card activation sequence before the mission. To increase the sensitivity of yeast cells as biosensors, desiccated yeast in each card will be resuspended in a rehydration buffer. After several weeks, the rehydration buffer will be exchanged with a growth medium in order to measure yeast growth and metabolic activity. We are currently working on a time-course experiment to better understand the effects of the rehydration buffer on the response to ionizing radiation. We will resuspend the dried yeast in our rehydration medium over a period of time; then each week, we will measure the viability and ionizing radiation sensitivity of different yeast strains taken from this rehydration buffer. The data obtained in this study will be useful in finalizing the card activation sequence for

  13. Recent Progress in Lectin-Based Biosensors

    Baozhen Wang

    2015-12-01

    Full Text Available This article reviews recent progress in the development of lectin-based biosensors used for the determination of glucose, pathogenic bacteria and toxins, cancer cells, and lectins. Lectin proteins have been widely used for the construction of optical and electrochemical biosensors by exploiting the specific binding affinity to carbohydrates. Among lectin proteins, concanavalin A (Con A is most frequently used for this purpose as glucose- and mannose-selective lectin. Con A is useful for immobilizing enzymes including glucose oxidase (GOx and horseradish peroxidase (HRP on the surface of a solid support to construct glucose and hydrogen peroxide sensors, because these enzymes are covered with intrinsic hydrocarbon chains. Con A-modified electrodes can be used as biosensors sensitive to glucose, cancer cells, and pathogenic bacteria covered with hydrocarbon chains. The target substrates are selectively adsorbed to the surface of Con A-modified electrodes through strong affinity of Con A to hydrocarbon chains. A recent topic in the development of lectin-based biosensors is a successful use of nanomaterials, such as metal nanoparticles and carbon nanotubes, for amplifying output signals of the sensors. In addition, lectin-based biosensors are useful for studying glycan expression on living cells.

  14. S-Layer Protein-Based Biosensors

    Bernhard Schuster

    2018-04-01

    Full Text Available The present paper highlights the application of bacterial surface (S- layer proteins as versatile components for the fabrication of biosensors. One technologically relevant feature of S-layer proteins is their ability to self-assemble on many surfaces and interfaces to form a crystalline two-dimensional (2D protein lattice. The S-layer lattice on the surface of a biosensor becomes part of the interface architecture linking the bioreceptor to the transducer interface, which may cause signal amplification. The S-layer lattice as ultrathin, highly porous structure with functional groups in a well-defined special distribution and orientation and an overall anti-fouling characteristics can significantly raise the limit in terms of variety and the ease of bioreceptor immobilization, compactness of bioreceptor molecule arrangement, sensitivity, specificity, and detection limit for many types of biosensors. The present paper discusses and summarizes examples for the successful implementation of S-layer lattices on biosensor surfaces in order to give a comprehensive overview on the application potential of these bioinspired S-layer protein-based biosensors.

  15. S-Layer Protein-Based Biosensors.

    Schuster, Bernhard

    2018-04-11

    The present paper highlights the application of bacterial surface (S-) layer proteins as versatile components for the fabrication of biosensors. One technologically relevant feature of S-layer proteins is their ability to self-assemble on many surfaces and interfaces to form a crystalline two-dimensional (2D) protein lattice. The S-layer lattice on the surface of a biosensor becomes part of the interface architecture linking the bioreceptor to the transducer interface, which may cause signal amplification. The S-layer lattice as ultrathin, highly porous structure with functional groups in a well-defined special distribution and orientation and an overall anti-fouling characteristics can significantly raise the limit in terms of variety and the ease of bioreceptor immobilization, compactness of bioreceptor molecule arrangement, sensitivity, specificity, and detection limit for many types of biosensors. The present paper discusses and summarizes examples for the successful implementation of S-layer lattices on biosensor surfaces in order to give a comprehensive overview on the application potential of these bioinspired S-layer protein-based biosensors.

  16. Conductivity of Pedot-Pss with Gold and Silver Nanocomposites Modified Gold Electrodes for Ganoderma Boninense DNA Detection

    Sabo Wada Dutse

    2015-08-01

    Full Text Available The conductivity of a designed electrochemical DNA biosensor was improved using gold and or silver nanoparticles. A gold electrode modified with a conductive nanocomposite of poly(3,4-ethylene dioxythiophen–poly (styrenesulfonate (Pedot-Pss and gold or silver nano particles enhanced the conductivity of the electrode surface area. Bare and modified gold electrode surfaces were characterized using cyclic voltammetry (CV technique in ethylenediaminetetraacetic acid (TE supporting electrolyte. Immobilization of a 20-mer DNA probe was achieved by covalent attachment of the amine group of the capture probe to a carboxylic group of an activated 3,3’-dithiodipropionic acid layer using EDC/NHSS for Hybridization. The effect of hybridization temperature and time was optimized and the sensor demonstrated specific detection for the target concentration ranged between 1.0´10-15 M to 1.0´10-9 M with a detection limit of 9.70´10-19 M. Control experiments verified the specificity of the biosensor in the presence of mismatched DNA sequence. The DNA hybridization was monitored using a new ruthenium complex [Ru(dppz2(qtpyCl2; dppz = dipyrido [3,2–a:2’,3’-c] phenazine; qtpy=2,2’,-4,4”.4’4”’-quarterpyridyl redox indicator.

  17. New advances in electrochemical biosensors for the detection of toxins: Nanomaterials, magnetic beads and microfluidics systems. A review

    Reverté, Laia [IRTA, Carretera Poble Nou km. 5.5, 43540 Sant Carles de la Ràpita, Tarragona (Spain); Prieto-Simón, Beatriz [ARC Centre of Excellence in Convergent Bio-Nano Science and Technology, Future Industries Institute, University of South Australia, SA 5095 (Australia); Campàs, Mònica, E-mail: monica.campas@irta.cat [IRTA, Carretera Poble Nou km. 5.5, 43540 Sant Carles de la Ràpita, Tarragona (Spain)

    2016-02-18

    The use of nanotechnology in bioanalytical devices has special advantages in the detection of toxins of interest in food safety and environmental applications. The low levels to be detected and the small size of toxins justify the increasing number of publications dealing with electrochemical biosensors, due to their high sensitivity and design versatility. The incorporation of nanomaterials in their development has been exploited to further increase their sensitivity, providing simple and fast devices, with multiplexed capabilities. This paper gives an overview of the electrochemical biosensors that have incorporated carbon and metal nanomaterials in their configurations for the detection of toxins. Biosensing systems based on magnetic beads or integrated into microfluidics systems have also been considered because of their contribution to the development of compact analytical devices. The roles of these materials, the methods used for their incorporation in the biosensor configurations as well as the advantages they provide to the analyses are summarised. - Highlights: • Nanomaterials improve the performance of electrochemical biosensors. • Carbon nanomaterials can act as electrocatalysts or label supports in biosensors. • Metal nanomaterials can act as nanostructured supports or labels in biosensors. • Magnetic beads are exploited as immobilisation supports and/or label carriers.

  18. New advances in electrochemical biosensors for the detection of toxins: Nanomaterials, magnetic beads and microfluidics systems. A review

    Reverté, Laia; Prieto-Simón, Beatriz; Campàs, Mònica

    2016-01-01

    The use of nanotechnology in bioanalytical devices has special advantages in the detection of toxins of interest in food safety and environmental applications. The low levels to be detected and the small size of toxins justify the increasing number of publications dealing with electrochemical biosensors, due to their high sensitivity and design versatility. The incorporation of nanomaterials in their development has been exploited to further increase their sensitivity, providing simple and fast devices, with multiplexed capabilities. This paper gives an overview of the electrochemical biosensors that have incorporated carbon and metal nanomaterials in their configurations for the detection of toxins. Biosensing systems based on magnetic beads or integrated into microfluidics systems have also been considered because of their contribution to the development of compact analytical devices. The roles of these materials, the methods used for their incorporation in the biosensor configurations as well as the advantages they provide to the analyses are summarised. - Highlights: • Nanomaterials improve the performance of electrochemical biosensors. • Carbon nanomaterials can act as electrocatalysts or label supports in biosensors. • Metal nanomaterials can act as nanostructured supports or labels in biosensors. • Magnetic beads are exploited as immobilisation supports and/or label carriers.

  19. Antibody functionalized graphene biosensor for label-free electrochemical immunosensing of fibrinogen, an indicator of trauma induced coagulopathy.

    Saleem, Waqas; Salinas, Carlos; Watkins, Brian; Garvey, Gavin; Sharma, Anjal C; Ghosh, Ritwik

    2016-12-15

    An antibody, specific to fibrinogen, has been covalently attached to graphene and deposited onto screen printed electrodes using a chitosan hydrogel binder to prepare an inexpensive electrochemical fibrinogen biosensor. Fourier Transform Infrared (FT-IR) spectroscopy has been utilized to confirm the presence of the antibody on the graphene scaffold. Electrochemical Impedance Spectroscopy (EIS) has been utilized to demonstrate that the biosensor responds in a selective manner to fibrinogen in aqueous media even in the presence of plasminogen, a potentially interfering molecule in the coagulopathy cascade. Furthermore, the biosensor was shown to reliably sense fibrinogen in the presence of high background serum albumin levels. Finally, we demonstrated detection of clinically relevant fibrinogen concentrations (938-44,542μg/dL) from human serum and human whole blood samples using this biosensor. This biosensor can potentially be used in a point-of-care device to detect the onset of coagulopathy and monitor response following therapeutic intervention in trauma patients. Thus this biosensor may improve the clinical management of patients with trauma-induced coagulopathy. Copyright © 2016 Elsevier B.V. All rights reserved.

  20. Functional design of electrolytic biosensor

    Gamage Preethichandra, D. M.; Mala Ekanayake, E. M. I.; Onoda, M.

    2017-11-01

    A novel amperometric biosensbased on conjugated polypyrrole (PPy) deposited on a Pt modified ITO (indium tin oxide) conductive glass substrate and their performances are described. We have presented a method of developing a highly sensitive and low-cost nano-biosensor for blood glucose measurements. The fabrication method proposed decreases the cost of production significantly as the amount of noble metals used is minimized. A nano-corrugated PPy substrate was developed through pulsed electrochemical deposition. The sensitivity achieved was 325 mA/(Mcm2) and the linear range of the developed sensor was 50-60 mmol/l. Then the application of the electrophoresis helps the glucose oxidase (GOx) on the PPy substrate. The main reason behind this high enzyme loading is the high electric field applied across the sensor surface (working electrode) and the counter electrode where that pushes the nano-scale enzyme particles floating in the phosphate buffer solution towards the substrate. The novel technique used has provided an extremely high sensitivities and very high linear ranges for enzyme (GOx) and therefore can be concluded that this is a very good technique to load enzyme onto the conducting polymer substrates.