WorldWideScience

Sample records for improved contractile function

  1. Improvement of cardiac contractile function by peptide-based inhibition of NF-κB in the utrophin/dystrophin-deficient murine model of muscular dystrophy

    Directory of Open Access Journals (Sweden)

    Guttridge Denis C

    2011-05-01

    Full Text Available Abstract Background Duchenne muscular dystrophy (DMD is an inherited and progressive disease causing striated muscle deterioration. Patients in their twenties generally die from either respiratory or cardiac failure. In order to improve the lifespan and quality of life of DMD patients, it is important to prevent or reverse the progressive loss of contractile function of the heart. Recent studies by our labs have shown that the peptide NBD (Nemo Binding Domain, targeted at blunting Nuclear Factor κB (NF-κB signaling, reduces inflammation, enhances myofiber regeneration, and improves contractile deficits in the diaphragm in dystrophin-deficient mdx mice. Methods To assess whether cardiac function in addition to diaphragm function can be improved, we investigated physiological and histological parameters of cardiac muscle in mice deficient for both dystrophin and its homolog utrophin (double knockout = dko mice treated with NBD peptide. These dko mice show classic pathophysiological hallmarks of heart failure, including myocyte degeneration, an impaired force-frequency response and a severely blunted β-adrenergic response. Cardiac contractile function at baseline and frequencies and pre-loads throughout the in vivo range as well as β-adrenergic reserve was measured in isolated cardiac muscle preparations. In addition, we studied histopathological and inflammatory markers in these mice. Results At baseline conditions, active force development in cardiac muscles from NBD treated dko mice was more than double that of vehicle-treated dko mice. NBD treatment also significantly improved frequency-dependent behavior of the muscles. The increase in force in NBD-treated dko muscles to β-adrenergic stimulation was robustly restored compared to vehicle-treated mice. However, histological features, including collagen content and inflammatory markers were not significantly different between NBD-treated and vehicle-treated dko mice. Conclusions We conclude

  2. Operative contractility: a functional concept of the inotropic state.

    Science.gov (United States)

    Curiel, Roberto; Perez-Gonzalez, Juan; Torres, Edwar; Landaeta, Ruben; Cerrolaza, Miguel

    2005-10-01

    1. Initial unsuccessful attempts to evaluate ventricular function in terms of the 'heart as a pump' led to focusing on the 'heart as a muscle' and to the concept of myocardial contractility. However, no clinically ideal index exists to assess the contractile state. The aim of the present study was to develop a mathematical model to assess cardiac contractility. 2. A tri-axial system was conceived for preload (PL), afterload (AL) and contractility, where stroke volume (SV) was represented as the volume of the tetrahedron. Based on this model, 'operative' contractility ('OperCon') was calculated from the readily measured values of PL, AL and SV. The model was tested retrospectively under a variety of different experimental and clinical conditions, in 71 studies in humans and 29 studies in dogs. A prospective echocardiographic study was performed in 143 consecutive subjects to evaluate the ability of the model to assess contractility when SV and PL were measured volumetrically (mL) or dimensionally (cm). 3. With inotropic interventions, OperCon changes were comparable to those of ejection fraction (EF), velocity of shortening (Vcf) and dP/dt-max. Only with positive inotropic interventions did elastance (Ees) show significantly larger changes. With load manipulations, OperCon showed significantly smaller changes than EF and Ees and comparable changes to Vcf and dP/dt-max. Values of OperCon were similar when AL was represented by systolic blood pressure or wall stress and when volumetric or dimensional values were used. 4. Operative contractility is a reliable, simple and versatile method to assess cardiac contractility.

  3. [Gallbladder contractility in children with functional abdominal pain or irritable bowel syndrome].

    Science.gov (United States)

    Iwańczak, Franciszek; Siedlecka-Dawidko, Jolanta; Iwanczak, Barbara

    2013-07-01

    III Rome Criteria of functional gastrointestinal disorders in children, distinguished the disturbances with abdominal pain, to which irritable bowel syndrome, functional abdominal pains, functional dyspepsia and abdominal migraine were included. THE AIM OF THE STUDY was sonographic assessment of the gallbladder and its contractility in functional abdominal pain and irritable bowel syndrome in children. The study comprised 96 children aged 6 to 18 years, 59 girls and 37 boys. Depending on diagnosis, the children were divided into three groups. 38 children with functional abdominal pain constituted the first group, 26 children with irritable bowel syndrome were included to the second group, the third group consisted of 32 healthy children (control group). Diagnosis of functional abdominal pain and irritable bowel syndrome was made based on the III Rome Criteria. In irritable bowel syndrome both forms with diarrhea (13) and with constipation (13) were observed. Anatomy and contractility of the gallbladder were assessed by ultrasound examination. The presence of septum, wall thickness, thick bile, vesicle volume in fasting state and 30th and 60th minute after test meal were taken into consideration. Test meal comprised about 15% of caloric requirement of moderate metabolism. Children with bile stones and organic diseases were excluded from the study. Thickened vesicle wall and thick bile were present more frequently in children with irritable bowel syndrome and functional abdominal pain than in control group (p functional abdominal pain than in irritable bowel syndrome and control group (p = 0.003, p = 0.05). Vesicle contractility after test meal was greatest in children with functional abdominal pain. Evaluation of diminished (smaller than 30%) and enlarged (greater then 80%) gallbladder contractility at 30th and 60th minute after test meal demonstrated disturbances of contractility in children with irritable bowel syndrome and functional abdominal pain. In children

  4. Myocardial contractile function in survived neonatal piglets after cardiopulmonary bypass

    Directory of Open Access Journals (Sweden)

    Popov Aron-Frederik

    2010-11-01

    Full Text Available Abstract Background Hemodynamic function may be depressed in the early postoperative stages after cardiac surgery. The aim of this study was the analysis of the myocardial contractility in neonates after cardiopulmonary bypass (CPB and mild hypothermia. Methods Three indices of left ventricular myocardial contractile function (dP/dt, (dP/dt/P, and wall thickening were studied up to 6 hours after CPB in neonatal piglets (CPB group; n = 4. The contractility data were analysed and then compared to the data of newborn piglets who also underwent median thoracotomy and instrumentation for the same time intervals but without CPB (non-CPB group; n = 3. Results Left ventricular dP/dtmax and (dP/dtmax/P remained stable in CPB group, while dP/dtmax decreased in non-CPB group 5 hours postoperatively (1761 ± 205 mmHg/s at baseline vs. 1170 ± 205 mmHg/s after 5 h; p max and (dP/dtmax/P there were no statistically significant differences between the two groups. Comparably, although myocardial thickening decreased in the non-CPB group the differences between the two groups were not statistically significant. Conclusions The myocardial contractile function in survived neonatal piglets remained stable 6 hours after cardiopulmonary bypass and mild hypothermia probably due to regional hypercontractility.

  5. Effects of ageing on single muscle fibre contractile function following short-term immobilisation

    DEFF Research Database (Denmark)

    Hvid, Lars G; Ørtenblad, Niels; Aagaard, Per

    2011-01-01

    Very little attention has been given to the combined effect of healthy ageing and short-term disuse on the contractile function of human single muscle fibres. Therefore, the present study investigated the effects of 2 weeks of lower limb cast immobilisation (i.e. disuse) on selected contractile...

  6. Transient impairments in single muscle fibre contractile function after prolonged cycling in elite endurance athletes

    DEFF Research Database (Denmark)

    Hvid, L G; Gejl, Kasper Degn; Bech, R D

    2013-01-01

    Prolonged muscle activity impairs whole-muscle performance and function. However, little is known about the effects of prolonged muscle activity on the contractile function of human single muscle fibres. The purpose of this study was to investigate the effects of prolonged exercise and subsequent...... recovery on the contractile function of single muscle fibres obtained from elite athletes....

  7. The Functional Lumen Imaging Probe Detects Esophageal Contractility not Observed with Manometry in Patients with Achalasia

    Science.gov (United States)

    Carlson, Dustin A.; Lin, Zhiyue; Kahrilas, Peter J.; Sternbach, Joel; Donnan, Erica N.; Friesen, Laurel; Listernick, Zoe; Mogni, Benjamin; Pandolfino, John E.

    2015-01-01

    Background & Aims The functional lumen imaging probe (FLIP) could improve characterization of achalasia subtypes by detecting non-occlusive esophageal contractions not observed with standard manometry. We aimed to evaluate for esophageal contractions during volumetric distention in patients with achalasia using FLIP topography. Methods Fifty one treatment-naïve patients with achalasia, defined and sub-classified by high-resolution esophageal pressure topography, and 10 asymptomatic individuals (controls) were evaluated with the FLIP during endoscopy. During stepwise distension, simultaneous intra-bag pressures and 16 channels of cross-sectional areas were measured; data were exported to software that generated FLIP topography plots. Esophageal contractility was identified by noting periods of reduced luminal diameter. Esophageal contractions were further characterized by propagation direction, repetitiveness, and based on whether they were occluding or non-occluding. Results Esophageal contractility was detected in all 10 controls: 8/10 had repetitive, antegrade, contractions and 9/10 had occluding contractions. Contractility was detected in 27% (4/15) of patients with type I achalasia and 65% (18/26, including 9 with occluding contractions) of patients with type II achalasia. Contractility was detected in all 10 patients with type III achalasia; 8 of these patients had a pattern of contractility not observed in controls (repetitive, retrograde contractions). Conclusions Esophageal contractility not observed with manometry can be detected in patients with achalasia using FLIP topography. The presence and patterns of contractility detected with FLIP topography may represent variations in pathophysiology, such as mechanisms of pan-esophageal pressurization in patients with type II achalasia. These findings could have implications for additional sub-classification to supplement prediction of the achalasia disease course. PMID:26278501

  8. The Functional Lumen Imaging Probe Detects Esophageal Contractility Not Observed With Manometry in Patients With Achalasia.

    Science.gov (United States)

    Carlson, Dustin A; Lin, Zhiyue; Kahrilas, Peter J; Sternbach, Joel; Donnan, Erica N; Friesen, Laurel; Listernick, Zoe; Mogni, Benjamin; Pandolfino, John E

    2015-12-01

    The functional lumen imaging probe (FLIP) could improve the characterization of achalasia subtypes by detecting nonocclusive esophageal contractions not observed with standard manometry. We aimed to evaluate esophageal contractions during volumetric distention in patients with achalasia using FLIP topography. Fifty-one treatment-naive patients with achalasia, defined and subclassified by high-resolution esophageal pressure topography, and 10 asymptomatic individuals (controls) were evaluated with the FLIP during endoscopy. During stepwise distension, simultaneous intrabag pressures and 16 channels of cross-sectional areas were measured; data were exported to software that generated FLIP topography plots. Esophageal contractility was identified by noting periods of reduced luminal diameter. Esophageal contractions were characterized further by propagation direction, repetitiveness, and based on whether they were occluding or nonoccluding. Esophageal contractility was detected in all 10 controls: 8 of 10 had repetitive antegrade contractions and 9 of 10 had occluding contractions. Contractility was detected in 27% (4 of 15) of patients with type I achalasia and in 65% (18 of 26, including 9 with occluding contractions) of patients with type II achalasia. Contractility was detected in all 10 patients with type III achalasia; 8 of these patients had a pattern of contractility that was not observed in controls (repetitive retrograde contractions). Esophageal contractility not observed with manometry can be detected in patients with achalasia using FLIP topography. The presence and patterns of contractility detected with FLIP topography may represent variations in pathophysiology, such as mechanisms of panesophageal pressurization in patients with type II achalasia. These findings could have implications for additional subclassification to supplement prediction of the achalasia disease course. Copyright © 2015 AGA Institute. Published by Elsevier Inc. All rights

  9. Myocardial mitochondrial and contractile function are preserved in mice lacking adiponectin.

    Directory of Open Access Journals (Sweden)

    Martin Braun

    Full Text Available Adiponectin deficiency leads to increased myocardial infarct size following ischemia reperfusion and to exaggerated cardiac hypertrophy following pressure overload, entities that are causally linked to mitochondrial dysfunction. In skeletal muscle, lack of adiponectin results in impaired mitochondrial function. Thus, it was our objective to investigate whether adiponectin deficiency impairs mitochondrial energetics in the heart. At 8 weeks of age, heart weight-to-body weight ratios were not different between adiponectin knockout (ADQ-/- mice and wildtypes (WT. In isolated working hearts, cardiac output, aortic developed pressure and cardiac power were preserved in ADQ-/- mice. Rates of fatty acid oxidation, glucose oxidation and glycolysis were unchanged between groups. While myocardial oxygen consumption was slightly reduced (-24% in ADQ-/- mice in isolated working hearts, rates of maximal ADP-stimulated mitochondrial oxygen consumption and ATP synthesis in saponin-permeabilized cardiac fibers were preserved in ADQ-/- mice with glutamate, pyruvate or palmitoyl-carnitine as a substrate. In addition, enzymatic activity of respiratory complexes I and II was unchanged between groups. Phosphorylation of AMP-activated protein kinase and SIRT1 activity were not decreased, expression and acetylation of PGC-1α were unchanged, and mitochondrial content of OXPHOS subunits was not decreased in ADQ-/- mice. Finally, increasing energy demands due to prolonged subcutaneous infusion of isoproterenol did not differentially affect cardiac contractility or mitochondrial function in ADQ-/- mice compared to WT. Thus, mitochondrial and contractile function are preserved in hearts of mice lacking adiponectin, suggesting that adiponectin may be expendable in the regulation of mitochondrial energetics and contractile function in the heart under non-pathological conditions.

  10. Modifying influence of incorporated 137Cs upon the mechanisms of adrenergic control over contractile myucard function

    International Nuclear Information System (INIS)

    Lobanok, L.M.; Bulanova, K.Ya.; Gerasimovich, N.V.; Sineleva, M.V.; Milyutin, A.A.

    1994-01-01

    Incorporated 137 Cs (absorbed dose of 0.26 Gy) causes decrease of myocard's contractile function and intropic response to β-adrenagonists effect, isoproterenol-stimulated adenylate cyclase activity and β-adrenoreceptors affinity. Adrenergic effects, mediated by α-adrenergic structures on heart contractile function, on the contrary, become stronger, that is due to the increase of the receptors' dencity on sarcolemma surface

  11. PPARγ Ligands Regulate Noncontractile and Contractile Functions of Airway Smooth Muscle: Implications for Asthma Therapy

    Directory of Open Access Journals (Sweden)

    Chantal Donovan

    2012-01-01

    Full Text Available In asthma, the increase in airway smooth muscle (ASM can contribute to inflammation, airway wall remodeling and airway hyperresponsiveness (AHR. Targetting peroxisome proliferator-activated receptor γ (PPARγ, a receptor upregulated in ASM in asthmatic airways, may provide a novel approach to regulate these contributions. This review summarises experimental evidence that PPARγ ligands, such as rosiglitazone (RGZ and pioglitazone (PGZ, inhibit proliferation and inflammatory cytokine production from ASM in vitro. In addition, inhaled administration of these ligands reduces inflammatory cell infiltration and airway remodelling in mouse models of allergen-induced airways disease. PPARγ ligands can also regulate ASM contractility, with acute treatment eliciting relaxation of mouse trachea in vitro through a PPARγ-independent mechanism. Chronic treatment can protect against the loss of bronchodilator sensitivity to β2-adrenoceptor agonists and inhibit the development of AHR associated with exposure to nicotine in utero or following allergen challenge. Of particular interest, a small clinical trial has shown that oral RGZ treatment improves lung function in smokers with asthma, a group that is generally unresponsive to conventional steroid treatment. These combined findings support further investigation of the potential for PPARγ agonists to target the noncontractile and contractile functions of ASM to improve outcomes for patients with poorly controlled asthma.

  12. Sequential biventricular pacing improves regional contractility, longitudinal function and dyssynchrony in patients with heart failure and prolonged QRS

    Directory of Open Access Journals (Sweden)

    Ring Margareta

    2010-04-01

    Full Text Available Abstract Aims Biventricular pacing (BiP is an effective treatment in systolic heart failure (HF patients with prolonged QRS. However, approximately 35% of the patients receiving BiP are classified as non-responders. The aim of this study is to evaluate the acute effects of VV-optimization on systolic heart function. Methods Twenty-one HF patients aged 72 (46-88 years, QRS 154 (120-190 ms, were studied with echocardiography, Tissue Doppler Imaging (TDI and 3D-echo the first day after receiving a BiP device. TDI was performed; during simultaneous pacing (LV-lead pacing 4 ms before the RV-lead and during sequential pacing (LV 20 and 40 ms before RV and RV 20 and 40 ms before LV-lead pacing. Systolic heart function was studied by tissue tracking (TT for longitudinal function and systolic maximal velocity (SMV for regional contractility and signs of dyssynchrony assessed by time-delays standard deviation of aortic valve opening to SMV, AVO-SMV/SD and tissue synchronization imaging (TSI. Results The TT mean value preoperatively was 4,2 ± 1,5 and increased at simultaneous pacing to 5,0 ± 1,2 mm (p Conclusions VV-optimization in the acute phase improves systolic heart function more than simultaneous BiP pacing. Long-term effects should be evaluated in prospective randomized trials.

  13. Generation of Functional Cardiomyocytes from Efficiently Generated Human iPSCs and a Novel Method of Measuring Contractility.

    Directory of Open Access Journals (Sweden)

    Sheeja Rajasingh

    Full Text Available Human induced pluripotent stem cells (iPSCs derived cardiomyocytes (iCMCs would provide an unlimited cell source for regenerative medicine and drug discoveries. The objective of our study is to generate functional cardiomyocytes from human iPSCs and to develop a novel method of measuring contractility of CMCs. In a series of experiments, adult human skin fibroblasts (HSF and human umbilical vein endothelial cells (HUVECs were treated with a combination of pluripotent gene DNA and mRNA under specific conditions. The iPSC colonies were identified and differentiated into various cell lineages, including CMCs. The contractile activity of CMCs was measured by a novel method of frame-by-frame cross correlation (particle image velocimetry-PIV analysis. Our treatment regimen transformed 4% of HSFs into iPSC colonies at passage 0, a significantly improved efficiency compared with use of either DNA or mRNA alone. The iPSCs were capable of differentiating both in vitro and in vivo into endodermal, ectodermal and mesodermal cells, including CMCs with >88% of cells being positive for troponin T (CTT and Gata4 by flow cytometry. We report a highly efficient combination of DNA and mRNA to generate iPSCs and functional iCMCs from adult human cells. We also report a novel approach to measure contractility of iCMCs.

  14. Generation of Functional Cardiomyocytes from Efficiently Generated Human iPSCs and a Novel Method of Measuring Contractility.

    Science.gov (United States)

    Rajasingh, Sheeja; Thangavel, Jayakumar; Czirok, Andras; Samanta, Saheli; Roby, Katherine F; Dawn, Buddhadeb; Rajasingh, Johnson

    2015-01-01

    Human induced pluripotent stem cells (iPSCs) derived cardiomyocytes (iCMCs) would provide an unlimited cell source for regenerative medicine and drug discoveries. The objective of our study is to generate functional cardiomyocytes from human iPSCs and to develop a novel method of measuring contractility of CMCs. In a series of experiments, adult human skin fibroblasts (HSF) and human umbilical vein endothelial cells (HUVECs) were treated with a combination of pluripotent gene DNA and mRNA under specific conditions. The iPSC colonies were identified and differentiated into various cell lineages, including CMCs. The contractile activity of CMCs was measured by a novel method of frame-by-frame cross correlation (particle image velocimetry-PIV) analysis. Our treatment regimen transformed 4% of HSFs into iPSC colonies at passage 0, a significantly improved efficiency compared with use of either DNA or mRNA alone. The iPSCs were capable of differentiating both in vitro and in vivo into endodermal, ectodermal and mesodermal cells, including CMCs with >88% of cells being positive for troponin T (CTT) and Gata4 by flow cytometry. We report a highly efficient combination of DNA and mRNA to generate iPSCs and functional iCMCs from adult human cells. We also report a novel approach to measure contractility of iCMCs.

  15. Effect of a Periodized Power Training Program on the Functional Performances and Contractile Properties of the Quadriceps in Sprinters

    Science.gov (United States)

    Kamandulis, Sigitas; Skurvydas, Albertas; Brazaitis, Marius; Stanislovaitis, Aleksas; Duchateau, Jacques; Stanislovaitiene, Jurate

    2012-01-01

    Our purpose was to compare the effect of a periodized preparation consisting of power endurance training and high-intensity power training on the contractile properties of the quadriceps muscle and functional performances in well trained male sprinters (n = 7). After 4 weeks of high-intensity power training, 60-m sprint running time improved by an…

  16. Structural comparison of contractile nanomachines

    Directory of Open Access Journals (Sweden)

    Sebastian Kube

    2015-05-01

    Full Text Available Contractile molecular machines are a common feature among bacteriophages and prokaryotes. Due to their stability and the large size, contractile-tailed bacteriophages are traditionally investigated by electron microscopic methods. Complemented by crystallographic studies, a molecular model of contraction for the T4 phage was developed. Lately, also related contractile structures like the Photorhabdus virulence cassette-like particles, the R-Type pyocins and the contractile tubule of the bacterial Type VI secretion system have been analyzed by cryo electron microscopy. Photorhabdus virulence cassette particles and R-Type pyocins are toxin complexes reminiscent of bacteriophage tails that are secreted by bacteria to kill their insect host or competing bacteria. In contrast, the Type VI secretion system is an intracellular apparatus for injection of effector proteins into bacterial and eukaryotic cells. Although it shares homology with other contractile systems, the Type VI secretion system is additionally equipped with a recycling function, which makes it suitable for multiple rounds of action. Starting from the 3D reconstructions, we compare these molecular machines structurally and functionally to their viral counterparts and summarize the current knowledge on their respective mode of action.

  17. 2-Deoxyadenosine triphosphate restores the contractile function of cardiac myofibril from adult dogs with naturally occurring dilated cardiomyopathy.

    Science.gov (United States)

    Cheng, Yuanhua; Hogarth, Kaley A; O'Sullivan, M Lynne; Regnier, Michael; Pyle, W Glen

    2016-01-01

    Dilated cardiomyopathy (DCM) is a major type of heart failure resulting from loss of systolic function. Naturally occurring canine DCM is a widely accepted experimental paradigm for studying human DCM. 2-Deoxyadenosine triphosphate (dATP) can be used by myosin and is a superior energy substrate over ATP for cross-bridge formation and increased systolic function. The objective of this study was to evaluate the beneficial effect of dATP on contractile function of cardiac myofibrils from dogs with naturally occurring DCM. We measured actomyosin NTPase activity and contraction/relaxation properties of isolated myofibrils from nonfailing (NF) and DCM canine hearts. NTPase assays indicated replacement of ATP with dATP significantly increased myofilament activity in both NF and DCM samples. dATP significantly improved maximal tension of DCM myofibrils to the NF sample level. dATP also restored Ca(2+) sensitivity of tension that was reduced in DCM samples. Similarly, dATP increased the kinetics of contractile activation (kACT), with no impact on the rate of cross-bridge tension redevelopment (kTR). Thus, the activation kinetics (kACT/kTR) that were reduced in DCM samples were restored for dATP to NF sample levels. dATP had little effect on relaxation. The rate of early slow-phase relaxation was slightly reduced with dATP, but its duration was not, nor was the fast-phase relaxation or times to 50 and 90% relaxation. Our findings suggest that myosin utilization of dATP improves cardiac myofibril contractile properties of naturally occurring DCM canine samples, restoring them to NF levels, without compromising relaxation. This suggests elevation of cardiac dATP is a promising approach for the treatment of DCM. Copyright © 2016 the American Physiological Society.

  18. Microtubule depolymerization normalizes in vivo myocardial contractile function in dogs with pressure-overload left ventricular hypertrophy

    Science.gov (United States)

    Koide, M.; Hamawaki, M.; Narishige, T.; Sato, H.; Nemoto, S.; DeFreyte, G.; Zile, M. R.; Cooper G, I. V.; Carabello, B. A.

    2000-01-01

    BACKGROUND: Because initially compensatory myocardial hypertrophy in response to pressure overloading may eventually decompensate to myocardial failure, mechanisms responsible for this transition have long been sought. One such mechanism established in vitro is densification of the cellular microtubule network, which imposes a viscous load that inhibits cardiocyte contraction. METHODS AND RESULTS: In the present study, we extended this in vitro finding to the in vivo level and tested the hypothesis that this cytoskeletal abnormality is important in the in vivo contractile dysfunction that occurs in experimental aortic stenosis in the adult dog. In 8 dogs in which gradual stenosis of the ascending aorta had caused severe left ventricular (LV) pressure overloading (gradient, 152+/-16 mm Hg) with contractile dysfunction, LV function was measured at baseline and 1 hour after the intravenous administration of colchicine. Cardiocytes obtained by biopsy before and after in vivo colchicine administration were examined in tandem. Microtubule depolymerization restored LV contractile function both in vivo and in vitro. CONCLUSIONS: These and additional corroborative data show that increased cardiocyte microtubule network density is an important mechanism for the ventricular contractile dysfunction that develops in large mammals with adult-onset pressure-overload-induced cardiac hypertrophy.

  19. Pulmonary artery radiocardiography and rheography in the diagnosis of hemodynamic and contractile function impairments of the right ventricle in patients with obstructive bronchitis

    International Nuclear Information System (INIS)

    Paleev, N.P.; Cherejskaya, N.K.; Tsar'kova, L.N.; Baklykova, S.N.; Novoderezhkina, L.B.; Oblovatskaya, O.G.; Dubinina, E.B.

    1990-01-01

    Radiocardiography and rheography of the pulmonary artery were used to examine impairments in hemodynamics and contractile function of the right ventricle in 40 patients with chronic obstructive bronchitis complicated with persistent hypertension. Right ventricular hemodynamic and contractile impairments were shown to be not equivalent with similar clinical and functional signs of pulmonary hypertension. This fact indicates that the use of special techiques is of practical value in the determination of right ventricular hemodynamics and myocardial contractility in patients with chronic obstructive bronchitis. Radiocardiography and rheography of the pulmonary artery are sufficiently reliable noninvasive techniques for examining the hemodynamics and contractile function of the right ventricular myocardium

  20. Effects of ageing on single muscle fibre contractile function following short-term immobilisation

    DEFF Research Database (Denmark)

    Hvid, Lars G; Ortenblad, Niels; Aagaard, Per

    2011-01-01

    Very little attention has been given to the combined effects of healthy ageing and short-term disuse on the contractile function of human single muscle fibres. Therefore, the present study investigated the effects of 2 weeks of lower limb cast immobilisation (i.e. disuse) on selected contractile...... IIa: young 18% and old 25%; P selective decrease in Ca(2+) sensitivity in MHC IIa fibres of young (P ....05), respectively. In conclusion, 2 weeks of lower limb immobilisation caused greater impairments in single muscle fibre force and specific force in MHC IIa than MHC I fibres independently of age. In contrast, immobilisation-induced changes in Ca(2+) sensitivity that were dependent on age and MHC isoform....

  1. Prolonged ischemic heart disease and coronary artery bypass - relation to contractile reserve

    DEFF Research Database (Denmark)

    Kofoed, Klaus F; Bangsgaard, Regitze; Carstensen, Steen

    2002-01-01

    OBJECTIVE: A major effect of coronary artery bypass grafting (CABG) in patients with ischemic heart disease and impaired left ventricular (LV) contractile function is believed to be an improvement in LV function due to recovery of dysfunctional, but viable myocardium. However, recent studies have...

  2. Fractalkine depresses cardiomyocyte contractility.

    Directory of Open Access Journals (Sweden)

    David Taube

    Full Text Available Our laboratory reported that male mice with cardiomyocyte-selective knockout of the prostaglandin E2 EP4 receptor sub-type (EP4 KO exhibit reduced cardiac function. Gene array on left ventricles (LV showed increased fractalkine, a chemokine implicated in heart failure. We therefore hypothesized that fractalkine is regulated by PGE2 and contributes to depressed contractility via alterations in intracellular calcium.Fractalkine was measured in LV of 28-32 week old male EP4 KO and wild type controls (WT by ELISA and the effect of PGE2 on fractalkine secretion was measured in cultured neonatal cardiomyocytes and fibroblasts. The effect of fractalkine on contractility and intracellular calcium was determined in Fura-2 AM-loaded, electrical field-paced cardiomyocytes. Cardiomyocytes (AVM from male C57Bl/6 mice were treated with fractalkine and responses measured under basal conditions and after isoproterenol (Iso stimulation.LV fractalkine was increased in EP4 KO mice but surprisingly, PGE2 regulated fractalkine secretion only in fibroblasts. Fractalkine treatment of AVM decreased both the speed of contraction and relaxation under basal conditions and after Iso stimulation. Despite reducing contractility after Iso stimulation, fractalkine increased the Ca(2+ transient amplitude but decreased phosphorylation of cardiac troponin I, suggesting direct effects on the contractile machinery.Fractalkine depresses myocyte contractility by mechanisms downstream of intracellular calcium.

  3. Contractile Defect Caused by Mutation in MYBPC3 Revealed under Conditions Optimized for Human PSC-Cardiomyocyte Function

    Directory of Open Access Journals (Sweden)

    Matthew J. Birket

    2015-10-01

    Full Text Available Maximizing baseline function of human pluripotent stem cell-derived cardiomyocytes (hPSC-CMs is essential for their effective application in models of cardiac toxicity and disease. Here, we aimed to identify factors that would promote an adequate level of function to permit robust single-cell contractility measurements in a human induced pluripotent stem cell (hiPSC model of hypertrophic cardiomyopathy (HCM. A simple screen revealed the collaborative effects of thyroid hormone, IGF-1 and the glucocorticoid analog dexamethasone on the electrophysiology, bioenergetics, and contractile force generation of hPSC-CMs. In this optimized condition, hiPSC-CMs with mutations in MYBPC3, a gene encoding myosin-binding protein C, which, when mutated, causes HCM, showed significantly lower contractile force generation than controls. This was recapitulated by direct knockdown of MYBPC3 in control hPSC-CMs, supporting a mechanism of haploinsufficiency. Modeling this disease in vitro using human cells is an important step toward identifying therapeutic interventions for HCM.

  4. The effect of N-acetylcysteine on cardiac contractility to dobutamine in rats with streptozotocin-induced diabetes.

    Science.gov (United States)

    Cheng, Xing; Xia, Zhengyuan; Leo, Joyce M; Pang, Catherine C Y

    2005-09-05

    We examined if myocardial depression at the acute phase of diabetes (3 weeks after injection of streptozotocin, 60 mg/kg i.v.) is due to activation of inducible nitric oxide synthase and production of peroxynitrite, and if treatment with N-acetylcysteine (1.2 g/day/kg for 3 weeks, antioxidant) improves cardiac function. Four groups of rats were used: control, N-acetylcysteine-treated control, diabetic and N-acetylcysteine-treated diabetic. Pentobarbital-anaesthetized diabetic rats, relative to the controls, had reduced left ventricular contractility to dobutamine (1-57 microg/min/kg). The diabetic rats also had increased myocardial levels of thiobarbituric acid reactive substances, immunostaining of inducible nitric oxide synthase and nitrotyrosine, and similar baseline 15-F2t-isoprostane. N-acetylcysteine did not affect responses in the control rats; but increased cardiac contractility to dobutamine, reduced myocardial immunostaining of inducible nitric oxide synthase and nitrotyrosine and level of 15-F2t-isoprostane, and increased cardiac contractility to dobutamine in the diabetic rats. Antioxidant supplementation in diabetes reduces oxidative stress and improves cardiac function.

  5. Long-term vascular contractility assay using genipin-modified muscular thin films

    International Nuclear Information System (INIS)

    Hald, Eric S; Steucke, Kerianne E; Reeves, Jack A; Win, Zaw; Alford, Patrick W

    2014-01-01

    Vascular disease is a leading cause of death globally and typically manifests chronically due to long-term maladaptive arterial growth and remodeling. To date, there is no in vitro technique for studying vascular function over relevant disease time courses that both mimics in vivo-like tissue structure and provides a simple readout of tissue stress. We aimed to extend tissue viability in our muscular thin film contractility assay by modifying the polydimethylsiloxane (PDMS) substrate with micropatterned genipin, allowing extracellular matrix turnover without cell loss. To achieve this, we developed a microfluidic delivery system to pattern genipin and extracellular matrix proteins on PDMS prior to cell seeding. Tissues constructed using this method showed improved viability and maintenance of in vivo-like lamellar structure. Functional contractility of tissues fabricated on genipin-modified substrates remained consistent throughout two weeks in culture. These results suggest that muscular thin films with genipin-modified PDMS substrates are a viable method for conducting functional studies of arterial growth and remodeling in vascular diseases. (paper)

  6. The neuromechanical functional contractile properties of the thigh muscles measured using tensiomyography in male athletes and non-athletes

    Directory of Open Access Journals (Sweden)

    Toskić Lazar

    2016-01-01

    Full Text Available Involuntary neuromechanical muscle contractile properties, especially of the extensor muscles and knee joint flexors as the largest muscle groups of the caudal part of the body, play an important role in both everyday movement and sport. Based on these data we can obtain important information on the functional properties of muscles. The basic means of evaluation of the functional involuntary neuromechanical muscles contractile properties is the non-invasive tensiomyographic method (TMG. The aim of this study was to determine the differences between the involuntary neuromechanical contractile properties of the thigh muscles measured using the TMG method on a sample of male athletes and non-athletes. The sample of participants was made up of 17 athletes and 10 non-athletes. By applying the multivariate analysis of variance (MANOVA and the t-test, we achieved results which indicate that of the overall 30 variables, a difference was determined among 13 of them. Most of the differences were determined for the extensor muscles of the right knee, especially of the rectus femoris muscle. It was also shown that in addition to the main knee joint extensor muscle (rectus femoris the main knee joint flexor muscle (biceps femoris also takes part in the definition of the difference between athletes and non-athletes. The results have shown that the following variables: contraction time (Tc and delay contraction time (Td are the functional parameters for which the highest difference between athletes and non-athletes were determined (from t = -2.284, p < 0.05 for the vastus lateralis of the right leg to t = -4.018, p < 0.01 for the rectus femoris of the left leg. These results have shown that it is possible to determine the differences in the functional involuntary neuromechanical contractile properties of the thigh muscles among trained and untrained individuals using the tensiomyographic method, but at the same time indicated that these differences were very

  7. Evolutionarily conserved sites in yeast tropomyosin function in cell polarity, transport and contractile ring formation

    Directory of Open Access Journals (Sweden)

    Susanne Cranz-Mileva

    2015-08-01

    Full Text Available Tropomyosin is a coiled-coil protein that binds and regulates actin filaments. The tropomyosin gene in Schizosaccharomyces pombe, cdc8, is required for formation of actin cables, contractile rings, and polar localization of actin patches. The roles of conserved residues were investigated in gene replacement mutants. The work validates an evolution-based approach to identify tropomyosin functions in living cells and sites of potential interactions with other proteins. A cdc8 mutant with near-normal actin affinity affects patch polarization and vacuole fusion, possibly by affecting Myo52p, a class V myosin, function. The presence of labile residual cell attachments suggests a delay in completion of cell division and redistribution of cell patches following cytokinesis. Another mutant with a mild phenotype is synthetic negative with GFP-fimbrin, inferring involvement of the mutated tropomyosin sites in interaction between the two proteins. Proteins that assemble in the contractile ring region before actin do so in a mutant cdc8 strain that cannot assemble condensed actin rings, yet some cells can divide. Of general significance, LifeAct-GFP negatively affects the actin cytoskeleton, indicating caution in its use as a biomarker for actin filaments.

  8. Exposure to low mercury concentration in vivo impairs myocardial contractile function

    International Nuclear Information System (INIS)

    Furieri, Lorena Barros; Fioresi, Mirian; Junior, Rogerio Faustino Ribeiro; Bartolome, Maria Visitacion; Fernandes, Aurelia Araujo; Cachofeiro, Victoria; Lahera, Vicente; Salaices, Mercedes; Stefanon, Ivanita; Vassallo, Dalton Valentim

    2011-01-01

    Increased cardiovascular risk after mercury exposure has been described but cardiac effects resulting from controlled chronic treatment are not yet well explored. We analyzed the effects of chronic exposure to low mercury concentrations on hemodynamic and ventricular function of isolated hearts. Wistar rats were treated with HgCl 2 (1st dose 4.6 μg/kg, subsequent dose 0.07 μg/kg/day, im, 30 days) or vehicle. Mercury treatment did not affect blood pressure (BP) nor produced cardiac hypertrophy or changes of myocyte morphometry and collagen content. This treatment: 1) in vivo increased left ventricle end diastolic pressure (LVEDP) without changing left ventricular systolic pressure (LVSP) and heart rate; 2) in isolated hearts reduced LV isovolumic systolic pressure and time derivatives, and β-adrenergic response; 3) increased myosin ATPase activity; 4) reduced Na + -K + ATPase (NKA) activity; 5) reduced protein expression of SERCA and phosphorylated phospholamban on serine 16 while phospholamban expression increased; as a consequence SERCA/phospholamban ratio reduced; 6) reduced sodium/calcium exchanger (NCX) protein expression and α-1 isoform of NKA, whereas α-2 isoform of NKA did not change. Chronic exposure for 30 days to low concentrations of mercury does not change BP, heart rate or LVSP but produces small but significant increase of LVEDP. However, in isolated hearts mercury treatment promoted contractility dysfunction as a result of the decreased NKA activity, reduction of NCX and SERCA and increased PLB protein expression. These findings offer further evidence that mercury chronic exposure, even at small concentrations, is an environmental risk factor affecting heart function. - Highlights: → Unchanges blood pressure, heart rate, systolic pressure. → Increases end diastolic pressure. → Promotes cardiac contractility dysfunction. → Decreases NKA activity, NCX and SERCA, increases PLB protein expression. → Small concentrations constitutes

  9. Free radicals in hypoxic rat diaphragm contractility: no role for xanthine oxidase.

    NARCIS (Netherlands)

    Heunks, L.M.A.; Machiels, H.A.; Abreu, R.A. de; Zhu, X.; Heijden, E. van der; Dekhuijzen, P.N.R.

    2001-01-01

    Recent evidence indicates that hypoxia enhances the generation of oxidants. Little is known about the role of free radicals in contractility of the rat diaphragm during hypoxia. We hypothesized that antioxidants improve contractility of the hypoxic rat diaphragm and that xanthine oxidase (XO) is an

  10. Effects of high-altitude exercise training on contractile function of rat skinned cardiomyocyte.

    Science.gov (United States)

    Cazorla, O; Aït Mou, Y; Goret, L; Vassort, G; Dauzat, M; Lacampagne, A; Tanguy, S; Obert, P

    2006-09-01

    Previous studies have questioned whether there is an improved cardiac function after high-altitude training. Accordingly, the present study was designed specifically to test whether this apparent blunted response of the whole heart to training can be accounted for by altered mechanical properties at the cellular level. Adult rats were trained for 5 weeks under normoxic (N, NT for sedentary and trained animals, respectively) or hypobaric hypoxic (H, HT) conditions. Cardiac morphology and function were evaluated by echocardiography. Calcium Ca2+ sensitivity of the contractile machinery was estimated in skinned cardiomyocytes isolated from the left ventricular (LV) sub-epicardium (Epi) and sub-endocardium (Endo) at short and long sarcomere lengths (SL). Cardiac remodelling was harmonious (increase in wall thickness with chamber dilatation) in NT rats and disharmonious (hypertrophy without chamber dilatation) in HT rats. Contrary to NT rats, HT rats did not exhibit enhancement in global cardiac performance evaluated by echocardiography. Stretch- dependent Ca2+ sensitization of the myofilaments (cellular index of the Frank-Starling mechanism) increased from Epi to Endo in N rats. Training in normoxic conditions further increased this stretch-dependent Ca2+ sensitization. Chronic hypoxia did not significantly affect myofibrilar Ca2+ sensitivity. In contrast, high-altitude training decreased Ca2+ sensitivity of the myofilaments at both SL, mostly in Endo cells, resulting in a loss of the transmural gradient of the stretch-dependent Ca2+ sensitization. Expression of myosin heavy chain isoforms was affected both by training and chronic hypoxia but did not correlate with mechanical data. Training at sea level increased the transmural gradient of stretch-dependent Ca2+ sensitization of the myofilaments, accounting for an improved Frank-Starling mechanism. High-altitude training depressed myofilament response to Ca2+, especially in the Endo layer. This led to a reduction in

  11. Improved sphincter contractility after allogenic muscle-derived progenitor cell injection into the denervated rat urethra.

    Science.gov (United States)

    Cannon, Tracy W; Lee, Ji Youl; Somogyi, George; Pruchnic, Ryan; Smith, Christopher P; Huard, Johnny; Chancellor, Michael B

    2003-11-01

    To study the physiologic outcome of allogenic transplant of muscle-derived progenitor cells (MDPCs) in the denervated female rat urethra. MDPCs were isolated from muscle biopsies of normal 6-week-old Sprague-Dawley rats and purified using the preplate technique. Sciatic nerve-transected rats were used as a model of stress urinary incontinence. The experimental group was divided into three subgroups: control, denervated plus 20 microL saline injection, and denervated plus allogenic MDPCs (1 to 1.5 x 10(6) cells) injection. Two weeks after injection, urethral muscle strips were prepared and underwent electrical field stimulation. The pharmacologic effects of d-tubocurare, phentolamine, and tetrodotoxin on the urethral strips were assessed by contractions induced by electrical field stimulation. The urethral tissues also underwent immunohistochemical staining for fast myosin heavy chain and CD4-activated lymphocytes. Urethral denervation resulted in a significant decrease of the maximal fast-twitch muscle contraction amplitude to only 8.77% of the normal urethra and partial impairment of smooth muscle contractility. Injection of MDPCs into the denervated sphincter significantly improved the fast-twitch muscle contraction amplitude to 87.02% of normal animals. Immunohistochemistry revealed a large amount of new skeletal muscle fiber formation at the injection site of the urethra with minimal inflammation. CD4 staining showed minimal lymphocyte infiltration around the MDPC injection sites. Urethral denervation resulted in near-total abolishment of the skeletal muscle and partial impairment of smooth muscle contractility. Allogenic MDPCs survived 2 weeks in sciatic nerve-transected urethra with minimal inflammation. This is the first report of the restoration of deficient urethral sphincter function through muscle-derived progenitor cell tissue engineering. MDPC-mediated cellular urethral myoplasty warrants additional investigation as a new method to treat stress urinary

  12. Detecting cardiac contractile activity in the early mouse embryo using multiple modalities

    Directory of Open Access Journals (Sweden)

    Chiann-mun eChen

    2015-01-01

    Full Text Available The heart is one of the first organs to develop during mammalian embryogenesis. In the mouse, it starts to form shortly after gastrulation, and is derived primarily from embryonic mesoderm. The embryonic heart is unique in having to perform a mechanical contractile function while undergoing complex morphogenetic remodelling. Approaches to imaging the morphogenesis and contractile activity of the developing heart are important in understanding not only how this remodelling is controlled but also the origin of congenital heart defects. Here, we describe approaches for visualising contractile activity in the developing mouse embryo, using brightfield time lapse microscopy and confocal microscopy of calcium transients. We describe an algorithm for enhancing this image data and quantifying contractile activity from it. Finally we describe how atomic force microscopy can be used to record contractile activity prior to it being microscopically visible.

  13. Myosin phosphorylation improves contractile economy of mouse fast skeletal muscle during staircase potentiation.

    Science.gov (United States)

    Bunda, Jordan; Gittings, William; Vandenboom, Rene

    2018-01-30

    Phosphorylation of the myosin regulatory light chain (RLC) by skeletal myosin light chain kinase (skMLCK) potentiates rodent fast twitch muscle but is an ATP-requiring process. Our objective was to investigate the effect of skMLCK-catalyzed RLC phosphorylation on the energetic cost of contraction and the contractile economy (ratio of mechanical output to metabolic input) of mouse fast twitch muscle in vitro (25°C). To this end, extensor digitorum longus (EDL) muscles from wild-type (WT) and from skMLCK-devoid (skMLCK -/- ) mice were subjected to repetitive low-frequency stimulation (10 Hz for 15 s) to produce staircase potentiation of isometric twitch force, after which muscles were quick frozen for determination of high-energy phosphate consumption (HEPC). During stimulation, WT muscles displayed significant potentiation of isometric twitch force while skMLCK -/- muscles did not (i.e. 23% versus 5% change, respectively). Consistent with this, RLC phosphorylation was increased ∼3.5-fold from the unstimulated control value in WT but not in skMLCK -/- muscles. Despite these differences, the HEPC of WT muscles was not greater than that of skMLCK -/- muscles. As a result of the increased contractile output relative to HEPC, the calculated contractile economy of WT muscles was greater than that of skMLCK -/- muscles. Thus, our results suggest that skMLCK-catalyzed phosphorylation of the myosin RLC increases the contractile economy of WT mouse EDL muscle compared with skMLCK -/- muscles without RLC phosphorylation. © 2018. Published by The Company of Biologists Ltd.

  14. The role of voltage-gated potassium channels in the regulation of mouse uterine contractility

    Directory of Open Access Journals (Sweden)

    Abel Peter W

    2007-11-01

    Full Text Available Abstract Background Uterine smooth muscle cells exhibit ionic currents that appear to be important in the control of uterine contractility, but how these currents might produce the changes in contractile activity seen in pregnant myometrium has not been established. There are conflicting reports concerning the role of voltage-gated potassium (Kv channels and large-conductance, calcium-activated potassium (BK channels in the regulation of uterine contractility. In this study we provide molecular and functional evidence for a role for Kv channels in the regulation of spontaneous contractile activity in mouse myometrium, and also demonstrate a change in Kv channel regulation of contractility in pregnant mouse myometrium. Methods Functional assays which evaluated the effects of channel blockers and various contractile agonists were accomplished by quantifying contractility of isolated uterine smooth muscle obtained from nonpregnant mice as well as mice at various stages of pregnancy. Expression of Kv channel proteins in isolated uterine smooth muscle was evaluated by Western blots. Results The Kv channel blocker 4-aminopyridine (4-AP caused contractions in nonpregnant mouse myometrium (EC50 = 54 micromolar, maximal effect at 300 micromolar but this effect disappeared in pregnant mice; similarly, the Kv4.2/Kv4.3 blocker phrixotoxin-2 caused contractions in nonpregnant, but not pregnant, myometrium. Contractile responses to 4-AP were not dependent upon nerves, as neither tetrodotoxin nor storage of tissues at room temperature significantly altered these responses, nor were responses dependent upon the presence of the endometrium. Spontaneous contractions and contractions in response to 4-AP did not appear to be mediated by BK, as the BK channel-selective blockers iberiotoxin, verruculogen, or tetraethylammonium failed to affect either spontaneous contractions or 4-AP-elicited responses. A number of different Kv channel alpha subunit proteins were

  15. Action of ouabain and an amino-cardenolide on Na+-pump function and contractility of isolated canine heart cells

    International Nuclear Information System (INIS)

    Porterfield, L.M.; Songu-Mize, E.; Chryssanthis, T.; Caldwell, R.W.

    1986-01-01

    Viable, rod-shaped, Ca ++ -tolerant cells were isolated from the cardiac ventricle of adult mongrel dogs, a digitalis-sensitive species. These cells do not contract spontaneously but contractions were driven by electrical field stimulation. Changes in contractile amplitude were assessed by computer-assisted analysis of recorded phase contrast images. Addition of a polar aminocardenolide (AC), ASI-222, produced a dose-related increase in contractility with a concentration producing a 50% maximal response (RC 50 ) of 4 x 10 -8 M. For ouabain (OB) the RC 50 was 7 x 10 -7 M. Cellular Na + -pump (NaP) function was determined as digitalis-sensitive 86 Rb + -uptake. Addition of AC and OB to these cells produced a dose-related decrease in 86 Rb + -uptake; concentrations which produced a 50% inhibition (IC 50 ) of NaP function were of 6 x 10 -8 M and 1.2 x 10 -6 M for AC and OB, respectively. Their data indicates that in isolated dog heart cells AC is both a more potent inotropic agent and an inhibitor of NaP function by 15-20 fold than OB. The RC 50 and IC 50 for these processes correlate for each glycoside

  16. Modulatory effects of taurine on jejunal contractility

    Directory of Open Access Journals (Sweden)

    Q.Y. Yao

    2014-12-01

    Full Text Available Taurine (2-aminoethanesulfonic acid is widely distributed in animal tissues and has diverse pharmacological effects. However, the role of taurine in modulating smooth muscle contractility is still controversial. We propose that taurine (5-80 mM can exert bidirectional modulation on the contractility of isolated rat jejunal segments. Different low and high contractile states were induced in isolated jejunal segments of rats to observe the effects of taurine and the associated mechanisms. Taurine induced stimulatory effects on the contractility of isolated rat jejunal segments at 3 different low contractile states, and inhibitory effects at 3 different high contractile states. Bidirectional modulation was not observed in the presence of verapamil or tetrodotoxin, suggesting that taurine-induced bidirectional modulation is Ca2+ dependent and requires the presence of the enteric nervous system. The stimulatory effects of taurine on the contractility of isolated jejunal segments was blocked by atropine but not by diphenhydramine or by cimetidine, suggesting that muscarinic-linked activation was involved in the stimulatory effects when isolated jejunal segments were in a low contractile state. The inhibitory effects of taurine on the contractility of isolated jejunal segments were blocked by propranolol and L-NG-nitroarginine but not by phentolamine, suggesting that adrenergic β receptors and a nitric oxide relaxing mechanism were involved when isolated jejunal segments were in high contractile states. No bidirectional effects of taurine on myosin phosphorylation were observed. The contractile states of jejunal segments determine taurine-induced stimulatory or inhibitory effects, which are associated with muscarinic receptors and adrenergic β receptors, and a nitric oxide associated relaxing mechanism.

  17. Modulatory effects of taurine on jejunal contractility

    Energy Technology Data Exchange (ETDEWEB)

    Yao, Q.Y.; Chen, D.P.; Ye, D.M.; Diao, Y.P.; Lin, Y. [Dalian Medical University, Dalian, Liaoning (China)

    2014-10-14

    Taurine (2-aminoethanesulfonic acid) is widely distributed in animal tissues and has diverse pharmacological effects. However, the role of taurine in modulating smooth muscle contractility is still controversial. We propose that taurine (5-80 mM) can exert bidirectional modulation on the contractility of isolated rat jejunal segments. Different low and high contractile states were induced in isolated jejunal segments of rats to observe the effects of taurine and the associated mechanisms. Taurine induced stimulatory effects on the contractility of isolated rat jejunal segments at 3 different low contractile states, and inhibitory effects at 3 different high contractile states. Bidirectional modulation was not observed in the presence of verapamil or tetrodotoxin, suggesting that taurine-induced bidirectional modulation is Ca{sup 2+} dependent and requires the presence of the enteric nervous system. The stimulatory effects of taurine on the contractility of isolated jejunal segments was blocked by atropine but not by diphenhydramine or by cimetidine, suggesting that muscarinic-linked activation was involved in the stimulatory effects when isolated jejunal segments were in a low contractile state. The inhibitory effects of taurine on the contractility of isolated jejunal segments were blocked by propranolol and L-NG-nitroarginine but not by phentolamine, suggesting that adrenergic β receptors and a nitric oxide relaxing mechanism were involved when isolated jejunal segments were in high contractile states. No bidirectional effects of taurine on myosin phosphorylation were observed. The contractile states of jejunal segments determine taurine-induced stimulatory or inhibitory effects, which are associated with muscarinic receptors and adrenergic β receptors, and a nitric oxide associated relaxing mechanism.

  18. Modulatory effects of taurine on jejunal contractility

    International Nuclear Information System (INIS)

    Yao, Q.Y.; Chen, D.P.; Ye, D.M.; Diao, Y.P.; Lin, Y.

    2014-01-01

    Taurine (2-aminoethanesulfonic acid) is widely distributed in animal tissues and has diverse pharmacological effects. However, the role of taurine in modulating smooth muscle contractility is still controversial. We propose that taurine (5-80 mM) can exert bidirectional modulation on the contractility of isolated rat jejunal segments. Different low and high contractile states were induced in isolated jejunal segments of rats to observe the effects of taurine and the associated mechanisms. Taurine induced stimulatory effects on the contractility of isolated rat jejunal segments at 3 different low contractile states, and inhibitory effects at 3 different high contractile states. Bidirectional modulation was not observed in the presence of verapamil or tetrodotoxin, suggesting that taurine-induced bidirectional modulation is Ca 2+ dependent and requires the presence of the enteric nervous system. The stimulatory effects of taurine on the contractility of isolated jejunal segments was blocked by atropine but not by diphenhydramine or by cimetidine, suggesting that muscarinic-linked activation was involved in the stimulatory effects when isolated jejunal segments were in a low contractile state. The inhibitory effects of taurine on the contractility of isolated jejunal segments were blocked by propranolol and L-NG-nitroarginine but not by phentolamine, suggesting that adrenergic β receptors and a nitric oxide relaxing mechanism were involved when isolated jejunal segments were in high contractile states. No bidirectional effects of taurine on myosin phosphorylation were observed. The contractile states of jejunal segments determine taurine-induced stimulatory or inhibitory effects, which are associated with muscarinic receptors and adrenergic β receptors, and a nitric oxide associated relaxing mechanism

  19. Modulatory effects of taurine on jejunal contractility

    Science.gov (United States)

    Yao, Q.Y.; Chen, D.P.; Ye, D.M.; Diao, Y.P.; Lin, Y.

    2014-01-01

    Taurine (2-aminoethanesulfonic acid) is widely distributed in animal tissues and has diverse pharmacological effects. However, the role of taurine in modulating smooth muscle contractility is still controversial. We propose that taurine (5-80 mM) can exert bidirectional modulation on the contractility of isolated rat jejunal segments. Different low and high contractile states were induced in isolated jejunal segments of rats to observe the effects of taurine and the associated mechanisms. Taurine induced stimulatory effects on the contractility of isolated rat jejunal segments at 3 different low contractile states, and inhibitory effects at 3 different high contractile states. Bidirectional modulation was not observed in the presence of verapamil or tetrodotoxin, suggesting that taurine-induced bidirectional modulation is Ca2+ dependent and requires the presence of the enteric nervous system. The stimulatory effects of taurine on the contractility of isolated jejunal segments was blocked by atropine but not by diphenhydramine or by cimetidine, suggesting that muscarinic-linked activation was involved in the stimulatory effects when isolated jejunal segments were in a low contractile state. The inhibitory effects of taurine on the contractility of isolated jejunal segments were blocked by propranolol and L-NG-nitroarginine but not by phentolamine, suggesting that adrenergic β receptors and a nitric oxide relaxing mechanism were involved when isolated jejunal segments were in high contractile states. No bidirectional effects of taurine on myosin phosphorylation were observed. The contractile states of jejunal segments determine taurine-induced stimulatory or inhibitory effects, which are associated with muscarinic receptors and adrenergic β receptors, and a nitric oxide associated relaxing mechanism. PMID:25387674

  20. Functions of nonmuscle myosin II in assembly of the cellular contractile system.

    Directory of Open Access Journals (Sweden)

    Maria Shutova

    Full Text Available The contractile system of nonmuscle cells consists of interconnected actomyosin networks and bundles anchored to focal adhesions. The initiation of the contractile system assembly is poorly understood structurally and mechanistically, whereas system's maturation heavily depends on nonmuscle myosin II (NMII. Using platinum replica electron microscopy in combination with fluorescence microscopy, we characterized the structural mechanisms of the contractile system assembly and roles of NMII at early stages of this process. We show that inhibition of NMII by a specific inhibitor, blebbistatin, in addition to known effects, such as disassembly of stress fibers and mature focal adhesions, also causes transformation of lamellipodia into unattached ruffles, loss of immature focal complexes, loss of cytoskeleton-associated NMII filaments and peripheral accumulation of activated, but unpolymerized NMII. After blebbistatin washout, assembly of the contractile system begins with quick and coordinated recovery of lamellipodia and focal complexes that occurs before reappearance of NMII bipolar filaments. The initial formation of focal complexes and subsequent assembly of NMII filaments preferentially occurred in association with filopodial bundles and concave actin bundles formed by filopodial roots at the lamellipodial base. Over time, accumulating NMII filaments help to transform the precursor structures, focal complexes and associated thin bundles, into stress fibers and mature focal adhesions. However, semi-sarcomeric organization of stress fibers develops at much slower rate. Together, our data suggest that activation of NMII motor activity by light chain phosphorylation occurs at the cell edge and is uncoupled from NMII assembly into bipolar filaments. We propose that activated, but unpolymerized NMII initiates focal complexes, thus providing traction for lamellipodial protrusion. Subsequently, the mechanical resistance of focal complexes activates a

  1. Improvement of Myocardial Function Following Catheter-Based Renal Denervation in Heart Failure

    Directory of Open Access Journals (Sweden)

    Song-Yan Liao, MD

    2017-06-01

    Full Text Available Summary: Renal denervation (RD is a potential novel nonpharmacological therapy for heart failure (HF. We performed bilateral catheter-based RD in 10 adult pigs and compared them with 10 control subjects after induction of HF to investigate the long-term beneficial effects of RD on left ventricular (LV function and regional norepinephrine gradient after conventional HF pharmacological therapy. Compared with control subjects, animals treated with RD demonstrated an improvement in LV function and reduction of norepinephrine gradients over the myocardium and kidney at 10-week follow-up. Our results demonstrated that effective bilateral RD decrease regional norepinephrine gradients and improve LV contractile function compared with medical therapy alone. Key Words: heart failure, left ventricular function, norepinephrine, renal denervation

  2. Swimming exercise reverses aging-related contractile abnormalities of female heart by improving structural alterations.

    Science.gov (United States)

    Ozturk, Nihal; Olgar, Yusuf; Er, Hakan; Kucuk, Murathan; Ozdemir, Semir

    2017-01-01

    The objective of this study was to examine the effect of swimming exercise on aging-related Ca2+ handling alterations and structural abnormalities of female rat heart. For this purpose, 4-month and 24-month old female rats were used and divided into three following groups: sedentary young (SY), sedentary old (SO), and exercised old (Ex-O). Swimming exercise was performed for 8 weeks (60 min/day, 5 days/week). Myocyte shortening, L-type Ca2+ currents and associated Ca2+ transients were measured from ventricular myocytes at 36 ± 1°C. NOX-4 levels, aconitase activity, glutathione measurements and ultrastructural examination by electron microscopy were conducted in heart tissue. Swimming exercise reversed the reduced shortening and slowed kinetics of aged cardiomyocytes. Although the current density was similar for all groups, Ca2+ transients were higher in SO and Ex-O myocytes with respect to the SY group. Caffeine-induced Ca2+ transients and the integrated NCX current were lower in cardiomyocytes of SY rats compared with other groups, suggesting an increased sarcoplasmic reticulum Ca2+ content in an aged heart. Aging led to upregulated cardiac NOX-4 along with declined aconitase activity. Although it did not reverse these oxidative parameters, swimming exercise achieved a significant increase in glutathione levels and improved structural alterations of old rats' hearts. We conclude that swimming exercise upregulates antioxidant defense capacity and improves structural abnormalities of senescent female rat heart, although it does not change Ca2+ handling alterations further. Thereby, it improves contractile function of aged myocardium by mitigating detrimental effects of oxidative stress.

  3. Cardiac myofibrillar contractile properties during the progression from hypertension to decompensated heart failure.

    Science.gov (United States)

    Hanft, Laurin M; Emter, Craig A; McDonald, Kerry S

    2017-07-01

    Heart failure arises, in part, from a constellation of changes in cardiac myocytes including remodeling, energetics, Ca 2+ handling, and myofibrillar function. However, little is known about the changes in myofibrillar contractile properties during the progression from hypertension to decompensated heart failure. The aim of the present study was to provide a comprehensive assessment of myofibrillar functional properties from health to heart disease. A rodent model of uncontrolled hypertension was used to test the hypothesis that myocytes in compensated hearts exhibit increased force, higher rates of force development, faster loaded shortening, and greater power output; however, with progression to overt heart failure, we predicted marked depression in these contractile properties. We assessed contractile properties in skinned cardiac myocyte preparations from left ventricles of Wistar-Kyoto control rats and spontaneous hypertensive heart failure (SHHF) rats at ~3, ~12, and >20 mo of age to evaluate the time course of myofilament properties associated with normal aging processes compared with myofilaments from rats with a predisposition to heart failure. In control rats, the myofilament contractile properties were virtually unchanged throughout the aging process. Conversely, in SHHF rats, the rate of force development, loaded shortening velocity, and power all increased at ~12 mo and then significantly fell at the >20-mo time point, which coincided with a decrease in left ventricular fractional shortening. Furthermore, these changes occurred independent of changes in β-myosin heavy chain but were associated with depressed phosphorylation of myofibrillar proteins, and the fall in loaded shortening and peak power output corresponded with the onset of clinical signs of heart failure. NEW & NOTEWORTHY This novel study systematically examined the power-generating capacity of cardiac myofilaments during the progression from hypertension to heart disease. Previously

  4. Insulin-Like Growth Factor I (IGF-1) Deficiency Ameliorates Sex Difference in Cardiac Contractile Function and Intracellular Ca2+ Homeostasis

    Science.gov (United States)

    Ceylan-Isik, Asli F.; Li, Qun; Ren, Jun

    2011-01-01

    Sex difference in cardiac contractile function exists which may contribute to the different prevalence in cardiovascular diseases between genders. However, the precise mechanisms of action behind sex difference in cardiac function are still elusive. Given that sex difference exists in insulin-like growth factor I (IGF-1) cascade, this study is designed to evaluate the impact of severe liver IGF-1 deficiency (LID) on sex difference in cardiac function. Echocardiographic, cardiomyocyte contractile and intracellular Ca2+ properties were evaluated including ventricular geometry, fractional shortening, peak shortening, maximal velocity of shortening/relengthening (± dL/dt), time-to-peak shortening (TPS), time-to-90% relengthening (TR90), fura-fluorescence intensity (FFI) and intracellular Ca2+ clearance. Female C57 mice exhibited significantly higher plasma IGF-1 levels than their male counterpart. LID mice possessed comparably low IGF-1 levels in both sexes. Female C57 and LID mice displayed lower body, heart and liver weights compared to male counterparts. Echocardiographic analysis revealed larger LV mass in female C57 but not LID mice without sex difference in other cardiac geometric indices. Myocytes from female C57 mice exhibited reduced peak shortening, ± dL/dt, longer TPS, TR90 and intracellular Ca2+ clearance compared with males. Interestingly, this sex difference was greatly attenuated or abolished by IGF-1 deficiency. Female C57 mice displayed significantly decreased mRNA and protein levels of Na+-Ca2+ exchanger, SERCA2a and phosphorylated phospholamban as well as SERCA activity compared with male C57 mice. These sex differences in Ca2+ regulatory proteins were abolished or overtly attenuated by IGF-1 deficiency. In summary, our data suggested that IGF-1 deficiency may significantly attenuated or mitigate the sex difference in cardiomyocyte contractile function associated with intracellular Ca2+ regulation. PMID:21763763

  5. Insulin-like growth factor I (IGF-1) deficiency ameliorates sex difference in cardiac contractile function and intracellular Ca(2+) homeostasis.

    Science.gov (United States)

    Ceylan-Isik, Asli F; Li, Qun; Ren, Jun

    2011-10-10

    Sex difference in cardiac contractile function exists which may contribute to the different prevalence in cardiovascular diseases between genders. However, the precise mechanisms of action behind sex difference in cardiac function are still elusive. Given that sex difference exists in insulin-like growth factor I (IGF-1) cascade, this study is designed to evaluate the impact of severe liver IGF-1 deficiency (LID) on sex difference in cardiac function. Echocardiographic, cardiomyocyte contractile and intracellular Ca(2+) properties were evaluated including ventricular geometry, fractional shortening, peak shortening, maximal velocity of shortening/relengthening (±dL/dt), time-to-peak shortening (TPS), time-to-90% relengthening (TR(90)), fura-fluorescence intensity (FFI) and intracellular Ca(2+) clearance. Female C57 mice exhibited significantly higher plasma IGF-1 levels than their male counterpart. LID mice possessed comparably low IGF-1 levels in both sexes. Female C57 and LID mice displayed lower body, heart and liver weights compared to male counterparts. Echocardiographic analysis revealed larger LV mass in female C57 but not LID mice without sex difference in other cardiac geometric indices. Myocytes from female C57 mice exhibited reduced peak shortening, ±dL/dt, longer TPS, TR(90) and intracellular Ca(2+) clearance compared with males. Interestingly, this sex difference was greatly attenuated or abolished by IGF-1 deficiency. Female C57 mice displayed significantly decreased mRNA and protein levels of Na(+)-Ca(2+) exchanger, SERCA2a and phosphorylated phospholamban as well as SERCA activity compared with male C57 mice. These sex differences in Ca(2+) regulatory proteins were abolished or overtly attenuated by IGF-1 deficiency. In summary, our data suggested that IGF-1 deficiency may significantly attenuated or mitigate the sex difference in cardiomyocyte contractile function associated with intracellular Ca(2+) regulation. Copyright © 2011 Elsevier Ireland

  6. Actomyosin contractility rotates the cell nucleus.

    Science.gov (United States)

    Kumar, Abhishek; Maitra, Ananyo; Sumit, Madhuresh; Ramaswamy, Sriram; Shivashankar, G V

    2014-01-21

    The cell nucleus functions amidst active cytoskeletal filaments, but its response to their contractile stresses is largely unexplored. We study the dynamics of the nuclei of single fibroblasts, with cell migration suppressed by plating onto micro-fabricated patterns. We find the nucleus undergoes noisy but coherent rotational motion. We account for this observation through a hydrodynamic approach, treating the nucleus as a highly viscous inclusion residing in a less viscous fluid of orientable filaments endowed with active stresses. Lowering actin contractility selectively by introducing blebbistatin at low concentrations drastically reduced the speed and coherence of the angular motion of the nucleus. Time-lapse imaging of actin revealed a correlated hydrodynamic flow around the nucleus, with profile and magnitude consistent with the results of our theoretical approach. Coherent intracellular flows and consequent nuclear rotation thus appear to be an intrinsic property of cells.

  7. Quantifying esophagogastric junction contractility with a novel HRM topographic metric, the EGJ-Contractile Integral: normative values and preliminary evaluation in PPI non-responders.

    Science.gov (United States)

    Nicodème, F; Pipa-Muniz, M; Khanna, K; Kahrilas, P J; Pandolfino, J E

    2014-03-01

    Despite its obvious pathophysiological relevance, the clinical utility of measures of esophagogastric junction (EGJ) contractility is unsubstantiated. High-resolution manometry (HRM) may improve upon this with its inherent ability to integrate the magnitude of contractility over time and length of the EGJ. This study aimed to develop a novel HRM metric summarizing EGJ contractility and test its ability distinguish among subgroups of proton pump inhibitor non-responders (PPI-NRs). 75 normal controls and 88 PPI-NRs were studied. All underwent HRM. PPI-NRs underwent pH-impedance monitoring on PPI therapy scored in terms of acid exposure, number of reflux events, and reflux-symptom correlation and grouped as meeting all criteria, some criteria, or no criteria of abnormality. Control HRM studies were used to establish normal values for candidate EGJ contractility metrics, which were then compared in their ability to differentiate among PPI-NR subgroups. The EGJ contractile integral (EGJ-CI), a metric integrating contractility across the EGJ for three respiratory cycles, best distinguished the All Criteria PPI-NR subgroup from controls and other PPI-NR subgroups. Normal values (median, [IQR]) for this measure were 39 mmHg-cm [25-55 mmHg-cm]. The correlation between the EGJ-CI and a previously proposed metric, the lower esophageal sphincter-pressure integral, that used a fixed 10 s time frame and an atmospheric as opposed to gastric pressure reference was weak. Among HRM metrics tested, the EGJ-CI was best in distinguishing PPI-NRs meeting all criteria of abnormality on pH-impedance testing. Future prospective studies are required to explore its utility in management of broader groups of gastroesophageal reflux disease patients. © 2013 John Wiley & Sons Ltd.

  8. Cadmium translocation by contractile roots differs from that in regular, non-contractile roots.

    Science.gov (United States)

    Lux, Alexander; Lackovič, Andrej; Van Staden, Johannes; Lišková, Desana; Kohanová, Jana; Martinka, Michal

    2015-06-01

    Contractile roots are known and studied mainly in connection with the process of shrinkage of their basal parts, which acts to pull the shoot of the plant deeper into the ground. Previous studies have shown that the specific structure of these roots results in more intensive water uptake at the base, which is in contrast to regular root types. The purpose of this study was to find out whether the basal parts of contractile roots are also more active in translocation of cadmium to the shoot. Plants of the South African ornamental species Tritonia gladiolaris were cultivated in vitro for 2 months, at which point they possessed well-developed contractile roots. They were then transferred to Petri dishes with horizontally separated compartments of agar containing 50 µmol Cd(NO3)2 in the region of the root base or the root apex. Seedlings of 4-d-old maize (Zea mays) plants, which do not possess contractile roots, were also transferred to similar Petri dishes. The concentrations of Cd in the leaves of the plants were compared after 10 d of cultivation. Anatomical analyses of Tritonia roots were performed using appropriately stained freehand cross-sections. The process of contraction required specific anatomical adaptation of the root base in Tritonia, with less lignified and less suberized tissues in comparison with the subapical part of the root. These unusual developmental characteristics were accompanied by more intensive translocation of Cd ions from the basal part of contractile roots to the leaves than from the apical-subapical root parts. The opposite effects were seen in the non-contractile roots of maize, with higher uptake and transport by the apical parts of the root and lower uptake and transport by the basal part. The specific characteristics of contractile roots may have a significant impact on the uptake of ions, including toxic metals from the soil surface layers. This may be important for plant nutrition, for example in the uptake of nutrients from

  9. Protective effects of anisodamine on cigarette smoke extract-induced airway smooth muscle cell proliferation and tracheal contractility

    International Nuclear Information System (INIS)

    Xu, Guang-Ni; Yang, Kai; Xu, Zu-Peng; Zhu, Liang; Hou, Li-Na; Qi, Hong; Chen, Hong-Zhuan; Cui, Yong-Yao

    2012-01-01

    Anisodamine, an antagonist of muscarinic acetylcholine receptors (mAChRs), has been used therapeutically to improve smooth muscle function, including microvascular, intestinal and airway spasms. Our previous studies have revealed that airway hyper-reactivity could be prevented by anisodamine. However, whether anisodamine prevents smoking-induced airway smooth muscle (ASM) cell proliferation remained unclear. In this study, a primary culture of rat ASM cells was used to evaluate an ASM phenotype through the ability of the cells to proliferate and express contractile proteins in response to cigarette smoke extract (CSE) and intervention of anisodamine. Our results showed that CSE resulted in an increase in cyclin D1 expression concomitant with the G0/G1-to-S phase transition, and high expression of M2 and M3. Functional studies showed that tracheal hyper-contractility accompanied contractile marker α-SMA high-expression. These changes, which occur only after CSE stimulation, were prevented and reversed by anisodamine, and CSE-induced cyclin D1 expression was significantly inhibited by anisodamine and the specific inhibitor U0126, BAY11-7082 and LY294002. Thus, we concluded that the protective and reversal effects and mechanism of anisodamine on CSE-induced events might involve, at least partially, the ERK, Akt and NF-κB signaling pathways associated with cyclin D1 via mAChRs. Our study validated that anisodamine intervention on ASM cells may contribute to anti-remodeling properties other than bronchodilation. -- Highlights: ► CSE induces tracheal cell proliferation, hyper-contractility and α-SMA expression. ► Anisodamine reverses CSE-induced tracheal hyper-contractility and cell proliferation. ► ERK, PI3K, and NF-κB pathways and cyclin D1 contribute to the reversal effect.

  10. Na+,K+-pump stimulation improves contractility in isolated muscles of mice with hyperkalemic periodic paralysis.

    Science.gov (United States)

    Clausen, Torben; Nielsen, Ole Bækgaard; Clausen, Johannes D; Pedersen, Thomas Holm; Hayward, Lawrence J

    2011-07-01

    In patients with hyperkalemic periodic paralysis (HyperKPP), attacks of muscle weakness or paralysis are triggered by K(+) ingestion or rest after exercise. Force can be restored by muscle work or treatment with β(2)-adrenoceptor agonists. A missense substitution corresponding to a mutation in the skeletal muscle voltage-gated Na(+) channel (Na(v)1.4, Met1592Val) causing human HyperKPP was targeted into the mouse SCN4A gene (mutants). In soleus muscles prepared from these mutant mice, twitch, tetanic force, and endurance were markedly reduced compared with soleus from wild type (WT), reflecting impaired excitability. In mutant soleus, contractility was considerably more sensitive than WT soleus to inhibition by elevated [K(+)](o). In resting mutant soleus, tetrodotoxin (TTX)-suppressible (22)Na uptake and [Na(+)](i) were increased by 470 and 58%, respectively, and membrane potential was depolarized (by 16 mV, P Na(+),K(+) pump-mediated (86)Rb uptake was 83% larger than in WT. Salbutamol stimulated (86)Rb uptake and reduced [Na(+)](i) both in mutant and WT soleus. Stimulating Na(+),K(+) pumps with salbutamol restored force in mutant soleus and extensor digitorum longus (EDL). Increasing [Na(+)](i) with monensin also restored force in soleus. In soleus, EDL, and tibialis anterior muscles of mutant mice, the content of Na(+),K(+) pumps was 28, 62, and 33% higher than in WT, respectively, possibly reflecting the stimulating effect of elevated [Na(+)](i) on the synthesis of Na(+),K(+) pumps. The results confirm that the functional disorders of skeletal muscles in HyperKPP are secondary to increased Na(+) influx and show that contractility can be restored by acute stimulation of the Na(+),K(+) pumps. Calcitonin gene-related peptide (CGRP) restored force in mutant soleus but caused no detectable increase in (86)Rb uptake. Repeated excitation and capsaicin also restored contractility, possibly because of the release of endogenous CGRP from nerve endings in the isolated

  11. 2-Deoxyadenosine triphosphate restores the contractile function of cardiac myofibril from adult dogs with naturally occurring dilated cardiomyopathy

    OpenAIRE

    Cheng, Yuanhua; Hogarth, Kaley A.; O'Sullivan, M. Lynne; Regnier, Michael; Pyle, W. Glen

    2015-01-01

    1) First report to characterize and define the contractile kinetics and defects associated with naturally occurring dilated cardiomyopathy (DCM) in dogs. 2) Novel findings that dATP is able to reverse the contractile defects associated with naturally occurring canine DCM.

  12. Spontaneous actin dynamics in contractile rings

    Science.gov (United States)

    Kruse, Karsten; Wollrab, Viktoria; Thiagarajan, Raghavan; Wald, Anne; Riveline, Daniel

    Networks of polymerizing actin filaments are known to be capable to self-organize into a variety of structures. For example, spontaneous actin polymerization waves have been observed in living cells in a number of circumstances, notably, in crawling neutrophils and slime molds. During later stages of cell division, they can also spontaneously form a contractile ring that will eventually cleave the cell into two daughter cells. We present a framework for describing networks of polymerizing actin filaments, where assembly is regulated by various proteins. It can also include the effects of molecular motors. We show that the molecular processes driven by these proteins can generate various structures that have been observed in contractile rings of fission yeast and mammalian cells. We discuss a possible functional role of each of these patterns. The work was supported by Agence Nationale de la Recherche, France, (ANR-10-LABX-0030-INRT) and by Deutsche Forschungsgemeinschaft through SFB1027.

  13. Changes in contractile activation characteristics of rat fast and slow skeletal muscle fibres during regeneration.

    Science.gov (United States)

    Gregorevic, Paul; Plant, David R; Stupka, Nicole; Lynch, Gordon S

    2004-07-15

    Damaged skeletal muscle fibres are replaced with new contractile units via muscle regeneration. Regenerating muscle fibres synthesize functionally distinct isoforms of contractile and regulatory proteins but little is known of their functional properties during the regeneration process. An advantage of utilizing single muscle fibre preparations is that assessment of their function is based on the overall characteristics of the contractile apparatus and regulatory system and as such, these preparations are sensitive in revealing not only coarse, but also subtle functional differences between muscle fibres. We examined the Ca(2+)- and Sr(2+)-activated contractile characteristics of permeabilized fibres from rat fast-twitch (extensor digitorum longus) and slow-twitch (soleus) muscles at 7, 14 and 21 days following myotoxic injury, to test the hypothesis that fibres from regenerating fast and slow muscles have different functional characteristics to fibres from uninjured muscles. Regenerating muscle fibres had approximately 10% of the maximal force producing capacity (P(o)) of control (uninjured) fibres, and an altered sensitivity to Ca(2+) and Sr(2+) at 7 days post-injury. Increased force production and a shift in Ca(2+) sensitivity consistent with fibre maturation were observed during regeneration such that P(o) was restored to 36-45% of that in control fibres by 21 days, and sensitivity to Ca(2+) and Sr(2+) was similar to that of control (uninjured) fibres. The findings support the hypothesis that regenerating muscle fibres have different contractile activation characteristics compared with mature fibres, and that they adopt properties of mature fast- or slow-twitch muscle fibres in a progressive manner as the regeneration process is completed.

  14. Validation of an in vitro contractility assay using canine ventricular myocytes

    Energy Technology Data Exchange (ETDEWEB)

    Harmer, A.R., E-mail: alex.harmer@astrazeneca.com; Abi-Gerges, N.; Morton, M.J.; Pullen, G.F.; Valentin, J.P.; Pollard, C.E.

    2012-04-15

    Measurement of cardiac contractility is a logical part of pre-clinical safety assessment in a drug discovery project, particularly if a risk has been identified or is suspected based on the primary- or non-target pharmacology. However, there are limited validated assays available that can be used to screen several compounds in order to identify and eliminate inotropic liability from a chemical series. We have therefore sought to develop an in vitro model with sufficient throughput for this purpose. Dog ventricular myocytes were isolated using a collagenase perfusion technique and placed in a perfused recording chamber on the stage of a microscope at ∼ 36 °C. Myocytes were stimulated to contract at a pacing frequency of 1 Hz and a digital, cell geometry measurement system (IonOptix™) was used to measure sarcomere shortening in single myocytes. After perfusion with vehicle (0.1% DMSO), concentration–effect curves were constructed for each compound in 4–30 myocytes taken from 1 or 2 dog hearts. The validation test-set was 22 negative and 8 positive inotropes, and 21 inactive compounds, as defined by their effect in dog, cynolomolgous monkey or humans. By comparing the outcome of the assay to the known in vivo contractility effects, the assay sensitivity was 81%, specificity was 75%, and accuracy was 78%. With a throughput of 6–8 compounds/week from 1 cell isolation, this assay may be of value to drug discovery projects to screen for direct contractility effects and, if a hazard is identified, help identify inactive compounds. -- Highlights: ► Cardiac contractility is an important physiological function of the heart. ► Assessment of contractility is a logical part of pre-clinical drug safety testing. ► There are limited validated assays that predict effects of compounds on contractility. ► Using dog myocytes, we have developed an in vitro cardiac contractility assay. ► The assay predicted the in vivo contractility with a good level of accuracy.

  15. Slack length reduces the contractile phenotype of the Swine carotid artery.

    Science.gov (United States)

    Rembold, Christopher M; Garvey, Sean M; Tejani, Ankit D

    2013-01-01

    Contraction is the primary function of adult arterial smooth muscle. However, in response to vessel injury or inflammation, arterial smooth muscle is able to phenotypically modulate from the contractile state to several 'synthetic' states characterized by proliferation, migration and/or increased cytokine secretion. We examined the effect of tissue length (L) on the phenotype of intact, isometrically held, initially contractile swine carotid artery tissues. Tissues were studied (1) without prolonged incubation at the optimal length for force generation (1.0 Lo, control), (2) with prolonged incubation for 17 h at 1.0 Lo, or (3) with prolonged incubation at slack length (0.6 Lo) for 16 h and then restoration to 1.0 Lo for 1 h. Prolonged incubation at 1.0 Lo minimally reduced the contractile force without substantially altering the mediators of contraction (crossbridge phosphorylation, shortening velocity or stimulated actin polymerization). Prolonged incubation of tissues at slack length (0.6 Lo), despite return of length to 1.0 Lo, substantially reduced contractile force, reduced crossbridge phosphorylation, nearly abolished crossbridge cycling (shortening velocity) and abolished stimulated actin polymerization. These data suggest that (1) slack length treatment significantly alters the contractile phenotype of arterial tissue, and (2) slack length treatment is a model to study acute phenotypic modulation of intact arterial smooth muscle. Copyright © 2013 S. Karger AG, Basel.

  16. Genome sequence of Haloplasma contractile, an unusual contractile bacterium from a deep-sea anoxic brine lake.

    KAUST Repository

    Antunes, Andre; Alam, Intikhab; El Dorry, Hamza; Siam, Rania; Robertson, Anthony J.; Bajic, Vladimir B.; Stingl, Ulrich

    2011-01-01

    We present the draft genome of Haloplasma contractile, isolated from a deep-sea brine and representing a new order between Firmicutes and Mollicutes. Its complex morphology with contractile protrusions might be strongly influenced by the presence of seven MreB/Mbl homologs, which appears to be the highest copy number ever reported.

  17. Genome sequence of Haloplasma contractile, an unusual contractile bacterium from a deep-sea anoxic brine lake.

    KAUST Repository

    Antunes, Andre

    2011-09-01

    We present the draft genome of Haloplasma contractile, isolated from a deep-sea brine and representing a new order between Firmicutes and Mollicutes. Its complex morphology with contractile protrusions might be strongly influenced by the presence of seven MreB/Mbl homologs, which appears to be the highest copy number ever reported.

  18. Contractile function and motor unit firing rates of the human hamstrings.

    Science.gov (United States)

    Kirk, Eric A; Rice, Charles L

    2017-01-01

    Neuromuscular properties of the lower limb in health, aging, and disease are well described for major lower limb muscles comprising the quadriceps, triceps surae, and dorsiflexors, with the notable exception of the posterior thigh (hamstrings). The purpose of this study was to further characterize major muscles of the lower limb by comprehensively exploring contractile properties in relation to spinal motor neuron output expressed as motor unit firing rates (MUFRs) in the hamstrings of 11 (26.5 ± 3.8) young men. Maximal isometric voluntary contraction (MVC), voluntary activation, stimulated contractile properties including a force-frequency relationship, and MUFRs from submaximal to maximal voluntary contractile intensities were assessed in the hamstrings. Strength and MUFRs were assessed at two presumably different muscle lengths by varying the knee joint angles (90° and 160°). Knee flexion MVCs were 60-70% greater in the extended position (160°). The frequency required to elicit 50% of maximum tetanic torque was 16-17 Hz. Mean MUFRs at 25-50% MVC were 9-31% less in the biceps femoris compared with the semimembranosus-semitendinosus group. Knee joint angle (muscle length) influenced MUFRs such that mean MUFRs were greater in the shortened (90°) position at 50% and 100% MVC. Compared with previous reports, mean maximal MUFRs in the hamstrings are greater than those in the quadriceps and triceps surae and somewhat less than those in the tibialis anterior. Mean maximal MUFRs in the hamstrings are influenced by changes in knee joint angle, with lower firing rates in the biceps femoris compared with the semimembranosus-semitendinosus muscle group. We studied motor unit firing rates (MUFRs) at various voluntary contraction intensities in the hamstrings, one of the only major lower limb muscles to have MUFRs affected by muscle length changes. Within the hamstrings muscle-specific differences have greater impact on MUFRs than length changes, with the biceps femoris

  19. A human in vitro model of Duchenne muscular dystrophy muscle formation and contractility.

    Science.gov (United States)

    Nesmith, Alexander P; Wagner, Matthew A; Pasqualini, Francesco S; O'Connor, Blakely B; Pincus, Mark J; August, Paul R; Parker, Kevin Kit

    2016-10-10

    Tongue weakness, like all weakness in Duchenne muscular dystrophy (DMD), occurs as a result of contraction-induced muscle damage and deficient muscular repair. Although membrane fragility is known to potentiate injury in DMD, whether muscle stem cells are implicated in deficient muscular repair remains unclear. We hypothesized that DMD myoblasts are less sensitive to cues in the extracellular matrix designed to potentiate structure-function relationships of healthy muscle. To test this hypothesis, we drew inspiration from the tongue and engineered contractile human muscle tissues on thin films. On this platform, DMD myoblasts formed fewer and smaller myotubes and exhibited impaired polarization of the cell nucleus and contractile cytoskeleton when compared with healthy cells. These structural aberrations were reflected in their functional behavior, as engineered tongues from DMD myoblasts failed to achieve the same contractile strength as healthy tongue structures. These data suggest that dystrophic muscle may fail to organize with respect to extracellular cues necessary to potentiate adaptive growth and remodeling. © 2016 Nesmith et al.

  20. Glucagon-like peptide-1 reduces contractile function and fails to boost glucose utilization in normal hearts in the presence of fatty acids.

    Science.gov (United States)

    Nguyen, T Dung; Shingu, Yasushige; Amorim, Paulo A; Schwarzer, Michael; Doenst, Torsten

    2013-10-09

    GLP-1 and exendin-4, which are used as insulin sensitizers or weight reducing drugs, were shown to improve glucose uptake in the heart. However, the direct effects of GLP-1 or exendin-4 on normal hearts in the presence of fatty acids, the main cardiac substrates, have never been investigated. We therefore assessed the effects of GLP-1 or exendin-4 on myocardial glucose uptake (GU), glucose oxidation (GO) and cardiac performance (CP) under conditions of fatty acid utilization. Rat hearts were perfused with only glucose (5 mM) or glucose (5 mM) plus oleate (0.4 mM) as substrates for 60 min. After 30 min, GLP-1 or exendin-4 (0.5 nM or 5 nM) was added. In the absence of oleate, GLP-1 increased both GU and GO. Exendin-4 increased GO but showed no effect on GU. Neither GLP-1 nor exendin-4 affected CP. However, when oleate was present, GLP-1 failed to stimulate glucose utilization and exendin-4 even decreased GU. Furthermore, now GLP-1 reduced CP. In contrast to prior reports, this negative inotropic effect could not be blocked by the protein kinase A inhibitor H-89. We then measured myocardial GO and CP in rats receiving a 4-week GLP-1 infusion. Interestingly, this chronic treatment resulted in a significant reduction in both GO and CP. Under the influence of oleate, GLP-1 reduces contractile function and fails to stimulate glucose utilization in normal hearts. Exendin-4 may acutely reduce cardiac glucose uptake but not contractility. We suggest advanced investigation of heart function and metabolism in patients treating with these peptides. © 2013.

  1. α,β-Unsaturated aldehyde pollutant acrolein suppresses cardiomyocyte contractile function: Role of TRPV1 and oxidative stress.

    Science.gov (United States)

    Wu, Zhenbiao; He, Emily Y; Scott, Glenda I; Ren, Jun

    2015-01-01

    Air pollution is associated with an increased prevalence of heart disease and is known to trigger a proinflammatory response via stimulation of transient receptor potential vanilloid cation channels (TRPV1, also known as the capsaicin receptor). This study was designed to examine the effect of acrolein, an essential α,β-unsaturated aldehyde pollutant, on myocardial contractile function and the underlying mechanism involved with a focus on TRPV1 and oxidative stress. Cardiomyocyte mechanical and intracellular Ca(2+) properties were evaluated using an IonOptix MyoCam® system including peak shortening (PS), maximal velocity of shortening/relengthening (± dL/dt), time-to-PS (TPS), time-to-90% relengthening (TR90 ), fura-2 fluorescence intensity (FFI) and intracellular Ca(2+) decay. Changes in apoptosis and TRPV1 were evaluated using Western blot analysis. The degree of oxidative stress was assessed using the ratio between reduced and oxidized glutathione. Results obtained revealed that exposure of cardiomyocytes to acrolein acutely compromised contractile and intracellular Ca(2+) properties including depressed PS, ± dL/dt and ΔFFI, as well as prolonged TR90 and intracellular Ca(2+) decay. In addition, acrolein exposure upregulated TRPV1 associated with an increase in both apoptosis and oxidative stress. However, the acrolein-induced cardiomyocyte contractile and intracellular Ca(2+) anomalies, as well as apoptosis (as evidenced by Bcl-2, Bax, FasL, Caspase-3 and -8), were negated by the reactive oxygen species (ROS) scavenger glutathione or the TRPV1 antagonist capsazepine. Collectively these data suggest that the α,β-unsaturated aldehyde pollutant acrolein may play a role in the pathogenesis and sequelae of air pollution-induced heart disease via a TRPV1- and oxidative stress-dependent mechanism. © 2013 Wiley Periodicals, Inc.

  2. Passive heating following the prematch warm-up in soccer: examining the time-course of changes in muscle temperature and contractile function.

    Science.gov (United States)

    Marshall, Paul W M; Cross, Rebecca; Lovell, Ric

    2015-12-01

    This study examined changes in muscle temperature, electrically evoked muscle contractile properties, and voluntary power before and after a soccer specific active warm-up and subsequent rest period. Ten amateur soccer players performed two experimental sessions that involved performance of a modified FIFA 11+ soccer specific warm-up, followed by a 12.5-min rest period where participants were required to wear either normal clothing or a passive electrical heating garment was applied to the upper thigh muscles. Assessments around the warm-up and cool-down included measures of maximal torque, rate of torque development, muscle temperature (Tm), and electrically evoked measures of quadriceps contractile function. Tm was increased after the warm-up by 3.2 ± 0.7°C (P warm-up between 20% and 30% (P warm-up did not effect variables measured. While Tm was reduced by 1.4 ± 0.4°C after the rest period (P warm-up levels. Voluntary and evoked rate of torque development remained elevated from pre warm-up levels at the end of the cool-down (P warm-up elevated muscle temperature by 3.2°C and was associated with concomitant increases of between 20% and 30% in voluntary rate of torque development, which seems explained by elevations in rate-dependent measures of intrinsic muscle contractile function. Application of a passive heating garment did not attenuate declines in muscle temperature during a 12.5-min rest period. © 2015 The Authors. Physiological Reports published by Wiley Periodicals, Inc. on behalf of the American Physiological Society and The Physiological Society.

  3. Effects of beta-hydroxy-beta-methylbutyrate (HMB) on the expression of ubiquitin ligases, protein synthesis pathways and contractile function in extensor digitorum longus (EDL) of fed and fasting rats.

    Science.gov (United States)

    Gerlinger-Romero, Frederico; Guimarães-Ferreira, Lucas; Yonamine, Caio Yogi; Salgueiro, Rafael Barrera; Nunes, Maria Tereza

    2018-03-01

    Beta-hydroxy-beta-methylbutyrate (HMB), a leucine metabolite, enhances the gain of skeletal muscle mass by increasing protein synthesis or attenuating protein degradation or both. The aims of this study were to investigate the effect of HMB on molecular factors controlling skeletal muscle protein synthesis and degradation, as well as muscle contractile function, in fed and fasted conditions. Wistar rats were supplied daily with HMB (320 mg/kg body weight diluted in NaCl-0.9%) or vehicle only (control) by gavage for 28 days. After this period, some of the animals were subjected to a 24-h fasting, while others remained in the fed condition. The EDL muscle was then removed, weighed and used to evaluate the genes and proteins involved in protein synthesis (AKT/4E-BP1/S6) and degradation (Fbxo32 and Trim63). A sub-set of rats were used to measure in vivo muscle contractile function. HMB supplementation increased AKT phosphorylation during fasting (three-fold). In the fed condition, no differences were detected in atrogenes expression between control and HMB supplemented group; however, HMB supplementation did attenuate the fasting-induced increase in their expression levels. Fasting animals receiving HMB showed improved sustained tetanic contraction times (one-fold) and an increased muscle to tibia length ratio (1.3-fold), without any cross-sectional area changes. These results suggest that HMB supplementation under fasting conditions increases AKT phosphorylation and attenuates the increased of atrogenes expression, followed by a functional improvement and gain of skeletal muscle weight, suggesting that HMB protects skeletal muscle against the deleterious effects of fasting.

  4. Compensatory Hypertrophy of Skeletal Muscle: Contractile Characteristics

    Science.gov (United States)

    Ianuzzo, C. D.; Chen, V.

    1977-01-01

    Describes an experiment using rats that demonstrates contractile characteristics of normal and hypertrophied muscle. Compensatory hypertrophy of the plantaris muscle is induced by surgical removal of the synergistic gastrocnemium muscle. Includes methods for determination of contractile properties of normal and hypertrophied muscle and…

  5. Influence of intracellular acidosis on contractile function in the working rat heart

    International Nuclear Information System (INIS)

    Jeffrey, F.M.H.; Malloy, C.R.; Radda, G.K.

    1987-01-01

    The decrease in myocardial contractility during ischemia, hypoxia, and extracellular acidosis has been attributed to intracellular acidosis. Previous studies of the relationship between pH and contractile state have utilized respiratory or metabolic acidosis to alter intracellular pH. The authors developed a model in the working perfused rat heart to study the effects of intracellular acidosis with normal external pH and optimal O 2 delivery. Intracellular pH and high-energy phosphates were monitored by 31 P nuclear magnetic resonance spectroscopy. Hearts were perfused to a steady state with a medium containing 10 mM NH 4 Cl. Acidosis induced a substantial decrease in aortic flow and stroke volume which was associated with little change in peak systolic pressure. It was concluded that (1) for the same intracellular acidosis the influence on tension development was more pronounced with a combined extra- and intracellular acidosis than with an isolated intracellular acidosis, and (2) stroke volume at constant preload was impaired by intracellular acidosis even though changes in developed pressure were minimal. These observations suggest that isolated intracellular acidosis has adverse effects on diastolic compliance and/or relaxation

  6. Differences in Contractile Function of Myofibrils within Human Embryonic Stem Cell-Derived Cardiomyocytes vs. Adult Ventricular Myofibrils Are Related to Distinct Sarcomeric Protein Isoforms

    Directory of Open Access Journals (Sweden)

    Bogdan Iorga

    2018-01-01

    Full Text Available Characterizing the contractile function of human pluripotent stem cell-derived cardiomyocytes (hPSC-CMs is key for advancing their utility for cellular disease models, promoting cell based heart repair, or developing novel pharmacological interventions targeting cardiac diseases. The aim of the present study was to understand whether steady-state and kinetic force parameters of β-myosin heavy chain (βMyHC isoform-expressing myofibrils within human embryonic stem cell-derived cardiomyocytes (hESC-CMs differentiated in vitro resemble those of human ventricular myofibrils (hvMFs isolated from adult donor hearts. Contractile parameters were determined using the same micromechanical method and experimental conditions for both types of myofibrils. We identified isoforms and phosphorylation of main sarcomeric proteins involved in the modulation of force generation of both, chemically demembranated hESC-CMs (d-hESC-CMs and hvMFs. Our results indicate that at saturating Ca2+ concentration, both human-derived contractile systems developed forces with similar rate constants (0.66 and 0.68 s−1, reaching maximum isometric force that was significantly smaller for d-hESC-CMs (42 kPa than for hvMFs (94 kPa. At submaximal Ca2+-activation, where intact cardiomyocytes normally operate, contractile parameters of d-hESC-CMs and hvMFs exhibited differences. Ca2+ sensitivity of force was higher for d-hESC-CMs (pCa50 = 6.04 than for hvMFs (pCa50 = 5.80. At half-maximum activation, the rate constant for force redevelopment was significantly faster for d-hESC-CMs (0.51 s−1 than for hvMFs (0.28 s−1. During myofibril relaxation, kinetics of the slow force decay phase were significantly faster for d-hESC-CMs (0.26 s−1 than for hvMFs (0.21 s−1, while kinetics of the fast force decay were similar and ~20x faster. Protein analysis revealed that hESC-CMs had essentially no cardiac troponin-I, and partially non-ventricular isoforms of some other sarcomeric proteins

  7. Effect of heat stress on contractility of tissue-engineered artificial skeletal muscle.

    Science.gov (United States)

    Takagi, Shunya; Nakamura, Tomohiro; Fujisato, Toshia

    2018-01-23

    The effects of heat stress on tissue like skeletal muscle have been widely studied. However, the mechanism responsible for the effect of heat stress is still unclear. A useful experimental tissue model is necessary because muscle function in cell culture may differ from native muscle and measuring its contractility is difficult. We previously reported three-dimensional tissue-engineered artificial skeletal muscle (TEM) that can be easily set in a measurement apparatus for quantitative evaluation of contractility. We have now applied TEM to the investigation of heat stress. We analyzed contractility immediately after thermal exposure at 39 °C for 24 or 48 h to evaluate the acute effects and after thermal exposure followed by normal culture to evaluate the aftereffects. Peak twitch contractile force and time-to-peak twitch were used as contractile parameters. Heat stress increased the TCF in the early stage (1 week) after normal culture; the TCF decreased temporarily in the middle to late stages (2-3 weeks). These results suggest that heat stress may affect both myoblast fusion and myotube differentiation in the early stage of TEM culture, but not myotube maturation in the late stage. The TCF increase rate with thermal exposure was significantly higher than that without thermal exposure. Although detailed analysis at the molecular level is necessary for further investigation, our artificial skeletal muscle may be a promising tool for heat stress investigation.

  8. Levothyroxine treatment generates an abnormal uterine contractility patterns in an in vitro animal model.

    Science.gov (United States)

    Corriveau, Stéphanie; Blouin, Simon; Raiche, Évelyne; Nolin, Marc-Antoine; Rousseau, Éric; Pasquier, Jean-Charles

    2015-12-01

    Abnormal uterine contraction patterns were recently demonstrated in uterine strips from pregnant women treated with Levothyroxine (T4). These abnormalities were correlated with an increased risk of C-section delivery and associated surgical complications. To date, no study has investigated whether uterine contractility is modified by hypothyroidism or T4 treatment. Herein, we analyze the physiological role of T4 on uterine contractions. Female non-pregnant Sprague-Dawley rats ( N  = 22) were used and divided into four groups: 1) control, 2) hypothyroidism, 3) hypothyroidism treated with low T4 doses (20 μg/kg/day) and 4) with high T4 doses (100 μg/kg/day). Hypothyroidism was induced by an iodine-deficient diet. Isometric tension measurements were performed in vitro on myometrium tissues in isolated organ baths. Contractile activity parameters were quantified (amplitude, duration, frequency and area under the curve) using pharmacological tools to assess their effect. Screening of thyroid function confirmed a hypothyroid state for all rats under iodine-free diet to which T4 was subsequently administered to counterbalance hypothyroidism. Results demonstrate that hypothyroidism significantly decreased contractile duration (-17%) and increased contractile frequency (+26%), while high doses of T4 increased duration (+200%) and decreased frequency (-51%). These results thus mimic the pattern of abnormal contractions previously observed in uterine tissue from T4-treated hypothyroid pregnant women. Our data suggest that changes in myometrial reactivity are induced by T4 treatment. Thus, in conjunction with our previous observations on human myometrial strips, management of hypothyroidism should be improved to reduce the rate of C-sections in this group of patients.

  9. The effects of RSR13 on microvascular Po2 kinetics and muscle contractile performance in the rat arterial ligation model of peripheral arterial disease.

    Science.gov (United States)

    Watanabe, Aiko; Poole, David C; Kano, Yutaka

    2017-10-01

    Exercise intolerance and claudication are symptomatic of peripheral arterial disease. There is a close relationship between muscle O 2 delivery, microvascular oxygen partial pressure (P mv O 2 ), and contractile performance. We therefore hypothesized that a reduction of hemoglobin-oxygen affinity via RSR13 would maintain a higher P mv O 2 and enhance blood-muscle O 2 transport and contractile function. In male Wistar rats (12 wk of age), we created hindlimb ischemia via right-side iliac artery ligation (AL). The contralateral (left) muscle served as control (CONT). Seven days after AL, phosphorescence-quenching techniques were used to measure P mv O 2 at rest and during contractions (electrical stimulation; 1 Hz, 300 s) in tibialis anterior muscle (TA) under saline ( n = 10) or RSR13 ( n = 10) conditions. RSR13 at rest increased TA P mv O 2 in CONT (13.9 ± 1.6 to 19.3 ± 1.9 Torr, P < 0.05) and AL (9.0 ± 0.5 to 9.9 ± 0.7 Torr, P < 0.05). Furthermore, RSR13 extended maintenance of the initial TA force (i.e., improved contractile performance) such that force was not decreased significantly until contraction 240 vs. 150 in CONT and 80 vs. 20 in AL. This improved muscle endurance with RSR13 was accompanied by a greater ΔP mv O 2 (P mv O 2 decrease from baseline) (CONT, 7.4 ± 1.0 to 11.2 ± 1.3; AL, 6.9 ± 0.5 to 8.6 ± 0.6 Torr, both P < 0.05). Whereas RSR13 did not alter the kinetics profile of P mv O 2 (i.e., mean response time) substantially during contractions, muscle force was elevated, and the ratio of muscle force to P mv O 2 increased. In conclusion, reduction of hemoglobin-oxygen affinity via RSR13 in AL increased P mv O 2 and improved muscle contractile performance most likely via enhanced blood-muscle O 2 diffusion. NEW & NOTEWORTHY This is the first investigation to examine the effect of RSR13 (erythrocyte allosteric effector) on skeletal muscle microvascular oxygen partial pressure kinetics and contractile function using an arterial ligation model of

  10. Investigating Cardiac MRI Based Right Ventricular Contractility As A Novel Non-Invasive Metric of Pulmonary Arterial Pressure

    Science.gov (United States)

    Menon, Prahlad G; Adhypak, Srilakshmi M; Williams, Ronald B; Doyle, Mark; Biederman, Robert WW

    2014-01-01

    BACKGROUND We test the hypothesis that cardiac magnetic resonance (CMR) imaging-based indices of four-dimensional (4D) (three dimensions (3D) + time) right ventricle (RV) function have predictive values in ascertaining invasive pulmonary arterial systolic pressure (PASP) measurements from right heart catheterization (RHC) in patients with pulmonary arterial hypertension (PAH). METHODS We studied five patients with idiopathic PAH and two age and sex-matched controls for RV function using a novel contractility index (CI) for amplitude and phase to peak contraction established from analysis of regional shape variation in the RV endocardium over 20 cardiac phases, segmented from CMR images in multiple orientations. RESULTS The amplitude of RV contractility correlated inversely with RV ejection fraction (RVEF; R2 = 0.64, P = 0.03) and PASP (R2 = 0.71, P = 0.02). Phase of peak RV contractility also correlated inversely to RVEF (R2 = 0.499, P = 0.12) and PASP (R2 = 0.66, P = 0.04). CONCLUSIONS RV contractility analyzed from CMR offers promising non-invasive metrics for classification of PAH, which are congruent with invasive pressure measurements. PMID:25624777

  11. LET-99 functions in the astral furrowing pathway, where it is required for myosin enrichment in the contractile ring.

    Science.gov (United States)

    Price, Kari L; Rose, Lesilee S

    2017-09-01

    The anaphase spindle determines the position of the cytokinesis furrow, such that the contractile ring assembles in an equatorial zone between the two spindle poles. Contractile ring formation is mediated by RhoA activation at the equator by the centralspindlin complex and midzone microtubules. Astral microtubules also inhibit RhoA accumulation at the poles. In the Caenorhabditis elegans one-cell embryo, the astral microtubule-dependent pathway requires anillin, NOP-1, and LET-99. LET-99 is well characterized for generating the asymmetric cortical localization of the Gα-dependent force-generating complex that positions the spindle during asymmetric division. However, whether the role of LET-99 in cytokinesis is specific to asymmetric division and whether it acts through Gα to promote furrowing are unclear. Here we show that LET-99 contributes to furrowing in both asymmetrically and symmetrically dividing cells, independent of its function in spindle positioning and Gα regulation. LET-99 acts in a pathway parallel to anillin and is required for myosin enrichment into the contractile ring. These and other results suggest a positive feedback model in which LET-99 localizes to the presumptive cleavage furrow in response to the spindle and myosin. Once positioned there, LET-99 enhances myosin accumulation to promote furrowing in both symmetrically and asymmetrically dividing cells. © 2017 Price and Rose. This article is distributed by The American Society for Cell Biology under license from the author(s). Two months after publication it is available to the public under an Attribution–Noncommercial–Share Alike 3.0 Unported Creative Commons License (http://creativecommons.org/licenses/by-nc-sa/3.0).

  12. Acute hypoxia limits endurance but does not affect muscle contractile properties.

    NARCIS (Netherlands)

    Degens, H.; Sanchez Horneros, J.M.; Hopman, M.T.E.

    2006-01-01

    Acute hypoxia causes skeletal muscle dysfunction in vitro, but little is known about its effect on muscle function in vivo. In 10 healthy male subjects, isometric contractile properties and fatigue resistance of the quadriceps muscle were determined during normoxia and hypoxia using electrically

  13. Cardiac-specific catalase overexpression rescues anthrax lethal toxin-induced cardiac contractile dysfunction: role of oxidative stress and autophagy.

    Science.gov (United States)

    Kandadi, Machender R; Yu, Xuejun; Frankel, Arthur E; Ren, Jun

    2012-11-07

    Lethal and edema toxins secreted by Bacillus anthracis during anthrax infection were found to incite serious cardiovascular complications. However, the underlying mechanisms in anthrax lethal toxin-induced cardiac anomalies remain unknown. This study was designed to evaluate the impact of antioxidant enzyme catalase in anthrax lethal toxin-induced cardiomyocyte contractile dysfunction. Wild type (WT) and cardiac-specific catalase overexpression mice were challenged with lethal toxin (2 μg/g, intraperotineally (i.p.)). Cardiomyocyte contractile and intracellular Ca(2+) properties were assessed 18 h later using an IonOptix edge-detection system. Proteasome function was assessed using chymotrypsin-like and caspase-like activities. GFP-LC3 puncta and Western blot analysis were used to evaluate autophagy and protein ubiquitination. Lethal toxin exposure suppressed cardiomyocyte contractile function (suppressed peak shortening, maximal velocity of shortening/re-lengthening, prolonged duration of shortening/re-lengthening, and impaired intracellular Ca(2+) handling), the effects of which were alleviated by catalase. In addition, lethal toxin triggered autophagy, mitochondrial and ubiquitin-proteasome defects, the effects of which were mitigated by catalase. Pretreatment of cardiomyocytes from catalase mice with the autophagy inducer rapamycin significantly attenuated or ablated catalase-offered protection against lethal toxin-induced cardiomyocyte dysfunction. On the other hand, the autophagy inhibitor 3-MA ablated or significantly attenuated lethal toxin-induced cardiomyocyte contractile anomalies. Our results suggest that catalase is protective against anthrax lethal toxin-induced cardiomyocyte contractile and intracellular Ca(2+) anomalies, possibly through regulation of autophagy and mitochondrial function.

  14. AB286. SPR-13 Sex differences and participation of Toll-like receptor 4 to rat bladder contractile function

    Science.gov (United States)

    Szasz, Theodora; Burgess, Beth; Webb, R. Clinton

    2016-01-01

    Objective Innate immune mechanisms have been implicated in the pathophysiology of chronic sterile conditions such as hypertension and diabetes. We have recently demonstrated that Toll-like receptor 4 (TLR4) activation by endogenous molecules such as high mobility group box-1 (HMGB1) contributes to hypertrophy and hypercontractility in diabetic bladder dysfunction. It has been reported that women have a higher frequency of overactive bladder symptoms, while men have higher detrusor overactivity. We hypothesized that sex differences in the contribution of TLR4 to bladder contraction may underlie the sex differences observed clinically. Methods Female and male rat bladder contractile responses to carbacholine (CCh) and electrical field stimulation (EFS) were measured in the presence and absence of TLR4 inhibitor CLI-095 and in the presence and absence of urothelium. Results We observed that contractile responses to both CCh and EFS were higher in the male than the female bladder segments in both the presence and absence of urothelium [CCh Emax (mN): male + urothelium =84.3±1.2, male – urothelium =83.7±1.2, female + urothelium =49.8±0.8, female – urothelium =59.2±1.1; EFS 32 Hz (mN): male + urothelium= 84.9±7.1, male – urothelium =66.8±5.2, female + urothelium =57.8±5.9, female – urothelium =54.5±3.5]. Incubation of bladder segments with the TLR4 inhibitor CLI-095 significantly decreased contractile responses to both CCh and EFS in both sexes, irrespective of the presence of urothelium [CCh Emax (mN): male + urothelium =91.1±0.8, male – urothelium =75.4±1.8, female + urothelium =42.9±1.1, female – urothelium =52.5±1.1; EFS 32 Hz (mN): male + urothelium =80.8±7.9, male – urothelium =59.6±10.6, female + urothelium =43.3±2.6, female – urothelium =46.4±1.9]. Conclusions Our data suggest that although there are sex differences in the contractile function of the rat bladder in basal conditions, the participation of TLR4 to bladder contraction

  15. Cell stiffness, contractile stress and the role of extracellular matrix

    International Nuclear Information System (INIS)

    An, Steven S.; Kim, Jina; Ahn, Kwangmi; Trepat, Xavier; Drake, Kenneth J.; Kumar, Sarvesh; Ling, Guoyu; Purington, Carolyn; Rangasamy, Tirumalai; Kensler, Thomas W.; Mitzner, Wayne; Fredberg, Jeffrey J.; Biswal, Shyam

    2009-01-01

    Here we have assessed the effects of extracellular matrix (ECM) composition and rigidity on mechanical properties of the human airway smooth muscle (ASM) cell. Cell stiffness and contractile stress showed appreciable changes from the most relaxed state to the most contracted state: we refer to the maximal range of these changes as the cell contractile scope. The contractile scope was least when the cell was adherent upon collagen V, followed by collagen IV, laminin, and collagen I, and greatest for fibronectin. Regardless of ECM composition, upon adherence to increasingly rigid substrates, the ASM cell positively regulated expression of antioxidant genes in the glutathione pathway and heme oxygenase, and disruption of a redox-sensitive transcription factor, nuclear erythroid 2 p45-related factor (Nrf2), culminated in greater contractile scope. These findings provide biophysical evidence that ECM differentially modulates muscle contractility and, for the first time, demonstrate a link between muscle contractility and Nrf2-directed responses.

  16. Cell stiffness, contractile stress and the role of extracellular matrix

    Energy Technology Data Exchange (ETDEWEB)

    An, Steven S., E-mail: san@jhsph.edu [Department of Environmental Health Sciences, Johns Hopkins Bloomberg School of Public Health, 615 N. Wolfe Street, Room E-7616, Baltimore, MD 21205 (United States); Kim, Jina [Department of Environmental Health Sciences, Johns Hopkins Bloomberg School of Public Health, 615 N. Wolfe Street, Room E-7616, Baltimore, MD 21205 (United States); Ahn, Kwangmi [Division of Biostatistics, Penn State College of Medicine, Hershey, PA 17033 (United States); Trepat, Xavier [CIBER, Enfermedades Respiratorias, 07110 Bunyola (Spain); Drake, Kenneth J. [Division of Molecular and Integrative Physiological Sciences, Harvard School of Public Health, Boston, MA 02115 (United States); Kumar, Sarvesh; Ling, Guoyu; Purington, Carolyn; Rangasamy, Tirumalai; Kensler, Thomas W.; Mitzner, Wayne [Department of Environmental Health Sciences, Johns Hopkins Bloomberg School of Public Health, 615 N. Wolfe Street, Room E-7616, Baltimore, MD 21205 (United States); Fredberg, Jeffrey J. [Division of Molecular and Integrative Physiological Sciences, Harvard School of Public Health, Boston, MA 02115 (United States); Biswal, Shyam [Department of Environmental Health Sciences, Johns Hopkins Bloomberg School of Public Health, 615 N. Wolfe Street, Room E-7616, Baltimore, MD 21205 (United States); Division of Pulmonary and Critical Care Medicine, Johns Hopkins School of Medicine, Baltimore, MD 21205 (United States)

    2009-05-15

    Here we have assessed the effects of extracellular matrix (ECM) composition and rigidity on mechanical properties of the human airway smooth muscle (ASM) cell. Cell stiffness and contractile stress showed appreciable changes from the most relaxed state to the most contracted state: we refer to the maximal range of these changes as the cell contractile scope. The contractile scope was least when the cell was adherent upon collagen V, followed by collagen IV, laminin, and collagen I, and greatest for fibronectin. Regardless of ECM composition, upon adherence to increasingly rigid substrates, the ASM cell positively regulated expression of antioxidant genes in the glutathione pathway and heme oxygenase, and disruption of a redox-sensitive transcription factor, nuclear erythroid 2 p45-related factor (Nrf2), culminated in greater contractile scope. These findings provide biophysical evidence that ECM differentially modulates muscle contractility and, for the first time, demonstrate a link between muscle contractility and Nrf2-directed responses.

  17. The influence of D2O, perchlorate, and variation in temperature on the potential-dependent contractile function of frog skeletal muscle

    International Nuclear Information System (INIS)

    Foulks, J.G.; Morishita, L.

    1985-01-01

    D 2 O and perchlorate manifest opposing effects on the contractile function of skeletal muscle (amplitude of twitches and maximum K contractures, potential dependence of contraction and inactivation), and when combined the influence of one may effectively antagonize that of the other. The ratio of perchlorate concentrations required to produce effects of equal intensity, (e.g., twitch enhancement and restoration of maximum K contractures in media lacking divalent cations or containing a depressant concentration of a cationic amphipath) in H 2 O and D 2 O solutions was generally rather constant. These findings are compatible with the view that both agents can influence contractile function by virtue of their effects on solvent structure. In the absence of divalent cations, the effects of reduced temperature resemble those of D 2 O whereas the effects of increased temperature resemble those of the chaotropic anion. However, in other media, variation in temperature was found to result in additional nonsolvent effects so that low temperature could oppose rather than enhance the effects of D 2 O. These observations are discussed in terms of a model which postulates a role for solvent influences on the kinetics of two separate potential-dependent conformational transitions of membrane proteins which mediate the activation and inactivation of contraction in skeletal muscle

  18. [Role of sialic acid loss in the myocardium in depressing the contractile function of the heart muscle during stress].

    Science.gov (United States)

    Meerson, F Z; Saulia, A I; Gudumak, V S

    1985-01-01

    Under conditions of stress a time-dependent decrease in content of sialic acids was found in adult rats; within 9 hrs of the animal immobilization the sialic acid content was decreased by 40% as compared with controls. At the same time, activities of trypsin and LDHI were increased in blood serum. The data obtained suggest that activation of proteases occurring during the stress led to increased hydrolysis of base components of glycocalyx and to impairment of the cardiomyocyte sarcolemma. These phenomena appear to be responsible for the post-stress deterioration of heart muscle contractile functions.

  19. Cardiac-specific catalase overexpression rescues anthrax lethal toxin-induced cardiac contractile dysfunction: role of oxidative stress and autophagy

    Directory of Open Access Journals (Sweden)

    Kandadi Machender R

    2012-11-01

    Full Text Available Abstract Background Lethal and edema toxins secreted by Bacillus anthracis during anthrax infection were found to incite serious cardiovascular complications. However, the underlying mechanisms in anthrax lethal toxin-induced cardiac anomalies remain unknown. This study was designed to evaluate the impact of antioxidant enzyme catalase in anthrax lethal toxin-induced cardiomyocyte contractile dysfunction. Methods Wild type (WT and cardiac-specific catalase overexpression mice were challenged with lethal toxin (2 μg/g, intraperotineally (i.p.. Cardiomyocyte contractile and intracellular Ca2+ properties were assessed 18 h later using an IonOptix edge-detection system. Proteasome function was assessed using chymotrypsin-like and caspase-like activities. GFP-LC3 puncta and Western blot analysis were used to evaluate autophagy and protein ubiquitination. Results Lethal toxin exposure suppressed cardiomyocyte contractile function (suppressed peak shortening, maximal velocity of shortening/re-lengthening, prolonged duration of shortening/re-lengthening, and impaired intracellular Ca2+ handling, the effects of which were alleviated by catalase. In addition, lethal toxin triggered autophagy, mitochondrial and ubiquitin-proteasome defects, the effects of which were mitigated by catalase. Pretreatment of cardiomyocytes from catalase mice with the autophagy inducer rapamycin significantly attenuated or ablated catalase-offered protection against lethal toxin-induced cardiomyocyte dysfunction. On the other hand, the autophagy inhibitor 3-MA ablated or significantly attenuated lethal toxin-induced cardiomyocyte contractile anomalies. Conclusions Our results suggest that catalase is protective against anthrax lethal toxin-induced cardiomyocyte contractile and intracellular Ca2+ anomalies, possibly through regulation of autophagy and mitochondrial function.

  20. Contractile injection systems of bacteriophages and related systems

    DEFF Research Database (Denmark)

    Taylor, Nicholas M I; van Raaij, Mark J; Leiman, Petr G

    2018-01-01

    Contractile tail bacteriophages, or myobacteriophages, use a sophisticated biomolecular structure to inject their genome into the bacterial host cell. This structure consists of a contractile sheath enveloping a rigid tube that is sharpened by a spike-shaped protein complex at its tip. The spike ...

  1. Sex differences and the effects of ovariectomy on the β-adrenergic contractile response

    Science.gov (United States)

    McIntosh, Victoria J.; Chandrasekera, P. Charukeshi

    2011-01-01

    The presence of sex differences in myocardial β-adrenergic responsiveness is controversial, and limited studies have addressed the mechanism underlying these differences. Studies were performed using isolated perfused hearts from male, intact female and ovariectomized female mice to investigate sex differences and the effects of ovarian hormone withdrawal on β-adrenergic receptor function. Female hearts exhibited blunted contractile responses to the β-adrenergic receptor agonist isoproterenol (ISO) compared with males but not ovariectomized females. There were no sex differences in β1-adrenergic receptor gene or protein expression. To investigate the role of adenylyl cyclase, phosphodiesterase, and the cAMP-signaling cascade in generating sex differences in the β-adrenergic contractile response, dose-response studies were performed in isolated perfused male and female hearts using forskolin, 3-isobutyl-1-methylxanthine (IBMX), and 8-(4-chlorophenylthio)adenosine 3′,5′-cyclic monophosphate (CPT-cAMP). Males showed a modestly enhanced contractile response to forskolin at 300 nM and 5 μM compared with females, but there were no sex differences in the response to IBMX or CPT-cAMP. The role of the A1 adenosine receptor (A1AR) in antagonizing the β-adrenergic contractile response was investigated using both the A1AR agonist 2-chloro-N6-cyclopentyl-adenosine and A1AR knockout (KO) mice. Intact females showed an enhanced A1AR anti-adrenergic effect compared with males and ovariectomized females. The β-adrenergic contractile response was potentiated in both male and female A1ARKO hearts, with sex differences no longer present above 1 nM ISO. The β-adrenergic contractile response is greater in male hearts than females, and minor differences in the action of adenylyl cyclase or the A1AR may contribute to these sex differences. PMID:21685268

  2. Improved throughput traction microscopy reveals pivotal role for matrix stiffness in fibroblast contractility and TGF-β responsiveness

    Science.gov (United States)

    Marinković, Aleksandar; Mih, Justin D.; Park, Jin-Ah; Liu, Fei

    2012-01-01

    Lung fibroblast functions such as matrix remodeling and activation of latent transforming growth factor-β1 (TGF-β1) are associated with expression of the myofibroblast phenotype and are directly linked to fibroblast capacity to generate force and deform the extracellular matrix. However, the study of fibroblast force-generating capacities through methods such as traction force microscopy is hindered by low throughput and time-consuming procedures. In this study, we improved at the detail level methods for higher-throughput traction measurements on polyacrylamide hydrogels using gel-surface-bound fluorescent beads to permit autofocusing and automated displacement mapping, and transduction of fibroblasts with a fluorescent label to streamline cell boundary identification. Together these advances substantially improve the throughput of traction microscopy and allow us to efficiently compute the forces exerted by lung fibroblasts on substrates spanning the stiffness range present in normal and fibrotic lung tissue. Our results reveal that lung fibroblasts dramatically alter the forces they transmit to the extracellular matrix as its stiffness changes, with very low forces generated on matrices as compliant as normal lung tissue. Moreover, exogenous TGF-β1 selectively accentuates tractions on stiff matrices, mimicking fibrotic lung, but not on physiological stiffness matrices, despite equivalent changes in Smad2/3 activation. Taken together, these results demonstrate a pivotal role for matrix mechanical properties in regulating baseline and TGF-β1-stimulated contraction of lung fibroblasts and suggest that stiff fibrotic lung tissue may promote myofibroblast activation through contractility-driven events, whereas normal lung tissue compliance may protect against such feedback amplification of fibroblast activation. PMID:22659883

  3. Thrombopoietin modulates cardiac contractility in vitro and contributes to myocardial depressing activity of septic shock serum.

    Science.gov (United States)

    Lupia, Enrico; Spatola, Tiziana; Cuccurullo, Alessandra; Bosco, Ornella; Mariano, Filippo; Pucci, Angela; Ramella, Roberta; Alloatti, Giuseppe; Montrucchio, Giuseppe

    2010-09-01

    Thrombopoietin (TPO) is a humoral growth factor that has been shown to increase platelet activation in response to several agonists. Patients with sepsis have increased circulating TPO levels, which may enhance platelet activation, potentially participating to the pathogenesis of multi-organ failure. Aim of this study was to investigate whether TPO affects myocardial contractility and participates to depress cardiac function during sepsis. We showed the expression of the TPO receptor c-Mpl on myocardial cells and tissue by RT-PCR, immunofluorescence and western blotting. We then evaluated the effect of TPO on the contractile function of rat papillary muscle and isolated heart. TPO did not change myocardial contractility in basal conditions, but, when followed by epinephrine (EPI) stimulation, it blunted the enhancement of contractile force induced by EPI both in papillary muscle and isolated heart. An inhibitor of TPO prevented TPO effect on cardiac inotropy. Treatment of papillary muscle with pharmacological inhibitors of phosphatidylinositol 3-kinase, NO synthase, and guanilyl cyclase abolished TPO effect, indicating NO as the final mediator. We finally studied the role of TPO in the negative inotropic effect exerted by human septic shock (HSS) serum and TPO cooperation with TNF-alpha and IL-1beta. Pre-treatment with the TPO inhibitor prevented the decrease in contractile force induced by HSS serum. Moreover, TPO significantly amplified the negative inotropic effect induced by TNF-alpha and IL-1beta in papillary muscle. In conclusion, TPO negatively modulates cardiac inotropy in vitro and contributes to the myocardial depressing activity of septic shock serum.

  4. Chronic activation of hypothalamic oxytocin neurons improves cardiac function during left ventricular hypertrophy-induced heart failure.

    Science.gov (United States)

    Garrott, Kara; Dyavanapalli, Jhansi; Cauley, Edmund; Dwyer, Mary Kate; Kuzmiak-Glancy, Sarah; Wang, Xin; Mendelowitz, David; Kay, Matthew W

    2017-09-01

    A distinctive hallmark of heart failure (HF) is autonomic imbalance, consisting of increased sympathetic activity, and decreased parasympathetic tone. Recent work suggests that activation of hypothalamic oxytocin (OXT) neurons could improve autonomic balance during HF. We hypothesized that a novel method of chronic selective activation of hypothalamic OXT neurons will improve cardiac function and reduce inflammation and fibrosis in a rat model of HF. Two groups of male Sprague-Dawley rats underwent trans-ascending aortic constriction (TAC) to induce left ventricular (LV) hypertrophy that progresses to HF. In one TAC group, OXT neurons in the paraventricular nucleus of the hypothalamus were chronically activated by selective expression and activation of excitatory DREADDs receptors with daily injections of clozapine N-oxide (CNO) (TAC + OXT). Two additional age-matched groups received either saline injections (Control) or CNO injections for excitatory DREADDs activation (OXT NORM). Heart rate (HR), LV developed pressure (LVDP), and coronary flow rate were measured in isolated heart experiments. Isoproterenol (0.01 nM-1.0 µM) was administered to evaluate β-adrenergic sensitivity. We found that increases in cellular hypertrophy and myocardial collagen density in TAC were blunted in TAC + OXT animals. Inflammatory cytokine IL-1β expression was more than twice higher in TAC than all other hearts. LVDP, rate pressure product (RPP), contractility, and relaxation were depressed in TAC compared with all other groups. The response of TAC and TAC + OXT hearts to isoproterenol was blunted, with no significant increase in RPP, contractility, or relaxation. However, HR in TAC + OXT animals increased to match Control at higher doses of isoproterenol. Activation of hypothalamic OXT neurons to elevate parasympathetic tone reduced cellular hypertrophy, levels of IL-1β, and fibrosis during TAC-induced HF in rats. Cardiac contractility parameters were

  5. Enzyme replacement therapy rescues weakness and improves muscle pathology in mice with X-linked myotubular myopathy.

    Science.gov (United States)

    Lawlor, Michael W; Armstrong, Dustin; Viola, Marissa G; Widrick, Jeffrey J; Meng, Hui; Grange, Robert W; Childers, Martin K; Hsu, Cynthia P; O'Callaghan, Michael; Pierson, Christopher R; Buj-Bello, Anna; Beggs, Alan H

    2013-04-15

    No effective treatment exists for patients with X-linked myotubular myopathy (XLMTM), a fatal congenital muscle disease caused by deficiency of the lipid phosphatase, myotubularin. The Mtm1δ4 and Mtm1 p.R69C mice model severely and moderately symptomatic XLMTM, respectively, due to differences in the degree of myotubularin deficiency. Contractile function of intact extensor digitorum longus (EDL) and soleus muscles from Mtm1δ4 mice, which produce no myotubularin, is markedly impaired. Contractile forces generated by chemically skinned single fiber preparations from Mtm1δ4 muscle were largely preserved, indicating that weakness was largely due to impaired excitation contraction coupling. Mtm1 p.R69C mice, which produce small amounts of myotubularin, showed impaired contractile function only in EDL muscles. Short-term replacement of myotubularin with a prototypical targeted protein replacement agent (3E10Fv-MTM1) in Mtm1δ4 mice improved contractile function and muscle pathology. These promising findings suggest that even low levels of myotubularin protein replacement can improve the muscle weakness and reverse the pathology that characterizes XLMTM.

  6. 17β-Estradiol-induced interaction of estrogen receptor α and human atrial essential myosin light chain modulates cardiac contractile function.

    Science.gov (United States)

    Duft, Karolin; Schanz, Miriam; Pham, Hang; Abdelwahab, Ahmed; Schriever, Cindy; Kararigas, Georgios; Dworatzek, Elke; Davidson, Mercy M; Regitz-Zagrosek, Vera; Morano, Ingo; Mahmoodzadeh, Shokoufeh

    2017-01-01

    Chronic increased workload of the human heart causes ventricular hypertrophy, re-expression of the atrial essential myosin light chain (hALC-1), and improved contractile function. Although hALC-1 is an important positive inotropic regulator of the human heart, little is known about its regulation. Therefore, we investigated the role of the sex hormone 17β-estradiol (E2) on hALC-1 gene expression, the underlying molecular mechanisms, and the impact of this regulatory process on cardiac contractile function. We showed that E2 attenuated hALC-1 expression in human atrial tissues of both sexes and in human ventricular AC16 cells. E2 induced the nuclear translocation of estrogen receptor alpha (ERα) and hALC-1 in AC16 cells, where they cooperatively regulate the transcriptional activity of hALC-1 gene promoter. E2-activated ERα required the estrogen response element (ERE) motif within the hALC-1 gene promoter to reduce its transcriptional activity (vehicle: 15.55 ± 4.80 vs. E2: 6.51 ± 3.69; ~2 fold). This inhibitory effect was potentiated in the presence of hALC-1 (vehicle: 11.13 ± 3.66 vs. E2: 2.18 ± 1.10; ~5 fold), and thus, hALC-1 acts as a co-repressor of ERα-mediated transcription. Yeast two-hybrid screening of a human heart cDNA library revealed that ERα interacts physically with hALC-1 in the presence of E2. This interaction was confirmed by Co-Immunoprecipitation and immunofluorescence in human atrium. As a further novel effect, we showed that chronic E2-treatment of adult mouse cardiomyocytes overexpressing hALC-1 resulted in reduced cell-shortening amplitude and twitching kinetics of these cells independent of Ca 2+ activation levels. Together, our data showed that the expression of hALC-1 gene is, at least partly, regulated by E2/ERα, while hALC-1 acts as a co-repressor. The inotropic effect of hALC-1 overexpression in cardiomyocytes can be significantly repressed by E2.

  7. Cardiac-Specific Overexpression of Catalase Attenuates Lipopolysaccharide-Induced Myocardial Contractile Dysfunction: Role of Autophagy

    Science.gov (United States)

    Turdi, Subat; Han, Xuefeng; Huff, Anna F.; Roe, Nathan D.; Hu, Nan; Gao, Feng; Ren, Jun

    2012-01-01

    Lipopolysaccharide (LPS) from Gram-negative bacteria is a major initiator of sepsis, leading to cardiovascular collapse. Accumulating evidence has indicated a role of reactive oxygen species (ROS) in cardiovascular complication in sepsis. This study was designed to examine the effect of cardiac-specific overexpression of catalase in LPS-induced cardiac contractile dysfunction and the underlying mechanism(s) with a focus on autophagy. Catalase transgenic and wild-type FVB mice were challenged with LPS (6 mg/kg) and cardiac function was evaluated. Levels of oxidative stress, autophagy, apoptosis and protein damage were examined using fluorescence microscopy, Western blot, TUNEL assay, caspase-3 activity and carbonyl formation. Kaplan-Meier curve was constructed for survival following LPS treatment. Our results revealed a lower mortality in catalase mice compared with FVB mice following LPS challenge. LPS injection led to depressed cardiac contractile capacity as evidenced by echocardiography and cardiomyocyte contractile function, the effect of which was ablated by catalase overexpression. LPS treatment induced elevated TNF-α level, autophagy, apoptosis (TUNEL, caspase-3 activation, cleaved caspase-3), production of ROS and O2−, and protein carbonyl formation, the effects of which were significantly attenuated by catalase overexpression. Electron microscopy revealed focal myocardial damage characterized by mitochondrial injury following LPS treatment, which was less severe in catalase mice. Interestingly, LPS-induced cardiomyocyte contractile dysfunction was prevented by antioxidant NAC and the autophagy inhibitor 3-methyladenine. Taken together, our data revealed that catalase protects against LPS-induced cardiac dysfunction and mortality, which may be associated with inhibition of oxidative stress and autophagy. PMID:22902401

  8. Towards a Tissue-Engineered Contractile Fontan-Conduit: The Fate of Cardiac Myocytes in the Subpulmonary Circulation.

    Directory of Open Access Journals (Sweden)

    Daniel Biermann

    Full Text Available The long-term outcome of patients with single ventricles improved over time, but remains poor compared to other congenital heart lesions with biventricular circulation. Main cause for this unfavourable outcome is the unphysiological hemodynamic of the Fontan circulation, such as subnormal systemic cardiac output and increased systemic-venous pressure. To overcome this limitation, we are developing the concept of a contractile extracardiac Fontan-tunnel. In this study, we evaluated the survival and structural development of a tissue-engineered conduit under in vivo conditions. Engineered heart tissue was generated from ventricular heart cells of neonatal Wistar rats, fibrinogen and thrombin. Engineered heart tissues started beating around day 8 in vitro and remained contractile in vivo throughout the experiment. After culture for 14 days constructs were implanted around the right superior vena cava of Wistar rats (n = 12. Animals were euthanized after 7, 14, 28 and 56 days postoperatively. Hematoxylin and eosin staining showed cardiomyocytes arranged in thick bundles within the engineered heart tissue-conduit. Immunostaining of sarcomeric actin, alpha-actin and connexin 43 revealed a well -developed cardiac myocyte structure. Magnetic resonance imaging (d14, n = 3 revealed no constriction or stenosis of the superior vena cava by the constructs. Engineered heart tissues survive and contract for extended periods after implantation around the superior vena cava of rats. Generation of larger constructs is warranted to evaluate functional benefits of a contractile Fontan-conduit.

  9. Dietary nitrate increases tetanic [Ca2+]i and contractile force in mouse fast-twitch muscle.

    Science.gov (United States)

    Hernández, Andrés; Schiffer, Tomas A; Ivarsson, Niklas; Cheng, Arthur J; Bruton, Joseph D; Lundberg, Jon O; Weitzberg, Eddie; Westerblad, Håkan

    2012-08-01

    Dietary inorganic nitrate has profound effects on health and physiological responses to exercise. Here, we examined if nitrate, in doses readily achievable via a normal diet, could improve Ca(2+) handling and contractile function using fast- and slow-twitch skeletal muscles from C57bl/6 male mice given 1 mm sodium nitrate in water for 7 days. Age matched controls were provided water without added nitrate. In fast-twitch muscle fibres dissected from nitrate treated mice, myoplasmic free [Ca(2+)] was significantly greater than in Control fibres at stimulation frequencies from 20 to 150 Hz, which resulted in a major increase in contractile force at ≤ 50 Hz. At 100 Hz stimulation, the rate of force development was ∼35% faster in the nitrate group. These changes in nitrate treated mice were accompanied by increased expression of the Ca(2+) handling proteins calsequestrin 1 and the dihydropyridine receptor. No changes in force or calsequestrin 1 and dihydropyridine receptor expression were measured in slow-twitch muscles. In conclusion, these results show a striking effect of nitrate supplementation on intracellular Ca(2+) handling in fast-twitch muscle resulting in increased force production. A new mechanism is revealed by which nitrate can exert effects on muscle function with applications to performance and a potential therapeutic role in conditions with muscle weakness.

  10. Moderate ethanol administration accentuates cardiomyocyte contractile dysfunction and mitochondrial injury in high fat diet-induced obesity.

    Science.gov (United States)

    Yuan, Fang; Lei, Yonghong; Wang, Qiurong; Esberg, Lucy B; Huang, Zaixing; Scott, Glenda I; Li, Xue; Ren, Jun

    2015-03-18

    Light to moderate drinking confers cardioprotection although it remains unclear with regards to the role of moderate drinking on cardiac function in obesity. This study was designed to examine the impact of moderate ethanol intake on myocardial function in high fat diet intake-induced obesity and the mechanism(s) involved with a focus on mitochondrial integrity. C57BL/6 mice were fed low or high fat diet for 16 weeks prior to ethanol challenge (1g/kg/d for 3 days). Cardiac contractile function, intracellular Ca(2+) homeostasis, myocardial histology, and mitochondrial integrity [aconitase activity and the mitochondrial proteins SOD1, UCP-2 and PPARγ coactivator 1α (PGC-1α)] were assessed 24h after the final ethanol challenge. Fat diet intake compromised cardiomyocyte contractile and intracellular Ca(2+) properties (depressed peak shortening and maximal velocities of shortening/relengthening, prolonged duration of relengthening, dampened intracellular Ca(2+) rise and clearance without affecting duration of shortening). Although moderate ethanol challenge failed to alter cardiomyocyte mechanical property under low fat diet intake, it accentuated high fat diet intake-induced changes in cardiomyocyte contractile function and intracellular Ca(2+) handling. Moderate ethanol challenge failed to affect fat diet intake-induced cardiac hypertrophy as evidenced by H&E staining. High fat diet intake reduced myocardial aconitase activity, downregulated levels of mitochondrial protein UCP-2, PGC-1α, SOD1 and interrupted intracellular Ca(2+) regulatory proteins, the effect of which was augmented by moderate ethanol challenge. Neither high fat diet intake nor moderate ethanol challenge affected protein or mRNA levels as well as phosphorylation of Akt and GSK3β in mouse hearts. Taken together, our data revealed that moderate ethanol challenge accentuated high fat diet-induced cardiac contractile and intracellular Ca(2+) anomalies as well as mitochondrial injury. Copyright

  11. Contractility-afterload mismatch in patients with protein-losing enteropathy after the Fontan operation.

    Science.gov (United States)

    Ozawa, Hideto; Ueno, Takayoshi; Iwai, Shigemitsu; Kawata, Hiroaki; Nishigaki, Kyouichi; Kishimoto, Hidefumi; Sawa, Yoshiki

    2014-10-01

    This study aimed to clarify the relationship between onset of protein-losing enteropathy (PLE) and Fontan circulation, with special reference to the development of contractility-afterload mismatch. The PLE group comprised 9 patients who experienced PLE after undergoing the Fontan operation, and the control group consisted of 32 patients had did not experienced PLE more than 10 years after the Fontan operation. The study compared the pre- and postoperative values of arterial elastance (Ea), end-systolic elastance (Ees), and contractility-afterload mismatch (Ea/Ees). Furthermore, the variations in the values were examined during the preoperative, postoperative, and midterm postoperative periods in seven PLE patients who underwent cardiac catheterization at the onset of PLE and during the pre- and postintervention periods in three PLE patients who underwent surgical intervention to improve the Fontan circulation after the onset of PLE. Comparison of the values obtained before and after Fontan operations showed that the Ea values increased significantly in the PLE group. However, the pre- and postoperative Ees values did not differ in the two groups. During the postoperative period, Ea/Ees increased significantly, and the Ea and Ea/Ees values increased continuously until the onset of PLE in the PLE group. In the patients who underwent surgical intervention to improve the Fontan circulation after the onset of PLE, the Ea/Ees decreased significantly, and the serum albumin levels improved after the intervention. Contractility-afterload mismatch, mainly caused by the increase in the afterload of the systemic ventricle, may have an important role in the development of PLE after the Fontan operation.

  12. Cardiac-specific overexpression of catalase attenuates lipopolysaccharide-induced myocardial contractile dysfunction: role of autophagy.

    Science.gov (United States)

    Turdi, Subat; Han, Xuefeng; Huff, Anna F; Roe, Nathan D; Hu, Nan; Gao, Feng; Ren, Jun

    2012-09-15

    Lipopolysaccharide (LPS) from gram-negative bacteria is a major initiator of sepsis, leading to cardiovascular collapse. Accumulating evidence has indicated a role of reactive oxygen species (ROS) in cardiovascular complications in sepsis. This study was designed to examine the effect of cardiac-specific overexpression of catalase in LPS-induced cardiac contractile dysfunction and the underlying mechanism(s) with a focus on autophagy. Catalase transgenic and wild-type FVB mice were challenged with LPS (6 mg/kg) and cardiac function was evaluated. Levels of oxidative stress, autophagy, apoptosis, and protein damage were examined using fluorescence microscopy, Western blot, TUNEL assay, caspase-3 activity, and carbonyl formation. A Kaplan-Meier curve was constructed for survival after LPS treatment. Our results revealed a lower mortality in catalase mice compared with FVB mice after LPS challenge. LPS injection led to depressed cardiac contractile capacity as evidenced by echocardiography and cardiomyocyte contractile function, the effect of which was ablated by catalase overexpression. LPS treatment induced elevated TNF-α level, autophagy, apoptosis (TUNEL, caspase-3 activation, cleaved caspase-3), production of ROS and O(2)(-), and protein carbonyl formation, the effects of which were significantly attenuated by catalase overexpression. Electron microscopy revealed focal myocardial damage characterized by mitochondrial injury after LPS treatment, which was less severe in catalase mice. Interestingly, LPS-induced cardiomyocyte contractile dysfunction was prevented by the antioxidant N-acetylcysteine and the autophagy inhibitor 3-methyladenine. Taken together, our data revealed that catalase protects against LPS-induced cardiac dysfunction and mortality, which may be associated with inhibition of oxidative stress and autophagy. Copyright © 2012 Elsevier Inc. All rights reserved.

  13. Galectin-3 and fibulin-1 in systolic heart failure - relation to glucose metabolism and left ventricular contractile reserve

    OpenAIRE

    Holmager, Pernille; Egstrup, Michael; Gustafsson, Ida; Schou, Morten; Dahl, Jordi S.; Rasmussen, Lars Melholt; M?ller, Jacob E.; Tuxen, Christian; Faber, Jens; Kistorp, Caroline

    2017-01-01

    Background: Heart failure (HF) patients with diabetes (DM) have an adverse prognosis and reduced functional capacity, which could be associated with cardiac fibrosis, increased chamber stiffness and reduced left ventricular (LV) contractile reserve. Galectin-3 (Gal-3) and fibulin-1 are circulating biomarkers potentially reflecting cardiac fibrosis. We hypothesize that plasma levels of Gal-3 and fibulin-1 are elevated in HF patients with DM and are associated with reduced LV contractile reserv...

  14. Insoluble elastin reduces collagen scaffold stiffness, improves viscoelastic properties, and induces a contractile phenotype in smooth muscle cells.

    Science.gov (United States)

    Ryan, Alan J; O'Brien, Fergal J

    2015-12-01

    Biomaterials with the capacity to innately guide cell behaviour while also displaying suitable mechanical properties remain a challenge in tissue engineering. Our approach to this has been to utilise insoluble elastin in combination with collagen as the basis of a biomimetic scaffold for cardiovascular tissue engineering. Elastin was found to markedly alter the mechanical and biological response of these collagen-based scaffolds. Specifically, during extensive mechanical assessment elastin was found to reduce the specific tensile and compressive moduli of the scaffolds in a concentration dependant manner while having minimal effect on scaffold microarchitecture with both scaffold porosity and pore size still within the ideal ranges for tissue engineering applications. However, the viscoelastic properties were significantly improved with elastin addition with a 3.5-fold decrease in induced creep strain, a 6-fold increase in cyclical strain recovery, and with a four-parameter viscoelastic model confirming the ability of elastin to confer resistance to long term deformation/creep. Furthermore, elastin was found to result in the modulation of SMC phenotype towards a contractile state which was determined via reduced proliferation and significantly enhanced expression of early (α-SMA), mid (calponin), and late stage (SM-MHC) contractile proteins. This allows the ability to utilise extracellular matrix proteins alone to modulate SMC phenotype without any exogenous factors added. Taken together, the ability of elastin to alter the mechanical and biological response of collagen scaffolds has led to the development of a biomimetic biomaterial highly suitable for cardiovascular tissue engineering. Copyright © 2015 Elsevier Ltd. All rights reserved.

  15. Effect of Propafenone on the Contractile Activity of Latissimus Dorsi Muscle Isolated in an Organ Chamber: Experimental Study in Rats

    Directory of Open Access Journals (Sweden)

    Ricardo Simões

    2002-03-01

    Full Text Available OBJECTIVE: To study the effect of propafenone on the contractile function of latissimus dorsi muscle isolated from rats in an organ chamber. METHODS: We studied 20 latissimus dorsi muscles of Wistar rats and divided them into 2 groups: group I (n=10, or control group - we studied the feasibility of muscle contractility; group II (n=10, in which the contralateral muscles were grouped - we analyzed the effect of propafenone on muscle contractility. After building a muscle ring, 8 periods of sequential 2-minute baths were performed, with intervals of preprogrammed electrical stimulation using a pacemaker of 50 stimuli/min. In group II, propafenone, at the concentration of 9.8 µg/mL, was added to the bath in period 2 and withdrawn in period 4. RESULTS: In group I, no significant depression in muscle contraction occurred up to period 5 (p>0.05. In group II, a significant depression occurred in all periods, except between the last 2 periods (p0.05. CONCLUSION: Propafenone had a depressing effect on the contractile function of latissimus dorsi muscle isolated from rats and studied in an organ chamber.

  16. Atomic Structure of Type VI Contractile Sheath from Pseudomonas aeruginosa.

    Science.gov (United States)

    Salih, Osman; He, Shaoda; Planamente, Sara; Stach, Lasse; MacDonald, James T; Manoli, Eleni; Scheres, Sjors H W; Filloux, Alain; Freemont, Paul S

    2018-02-06

    Pseudomonas aeruginosa has three type VI secretion systems (T6SSs), H1-, H2-, and H3-T6SS, each belonging to a distinct group. The two T6SS components, TssB/VipA and TssC/VipB, assemble to form tubules that conserve structural/functional homology with tail sheaths of contractile bacteriophages and pyocins. Here, we used cryoelectron microscopy to solve the structure of the H1-T6SS P. aeruginosa TssB1C1 sheath at 3.3 Å resolution. Our structure allowed us to resolve some features of the T6SS sheath that were not resolved in the Vibrio cholerae VipAB and Francisella tularensis IglAB structures. Comparison with sheath structures from other contractile machines, including T4 phage and R-type pyocins, provides a better understanding of how these systems have conserved similar functions/mechanisms despite evolution. We used the P. aeruginosa R2 pyocin as a structural template to build an atomic model of the TssB1C1 sheath in its extended conformation, allowing us to propose a coiled-spring-like mechanism for T6SS sheath contraction. Copyright © 2017 The Authors. Published by Elsevier Ltd.. All rights reserved.

  17. Enhancement of contractile force generation of artificial skeletal muscle tissues by mild and transient heat treatment.

    Science.gov (United States)

    Sato, Masanori; Ikeda, Kazushi; Kanno, Shota; Ito, Akira; Kawabe, Yoshinori; Kamihira, Masamichi

    2014-01-01

    Artificial skeletal muscle tissues composed of cells are expected to be used for applications of regenerative medicine and drug screening. Generally, however, the physical forces generated by tissue-engineered skeletal muscle are lower than those of skeletal muscle tissues found in the body. Local hyperthermia is used for many diseases including muscle injuries. It was recently reported that mild heat treatment improved skeletal muscle functions. In this study, we investigated the effects of mild heat treatment on the tissue-engineered skeletal muscle tissues in vitro. We used magnetite cationic liposomes to label C2C12 myoblast cells magnetically, and constructed densely packed artificial skeletal muscle tissues by using magnetic force. Cell culture at 39°C promoted the differentiation of myoblast cells into myotubes. Moreover, the mild and transient heat treatment improved the contractile properties of artificial skeletal muscle tissue constructs. These findings indicate that the culture method using heat treatment is a useful approach to enhance functions of artificial skeletal muscle tissue.

  18. Contractile responses to ergotamine and dihydroergotamine in the perfused middle cerebral artery of rat

    DEFF Research Database (Denmark)

    Tfelt-Hansen, Peer; Nilsson, Elisabeth; Edvinsson, Lars

    2007-01-01

    mmHg and luminally perfused. All vessels used attained spontaneous contractile tone (34.9+/-1.8% of resting tone) and responded to luminal adenosine triphosphate (ATP) with dilatation (24.1+/-4.0%), which showed functioning endothelium. Luminally added ergotamine or DHE induced maximal contractions...

  19. Considerations for Contractile Electroactive Materials and Actuators

    Energy Technology Data Exchange (ETDEWEB)

    Lenore Rasmussen, David Schramm, Paul Rasmussen, Kevin Mullaly, Ras Labs, LLC, Intelligent Materials for Prosthetics & Automation, Lewis D. Meixler, Daniel Pearlman and Alice Kirk

    2011-05-23

    Ras Labs produces contractile electroactive polymer (EAP) based materials and actuators that bend, swell, ripple, and contract (new development) with low electric input. In addition, Ras Labs produces EAP materials that quickly contract and expand, repeatedly, by reversing the polarity of the electric input, which can be cycled. This phenomenon was explored using molecular modeling, followed by experimentation. Applied voltage step functions were also investigated. High voltage steps followed by low voltage steps produced a larger contraction followed by a smaller contraction. Actuator control by simply adjusting the electric input is extremely useful for biomimetic applications. Muscles are able to partially contract. If muscles could only completely contract, nobody could hold an egg, for example, without breaking it. A combination of high and low voltage step functions could produce gross motor function and fine manipulation within the same actuator unit. Plasma treated electrodes with various geometries were investigated as a means of providing for more durable actuation.

  20. Predicting changes in cardiac myocyte contractility during early drug discovery with in vitro assays

    International Nuclear Information System (INIS)

    Morton, M.J.; Armstrong, D.; Abi Gerges, N.; Bridgland-Taylor, M.; Pollard, C.E.; Bowes, J.; Valentin, J.-P.

    2014-01-01

    Cardiovascular-related adverse drug effects are a major concern for the pharmaceutical industry. Activity of an investigational drug at the L-type calcium channel could manifest in a number of ways, including changes in cardiac contractility. The aim of this study was to define which of the two assay technologies – radioligand-binding or automated electrophysiology – was most predictive of contractility effects in an in vitro myocyte contractility assay. The activity of reference and proprietary compounds at the L-type calcium channel was measured by radioligand-binding assays, conventional patch-clamp, automated electrophysiology, and by measurement of contractility in canine isolated cardiac myocytes. Activity in the radioligand-binding assay at the L-type Ca channel phenylalkylamine binding site was most predictive of an inotropic effect in the canine cardiac myocyte assay. The sensitivity was 73%, specificity 83% and predictivity 78%. The radioligand-binding assay may be run at a single test concentration and potency estimated. The least predictive assay was automated electrophysiology which showed a significant bias when compared with other assay formats. Given the importance of the L-type calcium channel, not just in cardiac function, but also in other organ systems, a screening strategy emerges whereby single concentration ligand-binding can be performed early in the discovery process with sufficient predictivity, throughput and turnaround time to influence chemical design and address a significant safety-related liability, at relatively low cost. - Highlights: • The L-type calcium channel is a significant safety liability during drug discovery. • Radioligand-binding to the L-type calcium channel can be measured in vitro. • The assay can be run at a single test concentration as part of a screening cascade. • This measurement is highly predictive of changes in cardiac myocyte contractility

  1. Predicting changes in cardiac myocyte contractility during early drug discovery with in vitro assays

    Energy Technology Data Exchange (ETDEWEB)

    Morton, M.J., E-mail: michael.morton@astrazeneca.com [Discovery Sciences, AstraZeneca, Macclesfield, Cheshire SK10 4TG (United Kingdom); Armstrong, D.; Abi Gerges, N. [Drug Safety and Metabolism, AstraZeneca, Macclesfield, Cheshire SK10 4TG (United Kingdom); Bridgland-Taylor, M. [Discovery Sciences, AstraZeneca, Macclesfield, Cheshire SK10 4TG (United Kingdom); Pollard, C.E.; Bowes, J.; Valentin, J.-P. [Drug Safety and Metabolism, AstraZeneca, Macclesfield, Cheshire SK10 4TG (United Kingdom)

    2014-09-01

    Cardiovascular-related adverse drug effects are a major concern for the pharmaceutical industry. Activity of an investigational drug at the L-type calcium channel could manifest in a number of ways, including changes in cardiac contractility. The aim of this study was to define which of the two assay technologies – radioligand-binding or automated electrophysiology – was most predictive of contractility effects in an in vitro myocyte contractility assay. The activity of reference and proprietary compounds at the L-type calcium channel was measured by radioligand-binding assays, conventional patch-clamp, automated electrophysiology, and by measurement of contractility in canine isolated cardiac myocytes. Activity in the radioligand-binding assay at the L-type Ca channel phenylalkylamine binding site was most predictive of an inotropic effect in the canine cardiac myocyte assay. The sensitivity was 73%, specificity 83% and predictivity 78%. The radioligand-binding assay may be run at a single test concentration and potency estimated. The least predictive assay was automated electrophysiology which showed a significant bias when compared with other assay formats. Given the importance of the L-type calcium channel, not just in cardiac function, but also in other organ systems, a screening strategy emerges whereby single concentration ligand-binding can be performed early in the discovery process with sufficient predictivity, throughput and turnaround time to influence chemical design and address a significant safety-related liability, at relatively low cost. - Highlights: • The L-type calcium channel is a significant safety liability during drug discovery. • Radioligand-binding to the L-type calcium channel can be measured in vitro. • The assay can be run at a single test concentration as part of a screening cascade. • This measurement is highly predictive of changes in cardiac myocyte contractility.

  2. Blood pressure and the contractility of a human leg muscle.

    Science.gov (United States)

    Luu, Billy L; Fitzpatrick, Richard C

    2013-11-01

    These studies investigate the relationships between perfusion pressure, force output and pressor responses for the contracting human tibialis anterior muscle. Eight healthy adults were studied. Changing the height of tibialis anterior relative to the heart was used to control local perfusion pressure. Electrically stimulated tetanic force output was highly sensitive to physiological variations in perfusion pressure showing a proportionate change in force output of 6.5% per 10 mmHg. This perfusion-dependent change in contractility begins within seconds and is reversible with a 53 s time constant, demonstrating a steady-state equilibrium between contractility and perfusion pressure. These stimulated contractions did not produce significant cardiovascular responses, indicating that the muscle pressor response does not play a major role in cardiovascular regulation at these workloads. Voluntary contractions at forces that would require constant motor drive if perfusion pressure had remained constant generated a central pressor response when perfusion pressure was lowered. This is consistent with a larger cortical drive being required to compensate for the lost contractility with lower perfusion pressure. The relationship between contractility and perfusion for this large postural muscle was not different from that of a small hand muscle (adductor pollicis) and it responded similarly to passive peripheral and active central changes in arterial pressure, but extended over a wider operating range of pressures. If we consider that, in a goal-oriented motor task, muscle contractility determines central motor output and the central pressor response, these results indicate that muscle would fatigue twice as fast without a pressor response. From its extent, timing and reversibility we propose a testable hypothesis that this change in contractility arises through contraction- and perfusion-dependent changes in interstitial K(+) concentration.

  3. A thermodynamical model for stress-fiber organization in contractile cells

    OpenAIRE

    Foucard, Louis; Vernerey, Franck J.

    2012-01-01

    Cell mechanical adaptivity to external stimuli is vital to many of its biological functions. A critical question is therefore to understand the formation and organization of the stress fibers from which emerge the cell’s mechanical properties. By accounting for the mechanical aspects and the viscoelastic behavior of stress fibers, we here propose a thermodynamic model to predict the formation and orientation of stress fibers in contractile cells subjected to constant or cyclic stretch and dif...

  4. Structure of the Elastin-Contractile Units in the Thoracic Aorta and How Genes That Cause Thoracic Aortic Aneurysms and Dissections Disrupt This Structure.

    Science.gov (United States)

    Karimi, Ashkan; Milewicz, Dianna M

    2016-01-01

    The medial layer of the aorta confers elasticity and strength to the aortic wall and is composed of alternating layers of smooth muscle cells (SMCs) and elastic fibres. The SMC elastin-contractile unit is a structural unit that links the elastin fibres to the SMCs and is characterized by the following: (1) layers of elastin fibres that are surrounded by microfibrils; (2) microfibrils that bind to the integrin receptors in focal adhesions on the cell surface of the SMCs; and (3) SMC contractile filaments that are linked to the focal adhesions on the inner side of the membrane. The genes that are altered to cause thoracic aortic aneurysms and aortic dissections encode proteins involved in the structure or function of the SMC elastin-contractile unit. Included in this gene list are the genes encoding protein that are structural components of elastin fibres and microfibrils, FBN1, MFAP5, ELN, and FBLN4. Also included are genes that encode structural proteins in the SMC contractile unit, including ACTA2, which encodes SMC-specific α-actin and MYH11, which encodes SMC-specific myosin heavy chain, along with MYLK and PRKG1, which encode kinases that control SMC contraction. Finally, mutations in the gene encoding the protein linking integrin receptors to the contractile filaments, FLNA, also predispose to thoracic aortic disease. Thus, these data suggest that functional SMC elastin-contractile units are important for maintaining the structural integrity of the aorta. Copyright © 2016 Canadian Cardiovascular Society. Published by Elsevier Inc. All rights reserved.

  5. Comparison of contractile and extensile pneumatic artificial muscles

    Science.gov (United States)

    Pillsbury, Thomas E.; Wereley, Norman M.; Guan, Qinghua

    2017-09-01

    Pneumatic artificial muscles (PAMs) are used in robotic and prosthetic applications due to their high power to weight ratio, controllable compliance, and simple design. Contractile PAMs are typically used in traditional hard robotics in place of heavy electric motors. As the field of soft robotics grows, extensile PAMs are beginning to have increased usage. This work experimentally tests, models, and compares contractile and extensile PAMs to demonstrate the advantages and disadvantages of each type of PAM and applications for which they are best suited.

  6. [Contractile function of the heart and myocardium antioxidant system in rats of August and Wistar strains during ischemia and reperfusion].

    Science.gov (United States)

    Sazontova, T G; Belkina, L M; Zhukova, A G; Kirillina, T N; Arkhipenko, Iu V

    2004-01-01

    In August rats, local myocardial ischemia caused by 30-min occlusion of the coronary artery induced a slight depression of the contractile function of the heart; the latter was restored after 15-min reperfusion more rapidly than in Wistar rats. In August rats, the activities of antioxidant protection enzymes were lower than in Wistar rats. In comparison with Wistar rats, these enzyme activities were decreased in a lesser degree under ischemia and were restored in a greater degree under reperfusion. It may thus be concluded that the higher stability of antiradical protection parameters in August rats is one of the mechanisms responsible for the enhanced resistance of the heart to ischemia- and reperfusion-induced injuries.

  7. Stalk-length-dependence of the contractility of Vorticella convallaria

    Science.gov (United States)

    Gul Chung, Eun; Ryu, Sangjin

    2017-12-01

    Vorticella convallaria is a sessile protozoan of which the spasmoneme contracts on a millisecond timescale. Because this contraction is induced and powered by the binding of calcium ions (Ca2+), the spasmoneme showcases Ca2+-powered cellular motility. Because the isometric tension of V. convallaria increases linearly with its stalk length, it is hypothesized that the contractility of V. convallaria during unhindered contraction depends on the stalk length. In this study, the contractile force and energetics of V. convallaria cells of different stalk lengths were evaluated using a fluid dynamic drag model which accounts for the unsteadiness and finite Reynolds number of the water flow caused by contracting V. convallaria and the wall effect of the no-slip substrate. It was found that the contraction displacement, peak contraction speed, peak contractile force, total mechanical work, and peak power depended on the stalk length. The observed stalk-length-dependencies were simulated using a damped spring model, and the model estimated that the average spring constant of the contracting stalk was 1.34 nN µm-1. These observed length-dependencies of Vorticella’s key contractility parameters reflect the biophysical mechanism of the spasmonemal contraction, and thus they should be considered in developing a theoretical model of the Vorticella spasmoneme.

  8. Inhibition of isolated human myometrium contractility by minoxidil and reversal by glibenclamide.

    Science.gov (United States)

    Prabhakaran, S S; Dhanasekar, K R; Thomas, E; Jose, R; Peedicayil, J; Samuel, P

    2010-03-01

    This study investigated the ability of the antihypertensive drug minoxidil to inhibit potassium chloride (KCl)-induced contractility of the isolated human myometrium. Twelve strips of myometrium obtained from 12 patients who underwent hysterectomy were triggered to contract with 55 mM KCl before and after incubation with 3 concentrations (1, 3 and 10 microM) of minoxidil. The percent inhibition by minoxidil on the extent of contraction, and the area under the contractile curve of KCl-induced contraction of the myometrial strips was determined. Furthermore, the effect of 10 microM glibenclamide on the inhibition generated by 3 microM minoxidil on KCl-induced contractility was studied. It was found that minoxidil produced a concentration-dependent inhibition of KCl-induced contractility of the myometrium and that glibenclamide reversed this inhibitory effect. These results suggest that the inhibitory effect of minoxidil on isolated human myometrium contractility may prove useful in clinical conditions requiring relaxation of the myometrium. 2010 Prous Science, S.A.U. or its licensors. All rights reserved.

  9. Pentamidine rescues contractility and rhythmicity in a Drosophila model of myotonic dystrophy heart dysfunction

    Directory of Open Access Journals (Sweden)

    Mouli Chakraborty

    2015-12-01

    Full Text Available Up to 80% of individuals with myotonic dystrophy type 1 (DM1 will develop cardiac abnormalities at some point during the progression of their disease, the most common of which is heart blockage of varying degrees. Such blockage is characterized by conduction defects and supraventricular and ventricular tachycardia, and carries a high risk of sudden cardiac death. Despite its importance, very few animal model studies have focused on the heart dysfunction in DM1. Here, we describe the characterization of the heart phenotype in a Drosophila model expressing pure expanded CUG repeats under the control of the cardiomyocyte-specific driver GMH5-Gal4. Morphologically, expression of 250 CUG repeats caused abnormalities in the parallel alignment of the spiral myofibrils in dissected fly hearts, as revealed by phalloidin staining. Moreover, combined immunofluorescence and in situ hybridization of Muscleblind and CUG repeats, respectively, confirmed detectable ribonuclear foci and Muscleblind sequestration, characteristic features of DM1, exclusively in flies expressing the expanded CTG repeats. Similarly to what has been reported in humans with DM1, heart-specific expression of toxic RNA resulted in reduced survival, increased arrhythmia, altered diastolic and systolic function, reduced heart tube diameters and reduced contractility in the model flies. As a proof of concept that the fly heart model can be used for in vivo testing of promising therapeutic compounds, we fed flies with pentamidine, a compound previously described to improve DM1 phenotypes. Pentamidine not only released Muscleblind from the CUG RNA repeats and reduced ribonuclear formation in the Drosophila heart, but also rescued heart arrhythmicity and contractility, and improved fly survival in animals expressing 250 CUG repeats.

  10. [A basis for application of cardiac contractility variability in the Evaluation and assessment of exercise and fitness].

    Science.gov (United States)

    Bu, Bin; Wang, Aihua; Han, Haijun; Xiao, Shouzhong

    2010-06-01

    Cardiac contractility variability (CCV) is a new concept which is introduced in the research field of cardiac contractility in recent years, that is to say, there are some disparities between cardiac contractilities when heart contracts. The changing signals of cardiac contractility contain a plenty of information on the cardiovascular function and disorder. In order to collect and analyze the message, we could quantitatively evaluate the tonicity and equilibrium of cardiac sympathetic nerve and parasympathetic nerve, and the effects of bio-molecular mechanism on the cardiovascular activities. By analyzing CCV, we could further understand the background of human being's heritage characteristics, nerve types, the adjusting mechanism, the molecular biology, and the adjustment of cardiac automatic nerve. With the development of the computing techniques, the digital signal processing method and its application in medical field, this analysis has been progressing greatly. By now, the assessment of CCV, just like the analysis of heart rate variability, is mainly via time domain and frequency domain analysis. CCV is one of the latest research fields in human cardiac signals being scarcely reported in the field of sports medicine; however, its research progresses are of important value for cardiac physiology and pathology in sports medicine and rehabilitation medicine.

  11. Isolation and maintenance-free culture of contractile myotubes from Manduca sexta embryos.

    Directory of Open Access Journals (Sweden)

    Amanda L Baryshyan

    Full Text Available Skeletal muscle tissue engineering has the potential to treat tissue loss and degenerative diseases. However, these systems are also applicable for a variety of devices where actuation is needed, such as microelectromechanical systems (MEMS and robotics. Most current efforts to generate muscle bioactuators are focused on using mammalian cells, which require exacting conditions for survival and function. In contrast, invertebrate cells are more environmentally robust, metabolically adaptable and relatively autonomous. Our hypothesis is that the use of invertebrate muscle cells will obviate many of the limitations encountered when mammalian cells are used for bioactuation. We focus on the tobacco hornworm, Manduca sexta, due to its easy availability, large size and well-characterized muscle contractile properties. Using isolated embryonic cells, we have developed culture conditions to grow and characterize contractile M. sexta muscles. The insect hormone 20-hydroxyecdysone was used to induce differentiation in the system, resulting in cells that stained positive for myosin, contract spontaneously for the duration of the culture, and do not require media changes over periods of more than a month. These cells proliferate under normal conditions, but the application of juvenile hormone induced further proliferation and inhibited differentiation. Cellular metabolism under normal and low glucose conditions was compared for C2C12 mouse and M. sexta myoblast cells. While differentiated C2C12 cells consumed glucose and produced lactate over one week as expected, M. sexta muscle did not consume significant glucose, and lactate production exceeded mammalian muscle production on a per cell basis. Contractile properties were evaluated using index of movement analysis, which demonstrated the potential of these cells to perform mechanical work. The ability of cultured M. sexta muscle to continuously function at ambient conditions without medium replenishment

  12. Automated Video-Based Analysis of Contractility and Calcium Flux in Human-Induced Pluripotent Stem Cell-Derived Cardiomyocytes Cultured over Different Spatial Scales.

    Science.gov (United States)

    Huebsch, Nathaniel; Loskill, Peter; Mandegar, Mohammad A; Marks, Natalie C; Sheehan, Alice S; Ma, Zhen; Mathur, Anurag; Nguyen, Trieu N; Yoo, Jennie C; Judge, Luke M; Spencer, C Ian; Chukka, Anand C; Russell, Caitlin R; So, Po-Lin; Conklin, Bruce R; Healy, Kevin E

    2015-05-01

    Contractile motion is the simplest metric of cardiomyocyte health in vitro, but unbiased quantification is challenging. We describe a rapid automated method, requiring only standard video microscopy, to analyze the contractility of human-induced pluripotent stem cell-derived cardiomyocytes (iPS-CM). New algorithms for generating and filtering motion vectors combined with a newly developed isogenic iPSC line harboring genetically encoded calcium indicator, GCaMP6f, allow simultaneous user-independent measurement and analysis of the coupling between calcium flux and contractility. The relative performance of these algorithms, in terms of improving signal to noise, was tested. Applying these algorithms allowed analysis of contractility in iPS-CM cultured over multiple spatial scales from single cells to three-dimensional constructs. This open source software was validated with analysis of isoproterenol response in these cells, and can be applied in future studies comparing the drug responsiveness of iPS-CM cultured in different microenvironments in the context of tissue engineering.

  13. Permanent Distal Occlusion of Middle Cerebral Artery in Rat Causes Local Increased ETB, 5-HT1B and AT1 Receptor-Mediated Contractility Downstream of Occlusion

    DEFF Research Database (Denmark)

    Rasmussen, Marianne N P; Hornbak, Malene; Larsen, Stine S

    2013-01-01

    Background/Aims: In response to experimental stroke, a characteristic functional and expressional upregulation of contractile G-protein-coupled receptors has been uncovered in the affected cerebral vasculature; however, the mechanism initiating this phenomenon remains unknown. Methods: Using...... a model of permanent distal occlusion of rat middle cerebral arteries, we investigated whether there was a regional difference in receptor-mediated contractility of segments located upstream and downstream of the occlusion site. The contractile response to endothelin, angiotensin and 5-hydroxytryptamine...... receptor stimulation was studied by sensitive wire myograph. Results: Only downstream segments exhibited an augmented contractile response to stimulation with each of the three ligands, with the response towards sarafotoxin 6c being especially augmented compared to sham, upstream and contralateral controls...

  14. Calcium-responsive contractility during fertilization in sea urchin eggs.

    Science.gov (United States)

    Stack, Christianna; Lucero, Amy J; Shuster, Charles B

    2006-04-01

    Fertilization triggers a reorganization of oocyte cytoskeleton, and in sea urchins, there is a dramatic increase in cortical F-actin. However, the role that myosin II plays during fertilization remains largely unexplored. Myosin II is localized to the cortical cytoskeleton both before and after fertilization and to examine myosin II contractility in living cells, Lytechinus pictus eggs were observed by time-lapse microscopy. Upon sperm binding, a cell surface deflection traversed the egg that was followed by and dependent on the calcium wave. The calcium-dependence of surface contractility could be reproduced in unfertilized eggs, where mobilization of intracellular calcium in unfertilized eggs under compression resulted in a marked contractile response. Lastly, inhibition of myosin II delayed absorption of the fertilization cone, suggesting that myosin II not only responds to the same signals that activate eggs but also participates in the remodeling of the cortical actomyosin cytoskeleton during the first zygotic cell cycle. (c) 2006 Wiley-Liss, Inc.

  15. 17 alpha-hydroxyprogesterone caproate vehicle, castor oil, enhances the contractile effect of oxytocin in human myometrium in pregnancy.

    Science.gov (United States)

    O'Sullivan, Michael D; Hehir, Mark P; O'Brien, Yvonne M; Morrison, John J

    2010-05-01

    The possibility exists that the vehicle for 17-alpha-hydroxyprogesterone caproate, castor oil, exerts an effect on human uterine contractility. The aim of this study was to evaluate its effects on contractility of myometrial preparations that were obtained during pregnancy. Myometrial strips were suspended under isometric conditions. Contractility was induced with oxytocin. Strips were incubated in castor oil or physiologic salt solution and suspended for a further oxytocin challenge. Contractile integrals were compared between both groups. Strips that were exposed to castor oil demonstrated increased contractile activity that was elicited by oxytocin (mean contractility value, 165.53%+/-17.03%; n=8; P=.004), compared with control strips (mean contractility value, 72.57%+/-7.48%; n=8; P=.003). There was a significant increase in contractile activity of the castor oil-exposed strips, compared with those that were exposed to physiologic salt solution (n=8; Pcastor oil results in enhanced oxytocin-induced contractility. Copyright (c) 2010 Mosby, Inc. All rights reserved.

  16. PTP1B triggers integrin-mediated repression of myosin activity and modulates cell contractility

    Directory of Open Access Journals (Sweden)

    Ana E. González Wusener

    2016-01-01

    Full Text Available Cell contractility and migration by integrins depends on precise regulation of protein tyrosine kinase and Rho-family GTPase activities in specific spatiotemporal patterns. Here we show that protein tyrosine phosphatase PTP1B cooperates with β3 integrin to activate the Src/FAK signalling pathway which represses RhoA-myosin-dependent contractility. Using PTP1B null (KO cells and PTP1B reconstituted (WT cells, we determined that some early steps following cell adhesion to fibronectin and vitronectin occurred robustly in WT cells, including aggregation of β3 integrins and adaptor proteins, and activation of Src/FAK-dependent signalling at small puncta in a lamellipodium. However, these events were significantly impaired in KO cells. We established that cytoskeletal strain and cell contractility was highly enhanced at the periphery of KO cells compared to WT cells. Inhibition of the Src/FAK signalling pathway or expression of constitutive active RhoA in WT cells induced a KO cell phenotype. Conversely, expression of constitutive active Src or myosin inhibition in KO cells restored the WT phenotype. We propose that this novel function of PTP1B stimulates permissive conditions for adhesion and lamellipodium assembly at the protruding edge during cell spreading and migration.

  17. PTP1B triggers integrin-mediated repression of myosin activity and modulates cell contractility

    Science.gov (United States)

    González Wusener, Ana E.; González, Ángela; Nakamura, Fumihiko; Arregui, Carlos O.

    2016-01-01

    ABSTRACT Cell contractility and migration by integrins depends on precise regulation of protein tyrosine kinase and Rho-family GTPase activities in specific spatiotemporal patterns. Here we show that protein tyrosine phosphatase PTP1B cooperates with β3 integrin to activate the Src/FAK signalling pathway which represses RhoA-myosin-dependent contractility. Using PTP1B null (KO) cells and PTP1B reconstituted (WT) cells, we determined that some early steps following cell adhesion to fibronectin and vitronectin occurred robustly in WT cells, including aggregation of β3 integrins and adaptor proteins, and activation of Src/FAK-dependent signalling at small puncta in a lamellipodium. However, these events were significantly impaired in KO cells. We established that cytoskeletal strain and cell contractility was highly enhanced at the periphery of KO cells compared to WT cells. Inhibition of the Src/FAK signalling pathway or expression of constitutive active RhoA in WT cells induced a KO cell phenotype. Conversely, expression of constitutive active Src or myosin inhibition in KO cells restored the WT phenotype. We propose that this novel function of PTP1B stimulates permissive conditions for adhesion and lamellipodium assembly at the protruding edge during cell spreading and migration. PMID:26700725

  18. [Improvement and the mechanism of cardiac function by knockdown of ADAM10 in adriamycin-induced cardiomyopathy rats].

    Science.gov (United States)

    Li, Xiaoou; Xie, Lili; He, Bing; Huang, Wei

    2018-01-01

    Objective To study the role of a disintegrin and metalloproteinase10 (ADAM10) in shedding neural cadherin (N-cadherin) and develop an approach to interfere the process of ventricular remodeling in adriamycin-induced cardiomyopathy (ACM) rats. Methods In a rat model of ACM, the effects of intraperitoneal injection of the lentiviral RNAi vector of ADAM10 on the morphology of cardiomyocytes and contractile function were observed by HE staining and color Doppler echocardiography. The expressions of N-cadherin and C-terminal fragment 1 (CTF1) were detected by Western blotting and immunohistochemistry. Results In the in vivo experiment, a large amount of fluorescence was seen in the isolated primary cardiomyocytes, which indicated that the transfection in the rat model was successful. In the treatment group, the morphology of cardiomyocytes and function of the heart were evidently improved, N-cadherin protein expression was remarkably up-regulated and CTF1 protein was obviously down-regulated compared with the model group. Conclusion Knock-down of ADAM10 increases N-cadherin expression and decreases CTF1 expression, thus improves cardiac function in the rat model of ACM.

  19. [The cardioprotective action of the anticonvulsant preparation sodium valproate in disorders of cardiac contractile function caused by acute myocardial infarct in rats].

    Science.gov (United States)

    Belkina, L M; Korchazhkina, N B; Kamskova, Iu G; Fomin, N A

    1997-01-01

    The preventive and therapeutical effects of sodium valproate (SV), 200 mg/kg, on cardiac contractile disorders (developed pressure, rate-pressure products, dp/dt) were studied in rats having 2-day myocardial infarction (MI). The postinfarction rather than preinfarction use of SV substantially restricted the depressed resting left ventricular function. Given by two regimens, SV increased cardiac resistance to the maximum isometric load induced by 60-sec ligation of the ascending aorta. The cardioprotective effect of the drug was shown due to its positive chronotropic action rather than its inotropic one. Thus, SV may be used as an effective drug for the prevention and treatment of postinfarct cardiac dysfunctions.

  20. Contractility of the guinea pig bladder measured in situ and in vitro

    NARCIS (Netherlands)

    J.M. Groen (Jan); R. van Mastrigt (Ron); J.L.H.R. Bosch (Ruud)

    1994-01-01

    textabstractTo study the relative importance of neurogenic factors in detrusor contractility and to relate a total bladder in vitro contractility model to a previously described bladder wall strip model, active intravesical pressure values were compared in situ and in vitro in eight male guinea

  1. The role of apical contractility in determining cell morphology in multilayered epithelial sheets and tubes

    Science.gov (United States)

    Zhen Tan, Rui; Lai, Tanny; Chiam, K.-H.

    2017-08-01

    A multilayered epithelium is made up of individual cells that are stratified in an orderly fashion, layer by layer. In such tissues, individual cells can adopt a wide range of shapes ranging from columnar to squamous. From histological images, we observe that, in flat epithelia such as the skin, the cells in the top layer are squamous while those in the middle and bottom layers are columnar, whereas in tubular epithelia, the cells in all layers are columnar. We develop a computational model to understand how individual cell shape is governed by the mechanical forces within multilayered flat and curved epithelia. We derive the energy function for an epithelial sheet of cells considering intercellular adhesive and intracellular contractile forces. We determine computationally the cell morphologies that minimize the energy function for a wide range of cellular parameters. Depending on the dominant adhesive and contractile forces, we find four dominant cell morphologies for the multilayered-layered flat sheet and three dominant cell morphologies for the two-layered curved sheet. We study the transitions between the dominant cell morphologies for the two-layered flat sheet and find both continuous and discontinuous transitions and also the presence of multistable states. Matching our computational results with histological images, we conclude that apical contractile forces from the actomyosin belt in the epithelial cells is the dominant force determining cell shape in multilayered epithelia. Our computational model can guide tissue engineers in designing artificial multilayered epithelia, in terms of figuring out the cellular parameters needed to achieve realistic epithelial morphologies.

  2. A stepwise procedure to test contractility and susceptibility to injury for the rodent quadriceps muscle

    Directory of Open Access Journals (Sweden)

    Stephen J.P. Pratt

    2014-07-01

    Full Text Available In patients with muscle injury or muscle disease, assessment of muscle damage is typically limited to clinical signs, such as tenderness, strength, range of motion, and more recently, imaging studies.  Biological markers can also be used in measuring muscle injury, such as increased creatine kinase levels in the blood, but these are not always correlated with loss in muscle function (i.e. loss of force production.  This is even true of histological findings from animals, which provide a “direct measure” of damage, but do not account for loss of function.  The most comprehensive measure of the overall health of the muscle is contractile force.  To date, animal models testing contractile force have been limited to the muscle groups moving the ankle.  Here we describe an in vivo animal model for the quadriceps, with abilities to measure torque, produce a reliable muscle injury, and follow muscle recovery within the same animal over time.  We also describe a second model used for direct measurement of force from an isolated quadriceps muscle in situ. 

  3. Thick filament length and isoform composition determine self-organized contractile units in actomyosin bundles.

    Science.gov (United States)

    Thoresen, Todd; Lenz, Martin; Gardel, Margaret L

    2013-02-05

    Diverse myosin II isoforms regulate contractility of actomyosin bundles in disparate physiological processes by variations in both motor mechanochemistry and the extent to which motors are clustered into thick filaments. Although the role of mechanochemistry is well appreciated, the extent to which thick filament length regulates actomyosin contractility is unknown. Here, we study the contractility of minimal actomyosin bundles formed in vitro by mixtures of F-actin and thick filaments of nonmuscle, smooth, and skeletal muscle myosin isoforms with varied length. Diverse myosin II isoforms guide the self-organization of distinct contractile units within in vitro bundles with shortening rates similar to those of in vivo myofibrils and stress fibers. The tendency to form contractile units increases with the thick filament length, resulting in a bundle shortening rate proportional to the length of constituent myosin thick filament. We develop a model that describes our data, providing a framework in which to understand how diverse myosin II isoforms regulate the contractile behaviors of disordered actomyosin bundles found in muscle and nonmuscle cells. These experiments provide insight into physiological processes that use dynamic regulation of thick filament length, such as smooth muscle contraction. Copyright © 2013 Biophysical Society. Published by Elsevier Inc. All rights reserved.

  4. A comparative study of contractility of the heart ventricle in some ectothermic vertebrates

    Directory of Open Access Journals (Sweden)

    Sergey Kharin

    2009-07-01

    Full Text Available The purpose of this study was to analyze contractility of the heart ventricle in selected reptilian and amphibian species having the same ventricular excitation pattern. Systolic time intervals and indices of contractility of the heart ventricle were measured in anaesthetized frogs, snakes, and tortoises by use of polycardiography. The electromechanical delay was significantly shorter in tortoises compared with the other two species. The isovolumetric contraction time in frogs was approximately twofold longer than in reptiles. The pre-ejection period was the longest in frogs and the shortest in tortoises, whereas snakes were intermediate. The ejection time was slightly longer in tortoises compared with the other two species. The greatest isovolumetric contraction index and the smallest myocardial tension index corresponded to the frog and tortoise heart ventricle, respectively. The intrasystolic index in tortoises was significantly greater than in frogs, whereas quite similar to that in snakes. The frog ventricle had lower contractility compared with the reptilian one. Although ventricular contractility tended to be lower in snakes compared with tortoises, this difference was not statistically significant. Possible causes for these differences are discussed. We suppose a large variety in ventricular contractility among amphibian and reptilian species having the same ventricular activation pattern. This variety may be conditioned by heart anatomy, intracardiac shunting, lifestyles, and habitats. It can only be hypothesized that on the average, ventricular contractility is higher in reptiles compared with amphibians and in chelonians compared with snakes.

  5. Matrix elasticity regulates the optimal cardiac myocyte shape for contractility

    Science.gov (United States)

    McCain, Megan L.; Yuan, Hongyan; Pasqualini, Francesco S.; Campbell, Patrick H.

    2014-01-01

    Concentric hypertrophy is characterized by ventricular wall thickening, fibrosis, and decreased myocyte length-to-width aspect ratio. Ventricular thickening is considered compensatory because it reduces wall stress, but the functional consequences of cell shape remodeling in this pathological setting are unknown. We hypothesized that decreases in myocyte aspect ratio allow myocytes to maximize contractility when the extracellular matrix becomes stiffer due to conditions such as fibrosis. To test this, we engineered neonatal rat ventricular myocytes into rectangles mimicking the 2-D profiles of healthy and hypertrophied myocytes on hydrogels with moderate (13 kPa) and high (90 kPa) elastic moduli. Actin alignment was unaffected by matrix elasticity, but sarcomere content was typically higher on stiff gels. Microtubule polymerization was higher on stiff gels, implying increased intracellular elastic modulus. On moderate gels, myocytes with moderate aspect ratios (∼7:1) generated the most peak systolic work compared with other cell shapes. However, on stiffer gels, low aspect ratios (∼2:1) generated the most peak systolic work. To compare the relative contributions of intracellular vs. extracellular elasticity to contractility, we developed an analytical model and used our experimental data to fit unknown parameters. Our model predicted that matrix elasticity dominates over intracellular elasticity, suggesting that the extracellular matrix may potentially be a more effective therapeutic target than microtubules. Our data and model suggest that myocytes with lower aspect ratios have a functional advantage when the elasticity of the extracellular matrix decreases due to conditions such as fibrosis, highlighting the role of the extracellular matrix in cardiac disease. PMID:24682394

  6. Effect of lead on cholinergic contractile function in the forestomach, ileum and colon of the male Wistar rat

    International Nuclear Information System (INIS)

    Ryden, E.B.

    1986-01-01

    Gastrointestinal symptoms, including colic, are signs of lead poisoning in man, but the mechanism of these effects has not been elucidated. In order to understand the effects of lead on acetylcholine (ACh)-mediated responses, studies were undertaken to determine the isometric contractile response to methacholine, KCl and electric field stimulation in rat forestomach, ileum and colon under conditions of in vitro and in vivo treatment with lead acetate. Rats were dosed with 4% lead acetate in their diet, NIH-07, for 7 weeks, which resulted in renal and hematologic toxicity and blood lead levels of 180-389 ug/dl (1.2 x 10 -5 M). Tissues from in vivo treated rats were exposed to 1.2 x 10 -5 M lead acetate during in vitro contractile studies. E/sub max/ or ED 50 methacholine was not affected by 1.2 x 10 -5 M lead acetate, administered in vitro to control tissue. In the forestomach, a 10-fold higher concentration of lead (16 x 10 -5 M), administered in vitro, increased baseline tension and inhibition response to methacholine. However, in vivo lead treatment potentiated response to methacholine in the forestomach and increased baseline tension in the presence of physostigmine. The EFS response, attributable to ACh release, was not affected in the forestomach or ileum by 1.2 x 10 -5 M in vitro lead treatment. These data indicate that lead, administered in vivo in concentrations which cause renal and hematologic toxicity, does not impair cholinergic contractile response in gastrointestinal smooth muscle. Instead, the response to methacholine may be potentiated in the forestomach. Possible mechanisms of lead-induced potentiation of baseline or evoked tension include increased levels of non-elicited ACh release, inhibition of acetylcholinesterase or sensitization of muscarinic receptors

  7. Clinical Relationship between Steatocholecystitis and Gallbladder Contractility Measured by Cholescintigraphy

    Directory of Open Access Journals (Sweden)

    Chang Seok Bang

    2015-01-01

    Full Text Available Objective. Contractility of gallbladder is known to be decreased in fatty gallbladder diseases. However, clinical estimation data about this relationship is still lacking. The aim of this study was to investigate the association between steatocholecystitis and contractility of gallbladder. Methods. Patients with cholecystitis (steatocholecystitis versus nonsteatocholecystitis who underwent cholescintigraphy before cholecystectomy were retrospectively evaluated in a single teaching hospital of Korea. The association of steatocholecystitis with contractility of gallbladder, measured by preoperative cholescintigraphy, was assessed by univariable and multivariable analysis. Results. A total of 432 patients were finally enrolled (steatocholecystitis versus nonsteatocholecystitis; 75 versus 357, calculous versus acalculous cholecystitis; 316 versus 116. In the multivariable analysis, age (OR: 0.94, 95% CI: 0.90–0.99, P=0.01 and total serum cholesterol (OR: 1.02, 95% CI: 1.01–1.04, P=0.04 were related to steatocholecystitis in patients with acalculous cholecystitis. Only age (OR: 0.97, 95% CI: 0.94–0.99, P=0.004 was significantly related to steatocholecystitis in patients with calculous cholecystitis. However, ejection fraction of gallbladder reflecting contractility measured by cholescintigraphy was not related to steatocholecystitis irrespective of presence of gallbladder stone in patients with cholecystitis. Conclusion. Ejection fraction of gallbladder measured by cholescintigraphy cannot be used for the detection or confirmation of steatocholecystitis.

  8. Effects of testosterone on contractile properties of sexually dimorphic forelimb muscles in male bullfrogs (Rana catesbeiana, Shaw 1802

    Directory of Open Access Journals (Sweden)

    Aaron R. Kampe

    2013-07-01

    This study examined the effects of testosterone (T on the contractile properties of two sexually dimorphic forelimb muscles and one non-dimorphic muscle in male bullfrogs (Rana catesbeiana, Shaw 1802. The dimorphic muscles in castrated males with testosterone replacement (T+ achieved higher forces and lower fatigability than did castrated males without replaced testosterone (T0 males, but the magnitude of the differences was low and many of the pair-wise comparisons of each muscle property were not statistically significant. However, when taken as a whole, the means of seven contractile properties varied in the directions expected of masculine values in T+ animals in the sexually dimorphic muscles. Moreover, these data, compared with previous data on male and female bullfrogs, show that values for T+ males are similar to normal males and are significantly different from females. The T0 males tended to be intermediate in character between T+ males and females, generally retaining masculine values. This suggests that the exposure of young males to T in their first breeding season produces a masculinizing effect on the sexually dimorphic muscles that is not reversed between breeding seasons when T levels are low. The relatively minor differences in contractile properties between T+ and T0 males may indicate that as circulating T levels rise during breeding season in normal males, contractile properties can be enhanced rapidly to maximal functional levels for breeding success.

  9. Work Capacity of the Bladder During Voiding: A Novel Method to Evaluate Bladder Contractile Function and Bladder Outlet Obstruction

    Directory of Open Access Journals (Sweden)

    Ning Liu

    2015-01-01

    Full Text Available Background: Work in voiding (WIV of the bladder may be used to evaluate bladder status throughout urination rather than at a single time point. Few studies, however, have assessed WIV owing to the complexity of its calculations. We have developed a method of calculating work capacity of the bladder while voiding and analyzed the associations of bladder work parameters with bladder contractile function and bladder outlet obstruction (BOO. Methods: The study retrospectively evaluated 160 men and 23 women, aged >40 years and with a detrusor pressure at maximal flow rate (P det Q max of ≥40 cmH 2 O in men, who underwent urodynamic testing. The bladder power integration method was used to calculate WIV; WIV per second (WIV/t and WIV per liter of urine voided (WIV/v were also calculated. In men, the relationships between these work capacity parameters and P det Q max and Abrams-Griffiths (AG number were determined using linear-by-linear association tests, and relationships between work capacity parameters and BOO grade were investigated using Spearman′s association test. Results: The mean WIV was 1.15 ± 0.78 J and 1.30 ± 0.88 J, mean WIV/t was 22.95 ± 14.45 mW and 23.78 ± 17.02 mW, and mean WIV/v was 5.59 ± 2.32 J/L and 2.83 ± 1.87 J/L in men and women, respectively. In men, WIV/v showed significant positive associations with P det Q max (r = 0.845, P = 0.000, AG number (r = 0.814, P = 0.000, and Schafer class (r = 0.726, P = 0.000. Conversely, WIV and WIV/t showed no associations with P det Q max or AG number. In patients with BOO (Schafer class > II, WIV/v correlated positively with increasing BOO grade. Conclusions: WIV can be calculated from simple urodynamic parameters using the bladder power integration method. WIV/v may be a marker of BOO grade, and the bladder contractile function can be evaluated by WIV and WIV/t.

  10. Effects of minoxidil and nitroprusside on reflex increases in myocardial contractility.

    Science.gov (United States)

    Robie, N W

    1978-01-01

    1 The effects of nitroprusside and minoxidil on increases in myocardial contractility resulting from carotid artery occlusion were investigated in anaesthetized dogs. The results were compared with those produced by intravenous influsion of noradrenaline. 2 Nitroprusside and minoxidil attenuated the pressor responses produced by carotid artery occlusion. 3 Nitroprusside, but not minoxidil, attenuated the maximal myocardial contractility resulting from carotid occlusion. 4 The pressor and contractility responses to noradrenaline infusion were unaffected by either agent. 5 Nitroprusside failed to alter the myocardial responses produced by dimethylphenylpiperazinium. 6 These results, in conjunction with those of other investigators who have demonstrated that nitroprusside does not affect the release of noradrenaline from adrenergic neurons, suggest that nitroprusside may inhibit sympathetic nervous system reflex activity via an afferent and/or central component. PMID:620094

  11. A thermodynamical model for stress-fiber organization in contractile cells.

    Science.gov (United States)

    Foucard, Louis; Vernerey, Franck J

    2012-01-02

    Cell mechanical adaptivity to external stimuli is vital to many of its biological functions. A critical question is therefore to understand the formation and organization of the stress fibers from which emerge the cell's mechanical properties. By accounting for the mechanical aspects and the viscoelastic behavior of stress fibers, we here propose a thermodynamic model to predict the formation and orientation of stress fibers in contractile cells subjected to constant or cyclic stretch and different substrate stiffness. Our results demonstrate that the stress fibers viscoelastic behavior plays a crucial role in their formation and organization and shows good consistency with various experiments.

  12. Integrated Analysis of Contractile Kinetics, Force Generation, and Electrical Activity in Single Human Stem Cell-Derived Cardiomyocytes

    Directory of Open Access Journals (Sweden)

    Jan David Kijlstra

    2015-12-01

    Full Text Available The quantitative analysis of cardiomyocyte function is essential for stem cell-based approaches for the in vitro study of human cardiac physiology and pathophysiology. We present a method to comprehensively assess the function of single human pluripotent stem cell-derived cardiomyocyte (hPSC-CMs through simultaneous quantitative analysis of contraction kinetics, force generation, and electrical activity. We demonstrate that statistical analysis of movies of contracting hPSC-CMs can be used to quantify changes in cellular morphology over time and compute contractile kinetics. Using a biomechanical model that incorporates substrate stiffness, we calculate cardiomyocyte force generation at single-cell resolution and validate this approach with conventional traction force microscopy. The addition of fluorescent calcium indicators or membrane potential dyes allows the simultaneous analysis of contractility and calcium handling or action potential morphology. Accordingly, our approach has the potential for broad application in the study of cardiac disease, drug discovery, and cardiotoxicity screening.

  13. Bladder contractility is modulated by Kv7 channels in pig detrusor

    DEFF Research Database (Denmark)

    Svalø, Julie; Bille, Michala; Parameswaran Theepakaran, Neeraja

    2013-01-01

    Kv7 channels are involved in smooth muscle relaxation, and accordingly we believe that they constitute potential targets for the treatment of overactive bladder syndrome. We have therefore used myography to examine the function of Kv7 channels in detrusor, i.e. pig bladder, with a view...... relaxation, suggesting that Kv7.2 and/or Kv7.4 channels constitute the subtypes that are relevant to bladder contractility. The effects of retigabine and ML213 were attenuated by pre-incubation with 10µM XE991 (Kv7.1-7.5 channel blocker) (P...

  14. The effects of space flight on the contractile apparatus of antigravity muscles: implications for aging and deconditioning

    Science.gov (United States)

    Baldwin, K. M.; Caiozzo, V. J.; Haddad, F.; Baker, M. J.; Herrick, R. E.

    1994-01-01

    Previous studies have shown that the unloading of skeletal muscle, as occurring during exposure to space flight, exerts a profound effect on both the mass (cross sectional area) of skeletal muscle fibers and the relative expression of protein isoforms comprising the contractile system. Available information suggests that slow (type I) fibers, comprising chiefly the antigravity muscles of experimental animals, in addition to atrophying, undergo alterations in the type of myosin heavy chain (MHC) expressed such that faster isoforms become concomitantly expressed in a sub-population of slow fibers when insufficient force-bearing activity is maintained on the muscle. Consequently, these transformations in both mass and myosin heavy chain phenotype could exert a significant impact on the functional properties of skeletal muscle as manifest in the strength, contractile speed, and endurance scope of the muscle. To further explore these issues, a study was performed in which young adult male rats were exposed to zero gravity for six days, following which, the antigravity soleus muscle was examined for a) contractile properties, determined in situ and b) isomyosin expression, as studied using biochemical, molecular biology, and histochemical/immunohistochemical techniques.

  15. Effect of cadmium on myocardial contractility and calcium fluxes

    International Nuclear Information System (INIS)

    Pilati, C.F.

    1979-01-01

    The effect of cadmium on myocardial mechanical performance and calcium fluxes was studied in kitten isometric papillary muscles and in isovolumic Langendorff-perfused rabbit hearts. Therefore, it is concluded that cadmium-induced decreases in contractility are not primarily the result of cadmium interference with ATP metabolic processes. Furthermore, these results imply that cadmium causes no structural alterations of the contractile proteins. These data suggest that cadmium may be competing with the calcium needed for excitation-contraction coupling. During experiments using radioisotopic calcium, a statistically significant cellular influx of calcium was observed following the onset of 100 μM Cd ++ perfusion of isolated, Langendorff-prepared rabbit hearts

  16. Drainage of pleural effusion improves diaphragmatic function in mechanically ventilated patients.

    Science.gov (United States)

    Umbrello, Michele; Mistraletti, Giovanni; Galimberti, Andrea; Piva, Ilaria R; Cozzi, Ottavia; Formenti, Paolo

    2017-03-01

    Pleural effusion adversely affects the pressuregenerating capacity of the diaphragm. It uncouples the lung and chest wall, which may result in diaphragmatic dysfunction. Information on the effects of effusion drainage on diaphragmatic function is limited, but several studies report relief of dyspnoea after drainage, which was attributed to improved diaphragmatic mechanics, even if this issue was never formally addressed. To investigate the effect of drainage of unilateral pleural effusion on diaphragmatic function. In a prospective twostep protocol (at baseline and after drainage of effusion), we conducted a spontaneous breathing trial in fourteen critically ill, mechanically ventilated patients undergoing pressure support ventilation. We used ultrasonography of the ipsilateral hemidiaphragm to evaluate and record respiratory displacement and thickening during tidal and maximal breathing efforts. We recorded and analysed airway pressures, respiratory system compliance, vital capacity, indices of respiratory effort and arterial blood gases. After drainage of the effusion, the respiratory rate decreased and tidal volume increased, but haemodynamic parameters were unaffected and oxygenation levels showed a non-significant increase. Drainage was associated with significant decreases in indices of respiratory drive and the maximal pressure generated by the respiratory muscles, as well as an increased compliance of the respiratory system. Diaphragmatic displacement and thickening significantly increased after drainage. We found there was a significant correlation between the volume of the effusion drained and the increase in tidal diaphragmatic thickening. Drainage of a unilateral pleural effusion during weaning from mechanical ventilation improves diaphragmatic contractile activity and respiratory system performance.

  17. Progesterone Metabolites Produced by Cytochrome P450 3A Modulate Uterine Contractility in a Murine Model

    Science.gov (United States)

    Patil, Avinash S.; Swamy, Geeta K.; Murtha, Amy P.; Heine, R. Phillips; Zheng, Xiaomei; Grotegut, Chad A.

    2015-01-01

    Objective: We seek to characterize the effect of progesterone metabolites on spontaneous and oxytocin-induced uterine contractility. Study Design: Spontaneous contractility was studied in mouse uterine horns after treatment with progesterone, 2α-hydroxyprogesterone, 6β-hydroxyprogesterone (6β-OHP), 16α-hydroxyprogesterone (16α-OHP), or 17-hydroxyprogesterone caproate (17-OHPC) at 10−9 to 10−6 mol/L. Uterine horns were exposed to progestins (10−6 mol/L), followed by increasing concentrations of oxytocin (1-100 nmol/L) to study oxytocin-induced contractility. Contraction parameters were compared for each progestin and matched vehicle control using repeated measures 2-way analysis of variance. In vitro metabolism of progesterone by recombinant cytochrome P450 3A (CYP3A) microsomes (3A5, 3A5, and 3A7) identified major metabolites. Results: Oxytocin-induced contractile frequency was decreased by 16α-OHP (P = .03) and increased by 6β-OHP (P = .05). Progesterone and 17-OHPC decreased oxytocin-induced contractile force (P = .02 and P = .04, respectively) and frequency (P = .02 and P = .03, respectively). Only progesterone decreased spontaneous contractile force (P = .02). Production of 16α-OHP and 6β-OHP metabolites were confirmed in all CYP3A isoforms tested. Conclusion: Progesterone metabolites produced by maternal or fetal CYP3A enzymes influence uterine contractility. PMID:26037300

  18. Are interstitial cells of Cajal involved in mechanical stress-induced gene expression and impairment of smooth muscle contractility in bowel obstruction?

    Directory of Open Access Journals (Sweden)

    Chester C Wu

    Full Text Available The network of interstitial cells of Cajal (ICC is altered in obstructive bowel disorders (OBD. However, whether alteration in ICC network is a cause or consequence of OBD remains unknown. This study tested the hypothesis that mechanical dilation in obstruction disrupts the ICC network and that ICC do not mediate mechanotranscription of COX-2 and impairment of smooth muscle contractility in obstruction.Medical-grade silicon bands were wrapped around the distal colon to induce partial obstruction in wild-type and ICC deficient (W/W(v mice.In wild-type mice, colon obstruction led to time-dependent alterations of the ICC network in the proximal colon segment. Although unaffected on days 1 and 3, the ICC density decreased markedly and the network was disrupted on day 7 of obstruction. COX-2 expression increased, and circular muscle contractility decreased significantly in the segment proximal to obstruction. In W/W(v control mice, COX-2 mRNA level was 4.0 (±1.1-fold higher (n=4 and circular muscle contractility was lower than in wild-type control mice. Obstruction further increased COX-2 mRNA level in W/W(v mice to 7.2 (±1.0-fold vs. W/W(v controls [28.8 (±4.1-fold vs. wild-type controls] on day 3. Obstruction further suppressed smooth muscle contractility in W/W(v mice. However, daily administration of COX-2 inhibitor NS-398 significantly improved muscle contractility in both W/W(v sham and obstruction mice.Lumen dilation disrupts the ICC network. ICC deficiency has limited effect on stretch-induced expression of COX-2 and suppression of smooth muscle contractility in obstruction. Rather, stretch-induced COX-2 plays a critical role in motility dysfunction in partial colon obstruction.

  19. Accessory left atrial diverticulae: contractile properties depicted with 64-slice cine-cardiac CT.

    LENUS (Irish Health Repository)

    Killeen, Ronan P

    2012-02-01

    To assess the contractility of accessory left atrial appendages (LAAs) using multiphasic cardiac CT. We retrospectively analyzed the presence, location, size and contractile properties of accessory LAAs using multiphasic cardiac 64-slice CT in 102 consecutive patients (63 males, 39 females, mean age 57). Multiplanar reformats were used to create image planes in axial oblique, sagittal oblique and coronal oblique planes. For all appendages with an orifice diameter >or= 10 mm, axial and sagittal diameters and appendage volumes were recorded in atrial diastole and systole. Regression analysis was performed to assess which imaging appearances best predicted accessory appendage contractility. Twenty-three (23%) patients demonstrated an accessory LAA, all identified along the anterior LA wall. Dimensions for axial oblique (AOD) and sagittal oblique (SOD) diameters and sagittal oblique length (SOL) were 6.3-19, 3.4-20 and 5-21 mm, respectively. All appendages (>or=10 mm) demonstrated significant contraction during atrial systole (greatest diameter reduction was AOD [3.8 mm, 27%]). Significant correlations were noted between AOD-contraction and AOD (R = 0.57, P < 0.05) and SOD-contraction and AOD, SOD and SOL (R = 0.6, P < 0.05). Mean diverticulum volume in atrial diastole was 468.4 +\\/- 493 mm(3) and in systole was 171.2 +\\/- 122 mm(3), indicating a mean change in volume of 297.2 +\\/- 390 mm(3), P < 0.0001. Stepwise multiple regression analysis revealed SOL to be the strongest independent predictor of appendage contractility (R(2) = 0.86, P < 0.0001) followed by SOD (R(2) = 0.91, P < 0.0001). Accessory LAAs show significant contractile properties on cardiac CT. Those accessory LAAs with a large sagittal height or depth should be evaluated for contractile properties, and if present should be examined for ectopic activity during electrophysiological studies.

  20. Opportunities to Target Specific Contractile Abnormalities with Smooth Muscle Protein Kinase Inhibitors

    Directory of Open Access Journals (Sweden)

    Annegret Ulke-Lemée

    2010-05-01

    Full Text Available Smooth muscle is a major component of most hollow organ systems (e.g., airways, vasculature, bladder and gut/gastrointestine; therefore, the coordinated regulation of contraction is a key property of smooth muscle. When smooth muscle functions normally, it contributes to general health and wellness, but its dysfunction is associated with morbidity and mortality. Rho-associated protein kinase (ROCK is central to calcium-independent, actomyosin-mediated contractile force generation in the vasculature, thereby playing a role in smooth muscle contraction, cell motility and adhesion. Recent evidence supports an important role for ROCK in the increased vasoconstriction and remodeling observed in various models of hypertension. This review will provide a commentary on the development of specific ROCK inhibitors and their clinical application. Fasudil will be discussed as an example of bench-to-bedside development of a clinical therapeutic that is used to treat conditions of vascular hypercontractility. Due to the wide spectrum of biological processes regulated by ROCK, many additional clinical indications might also benefit from ROCK inhibition. Apart from the importance of ROCK in smooth muscle contraction, a variety of other protein kinases are known to play similar roles in regulating contractile force. The zipper-interacting protein kinase (ZIPK and integrin-linked kinase (ILK are two well-described regulators of contraction. The relative contribution of each kinase to contraction depends on the muscle bed as well as hormonal and neuronal stimulation. Unfortunately, specific inhibitors for ZIPK and ILK are still in the development phase, but the success of fasudil suggests that inhibitors for these other kinases may also have valuable clinical applications. Notably, the directed inhibition of ZIPK with a pseudosubstrate molecule shows unexpected effects on the contractility of gastrointestinal smooth muscle.

  1. Gene transfer of heterologous G protein-coupled receptors to cardiomyocytes: differential effects on contractility.

    Science.gov (United States)

    Laugwitz, K L; Weig, H J; Moretti, A; Hoffmann, E; Ueblacker, P; Pragst, I; Rosport, K; Schömig, A; Ungerer, M

    2001-04-13

    In heart failure, reduced cardiac contractility is accompanied by blunted cAMP responses to beta-adrenergic stimulation. Parathyroid hormone (PTH)-related peptide and arginine vasopressin are released from the myocardium in response to increased wall stress but do not stimulate contractility or adenylyl cyclase at physiological concentrations. To bypass the defective beta-adrenergic signaling cascade, recombinant P1 PTH/PTH-related peptide receptors (rPTH1-Rs) and V(2) vasopressin receptors (rV(2)-Rs), which are normally not expressed in the myocardium and which are both strongly coupled to adenylyl cyclase, and recombinant beta(2)-adrenergic receptors (rbeta(2)-ARs) were overexpressed in cardiomyocytes by viral gene transfer. The capacity of endogenous hormones to increase contractility via the heterologous, recombinant receptors was compared. Whereas V(2)-Rs are uniquely coupled to Gs, PTH1-Rs and beta(2)-ARs are also coupled to other G proteins. Gene transfer of rPTH1-Rs or rbeta(2)-ARs to adult cardiomyocytes resulted in maximally increased basal contractility, which could not be further stimulated by adding receptor agonists. Agonists at rPTH1-Rs induced increased cAMP formation and phospholipase C activity. In contrast, healthy or failing rV(2)-R-expressing cardiomyocytes showed unaltered basal contractility. Their contractility and cAMP formation increased only at agonist exposure, which did not activate phospholipase C. In summary, we found that gene transfer of PTH1-Rs to cardiomyocytes results in constitutive activity of the transgene, as does that of beta(2)-ARS: In the absence of receptor agonists, rPTH1-Rs and rbeta(2)-ARs increase basal contractility, coupling to 2 G proteins simultaneously. In contrast, rV(2)-Rs are uniquely coupled to Gs and are not constitutively active, retaining their property to be activated exclusively on agonist stimulation. Therefore, gene transfer of V(2)-Rs might be more suited to test the effects of c

  2. Suppression of guinea pig ileum induced contractility by plasma albumin of hibernators

    Science.gov (United States)

    Bruce, David S.; Ambler, Douglas L.; Henschel, Timothy M.; Oeltgen, Peter R.; Nilekani, Sita P.; Amstrup, Steven C.

    1992-01-01

    Previous studies suggest that hibernation may be regulated by internal opioids and that the putative “hibernation induction trigger” (HIT) may itself be an opioid. This study examined the effect of plasma albumin (known to bind HIT) on induced contractility of the guinea pig ileum muscle strip. Morphine (400 nM) depressed contractility and 100 nM naloxone restored it. Ten milligrams of lyophilized plasma albumin fractions from hibernating ground squirrels, woodchucks, black bears, and polar bears produced similar inhibition, with partial reversal by naloxone. Five hundredths mg of d-Ala2-d-Leu5-enkephalin (DADLE) also inhibited contractility and naloxone reversed it. Conclusions are that hibernating individuals of these species contain an HIT substance that is opioid in nature and summer animals do not; an endogenous opioid similar to leu-enkephalin may be the HIT compound or give rise to it.

  3. A global, myosin light chain kinase-dependent increase in myosin II contractility accompanies the metaphase-anaphase transition in sea urchin eggs.

    Science.gov (United States)

    Lucero, Amy; Stack, Christianna; Bresnick, Anne R; Shuster, Charles B

    2006-09-01

    Myosin II is the force-generating motor for cytokinesis, and although it is accepted that myosin contractility is greatest at the cell equator, the temporal and spatial cues that direct equatorial contractility are not known. Dividing sea urchin eggs were placed under compression to study myosin II-based contractile dynamics, and cells manipulated in this manner underwent an abrupt, global increase in cortical contractility concomitant with the metaphase-anaphase transition, followed by a brief relaxation and the onset of furrowing. Prefurrow cortical contractility both preceded and was independent of astral microtubule elongation, suggesting that the initial activation of myosin II preceded cleavage plane specification. The initial rise in contractility required myosin light chain kinase but not Rho-kinase, but both signaling pathways were required for successful cytokinesis. Last, mobilization of intracellular calcium during metaphase induced a contractile response, suggesting that calcium transients may be partially responsible for the timing of this initial contractile event. Together, these findings suggest that myosin II-based contractility is initiated at the metaphase-anaphase transition by Ca2+-dependent myosin light chain kinase (MLCK) activity and is maintained through cytokinesis by both MLCK- and Rho-dependent signaling. Moreover, the signals that initiate myosin II contractility respond to specific cell cycle transitions independently of the microtubule-dependent cleavage stimulus.

  4. A Global, Myosin Light Chain Kinase-dependent Increase in Myosin II Contractility Accompanies the Metaphase–Anaphase Transition in Sea Urchin Eggs

    Science.gov (United States)

    Lucero, Amy; Stack, Christianna; Bresnick, Anne R.

    2006-01-01

    Myosin II is the force-generating motor for cytokinesis, and although it is accepted that myosin contractility is greatest at the cell equator, the temporal and spatial cues that direct equatorial contractility are not known. Dividing sea urchin eggs were placed under compression to study myosin II-based contractile dynamics, and cells manipulated in this manner underwent an abrupt, global increase in cortical contractility concomitant with the metaphase–anaphase transition, followed by a brief relaxation and the onset of furrowing. Prefurrow cortical contractility both preceded and was independent of astral microtubule elongation, suggesting that the initial activation of myosin II preceded cleavage plane specification. The initial rise in contractility required myosin light chain kinase but not Rho-kinase, but both signaling pathways were required for successful cytokinesis. Last, mobilization of intracellular calcium during metaphase induced a contractile response, suggesting that calcium transients may be partially responsible for the timing of this initial contractile event. Together, these findings suggest that myosin II-based contractility is initiated at the metaphase–anaphase transition by Ca2+-dependent myosin light chain kinase (MLCK) activity and is maintained through cytokinesis by both MLCK- and Rho-dependent signaling. Moreover, the signals that initiate myosin II contractility respond to specific cell cycle transitions independently of the microtubule-dependent cleavage stimulus. PMID:16837551

  5. Reliability of contractile properties of the knee extensor muscles in individuals with post-polio syndrome.

    Directory of Open Access Journals (Sweden)

    Eric L Voorn

    Full Text Available To assess the reliability of contractile properties of the knee extensor muscles in 23 individuals with post-polio syndrome (PPS and 18 age-matched healthy individuals.Contractile properties of the knee extensors were assessed from repeated electrically evoked contractions on 2 separate days, with the use of a fixed dynamometer. Reliability was determined for fatigue resistance, rate of torque development (MRTD, and early and late relaxation time (RT50 and RT25, using the intraclass correlation coefficient (ICC and standard error of measurement (SEM, expressed as % of the mean.In both groups, reliability for fatigue resistance was good, with high ICCs (>0.90 and small SEM values (PPS: 7.1%, healthy individuals: 7.0%. Reliability for contractile speed indices varied, with the best values found for RT50 (ICCs>0.82, SEM values <2.8%. We found no systematic differences between test and retest occasions, except for RT50 in healthy subjects (p = 0.016.In PPS and healthy individuals, the reliability of fatigue resistance, as obtained from electrically evoked contractions is high. The reliability of contractile speed is only moderate, except for RT50 in PPS, demonstrating high reliability.This was the first study to examine the reliability of electrically evoked contractile properties in individuals with PPS. Our results demonstrate its potential to study mechanisms underlying muscle fatigue in PPS and to evaluate changes in contractile properties over time in response to interventions or from natural course.

  6. Inhibition of CYP2E1 attenuates chronic alcohol intake-induced myocardial contractile dysfunction and apoptosis.

    Science.gov (United States)

    Zhang, Rong-Huai; Gao, Jian-Yuan; Guo, Hai-Tao; Scott, Glenda I; Eason, Anna R; Wang, Xiao-Ming; Ren, Jun

    2013-01-01

    Alcohol intake is associated with myocardial contractile dysfunction and apoptosis although the precise mechanism is unclear. This study was designed to examine the effect of the cytochrome P450 enzyme CYP2E1 inhibition on ethanol-induced cardiac dysfunction. Adult male mice were fed a 4% ethanol liquid or pair-fed control diet for 6weeks. Following 2weeks of diet feeding, a cohort of mice started to receive the CYP2E1 inhibitor diallyl sulfide (100mg/kg/d, i.p.) for the remaining feeding duration. Cardiac function was assessed using echocardiographic and IonOptix systems. Western blot analysis was used to evaluate CYP2E1, heme oxygenase-1 (HO-1), iNOS, the intracellular Ca(2+) regulatory proteins sarco(endo)plasmic reticulum Ca(2+)-ATPase, Na(+)Ca(2+) exchanger and phospholamban, pro-apoptotic protein cleaved caspase-3, Bax, c-Jun-NH(2)-terminal kinase (JNK) and apoptosis signal-regulating kinase (ASK-1). Ethanol led to elevated levels of CYP2E1, iNOS and phospholamban, decreased levels of HO-1 and Na(+)Ca(2+) exchanger, cardiac contractile and intracellular Ca(2+) defects, cardiac fibrosis, overt O(2)(-) production, and apoptosis accompanied with increased phosphorylation of JNK and ASK-1, the effects were significantly attenuated or ablated by diallyl sulfide. Inhibitors of JNK and ASK-1 but not HO-1 inducer or iNOS inhibitor obliterated ethanol-induced cardiomyocyte contractile dysfunction, substantiating a role for JNK and ASK-1 signaling in ethanol-induced myocardial injury. Taken together, these findings suggest that ethanol metabolism through CYP2E1 may contribute to the pathogenesis of alcoholic cardiomyopathy including myocardial contractile dysfunction, oxidative stress and apoptosis, possibly through activation of JNK and ASK-1 signaling. Copyright © 2012 Elsevier B.V. All rights reserved.

  7. Contribution of contractile state of the non-infarcted area to global ventricular performance after acute myocardial infarction

    International Nuclear Information System (INIS)

    Nishimura, Tsunehiko; Yasuda, Tsunehiro; Gold, H.K.; Leinbach, R.C.; Boucher, C.A.; McKusick, K.A.; Strauss, H.W.

    1986-01-01

    To evaluate the regional contractile state of the non-infarcted zone and to determine the contribution of this area to left ventricular (LV) performance, 112 patients (42 anterior and 70 inferior infarction) with their first acute myocardial infarction were investigated by radionuclide ventriculography at admission and 10 days after admission. Wall motion at the non-infarcted area was defined as hyperkinetic, normal, or hypokinetic, if radial chord shortening had above normal, normal, or below normal values, respectively, by quantitative wall motion analysis. Hyperkinetic, normal, and hypokinetic wall motion of the non-infarcted area were observed in three (7 %), 12 (29 %), and 27 (64 %) patients in anterior infarction and 14 (20 %), 28 (40 %), and 28 (40 %) in inferior infarction, respectively. In the patients with hypokinetic wall motion at the non-infarcted area, the infarct involved more than 30 % of the left ventricle manifesting akinetic contractile segment (ACS), radial chord shortening in the infarcted area was severely depressed, and the incidence of multi-vessel involvement was higher compared with those with hyperkinetic or normal wall motion. In serial measurements, radial chord shortening in the infarcted and non-infarcted area, percent ACS, left ventricular ejection fraction, and left ventricular end-diastolic volume index did not change significantly from acute to follow-up study in any group. In conclusion, our data indicated that the non-infarcted area following acute infarction had various contractile states and these conditions were determined primarily by the severity and extent of infarct and underlying coronary artery disease. Furthermore, the contractile state of the non-infarcted area has a supplemental role in determination of LV function following acute infarction. (author)

  8. Protein kinase Cα deletion causes hypotension and decreased vascular contractility.

    Science.gov (United States)

    Wynne, Brandi M; McCarthy, Cameron G; Szasz, Theodora; Molina, Patrick A; Chapman, Arlene B; Webb, R Clinton; Klein, Janet D; Hoover, Robert S

    2018-03-01

    Protein kinase Cα (PKCα) is a critical regulator of multiple cell signaling pathways including gene transcription, posttranslation modifications and activation/inhibition of many signaling kinases. In regards to the control of blood pressure, PKCα causes increased vascular smooth muscle contractility, while reducing cardiac contractility. In addition, PKCα has been shown to modulate nephron ion transport. However, the role of PKCα in modulating mean arterial pressure (MAP) has not been investigated. In this study, we used a whole animal PKCα knock out (PKC KO) to test the hypothesis that global PKCα deficiency would reduce MAP, by a reduction in vascular contractility. Radiotelemetry measurements of ambulatory blood pressure (day/night) were obtained for 18 h/day during both normal chow and high-salt (4%) diet feedings. PKCα mice had a reduced MAP, as compared with control, which was not normalized with high-salt diet (14 days). Metabolic cage studies were performed to determine urinary sodium excretion. PKC KO mice had a significantly lower diastolic, systolic and MAP as compared with control. No significant differences in urinary sodium excretion were observed between the PKC KO and control mice, whether fed normal chow or high-salt diet. Western blot analysis showed a compensatory increase in renal sodium chloride cotransporter expression. Both aorta and mesenteric vessels were removed for vascular reactivity studies. Aorta and mesenteric arteries from PKC KO mice had a reduced receptor-independent relaxation response, as compared with vessels from control. Vessels from PKC KO mice exhibited a decrease in maximal contraction, compared with controls. Together, these data suggest that global deletion of PKCα results in reduced MAP due to decreased vascular contractility.

  9. Impaired right ventricular contractile function in childhood obesity and its association with right and left ventricular changes: a cine DENSE cardiac magnetic resonance study.

    Science.gov (United States)

    Jing, Linyuan; Pulenthiran, Arichanah; Nevius, Christopher D; Mejia-Spiegeler, Abba; Suever, Jonathan D; Wehner, Gregory J; Kirchner, H Lester; Haggerty, Christopher M; Fornwalt, Brandon K

    2017-06-28

    Pediatric obesity is a growing public health problem, which is associated with increased risk of cardiovascular disease and premature death. Left ventricular (LV) remodeling (increased myocardial mass and thickness) and contractile dysfunction (impaired longitudinal strain) have been documented in obese children, but little attention has been paid to the right ventricle (RV). We hypothesized that obese/overweight children would have evidence of RV remodeling and contractile dysfunction. One hundred and three children, ages 8-18 years, were prospectively recruited and underwent cardiovascular magnetic resonance (CMR), including both standard cine imaging and displacement encoding with stimulated echoes (DENSE) imaging, which allowed for quantification of RV geometry and function/mechanics. RV free wall longitudinal strain was quantified from the end-systolic four-chamber DENSE image. Linear regression was used to quantify correlations of RV strain with LV strain and measurements of body composition (adjusted for sex and height). Analysis of variance was used to study the relationship between RV strain and LV remodeling types (concentric remodeling, eccentric/concentric hypertrophy). The RV was sufficiently visualized with DENSE in 70 (68%) subjects, comprising 36 healthy weight (13.6 ± 2.7 years) and 34 (12.1 ± 2.9 years) obese/overweight children. Obese/overweight children had a 22% larger RV mass index (8.2 ± 0.9 vs 6.7 ± 1.1 g/m 2.7 , p right ventricles in obese/overweight children.

  10. EXERCISE PERFORMANCE AND MUSCLE CONTRACTILE PROPERTIES AFTER CREATINE MONOHYDRATE SUPPLEMENTATION IN AEROBIC-ANAEROBIC TRAINING RATS

    Directory of Open Access Journals (Sweden)

    Nickolay Boyadjiev

    2007-12-01

    Full Text Available The purpose of this study was to investigate the effects of creatine monohydrate supplementation on exercise performance and contractile variables in aerobic-anaerobic training rats. Twenty 90-day-old male Sprague Dawley rats were divided into two groups - creatine (Cr and controls (K. The creatine group received creatine monohydrate as a nutritional supplement, whereas the control group was given placebo. Both groups were trained 5 days a week on a treadmill for 20 days in a mixed (aerobic-anaerobic metabolic working regimen (27 m·min-1, 15% elevation for 40 min. The exercise performance (sprint-test, contractile properties (m. tibialis anterior, oxidative enzyme activity (SDH, LDH, NADH2 in m. soleus and blood hematological and chemical variables were assessed in the groups at the end of the experiment. It was found out that creatine supplementation improved the exercise performance after 20 days of administration in a dose of 60 mg per day on the background of a mixed (aerobic-anaerobic exercise training. At the end of the trial the Cr-group demonstrated better values for the variables which characterize the contractile properties of m. tibialis anterior containing predominantly types IIA and IIB muscle fibers. On the other hand, a higher oxidative capacity was found out in m. soleus (type I muscle fibers as a result of 20-day creatine supplementation. No side effects of creatine monohydrate supplementation were assessed by the hematological and blood biochemical indices measured in this study

  11. Triiodothyronine facilitates weaning from extracorporeal membrane oxygenation by improved mitochondrial substrate utilization.

    Science.gov (United States)

    Files, Matthew D; Kajimoto, Masaki; O'Kelly Priddy, Colleen M; Ledee, Dolena R; Xu, Chun; Des Rosiers, Christine; Isern, Nancy; Portman, Michael A

    2014-03-20

    Extracorporeal membrane oxygenation (ECMO) provides a bridge to recovery after myocardial injury in infants and children, yet morbidity and mortality remain high. Weaning from the circuit requires adequate cardiac contractile function, which can be impaired by metabolic disturbances induced either by ischemia-reperfusion and/or by ECMO. We tested the hypothesis that although ECMO partially ameliorates metabolic abnormalities induced by ischemia-reperfusion, these abnormalities persist or recur with weaning. We also determined if thyroid hormone supplementation (triiodothyronine) during ECMO improves oxidative metabolism and cardiac function. Neonatal piglets underwent transient coronary ischemia to induce cardiac injury then were separated into 4 groups based on loading status. Piglets without coronary ischemia served as controls. We infused into the left coronary artery [2-(13)C]pyruvate and [(13)C6, (15)N]l-leucine to evaluate oxidative metabolism by gas chromatography-mass spectroscopy and nuclear magnetic resonance methods. ECMO improved survival, increased oxidative substrate contribution through pyruvate dehydrogenase, reduced succinate and fumarate accumulation, and ameliorated ATP depletion induced by ischemia. The functional and metabolic benefit of ECMO was lost with weaning, yet triiodothyronine supplementation during ECMO restored function, increased relative pyruvate dehydrogenase flux, reduced succinate and fumarate, and preserved ATP stores. Although ECMO provides metabolic rest by decreasing energy demand, metabolic impairments persist, and are exacerbated with weaning. Treating ECMO-induced thyroid depression with triiodothyronine improves substrate flux, myocardial oxidative capacity and cardiac contractile function. This translational model suggests that metabolic targeting can improve weaning.

  12. Formation of contractile networks and fibers in the medial cell cortex through myosin-II turnover, contraction, and stress-stabilization.

    Science.gov (United States)

    Nie, Wei; Wei, Ming-Tzo; Ou-Yang, H Daniel; Jedlicka, Sabrina S; Vavylonis, Dimitrios

    2015-01-01

    The morphology of adhered cells depends crucially on the formation of a contractile meshwork of parallel and cross-linked fibers along the contacting surface. The motor activity and minifilament assembly of non-muscle myosin-II is an important component of cortical cytoskeletal remodeling during mechanosensing. We used experiments and computational modeling to study cortical myosin-II dynamics in adhered cells. Confocal microscopy was used to image the medial cell cortex of HeLa cells stably expressing myosin regulatory light chain tagged with GFP (MRLC-GFP). The distribution of MRLC-GFP fibers and focal adhesions was classified into three types of network morphologies. Time-lapse movies show: myosin foci appearance and disappearance; aligning and contraction; stabilization upon alignment. Addition of blebbistatin, which perturbs myosin motor activity, leads to a reorganization of the cortical networks and to a reduction of contractile motions. We quantified the kinetics of contraction, disassembly and reassembly of myosin networks using spatio-temporal image correlation spectroscopy (STICS). Coarse-grained numerical simulations include bipolar minifilaments that contract and align through specified interactions as basic elements. After assuming that minifilament turnover decreases with increasing contractile stress, the simulations reproduce stress-dependent fiber formation in between focal adhesions above a threshold myosin concentration. The STICS correlation function in simulations matches the function measured in experiments. This study provides a framework to help interpret how different cortical myosin remodeling kinetics may contribute to different cell shape and rigidity depending on substrate stiffness. © 2015 Wiley Periodicals, Inc.

  13. Perfusion-induced changes in cardiac contractility depend on capillary perfusion.

    Science.gov (United States)

    Dijkman, M A; Heslinga, J W; Sipkema, P; Westerhof, N

    1998-02-01

    The perfusion-induced increase in cardiac contractility (Gregg phenomenon) is especially found in heart preparations that lack adequate coronary autoregulation and thus protection of changes in capillary pressure. We determined in the isolated perfused papillary muscle of the rat whether cardiac muscle contractility is related to capillary perfusion. Oxygen availability of this muscle is independent of internal perfusion, and perfusion may be varied or even stopped without loss of function. Muscles contracted isometrically at 27 degrees C (n = 7). During the control state stepwise increases in perfusion pressure resulted in all muscles in a significant increase in active tension. Muscle diameter always increased with increased perfusion pressure, but muscle segment length was unaffected. Capillary perfusion was then obstructed by plastic microspheres (15 microns). Flow, at a perfusion pressure of 66.6 +/- 26.2 cmH2O, reduced from 17.6 +/- 5.4 microliters/min in the control state to 3.2 +/- 1.3 microliters/min after microspheres. Active tension developed by the muscle in the unperfused condition before microspheres and after microspheres did not differ significantly (-12.8 +/- 29.4% change). After microspheres similar perfusion pressure steps as in control never resulted in an increase in active tension. Even at the two highest perfusion pressures (89.1 +/- 28.4 and 106.5 +/- 31.7 cmH2O) that were applied a significant decrease in active tension was found. We conclude that the Gregg phenomenon is related to capillary perfusion.

  14. PKA catalytic subunit compartmentation regulates contractile and hypertrophic responses to β-adrenergic signaling

    Science.gov (United States)

    Yang, Jason H.; Polanowska-Grabowska, Renata K.; Smith, Jeffrey S.; Shields, Charles W.; Saucerman, Jeffrey J.

    2014-01-01

    β-adrenergic signaling is spatiotemporally heterogeneous in the cardiac myocyte, conferring exquisite control to sympathetic stimulation. Such heterogeneity drives the formation of protein kinase A (PKA) signaling microdomains, which regulate Ca2+ handling and contractility. Here, we test the hypothesis that the nucleus independently comprises a PKA signaling microdomain regulating myocyte hypertrophy. Spatially-targeted FRET reporters for PKA activity identified slower PKA activation and lower isoproterenol sensitivity in the nucleus (t50 = 10.60±0.68 min; EC50 = 89.00 nmol/L) than in the cytosol (t50 = 3.71±0.25 min; EC50 = 1.22 nmol/L). These differences were not explained by cAMP or AKAP-based compartmentation. A computational model of cytosolic and nuclear PKA activity was developed and predicted that differences in nuclear PKA dynamics and magnitude are regulated by slow PKA catalytic subunit diffusion, while differences in isoproterenol sensitivity are regulated by nuclear expression of protein kinase inhibitor (PKI). These were validated by FRET and immunofluorescence. The model also predicted differential phosphorylation of PKA substrates regulating cell contractility and hypertrophy. Ca2+ and cell hypertrophy measurements validated these predictions and identified higher isoproterenol sensitivity for contractile enhancements (EC50 = 1.84 nmol/L) over cell hypertrophy (EC50 = 85.88 nmol/L). Over-expression of spatially targeted PKA catalytic subunit to the cytosol or nucleus enhanced contractile and hypertrophic responses, respectively. We conclude that restricted PKA catalytic subunit diffusion is an important PKA compartmentation mechanism and the nucleus comprises a novel PKA signaling microdomain, insulating hypertrophic from contractile β-adrenergic signaling responses. PMID:24225179

  15. Beta adrenergic overstimulation impaired vascular contractility via actin-cytoskeleton disorganization in rabbit cerebral artery.

    Directory of Open Access Journals (Sweden)

    Hyoung Kyu Kim

    Full Text Available BACKGROUND AND PURPOSE: Beta adrenergic overstimulation may increase the vascular damage and stroke. However, the underlying mechanisms of beta adrenergic overstimulation in cerebrovascular dysfunctions are not well known. We investigated the possible cerebrovascular dysfunction response to isoproterenol induced beta-adrenergic overstimulation (ISO in rabbit cerebral arteries (CAs. METHODS: ISO was induced in six weeks aged male New Zealand white rabbit (0.8-1.0 kg by 7-days isoproterenol injection (300 μg/kg/day. We investigated the alteration of protein expression in ISO treated CAs using 2DE proteomics and western blot analysis. Systemic properties of 2DE proteomics result were analyzed using bioinformatics software. ROS generation and following DNA damage were assessed to evaluate deteriorative effect of ISO on CAs. Intracellular Ca(2+ level change and vascular contractile response to vasoactive drug, angiotensin II (Ang II, were assessed to evaluate functional alteration of ISO treated CAs. Ang II-induced ROS generation was assessed to evaluated involvement of ROS generation in CA contractility. RESULTS: Proteomic analysis revealed remarkably decreased expression of cytoskeleton organizing proteins (e.g. actin related protein 1A and 2, α-actin, capping protein Z beta, and vimentin and anti-oxidative stress proteins (e.g. heat shock protein 9A and stress-induced-phosphoprotein 1 in ISO-CAs. As a cause of dysregulation of actin-cytoskeleton organization, we found decreased level of RhoA and ROCK1, which are major regulators of actin-cytoskeleton organization. As functional consequences of proteomic alteration, we found the decreased transient Ca(2+ efflux and constriction response to angiotensin II and high K(+ in ISO-CAs. ISO also increased basal ROS generation and induced oxidative damage in CA; however, it decreased the Ang II-induced ROS generation rate. These results indicate that ISO disrupted actin cytoskeleton proteome network

  16. Assessment of drug-induced arrhythmic risk using limit cycle and autocorrelation analysis of human iPSC-cardiomyocyte contractility

    Energy Technology Data Exchange (ETDEWEB)

    Kirby, R. Jason [Sanford Burnham Prebys Medical Discovery Institute, Conrad Prebys Center for Chemical Genomics, 6400 Sanger Rd, Orlando, FL 32827 (United States); Qi, Feng [Sanford Burnham Prebys Medical Discovery Institute, Applied Bioinformatics Facility, 6400 Sanger Rd, Orlando, FL 32827 (United States); Phatak, Sharangdhar; Smith, Layton H. [Sanford Burnham Prebys Medical Discovery Institute, Conrad Prebys Center for Chemical Genomics, 6400 Sanger Rd, Orlando, FL 32827 (United States); Malany, Siobhan, E-mail: smalany@sbpdiscovery.org [Sanford Burnham Prebys Medical Discovery Institute, Conrad Prebys Center for Chemical Genomics, 6400 Sanger Rd, Orlando, FL 32827 (United States)

    2016-08-15

    Cardiac safety assays incorporating label-free detection of human stem-cell derived cardiomyocyte contractility provide human relevance and medium throughput screening to assess compound-induced cardiotoxicity. In an effort to provide quantitative analysis of the large kinetic datasets resulting from these real-time studies, we applied bioinformatic approaches based on nonlinear dynamical system analysis, including limit cycle analysis and autocorrelation function, to systematically assess beat irregularity. The algorithms were integrated into a software program to seamlessly generate results for 96-well impedance-based data. Our approach was validated by analyzing dose- and time-dependent changes in beat patterns induced by known proarrhythmic compounds and screening a cardiotoxicity library to rank order compounds based on their proarrhythmic potential. We demonstrate a strong correlation for dose-dependent beat irregularity monitored by electrical impedance and quantified by autocorrelation analysis to traditional manual patch clamp potency values for hERG blockers. In addition, our platform identifies non-hERG blockers known to cause clinical arrhythmia. Our method provides a novel suite of medium-throughput quantitative tools for assessing compound effects on cardiac contractility and predicting compounds with potential proarrhythmia and may be applied to in vitro paradigms for pre-clinical cardiac safety evaluation. - Highlights: • Impedance-based monitoring of human iPSC-derived cardiomyocyte contractility • Limit cycle analysis of impedance data identifies aberrant oscillation patterns. • Nonlinear autocorrelation function quantifies beat irregularity. • Identification of hERG and non-hERG inhibitors with known risk of arrhythmia • Automated software processes limit cycle and autocorrelation analyses of 96w data.

  17. Assessment of drug-induced arrhythmic risk using limit cycle and autocorrelation analysis of human iPSC-cardiomyocyte contractility

    International Nuclear Information System (INIS)

    Kirby, R. Jason; Qi, Feng; Phatak, Sharangdhar; Smith, Layton H.; Malany, Siobhan

    2016-01-01

    Cardiac safety assays incorporating label-free detection of human stem-cell derived cardiomyocyte contractility provide human relevance and medium throughput screening to assess compound-induced cardiotoxicity. In an effort to provide quantitative analysis of the large kinetic datasets resulting from these real-time studies, we applied bioinformatic approaches based on nonlinear dynamical system analysis, including limit cycle analysis and autocorrelation function, to systematically assess beat irregularity. The algorithms were integrated into a software program to seamlessly generate results for 96-well impedance-based data. Our approach was validated by analyzing dose- and time-dependent changes in beat patterns induced by known proarrhythmic compounds and screening a cardiotoxicity library to rank order compounds based on their proarrhythmic potential. We demonstrate a strong correlation for dose-dependent beat irregularity monitored by electrical impedance and quantified by autocorrelation analysis to traditional manual patch clamp potency values for hERG blockers. In addition, our platform identifies non-hERG blockers known to cause clinical arrhythmia. Our method provides a novel suite of medium-throughput quantitative tools for assessing compound effects on cardiac contractility and predicting compounds with potential proarrhythmia and may be applied to in vitro paradigms for pre-clinical cardiac safety evaluation. - Highlights: • Impedance-based monitoring of human iPSC-derived cardiomyocyte contractility • Limit cycle analysis of impedance data identifies aberrant oscillation patterns. • Nonlinear autocorrelation function quantifies beat irregularity. • Identification of hERG and non-hERG inhibitors with known risk of arrhythmia • Automated software processes limit cycle and autocorrelation analyses of 96w data

  18. Clinical Characteristics and Associated Systemic Diseases in Patients With Esophageal "Absent Contractility"-A Clinical Algorithm.

    Science.gov (United States)

    Laique, Sobia; Singh, Tavankit; Dornblaser, David; Gadre, Abhishek; Rangan, Vikram; Fass, Ronnie; Kirby, Donald; Chatterjee, Soumya; Gabbard, Scott

    2018-01-19

    This study was carried out to assess the clinical characteristics and associated systemic diseases seen in patients diagnosed with absent contractility as per the Chicago Classification version 3.0, allowing us to propose a diagnostic algorithm for their etiologic testing. The Chicago Classification version 3.0 has redefined major and minor esophageal motility disorders using high-resolution esophageal manometry. There is a dearth of publications based on research on absent contractility, which historically has been associated with myopathic processes such as systemic sclerosis (SSc). We conducted a retrospective, multicenter study. Data of patients diagnosed with absent contractility were pooled from Cleveland Clinic, Cleveland, OH (January 2006 to July 2016) and Metrohealth Medical Center, Cleveland, OH (July 2014 to July 2016) and included: age, gender, associated medical conditions, surgical history, medications, and specific antibody testing. A total of 207 patients, including 57 male individuals and 150 female individuals, with mean age of 56.1 and 60.0 years, respectively, were included. Disease distribution was as follows: SSc (diffuse or limited cutaneous) 132, overlap syndromes 7, systemic lupus erythematosus17, Sjögren syndrome 4, polymyositis 3, and dermatomyositis 3. Various other etiologies including gastroesophageal reflux disease, postradiation esophagitis, neuromuscular disorders, and surgical complications were seen in the remaining cohort. Most practitioners use the term "absent contractility" interchangeably with "scleroderma esophagus"; however, only 63% of patients with absent contractility had SSc. Overall, 20% had another systemic autoimmune rheumatologic disease and 16% had a nonrheumatologic etiology for absent contractility. Therefore, alternate diagnosis must be sought in these patients. We propose an algorithm for their etiologic evaluation.

  19. Gestational changes in left ventricular myocardial contractile function: new insights from two-dimensional speckle tracking echocardiography.

    Science.gov (United States)

    Sengupta, Shantanu P; Bansal, Manish; Hofstra, Leonard; Sengupta, Partho P; Narula, Jagat

    2017-01-01

    The goal of this study was to evaluate the impact of pregnancy and labor on left ventricular (LV) myocardial mechanics using speckle tracking echocardiography (STE). Pregnancy is characterized by profound hormonal and hemodynamic alterations that directly or indirectly influence cardiac structure and function. However, the impact of these changes on left ventricular (LV) myocardial contractile function has not been fully elucidated. In this prospective, longitudinal study, 35 pregnant women underwent serial clinical and echocardiographic evaluation during each trimester and at labor. Two dimensional STE was performed to measure global LV longitudinal, circumferential and radial strain (GLS, GCS and GRS, respectively). Similar data obtained from 20 nulliparous, age-matched women were used as control. All strain values during pregnancy were adjusted for age and hemodynamic parameters. There was a progressive increase in heart rate, systolic and diastolic blood pressure, cardiac output and LV stroke-work during pregnancy. LV end-diastolic and end-systolic volumes also increased progressively but LV ejection fraction remained unaltered, except for slight reduction during the second trimester. Compared to the controls, GLS and GCS were reduced in the first trimester itself (GLS -22.39 ± 5.43 % vs. -18.66 ± 0.64 %, P 0.0002; GCS -20.84 ± 3.20 vs. -17.88 ± 0.09, P counterbalancing changes in the myocardial mechanics. LV longitudinal and circumferential strain are reduced whereas radial strain is increased. These counterbalancing changes serve to maintain overall LV ejection performance within a normal range and enable the maternal heart to meet the hemodynamic demands of pregnancy and labor.

  20. Inhalation of Budesonide/Formoterol Increases Diaphragm Muscle Contractility

    Directory of Open Access Journals (Sweden)

    Chiyohiko Shindoh

    2012-01-01

    Conclusions: BUD/FORM inhalation has an inotropic effect on diaphragm muscle, protects diaphragm muscle deterioration after endotoxin injection, and inhibits NO production. Increments in muscle contractility with BUD/FORM inhalation are induced through a synergistic effect of an anti-inflammatory agent and 02-agonist.

  1. Myocardial contractility in the echo lab: molecular, cellular and pathophysiological basis

    Directory of Open Access Journals (Sweden)

    Bombardini Tonino

    2005-09-01

    Full Text Available Abstract In the standard accepted concept, contractility is the intrinsic ability of heart muscle to generate force and to shorten, independently of changes in the preload or afterload with fixed heart rates. At molecular level the crux of the contractile process lies in the changing concentrations of Ca2+ ions in the myocardial cytosol. Ca2+ ions enter through the calcium channel that opens in response to the wave of depolarization that travels along the sarcolemma. These Ca2+ ions "trigger" the release of more calcium from the sarcoplasmic reticulum (SR and thereby initiate a contraction-relaxation cycle. In the past, several attempts were made to transfer the pure physiological concept of contractility, expressed in the isolated myocardial fiber by the maximal velocity of contraction of unloaded muscle fiber (Vmax, to the in vivo beating heart. Suga and Sagawa achieved this aim by measuring pressure/volume loops in the intact heart: during a positive inotropic intervention, the pressure volume loop reflects a smaller end-systolic volume and a higher end-systolic pressure, so that the slope of the pressure volume relationship moves upward and to the left. The pressure volume relationship is the most reliable index for assessing myocardial contractility in the intact circulation and is almost insensitive to changes in preload and after load. This is widely used in animal studies and occasionally clinically. The limit of the pressure volume relationship is that it fails to take into account the frequency-dependent regulation of contractility: the frequency-dependent control of transmembrane Ca2+ entry via voltage-gated Ca2+ channels provides cardiac cells with a highly sophisticated short-term system for the regulation of intracellular Ca2+ homeostasis. An increased stimulation rate increases the force of contraction: the explanation is repetitive Ca2+ entry with each depolarization and, hence, an accumulation of cytosolic calcium. As the heart

  2. Contractility Dispersion in Long QT Syndrome

    Directory of Open Access Journals (Sweden)

    MH Nikoo

    2009-09-01

    Full Text Available Background: Previous studies, using M mode echocardiography, provided unexpected evidence of a mechanical alteration in patients with long QT syndrome. The aim of this study was to evaluate entire left ventricular (LV wall motion characteristics in patients with long QT syndrome using tissue Doppler imaging. Methods: We enrolled 17 patients with congenital long QT syndrome [11 female and 6 male], aged 21 to 45 years. 10 subjects without cardiac disease were also selected as a control group. Two-dimensional tissue Doppler imaging (TDI recording of the LV was obtained from the basal and mid-segments from apical four-chamber, two-chamber, and long-axis views. ‘Myocardial Contraction Duration’ [MCD] was defined as the time from start of R wave on ECG to end of S wave on TDI. MCD was measured in the six LV wall positions: septal, anteroseptal, lateral, inferior, posterior and anterior positions.Results: LV contractility dispersion was significantly greater in long QT syndrome patients compared to control group [0.051 ± 0.011 vs. 0.016 ± 0.06; P < 0.001]. Conclusion: Our study evaluated left ventricular dispersion of contractility duration in patients with long QT syndrome. This mechanical dispersion may be a reflection of the inhomogeneity of repolarisation in the long QT syndrome.

  3. Aerobic exercise training induces skeletal muscle hypertrophy and age-dependent adaptations in myofiber function in young and older men

    Science.gov (United States)

    Konopka, Adam R.; Undem, Miranda K.; Hinkley, James M.; Minchev, Kiril; Kaminsky, Leonard A.; Trappe, Todd A.; Trappe, Scott

    2012-01-01

    To examine potential age-specific adaptations in skeletal muscle size and myofiber contractile physiology in response to aerobic exercise, seven young (YM; 20 ± 1 yr) and six older men (OM; 74 ± 3 yr) performed 12 wk of cycle ergometer training. Muscle biopsies were obtained from the vastus lateralis to determine size and contractile properties of isolated slow [myosin heavy chain (MHC) I] and fast (MHC IIa) myofibers, MHC composition, and muscle protein concentration. Aerobic capacity was higher (P 0.05) with training. Training reduced (P aerobic capacity are similar between YM and OM, while adaptations in myofiber contractile function showed a general improvement in OM. Training-related increases in MHC I and MHC IIa peak power reveal that skeletal muscle of OM is responsive to aerobic exercise training and further support the use of aerobic exercise for improving cardiovascular and skeletal muscle health in older individuals. PMID:22984247

  4. Robust gap repair in the contractile ring ensures timely completion of cytokinesis.

    Science.gov (United States)

    Silva, Ana M; Osório, Daniel S; Pereira, Antonio J; Maiato, Helder; Pinto, Inês Mendes; Rubinstein, Boris; Gassmann, Reto; Telley, Ivo Andreas; Carvalho, Ana Xavier

    2016-12-19

    Cytokinesis in animal cells requires the constriction of an actomyosin contractile ring, whose architecture and mechanism remain poorly understood. We use laser microsurgery to explore the biophysical properties of constricting rings in Caenorhabditis elegans embryos. Laser cutting causes rings to snap open. However, instead of disintegrating, ring topology recovers and constriction proceeds. In response to severing, a finite gap forms and is repaired by recruitment of new material in an actin polymerization-dependent manner. An open ring is able to constrict, and rings repair from successive cuts. After gap repair, an increase in constriction velocity allows cytokinesis to complete at the same time as controls. Our analysis demonstrates that tension in the ring increases while net cortical tension at the site of ingression decreases throughout constriction and suggests that cytokinesis is accomplished by contractile modules that assemble and contract autonomously, enabling local repair of the actomyosin network. Consequently, cytokinesis is a highly robust process impervious to discontinuities in contractile ring structure. © 2016 Silva et al.

  5. Considerations for Contractile Electroactive Materials and Actuators

    Energy Technology Data Exchange (ETDEWEB)

    Rasmussen, Lenore; Erickson, Carl J.; Meixler, Lewis D.; Ascione, George; Gentile, Charles A.; Tilson, Carl; Bernasek, Stephen L.; Abelev, Esta

    2010-02-19

    Ras Labs produces electroactive polymer (EAP) based materials and actuators that bend, swell, ripple and now contract (new development) with low electric input. This is an important attribute because of the ability of contraction to produce life-like motion. The mechanism of contraction is not well understood. Radionuclide-labeled experiments were conducted to follow the movement of electrolytes and water in these EAPs when activated. Extreme temperature experiments were performed on the contractile EAPs with very favorable results. One of the biggest challenges in developing these actuators, however, is the electrode-EAP interface because of the pronounced movement of the EAP. Plasma treatments of metallic electrodes were investigated in order to improve the attachment of the embedded electrodes to the EAP material. Surface analysis, adhesive testing, and mechanical testing were conducted to test metal surfaces and metal-polymer interfaces. The nitrogen plasma treatment of titanium produced a strong metal-polymer interface; however, oxygen plasma treatment of both stainless steel and titanium produced even stronger metal-polymer interfaces. Plasma treatment of the electrodes allows for the embedded electrodes and the EAP material of the actuator to work and move as a unit, with no detachment, by significantly improving the metal-polymer interface.

  6. Retosiban Prevents Stretch-Induced Human Myometrial Contractility and Delays Labor in Cynomolgus Monkeys.

    Science.gov (United States)

    Aye, Irving L M H; Moraitis, Alexandros A; Stanislaus, Dinesh; Charnock-Jones, D Stephen; Smith, Gordon C S

    2018-03-01

    Stretch of the myometrium promotes its contractility and is believed to contribute to the control of parturition at term and to the increased risk of preterm birth in multiple pregnancies. To determine the effects of the putative oxytocin receptor (OTR) inverse agonist retosiban on (1) the contractility of human myometrial explants and (2) labor in nonhuman primates. Human myometrial biopsies were obtained at planned term cesarean, and explants were exposed to stretch in the presence and absence of a range of drugs, including retosiban. The in vivo effects of retosiban were determined in cynomolgus monkeys. Prolonged mechanical stretch promoted myometrial extracellular signal-regulated kinase (ERK)1/2 phosphorylation. Moreover, stretch-induced stimulation of myometrial contractility was prevented by ERK1/2 inhibitors. Retosiban (10 nM) prevented stretch-induced stimulation of myometrial contractility and phosphorylation of ERK1/2. Moreover, the inhibitory effect of retosiban on stretch-induced ERK1/2 phosphorylation was prevented by coincubation with a 100-fold excess of a peptide OTR antagonist, atosiban. Compared with vehicle-treated cynomolgus monkeys, treatment with oral retosiban (100 to 150 days of gestational age) reduced the risk of spontaneous delivery (hazard ratio = 0.07, 95% confidence interval 0.01 to 0.60, P = 0.015). The OTR acts as a uterine mechanosensor, whereby stretch increases myometrial contractility through agonist-free activation of the OTR. Retosiban prevents this through inverse agonism of the OTR and, in vivo, reduced the likelihood of spontaneous labor in nonhuman primates. We hypothesize that retosiban may be an effective preventative treatment of preterm birth in high-risk multiple pregnancies, an area of unmet clinical need.

  7. Regional gastrointestinal contractility parameters using the wireless motility capsule

    DEFF Research Database (Denmark)

    Farmer, A D; Wegeberg, A-M L; Brock, B

    2018-01-01

    BACKGROUND: The wireless motility capsule concurrently measures temperature, pH and pressure as it traverses the gastrointestinal tract. AIMS: To describe normative values for motility/contractility parameters across age, gender and testing centres. METHODS: Healthy participants underwent...

  8. Apelin and APJ orchestrate complex tissue-specific control of cardiomyocyte hypertrophy and contractility in the hypertrophy-heart failure transition.

    Science.gov (United States)

    Parikh, Victoria Nicole; Liu, Jing; Shang, Ching; Woods, Christopher; Chang, Alex Chia Yu; Zhao, Mingming; Charo, David N; Grunwald, Zachary; Huang, Yong; Seo, Kinya; Tsao, Philip S; Bernstein, Daniel; Ruiz-Lozano, Pilar; Quertermous, Thomas; Ashley, Euan A

    2018-05-18

    The G protein coupled receptor APJ is a promising therapeutic target for heart failure. Constitutive deletion of APJ in the mouse is protective against the hypertrophy-heart failure transition via elimination of ligand-independent, β-arrestin dependent stretch transduction. However, the cellular origin of this stretch transduction and the details of its interaction with apelin signaling remain unknown. We generated mice with conditional elimination of APJ in the endothelium (APJ endo-/- ) and myocardium (APJ myo-/- ). No baseline difference was observed in LV function in APJ endo-/- , APJ myo-/- or controls (APJ endo+/+ , APJ myo+/+ ). After exposure to transaortic constriction (TAC), APJ endo-/- animals developed left ventricular failure while APJ myo-/- were protected. At the cellular level, carbon fiber stretch of freshly isolated single cardiomyocytes demonstrated decreased contractile response to stretch in APJ -/- cardiomyocytes compared to APJ +/+ cardiomyocytes. Calcium transient did not change with stretch in either APJ -/- or APJ +/+ cardiomyocytes. Application of apelin to APJ +/+ cardiomyocytes resulted in decreased calcium transient. Further, hearts of mice treated with apelin exhibited decreased phosphorylation at Troponin I (cTnI) N-terminal residues (Ser 22,23), consistent with increased calcium sensitivity. These data establish that APJ stretch transduction is mediated specifically by myocardial APJ, that APJ is necessary for stretch-induced increases in contractility, and that apelin opposes APJ's stretch-mediated hypertrophy signaling by lowering calcium transient while maintaining contractility through myofilament calcium sensitization. These findings underscore apelin's unique potential as a therapeutic agent that can simultaneously support cardiac function and protect against the hypertrophy-heart failure transition.

  9. Cellular Architecture Regulates Collective Calcium Signaling and Cell Contractility.

    Directory of Open Access Journals (Sweden)

    Jian Sun

    2016-05-01

    Full Text Available A key feature of multicellular systems is the ability of cells to function collectively in response to external stimuli. However, the mechanisms of intercellular cell signaling and their functional implications in diverse vascular structures are poorly understood. Using a combination of computational modeling and plasma lithography micropatterning, we investigate the roles of structural arrangement of endothelial cells in collective calcium signaling and cell contractility. Under histamine stimulation, endothelial cells in self-assembled and microengineered networks, but not individual cells and monolayers, exhibit calcium oscillations. Micropatterning, pharmacological inhibition, and computational modeling reveal that the calcium oscillation depends on the number of neighboring cells coupled via gap junctional intercellular communication, providing a mechanistic basis of the architecture-dependent calcium signaling. Furthermore, the calcium oscillation attenuates the histamine-induced cytoskeletal reorganization and cell contraction, resulting in differential cell responses in an architecture-dependent manner. Taken together, our results suggest that endothelial cells can sense and respond to chemical stimuli according to the vascular architecture via collective calcium signaling.

  10. Administration of imatinib mesylate in rats impairs the neonatal development of intramuscular interstitial cells in bladder and results in altered contractile properties.

    Science.gov (United States)

    Gevaert, Thomas; Hutchings, Graham; Everaerts, Wouter; Prenen, Hans; Roskams, Tania; Nilius, Bernd; De Ridder, Dirk

    2014-04-01

    The KIT receptor is considered as a reliable marker for a subpopulation of interstitial cells (IC), and by persistent neonatal inhibition of KIT we have investigated the role of this receptor in the development of IC-networks in bladder and we have observed the functional consequences of this inhibition. Newborn rat pups were treated daily with the KIT inhibitor imatinib mesylate (IM). After 7 days animals were sacrificed and bladder samples were dissected for morphological and functional studies. Morphological research consisted of immunohistochemistry with IC specific antigens (KIT and vimentin) and electron microscopy. The functional studies were based on isolated bladder strips in organ baths, in which spontaneous bladder contractility and the response to a non-subtype selective muscarinic agonist was evaluated. Suburothelial and intramuscular IC were found and characterized in neonatal rat bladder. IM-treatment induced a significant decrease in numbers of IC based on specific immunohistochemical markers, and electron microscopy revealed evidence of IC cell injury. These morphological alterations were observed on intramuscular IC only and not on IC in the suburothelium. Isolated muscle strips from IM-treated animals had a lower contractile frequency and an altered response to muscarinic agonists. The present study shows the presence of regional subpopulations of IC in neonatal rat bladder, provides evidence for a dependence on KIT of the development of intramuscular IC and supports the hypothesis that a poor development of networks of intramuscular IC might have repercussions on spontaneous and muscarinic-induced bladder contractility. © 2013 Wiley Periodicals, Inc.

  11. Plasticity of TOM complex assembly in skeletal muscle mitochondria in response to chronic contractile activity.

    Science.gov (United States)

    Joseph, Anna-Maria; Hood, David A

    2012-03-01

    We investigated the assembly of the TOM complex within skeletal muscle under conditions of chronic contractile activity-induced mitochondrial biogenesis. Tom40 import into mitochondria was increased by chronic contractile activity, as was its time-dependent assembly into the TOM complex. These changes coincided with contractile activity-induced augmentations in the expression of key protein import machinery components Tim17, Tim23, and Tom22, as well as the cytosolic chaperone Hsp90. These data indicate the adaptability of the TOM protein import complex and suggest a regulatory role for the assembly of this complex in exercise-induced mitochondrial biogenesis. Copyright © 2011 Elsevier B.V. and Mitochondria Research Society. All rights reserved. All rights reserved.

  12. Effects of endothelin, calcium channel blockade and EDRF inhibition on the contractility of human uteroplacental arteries.

    Science.gov (United States)

    Fried, G; Liu, Y A

    1994-08-01

    In order to examine the possibility that endothelin might be important in the regulation of placental blood flow, human uteroplacental vessels were superfused in vitro to study the contractile effect of endothelin as compared with a known strong contractor of placental blood vessels, serotonin (5-HT). The contractile responses were compared in the presence and absence of calcium channel blocking agents, as well as in the presence of L-NMA, an inhibitor of EDRF/nitric oxide. Endothelin (ET, 10(-10)-10(-6) M) and 5-HT (10(-8)-10(-4) M) induced contractions in the vessels. Maximal contractions in the presence of endothelin were elicited at 10(-7) M, whereas 5-HT elicited maximal contractions at 10(-5) M. At 10(-7) M, ET was more potent than 5-HT. The calcium-channel blocking agents nifedipine, diltiazem and NiCl2 relaxed the vessels by 5-15% from baseline. The contractile response to ET in the presence of nifedipine or diltiazem was reduced by 55 and 67%, respectively. The response of 5-HT in the presence of nifedipine was reduced by 58%. The contractile response to 5-HT as well as ET in the presence of both nifedipine and NiCl2 was not significantly lower than in the presence of nifedipine only. The EDRF-inhibiting agent L-NMA caused a small contractile response at concentrations of 10(-6)-10(-5) M. ET as well as 5-HT added after pretreatment with L-NMA produced a larger contractile response than ET or 5-HT alone. The results show that ET has a strong contractile effect on placental blood vessels at concentrations likely to occur during labor and delivery. The mechanism whereby ET as well as 5-HT contracts placental vessel smooth muscle appears to partly involve nifedipine- and diltiazem-sensitive calcium channels, but almost half of the response depends on mobilization of calcium through other means.

  13. Effects of milrinone and epinephrine or dopamine on biventricular function and hemodynamics in right heart failure after pulmonary regurgitation.

    Science.gov (United States)

    Hyldebrandt, Janus Adler; Agger, Peter; Sivén, Eleonora; Wemmelund, Kristian Borup; Heiberg, Johan; Frederiksen, Christian Alcaraz; Ravn, Hanne Berg

    2015-09-01

    Right ventricular failure (RVF) secondary to pulmonary regurgitation (PR) impairs right ventricular (RV) function and interrupts the interventricular relationship. There are few recommendations for the medical management of severe RVF after prolonged PR. PR was induced in 16 Danish landrace pigs by plication of the pulmonary valve leaflets. Twenty-three pigs served as controls. At reexamination the effect of milrinone, epinephrine, and dopamine was evaluated using biventricular conductance and pulmonary catheters. Seventy-nine days after PR was induced, RV end-diastolic volume index (EDVI) had increased by 33% (P = 0.006) and there was a severe decrease in the load-independent measurement of contractility (PRSW) (-58%; P = 0.003). Lower cardiac index (CI) (-28%; P Milrinone improved RV-PRSW and CI and maintained systemic pressure while reducing central venous pressure (CVP). Epinephrine and dopamine further improved biventricular PRSW and CI equally in a dose-dependent manner. Systemic and pulmonary pressures were higher in the dopamine-treated animals compared with epinephrine-treated animals. None of the treatments improved stroke volume index (SVI) despite increases in contractility. Strong correlation was detected between SVI and LV-EDVI, but not SVI and biventricular contractility. In RVF due to PR, milrinone significantly improved CI, SvO2, and CVP and increased contractility in the RV. Epinephrine and dopamine had equal inotropic effect, but a greater vasopressor effect was observed for dopamine. SV was unchanged due to inability of both treatments to increase LV-EDVI. Copyright © 2015 the American Physiological Society.

  14. Separate effects of ischemia, hypoxia, and contractility on thallium-201 kinetics in rabbit myocardium

    International Nuclear Information System (INIS)

    Leppo, J.A.; Macneil, P.B.; Moring, A.F.; Apstein, C.S.

    1986-01-01

    The effects of hypoxia and ischemia, as well as altered contractility, on thallium-201 ( 201 TI) kinetics were evaluated in 42 isolated isovolumetrically contracting rabbit hearts. In Group A, three subgroups (n = 7 each) were studied that had either normal flow and oxygenation, hypoxia and normal flow, or ischemic flow and normal perfusate oxygen content. In Group B, three subgroups (n = 7 each) were studied and all hearts had normal flow but the contractile state was either enhanced with isoproterenol or impaired by hypocalcemia. A hemoglobin-free buffer perfusate was used in all experiments and multiple timed collections of arterial and coronary sinus effluent were used to model myocardial isotope activity during 30 min of constant uptake followed by 30 min of tracer clearance. During ischemia, hypoxia and hypocalcemia peak developed pressure and peak positive and negative dP/dt were all significantly reduced when compared to normal hemodynamic parameters (p less than 0.01). As expected, isoproterenol significantly elevated these parameters (p less than 0.04). Myocardial 201 TI kinetics were adequately described utilizing a bi-exponential model having a fast and slow component. Only ischemic hearts had significantly lower rate constants for 201 TI uptake and clearance than normal hearts (p less than 0.001). The mean (+/- s.d.) myocardial uptake and clearance rates for 201 TI (%/min) varied between 4.86 +/- 0.87 and 7.18 +/- 1.45 for the remaining groups of hearts. Therefore, myocardial 201 TI kinetics appear to be dominated by coronary flow and may not reflect marked alterations in the metabolic and contractile state. These data suggest that normal 201 TI uptake in impaired or hypercontractile cells, receiving normal flow, may not represent normal cellular function

  15. Spontaneous and α-adrenoceptor-induced contractility in human collecting lymphatic vessels require chloride

    DEFF Research Database (Denmark)

    Mohanakumar, Sheyanth; Majgaard, Jens; Telinius, Niklas

    2018-01-01

    - with the impermeant anion aspartate and inhibition of Cl- transport and channels with the clinical diuretics furosemide and bendroflumethiazide, as well as DIDS and NPPB. The molecular expression of calcium-activated chloride channels was investigated by RT-PCR and proteins localized using immunoreactivity....... Spontaneous and norepinephrine-induced contractility in human lymphatic vessels was highly abrogated after Cl- substitution with aspartate. 100‒300µM DIDS or NPPB inhibited spontaneous contractile behavior. Norepinephrine-stimulated tone was furthermore markedly abrogated by 200µM DIDS. Furosemide lowered...

  16. Considerations for Contractile Electroactive Polymeric Materials and Actuators

    Energy Technology Data Exchange (ETDEWEB)

    Rasmussen, Lenore; Erickson, Carl J.; Meixler, Lewis D.; Ascione, George; Gentile, Charles A.; Tilson, Charles; Bernasek, Stephen L.; Abelev, Esta

    2009-06-16

    Ras Labs produces electroactive polymer (EAP) based materials and actuators that bend, swell, ripple and now contract (new development) with low electric input. This is an important attribute because of the ability of contraction to produce life-like motion. The mechanism of contraction is not well understood. Radionuclide-labeled experiments were conducted to follow the movement of electrolytes and water in these EAPs when activated. Extreme temperature experiments were performed on the contractile EAPs with very favorable results. One of the biggest challenges in developing these actuators, however, is the electrode-EAP interface because of the pronounced movement of the EAP. Plasma treatments of metallic electrodes were investigated in order to improve the attachment of the embedded electrodes to the EAP material. Surface analysis, adhesive testing, and mechanical testing were conducted to test metal surfaces and metal-polymer interfaces. The nitrogen plasma treatment of titanium produced a strong metal-polymer interface; however, oxygen plasma treatment of both stainless steel and titanium produced even stronger metal-polymer interfaces. Plasma treatment of the electrodes allows for the embedded electrodes and the EAP material of the actuator to work and move as a unit, with no detachment, by significantly improving the metal-polymer interface.

  17. Considerations for Contractile Electroactive Polymeric Materials and Actuators

    International Nuclear Information System (INIS)

    Rasmussen, L.; Erickson, Carl J.; Meixler, Lewis D.; Ascione, G.; Gentile, Charles A.; Tilson, C.; Bernasek, Stephen L.; Abelev, E.

    2009-01-01

    Ras Labs produces electroactive polymer (EAP) based materials and actuators that bend, swell, ripple and now contract (new development) with low electric input. This is an important attribute because of the ability of contraction to produce life-like motion. The mechanism of contraction is not well understood. Radionuclide-labeled experiments were conducted to follow the movement of electrolytes and water in these EAPs when activated. Extreme temperature experiments were performed on the contractile EAPs with very favorable results. One of the biggest challenges in developing these actuators, however, is the electrode-EAP interface because of the pronounced movement of the EAP. Plasma treatments of metallic electrodes were investigated in order to improve the attachment of the embedded electrodes to the EAP material. Surface analysis, adhesive testing, and mechanical testing were conducted to test metal surfaces and metal-polymer interfaces. The nitrogen plasma treatment of titanium produced a strong metal-polymer interface; however, oxygen plasma treatment of both stainless steel and titanium produced even stronger metal-polymer interfaces. Plasma treatment of the electrodes allows for the embedded electrodes and the EAP material of the actuator to work and move as a unit, with no detachment, by significantly improving the metal-polymer interface

  18. Recently active contractile deformation in the forearc of southern Peru

    Science.gov (United States)

    Hall, S. R.; Farber, D.; Audin, L.; Finkel, R. C.

    2010-12-01

    In the Precordillera and Western Cordillera of southern Peru (14°-18°S), vast pediment surfaces have been abandoned through drainage diversion and river incision, with the major drainages carving deep canyons. Within this region, we have identified range-sub-parallel contractile structures that accommodate significant distributed crustal deformation. Young geomorphic features document both the presence and youthfulness of these contractile structures. Here, we determine exposure ages on geomorphic features such as pediment surfaces and fluvial terraces using in situ produced cosmogenic radionuclides, in conjunction with field and remote mapping. This chronologic data reveals that ancient surfaces have been preserved as a result of very low erosion rates. We measure this rate to be chronology and geomorphic mapping, we calculate a Pleistocene river incision rate of ~0.3mm/yr determined from data collected along exoreic rivers. This rate is consistent with longer-term incision rates measured in other localities along this margin. We suggest that, in this region of southern Peru, the steep western wedge of the Andean margin supports the high topography of the Altiplano through a combination of uplift along steeply dipping contractile west-vergent structures and isostatic responses to the focused removal of large amounts of crustal material through canyon incision. Further, that these range sub-parallel structures are related at depth to a thrust system that plays a role in not only the maintenance of the Andean margin, but potentially in its formation as well.

  19. Effects of hypoxia and hypercapnia on geniohyoid contractility and endurance.

    Science.gov (United States)

    Salmone, R J; Van Lunteren, E

    1991-08-01

    Sleep apnea and other respiratory diseases produce hypoxemia and hypercapnia, factors that adversely affect skeletal muscle performance. To examine the effects of these chemical alterations on force production by an upper airway dilator muscle, the contractile and endurance characteristics of the geniohyoid muscle were examined in situ during severe hypoxia (arterial PO2 less than 40 Torr), mild hypoxia (PO2 45-65 Torr), and hypercapnia (PCO2 55-80 Torr) and compared with hyperoxic-normocapnic conditions in anesthetized cats. Muscles were studied at optimal length, and contractile force was assessed in response to supramaximal electrical stimulation of the hypoglossal nerve (n = 7 cats) or geniohyoid muscle (n = 2 cats). There were no significant changes in the twitch kinetics or force-frequency curve of the geniohyoid muscle during hypoxia or hypercapnia. However, the endurance of the geniohyoid, as reflected in the fatigue index (ratio of force at 2 min to initial force in response to 40-Hz stimulation at a duty cycle 0.33), was significantly reduced by severe hypoxia but not by hypercapnia or mild hypoxia. In addition, the downward shift in the force-frequency curve after the repetitive stimulation protocol was greater during hypoxia than hyperoxia, especially at higher frequencies. In conclusion, the ability of the geniohyoid muscle to maintain force output during high levels of activation is adversely affected by severe hypoxia but not mild hypoxia or hypercapnia. However, none of these chemical perturbations affected muscle contractility acutely.

  20. ACE inhibition with spirapril improves diastolic function at rest independent of vasodilation during treatment with spirapril in mild to moderate hypertension

    DEFF Research Database (Denmark)

    Petersen, J R; Drabaek, H; Gleerup, Christian Peter-Ole G.

    1996-01-01

    the patients entered three periods lasting four weeks each, wherein they were treated with placebo, spirapril, or hydrochlorothiazide. Blood pressure, hemodynamic variables (stroke volume, heart rate, cardiac output, index of contractility, and systemic vascular resistance), echocardiography (left ventricular...... mass), and Doppler-derived atrial to early (A/E)-ratio velocity time integrals (VTI) were measured at the end of each of the four periods. Spirapril lowered the A/E-ratio VTIs (0.57, 0.12-1.00) (P ... indicate that spirapril lowers A/E ratio within four weeks in patients with mild to moderate essential hypertension. It thereby seems able to improve left ventricular diastolic function. The effect is not dependent upon changes in hemodynamic variables, blood pressure, left ventricular mass, or end...

  1. Measuring the Contractile Response of Isolated Tissue Using an Image Sensor

    Directory of Open Access Journals (Sweden)

    David Díaz-Martín

    2015-04-01

    Full Text Available Isometric or isotonic transducers have traditionally been used to study the contractile/relaxation effects of drugs on isolated tissues. However, these mechanical sensors are expensive and delicate, and they are associated with certain disadvantages when performing experiments in the laboratory. In this paper, a method that uses an image sensor to measure the contractile effect of drugs on blood vessel rings and other luminal organs is presented. The new method is based on an image-processing algorithm, and it provides a fast, easy and non-expensive way to analyze the effects of such drugs. In our tests, we have obtained dose-response curves from rat aorta rings that are equivalent to those achieved with classical mechanic sensors.

  2. In vitro contractile effects of agents used in the clinical management of postpartum haemorrhage.

    Science.gov (United States)

    Morrison, John J; Crosby, David A; Crankshaw, Denis J

    2016-10-15

    Uterine atony is a major cause of postpartum haemorrhage and maternal mortality. However, the comparative pharmacology of agents used to treat this condition is poorly understood. This study evaluates, using human pregnant myometrium in vitro, a range of contractile parameters for agents used in the clinical treatment of atonic postpartum haemorrhage. The effects of oxytocin, carbetocin, ergometrine, carboprost, syntometrine and misoprostol were investigated in 146 myometrial strips from 19 donors. The potency and maximal response values were obtained, and compared, using both maximal amplitude and mean contractile force as indices of contraction. Single, EC50 concentrations of the agents were administered and both force and contraction peak parameters were compared during a 15-min exposure. Differences were considered significant when Poxytocin and carbetocin being the most potent. The most important difference between the agents was in their ability to increase the mean contractile force, with oxytocin superior to all agents except syntometrine. In single dose experiments, mean contractile force was the parameter that separated the agents. In this respect, oxytocin was not statistically different from carboprost or syntometrine, but was superior to all other agents. These findings support a clear role for oxytocin as the first line agent for treatment of postpartum haemorrhage and raise doubts about the potential clinical usefulness of misoprostol. Copyright © 2016 Elsevier B.V. All rights reserved.

  3. Genetic fuzzy system predicting contractile reactivity patterns of small arteries

    DEFF Research Database (Denmark)

    Tang, J; Sheykhzade, Majid; Clausen, B F

    2014-01-01

    strategies. Results show that optimized fuzzy systems (OFSs) predict contractile reactivity of arteries accurately. In addition, OFSs identified significant differences that were undetectable using conventional analysis in the responses of arteries between groups. We concluded that OFSs may be used...

  4. In vitro Differentiation of Functional Human Skeletal Myotubes in a Defined System.

    Science.gov (United States)

    Guo, Xiufang; Greene, Keshel; Akanda, Nesar; Smith, Alec; Stancescu, Maria; Lambert, Stephen; Vandenburgh, Herman; Hickman, James

    2014-01-01

    In vitro human skeletal muscle systems are valuable tools for the study of human muscular development, disease and treatment. However, published in vitro human muscle systems have so far only demonstrated limited differentiation capacities. Advanced differentiation features such as cross-striations and contractility have only been observed in co-cultures with motoneurons. Furthermore, it is commonly regarded that cultured human myotubes do not spontaneously contract, and any contraction has been considered to originate from innervation. This study developed a serum-free culture system in which human skeletal myotubes demonstrated advanced differentiation. Characterization by immunocytochemistry, electrophysiology and analysis of contractile function revealed these major features: A) well defined sarcomeric development, as demonstrated by the presence of cross-striations. B) finely developed excitation-contraction coupling apparatus characterized by the close apposition of dihydropyridine receptors on T-tubules and Ryanodine receptors on sarcoplasmic reticulum membranes. C) spontaneous and electrically controlled contractility. This report not only demonstrates an improved level of differentiation of cultured human skeletal myotubes, but also provides the first published evidence that such myotubes are capable of spontaneous contraction. Use of this functional in vitro human skeletal muscle system would advance studies concerning human skeletal muscle development and physiology, as well as muscle-related disease and therapy.

  5. The retardation of myometrial infiltration, reduction of uterine contractility, and alleviation of generalized hyperalgesia in mice with induced adenomyosis by levo-tetrahydropalmatine (l-THP) and andrographolide.

    Science.gov (United States)

    Mao, Xiaoyan; Wang, Yuedong; Carter, Andrew V; Zhen, Xuechu; Guo, Sun-Wei

    2011-10-01

    Adenomyosis is a tough disease to manage nonsurgically. Levo-tetrahydropalmatine (l-THP), a known analgesic, and andrographolide, a nuclear factor kappa B (NF-κB) inhibitor, are both active ingredients extracted from Chinese medicinal herbs. We sought to determine whether treatment of l-THP, andrographolide, and valproic acid (VPA) would suppress the myometrial infiltration, improve pain behavior, and reduce uterine contractility in a mice model of adenomyosis. Adenomyosis was induced in 55 female ICR mice neonatally dosed with tamoxifen, while another 8 (group C) were dosed with solvent only. Starting from 4 weeks after birth, hotplate test was administrated to all mice every 4 weeks. At the 16th week, all mice with induced adenomyosis were randomly divided into 6 groups, each receiving different treatment for 3 weeks: low- or high-dose l-THP, andrographolide, low-dose l-THP and andrographolide jointly, VPA, and untreated. Group C received no treatment. After treatment, the hotplate test was administered and all mice were killed. The depth of myometrial infiltration of ectopic endometrium and uterine contractility were measured and compared across groups. We found that induction of adenomyosis resulted in progressive generalized hyperalgesia, along with elevated amplitude and irregularity of uterine contractions. Treatment with either l-THP, andrographolide, VPA, or l-THP and andrographolide jointly suppressed myometrial infiltration, improved generalized hyperalgesia, and reduced the amplitude and irregularity of uterine contractions. These results suggest that increased uterine contractility, in the form of increased contractile amplitude and irregularity, may contribute to dysmenorrhea in women with adenomyosis. More importantly, l-THP, andrographolide, and VPA all seem to be promising compounds for treating adenomyosis.

  6. A contractile and counterbalancing adhesion system controls the 3D shape of crawling cells.

    Science.gov (United States)

    Burnette, Dylan T; Shao, Lin; Ott, Carolyn; Pasapera, Ana M; Fischer, Robert S; Baird, Michelle A; Der Loughian, Christelle; Delanoe-Ayari, Helene; Paszek, Matthew J; Davidson, Michael W; Betzig, Eric; Lippincott-Schwartz, Jennifer

    2014-04-14

    How adherent and contractile systems coordinate to promote cell shape changes is unclear. Here, we define a counterbalanced adhesion/contraction model for cell shape control. Live-cell microscopy data showed a crucial role for a contractile meshwork at the top of the cell, which is composed of actin arcs and myosin IIA filaments. The contractile actin meshwork is organized like muscle sarcomeres, with repeating myosin II filaments separated by the actin bundling protein α-actinin, and is mechanically coupled to noncontractile dorsal actin fibers that run from top to bottom in the cell. When the meshwork contracts, it pulls the dorsal fibers away from the substrate. This pulling force is counterbalanced by the dorsal fibers' attachment to focal adhesions, causing the fibers to bend downward and flattening the cell. This model is likely to be relevant for understanding how cells configure themselves to complex surfaces, protrude into tight spaces, and generate three-dimensional forces on the growth substrate under both healthy and diseased conditions.

  7. Carboxyl-terminal-dependent recruitment of nonmuscle myosin II to megakaryocyte contractile ring during polyploidization.

    Science.gov (United States)

    Badirou, Idinath; Pan, Jiajia; Legrand, Céline; Wang, Aibing; Lordier, Larissa; Boukour, Siham; Roy, Anita; Vainchenker, William; Chang, Yunhua

    2014-10-16

    Endomitosis is a unique megakaryocyte (MK) differentiation process that is the consequence of a late cytokinesis failure associated with a contractile ring defect. Evidence from in vitro studies has revealed the distinct roles of 2 nonmuscle myosin IIs (NMIIs) on MK endomitosis: only NMII-B (MYH10), but not NMII-A (MYH9), is localized in the MK contractile ring and implicated in mitosis/endomitosis transition. Here, we studied 2 transgenic mouse models in which nonmuscle myosin heavy chain (NMHC) II-A was genetically replaced either by II-B or by a chimeric NMHCII that combined the head domain of II-A with the rod and tail domains of II-B. This study provides in vivo evidence on the specific role of NMII-B on MK polyploidization. It demonstrates that the carboxyl-terminal domain of the heavy chains determines myosin II localization to the MK contractile ring and is responsible for the specific role of NMII-B in MK polyploidization.

  8. Chronic clenbuterol treatment compromises force production without directly altering skeletal muscle contractile machinery

    Science.gov (United States)

    Py, G; Ramonatxo, C; Sirvent, P; Sanchez, A M J; Philippe, A G; Douillard, A; Galbès, O; Lionne, C; Bonnieu, A; Chopard, A; Cazorla, O; Lacampagne, A; Candau, R B

    2015-01-01

    Clenbuterol is a β2-adrenergic receptor agonist known to induce skeletal muscle hypertrophy and a slow-to-fast phenotypic shift. The aim of the present study was to test the effects of chronic clenbuterol treatment on contractile efficiency and explore the underlying mechanisms, i.e. the muscle contractile machinery and calcium-handling ability. Forty-three 6-week-old male Wistar rats were randomly allocated to one of six groups that were treated with either subcutaneous equimolar doses of clenbuterol (4 mg kg−1 day−1) or saline solution for 9, 14 or 21 days. In addition to the muscle hypertrophy, although an 89% increase in absolute maximal tetanic force (Po) was noted, specific maximal tetanic force (sPo) was unchanged or even depressed in the slow twitch muscle of the clenbuterol-treated rats (P muscle contraction and relaxation force kinetics indicated that clenbuterol treatment significantly reduced the rate constant of force development and the slow and fast rate constants of relaxation in extensor digitorum longus muscle (P fast rate constant of relaxation in soleus muscle (P fibres (fast twitch fibres) from clenbuterol-treated animals demonstrated decreased amplitude after 14 days (−19%, P < 0.01) and 21 days (−25%, P < 0.01). In conclusion, we showed that chronic clenbuterol treatment reduces contractile efficiency, with altered contraction and relaxation kinetics, but without directly altering the contractile machinery. Lower Ca2+ release during contraction could partially explain these deleterious effects. PMID:25656230

  9. Sustained IGF-1 Secretion by Adipose-Derived Stem Cells Improves Infarcted Heart Function.

    Science.gov (United States)

    Bagno, Luiza L; Carvalho, Deivid; Mesquita, Fernanda; Louzada, Ruy A; Andrade, Bruno; Kasai-Brunswick, Taís H; Lago, Vivian M; Suhet, Grazielle; Cipitelli, Debora; Werneck-de-Castro, João Pedro; Campos-de-Carvalho, Antonio C

    2016-01-01

    The mechanism by which stem cell-based therapy improves heart function is still unknown, but paracrine mechanisms seem to be involved. Adipose-derived stem cells (ADSCs) secrete several factors, including insulin-like growth factor-1 (IGF-1), which may contribute to myocardial regeneration. Our aim was to investigate whether the overexpression of IGF-1 in ADSCs (IGF-1-ADSCs) improves treatment of chronically infarcted rat hearts. ADSCs were transduced with a lentiviral vector to induce IGF-1 overexpression. IGF-1-ADSCs transcribe100- to 200-fold more IGF-1 mRNA levels compared to nontransduced ADSCs. IGF-1 transduction did not alter ADSC immunophenotypic characteristics even under hypoxic conditions. However, IGF-1-ADSCs proliferate at higher rates and release greater amounts of growth factors such as IGF-1, vascular endothelial growth factor (VEGF), and hepatocyte growth factor (HGF) under normoxic and hypoxic conditions. Importantly, IGF-1 secreted by IGF-1-ADSCs is functional given that Akt-1 phosphorylation was remarkably induced in neonatal cardiomyocytes cocultured with IGF-1-ADSCs, and this increase was prevented with phosphatidylinositol 3-kinase (PI3K) inhibitor treatment. Next, we tested IGF-1-ADSCs in a rat myocardial infarction (MI) model. MI was performed by coronary ligation, and 4 weeks after MI, animals received intramyocardial injections of either ADSCs (n = 7), IGF-1-ADSCs (n = 7), or vehicle (n = 7) into the infarcted border zone. Left ventricular function was evaluated by echocardiography before and after 6 weeks of treatment, and left ventricular hemodynamics were assessed 7 weeks after cell injection. Notably, IGF-1-ADSCs improved left ventricular ejection fraction and cardiac contractility index, but did not reduce scar size when compared to the ADSC-treated group. In summary, transplantation of ADSCs transduced with IGF-1 is a superior therapeutic approach to treat MI compared to nontransduced ADSCs, suggesting that gene and cell

  10. An anthelmintic drug, pyrvinium pamoate, thwarts fibrosis and ameliorates myocardial contractile dysfunction in a mouse model of myocardial infarction.

    Directory of Open Access Journals (Sweden)

    Motoaki Murakoshi

    Full Text Available Metabolic adaptation to limited supplies of oxygen and nutrients plays a pivotal role in health and disease. Heart attack results from insufficient delivery of oxygen and nutrients to the heart, where cardiomyocytes die and cardiac fibroblasts proliferate--the latter causing scar formation, which impedes regeneration and impairs contractility of the heart. We postulated that cardiac fibroblasts survive metabolic stress by adapting their intracellular metabolism to low oxygen and nutrients, and impeding this metabolic adaptation would thwart their survival and facilitate the repair of scarred heart. Herein, we show that an anthelmintic drug, Pyrvinium pamoate, which has been previously shown to compromise cancer cell survival under glucose starvation condition, also disables cardiac fibroblast survival specifically under glucose deficient condition. Furthermore, Pyrvinium pamoate reduces scar formation and improves cardiac contractility in a mouse model of myocardial infarction. As Pyrvinium pamoate is an FDA-approved drug, our results suggest a therapeutic use of this or other related drugs to repair scarred heart and possibly other organs.

  11. Resolving the role of actoymyosin contractility in cell microrheology.

    Directory of Open Access Journals (Sweden)

    Christopher M Hale

    2009-09-01

    Full Text Available Einstein's original description of Brownian motion established a direct relationship between thermally-excited random forces and the transport properties of a submicron particle in a viscous liquid. Recent work based on reconstituted actin filament networks suggests that nonthermal forces driven by the motor protein myosin II can induce large non-equilibrium fluctuations that dominate the motion of particles in cytoskeletal networks. Here, using high-resolution particle tracking, we find that thermal forces, not myosin-induced fluctuating forces, drive the motion of submicron particles embedded in the cytoskeleton of living cells. These results resolve the roles of myosin II and contractile actomyosin structures in the motion of nanoparticles lodged in the cytoplasm, reveal the biphasic mechanical architecture of adherent cells-stiff contractile stress fibers interdigitating in a network at the cell cortex and a soft actin meshwork in the body of the cell, validate the method of particle tracking-microrheology, and reconcile seemingly disparate atomic force microscopy (AFM and particle-tracking microrheology measurements of living cells.

  12. An EMMPRIN–γ-catenin–Nm23 complex drives ATP production and actomyosin contractility at endothelial junctions

    Science.gov (United States)

    Moreno, Vanessa; Gonzalo, Pilar; Gómez-Escudero, Jesús; Pollán, Ángela; Acín-Pérez, Rebeca; Breckenridge, Mark; Yáñez-Mó, María; Barreiro, Olga; Orsenigo, Fabrizio; Kadomatsu, Kenji; Chen, Christopher S.; Enríquez, José A.; Dejana, Elisabetta; Sánchez-Madrid, Francisco; Arroyo, Alicia G.

    2014-01-01

    ABSTRACT Cell–cell adhesions are important sites through which cells experience and resist forces. In endothelial cells, these forces regulate junction dynamics and determine endothelial barrier strength. We identify the Ig superfamily member EMMPRIN (also known as basigin) as a coordinator of forces at endothelial junctions. EMMPRIN localization at junctions correlates with endothelial junction strength in different mouse vascular beds. Accordingly, EMMPRIN-deficient mice show altered junctions and increased junction permeability. Lack of EMMPRIN alters the localization and function of VE-cadherin (also known as cadherin-5) by decreasing both actomyosin contractility and tugging forces at endothelial cell junctions. EMMPRIN ensures proper actomyosin-driven maturation of competent endothelial junctions by forming a molecular complex with γ-catenin (also known as junction plakoglobin) and Nm23 (also known as NME1), a nucleoside diphosphate kinase, thereby locally providing ATP to fuel the actomyosin machinery. These results provide a novel mechanism for the regulation of actomyosin contractility at endothelial junctions and might have broader implications in biological contexts such as angiogenesis, collective migration and tissue morphogenesis by coupling compartmentalized energy production to junction assembly. PMID:24994937

  13. An EMMPRIN-γ-catenin-Nm23 complex drives ATP production and actomyosin contractility at endothelial junctions.

    Science.gov (United States)

    Moreno, Vanessa; Gonzalo, Pilar; Gómez-Escudero, Jesús; Pollán, Ángela; Acín-Pérez, Rebeca; Breckenridge, Mark; Yáñez-Mó, María; Barreiro, Olga; Orsenigo, Fabrizio; Kadomatsu, Kenji; Chen, Christopher S; Enríquez, José A; Dejana, Elisabetta; Sánchez-Madrid, Francisco; Arroyo, Alicia G

    2014-09-01

    Cell-cell adhesions are important sites through which cells experience and resist forces. In endothelial cells, these forces regulate junction dynamics and determine endothelial barrier strength. We identify the Ig superfamily member EMMPRIN (also known as basigin) as a coordinator of forces at endothelial junctions. EMMPRIN localization at junctions correlates with endothelial junction strength in different mouse vascular beds. Accordingly, EMMPRIN-deficient mice show altered junctions and increased junction permeability. Lack of EMMPRIN alters the localization and function of VE-cadherin (also known as cadherin-5) by decreasing both actomyosin contractility and tugging forces at endothelial cell junctions. EMMPRIN ensures proper actomyosin-driven maturation of competent endothelial junctions by forming a molecular complex with γ-catenin (also known as junction plakoglobin) and Nm23 (also known as NME1), a nucleoside diphosphate kinase, thereby locally providing ATP to fuel the actomyosin machinery. These results provide a novel mechanism for the regulation of actomyosin contractility at endothelial junctions and might have broader implications in biological contexts such as angiogenesis, collective migration and tissue morphogenesis by coupling compartmentalized energy production to junction assembly. © 2014. Published by The Company of Biologists Ltd.

  14. Comparative impact of AAV and enzyme replacement therapy on respiratory and cardiac function in adult Pompe mice

    Directory of Open Access Journals (Sweden)

    Darin J Falk

    Full Text Available Pompe disease is an autosomal recessive genetic disorder characterized by a deficiency of the enzyme responsible for degradation of lysosomal glycogen (acid α-glucosidase (GAA. Cardiac dysfunction and respiratory muscle weakness are primary features of this disorder. To attenuate the progressive and rapid accumulation of glycogen resulting in cardiorespiratory dysfunction, adult Gaa−/− mice were administered a single systemic injection of rAAV2/9-DES-hGAA (AAV9-DES or bimonthly injections of recombinant human GAA (enzyme replacement therapy (ERT. Assessment of cardiac function and morphology was measured 1 and 3 months after initiation of treatment while whole-body plethysmography and diaphragmatic contractile function was evaluated at 3 months post-treatment in all groups. Gaa−/− animals receiving either AAV9-DES or ERT demonstrated a significant improvement in cardiac function and diaphragmatic contractile function as compared to control animals. AAV9-DES treatment resulted in a significant reduction in cardiac dimension (end diastolic left ventricular mass/gram wet weight; EDMc at 3 months postinjection. Neither AAV nor ERT therapy altered minute ventilation during quiet breathing (eupnea. However, breathing frequency and expiratory time were significantly improved in AAV9-DES animals. These results indicate systemic delivery of either strategy improves cardiac function but AAV9-DES alone improves respiratory parameters at 3 months post-treatment in a murine model of Pompe disease.

  15. Contractile properties are disrupted in Becker muscular dystrophy, but not in limb girdle type 2I.

    Science.gov (United States)

    Løkken, Nicoline; Hedermann, Gitte; Thomsen, Carsten; Vissing, John

    2016-09-01

    We investigated whether a linear relationship between muscle strength and cross-sectional area (CSA) is preserved in calf muscles of patients with Becker muscular dystrophy (BMD, n = 14) and limb-girdle type 2I muscular dystrophy (LGMD2I, n = 11), before and after correcting for muscle fat infiltration. The Dixon magnetic resonance imaging technique was used to quantify fat and calculate a fat-free contractile CSA. Strength was assessed by dynamometry. Muscle strength/CSA relationships were significantly lower in patients versus controls. The strength/contractile-CSA relationship was still severely lowered in BMD, but was almost normalized in LGMD2I. Our findings suggest close to intact contractile properties in LGMD2I, which are severely disrupted in BMD. Ann Neurol 2016;80:466-471. © 2016 American Neurological Association.

  16. Mechanobiological induction of long-range contractility by diffusing biomolecules and size scaling in cell assemblies

    Science.gov (United States)

    Dasbiswas, K.; Alster, E.; Safran, S. A.

    2016-06-01

    Mechanobiological studies of cell assemblies have generally focused on cells that are, in principle, identical. Here we predict theoretically the effect on cells in culture of locally introduced biochemical signals that diffuse and locally induce cytoskeletal contractility which is initially small. In steady-state, both the concentration profile of the signaling molecule as well as the contractility profile of the cell assembly are inhomogeneous, with a characteristic length that can be of the order of the system size. The long-range nature of this state originates in the elastic interactions of contractile cells (similar to long-range “macroscopic modes” in non-living elastic inclusions) and the non-linear diffusion of the signaling molecules, here termed mechanogens. We suggest model experiments on cell assemblies on substrates that can test the theory as a prelude to its applicability in embryo development where spatial gradients of morphogens initiate cellular development.

  17. Dynamic MR cholangiography after fatty meal loading. Cystic contractility and dynamic evaluation of biliary stasis

    International Nuclear Information System (INIS)

    Omata, Takayuki; Saito, Kazuhiro; Kotake, Fumio; Mizokami, Yuji; Matsuoka, Takeshi; Abe, Kimihiko

    2002-01-01

    Dynamic MR cholangiography was conducted on patients with cholelithiasis or choledocholithiasis who had consumed a fatty test meal (Molyork) and the cystic contractility and dynamics of biliary stasis was evaluated. The subjects were 25 with intracystic cholelithiasis, 10 with choledocholithiasis and 10 normal controls. For an imaging sequence, the rapid acquisition with relaxation enhancement (RARE) method was employed and imaging was conducted for 40 min (every 30 s following Molyork administration) without breath-holding. The gallbladder contraction ratio was computed and the contractile ratio for the common bile duct was calculated. To determine the bile flow to the duodenum, the high-intensity signal, indicating the flow from the lower common bile duct, and perfusion of the duodenum were observed in dynamic mode on the monitor with the naked eye and interpreted as positive bile flow. The frequency of this flow was visually monitored. The gallbladder contractile ratio was significantly reduced in patients with cholelithiasis or choledocholithiasis compared with the controls. In a comparison with the normal controls, no sequential changes were noted in the mean contractile ratio of the common bile duct of the patients with cholelithiasis or choledocholithiasis. The mean frequency of bile flow observed for each 40 min period was 13±2.4, 6±2.2, and 4±1.3 times for the controls, those with intracystic cholelithiasis, and those with choledocholithiasis, respectively. Compared with the controls, the latter two patient groups showed evident reductions in the frequency of bile flow to the duodenum (p<0.001). Dynamic MRC combined with Molyork loading makes it possible to compute cystic contractile ratios and perform a dynamic examination of bile flow under non-invasive, near-physiological conditions. (author)

  18. Usefulness of BMIPP SPECT to evaluate myocardial viability, contractile reserve and coronary stenotic progression after reperfusion in acute myocardial infarction

    International Nuclear Information System (INIS)

    Katsunuma, Eita; Kurokawa, Shingo; Takahashi, Motoi; Fukuda, Naoto; Kurosawa, Toshiro; Izumi, Tohru

    2001-01-01

    Using combined 123 I-BMIPP (BMIPP), 201 Tl (Tl) and 99m Tc-PYP (PYP) myocardial SPECT imaging, risk areas of acute myocardial infarction were documented in the acute stage, and then these images were evaluated for how well they reflected muscle viability, contractile reserve and coronary stenotic progression subsequent to reperfusion therapy. Patients who only experienced a first attack of myocardial infarction were enrolled. In total, 36 cases who had had the occluded artery successfully reperfused were examined during the past year. They had no significant vessel disease except for the culprit single artery. The patients were comprised of 32 men and 4 women. The mean age was 59.5 years. All patients underwent coronary angiography and left ventricular (LV) angiography in the emergency room. BMIPP/Tl and PYP myocardial SPECT were conducted in the acute stage and chronic stage. In the chronic stage LV angiography was repeated to assess the improvement of LV wall motion. The response to postextrasystolic potentiation (PESP) testing was performed to estimate myocardial contractile reserve. The risk area of acute myocardial infarction (AMI) was documented by reduced BMIPP accumulation. The size of reduced BMIPP accumulation was larger than that of PYP accumulation. A BMIPP/Tl discrepancy and PYP accumulation were documented to assess myocardial viability. Both improvement in LV wall motion and augmentation of PESP response were more closely related to a BMIPP/Tl discrepancy in the presence or absence of PYP accumulation. Therefore, it would be possible to evaluate myocardial viability and contractile reserve by the BMIPP/Tl discrepancy. In patients with good viability, it is important to predict whether there is coronary stenotic progression or not. In this study, we demonstrated that most patients with improved BMIPP images had no significant progression at the site of intervention. Serial observation of BMIPP images from the acute stage to the chronic stage might

  19. Functional Loss of Bmsei Causes Thermosensitive Epilepsy in Contractile Mutant Silkworm, Bombyx mori

    Science.gov (United States)

    Nie, Hongyi; Cheng, Tingcai; Huang, Xiaofeng; Zhou, Mengting; Zhang, Yinxia; Dai, Fangyin; Mita, Kazuei; Xia, Qingyou; Liu, Chun

    2015-07-01

    The thermoprotective mechanisms of insects remain largely unknown. We reported the Bombyx mori contractile (cot) behavioral mutant with thermo-sensitive seizures phenotype. At elevated temperatures, the cot mutant exhibit seizures associated with strong contractions, rolling, vomiting, and a temporary lack of movement. We narrowed a region containing cot to ~268 kb by positional cloning and identified the mutant gene as Bmsei which encoded a potassium channel protein. Bmsei was present in both the cell membrane and cytoplasm in wild-type ganglia but faint in cot. Furthermore, Bmsei was markedly decreased upon high temperature treatment in cot mutant. With the RNAi method and injecting potassium channel blockers, the wild type silkworm was induced the cot phenotype. These results demonstrated that Bmsei was responsible for the cot mutant phenotype and played an important role in thermoprotection in silkworm. Meanwhile, comparative proteomic approach was used to investigate the proteomic differences. The results showed that the protein of Hsp-1 and Tn1 were significantly decreased and increased on protein level in cot mutant after thermo-stimulus, respectively. Our data provide insights into the mechanism of thermoprotection in insect. As cot phenotype closely resembles human epilepsy, cot might be a potential model for the mechanism of epilepsy in future.

  20. Effect of a Carbohydrate-Rich Diet on Rat Detrusor Smooth Muscle Contractility: An Experimental Study

    Directory of Open Access Journals (Sweden)

    Mustafa Suat Bolat

    2017-01-01

    Full Text Available Objectives. We aimed to investigate the effect of a carbohydrate-rich diet on detrusor contractility in rats. Materials and Methods. Sprague-Dawley rats were randomized into two groups. The control group received regular food and water. The study group received carbohydrate-rich diet for six weeks. The rats’ detrusor muscle was isolated for pharmacological and histopathological examinations. Results. In the control and study groups, mean body weights were 431.5 ± 27.6 g and 528.0 ± 36.2 g, respectively (p < 0.001. Electrical stimulation of the detrusor strips of the control group resulted in gradual contraction. A decreased contractile response was shown in the study group. Acetylcholine in 10-7-10-3 molar concentration produced a decreased contractile response in the study group, compared to the control group (p < 0.01. The study group showed marked subepithelial and intermuscular fibrosis in the bladder. Conclusion. Carbohydrate-rich diet causes marked subepithelial and extracellular fibrosis and changes in contractility in the detrusor within a six-week period. Changes have higher costs in therapeutic choices and correction of these changes remains difficult. Putting an end to carbohydrate-rich diet would seem to be more cost-effective than dealing with the effects of consuming it in high proportions which should be the national policy worldwide.

  1. Adipose-derived stem cells inhibit the contractile myofibroblast in Dupuytren's disease.

    NARCIS (Netherlands)

    Verhoekx, J.S.; Mudera, V.; Walbeehm, E.T.; Hovius, S.E.

    2013-01-01

    BACKGROUND: In an attempt to provide minimally invasive treatment for Dupuytren's disease, percutaneous disruption of the affected tissue followed by lipografting is being tested. Contractile myofibroblasts drive this fibroproliferative disorder, whereas stem cells have recently been implicated in

  2. Local 3D matrix microenvironment regulates cell migration through spatiotemporal dynamics of contractility-dependent adhesions

    Science.gov (United States)

    Doyle, Andrew D.; Carvajal, Nicole; Jin, Albert; Matsumoto, Kazue; Yamada, Kenneth M.

    2015-11-01

    The physical properties of two-dimensional (2D) extracellular matrices (ECMs) modulate cell adhesion dynamics and motility, but little is known about the roles of local microenvironmental differences in three-dimensional (3D) ECMs. Here we generate 3D collagen gels of varying matrix microarchitectures to characterize their regulation of 3D adhesion dynamics and cell migration. ECMs containing bundled fibrils demonstrate enhanced local adhesion-scale stiffness and increased adhesion stability through balanced ECM/adhesion coupling, whereas highly pliable reticular matrices promote adhesion retraction. 3D adhesion dynamics are locally regulated by ECM rigidity together with integrin/ECM association and myosin II contractility. Unlike 2D migration, abrogating contractility stalls 3D migration regardless of ECM pore size. We find force is not required for clustering of activated integrins on 3D native collagen fibrils. We propose that efficient 3D migration requires local balancing of contractility with ECM stiffness to stabilize adhesions, which facilitates the detachment of activated integrins from ECM fibrils.

  3. Functional Esophageal Disorders.

    Science.gov (United States)

    Aziz, Qasim; Fass, Ronnie; Gyawali, C Prakash; Miwa, Hiroto; Pandolfino, John E; Zerbib, Frank

    2016-02-15

    Functional esophageal disorders consist of a disease category that present with esophageal symptoms (heartburn, chest pain, dysphagia, globus) not explained by mechanical obstruction (stricture, tumor, eosinophilic esophagitis), major motor disorders (achalasia, EGJ outflow obstruction, absent contractility, distal esophageal spasm, jackhammer esophagus), or gastroesophageal reflux disease (GERD). While mechanisms responsible are unclear, it is theorized that visceral hypersensitivity and hypervigilance play an important role in symptom generation, in the context of normal or borderline function. Treatments directed at improving borderline motor dysfunction or reducing reflux burden to sub-normal levels have limited success in symptom improvement. In contrast, strategies focused on modulating peripheral triggering and central perception are mechanistically viable and clinically meaningful. However, outcome data from these treatment options are limited. Future research needs to focus on understanding mechanisms underlying visceral hypersensitivity and hypervigilance so that appropriate targets and therapies can be developed. Copyright © 2016 AGA Institute. Published by Elsevier Inc. All rights reserved.

  4. Changes of contractile responses due to simulated weightlessness in rat soleus muscle

    Science.gov (United States)

    Elkhammari, A.; Noireaud, J.; Léoty, C.

    1994-08-01

    Some contractile and electrophysiological properties of muscle fibers isolated from the slow-twitch soleus (SOL) and fast-twitch extensor digitorum longus (EDL) muscles of rats were compared with those measured in SOL muscles from suspended rats. In suspendede SOL (21 days of tail-suspension) membrane potential (Em), intracellular sodium activity (aiNa) and the slope of the relationship between Em and log [K]o were typical of fast-twitch muscles. The relation between the maximal amplitude of K-contractures vs Em was steeper for control SOL than for EDL and suspended SOL muscles. After suspension, in SOL muscles the contractile threshold and the inactivation curves for K-contractures were shifted to more positive Em. Repriming of K-contractures was unaffected by suspencion. The exposure of isolated fibers to perchlorate (ClO4-)-containing (6-40 mM) solutions resulted ina similar concentration-dependent shift to more negative Em of activation curves for EDL and suspended SOL muscles. On exposure to a Na-free TEA solution, SOL from control and suspended rats, in contrast to EDL muscles, generated slow contractile responses. Suspended SOL showed a reduced sensitivity to the contracture-producing effect of caffeine compared to control muscles. These results suggested that the modification observed due to suspension could be encounted by changes in the characteristics of muscle fibers from slow to fast-twitch type.

  5. Parasympathetic neurons in the cranial medial ventricular fat pad on the dog heart selectively decrease ventricular contractility.

    Science.gov (United States)

    Dickerson, L W; Rodak, D J; Fleming, T J; Gatti, P J; Massari, V J; McKenzie, J C; Gillis, R A

    1998-05-28

    We hypothesized that selective control of ventricular contractility might be mediated by postganglionic parasympathetic neurons in the cranial medial ventricular (CMV) ganglion plexus located in a fat pad at the base of the aorta. Sinus rate, atrioventricular (AV) conduction (ventricular rate during atrial pacing), and left ventricular contractile force (LV dP/dt during right ventricular pacing) were measured in eight chloralose-anesthetized dogs both before and during bilateral cervical vagus stimulation (20-30 V, 0.5 ms pulses, 15-20 Hz). Seven of these dogs were tested under beta-adrenergic blockade (propranolol, 0.8 mg kg(-1) i.v.). Control responses included sinus node bradycardia or arrest during spontaneous rhythm, high grade AV block or complete heart block, and a 30% decrease in contractility from 2118 +/- 186 to 1526 +/- 187 mm Hg s(-1) (P 0.05) decrease in contractility but still elicited the same degree of sinus bradycardia and AV block (N = 8, P < 0.05). Five dogs were re-tested 3 h after trimethaphan fat pad injection, at which time blockade of vagally-induced negative inotropy was partially reversed, as vagal stimulation decreased LV dP/dt by 19%. The same dose of trimethaphan given either locally into other fat pads (PVFP or IVC-ILA) or systemically (i.v.) had no effect on vagally-induced negative inotropy. Thus, parasympathetic ganglia located in the CMV fat pad mediated a decrease in ventricular contractility during vagal stimulation. Blockade of the CMV fat pad had no effect on vagally-mediated slowing of sinus rate or AV conduction.

  6. Changes in contractile properties of muscles receiving repeat injections of botulinum toxin (Botox).

    Science.gov (United States)

    Fortuna, Rafael; Vaz, Marco Aurélio; Youssef, Aliaa Rehan; Longino, David; Herzog, Walter

    2011-01-04

    Botulinum toxin type A (BTX-A) is a frequently used therapeutic tool to denervate muscles in the treatment of neuromuscular disorders. Although considered safe by the US Food and Drug Administration, BTX-A can produce adverse effects in target and non-target muscles. With an increased use of BTX-A for neuromuscular disorders, the effects of repeat injections of BTX-A on strength, muscle mass and structure need to be known. Therefore, the purpose of this study was to investigate the changes in strength, muscle mass and contractile material in New Zealand White (NZW) rabbits. Twenty NZW rabbits were divided into 4 groups: control and 1, 3 and 6 months of unilateral, repeat injections of BTX-A into the quadriceps femoris. Outcome measures included knee extensor torque, muscle mass and the percentage of contractile material in the quadriceps muscles of the target and non-injected contralateral hindlimbs. Strength in the injected muscles was reduced by 88%, 89% and 95% in the 1, 3 and 6 months BTX-A injected hindlimbs compared to controls. Muscle mass was reduced by 50%, 42% and 31% for the vastus lateralis (VL), rectus femoris (RF) and vastus medialis (VM), respectively, at 1 month, by 68%, 51% and 50% at 3 months and by 76%, 44% and 13% at 6 months. The percentage of contractile material was reduced for the 3 and 6 months animals to 80-64%, respectively, and was replaced primarily by fat. Similar, but less pronounced results were also observed for the quadriceps muscles of the contralateral hindlimbs, suggesting that repeat BTX-A injections cause muscle atrophy and loss of contractile tissue in target muscles and also in non-target muscles that are far removed from the injection site. Copyright © 2010 Elsevier Ltd. All rights reserved.

  7. Impact of tamsulosin and nifedipine on contractility of pregnant rat ureters in vitro.

    Science.gov (United States)

    Haddad, Lisette; Corriveau, Stéphanie; Rousseau, Eric; Blouin, Simon; Pasquier, Jean-Charles; Ponsot, Yves; Roy-Lacroix, Marie-Ève

    2018-01-01

    To evaluate the in vitro effect of tamsulosin and nifedipine on the contractility of pregnant rat ureters and to perform quantitative analysis of the pharmacological effects. Medical expulsive therapy (MET) is commonly used to treat urolithiasis. However, this treatment is seldom used in pregnant women since no studies support this practice. This was an in vitro study on animal tissue derived from pregnant Sprague-Dawley rats. A total of 124 ureteral segments were mounted in an organ bath system and contractile response to methacholine (MCh) was assessed. Tamsulosin or nifedipine were added at cumulative concentrations (0.001-1 μM). The area under the curve (AUC) from isometric tension measurements was calculated. The effect of pharmacological agents and the respective controls were assessed by calculating the AUC for each 5-min interval. Statistical analyses were performed using the Mann-Whitney-Wilcoxon nonparametric test. Both drugs displayed statistically significant inhibitory activity at concentrations of 0.1 and 1 μM for tamsulosin and 1 μM for nifedipine when calculated as the AUC as compared to DMSO controls. Tamsulosin and nifedipine directly inhibit MCh-induced contractility of pregnant rat ureters. Further work is needed to determine the clinical efficacy of these medications for MET in pregnancy.

  8. Hydrogen ion changes and contractile behavior in the perfused rat heart

    NARCIS (Netherlands)

    Cingolani, H.E.; Maas, A.H.J.; Zimmerman, A.N.E.; Meijler, F.L.

    1975-01-01

    The effect of acid-base alterations was analyzed using isolated rat hearts perfused at constant coronary perfusion pressure, and stimulated to contract at constant rate. The amount of shortening in the major axis and its derivative were measured to assess myocardial contractility. Both the

  9. Reduced Contractility and Motility of Prostatic Cancer-Associated Fibroblasts after Inhibition of Heat Shock Protein 90

    Directory of Open Access Journals (Sweden)

    Alex Henke

    2016-08-01

    Full Text Available Background: Prostate cancer-associated fibroblasts (CAF can stimulate malignant progression and invasion of prostatic tumour cells via several mechanisms including those active in extracellular matrix; Methods: We isolated CAF from prostate cancer patients of Gleason Score 6–10 and confirmed their cancer-promoting activity using an in vivo tumour reconstitution assay comprised of CAF and BPH1 cells. We tested the effects of heat shock protein 90 (HSP90 inhibitors upon reconstituted tumour growth in vivo. Additionally, CAF contractility was measured in a 3D collagen contraction assay and migration was measured by scratch assay; Results: HSP90 inhibitors dipalmitoyl-radicicol and 17-dimethylaminoethylamino-17-demethoxygeldanamycin (17-DMAG reduced tumour size and proliferation in CAF/BPH1 reconstituted tumours in vivo. We observed that the most contractile CAF were derived from patients with lower Gleason Score and of younger age compared with the least contractile CAF. HSP90 inhibitors radicicol and 17-DMAG inhibited contractility and reduced the migration of CAF in scratch assays. Intracellular levels of HSP70 and HSP90 were upregulated upon treatment with HSP90 inhibitors. Inhibition of HSP90 also led to a specific increase in transforming growth factor beta 2 (TGFβ2 levels in CAF; Conclusions: We suggest that HSP90 inhibitors act not only upon tumour cells, but also on CAF in the tumour microenvironment.

  10. Global and Regional Left Ventricular Contractile Impairment In Patients With Wolff-Parkinson-White Syndrome

    Directory of Open Access Journals (Sweden)

    Sony Jacob

    2009-07-01

    Full Text Available Background: To assess regional systolic function and global contractile function in patients with WPW Syndrome.Method: Eleven cases with manifest Wolff-Parkinson-White (WPW syndrome in sinus rhythm were compared to 11 age matched controls. 2D strain analysis was performed and peak segmental radial strain (pRS values obtained from basal ventricular parasternal short-axis images (70 ± 5 frames/sec using a dedicated software package. Heterogeneity of radial strain pattern in six circumferential basal left ventricular segments was measured in terms of standard deviations of peak RS (SDpRS or range (difference between maximum and minimum peak RS i.e. RangepRS. Spectral Doppler (continuous wave measurements were acquired through the left ventricular outflow tract to determine Pre Ejection Period (PEP, Left Ventricular Ejection Time (LVET and measures of left ventricular systolic performance. Results: LV segmental radial strain was profoundly heterogeneous in WPW cases in contrast to fairly homogenous strain pattern in normal subjects. Wide SDpRS values 17.5 ± 8.9 vs 3.3 ± 1.4, p<0.001 and RangepRS 42.7 ± 20.8 vs.8.5 ± 3.6 , p<0.001 were observed among WPW and healthy subjects respectively. PEP (132.4 ± 14.7 vs 4.7 ± 0.5ms, p<0.001 and corrected PEP (76.1 ± 8.0 vs 2.7 ± 0.4ms, p<0.001 were significantly longer in WPW patients compared to controls. The PEP/LVET ratio was also significantly greater in WPW cohort (0.49 ± 0.04 vs. 0.28 ± 0.05, p <0.001 suggesting global systolic dysfunction. Conclusion: Patients with manifest preexcitation (predominantly those with right-sided pathways have regional and global contractile dysfunction resulting from aberrant impulse propagation inherent to the preexcited state.

  11. Effect of serotonin on small intestinal contractility in healthy volunteers

    DEFF Research Database (Denmark)

    Hansen, M.B.; Arif, F.; Gregersen, H.

    2008-01-01

    The physiological significance of serotonin released into the intestinal lumen for the regulation of motility is unknown in humans. The aim of this study was to evaluate the effect of serotonin infused into the lumen of the gastric antrum, duodenum or the jejunum, on antro-duodeno-jejunal contrac......The physiological significance of serotonin released into the intestinal lumen for the regulation of motility is unknown in humans. The aim of this study was to evaluate the effect of serotonin infused into the lumen of the gastric antrum, duodenum or the jejunum, on antro......-duodeno-jejunal contractility in healthy human volunteers. Manometric recordings were obtained and the effects of either a standard meal, continuous intravenous infusion of serotonin (20 nmol/kg/min) or intraluminal bolus infusions of graded doses of serotonin (2.5, 25 or 250 nmol) were compared. In addition, platelet......-depleted plasma levels of serotonin, blood pressure, heart rate and electrocardiogram were evaluated. All subjects showed similar results. Intravenous serotonin increased migrating motor complex phase In frequency 3-fold and migrating velocity 2-fold. Intraluminal infusion of serotonin did not change contractile...

  12. Pretreatment with remifentanil protects against the reduced-intestinal contractility related to the ischemia and reperfusion injury in rat

    Directory of Open Access Journals (Sweden)

    Hale Sayan-Ozacmak

    2015-12-01

    Full Text Available BACKGROUND AND OBJECTIVES: Serious functional and structural alterations of gastrointestinal tract are observed in failure of blood supply, leading to gastrointestinal dismotility. Activation of opioid receptors provides cardioprotective effect against ischemia-reperfusion (I/R injury. The aim of the present study was to determine whether or not remifentanil could reduce I/R injury of small intestine. METHODS: Male Wistar Albino rats were subjected to mesenteric ischemia (30 min followed by reperfusion (3 h. Four groups were designed: sham control; remifentanil alone; I/R control; and remifentanil + I/R. Animals in remifentanil + I/R group were subjected to infusion of remifentanil (2 ug kg-1 min-1 for 60 min, half of which started before inducing ischemia. Collecting the ileum tissues, evaluation of damage was based on contractile responses to carbachol, levels of lipid peroxidation and neutrophil infiltration, and observation of histopathological features in intestinal tissue. RESULTS: Following reperfusion, a significant decrease in carbachol-induced contractile response, a remarkable increase in both lipid peroxidation and neutrophil infiltration, and a significant injury in mucosa were observed. An average contractile response of remifentanil + I/R group was significantly different from that of the I/R group. Lipid peroxidation and neutrophil infiltration were also significantly suppressed by the treatment. The tissue samples of the I/R group were grade 4 in histopathological evaluation. In remifentanil + I/R group, on the other hand, the mucosal damage was moderate, staging as grade 1. CONCLUSIONS: The pretreatment with remifentanil can attenuate the intestinal I/R injury at a remarkable degree possibly by lowering lipid peroxidation and leukocyte infiltration.

  13. Effects of Crocetin Esters and Crocetin from Crocus sativus L. on Aortic Contractility in Rat Genetic Hypertension

    Directory of Open Access Journals (Sweden)

    Silvia Llorens

    2015-09-01

    Full Text Available Background: Endothelial dysfunction, characterized by an enhancement in vasoconstriction, is clearly associated with hypertension. Saffron (Crocus sativus L. bioactive compounds have been recognized to have hypotensive properties. Recently, we have reported that crocetin exhibits potent vasodilator effects on isolated aortic rings from hypertensive rats. In this work, we have aimed to analyze the anticontractile ability of crocetin or crocetin esters pool (crocins isolated from saffron. Thus, we have studied the effects of saffron carotenoids on endothelium-dependent and -independent regulation of smooth muscle contractility in genetic hypertension. Methods: We have measured the isometric responses of aortic segments with or without endothelium obtained from spontaneously hypertensive rats. The effects of carotenoids were studied by assessing the endothelial modulation of phenylephrine-induced contractions (10−9–10−5 M in the presence or absence of crocetin or crocins. The role of nitric oxide and prostanoids was analyzed by performing the experiments with L-NAME (NG-nitro-l-arginine methyl ester or indomethacin (both 10−5 M, respectively. Results: Crocetin, and to a minor extent crocins, diminished the maximum contractility of phenylephrine in intact rings, while crocins, but not crocetin, increased this contractility in de-endothelizated vessels. In the intact vessels, the effect of crocetin on contractility was unaffected by indomethacin but was abolished by L-NAME. However, crocetin but not crocins, lowered the already increased contractility caused by L-NAME. Conclusions: Saffron compounds, but especially crocetin have endothelium-dependent prorelaxing actions. Crocins have procontractile actions that take place via smooth muscle cell mechanisms. These results suggest that crocetin and crocins activate different mechanisms involved in the vasoconstriction pathway in hypertension.

  14. Myocardial Contractile Dysfunction is Present Without Histopathology in a Mouse Model of Limb-Girdle Muscular Dystrophy-2F and is Prevented after Claudin-5 Virotherapy

    Directory of Open Access Journals (Sweden)

    Nima Milani-Nejad

    2016-12-01

    Full Text Available AbstractMutations in several members of the dystrophin glycoprotein complex lead to skeletal and cardiomyopathies. Cardiac care for these muscular dystrophies consists of management of symptoms with standard heart medications after detection of reduced whole heart function. Recent evidence from both Duchenne muscular dystrophy patients and animal models suggests that myocardial dysfunction is present before myocardial damage or deficiencies in whole heart function, and that treatment prior to heart failure symptoms may be beneficial. To determine whether this same early myocardial dysfunction is present in other muscular dystrophy cardiomyopathies, we conducted a physiological assessment of cardiac function at the tissue level in the δ-sarcoglycan null mouse model (Sgcd-/- of Limb-girdle muscular dystrophy type 2F. Baseline cardiac contractile force measurements using ex vivo intact linear muscle preparations, were severely depressed in these mice without the presence of histopathology. Virotherapy with claudin-5 prevents the onset of cardiomyopathy in another muscular dystrophy model. After virotherapy with claudin-5, the cardiac contractile force deficits in Sgcd-/- mice are no longer significant. These studies suggest that screening Limb-girdle muscular dystrophy patients using methods that detect earlier functional changes may provide a longer therapeutic window for cardiac care.

  15. Magnetic Resonance Assessment of Hypertrophic and Pseudo-Hypertrophic Changes in Lower Leg Muscles of Boys with Duchenne Muscular Dystrophy and Their Relationship to Functional Measurements.

    Science.gov (United States)

    Vohra, Ravneet S; Lott, Donovan; Mathur, Sunita; Senesac, Claudia; Deol, Jasjit; Germain, Sean; Bendixen, Roxanna; Forbes, Sean C; Sweeney, H Lee; Walter, Glenn A; Vandenborne, Krista

    2015-01-01

    The primary objectives of this study were to evaluate contractile and non-contractile content of lower leg muscles of boys with Duchenne muscular dystrophy (DMD) and determine the relationships between non-contractile content and functional abilities. Lower leg muscles of thirty-two boys with DMD and sixteen age matched unaffected controls were imaged. Non-contractile content, contractile cross sectional area and non-contractile cross sectional area of lower leg muscles (tibialis anterior, extensor digitorum longus, peroneal, medial gastrocnemius and soleus) were assessed by magnetic resonance imaging (MRI). Muscle strength, timed functional tests and the Brooke lower extremity score were also assessed. Non-contractile content of lower leg muscles (peroneal, medial gastrocnemius, and soleus) was significantly greater than control group (pmuscles correlated with Brooke score (rs = 0.64-0.84) and 30 feet walk (rs = 0.66-0.80). Dorsiflexor (DF) and plantarflexor (PF) specific torque was significantly different between the groups. Overall, non-contractile content of the lower leg muscles was greater in DMD than controls. Furthermore, there was an age dependent increase in contractile content in the medial gastrocnemius of boys with DMD. The findings of this study suggest that T1 weighted MR images can be used to monitor disease progression and provide a quantitative estimate of contractile and non-contractile content of tissue in children with DMD.

  16. Izalpinin from fruits of Alpinia oxyphylla with antagonistic activity against the rat bladder contractility.

    Science.gov (United States)

    Yuan, Yuan; Tan, Yin-Feng; Xu, Peng; Li, Hailong; Li, Yong-Hui; Chen, Wen-Ya; Zhang, Jun-Qing; Chen, Feng; Huang, Guo-Jun

    2014-01-01

    Alpinia oxyphylla (Zingiberaceae), an herbaceous perennial plant, its capsular fruit is commonly used in traditional Chinese medicine for the treatment of different urinary incontinence symptoms including frequency, urgency and nocturia. These symptoms are similar to the overactive bladder syndrome. In our lab, we found that the 95% ethanol extract of the capsular fruits exhibited significant anti-muscarinic activity. Some constituents in capsular fruits including flavonoids (e.g., izalpinin and tectochrysin), diarylheptanoids (e.g., yakuchinone A and yakuchinone B) and sesquiterpenes (e.g., nootkatone), are regarded as representative chemicals with putative pharmacological activities. This study aimed to evaluate the in vitro antagonistic actions of izalpinin on carbachol-induced contraction of the rat detrusor muscle. In vitro inhibition of rat detrusor contractile response to carbachol was used to study the functional activity of izalpinin. The isolated detrusor strips of rats were mounted in organ baths containing oxygenated Krebs' solution. The cumulative consecutive concentration-response curves to carbachol-evoked contractions in strips of rat bladder were obtained. Carbachol induced concentration-dependent contractions of isolated rat bladder detrusor strips. The vehicle DMSO had no impact on the contraction response. The contraction effects were concentration-dependently antagonized by izalpinin, with a mean EC50 value of 0.35 µM. The corresponding cumulative agonist concentration-response curves shifted right-ward. Izalpinin exhibits inhibitory role of muscarinic receptor-related detrusor contractile activity, and it may be a promising lead compound to treat overactive bladder.

  17. Magnetic Resonance Assessment of Hypertrophic and Pseudo-Hypertrophic Changes in Lower Leg Muscles of Boys with Duchenne Muscular Dystrophy and Their Relationship to Functional Measurements.

    Directory of Open Access Journals (Sweden)

    Ravneet S Vohra

    Full Text Available The primary objectives of this study were to evaluate contractile and non-contractile content of lower leg muscles of boys with Duchenne muscular dystrophy (DMD and determine the relationships between non-contractile content and functional abilities.Lower leg muscles of thirty-two boys with DMD and sixteen age matched unaffected controls were imaged. Non-contractile content, contractile cross sectional area and non-contractile cross sectional area of lower leg muscles (tibialis anterior, extensor digitorum longus, peroneal, medial gastrocnemius and soleus were assessed by magnetic resonance imaging (MRI. Muscle strength, timed functional tests and the Brooke lower extremity score were also assessed.Non-contractile content of lower leg muscles (peroneal, medial gastrocnemius, and soleus was significantly greater than control group (p<0.05. Non-contractile content of lower leg muscles correlated with Brooke score (rs = 0.64-0.84 and 30 feet walk (rs = 0.66-0.80. Dorsiflexor (DF and plantarflexor (PF specific torque was significantly different between the groups.Overall, non-contractile content of the lower leg muscles was greater in DMD than controls. Furthermore, there was an age dependent increase in contractile content in the medial gastrocnemius of boys with DMD. The findings of this study suggest that T1 weighted MR images can be used to monitor disease progression and provide a quantitative estimate of contractile and non-contractile content of tissue in children with DMD.

  18. Analysis on oscillating actuator frequency influence of the fluid flow characterization for 2D contractile water jet thruster

    Science.gov (United States)

    Shaari, M. F.; Abu Bakar, H.; Nordin, N.; Saw, S. K.; Samad, Z.

    2013-12-01

    Contractile body is an alternative mechanism instead of rotating blade propeller to generate water jet for locomotion. The oscillating motion of the actuator at different frequencies varies the pressure and volume of the pressure chamber in time to draw in and jet out the water at a certain mass flow rate. The aim of this research was to analyze the influence of the actuating frequency of the fluid flow in the pressure chamber of the thruster during this inflation-deflation process. A 70mm × 70mm × 18mm (L × W × T) 2D water jet thruster was fabricated for this purpose. The contractile function was driven using two lateral pneumatic actuators where the fluid flow analysis was focused on the X-Y plane vector. Observation was carried out using a video camera and Matlab image measurement technique to determine the volume of the flowing mass. The result demonstrated that the greater actuating frequency decreases the fluid flow rate and the Reynolds number. This observation shows that the higher frequency would give a higher mass flow rate during water jet generation.

  19. Milrinone and levosimendan administered after reperfusion improve myocardial stunning in swine.

    Science.gov (United States)

    Shibata, Itsuko; Cho, Sungsam; Yoshitomi, Osamu; Ureshino, Hiroyuki; Maekawa, Takuji; Hara, Tetsuya; Sumikawa, Koji

    2013-02-01

    We assessed the effect of milrinone application timing after reperfusion against myocardial stunning as compared with levosimendan in swine. Furthermore, we examined the role of p38 mitogen-activated protein kinase (p38 MAPK) in the milrinone-induced cardioprotection. All swine were subjected to 12-minutes ischemia followed by 90-minutes reperfusion to generate stunned myocardium. Milrinone or levosimendan was administered intravenously either for 20 minutes starting just after reperfusion or for 70 minutes starting 20 minutes after reperfusion. In another group, SB203580, a selective p38 MAPK inhibitor, was administered with and without milrinone. Regional myocardial contractility was assessed by percent segment shortening (%SS). Milrinone starting just after reperfusion, but not starting 20 minutes after reperfusion, improved %SS at 30, 60, and 90 minutes after reperfusion compared with that in the control group. SB203580 abolished the beneficial effect of milrinone. On the other hand, levosimendan starting 20 minutes after reperfusion, but not for 20 minutes starting just after reperfusion, improved %SS at 60 and 90 minutes after reperfusion. Milrinone should be administered just after reperfusion to protect myocardial stunning through p38 MAPK, whereas levosimendan improvement of contractile function could be mainly dependent on its positive inotropic effect.

  20. High Intensity Exercise in Multiple Sclerosis: Effects on Muscle Contractile Characteristics and Exercise Capacity, a Randomised Controlled Trial.

    Directory of Open Access Journals (Sweden)

    Inez Wens

    Full Text Available Low-to-moderate intensity exercise improves muscle contractile properties and endurance capacity in multiple sclerosis (MS. The impact of high intensity exercise remains unknown.Thirty-four MS patients were randomized into a sedentary control group (SED, n = 11 and 2 exercise groups that performed 12 weeks of a high intensity interval (HITR, n = 12 or high intensity continuous cardiovascular training (HCTR, n = 11, both in combination with resistance training. M.vastus lateralis fiber cross sectional area (CSA and proportion, knee-flexor/extensor strength, body composition, maximal endurance capacity and self-reported physical activity levels were assessed before and after 12 weeks.Compared to SED, 12 weeks of high intensity exercise increased mean fiber CSA (HITR: +21 ± 7%, HCTR: +23 ± 5%. Furthermore, fiber type I CSA increased in HCTR (+29 ± 6%, whereas type II (+23 ± 7% and IIa (+23 ± 6%, CSA increased in HITR. Muscle strength improved in HITR and HCTR (between +13 ± 7% and +45 ± 20% and body fat percentage tended to decrease (HITR: -3.9 ± 2.0% and HCTR: -2.5 ± 1.2%. Furthermore, endurance capacity (Wmax +21 ± 4%, time to exhaustion +24 ± 5%, VO2max +17 ± 5% and lean tissue mass (+1.4 ± 0.5% only increased in HITR. Finally self-reported physical activity levels increased 73 ± 19% and 86 ± 27% in HCTR and HITR, respectively.High intensity cardiovascular exercise combined with resistance training was safe, well tolerated and improved muscle contractile characteristics and endurance capacity in MS.ClinicalTrials.gov NCT01845896.

  1. Removal of urothelium affects bladder contractility and release of ATP but not release of NO in rat urinary bladder

    Directory of Open Access Journals (Sweden)

    Boone Timothy B

    2010-05-01

    Full Text Available Abstract Background The objective of our work was to investigate both the contractile function and the release of ATP and NO from strips of bladder tissue after removal of the urothelium. Methods The method of removal was a gentle swabbing motion rather than a sharp surgical cutting to separate the urothelium from the smooth muscle. The contractile response and ATP and NO release were measured in intact as well as on swabbed preparations. The removal of the urothelial layer was affirmed microscopically. Results After the swabbing, the smaller contractions were evoked by electrical as well as by chemical stimulation (50 μM carbachol or 50 μM α, β meATP. Electrical stimulation, carbachol and substance P (5 μM evoked lower release of ATP in the swabbed strips than in intact strips. Although release of NO evoked by electrical stimulation or substance P was not changed, release of NO evoked by carbachol was significantly less in the swabbed preparations. Conclusion Since swabbing removes only the urothelium, the presence of the suburothelial layer may explain the difference between our findings and those of others who found an increase in contractility. Evoked release of ATP is reduced in swabbed strips, indicating that ATP derives solely from the urothelium. On the other hand, electrical stimulation and substance P evoke identical degrees of NO release in both intact and swabbed preparations, suggesting that NO can be released from the suburothelium. Conversely, carbachol-induced release of NO is lower in swabbed strips, implying that the cholinergic receptors (muscarinic or nicotinic are located in the upper layer of the urothelium.

  2. Interleukin-6 downregulated vascular smooth muscle cell contractile proteins via ATG4B-mediated autophagy in thoracic aortic dissection.

    Science.gov (United States)

    An, Zhao; Qiao, Fan; Lu, Qijue; Ma, Ye; Liu, Yang; Lu, Fanglin; Xu, Zhiyun

    2017-12-01

    -regulation. ATG4B knockdown blocked IL-6-induced autophagy and α-SMA and SM22α degradation, while ATG4B overexpression partly replaced the function of IL-6 in human VSMCs. In conclusion, our study demonstrated that IL-6 downregulated expression of VSMCs contractile proteins α-SMA and SM22α via enhancing ATG4B-mediated autophagy in TAD.

  3. Leucine elicits myotube hypertrophy and enhances maximal contractile force in tissue engineered skeletal muscle in vitro.

    Science.gov (United States)

    Martin, Neil R W; Turner, Mark C; Farrington, Robert; Player, Darren J; Lewis, Mark P

    2017-10-01

    The amino acid leucine is thought to be important for skeletal muscle growth by virtue of its ability to acutely activate mTORC1 and enhance muscle protein synthesis, yet little data exist regarding its impact on skeletal muscle size and its ability to produce force. We utilized a tissue engineering approach in order to test whether supplementing culture medium with leucine could enhance mTORC1 signaling, myotube growth, and muscle function. Phosphorylation of the mTORC1 target proteins 4EBP-1 and rpS6 and myotube hypertrophy appeared to occur in a dose dependent manner, with 5 and 20 mM of leucine inducing similar effects, which were greater than those seen with 1 mM. Maximal contractile force was also elevated with leucine supplementation; however, although this did not appear to be enhanced with increasing leucine doses, this effect was completely ablated by co-incubation with the mTOR inhibitor rapamycin, showing that the augmented force production in the presence of leucine was mTOR sensitive. Finally, by using electrical stimulation to induce chronic (24 hr) contraction of engineered skeletal muscle constructs, we were able to show that the effects of leucine and muscle contraction are additive, since the two stimuli had cumulative effects on maximal contractile force production. These results extend our current knowledge of the efficacy of leucine as an anabolic nutritional aid showing for the first time that leucine supplementation may augment skeletal muscle functional capacity, and furthermore validates the use of engineered skeletal muscle for highly-controlled investigations into nutritional regulation of muscle physiology. © 2017 The Authors. Journal of Cellular Physiology Published by wiley periodicals, Inc.

  4. Alterations in serotonin receptor-induced contractility of bovine lateral saphenous vein in cattle grazing endophyte-infected tall fescue.

    Science.gov (United States)

    Klotz, J L; Brown, K R; Xue, Y; Matthews, J C; Boling, J A; Burris, W R; Bush, L P; Strickland, J R

    2012-02-01

    As part of a 2-yr study documenting the physiologic impact of grazing endophyte-infected tall fescue on growing cattle, 2 experiments were conducted to characterize and evaluate effects of grazing 2 levels of toxic endophyte-infected tall fescue pastures on vascular contractility and serotonin receptors. Experiment 1 examined vasoconstrictive activities of 5-hydroxytryptamine (5HT), α-methylserotonin (ME5HT; a 5HT(2) receptor agonist), d-lysergic acid (LSA), and ergovaline (ERV) on lateral saphenous veins collected from steers immediately removed from a high-endophyte-infected tall fescue pasture (HE) or a low-endophyte-infected mixed-grass (LE) pasture. Using the same pastures, Exp. 2 evaluated effects of grazing 2 levels of toxic endophyte-infected tall fescue on vasoconstrictive activities of (±)-1-(2,5-dimethoxy-4-iodophenyl)-2-aminopropane hydrochloride (DOI), BW 723C86 (BW7), CGS-12066A (CGS), and 5-carboxamidotryptamine hemiethanolate maleate (5CT), agonists for 5HT(2A),( 2B), 5HT(1B), and 5HT(7) receptors, respectively. One-half of the steers in Exp. 2 were slaughtered immediately after removal from pasture, and the other one-half were fed finishing diets for >91 d before slaughter. For Exp. 1, maximal contractile intensities were greater (P 91 d. Experiment 1 demonstrated that grazing of HE pastures for 89 to 105 d induces functional alterations in blood vessels, as evidenced by reduced contractile capacity and altered serotonergic receptor activity. Experiment 2 demonstrated that grazing HE pastures alters vascular responses, which may be mediated through altered serotonin receptor activities, and these alterations may be ameliorated by the removal of ergot alkaloid exposure as demonstrated by the absence of differences in finished steers.

  5. Role of contractile prostaglandins and Rho-kinase in growth factor-induced airway smooth muscle contraction

    Directory of Open Access Journals (Sweden)

    Zaagsma Johan

    2005-07-01

    Full Text Available Abstract Background In addition to their proliferative and differentiating effects, several growth factors are capable of inducing a sustained airway smooth muscle (ASM contraction. These contractile effects were previously found to be dependent on Rho-kinase and have also been associated with the production of eicosanoids. However, the precise mechanisms underlying growth factor-induced contraction are still unknown. In this study we investigated the role of contractile prostaglandins and Rho-kinase in growth factor-induced ASM contraction. Methods Growth factor-induced contractions of guinea pig open-ring tracheal preparations were studied by isometric tension measurements. The contribution of Rho-kinase, mitogen-activated protein kinase (MAPK and cyclooxygenase (COX to these reponses was established, using the inhibitors Y-27632 (1 μM, U-0126 (3 μM and indomethacin (3 μM, respectively. The Rho-kinase dependency of contractions induced by exogenously applied prostaglandin F2α (PGF2α and prostaglandin E2 (PGE2 was also studied. In addition, the effects of the selective FP-receptor antagonist AL-8810 (10 μM and the selective EP1-antagonist AH-6809 (10 μM on growth factor-induced contractions were investigated, both in intact and epithelium-denuded preparations. Growth factor-induced PGF2α-and PGE2-release in the absence and presence of Y-27632, U-0126 and indomethacin, was assessed by an ELISA-assay. Results Epidermal growth factor (EGF-and platelet-derived growth factor (PDGF-induced contractions of guinea pig tracheal smooth muscle preparations were dependent on Rho-kinase, MAPK and COX. Interestingly, growth factor-induced PGF2α-and PGE2-release from tracheal rings was significantly reduced by U-0126 and indomethacin, but not by Y-27632. Also, PGF2α-and PGE2-induced ASM contractions were largely dependent on Rho-kinase, in contrast to other contractile agonists like histamine. The FP-receptor antagonist AL-8810 (10 μM significantly

  6. Muscle contractility decrement and correlated morphology during the pathogenesis of streptozotocin-diabetic mice.

    Science.gov (United States)

    Fahim, M A; el-Sabban, F; Davidson, N

    1998-06-01

    affects presynaptically the neuromuscular junction as well as muscle itself. Actions at both sites may contribute to the functional alterations seen in muscle contractile properties and may play a role in the pathogenesis of diabetic neuromyopathy.

  7. A new strain gage method for measuring the contractile strain ratio of Zircaloy tubing

    International Nuclear Information System (INIS)

    Hwang, S.K.; Sabol, G.P.

    1988-01-01

    An improved strain gage method for determining the contractile strain ratio (CSR) of Zircaloy tubing was developed. The new method consists of a number of load-unload cyclings at approximately 0.2% plastic strain interval. With this method the CSR of Zircaloy-4 tubing could be determined accurately because it was possible to separate the plastic strains from the elastic strain involvement. The CSR values determined by use of the new method were in good agreement with those calculated from conventional post-test manual measurements. The CSR of the tubing was found to decrease with the amount of deformation during testing because of uneven plastic flow in the gage section. A new technique of inscribing gage marks by use of a YAG laser is discussed. (orig.)

  8. Upregulation of contractile endothelin type B receptors by lipid-soluble cigarette smoking particles in rat cerebral arteries via activation of MAPK

    International Nuclear Information System (INIS)

    Sandhu, Hardip; Xu, Cang Bao; Edvinsson, Lars

    2010-01-01

    Cigarette smoke exposure increases the risk of stroke. However, the underlying molecular mechanisms are poorly understood. Endothelin system plays key roles in the pathogenesis of stroke. The present study was designed to examine if lipid-soluble (dimethyl sulfoxide-soluble) cigarette smoke particles (DSP) induces upregulation of contractile endothelin type B (ET B ) receptors in rat cerebral arteries and if activation of mitogen activated protein kinase (MAPK) and nuclear factor-kappaB (NF-κB) mediate the upregulation of contractile endothelin receptors in the cerebral arteries. Rat middle cerebral arteries were isolated and organ cultured in serum free medium for 24 h in the presence of DSP with or without specific inhibitors: MEK specific (U0126), p38 specific (SB202190), JNK specific (SP600125), NF-κB specific (BMS-345541) or (IMD-0354), transcription inhibitor (actinomycin D), or translation blocker (cycloheximide). Contractile responses to the ET B receptor agonist sarafotoxin 6c were investigated by a sensitive myograph. The expression of the ET B receptors were studied at mRNA and protein levels using quantitative real time PCR and immunohistochemistry, respectively. Results show that organ culture per se induced transcriptional upregulation of contractile ET B receptors in the cerebral vascular smooth muscle cells. This upregulation was further increased at the translational level by addition of DSP to the organ culture, but this increase was not seen by addition of nicotine or water-soluble cigarette smoke particles to the organ culture. The increased upregulation of contractile ET B receptors by DSP was abrogated by U0126, SP600125, actinomycin D, and cycloheximide, suggesting that the underlying molecular mechanisms involved in this process include activation of MEK and JNK MAPK-mediated transcription and translation of new contractile ET B receptors. Thus, the MAPK-mediated upregulation of contractile ET B receptors in cerebral arteries might be a

  9. Acute exposure to lead increases myocardial contractility independent of hypertension development

    Energy Technology Data Exchange (ETDEWEB)

    Fioresi, M. [Programa de Pós-Graduação em Ciências Fisiológicas, Centro de Ciências da Saúde, Universidade Federal do Espírito Santo, Vitória, ES (Brazil); Departamento de Enfermagem, Centro de Ciências da Saúde, Universidade Federal do Espírito Santo, Vitória, ES (Brazil); Furieri, L.B.; Simões, M.R.; Ribeiro, R.F. Junior; Meira, E.F.; Fernandes, A.A.; Stefanon, I. [Programa de Pós-Graduação em Ciências Fisiológicas, Centro de Ciências da Saúde, Universidade Federal do Espírito Santo, Vitória, ES (Brazil); Vassallo, D.V. [Programa de Pós-Graduação em Ciências Fisiológicas, Centro de Ciências da Saúde, Universidade Federal do Espírito Santo, Vitória, ES (Brazil); Centro de Ciências da Saúde de Vitória, Escola Superior de Ciências da Santa Casa de Misericórdia de Vitória, Vitória, ES (Brazil)

    2013-02-01

    We studied the effects of the acute administration of small doses of lead over time on hemodynamic parameters in anesthetized rats to determine if myocardial contractility changes are dependent or not on the development of hypertension. Male Wistar rats received 320 µg/kg lead acetate iv once, and their hemodynamic parameters were measured for 2 h. Cardiac contractility was evaluated in vitro using left ventricular papillary muscles as were Na{sup +},K{sup +}-ATPase and myosin Ca{sup 2+}-ATPase activities. Lead increased left- (control: 112 ± 3.7 vs lead: 129 ± 3.2 mmHg) and right-ventricular systolic pressures (control: 28 ± 1.2 vs lead: 34 ± 1.2 mmHg) significantly without modifying heart rate. Papillary muscles were exposed to 8 µM lead acetate and evaluated 60 min later. Isometric contractions increased (control: 0.546 ± 0.07 vs lead: 0.608 ± 0.06 g/mg) and time to peak tension decreased (control: 268 ± 13 vs lead: 227 ± 5.58 ms), but relaxation time was unchanged. Post-pause potentiation was similar between groups (n = 6 per group), suggesting no change in sarcoplasmic reticulum activity, evaluated indirectly by this protocol. After 1-h exposure to lead acetate, the papillary muscles became hyperactive in response to a β-adrenergic agonist (10 µM isoproterenol). In addition, post-rest contractions decreased, suggesting a reduction in sarcolemmal calcium influx. The heart samples treated with 8 µM lead acetate presented increased Na{sup +},K{sup +}-ATPase (approximately 140%, P < 0.05 for control vs lead) and myosin ATPase (approximately 30%, P < 0.05 for control vs lead) activity. Our results indicated that acute exposure to low lead concentrations produces direct positive inotropic and lusitropic effects on myocardial contractility and increases the right and left ventricular systolic pressure, thus potentially contributing to the early development of hypertension.

  10. Acute exposure to lead increases myocardial contractility independent of hypertension development

    International Nuclear Information System (INIS)

    Fioresi, M.; Furieri, L.B.; Simões, M.R.; Ribeiro, R.F. Junior; Meira, E.F.; Fernandes, A.A.; Stefanon, I.; Vassallo, D.V.

    2013-01-01

    We studied the effects of the acute administration of small doses of lead over time on hemodynamic parameters in anesthetized rats to determine if myocardial contractility changes are dependent or not on the development of hypertension. Male Wistar rats received 320 µg/kg lead acetate iv once, and their hemodynamic parameters were measured for 2 h. Cardiac contractility was evaluated in vitro using left ventricular papillary muscles as were Na + ,K + -ATPase and myosin Ca 2+ -ATPase activities. Lead increased left- (control: 112 ± 3.7 vs lead: 129 ± 3.2 mmHg) and right-ventricular systolic pressures (control: 28 ± 1.2 vs lead: 34 ± 1.2 mmHg) significantly without modifying heart rate. Papillary muscles were exposed to 8 µM lead acetate and evaluated 60 min later. Isometric contractions increased (control: 0.546 ± 0.07 vs lead: 0.608 ± 0.06 g/mg) and time to peak tension decreased (control: 268 ± 13 vs lead: 227 ± 5.58 ms), but relaxation time was unchanged. Post-pause potentiation was similar between groups (n = 6 per group), suggesting no change in sarcoplasmic reticulum activity, evaluated indirectly by this protocol. After 1-h exposure to lead acetate, the papillary muscles became hyperactive in response to a β-adrenergic agonist (10 µM isoproterenol). In addition, post-rest contractions decreased, suggesting a reduction in sarcolemmal calcium influx. The heart samples treated with 8 µM lead acetate presented increased Na + ,K + -ATPase (approximately 140%, P < 0.05 for control vs lead) and myosin ATPase (approximately 30%, P < 0.05 for control vs lead) activity. Our results indicated that acute exposure to low lead concentrations produces direct positive inotropic and lusitropic effects on myocardial contractility and increases the right and left ventricular systolic pressure, thus potentially contributing to the early development of hypertension

  11. Contractile Force of Human Extraocular Muscle: A Theoretical Analysis

    Directory of Open Access Journals (Sweden)

    Hongmei Guo

    2016-01-01

    Full Text Available Aim. The length-contractile force relationships of six human extraocular muscles (EOMs in primary innervations should be determined during eye movement modeling and surgery of clinical EOMs. This study aims to investigate these relationships. Method. The proposal is based on the assumption that six EOMs have similar constitutive relationships, with the eye suspended in the primary position. The constitutive relationships of EOMs are obtained by optimizing from previous experimental data and the theory of mechanical equilibrium using traditional model. Further, simulate the existing experiment of resistance force, and then compare the simulated results with the existing experimental results. Finally, the mechanical constitutive relationships of EOMs are obtained. Results. The results show that the simulated resistance forces from the other four EOMs except for the horizontal recti well agree with previous experimental results. Conclusion. The mechanical constitutive relationships of six EOMs in primary innervations are obtained, and the rationality of the constitutive relationships is verified. Whereafter, the active stress-strain relationships of the six EOMs in the primary innervations are obtained. The research results can improve the eye movement model to predict the surgical amounts of EOMs before EOM surgery more precisely.

  12. Differential Kolaviron Attenuated Contractile Responses to Agonists on Isolated Rabbit Aorta in Na+-K+ Pump Blockade.

    Science.gov (United States)

    Uche, O K; Ofeimun, J O

    2017-12-30

    The mechanism of kolaviron-induced vascular smooth muscles (VSMs) responses has not been fullycharacterised. The present study investigated the effect and mode of action of kolaviron a biflavanoid-complex and majorcomponent of Garcinia Kola-fraction on differential contractile responses to agonists-[phenylephrine (PHE) and histamine(HIST)] on VSMs of rabbit isolated aortic rings in K+-free physiological salt solution (KFPSS). Cumulative concentrationresponses to PHE and HIST were examined on 2 mm ring segments of the thoracic aortae which were suspended in 20 mlorgan baths containing physiological salt solution (PSS) for measurement of isometric contractions, at 370C and pH 7.4. Themedium was bubbled with 95% O2, 5% CO2, and rings were given an initial load of 1g. Cumulative contractile responses tothe agonists were studied in normal PSS (control) and following 30 minutes exposure to K+-free PSS and/or 800µg/mLkolaviron. Contractile responses were expressed as percentage of 80 mM K+ contractions in normal PSS. Maximalcontractions (Emax) induced by PHE and HIST compared with high K+ contraction in the various preparations weredifferentially altered following exposure to K+-free or 800µg/mL kolaviron in both intact (+E) and endotheliumdenuded (-E) rings. Based on the efficacy (Emax) and potency (EC50) values for the dose-response curves of the agonists, it isconcluded that enhanced differential contractile responses elicited by agonists in K+-free PSS were significantly attenuatedby kolaviron concentration-dependently. This observation probably suggests the existence of another pathway of kolavironmode of action in vascular smooth muscle reactivity.

  13. Gallbladder contractility and mucus secretion after cholesterol feeding in the prairie dog

    NARCIS (Netherlands)

    Li, Y. F.; Moody, F. G.; Weisbrodt, N. W.; Zalewsky, C. A.; Coelho, J. C.; Senninger, N.; Gouma, D.

    1986-01-01

    The purpose of our study was to evaluate changes in gallbladder contractility and mucus secretion in vitro during the early stages of gallstone formation in prairie dogs. Thirty-two animals were divided into five groups. Control animals were fed a trace cholesterol diet. Experimental animals were

  14. Adaptive responses of mouse skeletal muscle to contractile activity: The effect of age.

    Science.gov (United States)

    Vasilaki, A; McArdle, F; Iwanejko, L M; McArdle, A

    2006-11-01

    This study has characterised the time course of two major transcriptional adaptive responses to exercise (changes in antioxidant defence enzyme activity and heat shock protein (HSP) content) in muscles of adult and old male mice following isometric contractions and has examined the mechanisms involved in the age-related reduction in transcription factor activation. Muscles of B6XSJL mice were subjected to isometric contractions and analysed for antioxidant defence enzyme activities, heat shock protein content and transcription factor DNA binding activity. Data demonstrated a significant increase in superoxide dismutase (SOD) and catalase activity and HSP content of muscles of adult mice following contractile activity which was associated with increased activation of the transcription factors, nuclear factor-kappaB (NF-kappaB), activator protein-1 (AP-1) and heat shock factor (HSF) following contractions. Significant increases in SOD and catalase activity and heat shock cognate (HSC70) content were seen in quiescent muscles of old mice. The increase in antioxidant defence enzyme activity following contractile activity seen in muscles of adult mice was not seen in muscles of old mice and this was associated with a failure to fully activate NF-kappaB and AP-1 following contractions. In contrast, although the production of HSPs was also reduced in muscles of old mice following contractile activity compared with muscles of adult mice following contractions, this was not due to a gross reduction in the DNA binding activity of HSF.

  15. Donor Preconditioning After the Onset of Brain Death With Dopamine Derivate n-Octanoyl Dopamine Improves Early Posttransplant Graft Function in the Rat.

    Science.gov (United States)

    Li, S; Korkmaz-Icöz, S; Radovits, T; Ruppert, M; Spindler, R; Loganathan, S; Hegedűs, P; Brlecic, P; Theisinger, B; Theisinger, S; Höger, S; Brune, M; Lasitschka, F; Karck, M; Yard, B; Szabó, G

    2017-07-01

    Heart transplantation is the therapy of choice for end-stage heart failure. However, hemodynamic instability, which has been demonstrated in brain-dead donors (BDD), could also affect the posttransplant graft function. We tested the hypothesis that treatment of the BDD with the dopamine derivate n-octanoyl-dopamine (NOD) improves donor cardiac and graft function after transplantation. Donor rats were given a continuous intravenous infusion of either NOD (0.882 mg/kg/h, BDD+NOD, n = 6) or a physiological saline vehicle (BDD, n = 9) for 5 h after the induction of brain death by inflation of a subdural balloon catheter. Controls were sham-operated (n = 9). In BDD, decreased left-ventricular contractility (ejection fraction; maximum rate of rise of left-ventricular pressure; preload recruitable stroke work), relaxation (maximum rate of fall of left-ventricular pressure; Tau), and increased end-diastolic stiffness were significantly improved after the NOD treatment. Following the transplantation, the NOD-treatment of BDD improved impaired systolic function and ventricular relaxation. Additionally, after transplantation increased interleukin-6, tumor necrosis factor TNF-α, NF-kappaB-p65, and nuclear factor (NF)-kappaB-p105 gene expression, and increased caspase-3, TNF-α and NF-kappaB protein expression could be significantly downregulated by the NOD treatment compared to BDD. BDD postconditioning with NOD through downregulation of the pro-apoptotic factor caspase-3, pro-inflammatory cytokines, and NF-kappaB may protect the heart against the myocardial injuries associated with brain death and ischemia/reperfusion. © 2017 The American Society of Transplantation and the American Society of Transplant Surgeons.

  16. Numerical investigation of perforated polymer microcantilever sensor for contractile behavior of cardiomyocytes

    Science.gov (United States)

    Khoa Nguyen, Trieu; Lee, Dong-Weon; Lee, Bong-Kee

    2017-06-01

    In this study, a numerical investigation of microcantilever sensors for detecting the contractile behavior of cardiomyocytes (CMs) was performed. Recently, a novel surface-patterned perforated SU-8 microcantilever sensor has been developed for the preliminary screening of cardiac toxicity. From the contractile motion of the CMs cultured on the microcantilever surface, a macroscopic bending of the microcantilever was obtained, which is considered to reflect a physiological change. As a continuation of the previous research, a novel numerical method based on a surface traction model was proposed and verified to further understand the bending behavior of the microcantilevers. Effects of various factors, including surface traction magnitude, focal area of CMs, and stiffness of microcantilever, on the bending displacement were investigated. From static and transient analyses, the focal area was found to be the most crucial factor. In addition, the current result can provide a design guideline for various micromechanical devices based on the same principle.

  17. IGF-1 Alleviates High Fat Diet-Induced Myocardial Contractile Dysfunction: Role of Insulin Signaling and Mitochondrial Function

    Science.gov (United States)

    Zhang, Yingmei; Yuan, Ming; Bradley, Katherine M.; Dong, Feng; Anversa, Piero; Ren, Jun

    2012-01-01

    Obesity is often associated with reduced plasma IGF-1 levels, oxidative stress, mitochondrial damage and cardiac dysfunction. This study was designed to evaluate the impact of IGF-1 on high fat diet-induced oxidative, myocardial, geometric and mitochondrial responses. FVB and cardiomyocyte-specific IGF-1 overexpression transgenic mice were fed a low (10%) or high fat (45%) diet to induce obesity. High fat diet feeding led to glucose intolerance, elevated plasma levels of leptin, interleukin-6, insulin and triglyceride as well as reduced circulating IGF-1 levels. Echocardiography revealed reduced fractional shortening, increased end systolic and diastolic diameter, increased wall thickness, and cardiac hypertrophy in high fat-fed FVB mice. High fat diet promoted ROS generation, apoptosis, protein and mitochondrial damage, reduced ATP content, cardiomyocyte cross-sectional area, contractile and intracellular Ca2+ dysregulation, including depressed peak shortening and maximal velocity of shortening/relengthening, prolonged duration of relengthening, and dampened intracellular Ca2+ rise and clearance. Western blot analysis revealed disrupted phosphorylation of insulin receptor, post-receptor signaling molecules IRS-1 (tyrosine/serine phosphorylation), Akt, GSK3β, Foxo3a, mTOR, as well as downregulated expression of mitochondrial proteins PPARγ coactivator 1α (PGC1α) and UCP-2. Intriguingly, IGF-1 mitigated high fat diet feeding-induced alterations in ROS, protein and mitochondrial damage, ATP content, apoptosis, myocardial contraction, intracellular Ca2+ handling and insulin signaling, but not whole body glucose intolerance and cardiac hypertrophy. Exogenous IGF-1 treatment also alleviated high fat diet-induced cardiac dysfunction. Our data revealed that IGF-1 alleviates high fat diet-induced cardiac dysfunction despite persistent cardiac remodeling, possibly due to preserved cell survival, mitochondrial function and insulin signaling. PMID:22275536

  18. Increased O-GlcNAcylation of Endothelial Nitric Oxide Synthase Compromises the Anti-contractile Properties of Perivascular Adipose Tissue in Metabolic Syndrome.

    Science.gov (United States)

    da Costa, Rafael M; da Silva, Josiane F; Alves, Juliano V; Dias, Thiago B; Rassi, Diane M; Garcia, Luis V; Lobato, Núbia de Souza; Tostes, Rita C

    2018-01-01

    Under physiological conditions, the perivascular adipose tissue (PVAT) negatively modulates vascular contractility. This property is lost in experimental and human obesity and in the metabolic syndrome, indicating that changes in PVAT function may contribute to vascular dysfunction associated with increased body weight and hyperglycemia. The O -linked β-N-acetylglucosamine ( O -GlcNAc) modification of proteins ( O -GlcNAcylation) is a unique posttranslational process that integrates glucose metabolism with intracellular protein activity. Increased flux of glucose through the hexosamine biosynthetic pathway and the consequent increase in tissue-specific O -GlcNAc modification of proteins have been linked to multiple facets of vascular dysfunction in diabetes and other pathological conditions. We hypothesized that chronic consumption of glucose, a condition that progresses to metabolic syndrome, leads to increased O -GlcNAc modification of proteins in the PVAT, decreasing its anti-contractile effects. Therefore, the current study was devised to determine whether a high-sugar diet increases O -GlcNAcylation in the PVAT and how increased O -GlcNAc interferes with PVAT vasorelaxant function. To assess molecular mechanisms by which O -GlcNAc contributes to PVAT dysfunction, thoracic aortas surrounded by PVAT were isolated from Wistar rats fed either a control or high sugar diet, for 10 and 12 weeks. Rats chronically fed a high sugar diet exhibited metabolic syndrome features, increased O -GlcNAcylated-proteins in the PVAT and loss of PVAT anti-contractile effect. PVAT from high sugar diet-fed rats for 12 weeks exhibited decreased NO formation, reduced expression of endothelial nitric oxide synthase (eNOS) and increased O -GlcNAcylation of eNOS. High sugar diet also decreased OGA activity and increased superoxide anion generation in the PVAT. Visceral adipose tissue samples from hyperglycemic patients showed increased levels of O -GlcNAc-modified proteins, increased ROS

  19. Modeling the dispersion effects of contractile fibers in smooth muscles

    Science.gov (United States)

    Murtada, Sae-Il; Kroon, Martin; Holzapfel, Gerhard A.

    2010-12-01

    Micro-structurally based models for smooth muscle contraction are crucial for a better understanding of pathological conditions such as atherosclerosis, incontinence and asthma. It is meaningful that models consider the underlying mechanical structure and the biochemical activation. Hence, a simple mechanochemical model is proposed that includes the dispersion of the orientation of smooth muscle myofilaments and that is capable to capture available experimental data on smooth muscle contraction. This allows a refined study of the effects of myofilament dispersion on the smooth muscle contraction. A classical biochemical model is used to describe the cross-bridge interactions with the thin filament in smooth muscles in which calcium-dependent myosin phosphorylation is the only regulatory mechanism. A novel mechanical model considers the dispersion of the contractile fiber orientations in smooth muscle cells by means of a strain-energy function in terms of one dispersion parameter. All model parameters have a biophysical meaning and may be estimated through comparisons with experimental data. The contraction of the middle layer of a carotid artery is studied numerically. Using a tube the relationships between the internal pressure and the stretches are investigated as functions of the dispersion parameter, which implies a strong influence of the orientation of smooth muscle myofilaments on the contraction response. It is straightforward to implement this model in a finite element code to better analyze more complex boundary-value problems.

  20. Pharmacological radionuclide ventriculography for detection of myocardial contractile reserve in patients after myocardial infarction: head-to-head comparison of low dose dobutamine and low dose dypiridamole

    International Nuclear Information System (INIS)

    Petrasinovic, Z.; Ostojic, M.; Beleslin, B.; Stojkovic, S.; Nedeljkovic, M.; Stankovic, G.; Dikic, A.; Pavlovic, S.; Sobic, D.

    2002-01-01

    Background. Low dose pharmacological stress echocardiography with either dobutamine or dipyridamole infusion has been proposed for recognition of myocardial viability. However, dependence on adequate acoustic window, observer experience, and the mild degree of wall motion changes make the viability assessment by stress echocardiography especially bothersome. The objective of the study was to evaluate the ability of low dose dobutamine and low dose dipyridamole radionuclide ventriculography to detect contractile reserve in patients after myocardial infarction and functional recovery after coronary angioplasty. Methods. The study group consisted of 20 consecutive patients (52±10 years, 17 male) with previous myocardial infarction and resting regional dyssynergy, in whom diagnostic cardiac catheterization revealed significant one-vessel coronary artery stenosis suitable for angioplasty. Each patient underwent equilibrium 99m-Tc radionuclide ventriculography which was performed at rest and during low dose dipyridamole (0.28 mg/kg over 2 minutes) and low dose dobutamine infusion (up to 10 mcg/kg/min). Left ventricular global and regional ejection fractions were determined. Increase of regional ejection fraction for >5% (inferoapical and posterolateral regions) or >10% (anteroseptal regions) during low dose dobutamine and dipyridamole in infarcted regions, as well as in the follow up period, was considered as index of contractile reserve. After 8 weeks of successful angioplasty, resting radionuclide ventriculography was repeated in all patients in order to identify functional recovery of the infarct zone. Results. Out of the 180 analyzed segments (20x9), 90 regional ejection fractions have shown depressed contractility. The mean of the regional ejection fractions showing depressed contractility increased from the resting value of 34±12% to 42±14% in the follow-up period (p=0.06). Of the 90 with baseline dyssynergy, 46 were responders during low-dose dobutamine (51

  1. Influence of a protocol of Pilates exercises on the contractility of the pelvic floor muscles of non-institutionalized elderly persons

    OpenAIRE

    Souza, Ligia Muniz de; Pegorare, Ana Beatriz Gomes de Souza; Christofoletti, Gustavo; Barbosa, Suzi Rosa Miziara

    2017-01-01

    Abstract Objective: To investigate the influence of a protocol of Pilates exercises on the functionality and contractility of the pelvic floor muscles (PFM) of older women living in the city of Campo Grande, Mato Grosso, Brazil. Method: Ten women (median age of 63.4±4.5 years) with little or no pelvic floor dysfunction were subjected to 24 sessions of Pilates exercises lasting one hour each, for 12 weeks. The pressure of the pelvic floor muscles (PFM) was assessed using a perineometer (cmH2...

  2. [The characteristics of esophagogastric junction contractile index in patients with gastroesophageal reflux disease or functional heartburn].

    Science.gov (United States)

    Wang, K; Duan, L P; Ge, Y; Xia, Z W; Xu, Z J

    2016-04-01

    To study the role of esophagogastric junction contractile index (EGJ-CI) in evaluating the function of anti-reflux barrier, and in differentiating patients with gastroesophageal reflux disease (GERD) from those with functional heartburn (FH). A total of 115 patients presenting heartburn were enrolled in the study from January 2012 to June 2015.All subjects had completed Gerd-Q questionnaire and undergone gastroscopy, 24-hour pH-impedance monitoring and esophageal high-resolution manometry. GERD patients were divided into as reflux esophagitis, acid-nonerosive reflux disease (NERD) and weakly acid-NERD groups. Patients with normal esophageal mucosa, normal acid exposure and negative proton pump inhibitor test were enrolled in FH group. EGJ-CI (mmHg·cm) as well as EGJ rest pressure and 4s integrated relaxation pressure (IRP 4s) were measured. Among the 115 patients, 18 were reflux esophagitis [(49.0±18.9) years, M∶F=10∶8], 25 were acid-NERD [(48.7±14.4) years, M∶F=13∶12], 37 were weakly acid-NERD [(52.0±14.8) years, M∶F=15∶22] and 35 were FH [(53.6±14.8), M∶F=8∶27]. No differences of Gerd-Q scores were noticed between the four groups. (1)Negative correlations were demonstrated between EGJ-CI and esophageal acid exposure time (r=-0.283, P=0.002), EGJ-CI and acid reflux events (r=-0.233, P=0.012), EGJ-CI and weakly acid reflux events (r=-0.213, P=0.022), EGJ-CI and non-acid reflux events (r=-0.200, P=0.032). (2)The value of EGJ-CI was significantly higher in FH patients than in the three subgroups of GERD(all P<0.01). EGJ rest pressure of FH group was higher than that of acid-NERD (P<0.01). IRP 4s in acid-NERD group was lower than that of FH and weakly acid-NERD (P<0.05). (3)The area under curve (AUC) of EGJ-CI was higher than that of EGJ-CIT, EGJ rest pressure or IRP 4s(0.686 vs 0.678, 0.641 and 0.578). The cut-off value of EGJ-CI to differentiate GERD from FH was 9.74 mmHg·cm with sensitivity 82.86% and specificity 51.52%. The EGJ-CI values are

  3. Improving functional value of meat products.

    Science.gov (United States)

    Zhang, Wangang; Xiao, Shan; Samaraweera, Himali; Lee, Eun Joo; Ahn, Dong U

    2010-09-01

    In recent years, much attention has been paid to develop meat and meat products with physiological functions to promote health conditions and prevent the risk of diseases. This review focuses on strategies to improve the functional value of meat and meat products. Value improvement can be realized by adding functional compounds including conjugated linoneleic acid, vitamin E, n3 fatty acids and selenium in animal diets to improve animal production, carcass composition and fresh meat quality. In addition, functional ingredients such as vegetable proteins, dietary fibers, herbs and spices, and lactic acid bacteria can be directly incorporated into meat products during processing to improve their functional value for consumers. Functional compounds, especially peptides, can also be generated from meat and meat products during processing such as fermentation, curing and aging, and enzymatic hydrolysis. This review further discusses the current status, consumer acceptance, and market for functional foods from the global viewpoints. Future prospects for functional meat and meat products are also discussed.

  4. Bistable front dynamics in a contractile medium: Travelling wave fronts and cortical advection define stable zones of RhoA signaling at epithelial adherens junctions

    Science.gov (United States)

    Budnar, Srikanth; Yap, Alpha S.

    2017-01-01

    Mechanical coherence of cell layers is essential for epithelia to function as tissue barriers and to control active tissue dynamics during morphogenesis. RhoA signaling at adherens junctions plays a key role in this process by coupling cadherin-based cell-cell adhesion together with actomyosin contractility. Here we propose and analyze a mathematical model representing core interactions involved in the spatial localization of junctional RhoA signaling. We demonstrate how the interplay between biochemical signaling through positive feedback, combined with diffusion on the cell membrane and mechanical forces generated in the cortex, can determine the spatial distribution of RhoA signaling at cell-cell junctions. This dynamical mechanism relies on the balance between a propagating bistable signal that is opposed by an advective flow generated by an actomyosin stress gradient. Experimental observations on the behavior of the system when contractility is inhibited are in qualitative agreement with the predictions of the model. PMID:28273072

  5. Bistable front dynamics in a contractile medium: Travelling wave fronts and cortical advection define stable zones of RhoA signaling at epithelial adherens junctions.

    Directory of Open Access Journals (Sweden)

    Rashmi Priya

    2017-03-01

    Full Text Available Mechanical coherence of cell layers is essential for epithelia to function as tissue barriers and to control active tissue dynamics during morphogenesis. RhoA signaling at adherens junctions plays a key role in this process by coupling cadherin-based cell-cell adhesion together with actomyosin contractility. Here we propose and analyze a mathematical model representing core interactions involved in the spatial localization of junctional RhoA signaling. We demonstrate how the interplay between biochemical signaling through positive feedback, combined with diffusion on the cell membrane and mechanical forces generated in the cortex, can determine the spatial distribution of RhoA signaling at cell-cell junctions. This dynamical mechanism relies on the balance between a propagating bistable signal that is opposed by an advective flow generated by an actomyosin stress gradient. Experimental observations on the behavior of the system when contractility is inhibited are in qualitative agreement with the predictions of the model.

  6. Low intensity, high frequency vibration training to improve musculoskeletal function in a mouse model of Duchenne muscular dystrophy.

    Directory of Open Access Journals (Sweden)

    Susan A Novotny

    Full Text Available The objective of the study was to determine if low intensity, high frequency vibration training impacted the musculoskeletal system in a mouse model of Duchenne muscular dystrophy, relative to healthy mice. Three-week old wildtype (n = 26 and mdx mice (n = 22 were randomized to non-vibrated or vibrated (45 Hz and 0.6 g, 15 min/d, 5 d/wk groups. In vivo and ex vivo contractile function of the anterior crural and extensor digitorum longus muscles, respectively, were assessed following 8 wks of vibration. Mdx mice were injected 5 and 1 days prior to sacrifice with Calcein and Xylenol, respectively. Muscles were prepared for histological and triglyceride analyses and subcutaneous and visceral fat pads were excised and weighed. Tibial bones were dissected and analyzed by micro-computed tomography for trabecular morphometry at the metaphysis, and cortical geometry and density at the mid-diaphysis. Three-point bending tests were used to assess cortical bone mechanical properties and a subset of tibiae was processed for dynamic histomorphometry. Vibration training for 8 wks did not alter trabecular morphometry, dynamic histomorphometry, cortical geometry, or mechanical properties (P ≥ 0.34. Vibration did not alter any measure of muscle contractile function (P ≥ 0.12; however the preservation of muscle function and morphology in mdx mice indicates vibration is not deleterious to muscle lacking dystrophin. Vibrated mice had smaller subcutaneous fat pads (P = 0.03 and higher intramuscular triglyceride concentrations (P = 0.03. These data suggest that vibration training at 45 Hz and 0.6 g did not significantly impact the tibial bone and the surrounding musculature, but may influence fat distribution in mice.

  7. Influence of metabolism modifiers of cyclic nucleotides on contractility of right ventricle of rat heart with intact and removed endocardial endothelium

    Directory of Open Access Journals (Sweden)

    Savić Slađana

    2010-01-01

    Full Text Available Introduction. Endocardial endothelium, a natural biological barrier between circulating blood in heart ventricle and cells, creates a complex yet finely tuned balance of interactions with the immediate environment. Objective. We investigated the roles of theophylline, nonspecific phosphodiesterase inhibitor, and imidazole, an activator of phosphodiesterase on contractility of the right ventricle of rat heart, with intact and removed endocardial endothelium. Methods. Adult rats, of both sexes, type Wistar albino, were used in this experiment. All experiments were conducted on the preparations of the right ventricle using two experimental models. In the first experimental model, an endocardial endothelium (EE was preserved, and in the second model, an endocardial endothelium (-EE was removed using 1% solution Triton X-100. Results. Theophylline (1x10-2 mol/l expressed the positive inotropic effect on the heart, regardless of the presence of the endocardial endothelium. Inotropic response as multiple process can be induced by inhibition of phosphodiesterase, accumulation of cyclic nucleotides and activation of Ca2+ channels. Imidazole (2x10-3 mol/l increased the contractility of the right ventricle of the heart with EE. The modulator effect of endocardial endothelium on contractility of imidazole proved to be significant. As imidazole influenced the contractility of the right ventricle only in the presence of the endocardial endothelium, it is assumed that its effect is mediated via deliverance of endothelial mediators with positive inotropic effect. Conclusion. An intact endocardial endothelium is necessary for completion of contractile performance of the heart.

  8. TREK-1 Channel Expression in Smooth Muscle as a Target for Regulating Murine Intestinal Contractility: Therapeutic Implications for Motility Disorders

    Directory of Open Access Journals (Sweden)

    Ruolin Ma

    2018-03-01

    Full Text Available Gastrointestinal (GI motility disorders such as irritable bowel syndrome (IBS can occur when coordinated smooth muscle contractility is disrupted. Potassium (K+ channels regulate GI smooth muscle tone and are key to GI tract relaxation, but their molecular and functional phenotypes are poorly described. Here we define the expression and functional roles of mechano-gated K2P channels in mouse ileum and colon. Expression and distribution of the K2P channel family were investigated using quantitative RT-PCR (qPCR, immunohistochemistry and confocal microscopy. The contribution of mechano-gated K2P channels to mouse intestinal muscle tension was studied pharmacologically using organ bath. Multiple K2P gene transcripts were detected in mouse ileum and colon whole tissue preparations. Immunohistochemistry confirmed TREK-1 expression was smooth muscle specific in both ileum and colon, whereas TREK-2 and TRAAK channels were detected in enteric neurons but not smooth muscle. In organ bath, mechano-gated K2P channel activators (Riluzole, BL-1249, flufenamic acid, and cinnamyl 1-3,4-dihydroxy-alpha-cyanocinnamate induced relaxation of KCl and CCh pre-contracted ileum and colon tissues and reduced the amplitude of spontaneous contractions. These data reveal the specific expression of mechano-gated K2P channels in mouse ileum and colon tissues and highlight TREK-1, a smooth muscle specific K2P channel in GI tract, as a potential therapeutic target for combating motility pathologies arising from hyper-contractility.

  9. Curcumin Alleviates the Functional Gastrointestinal Disorders of Mice In Vivo.

    Science.gov (United States)

    Yu, Jing; Xu, Wen-Hua; Sun, Wei; Sun, Yi; Guo, Zhi-Li; Yu, Xiao-Ling

    2017-12-01

    Curcumin is a natural polyphenol extracted from the turmeric rhizome, which has a wide range of biological activities, but until now the effects of curcumin on the gastrointestinal peristalsis have not been fully understood. In vivo study, we observed the effects of curcumin on gastric emptying and intestinal propulsion rates of mice in normal state and in delayed state by atropine (ATR) or nitric oxide precursor L-arginine (L-Arg). An in vitro study explored the direct effects of curcumin on the intestinal contractility, but were studied through measuring spontaneous contraction of isolated jejunum of mice. Our results showed that intragastric administration of curcumin (200 mg/kg/day) for 10-20 days significantly improved gastric emptying and intestinal propulsion rates of mice delayed by ATR. Moreover, intragastric administration of curcumin (200 mg/kg/day) for 15 days also significantly improved mice gastric emptying and intestinal propulsion rates delayed by L-Arg. There was no significant effect on normal gastrointestinal propulsion of mice after intragastric administration of curcumin (200 mg/kg/day) for 1-20 days. When normal isolated jejunum of mice were incubated with curcumin in vitro, the amplitude of the spontaneous contractile waves of jejunum was reduced in a concentration-dependent manner. Moreover, curcumin reduced the amplitude of the contractile waves of jejunum in both contracted and relaxed state induced by acetylcholine or ATR individually. Taken together, our results suggest that curcumin has quite different effects on gastrointestinal peristalsis in vivo and in vitro. Moderate dose of curcumin by intragastric administration for more than 10 days can alleviate the functional gastrointestinal disorders of mice, but cannot affect normal gastrointestinal propulsion.

  10. Stochastic Ratcheting on a Funneled Energy Landscape Is Necessary for Highly Efficient Contractility of Actomyosin Force Dipoles

    Science.gov (United States)

    Komianos, James E.; Papoian, Garegin A.

    2018-04-01

    Current understanding of how contractility emerges in disordered actomyosin networks of nonmuscle cells is still largely based on the intuition derived from earlier works on muscle contractility. In addition, in disordered networks, passive cross-linkers have been hypothesized to percolate force chains in the network, hence, establishing large-scale connectivity between local contractile clusters. This view, however, largely overlooks the free energy of cross-linker binding at the microscale, which, even in the absence of active fluctuations, provides a thermodynamic drive towards highly overlapping filamentous states. In this work, we use stochastic simulations and mean-field theory to shed light on the dynamics of a single actomyosin force dipole—a pair of antiparallel actin filaments interacting with active myosin II motors and passive cross-linkers. We first show that while passive cross-linking without motor activity can produce significant contraction between a pair of actin filaments, driven by thermodynamic favorability of cross-linker binding, a sharp onset of kinetic arrest exists at large cross-link binding energies, greatly diminishing the effectiveness of this contractility mechanism. Then, when considering an active force dipole containing nonmuscle myosin II, we find that cross-linkers can also serve as a structural ratchet when the motor dissociates stochastically from the actin filaments, resulting in significant force amplification when both molecules are present. Our results provide predictions of how actomyosin force dipoles behave at the molecular level with respect to filament boundary conditions, passive cross-linking, and motor activity, which can explicitly be tested using an optical trapping experiment.

  11. Stochastic Ratcheting on a Funneled Energy Landscape Is Necessary for Highly Efficient Contractility of Actomyosin Force Dipoles

    Directory of Open Access Journals (Sweden)

    James E. Komianos

    2018-04-01

    Full Text Available Current understanding of how contractility emerges in disordered actomyosin networks of nonmuscle cells is still largely based on the intuition derived from earlier works on muscle contractility. In addition, in disordered networks, passive cross-linkers have been hypothesized to percolate force chains in the network, hence, establishing large-scale connectivity between local contractile clusters. This view, however, largely overlooks the free energy of cross-linker binding at the microscale, which, even in the absence of active fluctuations, provides a thermodynamic drive towards highly overlapping filamentous states. In this work, we use stochastic simulations and mean-field theory to shed light on the dynamics of a single actomyosin force dipole—a pair of antiparallel actin filaments interacting with active myosin II motors and passive cross-linkers. We first show that while passive cross-linking without motor activity can produce significant contraction between a pair of actin filaments, driven by thermodynamic favorability of cross-linker binding, a sharp onset of kinetic arrest exists at large cross-link binding energies, greatly diminishing the effectiveness of this contractility mechanism. Then, when considering an active force dipole containing nonmuscle myosin II, we find that cross-linkers can also serve as a structural ratchet when the motor dissociates stochastically from the actin filaments, resulting in significant force amplification when both molecules are present. Our results provide predictions of how actomyosin force dipoles behave at the molecular level with respect to filament boundary conditions, passive cross-linking, and motor activity, which can explicitly be tested using an optical trapping experiment.

  12. Modulation of cardiac contractility by the phospholamban/SERCA2a regulatome.

    Science.gov (United States)

    Kranias, Evangelia G; Hajjar, Roger J

    2012-06-08

    Heart disease remains the leading cause of death and disability in the Western world. Current therapies aim at treating the symptoms rather than the subcellular mechanisms, underlying the etiology and pathological remodeling in heart failure. A universal characteristic, contributing to the decreased contractile performance in human and experimental failing hearts, is impaired calcium sequestration into the sarcoplasmic reticulum (SR). SR calcium uptake is mediated by a Ca(2+)-ATPase (SERCA2), whose activity is reversibly regulated by phospholamban (PLN). Dephosphorylated PLN is an inhibitor of SERCA and phosphorylation of PLN relieves this inhibition. However, the initial simple view of a PLN/SERCA regulatory complex has been modified by our recent identification of SUMO, S100 and the histidine-rich Ca-binding protein as regulators of SERCA activity. In addition, PLN activity is regulated by 2 phosphoproteins, the inhibitor-1 of protein phosphatase 1 and the small heat shock protein 20, which affect the overall SERCA-mediated Ca-transport. This review will highlight the regulatory mechanisms of cardiac contractility by the multimeric SERCA/PLN-ensemble and the potential for new therapeutic avenues targeting this complex by using small molecules and gene transfer methods.

  13. Neuregulin-1/erbB-activation improves cardiac function and survival in models of ischemic, dilated, and viral cardiomyopathy.

    Science.gov (United States)

    Liu, Xifu; Gu, Xinhua; Li, Zhaoming; Li, Xinyan; Li, Hui; Chang, Jianjie; Chen, Ping; Jin, Jing; Xi, Bing; Chen, Denghong; Lai, Donna; Graham, Robert M; Zhou, Mingdong

    2006-10-03

    We evaluated the therapeutic potential of a recombinant 61-residue neuregulin-1 (beta2a isoform) receptor-active peptide (rhNRG-1) in multiple animal models of heart disease. Activation of the erbB family of receptor tyrosine kinases by rhNRG-1 could provide a treatment option for heart failure, because neuregulin-stimulated erbB2/erbB4 heterodimerization is not only critical for myocardium formation in early heart development but prevents severe dysfunction of the adult heart and premature death. Disabled erbB-signaling is also implicated in the transition from compensatory hypertrophy to failure, whereas erbB receptor-activation promotes myocardial cell growth and survival and protects against anthracycline-induced cardiomyopathy. rhNRG-1 was administered IV to animal models of ischemic, dilated, and viral cardiomyopathy, and cardiac function and survival were evaluated. Short-term intravenous administration of rhNRG-1 to normal dogs and rats did not alter hemodynamics or cardiac contractility. In contrast, rhNRG-1 improved cardiac performance, attenuated pathological changes, and prolonged survival in rodent models of ischemic, dilated, and viral cardiomyopathy, with the survival benefits in the ischemic model being additive to those of angiotensin-converting enzyme inhibitor therapy. In addition, despite continued pacing, rhNRG-1 produced global improvements in cardiac function in a canine model of pacing-induced heart failure. These beneficial effects make rhNRG-1 promising as a broad-spectrum therapeutic for the treatment of heart failure due to a variety of common cardiac diseases.

  14. Facilitated ethanol metabolism promotes cardiomyocyte contractile dysfunction through autophagy in murine hearts.

    Science.gov (United States)

    Guo, Rui; Hu, Nan; Kandadi, Machender R; Ren, Jun

    2012-04-01

    Chronic drinking leads to myocardial contractile dysfunction where ethanol metabolism plays an essential role. Acetaldehyde, the main ethanol metabolite, mediates alcohol-induced cell injury although the underlying mechanism is still elusive. This study was designed to examine the mechanism involved in accelerated ethanol metabolism-induced cardiac defect with a focus on autophagy. Wild-type FVB and cardiac-specific overexpression of alcohol dehydrogenase mice were placed on a 4% nutrition-balanced alcohol diet for 8 weeks. Myocardial histology, immunohistochemistry, autophagy markers and signal molecules were examined. Expression of micro RNA miR-30a, a potential target of Beclin 1, was evaluated by real-time PCR. Chronic alcohol intake led to cardiac acetaldehyde accumulation, hypertrophy and overt autophagosome accumulation (LC3-II and Atg7), the effect of which was accentuated by ADH. Signaling molecules governing autophagy initiation including class III PtdIns3K, phosphorylation of mTOR and p70S6K were enhanced and dampened, respectively, following alcohol intake. These alcohol-induced signaling responses were augmented by ADH. ADH accentuated or unmasked alcohol-induced downregulation of Bcl-2, Bcl-xL and MiR-30a. Interestingly, ADH aggravated alcohol-induced p62 accumulation. Autophagy inhibition using 3-MA abolished alcohol-induced cardiomyocyte contractile anomalies. Moreover, acetaldehyde led to cardiomyocyte contractile dysfunction and autophagy induction, which was ablated by 3-MA. Ethanol or acetaldehyde increased GFP-LC3 puncta in H9c2 cells, the effect of which was ablated by 3-MA but unaffected by lysosomal inhibition using bafilomycin A(1), E64D and pepstatin A. In summary, these data suggested that facilitated acetaldehyde production via ADH following alcohol intake triggered cardiac autophagosome formation along with impaired lysosomal degradation, en route to myocardial defect.

  15. Spatial differences of cellular origins and in vivo hypoxia modify contractile properties of pulmonary artery smooth muscle cells: lessons for arterial tissue engineering.

    Science.gov (United States)

    Hall, S M; Soueid, A; Smith, T; Brown, R A; Haworth, S G; Mudera, V

    2007-01-01

    Tissue engineering of functional arteries is challenging. Within the pulmonary artery wall, smooth muscle cells (PASMCs) have site-specific developmental and functional phenotypes, reflecting differing contractile roles. The force generated by PASMCs isolated from the inner 25% and outer 50% of the media of intrapulmonary elastic arteries from five normal and eight chronically hypoxic (hypertensive) 14 day-old piglets was quantified in a three-dimensional (3D) collagen construct, using a culture force monitor. Outer medial PASMCs from normal piglets exerted more force (528 +/- 50 dynes) than those of hypoxic piglets (177 +/- 42 dynes; p engineering of major blood vessels.

  16. Effect of short-term outlet obstruction on rat bladder nerve density and contractility

    NARCIS (Netherlands)

    Barendrecht, M. M.; Chichester, P.; Michel, M. C.; Levin, R. M.

    2007-01-01

    1 The present study was designed to investigate the relationship between innervation density and contractile responses to field stimulation and exogenous agonists at early time points after induction of bladder outlet obstruction (BOO) in rats. 2 When compared with sham-operated animals, 1, 3 and 7

  17. The importance of myocardial contractile reserve in predicting response to cardiac resynchronization therapy

    NARCIS (Netherlands)

    Kloosterman, Mariëlle; Damman, Kevin; Van Veldhuisen, Dirk J; Rienstra, Michiel; Maass, Alexander H

    AimTo perform a meta-analysis and systematic review of published data to assess the relationship between contractile reserve and response to cardiac resynchronization therapy (CRT) in patients with heart failure. Methods and resultsWe searched MEDLINE/PubMed and Cochrane for all papers published up

  18. Inhibition of MMP-2 Expression with siRNA Increases Baseline Cardiomyocyte Contractility and Protects against Simulated Ischemic Reperfusion Injury

    Directory of Open Access Journals (Sweden)

    Han-Bin Lin

    2014-01-01

    Full Text Available Matrix metalloproteinases (MMPs significantly contribute to ischemia reperfusion (I/R injury, namely, by the degradation of contractile proteins. However, due to the experimental models adopted and lack of isoform specificity of MMP inhibitors, the cellular source and identity of the MMP(s involved in I/R injury remain to be elucidated. Using isolated adult rat cardiomyocytes, subjected to chemically induced I/R-like injury, we show that specific inhibition of MMP-2 expression and activity using MMP-2 siRNA significantly protected cardiomyocyte contractility from I/R-like injury. This was also associated with increased expression of myosin light chains 1 and 2 (MLC1/2 in comparison to scramble siRNA transfection. Moreover, the positive effect of MMP-2 siRNA transfection on cardiomyocyte contractility and MLC1/2 expression levels was also observed under control conditions, suggesting an important additional role for MMP-2 in physiological sarcomeric protein turnover. This study clearly demonstrates that intracellular expression of MMP-2 plays a significant role in sarcomeric protein turnover, such as MLC1 and MLC2, under aerobic (physiological conditions. In addition, this study identifies intracellular/autocrine, cardiomyocyte-produced MMP-2, rather than paracrine/extracellular, as responsible for the degradation of MLC1/2 and consequent contractile dysfunction in cardiomyocytes subjected to I/R injury.

  19. Matching of sarcoplasmic reticulum and contractile properties in rat fast- and slow-twitch muscle fibres.

    Science.gov (United States)

    Trinh, Huong H; Lamb, Graham D

    2006-07-01

    1. The twitch characteristics (fast-twitch or slow-twitch) of skeletal muscle fibres are determined not only by the contractile apparatus properties of the fibre, but also by the time-course of Ca2+ release and re-uptake by the sarcoplasmic reticulum (SR). The present study examined, in individual fibres from non-transforming muscle of the rat, whether particular SR properties are matched to the contractile apparatus properties of the fibre, in particular in the case of fibres with fast-twitch contractile apparatus located in a slow-twitch muscle, namely the soleus. 2. Force was recorded in single, mechanically skinned fibres from extensor digitorum longus (EDL), gastrocnemius, peroneus longus and soleus muscles. Using repeated cycles in which the SR was emptied of all releasable Ca2+ and then reloaded, it was possible to determine the relative amount of Ca2+ present in the SR endogenously, the maximum SR capacity and the rate of Ca2+ loading. The sensitivity of the contractile apparatus to Ca2+ and Sr2+ was used to classify the fibres as fast-twitch (FT), slow-twitch (ST) or mixed (fibres examined) and thereby identify the likely troponin C and myosin heavy chain types present. 3. There was no significant difference in SR properties between the groups of FT fibres obtained from the four different muscles, including soleus. Despite some overlap in the SR properties of individual fibres between the FT and ST groups, the properties of the FT fibres in all four muscles studied were significantly different from those of the ST and mixed fibres. 4. In general, in FT fibres the SR had a larger capacity and the endogenous Ca2+ content was a relatively lower percentage of maximum compared with ST fibres. Importantly, in terms of their SR properties, FT fibres from soleus muscle more closely resembled FT fibres from other muscles than they did ST fibres from soleus muscle.

  20. Smoothelin-B deficiency results in reduced arterial contractility, hypertension, and cardiac hypertrophy in mice

    NARCIS (Netherlands)

    Rensen, Sander S.; Niessen, Petra M.; van Deursen, Jan M.; Janssen, Ben J.; Heijman, Edwin; Hermeling, Evelien; Meens, Merlijn; Lie, Natascha; Gijbels, Marion J.; Strijkers, Gustav J.; Doevendans, Pieter A.; Hofker, Marten H.; de Mey, Jo G. R.; van Eys, Guillaume J.

    2008-01-01

    Smoothelins are actin-binding proteins that are abundantly expressed in healthy visceral (smoothelin-A) and vascular (smoothelin-B) smooth muscle. Their expression is strongly associated with the contractile phenotype of smooth muscle cells. Analysis of mice lacking both smoothelins (Smtn-A/B(-/-)

  1. New insights into roles of acidocalcisomes and contractile vacuole complex in osmoregulation in protists.

    Science.gov (United States)

    Docampo, Roberto; Jimenez, Veronica; Lander, Noelia; Li, Zhu-Hong; Niyogi, Sayantanee

    2013-01-01

    While free-living protists are usually subjected to hyposmotic environments, parasitic protists are also in contact with hyperosmotic habitats. Recent work in one of these parasites, Trypanosoma cruzi, has revealed that its contractile vacuole complex, which usually collects and expels excess water as a mechanism of regulatory volume decrease after hyposmotic stress, has also a role in cell shrinking when the cells are submitted to hyperosmotic stress. Trypanosomes also have an acidic calcium store rich in polyphosphate (polyP), named the acidocalcisome, which is involved in their response to osmotic stress. Here, we review newly emerging insights on the role of acidocalcisomes and the contractile vacuole complex in the cellular response to hyposmotic and hyperosmotic stresses. We also review the current state of knowledge on the composition of these organelles and their other roles in calcium homeostasis and protein trafficking. © 2013, Elsevier Inc. All Rights Reserved.

  2. Contractile profile of esophageal and gastric fundus strips in experimental doxorubicin-induced esophageal atresia

    Directory of Open Access Journals (Sweden)

    F.A. Capeto

    2015-05-01

    Full Text Available Esophageal atresia (EA is characterized by esophageal and gastric motility changes secondary to developmental and postsurgical damage. This study evaluated the in vitro contractile profile of the distal esophagus and gastric fundus in an experimental model of EA induced by doxorubicin (DOXO. Wistar pregnant rats received DOXO 2.2 mg/kg on the 8th and 9th gestational days. On day 21.5, fetuses were collected, sacrificed, and divided into groups: control, DOXO without EA (DOXO-EA, and DOXO with EA (DOXO+EA. Strips from the distal esophagus and gastric fundus were mounted on a wire myograph and isolated organ-bath system, respectively, and subjected to increasing concentrations of carbamylcholine chloride (carbachol, CCh. The isolated esophagus was also stimulated with increasing concentrations of KCl. In esophagus, the concentration-effect curves were reduced in response to CCh in the DOXO+EA and DOXO-EA groups compared to the control group (P0.05. In response to KCl, the distal esophagus samples in the three groups were not statistically different with regard to Emax or EC50 values (P>0.05. No significant difference was noted for EC50 or Emax values in fundic strips stimulated with CCh (P>0.05. In conclusion, exposure of dams to DOXO during gestation inhibited the contractile behavior of esophageal strips from offspring in response to CCh but not KCl, regardless of EA induction. The gastric fundus of DOXO-exposed offspring did not have altered contractile responsiveness to cholinergic stimulation.

  3. Altered Ca fluxes and contractile state during pH changes in cultured heart cells

    International Nuclear Information System (INIS)

    Kim, D.; Smith, T.W.

    1987-01-01

    The authors studied mechanisms underlying changes in myocardial contractile state produced by intracellular (pH/sub i/) or extracellular (pH 0 ) changes in pH using cultured chick embryo ventricular cells. A change in pH 0 of HEPES-buffered medium from 7.4 to 6.0 or to 8.8 changed the amplitude of cell motion by -85 or +60%, and 45 Ca uptake at 10 s by -29 or +22%, respectively. The pH 0 induced change in Ca uptake was not sensitive to nifedipine but was Na gradient dependent. Changes in pH/sub i/ produced by NH 4 Cl or preincubation in media at pH values ranging from 6.0 to 8.8 failed to alter significantly 45 Ca uptake or efflux. However, larger changes in pH/sub i/ were associated with altered Ca uptake. Changes in pH 0 from 7.5 to 6.0 or to 8.8 were associated with initial changes in 45 Ca efflux by +17 or -18%, respectively, and these effects were not Na dependent. Exposure of cells to 20 mM NH 4 Cl produced intracellular alkalinization and a positive inotropic effect, whereas subsequent removal of NH 4 Cl caused intracellular acidification and a negative inotropic effect. There was, however, a lack of close temporal relationships between pH/sub i/ and contractile state. These results indicated that pH 0 -induced changes in contractile state in cultured heart cells are closely correlated with altered transarcolemmal Ca movements and presumably are due to these Ca flux changes

  4. Low thermal dependence of the contractile properties of a wing muscle in the bat Carollia perspicillata.

    Science.gov (United States)

    Rummel, Andrea D; Swartz, Sharon M; Marsh, Richard L

    2018-05-29

    Temperature affects contractile rate properties in muscle, which may affect locomotor performance. Endotherms are known to maintain high core body temperatures, but temperatures in the periphery of the body can fluctuate. Such a phenomenon occurs in bats, whose wing musculature is relatively poorly insulated, resulting in substantially depressed temperatures in the distal wing. We examined a wing muscle in the small-bodied tropical bat Carollia perspicillata and a hindlimb muscle in the laboratory mouse at 5°C intervals from 22 to 42°C to determine the thermal dependence of the contractile properties of both muscles. We found that the bat ECRL had low thermal dependence from near body temperature to 10°C lower, with Q 10 values of less than 1.5 for relaxation from contraction and shortening velocities in that interval, and with no significant difference in some rate properties in the interval between 32 and 37°C. In contrast, for all temperature intervals below 37°C, Q 10 values for the mouse EDL were 1.5 or higher, and rate properties differed significantly across successive temperature intervals from 37 to 22°C. An ANCOVA analysis found that the thermal dependencies of all measured isometric and isotonic rate processes were significantly different between the bat and mouse muscles. The relatively low thermal dependence of the bat muscle likely represents a downward shift of its optimal temperature and may be functionally significant in light of the variable operating temperatures of bat wing muscles. © 2018. Published by The Company of Biologists Ltd.

  5. Troglitazone stimulates β-arrestin-dependent cardiomyocyte contractility via the angiotensin II type 1A receptor

    International Nuclear Information System (INIS)

    Tilley, Douglas G.; Nguyen, Anny D.; Rockman, Howard A.

    2010-01-01

    Peroxisome proliferator-activated receptor γ (PPARγ) agonists are commonly used to treat cardiovascular diseases, and are reported to have several effects on cardiovascular function that may be due to PPARγ-independent signaling events. Select angiotensin receptor blockers (ARBs) interact with and modulate PPARγ activity, thus we hypothesized that a PPARγ agonist may exert physiologic effects via the angiotensin II type 1 A receptor (AT1 A R). In AT1 A R-overexpressing HEK 293 cells, both angiotensin II (Ang II) and the PPARγ agonist troglitazone (Trog) enhanced AT1 A R internalization and recruitment of endogenous β-arrestin1/2 (βarr1/2) to the AT1 A R. A fluorescence assay to measure diacylglycerol (DAG) accumulation showed that although Ang II induced AT1 A R-G q protein-mediated DAG accumulation, Trog had no impact on DAG generation. Trog-mediated recruitment of βarr1/2 was selective to AT1 A R as the response was prevented by an ARB- and Trog-mediated βarr1/2 recruitment to β1-adrenergic receptor (β1AR) was not observed. In isolated mouse cardiomyocytes, Trog increased both % and rate of cell shortening to a similar extent as Ang II, effects which were blocked with an ARB. Additionally, these effects were found to be βarr2-dependent, as cardiomyocytes isolated from βarr2-KO mice showed blunted contractile responses to Trog. These findings show for the first time that the PPARγ agonist Trog acts at the AT1 A R to simultaneously block G q protein activation and induce the recruitment of βarr1/2, which leads to an increase in cardiomyocyte contractility.

  6. Cellular contractility and substrate elasticity: a numerical investigation of the actin cytoskeleton and cell adhesion.

    Science.gov (United States)

    Ronan, William; Deshpande, Vikram S; McMeeking, Robert M; McGarry, J Patrick

    2014-04-01

    Numerous experimental studies have established that cells can sense the stiffness of underlying substrates and have quantified the effect of substrate stiffness on stress fibre formation, focal adhesion area, cell traction, and cell shape. In order to capture such behaviour, the current study couples a mixed mode thermodynamic and mechanical framework that predicts focal adhesion formation and growth with a material model that predicts stress fibre formation, contractility, and dissociation in a fully 3D implementation. Simulations reveal that SF contractility plays a critical role in the substrate-dependent response of cells. Compliant substrates do not provide sufficient tension for stress fibre persistence, causing dissociation of stress fibres and lower focal adhesion formation. In contrast, cells on stiffer substrates are predicted to contain large amounts of dominant stress fibres. Different levels of cellular contractility representative of different cell phenotypes are found to alter the range of substrate stiffness that cause the most significant changes in stress fibre and focal adhesion formation. Furthermore, stress fibre and focal adhesion formation evolve as a cell spreads on a substrate and leading to the formation of bands of fibres leading from the cell periphery over the nucleus. Inhibiting the formation of FAs during cell spreading is found to limit stress fibre formation. The predictions of this mutually dependent material-interface framework are strongly supported by experimental observations of cells adhered to elastic substrates and offer insight into the inter-dependent biomechanical processes regulating stress fibre and focal adhesion formation.

  7. The effect of exercise hypertrophy and disuse atrophy on muscle contractile properties: a mechanomyographic analysis.

    Science.gov (United States)

    Than, Christian; Tosovic, Danijel; Seidl, Laura; Mark Brown, J

    2016-12-01

    To determine whether mechanomyographic (MMG) determined contractile properties of the biceps brachii change during exercise-induced hypertrophy and subsequent disuse atrophy. Healthy subjects (mean ± SD, 23.7 ± 2.6 years, BMI 21.8 ± 2.4, n = 19) performed unilateral biceps curls (9 sets × 12 repetitions, 5 sessions per week) for 8 weeks (hypertrophic phase) before ceasing exercise (atrophic phase) for the following 8 weeks (non-dominant limb; treatment, dominant limb; control). MMG measures of muscle contractile properties (contraction time; T c , maximum displacement; D max , contraction velocity; V c ), electromyographic (EMG) measures of muscle fatigue (median power frequency; MPF), strength measures (maximum voluntary contraction; MVC) and measures of muscle thickness (ultrasound) were obtained. Two-way repeated measures ANOVA showed significant differences (P muscle thickness was greater than control, reflecting gross hypertrophy. MMG variables Dmax (weeks 2, 7) and Vc (weeks 7, 8) declined. During the atrophic phase, MVC (weeks 9-12) and muscle thickness (weeks 9, 10) initially remained high before declining to control levels, reflecting gross atrophy. MMG variables D max (weeks 9, 14) and V c (weeks 9, 14, 15) also declined during the atrophic phase. No change in T c was found throughout the hypertrophic or atrophic phases. MMG detects changes in contractile properties during stages of exercise-induced hypertrophy and disuse atrophy suggesting its applicability as a clinical tool in musculoskeletal rehabilitation.

  8. EFFECT OF HYDROGEN SULFIDE ON ATRIUM CONTRACTILITY IN CONTROL AND DIABETHIC MICE

    Directory of Open Access Journals (Sweden)

    A. S. Lifanova

    2014-01-01

    Full Text Available Hydrogen sulfide (H2S is endogenously synthesized gasotransmitter that has a regulatory effect in cardiovascular system. Diabetes mellitus leads to an increased risk of hypertension and cardiovascular diseases, so the purpose of the study was to analyze the contractility of the atria mice after application of L-cysteine and H2S. Contractile activity of the myocardium was investigated in the experiment on isolated mouse atria. Alloxan was used for modeling diabetes. Intraperitoneal injection of alloxan resulted in a significant increase of glucose concentration in blood, whereas the concentration of glucose didn’t change at the injection of physiological solution. In control, the addition of NaHS resulted in a significant dose-dependent decrease of the amplitude of contraction of the myocardium, whereas the negative inotropic effect of NaHS was significantly lower in terms of modeling diabetes compare to control conditions. In the control, L-cysteine reduced the amplitude contractions significantly, whereas L-cysteine did not lead to significant changes in the amplitude of contractions in terms of modeling diabetes. These data indicate that the sensitivity of mice’s atria reduced for H2S and L-cysteine in diabetes mellitus.

  9. Changes in muscle fiber contractility and extracellular matrix production during skeletal muscle hypertrophy.

    Science.gov (United States)

    Mendias, Christopher L; Schwartz, Andrew J; Grekin, Jeremy A; Gumucio, Jonathan P; Sugg, Kristoffer B

    2017-03-01

    Skeletal muscle can adapt to increased mechanical loads by undergoing hypertrophy. Transient reductions in whole muscle force production have been reported during the onset of hypertrophy, but contractile changes in individual muscle fibers have not been previously studied. Additionally, the extracellular matrix (ECM) stores and transmits forces from muscle fibers to tendons and bones, and determining how the ECM changes during hypertrophy is important in understanding the adaptation of muscle tissue to mechanical loading. Using the synergist ablation model, we sought to measure changes in muscle fiber contractility, collagen content, and cross-linking, and in the expression of several genes and activation of signaling proteins that regulate critical components of myogenesis and ECM synthesis and remodeling during muscle hypertrophy. Tissues were harvested 3, 7, and 28 days after induction of hypertrophy, and nonoverloaded rats served as controls. Muscle fiber specific force (sF o ), which is the maximum isometric force normalized to cross-sectional area, was reduced 3 and 7 days after the onset of mechanical overload, but returned to control levels by 28 days. Collagen abundance displayed a similar pattern of change. Nearly a quarter of the transcriptome changed over the course of overload, as well as the activation of signaling pathways related to hypertrophy and atrophy. Overall, this study provides insight into fundamental mechanisms of muscle and ECM growth, and indicates that although muscle fibers appear to have completed remodeling and regeneration 1 mo after synergist ablation, the ECM continues to be actively remodeling at this time point. NEW & NOTEWORTHY This study utilized a rat synergist ablation model to integrate changes in single muscle fiber contractility, extracellular matrix composition, activation of important signaling pathways in muscle adaption, and corresponding changes in the muscle transcriptome to provide novel insight into the basic

  10. Simultaneous determination of dynamic cardiac metabolism and function using PET/MRI.

    Science.gov (United States)

    Barton, Gregory P; Vildberg, Lauren; Goss, Kara; Aggarwal, Niti; Eldridge, Marlowe; McMillan, Alan B

    2018-05-01

    Cardiac metabolic changes in heart disease precede overt contractile dysfunction. However, metabolism and function are not typically assessed together in clinical practice. The purpose of this study was to develop a cardiac positron emission tomography/magnetic resonance (PET/MR) stress test to assess the dynamic relationship between contractile function and metabolism in a preclinical model. Following an overnight fast, healthy pigs (45-50 kg) were anesthetized and mechanically ventilated. 18 F-fluorodeoxyglucose ( 18 F-FDG) solution was administered intravenously at a constant rate of 0.01 mL/s for 60 minutes. A cardiac PET/MR stress test was performed using normoxic gas (F I O 2  = .209) and hypoxic gas (F I O 2  = .12). Simultaneous cardiac imaging was performed on an integrated 3T PET/MR scanner. Hypoxic stress induced a significant increase in heart rate, cardiac output, left ventricular (LV) ejection fraction (EF), and peak torsion. There was a significant decline in arterial SpO 2 , LV end-diastolic and end-systolic volumes in hypoxia. Increased LV systolic function was coupled with an increase in myocardial FDG uptake (Ki) during hypoxic stress. PET/MR with continuous FDG infusion captures dynamic changes in both cardiac metabolism and contractile function. This technique warrants evaluation in human cardiac disease for assessment of subtle functional and metabolic abnormalities.

  11. Cell density and actomyosin contractility control the organization of migrating collectives within an epithelium

    Science.gov (United States)

    Loza, Andrew J.; Koride, Sarita; Schimizzi, Gregory V.; Li, Bo; Sun, Sean X.; Longmore, Gregory D.

    2016-01-01

    The mechanisms underlying collective migration are important for understanding development, wound healing, and tumor invasion. Here we focus on cell density to determine its role in collective migration. Our findings show that increasing cell density, as might be seen in cancer, transforms groups from broad collectives to small, narrow streams. Conversely, diminishing cell density, as might occur at a wound front, leads to large, broad collectives with a distinct leader–follower structure. Simulations identify force-sensitive contractility as a mediator of how density affects collectives, and guided by this prediction, we find that the baseline state of contractility can enhance or reduce organization. Finally, we test predictions from these data in an in vivo epithelium by using genetic manipulations to drive collective motion between predicted migratory phases. This work demonstrates how commonly altered cellular properties can prime groups of cells to adopt migration patterns that may be harnessed in health or exploited in disease. PMID:27605707

  12. Neural control of left ventricular contractility in the dog heart: synaptic interactions of negative inotropic vagal preganglionic neurons in the nucleus ambiguus with tyrosine hydroxylase immunoreactive terminals.

    Science.gov (United States)

    Massari, V J; Dickerson, L W; Gray, A L; Lauenstein, J M; Blinder, K J; Newsome, J T; Rodak, D J; Fleming, T J; Gatti, P J; Gillis, R A

    1998-08-17

    Recent physiological evidence indicates that vagal postganglionic control of left ventricular contractility is mediated by neurons found in a ventricular epicardial fat pad ganglion. In the dog this region has been referred to as the cranial medial ventricular (CMV) ganglion [J.L. Ardell, Structure and function of mammalian intrinsic cardiac neurons, in: J.A. Armour, J.L. Ardell (Eds.). Neurocardiology, Oxford Univ. Press, New York, 1994, pp. 95-114; B.X. Yuan, J.L. Ardell, D.A. Hopkins, A.M. Losier, J.A. Armour, Gross and microscopic anatomy of the canine intrinsic cardiac nervous system, Anat. Rec., 239 (1994) 75-87]. Since activation of the vagal neuronal input to the CMV ganglion reduces left ventricular contractility without influencing cardiac rate or AV conduction, this ganglion contains a functionally selective pool of negative inotropic parasympathetic postganglionic neurons. In the present report we have defined the light microscopic distribution of preganglionic negative inotropic neurons in the CNS which are retrogradely labeled from the CMV ganglion. Some tissues were also processed for the simultaneous immunocytochemical visualization of tyrosine hydroxylase (TH: a marker for catecholaminergic neurons) and examined with both light microscopic and electron microscopic methods. Histochemically visualized neurons were observed in a long slender column in the ventrolateral nucleus ambiguus (NA-VL). The greatest number of retrogradely labeled neurons were observed just rostral to the level of the area postrema. TH perikarya and dendrites were commonly observed interspersed with vagal motoneurons in the NA-VL. TH nerve terminals formed axo-dendritic synapses upon negative inotropic vagal motoneurons, however the origin of these terminals remains to be determined. We conclude that synaptic interactions exist which would permit the parasympathetic preganglionic vagal control of left ventricular contractility to be modulated monosynaptically by

  13. Enhanced basal contractility but reduced excitation-contraction coupling efficiency and beta-adrenergic reserve of hearts with increased Cav1.2 activity.

    Science.gov (United States)

    Tang, Mingxin; Zhang, Xiaoying; Li, Yingxin; Guan, Yinzheng; Ai, Xiaojie; Szeto, Christopher; Nakayama, Hiroyuki; Zhang, Hongyu; Ge, Shuping; Molkentin, Jeffery D; Houser, Steven R; Chen, Xiongwen

    2010-08-01

    Cardiac remodeling during heart failure development induces a significant increase in the activity of the L-type Ca(2+) channel (Cav1.2). However, the effects of enhanced Cav1.2 activity on myocyte excitation-contraction (E-C) coupling, cardiac contractility, and its regulation by the beta-adrenergic system are not clear. To recapitulate the increased Cav1.2 activity, a double transgenic (DTG) mouse model overexpressing the Cavbeta2a subunit in a cardiac-specific and inducible manner was established. We studied cardiac (in vivo) and myocyte (in vitro) contractility at baseline and upon beta-adrenergic stimulation. E-C coupling efficiency was evaluated in isolated myocytes as well. The following results were found: 1) in DTG myocytes, L-type Ca(2+) current (I(Ca,L)) density, myocyte fractional shortening (FS), peak Ca(2+) transients, and sarcoplasmic reticulum (SR) Ca(2+) content (caffeine-induced Ca(2+) transient peak) were significantly increased (by 100.8%, 48.8%, 49.8%, and 46.8%, respectively); and 2) cardiac contractility evaluated with echocardiography [ejection fraction (EF) and (FS)] and invasive intra-left ventricular pressure (maximum dP/dt and -dP/dt) measurements were significantly greater in DTG mice than in control mice. However, 1) the cardiac contractility (EF, FS, dP/dt, and -dP/dt)-enhancing effect of the beta-adrenergic agonist isoproterenol (2 microg/g body wt ip) was significantly reduced in DTG mice, which could be attributed to the loss of beta-adrenergic stimulation on contraction, Ca(2+) transients, I(Ca,L), and SR Ca(2+) content in DTG myocytes; and 2) E-C couplng efficiency was significantly lower in DTG myocytes. In conclusion, increasing Cav1.2 activity by promoting its high-activity mode enhances cardiac contractility but decreases E-C coupling efficiency and the adrenergic reserve of the heart.

  14. A Diet Rich in Medium-Chain Fatty Acids Improves Systolic Function and Alters the Lipidomic Profile in Patients With Type 2 Diabetes: A Pilot Study.

    Science.gov (United States)

    Airhart, Sophia; Cade, W Todd; Jiang, Hui; Coggan, Andrew R; Racette, Susan B; Korenblat, Kevin; Spearie, Catherine Anderson; Waller, Suzanne; O'Connor, Robert; Bashir, Adil; Ory, Daniel S; Schaffer, Jean E; Novak, Eric; Farmer, Marsha; Waggoner, Alan D; Dávila-Román, Víctor G; Javidan-Nejad, Cylen; Peterson, Linda R

    2016-02-01

    Excessive cardiac long-chain fatty acid (LCFA) metabolism/storage causes cardiomyopathy in animal models of type 2 diabetes. Medium-chain fatty acids (MCFAs) are absorbed and oxidized efficiently. Data in animal models of diabetes suggest MCFAs may benefit the heart. Our objective was to test the effects of an MCFA-rich diet vs an LCFA-rich diet on plasma lipids, cardiac steatosis, and function in patients with type 2 diabetes. This was a double-blind, randomized, 2-week matched-feeding study. The study included ambulatory patients in the general community. Sixteen patients, ages 37-65 years, with type 2 diabetes, an ejection fraction greater than 45%, and no other systemic disease were included. Fourteen days of a diet rich in MCFAs or LCFAs, containing 38% as fat in total, was undertaken. Cardiac steatosis and function were the main outcome measures, with lipidomic changes considered a secondary outcome. The relatively load-independent measure of cardiac contractility, S', improved in the MCFA group (P diet decreased several plasma sphingolipids, ceramide, and acylcarnitines implicated in diabetic cardiomyopathy, and changes in several sphingolipids correlated with improved fasting insulins. Although a diet high in MCFAs does not change cardiac steatosis, our findings suggest that the MCFA-rich diet alters the plasma lipidome and may benefit or at least not harm cardiac function and fasting insulin levels in humans with type 2 diabetes. Larger, long-term studies are needed to further evaluate these effects in less-controlled settings.

  15. Triiodothyronine activates lactate oxidation without impairing fatty acid oxidation and improves weaning from extracorporeal membrane oxygenation.

    Science.gov (United States)

    Kajimoto, Masaki; Ledee, Dolena R; Xu, Chun; Kajimoto, Hidemi; Isern, Nancy G; Portman, Michael A

    2014-01-01

    Extracorporeal membrane oxygenation (ECMO) provides a rescue for children with severe cardiac failure. It has previously been shown that triiodothyronine (T3) improves cardiac function by modulating pyruvate oxidation during weaning. This study focused on fatty acid (FA) metabolism modulated by T3 for weaning from ECMO after cardiac injury. METHODS AND RESULTS: Nineteen immature piglets (9.1-15.3 kg) were separated into 3 groups with ECMO (6.5 h) and wean: normal circulation (Group-C); transient coronary occlusion (10 min) for ischemia-reperfusion (IR) followed by ECMO (Group-IR); and IR with T3 supplementation (Group-IR-T3). 13-Carbon ((13)C)-labeled lactate, medium-chain and long-chain FAs, was infused as oxidative substrates. Substrate fractional contribution (FC) to the citric acid cycle was analyzed by(13)C-nuclear magnetic resonance. ECMO depressed circulating T3 levels to 40% of the baseline at 4 h and were restored in Group-IR-T3. Group-IR decreased cardiac power, which was not fully restorable and 2 pigs were lost because of weaning failure. Group-IR also depressed FC-lactate, while the excellent contractile function and energy efficiency in Group-IR-T3 occurred along with a marked FC-lactate increase and [adenosine triphosphate]/[adenosine diphosphate] without either decreasing FC-FAs or elevating myocardial oxygen consumption over Group-C or -IR. T3 releases inhibition of lactate oxidation following IR injury without impairing FA oxidation. These findings indicate that T3 depression during ECMO is maladaptive, and that restoring levels improves metabolic flux and enhances contractile function during weaning.

  16. Vitamin D supplementation does not improve human skeletal muscle contractile properties in insufficient young males.

    Science.gov (United States)

    Owens, Daniel J; Webber, Daniel; Impey, Samuel G; Tang, Jonathan; Donovan, Timothy F; Fraser, William D; Morton, James P; Close, Graeme L

    2014-06-01

    Vitamin D may be a regulator of skeletal muscle function, although human trials investigating this hypothesis are limited to predominantly elderly populations. We aimed to assess the effect of oral vitamin D3 in healthy young males upon skeletal muscle function. Participants (n = 29) received an oral dose of 10,000 IU day(-1) vitamin D3 (VITD) or a visually identical placebo (PLB) for 3 months. Serum 25[OH]D and intact parathyroid hormone (iPTH) were measured at baseline and at week 4, 8 and 12. Muscle function was assessed in n = 22 participants by isokinetic dynamometry and percutaneous isometric electromyostimulation at baseline and at week 6 and 12. Baseline mean total serum 25[OH]D was 40 ± 17 and 41 ± 20 nmol L(-1) for PLB and VITD, respectively. VITD showed a significant improvement in total 25[OH]D at week 4 (150 ± 31 nmol L(-1)) that remained elevated throughout the trial (P L(-1)) compared with baseline. Despite marked increases in total serum 25[OH]D in VITD and a decrease in PLB, there were no significant changes in any of the muscle function outcome measures at week 6 or 12 for either group (P > 0.05). Elevating total serum 25[OH]D to concentrations > 120 nmol L(-1) has no effect on skeletal muscle function. We postulate that skeletal muscle function is only perturbed in conditions of severe deficiency (L(-1)).

  17. Contractile properties of motor units and expression of myosin heavy chain isoforms in rat fast-type muscle after volitional weight-lifting training.

    Science.gov (United States)

    Łochyński, Dawid; Kaczmarek, Dominik; Mrówczyński, Włodzimierz; Warchoł, Wojciech; Majerczak, Joanna; Karasiński, Janusz; Korostyński, Michał; Zoladz, Jerzy A; Celichowski, Jan

    2016-10-01

    Dynamic resistance training increases the force and speed of muscle contraction, but little is known about modifications to the contractile properties of the main physiological types of motor units (MUs) that contribute to these muscle adaptations. Although the contractile profile of MU muscle fibers is tightly coupled to myosin heavy chain (MyHC) protein expression, it is not well understood if MyHC transition is a prerequisite for modifications to the contractile characteristics of MUs. In this study, we examined MU contractile properties, the mRNA expression of MyHC, parvalbumin, and sarcoendoplasmic reticulum Ca 2+ pump isoforms, as well as the MyHC protein content after 5 wk of volitional progressive weight-lifting training in the medial gastrocnemius muscle in rats. The training had no effect on MyHC profiling or Ca 2+ -handling protein gene expression. Maximum force increased in slow (by 49%) and fast (by 21%) MUs. Within fast MUs, the maximum force increased in most fatigue-resistant and intermediate but not most fatigable MUs. Twitch contraction time was shortened in slow and fast fatigue-resistant MUs. Twitch half-relaxation was shortened in fast most fatigue-resistant and intermediate MUs. The force-frequency curve shifted rightward in fast fatigue-resistant MUs. Fast fatigable MUs fatigued less within the initial 15 s while fast fatigue-resistant units increased the ability to potentiate the force within the first minute of the standard fatigue test. In conclusion, at the early stage of resistance training, modifications to the contractile characteristics of MUs appear in the absence of MyHC transition and the upregulation of Ca 2+ -handling genes. Copyright © 2016 the American Physiological Society.

  18. Improved Arterial–Ventricular Coupling in Metabolic Syndrome after Exercise Training

    Science.gov (United States)

    Fournier, Sara B.; Donley, David A.; Bonner, Daniel E.; DeVallance, Evan; Olfert, I. Mark; Chantler, Paul D.

    2014-01-01

    Purpose The metabolic syndrome (MetS) is associated with a three-fold increase risk of cardiovascular (CV) morbidity and mortality, which is in part, due to a blunted CV reserve capacity, reflected by a reduced peak exercise left ventricular contractility and aerobic capacity, and a blunted peak arterial-ventricular coupling. To date, no study has examined whether aerobic exercise training in MetS can reverse the peak exercise CV dysfunction. Further, examining how exercise training alters CV function in a group of individuals with MetS prior to the development of diabetes and/or overt CVD, can provide insights into whether some of the pathophysiological changes to the CV can be delayed/reversed, lowering their CV risk. The objective of this study was to examine the effects of 8 weeks of aerobic exercise training in individuals with MetS on resting and peak exercise CV function. Methods Twenty MetS underwent either 8 weeks of aerobic exercise training (MetS-ExT; n=10) or remained sedentary (MetS-NonT; n=10) during this time period. Resting and peak exercise CV function was characterized using Doppler echocardiography and gas exchange. Results Exercise training did not alter resting left ventricular diastolic or systolic function and arterial-ventricular coupling in MetS. In contrast, at peak exercise an increase in LV contractility (40%, p<0.01), cardiac output (28%, p<0.05) and aerobic capacity (20%, p<0.01), while a reduction in vascular resistance (30%, p<0.05) and arterial-ventricular coupling (27%, p<0.01), were noted in the MetS-ExT but not the MetS-NonT group. Further, an improvement in Lifetime Risk Score was also noted in the MetS-ExT group. Conclusions These findings have clinical importance as they provide insight that some of the pathophysiological changes associated with MetS can be improved and lower the risk of CVD. PMID:24870568

  19. Effect of a crude sulfated polysaccharide from Halymenia floresia (Rhodophyta on gastrointestinal smooth muscle contractility

    Directory of Open Access Journals (Sweden)

    José Ronaldo Vasconcelos Graça

    2011-10-01

    Full Text Available The aim of this work was to study the effect of Halymenia floresia (Hf on duodenum contractility, and on experimental protocols of gastric compliance (GC in rats. Fraction Hf2s exhibited a concentration-dependent myocontractile effect (EC50 12.48 µg/ml, and an inhibitory effect after consecutive washing. The contractile response promoted by Hf2s in the duodenum strips was completely inhibited by verapamil, and the effects were prevented in the presence of Ca2+-free medium. The pretreatment with atropine prevented the Hf2s myocontractile effect. Hf2s was also capable to decrease the GC (from 3.8±0.06 to 3.4±0.13 ml, P<0.05, which did not return to basal levels after more 50 min of observation. These results indicated that the algal polysaccharide possessed in vitro and in vivo gastrointestinal effects.

  20. An Estimating Method of Contractile State Changes Come From Continuous Isometric Contraction of Skeletal Muscle

    Energy Technology Data Exchange (ETDEWEB)

    Park, H.J.; Lee, S.J. [Wonkwang University, Iksan (Korea)

    2003-01-01

    In this study was proposed that a new estimating method for investigation of contractile state changes which generated from continuous isometric contraction of skeletal muscle. The physiological changes (EMG, ECG) and the psychological changes by CNS(central nervous system) were measured by experiments, while the muscle of subjects contracted continuously with isometric contraction in constant load. The psychological changes were represented as three-step-change named 'fatigue', 'pain' and 'sick(greatly pain)' from oral test, and the method which compared physiological change with psychological change on basis of these three steps was developed. The result of analyzing the physiological signals, EMG and ECG signal changes were observed at the vicinity of judging point in time of psychological changes. Namely, it is supposed that contractile states have three kind of states pattern (stable, fatigue, pain) instead of two states (stable, fatigue). (author). 24 refs., 7 figs.

  1. Dynamics of myosin II organization into cortical contractile networks and fibers

    Science.gov (United States)

    Nie, Wei; Wei, Ming-Tzo; Ou-Yang, Daniel; Jedlicka, Sabrina; Vavylonis, Dimitrios

    2014-03-01

    The morphology of adhered cells critically depends on the formation of a contractile meshwork of parallel and cross-linked stress fibers along the contacting surface. The motor activity and mini-filament assembly of non-muscle myosin II is an important component of cell-level cytoskeletal remodeling during mechanosensing. To monitor the dynamics of myosin II, we used confocal microscopy to image cultured HeLa cells that stably express myosin regulatory light chain tagged with GFP (MRLC-GFP). MRLC-GFP was monitored in time-lapse movies at steady state and during the response of cells to varying concentrations of blebbistatin which disrupts actomyosin stress fibers. Using image correlation spectroscopy analysis, we quantified the kinetics of disassembly and reassembly of actomyosin networks and compared them to studies by other groups. This analysis suggested that the following processes contribute to the assembly of cortical actomyosin into fibers: random myosin mini-filament assembly and disassembly along the cortex; myosin mini-filament aligning and contraction; stabilization of cortical myosin upon increasing contractile tension. We developed simple numerical simulations that include those processes. The results of simulations of cells at steady state and in response to blebbistatin capture some of the main features observed in the experiments. This study provides a framework to help interpret how different cortical myosin remodeling kinetics may contribute to different cell shape and rigidity depending on substrate stiffness.

  2. Effects of Silodosin and Tamsulosin on the Seminal Vesicle Contractile Response.

    Science.gov (United States)

    Hayashi, Tokumasa; Takeya, Mitsue; Nakamura, Kei-ichiro; Matsuoka, Kei

    2016-01-01

    To understand the mechanisms underlying ejaculation dysfunction caused by α1A-adrenocetor (AR) antagonists, the effects of α1A-AR antagonists on the contractile responses of the seminal vesicle were investigated. Isolated seminal vesicles from guinea pigs were cannulated and pressurized, and the changes in the intraluminal pressure were recorded. Periodic applications of electrical stimulation (ES) caused biphasic increase in the intraluminal pressure, that is, initial and subsequent contractions. The effects of silodosin and tamsulosin, α1A-AR antagonists, on the contractile responses were examined. The ES-induced biphasic contractions were blocked by tetrodotoxin (TTX). Silodosin and tamsulosin suppressed the initial contractions in a dose-dependent manner, while also exerting various inhibitory effects on the subsequent contractions. Increases in the intraluminal pressure facilitated spontaneous phasic contractions. The spontaneous contractions were not affected by TTX or α1A-AR antagonists, but were abolished by nifedipine. The initial contractions triggered by neuronal excitations were suppressed by silodosin and tamsulosin, suggesting that the ejaculation dysfunction may be attributed to the α1A-AR antagonist-mediated suppression of nerve-evoked contractions in the seminal vesicle. The subsequent contractions may be induced by mechanical stimulation associated with the initial, nerve-evoked contractions. Alternatively, other transmitters may be involved to various degrees in the neuromuscular transmission of the seminal vesicle. © 2014 Wiley Publishing Asia Pty Ltd.

  3. Central hemodynamics and left-ventricural contractility in patients with chronic obstructive pulmonary diseases and stable pulmonary hypertension: a radionuclide study

    International Nuclear Information System (INIS)

    Paleev, N.R.; Malov, G.A.; Cherejskaya, N.K.; Oblovatskaya, O.G.; Tsar'kova, L.N.; Zil'berman, E.Eh.; Akademiya Meditsinskikh Nauk SSSR, Moscow. Inst. Serdechno-Sosudistoj Khirurgii)

    1987-01-01

    Systemic, central and intracardiac hemodynamics and left-ventricular contractility were studied radiocardiographically and radioventriculographically in 22 patients with stable pulmanory hypertension, developing in the presence of chronic obstructive pulmanory diseases. A tendency to increased circulating blood volume, significantly elevated end diastolic and end systolic indices, reduced total ejection fraction, and a tendency to decreased segmental ejection fractions were demonstrated. A significant reduction of the speed and percetage of left-ventricular myocardial circular fibre contraction is another evedence of incompetent left-ventricular contractility, in addition to the reduced ejection fraction

  4. Robust gap repair in the contractile ring ensures timely completion of cytokinesis.

    OpenAIRE

    Silva, AM; Osório, DS; Pereira, AJ; Maiato, H; Pinto, IM; Rubinstein, B; Gassmann, R; Telley, IA; Carvalho, AX

    2016-01-01

    Cytokinesis in animal cells requires the constriction of an actomyosin contractile ring, whose architecture and mechanism remain poorly understood. We use laser microsurgery to explore the biophysical properties of constricting rings in Caenorhabditis elegans embryos. Laser cutting causes rings to snap open. However, instead of disintegrating, ring topology recovers and constriction proceeds. In response to severing, a finite gap forms and is repaired by recruitment of new material in an acti...

  5. Long Term Osmotic Mini Pump Treatment with Alpha-MSH Improves Myocardial Function in Zucker Diabetic Fatty Rats

    Directory of Open Access Journals (Sweden)

    Miklos Szokol

    2017-10-01

    Full Text Available The present investigation evaluates the cardiovascular effects of the anorexigenic mediator alpha-melanocyte stimulating hormone (MSH, in a rat model of type 2 diabetes. Osmotic mini pumps delivering MSH or vehicle, for 6 weeks, were surgically implanted in Zucker Diabetic Fatty (ZDF rats. Serum parameters, blood pressure, and weight gain were monitored along with oral glucose tolerance (OGTT. Echocardiography was conducted and, following sacrifice, the effects of treatment on ischemia/reperfusion cardiac injury were assessed using the isolated working heart method. Nicotinamide adenine dinucleotide phosphate (NADPH oxidase activity was measured to evaluate levels of oxidative stress, and force measurements were performed on isolated cardiomyocytes to determine calcium sensitivity, active tension and myofilament co-operation. Vascular status was also evaluated on isolated arterioles using a contractile force measurement setup. The echocardiographic parameters ejection fraction (EF, fractional shortening (FS, isovolumetric relaxation time (IVRT, mitral annular plane systolic excursion (MAPSE, and Tei-index were significantly better in the MSH-treated group compared to ZDF controls. Isolated working heart aortic and coronary flow was increased in treated rats, and higher Hill coefficient indicated better myofilament co-operation in the MSH-treated group. We conclude that MSH improves global heart functions in ZDF rats, but these effects are not related to the vascular status.

  6. Aerobic exercise reduces oxidative stress and improves vascular changes of small mesenteric and coronary arteries in hypertension.

    Science.gov (United States)

    Roque, Fernanda R; Briones, Ana M; García-Redondo, Ana B; Galán, María; Martínez-Revelles, Sonia; Avendaño, Maria S; Cachofeiro, Victoria; Fernandes, Tiago; Vassallo, Dalton V; Oliveira, Edilamar M; Salaices, Mercedes

    2013-02-01

    Regular physical activity is an effective non-pharmacological therapy for prevention and control of hypertension. We investigated the effects of aerobic exercise training in vascular remodelling and in the mechanical and functional alterations of coronary and small mesenteric arteries from spontaneously hypertensive rats (SHR). Normotensive Wistar Kyoto (WKY), SHR and SHR trained on a treadmill for 12 weeks were used to evaluate vascular structural, mechanical and functional properties. Exercise did not affect lumen diameter, wall thickness and wall/lumen ratio but reduced vascular stiffness of coronary and mesenteric arteries from SHR. Exercise also reduced collagen deposition and normalized altered internal elastic lamina organization and expression of MMP-9 in mesenteric arteries from SHR. Exercise did not affect contractile responses of coronary arteries but improved the endothelium-dependent relaxation in SHR. In mesenteric arteries, training normalized the increased contractile responses induced by U46619 and by high concentrations of acetylcholine. In vessels from SHR, exercise normalized the effects of the NADPH oxidase inhibitor apocynin and the NOS inhibitor l-NAME in vasodilator or vasoconstrictor responses, normalized the increased O(2) (-) production and the reduced Cu/Zn superoxide dismutase expression and increased NO production. Exercise training of SHR improves endothelial function and vascular stiffness in coronary and small mesenteric arteries. This might be related to the concomitant decrease of oxidative stress and increase of NO bioavailability. Such effects demonstrate the beneficial effects of exercise on the vascular system and could contribute to a reduction in blood pressure. © 2012 The Authors. British Journal of Pharmacology © 2012 The British Pharmacological Society.

  7. Aerobic exercise reduces oxidative stress and improves vascular changes of small mesenteric and coronary arteries in hypertension

    Science.gov (United States)

    Roque, Fernanda R; Briones, Ana M; García-Redondo, Ana B; Galán, María; Martínez-Revelles, Sonia; Avendaño, Maria S; Cachofeiro, Victoria; Fernandes, Tiago; Vassallo, Dalton V; Oliveira, Edilamar M; Salaices, Mercedes

    2013-01-01

    Background and Purpose Regular physical activity is an effective non-pharmacological therapy for prevention and control of hypertension. We investigated the effects of aerobic exercise training in vascular remodelling and in the mechanical and functional alterations of coronary and small mesenteric arteries from spontaneously hypertensive rats (SHR). Experimental Approach Normotensive Wistar Kyoto (WKY), SHR and SHR trained on a treadmill for 12 weeks were used to evaluate vascular structural, mechanical and functional properties. Key Results Exercise did not affect lumen diameter, wall thickness and wall/lumen ratio but reduced vascular stiffness of coronary and mesenteric arteries from SHR. Exercise also reduced collagen deposition and normalized altered internal elastic lamina organization and expression of MMP-9 in mesenteric arteries from SHR. Exercise did not affect contractile responses of coronary arteries but improved the endothelium-dependent relaxation in SHR. In mesenteric arteries, training normalized the increased contractile responses induced by U46619 and by high concentrations of acetylcholine. In vessels from SHR, exercise normalized the effects of the NADPH oxidase inhibitor apocynin and the NOS inhibitor l-NAME in vasodilator or vasoconstrictor responses, normalized the increased O2− production and the reduced Cu/Zn superoxide dismutase expression and increased NO production. Conclusions and Implications Exercise training of SHR improves endothelial function and vascular stiffness in coronary and small mesenteric arteries. This might be related to the concomitant decrease of oxidative stress and increase of NO bioavailability. Such effects demonstrate the beneficial effects of exercise on the vascular system and could contribute to a reduction in blood pressure. PMID:22994554

  8. Myosin phosphorylation potentiates steady-state work output without altering contractile economy of mouse fast skeletal muscles.

    Science.gov (United States)

    Gittings, William; Bunda, Jordan; Vandenboom, Rene

    2018-01-30

    Skeletal myosin light chain kinase (skMLCK)-catalyzed phosphorylation of the myosin regulatory light chain (RLC) increases (i.e. potentiates) mechanical work output of fast skeletal muscle. The influence of this event on contractile economy (i.e. energy cost/work performed) remains controversial, however. Our purpose was to quantify contractile economy of potentiated extensor digitorum longus (EDL) muscles from mouse skeletal muscles with (wild-type, WT) and without (skMLCK ablated, skMLCK -/- ) the ability to phosphorylate the RLC. Contractile economy was calculated as the ratio of total work performed to high-energy phosphate consumption (HEPC) during a period of repeated isovelocity contractions that followed a potentiating stimulus (PS). Consistent with genotype, the PS increased RLC phosphorylation measured during, before and after isovelocity contractions in WT but not in skMLCK -/- muscles (i.e. 0.65 and 0.05 mol phosphate mol -1 RLC, respectively). In addition, although the PS enhanced work during repeated isovelocity contractions in both genotypes, the increase was significantly greater in WT than in skMLCK -/- muscles (1.51±0.03 versus 1.10±0.05, respectively; all data P economy calculated for WT muscles was similar to that calculated for skMLCK -/- muscles (i.e. 5.74±0.67 and 4.61±0.71 J kg -1  μmol -1 P, respectively ( P economy. © 2018. Published by The Company of Biologists Ltd.

  9. New Insights into the Roles of Acidocalcisomes and the Contractile Vacuole Complex in Osmoregulation in Protists

    Science.gov (United States)

    Docampo, Roberto; Jimenez, Veronica; Lander, Noelia; Li, Zhu-Hong; Niyogi, Sayantanee

    2013-01-01

    While free-living protists are usually subjected to hyposmotic environments, parasitic protists are also in contact with hyperosmotic habitats. Recent work in one of these parasites, Trypanosoma cruzi, has revealed that its contractile vacuole complex, which usually collects and expels excess water as a mechanism of regulatory volume decrease after hyposmotic stress, has also a role in cell shrinking when the cells are submitted to hyperosmotic stress. Trypanosomes also have an acidic calcium store rich in polyphosphate (polyP), named the acidocalcisome, which is involved in their response to osmotic stress. Here, we review newly emerging insights on the role of acidocalcisomes and the contractile vacuole complex in the cellular response to hyposmotic and hyperosmotic stresses. We also review the current state of knowledge on the composition of these organelles and their other roles in calcium homeostasis and protein trafficking. PMID:23890380

  10. Stress and strain in the contractile and cytoskeletal filaments of airway smooth muscle.

    Science.gov (United States)

    Deng, Linhong; Bosse, Ynuk; Brown, Nathan; Chin, Leslie Y M; Connolly, Sarah C; Fairbank, Nigel J; King, Greg G; Maksym, Geoffrey N; Paré, Peter D; Seow, Chun Y; Stephen, Newman L

    2009-10-01

    Stress and strain are omnipresent in the lung due to constant lung volume fluctuation associated with respiration, and they modulate the phenotype and function of all cells residing in the airways including the airway smooth muscle (ASM) cell. There is ample evidence that the ASM cell is very sensitive to its physical environment, and can alter its structure and/or function accordingly, resulting in either desired or undesired consequences. The forces that are either conferred to the ASM cell due to external stretching or generated inside the cell must be borne and transmitted inside the cytoskeleton (CSK). Thus, maintaining appropriate levels of stress and strain within the CSK is essential for maintaining normal function. Despite the importance, the mechanisms regulating/dysregulating ASM cytoskeletal filaments in response to stress and strain remained poorly understood until only recently. For example, it is now understood that ASM length and force are dynamically regulated, and both can adapt over a wide range of length, rendering ASM one of the most malleable living tissues. The malleability reflects the CSK's dynamic mechanical properties and plasticity, both of which strongly interact with the loading on the CSK, and all together ultimately determines airway narrowing in pathology. Here we review the latest advances in our understanding of stress and strain in ASM cells, including the organization of contractile and cytoskeletal filaments, range and adaptation of functional length, structural and functional changes of the cell in response to mechanical perturbation, ASM tone as a mediator of strain-induced responses, and the novel glassy dynamic behaviors of the CSK in relation to asthma pathophysiology.

  11. Scintigraphic measurement of the contractile activity of the gastric antrum using factor analysis

    International Nuclear Information System (INIS)

    Bergmann, H.; Hoebart, J.; Kugi, A.; Stacher, G.; Granser, G.V.

    1990-01-01

    The motor activity of the gastric antrum is difficult to record by manometric means and scintigraphic methods have proved unsatisfactory so far as no consistent relationship between antral contractile activity and gastric emptying rate could be detected. We investigated, using data recorded in 16 healthy human subjects after the ingestion of a semisolid standard meal, whether a newly developed method employing factor analysis would yield more meaningful and reproducible results. Factor analysis was applied to sequential scintigraphic images (3-s frame time) of gastric antrum. The computed factor images and the respective factor curves are representative of distinct dynamic structures of the antrum. From the more or less sinusoidal excursions of the factor curves, which exhibited the 3 cycles per minute frequency characteristic for the stomach, amplitude, frequency and propagation velocity of antral contractions can be calculated. The amplitudes of the factor curves were used to calculate a contraction index. This contraction index was found to be correlated significantly negatively with the gastric half-emptying time of the ingested meal. The employed factor analytical approach thus seems a promising tool to further investigate the role of antral contractility in the process of gastric emptying. (Authors)

  12. Endothelin-1 and endothelin-2 initiate and maintain contractile responses by different mechanisms in rat mesenteric and cerebral arteries

    DEFF Research Database (Denmark)

    Compeer, M. G.; Janssen, G. M. J.; De Mey, J. G. R.

    2013-01-01

    , but relaxed ET-1-induced contractions in MRA. A PLC inhibitor prevented contractile responses to ET-1 and ET-2 in MRA and BA, and relaxed ET-1- and ET-2-induced responses in MRA and ET-1 effects in BA. A Rho-kinase inhibitor did not modify sensitivity, maximum and maintenance of responses to both peptides...... in both arteries but relaxed ET-2, but not ET-1, effects in MRA and ET-1 effects in BA. Conclusions and ImplicationsPLC played a key role in arterial contractile responses to ETs, but ET-1 and ET-2 initiated and maintained vasoconstriction through different mechanisms, and these differed between MRA...

  13. Introduction of non-linear elasticity models for characterization of shape and deformation statistics: application to contractility assessment of isolated adult cardiocytes.

    Science.gov (United States)

    Bazan, Carlos; Hawkins, Trevor; Torres-Barba, David; Blomgren, Peter; Paolini, Paul

    2011-08-22

    We are exploring the viability of a novel approach to cardiocyte contractility assessment based on biomechanical properties of the cardiac cells, energy conservation principles, and information content measures. We define our measure of cell contraction as being the distance between the shapes of the contracting cell, assessed by the minimum total energy of the domain deformation (warping) of one cell shape into another. To guarantee a meaningful vis-à-vis correspondence between the two shapes, we employ both a data fidelity term and a regularization term. The data fidelity term is based on nonlinear features of the shapes while the regularization term enforces the compatibility between the shape deformations and that of a hyper-elastic material. We tested the proposed approach by assessing the contractile responses in isolated adult rat cardiocytes and contrasted these measurements against two different methods for contractility assessment in the literature. Our results show good qualitative and quantitative agreements with these methods as far as frequency, pacing, and overall behavior of the contractions are concerned. We hypothesize that the proposed methodology, once appropriately developed and customized, can provide a framework for computational cardiac cell biomechanics that can be used to integrate both theory and experiment. For example, besides giving a good assessment of contractile response of the cardiocyte, since the excitation process of the cell is a closed system, this methodology can be employed in an attempt to infer statistically significant model parameters for the constitutive equations of the cardiocytes.

  14. Morphology and Function of the Lamb Ileum following Preterm Birth

    Directory of Open Access Journals (Sweden)

    Tracey J. Flores

    2018-01-01

    Full Text Available BackgroundFor infants born moderately/late preterm (32–37 weeks of gestation, immaturity of the intestine has the potential to impact both short- and long-term gastrointestinal function. The aim of this study conducted in sheep was to compare the morphology and smooth muscle contractility of the ileum in term and late preterm lambs.Materials and methodsLambs delivered preterm (132 days gestation; n = 7 or term (147 days gestation; n = 9 were milk-fed after birth and euthanased at 2 days of age. A segment of distal ileum was collected for analysis of the length and cellular composition of the villi and crypts, smooth muscle width and contractility, and mRNA expression of the cell markers Ki67, lysozyme, mucin 2, synaptophysin, chromogranin A, olfactomedin 4, axis inhibition protein 2, and leucine-rich repeat-containing G-protein coupled receptor 5 (LGR5.ResultsThere was no difference in the proportion of inflammatory, proliferating, apoptotic, enterocyte, or goblet cells between groups, but preterm lambs exhibited a significant upregulation of the stem cell marker LGR5 (p = 0.01. Absolute villus height (term: 1,032 ± 147 µm, preterm: 651 ± 52 µm; p < 0.0001 and crypt depth (term: 153 ± 11 µm, preterm: 133 ± 17 µm; p = 0.01 were significantly shorter in the preterm ileums, with a trend (p = 0.06 for a reduction in muscularis externa width. There was no difference between groups in the contractile response to acetylcholine, but peak contractility in response to bradykinin (p = 0.02 and angiotensin II (p = 0.03 was significantly greater in the preterm lambs.ConclusionFindings demonstrate that the crypt-villus units are shorter in the ileum of late preterm offspring, but functionally mature with an equivalent cellular composition and normal contractile response to acetylcholine compared with term offspring. The exaggerated contractility to inflammatory mediators evident in the

  15. Na(+)/Ca(2+) exchanger inhibition exerts a positive inotropic effect in the rat heart, but fails to influence the contractility of the rabbit heart.

    Science.gov (United States)

    Farkas, A S; Acsai, K; Nagy, N; Tóth, A; Fülöp, F; Seprényi, G; Birinyi, P; Nánási, P P; Forster, T; Csanády, M; Papp, J G; Varró, A; Farkas, A

    2008-05-01

    The Na(+)/Ca(2+) exchanger (NCX) may play a key role in myocardial contractility. The operation of the NCX is affected by the action potential (AP) configuration and the intracellular Na(+) concentration. This study examined the effect of selective NCX inhibition by 0.1, 0.3 and 1.0 microM SEA0400 on the myocardial contractility in the setting of different AP configurations and different intracellular Na(+) concentrations in rabbit and rat hearts. The concentration-dependent effects of SEA0400 on I(Na/Ca) were studied in rat and rabbit ventricular cardiomyocytes using a patch clamp technique. Starling curves were constructed for isolated, Langendorff-perfused rat and rabbit hearts. The cardiac sarcolemmal NCX protein densities of both species were compared by immunohistochemistry. SEA0400 inhibited I(Na/Ca) with similar efficacy in the two species; there was no difference between the inhibitions of the forward or reverse mode of the NCX in either species. SEA0400 increased the systolic and the developed pressure in the rat heart in a concentration-dependent manner, for example, 1.0 microM SEA0400 increased the maximum systolic pressures by 12% relative to the control, whereas it failed to alter the contractility in the rabbit heart. No interspecies difference was found in the cardiac sarcolemmal NCX protein densities. NCX inhibition exerted a positive inotropic effect in the rat heart, but it did not influence the contractility of the rabbit heart. This implies that the AP configuration and the intracellular Na(+) concentration may play an important role in the contractility response to NCX inhibition.

  16. Functional vascular smooth muscle cells derived from human induced pluripotent stem cells via mesenchymal stem cell intermediates

    Science.gov (United States)

    Bajpai, Vivek K.; Mistriotis, Panagiotis; Loh, Yuin-Han; Daley, George Q.; Andreadis, Stelios T.

    2012-01-01

    Aims Smooth muscle cells (SMC) play an important role in vascular homeostasis and disease. Although adult mesenchymal stem cells (MSC) have been used as a source of contractile SMC, they suffer from limited proliferation potential and culture senescence, particularly when originating from older donors. By comparison, human induced pluripotent stem cells (hiPSC) can provide an unlimited source of functional SMC for autologous cell-based therapies and for creating models of vascular disease. Our goal was to develop an efficient strategy to derive functional, contractile SMC from hiPSC. Methods and results We developed a robust, stage-wise, feeder-free strategy for hiPSC differentiation into functional SMC through an intermediate stage of multipotent MSC, which could be coaxed to differentiate into fat, bone, cartilage, and muscle. At this stage, the cells were highly proliferative and displayed higher clonogenic potential and reduced senescence when compared with parental hair follicle mesenchymal stem cells. In addition, when exposed to differentiation medium, the myogenic proteins such as α-smooth muscle actin, calponin, and myosin heavy chain were significantly upregulated and displayed robust fibrillar organization, suggesting the development of a contractile phenotype. Indeed, tissue constructs prepared from these cells exhibited high levels of contractility in response to receptor- and non-receptor-mediated agonists. Conclusion We developed an efficient stage-wise strategy that enabled hiPSC differentiation into contractile SMC through an intermediate population of clonogenic and multipotent MSC. The high yield of MSC and SMC derivation suggests that our strategy may facilitate an acquisition of the large numbers of cells required for regenerative medicine or for studying vascular disease pathophysiology. PMID:22941255

  17. Oscillatory behaviors and hierarchical assembly of contractile structures in intercalating cells

    International Nuclear Information System (INIS)

    Fernandez-Gonzalez, Rodrigo; Zallen, Jennifer A

    2011-01-01

    Fluctuations in the size of the apical cell surface have been associated with apical constriction and tissue invagination. However, it is currently not known if apical oscillatory behaviors are a unique property of constricting cells or if they constitute a universal feature of the force balance between cells in multicellular tissues. Here, we set out to determine whether oscillatory cell behaviors occur in parallel with cell intercalation during the morphogenetic process of axis elongation in the Drosophila embryo. We applied multi-color, time-lapse imaging of living embryos and SIESTA, an integrated tool for automated and semi-automated cell segmentation, tracking, and analysis of image sequences. Using SIESTA, we identified cycles of contraction and expansion of the apical surface in intercalating cells and characterized them at the molecular, cellular, and tissue scales. We demonstrate that apical oscillations are anisotropic, and this anisotropy depends on the presence of intact cell–cell junctions and spatial cues provided by the anterior–posterior patterning system. Oscillatory cell behaviors during axis elongation are associated with the hierarchical assembly and disassembly of contractile actomyosin structures at the medial cortex of the cell, with actin localization preceding myosin II and with the localization of both proteins preceding changes in cell shape. We discuss models to explain how the architecture of cytoskeletal networks regulates their contractile behavior and the mechanisms that give rise to oscillatory cell behaviors in intercalating cells

  18. Cold stress accentuates pressure overload-induced cardiac hypertrophy and contractile dysfunction: role of TRPV1/AMPK-mediated autophagy.

    Science.gov (United States)

    Lu, Songhe; Xu, Dezhong

    2013-12-06

    Severe cold exposure and pressure overload are both known to prompt oxidative stress and pathological alterations in the heart although the interplay between the two remains elusive. Transient receptor potential vanilloid 1 (TRPV1) is a nonselective cation channel activated in response to a variety of exogenous and endogenous physical and chemical stimuli including heat and capsaicin. The aim of this study was to examine the impact of cold exposure on pressure overload-induced cardiac pathological changes and the mechanism involved. Adult male C57 mice were subjected to abdominal aortic constriction (AAC) prior to exposure to cold temperature (4 °C) for 4 weeks. Cardiac geometry and function, levels of TRPV1, mitochondrial, and autophagy-associated proteins including AMPK, mTOR, LC3B, and P62 were evaluated. Sustained cold stress triggered cardiac hypertrophy, compromised depressed myocardial contractile capacity including lessened fractional shortening, peak shortening, and maximal velocity of shortening/relengthening, enhanced ROS production, and mitochondrial injury, the effects of which were negated by the TRPV1 antagonist SB366791. Western blot analysis revealed upregulated TRPV1 level and AMPK phosphorylation, enhanced ratio of LC3II/LC3I, and downregulated P62 following cold exposure. Cold exposure significantly augmented AAC-induced changes in TRPV1, phosphorylation of AMPK, LC3 isoform switch, and p62, the effects of which were negated by SB366791. In summary, these data suggest that cold exposure accentuates pressure overload-induced cardiac hypertrophy and contractile defect possibly through a TRPV1 and autophagy-dependent mechanism. Copyright © 2013. Published by Elsevier Inc.

  19. Regulation of myofibrillar accumulation in chick muscle cultures - Evidence for the involvement of calcium and lysosomes in non-uniform turnover of contractile proteins

    Science.gov (United States)

    Silver, Geri; Etlinger, Joseph D.

    1985-01-01

    The effects of calcium on the synthesis and the degradation of individual myofibrillar proteins were investigated using primary chick-leg skeletal muscle cultures labeled with S-35-methionine (for protein accumulation experiments) or Ca(2+)-45 (for calcium efflux experiments). It was found that the turnover of individual contractile proteins is regulated nonuniformly by a calcium-dependent mechanism involving lysosomes. The results also indicate that contractile proteins are released from the myofibril before their breakdown to amino acids.

  20. Low-intensity pulsed ultrasound enhances angiogenesis and ameliorates contractile dysfunction of pressure-overloaded heart in mice.

    Directory of Open Access Journals (Sweden)

    Tsuyoshi Ogata

    Full Text Available Chronic left ventricular (LV pressure overload causes relative ischemia with resultant LV dysfunction. We have recently demonstrated that low-intensity pulsed ultrasound (LIPUS improves myocardial ischemia in a pig model of chronic myocardial ischemia through enhanced myocardial angiogenesis. In the present study, we thus examined whether LIPUS also ameliorates contractile dysfunction in LV pressure-overloaded hearts.Chronic LV pressure overload was induced with transverse aortic constriction (TAC in mice. LIPUS was applied to the whole heart three times in the first week after TAC and was repeated once a week for 7 weeks thereafter (n = 22. Animals in the control groups received the sham treatment without LIPUS (n = 23. At 8 weeks after TAC, LV fractional shortening was depressed in the TAC-Control group, which was significantly ameliorated in the TAC-LIPUS group (30.4±0.5 vs. 36.2±3.8%, P<0.05. Capillary density was higher and perivascular fibrosis was less in the LV in the TAC-LIPUS group than in the TAC-Control group. Myocardial relative ischemia evaluated with hypoxyprobe was noted in the TAC-Control group, which was significantly attenuated in the TAC-LIPUS group. In the TAC-LIPUS group, as compared with the control group, mRNA expressions of BNP and collagen III were significantly lower (both P<0.05 and protein expressions of VEGF and eNOS were significantly up-regulated associated with Akt activation (all P<0.05. No adverse effect related to the LIPUS therapy was noted.These results indicate that the LIPUS therapy ameliorates contractile dysfunction in chronically pressure-overloaded hearts through enhanced myocardial angiogenesis and attenuated perivascular fibrosis. Thus, the LIPUS therapy may be a promising, non-invasive treatment for cardiac dysfunction due to chronic pressure overload.

  1. Pre-treatment with Toll-like receptor 4 antagonist inhibits lipopolysaccharide-induced preterm uterine contractility, cytokines, and prostaglandins in rhesus monkeys

    Science.gov (United States)

    Adams Waldorf, Kristina M.; Persing, David; Novy, Miles J.; Sadowsky, Drew W.; Gravett, Michael G.

    2009-01-01

    Intra-uterine infection, which occurs in the majority of early preterm births, triggers an immune response culminating in preterm labor. We hypothesized that blockade of lipopolysaccharide (LPS)-induced immune responses by a Toll-like receptor 4 antagonist (TLR4A) would prevent elevations in amniotic fluid (AF) cytokines, prostaglandins, and uterine contractility. Chronically catheterized rhesus monkeys at 128-147 days gestation received intra-amniotic infusions of either: 1) saline (n=6), 2) LPS (0.15-10μg; n=4), or 3) TLR4A pre-treatment with LPS (10 μg) one hour later (n=4). AF cytokines, prostaglandins, and uterine contractility were compared using oneway ANOVA with Bonferroni-adjusted pairwise comparisons. Compared to saline controls, LPS induced significant elevations in AF IL-8, TNF-α, PGE2, PGF2α, and uterine contractility (p<0.05). In contrast, TLR4A pre-treatment inhibited LPS-induced uterine activity and was associated with significantly lower AF IL-8, TNF-α, PGE2, and PGF2α versus LPS alone (p<0.05). Toll-like receptor antagonists, together with antibiotics, may delay or prevent infection-associated preterm birth. PMID:18187405

  2. Effects of Using Tricaine Methanesulfonate and Metomidate before Euthanasia on the Contractile Properties of Rainbow Trout (Oncorhynchus mykiss) Myocardium.

    Science.gov (United States)

    Roberts, Jordan C; Syme, Douglas A

    2016-01-01

    Because many anesthetics work through depressing cell excitability, unanesthetized euthanasia has become common for research involving excitable tissues (for example muscle and nerve) to avoid these depressive effects. However, anesthetic use during euthanasia may be indicated for studies involving isolated tissues if the potential depressive effects of brief anesthetic exposure dissipate after subsequent tissue isolation, washout, and saline perfusion. We explore this here by measuring whether, when applied prior to euthanasia, standard immersion doses of 2 fish anesthetics, tricaine methanesulfonate (TMS; 100 mg/L, n = 6) and methyl 1-(1-phenylethyl)-1H-imidazole-5-carboxylate (metomidate, 10 mg/L, n = 6), have residual effects on the contractile properties (force and work output) of isolated and saline-perfused ventricular compact myocardium from rainbow trout (Oncorhynchus mykiss). Results suggest that direct exposure of muscle to immersion doses of TMS-but not metomidate-impairs muscle contractile performance. However, brief exposure (2 to 3 min) to either anesthetic during euthanasia only-providing that the agent is washed out prior to tissue experimentation-does not have an effect on the contractile properties of the myocardium. Therefore, the use of TMS, metomidate, and perhaps other anesthetics that depress cell excitability during euthanasia may be indicated when conducting research on isolated and rinsed tissues.

  3. Functional molecular markers for crop improvement.

    Science.gov (United States)

    Kage, Udaykumar; Kumar, Arun; Dhokane, Dhananjay; Karre, Shailesh; Kushalappa, Ajjamada C

    2016-10-01

    A tremendous decline in cultivable land and resources and a huge increase in food demand calls for immediate attention to crop improvement. Though molecular plant breeding serves as a viable solution and is considered as "foundation for twenty-first century crop improvement", a major stumbling block for crop improvement is the availability of a limited functional gene pool for cereal crops. Advancement in the next generation sequencing (NGS) technologies integrated with tools like metabolomics, proteomics and association mapping studies have facilitated the identification of candidate genes, their allelic variants and opened new avenues to accelerate crop improvement through development and use of functional molecular markers (FMMs). The FMMs are developed from the sequence polymorphisms present within functional gene(s) which are associated with phenotypic trait variations. Since FMMs obviate the problems associated with random DNA markers, these are considered as "the holy grail" of plant breeders who employ targeted marker assisted selections (MAS) for crop improvement. This review article attempts to consider the current resources and novel methods such as metabolomics, proteomics and association studies for the identification of candidate genes and their validation through virus-induced gene silencing (VIGS) for the development of FMMs. A number of examples where the FMMs have been developed and used for the improvement of cereal crops for agronomic, food quality, disease resistance and abiotic stress tolerance traits have been considered.

  4. Quantitation of left ventricular dimensions and function by digital video subtraction angiography

    International Nuclear Information System (INIS)

    Higgins, C.B.; Norris, S.L.; Gerber, K.H.; Slutsky, R.A.; Ashburn, W.L.; Baily, N.

    1982-01-01

    Digital video subtraction angiography (DVSA) after central intravenous administration of contrast media was used in experimental animals and in patients with suspected coronary artery disease to quantitate left ventricular dimensions and regional and global contractile function. In animals, measurements of left ventricular (LV) volumes, wall thickness, ejection fraction, segmental contraction, and cardiac output correlated closely with sonocardiometry or thermodilution measurements. In patients, volumes and ejection fractions calculated from mask mode digital images correlated closely with direct left ventriculography. Global and segmental contractile function was displayed in patients by ejection shell images, stroke volume images, and time interval difference images. Central cardiovascular function was also quantitated by measurement of pulmonary transit time and calculation of pulmonary blood volume from digital fluoroscopic images. DVSA was shown to be useful and accurate in the quantitation of central cardiovascular physiology

  5. Effect of changes in contractility on the index of myocardial performance in the dysfunctional left ventricle

    Directory of Open Access Journals (Sweden)

    Lavine Steven J

    2006-11-01

    Full Text Available Abstract Background The index of myocardial performance has prognostic power in patients with cardiomyopathy and following myocardial infarction. As the index of myocardial performance has been shown to be preload and afterload dependent, the effect of altering contractility on IMP and its components with left ventricular dysfunction has been incompletely delineated. Methods Chronic left ventricular dysfunction was induced in 10 canines using coronary microsphere embolization. Each dog was instrumented and imaged with 2D echo and Doppler. At the same atrially paced rate, contractility was increased with a dobutamine infusion and then following 4 weeks of oral digoxin. Results With chronic left ventricular dysfunction, a reduced left ventricular ejection fraction (42 ± 3%, p Conclusion Increased inotropy with digoxin and dobutamine reduced the index of myocardial performance in dogs with left ventricular dysfunction. Shortened isovolumic contraction time, increased diastolic filling period, and reduced left ventricular end diastolic pressure with digoxin may provide insight into its efficacy in heart failure.

  6. Effect of acute and chronic simvastatin treatment on post-ischemic contractile dysfunction in isolated rat heart

    Czech Academy of Sciences Publication Activity Database

    Szárszoi, Ondrej; Malý, J.; Ošťádal, P.; Netuka, I.; Bešík, J.; Kolář, František; Ošťádal, Bohuslav

    2008-01-01

    Roč. 57, č. 5 (2008), s. 793-796 ISSN 0862-8408 R&D Projects: GA MŠk(CZ) 1M0510 Institutional research plan: CEZ:AV0Z50110509 Keywords : simvastatin * contractile dysfunction * protection Subject RIV: FA - Cardiovascular Diseases incl. Cardiotharic Surgery Impact factor: 1.653, year: 2008

  7. Na+/Ca2+ exchanger inhibition exerts a positive inotropic effect in the rat heart, but fails to influence the contractility of the rabbit heart

    OpenAIRE

    Farkas, A S; Acsai, K; Nagy, N; Tóth, A; Fülöp, F; Seprényi, G; Birinyi, P; Nánási, P P; Forster, T; Csanády, M; Papp, J G; Varró, A; Farkas, A

    2008-01-01

    Background and purpose: The Na+/Ca2+ exchanger (NCX) may play a key role in myocardial contractility. The operation of the NCX is affected by the action potential (AP) configuration and the intracellular Na+ concentration. This study examined the effect of selective NCX inhibition by 0.1, 0.3 and 1.0 μM SEA0400 on the myocardial contractility in the setting of different AP configurations and different intracellular Na+ concentrations in rabbit and rat hearts.

  8. Improved arterial-ventricular coupling in metabolic syndrome after exercise training: a pilot study.

    Science.gov (United States)

    Fournier, Sara B; Donley, David A; Bonner, Daniel E; Devallance, Evan; Olfert, I Mark; Chantler, Paul D

    2015-01-01

    The metabolic syndrome (MetS) is associated with threefold increased risk of cardiovascular (CV) morbidity and mortality, which is partly due to a blunted CV reserve capacity, reflected by a reduced peak exercise left ventricular (LV) contractility and aerobic capacity and a blunted peak arterial-ventricular coupling. To date, no study has examined whether aerobic exercise training in MetS can reverse peak exercise CV dysfunction. Furthermore, examining how exercise training alters CV function in a group of individuals with MetS before the development of diabetes and/or overt CV disease can provide insights into whether some of the pathophysiological CV changes can be delayed/reversed, lowering their CV risk. The objective of this study was to examine the effects of 8 wk of aerobic exercise training in individuals with MetS on resting and peak exercise CV function. Twenty participants with MetS underwent either 8 wk of aerobic exercise training (MetS-ExT, n = 10) or remained sedentary (MetS-NonT, n = 10) during this period. Resting and peak exercise CV function was characterized using Doppler echocardiography and gas exchange. Exercise training did not alter resting LV diastolic or systolic function and arterial-ventricular coupling in MetS. In contrast, at peak exercise, an increase in LV contractility (40%, P < 0.01), cardiac output (28%, P < 0.05), and aerobic capacity (20%, P < 0.01), but a reduction in vascular resistance (30%, P < 0.05) and arterial-ventricular coupling (27%, P < 0.01), were noted in the MetS-ExT but not in the MetS-NonT group. Furthermore, an improvement in lifetime risk score was also noted in the MetS-ExT group. These findings have clinical importance because they provide insight that some of the pathophysiological changes associated with MetS can be improved and can lower the risk of CV disease.

  9. Hypothalamus-pituitary-thyroid axis activity and function of cardiac muscle in energy deficit

    Directory of Open Access Journals (Sweden)

    Katarzyna Lachowicz

    2017-12-01

    Full Text Available Frequently repeated statement that energy restriction is a factor that improves cardiovascular system function seems to be not fully truth. Low energy intake modifies the hypothalamus-pituitary-thyroid axis activity and thyroid hormone peripheral metabolism. Thyroid hormones, as modulators of the expression and activity of many cardiomyocyte proteins, control heart function. Decreased thyroid hormone levels and their disturbanced conversion and action result in alternation of cardiac remodeling, disorder of calcium homeostasis and diminish myocardial contractility. This review provides a summary of the current state of knowledge about the mechanisms of energy restriction effects on thyroidal axis activity, thyroid hormone peripheral metabolism and action in target tissues, especially in cardiac myocytes. We also showed the existence of energy restriction-thyroid-heart pathway.

  10. β-Arrestin2 Improves Post-Myocardial Infarction Heart Failure via Sarco(endo)plasmic Reticulum Ca2+-ATPase-Dependent Positive Inotropy in Cardiomyocytes.

    Science.gov (United States)

    McCrink, Katie A; Maning, Jennifer; Vu, Angela; Jafferjee, Malika; Marrero, Christine; Brill, Ava; Bathgate-Siryk, Ashley; Dabul, Samalia; Koch, Walter J; Lymperopoulos, Anastasios

    2017-11-01

    Heart failure is the leading cause of death in the Western world, and new and innovative treatments are needed. The GPCR (G protein-coupled receptor) adapter proteins βarr (β-arrestin)-1 and βarr-2 are functionally distinct in the heart. βarr1 is cardiotoxic, decreasing contractility by opposing β 1 AR (adrenergic receptor) signaling and promoting apoptosis/inflammation post-myocardial infarction (MI). Conversely, βarr2 inhibits apoptosis/inflammation post-MI but its effects on cardiac function are not well understood. Herein, we sought to investigate whether βarr2 actually increases cardiac contractility. Via proteomic investigations in transgenic mouse hearts and in H9c2 rat cardiomyocytes, we have uncovered that βarr2 directly interacts with SERCA2a (sarco[endo]plasmic reticulum Ca 2+ -ATPase) in vivo and in vitro in a β 1 AR-dependent manner. This interaction causes acute SERCA2a SUMO (small ubiquitin-like modifier)-ylation, increasing SERCA2a activity and thus, cardiac contractility. βarr1 lacks this effect. Moreover, βarr2 does not desensitize β 1 AR cAMP-dependent procontractile signaling in cardiomyocytes, again contrary to βarr1. In vivo, post-MI heart failure mice overexpressing cardiac βarr2 have markedly improved cardiac function, apoptosis, inflammation, and adverse remodeling markers, as well as increased SERCA2a SUMOylation, levels, and activity, compared with control animals. Notably, βarr2 is capable of ameliorating cardiac function and remodeling post-MI despite not increasing cardiac βAR number or cAMP levels in vivo. In conclusion, enhancement of cardiac βarr2 levels/signaling via cardiac-specific gene transfer augments cardiac function safely, that is, while attenuating post-MI remodeling. Thus, cardiac βarr2 gene transfer might be a novel, safe positive inotropic therapy for both acute and chronic post-MI heart failure. © 2017 American Heart Association, Inc.

  11. Increasing taurine intake and taurine synthesis improves skeletal muscle function in the mdx mouse model for Duchenne muscular dystrophy.

    Science.gov (United States)

    Terrill, Jessica R; Pinniger, Gavin J; Graves, Jamie A; Grounds, Miranda D; Arthur, Peter G

    2016-06-01

    Duchenne muscular dystrophy (DMD) is a fatal muscle wasting disease associated with increased inflammation, oxidative stress and myofibre necrosis. Cysteine precursor antioxidants such as N-acetyl cysteine (NAC) and l-2-oxothiazolidine-4-carboxylate (OTC) reduce dystropathology in the mdx mouse model for DMD, and we propose this is via increased synthesis of the amino acid taurine. We compared the capacity of OTC and taurine treatment to increase taurine content of mdx muscle, as well as effects on in vivo and ex vivo muscle function, inflammation and oxidative stress. Both treatments increased taurine in muscles, and improved many aspects of muscle function and reduced inflammation. Taurine treatment also reduced protein thiol oxidation and was overall more effective, as OTC treatment reduced body and muscle weight, suggesting some adverse effects of this drug. These data suggest that increasing dietary taurine is a better candidate for a therapeutic intervention for DMD. Duchenne muscular dystrophy (DMD) is a fatal muscle wasting disease for which there is no widely available cure. Whilst the mechanism of loss of muscle function in DMD and the mdx mouse model are not fully understood, disruptions in intracellular calcium homeostasis, inflammation and oxidative stress are implicated. We have shown that protein thiol oxidation is increased in mdx muscle, and that the indirect thiol antioxidant l-2-oxothiazolidine-4-carboxylate (OTC), which increases cysteine availability, decreases pathology and increases in vivo strength. We propose that the protective effects of OTC are a consequence of conversion of cysteine to taurine, which has itself been shown to be beneficial to mdx pathology. This study compares the efficacy of taurine with OTC in decreasing dystropathology in mdx mice by measuring in vivo and ex vivo contractile function and measurements of inflammation and protein thiol oxidation. Increasing the taurine content of mdx muscle improved both in vivo and ex

  12. Intravital imaging of cardiac function at the single-cell level.

    Science.gov (United States)

    Aguirre, Aaron D; Vinegoni, Claudio; Sebas, Matt; Weissleder, Ralph

    2014-08-05

    Knowledge of cardiomyocyte biology is limited by the lack of methods to interrogate single-cell physiology in vivo. Here we show that contracting myocytes can indeed be imaged with optical microscopy at high temporal and spatial resolution in the beating murine heart, allowing visualization of individual sarcomeres and measurement of the single cardiomyocyte contractile cycle. Collectively, this has been enabled by efficient tissue stabilization, a prospective real-time cardiac gating approach, an image processing algorithm for motion-artifact-free imaging throughout the cardiac cycle, and a fluorescent membrane staining protocol. Quantification of cardiomyocyte contractile function in vivo opens many possibilities for investigating myocardial disease and therapeutic intervention at the cellular level.

  13. Mast cells regulate myofilament calcium sensitization and heart function after myocardial infarction.

    Science.gov (United States)

    Ngkelo, Anta; Richart, Adèle; Kirk, Jonathan A; Bonnin, Philippe; Vilar, Jose; Lemitre, Mathilde; Marck, Pauline; Branchereau, Maxime; Le Gall, Sylvain; Renault, Nisa; Guerin, Coralie; Ranek, Mark J; Kervadec, Anaïs; Danelli, Luca; Gautier, Gregory; Blank, Ulrich; Launay, Pierre; Camerer, Eric; Bruneval, Patrick; Menasche, Philippe; Heymes, Christophe; Luche, Elodie; Casteilla, Louis; Cousin, Béatrice; Rodewald, Hans-Reimer; Kass, David A; Silvestre, Jean-Sébastien

    2016-06-27

    Acute myocardial infarction (MI) is a severe ischemic disease responsible for heart failure and sudden death. Inflammatory cells orchestrate postischemic cardiac remodeling after MI. Studies using mice with defective mast/stem cell growth factor receptor c-Kit have suggested key roles for mast cells (MCs) in postischemic cardiac remodeling. Because c-Kit mutations affect multiple cell types of both immune and nonimmune origin, we addressed the impact of MCs on cardiac function after MI, using the c-Kit-independent MC-deficient (Cpa3(Cre/+)) mice. In response to MI, MC progenitors originated primarily from white adipose tissue, infiltrated the heart, and differentiated into mature MCs. MC deficiency led to reduced postischemic cardiac function and depressed cardiomyocyte contractility caused by myofilament Ca(2+) desensitization. This effect correlated with increased protein kinase A (PKA) activity and hyperphosphorylation of its targets, troponin I and myosin-binding protein C. MC-specific tryptase was identified to regulate PKA activity in cardiomyocytes via protease-activated receptor 2 proteolysis. This work reveals a novel function for cardiac MCs modulating cardiomyocyte contractility via alteration of PKA-regulated force-Ca(2+) interactions in response to MI. Identification of this MC-cardiomyocyte cross-talk provides new insights on the cellular and molecular mechanisms regulating the cardiac contractile machinery and a novel platform for therapeutically addressable regulators. ©2016 Ngkelo et al.

  14. Cardiac-Specific Overexpression of Catalase Attenuates Lipopolysaccharide-Induced Myocardial Contractile Dysfunction: Role of Autophagy

    OpenAIRE

    Turdi, Subat; Han, Xuefeng; Huff, Anna F.; Roe, Nathan D.; Hu, Nan; Gao, Feng; Ren, Jun

    2012-01-01

    Lipopolysaccharide (LPS) from Gram-negative bacteria is a major initiator of sepsis, leading to cardiovascular collapse. Accumulating evidence has indicated a role of reactive oxygen species (ROS) in cardiovascular complication in sepsis. This study was designed to examine the effect of cardiac-specific overexpression of catalase in LPS-induced cardiac contractile dysfunction and the underlying mechanism(s) with a focus on autophagy. Catalase transgenic and wild-type FVB mice were challenged ...

  15. Influence of genotype on contractile protein differentiation in different bovine muscles during foetal life

    OpenAIRE

    Gagnière , Hélène; Ménissier , François; Geay , Yves; Picard , Brigitte

    2000-01-01

    International audience; The purpose of this work was to compare muscle fibre differentiation in two genetic types: "normal charolais" and double-muscled (DM) "INRA 95" cattles displaying muscle hypertrophy. Six muscles with different contractile and metabolic characteristics in adult animal: Masseter, Diaphragma (Di), Biceps femoris (BF), Longissimus thoracis, Semitendinosus and Cutaneus trunci (CT) were excised from 60 to 260-day-old fœtuses of both genotypes. These muscles present different...

  16. Adaptation of motor unit contractile properties in rat medial gastrocnemius to treadmill endurance training: Relationship to muscle mitochondrial biogenesis.

    Science.gov (United States)

    Kryściak, Katarzyna; Majerczak, Joanna; Kryściak, Jakub; Łochyński, Dawid; Kaczmarek, Dominik; Drzymała-Celichowska, Hanna; Krutki, Piotr; Gawedzka, Anna; Guzik, Magdalena; Korostynski, Michał; Szkutnik, Zbigniew; Pyza, Elżbieta; Jarmuszkiewicz, Wiesława; Zoladz, Jerzy A; Celichowski, Jan

    2018-01-01

    This study aimed at investigating the effects of 2, 4 and 8 weeks of endurance training on the contractile properties of slow (S), fast fatigue resistant (FR) and fast fatigable (FF) motor units (MUs) in rat medial gastrocnemius (MG) in relation to the changes in muscle mitochondrial biogenesis. The properties of functionally isolated MUs were examined in vivo. Mitochondrial biogenesis was judged based on the changes in mitochondrial DNA copy number (mtDNA), the content of the electron transport chain (ETC) proteins and PGC-1α in the MG. Moreover, the markers of mitochondria remodeling mitofusins (Mfn1, Mfn2) and dynamin-like protein (Opa1) were studied using qPCR. A proportion of FR MUs increased from 37.9% to 50.8% and a proportion of FF units decreased from 44.7% to 26.6% after 8 weeks of training. The increased fatigue resistance, shortened twitch duration, and increased ability to potentiate force were found as early as after 2 weeks of endurance training, predominantly in FR MUs. Moreover, just after 2 weeks of the training an enhancement of the mitochondrial network remodeling was present as judged by an increase in expression of Mfn1, Opa1 and an increase in PGC-1α in the slow part of MG. Interestingly, no signs of intensification of mitochondrial biogenesis assessed by ETC proteins content and mtDNA in slow and fast parts of gastrocnemius were found at this stage of the training. Nevertheless, after 8 weeks of training an increase in the ETC protein content was observed, but mainly in the slow part of gastrocnemius. Concluding, the functional changes in MUs' contractile properties leading to the enhancement of muscle performance accompanied by an activation of signalling that controls the muscle mitochondrial network reorganisation and mitochondrial biogenesis belong to an early muscle adaptive responses that precede an increase in mitochondrial ETC protein content.

  17. Enhancement of S1P-induced contractile response in detrusor smooth muscle of rats having cystitis.

    Science.gov (United States)

    Anjum, Irfan; Denizalti, Merve; Kandilci, Hilmi Burak; Durlu-Kandilci, Nezahat Tugba; Sahin-Erdemli, Inci

    2017-11-05

    Interstitial cystitis is a chronic disease characterized by lower abdominal pain and some nonspecific symptoms including an increase in urinary frequency and urgency. Sphingosine 1-phosphate (S1P) is a bioactive sphingolipid that controls smooth muscle tone via G-protein coupled receptors (S1P 1-3 receptors). S1P production is known to take place both in physiological states and some pathological situations, such as in overactive bladder syndrome. The intracellular mechanism of S1P-induced contractile response was investigated in β-escin permeabilized detrusor smooth muscle of rats having cyclophosphamide-induced cystitis. The bladder was isolated from rats and detrusor smooth muscle strips were permeabilized with β-escin. S1P (50µM)-induced contraction and calcium sensitization response were significantly increased in cystitis. S1P-induced augmented contractile response was inhibited by S1P 2 receptor antagonist JTE-013 and S1P 3 receptor antagonist suramin. S1P 2 receptor protein expressions were increased in cystitis, where no change was observed in S1P 3 expressions between control and cystitis groups. S1P-induced contraction was reduced by Rho kinase (ROCK) inhibitor Y-27632 and protein kinase C (PKC) inhibitor GF-109203X in both control and cystitis group. S1P-induced increased calcium sensitization response was decreased by ROCK inhibitor and PKC inhibitor in cystitis. Our findings provide the first evidence that interstitial cystitis triggers S1P-induced increase in intracellular calcium in permeabilized detrusor smooth muscle of female rats. Both S1P 2 and S1P 3 receptors are involved in S1P mediated enhanced contractile response. The augmentation in S1P-induced contraction in interstitial cystitis involves both PKC and ROCK pathways of calcium sensitization. Copyright © 2017 Elsevier B.V. All rights reserved.

  18. Palmitate diet-induced loss of cardiac caveolin-3: a novel mechanism for lipid-induced contractile dysfunction.

    Directory of Open Access Journals (Sweden)

    Catherine J Knowles

    Full Text Available Obesity is associated with an increased risk of cardiomyopathy, and mechanisms linking the underlying risk and dietary factors are not well understood. We tested the hypothesis that dietary intake of saturated fat increases the levels of sphingolipids, namely ceramide and sphingomyelin in cardiac cell membranes that disrupt caveolae, specialized membrane micro-domains and important for cellular signaling. C57BL/6 mice were fed two high-fat diets: palmitate diet (21% total fat, 47% is palmitate, and MCT diet (21% medium-chain triglycerides, no palmitate. We established that high-palmitate feeding for 12 weeks leads to 40% and 50% increases in ceramide and sphingomyelin, respectively, in cellular membranes. Concomitant with sphingolipid accumulation, we observed a 40% reduction in systolic contractile performance. To explore the relationship of increased sphingolipids with caveolins, we analyzed caveolin protein levels and intracellular localization in isolated cardiomyocytes. In normal cardiomyocytes, caveolin-1 and caveolin-3 co-localize at the plasma membrane and the T-tubule system. However, mice maintained on palmitate lost 80% of caveolin-3, mainly from the T-tubule system. Mice maintained on MCT diet had a 90% reduction in caveolin-1. These data show that caveolin isoforms are sensitive to the lipid environment. These data are further supported by similar findings in human cardiac tissue samples from non-obese, obese, non-obese cardiomyopathic, and obese cardiomyopathic patients. To further elucidate the contractile dysfunction associated with the loss of caveolin-3, we determined the localization of the ryanodine receptor and found lower expression and loss of the striated appearance of this protein. We suggest that palmitate-induced loss of caveolin-3 results in cardiac contractile dysfunction via a defect in calcium-induced calcium release.

  19. Making perceptual learning practical to improve visual functions.

    Science.gov (United States)

    Polat, Uri

    2009-10-01

    Task-specific improvement in performance after training is well established. The finding that learning is stimulus-specific and does not transfer well between different stimuli, between stimulus locations in the visual field, or between the two eyes has been used to support the notion that neurons or assemblies of neurons are modified at the earliest stage of cortical processing. However, a debate regarding the proposed mechanism underlying perceptual learning is an ongoing issue. Nevertheless, generalization of a trained task to other functions is an important key, for both understanding the neural mechanisms and the practical value of the training. This manuscript describes a structured perceptual learning method that previously used (amblyopia, myopia) and a novel technique and results that were applied for presbyopia. In general, subjects were trained for contrast detection of Gabor targets under lateral masking conditions. Training improved contrast sensitivity and diminished the lateral suppression when it existed (amblyopia). The improvement was transferred to unrelated functions such as visual acuity. The new results of presbyopia show substantial improvement of the spatial and temporal contrast sensitivity, leading to improved processing speed of target detection as well as reaction time. Consequently, the subjects, who were able to eliminate the need for reading glasses, benefited. Thus, here we show that the transfer of functions indicates that the specificity of improvement in the trained task can be generalized by repetitive practice of target detection, covering a sufficient range of spatial frequencies and orientations, leading to an improvement in unrelated visual functions. Thus, perceptual learning can be a practical method to improve visual functions in people with impaired or blurred vision.

  20. Left ventricular function during lethal and sublethal endotoxemia in swine

    International Nuclear Information System (INIS)

    Goldfarb, R.D.; Nightingale, L.M.; Kish, P.; Weber, P.B.; Loegering, D.J.

    1986-01-01

    Previous studies suggested that after a median lethal dose (LD 50 ) of endotoxin, cardiac contractility was depressed in nonsurviving dogs. The canine cardiovascular system is unlike humans in that dogs have a hepatic vein sphincter that is susceptible to adrenergic stimulation capable of raising hepatic and splanchnic venous pressures. The authors retested the hypothesis that lethality after endotoxin administration is associated with cardiac contractile depression in pigs, because of the hepatic circulation in this species is similar to that of humans. They compared cardiac mechanical function of pigs administered a high dose (250 μg/kg) or a low dose (100 μg/kg) endotoxin by use of the slope of the end-systolic pressure-diameter relationship (ESPDR) as well as other measurements of cardiac performance. In all the pigs administered a high dose, ESPDR demonstrated a marked, time-dependent depression whereas we observed no significant ESPDR changes after low endotoxin doses. The other cardiodynamic variables were uninterpretable, due to the significant changes in heart rate, end-diastolic diameter (preload), and aortic diastolic pressure (afterload). Plasma myocardia depressant factor activity accumulated in all endotoxin-administered animals, tending to be greater in the high-dose group. In this group, both subendocardial blood flow and global function were depressed, whereas pigs administered the low dose endotoxin demonstrated slight, but nonsignificant, increases in flow and function. These observations indicate that myocardial contractile depression is associated with a lethal outcome to high doses of endotoxin. Myocardial perfusion was measured using radiolabeled microspheres infused into the left atria

  1. Influence of revascularization on myocardial perfusion, metabolism and function

    International Nuclear Information System (INIS)

    Kropp, Joachim; Krois, Markus; Eichhorn, Bernd; Fehske, Wolfgang; Likungu, James; Kirchhoff, P.G.; Luederitz, Berndt; Biersack, Hans-Juergen; Knapp, F.F. Jr.

    1993-01-01

    Thirty-nine patients with coronary artery disease (CAD) were investigated with sequential SPECT-scintigraphy after administration of 200 MBq of 15-(p-[I-123]iodophenyl)pentadecanoic acid (IPPA) at peak submaximal exercise. Twenty patients underwent coronary angioplasty (PTCA) from which 14 had control coronary arteriography (CA) and left ventricular cineventriculography (LVCV). Nineteen patients underwent bypass graft surgery (ACB) and stress sonography. Semi-quantification of uptake (Up, related to perfusion) and turnover (Tr, linked to metabolism) was obtained by segmental comparison of oblique slices. About 90% of the reperfused myocardial segments in the PTCA-group and 76% in the ACB-group showed an improvement of uptake after therapy (RUp). Out of these, 50% and 66% exhibited increased turnover (RTr) after PTCA or ACB, respectively. The remaining segments had persistingly pathologic RTr indicating a dissociation of improvement of perfusion and metabolism after therapy. Pathologic RTr was highly correlated with regional wall motion abnormalities (RWMA) after therapy in both groups. In the ACB-group improvement in RTr was correlated with improved RWM at rest and stress in 86% and 92%, respectively, whereas no improvement in RTr was correlated with impared function in 100% and 52%, respectively. IPPA-studies show potential to provide information about changes of perfusion and metabolism after reperfusion and IPPA-turnover is a good predictor of the pattern of contractile function. (author)

  2. Dynamic Contractility and Efficiency Impairments in Stretch-Shortening Cycle Are Stretch-Load-Dependent After Training-Induced Muscle Damage

    NARCIS (Netherlands)

    Vaczi, Mark; Racz, Levente; Hortobagyi, Tibor; Tihanyi, Jozsef

    Vaczi, M, Racz, L, Hortobagyi, T, and Tihanyi, J. Dynamic contractility and efficiency impairments in stretch-shortening cycle are stretch-load-dependent after training-induced muscle damage. J Strength Cond Res 27(8): 2171-2179, 2013To determine the acute task and stretch-load dependency of

  3. Alterations in serotonin receptor-induced contractility of bovine lateral saphenous vein in cattle grazing endophyte-infected tall fescue

    Science.gov (United States)

    As part of a large 2-year study documenting the physiologic impact of grazing endophyte-infected tall fescue on growing cattle, 2 experiments were conducted to characterize and evaluate the effects of grazing 2 levels of toxic endophyte-infected tall fescue pastures on vascular contractility and ser...

  4. Effect of spaceflight on the isotonic contractile properties of single skeletal muscle fibers in the rhesus monkey

    Science.gov (United States)

    Fitts, R. H.; Romatowski, J. G.; Blaser, C.; De La Cruz, L.; Gettelman, G. J.; Widrick, J. J.

    2000-01-01

    Experiments from both Cosmos and Space Shuttle missions have shown weightlessness to result in a rapid decline in the mass and force of rat hindlimb extensor muscles. Additionally, despite an increased maximal shortening velocity, peak power was reduced in rat soleus muscle post-flight. In humans, declines in voluntary peak isometric ankle extensor torque ranging from 15-40% have been reported following long- and short-term spaceflight and prolonged bed rest. Complete understanding of the cellular events responsible for the fiber atrophy and the decline in force, as well as the development of effective countermeasures, will require detailed knowledge of how the physiological and biochemical processes of muscle function are altered by spaceflight. The specific purpose of this investigation was to determine the extent to which the isotonic contractile properties of the slow- and fast-twitch fiber types of the soleus and gastrocnemius muscles of rhesus monkeys (Macaca mulatta) were altered by a 14-day spaceflight.

  5. Effects of milrinone and epinephrine or dopamine on biventricular function and hemodynamics in an animal model with right ventricular failure after pulmonary artery banding.

    Science.gov (United States)

    Hyldebrandt, Janus Adler; Sivén, Eleonora; Agger, Peter; Frederiksen, Christian Alcaraz; Heiberg, Johan; Wemmelund, Kristian Borup; Ravn, Hanne Berg

    2015-07-01

    Right ventricular (RV) failure due to chronic pressure overload is a main determinant of outcome in congenital heart disease. Medical management is challenging because not only contractility but also the interventricular relationship is important for increasing cardiac output. This study evaluated the effect of milrinone alone and in combination with epinephrine or dopamine on hemodynamics, ventricular performance, and the interventricular relationship. RV failure was induced in 21 Danish landrace pigs by pulmonary artery banding. After 10 wk, animals were reexamined using biventricular pressure-volume conductance catheters. The maximum pressure in the RV increased by 113% (P Milrinone increased CI (11%, P = 0.008) and heart rate (HR; 21%, P milrinone improved CI and increased contractility. Albeit additional dose-dependent effects of both epinephrine and dopamine on CI and contractility, neither of the interventions improved SVI due to reduced filling of the LV. Copyright © 2015 the American Physiological Society.

  6. Does bariatric surgery improve adipose tissue function?

    Science.gov (United States)

    Frikke-Schmidt, H.; O’Rourke, R. W.; Lumeng, C. N.; Sandoval, D. A.; Seeley, R. J.

    2017-01-01

    Summary Bariatric surgery is currently the most effective treatment for obesity. Not only do these types of surgeries produce significant weight loss but also they improve insulin sensitivity and whole body metabolic function. The aim of this review is to explore how altered physiology of adipose tissue may contribute to the potent metabolic effects of some of these procedures. This includes specific effects on various fat depots, the function of individual adipocytes and the interaction between adipose tissue and other key metabolic tissues. Besides a dramatic loss of fat mass, bariatric surgery shifts the distribution of fat from visceral to the subcutaneous compartment favoring metabolic improvement. The sensitivity towards lipolysis controlled by insulin and catecholamines is improved, adipokine secretion is altered and local adipose inflammation as well as systemic inflammatory markers decreases. Some of these changes have been shown to be weight loss independent, and novel hypothesis for these effects includes include changes in bile acid metabolism, gut microbiota and central regulation of metabolism. In conclusion bariatric surgery is capable of improving aspects of adipose tissue function and do so in some cases in ways that are not entirely explained by the potent effect of surgery. PMID:27272117

  7. Regulation of glycogen synthesis in rat skeletal muscle after glycogen-depleting contractile activity: effects of adrenaline on glycogen synthesis and activation of glycogen synthase and glycogen phosphorylase.

    OpenAIRE

    Franch, J; Aslesen, R; Jensen, J

    1999-01-01

    We investigated the effects of insulin and adrenaline on the rate of glycogen synthesis in skeletal muscles after electrical stimulation in vitro. The contractile activity decreased the glycogen concentration by 62%. After contractile activity, the glycogen stores were fully replenished at a constant and high rate for 3 h when 10 m-i.u./ml insulin was present. In the absence of insulin, only 65% of the initial glycogen stores was replenished. Adrenaline decreased insulin-stimulated glycogen s...

  8. Dependence of intramyocardial pressure and coronary flow on ventricular loading and contractility: a model study.

    Science.gov (United States)

    Bovendeerd, Peter H M; Borsje, Petra; Arts, Theo; van De Vosse, Frans N

    2006-12-01

    The phasic coronary arterial inflow during the normal cardiac cycle has been explained with simple (waterfall, intramyocardial pump) models, emphasizing the role of ventricular pressure. To explain changes in isovolumic and low afterload beats, these models were extended with the effect of three-dimensional wall stress, nonlinear characteristics of the coronary bed, and extravascular fluid exchange. With the associated increase in the number of model parameters, a detailed parameter sensitivity analysis has become difficult. Therefore we investigated the primary relations between ventricular pressure and volume, wall stress, intramyocardial pressure and coronary blood flow, with a mathematical model with a limited number of parameters. The model replicates several experimental observations: the phasic character of coronary inflow is virtually independent of maximum ventricular pressure, the amplitude of the coronary flow signal varies about proportionally with cardiac contractility, and intramyocardial pressure in the ventricular wall may exceed ventricular pressure. A parameter sensitivity analysis shows that the normalized amplitude of coronary inflow is mainly determined by contractility, reflected in ventricular pressure and, at low ventricular volumes, radial wall stress. Normalized flow amplitude is less sensitive to myocardial coronary compliance and resistance, and to the relation between active fiber stress, time, and sarcomere shortening velocity.

  9. Dynamics of myosin II organization into contractile networks and fibers at the medial cell cortex

    Science.gov (United States)

    Nie, Wei

    The cellular morphology of adhered cells depends crucially on the formation of a contractile meshwork of parallel and cross-linked stress fibers along the contacting surface. The motor activity and mini-filament assembly of non-muscle myosin II is an important component of cell-level cytoskeletal remodeling during mechanosensing. To monitor the dynamics of non-muscle myosin II, we used confocal microscopy to image cultured HeLa cells that stably express myosin regulatory light chain tagged with GFP (MRLC-GFP). MRLC-GFP was monitored in time-lapse movies at steady state and during the response of cells to varying concentrations of blebbistatin (which disrupts actomyosin stress fibers). Using image correlation spectroscopy analysis, we quantified the kinetics of disassembly and reassembly of actomyosin networks and compared to studies by other groups. This analysis suggested the following processes: myosin minifilament assembly and disassembly; aligning and contraction; myosin filament stabilization upon increasing contractile tension. Numerical simulations that include those processes capture some of the main features observed in the experiments. This study provides a framework to help interpret how different cortical myosin remodeling kinetics may contribute to different cell shape and rigidity depending on substrate stiffness. We discuss methods to monitor myosin reorganization using non-linear imaging methods.

  10. Pharmacological characterization and chemical fractionation of a liposterolic extract of saw palmetto (Serenoa repens): effects on rat prostate contractility.

    Science.gov (United States)

    Chua, Thiam; Eise, Nicole T; Simpson, Jamie S; Ventura, Sabatino

    2014-03-14

    Saw palmetto (Serenoa repens) was first used medicinally by native American Indians to treat urological disorders. Nowadays, saw palmetto extracts are widely used in Europe and North America to treat the urinary symptoms associated with benign prostatic hyperplasia even though its mechanisms of action are poorly understood. This study aimed to characterize the bioactive constituents of a lipid extract of saw palmetto that are able to affect contractility of the rat prostate gland. The mechanism of action will also be investigated. A commercially available lipid extract of saw palmetto was subjected to fractionation using normal phase column chromatography. Composition of fractions was assessed by proton nuclear magnetic resonance spectroscopy ((1)H NMR) and mass spectrometry (MS). Contractile activities of these fractions were evaluated pharmacologically using isolated preparations of rat prostate gland and compared to the activity of the crude extract. Saw palmetto extract inhibited contractions of the rat prostate gland which were consistent with smooth muscle relaxant activity. Only the ethyl acetate fraction resulting from chromatography inhibited contractions of isolated rat prostates similarly to the inhibition produced by the crude lipid extract. Comparison with authentic samples and analysis of NMR data revealed that this bioactivity was due to the fatty acid components present in the ethyl acetate fraction. Bioassay using various pharmacological tools identified multiple contractile mechanisms which were affected by the bioactive constituents. A fatty acid component of saw palmetto extract causes inhibition of prostatic smooth muscle contractions via a non-specific mechanism. Copyright © 2014 Elsevier Ireland Ltd. All rights reserved.

  11. 5-HT4 receptors mediating enhancement of contractility in canine stomach; an in vitro and in vivo study

    NARCIS (Netherlands)

    Prins, NH; van der Grijn, A; Lefebvre, RA; Akkermans, LMA; Schuurkes, JAJ

    1 We aimed to study 5-HT4 receptors in canine stomach contractility both in vivo and in vitro. 2 In anaesthetized Beagle dogs, the selective 5-HT4 receptor agonist prucalopride (i.v.) induced dose-dependent tonic stomach contractions under isobaric conditions, an effect that was antagonized by the

  12. Vitamin D Levels and myocardial function in preterm infants

    LENUS (Irish Health Repository)

    Armstrong, K

    2013-08-20

    Bakground Low Vitamin D levels have been linked to cardiac failure in the adults and children. Tissue Doppler Imaging (TDI) is evolving as a superior measure of subtle changes in myocardial contractility in preterm infants. We aimed to correlate Vitamin D levels at birth with TDI measures of systolic and diastolic function. \\r\

  13. Controlled chaos: three-dimensional kinematics, fiber histochemistry, and muscle contractile dynamics of autotomized lizard tails.

    Science.gov (United States)

    Higham, Timothy E; Lipsett, Kathryn R; Syme, Douglas A; Russell, Anthony P

    2013-01-01

    greater resistance to fatigue, followed by the regenerate tail and then the fast iliofibularis fibers. These results suggest that the relatively slow and oxidative fibers found within the tail musculature have a significant impact on contractile function, which translates into a trade-off between longevity of performance and power after autotomy.

  14. Single-Cell Functional Analysis of Stem-Cell Derived Cardiomyocytes on Micropatterned Flexible Substrates

    NARCIS (Netherlands)

    Kijlstra, Jan David; Hu, Dongjian; van der Meer, Peter; Domian, Ibrahim J

    2017-01-01

    Human pluripotent stem-cell derived cardiomyocytes (hPSC-CMs) hold great promise for applications in human disease modeling, drug discovery, cardiotoxicity screening, and, ultimately, regenerative medicine. The ability to study multiple parameters of hPSC-CM function, such as contractile and

  15. Altered myofilament structure and function in dogs with Duchenne muscular dystrophy cardiomyopathy

    Energy Technology Data Exchange (ETDEWEB)

    Ait Mou, Younss; Lacampagne, Alain; Irving, Thomas; Scheuermann, Valérie; Blot, Stéphane; Ghaleh, Bijan; de Tombe, Pieter P.; Cazorla, Olivier

    2018-01-01

    Aim Duchenne Muscular Dystrophy (DMD) is associated with progressive depressed left ventricular (LV) function. However, DMD effects on myofilament structure and function are poorly understood. Golden Retriever Muscular Dystrophy (GRMD) is a dog model of DMD recapitulating the human form of DMD. Objective The objective of this study is to evaluate myofilament structure and function alterations in GRMD model with spontaneous cardiac failure. Methods and results We have employed synchrotron X-rays diffraction to evaluate myofilament lattice spacing at various sarcomere lengths (SL) on permeabilized LV myocardium. We found a negative correlation between SL and lattice spacing in both sub-epicardium (EPI) and sub-endocardium (ENDO) LV layers in control dog hearts. In the ENDO of GRMD hearts this correlation is steeper due to higher lattice spacing at short SL (1.9 μm). Furthermore, cross-bridge cycling indexed by the kinetics of tension redevelopment (ktr) was faster in ENDO GRMD myofilaments at short SL. We measured post-translational modifications of key regulatory contractile proteins. S-glutathionylation of cardiac Myosin Binding Protein-C (cMyBP-C) was unchanged and PKA dependent phosphorylation of the cMyBP-C was significantly reduced in GRMD ENDO tissue and more modestly in EPI tissue. Conclusions We found a gradient of contractility in control dogs' myocardium that spreads across the LV wall, negatively correlated with myofilament lattice spacing. Chronic stress induced by dystrophin deficiency leads to heart failure that is tightly associated with regional structural changes indexed by increased myofilament lattice spacing, reduced phosphorylation of regulatory proteins and altered myofilament contractile properties in GRMD dogs.

  16. The Effect of Cleft Palate Repair on Contractile Properties of Single Permeabilized Muscle Fibers From Congenitally Cleft Goats Palates

    Science.gov (United States)

    A cleft palate goat model was used to study the contractile properties of the levator veli palatini (LVP) muscle which is responsible for the movement of the soft palate. In 15-25% of patients that undergo palatoplasty, residual velopharyngeal insufficiency (VPI) remains a problem and often require...

  17. Virtual reality training improves balance function.

    Science.gov (United States)

    Mao, Yurong; Chen, Peiming; Li, Le; Huang, Dongfeng

    2014-09-01

    Virtual reality is a new technology that simulates a three-dimensional virtual world on a computer and enables the generation of visual, audio, and haptic feedback for the full immersion of users. Users can interact with and observe objects in three-dimensional visual space without limitation. At present, virtual reality training has been widely used in rehabilitation therapy for balance dysfunction. This paper summarizes related articles and other articles suggesting that virtual reality training can improve balance dysfunction in patients after neurological diseases. When patients perform virtual reality training, the prefrontal, parietal cortical areas and other motor cortical networks are activated. These activations may be involved in the reconstruction of neurons in the cerebral cortex. Growing evidence from clinical studies reveals that virtual reality training improves the neurological function of patients with spinal cord injury, cerebral palsy and other neurological impairments. These findings suggest that virtual reality training can activate the cerebral cortex and improve the spatial orientation capacity of patients, thus facilitating the cortex to control balance and increase motion function.

  18. Virtual reality training improves balance function

    Science.gov (United States)

    Mao, Yurong; Chen, Peiming; Li, Le; Huang, Dongfeng

    2014-01-01

    Virtual reality is a new technology that simulates a three-dimensional virtual world on a computer and enables the generation of visual, audio, and haptic feedback for the full immersion of users. Users can interact with and observe objects in three-dimensional visual space without limitation. At present, virtual reality training has been widely used in rehabilitation therapy for balance dysfunction. This paper summarizes related articles and other articles suggesting that virtual reality training can improve balance dysfunction in patients after neurological diseases. When patients perform virtual reality training, the prefrontal, parietal cortical areas and other motor cortical networks are activated. These activations may be involved in the reconstruction of neurons in the cerebral cortex. Growing evidence from clinical studies reveals that virtual reality training improves the neurological function of patients with spinal cord injury, cerebral palsy and other neurological impairments. These findings suggest that virtual reality training can activate the cerebral cortex and improve the spatial orientation capacity of patients, thus facilitating the cortex to control balance and increase motion function. PMID:25368651

  19. Cardiac contractility, central haemodynamics and blood pressure regulation during semistarvation

    DEFF Research Database (Denmark)

    Stokholm, K H; Breum, L; Astrup, A

    1991-01-01

    pressure (BP) declined. The fall in BP was caused by the reduction in cardiac output as the total peripheral resistance was unchanged. Finally, the decline in total blood volume was not significant. These findings together with a reduction in heart rate indicated that a reduced sympathetic tone via......Eight obese patients were studied before and after 2 weeks of treatment by a very-low-calorie diet (VLCD). Cardiac output and central blood volume (pulmonary blood volume and left atrial volume) were determined by indicator dilution (125I-albumin) and radionuclide angiocardiography (first pass...... and equilibrium technique by [99Tcm]red blood cells). Cardiac output decreased concomitantly with the reduction in oxygen uptake as the calculated systemic arteriovenous difference of oxygen was unaltered. There were no significant decreases in left ventricular contractility indices, i.e. the ejection fraction...

  20. Altered contractile responses of arteries from spontaneously hypertensive rat: The role of endogenous mediators and membrane depolarization

    Czech Academy of Sciences Publication Activity Database

    Bencze, Michal; Behuliak, Michal; Vavřínová, Anna; Zicha, Josef

    2016-01-01

    Roč. 166, Dec 1 (2016), s. 46-53 ISSN 0024-3205 R&D Projects: GA ČR(CZ) GAP304/12/0259; GA MZd(CZ) NV15-25396A Institutional support: RVO:67985823 Keywords : femoral artery * SHR * vascular contractility * adrenergic contraction * tyramine * propranolol * neuropeptide Y Subject RIV: FA - Cardiovascular Diseases incl. Cardiotharic Surgery Impact factor: 2.936, year: 2016

  1. Diagnosing and improving functioning in interdisciplinary health care teams.

    Science.gov (United States)

    Blackmore, Gail; Persaud, D David

    2012-01-01

    Interdisciplinary teams play a key role in the delivery of health care. Team functioning can positively or negatively impact the effective and efficient delivery of health care services as well as the personal well-being of group members. Additionally, teams must be able and willing to work together to achieve team goals within a climate that reflects commitment to team goals, accountability, respect, and trust. Not surprisingly, dysfunctional team functioning can limit the success of interdisciplinary health care teams. The first step in improving dysfunctional team function is to conduct an analysis based on criteria necessary for team success, and this article provides meaningful criteria for doing such an analysis. These are the following: a common team goal, the ability and willingness to work together to achieve team goals, decision making, communication, and team member relationships. High-functioning interdisciplinary teams must exhibit features of good team function in all key domains. If a team functions well in some domains and needs to improve in others, targeted strategies are described that can be used to improve team functioning.

  2. Longstanding Hyperthyroidism Is Associated with Normal or Enhanced Intrinsic Cardiomyocyte Function despite Decline in Global Cardiac Function

    Science.gov (United States)

    Redetzke, Rebecca A.; Gerdes, A. Martin

    2012-01-01

    Thyroid hormones (THs) play a pivotal role in cardiac homeostasis. TH imbalances alter cardiac performance and ultimately cause cardiac dysfunction. Although short-term hyperthyroidism typically leads to heightened left ventricular (LV) contractility and improved hemodynamic parameters, chronic hyperthyroidism is associated with deleterious cardiac consequences including increased risk of arrhythmia, impaired cardiac reserve and exercise capacity, myocardial remodeling, and occasionally heart failure. To evaluate the long-term consequences of chronic hyperthyroidism on LV remodeling and function, we examined LV isolated myocyte function, chamber function, and whole tissue remodeling in a hamster model. Three-month-old F1b hamsters were randomized to control or 10 months TH treatment (0.1% grade I desiccated TH). LV chamber remodeling and function was assessed by echocardiography at 1, 2, 4, 6, 8, and 10 months of treatment. After 10 months, terminal cardiac function was assessed by echocardiography and LV hemodynamics. Hyperthyroid hamsters exhibited significant cardiac hypertrophy and deleterious cardiac remodeling characterized by myocyte lengthening, chamber dilatation, decreased relative wall thickness, increased wall stress, and increased LV interstitial fibrotic deposition. Importantly, hyperthyroid hamsters demonstrated significant LV systolic and diastolic dysfunction. Despite the aforementioned remodeling and global cardiac decline, individual isolated cardiac myocytes from chronically hyperthyroid hamsters had enhanced function when compared with myocytes from untreated age-matched controls. Thus, it appears that long-term hyperthyroidism may impair global LV function, at least in part by increasing interstitial ventricular fibrosis, in spite of normal or enhanced intrinsic cardiomyocyte function. PMID:23056390

  3. Longstanding hyperthyroidism is associated with normal or enhanced intrinsic cardiomyocyte function despite decline in global cardiac function.

    Directory of Open Access Journals (Sweden)

    Nathan Y Weltman

    Full Text Available Thyroid hormones (THs play a pivotal role in cardiac homeostasis. TH imbalances alter cardiac performance and ultimately cause cardiac dysfunction. Although short-term hyperthyroidism typically leads to heightened left ventricular (LV contractility and improved hemodynamic parameters, chronic hyperthyroidism is associated with deleterious cardiac consequences including increased risk of arrhythmia, impaired cardiac reserve and exercise capacity, myocardial remodeling, and occasionally heart failure. To evaluate the long-term consequences of chronic hyperthyroidism on LV remodeling and function, we examined LV isolated myocyte function, chamber function, and whole tissue remodeling in a hamster model. Three-month-old F1b hamsters were randomized to control or 10 months TH treatment (0.1% grade I desiccated TH. LV chamber remodeling and function was assessed by echocardiography at 1, 2, 4, 6, 8, and 10 months of treatment. After 10 months, terminal cardiac function was assessed by echocardiography and LV hemodynamics. Hyperthyroid hamsters exhibited significant cardiac hypertrophy and deleterious cardiac remodeling characterized by myocyte lengthening, chamber dilatation, decreased relative wall thickness, increased wall stress, and increased LV interstitial fibrotic deposition. Importantly, hyperthyroid hamsters demonstrated significant LV systolic and diastolic dysfunction. Despite the aforementioned remodeling and global cardiac decline, individual isolated cardiac myocytes from chronically hyperthyroid hamsters had enhanced function when compared with myocytes from untreated age-matched controls. Thus, it appears that long-term hyperthyroidism may impair global LV function, at least in part by increasing interstitial ventricular fibrosis, in spite of normal or enhanced intrinsic cardiomyocyte function.

  4. Functional modulation of cardiac form through regionally confined cell shape changes.

    Directory of Open Access Journals (Sweden)

    Heidi J Auman

    2007-03-01

    Full Text Available Developing organs acquire a specific three-dimensional form that ensures their normal function. Cardiac function, for example, depends upon properly shaped chambers that emerge from a primitive heart tube. The cellular mechanisms that control chamber shape are not yet understood. Here, we demonstrate that chamber morphology develops via changes in cell morphology, and we determine key regulatory influences on this process. Focusing on the development of the ventricular chamber in zebrafish, we show that cardiomyocyte cell shape changes underlie the formation of characteristic chamber curvatures. In particular, cardiomyocyte elongation occurs within a confined area that forms the ventricular outer curvature. Because cardiac contractility and blood flow begin before chambers emerge, cardiac function has the potential to influence chamber curvature formation. Employing zebrafish mutants with functional deficiencies, we find that blood flow and contractility independently regulate cell shape changes in the emerging ventricle. Reduction of circulation limits the extent of cardiomyocyte elongation; in contrast, disruption of sarcomere formation releases limitations on cardiomyocyte dimensions. Thus, the acquisition of normal cardiomyocyte morphology requires a balance between extrinsic and intrinsic physical forces. Together, these data establish regionally confined cell shape change as a cellular mechanism for chamber emergence and as a link in the relationship between form and function during organ morphogenesis.

  5. Bedside Ultrasound of Quadriceps to Predict Rehospitalization and Functional Decline in Hospitalized Elders

    Directory of Open Access Journals (Sweden)

    Ana Clara Guerreiro

    2017-07-01

    Full Text Available ObjectiveTo evaluate the capacity of total anterior thigh thickness, quadriceps muscle thickness, and quadriceps contractile index, all measured by bedside ultrasound, to predict rehospitalization, functional decline, and death in elderly patients 3 months after hospital discharge. To evaluate intra and interobserver reproducibility of the dominant thigh evaluation method by point of care ultrasound.MethodsCohort study of patients aged 65 years or more admitted to a medium complexity unit in a teaching hospital in southern Brazil. Comprehensive geriatric assessment and ultrasound evaluation of the dominant thigh of each participant were performed. After 3 months of hospital discharge, telephone contact was made to evaluate the outcomes of rehospitalization or death and functional decline—assessed by the 100 points Barthel scale and defined as a decrease of five or more points.Results100 participants were included. There was no statistically significant difference between intraobserver measurements in the GEE method analysis (p > 0.05, and the mean bias obtained in Bland–Altman plots was close to zero in all four analyses performed, suggesting good intra and interobserver agreement. There was a significant correlation between the echographic measurements (quadriceps thickness and contractile index and gait speed, timed up and go, and handgrip tests. There was a significant association between contractile index (quadriceps thickness over total anterior thigh thickness multiplied by 100 lower than 60% and functional decline (relative risk 1.35; CI 95% 1.10–1.65; p = 0.003 as well as between the thickness of the quadriceps and rehospitalization or death, in both individuals with preserved walking capacity and in bedridden elders (relative risk 1.34; CI 95% 1.02–1.75; p = 0.04.ConclusionThe ultrasonographic method to evaluate thigh thickness was easily applicable and reproducible. The thickness of the quadriceps could

  6. TNNI3K is a novel mediator of myofilament function and phosphorylates cardiac troponin I

    International Nuclear Information System (INIS)

    Wang, Hui; Wang, Lin; Song, Li; Zhang, Yan-Wan; Ye, Jue; Xu, Rui-Xia; Shi, Na; Meng, Xian-Min

    2013-01-01

    The phosphorylation of cardiac troponin I (cTnI) plays an important role in the contractile dysfunction associated with heart failure. Human cardiac troponin I-interacting kinase (TNNI3K) is a novel cardiac-specific functional kinase that can bind to cTnI in a yeast two-hybrid screen. The purpose of this study was to investigate whether TNNI3K can phosphorylate cTnI at specific sites and to examine whether the phosphorylation of cTnI caused by TNNI3K can regulate cardiac myofilament contractile function. Co-immunoprecipitation was performed to confirm that TNNI3K could interact with cTnI. Kinase assays further indicated that TNNI3K did not phosphorylate cTnI at Ser23/24 and Ser44, but directly phosphorylated Ser43 and Thr143 in vitro. The results obtained for adult rat cardiomyocytes also indicated that enhanced phosphorylation of cTnI at Ser43 and Thr143 correlated with rTNNI3K (rat TNNI3K) overexpression, and phosphorylation was reduced when rTNNI3K was knocked down. To determine the contractile function modulated by TNNI3K-mediated phosphorylation of cTnI, cardiomyocyte contraction was studied in adult rat ventricular myocytes. The contraction of cardiomyocytes increased with rTNNI3K overexpression and decreased with rTNNI3K knockdown. We conclude that TNNI3K may be a novel mediator of cTnI phosphorylation and contribute to the regulation of cardiac myofilament contraction function

  7. Abnormal glucose metabolism is associated with reduced left ventricular contractile reserve and exercise intolerance in patients with chronic heart failure

    DEFF Research Database (Denmark)

    Egstrup, M; Kistorp, C N; Schou, M

    2013-01-01

    AIMS: To investigate the associations between glucose metabolism, left ventricular (LV) contractile reserve, and exercise capacity in patients with chronic systolic heart failure (HF). METHODS AND RESULTS: From an outpatient HF clinic, 161 patients with systolic HF were included (mean age 70 ± 10...... or new DM. All patients completed low-dose dobutamine echocardiography (LDDE) and 154 patients a 6-min walking distance test (6MWD). Compared with patients with NGT, patients with known DM had lower resting LVEF (33.4 vs. 39.1%, P ... in LVEF could be observed in all glycemic groups (mean 8.2% absolute increase), but the contractile reserve was lower in patients with known DM (-5.4%, P = 0.001) and new DM (-3.5%, P = 0.035) compared to patients with NGT. 6MWD was lower in known DM (349 m) and new DM (379 m) compared with NGT (467 m) (P...

  8. PGE2 maintains the tone of the guinea pig trachea through a balance between activation of contractile EP1 receptors and relaxant EP2 receptors

    Science.gov (United States)

    Säfholm, J; Dahlén, S-E; Delin, I; Maxey, K; Stark, K; Cardell, L-O; Adner, M

    2013-01-01

    Background and Purpose The guinea pig trachea (GPT) is commonly used in airway pharmacology. The aim of this study was to define the expression and function of EP receptors for PGE2 in GPT as there has been ambiguity concerning their role. Experimental Approach Expression of mRNA for EP receptors and key enzymes in the PGE2 pathway were assessed by real-time PCR using species-specific primers. Functional studies of GPT were performed in tissue organ baths. Key Results Expression of mRNA for the four EP receptors was found in airway smooth muscle. PGE2 displayed a bell-shaped concentration–response curve, where the initial contraction was inhibited by the EP1 receptor antagonist ONO-8130 and the subsequent relaxation by the EP2 receptor antagonist PF-04418948. Neither EP3 (ONO-AE5-599) nor EP4 (ONO-AE3-208) selective receptor antagonists affected the response to PGE2. Expression of COX-2 was greater than COX-1 in GPT, and the spontaneous tone was most effectively abolished by selective COX-2 inhibitors. Furthermore, ONO-8130 and a specific PGE2 antibody eliminated the spontaneous tone, whereas the EP2 antagonist PF-04418948 increased it. Antagonists of other prostanoid receptors had no effect on basal tension. The relaxant EP2 response to PGE2 was maintained after long-term culture, whereas the contractile EP1 response showed homologous desensitization to PGE2, which was prevented by COX-inhibitors. Conclusions and Implications Endogenous PGE2, synthesized predominantly by COX-2, maintains the spontaneous tone of GPT by a balance between contractile EP1 receptors and relaxant EP2 receptors. The model may be used to study interactions between EP receptors. PMID:22934927

  9. Group B streptococcal beta-hemolysin/cytolysin directly impairs cardiomyocyte viability and function.

    Directory of Open Access Journals (Sweden)

    Mary E Hensler

    Full Text Available BACKGROUND: Group B Streptococcus (GBS is a leading cause of neonatal sepsis where myocardial dysfunction is an important contributor to poor outcome. Here we study the effects of the GBS pore-forming beta-hemolysin/cytolysin (Bh/c exotoxin on cardiomyocyte viability, contractility, and calcium transients. METHODOLOGY/PRINCIPAL FINDINGS: HL-1 cardiomyocytes exposed to intact wild-type (WT or isogenic Deltabeta h/c mutant GBS, or to cell-free extracts from either strain, were assessed for viability by trypan blue exclusion and for apoptosis by TUNEL staining. Functionality of exposed cardiomyocytes was analyzed by visual quantitation of the rate and extent of contractility. Mitochondrial membrane polarization was measured in TMRE-loaded cells exposed to GBS beta h/c. Effects of GBS beta h/c on calcium transients were studied in fura-2AM-loaded primary rat ventricular cardiomyocytes. Exposure of HL-1 cardiomyocytes to either WT GBS or beta h/c extracts significantly reduced both rate and extent of contractility and later induced necrotic and apoptotic cell death. No effects on cardiomyocyte viability or function were observed after treatment with Deltabeta h/c mutant bacteria or extracts. The beta h/c toxin was associated with complete and rapid loss of detectable calcium transients in primary neonatal rat ventricular cardiomyocytes and induced a loss of mitochondrial membrane polarization. These effects on viability and function were abrogated by the beta h/c inhibitor, dipalmitoyl phosphatidylcholine (DPPC. CONCLUSIONS/SIGNIFICANCE: Our data show a rapid loss of cardiomyocyte viability and function induced by GBS beta h/c, and these deleterious effects are inhibited by DPPC, a normal constituent of human pulmonary surfactant.. These findings have clinical implications for the cardiac dysfunction observed in neonatal GBS infections.

  10. Function of skeletal muscle tissue formed after myoblast transplantation into irradiated mouse muscles.

    Science.gov (United States)

    Wernig, A; Zweyer, M; Irintchev, A

    2000-01-15

    1. Pretreatment of muscles with ionising radiation enhances tissue formation by transplanted myoblasts but little is known about the effects on muscle function. We implanted myoblasts from an expanded, male-donor-derived, culture (i28) into X-ray irradiated (16 Gy) or irradiated and damaged soleus muscles of female syngeneic mice (Balb/c). Three to 6 months later the isometric contractile properties of the muscles were studied in vitro, and donor nuclei were visualised in muscle sections with a Y chromosome-specific DNA probe. 2. Irradiated sham-injected muscles had smaller masses than untreated solei and produced less twitch and tetanic force (all by about 18 %). Injection of 106 myoblasts abolished these deficiencies and innervation appeared normal. 3. Cryodamage of irradiated solei produced muscle remnants with few (1-50) or no fibres. Additional myoblast implantation led to formation of large muscles (25 % above normal) containing numerous small-diameter fibres. Upon direct electrical stimulation, these muscles produced considerable twitch (53 % of normal) and tetanic forces (35 % of normal) but innervation was insufficient as indicated by weak nerve-evoked contractions and elevated ACh sensitivity. 4. In control experiments on irradiated muscles, reinnervation was found to be less complete after botulinum toxin paralysis than after nerve crush indicating that proliferative arrest of irradiated Schwann cells may account for the observed innervation deficits. 5. Irradiation appears to be an effective pretreatment for improving myoblast transplantation. The injected cells can even produce organised contractile tissue replacing whole muscle. However, impaired nerve regeneration limits the functional performance of the new muscle.

  11. Mechanism of action of ethanol on heart contractility

    International Nuclear Information System (INIS)

    Oquendo-Muriente, I.; De Mello, W.C.

    1986-01-01

    Ethanol depresses heart contractility. To investigate the mechanism of the negative inotropic action of ethanol, rat ventricular strips were dissected and mounted vertically in a transparent chamber. The preparation was superfused initially with normal oxygenated Tyrode solution (32.5 0 C) and electrically stimulated (1 Hz). After 1 hour of equilibration, contractures were elicited by exposing the muscle strips to high K + (100 mM) solution. Studies on the influence of (Ca 2+ ) 0 on K + contractures showed that the first rapid component of the contracture (58 mg/sec - S.E. +/- 8; n = 8) was greatly dependent upon (Ca 2+ ) 0 while the second slow component (20 mg/sec - S.E. +/- 5; n = 8) was slightly altered. The addition of ethanol (400 mg/100 ml) to high K solution abolished the fast component and reduced the amplitude of the second phase of K contractures. Similar results were obtained with verapamil (10 -5 M). These results, as well as studies on the effect of the drug on 45 Ca fluxes support the view that ethanol decreases the permeability of the heart cell membrane to Ca

  12. Mechanism of action of ethanol on heart contractility

    Energy Technology Data Exchange (ETDEWEB)

    Oquendo-Muriente, I.; De Mello, W.C.

    1986-03-05

    Ethanol depresses heart contractility. To investigate the mechanism of the negative inotropic action of ethanol, rat ventricular strips were dissected and mounted vertically in a transparent chamber. The preparation was superfused initially with normal oxygenated Tyrode solution (32.5/sup 0/C) and electrically stimulated (1 Hz). After 1 hour of equilibration, contractures were elicited by exposing the muscle strips to high K/sup +/ (100 mM) solution. Studies on the influence of (Ca/sup 2 +/)/sub 0/ on K/sup +/ contractures showed that the first rapid component of the contracture (58 mg/sec - S.E. +/- 8; n = 8) was greatly dependent upon (Ca/sup 2 +/)/sub 0/ while the second slow component (20 mg/sec - S.E. +/- 5; n = 8) was slightly altered. The addition of ethanol (400 mg/100 ml) to high K solution abolished the fast component and reduced the amplitude of the second phase of K contractures. Similar results were obtained with verapamil (10/sup -5/ M). These results, as well as studies on the effect of the drug on /sup 45/Ca fluxes support the view that ethanol decreases the permeability of the heart cell membrane to Ca.

  13. Postextrasystolic potentiation and contractile reserve: requirements and restrictions.

    Science.gov (United States)

    Lust, R M; Lutherer, L O; Gardner, M E; Cooper, M W

    1982-12-01

    These studies were conducted to examine the basic characteristics of postextrasystolic potentiation (PESP) and the relationship of loading effects to PESP. Measurements of left ventricular (LV) and aortic pressures, the rate of pressure rise, and echocardiographically determined LV dimensions were made in anesthetized open-chest dogs. The hearts were paced, and timed extrasystoles were introduced that were followed by postextrasystoles (PES). PES's were elicited after an interval equal to either a full compensatory pause or a time when the diastolic properties of the LV could not be distinguished from control (isolength). Potentiation of contraction for the PES's introduced after an isolength pause was dependent on both the heart rate and the extrasystolic interval, whereas the PES's that occurred after a full pause showed no dependence on either of these intervals. PESP elicited during the isolength period was not dependent on either preload and afterload. It is concluded that PESP depends on the combination of heart rate and extrasystolic and postextrasystolic intervals. Further, PESP may be inaccurate in assessing contractile reserve unless the heart rate and extrasystolic interval are known and the PES is introduced after an isolength pause.

  14. Muscle, functional and cognitive adaptations after flywheel resistance training in stroke patients: a pilot randomized controlled trial.

    Science.gov (United States)

    Fernandez-Gonzalo, Rodrigo; Fernandez-Gonzalo, Sol; Turon, Marc; Prieto, Cristina; Tesch, Per A; García-Carreira, Maria del Carmen

    2016-04-06

    Resistance exercise (RE) improves neuromuscular function and physical performance after stroke. Yet, the effects of RE emphasizing eccentric (ECC; lengthening) actions on muscle hypertrophy and cognitive function in stroke patients are currently unknown. Thus, this study explored the effects of ECC-overload RE training on skeletal muscle size and function, and cognitive performance in individuals with stroke. Thirty-two individuals with chronic stroke (≥6 months post-stroke) were randomly assigned into a training group (TG; n = 16) performing ECC-overload flywheel RE of the more-affected lower limb (12 weeks, 2 times/week; 4 sets of 7 maximal closed-chain knee extensions; trained (48.2 %), and the less-affected, untrained limb (28.1 %) increased after training. TG showed enhanced balance (8.9 %), gait performance (10.6 %), dual-task performance, executive functions (working memory, verbal fluency tasks), attention, and speed of information processing. CG showed no changes. ECC-overload flywheel resistance exercise comprising 4 min of contractile activity per week offers a powerful aid to regain muscle mass and function, and functional performance in individuals with stroke. While the current intervention improved cognitive functions, the cause-effect relationship, if any, with the concomitant neuromuscular adaptations remains to be explored. Clinical Trials NCT02120846.

  15. Functional and pharmacological consequences of the distribution of voltage-gated calcium channels in the renal blood vessels

    DEFF Research Database (Denmark)

    Hansen, P B L

    2013-01-01

    Calcium channel blockers are widely used to treat hypertension because they inhibit voltage-gated calcium channels that mediate transmembrane calcium influx in, for example, vascular smooth muscle and cardiomyocytes. The calcium channel family consists of several subfamilies, of which the L......-type is usually associated with vascular contractility. However, the L-, T- and P-/Q-types of calcium channels are present in the renal vasculature and are differentially involved in controlling vascular contractility, thereby contributing to regulation of kidney function and blood pressure. In the preglomerular...... vascular bed, all the three channel families are present. However, the T-type channel is the only channel in cortical efferent arterioles which is in contrast to the juxtamedullary efferent arteriole, and that leads to diverse functional effects of L- and T-type channel inhibition. Furthermore...

  16. Relationship of hemoglobin and hematocrit to systolic function in advanced heart failure.

    Science.gov (United States)

    Guglin, Maya; Darbinyan, Nellie

    2012-01-01

    The dataset from the Evaluation Study of Congestive Heart Failure and Pulmonary Artery Catheterization Effectiveness (ESCAPE) trial provides a rare opportunity to evaluate the whole spectrum of associations of hemoglobin (HB) and hematocrit (HCT) in heart failure (HF). In that trial, subjective and objective data were recorded at multiple time points when HB and HCT were also measured. We investigated the relationship between anemia and ventricular systolic function. A limited access dataset from the ESCAPE trial, provided by the National Heart, Lung and Blood Institute, was analyzed. Linear regression analysis, correlation coefficients and Student's t test were utilized. Besides the known association of anemia with poor prognosis, more severe symptoms, decreased functional capacity and impaired kidney function, we found a significant and very consistent inverse correlation between HB and HCT and ventricular contractility. Both left ventricular ejection fraction and right ventricular fractional area change improved with a decrease in HB and vice versa. We hypothesize that this effect can result from a change in viscosity, which decreases with a decrease in HCT, and may facilitate adaptation of the heart to a volume overload state accompanied by hemodilution. In HF, anemia is associated with poor prognosis and functional impairment, but also with mildly improved systolic function. It may represent an adaptive reaction to congestion. Copyright © 2012 S. Karger AG, Basel.

  17. Improved quasi-static nodal green's function method

    International Nuclear Information System (INIS)

    Li Junli; Jing Xingqing; Hu Dapu

    1997-01-01

    Improved Quasi-Static Green's Function Method (IQS/NGFM) is presented, as an new kinetic method. To solve the three-dimensional transient problem, improved Quasi-Static Method is adopted to deal with the temporal problem, which will increase the time step as long as possible so as to decrease the number of times of space calculation. The time step of IQS/NGFM can be increased to 5∼10 times longer than that of Full Implicit Differential Method. In spatial calculation, the NGFM is used to get the distribution of shape function, and it's spatial mesh can be nearly 20 times larger than that of Definite Differential Method. So the IQS/NGFM is considered as an efficient kinetic method

  18. Luminal DMSO: Effects on Detrusor and Urothelial/Lamina Propria Function

    Directory of Open Access Journals (Sweden)

    Katrina J. Smith

    2014-01-01

    Full Text Available DMSO is used as a treatment for interstitial cystitis and this study examined the effects of luminal DMSO treatment on bladder function and histology. Porcine bladder was incubated without (controls or with DMSO (50% applied to the luminal surface and the release of ATP, acetylcholine, and LDH assessed during incubation and in tissues strips after DMSO incubation. Luminally applied DMSO caused ATP, Ach, and LDH release from the urothelial surface during treatment, with loss of urothelial layers also evident histologically. In strips of urothelium/lamina propria from DMSO pretreated bladders the release of both ATP and Ach was depressed, while contractile responses to carbachol were enhanced. Detrusor muscle contractile responses to carbachol were not affected by DMSO pretreatment, but neurogenic responses to electrical field stimulation were enhanced. The presence of an intact urothelium/lamina propria inhibited detrusor contraction to carbachol by 53% and this inhibition was significantly reduced in DMSO pretreated tissues. Detection of LDH in the treatment medium suggests that DMSO permeabilised urothelial membranes causing leakage of cytosolic contents including ATP and Ach rather than enhancing release of these mediators. The increase in contractile response and high levels of ATP are consistent with initial flare up in IC/PBS symptoms after DMSO treatment.

  19. Improvement in cognitive function after surgery for low-grade glioma.

    Science.gov (United States)

    Barzilai, Ori; Ben Moshe, Shlomit; Sitt, Razi; Sela, Gal; Shofty, Ben; Ram, Zvi

    2018-03-23

    OBJECTIVE Cognition is a key component in health-related quality of life (HRQoL) and is currently incorporated as a major parameter of outcome assessment in patients treated for brain tumors. The effect of surgery on cognition and HRQoL remains debatable. The authors investigated the impact of resection of low-grade gliomas (LGGs) on cognition and the correlation with various histopathological markers. METHODS A retrospective analysis of patients with LGG who underwent craniotomy for tumor resection at a single institution between 2010 and 2014 was conducted. Of 192 who underwent resective surgery for LGG during this period, 49 had complete pre- and postoperative neurocognitive evaluations and were included in the analysis. These patients completed a full battery of neurocognitive tests (memory, language, attention and working memory, visuomotor organization, and executive functions) pre- and postoperatively. Tumor and surgical characteristics were analyzed, including volumetric measurements and histopathological markers (IDH, p53, GFAP). RESULTS Postoperatively, significant improvement was found in memory and executive functions. A subgroup analysis of patients with dominant-side tumors, most of whom underwent intraoperative awake mapping, revealed significant improvement in the same domains. Patients whose tumors were on the nondominant side displayed significant improvement only in memory functions. Positive staining for p53 testing was associated with improved language function and greater extent of resection in dominant-side tumors. GFAP positivity was associated with improved memory in patients whose tumors were on the nondominant side. No correlation was found between cognitive outcome and preoperative tumor volume, residual volume, extent of resection, or IDH1 status. CONCLUSIONS Resection of LGG significantly improves memory and executive function and thus is likely to improve functional outcome in addition to providing oncological benefit. GFAP and pP53

  20. Improved Density Functional Tight Binding Potentials for Metalloid Aluminum Clusters

    Science.gov (United States)

    2016-06-01

    unlimited IMPROVED DENSITY-FUNCTIONAL TIGHT BINDING POTENTIALS FOR METALLOID ALUMINUM CLUSTERS by Joon H. Kim June 2016 Thesis Advisor...DATES COVERED Master’s thesis 4. TITLE AND SUBTITLE IMPROVED DENSITY-FUNCTIONAL TIGHT BINDING POTENTIALS FOR METALLOID ALUMINUM CLUSTERS 5. FUNDING...repulsive potentials for use in density-functional tight binding (DFTB) simulations of low-valence aluminum metalloid clusters . These systems are under

  1. Executive function needs to be targeted to improve social functioning with Cognitive Remediation Therapy (CRT) in schizophrenia.

    Science.gov (United States)

    Penadés, Rafael; Catalán, Rosa; Puig, Olga; Masana, Guillem; Pujol, Núria; Navarro, Víctor; Guarch, Joana; Gastó, Cristóbal

    2010-05-15

    While the role of impaired cognition in accounting for functional outcome in schizophrenia is generally established, the relationship between cognitive and functional change in the context of treatments is far from clear. The current paper tries to identify which cognitive changes lead to improvements in daily functioning among persons with chronic schizophrenia who had current negative symptoms and evidenced neuropsychological impairments. In a previous work, Cognitive Remediation Therapy (CRT) was compared with a control therapy, involving similar length of therapist contact but different targets. At the end of treatment, CRT conferred a benefit to people with schizophrenia in cognition and functioning [Schizophrenia Research, 87 (2006) 323-331]. Subsequently, analyses of covariance (ANCOVA) were conducted with baseline and cognitive change scores as covariates to test whether cognitive change predicted change in functioning. Additionally, statistical tests to establish the mediation path with significant variables were performed. Although verbal memory, but not executive functioning, was associated with functioning at baseline, it was the improvement in executive functioning that predicted improved daily functioning. Verbal memory played a mediator role in the change process. Consequently, in order to improve daily functioning with CRT, executive function still needs to be targeted in despite of multiple cognitive impairments being present. Copyright 2009 Elsevier Ireland Ltd. All rights reserved.

  2. Improved wave functions for large-N expansions

    International Nuclear Information System (INIS)

    Imbo, T.; Sukhatme, U.

    1985-01-01

    Existing large-N expansions of radial wave functions phi/sub n/,l(r) are only accurate near the minimum of the effective potential. Within the framework of the shifted 1/N expansion, we use known analytic results to motivate a simple modification so that the improved wave functions are accurate over a wide range of r and any choice of quantum numbers n and l. It is shown that these wave functions yield simple and accurate analytic expressions for certain quantities of interest in quarkonium physics

  3. Effects of phosphodiesterase III inhibition on length-dependent regulation of myocardial function in coronary surgery patients

    NARCIS (Netherlands)

    de Hert, S. G.; ten Broecke, P. W.; Mertens, E.; Rodrigus, I. E.; Stockman, B. A.

    2002-01-01

    BACKGROUND: Phosphodiesterase III inhibitors increase myocardial contractility and decrease left ventricular (LV) afterload. We studied whether these effects altered LV response to an increase in cardiac load and affected length-dependent regulation of myocardial function. METHODS: Before the start

  4. Improved adsorption energetics within density-functional theory using revised Perdew-Burke-Ernzerhof functionals

    DEFF Research Database (Denmark)

    Hammer, Bjørk; Hansen, Lars Bruno; Nørskov, Jens Kehlet

    1999-01-01

    A simple formulation of a generalized gradient approximation for the exchange and correlation energy of electrons has been proposed by Perdew, Burke, and Ernzerhof (PBE) [Phys. Rev. Lett. 77, 3865 (1996)]. Subsequently Zhang and Yang [Phys. Rev. Lett. 80, 890 (1998)] have shown that a slight...... revision of the PBE functional systematically improves the atomization energies for a large database of small molecules. In the present work, we show that the Zhang and Yang functional (revPBE) also improves the chemisorption energetics of atoms and molecules on transition-metal surfaces. Our test systems...

  5. Three good reasons for heart surgeons to understand cardiac metabolism.

    Science.gov (United States)

    Doenst, Torsten; Bugger, Heiko; Schwarzer, Michael; Faerber, Gloria; Borger, Michael A; Mohr, Friedrich W

    2008-05-01

    It is the principal goal of cardiac surgeons to improve or reinstate contractile function with, through or after a surgical procedure on the heart. Uninterrupted contractile function of the heart is irrevocably linked to the uninterrupted supply of energy in the form of ATP. Thus, it would appear natural that clinicians interested in myocardial contractile function are interested in the way the heart generates ATP, i.e. the processes generally referred to as energy metabolism. Yet, it may appear that the relevance of energy metabolism in cardiac surgery is limited to the area of cardioplegia, which is a declining research interest. It is the goal of this review to change this trend and to illustrate the role and the therapeutic potential of metabolism and metabolic interventions for management. We present three compelling reasons why cardiac metabolism is of direct, practical interest to the cardiac surgeon and why a better understanding of energy metabolism might indeed result in improved surgical outcomes: (1) To understand cardioplegic arrest, ischemia and reperfusion, one needs a working knowledge of metabolism; (2) hyperglycemia is an underestimated and modifiable risk factor; (3) acute metabolic interventions can be effective in patients undergoing cardiac surgery.

  6. Nonequilibrium phase transitions, fluctuations and correlations in an active contractile polar fluid.

    Science.gov (United States)

    Gowrishankar, Kripa; Rao, Madan

    2016-02-21

    We study the patterning, fluctuations and correlations of an active polar fluid consisting of contractile polar filaments on a two-dimensional substrate, using a hydrodynamic description. The steady states generically consist of arrays of inward pointing asters and show a continuous transition from a moving lamellar phase, a moving aster street, to a stationary aster lattice with no net polar order. We next study the effect of spatio-temporal athermal noise, parametrized by an active temperature TA, on the stability of the ordered phases. In contrast to its equilibrium counterpart, we find that the active crystal shows true long range order at low TA. On increasing TA, the asters dynamically remodel, concomitantly we find novel phase transitions characterized by bond-orientational and polar order upon "heating".

  7. The effectiveness of two novel techniques in establishing the mechanical and contractile responses of biceps femoris

    International Nuclear Information System (INIS)

    Ditroilo, Massimiliano; De Vito, Giuseppe; Hunter, Angus M; Haslam, Samuel

    2011-01-01

    Portable tensiomyography (TMG) and myotonometry (MMT) devices have been developed to measure mechanical and contractile properties of skeletal muscle. The aim of this study was to explore the sensitivity of the aforementioned techniques in detecting a change in passive mechanical properties of the biceps femoris (BF) muscle as a result of change in knee joint angle (i.e. muscle length). BF responses were assessed in 16 young participants (23.4 ± 4.9 years), at three knee joint angles (0°, 45° and 90°), for maximal isometric torque (MIT) along with myo-electrical activity. Contractile and mechanical properties were measured in a relaxed state. Inter-day reliability of the TMG and MMT was also assessed. MIT changed significantly (p < 0.01) across the three angles, so did stiffness and other parameters measured with MMT (p < 0.01). Conversely, TMG could detect changes only at two knee angles (0° and 45°, p < 0.01), when there is enough tension in the muscle. Reliability was overall insufficient for TMG whilst absolute reliability was excellent (coefficient of variation < 5%) for MMT. The ability of MMT more than TMG to detect an inherent change in stiffness can be conceivably exploited in a number of clinical/therapeutic applications that have to do with unnatural changes in passive muscle stiffness

  8. Text mining improves prediction of protein functional sites.

    Directory of Open Access Journals (Sweden)

    Karin M Verspoor

    Full Text Available We present an approach that integrates protein structure analysis and text mining for protein functional site prediction, called LEAP-FS (Literature Enhanced Automated Prediction of Functional Sites. The structure analysis was carried out using Dynamics Perturbation Analysis (DPA, which predicts functional sites at control points where interactions greatly perturb protein vibrations. The text mining extracts mentions of residues in the literature, and predicts that residues mentioned are functionally important. We assessed the significance of each of these methods by analyzing their performance in finding known functional sites (specifically, small-molecule binding sites and catalytic sites in about 100,000 publicly available protein structures. The DPA predictions recapitulated many of the functional site annotations and preferentially recovered binding sites annotated as biologically relevant vs. those annotated as potentially spurious. The text-based predictions were also substantially supported by the functional site annotations: compared to other residues, residues mentioned in text were roughly six times more likely to be found in a functional site. The overlap of predictions with annotations improved when the text-based and structure-based methods agreed. Our analysis also yielded new high-quality predictions of many functional site residues that were not catalogued in the curated data sources we inspected. We conclude that both DPA and text mining independently provide valuable high-throughput protein functional site predictions, and that integrating the two methods using LEAP-FS further improves the quality of these predictions.

  9. Text Mining Improves Prediction of Protein Functional Sites

    Science.gov (United States)

    Cohn, Judith D.; Ravikumar, Komandur E.

    2012-01-01

    We present an approach that integrates protein structure analysis and text mining for protein functional site prediction, called LEAP-FS (Literature Enhanced Automated Prediction of Functional Sites). The structure analysis was carried out using Dynamics Perturbation Analysis (DPA), which predicts functional sites at control points where interactions greatly perturb protein vibrations. The text mining extracts mentions of residues in the literature, and predicts that residues mentioned are functionally important. We assessed the significance of each of these methods by analyzing their performance in finding known functional sites (specifically, small-molecule binding sites and catalytic sites) in about 100,000 publicly available protein structures. The DPA predictions recapitulated many of the functional site annotations and preferentially recovered binding sites annotated as biologically relevant vs. those annotated as potentially spurious. The text-based predictions were also substantially supported by the functional site annotations: compared to other residues, residues mentioned in text were roughly six times more likely to be found in a functional site. The overlap of predictions with annotations improved when the text-based and structure-based methods agreed. Our analysis also yielded new high-quality predictions of many functional site residues that were not catalogued in the curated data sources we inspected. We conclude that both DPA and text mining independently provide valuable high-throughput protein functional site predictions, and that integrating the two methods using LEAP-FS further improves the quality of these predictions. PMID:22393388

  10. Heavy water effects on the structure, functions and behavior of biological systems

    International Nuclear Information System (INIS)

    Buzgariu, Wanda; Caloianu, Maria; Moldovan, Lucia; Titescu, G.

    2003-01-01

    The H 2 O substitution for D 2 O either in environment or in the culture medium of the living systems generates changes in their main functions and composition. In this paper some of the heavy water effects in biological systems such as structural and functional changes were reviewed: normal cell architecture alterations, cell division and membrane functions disturbance, muscular contractility and the perturbations of biological oscillators such as circadian rhythm, heart rate, respiratory cycle, tidal and ultradian rhythm. (authors)

  11. Cardiac-specific catalase overexpression rescues anthrax lethal toxin-induced cardiac contractile dysfunction: role of oxidative stress and autophagy

    OpenAIRE

    Kandadi, Machender R; Yu, Xuejun; Frankel, Arthur E; Ren, Jun

    2012-01-01

    Abstract Background Lethal and edema toxins secreted by Bacillus anthracis during anthrax infection were found to incite serious cardiovascular complications. However, the underlying mechanisms in anthrax lethal toxin-induced cardiac anomalies remain unknown. This study was designed to evaluate the impact of antioxidant enzyme catalase in anthrax lethal toxin-induced cardiomyocyte contractile dysfunction. Methods Wild type (WT) and cardiac-specific catalase overexpression mice were challenged...

  12. Tension cost correlates with mechanical and biochemical parameters in different myocardial contractility conditions

    Directory of Open Access Journals (Sweden)

    Cleci M. Moreira

    2012-01-01

    Full Text Available OBJECTIVES: Tension cost, the ratio of myosin ATPase activity to tension, reflects the economy of tension development in the myocardium. To evaluate the mechanical advantage represented by the tension cost, we studied papillary muscle contractility and the activity of myosin ATPase in the left ventricles in normal and pathophysiological conditions. METHODS: Experimental protocols were performed using rat left ventricles from: (1 streptozotocin-induced diabetic and control Wistar rats; (2 N-nitro-L-arginine methyl ester (L-NAME hypertensive and untreated Wistar rats; (3 deoxycorticosterone acetate (DOCA salt-treated, nephrectomized and salt- and DOCA-treated rats; (4 spontaneous hypertensive rats (SHR and Wistar Kyoto (WKY rats; (5 rats with myocardial infarction and shamoperated rats. The isometric force, tetanic tension, and the activity of myosin ATPase were measured. RESULTS: The results obtained from infarcted, diabetic, and deoxycorticosterone acetate-salt-treated rats showed reductions in twitch and tetanic tension compared to the control and sham-operated groups. Twitch and tetanic tension increased in the N-nitro-L-arginine methyl ester-treated rats compared with the Wistar rats. Myosin ATPase activity was depressed in the infarcted, diabetic, and deoxycorticosterone acetate salt-treated rats compared with control and sham-operated rats and was increased in N-nitro-L-arginine methyl ester-treated rats. These parameters did not differ between SHR and WKY rats. In the studied conditions (e.g., post-myocardial infarction, deoxycorticosterone acetate salt-induced hypertension, chronic N-nitro-L-arginine methyl ester treatment, and streptozotocin-induced diabetes, a positive correlation between force or plateau tetanic tension and myosin ATPase activity was observed. CONCLUSION: Our results suggest that the myocardium adapts to force generation by increasing or reducing the tension cost to maintain myocardial contractility with a better

  13. Fetal stem cells in combined treatment of chronic heart failure and their effect on morphofunctional parameters of the left ventricle myocardium and cognitive functions

    Directory of Open Access Journals (Sweden)

    Klunnyk MO

    2014-08-01

    group. In both groups, reactive anxiety levels dropped after month 3 upon FSCT. FSCT resulted in statistically significant improvements in the contractile activity of the left ventricular myocardium, in cognitive functions, and in the emotional state of CHF patients. Conclusion: The evidence for significant improvements in the contractile function of the left ventricle myocardium, as well as in patients' cognitive and emotional states, was observed in CHF patients after combined treatment with FSC. Keywords: heart failure, cognitive, emotional impairment, fetal stem cells, left ventricle remodeling

  14. Improving executive function using transcranial infrared laser stimulation.

    Science.gov (United States)

    Blanco, Nathaniel J; Maddox, W Todd; Gonzalez-Lima, Francisco

    2017-03-01

    Transcranial infrared laser stimulation is a new non-invasive form of low-level light therapy that may have a wide range of neuropsychological applications. It entails using low-power and high-energy-density infrared light from lasers to increase metabolic energy. Preclinical work showed that this intervention can increase cortical metabolic energy, thereby improving frontal cortex-based memory function in rats. Barrett and Gonzalez-Lima (2013, Neuroscience, 230, 13) discovered that transcranial laser stimulation can enhance sustained attention and short-term memory in humans. We extend this line of work to executive function. Specifically, we ask whether transcranial laser stimulation enhances performance in the Wisconsin Card Sorting Task that is considered the gold standard of executive function and is compromised in normal ageing and a number of neuropsychological disorders. We used a laser of a specific wavelength (1,064 nm) that photostimulates cytochrome oxidase - the enzyme catalysing oxygen consumption for metabolic energy production. Increased cytochrome oxidase activity is considered the primary mechanism of action of this intervention. Participants who received laser treatment made fewer errors and showed improved set-shifting ability relative to placebo controls. These results suggest that transcranial laser stimulation improves executive function and may have exciting potential for treating or preventing deficits resulting from neuropsychological disorders or normal ageing. © 2015 The British Psychological Society.

  15. Post-contractile BOLD contrast in skeletal muscle at 7 T reveals inter-individual heterogeneity in the physiological responses to muscle contraction.

    Science.gov (United States)

    Towse, Theodore F; Elder, Christopher P; Bush, Emily C; Klockenkemper, Samuel W; Bullock, Jared T; Dortch, Richard D; Damon, Bruce M

    2016-12-01

    Muscle blood oxygenation-level dependent (BOLD) contrast is greater in magnitude and potentially more influenced by extravascular BOLD mechanisms at 7 T than it is at lower field strengths. Muscle BOLD imaging of muscle contractions at 7 T could, therefore, provide greater or different contrast than at 3 T. The purpose of this study was to evaluate the feasibility of using BOLD imaging at 7 T to assess the physiological responses to in vivo muscle contractions. Thirteen subjects (four females) performed a series of isometric contractions of the calf muscles while being scanned in a Philips Achieva 7 T human imager. Following 2 s maximal isometric plantarflexion contractions, BOLD signal transients ranging from 0.3 to 7.0% of the pre-contraction signal intensity were observed in the soleus muscle. We observed considerable inter-subject variability in both the magnitude and time course of the muscle BOLD signal. A subset of subjects (n = 7) repeated the contraction protocol at two different repetition times (T R : 1000 and 2500 ms) to determine the potential of T 1 -related inflow effects on the magnitude of the post-contractile BOLD response. Consistent with previous reports, there was no difference in the magnitude of the responses for the two T R values (3.8 ± 0.9 versus 4.0 ± 0.6% for T R  = 1000 and 2500 ms, respectively; mean ± standard error). These results demonstrate that studies of the muscle BOLD responses to contractions are feasible at 7 T. Compared with studies at lower field strengths, post-contractile 7 T muscle BOLD contrast may afford greater insight into microvascular function and dysfunction. Copyright © 2016 John Wiley & Sons, Ltd.

  16. Forced, not voluntary, exercise improves motor function in Parkinson's disease patients.

    Science.gov (United States)

    Ridgel, Angela L; Vitek, Jerrold L; Alberts, Jay L

    2009-01-01

    Animal studies indicate forced exercise (FE) improves overall motor function in Parkinsonian rodents. Global improvements in motor function following voluntary exercise (VE) are not widely reported in human Parkinson's disease (PD) patients. The aim of this study was to compare the effects of VE and FE on PD symptoms, motor function, and bimanual dexterity. Ten patients with mild to moderate PD were randomly assigned to complete 8 weeks of FE or VE. With the assistance of a trainer, patients in the FE group pedaled at a rate 30% greater than their preferred voluntary rate, whereas patients in the VE group pedaled at their preferred rate. Aerobic intensity for both groups was identical, 60% to 80% of their individualized training heart rate. Aerobic fitness improved for both groups. Following FE, Unified Parkinson's Disease Rating Scale (UPDRS) motor scores improved 35%, whereas patients completing VE did not exhibit any improvement. The control and coordination of grasping forces during the performance of a functional bimanual dexterity task improved significantly for patients in the FE group, whereas no changes in motor performance were observed following VE. Improvements in clinical measures of rigidity and bradykinesia and biomechanical measures of bimanual dexterity were maintained 4 weeks after FE cessation. Aerobic fitness can be improved in PD patients following both VE and FE interventions. However, only FE results in significant improvements in motor function and bimanual dexterity. Biomechanical data indicate that FE leads to a shift in motor control strategy, from feedback to a greater reliance on feedforward processes, which suggests FE may be altering central motor control processes.

  17. Image Processing Techniques for Assessing Contractility in Isolated Adult Cardiac Myocytes

    Directory of Open Access Journals (Sweden)

    Carlos Bazan

    2009-01-01

    The physiologic application of the methodology is evaluated by assessing overall contraction in enzymatically dissociated adult rat cardiocytes. Our results demonstrate the effectiveness of the proposed approach in characterizing the true, two-dimensional, “shortening” in the contraction process of adult cardiocytes. We compare the performance of the proposed method to that of a popular edge detection system in the literature. The proposed method not only provides a more comprehensive assessment of the myocyte contraction process but also can potentially eliminate historical concerns and sources of errors caused by myocyte rotation or translation during contraction. Furthermore, the versatility of the image processing techniques makes the method suitable for determining myocyte shortening in cells that usually bend or move during contraction. The proposed method can be utilized to evaluate changes in contractile behavior resulting from drug intervention, disease modeling, transgeneity, or other common applications to mammalian cardiocytes.

  18. Efficacy of Interventions to Improve Respiratory Function After Stroke.

    Science.gov (United States)

    Menezes, Kênia Kp; Nascimento, Lucas R; Avelino, Patrick R; Alvarenga, Maria Tereza Mota; Teixeira-Salmela, Luci F

    2018-07-01

    The aim of this study was to systematically review all current interventions that have been utilized to improve respiratory function and activity after stroke. Specific searches were conducted. The experimental intervention had to be planned, structured, repetitive, purposive, and delivered with the aim of improving respiratory function. Outcomes included respiratory strength (maximum inspiratory pressure [P Imax ], maximum expiratory pressure [P Emax ]) and endurance, lung function (FVC, FEV 1 , and peak expiratory flow [PEF]), dyspnea, and activity. The quality of the randomized trials was assessed by the PEDro scale using scores from the Physiotherapy Evidence Database (www.pedro.org.au), and risk of bias was assessed in accordance with the Cochrane Handbook for Systematic Reviews of Interventions. The 17 included trials had a mean PEDro score of 5.7 (range 4-8) and involved 616 participants. Meta-analyses showed that respiratory muscle training significantly improved all outcomes of interest: P Imax (weighted mean difference 11 cm H 2 O, 95% CI 7-15, I 2 = 0%), P Emax (8 cm H 2 O, 95% CI 2-15, I 2 = 65%), FVC (0.25 L, 95% CI 0.12-0.37, I 2 = 29%), FEV 1 (0.24 L, 95% CI 0.17-0.30, I 2 = 0%), PEF (0.51 L/s, 95% CI 0.10-0.92, I 2 = 0%), dyspnea (standardized mean difference -1.6 points, 95% CI -2.2 to -0.9; I 2 = 0%), and activity (standardized mean difference 0.78, 95% CI 0.22-1.35, I 2 = 0%). Meta-analyses found no significant results for the effects of breathing exercises on lung function. For the remaining interventions (ie, aerobic and postural exercises) and the addition of electrical stimulation, meta-analyses could not be performed. This systematic review reports 5 possible interventions used to improve respiratory function after stroke. Respiratory muscle training proved to be effective for improving inspiratory and expiratory strength, lung function, and dyspnea, and benefits were carried over to activity. However, there is still no evidence to accept or

  19. The Effect of Whey Protein Supplementation on the Temporal Recovery of Muscle Function Following Resistance Training: A Systematic Review and Meta-Analysis

    Directory of Open Access Journals (Sweden)

    Robert W. Davies

    2018-02-01

    Full Text Available Whey protein (WP is a widely consumed nutritional supplement, known to enhance strength and muscle mass during resistance training (RT regimens. Muscle protein anabolism is acutely elevated following RT, which is further enhanced by WP. As a result, there is reason to suggest that WP supplementation may be an effective nutritional strategy for restoring the acute loss of contractile function that occurs following strenuous RT. This systematic review and meta-analysis provides a synthesis of the literature to date, investigating the effect of WP supplementation on the recovery of contractile function in young, healthy adults. Eight studies, containing 13 randomised control trials (RCTs were included in this review and meta-analysis, from which individual standardised effect sizes (ESs were calculated, and a temporal overall ES was determined using a random-effects model. Whilst only half of the individual studies reported beneficial effects for WP, the high-quality evidence taken from the 13 RCTs was meta-analysed, yielding overall positive small to medium effects for WP from < 24 to 96 h (ES range = 0.4 to 0.7, for the temporal restoration of contractile function compared to the control treatment. Whilst the effects for WP were shown to be consistent over time, these results are limited to 13 RCTs, principally supporting the requirement for further comprehensive research in this area.

  20. Bariatric surgery is associated with renal function improvement.

    Science.gov (United States)

    Holcomb, Carla N; Goss, Lauren E; Almehmi, Ammar; Grams, Jayleen M; Corey, Britney L

    2018-01-01

    Weight loss after bariatric surgery improves both blood pressure and glycemic control following surgery. The effect of bariatric surgery on renal function is not well characterized. In this study, we sought to quantify the change in renal function over time following surgery. We retrospectively reviewed all patients who underwent laparoscopic Roux-en-Y gastric bypass (LRYGB) or laparoscopic sleeve gastrectomy (LSG) between 2012 and 2014 at our institution. The glomerular filtration rate (GFR, mL/min) was calculated using the Chronic Kidney Disease Epidemiology Collaboration (CKD-EPI) equation. Body mass index (BMI, kg/m 2 ) and percent weight loss (%WL) were calculated following the surgery. A total of 149 patients who underwent bariatric surgery were included in this study: LRYGB (n = 86 and LSG (n = 63). In LRYGB group, baseline BMI (kg/m 2 , ±SD) and GFR (mL/min, ±SD) were 48.5 ± 6.8 and 94.7 ± 23.8, respectively. In comparison, BMI and GFR were 49.1 ± 11.9 kg/m 2 and 93.1 ± 28.0 mL/min in the LSG group, respectively. Over the follow-up period (19.89 ± 10.93 months), the patients who underwent LRGYB lost a larger percentage of weight as compared to those in the LSG group (29.9 ± 11.7% vs 22.3 ± 10.7%; p = weight loss surgery (n = 62), 42% had improvement of their GFR to > 90 mL/min postoperatively (p weight loss percentage and GFR improvement (p = 0.8703). Bariatric surgery was associated with improvement in postoperative renal function at almost two years following surgery but was not different for LRYGB versus LSG. The gain in GFR was independent of percentage of weight lost suggesting an alternate mechanism in the improvement of renal function other than weight loss alone.

  1. HDAC Inhibition Improves the Sarcoendoplasmic Reticulum Ca2+-ATPase Activity in Cardiac Myocytes.

    Science.gov (United States)

    Meraviglia, Viviana; Bocchi, Leonardo; Sacchetto, Roberta; Florio, Maria Cristina; Motta, Benedetta M; Corti, Corrado; Weichenberger, Christian X; Savi, Monia; D'Elia, Yuri; Rosato-Siri, Marcelo D; Suffredini, Silvia; Piubelli, Chiara; Pompilio, Giulio; Pramstaller, Peter P; Domingues, Francisco S; Stilli, Donatella; Rossini, Alessandra

    2018-01-31

    SERCA2a is the Ca 2+ ATPase playing the major contribution in cardiomyocyte (CM) calcium removal. Its activity can be regulated by both modulatory proteins and several post-translational modifications. The aim of the present work was to investigate whether the function of SERCA2 can be modulated by treating CMs with the histone deacetylase (HDAC) inhibitor suberanilohydroxamic acid (SAHA). The incubation with SAHA (2.5 µM, 90 min) of CMs isolated from rat adult hearts resulted in an increase of SERCA2 acetylation level and improved ATPase activity. This was associated with a significant improvement of calcium transient recovery time and cell contractility. Previous reports have identified K464 as an acetylation site in human SERCA2. Mutants were generated where K464 was substituted with glutamine (Q) or arginine (R), mimicking constitutive acetylation or deacetylation, respectively. The K464Q mutation ameliorated ATPase activity and calcium transient recovery time, thus indicating that constitutive K464 acetylation has a positive impact on human SERCA2a (hSERCA2a) function. In conclusion, SAHA induced deacetylation inhibition had a positive impact on CM calcium handling, that, at least in part, was due to improved SERCA2 activity. This observation can provide the basis for the development of novel pharmacological approaches to ameliorate SERCA2 efficiency.

  2. Improving Video Generation for Multi-functional Applications

    OpenAIRE

    Kratzwald, Bernhard; Huang, Zhiwu; Paudel, Danda Pani; Dinesh, Acharya; Van Gool, Luc

    2017-01-01

    In this paper, we aim to improve the state-of-the-art video generative adversarial networks (GANs) with a view towards multi-functional applications. Our improved video GAN model does not separate foreground from background nor dynamic from static patterns, but learns to generate the entire video clip conjointly. Our model can thus be trained to generate - and learn from - a broad set of videos with no restriction. This is achieved by designing a robust one-stream video generation architectur...

  3. Influence of revascularization on myocardial perfusion, metabolism and function evaluated with I-123-IPPA

    International Nuclear Information System (INIS)

    Kropp, J.; Krois, M.; Eichhorn, B.; Feske, W.; Likungu, J.; Kirchhoff, P.J.; Luederitz, B.; Biersack, H.J.; Knapp, F.F. Jr.

    1993-01-01

    Patients with coronary artery disease (CAD) were investigated with sequential SPECT-scintigraphy after administration of 200 MBq of 15-(p-[I-123]iodophenyl)pentadecanoic acid (IPPA) at peak submaximal exercise. Twenty patients underwent coronary angioplasty (PTCA) from which 14 had control coronary arteriography (CA) and left ventricular cineventriculography (LVCV). Nineteen pts underwent bypass graft surgery (ACB) and stress sonagraphy. Semi-quantification of uptake (Up related to perfusion) and turnover (Tr) was obtained by segmental comparison of oblique slices. About 90% of the reperfused myocardial segments in the PTCA-group and 76% in the ACB-group showed an improvement of uptake after therapy (RUp). Of these, 50% and 66% exhibited increased turnover (RTr) after PTCA or ACB. Pathologic RTr was highly correlated with regional wall motion abnormalities after therapy in both groups. In the ACB-group presence of improvement of RTr was correlated with improved RWM at rest and stress. IPPA-studies show potential to provide information about changes of perfusion and metabolism after reperfusion and IPPA-turnover is a good predictor of the pattern of contractile function

  4. Application of Improved Wavelet Thresholding Function in Image Denoising Processing

    Directory of Open Access Journals (Sweden)

    Hong Qi Zhang

    2014-07-01

    Full Text Available Wavelet analysis is a time – frequency analysis method, time-frequency localization problems are well solved, this paper analyzes the basic principles of the wavelet transform and the relationship between the signal singularity Lipschitz exponent and the local maxima of the wavelet transform coefficients mold, the principles of wavelet transform in image denoising are analyzed, the disadvantages of traditional wavelet thresholding function are studied, wavelet threshold function, the discontinuity of hard threshold and constant deviation of soft threshold are improved, image is denoised through using the improved threshold function.

  5. Improving Mitochondrial Function Protects Bumblebees from Neonicotinoid Pesticides.

    Directory of Open Access Journals (Sweden)

    Michael B Powner

    Full Text Available Global pollination is threatened by declining insect pollinator populations that may be linked to neonicotinoid pesticide use. Neonicotinoids over stimulate neurons and depolarize their mitochondria, producing immobility and death. However, mitochondrial function can be improved by near infrared light absorbed by cytochrome c oxidase in mitochondrial respiration. In flies, daily exposure to 670nm light throughout life increases average lifespan and aged mobility, and reduces systemic inflammation. Here we treat bumble bees with Imidacloprid a common neonicotinoid. This undermined ATP and rapidly induced immobility and reduced visual function and survival. Bees exposed to insecticide and daily to 670nm light showed corrected ATP levels and significantly improved mobility allowing them to feed. Physiological recordings from eyes revealed that light exposure corrected deficits induced by the pesticide. Overall, death rates in bees exposed to insecticide but also given 670nm light were indistinguishable from controls. When Imidacloprid and light exposure were withdrawn, survival was maintained. Bees and insects generally cannot see deep red light so it does not disturb their behaviour. Hence, we show that deep red light exposure that improves mitochondrial function, reverses the sensory and motor deficits induced by Imidacloprid. These results may have important implications as light delivery is economic and can be placed in hives/colonies.

  6. Cholesterol regulates contractility and inotropic response to β2-adrenoceptor agonist in the mouse atria: Involvement of Gi-protein-Akt-NO-pathway.

    Science.gov (United States)

    Odnoshivkina, Yulia G; Sytchev, Vaycheslav I; Petrov, Alexey M

    2017-06-01

    Majority of cardiac β2-adrenoceptors is located in cholesterol-rich microdomains. Here, we have investigated the underlying mechanisms by which a slight to moderate cholesterol depletion with methyl-β-cyclodextrin (MβCD, 1 and 5mM) interferes with contractility and inotropic effect of β2-adrenergic agonist (fenoterol, 50μM) in the mouse atria. Treatment with MβCD itself increased amplitude of Ca 2+ transient but did not change the contraction amplitude due to a clamping action of elevated NO. Cholesterol depletion significantly attenuated the positive inotropic response to fenoterol which is accompanied by increase in NO generation and decrease in Ca 2+ transient. Influence of 1mM MβCD on the fenoterol-driven changes in both contractility and NO level was strongly attenuated by inhibition of G i -protein (pertussis toxin), Akt (Akt 1/2 kinase inhibitor) or NO-synthase (L-NAME). After exposure to 5mM MβCD, pertussis toxin or Akt inhibitor could recover the β2-agonist effects on contractility, NO production and Ca 2+ transient, while L-NAME only reduced NO level. An adenylyl cyclase activator (forskolin, 50nM) had no influence on the MβCD-induced changes in the β2-agonist effects. Obtained results suggest that slight cholesterol depletion upregulates G i -protein/Akt/NO-synthase signaling that attenuates the positive inotropic response to β2-adrenergic stimulation without altering the Ca 2+ transient. Whilst moderate cholesterol depletion additionally could suppress the enhancement of the Ca 2+ transient amplitude caused by the β2-adrenergic agonist administration in G i -protein/Akt-dependent but NO-independent manner. Copyright © 2016 Elsevier Ltd. All rights reserved.

  7. Cardiac-enriched BAF chromatin-remodeling complex subunit Baf60c regulates gene expression programs essential for heart development and function

    Directory of Open Access Journals (Sweden)

    Xin Sun

    2018-01-01

    Full Text Available How chromatin-remodeling complexes modulate gene networks to control organ-specific properties is not well understood. For example, Baf60c (Smarcd3 encodes a cardiac-enriched subunit of the SWI/SNF-like BAF chromatin complex, but its role in heart development is not fully understood. We found that constitutive loss of Baf60c leads to embryonic cardiac hypoplasia and pronounced cardiac dysfunction. Conditional deletion of Baf60c in cardiomyocytes resulted in postnatal dilated cardiomyopathy with impaired contractile function. Baf60c regulates a gene expression program that includes genes encoding contractile proteins, modulators of sarcomere function, and cardiac metabolic genes. Many of the genes deregulated in Baf60c null embryos are targets of the MEF2/SRF co-factor Myocardin (MYOCD. In a yeast two-hybrid screen, we identified MYOCD as a BAF60c interacting factor; we showed that BAF60c and MYOCD directly and functionally interact. We conclude that Baf60c is essential for coordinating a program of gene expression that regulates the fundamental functional properties of cardiomyocytes.

  8. Bidirectional Interplay between Vimentin Intermediate Filaments and Contractile Actin Stress Fibers

    Directory of Open Access Journals (Sweden)

    Yaming Jiu

    2015-06-01

    Full Text Available The actin cytoskeleton and cytoplasmic intermediate filaments contribute to cell migration and morphogenesis, but the interplay between these two central cytoskeletal elements has remained elusive. Here, we find that specific actin stress fiber structures, transverse arcs, interact with vimentin intermediate filaments and promote their retrograde flow. Consequently, myosin-II-containing arcs are important for perinuclear localization of the vimentin network in cells. The vimentin network reciprocally restricts retrograde movement of arcs and hence controls the width of flat lamellum at the leading edge of the cell. Depletion of plectin recapitulates the vimentin organization phenotype of arc-deficient cells without affecting the integrity of vimentin filaments or stress fibers, demonstrating that this cytoskeletal cross-linker is required for productive interactions between vimentin and arcs. Collectively, our results reveal that plectin-mediated interplay between contractile actomyosin arcs and vimentin intermediate filaments controls the localization and dynamics of these two cytoskeletal systems and is consequently important for cell morphogenesis.

  9. Beneficial effect of medicinal plants on the contractility of post-hypoxic isolated guinea pig atria - Potential implications for the treatment of ischemic-reperfusion injury

    NARCIS (Netherlands)

    Bipat, Robbert; Toelsie, Jerry R.; Magali, Indira; Soekhoe, Rubaina; Stender, Karin; Wangsawirana, Angelique; Oedairadjsingh, Krishan; Pawirodihardjo, Jennifer; Mans, Dennis R. A.

    Context Ischemic-reperfusion injury is accompanied by a decreased contractility of the myocardium. Positive-inotropic agents have proven useful for treating this condition but may exert serious side-effects.Objective In this study, aqueous preparations from Abelmoschus esculentus L. Moench

  10. Preservation of cardiac function by prolonged action potentials in mice deficient of KChIP2

    DEFF Research Database (Denmark)

    Grubb, Søren Jahn; Aistrup, Gary L; Koivumäki, Jussi T

    2015-01-01

    to the preservation of contractile function. Detailed analysis of current kinetics shows that only ICa,L density is reduced, and immunoblots demonstrate unaltered CaV1.2 and CaVβ2 protein levels. Computer modeling suggests that delayed repolarization would prolong the period of Ca(2+) entry into the cell, thereby...

  11. Effect of chronic and acute cigarette smoking on the pharyngo-upper oesophageal sphincter contractile reflex and reflexive pharyngeal swallow

    OpenAIRE

    Dua, K; Bardan, E; Ren, J; Sui, Z; Shaker, R

    1998-01-01

    Background—Cigarette smoking is known to affect adversely the defence mechanisms against gastro-oesophageal reflux. The effect of smoking on the supraoesophageal reflexes that prevent aspiration of gastric contents has not been previously studied. 
Aims—To elucidate the effect of cigarette smoking on two of the supraoesophageal reflexes: the pharyngo-upper oesophageal sphincter (UOS) contractile reflex; and the reflexive pharyngeal swallow. 
Methods—Ten chronic smokers and 10 non-...

  12. Self-organization of muscle cell structure and function.

    Directory of Open Access Journals (Sweden)

    Anna Grosberg

    2011-02-01

    Full Text Available The organization of muscle is the product of functional adaptation over several length scales spanning from the sarcomere to the muscle bundle. One possible strategy for solving this multiscale coupling problem is to physically constrain the muscle cells in microenvironments that potentiate the organization of their intracellular space. We hypothesized that boundary conditions in the extracellular space potentiate the organization of cytoskeletal scaffolds for directed sarcomeregenesis. We developed a quantitative model of how the cytoskeleton of neonatal rat ventricular myocytes organizes with respect to geometric cues in the extracellular matrix. Numerical results and in vitro assays to control myocyte shape indicated that distinct cytoskeletal architectures arise from two temporally-ordered, organizational processes: the interaction between actin fibers, premyofibrils and focal adhesions, as well as cooperative alignment and parallel bundling of nascent myofibrils. Our results suggest that a hierarchy of mechanisms regulate the self-organization of the contractile cytoskeleton and that a positive feedback loop is responsible for initiating the break in symmetry, potentiated by extracellular boundary conditions, is required to polarize the contractile cytoskeleton.

  13. Self-organization of muscle cell structure and function.

    Science.gov (United States)

    Grosberg, Anna; Kuo, Po-Ling; Guo, Chin-Lin; Geisse, Nicholas A; Bray, Mark-Anthony; Adams, William J; Sheehy, Sean P; Parker, Kevin Kit

    2011-02-01

    The organization of muscle is the product of functional adaptation over several length scales spanning from the sarcomere to the muscle bundle. One possible strategy for solving this multiscale coupling problem is to physically constrain the muscle cells in microenvironments that potentiate the organization of their intracellular space. We hypothesized that boundary conditions in the extracellular space potentiate the organization of cytoskeletal scaffolds for directed sarcomeregenesis. We developed a quantitative model of how the cytoskeleton of neonatal rat ventricular myocytes organizes with respect to geometric cues in the extracellular matrix. Numerical results and in vitro assays to control myocyte shape indicated that distinct cytoskeletal architectures arise from two temporally-ordered, organizational processes: the interaction between actin fibers, premyofibrils and focal adhesions, as well as cooperative alignment and parallel bundling of nascent myofibrils. Our results suggest that a hierarchy of mechanisms regulate the self-organization of the contractile cytoskeleton and that a positive feedback loop is responsible for initiating the break in symmetry, potentiated by extracellular boundary conditions, is required to polarize the contractile cytoskeleton.

  14. Max dD/Dt: A Novel Parameter to Assess Fetal Cardiac Contractility and a Substitute for Max dP/Dt.

    Science.gov (United States)

    Fujita, Yasuyuki; Kiyokoba, Ryo; Yumoto, Yasuo; Kato, Kiyoko

    2018-07-01

    Aortic pulse waveforms are composed of a forward wave from the heart and a reflection wave from the periphery. We focused on this forward wave and suggested a new parameter, the maximum slope of aortic pulse waveforms (max dD/dt), for fetal cardiac contractility. Max dD/dt was calculated from fetal aortic pulse waveforms recorded with an echo-tracking system. A normal range of max dD/dt was constructed in 105 healthy fetuses using linear regression analysis. Twenty-two fetuses with suspected fetal cardiac dysfunction were divided into normal and decreased max dD/dt groups, and their clinical parameters were compared. Max dD/dt of aortic pulse waveforms increased linearly with advancing gestational age (r = 0.93). The decreased max dD/dt was associated with abnormal cardiotocography findings and short- and long-term prognosis. In conclusion, max dD/dt calculated from the aortic pulse waveforms in fetuses can substitute for max dP/dt, an index of cardiac contractility in adults. Copyright © 2018 World Federation for Ultrasound in Medicine and Biology. Published by Elsevier Inc. All rights reserved.

  15. Effect of Hemodialysis on Left and Right Ventricular Volume and Function

    International Nuclear Information System (INIS)

    Han, Jin Suk; Koh, Chang Soon

    1985-01-01

    With the improvement of hemodialysis, the course of thc discase in patient with endstage renal disease has been clearly improved. Nevertheless, among several shortcomings to our present mode of renal replacement therapy, cardiovascular complications have been the leading cause of morbidity and mortality. Several factors such as anemia, arteriovenous shunting of blood, intermittent extracorporeal circulation and hypertension may be contributing. But little is known about the quantitative cardiac hemodynamic characteristics occurred during hemodialysis. The purpose of this study is to observe the sequential hemodynamic changes before, during and after the hemodialysis and to investigate: reliable parameters in the detection of ventricular dysfunction. In the present study, equilibrium radionuclide cardiac angiography was performed and left and right ventricular volume indices, ejection phase indices of both ventricular, performance were measured in the 16 stable patients with chronic renal failure treated with maintenance hemodialysis sequentially i.e. before, during (carly and late phase) and after the hemodialysis. The results obtained were as follows; 1) The indices of the left ventricular function were not changed during the hemodialysis but increased after the hemodialysis. 2) The indices of the right ventricular function(EF, SVI) were significantly decreased in the early phase (15, 30 minutes after starting extracorporeal circulation) but recovered after the hemodialysis, 3) The ratio of right ventricular to left ventricular ejection fraction was significantly decreased in the early phase and the lung volume indices were significantly increased at the same phase. As a conclusion, hemodialysis improves left ventricular function maybe du to increased contractility, and effects on the right ventricular function maybe due to the increased lung volume in the early phase of hemodialysis.

  16. Effect of Hemodialysis on Left and Right Ventricular Volume and Function

    Energy Technology Data Exchange (ETDEWEB)

    Han, Jin Suk; Koh, Chang Soon [Seoul National University College of Medicine, Seoul (Korea, Republic of)

    1985-09-15

    With the improvement of hemodialysis, the course of thc discase in patient with endstage renal disease has been clearly improved. Nevertheless, among several shortcomings to our present mode of renal replacement therapy, cardiovascular complications have been the leading cause of morbidity and mortality. Several factors such as anemia, arteriovenous shunting of blood, intermittent extracorporeal circulation and hypertension may be contributing. But little is known about the quantitative cardiac hemodynamic characteristics occurred during hemodialysis. The purpose of this study is to observe the sequential hemodynamic changes before, during and after the hemodialysis and to investigate: reliable parameters in the detection of ventricular dysfunction. In the present study, equilibrium radionuclide cardiac angiography was performed and left and right ventricular volume indices, ejection phase indices of both ventricular, performance were measured in the 16 stable patients with chronic renal failure treated with maintenance hemodialysis sequentially i.e. before, during (carly and late phase) and after the hemodialysis. The results obtained were as follows; 1) The indices of the left ventricular function were not changed during the hemodialysis but increased after the hemodialysis. 2) The indices of the right ventricular function(EF, SVI) were significantly decreased in the early phase (15, 30 minutes after starting extracorporeal circulation) but recovered after the hemodialysis, 3) The ratio of right ventricular to left ventricular ejection fraction was significantly decreased in the early phase and the lung volume indices were significantly increased at the same phase. As a conclusion, hemodialysis improves left ventricular function maybe du to increased contractility, and effects on the right ventricular function maybe due to the increased lung volume in the early phase of hemodialysis.

  17. Is the relationship between increased knee muscle strength and improved physical function following exercise dependent on baseline physical function status?

    Science.gov (United States)

    Hall, Michelle; Hinman, Rana S; van der Esch, Martin; van der Leeden, Marike; Kasza, Jessica; Wrigley, Tim V; Metcalf, Ben R; Dobson, Fiona; Bennell, Kim L

    2017-12-08

    Clinical guidelines recommend knee muscle strengthening exercises to improve physical function. However, the amount of knee muscle strength increase needed for clinically relevant improvements in physical function is unclear. Understanding how much increase in knee muscle strength is associated with improved physical function could assist clinicians in providing appropriate strength gain targets for their patients in order to optimise outcomes from exercise. The aim of this study was to investigate whether an increase in knee muscle strength is associated with improved self-reported physical function following exercise; and whether the relationship differs according to physical function status at baseline. Data from 100 participants with medial knee osteoarthritis enrolled in a 12-week randomised controlled trial comparing neuromuscular exercise to quadriceps strengthening exercise were pooled. Participants were categorised as having mild, moderate or severe physical dysfunction at baseline using the Western Ontario and McMaster Universities Osteoarthritis Index (WOMAC). Associations between 12-week changes in physical function (dependent variable) and peak isometric knee extensor and flexor strength (independent variables) were evaluated with and without accounting for baseline physical function status and covariates using linear regression models. In covariate-adjusted models without accounting for baseline physical function, every 1-unit (Nm/kg) increase in knee extensor strength was associated with physical function improvement of 17 WOMAC units (95% confidence interval (CI) -29 to -5). When accounting for baseline severity of physical function, every 1-unit increase in knee extensor strength was associated with physical function improvement of 24 WOMAC units (95% CI -42 to -7) in participants with severe physical dysfunction. There were no associations between change in strength and change in physical function in participants with mild or moderate physical

  18. Impact of Cardiac Contractility during Cerebral Blood Flow in Ischemia

    Directory of Open Access Journals (Sweden)

    Silver, Brian

    2011-05-01

    Full Text Available Objective: In cerebral regions affected by ischemia, intrinsic vascular autoregulation is often lost. Blood flow delivery depends upon cardiac function and may be influenced by neuro-endocrine mediated myocardial suppression. Our objective is to evaluate the relation between ejection fraction (EF and transcranial doppler (TCD peak systolic velocities (PSV in patients with cerebral ischemic events.Methods: We conducted a retrospective cohort study from an existing TCD registry. We evaluated patients admitted within 24 hours of onset of a focal neurological deficit who had an echocardiogram and TCD performed within 72 hours of admission.Results: We identified 58 patients from March to October 2003. Eighty-one percent (n=47 had a hospital discharge diagnosis of ischemic stroke and 18.9% (n=11 had a diagnosis of transient ischemic attack. Fourteen patients had systolic dysfunction (EF50% compared to those with systolic dysfunction (EF<50% was as follows: middle cerebral artery 62.0 + 28.6 cm/s vs. 51.0 + 23.3 cm/s, p=0.11; anterior cerebral artery 52.1 + 21.6 cm/s vs. 45.9 + 22.7 cm/s, p=0.28; internal carotid artery 56.5 + 20.1 cm/s vs. 46.4 + 18.4 cm/s, p=0.04; ophthalmic artery 18.6 + 7.2 cm/s vs. 15.3 + 5.2 cm/s, p=0.11; vertebral artery 34.0 + 13.9 cm/s vs. 31.6 + 15.0 cm/s, p=0.44.Conclusion: Cerebral blood flow in the internal carotid artery territory appears to be higher in cerebral ischemia patients with preserved left ventricular contractility. Our study was unable to differentiate pre-existing cardiac dysfunction from neuro-endocrine mediated myocardial stunning. Future research is necessary to better understand heart-brain interactions in this setting and to further explore the underlying mechanisms and consequences of neuro-endocrine mediated cardiac dysfunction. [West J Emerg Med. 2011;12(2:227-232.

  19. Self-assembly of the yeast actomyosin contractile ring as an aggregation process: kinetics of formation and instability regimes

    Science.gov (United States)

    Ojkic, Nikola; Vavylonis, Dimitrios

    2009-03-01

    Fission yeast cells assemble an equatorial contractile ring for cytokinesis, the last step of mitosis. The ring assembles from ˜ 65 membrane-bound ``nodes''' containing myosin motors and other proteins. Actin filaments that grow out from the nodes establish transient connections among the nodes and aid in pulling them together in a process that appears as pair-wise attraction (Vavylonis et al. Science 97:319, 2008). We used scaling arguments, coarse grained stability analysis of homogeneous states, and Monte Carlo simulations of simple models, to explore the conditions that yield fast and efficient ring formation, as opposed to formation of isolated clumps. We described our results as a function of: number of nodes, rate of establishing connections, range of node interaction, distance traveled per node interaction and broad band width, w. Uniform cortical 2d distributions of nodes are stable over short times due to randomness of connections among nodes, but become unstable over long times due to fluctuations in the initial node distribution. Successful condensation of nodes into a ring requires sufficiently small w such that lateral contraction occurs faster then clump formation.

  20. Measuring Neuromuscular Junction Functionality in the SOD1(G93A) Animal Model of Amyotrophic Lateral Sclerosis.

    Science.gov (United States)

    Rizzuto, Emanuele; Pisu, Simona; Musarò, Antonio; Del Prete, Zaccaria

    2015-09-01

    Amyotrophic lateral sclerosis (ALS) is a fatal neurodegenerative disease that leads to motor neuron degeneration, alteration in neuromuscular junctions (NMJs), muscle atrophy, and paralysis. To investigate the NMJ functionality in ALS we tested, in vitro, two innervated muscle types excised from SOD1(G93A) transgenic mice at the end-stage of the disease: the Soleus, a postural muscle almost completely paralyzed at that stage, and the diaphragm, which, on the contrary, is functional until death. To this aim we employed an experimental protocol that combined two types of electrical stimulation: the direct stimulation and the stimulation through the nerve. The technique we applied allowed us to determine the relevance of NMJ functionality separately from muscle contractile properties in SOD1(G93A) animal model. Functional measurements revealed that the muscle contractility of transgenic diaphragms is almost unaltered in comparison to control muscles, while transgenic Soleus muscles were severely compromised. In contrast, when stimulated via the nerve, both transgenic muscle types showed a strong decrease of the contraction force, a slowing down of the kinetic parameters, as well as alterations in the neurotransmission failure parameter. All together, these results confirm a severely impaired functionality in the SOD1(G93A) neuromuscular junctions.

  1. [Effects on salivation, xerostomia and halitosis in elders after oral function improvement exercises].

    Science.gov (United States)

    Kim, Young Jin; Park, Kyung Min

    2012-12-01

    The purpose of this study was to investigate effects of Oral Function Improvement Exercises on salivation, xerostomia and halitosis in elderly people. The participants in the study were 48 female community-dwelling elders in D city. The Oral Function Improvement Exercises were given 3 times a week, for a total of 24 times from August to October 2011. Spitting method, Visual Analogue Scale, and halimeter (mBA-21) were used to evaluate the effects of Oral Function Improvement Exercises on salivation, xerostomia, and halitosis. The data were analyzed using χ²-test and t-test with the SPSS program. The experimental group had significantly better salivation, and less xerostomia and halitosis than the control group. The results indicate that Oral Function Improvement Exercises were effective for salivation, xerostomia and halitosis in the elders. Therefore, it was suggested that Oral Function Improvement Exercise are applicable in a community nursing intervention program to improve the quality of life for elders.

  2. CALIX[4]ARENE C-99 INHIBITS MYOSIN ATPase ACTIVITY AND CHANGES THE ORGANIZATION OF CONTRACTILE FILAMENTS OF MYOMETRIUM.

    Science.gov (United States)

    Labyntseva, R D; Bevza, A A; Lul'ko, A O; Cherenok, S O; Kalchenko, V I; Kosterin, S O

    2015-01-01

    Calix[4]arenes are cup-like macrocyclic (polyphenolic) compounds, they are regarded as promising molecular "platforms" for the design of new physiologically active compounds. We have earlier found that calix[4]arene C-99 inhibits the ATPase activity of actomyosin and myosin subfragment-1 of pig uterus in vitro. The aim of this study was to investigate the interaction of calix[4]arene C-99 with myosin from rat uterine myocytes. It was found that the ATPase activity of myosin prepared from pre-incubated with 100 mM of calix[4]arene C-99 myocytes was almost 50% lower than in control. Additionally, we have revealed the effect of calix[4]arene C-99 on the subcellular distribution of actin and myosin in uterus myocytes by the method of confocal microscopy. This effect can be caused by reorganization of the structure of the contractile smooth muscle cell proteins due to their interaction with calix[4]arene. The obtained results demonstrate the ability of calix[4]arene C-99 to penetrate into the uterus muscle cells and affect not only the myosin ATPase activity, but also the structure of the actin and myosin filaments in the myometrial cells. Demonstrated ability of calix[4]arene C-99 can be used for development of new pharmacological agents for efficient normalization of myometrial contractile hyperfunction.

  3. Calix[4]arene C-99 inhibits myosin ATPase activity and changes the organization of contractile filaments of myometrium

    Directory of Open Access Journals (Sweden)

    R. D. Labyntseva,

    2015-12-01

    Full Text Available Calix[4]arenes are cup-like macrocyclic (polyphenolic compounds, they are regarded as promising molecular “platforms” for the design of new physiologically active compounds. We have earlier found that сalix[4]arenе C-99 inhibits the ATPase activity of actomyosin and myosin subfragment-1 of pig uterus іn vitro. The aim of this study was to investigate the interaction of calix[4]arene C-99 with myosin from rat uterine myocytes. It was found that the ATPase activity of myosin prepared from pre-incubated with 100 mM of calix[4]arene C-99 myocytes was almost 50% lower than in control. Additionally, we have revealed the effect of calix[4]arene C-99 on the subcellular distribution of actin and myosin in uterus myocytes by the method of confocal microscopy. This effect can be caused by reorganization of the structure of the contractile smooth muscle cell proteins due to their interaction with calix[4]arene. The obtained results demonstrate the ability of calix[4]arene C-99 to penetrate into the uterus muscle cells and affect not only the myosin ATPase activity, but also the structure of the actin and myosin filaments in the myometrial cells. Demonstrated ability of calix[4]arene C-99 can be used for development of new pharmacological agents for efficient normalization of myometrial contractile hyperfunction.

  4. Obesity impedes functional improvement in youth with chronic pain: An initial investigation.

    Science.gov (United States)

    Stoner, A M; Jastrowski Mano, K E; Weisman, S J; Hainsworth, K R

    2017-10-01

    Youth with chronic pain are at higher risk for obesity than the general population. In youth with chronic pain, obesity exacerbates pain-specific activity limitations, and in adults with chronic pain, obesity perpetuates a cycle of disability. The current study examined whether weight status predicts functional disability outcomes over time in youth with chronic pain. Data were obtained from a retrospective chart review of patients who consented to participate in a longitudinal outcomes study. The Child Activity Limitations Questionnaire was used to assess functional disability at intake, 1-, and 3-month follow-up. Height and weight were measured at intake. A linear mixed model was used to test whether weight status and time predicted functional disability. Trend analysis with polynomial contrasts was used to test whether improvements in functional disability showed a linear trend over time. The linear mixed model analysis showed a main effect of weight, suggesting that youth with higher BMI demonstrated less improvement in functional disability over time. The trend analysis suggested that improvements in functional disability were consistent with a linear trend for both healthy weight and overweight participants, but not for obese participants. These findings demonstrate that obesity impedes improvement in functioning for youth with chronic pain. Despite multidisciplinary pain treatment, youth with comorbid chronic pain and obesity demonstrate greater functional disability at follow-up and little improvement over time. These results support the need for interventions specifically tailored to the unique challenges faced by youth with comorbid chronic pain and obesity. This study shows that obesity impedes improvement in functioning for youth with chronic pain. On the basis of these findings, interventions should be tailored to the unique challenges of this population. © 2017 European Pain Federation - EFIC®.

  5. A BAG3 chaperone complex maintains cardiomyocyte function during proteotoxic stress.

    Science.gov (United States)

    Judge, Luke M; Perez-Bermejo, Juan A; Truong, Annie; Ribeiro, Alexandre Js; Yoo, Jennie C; Jensen, Christina L; Mandegar, Mohammad A; Huebsch, Nathaniel; Kaake, Robyn M; So, Po-Lin; Srivastava, Deepak; Pruitt, Beth L; Krogan, Nevan J; Conklin, Bruce R

    2017-07-20

    Molecular chaperones regulate quality control in the human proteome, pathways that have been implicated in many diseases, including heart failure. Mutations in the BAG3 gene, which encodes a co-chaperone protein, have been associated with heart failure due to both inherited and sporadic dilated cardiomyopathy. Familial BAG3 mutations are autosomal dominant and frequently cause truncation of the coding sequence, suggesting a heterozygous loss-of-function mechanism. However, heterozygous knockout of the murine BAG3 gene did not cause a detectable phenotype. To model BAG3 cardiomyopathy in a human system, we generated an isogenic series of human induced pluripotent stem cells (iPSCs) with loss-of-function mutations in BAG3. Heterozygous BAG3 mutations reduced protein expression, disrupted myofibril structure, and compromised contractile function in iPSC-derived cardiomyocytes (iPS-CMs). BAG3-deficient iPS-CMs were particularly sensitive to further myofibril disruption and contractile dysfunction upon exposure to proteasome inhibitors known to cause cardiotoxicity. We performed affinity tagging of the endogenous BAG3 protein and mass spectrometry proteomics to further define the cardioprotective chaperone complex that BAG3 coordinates in the human heart. Our results establish a model for evaluating protein quality control pathways in human cardiomyocytes and their potential as therapeutic targets and susceptibility factors for cardiac drug toxicity.

  6. A short executive function training program improves preschoolers’ working memory

    Directory of Open Access Journals (Sweden)

    Emma eBlakey

    2015-11-01

    Full Text Available Cognitive training has been shown to improve executive functions in middle childhood and adulthood. However, fewer studies have targeted the preschool years – a time when executive functions undergo rapid development. The present study tested the effects of a short four session executive function training program in 54 four-year-olds. The training group significantly improved their working memory from pre-training relative to an active control group. Notably, this effect extended to a task sharing few surface features with the trained tasks, and continued to be apparent three months later. In addition, the benefits of training extended to a measure of mathematical reasoning three months later, indicating that training executive functions during the preschool years has the potential to convey benefits that are both long-lasting and wide-ranging.

  7. In vitro study on the effects of some selected agonists and antagonists of alpha(1)-adrenergic receptors on the contractility of the aneurysmally-changed aortic smooth muscle in humans.

    Science.gov (United States)

    Gnus, J; Czerski, A; Ferenc, S; Zawadzki, W; Witkiewicz, W; Hauzer, W; Rusiecka, A; Bujok, J

    2012-02-01

    The study included 18 sections of the aneurysmally-changed abdominal aortas, obtained from patients of the Provincial Specialist Hospital in Wroclaw and 18 sections of normal abdominal aortas obtained from swine. The collected samples were placed horizontally in the incubation chamber. Changes in their transverse section area were registered. They were stretched to a tension of 5 mN. Krebs-Henseleit buffer was used as the incubatory environment. Incubation of the sections was performed at a temperature of 37°C, in the gaseous mixture of oxygen and carbon dioxide used in the following proportion: 95% of O(2) and 5% of CO(2). Contractions of the aorta were registered with isotonic transducers (Letica Scientific Instruments). In the studies, we examined the influence of α(1)-adrenergic receptors (and their subtypes α(1A), α(1B), α(1D)) on the contractility of the aortic muscle in humans and swine by their stimulation or inhibition with some selected agonists or antagonists. This time, it was shown that the stimulation of α(1)-adrenergic receptors leads to contractions of the human and swine aortic muscle; the observed increase in the muscle tone may follow from the stimulation of all subtypes of alpha-1 receptor (α(1A), α(1B), α(1D)). All three subtypes of 1-adrenergic receptor are engaged in vasoconstriction, especially of α(1A) and α(1D) subtypes; the α(1B) subtype is less significant for aortic contractility. The contractile response of the aneurysmally-changed abdominal aorta in humans to agonists of α-adrenergic receptors was significantly less intense than that of the normal porcine aorta. It can be concluded that aneurysms influence the contractile response of the aorta.

  8. Modulation effects of cordycepin on the skeletal muscle contraction of toad gastrocnemius muscle.

    Science.gov (United States)

    Yao, Li-Hua; Meng, Wei; Song, Rong-Feng; Xiong, Qiu-Ping; Sun, Wei; Luo, Zhi-Qiang; Yan, Wen-Wen; Li, Yu-Ping; Li, Xin-Ping; Li, Hai-Hang; Xiao, Peng

    2014-03-05

    Isolated toad gastrocnemius muscle is a typical skeletal muscle tissue that is frequently used to study the motor system because it is an important component of the motor system. This study investigates the effects of cordycepin on the skeletal muscle contractile function of isolated toad gastrocnemius muscles by electrical field stimulation. Results showed that cordycepin (20 mg/l to 100 mg/l) significantly decreased the contractile responses in a concentration-dependent manner. Cordycepin (50 mg/l) also produced a rightward shift of the contractile amplitude-stimulation intensity relationship, as indicated by the increases in the threshold stimulation intensity and the saturation stimulation intensity. However, the most notable result was that the maximum amplitude of the muscle contractile force was significantly increased under cordycepin application (122±3.4% of control). This result suggests that the skeletal muscle contractile function and muscle physical fitness to the external stimulation were improved by the decreased response sensitivity in the presence of cordycepin. Moreover, cordycepin also prevented the repetitive stimulation-induced decrease in muscle contractile force and increased the recovery amplitude and recovery ratio of muscle contraction. However, these anti-fatigue effects of cordycepin on muscle contraction during long-lasting muscle activity were absent in Ca2+-free medium or in the presence of all Ca2+ channels blocker (0.4 mM CdCl2). These results suggest that cordycepin can positively affect muscle performance and provide ergogenic and prophylactic benefits in decreasing skeletal muscle fatigue. The mechanisms involving excitation-coupled Ca2+ influxes are strongly recommended.

  9. Broken heart as work-related accident: Occupational stress as a cause of takotsubo cardiomyopathy in 55-year-old female teacher – Role of automated function imaging in diagnostic workflow

    Directory of Open Access Journals (Sweden)

    Agnieszka Mielczarek

    2015-12-01

    Full Text Available Takotsubo cardiomiopathy (TTC (known also as “ampulla cardiomyopathy,” “apical ballooning” or “broken heart syndrome” is connected with a temporary systolic left ventricular dysfunction without the culprit coronary lesion. Takotsubo cardiomyopathy was first described in 1990 in Japan after octopus trapping pot with a round bottom and narrow neck similar in shape to left ventriculogram in TTC patients. The occurrence of TTC is usually precipitated by a stressful event with a clinical presentation mimicking myocardial infarction: chest pain, ST-T segment elevation or T-wave inversion, a rise in cardiac troponin, and contractility abnormalities in echocardiography. A left ventricular dysfunction is transient and improves within a few weeks. Takotsubo cardiomyopathy typically occurs in postmenopausal women and the postulated mechanism is catecholamine overstimulation. Moreover, the distribution of contractility impairments usually does not correspond with typical region supplied by a single coronary artery. Therefore, the assessment of regional pattern of systolic dysfunction with speckle-tracking echocardiography and automated function imaging (AFI technique may be important in diagnosis of TTC and may improve our insight into its patophysiology. We described a 55-year-old female teacher with TTC diagnosed after acute psychological stress in workplace. The provoking factor related with occupational stress and pattern of contraction abnormalities documented with AFI technique including basal segments of left ventricle make this case atypical.

  10. Exercise reveals impairments in left ventricular systolic function in patients with metabolic syndrome.

    Science.gov (United States)

    Fournier, Sara B; Reger, Brian L; Donley, David A; Bonner, Daniel E; Warden, Bradford E; Gharib, Wissam; Failinger, Conard F; Olfert, Melissa D; Frisbee, Jefferson C; Olfert, I Mark; Chantler, Paul D

    2014-01-01

    Metabolic syndrome (MetS) is the manifestation of a cluster of cardiovascular risk factors and is associated with a threefold increase in the risk of cardiovascular morbidity and mortality, which is suggested to be mediated, in part, by resting left ventricular (LV) systolic dysfunction. However, to what extent resting LV systolic function is impaired in MetS is controversial, and there are no data indicating whether LV systolic function is impaired during exercise. Accordingly, the objective of this study was to examine comprehensively the LV and arterial responses to exercise in individuals with MetS without diabetes and/or overt cardiovascular disease in comparison to a healthy control population. Cardiovascular function was characterized using Doppler echocardiography and gas exchange in individuals with MetS (n = 27) versus healthy control subjects (n = 20) at rest and during peak exercise. At rest, individuals with MetS displayed normal LV systolic function but reduced LV diastolic function compared with healthy control subjects. During peak exercise, individuals with MetS had impaired contractility, pump performance and vasodilator reserve capacity versus control subjects. A blunted contractile reserve response resulted in diminished arterial-ventricular coupling reserve and limited aerobic capacity in individuals with MetS versus control subjects. These findings are of clinical importance, because they provide insight into the pathophysiological changes in MetS that may predispose this population of individuals to an increased risk of cardiovascular morbidity and mortality.

  11. Surfactant treatment before reperfusion improves the immediate function of lung transplants in rats

    NARCIS (Netherlands)

    Erasmus, ME; Petersen, AH; Hofstede, G; Haagsman, HP; Oetomo, SB; Prop, J

    An impaired function of alveolar surfactant can cause lung transplant dysfunction early after reperfusion. In this study it was investigated whether treatment with surfactant before reperfusion improves the immediate function of lung transplants and whether an improved transplant function was

  12. Flavanol-rich cocoa consumption enhances exercise-induced executive function improvements in humans.

    Science.gov (United States)

    Tsukamoto, Hayato; Suga, Tadashi; Ishibashi, Aya; Takenaka, Saki; Tanaka, Daichi; Hirano, Yoshitaka; Hamaoka, Takafumi; Goto, Kazushige; Ebi, Kumiko; Isaka, Tadao; Hashimoto, Takeshi

    2018-02-01

    Aerobic exercise is known to acutely improve cognitive functions, such as executive function (EF) and memory function (MF). Additionally, consumption of flavanol-rich cocoa has been reported to acutely improve cognitive function. The aim of this study was to determine whether high cocoa flavanol (CF; HCF) consumption would enhance exercise-induced improvement in cognitive function. To test this hypothesis, we examined the combined effects of HCF consumption and moderate-intensity exercise on EF and MF during postexercise recovery. Ten healthy young men received either an HCF (563 mg of CF) or energy-matched low CF (LCF; 38 mg of CF) beverage 70 min before exercise in a single-blind counterbalanced manner. The men then performed moderate-intensity cycling exercise at 60% of peak oxygen uptake for 30 min. The participants performed a color-word Stroop task and face-name matching task to evaluate EF and MF, respectively, during six time periods throughout the experimental session. EF significantly improved immediately after exercise compared with before exercise in both conditions. However, EF was higher after HCF consumption than after LCF consumption during all time periods because HCF consumption improved EF before exercise. In contrast, HCF consumption and moderate-intensity exercise did not improve MF throughout the experiment. The present findings demonstrated that HCF consumption before moderate-intensity exercise could enhance exercise-induced improvement in EF, but not in MF. Therefore, we suggest that the combination of HCF consumption and aerobic exercise may be beneficial for improving EF. Copyright © 2017 Elsevier Inc. All rights reserved.

  13. Improvement of swallowing function in patients with esophageal cancer treated by radiotherapy

    Energy Technology Data Exchange (ETDEWEB)

    Sugahara, Shinji; Nakajima, Kotaro; Nozawa, Kumiko [Hitachi Ltd., Ibaraki (Japan). Hitachi General Hospital; Ohara, Kiyoshi; Yoshioka, Hiroshi; Tatsuzaki, Hideo; Tanaka, Naomi; Fukao, Katashi; Itai, Yuji

    1996-12-01

    This study investigated the impact of radiotherapy on swallowing function in 152 patients with esophageal cancer. Swallowing function was retrospectively assessed in these patients using a swallowing-function scoring system. Total tumor dose ranged from 22.5 Gy in 14 fractions to 104.4 Gy in 50 fractions. Improvement in dysphagia was noted in 62.3% of these patients, with a median time to improvement of 6 weeks. Improvement rate of patients irradiated with 20.0 to 34.9 Gy, 35.0 to 59.9 Gy and 60.0 Gy or more was 23.1%, 58.3% and 71.6%, respectively. Patients with T1-3 showed, a greater improvement rate than patients with T4 cancer (72.2% versus 54.1%). On multivariate analysis, the initial score, total dose and T factor correlated with improvements in swallowing function. Our results suggest that 35.0 Gy or more is necessary to improve swallowing function. The median duration in which patients could swallow soft or solid foods, was 8 months in patients receiving 60.0 Gy or more and 2 months in patients receiving 50.0 to 59.9 Gy, respectively. There was a significant difference between these periods (p<0.01). Regarding duration of palliation, median duration for patients receiving 60.0 Gy or more was 30 weeks, while it was 22 weeks for patients treated with lesser doses (p=0.053). We recommend 60.0 Gy or more as the optimal dosage for improving dysphagia. (author)

  14. Neurogenic detrusor overactivity is associated with decreased expression and function of the large conductance voltage- and Ca(2+-activated K(+ channels.

    Directory of Open Access Journals (Sweden)

    Kiril L Hristov

    Full Text Available Patients suffering from a variety of neurological diseases such as spinal cord injury, Parkinson's disease, and multiple sclerosis often develop neurogenic detrusor overactivity (NDO, which currently lacks a universally effective therapy. Here, we tested the hypothesis that NDO is associated with changes in detrusor smooth muscle (DSM large conductance Ca(2+-activated K(+ (BK channel expression and function. DSM tissue samples from 33 patients were obtained during open bladder surgeries. NDO patients were clinically characterized preoperatively with pressure-flow urodynamics demonstrating detrusor overactivity, in the setting of a clinically relevant neurological condition. Control patients did not have overactive bladder and did not have a clinically relevant neurological disease. We conducted quantitative polymerase chain reactions (qPCR, perforated patch-clamp electrophysiology on freshly-isolated DSM cells, and functional studies on DSM contractility. qPCR experiments revealed that DSM samples from NDO patients showed decreased BK channel mRNA expression in comparison to controls. Patch-clamp experiments demonstrated reduced whole cell and transient BK currents (TBKCs in freshly-isolated DSM cells from NDO patients. Functional studies on DSM contractility showed that spontaneous phasic contractions had a decreased sensitivity to iberiotoxin, a selective BK channel inhibitor, in DSM strips isolated from NDO patients. These results reveal the novel finding that NDO is associated with decreased DSM BK channel expression and function leading to increased DSM excitability and contractility. BK channel openers or BK channel gene transfer could be an alternative strategy to control NDO. Future clinical trials are needed to evaluate the value of BK channel opening drugs or gene therapies for NDO treatment and to identify any possible adverse effects.

  15. Improved Functional Characteristics of Whey Protein Hydrolysates in Food Industry

    Science.gov (United States)

    Jeewanthi, Renda Kankanamge Chaturika; Lee, Na-Kyoung; Paik, Hyun-Dong

    2015-01-01

    This review focuses on the enhanced functional characteristics of enzymatic hydrolysates of whey proteins (WPHs) in food applications compared to intact whey proteins (WPs). WPs are applied in foods as whey protein concentrates (WPCs), whey protein isolates (WPIs), and WPHs. WPs are byproducts of cheese production, used in a wide range of food applications due to their nutritional validity, functional activities, and cost effectiveness. Enzymatic hydrolysis yields improved functional and nutritional benefits in contrast to heat denaturation or native applications. WPHs improve solubility over a wide range of pH, create viscosity through water binding, and promote cohesion, adhesion, and elasticity. WPHs form stronger but more flexible edible films than WPC or WPI. WPHs enhance emulsification, bind fat, and facilitate whipping, compared to intact WPs. Extensive hydrolyzed WPHs with proper heat applications are the best emulsifiers and addition of polysaccharides improves the emulsification ability of WPHs. Also, WPHs improve the sensorial properties like color, flavor, and texture but impart a bitter taste in case where extensive hydrolysis (degree of hydrolysis greater than 8%). It is important to consider the type of enzyme, hydrolysis conditions, and WPHs production method based on the nature of food application. PMID:26761849

  16. Functional Improvements in Parkinson’s Disease Following a Randomized Trial of Yoga

    Directory of Open Access Journals (Sweden)

    Marieke Van Puymbroeck

    2018-01-01

    Full Text Available Individuals with Parkinson’s Disease (PD experience significant limitations in motor function, functional gait, postural stability, and balance. These limitations often lead to higher incidences of falls, which have significant complications for individuals with PD. Yoga may improve these functional deficits in individuals with PD. The objective of this study was to determine changes in motor function, functional gait, postural stability, and balance control for community dwelling individuals with PD. This randomized, wait-list controlled pilot study examined the influence of an 8-week yoga intervention for people with PD who met the following inclusion criteria: endorsing a fear of falling, being able to speak English, scoring 4/6 on the minimental state exam, and being willing to attend the intervention twice weekly for 8-weeks. Participants in the yoga group (n=15 experienced improvements in motor function, postural stability, functional gait, and freezing gait, as well as reductions in fall risk. Participants in the wait-list control (n=12 also significantly improved in postural stability, although their fall risk was not reduced. Individuals in the yoga group significantly reduced their fall risk. An 8-week yoga intervention may reduce fall risk and improve postural stability, and functional and freezing gait in individuals with PD. This clinical trial is registered as protocol record Pro00041068 in clinicaltrials.gov.

  17. Patterns of functional improvement after revision knee arthroplasty.

    Science.gov (United States)

    Ghomrawi, Hassan M K; Kane, Robert L; Eberly, Lynn E; Bershadsky, Boris; Saleh, Khaled J

    2009-12-01

    Despite the increase in the number of total knee arthroplasty revisions, outcomes of such surgery and their correlates are poorly understood. The aim of this study was to characterize patterns of functional improvement after revision total knee arthroplasty over a two-year period and to investigate factors that affect such improvement patterns. Three hundred and eight patients in need of revision surgery were enrolled into the study, conducted at seventeen centers, and 221 (71.8%) were followed for two years. Short Form-36 (SF-36), Western Ontario and McMaster Universities Osteoarthritis Index (WOMAC), and Lower-Extremity Activity Scale (LEAS) scores were collected at baseline and every six months for two years postoperatively. A piecewise general linear mixed model, which models correlation between repeated measures and estimates separate slopes for different follow-up time periods, was employed to examine functional improvement patterns. Separate regression slopes were estimated for the zero to twelve-month and the twelve to twenty-four-month periods. The slopes for zero to twelve months showed significant improvement in all measures in the first year. The slopes for twelve to twenty-four months showed deterioration in the scores of the WOMAC pain subscale (slope = 0.67 +/- 0.21, p coefficient = -5.46 +/- 1.91, p coefficient = 5.41 +/- 2.35, p coefficient = 1.42 +/- 0.69, p < 0.05]). Factors related to the surgical technique did not predict outcomes. The onset of worsening pain and knee-specific function in the second year following revision total knee arthroplasty indicates the need to closely monitor patients, irrespective of the mode of failure of the primary procedure or the surgical technique for the revision. This information may be especially important for patients with multiple comorbidities.

  18. Kinesthetic taping improves walking function in patients with stroke

    DEFF Research Database (Denmark)

    Boeskov, Birgitte; Carver, Line Tornehøj; von Essen-Leise, Anders

    2014-01-01

    BACKGROUND: Stroke is an important cause of severe disability and impaired motor function. Treatment modalities that improve motor function in patients with stroke are needed. The objective of this study was to investigate the effect of kinesthetic taping of the anterior thigh and knee on maximal...... be a valuable adjunct in physical therapy and rehabilitation of patients with stroke....

  19. THE ROLE OF CARBON MONOXIDE IN THE REGULATION OF ELECTRICAL AND CONTRACTILE PROPERTIES OF SMOOTH MUSCLE CELLS OF THE GUINEA PIG URETER

    Directory of Open Access Journals (Sweden)

    I. V. Kovalyov

    2014-01-01

    Full Text Available Carbon monoxide CO, as well as nitric oxide and hydrogen sulfide, make up the family of labile biological mediators termed gasotransmitters. We hypothesized that CO may be involved in the mechanisms of regulation electrical and contractile properties of smooth muscles.The effects of carbon monoxide donor CORM II (tricarbonyldichlororuthenium(II-dimer on the electrical and contractile activities of smooth muscles of the guinea pig ureter were studied by the method of the double sucrose bridge. This method allows to register simultaneously the parameters of the action potential (AP and the contraction of smooth muscle cells (SMCs, caused by an electrical stimulus.CORM II in a concentration of 10 mmol has reduced the amplitude of contractions SMCs to (86.5 ± 9.7% (n = 6, p < 0.05, the amplitude of the AP to (88.9 ± 4.2% (n = 6, p < 0.05 and the duration of the plateau of the AP to (91.7 ± 6.0% (n = 6, p < 0.05. On the background of the action of biologically active substances (phenylephrine, 10 µmol or histamine, 10 µmol, these effects of CORM II amplified. The inhibitory action of СORM II on the parameters of the contractile and electrical activities of the smooth muscles of guinea pig ureter has been decreased by blocking potassium channels in membrane of SMCs by tetraethylammonium chloride (TEA оr inhibition of soluble guanylate cyclase (ODQ [1H-[1,2,4]-oxadiazolo[4,3-a]quinoxalin-l-one]. On the background of TEA (5 mmol, a donor of CO (10 mmol caused a reduction the amplitude of contraction SMCs to (87.0 ± 10.8% (n = 6, p < 0.05, the amplitude of the AP to (91.7 ± 6.4% (n = 6, p < 0.05 and the duration of the plateau of the AP to (93.4 ± 7.5% (n = 6, p < 0.05. After the pretreatment of ODQ (1 µmol adding CORM II (10 mmol in solution has resulted to augment of the amplitude of contraction ureteral smooth muscle strips to (90.9 ± 4.2% (n = 6, p < 0.05, the amplitude of the AP to (97.2 ± 10.3% (n = 6, p < 0.05 and the duration of the

  20. [An oral function improvement program utilizing health behavior theories ameliorates oral functions and oral hygienic conditions of pre-frail elderly persons].

    Science.gov (United States)

    Sakaguchi, Hideo

    2014-06-01

    Oral function improvement programs utilizing health behavior theories are considered to be effective in preventing the need for long-term social care. In the present study, an oral function improvement program based upon health behavior theories was designed, and its utility was assessed in 102 pre-frail elderly persons (33 males, 69 females, mean age: 76.9 +/- 5.7) considered to be in potential need of long-term social care and attending a long-term care prevention class in Sayama City, Saitama Prefecture, Japan. The degree of improvement in oral functions (7 items) and oral hygienic conditions (3 items) was assessed by comparing oral health before and after participation in the program. The results showed statistically significant improvements in the following oral functions: (1) lip functions (oral diadochokinesis, measured by the regularity of the repetition of the syllable "Pa"), (2) tongue functions, (3) tongue root motor skills (oral diadochokinesis, measured by the regularity of the repetition of the syllables "Ta" and "Ka"), (4) tongue extension/retraction, (5) side-to-side tongue movement functions, (6) cheek motor skills, and (7) repetitive saliva swallowing test (RSST). The following measures of oral hygiene also showed a statistically significant improvement: (1) debris on dentures or teeth, (2) coated tongue, and (3) frequency of oral cleaning. These findings demonstrated that an improvement program informed by health behavior theories is useful in improving oral functions and oral hygiene conditions.

  1. Bidirectional Interplay between Vimentin Intermediate Filaments and Contractile Actin Stress Fibers.

    Science.gov (United States)

    Jiu, Yaming; Lehtimäki, Jaakko; Tojkander, Sari; Cheng, Fang; Jäälinoja, Harri; Liu, Xiaonan; Varjosalo, Markku; Eriksson, John E; Lappalainen, Pekka

    2015-06-16

    The actin cytoskeleton and cytoplasmic intermediate filaments contribute to cell migration and morphogenesis, but the interplay between these two central cytoskeletal elements has remained elusive. Here, we find that specific actin stress fiber structures, transverse arcs, interact with vimentin intermediate filaments and promote their retrograde flow. Consequently, myosin-II-containing arcs are important for perinuclear localization of the vimentin network in cells. The vimentin network reciprocally restricts retrograde movement of arcs and hence controls the width of flat lamellum at the leading edge of the cell. Depletion of plectin recapitulates the vimentin organization phenotype of arc-deficient cells without affecting the integrity of vimentin filaments or stress fibers, demonstrating that this cytoskeletal cross-linker is required for productive interactions between vimentin and arcs. Collectively, our results reveal that plectin-mediated interplay between contractile actomyosin arcs and vimentin intermediate filaments controls the localization and dynamics of these two cytoskeletal systems and is consequently important for cell morphogenesis. Copyright © 2015 The Authors. Published by Elsevier Inc. All rights reserved.

  2. The effect of device-based cardiac contractility modulation therapy on myocardial efficiency and oxidative metabolism in patients with heart failure

    International Nuclear Information System (INIS)

    Goliasch, Georg; Khorsand, Aliasghar; Sochor, Heinz; Schmidinger, Herwig; Graf, Senta; Schuetz, Matthias; Karanikas, Georgios; Khazen, Cesar; Wolzt, Michael

    2012-01-01

    Cardiac contractility modulation (CCM) is a device-based therapy that involves delivery of nonexcitatory electrical signals resulting in improved ventricular function and a reversal of maladaptive cardiac fetal gene programmes. Our aim was to evaluate whether acute application of CCM leads to an increase in myocardial oxygen consumption (MVO 2 ) in patients with chronic heart failure using 11 C-acetate positron emission tomography (PET). We prospectively enrolled 21 patients with severe heart failure. 11 C-acetate PET was performed before and after activation of the CCM device. In 12 patients an additional stress study with dobutamine was performed. Under resting conditions, the values of myocardial blood flow (MBF), MVO 2 and work metabolic index (WMI, reflecting myocardial efficiency) with the CCM device activated did not differ significantly from the values with the device deactivated. MBF was 0.81 ± 0.18 ml min -1 g -1 with the device off and 0.80 ± 0.15 ml min -1 g -1 with the device on (p = 0.818), MVO 2 was 6.81 ± 1.69 ml/min/100 g with the device off and 7.15 ± 1.62 ml/min/100 g with the device on (p = 0.241) and WMI was 4.94 ± 1.14 mmHg ml/m 2 with the device off and 5.21 ± 1.36 mmHg ml/m 2 with the device on (p = 0.344). Under dobutamine stress, the values of MBF, MVO 2 and WMI with the CCM device activated did not differ from the values with the device deactivated, but were significantly increased compared with the values obtained under resting conditions. These results indicate that CCM does not induce increased MVO 2 , even under stress conditions. (orig.)

  3. The effect of device-based cardiac contractility modulation therapy on myocardial efficiency and oxidative metabolism in patients with heart failure

    Energy Technology Data Exchange (ETDEWEB)

    Goliasch, Georg; Khorsand, Aliasghar; Sochor, Heinz; Schmidinger, Herwig; Graf, Senta [Vienna General Hospital/Medical University of Vienna, Department of Cardiology, Vienna (Austria); Schuetz, Matthias; Karanikas, Georgios [Vienna General Hospital/Medical University of Vienna, Department of Nuclear Medicine, Vienna (Austria); Khazen, Cesar [Vienna General Hospital/ Medical University of Vienna, Department of Cardiothoracic Surgery, Vienna (Austria); Wolzt, Michael [Vienna General Hospital/Medical University of Vienna, Department of Cardiology, Vienna (Austria); Vienna General Hospital/ Medical University of Vienna, Department of Clinical Pharmacology, Vienna (Austria)

    2012-03-15

    Cardiac contractility modulation (CCM) is a device-based therapy that involves delivery of nonexcitatory electrical signals resulting in improved ventricular function and a reversal of maladaptive cardiac fetal gene programmes. Our aim was to evaluate whether acute application of CCM leads to an increase in myocardial oxygen consumption (MVO{sub 2}) in patients with chronic heart failure using {sup 11}C-acetate positron emission tomography (PET). We prospectively enrolled 21 patients with severe heart failure. {sup 11}C-acetate PET was performed before and after activation of the CCM device. In 12 patients an additional stress study with dobutamine was performed. Under resting conditions, the values of myocardial blood flow (MBF), MVO{sub 2} and work metabolic index (WMI, reflecting myocardial efficiency) with the CCM device activated did not differ significantly from the values with the device deactivated. MBF was 0.81 {+-} 0.18 ml min{sup -1} g{sup -1} with the device off and 0.80 {+-} 0.15 ml min{sup -1} g{sup -1} with the device on (p = 0.818), MVO{sub 2} was 6.81 {+-} 1.69 ml/min/100 g with the device off and 7.15 {+-} 1.62 ml/min/100 g with the device on (p = 0.241) and WMI was 4.94 {+-} 1.14 mmHg ml/m{sup 2} with the device off and 5.21 {+-} 1.36 mmHg ml/m{sup 2} with the device on (p = 0.344). Under dobutamine stress, the values of MBF, MVO{sub 2} and WMI with the CCM device activated did not differ from the values with the device deactivated, but were significantly increased compared with the values obtained under resting conditions. These results indicate that CCM does not induce increased MVO{sub 2}, even under stress conditions. (orig.)

  4. Corticosteroid therapy for duchenne muscular dystrophy: improvement of psychomotor function.

    Science.gov (United States)

    Sato, Yuko; Yamauchi, Akemi; Urano, Mari; Kondo, Eri; Saito, Kayoko

    2014-01-01

    Of the numerous clinical trials for Duchenne muscular dystrophy, only the corticosteroid prednisolone has shown potential for temporal improvement in motor ability. In this study, the effects of prednisolone on intellectual ability are examined in 29 cases of Duchenne muscular dystrophy because little information has been reported. And also, motor functions and cardiac functions were evaluated. The treated group was administered prednisolone (0.75 mg/kg) orally on alternate days and the compared with the untreated control group. Gene mutations were investigated. The patients were examined for intelligence quotient adequate for age, brain natriuretic peptide, creatine kinase, and manual muscle testing before treatment and after the period 6 months to 2 years. Intelligence quotient scores of the treated increased to 6.5 ± 11.9 (mean ± standard deviation) were compared with the controls 2.1 ± 4.9 (P = 0.009). Intelligence quotient scores of the patients with nonsense point mutations improved significantly (21.0 ± 7.9) more than those with deletion or duplication (1.9 ± 9.0; P = 0.015). Motor function, such as time to stand up, of those treated improved significantly and brain natriuretic peptide level was reduced to a normal level after treatment in 15 patients (73%). Our results demonstrate the effectiveness of prednisolone in improving intellectual impairment as well as in preserving motor function and brain natriuretic peptide levels. We presume that prednisolone has a read-through effect on the stop codons in the central nervous systems of Duchenne muscular dystrophy because intelligence quotient of point mutation case was improved significantly. Copyright © 2014 Elsevier Inc. All rights reserved.

  5. Modification of abomasum contractility by flavonoids present in ruminants diet: in vitro study.

    Science.gov (United States)

    Mendel, M; Chłopecka, M; Dziekan, N; Karlik, W

    2016-09-01

    Flavonoid supplementation is likely to be beneficial in improving rumen fermentation and in reducing the incidence of rumen acidosis and bloat. Flavonoids are also said to increase the metabolic performance during the peripartum period. Ruminants are constantly exposed to flavonoids present in feed. However, it is not clear if these phytochemicals can affect the activity of the gut smooth muscle. Therefore, the aim of the study was to verify the effect of three flavonoids on bovine isolated abomasum smooth muscle. The study was carried out on bovine isolated circular and longitudinal abomasal smooth muscle specimens. All experiments were conducted under isometric conditions. The effect of apigenin, luteolin and quercetin (0.001 to 100 µM) was evaluated on acetylcholine-precontracted preparations. The effect of multiple, but not cumulative, treatment and single treatment with each flavonoid on abomasum strips was compared. Apigenin (0.1 to 100 µM) dose-dependently showed myorelaxation effects. Luteolin and quercetin applied in low doses increased the force of the ACh-evoked reaction. However, if used in high doses in experiments testing a wide range of concentrations, their contractile effect either declined (luteolin) or was replaced by an antispasmodic effect (quercetin). Surprisingly, the reaction induced by flavonoids after repeated exposure to the same phytochemical was not reproducible in experiments testing only single exposure of abomasum strips to the same flavonoid used in a high concentration. Taking into account the physicochemical properties of flavonoids, this data suggests the ability of flavonoids to interfere with cell membranes and, subsequently, to modify their responsiveness. Assuming ruminant supplementation with luteolin or quercetin or their presence in daily pasture, a reduction of the likelihood of abomasum dysmotility should be expected.

  6. How Can a Ketogenic Diet Improve Motor Function?

    Directory of Open Access Journals (Sweden)

    Charlotte Veyrat-Durebex

    2018-01-01

    Full Text Available A ketogenic diet (KD is a normocaloric diet composed by high fat (80–90%, low carbohydrate, and low protein consumption that induces fasting-like effects. KD increases ketone body (KBs production and its concentration in the blood, providing the brain an alternative energy supply that enhances oxidative mitochondrial metabolism. In addition to its profound impact on neuro-metabolism and bioenergetics, the neuroprotective effect of specific polyunsaturated fatty acids and KBs involves pleiotropic mechanisms, such as the modulation of neuronal membrane excitability, inflammation, or reactive oxygen species production. KD is a therapy that has been used for almost a century to treat medically intractable epilepsy and has been increasingly explored in a number of neurological diseases. Motor function has also been shown to be improved by KD and/or medium-chain triglyceride diets in rodent models of Alzheimer’s disease, Parkinson’s disease, amyotrophic lateral sclerosis, and spinal cord injury. These studies have proposed that KD may induce a modification in synaptic morphology and function, involving ionic channels, glutamatergic transmission, or synaptic vesicular cycling machinery. However, little is understood about the molecular mechanisms underlying the impact of KD on motor function and the perspectives of its use to acquire the neuromuscular effects. The aim of this review is to explore the conditions through which KD might improve motor function. First, we will describe the main consequences of KD exposure in tissues involved in motor function. Second, we will report and discuss the relevance of KD in pre-clinical and clinical trials in the major diseases presenting motor dysfunction.

  7. FES-assisted Cycling Improves Aerobic Capacity and Locomotor Function Postcerebrovascular Accident.

    Science.gov (United States)

    Aaron, Stacey E; Vanderwerker, Catherine J; Embry, Aaron E; Newton, Jennifer H; Lee, Samuel C K; Gregory, Chris M

    2018-03-01

    After a cerebrovascular accident (CVA) aerobic deconditioning contributes to diminished physical function. Functional electrical stimulation (FES)-assisted cycling is a promising exercise paradigm designed to target both aerobic capacity and locomotor function. This pilot study aimed to evaluate the effects of an FES-assisted cycling intervention on aerobic capacity and locomotor function in individuals post-CVA. Eleven individuals with chronic (>6 months) post-CVA hemiparesis completed an 8-wk (three times per week; 24 sessions) progressive FES-assisted cycling intervention. V˙O2peak, self-selected, and fastest comfortable walking speeds, gait, and pedaling symmetry, 6-min walk test (6MWT), balance, dynamic gait movements, and health status were measured at baseline and posttraining. Functional electrical stimulation-assisted cycling significantly improved V˙O2peak (12%, P = 0.006), self-selected walking speed (SSWS, 0.05 ± 0.1 m·s, P = 0.04), Activities-specific Balance Confidence scale score (12.75 ± 17.4, P = 0.04), Berg Balance Scale score (3.91 ± 4.2, P = 0.016), Dynamic Gait Index score (1.64 ± 1.4, P = 0.016), and Stroke Impact Scale participation/role domain score (12.74 ± 16.7, P = 0.027). Additionally, pedal symmetry, represented by the paretic limb contribution to pedaling (paretic pedaling ratio [PPR]) significantly improved (10.09% ± 9.0%, P = 0.016). Although step length symmetry (paretic step ratio [PSR]) did improve, these changes were not statistically significant (-0.05% ± 0.1%, P = 0.09). Exploratory correlations showed moderate association between change in SSWS and 6-min walk test (r = 0.74), and moderate/strong negative association between change in PPR and PSR. These results support FES-assisted cycling as a means to improve both aerobic capacity and locomotor function. Improvements in SSWS, balance, dynamic walking movements, and participation in familial and societal roles are important targets for rehabilitation of individuals

  8. Sleep extension improves neurocognitive functions in chronically sleep-deprived obese individuals.

    Directory of Open Access Journals (Sweden)

    Eliane A Lucassen

    Full Text Available Sleep deprivation and obesity, are associated with neurocognitive impairments. Effects of sleep deprivation and obesity on cognition are unknown, and the cognitive long-term effects of improvement of sleep have not been prospectively assessed in short sleeping, obese individuals.To characterize neurocognitive functions and assess its reversibility.Prospective cohort study.Tertiary Referral Research Clinical Center.A cohort of 121 short-sleeping (<6.5 h/night obese (BMI 30-55 kg/m(2 men and pre-menopausal women.Sleep extension (468±88 days with life-style modifications.Neurocognitive functions, sleep quality and sleep duration.At baseline, 44% of the individuals had an impaired global deficit score (t-score 0-39. Impaired global deficit score was associated with worse subjective sleep quality (p = 0.02, and lower urinary dopamine levels (p = 0.001. Memory was impaired in 33%; attention in 35%; motor skills in 42%; and executive function in 51% of individuals. At the final evaluation (N = 74, subjective sleep quality improved by 24% (p<0.001, self-reported sleep duration increased by 11% by questionnaires (p<0.001 and by 4% by diaries (p = 0.04, and daytime sleepiness tended to improve (p = 0.10. Global cognitive function and attention improved by 7% and 10%, respectively (both p = 0.001, and memory and executive functions tended to improve (p = 0.07 and p = 0.06. Serum cortisol increased by 17% (p = 0.02. In a multivariate mixed model, subjective sleep quality and sleep efficiency, urinary free cortisol and dopamine and plasma total ghrelin accounted for 1/5 of the variability in global cognitive function.Drop-out rate.Chronically sleep-deprived obese individuals exhibit substantial neurocognitive deficits that are partially reversible upon improvement of sleep in a non-pharmacological way. These findings have clinical implications for large segments of the US population.www.ClinicalTrials.gov NCT00261898

  9. Breaking bad habits by improving executive function in individuals with obesity.

    Science.gov (United States)

    Allom, Vanessa; Mullan, Barbara; Smith, Evelyn; Hay, Phillipa; Raman, Jayanthi

    2018-04-16

    Two primary factors that contribute to obesity are unhealthy eating and sedentary behavior. These behaviors are particularly difficult to change in the long-term because they are often enacted habitually. Cognitive Remediation Therapy has been modified and applied to the treatment of obesity (CRT-O) with preliminary results of a randomized controlled trial demonstrating significant weight loss and improvements in executive function. The objective of this study was to conduct a secondary data analysis of the CRT-O trial to evaluate whether CRT-O reduces unhealthy habits that contribute to obesity via improvements in executive function. Eighty participants with obesity were randomized to CRT-O or control. Measures of executive function (Wisconsin Card Sort Task and Trail Making Task) and unhealthy eating and sedentary behavior habits were administered at baseline, post-intervention and at 3 month follow-up. Participants receiving CRT-O demonstrated improvements in both measures of executive function and reductions in both unhealthy habit outcomes compared to control. Mediation analyses revealed that change in one element of executive function performance (Wisconsin Card Sort Task perseverance errors) mediated the effect of CRT-O on changes in both habit outcomes. These results suggest that the effectiveness of CRT-O may result from the disruption of unhealthy habits made possible by improvements in executive function. In particular, it appears that cognitive flexibility, as measured by the Wisconsin Card Sort task, is a key mechanism in this process. Improving cognitive flexibility may enable individuals to capitalise on interruptions in unhealthy habits by adjusting their behavior in line with their weight loss goals rather than persisting with an unhealthy choice. The RCT was registered with the Australian New Zealand Registry of Clinical Trials (trial id: ACTRN12613000537752 ).

  10. Anterior thigh composition measured using ultrasound imaging to quantify relative thickness of muscle and non-contractile tissue: a potential biomarker for musculoskeletal health

    International Nuclear Information System (INIS)

    Agyapong-Badu, Sandra; Warner, Martin; Samuel, Dinesh; Stokes, Maria; Narici, Marco; Cooper, Cyrus

    2014-01-01

    This study aimed to use ultrasound imaging to provide objective data on the effects of ageing and gender on relative thickness of quadriceps muscle and non-contractile tissue thickness (subcutaneous fat, SF, combined with perimuscular fascia). In 136 healthy males and females (aged 18–90 years n = 63 aged 18–35 years; n = 73 aged 65–90) images of the anterior thigh (dominant) were taken in relaxed supine using B-mode ultrasound imaging. Thickness of muscle, SF and perimuscular fascia were measured, and percentage thickness of total anterior thigh thickness calculated. Independent t-tests compared groups. Correlation between tissue thickness and BMI was examined using Pearson’s coefficient. Muscle thickness was: 39  ±  8 mm in young males, 29  ±  6 mm in females, 25  ±  4 mm in older males and 20  ±  5 mm in females. Percentage muscle to thigh thickness was greater in young participants (p = 0.001). Percentage SF and fascia was 17  ±  6% in young and 26  ±  8% in older males, 32  ±  7% in young and 44  ±  7% in older females. BMI was similar for age and correlated moderately with non-contractile tissue (r = 0.54; p < 0.001) and poorly with muscle (r = −0.01; p = 0.93). In conclusion, this novel application of ultrasound imaging as a simple and rapid means of assessing thigh composition (relative thickness of muscle and non-contractile tissue) may help inform health status, e.g. in older people at risk of frailty and loss of mobility, and aid monitoring effects of weight loss or gain, deconditioning and exercise. (paper)

  11. Light-intensity and high-intensity interval training improve cardiometabolic health in rats.

    Science.gov (United States)

    Batacan, Romeo B; Duncan, Mitch J; Dalbo, Vincent J; Connolly, Kylie J; Fenning, Andrew S

    2016-09-01

    Physical activity has the potential to reduce cardiometabolic risk factors but evaluation of different intensities of physical activity and the mechanisms behind their health effects still need to be fully established. This study examined the effects of sedentary behaviour, light-intensity training, and high-intensity interval training on biometric indices, glucose and lipid metabolism, inflammatory and oxidative stress markers, and vascular and cardiac function in adult rats. Rats (12 weeks old) were randomly assigned to 1 of 4 groups: control (CTL; no exercise), sedentary (SED; no exercise and housed in small cages to reduce activity), light-intensity trained (LIT; four 30-min exercise bouts/day at 8 m/min separated by 2-h rest period, 5 days/week), and high-intensity interval trained (HIIT, four 2.5-min work bouts/day at 50 m/min separated by 3-min rest periods, 5 days/week). After 12 weeks of intervention, SED had greater visceral fat accumulation (p HIIT demonstrated beneficial changes in body weight, visceral and epididymal fat weight, glucose regulation, low-density lipoprotein cholesterol, total cholesterol, and mesenteric vessel contractile response compared with the CTL group (p HIIT had significant improvements in systolic blood pressure and endothelium-independent vasodilation to aorta and mesenteric artery compared with the CTL group (p HIIT induce health benefits by improving traditional cardiometabolic risk factors. LIT improves cardiac health while HIIT promotes improvements in vascular health.

  12. Dietary fat influences the expression of contractile and metabolic genes in rat skeletal muscle.

    Directory of Open Access Journals (Sweden)

    Wataru Mizunoya

    Full Text Available Dietary fat plays a major role in obesity, lipid metabolism, and cardiovascular diseases. To determine whether the intake of different types of dietary fats affect the muscle fiber types that govern the metabolic and contractile properties of the skeletal muscle, we fed male Wistar rats with a 15% fat diet derived from different fat sources. Diets composed of soybean oil (n-6 polyunsaturated fatty acids (PUFA-rich, fish oil (n-3 PUFA-rich, or lard (low in PUFAs were administered to the rats for 4 weeks. Myosin heavy chain (MyHC isoforms were used as biomarkers to delineate the skeletal muscle fiber types. Compared with soybean oil intake, fish oil intake showed significantly lower levels of the fast-type MyHC2B and higher levels of the intermediate-type MyHC2X composition in the extensor digitorum longus (EDL muscle, which is a fast-type dominant muscle. Concomitantly, MyHC2X mRNA levels in fish oil-fed rats were significantly higher than those observed in the soybean oil-fed rats. The MyHC isoform composition in the lard-fed rats was an intermediate between that of the fish oil and soybean oil-fed rats. Mitochondrial uncoupling protein 3, pyruvate dehydrogenase kinase 4, and porin mRNA showed significantly upregulated levels in the EDL of fish oil-fed rats compared to those observed in soybean oil-fed and lard-fed rats, implying an activation of oxidative metabolism. In contrast, no changes in the composition of MyHC isoforms was observed in the soleus muscle, which is a slow-type dominant muscle. Fatty acid composition in the serum and the muscle was significantly influenced by the type of dietary fat consumed. In conclusion, dietary fat affects the expression of genes related to the contractile and metabolic properties in the fast-type dominant skeletal muscle, where the activation of oxidative metabolism is more pronounced after fish oil intake than that after soybean oil intake.

  13. [Left atrial function and left atrial appendage flow velocity in hypertrophic cardiomyopathy: comparison of patients with and without paroxysmal atrial fibrillation].

    Science.gov (United States)

    Akasaka, K; Kawashima, E; Shiokoshi, T; Ishii, Y; Hasebe, N; Kikuchi, K

    1998-07-01

    The involvement of left atrial (LA) appendage flow velocity in reduced left atrial function was investigated in 24 patients with hypertrophic cardiomyopathy, who retained sinus rhythm at the examination. Patients were divided into 11 with a history of paroxysmal atrial fibrillation [PAf(+)] and 13 without such history [PAf(-)]. Transthoracic echocardiography was performed to evaluate LA fractional shortening (LA%FS) and mean velocity of circumferential LA fiber shortening (LAmVcf), as contractile functions of the left atrium at the phase of active atrial contraction. Transesophageal echocardiographic Doppler examination was performed in all patients to measure the LA appendage velocity. In all patients, significant positive correlations were observed between the LA appendage velocity and LA%FS (r = 0.50, p fibrillation were significantly lower than in those without (0.84 +/- 0.15 vs 1.28 +/- 0.37 circ/sec, 44 +/- 12 vs 65 +/- 20 cm/sec, both p fibrillation. These results indicate that there is a close relationship between LA appendage velocity and LA contractile function in patients with hypertrophic cardiomyopathy with paroxysmal atrial fibrilation, and these patients have potential risk of cerebral infarction.

  14. Tachykinin NK2 receptor and functional mechanisms in human colon: changes with indomethacin and in diverticular disease and ulcerative colitis.

    Science.gov (United States)

    Burcher, Elizabeth; Shang, Fei; Warner, Fiona J; Du, Qin; Lubowski, David Z; King, Denis W; Liu, Lu

    2008-01-01

    Neurokinin A (NKA) is an important spasmogen in human colon. We examined inflammatory disease-related changes in the tachykinin NK(2) receptor system in human sigmoid colon circular muscle, using functional, radioligand binding, and quantitative reverse transcription-polymerase chain reaction methods. In circular muscle strips, indomethacin enhanced contractile responses to NKA (p diverticular disease (DD) specimens, indicating NK(2) receptor-mediated release of relaxant prostanoids. Contractile responses to both tachykinins were reduced in strips from DD (p disease patients, demonstrating that the change in responsiveness to tachykinins in disease is specifically mediated by the NK(2) receptor. In membranes from UC specimens, receptor affinity for (125)I-NKA (median K(D) 0.91 nM, n = 16) was lower (p disease-related changes in receptor number (B(max)) were found (mean, 2.0-2.5 fmol/mg of wet weight tissue), suggesting that the reduced contractile responses in disease are not due to a loss of receptor number. Different mechanisms may account for the reduced contractility in DD compared with UC. A gender-related difference in receptor density was seen in controls, with B(max) lower in females (1.77 fmol/mg, n = 15) than in males (2.60 fmol/mg, n = 25, p = 0.01). In contrast, no gender-related differences were seen in NK(2) receptor mRNA in control colonic muscle, indicating that the gender difference is a post-translational event.

  15. Using Operational Analysis to Improve Access to Pulmonary Function Testing

    Directory of Open Access Journals (Sweden)

    Ada Ip

    2016-01-01

    Full Text Available Background. Timely pulmonary function testing is crucial to improving diagnosis and treatment of pulmonary diseases. Perceptions of poor access at an academic pulmonary function laboratory prompted analysis of system demand and capacity to identify factors contributing to poor access. Methods. Surveys and interviews identified stakeholder perspectives on operational processes and access challenges. Retrospective data on testing demand and resource capacity was analyzed to understand utilization of testing resources. Results. Qualitative analysis demonstrated that stakeholder groups had discrepant views on access and capacity in the laboratory. Mean daily resource utilization was 0.64 (SD 0.15, with monthly average utilization consistently less than 0.75. Reserved testing slots for subspecialty clinics were poorly utilized, leaving many testing slots unfilled. When subspecialty demand exceeded number of reserved slots, there was sufficient capacity in the pulmonary function schedule to accommodate added demand. Findings were shared with stakeholders and influenced scheduling process improvements. Conclusion. This study highlights the importance of operational data to identify causes of poor access, guide system decision-making, and determine effects of improvement initiatives in a variety of healthcare settings. Importantly, simple operational analysis can help to improve efficiency of health systems with little or no added financial investment.

  16. New developments in paediatric cardiac functional ultrasound imaging.

    Science.gov (United States)

    de Korte, Chris L; Nillesen, Maartje M; Saris, Anne E C M; Lopata, Richard G P; Thijssen, Johan M; Kapusta, Livia

    2014-07-01

    Ultrasound imaging can be used to estimate the morphology as well as the motion and deformation of tissues. If the interrogated tissue is actively deforming, this deformation is directly related to its function and quantification of this deformation is normally referred as 'strain imaging'. Tissue can also be deformed by applying an internal or external force and the resulting, induced deformation is a function of the mechanical tissue characteristics. In combination with the load applied, these strain maps can be used to estimate or reconstruct the mechanical properties of tissue. This technique was named 'elastography' by Ophir et al. in 1991. Elastography can be used for atherosclerotic plaque characterisation, while the contractility of the heart or skeletal muscles can be assessed with strain imaging. Rather than using the conventional video format (DICOM) image information, radio frequency (RF)-based ultrasound methods enable estimation of the deformation at higher resolution and with higher precision than commercial methods using Doppler (tissue Doppler imaging) or video image data (2D speckle tracking methods). However, the improvement in accuracy is mainly achieved when measuring strain along the ultrasound beam direction, so it has to be considered a 1D technique. Recently, this method has been extended to multiple directions and precision further improved by using spatial compounding of data acquired at multiple beam steered angles. Using similar techniques, the blood velocity and flow can be determined. RF-based techniques are also beneficial for automated segmentation of the ventricular cavities. In this paper, new developments in different techniques of quantifying cardiac function by strain imaging, automated segmentation, and methods of performing blood flow imaging are reviewed and their application in paediatric cardiology is discussed.

  17. Sleep extension improves neurocognitive functions in chronically sleep-deprived obese individuals.

    Science.gov (United States)

    Lucassen, Eliane A; Piaggi, Paolo; Dsurney, John; de Jonge, Lilian; Zhao, Xiong-ce; Mattingly, Megan S; Ramer, Angela; Gershengorn, Janet; Csako, Gyorgy; Cizza, Giovanni

    2014-01-01

    Sleep deprivation and obesity, are associated with neurocognitive impairments. Effects of sleep deprivation and obesity on cognition are unknown, and the cognitive long-term effects of improvement of sleep have not been prospectively assessed in short sleeping, obese individuals. To characterize neurocognitive functions and assess its reversibility. Prospective cohort study. Tertiary Referral Research Clinical Center. A cohort of 121 short-sleeping (Sleep extension (468±88 days) with life-style modifications. Neurocognitive functions, sleep quality and sleep duration. At baseline, 44% of the individuals had an impaired global deficit score (t-score 0-39). Impaired global deficit score was associated with worse subjective sleep quality (p = 0.02), and lower urinary dopamine levels (p = 0.001). Memory was impaired in 33%; attention in 35%; motor skills in 42%; and executive function in 51% of individuals. At the final evaluation (N = 74), subjective sleep quality improved by 24% (psleep duration increased by 11% by questionnaires (pattention improved by 7% and 10%, respectively (both p = 0.001), and memory and executive functions tended to improve (p = 0.07 and p = 0.06). Serum cortisol increased by 17% (p = 0.02). In a multivariate mixed model, subjective sleep quality and sleep efficiency, urinary free cortisol and dopamine and plasma total ghrelin accounted for 1/5 of the variability in global cognitive function. Drop-out rate. Chronically sleep-deprived obese individuals exhibit substantial neurocognitive deficits that are partially reversible upon improvement of sleep in a non-pharmacological way. These findings have clinical implications for large segments of the US population. www.ClinicalTrials.gov NCT00261898. NIDDK protocol 06-DK-0036.

  18. Resveratrol: A Multifunctional Compound Improving Endothelial Function

    OpenAIRE

    Li, Huige; F?rstermann, Ulrich

    2009-01-01

    The red wine polyphenol resveratrol boosts endothelium-dependent and -independent vasorelaxations. The improvement of endothelial function by resveratrol is largely attributable to nitric oxide (NO) derived from endothelial NO synthase (eNOS). By stimulating eNOS expression, eNOS phosphorylation and eNOS deacetylation, resveratrol enhances endothelial NO production. By upregulating antioxidant enzymes (superoxide dismutase, catalase and glutathione peroxidase) and suppressing the expression a...

  19. Early Right Ventricular Apical Pacing-Induced Gene Expression Alterations Are Associated with Deterioration of Left Ventricular Systolic Function

    Directory of Open Access Journals (Sweden)

    Haiyan Xu

    2017-01-01

    Full Text Available The chronic high-dose right ventricular apical (RVA pacing may have deleterious effects on left ventricular (LV systolic function. We hypothesized that the expression changes of genes regulating cardiomyocyte energy metabolism and contractility were associated with deterioration of LV function in patients who underwent chronic RVA pacing. Sixty patients with complete atrioventricular block and preserved ejection fraction (EF who underwent pacemaker implantation were randomly assigned to either RVA pacing (n=30 group or right ventricular outflow tract (RVOT pacing (n=30 group. The mRNA levels of OPA1 and SERCA2a were significantly lower in the RVA pacing group at 1 month’s follow-up (both p<0.001. Early changes in the expression of selected genes OPA1 and SERCA2a were associated with deterioration in global longitudinal strain (GLS that became apparent months later (p=0.002 and p=0.026, resp. The altered expressions of genes that regulate cardiomyocyte energy metabolism and contractility measured in the peripheral blood at one month following pacemaker implantation were associated with subsequent deterioration in LV dyssynchrony and function in patients with preserved LVEF, who underwent RVA pacing.

  20. SPECIFICS OF LEFT VENTRICLE REMODELLING IN CHILDREN WHO HAVE HAD DIPHTHERITIC CARDITIS

    Directory of Open Access Journals (Sweden)

    U.K. Gadzhieva

    2009-01-01

    Full Text Available Carditis has a special place among diphtheritic complications determining a disease prognosis. The article provides results of studying a functional status of cardiac muscle in children who have had diphtheritic complications in the short-term (2–3 years; n = 35 and longterm (9–10 years; n = 15 follow-up. Echo cardiographic test showed there were three hemodynamic options available for diphtheritic carditis development: normal volumetric parameters of the left ventricle cavity; an enlarged left ventricle cavity and reduced myocardial contractility (dilated cardiomyopathy; a reduced left ventricle cavity with intact myocardial contractility (diastolic dysfunction. Including vitamin E and Carnitine chloride into the treatment for children who have had Diphtheritic Carditis results in improvements both to the cardiac systolic and diastolic functions.Key words: children, diphtheritic carditis, cardiac remodelling, cardiomyopathy, diastolic function.

  1. Resistance training improves muscle strength and functional capacity in multiple sclerosis

    DEFF Research Database (Denmark)

    Dalgas, U; Stenager, E; Jakobsen, J

    2009-01-01

    strength and functional capacity in patients with multiple sclerosis, the effects persisting after 12 weeks of self-guided physical activity. Level of evidence: The present study provides level III evidence supporting the hypothesis that lower extremity progressive resistance training can improve muscle......OBJECTIVE: To test the hypothesis that lower extremity progressive resistance training (PRT) can improve muscle strength and functional capacity in patients with multiple sclerosis (MS) and to evaluate whether the improvements are maintained after the trial. METHODS: The present study was a 2-arm...... and was afterward encouraged to continue training. After the trial, the control group completed the PRT intervention. Both groups were tested before and after 12 weeks of the trial and at 24 weeks (follow-up), where isometric muscle strength of the knee extensors (KE MVC) and functional capacity (FS; combined score...

  2. Maternal protein restriction compromises myocardial contractility in the young adult rat by changing proteins involved in calcium handling.

    Science.gov (United States)

    de Belchior, Aucelia C S; Freire, David D; da Costa, Carlos P; Vassallo, Dalton V; Padilha, Alessandra S; Dos Santos, Leonardo

    2016-02-01

    Maternal protein restriction (MPR) during pregnancy is associated with increased cardiovascular risk in the offspring in adulthood. In this study we evaluated the cardiac function of young male rats born from mothers subjected to MPR during pregnancy, focusing on the myocardial mechanics and calcium-handling proteins. After weaning, rats received normal diet until 3 mo old, when the following parameters were assessed: arterial and left ventricular hemodynamics and in vitro cardiac contractility in isolated papillary muscles. The body weight was lower and arterial pressure higher in the MPR group compared with young adult offspring of female rats that received standard diet (controls); and left ventricle time derivatives increased in the MPR group. The force developed by the cardiac muscle was similar; but time to peak and relaxation time were longer, and the derivatives of force were depressed in the MPR. In addition, MPR group exhibited decreased post-pause potentiation of force, suggesting reduced reuptake function of the sarcoplasmic reticulum. Corroborating, the myocardial content of SERCA-2a and phosphorylated PLB-Ser16/total PLB ratio was decreased and sodium-calcium exchanger was increased in the MPR group. The contraction dependent on transsarcolemmal influx of calcium was higher in MPR if compared with the control group. In summary, young rats born from mothers subjected to protein restriction during pregnancy exhibit changes in the myocardial mechanics with altered expression of calcium-handling proteins, reinforcing the hypothesis that maternal malnutrition is related to increased cardiovascular risk in the offspring, not only for hypertension, but also cardiac dysfunction. Copyright © 2016 the American Physiological Society.

  3. An improved method for estimating the frequency correlation function

    KAUST Repository

    Chelli, Ali; Pä tzold, Matthias

    2012-01-01

    For time-invariant frequency-selective channels, the transfer function is a superposition of waves having different propagation delays and path gains. In order to estimate the frequency correlation function (FCF) of such channels, the frequency averaging technique can be utilized. The obtained FCF can be expressed as a sum of auto-terms (ATs) and cross-terms (CTs). The ATs are caused by the autocorrelation of individual path components. The CTs are due to the cross-correlation of different path components. These CTs have no physical meaning and leads to an estimation error. We propose a new estimation method aiming to improve the estimation accuracy of the FCF of a band-limited transfer function. The basic idea behind the proposed method is to introduce a kernel function aiming to reduce the CT effect, while preserving the ATs. In this way, we can improve the estimation of the FCF. The performance of the proposed method and the frequency averaging technique is analyzed using a synthetically generated transfer function. We show that the proposed method is more accurate than the frequency averaging technique. The accurate estimation of the FCF is crucial for the system design. In fact, we can determine the coherence bandwidth from the FCF. The exact knowledge of the coherence bandwidth is beneficial in both the design as well as optimization of frequency interleaving and pilot arrangement schemes. © 2012 IEEE.

  4. An improved method for estimating the frequency correlation function

    KAUST Repository

    Chelli, Ali

    2012-04-01

    For time-invariant frequency-selective channels, the transfer function is a superposition of waves having different propagation delays and path gains. In order to estimate the frequency correlation function (FCF) of such channels, the frequency averaging technique can be utilized. The obtained FCF can be expressed as a sum of auto-terms (ATs) and cross-terms (CTs). The ATs are caused by the autocorrelation of individual path components. The CTs are due to the cross-correlation of different path components. These CTs have no physical meaning and leads to an estimation error. We propose a new estimation method aiming to improve the estimation accuracy of the FCF of a band-limited transfer function. The basic idea behind the proposed method is to introduce a kernel function aiming to reduce the CT effect, while preserving the ATs. In this way, we can improve the estimation of the FCF. The performance of the proposed method and the frequency averaging technique is analyzed using a synthetically generated transfer function. We show that the proposed method is more accurate than the frequency averaging technique. The accurate estimation of the FCF is crucial for the system design. In fact, we can determine the coherence bandwidth from the FCF. The exact knowledge of the coherence bandwidth is beneficial in both the design as well as optimization of frequency interleaving and pilot arrangement schemes. © 2012 IEEE.

  5. Cardiac contractility structure-activity relationship and ligand-receptor interactions; the discovery of unique and novel molecular switches in myosuppressin signaling.

    Directory of Open Access Journals (Sweden)

    Megan Leander

    Full Text Available Peptidergic signaling regulates cardiac contractility; thus, identifying molecular switches, ligand-receptor contacts, and antagonists aids in exploring the underlying mechanisms to influence health. Myosuppressin (MS, a decapeptide, diminishes cardiac contractility and gut motility. Myosuppressin binds to G protein-coupled receptor (GPCR proteins. Two Drosophila melanogaster myosuppressin receptors (DrmMS-Rs exist; however, no mechanism underlying MS-R activation is reported. We predicted DrmMS-Rs contained molecular switches that resembled those of Rhodopsin. Additionally, we believed DrmMS-DrmMS-R1 and DrmMS-DrmMS-R2 interactions would reflect our structure-activity relationship (SAR data. We hypothesized agonist- and antagonist-receptor contacts would differ from one another depending on activity. Lastly, we expected our study to apply to other species; we tested this hypothesis in Rhodnius prolixus, the Chagas disease vector. Searching DrmMS-Rs for molecular switches led to the discovery of a unique ionic lock and a novel 3-6 lock, as well as transmission and tyrosine toggle switches. The DrmMS-DrmMS-R1 and DrmMS-DrmMS-R2 contacts suggested tissue-specific signaling existed, which was in line with our SAR data. We identified R. prolixus (RhpMS-R and discovered it, too, contained the unique myosuppressin ionic lock and novel 3-6 lock found in DrmMS-Rs as well as transmission and tyrosine toggle switches. Further, these motifs were present in red flour beetle, common water flea, honey bee, domestic silkworm, and termite MS-Rs. RhpMS and DrmMS decreased R. prolixus cardiac contractility dose dependently with EC50 values of 140 nM and 50 nM. Based on ligand-receptor contacts, we designed RhpMS analogs believed to be an active core and antagonist; testing on heart confirmed these predictions. The active core docking mimicked RhpMS, however, the antagonist did not. Together, these data were consistent with the unique ionic lock, novel 3-6 lock

  6. Enhanced contractile force generation by artificial skeletal muscle tissues using IGF-I gene-engineered myoblast cells.

    Science.gov (United States)

    Sato, Masanori; Ito, Akira; Kawabe, Yoshinori; Nagamori, Eiji; Kamihira, Masamichi

    2011-09-01

    The aim of this study was to investigate whether insulin-like growth factor (IGF)-I gene delivery to myoblast cells promotes the contractile force generated by hydrogel-based tissue-engineered skeletal muscles in vitro. Two retroviral vectors allowing doxycycline (Dox)-inducible expression of the IGF-I gene were transduced into mouse myoblast C2C12 cells to evaluate the effects of IGF-I gene expression on these cells. IGF-I gene expression stimulated the proliferation of C2C12 cells, and a significant increase in the growth rate was observed for IGF-I-transduced C2C12 cells with Dox addition, designated C2C12/IGF (Dox+) cells. Quantitative morphometric analyses showed that the myotubes induced from C2C12/IGF (Dox+) cells had a larger area and a greater width than control myotubes induced from normal C2C12 cells. Artificial skeletal muscle tissues were prepared from the respective cells using hydrogels composed of type I collagen and Matrigel. Western blot analyses revealed that the C2C12/IGF (Dox+) tissue constructs showed activation of a skeletal muscle hypertrophy marker (Akt) and enhanced expression of muscle-specific markers (myogenin, myosin heavy chain and tropomyosin). Moreover, the creatine kinase activity was increased in the C2C12/IGF (Dox+) tissue constructs. The C2C12/IGF (Dox+) tissue constructs contracted in response to electrical pulses, and generated a significantly higher physical force than the control C2C12 tissue constructs. These findings indicate that IGF-I gene transfer has the potential to yield functional skeletal muscle substitutes that are capable of in vivo restoration of the load-bearing function of injured muscle or acting as in vitro electrically-controlled bio-actuators. Copyright © 2011 The Society for Biotechnology, Japan. Published by Elsevier B.V. All rights reserved.

  7. Ndrg2 is a PGC-1α/ERRα target gene that controls protein synthesis and expression of contractile-type genes in C2C12 myotubes.

    Science.gov (United States)

    Foletta, Victoria C; Brown, Erin L; Cho, Yoshitake; Snow, Rod J; Kralli, Anastasia; Russell, Aaron P

    2013-12-01

    The stress-responsive, tumor suppressor N-myc downstream-regulated gene 2 (Ndrg2) is highly expressed in striated muscle. In response to anabolic and catabolic signals, Ndrg2 is suppressed and induced, respectively, in mouse C2C12 myotubes. However, little is known about the mechanisms regulating Ndrg2 expression in muscle, as well as the biological role for Ndrg2 in differentiated myotubes. Here, we show that Ndrg2 is a target of a peroxisome proliferator-activated receptor-gamma coactivator-1α (PGC-1α) and estrogen-related receptor alpha (ERRα) transcriptional program and is induced in response to endurance exercise, a physiological stress known also to increase PGC-1α/ERRα activity. Analyses of global gene and protein expression profiles in C2C12 myotubes with reduced levels of NDRG2, suggest that NDRG2 affects muscle growth, contractile properties, MAPK signaling, ion and vesicle transport and oxidative phosphorylation. Indeed, suppression of NDRG2 in myotubes increased protein synthesis and the expression of fast glycolytic myosin heavy chain isoforms, while reducing the expression of embryonic myosin Myh3, other contractile-associated genes and the MAPK p90 RSK1. Conversely, enhanced expression of NDRG2 reduced protein synthesis, and furthermore, partially blocked the increased protein synthesis rates elicited by a constitutively active form of ERRα. In contrast, suppressing or increasing levels of NDRG2 did not affect mRNA expression of genes involved in mitochondrial biogenesis that are regulated by PGC-1α or ERRα. This study shows that in C2C12 myotubes Ndrg2 is a novel PGC-1α/ERRα transcriptional target, which influences protein turnover and the regulation of genes involved in muscle contraction and function. © 2013 Elsevier B.V. All rights reserved.

  8. Ultrasonographic Assessment of Diaphragm Function in Critically Ill Subjects.

    Science.gov (United States)

    Umbrello, Michele; Formenti, Paolo

    2016-04-01

    The majority of patients admitted to the ICU require mechanical ventilation as a part of their process of care. However, mechanical ventilation itself or the underlying disease can lead to dysfunction of the diaphragm, a condition that may contribute to the failure of weaning from mechanical ventilation. However, extended time on the ventilator increases health-care costs and greatly increases patient morbidity and mortality. Nevertheless, symptoms and signs of muscle disease in a bedridden (or bed rest-only) ICU patient are often difficult to assess because of concomitant confounding factors. Conventional assessment of diaphragm function lacks specific, noninvasive, time-saving, and easily performed bedside tools or requires patient cooperation. Recently, the use of ultrasound has raised great interest as a simple, noninvasive method of quantification of diaphragm contractile activity. In this review, we discuss the physiology and the relevant pathophysiology of diaphragm function, and we summarize the recent findings concerning the evaluation of its (dys)function in critically ill patients, with a special focus on the role of ultrasounds. We describe how to assess diaphragm excursion and diaphragm thickening during breathing and the meaning of these measurements under spontaneous or mechanical ventilation as well as the reference values in health and disease. The spread of ultrasonographic assessment of diaphragm function may possibly result in timely identification of patients with diaphragm dysfunction and to a potential improvement in the assessment of recovery from diaphragm weakness. Copyright © 2016 by Daedalus Enterprises.

  9. Improve the functional status of students using the proposed method recovery

    Directory of Open Access Journals (Sweden)

    Evtukh M.I.

    2012-12-01

    Full Text Available Purpose - to improve the organizational and methodological foundations of physical education for the improvement of high school students in training. The study involved 152 students of the second year of the International Economics and Humanities University named after Stepan Demyanchuk. Students were divided into control (n = 76 and primary (n = 76 groups, which were similar in age and physical development. At the end of the study, through the application of the proposed technique improvement in students the core group, was able to restore the function of the respiratory and cardiovascular systems to the possibilities of healthy untrained people. A similar increase in the functionality of the core group of students registered with the definition of the index Skibinski - held a combined evaluation of functions of the respiratory and cardiovascular systems of students and determine its growth with satisfactory to good level.

  10. Inhibition of PKC-dependent extracellular Ca2+ entry contributes to the depression of contractile activity in long-term pressure-overloaded endothelium-denuded rat aortas

    International Nuclear Information System (INIS)

    Padilla, J.; López, R.M.; López, P.; Castillo, M.C.; Querejeta, E.; Ruiz, A.; Castillo, E.F.

    2014-01-01

    We examined the contractile responsiveness of rat thoracic aortas under pressure overload after long-term suprarenal abdominal aortic coarctation (lt-Srac). Endothelium-dependent angiotensin II (ANG II) type 2 receptor (AT 2 R)-mediated depression of contractions to ANG II has been reported in short-term (1 week) pressure-overloaded rat aortas. Contractility was evaluated in the aortic rings of rats subjected to lt-Srac or sham surgery (Sham) for 8 weeks. ANG I and II levels and AT 2 R protein expression in the aortas of lt-Srac and Sham rats were also evaluated. lt-Srac attenuated the contractions of ANG II and phenylephrine in the aortas in an endothelium-independent manner. However, lt-Srac did not influence the transient contractions induced in endothelium-denuded aortic rings by ANG II, phenylephrine, or caffeine in Ca 2+ -free medium or the subsequent tonic constrictions induced by the addition of Ca 2+ in the absence of agonists. Thus, the contractions induced by Ca 2+ release from intracellular stores and Ca 2+ influx through stored-operated channels were not inhibited in the aortas of lt-Srac rats. Potassium-elicited contractions in endothelium-denuded aortic rings of lt-Srac rats remained unaltered compared with control tissues. Consequently, the contractile depression observed in aortic tissues of lt-Srac rats cannot be explained by direct inhibition of voltage-operated Ca 2+ channels. Interestingly, 12-O-tetradecanoylphorbol-13-acetate-induced contractions in endothelium-denuded aortic rings of lt-Srac rats were depressed in the presence but not in the absence of extracellular Ca 2+ . Neither levels of angiotensins nor of AT 2 R were modified in the aortas after lt-Srac. The results suggest that, in rat thoracic aortas, lt-Srac selectively inhibited protein kinase C-mediated activation of contraction that is dependent on extracellular Ca 2+ entry

  11. The Importance of Social Cognition in Improving Functional Outcomes in Schizophrenia

    Science.gov (United States)

    Javed, Afzal; Charles, Asha

    2018-01-01

    Social cognition has become recognized as an important driver of functional outcomes and overall recovery in patients with schizophrenia, mediating the relationship between neurocognition and social functioning. Since antipsychotic therapy targeting remission of clinical symptoms has been shown to have a limited impact on social cognition, there has been an increasing drive to develop therapeutic strategies to specifically improve social cognition in schizophrenia. We sought to review current evidence relating to social cognition in schizophrenia and its clinical implications, including interventions designed to target the core domains of social cognition (emotion processing, theory of mind, attributional bias, and social perception) as a means of improving functional outcomes and thereby increasing the likelihood of recovery. Relevant articles were identified by conducting a literature search in PubMed using the search terms “schizophrenia” AND “cognition” AND “social functioning,” limited to Title/Abstract, over a time period of the past 10 years. Current evidence demonstrates that schizophrenia is associated with impairments in all four core domains of social cognition, during the pre-first-episode, first-episode, early, and chronic phases of the disease, and that such impairments are important determinants of functional outcome. Interventions targeting the four core domains of social cognition comprise psychosocial approaches (social cognition training programs) and pharmacological therapies. Social cognition training programs targeting multiple and specific core domains of social cognition have shown promise in improving social cognition skills, which, in some cases, has translated into improvements in functional outcomes. Use of some psychosocial interventions has additionally resulted in improvements in clinical symptoms and/or quality of life. Pharmacological therapies, including oxytocin and certain antipsychotics, have yielded more mixed

  12. The Importance of Social Cognition in Improving Functional Outcomes in Schizophrenia

    Directory of Open Access Journals (Sweden)

    Afzal Javed

    2018-04-01

    Full Text Available Social cognition has become recognized as an important driver of functional outcomes and overall recovery in patients with schizophrenia, mediating the relationship between neurocognition and social functioning. Since antipsychotic therapy targeting remission of clinical symptoms has been shown to have a limited impact on social cognition, there has been an increasing drive to develop therapeutic strategies to specifically improve social cognition in schizophrenia. We sought to review current evidence relating to social cognition in schizophrenia and its clinical implications, including interventions designed to target the core domains of social cognition (emotion processing, theory of mind, attributional bias, and social perception as a means of improving functional outcomes and thereby increasing the likelihood of recovery. Relevant articles were identified by conducting a literature search in PubMed using the search terms “schizophrenia” AND “cognition” AND “social functioning,” limited to Title/Abstract, over a time period of the past 10 years. Current evidence demonstrates that schizophrenia is associated with impairments in all four core domains of social cognition, during the pre-first-episode, first-episode, early, and chronic phases of the disease, and that such impairments are important determinants of functional outcome. Interventions targeting the four core domains of social cognition comprise psychosocial approaches (social cognition training programs and pharmacological therapies. Social cognition training programs targeting multiple and specific core domains of social cognition have shown promise in improving social cognition skills, which, in some cases, has translated into improvements in functional outcomes. Use of some psychosocial interventions has additionally resulted in improvements in clinical symptoms and/or quality of life. Pharmacological therapies, including oxytocin and certain antipsychotics, have

  13. Developing models of how cognitive improvements change functioning: Mediation, moderation and moderated mediation

    Science.gov (United States)

    Wykes, Til; Reeder, Clare; Huddy, Vyv; Taylor, Rumina; Wood, Helen; Ghirasim, Natalia; Kontis, Dimitrios; Landau, Sabine

    2012-01-01

    Background Cognitive remediation (CRT) affects functioning but the extent and type of cognitive improvements necessary are unknown. Aim To develop and test models of how cognitive improvement transfers to work behaviour using the data from a current service. Method Participants (N49) with a support worker and a paid or voluntary job were offered CRT in a Phase 2 single group design with three assessments: baseline, post therapy and follow-up. Working memory, cognitive flexibility, planning and work outcomes were assessed. Results Three models were tested (mediation — cognitive improvements drive functioning improvement; moderation — post treatment cognitive level affects the impact of CRT on functioning; moderated mediation — cognition drives functioning improvements only after a certain level is achieved). There was evidence of mediation (planning improvement associated with improved work quality). There was no evidence that cognitive flexibility (total Wisconsin Card Sorting Test errors) and working memory (Wechsler Adult Intelligence Scale III digit span) mediated work functioning despite significant effects. There was some evidence of moderated mediation for planning improvement if participants had poorer memory and/or made fewer WCST errors. The total CRT effect on work quality was d = 0.55, but the indirect (planning-mediated CRT effect) was d = 0.082 Conclusion Planning improvements led to better work quality but only accounted for a small proportion of the total effect on work outcome. Other specific and non-specific effects of CRT and the work programme are likely to account for some of the remaining effect. This is the first time complex models have been tested and future Phase 3 studies need to further test mediation and moderated mediation models. PMID:22503640

  14. A comparison of the contractile properties of smooth muscle from pig urethra and internal anal sphincter.

    Science.gov (United States)

    Ramalingam, Thanesan; Durlu-Kandilci, N Tugba; Brading, Alison F

    2010-09-01

    Smooth muscles from the urethra and internal anal sphincter (IAS) play an essential role in the maintenance of urinary and fecal continence. Any damage in these muscles may cause serious problems. The aim of this study was to directly compare the contractile properties of pig urethra and IAS taken from the same animal. Smooth muscle strips of urethra and IAS dissected from the same pig were transferred to organ baths superfused with Krebs' solution, loaded with 1 g tension and equilibrated for 1 hr. Carbachol and phenylephrine response curves and EFS responses were elicited in the absence and presence of inhibitors. Both tissues developed tone during the 1 hr equilibration period. Carbachol (3 × 10(-6)-10(-3) M) contracted urethra whilst relaxing IAS. Guanethidine (10(-6) M) inhibited the carbachol responses in both tissues. L-NOARG (10(-4) M) decreased carbachol responses in IAS, but not in urethra. Phenylephrine (3 × 10(-6)-10(-2) M) contracted both tissues. EFS (1-40 Hz) induced a contractile response in urethra which was decreased with guanethidine (10(-6) M) and further blocked by atropine (10(-6) M). In the presence of both, a relaxation response was observed that is sensitive to NOS inhibitors especially at low frequencies. EFS induced a relaxation followed by a contraction in IAS strips. This contraction was blocked by guanethidine but not by atropine, and the remaining relaxation at 20 Hz was decreased with L-NOARG and increased with L-arginine. There are differences between urethra and IAS in terms of muscarinic activation and neural innervation, relevant for pharmacotherapy. © 2010 Wiley-Liss, Inc.

  15. An angiographic study of left- and right-ventricular function in patients with alcoholic heart and dilatation cardiomyopathy

    International Nuclear Information System (INIS)

    Savchenko, A.P.; Samko, A.N.; Smetnev, A.S.; Grudtsyn, G.V.

    1986-01-01

    An angiographic study of left- and right-ventricular function in 57 patients with alcoholic heart and dilatation cardiomyopathy demonstrated preclinical disorders of left-ventricular myocardial contractility and more marked right-ventricular changes in patients with second-stage chronic alcoholism. In cases of dilatation cardiomyopathy, left-ventricular dysfunction was predominant, while right-venricular changes were less pronouced

  16. Broken heart as work-related accident: Occupational stress as a cause of takotsubo cardiomyopathy in 55-year-old female teacher - Role of automated function imaging in diagnostic workflow.

    Science.gov (United States)

    Mielczarek, Agnieszka; Kasprzak, Jarosław Damian; Marcinkiewicz, Andrzej; Kurpesa, Małgorzata; Uznańska-Loch, Barbara; Wierzbowska-Drabik, Karina

    2015-01-01

    Takotsubo cardiomiopathy (TTC) (known also as "ampulla cardiomyopathy," "apical ballooning" or "broken heart syndrome") is connected with a temporary systolic left ventricular dysfunction without the culprit coronary lesion. Takotsubo cardiomyopathy was first described in 1990 in Japan after octopus trapping pot with a round bottom and narrow neck similar in shape to left ventriculogram in TTC patients. The occurrence of TTC is usually precipitated by a stressful event with a clinical presentation mimicking myocardial infarction: chest pain, ST-T segment elevation or T-wave inversion, a rise in cardiac troponin, and contractility abnormalities in echocardiography. A left ventricular dysfunction is transient and improves within a few weeks. Takotsubo cardiomyopathy typically occurs in postmenopausal women and the postulated mechanism is catecholamine overstimulation. Moreover, the distribution of contractility impairments usually does not correspond with typical region supplied by a single coronary artery. Therefore, the assessment of regional pattern of systolic dysfunction with speckle-tracking echocardiography and automated function imaging (AFI) technique may be important in diagnosis of TTC and may improve our insight into its patophysiology. We described a 55-year-old female teacher with TTC diagnosed after acute psychological stress in workplace. The provoking factor related with occupational stress and pattern of contraction abnormalities documented with AFI technique including basal segments of left ventricle make this case atypical. This work is available in Open Access model and licensed under a CC BY-NC 3.0 PL license.

  17. The Masticatory Contractile Load Induced Expression and Activation of Akt1/PKBα in Muscle Fibers at the Myotendinous Junction within Muscle-Tendon-Bone Unit

    Directory of Open Access Journals (Sweden)

    Yüksel Korkmaz

    2010-01-01

    Full Text Available The cell specific detection of enzyme activation in response to the physiological contractile load within muscle-tendon-bone unit is essential for understanding of the mechanical forces transmission from muscle cells via tendon to the bone. The hypothesis that the physiological mechanical loading regulates activation of Akt1/PKBα at Thr308 and at Ser473 in muscle fibers within muscle-tendon-bone unit was tested using quantitative immunohistochemistry, confocal double fluorescence analysis, and immunoblot analysis. In comparison to the staining intensities in peripheral regions of the muscle fibers, Akt1/PKBα was detected with a higher staining intensity in muscle fibers at the myotendinous junction (MTJ areas. In muscle fibers at the MTJ areas, Akt1/PKBα is dually phosphorylated at Thr308 and Ser473. The immunohistochemical results were confirmed by immunoblot analysis. We conclude that contractile load generated by masticatory muscles induces local domain-dependent expression of Akt1/PKBα as well as activation by dually phosphorylation at Thr308 and Ser473 in muscle fibers at the MTJ areas within muscle-tendon-bone unit.

  18. Mechanism of Cerebralcare Granule® for Improving Cognitive Function in Resting-State Brain Functional Networks of Sub-healthy Subjects

    Directory of Open Access Journals (Sweden)

    Jing Li

    2017-07-01

    Full Text Available Cerebralcare Granule® (CG, a Chinese herbal medicine, has been used to ameliorate cognitive impairment induced by ischemia or mental disorders. The ability of CG to improve health status and cognitive function has drawn researchers' attention, but the relevant brain circuits that underlie the ameliorative effects of CG remain unclear. The present study aimed to explore the underlying neurobiological mechanisms of CG in ameliorating cognitive function in sub-healthy subjects using resting-state functional magnetic resonance imaging (fMRI. Thirty sub-healthy participants were instructed to take one 2.5-g package of CG three times a day for 3 months. Clinical cognitive functions were assessed with the Chinese Revised Wechsler Adult Intelligence Scale (WAIS-RC and Wechsler Memory Scale (WMS, and fMRI scans were performed at baseline and the end of intervention. Functional brain network data were analyzed by conventional network metrics (CNM and frequent subgraph mining (FSM. Then 21 other sub-healthy participants were enrolled as a blank control group of cognitive functional. We found that administrating CG can improve the full scale of intelligence quotient (FIQ and Memory Quotient (MQ scores. At the same time, following CG treatment, in CG group, the topological properties of functional brain networks were altered in various frontal, temporal, occipital cortex regions, and several subcortical brain regions, including essential components of the executive attention network, the salience network, and the sensory-motor network. The nodes involved in the FSM results were largely consistent with the CNM findings, and the changes in nodal metrics correlated with improved cognitive function. These findings indicate that CG can improve sub-healthy subjects' cognitive function through altering brain functional networks. These results provide a foundation for future studies of the potential physiological mechanism of CG.

  19. Playing piano can improve upper extremity function after stroke: case studies.

    Science.gov (United States)

    Villeneuve, Myriam; Lamontagne, Anouk

    2013-01-01

    Music-supported therapy (MST) is an innovative approach that was shown to improve manual dexterity in acute stroke survivors. The feasibility of such intervention in chronic stroke survivors and its longer-term benefits, however, remain unknown. The objective of this pilot study was to estimate the short- and long-term effects of a 3-week piano training program on upper extremity function in persons with chronic stroke. A multiple pre-post sequential design was used, with measurements taken at baseline (week0, week3), prior to (week6) and after the intervention (week9), and at 3-week follow-up (week12). Three persons with stroke participated in the 3-week piano training program that combined structured piano lessons to home practice program. The songs, played on an electronic keyboard, involved all 5 digits of the affected hand and were displayed using a user-friendly MIDI program. After intervention, all the three participants showed improvements in their fine (nine hole peg test) and gross (box and block test) manual dexterity, as well as in the functional use of the upper extremity (Jebsen hand function test). Improvements were maintained at follow-up. These preliminary results support the feasibility of using an MST approach that combines structured lessons to home practice to improve upper extremity function in chronic stroke.

  20. Playing Piano Can Improve Upper Extremity Function after Stroke: Case Studies

    Directory of Open Access Journals (Sweden)

    Myriam Villeneuve

    2013-01-01

    Full Text Available Music-supported therapy (MST is an innovative approach that was shown to improve manual dexterity in acute stroke survivors. The feasibility of such intervention in chronic stroke survivors and its longer-term benefits, however, remain unknown. The objective of this pilot study was to estimate the short- and long-term effects of a 3-week piano training program on upper extremity function in persons with chronic stroke. A multiple pre-post sequential design was used, with measurements taken at baseline (week0, week3, prior to (week6 and after the intervention (week9, and at 3-week follow-up (week12. Three persons with stroke participated in the 3-week piano training program that combined structured piano lessons to home practice program. The songs, played on an electronic keyboard, involved all 5 digits of the affected hand and were displayed using a user-friendly MIDI program. After intervention, all the three participants showed improvements in their fine (nine hole peg test and gross (box and block test manual dexterity, as well as in the functional use of the upper extremity (Jebsen hand function test. Improvements were maintained at follow-up. These preliminary results support the feasibility of using an MST approach that combines structured lessons to home practice to improve upper extremity function in chronic stroke.

  1. The Study of Fetal Rat Model of Intra-Amniotic Isoproterenol Injection Induced Heart Dysfunction and Phenotypic Switch of Contractile Proteins

    Directory of Open Access Journals (Sweden)

    Yifei Li

    2014-01-01

    Full Text Available To establish a reliable isoproterenol induced heart dysfunction fetal rat model and understand the switches of contractile proteins, 45 pregnant rats were divided into 15 mg/kg-once, 15 mg/kg-twice, sham-operated once, sham-operated twice, and control groups. And 18 adult rats were divided into isoproterenol-treated and control groups. H&E staining, Masson staining, and transmission electron microscope were performed. Apoptotic rate assessed by TUNEL analysis and expressions of ANP, BNP, MMP-2, and CTGF of hearts were measured. Intra-amniotic injections of isoproterenol were supplied on E14.5 and E15.5 for fetuses and 7-day continuous intraperitoneal injections were performed for adults. Then echocardiography was performed with M-mode view assessment on E18.5 and 6 weeks later, respectively. Isoproterenol twice treated fetuses exhibited significant changes in histological evaluation, and mitochondrial damages were significantly severe with increased apoptotic rate. ANP and BNP increased and that of MMP-2 increased in isoproterenol twice treated group compared to control group, without CTGF. The isoforms transition of troponin I and myosin heavy chain of fetal heart dysfunction were opposite to adult procedure. The administration of intra-amniotic isoproterenol to fetal rats could induce heart dysfunction and the regulation of contractile proteins of fetuses was different from adult procedure.

  2. Repeated stimulation, inter-stimulus interval and inter-electrode distance alters muscle contractile properties as measured by Tensiomyography.

    Directory of Open Access Journals (Sweden)

    Hannah V Wilson

    Full Text Available The influence of methodological parameters on the measurement of muscle contractile properties using Tensiomyography (TMG has not been published.To investigate the; (1 reliability of stimulus amplitude needed to elicit maximum muscle displacement (Dm, (2 effect of changing inter-stimulus interval on Dm (using a fixed stimulus amplitude and contraction time (Tc, (3 the effect of changing inter-electrode distance on Dm and Tc.Within subject, repeated measures.10 participants for each objective.Dm and Tc of the rectus femoris, measured using TMG.The coefficient of variance (CV and the intra-class correlation (ICC of stimulus amplitude needed to elicit maximum Dm was 5.7% and 0.92 respectively. Dm was higher when using an inter-electrode distance of 7cm compared to 5cm [P = 0.03] and when using an inter-stimulus interval of 10s compared to 30s [P = 0.017]. Further analysis of inter-stimulus interval data, found that during 10 repeated stimuli Tc became faster after the 5th measure when compared to the second measure [P<0.05]. The 30s inter-stimulus interval produced the most stable Tc over 10 measures compared to 10s and 5s respectively.Our data suggest that the stimulus amplitude producing maximum Dm of the rectus femoris is reliable. Inter-electrode distance and inter-stimulus interval can significantly influence Dm and/ or Tc. Our results support the use of a 30s inter-stimulus interval over 10s or 5s. Future studies should determine the influence of methodological parameters on muscle contractile properties in a range of muscles.

  3. Repeated stimulation, inter-stimulus interval and inter-electrode distance alters muscle contractile properties as measured by Tensiomyography

    Science.gov (United States)

    Johnson, Mark I.; Francis, Peter

    2018-01-01

    Context The influence of methodological parameters on the measurement of muscle contractile properties using Tensiomyography (TMG) has not been published. Objective To investigate the; (1) reliability of stimulus amplitude needed to elicit maximum muscle displacement (Dm), (2) effect of changing inter-stimulus interval on Dm (using a fixed stimulus amplitude) and contraction time (Tc), (3) the effect of changing inter-electrode distance on Dm and Tc. Design Within subject, repeated measures. Participants 10 participants for each objective. Main outcome measures Dm and Tc of the rectus femoris, measured using TMG. Results The coefficient of variance (CV) and the intra-class correlation (ICC) of stimulus amplitude needed to elicit maximum Dm was 5.7% and 0.92 respectively. Dm was higher when using an inter-electrode distance of 7cm compared to 5cm [P = 0.03] and when using an inter-stimulus interval of 10s compared to 30s [P = 0.017]. Further analysis of inter-stimulus interval data, found that during 10 repeated stimuli Tc became faster after the 5th measure when compared to the second measure [P<0.05]. The 30s inter-stimulus interval produced the most stable Tc over 10 measures compared to 10s and 5s respectively. Conclusion Our data suggest that the stimulus amplitude producing maximum Dm of the rectus femoris is reliable. Inter-electrode distance and inter-stimulus interval can significantly influence Dm and/ or Tc. Our results support the use of a 30s inter-stimulus interval over 10s or 5s. Future studies should determine the influence of methodological parameters on muscle contractile properties in a range of muscles. PMID:29451885

  4. Towards improved local hybrid functionals by calibration of exchange-energy densities

    International Nuclear Information System (INIS)

    Arbuznikov, Alexei V.; Kaupp, Martin

    2014-01-01

    A new approach for the calibration of (semi-)local and exact exchange-energy densities in the context of local hybrid functionals is reported. The calibration functions are derived from only the electron density and its spatial derivatives, avoiding spatial derivatives of the exact-exchange energy density or other computationally unfavorable contributions. The calibration functions fulfill the seven more important out of nine known exact constraints. It is shown that calibration improves substantially the definition of a non-dynamical correlation energy term for generalized gradient approximation (GGA)-based local hybrids. Moreover, gauge artifacts in the potential-energy curves of noble-gas dimers may be corrected by calibration. The developed calibration functions are then evaluated for a large range of energy-related properties (atomization energies, reaction barriers, ionization potentials, electron affinities, and total atomic energies) of three sets of local hybrids, using a simple one-parameter local-mixing. The functionals are based on (a) local spin-density approximation (LSDA) or (b) Perdew-Burke-Ernzerhof (PBE) exchange and correlation, and on (c) Becke-88 (B88) exchange and Lee-Yang-Parr (LYP) correlation. While the uncalibrated GGA-based functionals usually provide very poor thermochemical data, calibration allows a dramatic improvement, accompanied by only a small deterioration of reaction barriers. In particular, an optimized BLYP-based local-hybrid functional has been found that is a substantial improvement over the underlying global hybrids, as well as over previously reported LSDA-based local hybrids. It is expected that the present calibration approach will pave the way towards new generations of more accurate hyper-GGA functionals based on a local mixing of exchange-energy densities

  5. A multiplexed chip-based assay system for investigating the functional development of human skeletal myotubes in vitro.

    Science.gov (United States)

    Smith, A S T; Long, C J; Pirozzi, K; Najjar, S; McAleer, C; Vandenburgh, H H; Hickman, J J

    2014-09-20

    This report details the development of a non-invasive in vitro assay system for investigating the functional maturation and performance of human skeletal myotubes. Data is presented demonstrating the survival and differentiation of human myotubes on microscale silicon cantilevers in a defined, serum-free system. These cultures can be stimulated electrically and the resulting contraction quantified using modified atomic force microscopy technology. This system provides a higher degree of sensitivity for investigating contractile waveforms than video-based analysis, and represents the first system capable of measuring the contractile activity of individual human muscle myotubes in a reliable, high-throughput and non-invasive manner. The development of such a technique is critical for the advancement of body-on-a-chip platforms toward application in pre-clinical drug development screens. Copyright © 2014 Elsevier B.V. All rights reserved.

  6. The Effect of Substrate Elasticity and Actomyosin Contractility on Different Forms of Endocytosis

    Science.gov (United States)

    Missirlis, Dimitris

    2014-01-01

    Substrate mechanical properties have emerged as potent determinants of cell functions and fate. We here tested the hypothesis that different forms of endocytosis are regulated by the elasticity of the synthetic hydrogels cells are cultured on. Towards this objective, we quantified cell-associated fluorescence of the established endocytosis markers transferrin (Tf) and cholera toxin subunit B (CTb) using a flow-cytometry based protocol, and imaged marker internalization using microscopy techniques. Our results demonstrated that clathrin-mediated endocytosis of Tf following a 10-minute incubation with a fibroblast cell line was lower on the softer substrates studied (5 kPa) compared to those with elasticities of 40 and 85 kPa. This effect was cancelled after 1-hour incubation revealing that intracellular accumulation of Tf at this time point did not depend on substrate elasticity. Lipid-raft mediated endocytosis of CTb, on the other hand, was not affected by substrate elasticity in the studied range of time and substrate elasticity. The use of pharmacologic contractility inhibitors revealed inhibition of endocytosis for both Tf and CTb after a 10-minute incubation and a dissimilar effect after 1 hour depending on the inhibitor type. Further, the internalization of fluorescent NPs, used as model drug delivery systems, showed a dependence on substrate elasticity, while transfection efficiency was unaffected by it. Finally, an independence on substrate elasticity of Tf and CTb association with HeLa cells indicated that there are cell-type differences in this respect. Overall, our results suggest that clathrin-mediated but not lipid-raft mediated endocytosis is potentially influenced by substrate mechanics at the cellular level, while intracellular trafficking and accumulation show a more complex dependence. Our findings are discussed in the context of previous work on how substrate mechanics affect the fundamental process of endocytosis and highlight important

  7. QUALITY IMPROVEMENT INITIATIVES FOR SUPPORT FUNCTIONS IN AN INDUSTRY: TWO CASES

    Directory of Open Access Journals (Sweden)

    Shirshendu Roy

    2011-09-01

    Full Text Available The concept of quality improvement in industry has originated from the involvement of inspector which has become the most important part of manufacturing process or development activity. Over years, this initiative is migrated to various support functions of the industry. In this paper, emphasis has been given particularly in the areas related to support functions where improvement project s can be effectively done and hence organization wide impact is assessed. Two case studies are presented here in this context. The first study shows how smaller change in content structure and delivery met hod can drastically improve the training feedback and the second one demonstrates minimizing lead time to recruitment with a cost-effective process modification.

  8. Impact of exercise programs among helicopter pilots with transient LBP.

    Science.gov (United States)

    Andersen, Knut; Baardsen, Roald; Dalen, Ingvild; Larsen, Jan Petter

    2017-06-20

    Flight related low back pain (LBP) among helicopter pilots is frequent and may influence flight performance. Prolonged confined sitting during flights seems to weaken lumbar trunk (LT) muscles with associated secondary transient pain. Aim of the study was to investigate if structured training could improve muscular function and thus improve LBP related to flying. 39 helicopter pilots (35 men and 4 women), who reported flying related LBP on at least 1 of 3 missions last month, were allocated to two training programs over a 3-month period. Program A consisted of 10 exercises recommended for general LBP. Program B consisted of 4 exercises designed specifically to improve LT muscular endurance. The pilots were examined before and after the training using questionnaires for pain, function, quality of health and tests of LT muscular endurance as well as ultrasound measurements of the contractility of the lumbar multifidus muscle (LMM). Approximately half of the participants performed the training per-protocol. Participants in this subset group had comparable baseline characteristics as the total study sample. Pre and post analysis of all pilots included, showed participants had marked improvement in endurance and contractility of the LMM following training. Similarly, participants had improvement in function and quality of health. Participants in program B had significant improvement in pain, function and quality of health. This study indicates that participants who performed a three months exercise program had improved muscle endurance at the end of the program. The helicopter pilots also experienced improved function and quality of health. Identifier: NCT01788111 Registration date; February 5th, 2013, verified April 2016.

  9. Effects of nitric oxide inhibitors in mice with bladder outlet obstruction

    Directory of Open Access Journals (Sweden)

    Marcy Lancia Pereira

    Full Text Available ABSTRACT Purpose To investigate the lower urinary tract changes in mice treated with L-NAME, a non-selective competitive inhibitor of nitric oxide synthase (NOS, or aminoguanidine, a competitive inhibitor of inducible nitric oxide synthase (iNOS, after 5 weeks of partial bladder outlet obstruction (BOO, in order to evaluate the role of constitutive and non-constitutive NOS in the pathogenesis of this experimental condition. Materials and Methods C57BL6 male mice were partially obstructed and randomly allocated into 6 groups: Sham, Sham + L-NAME, Sham + aminoguanidine, BOO, BOO + L-NAME and BOO + aminoguanidine. After 5 weeks, bladder weight was obtained and cystometry and tissue bath contractile studies were performed. Results BOO animals showed increase of non-voiding contractions (NVC and bladder capacity, and also less contractile response to Carbachol and Electric Field Stimulation. Inhibition of NOS isoforms improved bladder capacity and compliance in BOO animals. L-NAME caused more NVC, prevented bladder weight gain and leaded to augmented contractile responses at muscarinic and electric stimulation. Aminoguanidine diminished NVC, but did not avoid bladder weight gain in BOO animals and did not improve contractile responses. Conclusion It can be hypothesized that chronic inhibition of three NOS isoforms in BOO animals leaded to worsening of bladder function, while selective inhibition of iNOS did not improve responses, what suggests that, in BOO animals, alterations are related to constitutive NOS.

  10. Ca2+ sensitizers: An emerging class of agents for counterbalancing weakness in skeletal muscle diseases?

    Science.gov (United States)

    Ochala, Julien

    2010-02-01

    Ca(2+) ions are key regulators of skeletal muscle contraction. By binding to contractile proteins, they initiate a cascade of molecular events leading to cross-bridge formation and ultimately, muscle shortening and force production. The ability of contractile proteins to respond to Ca(2+) attachment, also known as Ca(2+) sensitivity, is often compromised in acquired and congenital skeletal muscle disorders. It constitutes, undoubtedly, a major physiological cause of weakness for patients. In this review, we discuss recent studies giving strong molecular and cellular evidence that pharmacological modulators of some of the contractile proteins, also termed Ca(2+) sensitizers, are efficient agents to improve Ca(2+) sensitivity and function in diseased skeletal muscle cells. In fact, they compensate for the impaired contractile proteins response to Ca(2+) binding. Currently, such Ca(2+) sensitizing compounds are successfully used for reducing problems in cardiac disorders. Therefore, in the future, under certain conditions, these agents may represent an emerging class of agents to enhance the quality of life of patients suffering from skeletal muscle weakness. Copyright 2009 Elsevier B.V. All rights reserved.

  11. Roentgenological characteristics of motor-evacuatory stomach function after selective proximal vagotomy (SPV)

    International Nuclear Information System (INIS)

    Rustamov, Eh.A.; Manafov, S.S.

    1988-01-01

    An x-ray picture of motor-evacuatory stomach function was studied in patients with pyloroduodenal ulcers after SPV with and without drainage (435 patients aged 16 to 80). Methods of investigation included polyprojectional radioscopy and panoramic and spot films at various time intervals after barium suspension intake. Stomach investigation was performed before operation as well as 2-3 weeks, 3-6 mos, 1-2 yrs, 3-5 yrs, and 7-10 yrs after it. Motor-evacuatory stomach function was studied over time. The least changes in motor-evacuatory fucntion were observed after SPV without drainage as a result of preserving pyloric contractility

  12. Exercise training improves selected aspects of daytime functioning in adults with obstructive sleep apnea.

    Science.gov (United States)

    Kline, Christopher E; Ewing, Gary B; Burch, James B; Blair, Steven N; Durstine, J Larry; Davis, J Mark; Youngstedt, Shawn D

    2012-08-15

    To explore the utility of exercise training for improving daytime functioning in adults with obstructive sleep apnea (OSA). Forty-three sedentary and overweight/obese adults aged 18-55 years with at least moderate-severity untreated OSA (apnea-hypopnea index ≥ 15) were randomized to 12 weeks of moderate-intensity aerobic and resistance exercise training (n = 27) or low-intensity stretching control treatment (n = 16). As part of a trial investigating the efficacy of exercise training on OSA severity, daytime functioning was assessed before and following the intervention. Sleepiness, functional impairment due to sleepiness, depressive symptoms, mood, and quality of life (QOL) were evaluated with validated questionnaires, and cognitive function was assessed with a neurobehavioral performance battery. OSA severity was measured with one night of laboratory polysomnography before and following the intervention. Compared with stretching control, exercise training resulted in significant improvements in depressive symptoms, fatigue and vigor, and aspects of QOL (p improved following exercise versus control to a similar degree in terms of effect sizes (d > 0.5), though these changes were not statistically significant. No neurobehavioral performance improvements were found. Reduced fatigue following exercise training was mediated by a reduction in OSA severity, but changes in OSA severity did not significantly mediate improvement in any other measure of daytime functioning. These data provide preliminary evidence that exercise training may be helpful for improving aspects of daytime functioning of adults with OSA. Larger trials are needed to further verify the observed improvements.

  13. Targeting paretic propulsion to improve poststroke walking function: a preliminary study.

    Science.gov (United States)

    Awad, Louis N; Reisman, Darcy S; Kesar, Trisha M; Binder-Macleod, Stuart A

    2014-05-01

    To determine the feasibility and safety of implementing a 12-week locomotor intervention targeting paretic propulsion deficits during walking through the joining of 2 independent interventions, walking at maximal speed on a treadmill and functional electrical stimulation of the paretic ankle musculature (FastFES); to determine the effects of FastFES training on individual subjects; and to determine the influence of baseline impairment severity on treatment outcomes. Single group pre-post preliminary study investigating a novel locomotor intervention. Research laboratory. Individuals (N=13) with locomotor deficits after stroke. FastFES training was provided for 12 weeks at a frequency of 3 sessions per week and 30 minutes per session. Measures of gait mechanics, functional balance, short- and long-distance walking function, and self-perceived participation were collected at baseline, posttraining, and 3-month follow-up evaluations. Changes after treatment were assessed using pairwise comparisons and compared with known minimal clinically important differences or minimal detectable changes. Correlation analyses were run to determine the correlation between baseline clinical and biomechanical performance versus improvements in walking speed. Twelve of the 13 subjects that were recruited completed the training. Improvements in paretic propulsion were accompanied by improvements in functional balance, walking function, and self-perceived participation (each Pstudy of this promising locomotor intervention for persons poststroke. Copyright © 2014 American Congress of Rehabilitation Medicine. Published by Elsevier Inc. All rights reserved.

  14. Bladder function in 17β-estradiol-induced nonbacterial prostatitis model in Wistar rat.

    Science.gov (United States)

    Matsumoto, Seiji; Kawai, Yuko; Oka, Michiko; Oyama, Tatsuya; Hashizume, Kazumi; Wada, Naoki; Hori, Jun-ichi; Tamaki, Gaku; Kita, Masafumi; Iwata, Tatsuya; Kakizaki, Hidehiro

    2013-06-01

    To investigate bladder function in a model of nonbacterial prostatitis (NBP) induced in castrated rats by 17β-estradiol injection. Ten-month-old male Wistar rats were divided into two groups, sham and NBP (both N = 8). NBP was induced by castration followed by daily subcutaneous injection of 17β-estradiol for 30 days. On the 31st day after surgery, we investigated (1) voiding behavior, (2) bladder blood flow (BBF), (3) prostate and bladder weight, and proinflammatory cytokines (TNF-α and CXCL1) levels and (4) bladder contractile responses to electrical field stimulation (EFS), carbachol and KCl. (1) Voiding behavior (average micturition volume, total urine volume and number of micturitions) and (2) BBF were not significantly different between the sham and NBP groups. (3) NBP led to a significant decrease in prostatic weight and increase in proinflammatory cytokine levels in the prostate, but NBP did not cause a significant change in bladder weight or proinflammatory cytokine levels in the bladder. (4) Bladder contractile forces in response to EFS, carbachol and KCl were not significantly affected by NBP. In this rat model, NBP did not cause a significant change in the level of proinflammatory cytokines in the bladder and affect bladder function.

  15. Moving beyond the comprehensive in vitro proarrhythmia assay: Use of human-induced pluripotent stem cell-derived cardiomyocytes to assess contractile effects associated with drug-induced structural cardiotoxicity.

    Science.gov (United States)

    Yang, Xi; Papoian, Thomas

    2018-02-27

    Drug-induced cardiotoxicity is a potentially severe side effect that can adversely affect myocardial contractility through structural or electrophysiological changes in cardiomyocytes. Human-induced pluripotent stem cell-derived cardiomyocytes (hiPSC-CMs) are a promising human cardiac in vitro model system to assess both proarrhythmic and non-proarrhythmic cardiotoxicity of new drug candidates. The scalable differentiation of hiPSCs into cardiomyocytes provides a renewable cell source that overcomes species differences present in current animal models of drug toxicity testing. The Comprehensive in vitro Proarrhythmia Assay (CiPA) initiative represents a paradigm shift for proarrhythmic risk assessment, and hiPSC-CMs are an integral component of that paradigm. The recent advancements in hiPSC-CMs will not only impact safety decisions for possible drug-induced proarrhythmia, but should also facilitate risk assessment for non-proarrhythmic cardiotoxicity, where current non-clinical approaches are limited in detecting this risk before initiation of clinical trials. Importantly, emerging evidence strongly suggests that the use of hiPSC-CMs with cardiac physiological relevant measurements in vitro improves the detection of structural cardiotoxicity. Here we review high-throughput drug screening using the hiPSC-CM model as an experimentally feasible approach to assess potential contractile and structural cardiotoxicity in early phase drug development. We also suggest that the assessment of structural cardiotoxicity can be added to electrophysiological tests in the same platform to complement the Comprehensive in vitro Proarrhythmia Assay for regulatory use. Ideally, application of these novel tools in early drug development will allow for more reliable risk assessment and lead to more informed regulatory decisions in making safe and effective drugs available to the public. Published 2018. This article is a U.S. Government work and is in the public domain in the USA.

  16. Evaluation of left ventricular function by cardiac CT

    International Nuclear Information System (INIS)

    Naito, Hiroaki; Kozuka, Takahiro

    1982-01-01

    Left ventricular function was evaluated by CT, which was compared with the data of left ventriculography for various cardiac diseases. The end diastolic volume of the left ventricle can be readily computed from CT, with a satisfactory correlation with that of left ventriculography (r = 0.95). The left ventricular ejection fraction, calculated from the areal ratio of the left ventricular lumen in end-diastolic imaging to that in end-sytolic imaging, also roughly reflects left ventricular contractile function, but shows correlation with left ventriculography by only r = 0.79. Although the cardiac output is not sensitive for functional evaluation, it can be directly calculated by means of dynamic scanning and shows a satisfactory correlation with the ear piece pigment dilution (r = 0.85). Evaluation of left ventricular function by CT shows a high precision in comparison with left ventriculography, but still lacks temporal resolving power. (Chiba, N.)

  17. CPAP therapy improves erectile function in patients with severe obstructive sleep apnea.

    Science.gov (United States)

    Schulz, Richard; Bischof, Fabian; Galetke, Wolfgang; Gall, Henning; Heitmann, Jörg; Hetzenecker, Andrea; Laudenburg, Markus; Magnus, Till Jonas; Nilius, Georg; Priegnitz, Christina; Randerath, Winfried; Schröder, Maik; Treml, Marcel; Arzt, Michael

    2018-04-10

    Erectile dysfunction (ED) is highly prevalent in obstructive sleep apnea (OSA), however, the effect of continuous positive airway pressure (CPAP) therapy on erectile function has not yet been thoroughly investigated in these patients. Ninety-four men with severe OSA (ie, with an apnea-hypopnea-index ≥ 30/h of sleep) were prospectively evaluated for the presence and severity of ED before and after 6-12 months of CPAP therapy. The abbreviated version of the International Index of Erectile Function, (the IIEF-5) was used to rate erectile function. Furthermore, all study participants responded to standard questionnaires of daytime sleepiness (Epworth Sleepiness Scale), quality of life (WHO Wellbeing 5 questionnaire) and depression (Major Depression Inventory). ED as defined by an IIEF-5 score of ≤21 was present in 64 patients (68.1%). CPAP treatment significantly improved erectile function in those patients suffering from moderate and severe ED. Additionally, a trend for a correlation between the improvement of erectile function under CPAP and the hours of its use was observed. Finally, this effect was associated with larger improvements of quality of life in affected patients. ED is very frequent in men with severe OSA and can at least partly be reversed by long-term CPAP therapy in most seriously affected patients. The beneficial effect on erectile function may depend on CPAP compliance and is accompanied by improvements of quality of life. Randomized controlled trials are needed to confirm these findings. Copyright © 2018 Elsevier B.V. All rights reserved.

  18. Transcutaneous electrical nerve stimulation (TENS) improves the diabetic cytopathy (DCP) via up-regulation of CGRP and cAMP.

    Science.gov (United States)

    Ding, Liucheng; Song, Tao; Yi, Chaoran; Huang, Yi; Yu, Wen; Ling, Lin; Dai, Yutian; Wei, Zhongqing

    2013-01-01

    The objective of this study was to investigate the effects and mechanism of Transcutaneous Electrical Nerve Stimulation (TENS) on the diabetic cytopathy (DCP) in the diabetic bladder. A total of 45 rats were randomly divided into diabetes mellitus (DM)/TENS group (n=15), DM group (n=15) and control group (n=15). The rats in the DM/TENS and TENS groups were electronically stimulated (stimulating parameters: intensity-31 V, frequency-31 Hz, and duration of stimulation of 15 min) for three weeks. Bladder histology, urodynamics and contractile responses to field stimulation and carbachol were determined. The expression of calcitonin gene-related peptide (CGRP) was analyzed by RT-PCR and Western blotting. The results showed that contractile responses of the DM rats were ameliorated after 3 weeks of TENS. Furthermore, TENS significantly increased bladder wet weight, volume threshold for micturition and reduced PVR, V% and cAMP content of the bladder. The mRNA and protein levels of CGRP in dorsal root ganglion (DRG) in the DM/TENS group were higher than those in the DM group. TENS also significantly up-regulated the cAMP content in the bladder body and base compared with diabetic rats. We conclude that TENS can significantly improve the urine contractility and ameliorate the feeling of bladder fullness in DM rats possibly via up-regulation of cAMP and CGRP in DRG.

  19. Will Incremental Hemodialysis Preserve Residual Function and Improve Patient Survival?

    Science.gov (United States)

    Davenport, Andrew

    2015-01-01

    The progressive loss of residual renal function in peritoneal dialysis patients is associated with increased mortality. It has been suggested that incremental dialysis may help preserve residual renal function and improve patient survival. Residual renal function depends upon both patient related and dialysis associated factors. Maintaining patients in an over-hydrated state may be associated with better preservation of residual renal function but any benefit comes with a significant risk of cardiovascular consequences. Notably, it is only observational studies that have reported an association between dialysis patient survival and residual renal function; causality has not been established for dialysis patient survival. The tenuous connections between residual renal function and outcomes and between incremental hemodialysis and residual renal function should temper our enthusiasm for interventions in this area. PMID:25385441

  20. Muscle contraction duration and fibre recruitment influence blood flow and oxygen consumption independent of contractile work during steady-state exercise in humans.

    Science.gov (United States)

    Richards, Jennifer C; Crecelius, Anne R; Kirby, Brett S; Larson, Dennis G; Dinenno, Frank A

    2012-06-01

    We tested the hypothesis that, among conditions of matched contractile work, shorter contraction durations and greater muscle fibre recruitment result in augmented skeletal muscle blood flow and oxygen consumption ( ) during steady-state exercise in humans. To do so, we measured forearm blood flow (FBF; Doppler ultrasound) during 4 min of rhythmic hand-grip exercise in 24 healthy young adults and calculated forearm oxygen consumption ( ) via blood samples obtained from a catheter placed in retrograde fashion into a deep vein draining the forearm muscle. In protocol 1 (n = 11), subjects performed rhythmic isometric hand-grip exercise at mild and moderate intensities during conditions in which time-tension index (isometric analogue of work) was held constant but contraction duration was manipulated. In this protocol, shorter contraction durations led to greater FBF (184 ± 25 versus 164 ± 25 ml min(-1)) and (23 ± 3 versus 17 ± 2 ml min(-1); both P flow. Our collective data indicate that, among matched workloads, shorter contraction duration and greater muscle fibre recruitment augment FBF and during mild-intensity forearm exercise, and that muscle blood flow is more closely related to metabolic cost ( ) rather than contractile work per se during steady-state exercise in humans.

  1. Functional and pharmacological consequences of the distribution of voltage-gated calcium channels in the renal blood vessels.

    Science.gov (United States)

    Hansen, P B L

    2013-04-01

    Calcium channel blockers are widely used to treat hypertension because they inhibit voltage-gated calcium channels that mediate transmembrane calcium influx in, for example, vascular smooth muscle and cardiomyocytes. The calcium channel family consists of several subfamilies, of which the L-type is usually associated with vascular contractility. However, the L-, T- and P-/Q-types of calcium channels are present in the renal vasculature and are differentially involved in controlling vascular contractility, thereby contributing to regulation of kidney function and blood pressure. In the preglomerular vascular bed, all the three channel families are present. However, the T-type channel is the only channel in cortical efferent arterioles which is in contrast to the juxtamedullary efferent arteriole, and that leads to diverse functional effects of L- and T-type channel inhibition. Furthermore, by different mechanisms, T-type channels may contribute to both constriction and dilation of the arterioles. Finally, P-/Q-type channels are involved in the regulation of human intrarenal arterial contractility. The calcium blockers used in the clinic affect not only L-type but also P-/Q- and T-type channels. Therefore, the distinct effect obtained by inhibiting a given subtype or set of channels under experimental settings should be considered when choosing a calcium blocker for treatment. T-type channels seem to be crucial for regulating the GFR and the filtration fraction. Use of blockers is expected to lead to preferential efferent vasodilation, reduction of glomerular pressure and proteinuria. Therefore, renovascular T-type channels might provide novel therapeutic targets, and may have superior renoprotective effects compared to conventional calcium blockers. Acta Physiologica © 2013 Scandinavian Physiological Society.

  2. Improvement of standards on functional reliability of electric power systems

    International Nuclear Information System (INIS)

    Barinov, V.A.; Volkov, G.A.; Kalita, V.V.; Kogan, F.L.; Makarov, S.F.; Manevich, A.S.; Mogirev, V.V.; Sin'chugov, F.I.; Skopintsev, V.A.; Khvoshchinskaya, Z.G.

    1993-01-01

    Analysis of the most principal aspects of the existing standards and requirements on assuring safety and stability of electric power systems (EPS) and effective (reliable and economical) power supply of consumers is given. The reliability is determined as ability to accomplish the assigned functions. Basic recommendations on improving the standards regulating the safety and reliability of the NPP functioning are formulated

  3. Intestinal myoelectric activity and contractile motility in dogs with a reversed jejunal segment after extensive small bowel resection.

    Science.gov (United States)

    Uchiyama, M; Iwafuchi, M; Ohsawa, Y; Yagi, M; Iinuma, Y; Ohtani, S

    1992-06-01

    To evaluate the functioning and effectiveness of a reversed jejunal segment after extensive small bowel resection, we continuously measured the postoperative bowel motility (using bipolar electrodes and/or contractile strain gage force transducers) in interdigestive and postprandial conscious dogs at 2 to 5 weeks after surgery. The fasting duodenal migrating myoelectric (or motor) complex (MMC) occurred at markedly longer intervals in dogs with a 20-cm reversed jejunal segment created after 75% to 80% extensive small bowel resection (group 3) than in dogs that received extensive resection alone (group 2) or dogs that underwent construction of a reversed jejunal segment without bowel resection (group 1). The MMC arising from the duodenum was often interrupted at the jejunum above the proximal anastomosis and did not migrate smoothly to the reversed segment or terminal ileum in group 3. In addition, brief small discordant contractions were frequent in the reversed segment and the jejunum above the proximal anastomosis in group 3. The duration of the postprandial period without duodenal MMC activity was significantly prolonged in groups 2 and 3. These results suggest that the transit time and passage of intestinal contents were delayed and that the periodical MMC was disturbed in group 3. The delay of transit time was due to prolongation of the interval between duodenal MMCs, the interruption of MMC propagation at the jejunum above the proximal anastomosis, the dominance of MMCs that followed the inherent anatomical continuity of the bowel, and discordant movements across the proximal anastomosis. Functional obstruction could be a potential problem in a 20-cm reversed jejunal segment inserted after extensive small bowel resection.

  4. High-intensity functional training improves functional movement and body composition among cancer survivors: a pilot study.

    Science.gov (United States)

    Heinrich, K M; Becker, C; Carlisle, T; Gilmore, K; Hauser, J; Frye, J; Harms, C A

    2015-11-01

    This pilot study investigated feasibility and preliminary efficacy of a high-intensity functional training (HIFT) group-exercise programme among adult cancer survivors within 5 years of last cancer treatment. Eight participants were assigned to a 5-week, 3 days/week HIFT intervention with four testing sessions and 12 workouts along with mobility and stretching exercises. Feasibility was assessed by initiation, adherence, and acceptability. Efficacy was determined by changes from baseline to post-test in health-related quality of life, body composition and functional movement. The recruitment rate was 80% and the adherence rate was 75%. Significant improvements were found for emotional functioning (P = 0.042) and body composition (lean mass +3.8 ± 2.1 kg, P = 0.008; fat mass -3.3 ± 1.0 kg, P = 0.001; body fat percentage -4.7 ± 1.2%, P body strength and power (P = 0.009), aerobic capacity and endurance (P = 0.039), and perceived difficulty for flexibility (P = 0.012). Five weeks of HIFT training was well-received and feasible for most cancer survivors, and effective for improving emotional functioning, body composition and functional movement. © 2015 John Wiley & Sons Ltd.

  5. Acute effects of sulfur dioxide on the circulation of animals as well as on the contractility of isolated blood vessels

    Energy Technology Data Exchange (ETDEWEB)

    Laszt, L; Schaad, R

    1974-01-01

    In support of earlier work on exhaust gases experiments were carried out to determine the acute effects of sulphur dioxide on the circulation of the cat and dog. Inhalation of SO/sub 2/ during 30 min at concentrations of up to 1000 ppm caused no circulatory reaction. Such a reaction first appeared after infusion of larger quantities of SO/sub 2/. The action of sulphur dioxide on systemic and pulmonar circulation is different. A difference was also observed for the contractility of the corresponding isolated vessels.

  6. Echocardiographic assessment of right ventricular contractile reserve in patients with pulmonary hypertension.

    Science.gov (United States)

    Almeida, Ana Rita; Loureiro, Maria José; Lopes, Liliana; Cotrim, Carlos; Lopes, Luís; Repolho, Débora; Pereira, Hélder

    2014-03-01

    Right ventricular function is a major determinant of prognosis in pulmonary hypertension. The aim of this study was to assess and compare right ventricular contractile reserve in healthy subjects (controls) and in subjects with pulmonary hypertension (cases). In this prospective study of seven cases and seven controls undergoing treadmill stress echocardiography, right ventricular S-wave velocity, tricuspid annular plane systolic excursion (TAPSE), right ventricular fractional area change (RVFAC) and stroke volume index were assessed at rest and with exercise. The increase in each parameter between rest and exercise for cases and controls was analyzed and the magnitude of change in each parameter with exercise between cases and controls was compared. A significant increase in S-wave velocity was observed in cases (rest: 9.4 ± 3.1; exercise: 13.7 ± 4.8 cm/s [p < 0.05]). In controls there was a statistically significant increase in S-wave velocity (12.9 ± 2.3 to 23.0 ± 7.2 cm/s [p < 0.005]), TAPSE (25.7 ± 2.4 to 31.0 ± 3.5 mm [p < 0.05]) and RVFAC (53.8 ± 14.7% to 64.4 ± 9.9% [p < 0.005]). The magnitude of change in S-wave velocity (cases: 4.3 ± 3.3; controls: 10.1 ± 5.5 cm/s [p < 0.05]), TAPSE (cases: 0.6 ± 2.5; controls: 5.3 ± 3.8 mm [p < 0.05]) and RVFAC (cases: -0.4 ± 11.8; controls: 10.6 ± 5.9% [p < 0.05]) was significantly different between cases and controls. S-wave velocity, TAPSE and RVFAC increased significantly with exercise in controls. S-wave velocity was the only parameter that showed a significant increase in cases, although the magnitude of this increase was significantly less than in controls. Copyright © 2013 Sociedade Portuguesa de Cardiologia. Published by Elsevier España. All rights reserved.

  7. Loss of functional K+ channels encoded by ether-à-go-go-related genes in mouse myometrium prior to labour onset

    Science.gov (United States)

    Greenwood, I A; Yeung, S Y; Tribe, R M; Ohya, S

    2009-01-01

    There is a growing appreciation that ion channels encoded by the ether-à-go-go-related gene family have a functional impact in smooth muscle in addition to their accepted role in cardiac myocytes and neurones. This study aimed to assess the expression of ERG1–3 (KCNH1–3) genes in the murine myometrium (smooth muscle layer of the uterus) and determine the functional impact of the ion channels encoded by these genes in pregnant and non-pregnant animals. Quantitative RT-PCR did not detect message for ERG2 and 3 in whole myometrial tissue extracts. In contrast, message for two isoforms of mERG1 were readily detected with mERG1a more abundant than mERG1b. In isometric tension studies of non-pregnant myometrium, the ERG channel blockers dofetilide (1 μm), E4031 (1 μm) and Be-KM1 (100 nm) increased spontaneous contractility and ERG activators (PD118057 and NS1643) inhibited spontaneous contractility. In contrast, neither ERG blockade nor activation had any effect on the inherent contractility in myometrium from late pregnant (19 days gestation) animals. Moreover, dofetilide-sensitive K+ currents with distinctive ‘hooked’ kinetics were considerably smaller in uterine myocytes from late pregnant compared to non-pregnant animals. Expression of mERG1 isoforms did not alter throughout gestation or upon delivery, but the expression of genes encoding auxillary subunits (KCNE) were up-regulated considerably. This study provides the first evidence for a regulation of ERG-encoded K+ channels as a precursor to late pregnancy physiological activity. PMID:19332483

  8. Altered expression pattern of molecular factors involved in colonic smooth muscle functions: an immunohistochemical study in patients with diverticular disease.

    Science.gov (United States)

    Mattii, Letizia; Ippolito, Chiara; Segnani, Cristina; Battolla, Barbara; Colucci, Rocchina; Dolfi, Amelio; Bassotti, Gabrio; Blandizzi, Corrado; Bernardini, Nunzia

    2013-01-01

    The pathogenesis of diverticular disease (DD) is thought to result from complex interactions among dietary habits, genetic factors and coexistence of other bowel abnormalities. These conditions lead to alterations in colonic pressure and motility, facilitating the formation of diverticula. Although electrophysiological studies on smooth muscle cells (SMCs) have investigated colonic motor dysfunctions, scarce attention has been paid to their molecular abnormalities, and data on SMCs in DD are lacking. Accordingly, the main purpose of this study was to evaluate the expression patterns of molecular factors involved in the contractile functions of SMCs in the tunica muscularis of colonic specimens from patients with DD. By means of immunohistochemistry and image analysis, we examined the expression of Cx26 and Cx43, which are prominent components of gap junctions in human colonic SMCs, as well as pS368-Cx43, PKCps, RhoA and αSMA, all known to regulate the functions of gap junctions and the contractile activity of SMCs. The immunohistochemical analysis revealed significant abnormalities in DD samples, concerning both the expression and distribution patterns of most of the investigated molecular factors. This study demonstrates, for the first time, that an altered pattern of factors involved in SMC contractility is present at level of the tunica muscularis of DD patients. Moreover, considering that our analysis was conducted on colonic tissues not directly affected by diverticular lesions or inflammatory reactions, it is conceivable that these molecular alterations may precede and predispose to the formation of diverticula, rather than being mere consequences of the disease.

  9. Regulation of cortical contractility and spindle positioning by the protein phosphatase 6 PPH-6 in one-cell stage C. elegans embryos

    Science.gov (United States)

    Afshar, Katayoun; Werner, Michael E.; Tse, Yu Chung; Glotzer, Michael; Gönczy, Pierre

    2010-01-01

    Modulation of the microtubule and the actin cytoskeleton is crucial for proper cell division. Protein phosphorylation is known to be an important regulatory mechanism modulating these cytoskeletal networks. By contrast, there is a relative paucity of information regarding how protein phosphatases contribute to such modulation. Here, we characterize the requirements for protein phosphatase PPH-6 and its associated subunit SAPS-1 in one-cell stage C. elegans embryos. We establish that the complex of PPH-6 and SAPS-1 (PPH-6/SAPS-1) is required for contractility of the actomyosin network and proper spindle positioning. Our analysis demonstrates that PPH-6/SAPS-1 regulates the organization of cortical non-muscle myosin II (NMY-2). Accordingly, we uncover that PPH-6/SAPS-1 contributes to cytokinesis by stimulating actomyosin contractility. Furthermore, we demonstrate that PPH-6/SAPS-1 is required for the proper generation of pulling forces on spindle poles during anaphase. Our results indicate that this requirement is distinct from the role in organizing the cortical actomyosin network. Instead, we uncover that PPH-6/SAPS-1 contributes to the cortical localization of two positive regulators of pulling forces, GPR-1/2 and LIN-5. Our findings provide the first insights into the role of a member of the PP6 family of phosphatases in metazoan development. PMID:20040490

  10. Functional high-intensity training improves pancreatic β-cell function in adults with type 2 diabetes.

    Science.gov (United States)

    Nieuwoudt, Stephan; Fealy, Ciarán E; Foucher, Julie A; Scelsi, Amanda R; Malin, Steven K; Pagadala, Mangesh; Rocco, Michael; Burguera, Bartolome; Kirwan, John P

    2017-09-01

    Type 2 diabetes (T2D) is characterized by reductions in β-cell function and insulin secretion on the background of elevated insulin resistance. Aerobic exercise has been shown to improve β-cell function, despite a subset of T2D patients displaying "exercise resistance." Further investigations into the effectiveness of alternate forms of exercise on β-cell function in the T2D patient population are needed. We examined the effect of a novel, 6-wk CrossFit functional high-intensity training (F-HIT) intervention on β-cell function in 12 sedentary adults with clinically diagnosed T2D (54 ± 2 yr, 166 ± 16 mg/dl fasting glucose). Supervised training was completed 3 days/wk, comprising functional movements performed at a high intensity in a variety of 10- to 20-min sessions. All subjects completed an oral glucose tolerance test and anthropometric measures at baseline and following the intervention. The mean disposition index, a validated measure of β-cell function, was significantly increased (PRE: 8.4 ± 3.1, POST: 11.5 ± 3.5, P = 0.02) after the intervention. Insulin processing inefficiency in the β-cell, expressed as the fasting proinsulin-to-insulin ratio, was also reduced (PRE: 2.40 ± 0.37, POST: 1.78 ± 0.30, P = 0.04). Increased β-cell function during the early-phase response to glucose correlated significantly with reductions in abdominal body fat ( R 2 = 0.56, P = 0.005) and fasting plasma alkaline phosphatase ( R 2 = 0.55, P = 0.006). Mean total body-fat percentage decreased significantly (Δ: -1.17 0.30%, P = 0.003), whereas lean body mass was preserved (Δ: +0.05 ± 0.68 kg, P = 0.94). We conclude that F-HIT is an effective exercise strategy for improving β-cell function in adults with T2D. Copyright © 2017 the American Physiological Society.

  11. KChIP2 regulates the cardiac Ca2+ transient and myocyte contractility by targeting ryanodine receptor activity.

    Directory of Open Access Journals (Sweden)

    Drew M Nassal

    Full Text Available Pathologic electrical remodeling and attenuated cardiac contractility are featured characteristics of heart failure. Coinciding with these remodeling events is a loss of the K+ channel interacting protein, KChIP2. While, KChIP2 enhances the expression and stability of the Kv4 family of potassium channels, leading to a more pronounced transient outward K+ current, Ito,f, the guinea pig myocardium is unique in that Kv4 expression is absent, while KChIP2 expression is preserved, suggesting alternative consequences to KChIP2 loss. Therefore, KChIP2 was acutely silenced in isolated guinea pig myocytes, which led to significant reductions in the Ca2+ transient amplitude and prolongation of the transient duration. This change was reinforced by a decline in sarcomeric shortening. Notably, these results were unexpected when considering previous observations showing enhanced ICa,L and prolonged action potential duration following KChIP2 loss, suggesting a disruption of fundamental Ca2+ handling proteins. Evaluation of SERCA2a, phospholamban, RyR, and sodium calcium exchanger identified no change in protein expression. However, assessment of Ca2+ spark activity showed reduced spark frequency and prolonged Ca2+ decay following KChIP2 loss, suggesting an altered state of RyR activity. These changes were associated with a delocalization of the ryanodine receptor activator, presenilin, away from sarcomeric banding to more diffuse distribution, suggesting that RyR open probability are a target of KChIP2 loss mediated by a dissociation of presenilin. Typically, prolonged action potential duration and enhanced Ca2+ entry would augment cardiac contractility, but here we see KChIP2 fundamentally disrupts Ca2+ release events and compromises myocyte contraction. This novel role targeting presenilin localization and RyR activity reveals a significance for KChIP2 loss that reflects adverse remodeling observed in cardiac disease settings.

  12. Alterations in Muscle Mass and Contractile Phenotype in Response to Unloading Models: Role of Transcriptional/Pretranslational Mechanisms

    Directory of Open Access Journals (Sweden)

    Kenneth M Baldwin

    2013-10-01

    Full Text Available Skeletal muscle is the largest organ system in mammalian organisms providing postural control and movement patterns of varying intensity. Through evolution, skeletal muscle fibers have evolved into three phenotype clusters defined as a muscle unit which consists of all muscle fibers innervated by a single motoneuron linking varying numbers of fibers of similar phenotype. This fundamental organization of the motor unit reflects the fact that there is a remarkable interdependence of gene regulation between the motoneurons and the muscle mainly via activity-dependent mechanisms. These fiber types can be classified via the primary type of myosin heavy chain (MHC gene expressed in the motor unit. Four MHC gene encoded proteins have been identified in striated muscle: slow type I MHC and three fast MHC types, IIa, IIx, and IIb. These MHCs dictate the intrinsic contraction speed of the myofiber with the type I generating the slowest and IIb the fastest contractile speed. Over the last ~35 years, a large body of knowledge suggests that altered loading state cause both fiber atrophy/wasting and a slow to fast shift in the contractile phenotype in the target muscle(s. Hence, this review will examine findings from three different animal models of unloading: 1 space flight (SF, i.e., microgravity; 2 hindlimb suspension (HS, a procedure that chronically eliminates weight bearing of the lower limbs; and 3 spinal cord isolation (SI, a surgical procedure that eliminates neural activation of the motoneurons and associated muscles while maintaining neurotrophic motoneuron-muscle connectivity. The collective findings demonstrate: 1 all three models show a similar pattern of fiber atrophy with differences mainly in the magnitude and kinetics of alteration; 2 transcriptional/pretranslational processes play a major role in both the atrophy process and phenotype shifts; and 3 signaling pathways impacting these alterations appear to be similar in each of the models

  13. Do β3-adrenergic receptors play a role in guinea pig detrusor smooth muscle excitability and contractility?

    Science.gov (United States)

    Afeli, Serge A. Y.; Hristov, Kiril L.

    2012-01-01

    In many species, β3-adrenergic receptors (β3-ARs) have been reported to play a primary role in pharmacologically induced detrusor smooth muscle (DSM) relaxation. However, their role in guinea pig DSM remains controversial. The aim of this study was to investigate whether β3-ARs are expressed in guinea pig DSM and to evaluate how BRL37344 and L-755,507, two selective β3-AR agonists, modulate guinea pig DSM excitability and contractility. We used a combined experimental approach including RT-PCR, patch-clamp electrophysiology, and isometric DSM tension recordings. β3-AR mRNA message was detected in freshly isolated guinea pig DSM single cells. BRL37344 but not L-755,507 caused a slight decrease in DSM spontaneous phasic contraction amplitude and frequency in a concentration-dependent manner. In the presence of atropine (1 μM), only the spontaneous phasic contractions frequency was inhibited by BRL37344 at higher concentrations. Both BRL37344 and L-755,507 significantly decreased DSM carbachol-induced phasic and tonic contractions in a concentration-dependent manner. However, only BRL37344 inhibitory effect was partially antagonized by SR59230A (10 μM), a β3-AR antagonist. In the presence of atropine, BRL37344 and L-755,507 had no inhibitory effect on electrical field stimulation-induced contractions. Patch-clamp experiments showed that BRL37344 (100 μM) did not affect the DSM cell resting membrane potential and K+ conductance. Although β3-ARs are expressed at the mRNA level, they play a minor to no role in guinea pig DSM spontaneous contractility without affecting cell excitability. However, BRL37344 and L-755,507 have pronounced inhibitory effects on guinea pig DSM carbachol-induced contractions. The study outlines important DSM β3-ARs species differences. PMID:21993887

  14. Roles of calcium and IP3 in impaired colon contractility of rats following multiple organ dysfunction syndrome

    Directory of Open Access Journals (Sweden)

    C. Zheyu

    2007-10-01

    Full Text Available The purpose of the present study was to explore changes in rat colon motility, and determine the roles of calcium and inositol (1,4,5-triphosphate (IP3 in colon dysmotility induced by multiple organ dysfunction syndrome (MODS caused by bacteria peritonitis. The number of stools, the contractility of the muscle strips and the length of smooth muscle cells (SMC in the colon, the concentration of calcium and IP3 in SMC, and serum nitric oxide were measured. Number of stools, fecal weight, IP3 concentration in SMC and serum nitric oxide concentration were 0.77 ± 0.52 pellets, 2.51 ± 0.39 g, 4.14 ± 2.07 pmol/tube, and 113.95 ± 37.89 µmol/L, respectively, for the MODS group (N = 11 vs 1.54 ± 0.64 pellets, 4.32 ± 0.57 g, 8.19 ± 3.11 pmol/tube, and 37.42 ± 19.56 µmol/L for the control group (N = 20; P < 0.05. After treatment with 0.1 mM acetylcholine and 0.1 M potassium chloride, the maximum contraction stress of smooth muscle strips, the length of SMC and the changes of calcium concentration were 593 ± 81 and 458 ± 69 g/cm³, 48.1 ± 11.8 and 69.2 ± 15.7 µM, 250 ± 70 and 167 ± 48%, respectively, for the control group vs 321 ± 53 and 284 ± 56 g/cm³, 65.1 ± 18.5 and 87.2 ± 23.7 µM, 127 ± 35 and 112 ± 35% for the MODS group (P < 0.05. Thus, colon contractility was decreased in MODS, a result possibly related to reduced calcium concentration and IP3 in SMC.

  15. FAB (Functionally Alert Behavior Strategies) to Improve Self-Control

    Science.gov (United States)

    Pagano, John

    2015-01-01

    This paper describes the FAB (Functionally Alert Behavior) Strategies approach to improve behavior in children and adolescents with complex behavioral challenges. FAB Strategies include evidence-based environmental adaptations, sensory modulation, positive behavioral support, and physical self-regulation strategies. FAB Strategies can be used by…

  16. Immediate improvement of motor function after epilepsy surgery in congenital hemiparesis.

    Science.gov (United States)

    Pascoal, Tharick; Paglioli, Eliseu; Palmini, André; Menezes, Rafael; Staudt, Martin

    2013-08-01

    Hemispherectomy often leads to a loss of contralateral hand function. In some children with congenital hemiparesis, however, paretic hand function remains unchanged. An immediate improvement of hand function has never been reported. A 17-year-old boy with congenital hemiparesis and therapy-refractory seizures due to a large infarction in the territory of the middle cerebral artery underwent epilepsy surgery. Intraoperatively, electrical cortical stimulation of the affected hemisphere demonstrated preserved motor projections from the sensorimotor cortex to the (contralateral) paretic hand. A frontoparietal resection was performed, which included a complete disconnection of all motor projections originating in the sensorimotor cortex of the affected hemisphere. Surprisingly, the paretic hand showed a significant functional improvement immediately after the operation. This observation demonstrates that, in congenital hemiparesis, crossed motor projections from the affected hemisphere are not always beneficial, but can be dysfunctional, interfering with ipsilateral motor control over the paretic hand by the contralesional hemisphere. Wiley Periodicals, Inc. © 2013 International League Against Epilepsy.

  17. PSA Model Improvement Using Maintenance Rule Function Mapping

    Energy Technology Data Exchange (ETDEWEB)

    Seo, Mi Ro [KHNP-CRI, Nuclear Safety Laboratory, Daejeon (Korea, Republic of)

    2011-10-15

    The Maintenance Rule (MR) program, in nature, is a performance-based program. Therefore, the risk information derived from the Probabilistic Safety Assessment model is introduced into the MR program during the Safety Significance determination and Performance Criteria selection processes. However, this process also facilitates the determination of the vulnerabilities in currently utilized PSA models and offers means of improving them. To find vulnerabilities in an existing PSA model, an initial review determines whether the safety-related MR functions are included in the PSA model. Because safety-related MR functions are related to accident prevention and mitigation, it is generally necessary for them to be included in the PSA model. In the process of determining the safety significance of each functions, quantitative risk importance levels are determined through a process known as PSA model basic event mapping to MR functions. During this process, it is common for some inadequate and overlooked models to be uncovered. In this paper, the PSA model and the MR program of Wolsong Unit 1 were used as references

  18. Stem cell antigen-1 in skeletal muscle function.

    Science.gov (United States)

    Bernstein, Harold S; Samad, Tahmina; Cholsiripunlert, Sompob; Khalifian, Saami; Gong, Wenhui; Ritner, Carissa; Aurigui, Julian; Ling, Vivian; Wilschut, Karlijn J; Bennett, Stephen; Hoffman, Julien; Oishi, Peter

    2013-08-15

    Stem cell antigen-1 (Sca-1) is a member of the Ly-6 multigene family encoding highly homologous, glycosyl-phosphatidylinositol-anchored membrane proteins. Sca-1 is expressed on muscle-derived stem cells and myogenic precursors recruited to sites of muscle injury. We previously reported that inhibition of Sca-1 expression stimulated myoblast proliferation in vitro and regulated the tempo of muscle repair in vivo. Despite its function in myoblast expansion during muscle repair, a role for Sca-1 in normal, post-natal muscle has not been thoroughly investigated. We systematically compared Sca-1-/- (KO) and Sca-1+/+ (WT) mice and hindlimb muscles to elucidate the tissue, contractile, and functional effects of Sca-1 in young and aging animals. Comparison of muscle volume, fibrosis, myofiber cross-sectional area, and Pax7+ myoblast number showed little differences between ages or genotypes. Exercise protocols, however, demonstrated decreased stamina in KO versus WT mice, with young KO mice achieving results similar to aging WT animals. In addition, KO mice did not improve with practice, while WT animals demonstrated conditioning over time. Surprisingly, myomechanical analysis of isolated muscles showed that KO young muscle generated more force and experienced less fatigue. However, KO muscle also demonstrated incomplete relaxation with fatigue. These findings suggest that Sca-1 is necessary for muscle conditioning with exercise, and that deficient conditioning in Sca-1 KO animals becomes more pronounced with age.

  19. Comparative Statistical Mechanics of Muscle and Non-Muscle Contractile Systems: Stationary States of Near-Equilibrium Systems in A Linear Regime

    Directory of Open Access Journals (Sweden)

    Yves Lecarpentier

    2017-10-01

    Full Text Available A. Huxley’s equations were used to determine the mechanical properties of muscle myosin II (MII at the molecular level, as well as the probability of the occurrence of the different stages in the actin–myosin cycle. It was then possible to use the formalism of statistical mechanics with the grand canonical ensemble to calculate numerous thermodynamic parameters such as entropy, internal energy, affinity, thermodynamic flow, thermodynamic force, and entropy production rate. This allows us to compare the thermodynamic parameters of a non-muscle contractile system, such as the normal human placenta, with those of different striated skeletal muscles (soleus and extensor digitalis longus as well as the heart muscle and smooth muscles (trachea and uterus in the rat. In the human placental tissues, it was observed that the kinetics of the actin–myosin crossbridges were considerably slow compared with those of smooth and striated muscular systems. The entropy production rate was also particularly low in the human placental tissues, as compared with that observed in smooth and striated muscular systems. This is partly due to the low thermodynamic flow found in the human placental tissues. However, the unitary force of non-muscle myosin (NMII generated by each crossbridge cycle in the myofibroblasts of the human placental tissues was similar in magnitude to that of MII in the myocytes of both smooth and striated muscle cells. Statistical mechanics represents a powerful tool for studying the thermodynamics of all contractile muscle and non-muscle systems.

  20. Functions of PDE3 Isoforms in Cardiac Muscle

    Science.gov (United States)

    Movsesian, Matthew; Ahmad, Faiyaz

    2018-01-01

    Isoforms in the PDE3 family of cyclic nucleotide phosphodiesterases have important roles in cyclic nucleotide-mediated signalling in cardiac myocytes. These enzymes are targeted by inhibitors used to increase contractility in patients with heart failure, with a combination of beneficial and adverse effects on clinical outcomes. This review covers relevant aspects of the molecular biology of the isoforms that have been identified in cardiac myocytes; the roles of these enzymes in modulating cAMP-mediated signalling and the processes mediated thereby; and the potential for targeting these enzymes to improve the profile of clinical responses. PMID:29415428