WorldWideScience

Sample records for improved building control

  1. Converging Redundant Sensor Network Information for Improved Building Control

    Energy Technology Data Exchange (ETDEWEB)

    Dale Tiller; D. Phil; Gregor Henze; Xin Guo

    2007-09-30

    This project investigated the development and application of sensor networks to enhance building energy management and security. Commercial, industrial and residential buildings often incorporate systems used to determine occupancy, but current sensor technology and control algorithms limit the effectiveness of these systems. For example, most of these systems rely on single monitoring points to detect occupancy, when more than one monitoring point could improve system performance. Phase I of the project focused on instrumentation and data collection. During the initial project phase, a new occupancy detection system was developed, commissioned and installed in a sample of private offices and open-plan office workstations. Data acquisition systems were developed and deployed to collect data on space occupancy profiles. Phase II of the project demonstrated that a network of several sensors provides a more accurate measure of occupancy than is possible using systems based on single monitoring points. This phase also established that analysis algorithms could be applied to the sensor network data stream to improve the accuracy of system performance in energy management and security applications. In Phase III of the project, the sensor network from Phase I was complemented by a control strategy developed based on the results from the first two project phases: this controller was implemented in a small sample of work areas, and applied to lighting control. Two additional technologies were developed in the course of completing the project. A prototype web-based display that portrays the current status of each detector in a sensor network monitoring building occupancy was designed and implemented. A new capability that enables occupancy sensors in a sensor network to dynamically set the 'time delay' interval based on ongoing occupant behavior in the space was also designed and implemented.

  2. Bamboo fiberboards and attapulgite : does it lead to an improvement of humidity control in buildings?

    Science.gov (United States)

    Nguyen, D. M.; Grillet, A. C.; Goldin, T.; Hanh Diep, T. M.; Woloszyn, M.

    2018-04-01

    In order to save energy used to heat or cool buildings and to improve the inhabitants comfort, control of humidity inside buildings must be improved. This can be done by using buffering materials able to absorb and release moisture when necessary. Natural fibers and mineral absorbent are good candidates to manufacture such materials. The aim of this research is to mix bamboo fibers with attapulgite to evaluate the influence of this mineral absorbent on the hygric behavior of the fiberboards. The hygric properties are slightly improved by the attapulgite and thus bamboo fiberboards can be used as building insulation materials able to participate to the indoor moisture control.

  3. Energy savings potential from improved building controls for the US commercial building sector

    Energy Technology Data Exchange (ETDEWEB)

    Fernandez, Nick; Katipamula, Srinivas; Wang, Weimin; Xie, Yulong; Zhao, Mingjie

    2017-09-27

    The U.S. Department of Energy’s (DOE’s) Building Technologies Office (BTO) sponsored a study to determine the potential national savings achievable in the commercial building sector through widespread deployment of best practice controls, elimination of system and component faults, and use of better sensing. Detailed characterization of potential savings was one source of input to set research, development, and deployment (RD&D) goals in the field of building sensors and controls. DOE’s building energy simulation software, EnergyPlus, was employed to estimate the potential savings from 34 measures in 9 building types and across 16 climates representing almost 57% of commercial building sector energy consumption. In addition to estimating savings from individual measures, three packages of measures were created to estimate savings from the packages. These packages represented an 1) efficient building, 2) typical building, and 3) inefficient building. To scale the results from individual measures or a package to the national scale, building weights by building type and climate locations from the Energy Information Administration’s 2012 Commercial Building Energy Consumption Survey (CBECS) were used. The results showed significant potential for energy savings across all building types and climates. The total site potential savings from individual measures by building type and climate location ranged between 0% and 25%. The total site potential savings by building type aggregated across all climates (using the CBECS building weights) for each measure varied between 0% and 16%. The total site potential savings aggregated across all building types and climates for each measure varied between 0% and 11%. Some individual measures had negative savings because correcting underlying operational problems (e.g., inadequate ventilation) resulted in increased energy consumption. When combined into packages, the overall national savings potential is estimated to be 29

  4. Improving PAQ and comfort conditions in Spanish office buildings with passive climate control

    Energy Technology Data Exchange (ETDEWEB)

    Orosa, Jose A.; Baalina, A. [Departamento de Energia y P.M. Escuela Tecnica Superior de N. y M, Universidade da Coruna, Paseo de Ronda 51, P.C.:15011 A Coruna (Spain)

    2009-03-15

    Some researchers have demonstrated that passive moisture transfer between indoor air and hygroscopic structures has the potential to moderate variations of indoor air relative humidity and, thus, to improve comfort and PAQ [Simonson CJ, Salonvaara M, Ojalen T. The effect of structures on indoor humidity-possibility to improve comfort and perceived air quality. Indoor Air 2002; 12: 243-51; Simonson CJ, Salonvaara M, Ojalen T. Improving indoor climate and comfort with wooden structures. Espoo 2001. Technical Research Centre of Finland, VTT Publications 431.200p+app 91p]. The main objective of this study is to show the internal wall coating effect on indoor air conditions and, as a consequence of this, in comfort conditions and PAQ. In a previous paper [Orosa JA, Baalina A. Passive climate control in Spanish office buildings for long periods of time. Building and Environment 2008], we analysed the influence of permeable and impermeable materials on indoor air conditions, during the unoccupied period, in 25 office buildings in different seasons. Results obtained lead us to conclude that real coverings such as permeable, semi-permeable and impermeable types, present different behavioural patterns in indoor air conditions. Furthermore, we concluded that an absorbent structure will moderate relative humidity indoors. In this paper, we study this indoor relative humidity effect on local thermal discomfort, due to decreased respiratory cooling, and indoor ambience acceptability for the early hours of morning applying PD and Acc models [Toftum J, Jorgensen AS, Fanger PO. Upper limits for indoor air humidity to avoid uncomfortably humid skin. Energy and buildings 1998; 28: 1-13; Toftum J, Jorgensen AS, Fanger PO. Upper limits of air humidity for preventing warm respiratory discomfort. Energy and Buildings 1998; 28: 15-23] such as that proposed by Simonson et al. [The effect of structures on indoor humidity-possibility to improve comfort and perceived air quality. Indoor Air

  5. CONVERGING REDUNDANT SENSOR NETWORK INFORMATION FOR IMPROVED BUILDING CONTROL

    Energy Technology Data Exchange (ETDEWEB)

    Dale K. Tiller; Gregor P. Henze

    2004-11-01

    Knowing how many people occupy a building, and where they are located, is a key component of building energy management and security. Commercial, industrial and residential buildings often incorporate systems used to determine occupancy, however, current sensor technology and control algorithms limit the effectiveness of both energy management and security systems. This topical report describes results from the first phase of a project to design, implement, validate, and prototype new technologies to monitor occupancy, control indoor environment services, and promote security in buildings. Phase I of the project focused on instrumentation and data collection. In this project phase a new occupancy detection system was developed, commissioned and installed in a sample of private offices and open-plan office workstations. Data acquisition systems were developed and deployed to collect data on space occupancy profiles. Analysis tools based on Bayesian probability theory were applied to the occupancy data generated by the sensor network. The inference of primary importance is a probability distribution over the number of occupants and their locations in a building, given past and present sensor measurements. Inferences were computed for occupancy and its temporal persistence in individual offices as well as the persistence of sensor status. The raw sensor data were also used to calibrate the sensor belief network, including the occupancy transition matrix used in the Markov model, sensor sensitivity, and sensor failure models. This study shows that the belief network framework can be applied to the analysis of data streams from sensor networks, offering significant benefits to building operation compared to current practice.

  6. Building Integrated Active Flow Control: Improving the Aerodynamic Performance of Tall Buildings Using Fluid-Based Aerodynamic Modification

    Science.gov (United States)

    Menicovich, David

    respond to fluctuating environmental conditions such as changes in wind direction or velocity over the height of building which could be of consequence if the conditions for which the building was designed for change due to, for example, changes in the built environment surrounding it. Fluidic-based Aerodynamic Modification (FAM) is a fundamentally different approach; instead of adjusting the solid material to improve the aerodynamic 'shape' of the structure, fluid-based flow control is used to manipulate the boundary layer characteristics. The local flow field is modified to 'view' the solid as a different shape, and thus, that solid will experience reduced loads.

  7. Improving the Earthquake Resilience of Buildings The worst case approach

    CERN Document Server

    Takewaki, Izuru; Fujita, Kohei

    2013-01-01

    Engineers are always interested in the worst-case scenario. One of the most important and challenging missions of structural engineers may be to narrow the range of unexpected incidents in building structural design. Redundancy, robustness and resilience play an important role in such circumstances. Improving the Earthquake Resilience of Buildings: The worst case approach discusses the importance of worst-scenario approach for improved earthquake resilience of buildings and nuclear reactor facilities. Improving the Earthquake Resilience of Buildings: The worst case approach consists of two parts. The first part deals with the characterization and modeling of worst or critical ground motions on inelastic structures and the related worst-case scenario in the structural design of ordinary simple building structures. The second part of the book focuses on investigating the worst-case scenario for passively controlled and base-isolated buildings. This allows for detailed consideration of a range of topics includin...

  8. Intelligent Controls for Net-Zero Energy Buildings

    Energy Technology Data Exchange (ETDEWEB)

    Li, Haorong; Cho, Yong; Peng, Dongming

    2011-10-30

    The goal of this project is to develop and demonstrate enabling technologies that can empower homeowners to convert their homes into net-zero energy buildings in a cost-effective manner. The project objectives and expected outcomes are as follows: • To develop rapid and scalable building information collection and modeling technologies that can obtain and process “as-built” building information in an automated or semiautomated manner. • To identify low-cost measurements and develop low-cost virtual sensors that can monitor building operations in a plug-n-play and low-cost manner. • To integrate and demonstrate low-cost building information modeling (BIM) technologies. • To develop decision support tools which can empower building owners to perform energy auditing and retrofit analysis. • To develop and demonstrate low-cost automated diagnostics and optimal control technologies which can improve building energy efficiency in a continual manner.

  9. Automated Deployment of Advanced Controls and Analytics in Buildings

    Science.gov (United States)

    Pritoni, Marco

    Buildings use 40% of primary energy in the US. Recent studies show that developing energy analytics and enhancing control strategies can significantly improve their energy performance. However, the deployment of advanced control software applications has been mostly limited to academic studies. Larger-scale implementations are prevented by the significant engineering time and customization required, due to significant differences among buildings. This study demonstrates how physics-inspired data-driven models can be used to develop portable analytics and control applications for buildings. Specifically, I demonstrate application of these models in all phases of the deployment of advanced controls and analytics in buildings: in the first phase, "Site Preparation and Interface with Legacy Systems" I used models to discover or map relationships among building components, automatically gathering metadata (information about data points) necessary to run the applications. During the second phase: "Application Deployment and Commissioning", models automatically learn system parameters, used for advanced controls and analytics. In the third phase: "Continuous Monitoring and Verification" I utilized models to automatically measure the energy performance of a building that has implemented advanced control strategies. In the conclusions, I discuss future challenges and suggest potential strategies for these innovative control systems to be widely deployed in the market. This dissertation provides useful new tools in terms of procedures, algorithms, and models to facilitate the automation of deployment of advanced controls and analytics and accelerate their wide adoption in buildings.

  10. Energy efficient model based algorithm for control of building HVAC systems.

    Science.gov (United States)

    Kirubakaran, V; Sahu, Chinmay; Radhakrishnan, T K; Sivakumaran, N

    2015-11-01

    Energy efficient designs are receiving increasing attention in various fields of engineering. Heating ventilation and air conditioning (HVAC) control system designs involve improved energy usage with an acceptable relaxation in thermal comfort. In this paper, real time data from a building HVAC system provided by BuildingLAB is considered. A resistor-capacitor (RC) framework for representing thermal dynamics of the building is estimated using particle swarm optimization (PSO) algorithm. With objective costs as thermal comfort (deviation of room temperature from required temperature) and energy measure (Ecm) explicit MPC design for this building model is executed based on its state space representation of the supply water temperature (input)/room temperature (output) dynamics. The controllers are subjected to servo tracking and external disturbance (ambient temperature) is provided from the real time data during closed loop control. The control strategies are ported on a PIC32mx series microcontroller platform. The building model is implemented in MATLAB and hardware in loop (HIL) testing of the strategies is executed over a USB port. Results indicate that compared to traditional proportional integral (PI) controllers, the explicit MPC's improve both energy efficiency and thermal comfort significantly. Copyright © 2015 Elsevier Inc. All rights reserved.

  11. Innovation in the U.S. building sector: An assessment of patent citations in building energy control technology

    International Nuclear Information System (INIS)

    Altwies, Joy E.; Nemet, Gregory F.

    2013-01-01

    Buildings are crucial to addressing energy problems because they are large consumers of end-use energy, and potential exists to dramatically improve their efficiencies. However, the pace of innovation in buildings is generally characterized as inadequate, despite the implementation of an array of policy instruments aimed at promoting efficiency. The literature on innovation in the building industry provides several explanations including: fragmented decision-making, principal agent problems, inadequate information, and limited learning across heterogeneous projects. We investigate the innovation process for buildings in the U.S. with a case study of patenting in energy management control systems (EMCS) for commercial buildings and programmable thermostats (PT) for residential buildings. Using U.S. patent data, we find that: (1) patenting activity peaked around 1980, subsequently declined, and then increased considerably in the past decade; (2) commercial, rather than residential, buildings account for the recent increase; and (3) building control technologies have benefitted from inventions originating outside the industry, notably from electronics and computers, with a shift toward the latter in recent years. - Highlights: ► We investigate the innovation process for buildings in the U.S. using patents. ► We use commercial and residential building controls technology as a case study. ► Patenting peaked around 1980, declined, and then increased in the past decade. ► Commercial building control patents account for most of the recent increase. ► Inventions in electronics and computers have led to innovation in building controls.

  12. Transactive Control of Commercial Building HVAC Systems

    Energy Technology Data Exchange (ETDEWEB)

    Corbin, Charles D. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Makhmalbaf, Atefe [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Huang, Sen [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Mendon, Vrushali V. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Zhao, Mingjie [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Somasundaram, Sriram [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Liu, Guopeng [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Ngo, Hung [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Katipamula, Srinivas [Pacific Northwest National Lab. (PNNL), Richland, WA (United States)

    2016-12-30

    This document details the development and testing of market-based transactive controls for building heating, ventilating and air conditioning (HVAC) systems. These controls are intended to serve the purposes of reducing electricity use through conservation, reducing peak building electric demand, and providing demand flexibility to assist with power system operations. This report is the summary of the first year of work conducted under Phase 1 of the Clean Energy and Transactive Campus Project. The methods and techniques described here were first investigated in simulation, and then subsequently deployed to a physical testbed on the Pacific Northwest National Laboratory (PNNL) campus for validation. In this report, we describe the models and control algorithms we have developed, testing of the control algorithms in simulation, and deployment to a physical testbed. Results from physical experiments support previous simulation findings, and provide insights for further improvement.

  13. Distributed dynamic simulations of networked control and building performance applications.

    Science.gov (United States)

    Yahiaoui, Azzedine

    2018-02-01

    The use of computer-based automation and control systems for smart sustainable buildings, often so-called Automated Buildings (ABs), has become an effective way to automatically control, optimize, and supervise a wide range of building performance applications over a network while achieving the minimum energy consumption possible, and in doing so generally refers to Building Automation and Control Systems (BACS) architecture. Instead of costly and time-consuming experiments, this paper focuses on using distributed dynamic simulations to analyze the real-time performance of network-based building control systems in ABs and improve the functions of the BACS technology. The paper also presents the development and design of a distributed dynamic simulation environment with the capability of representing the BACS architecture in simulation by run-time coupling two or more different software tools over a network. The application and capability of this new dynamic simulation environment are demonstrated by an experimental design in this paper.

  14. Energy Conservation in an Office Building Using an Enhanced Blind System Control

    Directory of Open Access Journals (Sweden)

    Edorta Carrascal-Lekunberri

    2017-02-01

    Full Text Available The two spaces office module is usually considered as a representative case-study to analyse the energetic improvement in office buildings. In this kind of buildings, the use of a model predictive control (MPC scheme for the climate system control provides energy savings over 15% in comparison to classic control policies. This paper focuses on the influence of solar radiation on the climate control of the office module under Belgian weather conditions. Considering MPC as main climate control, it proposes a novel distributed enhanced control for the blind system (BS that takes into account part of the predictive information of the MPC. In addition to the savings that are usually achieved by MPC, it adds a potential 15% improvement in global energy use with respect to the usually proposed BS hysteresis control. Moreover, from the simulation results it can be concluded that the thermal comfort is also improved. The proposed BS scheme increases the energy use ratio between the thermally activated building system (TABS and air-handling unit (AHU; therefore increasing the use of TABS and allowing economic savings, due to the use of more cost-effective thermal equipment.

  15. Integrated smart control of heating, cooling, ventilation, daylighting and electrical lighting in buildings

    NARCIS (Netherlands)

    Bakker, L.G.; Brouwer, A.H.M.; Babuska, R.

    1998-01-01

    The present energy consumption of European Buildings is higher than necessary, given the developments in control engineering. Optimization and integration of smart control into building systems can save substantial quantities of energy on a European scale while improving the standards for indoor

  16. Tailored high-resolution numerical weather forecasts for energy efficient predictive building control

    Science.gov (United States)

    Stauch, V. J.; Gwerder, M.; Gyalistras, D.; Oldewurtel, F.; Schubiger, F.; Steiner, P.

    2010-09-01

    The high proportion of the total primary energy consumption by buildings has increased the public interest in the optimisation of buildings' operation and is also driving the development of novel control approaches for the indoor climate. In this context, the use of weather forecasts presents an interesting and - thanks to advances in information and predictive control technologies and the continuous improvement of numerical weather prediction (NWP) models - an increasingly attractive option for improved building control. Within the research project OptiControl (www.opticontrol.ethz.ch) predictive control strategies for a wide range of buildings, heating, ventilation and air conditioning (HVAC) systems, and representative locations in Europe are being investigated with the aid of newly developed modelling and simulation tools. Grid point predictions for radiation, temperature and humidity of the high-resolution limited area NWP model COSMO-7 (see www.cosmo-model.org) and local measurements are used as disturbances and inputs into the building system. The control task considered consists in minimizing energy consumption whilst maintaining occupant comfort. In this presentation, we use the simulation-based OptiControl methodology to investigate the impact of COSMO-7 forecasts on the performance of predictive building control and the resulting energy savings. For this, we have selected building cases that were shown to benefit from a prediction horizon of up to 3 days and therefore, are particularly suitable for the use of numerical weather forecasts. We show that the controller performance is sensitive to the quality of the weather predictions, most importantly of the incident radiation on differently oriented façades. However, radiation is characterised by a high temporal and spatial variability in part caused by small scale and fast changing cloud formation and dissolution processes being only partially represented in the COSMO-7 grid point predictions. On the

  17. An Adaptive Intelligent Integrated Lighting Control Approach for High-Performance Office Buildings

    Science.gov (United States)

    Karizi, Nasim

    An acute and crucial societal problem is the energy consumed in existing commercial buildings. There are 1.5 million commercial buildings in the U.S. with only about 3% being built each year. Hence, existing buildings need to be properly operated and maintained for several decades. Application of integrated centralized control systems in buildings could lead to more than 50% energy savings. This research work demonstrates an innovative adaptive integrated lighting control approach which could achieve significant energy savings and increase indoor comfort in high performance office buildings. In the first phase of the study, a predictive algorithm was developed and validated through experiments in an actual test room. The objective was to regulate daylight on a specified work plane by controlling the blind slat angles. Furthermore, a sensor-based integrated adaptive lighting controller was designed in Simulink which included an innovative sensor optimization approach based on genetic algorithm to minimize the number of sensors and efficiently place them in the office. The controller was designed based on simple integral controllers. The objective of developed control algorithm was to improve the illuminance situation in the office through controlling the daylight and electrical lighting. To evaluate the performance of the system, the controller was applied on experimental office model in Lee et al.'s research study in 1998. The result of the developed control approach indicate a significantly improvement in lighting situation and 1-23% and 50-78% monthly electrical energy savings in the office model, compared to two static strategies when the blinds were left open and closed during the whole year respectively.

  18. Measures for energy efficiency improvement of buildings

    Directory of Open Access Journals (Sweden)

    Vukadinović Ana V.

    2015-01-01

    Full Text Available The increase in energy consumption in buildings causes the need to propose energy efficiency improvement measures. Urban planning in accordance with micro location conditions can lead to energy consumption reduction in buildings through the passive solar design. While satisfying the thermal comfort to the user space purpose, energy efficiency can be achieved by optimizing the architectural and construction parameters such as shape of the building, envelope structure and the percentage of glazing. The improvement of the proposed measures, including the use of renewable energy sources, can meet requirements of Directive 2010/31 / EU of 'nearly zero energy buildings'.

  19. Proactive control for solar energy exploitation: A german high-inertia building case study

    International Nuclear Information System (INIS)

    Michailidis, Iakovos T.; Baldi, Simone; Pichler, Martin F.; Kosmatopoulos, Elias B.; Santiago, Juan R.

    2015-01-01

    Highlights: • Solar gains exploitation by utilizing large glass facades and concrete core thermal energy storing capacity. • Efficient Building Energy Management in a well-insulated modern building construction. • Energy consumption reduction by maintaining user comfort. • High inertia large scale office building test case, located in Germany. - Abstract: Energy efficient passive designs and constructions have been extensively studied in the last decades as a way to improve the ability of a building to store thermal energy, increase its thermal mass, increase passive insulation and reduce heat losses. However, many studies show that passive thermal designs alone are not enough to fully exploit the potential for energy efficiency in buildings: in fact, harmonizing the active elements for indoor thermal comfort with the passive design of the building can lead to further improvements in both energy efficiency and comfort. These improvements can be achieved via the design of appropriate Building Optimization and Control (BOC) systems, a task which is more complex in high-inertia buildings than in conventional ones. This is because high thermal mass implies a high memory, so that wrong control decisions will have negative repercussions over long time horizons. The design of proactive control strategies with the capability of acting in advance of a future situation, rather than just reacting to current conditions, is of crucial importance for a full exploitation of the capabilities of a high-inertia building. This paper applies a simulation-assisted control methodology to a high-inertia building in Kassel, Germany. A simulation model of the building is used to proactively optimize, using both current and future information about the external weather condition and the building state, a combined criterion composed of the energy consumption and the thermal comfort index. Both extensive simulation as well as real-life experiments performed during the unstable German

  20. On the application of multi-agent systems in buildings for improved building operations, performance and smart grid interaction : a survey

    NARCIS (Netherlands)

    Labeodan, T.M.; Aduda, K.O.; Boxem, G.; Zeiler, W.

    2015-01-01

    Toward efforts to improve sustainability of energy supply and to achieve worthwhile reduction in greenhouse gas emissions, in addition to the increased use of renewable energy sources in buildings, more emphasis is being placed on the need for improved control, management and coordination of

  1. Implementation and testing of a fault detection software tool for improving control system performance in a large commercial building

    Energy Technology Data Exchange (ETDEWEB)

    Salsbury, T.I.; Diamond, R.C.

    2000-05-01

    This paper describes a model-based, feedforward control scheme that can detect faults in the controlled process and improve control performance over traditional PID control. The tool uses static simulation models of the system under control to generate feed-forward control action, which acts as a reference of correct operation. Faults that occur in the system cause discrepancies between the feedforward models and the controlled process. The scheme facilitates detection of faults by monitoring the level of these discrepancies. We present results from the first phase of tests on a dual-duct air-handling unit installed in a large office building in San Francisco. We demonstrate the ability of the tool to detect a number of preexisting faults in the system and discuss practical issues related to implementation.

  2. Improving building energy efficiency in India: State-level analysis of building energy efficiency policies

    Energy Technology Data Exchange (ETDEWEB)

    Yu, Sha; Tan, Qing; Evans, Meredydd; Kyle, Page; Vu, Linh; Patel, Pralit L.

    2017-11-01

    India is expected to add 40 billion m2 of new buildings till 2050. Buildings are responsible for one third of India’s total energy consumption today and building energy use is expected to continue growing driven by rapid income and population growth. The implementation of the Energy Conservation Building Code (ECBC) is one of the measures to improve building energy efficiency. Using the Global Change Assessment Model, this study assesses growth in the buildings sector and impacts of building energy policies in Gujarat, which would help the state adopt ECBC and expand building energy efficiency programs. Without building energy policies, building energy use in Gujarat would grow by 15 times in commercial buildings and 4 times in urban residential buildings between 2010 and 2050. ECBC improves energy efficiency in commercial buildings and could reduce building electricity use in Gujarat by 20% in 2050, compared to the no policy scenario. Having energy codes for both commercial and residential buildings could result in additional 10% savings in electricity use. To achieve these intended savings, it is critical to build capacity and institution for robust code implementation.

  3. Shape Control of Responsive Building Envelopes

    DEFF Research Database (Denmark)

    Foged, Isak Worre; Kirkegaard, Poul Henning; Christensen, Jesper Thøger

    2010-01-01

    The present paper considers shape control of adaptive architectural structures for improvement of structural performance by recognizing changes in their environments and loads, adapting to meet goals, and using past events to improve future performance or maintain serviceability. The general scop...... environmental system to a primary structural system joint into a collective behavioral system equipment with an actuator system is presented....... alternatives. The adaptive structure is a proposal for a responsive building envelope which is an idea of a first level operational framework for present and future investigations towards performance based responsive architectures through a set of responsive typologies. A mock-up concept of a secondary...

  4. Reimagining Building Sensing and Control (Presentation)

    Energy Technology Data Exchange (ETDEWEB)

    Polese, L.

    2014-06-01

    Buildings are responsible for 40% of US energy consumption, and sensing and control technologies are an important element in creating a truly sustainable built environment. Motion-based occupancy sensors are often part of these control systems, but are usually altered or disabled in response to occupants' complaints, at the expense of energy savings. Can we leverage commodity hardware developed for other sectors and embedded software to produce more capable sensors for robust building controls? The National Renewable Energy Laboratory's (NREL) 'Image Processing Occupancy Sensor (IPOS)' is one example of leveraging embedded systems to create smarter, more reliable, multi-function sensors that open the door to new control strategies for building heating, cooling, ventilation, and lighting control. In this keynote, we will discuss how cost-effective embedded systems are changing the state-of-the-art of building sensing and control.

  5. Comparison of sensorless dimming control based on building modeling and solar power generation

    International Nuclear Information System (INIS)

    Lee, Naeun; Kim, Jonghun; Jang, Cheolyong; Sung, Yoondong; Jeong, Hakgeun

    2015-01-01

    Artificial lighting in office buildings accounts for about 30% of the total building energy consumption. Lighting energy is important to reduce building energy consumption since artificial lighting typically has a relatively large energy conversion factor. Therefore, previous studies have proposed a dimming control using daylight. When applied dimming control, method based on building modeling does not need illuminance sensors. Thus, it can be applied to existing buildings that do not have illuminance sensors. However, this method does not accurately reflect real-time weather conditions. On the other hand, solar power generation from a PV (photovoltaic) panel reflects real-time weather conditions. The PV panel as the sensor improves the accuracy of dimming control by reflecting disturbance. Therefore, we compared and analyzed two types of sensorless dimming controls: those based on the building modeling and those that based on solar power generation using PV panels. In terms of energy savings, we found that a dimming control based on building modeling is more effective than that based on solar power generation by about 6%. However, dimming control based on solar power generation minimizes the inconvenience to occupants and can also react to changes in solar radiation entering the building caused by dirty window. - Highlights: • We conducted sensorless dimming control based on solar power generation. • Dimming controls using building modeling and solar power generation were compared. • The real time weather conditions can be considered by using solar power generation. • Dimming control using solar power generation minimizes inconvenience to occupants

  6. Moisture Control Guidance for Commercial and Public Buildings (EPA 402-F-13053)

    Science.gov (United States)

    This document provides guidance to designers, construction mangers, and building operation/maintenance managers to improve IEQ and reduce risks of encountering IEQ problems due to insufficient moisture control. EPA will be producing a document entitled "Moisture Control Guida...

  7. Transactive Control of Commercial Buildings for Demand Response

    Energy Technology Data Exchange (ETDEWEB)

    Hao, He; Corbin, Charles D.; Kalsi, Karanjit; Pratt, Robert G.

    2017-01-01

    Transactive control is a type of distributed control strategy that uses market mechanism to engage self-interested responsive loads to achieve power balance in the electrical power grid. In this paper, we propose a transactive control approach of commercial building Heating, Ventilation, and Air- Conditioning (HVAC) systems for demand response. We first describe the system models, and identify their model parameters using data collected from Systems Engineering Building (SEB) located on our Pacific Northwest National Laboratory (PNNL) campus. We next present a transactive control market structure for commercial building HVAC system, and describe its agent bidding and market clearing strategies. Several case studies are performed in a simulation environment using Building Control Virtual Test Bed (BCVTB) and calibrated SEB EnergyPlus model. We show that the proposed transactive control approach is very effective at peak clipping, load shifting, and strategic conservation for commercial building HVAC systems.

  8. Control buildings for blast resistance

    Energy Technology Data Exchange (ETDEWEB)

    Brown, G.A.

    1982-08-01

    Offers advice on interior design for blast-resistant control buildings. Suggests that for the comfort and safety of occupants, special attention must be paid to internal finishes and color schemes. Considers external treatment (e.g. panels, cladding fixings, thermal insulation), air intakes and exhausts, internal finishes (e.g. stud lining method), and internal walls and partitions. Presents diagrams showing construction method for a control building; elimination of ''cold bridge'' at eaves level; staggering door openings to minimize blast effects; and flexure of concrete walls without affecting the inner lining.

  9. Hydronic Heating Retrofits for Low-Rise Multifamily Buildings: Boiler Control Replacement and Monitoring

    Energy Technology Data Exchange (ETDEWEB)

    Dentz, J.; Henderson, H.; Varshney, K.

    2014-09-01

    The ARIES Collaborative, a U.S. Department of Energy Building America research team, partnered with NeighborWorks America affiliate Homeowners' Rehab Inc. (HRI) of Cambridge, Massachusetts, to study improvements to the central hydronic heating system in one of the nonprofit's housing developments. The heating controls in the three-building, 42-unit Columbia Cambridge Alliance for Spanish Tenants housing development were upgraded. Fuel use in the development was excessive compared to similar properties. A poorly insulated thermal envelope contributed to high energy bills, but adding wall insulation was not cost-effective or practical. The more cost-effective option was improving heating system efficiency. Efficient operation of the heating system faced several obstacles, including inflexible boiler controls and failed thermostatic radiator valves. Boiler controls were replaced with systems that offer temperature setbacks and one that controls heat based on apartment temperature in addition to outdoor temperature. Utility bill analysis shows that post-retrofit weather-normalized heating energy use was reduced by 10%-31% (average of 19%). Indoor temperature cutoff reduced boiler runtime (and therefore heating fuel consumption) by 28% in the one building in which it was implemented. Nearly all savings were obtained during night which had a lower indoor temperature cut off (68 degrees F) than day (73 degrees F). This implies that the outdoor reset curve was appropriately adjusted for this building for daytime operation. Nighttime setback of heating system supply water temperature had no discernable impact on boiler runtime or gas bills.

  10. Climate control in cultural heritage buildings in Denmark

    Energy Technology Data Exchange (ETDEWEB)

    Larsen, Poul Klenz [The National Museum, Copenhagen (Denmark). Dept. of Conservation; Brostroem, Tor [Gotland Univ., Visby (Sweden)

    2011-07-01

    Conservation heating has been used for decades to control the RH in cultural heritage buildings. But if the building is not used for living or working, heating is not needed for human comfort. The chemical decay of organic materials depends mainly on temperature, so it is better for preservation to reduce heating. The air exchange rate is related to the design of the building envelope. With rising energy prices humidity control by dehumidification may be an attractive alternative. The potential for energy efficient RH control was examined for a generic building exposed to the monthly average outside temperature and RH in Denmark. The indoor temperature was allowed to follow the outside average, whereas the indoor RH was controlled to 40 % 50 % 60 % or 70 %. Dehumidification was implemented in three different buildings: A recent museum store, a medieval church, and an 18th century country mansion. The energy consumption depends on the RH set point, the air exchange rate and the source of liquid moisture to the building. The air exchange rate related to the design of the building envelope. Single glazed windows and doors are the most important sources of leakage to buildings. Lack of maintenance may lead to poor performance of the dehumidifier and waste energy. (orig.)

  11. Predictive Optimal Control of Active and Passive Building Thermal Storage Inventory

    Energy Technology Data Exchange (ETDEWEB)

    Gregor P. Henze; Moncef Krarti

    2005-09-30

    simple short-term prediction models to realize almost all of the theoretical potential of this control strategy. Further work evaluated the impact of modeling accuracy on the model-based closed-loop predictive optimal controller to minimize utility cost. The following guidelines have been derived: For an internal heat gain dominated commercial building, reasonable geometry simplifications are acceptable without a loss of cost savings potential. In fact, zoning simplification may improve optimizer performance and save computation time. The mass of the internal structure did not show a strong effect on the optimization. Building construction characteristics were found to impact building passive thermal storage capacity. It is thus advisable to make sure the construction material is well modeled. Zone temperature setpoint profiles and TES performance are strongly affected by mismatches in internal heat gains, especially when they are underestimated. Since they are a key factor in determining the building cooling load, efforts should be made to keep the internal gain mismatch as small as possible. Efficiencies of the building energy systems affect both zone temperature setpoints and active TES operation because of the coupling of the base chiller for building precooling and the icemaking TES chiller. Relative efficiencies of the base and TES chillers will determine the balance of operation of the two chillers. The impact of mismatch in this category may be significant. Next, a parametric analysis was conducted to assess the effects of building mass, utility rate, building location and season, thermal comfort, central plant capacities, and an economizer on the cost saving performance of optimal control for active and passive building thermal storage inventory. The key findings are: (1) Heavy-mass buildings, strong-incentive time-of-use electrical utility rates, and large on-peak cooling loads will likely lead to attractive savings resulting from optimal combined thermal

  12. Predictive Solar-Integrated Commercial Building Load Control

    Energy Technology Data Exchange (ETDEWEB)

    Glasgow, Nathan [EdgePower Inc., Aspen, CO (United States)

    2017-01-31

    This report is the final technical report for the Department of Energy SunShot award number EE0007180 to EdgePower Inc., for the project entitled “Predictive Solar-Integrated Commercial Building Load Control.” The goal of this project was to successfully prove that the integration of solar forecasting and building load control can reduce demand charge costs for commercial building owners with solar PV. This proof of concept Tier 0 project demonstrated its value through a pilot project at a commercial building. This final report contains a summary of the work completed through he duration of the project. Clean Power Research was a sub-recipient on the award.

  13. Development of predictive control strategies for building climate control

    OpenAIRE

    NAGPAL, HIMANSHU

    2018-01-01

    APPROVED The rapid growth in energy usage and CO2 emissions has become a critical issue for the whole world. It is noteworthy that buildings are a major contributor to global primary energy consumption. Among building services, use of energy in heating-ventilation-air-conditioning (HVAC) system is particularly significant (about 50\\% of the total building energy consumption). Therefore, the development and implementation of effective control strategies to optimize the operation of HVAC sys...

  14. Method for simulating predictive control of building systems operation in the early stages of building design

    DEFF Research Database (Denmark)

    Petersen, Steffen; Svendsen, Svend

    2011-01-01

    A method for simulating predictive control of building systems operation in the early stages of building design is presented. The method uses building simulation based on weather forecasts to predict whether there is a future heating or cooling requirement. This information enables the thermal...... control systems of the building to respond proactively to keep the operational temperature within the thermal comfort range with the minimum use of energy. The method is implemented in an existing building simulation tool designed to inform decisions in the early stages of building design through...... parametric analysis. This enables building designers to predict the performance of the method and include it as a part of the solution space. The method furthermore facilitates the task of configuring appropriate building systems control schemes in the tool, and it eliminates time consuming manual...

  15. Experimental study on modelling and control of lighting components in a test-cell building

    NARCIS (Netherlands)

    Yahiaoui, Azzedine

    2018-01-01

    The perfect control of shading devices, particularly venetian blinds can significantly improve the rational use of daylight in buildings and provide enhanced visual comfort for occupants while saving the electricity that would be used for artificial lighting. This study proposes a control strategy

  16. Fuzzy comprehensive evaluation of multiple environmental factors for swine building assessment and control.

    Science.gov (United States)

    Xie, Qiuju; Ni, Ji-Qin; Su, Zhongbin

    2017-10-15

    In confined swine buildings, temperature, humidity, and air quality are all important for animal health and productivity. However, the current swine building environmental control is only based on temperature; and evaluation and control methods based on multiple environmental factors are needed. In this paper, fuzzy comprehensive evaluation (FCE) theory was adopted for multi-factor assessment of environmental quality in two commercial swine buildings using real measurement data. An assessment index system and membership functions were established; and predetermined weights were given using analytic hierarchy process (AHP) combined with knowledge of experts. The results show that multi-factors such as temperature, humidity, and concentrations of ammonia (NH 3 ), carbon dioxide (CO 2 ), and hydrogen sulfide (H 2 S) can be successfully integrated in FCE for swine building environment assessment. The FCE method has a high correlation coefficient of 0.737 compared with the method of single-factor evaluation (SFE). The FCE method can significantly increase the sensitivity and perform an effective and integrative assessment. It can be used as part of environmental controlling and warning systems for swine building environment management to improve swine production and welfare. Copyright © 2017 Elsevier B.V. All rights reserved.

  17. Development of a thermal control algorithm using artificial neural network models for improved thermal comfort and energy efficiency in accommodation buildings

    International Nuclear Information System (INIS)

    Moon, Jin Woo; Jung, Sung Kwon

    2016-01-01

    Highlights: • An ANN model for predicting optimal start moment of the cooling system was developed. • An ANN model for predicting the amount of cooling energy consumption was developed. • An optimal control algorithm was developed employing two ANN models. • The algorithm showed the advanced thermal comfort and energy efficiency. - Abstract: The aim of this study was to develop a control algorithm to demonstrate the improved thermal comfort and building energy efficiency of accommodation buildings in the cooling season. For this, two artificial neural network (ANN)-based predictive and adaptive models were developed and employed in the algorithm. One model predicted the cooling energy consumption during the unoccupied period for different setback temperatures and the other predicted the time required for restoring current indoor temperature to the normal set-point temperature. Using numerical simulation methods, the prediction accuracy of the two ANN models and the performance of the algorithm were tested. Through the test result analysis, the two ANN models showed their prediction accuracy with an acceptable error rate when applied in the control algorithm. In addition, the two ANN models based algorithm can be used to provide a more comfortable and energy efficient indoor thermal environment than the two conventional control methods, which respectively employed a fixed set-point temperature for the entire day and a setback temperature during the unoccupied period. Therefore, the operating range was 23–26 °C during the occupied period and 25–28 °C during the unoccupied period. Based on the analysis, it can be concluded that the optimal algorithm with two predictive and adaptive ANN models can be used to design a more comfortable and energy efficient indoor thermal environment for accommodation buildings in a comprehensive manner.

  18. Model-based and model-free “plug-and-play” building energy efficient control

    International Nuclear Information System (INIS)

    Baldi, Simone; Michailidis, Iakovos; Ravanis, Christos; Kosmatopoulos, Elias B.

    2015-01-01

    Highlights: • “Plug-and-play” Building Optimization and Control (BOC) driven by building data. • Ability to handle the large-scale and complex nature of the BOC problem. • Adaptation to learn the optimal BOC policy when no building model is available. • Comparisons with rule-based and advanced BOC strategies. • Simulation and real-life experiments in a ten-office building. - Abstract: Considerable research efforts in Building Optimization and Control (BOC) have been directed toward the development of “plug-and-play” BOC systems that can achieve energy efficiency without compromising thermal comfort and without the need of qualified personnel engaged in a tedious and time-consuming manual fine-tuning phase. In this paper, we report on how a recently introduced Parametrized Cognitive Adaptive Optimization – abbreviated as PCAO – can be used toward the design of both model-based and model-free “plug-and-play” BOC systems, with minimum human effort required to accomplish the design. In the model-based case, PCAO assesses the performance of its control strategy via a simulation model of the building dynamics; in the model-free case, PCAO optimizes its control strategy without relying on any model of the building dynamics. Extensive simulation and real-life experiments performed on a 10-office building demonstrate the effectiveness of the PCAO–BOC system in providing significant energy efficiency and improved thermal comfort. The mechanisms embedded within PCAO render it capable of automatically and quickly learning an efficient BOC strategy either in the presence of complex nonlinear simulation models of the building dynamics (model-based) or when no model for the building dynamics is available (model-free). Comparative studies with alternative state-of-the-art BOC systems show the effectiveness of the PCAO–BOC solution

  19. Climate control in historic buildings in Denmark

    OpenAIRE

    Klenz Larsen, Poul; Broström, Tor

    2011-01-01

    In many historic buildings, conservation heating has been used to control the RH in winter. Heat pumps are much more energy efficient than direct electric heating, so this technology may be adapted for climate control. Dehumidification has not been regarded as appropriate for historic buildings due to poor regulation, but recent development in electronic hygrostats makes this technology an attractive alternative. The annual energy consumption for both control strategies was calculated from st...

  20. The implementation of assessment model based on character building to improve students’ discipline and achievement

    Science.gov (United States)

    Rusijono; Khotimah, K.

    2018-01-01

    The purpose of this research was to investigate the effect of implementing the assessment model based on character building to improve discipline and student’s achievement. Assessment model based on character building includes three components, which are the behaviour of students, the efforts, and student’s achievement. This assessment model based on the character building is implemented in science philosophy and educational assessment courses, in Graduate Program of Educational Technology Department, Educational Faculty, Universitas Negeri Surabaya. This research used control group pre-test and post-test design. Data collection method used in this research were observation and test. The observation was used to collect the data about the disciplines of the student in the instructional process, while the test was used to collect the data about student’s achievement. Moreover, the study applied t-test to the analysis of data. The result of this research showed that assessment model based on character building improved discipline and student’s achievement.

  1. LQG Control of Along-Wind Response of a Tall Building with an ATMD

    Directory of Open Access Journals (Sweden)

    Ki-Pyo You

    2014-01-01

    Full Text Available Modern tall buildings use lighter construction materials that have high strength and less stiffness and are more flexible. Although this results in the improvement of structural safety, excessive wind-induced excitations could lead to occupant discomfort. The optimal control law of a linear quadratic Gaussian (LQG controller with an active tuned mass damper (ATMD is used for reducing the along-wind response of a tall building. ATMD consists of a second mass with optimum parameters for tuning frequency and damping ratio of the tuned mass damper (TMD, under the stationary random load, was used. A fluctuating along-wind load, acting on a tall building, was treated as a stationary Gaussian white noise and was simulated numerically, in the time domain, using the along-wind load spectra proposed by G. Solari in 1993. Using this simulated wind load, it was possible to calculate the along-wind responses of a tall building (with and without the ATMD, using an LQG controller. Comparing the RMS (root mean square response revealed that the numerically simulated along-wind responses, without ATMD, are a good approximation to the closed form response, and that the reduced responses with ATMD and LQG controller were estimated by varying the values of control design parameters.

  2. Innovations in building regulation and control for advancing sustainability in buildings (I)

    NARCIS (Netherlands)

    Meacham, B.; Visscher, H.J.; Meijer, F.M.; Chan, C.; Chan, E.; Laubscher, J.; Neng Kwei Sung, J.; Dodds, B.; Serra, J.; Tenorio, J.A.; Echeverria, J.B.; Sanches-Ostiz, A.

    2014-01-01

    This session brings together policy-makers, government officials, researchers and others to present perspectives on how innovation in building regulation and control, such as performancebased approaches, are currently being used to advance sustainability concepts in buildings, and where and how we

  3. Development and Evaluation of Algorithms to Improve Small- and Medium-Size Commercial Building Operations

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Woohyun [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Katipamula, Srinivas [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Lutes, Robert G. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Underhill, Ronald M. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States)

    2016-10-31

    Small- and medium-sized (<100,000 sf) commercial buildings (SMBs) represent over 95% of the U.S. commercial building stock and consume over 60% of total site energy consumption. Many of these buildings use rudimentary controls that are mostly manual, with limited scheduling capability, no monitoring or failure management. Therefore, many of these buildings are operated inefficiently and consume excess energy. SMBs typically utilize packaged rooftop units (RTUs) that are controlled by an individual thermostat. There is increased urgency to improve the operating efficiency of existing commercial building stock in the U.S. for many reasons, chief among them is to mitigate the climate change impacts. Studies have shown that managing set points and schedules of the RTUs will result in up to 20% energy and cost savings. Another problem associated with RTUs is short-cycling, where an RTU goes through ON and OFF cycles too frequently. Excessive cycling can lead to excessive wear and lead to premature failure of the compressor or its components. The short cycling can result in a significantly decreased average efficiency (up to 10%), even if there are no physical failures in the equipment. Also, SMBs use a time-of-day scheduling is to start the RTUs before the building will be occupied and shut it off when unoccupied. Ensuring correct use of the zone set points and eliminating frequent cycling of RTUs thereby leading to persistent building operations can significantly increase the operational efficiency of the SMBs. A growing trend is to use low-cost control infrastructure that can enable scalable and cost-effective intelligent building operations. The work reported in this report describes three algorithms for detecting the zone set point temperature, RTU cycling rate and occupancy schedule detection that can be deployed on the low-cost infrastructure. These algorithms only require the zone temperature data for detection. The algorithms have been tested and validated using

  4. Homeostasis control of building environment using sensor agent robot

    Science.gov (United States)

    Nagahama, Eri; Mita, Akira

    2012-04-01

    A human centered system for building is demanded to meet variety of needs due to the diversification and maturation of society. Smart buildings and smart houses have been studied to satisfy this demand. However, it is difficult for such systems to respond flexibly to unexpected events and needs that are caused by aging and complicate emotion changes. With this regards, we suggest "Biofied Buildings". The goal for this research is to realize buildings that are safer, more comfortable and more energy-efficient by embedding adaptive functions of life into buildings. In this paper, we propose a new control system for building environments, focused on physiological adaptation, particularly homeostasis, endocrine system and immune system. Residents are used as living sensors and controllers in the control loop. A sensor agent robot is used to acquire resident's discomfort feeling, and to output hormone-like signals to activate devices to control the environments. The proposed system could control many devices without establishing complicated scenarios. Results obtained from some simulations and the demonstration experiments using an LED lighting system showed that the proposed system were able to achieve robust and stable control of environments without complicated scenarios.

  5. Negotiating Rights : Building Coalitions for Improving Maternal ...

    International Development Research Centre (IDRC) Digital Library (Canada)

    Negotiating Rights : Building Coalitions for Improving Maternal Health Services ... the state of maternal health in the country reflects poorly on public health priorities. ... A number of international agencies and civil society organizations are ...

  6. Decentralized Networked Control of Building Structures

    Czech Academy of Sciences Publication Activity Database

    Bakule, Lubomír; Rehák, Branislav; Papík, Martin

    2016-01-01

    Roč. 31, č. 11 (2016), s. 871-886 ISSN 1093-9687 R&D Projects: GA ČR GA13-02149S Institutional support: RVO:67985556 Keywords : decentralized control * networked control * building structures Subject RIV: BC - Control Systems Theory Impact factor: 5.786, year: 2016

  7. Advanced, Integrated Control for Building Operations to Achieve 40% Energy Saving

    Energy Technology Data Exchange (ETDEWEB)

    Lu, Yan; Song, Zhen; Loftness, Vivian; Ji, Kun; Zheng, Sam; Lasternas, Bertrand; Marion, Flore; Yuebin, Yu

    2012-10-15

    We developed and demonstrated a software based integrated advanced building control platform called Smart Energy Box (SEB), which can coordinate building subsystem controls, integrate variety of energy optimization algorithms and provide proactive and collaborative energy management and control for building operations using weather and occupancy information. The integrated control system is a low cost solution and also features: Scalable component based architecture allows to build a solution for different building control system configurations with needed components; Open Architecture with a central data repository for data exchange among runtime components; Extendible to accommodate variety of communication protocols. Optimal building control for central loads, distributed loads and onsite energy resource; uses web server as a loosely coupled way to engage both building operators and building occupants in collaboration for energy conservation. Based on the open platform of SEB, we have investigated and evaluated a variety of operation and energy saving control strategies on Carnegie Mellon University Intelligent Work place which is equipped with alternative cooling/heating/ventilation/lighting methods, including radiant mullions, radiant cooling/heating ceiling panels, cool waves, dedicated ventilation unit, motorized window and blinds, and external louvers. Based on the validation results of these control strategies, they were integrated in SEB in a collaborative and dynamic way. This advanced control system was programmed and computer tested with a model of the Intelligent Workplace's northern section (IWn). The advanced control program was then installed in the IWn control system; the performance was measured and compared with that of the state of the art control system to verify the overall energy savings great than 40%. In addition advanced human machine interfaces (HMI's) were developed to communicate both with building

  8. Transaction-Based Controls for Building-Grid Integration: VOLTTRON™

    Energy Technology Data Exchange (ETDEWEB)

    Akyol, Bora A.; Haack, Jereme N.; Hernandez, George; Katipamula, Srinivas; Widergren, Steven E.

    2015-07-01

    The U.S. Department of Energy’s (DOE’s) Building Technologies Office (BTO) is supporting the development of a “transactional network” concept that supports energy, operational, and financial transactions between building systems (e.g., rooftop units -- RTUs), and the electric power grid using applications, or 'agents', that reside either on the equipment, on local building controllers, or in the Cloud. The transactional network vision is delivered using a real-time, scalable reference platform called VOLTTRON that supports the needs of the changing energy system. VOLTTRON is an agent execution and an innovative distributed control and sensing software platform that supports modern control strategies, including agent-based and transaction-based controls. It enables mobile and stationary software agents to perform information gathering, processing, and control actions.

  9. SUPERVISORY CONTROL FOR PEAK REDUCTION IN COMMERCIAL BUILDINGS WHILE MAINTAINING COMFORT

    Energy Technology Data Exchange (ETDEWEB)

    Nutaro, James J [ORNL; Olama, Mohammed M [ORNL; Kuruganti, Teja [ORNL

    2016-01-01

    This paper describes a supervisory control strategy for limiting peak power demand by small and medium commercial buildings while still meeting the business needs of the occupants. This control strategy has two features that make it relevant to new and existing buildings. First, it is designed to operate with building equipment, such as air conditioning and refrigeration systems, as they are presently installed in most small and medium commercial buildings. Because of this, the supervisory control could be realized as a software-only retrofit to existing building management systems. Second, the proposed control acts as a supervisory management layer over existing control systems, rather than replacing them outright. The primary idea of this approach is that the controls for individual building equipment request energy resources for a control action and the supervisory control examines the requests and decides which control actions to allow while satisfying a limit on peak power demand.

  10. Using Dashboards to Improve Energy and Comfort in Federal Buildings

    Energy Technology Data Exchange (ETDEWEB)

    Lawrence Berkeley National Laboratory; Marini, Kyle; Ghatikar, Girish; Diamond, Richard

    2011-02-01

    Federal agencies are taking many steps to improve the sustainability of their operations, including improving the energy efficiency of their buildings, promoting recycling and reuse of materials, encouraging carpooling and alternative transit schemes, and installing low flow water fixture units are just a few of the common examples. However, an often overlooked means of energy savings is to provide feedback to building users about their energy use through information dashboards connected to a building?s energy information system. An Energy Information System (EIS), broadly defined, is a package of performance monitoring software, data acquisition hardware, and communication systems that is used to collect, store, analyze, and display energy information. At a minimum, the EIS provides the whole-building energy-use information (Granderson 2009a). We define a ?dashboard? as a display and visualization tool that utilizes the EIS data and technology to provide critical information to users. This information can lead to actions resulting in energy savings, comfort improvements, efficient operations, and more. The tools to report analyzed information have existed in the information technology as business intelligence (Few 2006). The dashboard is distinguished from the EIS as a whole, which includes additional hardware and software components to collect and storage data, and analysis for resources and energy management (Granderson 2009b). EIS can be used for a variety of uses, including benchmarking, base-lining, anomaly detection, off-hours energy use evaluation, load shape optimization, energy rate analysis, retrofit and retro-commissioning savings (Granderson 2009a). The use of these EIS features depends on the specific users. For example, federal and other building managers may use anomaly detection to identify energy waste in a specific building, or to benchmark energy use in similar buildings to identify energy saving potential and reduce operational cost. There are

  11. Run-time coupling advanced control software with building simulation environment

    NARCIS (Netherlands)

    Yahiaoui, A.; Hensen, J.L.M.; Soethout, L.L.; Hensen, J.L.M.; Lain, M.

    2004-01-01

    The use of advanced control technologies and intelligence in buildings and infrastructure could make the current high performance system much more efficient and reliable. The integration of advanced control strategies into the building will certainly produce significant results for better building

  12. Improving Automation Routines for Automatic Heating Load Detection in Buildings

    Directory of Open Access Journals (Sweden)

    Stephen Timlin

    2012-11-01

    Full Text Available Energy managers use weather compensation data and heating system cut off routines to reduce heating energy consumption in buildings and improve user comfort. These routines are traditionally based on the calculation of an estimated building load that is inferred from the external dry bulb temperature at any point in time. While this method does reduce heating energy consumption and accidental overheating, it can be inaccurate under some weather conditions and therefore has limited effectiveness. There remains considerable scope to improve on the accuracy and relevance of the traditional method by expanding the calculations used to include a larger range of environmental metrics. It is proposed that weather compensation and automatic shut off routines that are commonly used could be improved notably with little additional cost by the inclusion of additional weather metrics. This paper examines the theoretical relationship between various external metrics and building heating loads. Results of the application of an advanced routine to a recently constructed building are examined, and estimates are made of the potential savings that can be achieved through the use of the routines proposed.

  13. Improving the energy performance of historic buildings with architectural and cultural values

    DEFF Research Database (Denmark)

    Hansen, Ernst Jan de Place

    2017-01-01

    The thermal performance of solid walls of historic buildings can be improved by external or internal insulation. External insulation is preferred from a technical perspective, but is often disregarded as many such buildings have architectural or cultural values leaving internal insulation.......g. improvement of thermal indoor climate. The paper discusses different motivating factors for improving the thermal performance of solid walls in historic buildings with architectural and cultural values. It is argued that internal insulation, provided that it can be done without resulting in critical moisture...... as the only possible solution. As internal insulation is considered a risky way of improving the thermal performance from a moisture perspective, technically feasible solutions are needed. Further, other arguments than energy saving could convince a building owner to carry out internal insulation, e...

  14. Distributed dynamic simulations of networked control and building performance applications

    NARCIS (Netherlands)

    Yahiaoui, Azzedine

    2018-01-01

    The use of computer-based automation and control systems for smart sustainable buildings, often so-called Automated Buildings (ABs), has become an effective way to automatically control, optimize, and supervise a wide range of building performance applications over a network while achieving the

  15. Building Automation and Control Systems and Electrical Distribution Grids: A Study on the Effects of Loads Control Logics on Power Losses and Peaks

    Directory of Open Access Journals (Sweden)

    Salvatore Favuzza

    2018-03-01

    Full Text Available Growing home comfort is causing increasing energy consumption in residential buildings and a consequent stress in urban medium and low voltage distribution networks. Therefore, distribution system operators are obliged to manage problems related to the reliability of the electricity system and, above all, they must consider investments for enhancing the electrical infrastructure. The purpose of this paper is to assess how the reduction of building electricity consumption and the modification of the building load profile, due to load automation, combined with suitable load control programs, can improve network reliability and distribution efficiency. This paper proposes an extensive study on this issue, considering various operating scenarios with four load control programs with different purposes, the presence/absence of local generation connected to the buildings and different external thermal conditions. The study also highlights how different climatic conditions can influence the effects of the load control logics.

  16. IMPROVING TRADITIONAL BUILDING REPAIR CONSTRUCTION QUALITY USING HISTORIC BUILDING INFORMATION MODELING CONCEPT

    Directory of Open Access Journals (Sweden)

    T. C. Wu

    2013-07-01

    Full Text Available In addition to the repair construction project following the repair principles contemplated by heritage experts, the construction process should be recorded and measured at any time for monitoring to ensure the quality of repair. The conventional construction record methods mostly depend on the localized shooting of 2D digital images coupled with text and table for illustration to achieve the purpose of monitoring. Such methods cannot fully and comprehensively record the 3D spatial relationships in the real world. Therefore, the construction records of traditional buildings are very important but cannot function due to technical limitations. This study applied the 3D laser scanning technology to establish a 3D point cloud model for the repair construction of historical buildings. It also broke down the detailed components of the 3D point cloud model by using the concept of the historic building information modeling, and established the 3D models of various components and their attribute data in the 3DGIS platform database. In the construction process, according to the time of completion of each stage as developed on the construction project, this study conducted the 3D laser scanning and database establishment for each stage, also applied 3DGIS spatial information and attribute information comparison and analysis to propose the analysis of differences in completion of various stages for improving the traditional building repair construction quality. This method helps to improve the quality of repair construction work of tangible cultural assets of the world. The established 3DGIS platform can be used as a power tool for subsequent management and maintenance.

  17. A Learning Framework for Control-Oriented Modeling of Buildings

    Energy Technology Data Exchange (ETDEWEB)

    Rubio-Herrero, Javier; Chandan, Vikas; Siegel, Charles M.; Vishnu, Abhinav; Vrabie, Draguna L.

    2018-01-18

    Buildings consume a significant amount of energy worldwide. Several building optimization and control use cases require models of energy consumption which are control oriented, have high predictive capability, imposes minimal data pre-processing requirements, and have the ability to be adapted continuously to account for changing conditions as new data becomes available. Data driven modeling techniques, that have been investigated so far, while promising in the context of buildings, have been unable to simultaneously satisfy all the requirements mentioned above. In this context, deep learning techniques such as Recurrent Neural Networks (RNNs) hold promise, empowered by advanced computational capabilities and big data opportunities. In this paper, we propose a deep learning based methodology for the development of control oriented models for building energy management and test in on data from a real building. Results show that the proposed methodology outperforms other data driven modeling techniques significantly. We perform a detailed analysis of the proposed methodology along dimensions such as topology, sensitivity, and downsampling. Lastly, we conclude by envisioning a building analytics suite empowered by the proposed deep framework, that can drive several use cases related to building energy management.

  18. Method for Cost-Benefit Analysis of Improved Indoor Climate Conditions and Reduced Energy Consumption in Office Buildings

    Directory of Open Access Journals (Sweden)

    Viktoras Dorosevas

    2013-09-01

    Full Text Available Indoor climate affects health and productivity of the occupants in office buildings, yet in many buildings of this type indoor climate conditions are not well-controlled due to insufficient heating or cooling capacity, high swings of external or internal heat loads, improper control or operation of heating, ventilation and air conditioning (HVAC equipment, etc. However, maintenance of good indoor environmental conditions in buildings requires increased investments and possible higher energy consumption. This paper focuses on the relation between investment costs for retrofitting HVAC equipment as well as decreased energy use and improved performance of occupants in office buildings. The cost-benefit analysis implementation algorithm is presented in this paper, including energy survey of the building, estimation of occupants dissatisfied by key indoor climate indicators using questionnaire survey and measurements. Technique for Order Preference by Similarity to Ideal Solution (TOPSIS analysis is used in the proposed method for data processing. A case study of an office building is presented in order to introduce an application example of the proposed method. Results of the study verify the applicability of the proposed algorithm and TOPSIS analysis as a practical tool for office building surveys in order to maximize productivity by means of cost efficient technical building retrofitting solutions.

  19. Reinforcement learning for optimal control of low exergy buildings

    International Nuclear Information System (INIS)

    Yang, Lei; Nagy, Zoltan; Goffin, Philippe; Schlueter, Arno

    2015-01-01

    Highlights: • Implementation of reinforcement learning control for LowEx Building systems. • Learning allows adaptation to local environment without prior knowledge. • Presentation of reinforcement learning control for real-life applications. • Discussion of the applicability for real-life situations. - Abstract: Over a third of the anthropogenic greenhouse gas (GHG) emissions stem from cooling and heating buildings, due to their fossil fuel based operation. Low exergy building systems are a promising approach to reduce energy consumption as well as GHG emissions. They consists of renewable energy technologies, such as PV, PV/T and heat pumps. Since careful tuning of parameters is required, a manual setup may result in sub-optimal operation. A model predictive control approach is unnecessarily complex due to the required model identification. Therefore, in this work we present a reinforcement learning control (RLC) approach. The studied building consists of a PV/T array for solar heat and electricity generation, as well as geothermal heat pumps. We present RLC for the PV/T array, and the full building model. Two methods, Tabular Q-learning and Batch Q-learning with Memory Replay, are implemented with real building settings and actual weather conditions in a Matlab/Simulink framework. The performance is evaluated against standard rule-based control (RBC). We investigated different neural network structures and find that some outperformed RBC already during the learning phase. Overall, every RLC strategy for PV/T outperformed RBC by over 10% after the third year. Likewise, for the full building, RLC outperforms RBC in terms of meeting the heating demand, maintaining the optimal operation temperature and compensating more effectively for ground heat. This allows to reduce engineering costs associated with the setup of these systems, as well as decrease the return-of-invest period, both of which are necessary to create a sustainable, zero-emission building

  20. Transaction-Based Building Controls Framework, Volume 1: Reference Guide

    Energy Technology Data Exchange (ETDEWEB)

    Somasundaram, Sriram [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Pratt, Robert G. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Akyol, Bora A. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Fernandez, Nicholas [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Foster, Nikolas AF [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Katipamula, Srinivas [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Mayhorn, Ebony T. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Somani, Abhishek [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Steckley, Andrew C. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Taylor, Zachary T. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States)

    2014-12-01

    This document proposes a framework concept to achieve the objectives of raising buildings’ efficiency and energy savings potential benefitting building owners and operators. We call it a transaction-based framework, wherein mutually-beneficial and cost-effective market-based transactions can be enabled between multiple players across different domains. Transaction-based building controls are one part of the transactional energy framework. While these controls realize benefits by enabling automatic, market-based intra-building efficiency optimizations, the transactional energy framework provides similar benefits using the same market -based structure, yet on a larger scale and beyond just buildings, to the society at large.

  1. Improving the Learning Process in the Latest Prefabricated School Buildings

    Science.gov (United States)

    Pons, Oriol; Oliva, Josep-Manuel; Maas, Sandra-Ruth

    2010-01-01

    Since 2000 hundreds of school centers have been constructed in Catalonia using industrialized technologies. These centers are modern, useful, educational edifices built using advantageous prefabricated technologies that improve the building process and reduce the environmental impact of the building. This article analyses whether these…

  2. Recent Developments of the Modelica"Buildings" Library for Building Energy and Control Systems

    Energy Technology Data Exchange (ETDEWEB)

    Wetter, Michael; Zuo, Wangda; Nouidui, Thierry Stephane

    2011-04-01

    At the Modelica 2009 conference, we introduced the Buildings library, a freely available Modelica library for building energy and control systems. This paper reports the updates of the library and presents example applications for a range of heating, ventilation and air conditioning (HVAC) systems. Over the past two years, the library has been further developed. The number of HVAC components models has been doubled and various components have been revised to increase numerical robustness.The paper starts with an overview of the library architecture and a description of the main packages. To demonstrate the features of the Buildings library, applications that include multizone airflow simulation as well as supervisory and local loop control of a variable air volume (VAV) system are briefly described. The paper closes with a discussion of the current development.

  3. Building HVAC control knowledge data schema – Towards a unified representation of control system knowledge

    Energy Technology Data Exchange (ETDEWEB)

    Chen, Yan; Treado, Stephen J.; Messner, John I.

    2016-12-01

    Building control systems for Heating, Ventilation, and Air Conditioning (HVAC) play a key role in realizing the functionality and operation of building systems and components. Building Control Knowledge (BCK) is the logic and algorithms embedded throughout building control system. There are different methods to represent the BCK. These methods differ in the selection of BCK representing elements and the format of those elements. There is a lack of standard data schema, for storing, retrieving, and reusing structured BCK. In this study, a modular data schema is created for BCK representation. The data schema contains eleven representing elements, i.e., control module name, operation mode, system schematic, control flow diagram, data point, alarm, parameter, control sequence, function, and programming code. Each element is defined with specific attributes. This data schema is evaluated through a case study demonstration. The demonstration shows a new way to represent the BCK with standard formats.

  4. Large-scale building energy efficiency retrofit: Concept, model and control

    International Nuclear Information System (INIS)

    Wu, Zhou; Wang, Bo; Xia, Xiaohua

    2016-01-01

    BEER (Building energy efficiency retrofit) projects are initiated in many nations and regions over the world. Existing studies of BEER focus on modeling and planning based on one building and one year period of retrofitting, which cannot be applied to certain large BEER projects with multiple buildings and multi-year retrofit. In this paper, the large-scale BEER problem is defined in a general TBT (time-building-technology) framework, which fits essential requirements of real-world projects. The large-scale BEER is newly studied in the control approach rather than the optimization approach commonly used before. Optimal control is proposed to design optimal retrofitting strategy in terms of maximal energy savings and maximal NPV (net present value). The designed strategy is dynamically changing on dimensions of time, building and technology. The TBT framework and the optimal control approach are verified in a large BEER project, and results indicate that promising performance of energy and cost savings can be achieved in the general TBT framework. - Highlights: • Energy efficiency retrofit of many buildings is studied. • A TBT (time-building-technology) framework is proposed. • The control system of the large-scale BEER is modeled. • The optimal retrofitting strategy is obtained.

  5. Modeling and Control of AHUs in Building HVAC Systems

    OpenAIRE

    Liang, Wei

    2014-01-01

    Heating, ventilation and air conditioning (HVAC) is a mechanical system that provides thermal comfort and accepted indoor air quality often instrumented for large-scale buildings. The HVAC system takes a dominant portion of overall building energy consumption and accounts for 50% of the energy used in the U.S. commercial and residential buildings in 2012. The performance and energy saving of building HVAC systems can be significantly improved by the implementation of better and smarter contro...

  6. Implementation of Energy Code Controls Requirements in New Commercial Buildings

    Energy Technology Data Exchange (ETDEWEB)

    Rosenberg, Michael I. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Hart, Philip R. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Hatten, Mike [Solarc Energy Group, LLC, Seattle, WA (United States); Jones, Dennis [Group 14 Engineering, Inc., Denver, CO (United States); Cooper, Matthew [Group 14 Engineering, Inc., Denver, CO (United States)

    2017-03-24

    Most state energy codes in the United States are based on one of two national model codes; ANSI/ASHRAE/IES 90.1 (Standard 90.1) or the International Code Council (ICC) International Energy Conservation Code (IECC). Since 2004, covering the last four cycles of Standard 90.1 updates, about 30% of all new requirements have been related to building controls. These requirements can be difficult to implement and verification is beyond the expertise of most building code officials, yet the assumption in studies that measure the savings from energy codes is that they are implemented and working correctly. The objective of the current research is to evaluate the degree to which high impact controls requirements included in commercial energy codes are properly designed, commissioned and implemented in new buildings. This study also evaluates the degree to which these control requirements are realizing their savings potential. This was done using a three-step process. The first step involved interviewing commissioning agents to get a better understanding of their activities as they relate to energy code required controls measures. The second involved field audits of a sample of commercial buildings to determine whether the code required control measures are being designed, commissioned and correctly implemented and functioning in new buildings. The third step includes compilation and analysis of the information gather during the first two steps. Information gathered during these activities could be valuable to code developers, energy planners, designers, building owners, and building officials.

  7. Co-Simulation of Building Energy and Control Systems with the Building Controls Virtual Test Bed

    Energy Technology Data Exchange (ETDEWEB)

    Wetter, Michael

    2010-08-22

    This article describes the implementation of the Building Controls Virtual Test Bed (BCVTB). The BCVTB is a software environment that allows connecting different simulation programs to exchange data during the time integration, and that allows conducting hardware in the loop simulation. The software architecture is a modular design based on Ptolemy II, a software environment for design and analysis of heterogeneous systems. Ptolemy II provides a graphical model building environment, synchronizes the exchanged data and visualizes the system evolution during run-time. The BCVTB provides additions to Ptolemy II that allow the run-time coupling of different simulation programs for data exchange, including EnergyPlus, MATLAB, Simulink and the Modelica modelling and simulation environment Dymola. The additions also allow executing system commands, such as a script that executes a Radiance simulation. In this article, the software architecture is presented and the mathematical model used to implement the co-simulation is discussed. The simulation program interface that the BCVTB provides is explained. The article concludes by presenting applications in which different state of the art simulation programs are linked for run-time data exchange. This link allows the use of the simulation program that is best suited for the particular problem to model building heat transfer, HVAC system dynamics and control algorithms, and to compute a solution to the coupled problem using co-simulation.

  8. Building Energy Modeling and Control Methods for Optimization and Renewables Integration

    Science.gov (United States)

    Burger, Eric M.

    This dissertation presents techniques for the numerical modeling and control of building systems, with an emphasis on thermostatically controlled loads. The primary objective of this work is to address technical challenges related to the management of energy use in commercial and residential buildings. This work is motivated by the need to enhance the performance of building systems and by the potential for aggregated loads to perform load following and regulation ancillary services, thereby enabling the further adoption of intermittent renewable energy generation technologies. To increase the generalizability of the techniques, an emphasis is placed on recursive and adaptive methods which minimize the need for customization to specific buildings and applications. The techniques presented in this dissertation can be divided into two general categories: modeling and control. Modeling techniques encompass the processing of data streams from sensors and the training of numerical models. These models enable us to predict the energy use of a building and of sub-systems, such as a heating, ventilation, and air conditioning (HVAC) unit. Specifically, we first present an ensemble learning method for the short-term forecasting of total electricity demand in buildings. As the deployment of intermittent renewable energy resources continues to rise, the generation of accurate building-level electricity demand forecasts will be valuable to both grid operators and building energy management systems. Second, we present a recursive parameter estimation technique for identifying a thermostatically controlled load (TCL) model that is non-linear in the parameters. For TCLs to perform demand response services in real-time markets, online methods for parameter estimation are needed. Third, we develop a piecewise linear thermal model of a residential building and train the model using data collected from a custom-built thermostat. This model is capable of approximating unmodeled

  9. Small- and Medium-Sized Commercial Building Monitoring and Controls Needs: A Scoping Study

    Energy Technology Data Exchange (ETDEWEB)

    Katipamula, Srinivas; Underhill, Ronald M.; Goddard, James K.; Taasevigen, Danny J.; Piette, M. A.; Granderson, J.; Brown, Rich E.; Lanzisera, Steven M.; Kuruganti, T.

    2012-10-31

    Buildings consume over 40% of the total energy consumption in the U.S. A significant portion of the energy consumed in buildings is wasted because of the lack of controls or the inability to use existing building automation systems (BASs) properly. Much of the waste occurs because of our inability to manage and controls buildings efficiently. Over 90% of the buildings are either small-size (<5,000 sf) or medium-size (between 5,000 sf and 50,000 sf); these buildings currently do not use BASs to monitor and control their building systems from a central location. According to Commercial Building Energy Consumption Survey (CBECS), about 10% of the buildings in the U.S. use BASs or central controls to manage their building system operations. Buildings that use BASs are typically large (>100,000 sf). Lawrence Berkeley National Laboratory (LBNL), Oak Ridge National Laboratory (ORNL) and Pacific Northwest National Laboratory (PNNL) were asked by the U.S. Department of Energy’s (DOE’s) Building Technologies Program (BTP) to identify monitoring and control needs for small- and medium-sized commercial buildings and recommend possible solutions. This study documents the needs and solutions for small- and medium-sized buildings.

  10. Transmission power control for wireless home and building automation

    NARCIS (Netherlands)

    Bacchiani, C.

    2015-01-01

    Home and building automation can provide significant improvements in comfort and energy efficiency of buildings. However, its diffusion is hindered by the complexity of installation and maintenance. Wireless connectivity can simplify this process, reducing installation time and cost, but it requires

  11. Improving energy performance of school buildings while ensuring indoor air quality ventilation

    Energy Technology Data Exchange (ETDEWEB)

    Becker, Rachel; Goldberger, Itamar [Technion - Israel Institute of Technology, Haifa (Israel). Faculty of Civil and Environmental Engineering, Department of Structural Engineering and Construction Management; Paciuk, Monica [National Building Research Institute, Technion, Haifa (Israel)

    2007-09-15

    Energy conscious design of school buildings, as well as deemed-to-satisfy provisions in a Performance Based Energy Code, should address the problem known as the energy efficiency - thermal comfort - indoor air quality dilemma (EE-TC-IAQ Dilemma). In warm and moderate climates, the large internal heat sources usually found in school buildings prevent achieving thermal comfort without active cooling in summer, but are not sufficient to eliminate the need for heating in winter. Commonly used air-conditioners do not improve air quality, while natural ventilation induces uncontrolled energy losses. In this study, a step by step process was used for the development of deemed-to-satisfy design solutions, which cope with the EE-TC-IAQ Dilemma, for a performance based code. A distinction is made between improving building design variables and improving ventilation schemes. Results indicate that implementation of improved ventilation schemes in an otherwise well designed energy-conscious building result in savings of 28-30% and 17-18% for northern and southern classroom orientations, respectively. (author)

  12. BACnet the global standard for building automation and control networks

    CERN Document Server

    Newman, Michael

    2013-01-01

    BACnet is a data communication protocol for building automation and control systems, developed within ASHRAE in cooperation with ANSI, CEN, and the ISO. This new book, by the original chairman of the BACnet committee, explains how the BACnet protocol manages all basic building functions in a seamless, integrated way. The book explains how BACnet works with all major control systems-including those provided by Honeywell, Siemens, and Johnson Controls, among many others-to manage everything from heating to ventilation to lighting to fire control and alarm systems. BACnet is used today throughout the world for commercial and institutional buildings with complex mechanical and electrical systems. Contractors, architects, building systems engineers, and facilities managers must all be cognizant of BACnet and its applications. With a real "seat at the table," you'll find it easier to understand the intent and use of each of the data sharing techniques, controller requirements, and opportunities for interoperability...

  13. CONTROL OF INDOOR ENVIRONMENTS VIA THE REGULATION OF BUILDING ENVELOPES

    Directory of Open Access Journals (Sweden)

    Mitja Košir

    2011-01-01

    Full Text Available The design of comfortable, healthy and stimulating indoor environments in buildings has a direct impact on the users and on energy consumption, as well as on the wider soci-economic environment of society.The indoor environment of buildings is defined with the formulation of the building envelope, which functions as an interface between the internal and external environments and its users. A properly designed, flexible and adequately controlled building envelope is a starting point in the formulation of a high-quality indoor environment. The systematic treatment of the indoor environment and building envelope from a user’s point of view represents an engineering approach that enables the holistic treatment of buildings, as well as integrated components and systems. The presented division of indoor environment in terms of visual, thermal, olfactory, acoustic and ergonomic sub-environments enables the classification and selection of crucial factors influencing design. This selection and classification can be implemented in the design, as well as in control applications of the building envelope. The implementation of the approach described is demonstrated with an example of an automated control system for the internal environment of an office in the building of the Faculty of Civil and Geodetic Engineering.

  14. Combating the 'Sick Building Syndrome' by Improving Indoor Air Quality

    Directory of Open Access Journals (Sweden)

    Pongchai Nimcharoenwon

    2012-11-01

    Full Text Available Research indicates that many of symptoms attributed to the Sick Building Syndrome in air-conditioned office buildings are a result of considerably reduced negative ions in the internal atmosphere and that replacing the depleted negative ions can improve indoor air quality. This paper describes a method used to develop a formula (DOF-NIL formula for calculating the amount of negative ions to be added to air-conditioned buildings, to improve air quality. The formula enables estimates to be made based on how negative ions in the air are reduced by three main factors namely, Video Display Terminals (VDT; heating, ventilation and air conditioning (HVAC and Building Contents (BC. Calculations for a typical air-conditioned office, are compared with an Air Ion Counter instrument. The results show that the formula, when applied to a typical air-conditioned office, provides an accurate estimate for design purposes. The typical rate of additional negative-ions (ion-generating for a negative ion condition is found to be approximately 12.0 billion ions/hr for at least 4 hour ion-generating.

  15. Fuzzy logic-based advanced on–off control for thermal comfort in residential buildings

    International Nuclear Information System (INIS)

    Kang, Chang-Soon; Hyun, Chang-Ho; Park, Mignon

    2015-01-01

    Highlights: • Fuzzy logic-based advanced on–off control is proposed. • An anticipative control mechanism is implemented by using fuzzy theory. • Novel thermal analysis program including solar irradiation as a factor is developed. • The proposed controller solves over-heating and under-heating thermal problems. • Solar energy compensation method is applied to compensate for the solar energy. - Abstract: In this paper, an advanced on–off control method based on fuzzy logic is proposed for maintaining thermal comfort in residential buildings. Due to the time-lag of the control systems and the late building thermal response, an anticipative control mechanism is required to reduce energy loss and thermal discomfort. The proposed controller is implemented based on an on–off controller combined with a fuzzy algorithm. On–off control was chosen over other conventional control methods because of its structural simplicity. However, because conventional on–off control has a fixed operating range and a limited ability for improvements in control performance, fuzzy theory can be applied to overcome these limitations. Furthermore, a fuzzy-based solar energy compensation algorithm can be applied to the proposed controller to compensate for the energy gained from solar radiation according to the time of day. Simulations were conducted to compare the proposed controller with a conventional on–off controller under identical external conditions such as outdoor temperature and solar energy; these simulations were carried out by using a previously reported thermal analysis program that was modified to consider such external conditions. In addition, experiments were conducted in a residential building called Green Home Plus, in which hydronic radiant floor heating is used; in these experiments, the proposed system performed better than a system employing conventional on–off control methods

  16. Building Energy Management Open Source Software

    Energy Technology Data Exchange (ETDEWEB)

    Rahman, Saifur [Virginia Polytechnic Inst. and State Univ. (Virginia Tech), Blacksburg, VA (United States)

    2017-08-25

    Funded by the U.S. Department of Energy in November 2013, a Building Energy Management Open Source Software (BEMOSS) platform was engineered to improve sensing and control of equipment in small- and medium-sized commercial buildings. According to the Energy Information Administration (EIA), small- (5,000 square feet or smaller) and medium-sized (between 5,001 to 50,000 square feet) commercial buildings constitute about 95% of all commercial buildings in the U.S. These buildings typically do not have Building Automation Systems (BAS) to monitor and control building operation. While commercial BAS solutions exist, including those from Siemens, Honeywell, Johnsons Controls and many more, they are not cost effective in the context of small- and medium-sized commercial buildings, and typically work with specific controller products from the same company. BEMOSS targets small and medium-sized commercial buildings to address this gap.

  17. Caring buildings: user based indoor climate control

    NARCIS (Netherlands)

    Zeiler, W.; Houten, van M.A.

    2007-01-01

    Global warming, caused largely by energy consumption, has become a major problem. In comfort control strategy there is an exciting development based on inclusive design: the user's preferences and their behaviour have become central in the building services control strategy. Synergy between end-user

  18. Energy-Efficient and Comfortable Buildings through Multivariate Integrated Control (ECoMIC)

    Energy Technology Data Exchange (ETDEWEB)

    Birru, Dagnachew [Philips Electronics North America Corporation, Andover, MA (United States); Wen, Yao-Jung [Philips Electronics North America Corporation, Andover, MA (United States); Rubinstein, Francis M. [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States); Clear, Robert D. [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States)

    2013-10-28

    This project aims to develop an integrated control solution for enhanced energy efficiency and user comfort in commercial buildings. The developed technology is a zone-based control framework that minimizes energy usage while maintaining occupants’ visual and thermal comfort through control of electric lights, motorized venetian blinds and thermostats. The control framework is designed following a modular, scalable and flexible architecture to facilitate easy integration with exiting building management systems. The control framework contains two key algorithms: 1) the lighting load balancing algorithm and 2) the thermostat control algorithm. The lighting load balancing algorithm adopts a model-based closed-loop control approach to determine the optimal electric light and venetian blind settings. It is formulated into an optimization problem with minimizing lighting-related energy consumptions as the objective and delivering adequate task light and preventing daylight glare as the constraints. The thermostat control algorithm is based on a well-established thermal comfort model and formulated as a root-finding problem to dynamically determine the optimal thermostat setpoint for both energy savings and improved thermal comfort. To address building-wide scalability, a system architecture was developed for the zone-based control technology. Three levels of services are defined in the architecture: external services, facility level services and zone level services. The zone-level service includes the control algorithms described above as well as the corresponding interfaces, profiles, sensors and actuators to realize the zone controller. The facility level services connect to the zones through a backbone network, handle supervisory level information and controls, and thus facilitate building-wide scalability. The external services provide communication capability to entities outside of the building for grid interaction and remote access. Various aspects of the

  19. Management Model for efficient quality control in new buildings

    Directory of Open Access Journals (Sweden)

    C. E. Rodríguez-Jiménez

    2017-09-01

    Full Text Available The management of the quality control of each building process is usually set up in Spain from different levels of demand. This work tries to obtain a model of reference, to compare the quality control of the building process of a specific product (building, and to be able to evaluate its warranty level. In the quest of this purpose, we take credit of specialized sources and 153 real cases of Quality Control were carefully revised using a multi-judgment method. Applying different techniques to get a specific valuation (impartial of the input parameters through Delphi’s method (17 experts query, whose matrix treatment with the Fuzzy-QFD tool condenses numerical references through a weighted distribution of the selected functions and their corresponding conditioning factors. The model thus obtained (M153 is useful in order to have a quality control reference to meet the expectations of the quality.

  20. Test report - 241-AN-274 Caustic Pump Control Building

    International Nuclear Information System (INIS)

    Paintner, G.P.

    1995-05-01

    This Acceptance Test Report documents the test results of test procedure WHC-SD-WM-ATP-135 'Acceptance Test Procedure for the 241-AN- 274 Caustic Pump Control Building.' The objective of the test was to verify that the 241-AN-274 Caustic Pump Control Building functions properly based on design specifications per applicable H-2-85573 drawings and associated ECN's. The objective of the test was met

  1. Improvements in the order, isotropy and electron density of glypican-1 crystals by controlled dehydration

    Energy Technology Data Exchange (ETDEWEB)

    Awad, Wael [Lund University, Box 124, 221 00 Lund (Sweden); Cairo University, Cairo (Egypt); Svensson Birkedal, Gabriel [Lund University, Biomedical Center A13, 221 84 Lund (Sweden); Thunnissen, Marjolein M. G. M. [Lund University, Box 124, 221 00 Lund (Sweden); Lund University, Box 188, 221 00 Lund (Sweden); Mani, Katrin [Lund University, Biomedical Center A13, 221 84 Lund (Sweden); Logan, Derek T., E-mail: derek.logan@biochemistry.lu.se [Lund University, Box 124, 221 00 Lund (Sweden)

    2013-12-01

    The anisotropy of crystals of glypican-1 was significantly reduced by controlled dehydration using the HC1 device, allowing the building of previously disordered parts of the structure. The use of controlled dehydration for improvement of protein crystal diffraction quality is increasing in popularity, although there are still relatively few documented examples of success. A study has been carried out to establish whether controlled dehydration could be used to improve the anisotropy of crystals of the core protein of the human proteoglycan glypican-1. Crystals were subjected to controlled dehydration using the HC1 device. The optimal protocol for dehydration was developed by careful investigation of the following parameters: dehydration rate, final relative humidity and total incubation time T{sub inc}. Of these, the most important was shown to be T{sub inc}. After dehydration using the optimal protocol the crystals showed significantly reduced anisotropy and improved electron density, allowing the building of previously disordered parts of the structure.

  2. A two-factor method for appraising building renovation and energy efficiency improvement projects

    International Nuclear Information System (INIS)

    Martinaitis, Vytautas; Kazakevicius, Eduardas; Vitkauskas, Aloyzas

    2007-01-01

    The renovation of residential buildings usually involves a variety of measures aiming at reducing energy and building maintenance bills, increasing safety and market value, and improving comfort and aesthetics. A significant number of project appraisal methods in current use-such as calculations of payback time, net present value, internal rate of return or cost of conserved energy (CCE)-only quantify energy efficiency gains. These approaches are relatively easy to use, but offer a distorted view of complex modernization projects. On the other hand, various methods using multiple criteria take a much wider perspective but are usually time-consuming, based on sometimes uncertain assumptions and require sophisticated tools. A 'two-factor' appraisal method offers a compromise between these two approaches. The main idea of the method is to separate investments into those related to energy efficiency improvements, and those related to building renovation. Costs and benefits of complex measures, which both influence energy consumption and improve building constructions, are separated by using a building rehabilitation coefficient. The CCE is used for the appraisal of energy efficiency investments, while investments in building renovation are appraised using standard tools for the assessment of investments in maintenance, repair and rehabilitation

  3. On the study of a sick building: the case of Athens Air Traffic Control Tower

    Energy Technology Data Exchange (ETDEWEB)

    Assimakopoulos, V.D.; Helmis, C.G. [Department of Applied Physics, University of Athens, Athens (Greece)

    2004-07-01

    It is well known that in many cases the responsibility for the formation of the sick-building syndrome lies with the inappropriate envelope design, the misuse of the building by the inhabitants and the combination of indoor-outdoor pollution sources. In the case of Athens Air Traffic Control Tower (ATCT), sick syndrome episodes were reported by the employees. In the present study, recently obtained indoor air quality measurements, during selected meteorological conditions, taken in the ATCT, are presented and discussed. These include concentrations of volatile organic compounds (VOCs), which in many cases were thought responsible for the poor indoor environment. The measurements cover the indoor and outdoor environment of selected building regions, the ventilation systems and the plenum under the floor. The data indicates that there are certain places in the building where the VOCs concentrations were well above outdoor levels, while in others the concentrations were lower. Further analysis of the results showed that the central ventilation system is not sufficient for the building needs and that in some areas, either due to cleaning negligence or to the construction material used, VOCs pollution sources have developed. In order to eliminate these problems and to improve the indoor environment certain actions were taken. Following these interventions a second set of measurements were collected, inside and outside the ATCT building, which indicated a substantial improvement of the indoor air quality. (author)

  4. Passive hygrothermal control of a museum storage building in Vejle

    DEFF Research Database (Denmark)

    Christensen, Jørgen Erik; Janssen, Hans

    2010-01-01

    and maintenance costs are currently motivating a paradigm change toward passive control. Passive control, via the thermal and hygric inertia of the building, is gaining a foothold in the museum conservation and building physical community. In this report we document the hygrothermal performance optimisation...... of a museum storage building, related to an existing storage centre in Vejle (Denmark). The current building design already incorporates passive control concepts: thermal inertia is provided by the thick walls, the ground floor and its underlying soil volume, while hygric inertia is provided by the thick...... with the thermal inertia of the ground and thus a higher temperature variation; For those reasons, more heavily insulated walls and roofs could be considered. Their effects on the interior climate and dehumidification load are however not that large. For the floor, no insulation should be added, and it could...

  5. Automatic Energy Control And Monitoring System For Building

    Directory of Open Access Journals (Sweden)

    Hnin Nu Thaung

    2015-08-01

    Full Text Available The use of smart home technology in the home or building offers significant potential for energy savings. In this paper an energy management system based on wireless sensor networks. The proposed system is composed of two main components a wireless sensor network and monitoring terminal. Wireless sensors are used for sensing and transmitting electricity data and remote monitoring and control of appliances are provided to users through computer. The system enables users to save energy by monitoring and controlling appliances through terminal. This paper gives an overview of sensor technology and wireless networks in the development of an intelligent energy management system for buildings. This technology has ample potential to change the way live and work. ZigBee is used as a communication medium in building intelligent energy management system in this paper. From the prototype setup it is shown that ZigBee is a suitable technology to be adopted as the communication infrastructure in energy management system for buildings .The proposed system can be installed and maintained in residential environments with ease.

  6. Driving forces and barriers to improved energy performance of buildings: an analysis of energy performance of Swedish buildings, 2000-2006

    Energy Technology Data Exchange (ETDEWEB)

    Fuglseth, Bente Beckstroem

    2008-06-15

    The building sector is responsible for a substantial part of energy use and green house gas emissions in Europe. This report explores driving forces and barriers to improved energy performance of buildings, using the Swedish building sector as a case. The development of energy performance of buildings in Sweden from 2000 until 2006 is explored by applying a threefold understanding of energy performance of buildings: substitution from fossil fuels to renewable energy, conversion from electrical heating to thermal energy and reduction in energy demand. Three explanatory approaches are used to analyse driving forces and barriers to improved energy performance: the techno-economic approach stresses the physical aspects of infrastructure and technologies, the institutional approach emphasizes the role of institutional factors, while the regulative approach focuses on formal rules and laws. The study concludes that all factors have promoted substitution of fossil fuels with renewable energy, while they have prevented conversion from electrical heating to thermal energy and reduction in energy demand. (author). 95 refs

  7. PROCESS VARIABILITY REDUCTION THROUGH STATISTICAL PROCESS CONTROL FOR QUALITY IMPROVEMENT

    Directory of Open Access Journals (Sweden)

    B.P. Mahesh

    2010-09-01

    Full Text Available Quality has become one of the most important customer decision factors in the selection among the competing product and services. Consequently, understanding and improving quality is a key factor leading to business success, growth and an enhanced competitive position. Hence quality improvement program should be an integral part of the overall business strategy. According to TQM, the effective way to improve the Quality of the product or service is to improve the process used to build the product. Hence, TQM focuses on process, rather than results as the results are driven by the processes. Many techniques are available for quality improvement. Statistical Process Control (SPC is one such TQM technique which is widely accepted for analyzing quality problems and improving the performance of the production process. This article illustrates the step by step procedure adopted at a soap manufacturing company to improve the Quality by reducing process variability using Statistical Process Control.

  8. A Retrofit Tool for Improving Energy Efficiency of Commercial Buildings

    Energy Technology Data Exchange (ETDEWEB)

    Levine, Mark; Feng, Wei; Ke, Jing; Hong, Tianzhen; Zhou, Nan

    2013-06-06

    Existing buildings will dominate energy use in commercial buildings in the United States for three decades or longer and even in China for the about two decades. Retrofitting these buildings to improve energy efficiency and reduce energy use is thus critical to achieving the target of reducing energy use in the buildings sector. However there are few evaluation tools that can quickly identify and evaluate energy savings and cost effectiveness of energy conservation measures (ECMs) for retrofits, especially for buildings in China. This paper discusses methods used to develop such a tool and demonstrates an application of the tool for a retrofit analysis. The tool builds on a building performance database with pre-calculated energy consumption of ECMs for selected commercial prototype buildings using the EnergyPlus program. The tool allows users to evaluate individual ECMs or a package of ECMs. It covers building envelope, lighting and daylighting, HVAC, plug loads, service hot water, and renewable energy. The prototype building can be customized to represent an actual building with some limitations. Energy consumption from utility bills can be entered into the tool to compare and calibrate the energy use of the prototype building. The tool currently can evaluate energy savings and payback of ECMs for shopping malls in China. We have used the tool to assess energy and cost savings for retrofit of the prototype shopping mall in Shanghai. Future work on the tool will simplify its use and expand it to cover other commercial building types and other countries.

  9. Controllable outrigger damping system for high rise building with MR dampers

    Science.gov (United States)

    Wang, Zhihao; Chang, Chia-Ming; Spencer, Billie F., Jr.; Chen, Zhengqing

    2010-04-01

    A novel energy dissipation system that can achieve the amplified damping ratio for a frame-core tube structures is explored, where vertical dampers are equipped between the outrigger and perimeter columns. The modal characteristics of the structural system with linear viscous dampers are theoretically analyzed from the simplified finite element model by parametric analysis. The result shows that modal damping ratios of the first several modes can increase a lot with this novel damping system. To improve the control performance of system, the semi-active control devices, magnetorheological (MR) dampers, are adopted to develop a controllable outrigger damping system. The clipped optimal control with the linear-quadratic Gaussian (LQG) acceleration feedback is adopted in this paper. The effectiveness of both passive and semi-active control outrigger damping systems is evaluated through the numerical simulation of a representative tall building subjected to two typical earthquake records.

  10. Challenges in Improving Customer Focus in Small-Sized House-building Companies in Brazil

    Directory of Open Access Journals (Sweden)

    Carlos T. Formoso

    2006-12-01

    Full Text Available Some important changes in the business environment in several countries are forcing house-building companies to change their competitive strategies. This paper discusses a set of customer servicing practices, which have been adopted by small-sized house-building companies in Brazil that have been involved in quality management improvement programs, emphasizing customer satisfaction measurement. Such practices are referred to a model of the customer servicing process that integrates the main customer-interaction functions from product inception to building operation. Based on multiple case studies and also on a literature review, the main difficulties faced by this sector in terms of improving customer satisfaction are discussed and some improvement opportunities are pointed out.

  11. Optically controlled three-dimensional assembly of microfabricated building blocks

    DEFF Research Database (Denmark)

    Rodrigo, Peter John; Kelemen, Lorand; Palima, Darwin

    2009-01-01

    We demonstrate a system for constructing reconfigurable microstructures using multiple, real-time configurable counterpropagating-beam traps. We optically assemble geometrically complementary microstructures with complex three-dimensional (3D) topologies produced by two-photon polymerization....... This demonstrates utilization of controllable 3D optical traps for building hierarchical structures from microfabricated building blocks. Optical microassembly with translational and tip-tilt control in 3D achieved by dynamic multiple CB traps can potentially facilitate the construction of functional microdevices...... and may also lead to the future realization of optically actuated micromachines. Fabricating morphologically complex microstructures and then optically manipulating these archetypal building blocks can also be used to construct reconfigurable microenvironments that can aid in understanding cellular...

  12. Building new hospitals: a UK infection control perspective.

    Science.gov (United States)

    Stockley, J M; Constantine, C E; Orr, K E

    2006-03-01

    Infection control input is vital throughout the planning, design and building stages of a new hospital project, and must continue through the commissioning (and decommissioning) process, evaluation and putting the facility into full clinical service. Many hospitals continue to experience problems months or years after occupying the new premises; some of these could have been avoided by infection control involvement earlier in the project. The importance of infection control must be recognized by the chief executive of the hospital trust and project teams overseeing the development. Clinical user groups and contractors must also be made aware of infection control issues. It is vital that good working relationships are built up between the infection control team (ICT) and all these parties. ICTs need the authority to influence the process. This may require their specific recognition by the Private Finance Initiative National Unit, the Department of Health or other relevant authorities. ICTs need training in how to read design plans, how to write effective specifications, and in other areas with which they may be unfamiliar. The importance of documentation and record keeping is paramount. External or independent validation of processes should be available, particularly in commissioning processes. Building design in relation to infection control needs stricter national regulations, allowing ICTs to focus on more local usage issues. Further research is needed to provide evidence regarding the relationship between building design and the prevalence of infection.

  13. Improving the Green Building Evaluation System in China Based on the DANP Method

    Directory of Open Access Journals (Sweden)

    Qi-Gan Shao

    2018-04-01

    Full Text Available Against the background of sustainable development, green building practices could be part of the strategy for solving environmental and energy problems in developing countries. The aim of this paper is to explore a system for the assessment of green buildings in China that provides the government and stakeholders with ways to improve their strategies for green building development. We apply a hybrid model, developed by integrating the Decision-Making Trial and Evaluation Laboratory and Analytical Network Process (called DANP method, to build an influential network relationship map (INRM between assessment systems and to derive the criterion weights. The INRM and derived weights can help us to understand this complex assessment system and to set improvement priorities for green building development. The results demonstrate that indoor environment, materials, and smart facilities are the top three critical factors for green building evaluation. Finally, we discuss some management implications based on an actual case study with solutions provided using this model.

  14. Network Based Building Lighting Design and Fuzzy Logic via Remote Control

    Directory of Open Access Journals (Sweden)

    Cemal YILMAZ

    2009-02-01

    Full Text Available In this paper, a network based building lighting system is implemented. Profibus-DP network structure is used in the design and Fuzzy Logic Controller (FLC is used on control of the building lighting. Informations received from sensors which measures level of the building illumination is used on FLC and they are transferred to the system by Profibus-DP network. Control of lighting luminaries are made via Profibus-DP network. The illuminance inside the bulding is fitted required level. Energy saving and healthy lighting facilities have been obtained by the design.

  15. Market-oriented Programming Using Small-world Networks for Controlling Building Environments

    Science.gov (United States)

    Shigei, Noritaka; Miyajima, Hiromi; Osako, Tsukasa

    The market model, which is one of the economic activity models, is modeled as an agent system, and applying the model to the resource allocation problem has been studied. For air conditioning control of building, which is one of the resource allocation problems, an effective method based on the agent system using auction has been proposed for traditional PID controller. On the other hand, it has been considered that this method is performed by decentralized control. However, its decentralization is not perfect, and its performace is not enough. In this paper, firstly, we propose a perfectly decentralized agent model and show its performance. Secondly, in order to improve the model, we propose the agent model based on small-world model. The effectiveness of the proposed model is shown by simulation.

  16. Modeling, Estimation and Control of Indoor Climate in Livestock Buildings

    DEFF Research Database (Denmark)

    Wu, Zhuang

    The main objective of this research is to design an efficient control system for the indoor climate of a large-scale partition-less livestock building, in order to maintain a healthy, comfortable and economically energy consuming indoor environment for the agricultural animals and farmers. In thi...... scale livestock buildings, and could be considered as an alternative solution to the current used decentralized PID controller.......The main objective of this research is to design an efficient control system for the indoor climate of a large-scale partition-less livestock building, in order to maintain a healthy, comfortable and economically energy consuming indoor environment for the agricultural animals and farmers....... With necessary assumptions and simplifications, the dominant air flow distributions are investigated and the phenomenon of horizontal variations is well depicted. The designed entire control system consists of an outer feedback closed-loop dynamic controller and an inner feed-forward redundancy optimization...

  17. Building control. Technical building systems: Automation and management; Building Control. Technische Gebaeudesysteme: Automation und Bewirtschaftung

    Energy Technology Data Exchange (ETDEWEB)

    Kranz, H.R.; Baenninger, M.; Bieler, P.; Brettschneider, J.P.; Damnig, A.; Fassbender, H.W.; Friedrichs, K.; Gauchel, J.; Hegewald, B.; Kaelin, W.; Lezius, A.; Markert, H.; Oehler, A.; Otto, J.; Puettmer, M. Jr.; Rohrbacher, H.; Schuerdt, K.; Vogt, D.; Wittling, J.

    1995-12-31

    Cost-optimised management and maintenance of buildings can no longer be carried out without electronic data processing. The present anthology gives a comprehensive overview of the planning and operation of building automation systems. The following topics are discussed: ecological cooling and facade concepts, facility management, jeopardy alarm technology, building automation, communication technology, open communication and networks, building system technology, norms and directives, building right and law. A special abstract has been prepared for each of the 23 chapters. (BWI). 260 figs., 161 refs. [Deutsch] Kostenoptimiertes Management, Bewirtschaftung und Instandhaltung von Gebaeuden sind ohne EDV nicht mehr denkbar. Das vorliegende Buch gibt einen umfassenden Ueberblick ueber Planung und Betrieb von Gebaeudeautomationssystemen. Es wird dabei auf folgende Themenkomplexe eingegangen: Oekologische Kuehl- und Fassadenkonzepte; Facility Management, Gefahrenmeldetechnik, Gebaeudeautomation; Kommunikationstechnik, offenen Kommunikation und Netzwerke; Gebaeudesystemtechnik und Installationsbus; Energiemanagement; Betreibererfahrungen; Normen und Richtlinien; Baurecht und Gesetz. Fuer alle 23 Einzelkapitel wurde eine gesonderte inhaltliche Erschliessung durchgefuehrt. (BWI)

  18. Building control automation for retirement homes :a therapeutic opportunity for the elderly

    OpenAIRE

    Avila, Melinda Plaza

    1993-01-01

    The therapeutic opportunity for the elderly due to building control automation use in a retirement home was investigated. Previous research suggests that a basic understanding of elderly functional needs and building control automation capabilities is required Ifn order to secure the opportunity for maintaining existing elderly functional abilities. This study explores the extent to which building control automation can be applied in retirement homes. The research questions gen...

  19. Reserve-building activities in multiple sclerosis patients and healthy controls: a descriptive study.

    Science.gov (United States)

    Schwartz, Carolyn E; Ayandeh, Armon; Ramanathan, Murali; Benedict, Ralph; Dwyer, Michael G; Weinstock-Guttman, Bianca; Zivadinov, Robert

    2015-08-12

    Cognitive reserve has been implicated as a possible protective factor in multiple sclerosis (MS) but to date no study has compared reserve-building activities across disease course or to healthy controls. This study aims to describe differences in reserve-building activities across the MS disease course and healthy controls. Secondary analysis of a cross-sectional cohort study that included 276 healthy controls, and subjects with clinically isolated syndrome (CIS; n = 67), relapsing-remitting MS (RRMS; n = 358) and secondary progressive MS (PMS; n = 109). Past reserve-building activities were operationalized as occupational attainment and education. Current activities comprised 6 strenuous and 6 non-strenuous activities, including 5 reserve-building activities and television-watching. Multivariate Analysis of Variance models examined group differences in past and current activities, after adjusting for covariates. There were group differences in past and current reserve-building activities. SPMS patients had lower past reserve-building activities than healthy controls. All forms of MS engaged in fewer strenuous current reserve-building pursuits than healthy controls. RRMS read less than healthy controls. SPMS engaged in fewer job-related non-strenuous activities. All MS groups watched more television than healthy controls. MS patients show significantly fewer past and present reserve-building activities. Although it is difficult to establish causality without future prospective studies, lifestyle-modifying interventions should prioritize expanding MS patients' repertoire of strenuous and non-strenuous activities.

  20. Risk management in architectural design control of uncertainty over building use and maintenance

    CERN Document Server

    Martani, Claudio

    2015-01-01

    This book analyzes the risk management process in relation to building design and operation and on this basis proposes a method and a set of tools that will improve the planning and evaluation of design solutions in order to control risks in the operation and management phase. Particular attention is paid to the relationship between design choices and the long-term performance of buildings in meeting requirements expressing user and client needs. A risk dashboard is presented as a risk measurement framework that identifies and addresses areas of uncertainty surrounding the satisfaction of particularly relevant requirements over time. This risk dashboard will assist both designers and clients. It will support designers by enabling them to improve the maintainability of project performance and will aid clients both in devising a brief that emphasizes the most relevant aspects of maintainability and in evaluating project proposals according to long-term risks. The results of assessment of the proposed method and...

  1. “Team Building: Proven Strategies for Improving Team Performance, 4th Edition”

    Directory of Open Access Journals (Sweden)

    Greg Homan

    2008-12-01

    Full Text Available Team Building is an important issue for Youth Development professionals. We utilize team-focused work to achieve our objectives in educating youth. The team building skills we integrate into programming serve to prepare youth for the dynamic, highly interpersonal work environment of today. “Team Building: Proven Strategies for Improving Team Performance, 4th Edition,” by W. Dyer, W.G. Dyer, and J. Dyer (2007, provides a practical theoretical framework for those interested in team building application, training, and practice in everyday work.

  2. Fuzzy logic control of air-conditioning system in residential buildings

    Directory of Open Access Journals (Sweden)

    Abdel-Hamid Attia

    2015-09-01

    Full Text Available There has been a rising concern in reducing the energy consumption in building. Heating ventilation and air condition system is the biggest consumer of energy in building. In this study, fuzzy logic control of the air conditioning system of building for efficient energy operation and comfortable environment is investigated. A theoretical model of the fan coil unit (FCU and the heat transfer between air and coolant fluid is derived. The controlled variables are the room temperature and relative humidity and control consequents are the percentage of chilled and hot water flow rates at summer and the percentage of hot water and steam injected flow rates at winter. A computer simulation has been conducted and fuzzy control results are compared with that of conventional Proportional-Integral-Derivative control. It was found that the proposed control strategy satisfies the space load and at the same time to achieve the comfort zone, as defined by the ASHRAE code. Meanwhile PID control fails to adjust the room temperature at part-load operations. It has been demonstrated that fuzzy controller operation is more efficient and consumes less energy than PID control.

  3. Economic analysis of the daylight-linked lighting control system in office buildings

    Energy Technology Data Exchange (ETDEWEB)

    Yang, In-Ho; Nam, Eun-Ji [Department of Architectural Engineering, College of Engineering, Dongguk University, 26-3, Pil-dong, Chung-gu, Seoul 100-715 (Korea)

    2010-08-15

    The objective of this study is to perform an economic analysis of the daylight-linked automatic on/off lighting control system installed for the purpose of energy savings in office buildings. For this, a building was chosen as a typical example, and the energy cost was calculated by using the daylight and building energy analysis simulation. When the lighting control was utilized, an economic analysis was performed using a payback period that was calculated by comparing the initial cost of installing the lighting control system with the annual energy cost which was reduced thanks to the application of the lighting control. The results showed that the lighting energy consumption, when the lighting control was applied, was reduced by an average of 30.5% compared with the case that there was not lighting control applied. Also, the result for total energy consumption showed that, when lighting control was applied, this was reduced by 8.5% when the glazing ratio was 100%, 8.2% for 80%, and 7.6% for 60% when compared to non-application. The payback period was analyzed in terms of the number of floors in a building; 10 floors, 20 floors, 30 floors, and 40 floors. Hence, the building with 40 floors and glazing ratio 100% resulted in the shortest payback period of 8.8 years, the building with 10 floors and glazing ratio 60% resulted in the longest period of 12.7 years. In other words, the larger the glazing ratio and the number of building floors are, the shorter the payback period is. (author)

  4. Improvement of energy performances of existing buildings by application of solar thermal systems

    Directory of Open Access Journals (Sweden)

    Krstić-Furundžić Aleksandra

    2009-01-01

    Full Text Available Improvement of energy performances of the existing buildings in the suburban settlement Konjarnik in Belgrade, by the application of solar thermal systems is the topic presented in this paper. Hypothetical models of building improvements are created to allow the benefits of applying solar thermal collectors to residential buildings in Belgrade climate conditions to be estimated. This case study presents different design variants of solar thermal collectors integrated into a multifamily building envelope. The following aspects of solar thermal systems integration are analyzed in the paper: energy, architectural, ecological and economic. The results show that in Belgrade climatic conditions significant energy savings and reduction of CO2 emissions can be obtained with the application of solar thermal collectors.

  5. Improvement of methods for calculation of sound insulation in buildings

    OpenAIRE

    Mašović, Draško B.

    2015-01-01

    The main object of this work are the methods for calculation of sound insulation based on the classical model of sound propagation in buildings and single-number rating of sound insulation. The aim of the work is inspection of the possibilities for improvement of standard methods for quantification and calculation of sound insulation, in order to achieve higher accuracy of the obtained numerical values and their correlation with subjective impression of the acoustic comfort in buildings. Proc...

  6. Building envelope regulations on thermal comfort in glass facade buildings and energy-saving potential for PMV-based comfort control

    Energy Technology Data Exchange (ETDEWEB)

    Hwang, Ruey-Lung; Shu, Shiu-Ya [Department of Architecture, National United University, 1, Lien-Da, Kung-Ching Li, Miaoli, 36003 (China)

    2011-04-15

    This paper presents an investigation of the effect of building envelope regulation on thermal comfort and on the energy-saving potential for PMV-based comfort control in glass facade buildings. Occurrences and severity of overheating, based on the PMV-PPD model contained in ISO 7730, were used for the thermal comfort assessment. Parametric study simulations for an actual building with a large glass facade were carried out to predict the changes in thermal comfort levels in a space due to different glazing types, depths of overhang and glazing areas, which are the key parameters of the building envelope regulation index, named ENVLOAD, in Taiwan. The result demonstrates that the ENVLOAD has significant effect on thermal comfort. Additionally, comparative simulations between PMV-based comfort control and conventional thermostatic control were performed to investigate the changes in the energy-saving potential of a thermal comfort-controlled space due to changes of its ENVLOAD. The results demonstrate that the energy-saving potential in a PMV-based controlled space increases with low ENVLOAD conditions. (author)

  7. Transaction Costs (TCs) in Building Regulations and Control for Green Buildings : Case Study of Hong Kong

    NARCIS (Netherlands)

    Fan, Ke; Qian, K.; Chan, EHW; Kähkönen, Kalle; Keinänen, Marko

    2016-01-01

    About 40% of global energy consumption and nearly one-third of global CO2 emissions are on account of buildings. In Hong Kong, buildings consume up to 90% of electricity during construction and operation, where all the design and construction of private developments is subject to control under the

  8. Synthesis of vibration control and health monitoring of building structures under unknown excitation

    International Nuclear Information System (INIS)

    He, Jia; Huang, Qin; Xu, You-Lin

    2014-01-01

    The vibration control and health monitoring of building structures have been actively investigated in recent years but often treated separately according to the primary objective pursued. In this study, a time-domain integrated vibration control and health monitoring approach is proposed based on the extended Kalman filter (EKF) for identifying the physical parameters of the controlled building structures without the knowledge of the external excitation. The physical parameters and state vectors of the building structure are then estimated and used for the determination of the control force for the purpose of the vibration attenuation. The interaction between the health monitoring and vibration control is revealed and assessed. The feasibility and reliability of the proposed approach is numerically demonstrated via a five-story shear building structure equipped with magneto-rheological (MR) dampers. Two types of excitations are considered: (1) the EI-Centro ground excitation underneath of the building and (2) a swept-frequency excitation applied on the top floor of the building. Results show that the structural parameters as well as the unknown dynamic loadings could be identified accurately; and, at the same time, the structural vibration is significantly reduced in the building structure. (paper)

  9. Data on the interaction between thermal comfort and building control research.

    Science.gov (United States)

    Park, June Young; Nagy, Zoltan

    2018-04-01

    This dataset contains bibliography information regarding thermal comfort and building control research. In addition, the instruction of a data-driven literature survey method guides readers to reproduce their own literature survey on related bibliography datasets. Based on specific search terms, all relevant bibliographic datasets are downloaded. We explain the keyword co-occurrences of historical developments and recent trends, and the citation network which represents the interaction between thermal comfort and building control research. Results and discussions are described in the research article entitled "Comprehensive analysis of the relationship between thermal comfort and building control research - A data-driven literature review" (Park and Nagy, 2018).

  10. Energy efficiency improvement of the reference buildings Trondheim in Jaervalyftet; Energieffektivisering av referenskvarteret Trondheim inom Jaervalyftet

    Energy Technology Data Exchange (ETDEWEB)

    Kildsgaard, Ivana; Jarnehammar, Anna

    2009-12-15

    The original solution proposed by the Svenska Bostaeder for the renovation of the reference building in the area Trondheim halves the building's heating requirements. This study shows that further refinement of the details in planning the renovation, the building's heating can be halved compared with the proposed renovation. The study shows that only small changes in the design of the building, this improvement is achieved. The biggest improvement may be on the air density and that an efficient heat exchange in ventilation was achieved, followed by improvements in the climate shell such as improved insulation, windows and doors. If the renovation will take the step towards a passive level the final heating needs will only be one tenth compared to today. A better climate shell clearly improves the thermal comfort

  11. Solar shading control strategy for office buildings in cold climate

    DEFF Research Database (Denmark)

    Røseth Karlsen, Line; Heiselberg, Per Kvols; Bryn, Ida

    2016-01-01

    Highlights •Solar shading control strategy for office buildings in cold climate is developed. •Satisfying energy and indoor environmental performance is confirmed. •Importance of integrated evaluations when selecting shading strategy is illustrated.......Highlights •Solar shading control strategy for office buildings in cold climate is developed. •Satisfying energy and indoor environmental performance is confirmed. •Importance of integrated evaluations when selecting shading strategy is illustrated....

  12. A neural network controller for hydronic heating systems of solar buildings.

    Science.gov (United States)

    Argiriou, Athanassios A; Bellas-Velidis, Ioannis; Kummert, Michaël; André, Philippe

    2004-04-01

    An artificial neural network (ANN)-based controller for hydronic heating plants of buildings is presented. The controller has forecasting capabilities: it includes a meteorological module, forecasting the ambient temperature and solar irradiance, an indoor temperature predictor module, a supply temperature predictor module and an optimizing module for the water supply temperature. All ANN modules are based on the Feed Forward Back Propagation (FFBP) model. The operation of the controller has been tested experimentally, on a real-scale office building during real operating conditions. The operation results were compared to those of a conventional controller. The performance was also assessed via numerical simulation. The detailed thermal simulation tool for solar systems and buildings TRNSYS was used. Both experimental and numerical results showed that the expected percentage of energy savings with respect to a conventional controller is of about 15% under North European weather conditions.

  13. Improved model for solar heating of buildings

    OpenAIRE

    Lie, Bernt

    2015-01-01

    A considerable future increase in the global energy use is expected, and the effects of energy conversion on the climate are already observed. Future energy conversion should thus be based on resources that have negligible climate effects; solar energy is perhaps the most important of such resources. The presented work builds on a previous complete model for solar heating of a house; here the aim to introduce ventilation heat recovery and improve on the hot water storage model. Ventilation he...

  14. Optimal control and performance of photovoltachromic switchable glazing for building integration in temperate climates

    International Nuclear Information System (INIS)

    Favoino, Fabio; Fiorito, Francesco; Cannavale, Alessandro; Ranzi, Gianluca; Overend, Mauro

    2016-01-01

    Highlights: • The features and properties of photovoltachromic switchable glazing are presented. • The different possible control strategies for the switchable glazing are presented. • Thermal and daylight performance are co-simulated for rule-based and optimal control. • A novel building performance simulation framework is developed for this aim. • Switchable glazing performance is compared for different controls and climates. - Abstract: The development of adaptive building envelope technologies, and particularly of switchable glazing, can make significant contributions to decarbonisation targets. It is therefore essential to quantify their effect on building energy use and indoor environmental quality when integrated into buildings. The evaluation of their performance presents new challenges when compared to conventional “static” building envelope systems, as they require design and control aspects to be evaluated together, which are also mutually interrelated across thermal and visual physical domains. This paper addresses these challenges by presenting a novel simulation framework for the performance evaluation of responsive building envelope technologies and, particularly, of switchable glazing. This is achieved by integrating a building energy simulation tool and a lighting simulation one, in a control optimisation framework to simulate advanced control of adaptive building envelopes. The performance of a photovoltachromic glazing is evaluated according to building energy use, Useful Daylight Illuminance, glare risk and load profile matching indicators for a sun oriented office building in different temperate climates. The original architecture of photovoltachromic cell provides an automatic control of its transparency as a function of incoming solar irradiance. However, to fully explore the building integration potential of photovoltachromic technology, different control strategies are evaluated, from passive and simple rule based controls, to

  15. Improving total-building seismic performance using linear fluid viscous dampers

    OpenAIRE

    Del Gobbo, GM; Blakeborough, A; Williams, MS

    2018-01-01

    Previous research has revealed that Eurocode-compliant structures can experience structural and nonstructural damage during earthquakes. Retrofitting buildings with fluid viscous dampers (FVDs) can improve interstorey drifts and floor accelerations, two structural parameters that characterize seismic demand. Previous research focusing on FVD applications for improving seismic performance has focused on structural performance. Structural parameters such as interstorey drifts and floor accelera...

  16. A review on control system algorithm for building automation systems

    CSIR Research Space (South Africa)

    Noubissie-Tientcheu, SI

    2016-09-01

    Full Text Available The building with its components such as Heating Ventilation Air Conditioning (HVAC) and lighting constitute a bigger part of energy consumption in Southern Africa. Control system in a building reduced the energy consumption, according to different...

  17. Quasi-adaptive fuzzy heating control of solar buildings

    Energy Technology Data Exchange (ETDEWEB)

    Gouda, M.M. [Faculty of Industrial Education, Cairo (Egypt); Danaher, S. [University of Northumbria, Newcastle upon Tyne, (United Kingdom). School of Engineering; Underwood, C.P. [University of Northumbria, Newcastle upon Tyne (United Kingdom). School of Built Environment and Sustainable Cities Research Institute

    2006-12-15

    Significant progress has been made on maximising passive solar heat gains to building spaces in winter. Control of the space heating in these applications is complicated due to the lagging influence of the useful solar heat gain coupled with the wide range of construction materials and heating system choices. Additionally, and in common with most building control applications, there is a need to develop control solutions that permit simple and transparent set-up and commissioning procedures. This paper addresses the development and testing of a quasi-adaptive fuzzy logic control method that addresses these issues. The controller is developed in two steps. A feed-forward neural network is used to predict the internal air temperature, in which a singular value decomposition (SVD) algorithm is used to remove the highly correlated data from the inputs of the neural network to reduce the network structure. The fuzzy controller is then designed to have two inputs: the first input being the error between the set-point temperature and the internal air temperature and the second the predicted future internal air temperature. The controller was implemented in real-time using a test cell with controlled ventilation and a modulating electric heating system. Results, compared with validated simulations of conventionally controlled heating, confirm that the proposed controller achieves superior tracking and reduced overheating when compared with the conventional method of control. (author)

  18. Nonlinear Economic Model Predictive Control Strategy for Active Smart Buildings

    DEFF Research Database (Denmark)

    Santos, Rui Mirra; Zong, Yi; Sousa, Joao M. C.

    2016-01-01

    Nowadays, the development of advanced and innovative intelligent control techniques for energy management in buildings is a key issue within the smart grid topic. A nonlinear economic model predictive control (EMPC) scheme, based on the branch-and-bound tree search used as optimization algorithm ...... controller is shown very reliable keeping the comfort levels in the two considered seasons and shifting the load away from peak hours in order to achieve the desired flexible electricity consumption.......Nowadays, the development of advanced and innovative intelligent control techniques for energy management in buildings is a key issue within the smart grid topic. A nonlinear economic model predictive control (EMPC) scheme, based on the branch-and-bound tree search used as optimization algorithm...

  19. Design of model based LQG control for integrated building systems

    NARCIS (Netherlands)

    Yahiaoui, A.; Hensen, J.L.M.; Soethout, L.L.; Paassen, van A.H.C.

    2006-01-01

    The automation of the operation of integrated building systems requires using modern control techniques to enhance the quality of the building indoor environments. This paper describes the theatrical base and practical application of an optimal dynamic regulator using modelbased Linear Quadratic

  20. Options to improve energy efficiency for educational building

    Science.gov (United States)

    Jahan, Mafruha

    The cost of energy is a major factor that must be considered for educational facility budget planning purpose. The analysis of energy related issues and options can be complex and requires significant time and detailed effort. One way to facilitate the inclusion of energy option planning in facility planning efforts is to utilize a tool that allows for quick appraisal of the facility energy profile. Once such an appraisal is accomplished, it is then possible to rank energy improvement options consistently with other facility needs and requirements. After an energy efficiency option has been determined to have meaningful value in comparison with other facility planning options, it is then possible to utilize the initial appraisal as the basis for an expanded consideration of additional facility and energy use detail using the same analytic system used for the initial appraisal. This thesis has developed a methodology and an associated analytic model to assist in these tasks and thereby improve the energy efficiency of educational facilities. A detailed energy efficiency and analysis tool is described that utilizes specific university building characteristics such as size, architecture, envelop, lighting, occupancy, thermal design which allows reducing the annual energy consumption. Improving the energy efficiency of various aspects of an educational building's energy performance can be complex and can require significant time and experience to make decisions. The approach developed in this thesis initially assesses the energy design for a university building. This initial appraisal is intended to assist administrators in assessing the potential value of energy efficiency options for their particular facility. Subsequently this scoping design can then be extended as another stage of the model by local facility or planning personnel to add more details and engineering aspects to the initial screening model. This approach can assist university planning efforts to

  1. Applied Distributed Model Predictive Control for Energy Efficient Buildings and Ramp Metering

    Science.gov (United States)

    Koehler, Sarah Muraoka

    suited for nonlinear optimization problems. The parallel computation of the algorithm exploits iterative linear algebra methods for the main linear algebra computations in the algorithm. We show that the splitting of the algorithm is flexible and can thus be applied to various distributed platform configurations. The two proposed algorithms are applied to two main energy and transportation control problems. The first application is energy efficient building control. Buildings represent 40% of energy consumption in the United States. Thus, it is significant to improve the energy efficiency of buildings. The goal is to minimize energy consumption subject to the physics of the building (e.g. heat transfer laws), the constraints of the actuators as well as the desired operating constraints (thermal comfort of the occupants), and heat load on the system. In this thesis, we describe the control systems of forced air building systems in practice. We discuss the "Trim and Respond" algorithm which is a distributed control algorithm that is used in practice, and show that it performs similarly to a one-step explicit DMPC algorithm. Then, we apply the novel distributed primal-dual active-set method and provide extensive numerical results for the building MPC problem. The second main application is the control of ramp metering signals to optimize traffic flow through a freeway system. This application is particularly important since urban congestion has more than doubled in the past few decades. The ramp metering problem is to maximize freeway throughput subject to freeway dynamics (derived from mass conservation), actuation constraints, freeway capacity constraints, and predicted traffic demand. In this thesis, we develop a hybrid model predictive controller for ramp metering that is guaranteed to be persistently feasible and stable. This contrasts to previous work on MPC for ramp metering where such guarantees are absent. We apply a smoothing method to the hybrid model predictive

  2. An Investigation Into Why Lighting Controls Fail in Buildings

    Directory of Open Access Journals (Sweden)

    Bernard Doyle

    2012-04-01

    Full Text Available The project began as a post-occupancy evaluation of lighting controls installed in a range of buildings, including a public office building, a shopping centre and a primary school. Actual controlled lighting consumption was to be compared against past billing or simulated energy consumption. However, when the research began it was found that the controls had been removed from two out of the three buildings. Further research proved that it was not unusual for lighting controls to be disconnected following installation. This raised a much bigger research question- why were the controls disconnected and what were the factors governing success or failure of these systems? To answer this new question a new methodology to that first envisaged had to be established. Investigating the reasons for disconnection could only be achieved by discussion with those involved. To find out what people know, or think, it is necessary to ask them. Interviewing was used to address the new research question. It was found that little research exists on long-term performance analysis of lighting controls. A framework was created to determine if there is correlation between past findings and the reasons for failure in the case studies. It should be noted that there were minimal findings into the failure of lighting controls systems in buildings in Ireland, which prompted possible additional reasons for the failure of these systems, e.g. differing usage patterns, availability of useful daylight. The research that followed posed many challenges requiring the use of qualitative data in an engineering environment. In order to answer the research question, a clearly-defined and wellstructured methodology was required. It was concluded from the research that the conceptual framework used was appropriate and that the methods were fit for purpose.Some of the findings included: • Maintenance costs are comparitively high • Misinterpretation of commissioning processes

  3. Improving Building Performance through Integrating Constructability in the Design Process

    OpenAIRE

    Ezzat Othman, Ayman Ahmed

    2011-01-01

    The traditional procurment approaches commonly adopted in construction projects and the involvement of multitude of various project participants with diverse objectives, skills and interests tended to separate design from construction.This separation obstructs contractors from providing designers with construction feedback and suggestions for design improvement, which ultimately hampers the improvement of building performance. Because of the importance of the design phase and the vit...

  4. A new Dutch building control system : Lessons to be learned from neighbours?

    NARCIS (Netherlands)

    Meijer, F.M.; Visscher, H.J.

    2016-01-01

    Traditionally quality control of construction work in Europe was a governmental responsibility. In most European countries local authority building control were responsible for the issuing of planning or building permits and carried out plan approval, site-inspections and checks on completion of

  5. Improving the Energy Performance in Existing Non-residential Buildings in Denmark Using the Total Concept Method

    DEFF Research Database (Denmark)

    Krawczyk, Pawel; Afshari, Alireza; Simonsen, Graves K.

    2016-01-01

    This project is a part of a joint European research project, “Total Concept”, which is a method for improving the energy performance in existing non-Residential buildings. The method focuses on achieving maximum energy savings in a Building within the profitability frames set by a building owner...... was to form a package of measures for an energy performance improvement in the building based on the Total Concept method. This paper presents results from recently analyzed data on two renovated Danish buildings according to the rules of “Total Concept” method. According to the estimation done based...

  6. A RISK BASED METHODOLOGY TO ASSESS THE ENERGY EFFICIENCY IMPROVEMENTS IN TRADITIONALLY CONSTRUCTED BUILDINGS

    Directory of Open Access Journals (Sweden)

    D. Herrera

    2013-07-01

    Full Text Available In order to achieve the CO2 reduction targets set by the Scottish government, it will be necessary to improve the energy efficiency of existing buildings. Within the total Scottish building stock, historic and traditionally constructed buildings are an important proportion, in the order of 19 % (Curtis, 2010, and represent cultural, emotional and identity values that should be protected. However, retrofit interventions could be a complex operation because of the several aspects that are involved in the hygrothermal performance of traditional buildings. Moreover, all these factors interact with each other and therefore need to be analysed as a whole. Upgrading the envelope of traditional buildings may produce severe changes to the moisture migration leading to superficial or interstitial condensation and thus fabric decay and mould growth. Retrofit projects carried out in the past have failed because of the misunderstanding, or the lack of expert prediction, of the potential consequences associated to the envelope's alteration. The evaluation of potential risks, prior to any alteration on building's physics in order to improve its energy efficiency, is critical to avoid future damage on the wall's performance or occupants' health and well being. The aim of this PhD research project is to point out the most critical aspects related to the energy efficiency improvement of traditional buildings and to develop a risk based methodology that helps owners and practitioners during the decision making process.

  7. DYNAMIC LIGHTING CONTROL INSIDE OF BUILDINGS OVER THE PROFIBUSDP NETWORK

    Directory of Open Access Journals (Sweden)

    Cemal YILMAZ

    2007-01-01

    Full Text Available In this study, dynamic lighting control inside of buildings has been implemented over the Profibus-DP network. Automatically adjustable luminaries were used to adjust lighting level to desired values. The data received from sensors measuring illuminance levels inside building are transferred to central control unit over the Profibus-DP network. These data are evaluated in the control unit and then control signals related to evaluation results are sent to the luminaries over the Profibus-DP network. As a reason of this design, optimum energy usage has been supplied by controlling the lighting remotely. Moreover, a healthy lighting environment has been obtained by means of adjusting the illuminance level related to lighting variations occurred in the various hours of a day.

  8. Improved ant Colony Optimization for Virtual Teams Building in Collaborative Process Planning

    Directory of Open Access Journals (Sweden)

    Yingying Su

    2014-02-01

    Full Text Available Virtual teams have been adopted by organizations to gain competitive advantages in this global economy. Virtual teams are a ubiquitous part of getting work done in almost every organization. For the purpose of building virtual teams in collaborative process planning, the method based on improved ant colony algorithm (IMACO was proposed. The concept of virtual team was illustrated and the necessity of building virtual teams in collaborative process planning was analyzed. The sub tasks with certain timing relationship were described and the model of building virtual teams in collaborative process planning was established, which was solved by improved ant colony algorithm. In this paper applications of the IMACO and ACO are compared and demonstrate that the use of the IMACO algorithm performs better. An example was studied to illustrate the effectiveness of the strategy.

  9. Integration of eaves and shading devices for improving the thermal comfort in a multi-zone building

    Directory of Open Access Journals (Sweden)

    Haddam Muhammad Abdalkhalaq Chuayb

    2015-01-01

    Full Text Available This paper introduces a new approach to the description and modelling of multi-zone buildings in Saharan climate. Therefore, nodal method was used to apprehend thermo-aeraulic behavior of air subjected to varied solicitations. A coupling was made between equations proposed by P. Rumianowski and some equations of a building thermal energy model found in the TRNSYS user manual. Runge-Kutta fourth order numerical method was used to solve the obtained system of differential equations. Theses results show that proper design of passive houses in an arid region is based on the control of direct solar gains, temperatures and specific humidities. According to the compactness index, the insersion of solar shading and eaves can provide improved thermo-aeraulic comfort.

  10. Analysis of the Portuguese building regulation system

    OpenAIRE

    Costa Branco De Oliveira Pedro, J.A.; Meijer, F.M.; Visscher, H.J.

    2008-01-01

    The Portuguese building regulation system has undergone significant changes in the last 20 years. Almost all building regulations presently in force were approved during that period. Some of those building regulations resulted from the transposition of European Directives. Other building regulations were changed due to improvements in the scientific knowledge. The changes in the building control system were mainly driven by an adaptation to more pressing circumstances of practice. The lack...

  11. Smart Buildings and Demand Response

    Science.gov (United States)

    Kiliccote, Sila; Piette, Mary Ann; Ghatikar, Girish

    2011-11-01

    Advances in communications and control technology, the strengthening of the Internet, and the growing appreciation of the urgency to reduce demand side energy use are motivating the development of improvements in both energy efficiency and demand response (DR) systems in buildings. This paper provides a framework linking continuous energy management and continuous communications for automated demand response (Auto-DR) in various times scales. We provide a set of concepts for monitoring and controls linked to standards and procedures such as Open Automation Demand Response Communication Standards (OpenADR). Basic building energy science and control issues in this approach begin with key building components, systems, end-uses and whole building energy performance metrics. The paper presents a framework about when energy is used, levels of services by energy using systems, granularity of control, and speed of telemetry. DR, when defined as a discrete event, requires a different set of building service levels than daily operations. We provide examples of lessons from DR case studies and links to energy efficiency.

  12. Mobile Interfaces for Building Control Surveyors

    OpenAIRE

    Chmielewski , Jacek; Walczak , Krzysztof; Wiza , Wojciech

    2010-01-01

    International audience; The problem of integrating heterogeneous back-end platforms used in public administration has been widely addressed in a number of research and development projects. In such a complex and heterogeneous environment, application of the SOA paradigm can be particularly beneficial. However, in some application domains - such as the Building Control Administration - there is an additional requirement: integration of heterogeneous front-end platforms - including access throu...

  13. XACML to build access control policies for Internet of Things

    OpenAIRE

    Atlam, Hany F.; Alassafi, Madini, Obad; Alenezi, Ahmed; Walters, Robert; Wills, Gary

    2018-01-01

    Although the Internet of things (IoT) brought unlimited benefits, it also brought many security issues. The access control is one of the main elements to address these issues. It provides the access to system resources only to authorized users and ensures that they behave in an authorized manner during their access sessions. One of the significant components of any access control model is access policies. They are used to build the criteria to permit or deny any access request. Building an ef...

  14. Building school-wide capacity for improvement: the role of leadership, school organizational conditions, and teacher factors

    NARCIS (Netherlands)

    Thoonen, E.E.J.; Sleegers, P.J.C.; Oort, F.J.; Peetsma, T.T.D.

    2012-01-01

    Education policies for greater accountability of schools assume that schools are capable of building their capacity for continuous improvement. While policy-makers, scholars, and practitioners acknowledge the importance of building school-wide capacity for continuous improvement, empirical evidence

  15. Building school-wide capacity for improvement: the role of leadership, school organizational conditions and teacher factors

    NARCIS (Netherlands)

    Thoonen, E.E.J.; Thoonen, E.E.J.; Sleegers, P.J.C.; Oort, F.J.; Peetsma, T.T.D.

    2012-01-01

    Education policies for greater accountability of schools assume that schools are capable of building their capacity for continuous improvement. While policy-makers, scholars, and practitioners acknowledge the importance of building school-wide capacity for continuous improvement, empirical evidence

  16. Improvement of energy efficiency: the use of thermography and air-tightness test in verification of thermal performance of school buildings

    Science.gov (United States)

    Kauppinen, Timo; Siikanen, Sami

    2011-05-01

    The improvement of energy efficiency is the key issue after the energy performance of buildings directive came into the force in European Union countries. The city of Kuopio participate a project, in which different tools will be used, generated and tested to improve the energy efficiency of public buildings. In this project there are 2 schools, the other consuming much more heating energy than the other same type of school. In this paper the results of the thermography in normal conditions and under 50 Pa pressure drop will be presented; as well as the results of remote controlled air tightness test of the buildings. Thermography combined with air tightness test showed clearly the reasons of specific consumption differences of heating energy - also in the other hand, the measurements showed the problems in the performance of ventilation system. Thermography, air tightness test and other supporting measurements can be used together to solve energy loss problems - if these measurements will be carried out by proper way.

  17. Economic Model Predictive Control for Building Climate Control in a Smart Grid

    DEFF Research Database (Denmark)

    Halvgaard, Rasmus; Poulsen, Niels Kjølstad; Madsen, Henrik

    2012-01-01

    Model Predictive Control (MPC) can be used to control a system of energy producers and consumers in a Smart Grid. In this paper, we use heat pumps for heating residential buildings with a floor heating system. We use the thermal capacity of the building to shift the electricity consumptions...... to periods with low energy prices. In this way the heating system of the house becomes a flexible power consumer in the Smart Grid. This scenario is relevant for systems with a significant share of stochastic energy producers, e.g. wind turbines, where the ability to shift power consumption according...... and electricity price. Simulation studies demonstrate the capabilities of the proposed model and algorithm. Compared to traditional operation of heat pumps with constant electricity prices, the optimized operating strategy saves 25-33% of the electricity cost....

  18. Stochastic Control of Energy Efficient Buildings: A Semidefinite Programming Approach

    Energy Technology Data Exchange (ETDEWEB)

    Ma, Xiao [ORNL; Dong, Jin [ORNL; Djouadi, Seddik M [ORNL; Nutaro, James J [ORNL; Kuruganti, Teja [ORNL

    2015-01-01

    The key goal in energy efficient buildings is to reduce energy consumption of Heating, Ventilation, and Air- Conditioning (HVAC) systems while maintaining a comfortable temperature and humidity in the building. This paper proposes a novel stochastic control approach for achieving joint performance and power control of HVAC. We employ a constrained Stochastic Linear Quadratic Control (cSLQC) by minimizing a quadratic cost function with a disturbance assumed to be Gaussian. The problem is formulated to minimize the expected cost subject to a linear constraint and a probabilistic constraint. By using cSLQC, the problem is reduced to a semidefinite optimization problem, where the optimal control can be computed efficiently by Semidefinite programming (SDP). Simulation results are provided to demonstrate the effectiveness and power efficiency by utilizing the proposed control approach.

  19. Considerations on safety against seismic excitations in the project of reactor auxiliary building and control building in nuclear power plants

    International Nuclear Information System (INIS)

    Santos, S.H.C.; Castro Monteiro, I. de

    1986-01-01

    The seismic requests to be considered in the project of main buildings of a nuclear power plant are discussed. The models for global seismic analysis of nuclear power plant structures, as well as models for global strength distribution are presented. The models for analysing reactor auxiliary building and control building, which together with the reactor building and turbine building form the main energy generation complex in a nuclear power plant, are described. (M.C.K.) [pt

  20. Challenges of implementing economic model predictive control strategy for buildings interacting with smart energy systems

    DEFF Research Database (Denmark)

    Zong, Yi; Böning, Georg Martin; Santos, Rui Mirra

    2016-01-01

    ) strategy for energy management in smart buildings, which can act as active users interacting with smart energy systems. The challenges encountered during the implementation of EMPC for active demand side management are investigated in detail in this paper. A pilot testing study shows energy savings......When there is a high penetration of renewables in the energy system, it requires proactive control of large numbers of distributed demand response resources to maintain the system’s reliability and improve its operational economics. This paper presents the Economic Model Predictive Control (EMPC...

  1. STTR Phase I: Low-Cost, High-Accuracy, Whole-Building Carbon Dioxide Monitoring for Demand Control Ventilation

    Energy Technology Data Exchange (ETDEWEB)

    Hallstrom, Jason; Ni, Zheng Richard

    2018-05-15

    This STTR Phase I project assessed the feasibility of a new CO2 sensing system optimized for low-cost, high-accuracy, whole-building monitoring for use in demand control ventilation. The focus was on the development of a wireless networking platform and associated firmware to provide signal conditioning and conversion, fault- and disruptiontolerant networking, and multi-hop routing at building scales to avoid wiring costs. Early exploration of a bridge (or “gateway”) to direct digital control services was also explored. Results of the project contributed to an improved understanding of a new electrochemical sensor for monitoring indoor CO2 concentrations, as well as the electronics and networking infrastructure required to deploy those sensors at building scales. New knowledge was acquired concerning the sensor’s accuracy, environmental response, and failure modes, and the acquisition electronics required to achieve accuracy over a wide range of CO2 concentrations. The project demonstrated that the new sensor offers repeatable correspondence with commercial optical sensors, with supporting electronics that offer gain accuracy within 0.5%, and acquisition accuracy within 1.5% across three orders of magnitude variation in generated current. Considering production, installation, and maintenance costs, the technology presents a foundation for achieving whole-building CO2 sensing at a price point below $0.066 / sq-ft – meeting economic feasibility criteria established by the Department of Energy. The technology developed under this award addresses obstacles on the critical path to enabling whole-building CO2 sensing and demand control ventilation in commercial retrofits, small commercial buildings, residential complexes, and other highpotential structures that have been slow to adopt these technologies. It presents an opportunity to significantly reduce energy use throughout the United States a

  2. Analysis of the Dependence between Energy Demand Indicators in Buildings Based on Variants for Improving Energy Efficiency in a School Building

    Science.gov (United States)

    Skiba, Marta; Rzeszowska, Natalia

    2017-09-01

    One of the five far-reaching goals of the European Union is climate change and sustainable energy use. The first step in the implementation of this task is to reduce energy demand in buildings to a minimum by 2021, and in the case of public buildings by 2019. This article analyses the possibility of improving energy efficiency in public buildings, the relationship between particular indicators of the demand for usable energy (UE), final energy (FE) and primary energy (PE) in buildings and the impact of these indicators on the assessment of energy efficiency in public buildings, based on 5 variants of extensive thermal renovation of a school building. The analysis of the abovementioned variants confirms that the thermal renovation of merely the outer envelope of the building is insufficient and requires the use of additional energy sources, for example RES. Moreover, each indicator of energy demand in the building plays a key role in assessing the energy efficiency of the building. For this reason it is important to analyze each of them individually, as well as the dependencies between them.

  3. Effect of nonlinearity of connecting dampers on vibration control of connected building structures

    Directory of Open Access Journals (Sweden)

    Masatoshi eKasagi

    2016-01-01

    Full Text Available The connection of two building structures with dampers is one of effective vibration control systems. In this vibration control system, both buildings have to possess different vibration properties in order to provide a higher vibration reduction performance. In addition to such condition of different vibration properties of both buildings, the connecting dampers also play an important role in the vibration control mechanism. In this paper, the effect of nonlinearity of connecting dampers on the vibration control of connected building structures is investigated in detail. A high-damping rubber damper and an oil damper with and without relief mechanism are treated. It is shown that, while the high-damping rubber damper is effective in a rather small deformation level, the linear oil damper is effective in a relatively large deformation level. It is further shown that, while the oil dampers reduce the response in the same phase as the case without dampers, the high-damping rubber dampers change the phase. The merit is that the high-damping rubber can reduce the damper deformation and keep the sufficient space between both buildings. This can mitigate the risk of building pounding.

  4. Impacts of Commercial Building Controls on Energy Savings and Peak Load Reduction

    Energy Technology Data Exchange (ETDEWEB)

    Fernandez, Nicholas E.P. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Katipamula, Srinivas [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Wang, Weimin [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Xie, YuLong [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Zhao, Mingjie [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Corbin, Charles D. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States)

    2017-05-30

    Commercial buildings in the United States use about 18 Quadrillion British thermal units (Quads) of primary energy annually . Studies have shown that as much as 30% of building energy consumption can be avoided by using more accurate sensing, using existing controls better, and deploying advanced controls; hence, the motivation for the work described in this report. Studies also have shown that 10% to 20% of the commercial building peak load can be temporarily managed/curtailed to provide grid services. Although many studies have indicated significant potential for reducing the energy consumption in commercial buildings, very few have documented the actual savings. The studies that did so only provided savings at the whole building level, which makes it difficult to assess the savings potential of each individual measure deployed.

  5. Power Admission Control with Predictive Thermal Management in Smart Buildings

    DEFF Research Database (Denmark)

    Yao, Jianguo; Costanzo, Giuseppe Tommaso; Zhu, Guchuan

    2015-01-01

    This paper presents a control scheme for thermal management in smart buildings based on predictive power admission control. This approach combines model predictive control with budget-schedulability analysis in order to reduce peak power consumption as well as ensure thermal comfort. First...

  6. Improving building performance using smart building concept: Benefit cost ratio comparison

    Science.gov (United States)

    Berawi, Mohammed Ali; Miraj, Perdana; Sayuti, Mustika Sari; Berawi, Abdur Rohim Boy

    2017-11-01

    Smart building concept is an implementation of technology developed in the construction industry throughout the world. However, the implementation of this concept is still below expectations due to various obstacles such as higher initial cost than a conventional concept and existing regulation siding with the lowest cost in the tender process. This research aims to develop intelligent building concept using value engineering approach to obtain added value regarding quality, efficiency, and innovation. The research combined quantitative and qualitative approach using questionnaire survey and value engineering method to achieve the research objectives. The research output will show additional functions regarding technology innovation that may increase the value of a building. This study shows that smart building concept requires higher initial cost, but produces lower operational and maintenance costs. Furthermore, it also confirms that benefit-cost ratio on the smart building was much higher than a conventional building, that is 1.99 to 0.88.

  7. Progress on Enabling an Interactive Conversation Between Commercial Building Occupants and Their Building To Improve Comfort and Energy Efficiency: Preprint

    Energy Technology Data Exchange (ETDEWEB)

    Schott, M.; Scheib, J.; Long, N.; Fleming, K.; Benne, K.; Brackney, L.

    2012-06-01

    Many studies have reported energy savings after installing a dashboard, but dashboards provide neither individual feedback to the occupant nor the ability to report individual comfort. The Building Agent (BA) provides an interface to engage the occupant in a conversation with the building control system and the building engineer. Preliminary outcomes of the BA-enabled feedback loop are presented, and the effectiveness of the three display modes will be compared to other dashboard studies to baseline energy savings in future research.

  8. 32 CFR 644.486 - Disposal of buildings and improvements constructed under emergency plant facilities (EPF) or...

    Science.gov (United States)

    2010-07-01

    ... 32 National Defense 4 2010-07-01 2010-07-01 true Disposal of buildings and improvements constructed under emergency plant facilities (EPF) or similar contracts. 644.486 Section 644.486 National... Disposal of buildings and improvements constructed under emergency plant facilities (EPF) or similar...

  9. Multi-agent control system with information fusion based comfort model for smart buildings

    International Nuclear Information System (INIS)

    Wang, Zhu; Wang, Lingfeng; Dounis, Anastasios I.; Yang, Rui

    2012-01-01

    Highlights: ► Proposed a model to manage indoor energy and comfort for smart buildings. ► Developed a control system to maximize comfort with minimum energy consumption. ► Information fusion with ordered weighted averaging aggregation is used. ► Multi-agent technology and heuristic intelligent optimization are deployed in developing the control system. -- Abstract: From the perspective of system control, a smart and green building is a large-scale dynamic system with high complexity and a huge amount of information. Proper combination of the available information and effective control of the overall building system turns out to be a big challenge. In this study, we proposed a building indoor energy and comfort management model based on information fusion using ordered weighted averaging (OWA) aggregation. A multi-agent control system with heuristic intelligent optimization is developed to achieve a high level of comfort with the minimum power consumption. Case studies and simulation results are presented and discussed in this paper.

  10. Real-time supervision of building HVAC system performance

    Energy Technology Data Exchange (ETDEWEB)

    Djuric, Natasa

    2008-07-01

    This thesis presents techniques for improving building HVAC system performance in existing buildings generated using simulation-based tools and real data. Therefore, one of the aims has been to research the needs and possibilities to assess and improve building HVAC system performance. In addition, this thesis aims at an advanced utilization of building energy management system (BEMS) and the provision of useful information to building operators using simulation tools. Buildings are becoming more complex systems with many elements, while BEMS provide many data about the building systems. There are, however, many faults and issues in building performance, but there are legislative and cost-benefit forces induced by energy savings. Therefore, both BEMS and the computer-based tools have to be utilized more efficiently to improve building performance. The thesis consists of four main parts that can be read separately. The first part explains the term commissioning and the commissioning tool work principal based on literature reviews. The second part presents practical experiences and issues introduced through the work on this study. The third part deals with the computer-based tools application in design and operation. This part is divided into two chapters. The first deals with improvement in the design, and the second deals with the improvement in the control strategies. The last part of the thesis gives several rules for fault diagnosis developed using simulation tools. In addition, this part aims at the practical explanation of the faults in the building HVAC systems. The practical background for the thesis was obtained though two surveys. The first survey was carried out with the aim to find the commissioning targets in Norwegian building facilities. In that way, an overview of the most typical buildings, HVAC equipment, and their related problems was obtained. An on-site survey was carried out on an example building, which was beneficial for introducing the

  11. Optimum Application of Thermal Factors to Artificial Neural Network Models for Improvement of Control Performance in Double Skin-Enveloped Buildings

    Directory of Open Access Journals (Sweden)

    Kyung-Il Chin

    2013-08-01

    Full Text Available This study proposes an artificial neural network (ANN-based thermal control method for buildings with double skin envelopes that has rational relationships between the ANN model input and output. The relationship between the indoor air temperature and surrounding environmental factors was investigated based on field measurement data from an actual building. The results imply that the indoor temperature was not significantly influenced by vertical solar irradiance, but by the outdoor and cavity temperature. Accordingly, a new ANN model developed in this study excluded solar irradiance as an input variable for predicting the future indoor temperature. The structure and learning method of this new ANN model was optimized, followed by the performance tests of a variety of internal and external envelope opening strategies for the heating and cooling seasons. The performance tests revealed that the optimized ANN-based logic yielded better temperature conditions than the non-ANN based logic. This ANN-based logic increased overall comfortable periods and decreased the frequency of overshoots and undershoots out of the thermal comfort range. The ANN model proved that it has the potential to be successfully applied in the temperature control logic for double skin-enveloped buildings. The ANN model, which was proposed in this study, effectively predicted future indoor temperatures for the diverse opening strategies. The ANN-based logic optimally determined the operation of heating and cooling systems as well as opening conditions for the double skin envelopes.

  12. Suggestions for inclulsion of radon exhalation control target in building materials radioactivity standards

    International Nuclear Information System (INIS)

    Liu Fudong; Liu Senlin; Pan Ziqiang; Zhang Yonggui

    2010-01-01

    The specific-activity and radon exhalation rate from 26 building material samples from different areas were measured with high pure germanium (HPGe) gamma spectrometer and activated carbon cartridge. It is shown that the radium content is not completely relevant to radon exhalation rate from some building material. The existing national standards on 'The Limit of Radionuclides in Building Materials' (GB 6566-2001) only present internal exposure index as control target but not for radon exhalation rate; in fact, the radon exhalation rate from building materials is closely nearly related to indoor radon concentration. So we suggest that the radon exhalation control target should be included in the national standards on 'The Limit of Radionuclides in Building Materials'. (authors)

  13. Improving Productivity in Building Construction – by Repetitions in Products, Processes, and Organisations

    DEFF Research Database (Denmark)

    Bekdik, Baris

    This thesis builds on several studies with connection to the lack of productivity in build-ing construction. It seeks to enhance the conditions for improving productivity in the fragmented building construction industry, by exploring how a modular thinking of products, processes and organisations...... can be reapplied on new building construction projects. Complexity theory is used for diagnosis and modularity theory for the remedy towards the high degree of complexity, which is seen as the root of unproductivity. De-sign Research Methodology is followed to structure and organise the different...... from the practitioner’s perspective. In the second part of the exploratory study, examples of the fragmented kinds of modu-lar applications around the world are compiled in order to demonstrate the inconsistent use, but still universal appeal that the approach carries with respect to building construc-tion...

  14. Advanced Sensors and Controls for Building Applications: Market Assessment and Potential R&D Pathways

    Energy Technology Data Exchange (ETDEWEB)

    Brambley, M. R. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Haves, P. [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States); McDonald, S. C. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Torcellini, P. [National Renewable Energy Lab. (NREL), Golden, CO (United States); Hansen, D. [U.S. Dept. of Energy, Washington, D.C. (United States); Holmberg, D. R. [National Institute of Science and Technology, Gaithersburg, MD (United States); Roth, K. W. [TIAX, LLC, Cambridge, MA (United States)

    2005-04-01

    This document provides a market assessment of existing building sensors and controls and presents a range of technology pathways (R&D options) for pursuing advanced sensors and building control strategies.

  15. Mass Alarms in Main Control Room Caused Condensate on the Instrumentation and Control Cards in Turbine Building

    International Nuclear Information System (INIS)

    Goo, Cheol-Soo

    2015-01-01

    A bunch of alarms and trouble lights on the main control room simultaneously turned on during inspection and exchange of the coolers of the turbine building at pressurized water reactor of the Hanbit nuclear power plant No. 6. The main cause was condensate on instrumentation cards of plant control system (PCS) installed at enclosures in the turbine building which have MUX cabinets to transmit signals between the main control room and local equipment. To control the temperature and humidity of the MUX cabinets, two coolers of the plant chilled water system supply air to the compact enclosures at turbine building where temperature and humidity is high in the summer. It is an unusual experience that mass alarms abnormally were occurred in the main control room during normal plant operation phases. Spurious signals with unknown cause at control and instrumentation system occasionally may have an unnecessary actuation of monitoring equipment and a plant scram even. One of the main causes is humidity by a rapid temperature change of the control and instrumentation cards. Dew on the instrumentation cards could form an abnormal short circuit in printed circuit board with the compact circuits and make any malfunction of the related system. Instrumentation and control cards with integrated circuits are vulnerable to high humidity and temperature where the system is enclosed in a small housing or enclosure surrounding with hash environment such as a turbine building. It was found that there was no functional degradation of the safety systems and no outsides releases of radioactive materials by this occurrence. (author)

  16. A Building Model Framework for a Genetic Algorithm Multi-objective Model Predictive Control

    DEFF Research Database (Denmark)

    Arendt, Krzysztof; Ionesi, Ana; Jradi, Muhyiddine

    2016-01-01

    Model Predictive Control (MPC) of building systems is a promising approach to optimize building energy performance. In contrast to traditional control strategies which are reactive in nature, MPC optimizes the utilization of resources based on the predicted effects. It has been shown that energy ...

  17. Vibration control of buildings by using partial floor loads as multiple tuned mass

    Directory of Open Access Journals (Sweden)

    Tharwat A. Sakr

    2017-08-01

    Full Text Available Tuned mass dampers (TMDs are considered as the most common control devices used for protecting high-rise buildings from vibrations. Because of their simplicity and efficiency, they have found wide practical applications in high-rise buildings around the world. This paper proposes an innovative technique for using partial floor loads as multiple TMDs at limited number of floors. This technique eliminates complications resulting from the addition of huge masses required for response control and maintains the mass of the original structure without any added loads. The effects of using partial loads of limited floors starting from the top as TMDs on the vibration response of buildings to wind and earthquakes are investigated. The effects of applying the proposed technique to buildings with different heights and characteristics are also investigated. A parametric study is carried out to illustrate how the behavior of a building is affected by the number of stories and the portion of the floor utilized as TMDs. Results indicate the effectiveness of the proposed control technique in enhancing the drift, acceleration, and force response of buildings to wind and earthquakes. The response of buildings to wind and earthquakes was observed to be more enhanced by increasing the story-mass ratios and the number of floor utilized as TMDs.

  18. Smart building temperature control using occupant feedback

    Science.gov (United States)

    Gupta, Santosh K.

    This work was motivated by the problem of computing optimal commonly-agreeable thermal settings in spaces with multiple occupants. In this work we propose algorithms that take into account each occupant's preferences along with the thermal correlations between different zones in a building, to arrive at optimal thermal settings for all zones of the building in a coordinated manner. In the first part of this work we incorporate active occupant feedback to minimize aggregate user discomfort and total energy cost. User feedback is used to estimate the users comfort range, taking into account possible inaccuracies in the feedback. The control algorithm takes the energy cost into account, trading it off optimally with the aggregate user discomfort. A lumped heat transfer model based on thermal resistance and capacitance is used to model a multi-zone building. We provide a stability analysis and establish convergence of the proposed solution to a desired temperature that minimizes the sum of energy cost and aggregate user discomfort. However, for convergence to the optimal, sufficient separation between the user feedback frequency and the dynamics of the system is necessary; otherwise, the user feedback provided do not correctly reflect the effect of current control input value on user discomfort. The algorithm is further extended using singular perturbation theory to determine the minimum time between successive user feedback solicitations. Under sufficient time scale separation, we establish convergence of the proposed solution. Simulation study and experimental runs on the Watervliet based test facility demonstrates performance of the algorithm. In the second part we develop a consensus algorithm for attaining a common temperature set-point that is agreeable to all occupants of a zone in a typical multi-occupant space. The information on the comfort range functions is indeed held privately by each occupant. Using occupant differentiated dynamically adjusted prices as

  19. A comprehensive framework to quantify energy savings potential from improved operations of commercial building stocks

    International Nuclear Information System (INIS)

    Azar, Elie; Menassa, Carol C.

    2014-01-01

    While studies highlight the significant impact of actions performed by occupants and facility managers on building energy performance, current policies ignore the importance of human actions and the potential energy savings from a more efficient operation of building systems. This is mainly attributed to the lack of methods that evaluate non-technological drivers of energy use for large stocks of commercial buildings to support policy making efforts. Therefore, this study proposes a scientific approach to quantifying the energy savings potential due to improved operations of any stock of commercial buildings. The proposed framework combines energy modeling techniques, studies on human actions in buildings, and surveying and sampling methods. The contributions of this study to energy policy are significant as they reinforce the role of human actions in energy conservation, and support efforts to integrate operation-focused solutions in energy conservation policy frameworks. The framework's capabilities are illustrated in a case study performed on the stock of office buildings in the United States (US). Results indicate a potential 21 percent reduction in the current energy use levels of these buildings through realistic changes in current building operation patterns. - Highlights: • Human actions highly influence energy performance of commercial building stocks. • It is challenging to quantify operation-related energy savings potential. • The proposed framework quantifies potential energy savings from improved operations. • The framework can be applied on any stock of commercial buildings. • Applications include support for operation-focused solutions in energy policies

  20. Energy performance and optimal control of air-conditioned buildings with envelopes enhanced by phase change materials

    International Nuclear Information System (INIS)

    Zhu Na; Wang Shengwei; Ma Zhenjun; Sun Yongjun

    2011-01-01

    Highlights: → Impact of PCM on the energy consumption and peak load demand as well as electricity cost of air-conditioned buildings. → Impact of load shifting control on energy consumption, peak load and electricity cost of air-conditioned PCM buildings. → Impact of demand limiting control on energy consumption, peak load and electricity cost of air-conditioned PCM buildings. → Energy/cost effects of different control strategies and use of PCM in energy-plus-demand-based pricing policy. → Energy/cost effects of different control strategies and use of PCM in time-based pricing policy. - Abstract: Studies are conducted to investigate the impacts of shape-stabilized phase change material (SSPCM) and different control strategies on the energy consumption and peak load demand as well as electricity cost of building air-conditioning systems at typical summer conditions in two climates (subtropical and dry continental climates). An office building using a typical variable air volume (VAV) air-conditioning system was selected and simulated as the reference building in this study. Its envelopes were enhanced by integrating the SSPCM layers into its walls while the air-conditioning system and other configurations of the building remained unchanged. The building system was tested under two typical weather conditions and two typical electricity pricing policies (i.e. time-based pricing and energy-plus-demand-based pricing). Test results show that the use of SSPCM in the building could reduce the building electricity cost significantly (over 11% in electricity cost reduction and over 20% in peak load reduction), under two pricing policies by using load shifting control and demand limiting control respectively. This paper presents the test results and the evaluation on the energy performance and the optimal control strategies of air-conditioned commercial buildings with envelopes enhanced by SSPCM.

  1. AN IMPROVED SNAKE MODEL FOR REFINEMENT OF LIDAR-DERIVED BUILDING ROOF CONTOURS USING AERIAL IMAGES

    Directory of Open Access Journals (Sweden)

    Q. Chen

    2016-06-01

    Full Text Available Building roof contours are considered as very important geometric data, which have been widely applied in many fields, including but not limited to urban planning, land investigation, change detection and military reconnaissance. Currently, the demand on building contours at a finer scale (especially in urban areas has been raised in a growing number of studies such as urban environment quality assessment, urban sprawl monitoring and urban air pollution modelling. LiDAR is known as an effective means of acquiring 3D roof points with high elevation accuracy. However, the precision of the building contour obtained from LiDAR data is restricted by its relatively low scanning resolution. With the use of the texture information from high-resolution imagery, the precision can be improved. In this study, an improved snake model is proposed to refine the initial building contours extracted from LiDAR. First, an improved snake model is constructed with the constraints of the deviation angle, image gradient, and area. Then, the nodes of the contour are moved in a certain range to find the best optimized result using greedy algorithm. Considering both precision and efficiency, the candidate shift positions of the contour nodes are constrained, and the searching strategy for the candidate nodes is explicitly designed. The experiments on three datasets indicate that the proposed method for building contour refinement is effective and feasible. The average quality index is improved from 91.66% to 93.34%. The statistics of the evaluation results for every single building demonstrated that 77.0% of the total number of contours is updated with higher quality index.

  2. Traffic improvement and transportation pollution control in Xiamen

    Energy Technology Data Exchange (ETDEWEB)

    Dongxing Yuan; Zilin, Wu

    1996-12-31

    in this paper, the urban traffic improvement and transportation control in Xiamen are highlighted. Xiamen is a port city and an economical special zone of China. As the economy grows, the transportation is developing dramatically and becoming the key for further economic development. The air quality is threatened by the rapid growth of the vehicles in the city. The most urgent task in improving urban traffic is to establish a sound traffic system. The municipal government takes great effort to improve the traffic condition, as well as to reduce green house gases and protect air environment. Some management and technical measures are carried out. Those management measures are mainly as follows: (1) systematic planning of the city arrangement and city functional division, and integrated planning of the urban roads system, (2) putting great emphasis on tail gas monitoring and management, and (3) establishing optimized utilization of motor vehicles. Those included in the main technical measures are (1) making the roads clear, (2) enlarging traffic capacity, and (3) developing the public transport. The most urgent task in improving urban traffic is to establish a sound traffic system. The city municipal government and Transportation Management Bureau plan to make a series of reforms to improve the urban traffic condition, such as building high quality road around the city, reducing the number of one way roads and replacing gasoline buses with electric buses. An optimized traffic system of Xiamen, taking public transport as the main means, is the key to meet the needs of both traffic improvement and urban transportation pollution control.

  3. Control of energy flow in residential buildings; Energieflussregelung in Wohngebaeuden

    Energy Technology Data Exchange (ETDEWEB)

    Weiss, Martin

    2011-07-01

    Energy systems in residential buildings are changing from monovalent, combustion based systems to multivalent systems containing technologies such as solar collectors, pellet boilers, heat pumps, CHP and multiple storages. Multivalent heat and electricity generation and additional storages raise the number of possible control signals in the system. This creates additional degrees of freedom regarding the choice of the energy converter and the instant of time for energy conversion. New functionality of controllers such as prioritisation of energy producers, optimization of electric self consumption and control of storages and energy feed-in are required. Within the scope of this thesis, new approaches for demand-driven optimal control of energy flows in multivalent building energy systems are developed and evaluated. The approaches are evaluated by means of system energy costs and operating emissions. For parametrisation of the controllers an easily understandable operating concept is developed. The energy flow controllers are implemented as a multi agent system (MAS) and a nonlinear model predictive controller (MPC). Proper functionality and stability are demonstrated in simulations of two example energy systems. In both example systems the MPC controller achieves less energy costs and operating emissions due to system wide global optimization and the more detailed system model within the controller. The multi agent approach turns out to perform better for systems with a huge number of components, e.g. in home automation and energy management systems. Due to the good performance of the reference control strategies, a significant reduction of energy costs and operating emissions is only possible with limitations. Systems for heat generation show only an especially low potential for optimization because of marginal variation ins heat production costs. The adaptation of the operation mode to user priorities, changing utilization characteristics and dynamic energy

  4. Control and improvement of the internal museums environment; Controllo e risanamento dell`ambiente interno dei musei

    Energy Technology Data Exchange (ETDEWEB)

    Citterio, M.; Fanou, S.; Fasano, G.; Malosti, D. [ENEA, (Italy). Dipt. Energia

    1998-03-01

    The purpose of this work is to develop and to apply a general methodology in order to improve and to control the internal environmental parameters of historical buildings turned in cultural services centres. Proposal methodology is made of application of field monitoring, simulation models by mean of dynamic simulation codes and control and managing automatic systems. Innovation concerns not only the transfer of technologies and methodologies from scientific and industrial instrumentation field to cultural heritage conservation environment, but the introduction of a comprehensive approach (Intelligent Building) of the integrated managing of system of building/plants/communication/climate. The methodology was carried out in many of most important Italian Museums. In these buildings the internal micro climate was described, an architectural, plant, and/or managing system restoration was developed. In some cases a monitoring campaign, ducted after the application of studied modification, allowed to evaluate their benefit. This methodology can be very effective and can be largely diffuse in Italy, where museums are usually placed in important historical buildings, which have to be preserved, as well as the works of art inside.

  5. Using passive cooling strategies to improve thermal performance and reduce energy consumption of residential buildings in U.A.E. buildings

    Directory of Open Access Journals (Sweden)

    Hanan M. Taleb

    2014-06-01

    Full Text Available Passive design responds to local climate and site conditions in order to maximise the comfort and health of building users while minimising energy use. The key to designing a passive building is to take best advantage of the local climate. Passive cooling refers to any technologies or design features adopted to reduce the temperature of buildings without the need for power consumption. Consequently, the aim of this study is to test the usefulness of applying selected passive cooling strategies to improve thermal performance and to reduce energy consumption of residential buildings in hot arid climate settings, namely Dubai, United Arab Emirates. One case building was selected and eight passive cooling strategies were applied. Energy simulation software – namely IES – was used to assess the performance of the building. Solar shading performance was also assessed using Sun Cast Analysis, as a part of the IES software. Energy reduction was achieved due to both the harnessing of natural ventilation and the minimising of heat gain in line with applying good shading devices alongside the use of double glazing. Additionally, green roofing proved its potential by acting as an effective roof insulation. The study revealed several significant findings including that the total annual energy consumption of a residential building in Dubai may be reduced by up to 23.6% when a building uses passive cooling strategies.

  6. Simulation Speed Analysis and Improvements of Modelica Models for Building Energy Simulation

    Energy Technology Data Exchange (ETDEWEB)

    Jorissen, Filip; Wetter, Michael; Helsen, Lieve

    2015-09-21

    This paper presents an approach for speeding up Modelica models. Insight is provided into how Modelica models are solved and what determines the tool’s computational speed. Aspects such as algebraic loops, code efficiency and integrator choice are discussed. This is illustrated using simple building simulation examples and Dymola. The generality of the work is in some cases verified using OpenModelica. Using this approach, a medium sized office building including building envelope, heating ventilation and air conditioning (HVAC) systems and control strategy can be simulated at a speed five hundred times faster than real time.

  7. Intelligent building operating technologies : a cost-effective reduction in building energy consumption[Business case for a climate change solution]. 2. ed.

    Energy Technology Data Exchange (ETDEWEB)

    Gilles, J.

    2004-04-01

    Much of the energy consumed in the commercial and institutional (C and I) buildings sector is wasted due to poor building operation. The sector accounts for 13 per cent of secondary energy use in Canada, and contributes about the same proportion of greenhouse gas (GHG) emissions. Energy use in this sector could be reduced if the operation of the buildings were improved. The CANMET Energy Technology Centre in Varennes, Quebec has developed a set of software solutions called Intelligent Building Operating Technologies to address this problem. The software program applies artificial intelligence algorithms to existing building energy management control systems to diagnose equipment and system problems. The software provides performance reports and allows the operator to optimize the operation of the building. The proposed control strategies could be applied to 60 per cent of the building surface area in Canada, resulting energy consumption reductions of 12 per cent annually, or 14 TWh of electricity and 1.5 billion cubic metres of natural gas. The savings amount to $1.8 billion and 7 Mt of GHG emissions annually. It was suggested that a national retro-commissioning program would eliminate the barriers to improving building operation and help research and development aimed at Intelligent Building Operating Technologies. 8 refs., 5 tabs., 3 figs.

  8. THE CONCEPTUAL FRAMEWORK OF FORMING THE PRODUCT QUALITY CONTROL STRATEGY OF ROAD-BUILDING ENGINEERING ENTERPRISES

    Directory of Open Access Journals (Sweden)

    Mariia Sadova

    2017-11-01

    Full Text Available The purpose of the work is the need of the theoretical justification and the development of relevant scientific and methodological approaches to the management of the road production quality of machine-building enterprises; it led to the choice of research topics. Methodology. Taking into account the value of existing methods of quality management of road production engineering companies, currently a particular attention requires improvement of the quality control functions: analysis, evaluation, planning and quality control during the operation of road-building equipment, because existing economic practices and quality management approaches are built on classical principles of ISO 9001, and in the practical application do not solve all of the drawbacks of traditional management models, but only smooth them a little. Therefore, the formation of the quality management strategy for the road production of mechanical engineering is essential to ensure the competitiveness of products and enterprises of the road-building complex in the period of development of market relations in the economy. The results showed that the current market conditions impose strict requirements to all production areas of the society. Especially stringent are requirements for the road construction, because the quality of the construction of the subgrade, covering roads and curbs, grading and soil compaction under different conditions of terrain and driving safety depends on people's lives. This factor determines the exceptional quality requirements for roadbuilding equipment, which must be reliable, functional and able to meet the totality of the design and operational characteristics of the road. Further European integration of Ukraine, deepening of external economic relations with the European countries are responsible for the growing needs of the national economy in the development and expansion of the transport network. However, large-scale road construction and repair

  9. The School Building Principal and Inventory Control: A Case for Computerization.

    Science.gov (United States)

    Stronge, James

    1987-01-01

    General and special purpose database programs are appropriate for inventory control at the school building level. A fixed asset equipment inventory example illustrates the feasibility of computerized inventory control. (MLF)

  10. Predictive control techniques for energy and indoor environmental quality management in buildings

    Energy Technology Data Exchange (ETDEWEB)

    Kolokotsa, D. [Technological Educational Institute of Crete, Department of Natural Resources and Environment, 3, Romanou str., 73133, Hania, Crete (Greece); Pouliezos, A. [Technical University of Crete, Department of Production Engineering and Management, University Campus, Kounoupidiana, 73100 Hania (Greece); Stavrakakis, G.; Lazos, C. [Technical University of Crete, Department of Electronics and Computer Engineering, University Campus, Kounoupidiana, 73100 Hania (Greece)

    2009-09-15

    The aim of the present paper is to present a model-based predictive controller, combined with a Building Energy Management System (BEMS). The overall system predicts the indoor environmental conditions of a specific building and selects the most appropriate actions so as to reach the set points and contribute to the indoor environmental quality by minimizing energy costs. The controller is tested using a BEMS installation in Hania, Crete, Greece. (author)

  11. Smart buildings: Energy efficient conditioning of building occupants

    NARCIS (Netherlands)

    Zeiler, W.; Houten, van M.A.; Boxem, G.; Vehler, R.; Verhoeven, M.; Fremouw, M.

    2009-01-01

    To further optimize energy performance of buildings, intelligent building control offers new possibilities. Intelligent Software Agents (ISA) can be implemented at different levels of building automation. Individual agents for individual climate control for each user of the building in combination

  12. Incentive mechanism design for the residential building energy efficiency improvement of heating zones in North China

    International Nuclear Information System (INIS)

    Zhong, Y.; Cai, W.G.; Wu, Y.; Ren, H.

    2009-01-01

    Starting with analyzing the investigation results by Ministry of Housing and Urban-Rural Development of China in 2005, more than half of the 10,236 participants are willing to improve the residential building energy efficiency and accept an additional cost of less than 10% of the total cost, the authors illustrate that incenting actions are necessary to improve building energy efficiency and build a central government-local government-market model. As a result of the model analysis, to pursue good execution effects brought by the incentive policies, the executors are required to distinguish the differences of incentive objects' economic activities and strongly respect the incenting on the energy conservation performance. A case study on the incentive policies of existing residential building energy efficiency improvement in heating zones in North China is given as well. Finally, it is strongly recommended to give the first priority to performance-based incentives so that to reduce the lazy behaviors of the incented objects and ensure the targets to be achieved.

  13. Building control for nuclear materials R and D facility

    International Nuclear Information System (INIS)

    Hart, O.

    1979-01-01

    The new plutonium research and development facility at LASL was the first facility to be completed in the United States under the new environmental requirements. To insure that these new requirements are met, a redundant computer system is used to monitor and control the building. This paper describes the supervisory control and data acquisition system that was implemented to perform that function

  14. The State Financial Control in Ukraine: Directions of Improvement of its Organization and Evaluation

    Directory of Open Access Journals (Sweden)

    Lomeiko Yuliia A.

    2016-05-01

    Full Text Available The aim of the article is to examine the essence of the state financial control, identify directions of its improvement and define effective methods for its evaluation. On the basis of the results of analysis of modern scientific works it is determined that the precondition for building an effective state financial control system is defining its role in public financial relationships. According to the data of the conducted study it was concluded that first of all, the state financial control is an instrument of fiscal policy and, therefore, its direct purpose is ensuring a sustainable socio-economic development of the country, i.e., achieving the goal of the fiscal policy. Besides, there revealed the need to harmonize the components of the fiscal policy and types of the state financial control in order to build an effective institutional structure of public administration. It is proved that the division of the state financial control into internal and external must be conducted in accordance with the fact whether the controlling body and the subject under control belong to the same or different branch of power. Also the results of the study suggest that for Ukraine it is expedient to choose the model of a decentralized internal state financial control instead of the existing mixed one in order to avoid duplication by the State Audit Service of Ukraine bodies of partially the functions of the Audit Chamber, and partially those of internal control departments, which operate in the executive branch. There determined inappropriateness of building a system of state internal financial control on the basis of the principles provided for the bodies of the external state financial control. This situation leads to ungrounded definition of the internal control as an object of internal audit, which is carried out by structural units in budget organizations. It is also important to emphasize the need to evaluate managerial decisions in exercising the audit

  15. FRF-based structural damage detection of controlled buildings with podium structures: Experimental investigation

    Science.gov (United States)

    Xu, Y. L.; Huang, Q.; Zhan, S.; Su, Z. Q.; Liu, H. J.

    2014-06-01

    How to use control devices to enhance system identification and damage detection in relation to a structure that requires both vibration control and structural health monitoring is an interesting yet practical topic. In this study, the possibility of using the added stiffness provided by control devices and frequency response functions (FRFs) to detect damage in a building complex was explored experimentally. Scale models of a 12-storey main building and a 3-storey podium structure were built to represent a building complex. Given that the connection between the main building and the podium structure is most susceptible to damage, damage to the building complex was experimentally simulated by changing the connection stiffness. To simulate the added stiffness provided by a semi-active friction damper, a steel circular ring was designed and used to add the related stiffness to the building complex. By varying the connection stiffness using an eccentric wheel excitation system and by adding or not adding the circular ring, eight cases were investigated and eight sets of FRFs were measured. The experimental results were used to detect damage (changes in connection stiffness) using a recently proposed FRF-based damage detection method. The experimental results showed that the FRF-based damage detection method could satisfactorily locate and quantify damage.

  16. Improving the accuracy of energy baseline models for commercial buildings with occupancy data

    International Nuclear Information System (INIS)

    Liang, Xin; Hong, Tianzhen; Shen, Geoffrey Qiping

    2016-01-01

    Highlights: • We evaluated several baseline models predicting energy use in buildings. • Including occupancy data improved accuracy of baseline model prediction. • Occupancy is highly correlated with energy use in buildings. • This simple approach can be used in decision makings of energy retrofit projects. - Abstract: More than 80% of energy is consumed during operation phase of a building’s life cycle, so energy efficiency retrofit for existing buildings is considered a promising way to reduce energy use in buildings. The investment strategies of retrofit depend on the ability to quantify energy savings by “measurement and verification” (M&V), which compares actual energy consumption to how much energy would have been used without retrofit (called the “baseline” of energy use). Although numerous models exist for predicting baseline of energy use, a critical limitation is that occupancy has not been included as a variable. However, occupancy rate is essential for energy consumption and was emphasized by previous studies. This study develops a new baseline model which is built upon the Lawrence Berkeley National Laboratory (LBNL) model but includes the use of building occupancy data. The study also proposes metrics to quantify the accuracy of prediction and the impacts of variables. However, the results show that including occupancy data does not significantly improve the accuracy of the baseline model, especially for HVAC load. The reasons are discussed further. In addition, sensitivity analysis is conducted to show the influence of parameters in baseline models. The results from this study can help us understand the influence of occupancy on energy use, improve energy baseline prediction by including the occupancy factor, reduce risks of M&V and facilitate investment strategies of energy efficiency retrofit.

  17. Integration of control and building performance simulation software by run-time coupling

    NARCIS (Netherlands)

    Yahiaoui, A.; Hensen, J.L.M.; Soethout, L.L.

    2003-01-01

    This paper presents the background, approach and initial results of a project, which aims to achieve better integrated building and systems control modeling in building performance simulation by runtime coupling of distributed computer programs. This paper focuses on one of the essential steps

  18. Buildings 104 and 142 Complex Physical Protection and Material Control and Accounting Upgrades at the Mayak Production Association

    International Nuclear Information System (INIS)

    Aichele, Walter T.; Dwyer, Gregory M.; Larsen, R.; Malone, Tim

    2004-01-01

    The Federal State Unitary Enterprise Mayak Production Association (Mayak) and the U.S. Material Protection, Control and Accounting (MPC and A) United States Project Team (USPT) have worked together for a number of years as part of the U.S. national Nuclear Security Administration's (NNSA) MPC and A program to implement both Physical Protection (PP) and Material Control and Accounting (MC and A) upgrades within the Buildings 104 and 142 Complex, a long-term storage area for uranium and plutonium oxide located within Mayak's RT-1 Spent Fuel Reprocessing Plant. This paper focuses on the successes and areas for improvement in the analysis, planning, construction, implementation, and completion of a complex and labor-intensive project aimed at the refurbishment of two existing, in service, long-term special nuclear material (SNM) storage buildings within a Russian SNM production facility

  19. Assigning Robust Default Values in Building Performance Simulation Software for Improved Decision-Making in the Initial Stages of Building Design.

    Science.gov (United States)

    Hiyama, Kyosuke

    2015-01-01

    Applying data mining techniques on a database of BIM models could provide valuable insights in key design patterns implicitly present in these BIM models. The architectural designer would then be able to use previous data from existing building projects as default values in building performance simulation software for the early phases of building design. The author has proposed the method to minimize the magnitude of the variation in these default values in subsequent design stages. This approach maintains the accuracy of the simulation results in the initial stages of building design. In this study, a more convincing argument is presented to demonstrate the significance of the new method. The variation in the ideal default values for different building design conditions is assessed first. Next, the influence of each condition on these variations is investigated. The space depth is found to have a large impact on the ideal default value of the window to wall ratio. In addition, the presence or absence of lighting control and natural ventilation has a significant influence on the ideal default value. These effects can be used to identify the types of building conditions that should be considered to determine the ideal default values.

  20. Recent progress and development of building vibration control systems in Japan

    International Nuclear Information System (INIS)

    Izumi, Masanori

    1989-01-01

    Japan is on a seismically active zone. The people are frequently shaken, and there is good reason to develop vibration control systems. Ministries and major construction companies have contributed to the progress of the technology. An example is the Fast Breeder Reactor (FBR) Research project, which may be equipped with a base-isolation system. Rubber bearings will be standardized and base-isolated buildings will be designed and constructed easily on good ground in the near future. But one needs time to realize a building with an active control system, which is effective in potentially destructive earthquakes

  1. Smart energy control systems for sustainable buildings

    CERN Document Server

    Spataru, Catalina; Howlett, Robert; Jain, Lakhmi

    2017-01-01

    There is widespread interest in the way that smart energy control systems, such as assessment and monitoring techniques for low carbon, nearly-zero energy and net positive buildings can contribute to a Sustainable future, for current and future generations. There is a turning point on the horizon for the supply of energy from finite resources such as natural gas and oil become less reliable in economic terms and extraction become more challenging, and more unacceptable socially, such as adverse public reaction to ‘fracking’. Thus, in 2016 these challenges are having a major influence on the design, optimisation, performance measurements, operation and preservation of: buildings, neighbourhoods, cities, regions, countries and continents. The source and nature of energy, the security of supply and the equity of distribution, the environmental impact of its supply and utilization, are all crucial matters to be addressed by suppliers, consumers, governments, industry, academia, and financial institutions. Thi...

  2. Smoke control in buildings: An overview

    NARCIS (Netherlands)

    Twilt, L.; Oerle, N.J. van; Leur, P.H.E. van de

    1996-01-01

    Smoke poses a major hazard to people in a building involved in fire, being directly responsible for the majority of all deaths in building fires. Whereas the fire itself generally spreads through the building at a relatively slow rate, smoke takes only minutes to fill the building, if no actions are

  3. BARRIER DESIGN STRATEGIES TO CONTROL NOISE INGRESS INTO DOMESTIC BUILDINGS

    Directory of Open Access Journals (Sweden)

    Christina E. Mediastika

    2003-01-01

    Full Text Available Noise source for buildings adjacent to streets is traffic-generated predominantly. Where people are mostly spend their time indoors, it is important for buildings to have screening or blocking to control noise intrusion into living spaces. But this blocking should also permit airflow. This is important for middle to low-cost domestic buildings, which do not employ conditioned ventilation. A common feature of Indonesian buildings, fence, is studied to perform noise barrier. The fence -a barrier to be- should obey three factors: position, dimension, and material. All these three factors were studied to seek compromised design for acoustic performance and natural ventilation purpose. Domestic building situated in the urban area of Yogyakarta was studying to see the most possible design of the barrier to be. There are two calculation methods employed to investigate the proposed design. The study shows that it is possible to gain minimum of 10 dB noise reduction by placing windows within the shadow effect of approximately 1.5 height fence-barrier.

  4. IEA Project on Indoor Air Quality Design and Control in Low Energy Residential Buildings

    DEFF Research Database (Denmark)

    Rode, Carsten; Abadie, Marc; Qin, Menghao

    2016-01-01

    with heat recovery systems, one of the next focal points to limiting energy consumption for thermally conditioning the indoor environment will be to possibly reducing the ventilation rate, or to make it in a new way demand controlled. However, this must be done such that it has no have adverse effects...... on Indoor Air Quality (IAQ). Annex 68, Indoor Air Quality Design and Control in Low Energy Residential Buildings, is a project under IEA’s Energy Conservation in Buildings and Communities Program (EBC), which will endeavor to investigate how future residential buildings are able to have very high energy...... performance whilst providing comfortable and healthy indoor environments. New paradigms for demand control of ventilation will be investigated, which consider the pollution loads and occupancy in buildings. The thermal and moisture conditions of such will be considered because of interactions between...

  5. Peak load shifting control using different cold thermal energy storage facilities in commercial buildings: A review

    International Nuclear Information System (INIS)

    Sun, Yongjun; Wang, Shengwei; Xiao, Fu; Gao, Diance

    2013-01-01

    Highlights: • Little study reviews the load shifting control using different facilities. • This study reviews load shifting control using building thermal mass. • This study reviews load shifting control using thermal energy storage systems. • This study reviews load shifting control using phase change material. • Efforts for developing more applicable load shifting control are addressed. - Abstract: For decades, load shifting control, one of most effective peak demand management methods, has attracted increasing attentions from both researchers and engineers. Different load shifting control strategies have been developed when diverse cold thermal energy storage facilities are used in commercial buildings. The facilities include building thermal mass (BTM), thermal energy storage system (TES) and phase change material (PCM). Little study has systematically reviewed these load shifting control strategies and therefore this study presents a comprehensive review of peak load shifting control strategies using these thermal energy storage facilities in commercial buildings. The research and applications of the load shifting control strategies are presented and discussed. The further efforts needed for developing more applicable load shifting control strategies using the facilities are also addressed

  6. Energy efficient HVAC control in historical buildings : a case study for the Amsterdam Museum

    NARCIS (Netherlands)

    Kompatscher, K.; Seuren, S.; Kramer, R.P.; Van Schijndel, J.A.W.M.; Schellen, H.L.

    2017-01-01

    Museums are often located in historical buildings. To provide suitable housing in a historical building for a museum, these buildings are usually adapted to suit the need for object preservation through HVAC control. Maintaining a strict indoor climate and limiting short fluctuations in indoor

  7. Plug-Load Control and Behavioral Change Research in GSA Office Buildings

    Energy Technology Data Exchange (ETDEWEB)

    Metzger, I.; Cutler, D.; Sheppy, M.

    2012-10-01

    The U.S. General Services Administration (GSA) owns and leases over 354 million square feet (ft2) of space in over 9,600 buildings [1]. GSA is a leader among federal agencies in aggressively pursuing energy efficiency (EE) opportunities for its facilities and installing renewable energy (RE) systems to provide heating, cooling, and power to these facilities. According to several energy assessments of GSA's buildings conducted by the National Renewable Energy Laboratory (NREL), plug-loads account for approximately 21% of the total electricity consumed within a standard GSA Region 3 office building. This study aims to provide insight on how to effectively manage plug-load energy consumption and attain higher energy and cost savings for plug-loads. As GSA improves the efficiency of its building stock, plug-loads will become an even greater portion of its energy footprint.

  8. Vibration control of a cluster of buildings through the Vibrating Barrier

    Science.gov (United States)

    Tombari, A.; Garcia Espinosa, M.; Alexander, N. A.; Cacciola, P.

    2018-02-01

    A novel device, called Vibrating Barrier (ViBa), that aims to reduce the vibrations of adjacent structures subjected to ground motion waves has been recently proposed. The ViBa is a structure buried in the soil and detached from surrounding buildings that is able to absorb a significant portion of the dynamic energy arising from the ground motion. The working principle exploits the dynamic interaction among vibrating structures due to the propagation of waves through the soil, namely the structure-soil-structure interaction. In this paper the efficiency of the ViBa is investigated to control the vibrations of a cluster of buildings. To this aim, a discrete model of structures-site interaction involving multiple buildings and the ViBa is developed where the effects of the soil on the structures, i.e. the soil-structure interaction (SSI), the structure-soil-structure interaction (SSSI) as well as the ViBa-soil-structures interaction are taken into account by means of linear elastic springs. Closed-form solutions are derived to design the ViBa in the case of harmonic excitation from the analysis of the discrete model. Advanced finite element numerical simulations are performed in order to assess the efficiency of the ViBa for protecting more than a single building. Parametric studies are also conducted to identify beneficial/adverse effects in the use of the proposed vibration control strategy to protect cluster of buildings. Finally, experimental shake table tests are performed to a prototype of a cluster of two buildings protected by the ViBa device for validating the proposed numerical models.

  9. Efficiencies and improvement potential of building integrated photovoltaic thermal (BIPVT) system

    International Nuclear Information System (INIS)

    Ibrahim, Adnan; Fudholi, Ahmad; Sopian, Kamaruzzaman; Othman, Mohd Yusof; Ruslan, Mohd Hafidz

    2014-01-01

    Highlights: • Performances analysis of BIPVT solar collector based on energy and exergy analyses. • A new absorber design of BIPVT solar collector is presented. • BIPVT solar collector is produced primary-energy saving efficiency from about 73% to 81%. • PVT energy efficiency varies between 55% and 62% where as the variation in the PVT exergy efficiency is from 12% to 14%. • The improvement potential is between 98 and 404 W. - Abstract: Building integrated photovoltaic thermal (BIPVT) system has been designed to produce both electricity and hot water and later integrated to building. The hot water is produced at the useful temperatures for the applications in Malaysia such as building integrated heating system and domestic hot water system as well as many industrial including agricultural and commercial applications. The photovoltaic thermal (PVT) system comprises of a high efficiency multicrystal photovoltaic (PV) module and spiral flow absorber for BIPVT application, have been performed and investigated. In this study, it was assumed that the absorber was attached underneath the flat plate single glazing sheet of polycrystalline silicon PV module and water has been used as a heat transfer medium in absorber. Performances analysis of BIPVT system based on energy and exergy analyses. It was based on efficiencies including energy and exergy, and exergetic improvement potential (IP) based on the metrological condition of Malaysia has been carried out. Results show that the hourly variation for BIPVT system, the PVT energy efficiency of 55–62% is higher than the PVT exergy efficiency of 12–14%. The improvement potential increases with increasing solar radiation, it is between 98 and 404 W. On the other hand, BIPVT system was produced primary-energy saving efficiency from about 73% to 81%

  10. Distribution Locational Real-Time Pricing Based Smart Building Control and Management

    Energy Technology Data Exchange (ETDEWEB)

    Hao, Jun; Dai, Xiaoxiao; Zhang, Yingchen; Zhang, Jun; Gao, Wenzhong

    2016-11-21

    This paper proposes an real-virtual parallel computing scheme for smart building operations aiming at augmenting overall social welfare. The University of Denver's campus power grid and Ritchie fitness center is used for demonstrating the proposed approach. An artificial virtual system is built in parallel to the real physical system to evaluate the overall social cost of the building operation based on the social science based working productivity model, numerical experiment based building energy consumption model and the power system based real-time pricing mechanism. Through interactive feedback exchanged between the real and virtual system, enlarged social welfare, including monetary cost reduction and energy saving, as well as working productivity improvements, can be achieved.

  11. Adaptive semi-active control of buildings under seismic solicitations

    International Nuclear Information System (INIS)

    Roberti, V.; Jezequel, L.

    1993-01-01

    This paper describes an adaptive semi-active control method whereby nonlinear distributed systems are identified by their dynamical response. Approximate procedures are proposed which take into account the nonlinear behavior of the dynamic system considered. It is shown that only slight knowledge of nonlinearities is needed to apply feedback and feedforward control laws. The method is implemented to a simple example of a building with three degrees of freedom and the numerical results are analyzed

  12. Designing, Building and Controlling of Home Appliances Unit Using PC

    Directory of Open Access Journals (Sweden)

    Saleh Ben Safar

    2017-12-01

    Full Text Available Smart home is a residential building that is usually new or modern equipped with necessary tools and wiring that enable its occupants to control a number of electrical devices and several household appliances through a suitable software. Recently, the development of home automation systems is accelerating rapidly as a result of the rapid intersection of modern technologies. Here we are talking about systems for home communication networks as well as entertainment, security, convenience, etc. These systems are controlled by sending signals through wires distributed throughout the house or Through wireless means to programmable keys or devices so that they understand these commands and deal with them as desired. In this paper, I will discuss how to design the circuit with appropriate components, build it in Printed Circuit Board and connect it to a personal computer by using programmable language in order to control all home appliances by just one click. 

  13. Integrating Environmentally Responsive Elements in Buildings

    DEFF Research Database (Denmark)

    Heiselberg, Per

    2006-01-01

    Significant improvement have been achieved on efficiency improvements of specific building elements like the building envelope and building equipment and services and whilst most building elements still offer opportunities for efficiency improvements, the greatest future potential lie with techno......Significant improvement have been achieved on efficiency improvements of specific building elements like the building envelope and building equipment and services and whilst most building elements still offer opportunities for efficiency improvements, the greatest future potential lie...

  14. Development of remote decontamination technologies improving internal environment of reactor buildings at Fukushima Daiichi Nuclear Power Station

    International Nuclear Information System (INIS)

    Hotta, Koji; Hayashi, Hirotada; Sakai, Hitoshi

    2016-01-01

    The reactor buildings at the Fukushima Daiichi Nuclear Power Station of Tokyo Electric Power Co., Inc., which was seriously damaged by the Great East Japan Earthquake of March 11, 2011, have been highly contaminated by radioactive materials. To safely and efficiently advance the processes related to the forthcoming decommissioning of the reactors, it is necessary to improve the hazardous environment inside the reactor buildings. During the more than four years that have elapsed since the Great East Japan Earthquake, Toshiba has been implementing various measures to reduce the ambient dose rates inside the reactor buildings through decontamination work and participation in a national project for the development of remote decontamination technologies for reactor buildings. A variety of vehicles and technologies to support decontamination work have been developed through these activities, and are significantly contributing to improvement of the environment inside the reactor buildings. (author)

  15. Assigning Robust Default Values in Building Performance Simulation Software for Improved Decision-Making in the Initial Stages of Building Design

    Directory of Open Access Journals (Sweden)

    Kyosuke Hiyama

    2015-01-01

    Full Text Available Applying data mining techniques on a database of BIM models could provide valuable insights in key design patterns implicitly present in these BIM models. The architectural designer would then be able to use previous data from existing building projects as default values in building performance simulation software for the early phases of building design. The author has proposed the method to minimize the magnitude of the variation in these default values in subsequent design stages. This approach maintains the accuracy of the simulation results in the initial stages of building design. In this study, a more convincing argument is presented to demonstrate the significance of the new method. The variation in the ideal default values for different building design conditions is assessed first. Next, the influence of each condition on these variations is investigated. The space depth is found to have a large impact on the ideal default value of the window to wall ratio. In addition, the presence or absence of lighting control and natural ventilation has a significant influence on the ideal default value. These effects can be used to identify the types of building conditions that should be considered to determine the ideal default values.

  16. Bridging the gap between the linear and nonlinear predictive control: Adaptations fo refficient building climate control

    Czech Academy of Sciences Publication Activity Database

    Pčolka, M.; Žáčeková, E.; Robinett, R.; Čelikovský, Sergej; Šebek, M.

    2016-01-01

    Roč. 53, č. 1 (2016), s. 124-138 ISSN 0967-0661 R&D Projects: GA ČR GA13-20433S Institutional support: RVO:67985556 Keywords : Model predictive control * Identification for control * Building climatecontrol Subject RIV: BC - Control Systems Theory Impact factor: 2.602, year: 2016 http://library.utia.cas.cz/separaty/2016/TR/celikovsky-0460306.pdf

  17. Task-Oriented and Relationship-Building Communications between Air Traffic Controllers and Pilots

    Directory of Open Access Journals (Sweden)

    Inwon Kang

    2017-09-01

    Full Text Available By questioning the lopsided attention on task-oriented factors in air traffic controller-pilot communication, the current study places an equal weighting on both task-oriented and relationship-building communications, and investigates how each type of communication influences sustainable performance in airline operation team. Results show that both task-oriented and relationship-building communications in terms of sustainability of team process predicted greater communication satisfaction at work. Also, both task interdependence and shared leadership influenced both types of air traffic controller-pilot communication. However, only relationship-building communication had a direct influence on perceived work performance whereas task-oriented communication had not. Along with task-oriented factors, this study raises the relationship-oriented factors as important resources for the sustainable team performance in airline industry.

  18. A control-oriented model for combined building climate comfort and aquifer thermal energy storage system

    NARCIS (Netherlands)

    Rostampour Samarin, Vahab; Bloemendal, J.M.; Jaxa-Rozen, M.; Keviczky, T.

    2016-01-01

    This paper presents a control-oriented model for combined building climate comfort and aquifer thermal energy storage (ATES) system. In particular, we first provide a description of building operational systems together with control framework variables. We then focus on the derivation of an

  19. Architecture and performance of neural networks for efficient A/C control in buildings

    International Nuclear Information System (INIS)

    Mahmoud, Mohamed A.; Ben-Nakhi, Abdullatif E.

    2003-01-01

    The feasibility of using neural networks (NNs) for optimizing air conditioning (AC) setback scheduling in public buildings was investigated. The main focus is on optimizing the network architecture in order to achieve best performance. To save energy, the temperature inside public buildings is allowed to rise after business hours by setting back the thermostat. The objective is to predict the time of the end of thermostat setback (EoS) such that the design temperature inside the building is restored in time for the start of business hours. State of the art building simulation software, ESP-r, was used to generate a database that covered the years 1995-1999. The software was used to calculate the EoS for two office buildings using the climate records in Kuwait. The EoS data for 1995 and 1996 were used for training and testing the NNs. The robustness of the trained NN was tested by applying them to a 'production' data set (1997-1999), which the networks have never 'seen' before. For each of the six different NN architectures evaluated, parametric studies were performed to determine the network parameters that best predict the EoS. External hourly temperature readings were used as network inputs, and the thermostat end of setback (EoS) is the output. The NN predictions were improved by developing a neural control scheme (NC). This scheme is based on using the temperature readings as they become available. For each NN architecture considered, six NNs were designed and trained for this purpose. The performance of the NN analysis was evaluated using a statistical indicator (the coefficient of multiple determination) and by statistical analysis of the error patterns, including ANOVA (analysis of variance). The results show that the NC, when used with a properly designed NN, is a powerful instrument for optimizing AC setback scheduling based only on external temperature records

  20. Energy analysis of an improved concept of integrated PV panels in an office building in central Greece

    Energy Technology Data Exchange (ETDEWEB)

    Zogou, Olympia; Stapountzis, Herricos [University of Thessaly, Mechanical Engineering Department, Volos (Greece)

    2011-03-15

    During the last decade, steel constructions with glazed facades became popular for commercial buildings in Greece. Moreover, expensive metal, natural stone, marble, ceramic, granite as well as special glass is employed for aesthetic and energy efficiency reasons. This creates opportunities for the introduction of Photovoltaic (PV) modules in double facades. PV modules on south-facing building walls are better placed at a distance from the wall to allow heat rejection and avoid overheating and efficiency loss. Exploiting the rejected heat of the PV modules is also a challenge. In this paper, we examine an improved concept of incorporating PV modules to the south facades of an office building, exploiting both the electricity produced and the heat rejected by the module, to increase building energy efficiency. The PV modules are integrated to the building wall by means of a double facade, which employs intervening ducts for ventilation purposes. The ducts are heating outdoor air, which is employed to cover the ventilation needs of the building, as well as a part of the heating loads. Simulations for typical winter and summer weather and solar insolation conditions are carried out to investigate the building's energy performance improvements. (author)

  1. Energy analysis of an improved concept of integrated PV panels in an office building in central Greece

    International Nuclear Information System (INIS)

    Zogou, Olympia; Stapountzis, Herricos

    2011-01-01

    During the last decade, steel constructions with glazed facades became popular for commercial buildings in Greece. Moreover, expensive metal, natural stone, marble, ceramic, granite as well as special glass is employed for aesthetic and energy efficiency reasons. This creates opportunities for the introduction of Photovoltaic (PV) modules in double facades. PV modules on south-facing building walls are better placed at a distance from the wall to allow heat rejection and avoid overheating and efficiency loss. Exploiting the rejected heat of the PV modules is also a challenge. In this paper, we examine an improved concept of incorporating PV modules to the south facades of an office building, exploiting both the electricity produced and the heat rejected by the module, to increase building energy efficiency. The PV modules are integrated to the building wall by means of a double facade, which employs intervening ducts for ventilation purposes. The ducts are heating outdoor air, which is employed to cover the ventilation needs of the building, as well as a part of the heating loads. Simulations for typical winter and summer weather and solar insolation conditions are carried out to investigate the building's energy performance improvements.

  2. Building district-level capacity for continuous improvement in maternal and newborn health.

    Science.gov (United States)

    Stover, Kim Ethier; Tesfaye, Solomon; Frew, Aynalem Hailemichael; Mohammed, Hajira; Barry, Danika; Alamineh, Lamesgin; Teshome, Abebe; Hepburn, Kenneth; Sibley, Lynn M

    2014-01-01

    The Maternal and Newborn Health in Ethiopia Partnership (MaNHEP) adapted a collaborative improvement strategy to develop woreda (district) leadership capacity to support and facilitate continuous improvement of community maternal and neonatal health (CMNH) and to provide a model for other woredas, dubbed "lead" woredas. Community-level quality improvement (QI) teams tested solutions to improve CMNH care supported by monthly coaching and regular meetings to share experiences. This study examines the extent of the capacity built to support continuous improvement in CMNH care. Surveys and in-depth interviews assessed the extent to which MaNHEP developed improvement capacity. A survey questionnaire evaluated woreda culture, leadership support, motivation, and capacity for improvement activities. Interviews focused on respondents' understanding and perceived value of the MaNHEP improvement approach. Bivariate analyses and multivariate linear regression models were used to analyze the survey data. Interview transcripts were organized by region, cadre, and key themes. Respondents reported significant positive changes in many areas of woreda culture and leadership, including involving a cross-section of community stakeholders (increased from 3.0 to 4.6 on 5-point Likert scale), using improvement data for decision making (2.8-4.4), using locally developed and tested solutions to improve CMNH care (2.5-4.3), demonstrating a commitment to improve the health of women and newborns (2.6-4.2), and creating a supportive environment for coaches and QI teams to improve CMNH (2.6-4.0). The mean scores for capacity were 3.7 and higher, reflecting respondents' agreement that they had gained capacity in improvement skills. Interview respondents universally recognized the capacity built in the woredas. The themes of community empowerment and focused improvement emerged strongly from the interviews. MaNHEP was able to build capacity for continuous improvement and develop lead woredas. The

  3. A Distributed Multi-agent Control System for Power Consumption in Buildings

    DEFF Research Database (Denmark)

    Kosek, Anna Magdalena; Gehrke, Oliver

    2012-01-01

    This paper presents a distributed controller for adjusting the electrical consumption of a residential building in response to an external power setpoint in Watts. The controller is based on a multi-agent system and has been implemented in JCSP. It is modularly built, capable of self-configuratio...

  4. Intelligent buildings, automatic fire alarm and fire-protection control system

    International Nuclear Information System (INIS)

    Tian Deyuan

    1999-01-01

    The author describes in brief the intelligent buildings, and the automatic fire alarm and fire-protection control system. On the basis of the four-bus, three-bus and two-bus, a new transfer technique was developed

  5. Comparative effects of building envelope improvements and occupant behavioural changes on the exergy consumption for heating and cooling

    International Nuclear Information System (INIS)

    Schweiker, Marcel; Shukuya, Masanori

    2010-01-01

    Much focus is put on measures to improve the building envelope system performance to reduce the impact of the building sector on the global environmental degradation. This paper compares the potential of building envelope improvements to those of a change in the occupant's behavioural pattern. Three cases of improvements together with a base case were analysed using exergy analysis, because the exergy concept is useful to understand the underlying processes and the necessary adjustments to the calculation of the heat-pump system. The assumptions for the occupant behaviour were set up based on our field measurements conducted in a dormitory building and the calculation was for steady-state conditions. It was found that the potential of occupant behavioural changes for the reduction in exergy consumption is more affected by the outdoor temperature compared to building envelope improvements. The influence of occupant behaviour was highly significant (more than 90% decrease of exergy consumption) when the temperature difference between indoors and outdoors is small, which is the case for long periods in regions with moderate temperatures during summer and/or winter. Nevertheless, both measures combined lead to a reduction from 76% up to 95% depending on the outside conditions and should be the final goal.

  6. Building-Related Symptoms, Energy, and Thermal Control in the Workplace: Personal and Open Plan Offices

    Directory of Open Access Journals (Sweden)

    Sally S. Shahzad

    2016-04-01

    Full Text Available This study compared building-related symptoms in personal and open plan offices, where high and low levels of control over the thermal environment were provided, respectively. The individualized approach in Norway provided every user with a personal office, where they had control over an openable window, door, blinds, and thermostat. In contrast, the open plan case studies in the United Kingdom provided control over openable windows and blinds only for limited occupants seated around the perimeter of the building, with users seated away from the windows having no means of environmental control. Air conditioning was deployed in the Norwegian case study buildings, while displacement ventilation and natural ventilation were utilized in the British examples. Field studies of thermal comfort were applied with questionnaires, environmental measurements, and interviews. Users’ health was better in the Norwegian model (28%, while the British model was much more energy efficient (up to 10 times. The follow-up interviews confirmed the effect of lack of thermal control on users’ health. A balanced appraisal was made of energy performance and users’ health between the two buildings.

  7. Transportable Payload Operations Control Center reusable software: Building blocks for quality ground data systems

    Science.gov (United States)

    Mahmot, Ron; Koslosky, John T.; Beach, Edward; Schwarz, Barbara

    1994-01-01

    The Mission Operations Division (MOD) at Goddard Space Flight Center builds Mission Operations Centers which are used by Flight Operations Teams to monitor and control satellites. Reducing system life cycle costs through software reuse has always been a priority of the MOD. The MOD's Transportable Payload Operations Control Center development team established an extensive library of 14 subsystems with over 100,000 delivered source instructions of reusable, generic software components. Nine TPOCC-based control centers to date support 11 satellites and achieved an average software reuse level of more than 75 percent. This paper shares experiences of how the TPOCC building blocks were developed and how building block developer's, mission development teams, and users are all part of the process.

  8. A hybrid decision support system for sustainable office building renovation and energy performance improvement

    Energy Technology Data Exchange (ETDEWEB)

    Juan, Yi-Kai [Department of Architecture, National Taiwan University of Science and Technology (NTUST) (China); Center for Sustainable Development and Global Competitiveness, Stanford University (United States); Gao, Peng [Department of Traffic and Transportation Engineering, Tongji University (China); Wang, Jie [Center for Sustainable Development and Global Competitiveness, Stanford University (United States)

    2010-03-15

    Energy consumption of buildings accounts for around 20-40% of all energy consumed in advanced countries. Over the last decade, more and more global organizations are investing significant resources to create sustainably built environments, emphasizing sustainable building renovation processes to reduce energy consumption and carbon dioxide emissions. This study develops an integrated decision support system to assess existing office building conditions and to recommend an optimal set of sustainable renovation actions, considering trade-offs between renovation cost, improved building quality, and environmental impacts. A hybrid approach that combines A* graph search algorithm with genetic algorithms (GA) is used to analyze all possible renovation actions and their trade-offs to develop the optimal solution. A two-stage system validation is performed to demonstrate the practical application of the hybrid approach: zero-one goal programming (ZOGP) and genetic algorithms are adopted to validate the effectiveness of the algorithm. A real-world renovation project is introduced to validate differences in energy performance projected for the renovation solution suggested by the system. The results reveal that the proposed hybrid system is more computationally effective than either ZOGP or GA alone. The system's suggested renovation actions would provide substantial energy performance improvements to the real project if implemented. (author)

  9. Method for reducing excess heat supply experienced in typical Chinese district heating systems by achieving hydraulic balance and improving indoor air temperature control at the building level

    International Nuclear Information System (INIS)

    Zhang, Lipeng; Gudmundsson, Oddgeir; Thorsen, Jan Eric; Li, Hongwei; Li, Xiaopeng; Svendsen, Svend

    2016-01-01

    A common problem with Chinese district heating systems is that they supply more heat than the actual heat demand. The reason for this excess heat supply is the general failure to use control devices to adjust the indoor temperature and flow in the building heating systems in accordance with the actual heat demand. This results in 15–30% of the total supplied heat being lost. This paper proposes an integrated approach that aims to reduce the excess heat loss by introducing pre-set thermostatic radiator valves combined with automatic balancing valves. Those devices establish hydraulic balance, and stabilize indoor temperatures. The feasibility and the energy consumption reduction of this approach were verified by means of simulation and a field test. By moving the system from centrally planned heat delivery to demand-driven heat delivery, excess heat loss can be significantly reduced. Results show that once the hydraulic balance is achieved and indoor temperatures are controlled with this integrated approach, 17% heat savings and 42.8% pump electricity savings can be achieved. The energy savings will also have a positive environmental effect with seasonal reductions of 11 kg CO_2, 0.1 kg SO_2, and 0.03 kg NO_x per heating square meter for a typical case in Harbin. - Highlights: • Two real cases reflect the temperature and flow control situation of heating systems in China. • Pre-set radiator valves with automatic balancing valves create dynamic hydraulic balance. • IDA-ICE simulation shows 17% heat saving and 48% pump electricity saving. • This approach can improve the comfort level of multi-storey/high-rise residential buildings. • This approach can reduce excess heat supply and bring out positive environmental impacts.

  10. Automated Reconstruction of Building LoDs from Airborne LiDAR Point Clouds Using an Improved Morphological Scale Space

    Directory of Open Access Journals (Sweden)

    Bisheng Yang

    2016-12-01

    Full Text Available Reconstructing building models at different levels of detail (LoDs from airborne laser scanning point clouds is urgently needed for wide application as this method can balance between the user’s requirements and economic costs. The previous methods reconstruct building LoDs from the finest 3D building models rather than from point clouds, resulting in heavy costs and inflexible adaptivity. The scale space is a sound theory for multi-scale representation of an object from a coarser level to a finer level. Therefore, this paper proposes a novel method to reconstruct buildings at different LoDs from airborne Light Detection and Ranging (LiDAR point clouds based on an improved morphological scale space. The proposed method first extracts building candidate regions following the separation of ground and non-ground points. For each building candidate region, the proposed method generates a scale space by iteratively using the improved morphological reconstruction with the increase of scale, and constructs the corresponding topological relationship graphs (TRGs across scales. Secondly, the proposed method robustly extracts building points by using features based on the TRG. Finally, the proposed method reconstructs each building at different LoDs according to the TRG. The experiments demonstrate that the proposed method robustly extracts the buildings with details (e.g., door eaves and roof furniture and illustrate good performance in distinguishing buildings from vegetation or other objects, while automatically reconstructing building LoDs from the finest building points.

  11. Advanced Sensors and Controls for Building Applications: Market Assessment and Potential R&D Pathways

    Energy Technology Data Exchange (ETDEWEB)

    Brambley, Michael R.; Haves, Philip; McDonald, Sean C.; Torcellini, Paul; Hansen, David G.; Holmberg, David; Roth, Kurt

    2005-04-13

    Significant energy savings can be achieved in commercial building operation, along with increased comfort and control for occupants, through the implementation of advanced technologies. This document provides a market assessment of existing building sensors and controls and presents a range of technology pathways (R&D options) for pursuing advanced sensors and building control strategies. This paper is actually a synthesis of five other white papers: the first describes the market assessment including estimates of market potential and energy savings for sensors and control strategies currently on the market as well as a discussion of market barriers to these technologies. The other four cover technology pathways: (1) current applications and strategies for new applications, (2) sensors and controls, (3) networking, security, and protocols and standards, and (4) automated diagnostics, performance monitoring, commissioning, optimal control and tools. Each technology pathway chapter gives an overview of the technology or application. This is followed by a discussion of needs and the current status of the technology. Finally, a series of research topics is proposed.

  12. Hierarchical fuzzy control of low-energy building systems

    Energy Technology Data Exchange (ETDEWEB)

    Yu, Zhen; Dexter, Arthur [Department of Engineering Science, University of Oxford, Parks Road, Oxford OX1 3PJ (United Kingdom)

    2010-04-15

    A hierarchical fuzzy supervisory controller is described that is capable of optimizing the operation of a low-energy building, which uses solar energy to heat and cool its interior spaces. The highest level fuzzy rules choose the most appropriate set of lower level rules according to the weather and occupancy information; the second level fuzzy rules determine an optimal energy profile and the overall modes of operation of the heating, ventilating and air-conditioning system (HVAC); the third level fuzzy rules select the mode of operation of specific equipment, and assign schedules to the local controllers so that the optimal energy profile can be achieved in the most efficient way. Computer simulation is used to compare the hierarchical fuzzy control scheme with a supervisory control scheme based on expert rules. The performance is evaluated by comparing the energy consumption and thermal comfort. (author)

  13. Building integration of PCM for natural cooling of buildings

    International Nuclear Information System (INIS)

    Álvarez, Servando; Cabeza, Luisa F.; Ruiz-Pardo, Alvaro; Castell, Albert; Tenorio, José Antonio

    2013-01-01

    Highlights: ► A brief overview of PCM solutions for buildings is provided. ► Some weaknesses of existing PCM solutions for buildings were identified. ► New solutions for PCM integration in buildings are proposed. ► Proposed solutions overcome identified weaknesses of existing solutions. - Abstract: The use of night cooling ventilation in addition of phase change materials (PCMs) is a very powerful strategy for reducing the cooling demand of buildings. Nevertheless, there are inherent drawbacks in the way things have been doing so far: (a) The limited area of contact between PCM and the air; (b) the very low convective heat transfer coefficients which prevents the use of significant amounts of PCM and (c) the very low utilization factor of the cool stored due to the large phase shift between the time when cool is stored and time when it is required by the building. In this paper, we present innovative solutions using PCM to overcome the above situation. Compared with existing solutions, innovative solutions proposed, increase the contact area between PCM and air by a factor of approximately 3.6, increase the convective heat transfer coefficient significantly, and improve the utilization factor due to the inclusion of active control systems which allow the cold stored be actually used when required

  14. Design of a distributed simulation environment for building control applications based on systems engineering methodology

    NARCIS (Netherlands)

    Yahiaoui, Azzedine

    2018-01-01

    The analysis of innovative designs that distributes control to buildings over a network is currently a challenging task as exciting building performance simulation tools do not offer sufficient capabilities and the flexibility to fully respond to the full complexity of Automated Buildings (ABs). For

  15. Reflective coatings for interior and exterior of buildings and improving thermal performance

    International Nuclear Information System (INIS)

    Joudi, Ali; Svedung, Harald; Cehlin, Mathias; Rönnelid, Mats

    2013-01-01

    Highlights: ► Increase building energy efficiency by optimizing surface optical properties. ► Study different scenarios with both interior and exterior reflective coatings. ► Combined thermal effect of both interior and exterior reflective coatings. -- Abstract: The importance of reducing building energy usage and thriving for more energy efficient architectures, has nurtured creative solutions and smart choices of materials in the last few decades. Among those are optimizing surface optical properties for both interior and exterior claddings of the building. Development in the coil-coating steel industries has now made it possible to allocate correct optical properties for steel clad buildings with improved thermal performance. Although the importance of the exterior coating and solar gain are thoroughly studied in many literatures, the effect of interior cladding are less tackled, especially when considering a combination of both interior and exterior reflective coatings. This paper contemplates the thermal behavior of small cabins with reflective coatings on both interior and exterior cladding, under different conditions and climates with the aim to clarify and point out to the potential energy saving by smart choices of clad coatings.

  16. Automate Your Physical Plant Using the Building Block Approach.

    Science.gov (United States)

    Michaelson, Matt

    1998-01-01

    Illustrates how Mount Saint Vincent University (Halifax), by upgrading the control and monitoring of one building or section of the school at a time, could produce savings in energy and operating costs and improve the environment. Explains a gradual, "building block" approach to facility automation that provides flexibility without a…

  17. Development of a new energy benchmark for improving the operational rating system of office buildings using various data-mining techniques

    International Nuclear Information System (INIS)

    Park, Hyo Seon; Lee, Minhyun; Kang, Hyuna; Hong, Taehoon; Jeong, Jaewook

    2016-01-01

    Highlights: • This study developed a new energy benchmark for office buildings. • Correlation analysis, decision tree, and analysis of variance were used. • The data from 1072 office buildings in South Korea were used. • As a result, six types of energy benchmarks for office buildings were developed. • The operational rating system can be improved by using the new energy benchmark. - Abstract: As improving energy efficiency in buildings has become a global issue today, many countries have adopted the operational rating system to evaluate the energy performance of a building based on the actual energy consumption. A rational and reasonable energy benchmark can be used in the operational rating system to evaluate the energy performance of a building accurately and effectively. This study aims to develop a new energy benchmark for improving the operational rating system of office buildings. Toward this end, this study used various data-mining techniques such as correlation analysis, decision tree (DT) analysis, and analysis of variance (ANOVA). Based on data from 1072 office buildings in South Korea, this study was conducted in three steps: (i) Step 1: establishment of the database; (ii) Step 2: development of the new energy benchmark; and (iii) Step 3: application of the new energy benchmark for improving the operational rating system. As a result, six types of energy benchmarks for office buildings were developed using DT analysis based on the gross floor area (GFA) and the building use ratio (BUR) of offices, and these new energy benchmarks were validated using ANOVA. To ensure the effectiveness of the new energy benchmark, it was applied to three operational rating systems for comparison: (i) the baseline system (the same energy benchmark is used for all office buildings); (ii) the conventional system (different energy benchmarks are used depending on the GFA, currently used in South Korea); and (iii) the proposed system (different energy benchmarks are

  18. Building Energy Management Open Source Software

    Energy Technology Data Exchange (ETDEWEB)

    2017-06-20

    This is the repository for Building Energy Management Open Source Software (BEMOSS), which is an open source operating system that is engineered to improve sensing and control of equipment in small- and medium-sized commercial buildings. BEMOSS offers the following key features: (1) Open source, open architecture – BEMOSS is an open source operating system that is built upon VOLTTRON – a distributed agent platform developed by Pacific Northwest National Laboratory (PNNL). BEMOSS was designed to make it easy for hardware manufacturers to seamlessly interface their devices with BEMOSS. Software developers can also contribute to adding additional BEMOSS functionalities and applications. (2) Plug & play – BEMOSS was designed to automatically discover supported load controllers (including smart thermostats, VAV/RTUs, lighting load controllers and plug load controllers) in commercial buildings. (3) Interoperability – BEMOSS was designed to work with load control devices form different manufacturers that operate on different communication technologies and data exchange protocols. (4) Cost effectiveness – Implementation of BEMOSS deemed to be cost-effective as it was built upon a robust open source platform that can operate on a low-cost single-board computer, such as Odroid. This feature could contribute to its rapid deployment in small- or medium-sized commercial buildings. (5) Scalability and ease of deployment – With its multi-node architecture, BEMOSS provides a distributed architecture where load controllers in a multi-floor and high occupancy building could be monitored and controlled by multiple single-board computers hosting BEMOSS. This makes it possible for a building engineer to deploy BEMOSS in one zone of a building, be comfortable with its operation, and later on expand the deployment to the entire building to make it more energy efficient. (6) Ability to provide local and remote monitoring – BEMOSS provides both local and remote monitoring

  19. Demand management through centralized control system using power line communication for existing buildings

    International Nuclear Information System (INIS)

    Al-Mulla, A.; ElSherbini, A.

    2014-01-01

    Highlights: • A pilot system was developed for demand management of equipment in buildings. • The networking was based on LonWorks platform and power line communication. • Demand strategies led to load reductions up to 74% and energy savings up to 25%. • The peak load reduction is expected to reach 3.44 GW by the year 2030. - Abstract: Managing peak demand efficiently is vital for maintaining uninterrupted supply of electrical power by utility providers. In this work, a pilot system was developed for managing and controlling the demand of major power consuming equipment in buildings from a central server, while relying mostly on existing infrastructure and maintaining consumer comfort. The system was successfully demonstrated on a selected group of buildings using the LonWorks networking platform. At the building level, the system utilized power line and twisted pair communication to control the thermostats of air-conditioning (A/C) units. The higher level communication was executed through extensible markup language (XML) and simple object access protocol (SOAP). The system provided control capabilities based on A/C unit priority, thermostat temperature, building type and geographic location. The development and execution of demand management strategies for selected buildings led to peak load reductions up to 74%, in addition to energy savings up to 25%. Implementing such a system at a national level in Kuwait is estimated to reduce peak demand by 3.44 GW, amounting to capital savings of $4.13 billion. The use of existing infrastructure reduced the cost and installation time of the system. Based on the successful testing of this pilot system, a larger-scale system is being developed

  20. Increasing Student Achievement and Improving Self-Esteem through a Community Building Intervention

    Science.gov (United States)

    Lupo, Concetta M.

    2012-01-01

    This study focused on improving students' self-esteem through community building at an elementary school in a low socioeconomic community where over 55% of the students live below the poverty line. Orefield and Yun state in their 1999 article, "Resegregation of America's schools," "school level poverty is related to many…

  1. Integrating advanced facades into high performance buildings

    International Nuclear Information System (INIS)

    Selkowitz, Stephen E.

    2001-01-01

    Glass is a remarkable material but its functionality is significantly enhanced when it is processed or altered to provide added intrinsic capabilities. The overall performance of glass elements in a building can be further enhanced when they are designed to be part of a complete facade system. Finally the facade system delivers the greatest performance to the building owner and occupants when it becomes an essential element of a fully integrated building design. This presentation examines the growing interest in incorporating advanced glazing elements into more comprehensive facade and building systems in a manner that increases comfort, productivity and amenity for occupants, reduces operating costs for building owners, and contributes to improving the health of the planet by reducing overall energy use and negative environmental impacts. We explore the role of glazing systems in dynamic and responsive facades that provide the following functionality: Enhanced sun protection and cooling load control while improving thermal comfort and providing most of the light needed with daylighting; Enhanced air quality and reduced cooling loads using natural ventilation schemes employing the facade as an active air control element; Reduced operating costs by minimizing lighting, cooling and heating energy use by optimizing the daylighting-thermal tradeoffs; Net positive contributions to the energy balance of the building using integrated photovoltaic systems; Improved indoor environments leading to enhanced occupant health, comfort and performance. In addressing these issues facade system solutions must, of course, respect the constraints of latitude, location, solar orientation, acoustics, earthquake and fire safety, etc. Since climate and occupant needs are dynamic variables, in a high performance building the facade solution have the capacity to respond and adapt to these variable exterior conditions and to changing occupant needs. This responsive performance capability

  2. An International Project on Indoor Air Quality Design and Control in Low Energy Residential Buildings

    DEFF Research Database (Denmark)

    Rode, Carsten; Abadie, Marc; Qin, Menghao

    2016-01-01

    focal points to limiting energy consumption for thermally conditioning the indoor environment will be to possibly reducing the ventilation rate, or making it in a new way demand controlled. However, this must be done such that it does not have adverse effects on indoor air quality (IAQ). Annex 68......In order to achieve nearly net zero energy use, both new and energy refurbished existing buildings will in the future need to be still more efficient and optimized. Since such buildings can be expected to be already well insulated, airtight, and have heat recovery systems installed, one of the next......, Indoor Air Quality Design and Control in Low Energy Residential Buildings, is a project under IEA’s Energy Conservation in Buildings and Communities Program (EBC), which will endeavor to investigate how future residential buildings are able to have very high energy performance whilst providing...

  3. Coordination and Control of Flexible Building Loads for Renewable Integration; Demonstrations using VOLTTRON

    Energy Technology Data Exchange (ETDEWEB)

    Hao, He [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Liu, Guopeng [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Huang, Sen [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Katipamula, Srinivas [Pacific Northwest National Lab. (PNNL), Richland, WA (United States)

    2016-10-31

    Renewable energy resources such as wind and solar power have a high degree of uncertainty. Large-scale integration of these variable generation sources into the grid is a big challenge for power system operators. Buildings, in which we live and work, consume about 75% of the total electricity in the United States. They also have a large capacity of power flexibility due to their massive thermal capacitance. Therefore, they present a great opportunity to help the grid to manage power balance. In this report, we study coordination and control of flexible building loads for renewable integration. We first present the motivation and background, and conduct a literature review on building-to-grid integration. We also compile a catalog of flexible building loads that have great potential for renewable integration, and discuss their characteristics. We next collect solar generation data from a photovoltaic panel on Pacific Northwest National Laboratory campus, and conduct data analysis to study their characteristics. We find that solar generation output has a strong uncertainty, and the uncertainty occurs at almost all time scales. Additional data from other sources are also used to verify our study. We propose two transactive coordination strategies to manage flexible building loads for renewable integration. We prove the theories that support the two transactive coordination strategies and discuss their pros and cons. In this report, we select three types of flexible building loads—air-handling unit, rooftop unit, and a population of WHs—for which we demonstrate control of the flexible load to track a dispatch signal (e.g., renewable generation fluctuation) using experiment, simulation, or hardware-in-the-loop study. More specifically, we present the system description, model identification, controller design, test bed setup, and experiment results for each demonstration. We show that coordination and control of flexible loads has a great potential to integrate

  4. Creating high performance buildings: Lower energy, better comfort

    International Nuclear Information System (INIS)

    Brager, Gail; Arens, Edward

    2015-01-01

    Buildings play a critical role in the challenge of mitigating and adapting to climate change. It is estimated that buildings contribute 39% of the total U.S. greenhouse gas (GHG) emissions [1] primarily due to their operational energy use, and about 80% of this building energy use is for heating, cooling, ventilating, and lighting. An important premise of this paper is about the connection between energy and comfort. They are inseparable when one talks about high performance buildings. Worldwide data suggests that we are significantly overcooling buildings in the summer, resulting in increased energy use and problems with thermal comfort. In contrast, in naturally ventilated buildings without mechanical cooling, people are comfortable in much warmer temperatures due to shifting expectations and preferences as a result of occupants having a greater degree of personal control over their thermal environment; they have also become more accustomed to variable conditions that closely reflect the natural rhythms of outdoor climate patterns. This has resulted in an adaptive comfort zone that offers significant potential for encouraging naturally ventilated buildings to improve both energy use and comfort. Research on other forms for providing individualized control through low-energy personal comfort systems (desktop fans, foot warmed, and heated and cooled chairs) have also demonstrated enormous potential for improving both energy and comfort performance. Studies have demonstrated high levels of comfort with these systems while ambient temperatures ranged from 64–84°F. Energy and indoor environmental quality are inextricably linked, and must both be important goals of a high performance building

  5. 32 CFR 644.554 - Insurance against loss or damages to buildings and improvements by fire or acts of God.

    Science.gov (United States)

    2010-07-01

    ... 32 National Defense 4 2010-07-01 2010-07-01 true Insurance against loss or damages to buildings and improvements by fire or acts of God. 644.554 Section 644.554 National Defense Department of... Procedure § 644.554 Insurance against loss or damages to buildings and improvements by fire or acts of God...

  6. Energy Performance and Optimal Control of Air-conditioned Buildings Integrated with Phase Change Materials

    Science.gov (United States)

    Zhu, Na

    This thesis presents an overview of the previous research work on dynamic characteristics and energy performance of buildings due to the integration of PCMs. The research work on dynamic characteristics and energy performance of buildings using PCMs both with and without air-conditioning is reviewed. Since the particular interest in using PCMs for free cooling and peak load shifting, specific research efforts on both subjects are reviewed separately. A simplified physical dynamic model of building structures integrated with SSPCM (shaped-stabilized phase change material) is developed and validated in this study. The simplified physical model represents the wall by 3 resistances and 2 capacitances and the PCM layer by 4 resistances and 2 capacitances respectively while the key issue is the parameter identification of the model. This thesis also presents the studies on the thermodynamic characteristics of buildings enhanced by PCM and on the investigation of the impacts of PCM on the building cooling load and peak cooling demand at different climates and seasons as well as the optimal operation and control strategies to reduce the energy consumption and energy cost by reducing the air-conditioning energy consumption and peak load. An office building floor with typical variable air volume (VAV) air-conditioning system is used and simulated as the reference building in the comparison study. The envelopes of the studied building are further enhanced by integrating the PCM layers. The building system is tested in two selected cities of typical climates in China including Hong Kong and Beijing. The cold charge and discharge processes, the operation and control strategies of night ventilation and the air temperature set-point reset strategy for minimizing the energy consumption and electricity cost are studied. This thesis presents the simulation test platform, the test results on the cold storage and discharge processes, the air-conditioning energy consumption and demand

  7. Transaction-based building controls framework, Volume 2: Platform descriptive model and requirements

    Energy Technology Data Exchange (ETDEWEB)

    Akyol, Bora A. [Pacific Northwest National Laboratory (PNNL), Richland, WA (United States); Haack, Jereme N. [Pacific Northwest National Laboratory (PNNL), Richland, WA (United States); Carpenter, Brandon J. [Pacific Northwest National Laboratory (PNNL), Richland, WA (United States); Katipamula, Srinivas [Pacific Northwest National Laboratory (PNNL), Richland, WA (United States); Lutes, Robert G. [Pacific Northwest National Laboratory (PNNL), Richland, WA (United States); Hernandez, George [Pacific Northwest National Laboratory (PNNL), Richland, WA (United States)

    2015-07-31

    Transaction-based Building Controls (TBC) offer a control systems platform that provides an agent execution environment that meets the growing requirements for security, resource utilization, and reliability. This report outlines the requirements for a platform to meet these needs and describes an illustrative/exemplary implementation.

  8. Hybrid Control System for Greater Resilience Using Multiple Isolation and Building Connection

    Directory of Open Access Journals (Sweden)

    Masaki Taniguchi

    2016-10-01

    Full Text Available An innovative hybrid control building system of multiple isolation and connection is proposed and investigated using both time-history and input energy responses for various types of ground motions together with transfer functions. It is concerned that the seismic displacement response at the base-isolation layer of the existing base-isolated buildings may extremely increase under long-period and long-duration ground motions which are getting great attention recently. In order to enhance the seismic performance of those base-isolated buildings, a novel hybrid system of multiple isolation and building-connection is proposed and compared with other structural systems such as an independent multiple isolation system, a hybrid system of base-isolation and building-connection. Furthermore, the robustness of seismic responses of the proposed hybrid system for various types of ground motion is discussed through the comparison of various structural systems including non-hybrid systems. Finally the optimal connection damper location is investigated using a sensitivity-type optimization approach.

  9. Net-zero Building Cluster Simulations and On-line Energy Forecasting for Adaptive and Real-Time Control and Decisions

    Science.gov (United States)

    Li, Xiwang

    Buildings consume about 41.1% of primary energy and 74% of the electricity in the U.S. Moreover, it is estimated by the National Energy Technology Laboratory that more than 1/4 of the 713 GW of U.S. electricity demand in 2010 could be dispatchable if only buildings could respond to that dispatch through advanced building energy control and operation strategies and smart grid infrastructure. In this study, it is envisioned that neighboring buildings will have the tendency to form a cluster, an open cyber-physical system to exploit the economic opportunities provided by a smart grid, distributed power generation, and storage devices. Through optimized demand management, these building clusters will then reduce overall primary energy consumption and peak time electricity consumption, and be more resilient to power disruptions. Therefore, this project seeks to develop a Net-zero building cluster simulation testbed and high fidelity energy forecasting models for adaptive and real-time control and decision making strategy development that can be used in a Net-zero building cluster. The following research activities are summarized in this thesis: 1) Development of a building cluster emulator for building cluster control and operation strategy assessment. 2) Development of a novel building energy forecasting methodology using active system identification and data fusion techniques. In this methodology, a systematic approach for building energy system characteristic evaluation, system excitation and model adaptation is included. The developed methodology is compared with other literature-reported building energy forecasting methods; 3) Development of the high fidelity on-line building cluster energy forecasting models, which includes energy forecasting models for buildings, PV panels, batteries and ice tank thermal storage systems 4) Small scale real building validation study to verify the performance of the developed building energy forecasting methodology. The outcomes of

  10. Quantifying demand flexibility of power-to-heat and thermal energy storage in the control of building heating systems

    DEFF Research Database (Denmark)

    Finck, Christian; Li, Rongling; Kramer, Rick

    2018-01-01

    restricted by power-to-heat conversion such as heat pumps and thermal energy storage possibilities of a building. To quantify building demand flexibility, it is essential to capture the dynamic response of the building energy system with thermal energy storage. To identify the maximum flexibility a building......’s energy system can provide, optimal control is required. In this paper, optimal control serves to determine in detail demand flexibility of an office building equipped with heat pump, electric heater, and thermal energy storage tanks. The demand flexibility is quantified using different performance...... of TES and power-to-heat in any case of charging, discharging or idle mode. A simulation case study is performed showing that a water tank, a phase change material tank, and a thermochemical material tank integrated with building heating system can be designed to provide flexibility with optimal control....

  11. Activity-Tracking Service for Building Operating Systems

    DEFF Research Database (Denmark)

    Hviid, Jakob; Kjærgaard, Mikkel Baun

    2018-01-01

    of Things sensors and devices promise to deliver rich data about human activities and control of loads. However, existing proposals for building operating systems that should combine such data and control opportunities does not provide concepts and support for activity data. In this paper we propose...... an activity-tracking service for building operating systems. The service is designed to consider the security, privacy, integration, extendability and scalability challenges in the building setting. We provide initial findings for testing the system in a proof of concept evaluation using a set of common......Several high consuming electricity loads in retail stores are currently highly intertwined in human activities. Without knowledge of such activities it is difficult to improve the energy efficiency of the loads operation for sustainability and cost reasons. The increasing availability of Internet...

  12. A Software Architecture for Simulation Support in Building Automation

    Directory of Open Access Journals (Sweden)

    Sergio Leal

    2014-07-01

    Full Text Available Building automation integrates the active components in a building and, thus, has to connect components of different industries. The goal is to provide reliable and efficient operation. This paper describes how simulation can support building automation and how the deployment process of simulation assisted building control systems can be structured. We look at the process as a whole and map it to a set of formally described workflows that can partly be automated. A workbench environment supports the process execution by means of improved planning, collaboration and deployment. This framework allows integration of existing tools, as well as manual tasks, and is, therefore, many more intricate than regular software deployment tools. The complex environment of building commissioning requires expertise in different domains, especially lighting, heating, ventilation, air conditioning, measurement and control technology, as well as energy efficiency; therefore, we present a framework for building commissioning and describe a deployment process that is capable of supporting the various phases of this approach.

  13. IoT in Action: Design and Implementation of a Building Evacuation Service

    Directory of Open Access Journals (Sweden)

    Selahattin Gokceli

    2017-01-01

    Full Text Available With the development of sensor technologies, various application areas have emerged. The usage of these technologies and exploitation of recent improvements have clear benefits on building applications. Such use-cases can improve smart functions of buildings and can increase the end-user comfort. As a similar notion, building automation systems (BAS are smart systems that target to provide automated management of various control services and to improve resource usage efficiency. However, buildings generally contain hardware and control services from a diverse set of characteristics. The automated and central management of such functions can be challenging. In order to overcome such issues, an Emergency Evacuation Service is proposed for BAS, where requirements of such central management model are analyzed and model content and subservice definitions are prepared. A crucial scenario, which could be a necessity for future BAS, is defined and an approach for evacuation of people in the buildings at emergency situations is proposed. For real-life scenarios, the Evacuation Service is implemented by using a low-cost design, which is appropriate for Internet of Things (IoT based BAS applications. As demonstrated, the proposed service model can provide effective performance in real-life deployments.

  14. Economic Model Predictive Control for Hot Water Based Heating Systems in Smart Buildings

    DEFF Research Database (Denmark)

    Awadelrahman, M. A. Ahmed; Zong, Yi; Li, Hongwei

    2017-01-01

    This paper presents a study to optimize the heating energy costs in a residential building with varying electricity price signals based on an Economic Model Predictive Controller (EMPC). The investigated heating system consists of an air source heat pump (ASHP) incorporated with a hot water tank...... as active Thermal Energy Storage (TES), where two optimization problems are integrated together to optimize both the ASHP electricity consumption and the building heating consumption utilizing a heat dynamic model of the building. The results show that the proposed EMPC can save the energy cost by load...

  15. Building Protection Against External Ionizing Fallout Radiation

    Energy Technology Data Exchange (ETDEWEB)

    Dillon, Michael B. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States); Homann, Steven G. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States)

    2016-12-01

    A nuclear explosion has the potential to injure or kill tens to hundreds of thousands of people through exposure to fallout (external gamma) radiation. Existing buildings can protect their occupants (reducing external radiation exposures) by placing material and distance between fallout particles and indoor individuals. This protection is not well captured in current fallout risk assessment models and so the US Department of Defense is implementing the Regional Shelter Analysis methodology to improve the ability of the Hazard Prediction and Assessment Capability (HPAC) model to account for building protection. This report supports the HPAC improvement effort by identifying a set of building attributes (next page) that, when collectively specified, are sufficient to calculate reasonably accurate, i.e., within a factor of 2, fallout shelter quality estimates for many individual buildings. The set of building attributes were determined by first identifying the key physics controlling building protection from fallout radiation and then assessing which building attributes are relevant to the identified physics. This approach was evaluated by developing a screening model (PFscreen) based on the identified physics and comparing the screening model results against the set of existing independent experimental, theoretical, and modeled building protection estimates. In the interests of transparency, we have developed a benchmark dataset containing (a) most of the relevant primary experimental data published by prior generations of fallout protection scientists as well as (b) the screening model results.

  16. A Fuzzy-Based Building Energy Management System for Energy Efficiency

    Directory of Open Access Journals (Sweden)

    José L. Hernández

    2018-01-01

    Full Text Available Information and communication technologies (ICT offer immense potential to improve the energetic performance of buildings. Additionally, common building control systems are typically based on simple decision-making tools, which possess the ability to obtain controllable parameters for indoor temperatures. Nevertheless, the accuracy of such common building control systems is improvable with the integration of advanced decision-making techniques embedded into software and energy management tools. This paper presents the design of a building energy management system (BEMS, which is currently under development, and that makes use of artificial intelligence for the automated decision-making process required for optimal comfort of occupants and utilization of renewables for achieving energy-efficiency in buildings. The research falls under the scope of the H2020 project BREASER which implements fuzzy logic with the aim of governing the energy resources of a school in Turkey, which has been renovated with a ventilated façade with integrated renewable energy sources (RES. The BRESAER BEMS includes prediction techniques that increase the accuracy of common BEMS tools, and subsequent energy savings, while ensuring the indoor thermal comfort of the building occupants. In particular, weather forecast and simulation strategies are integrated into the functionalities of the overall system. By collecting the aforementioned information, the BEMS makes decisions according to a well-established selection of key performance indicators (KPIs with the objective of providing a quantitative comparable value to determine new actuation parameters.

  17. Smart glass as the method of improving the energy efficiency of high-rise buildings

    Science.gov (United States)

    Gamayunova, Olga; Gumerova, Eliza; Miloradova, Nadezda

    2018-03-01

    The question that has to be answered in high-rise building is glazing and its service life conditions. Contemporary market offers several types of window units, for instance, wooden, aluminum, PVC and combined models. Wooden and PVC windows become the most widespread and competitive between each other. In recent times design engineers choose smart glass. In this article, the advantages and drawbacks of all types of windows are reviewed, and the recommendations are given according to choice of window type in order to improve energy efficiency of buildings.

  18. Commissioning of building HVAC systems for improvement of energy performance; Commissioning of building HVAC systems for improvement of energy performance. Teilnahme IEA-ECBCS Annex 40 (Betreiberkompetenz)

    Energy Technology Data Exchange (ETDEWEB)

    Chuard, J -M

    2005-06-15

    This paper takes a look at the tasks performed in Task 40 of the 'Energy Conservation in Buildings and Community Systems ECBCS' programme of the International Energy Agency IEA that is taking a look at the commissioning of building HVAC systems with the aim of improving the energy performance of such systems. Emphasis is put on the Swiss contribution to the task. This well-illustrated paper presents information on the structure of the task, time-lines and a diagram for its implementation structures. Also, the countries participating in Task 40 and their representatives are listed, and various work already published by the annex is noted. The paper places a focus on operator competence and lists points to be taken into account when carrying out work on optimising energy consumption. The various processes involved are noted and discussed. Management guidelines are presented and economical and market aspects are discussed. Finally, projects that will continue the work are noted.

  19. Commissioning of building HVAC systems for improvement of energy performance; Commissioning of building HVAC systems for improvement of energy performance. Teilnahme IEA-ECBCS Annex 40 (Betreiberkompetenz)

    Energy Technology Data Exchange (ETDEWEB)

    Chuard, J.-M.

    2005-06-15

    This paper takes a look at the tasks performed in Task 40 of the 'Energy Conservation in Buildings and Community Systems ECBCS' programme of the International Energy Agency IEA that is taking a look at the commissioning of building HVAC systems with the aim of improving the energy performance of such systems. Emphasis is put on the Swiss contribution to the task. This well-illustrated paper presents information on the structure of the task, time-lines and a diagram for its implementation structures. Also, the countries participating in Task 40 and their representatives are listed, and various work already published by the annex is noted. The paper places a focus on operator competence and lists points to be taken into account when carrying out work on optimising energy consumption. The various processes involved are noted and discussed. Management guidelines are presented and economical and market aspects are discussed. Finally, projects that will continue the work are noted.

  20. Nuclear power stations. Information paper no. 1. Controls on the building and running of nuclear power stations

    Energy Technology Data Exchange (ETDEWEB)

    1981-09-01

    Controls and constraints which govern the development and running of nuclear power stations are briefly examined. Government policy, permission to build, authority to start building, site acquisition building, running and public opinion are briefly discussed.

  1. A research agenda for helminth diseases of humans: health research and capacity building in disease-endemic countries for helminthiases control.

    Directory of Open Access Journals (Sweden)

    Mike Y Osei-Atweneboana

    Full Text Available Capacity building in health research generally, and helminthiasis research particularly, is pivotal to the implementation of the research and development agenda for the control and elimination of human helminthiases that has been proposed thematically in the preceding reviews of this collection. Since helminth infections affect human populations particularly in marginalised and low-income regions of the world, they belong to the group of poverty-related infectious diseases, and their alleviation through research, policy, and practice is a sine qua non condition for the achievement of the United Nations Millennium Development Goals. Current efforts supporting research capacity building specifically for the control of helminthiases have been devised and funded, almost in their entirety, by international donor agencies, major funding bodies, and academic institutions from the developed world, contributing to the creation of (not always equitable North-South "partnerships". There is an urgent need to shift this paradigm in disease-endemic countries (DECs by refocusing political will, and harnessing unshakeable commitment by the countries' governments, towards health research and capacity building policies to ensure long-term investment in combating and sustaining the control and eventual elimination of infectious diseases of poverty. The Disease Reference Group on Helminth Infections (DRG4, established in 2009 by the Special Programme for Research and Training in Tropical Diseases (TDR, was given the mandate to review helminthiases research and identify research priorities and gaps. This paper discusses the challenges confronting capacity building for parasitic disease research in DECs, describes current capacity building strategies with particular reference to neglected tropical diseases and human helminthiases, and outlines recommendations to redress the balance of alliances and partnerships for health research between the developed countries of

  2. Optimum operation of heating systems in office buildings. Automated error detection and analysis improves running building operation; Heizsysteme in Buerogebaeuden optimal betreiben. Automatisierte Fehlererkennung und -analyse verbessert den laufenden Gebaeudebetrieb

    Energy Technology Data Exchange (ETDEWEB)

    Friedrich, Uwe

    2013-06-01

    Since 2010, various institutes, universities and consultancy companies have been conducting research on automated operation optimisation in larger buildings. For this purpose, they have developed procedures for commissioning and monitoring building services equipment systems, firstly for large heat supply units. These are currently being used and evaluated on an ongoing basis in seven office and school buildings. The aim is to make significant energy and cost savings, and to improve the level of convenience in the building.

  3. Compliance with building energy regulations for new-build dwellings

    International Nuclear Information System (INIS)

    Pan, Wei; Garmston, Helen

    2012-01-01

    Despite increasingly stringent building energy regulations worldwide, non-compliance exists in practice. This paper examines the profile of compliance with building energy regulations for new-build dwellings. In total 404 new-build dwellings completed in the UK from 2006 to 2009 were investigated. Only a third of these dwellings were evidenced as being compliant with Building Regulations Part L (England and Wales). Such low compliance casts a serious concern over the achievability of the UK Government's target for all new-build homes to be ‘zero carbon’ from 2016. Clearly evidenced was a lack of knowledge of Part L and its compliance requirements among the supply and building control sides of new-build dwellings. The results also indicate that the compliance profile was influenced by factors including Standard Assessment Procedure (UK Government's methodology for energy efficiency) calculation submissions, learning and experience of builders and building controls with Part L, use of Part L1A checklist, the introduction of energy performance certificate (EPC), build method, dwelling type, and project size. Better compliance was associated with flats over houses and timber frame over masonry. The use of EPC and Part L1A checklist should be encouraged. Key to addressing the lack of compliance with building energy regulations is training. -- Highlights: ► There exists a lack of compliance, worldwide, with building energy regulations. ► The implementation of England and Wales building energy regulations is problematic. ► Training, learning and experience of builders and building control are critical. ► Energy performance certificate and Part L 2006 checklist helped achieve compliance. ► Flats achieved better compliance over houses; and timber frame over masonry.

  4. Strategy for good perceived air quality in sustainable buildings

    DEFF Research Database (Denmark)

    Knudsen, Henrik N; Wargocki, Pawel

    2010-01-01

    Source control has been shown to be an effective strategy for improving air quality. The objective of the present study was to investigate and compare the potential for achieving an improved perceived indoor air quality by selecting less-polluting building materials or by increasing the ventilati...

  5. Impact of tall buildings in environmental pollution

    Directory of Open Access Journals (Sweden)

    H. Hayati

    2012-03-01

    Full Text Available Today, tall building is a phenomenon that the world particularly large cities are facing. The tall buildings in order to exploit the land with having the negative affects in the environment create new problems including increasing congestion population, environmental pollution, reduce citizen access to fresh air and sunlight. However, regarding to population increasing and land shortage, tall buildings could not be avoided. This paper investigates the relationship of tall buildings with urban air pollution as well as the possible reducing of negative affects of tall building on environmental pollution with respect to geographical position, technicalrules, immunization, green space, direct of wind, appropriate distance to other buildings, design in terms of visibility and landscape and urban appearance were reviewed. The study showed that the tall buildings cause increasing the air pollution in large urban area due to changing in wind and its direction and also congestion of tall buildings as a pollution sources. Therefore some techniques to design the tall building must be considered to reduce the negative affects of the tall buildings on environmental pollution. Unfortunately the lack of the construction roles in term of environmental protection and also control of the rules in construction process causing the environmental pollution particularly air pollution. It is suggested that the re-evaluate of the rules with restricted control can improve the air quality in the large cities and also utilization of green spaces in floors and roofs of buildings as environmentally friendly buildings which are attempt to reduce environmental problems.

  6. BOA: Framework for Automated Builds

    CERN Document Server

    Ratnikova, N

    2003-01-01

    Managing large-scale software products is a complex software engineering task. The automation of the software development, release and distribution process is most beneficial in the large collaborations, where the big number of developers, multiple platforms and distributed environment are typical factors. This paper describes Build and Output Analyzer framework and its components that have been developed in CMS to facilitate software maintenance and improve software quality. The system allows to generate, control and analyze various types of automated software builds and tests, such as regular rebuilds of the development code, software integration for releases and installation of the existing versions.

  7. BOA: Framework for automated builds

    International Nuclear Information System (INIS)

    Ratnikova, N.

    2003-01-01

    Managing large-scale software products is a complex software engineering task. The automation of the software development, release and distribution process is most beneficial in the large collaborations, where the big number of developers, multiple platforms and distributed environment are typical factors. This paper describes Build and Output Analyzer framework and its components that have been developed in CMS to facilitate software maintenance and improve software quality. The system allows to generate, control and analyze various types of automated software builds and tests, such as regular rebuilds of the development code, software integration for releases and installation of the existing versions

  8. Integrating Building Information Modeling and Augmented Reality to Improve Investigation of Historical Buildings

    Directory of Open Access Journals (Sweden)

    Francesco Chionna

    2015-12-01

    Full Text Available This paper describes an experimental system to support investigation of historical buildings using Building Information Modeling (BIM and Augmented Reality (AR. The system requires the use of an off-line software to build the BIM representation and defines a method to integrate diagnostic data into BIM. The system offers access to such information during site investigation using AR glasses supported by marker and marker-less technologies. The main innovation is the possibility to contextualize through AR not only existing BIM properties but also results from non-invasive tools. User evaluations show how the use of the system may enhance the perception of engineers during the investigation process.

  9. Building a Culture of Continuous Quality Improvement in an Academic Radiology Department.

    Science.gov (United States)

    Katzman, Gregory L; Paushter, David M

    2016-04-01

    As we enter a new era of health care in the United States, radiologists must be adequately prepared to prove, and continually improve, our value to our customers. This goal can be achieved in large part by providing high-quality services. Although quality efforts on the national and international levels provide a framework for improving radiologic quality, some of the greatest opportunities for quality improvement can be found at the departmental level, through the implementation of total quality management programs. Establishing such a program requires not only strong leadership and employee engagement, but also a firm understanding of the multiple total quality management tools and continuous quality improvement strategies available. In this article, we discuss key tools and strategies required to build a culture of continuous quality improvement in an academic department, based on our experience. Copyright © 2016 American College of Radiology. Published by Elsevier Inc. All rights reserved.

  10. Efforts to control radiation build-up in Ringhals

    Energy Technology Data Exchange (ETDEWEB)

    Egner, K.; Aronsson, P.O.; Erixon, O. [Vattenfall AB, Vaeroebacka (Sweden)

    1995-03-01

    It is well known that good control of the primary chemistry in a PWR is essential in order to minimize material problems and fuel damages. It has also been well established that the water chemistry has a great influence on accumulation of corrosion products on the fuel and the radiation build-up on primary system surfaces. Ringhals was one of the pioneers to increase operating pH in order to reduce radiation build-up and has now been operating for ten years with pH at 7.4 or (in later years) 7.2. Our experience is favourable and includes low radiation levels in the new (1989) steam generators of Ringhals 2. Ringhals 4 has operated almost its whole life at pH 7.2 or higher and it remains one of the cleanest PWRs of its vintage. In addition to strict adherence to a stable operating chemistry, Ringhals is now working on a program with the aim to find optimum shut-down and start-up chemistry to reduce activity levels in the primary systems. A particular goal is to use the shut-down and start-up chemistry at the 1994 outage in Ringhals 3 in order to reduce doserates in preparation for the planned steam generator replacement in 1995. The paper summarizes the experience to date of the established operating chemistry, on-going tests with modified shut-down and start-up chemistry and other measures to limit or reduce the activity build-up.

  11. Efforts to control radiation build-up in Ringhals

    International Nuclear Information System (INIS)

    Egner, K.; Aronsson, P.O.; Erixon, O.

    1995-01-01

    It is well known that good control of the primary chemistry in a PWR is essential in order to minimize material problems and fuel damages. It has also been well established that the water chemistry has a great influence on accumulation of corrosion products on the fuel and the radiation build-up on primary system surfaces. Ringhals was one of the pioneers to increase operating pH in order to reduce radiation build-up and has now been operating for ten years with pH at 7.4 or (in later years) 7.2. Our experience is favourable and includes low radiation levels in the new (1989) steam generators of Ringhals 2. Ringhals 4 has operated almost its whole life at pH 7.2 or higher and it remains one of the cleanest PWRs of its vintage. In addition to strict adherence to a stable operating chemistry, Ringhals is now working on a program with the aim to find optimum shut-down and start-up chemistry to reduce activity levels in the primary systems. A particular goal is to use the shut-down and start-up chemistry at the 1994 outage in Ringhals 3 in order to reduce doserates in preparation for the planned steam generator replacement in 1995. The paper summarizes the experience to date of the established operating chemistry, on-going tests with modified shut-down and start-up chemistry and other measures to limit or reduce the activity build-up

  12. Building ceramics with improved thermal insulation parameters

    Directory of Open Access Journals (Sweden)

    Rzepa Karol

    2016-01-01

    Full Text Available One of the most important performance characteristics of masonry units is their high thermal insulation. There are many different ways to improve this parameter, however the most popular methods in case of ceramic masonry units are: addition of pore-creating raw materials and application of proper hole pattern. This study was an attempt to improve thermal insulation of ceramics by applying thermal insulation additives. Perlite dust created as a subgrain from expansion of perlite rock was used. Perlite subgrain is not very popular among consumers, that’s why it’s subjected to granulation to obtain coarse grain. The authors presented concept of direct application of perlite dust for the production of building ceramics with improved thermal insulation. Fineness of this additive is asset for molding of ceramic materials from plastic masses. Based on the results it was found that about 70% perlite by volume can be added to obtain material with a coefficient of heat conductivity of 0,37 W/mK. Higher content of this additive in ceramic mass causes deterioration of its rheological properties. Mass loses its plasticity, it tears up and formed green bodies are susceptible to deformation. During sintering perlite takes an active part in compaction process. Higher sintering dynamics is caused by: high content of alkali oxides in perlite and glass nature of perlite. Alkali oxides generate creation of liquid phase which intensifies mass compaction processes. Active role of perlite in sintering process causes good connection of its grains with clay groundwork which is important factor for mechanical parameters of ceramic materials. It was also noted that addition of perlite above 40% by volume of mass effectively neutralized negative effect of efflorescence in ceramic materials.

  13. Comparing Whole Building Energy Implications of Sidelighting Systems with Alternate Manual Blind Control Algorithms

    Directory of Open Access Journals (Sweden)

    Christopher Dyke

    2015-05-01

    Full Text Available Currently, there is no manual blind control guideline used consistently throughout the energy modeling community. This paper identifies and compares five manual blind control algorithms with unique control patterns and reports blind occlusion, rate of change data, and annual building energy consumption. The blind control schemes detailed here represent five reasonable candidates for use in lighting and energy simulation based on difference driving factors. This study was performed on a medium-sized office building using EnergyPlus with the internal daylight harvesting engine. Results show that applying manual blind control algorithms affects the total annual consumption of the building by as much as 12.5% and 11.5% for interior and exterior blinds respectively, compared to the Always Retracted blinds algorithm. Peak demand was also compared showing blind algorithms affected zone load sizing by as much as 9.8%. The alternate algorithms were tested for their impact on American Society of Heating, Refrigeration and Air-Conditioning Engineers (ASHRAE Guideline 14 calibration metrics and all models were found to differ from the original calibrated baseline by more than the recommended ±15% for coefficient of variance of the mean square error (CVRMSE and ±5% for normalized mean bias error (NMBE. The paper recommends that energy modelers use one or more manual blind control algorithms during design stages when making decisions about energy efficiency and other design alternatives.

  14. Tobacco Control and Health Advocacy in the European Union: Understanding Effective Coalition-Building.

    Science.gov (United States)

    Weishaar, Heide; Collin, Jeff; Amos, Amanda

    2016-02-01

    Coalitions of supporters of comprehensive tobacco control policy have been crucial in achieving policy success nationally and internationally, but the dynamics of such alliances are not well understood. Qualitative semi-structured, narrative interviews with 35 stakeholders involved in developing the European Council Recommendation on smoke-free environments. These were thematically analyzed to examine the dynamics of coalition-building, collaboration and leadership in the alliance of organizations which successfully called for the development of comprehensive European Union (EU) smoke-free policy. An alliance of tobacco control and public health advocacy organizations, scientific institutions, professional bodies, pharmaceutical companies, and other actors shared the goal of fighting the harms caused by second-hand smoke. Alliance members jointly called for comprehensive EU smoke-free policy and the protection of the political debates from tobacco industry interference. The alliance's success was enabled by a core group of national and European actors with long-standing experience in tobacco control, who facilitated consensus-building, mobilized allies and synchronized the actions of policy supporters. Representatives of Brussels-based organizations emerged as crucial strategic leaders. The insights gained and identification of key enablers of successful tobacco control advocacy highlight the strategic importance of investing into tobacco control at European level. Those interested in effective health policy can apply lessons learned from EU smoke-free policy to build effective alliances in tobacco control and other areas of public health. © The Author 2015. Published by Oxford University Press on behalf of the Society for Research on Nicotine and Tobacco.

  15. Building-in-Briefcase: A Rapidly-Deployable Environmental Sensor Suite for the Smart Building.

    Science.gov (United States)

    Weekly, Kevin; Jin, Ming; Zou, Han; Hsu, Christopher; Soyza, Chris; Bayen, Alexandre; Spanos, Costas

    2018-04-29

    A building’s environment has profound influence on occupant comfort and health. Continuous monitoring of building occupancy and environment is essential to fault detection, intelligent control, and building commissioning. Though many solutions for environmental measuring based on wireless sensor networks exist, they are not easily accessible to households and building owners who may lack time or technical expertise needed to set up a system and get quick and detailed overview of environmental conditions. Building-in-Briefcase (BiB) is a portable sensor network platform that is trivially easy to deploy in any building environment. Once the sensors are distributed, the environmental data is collected and communicated to the BiB router via the Transmission Control Protocol/Internet Protocol (TCP/IP) and WiFi technology, which then forwards the data to the central database securely over the internet through a 3G radio. The user, with minimal effort, can access the aggregated data and visualize the trends in real time on the BiB web portal. Paramount to the adoption and continued operation of an indoor sensing platform is battery lifetime. This design has achieved a multi-year lifespan by careful selection of components, an efficient binary communications protocol and data compression. Our BiB sensor is capable of collecting a rich set of environmental parameters, and is expandable to measure others, such as CO 2 . This paper describes the power characteristics of BiB sensors and their occupancy estimation and activity recognition functionality. We have demonstrated large-scale deployment of BiB throughout Singapore. Our vision is that, by monitoring thousands of buildings through BiB, it would provide ample research opportunities and opportunities to identify ways to improve the building environment and energy efficiency.

  16. Building, measuring and improving public confidence in the nuclear regulator

    International Nuclear Information System (INIS)

    2006-01-01

    An important factor for public confidence in the nuclear regulator is the general public trust of the government and its representatives, which is clearly not the same in all countries. Likewise, cultural differences between countries can be considerable, and similar means of communication between government authorities and the public may not be universally effective. Nevertheless, this workshop identified a number of common principles for the communication of nuclear regulatory decisions that can be recommended to all regulators. They have been cited in particular for their ability to help build, measure and/or improve overall public confidence in the nuclear regulator. (author)

  17. Building Adjustable Pre-storm Reservoir Flood-control Release Rules

    Science.gov (United States)

    Yang, Shun-Nien; Chang, Li-Chiu; Chang, Fi-John; Hsieh, Cheng-Daw

    2017-04-01

    Typhoons hit Taiwan several times every year, which could cause serious flood disasters. Because mountainous terrains and steep landforms can rapidly accelerate the speed of flood flow during typhoon events, rivers cannot be a stable source of water supply. Reservoirs become the most effective floodwater storage facilities for alleviating flood damages in Taiwan. The pre-storm flood-control release can significantly increase reservoir storage capacity available to store floodwaters for reducing downstream flood damage, while the uncertainties of total forecasted rainfalls are very high in different stages of an oncoming typhoon, which may cause the risk of water shortage in the future. This study proposes adjustable pre-storm reservoir flood-control release rules in three designed operating stages with various hydrological conditions in the Feitsui Reservoir, a pivot reservoir for water supply to Taipei metropolitan in Taiwan, not only to reduce the risk of reservoir flood control and downstream flooding but also to consider water supply. The three operating stages before an oncoming typhoon are defined upon the timings when: (1) typhoon news is issued (3-7days before typhoon hit); (2) the sea warning is issued (2-4 days before typhoon hit); and (3) the land warning is issued (1-2 days before typhoon hit). We simulate 95 historical typhoon events with 3000 initial water levels and build some pre-storm flood-control release rules to adjust the amount of pre-release based on the total forecasted rainfalls at different operating stages. A great number of simulations (68.4 millions) are conducted to extract their major consequences and then build the adjustable pre-storm reservoir flood-control release rules. Accordingly, given a total forecasted rainfall and a water level, reservoir decision makers can easily identify the corresponding rule to tell the amount of pre-release in any stage. The results show that the proposed adjustable pre-release rules can effectively

  18. Indoor environmental quality and ventilation in U.S. office buildings: A view of current issues

    Energy Technology Data Exchange (ETDEWEB)

    Fisk, W.J.

    1994-11-01

    Much of the current focus on indoor environmental quality and ventilation in US office buildings is a response to sick building syndrome and occupant complaints about building-related health symptoms, poor indoor air quality, and thermal discomfort. The authors know that serious ``sick-building`` problems occur in a significant number of US office buildings and that a significant proportion of the occupants in many normal (non-sick) buildings report building-related health symptoms. Concerns about the health effects of environmental tobacco smoke have also focused attention on the indoor environment. The major responses of industry and governments, underway at the present time, are to restrict smoking in offices, to attempt to reduce the emissions of indoor pollutants, and to improve the operation of heating, ventilating and air conditioning (HVAC) systems. Better air filtration, improved HVAC commissioning and maintenance, and increased provisions for individual control of HVAC are some of the improvements in HVAC that are currently being, evaluated. In the future, the potential for improved productivity and reduced airborne transmission of infectious disease may become the major driving force for improved indoor environments.

  19. Evaluating the scope for energy-efficiency improvements in the public sector: Benchmarking NHSScotland's smaller health buildings

    International Nuclear Information System (INIS)

    Murray, Joe; Pahl, O.; Burek, S.

    2008-01-01

    The National Health Service in Scotland (NHSScotland) has, in recent years, done much to reduce energy consumption in its major healthcare buildings (hospitals). On average, a reduction of 2% per year has been achieved since 2000, based on hospital buildings. However, there had been little or no attention paid to smaller premises such as health centres, clinics, dentists, etc. Such smaller healthcare buildings in Scotland constitute 29% of the total treated floor area of all NHSScotland buildings and, therefore, may contribute a similar percentage of carbon and other emissions to the environment. By concentrating on a sample of local health centres in Scotland, this paper outlines the creation of an energy benchmark target, which is part of a wider research project to investigate the environmental impacts of small healthcare buildings in Scotland and the scope for improvements. It was found that energy consumption varied widely between different centres but this variation could not be linked to building style, floor area or volume. Overall, it was found that a benchmark of 0.2 GJ/m 3 would be challenging, but realistic

  20. Application issues for large-area electrochromic windows incommercial buildings

    Energy Technology Data Exchange (ETDEWEB)

    Lee, Eleanor S.; DiBartolomeo, D.L.

    2000-05-01

    Projections of performance from small-area devices to large-area windows and enterprise marketing have created high expectations for electrochromic glazings. As a result, this paper seeks to precipitate an objective dialog between material scientists and building-application scientists to determine whether actual large-area electrochromic devices will result in significant performance benefits and what material improvements are needed, if any, to make electrochromics more practical for commercial building applications. Few in-situ tests have been conducted with large-area electrochromic windows applied in buildings. This study presents monitored results from a full-scale field test of large-area electrochromic windows to illustrate how this technology will perform in commercial buildings. The visible transmittance (Tv) of the installed electrochromic ranged from 0.11 to 0.38. The data are limited to the winter period for a south-east-facing window. The effect of actual device performance on lighting energy use, direct sun control, discomfort glare, and interior illumination is discussed. No mechanical system loads were monitored. These data demonstrate the use of electrochromics in a moderate climate and focus on the most restrictive visual task: computer use in offices. Through this small demonstration, we were able to determine that electrochromic windows can indeed provide unmitigated transparent views and a level of dynamic illumination control never before seen in architectural glazing materials. Daily lighting energy use was 6-24 percent less compared to the 11 percent-glazing, with improved interior brightness levels. Daily lighting energy use was 3 percent less to 13 percent more compared to the 38 percent-glazing, with improved window brightness control. The electrochromic window may not be able to fulfill both energy-efficiency and visual comfort objectives when low winter direct sun is present, particularly for computer tasks using cathode-ray tube (CRT

  1. Wireless sensor network performance metrics for building applications

    Energy Technology Data Exchange (ETDEWEB)

    Jang, W.S. (Department of Civil Engineering Yeungnam University 214-1 Dae-Dong, Gyeongsan-Si Gyeongsangbuk-Do 712-749 South Korea); Healy, W.M. [Building and Fire Research Laboratory, 100 Bureau Drive, Gaithersburg, MD 20899-8632 (United States)

    2010-06-15

    Metrics are investigated to help assess the performance of wireless sensors in buildings. Wireless sensor networks present tremendous opportunities for energy savings and improvement in occupant comfort in buildings by making data about conditions and equipment more readily available. A key barrier to their adoption, however, is the uncertainty among users regarding the reliability of the wireless links through building construction. Tests were carried out that examined three performance metrics as a function of transmitter-receiver separation distance, transmitter power level, and obstruction type. These tests demonstrated, via the packet delivery rate, a clear transition from reliable to unreliable communications at different separation distances. While the packet delivery rate is difficult to measure in actual applications, the received signal strength indication correlated well with the drop in packet delivery rate in the relatively noise-free environment used in these tests. The concept of an equivalent distance was introduced to translate the range of reliability in open field operation to that seen in a typical building, thereby providing wireless system designers a rough estimate of the necessary spacing between sensor nodes in building applications. It is anticipated that the availability of straightforward metrics on the range of wireless sensors in buildings will enable more widespread sensing in buildings for improved control and fault detection. (author)

  2. UNDERGROUND AIR DUCT TO CONTROL RISING MOISTURE IN HISTORIC BUILDINGS: IMPROVED DESIGN AND ITS DRYING EFFICIENCY

    Directory of Open Access Journals (Sweden)

    Jiří Pazderka

    2017-10-01

    Full Text Available The underground air ducts along peripheral walls of a building are a remediation method, which principle is to enable an air flow along the moist building structure’s surface to allow a sufficient evaporation of moisture from the structure. This measure reduces the water transport (rising moisture into the higher parts of the wall where the high water content in masonry is undesirable. Presently, underground air ducts are designed as masonry structures, which durability in contact with ground moisture is limited. The article describes a new design of an underground air duct, which is based on specially shaped concrete blocks (without wet processes, because the blocks are completely precast. The air duct from concrete blocks is situated completely below the ground surface (exterior or below the floor (interior. Thanks to this, the system is invisible and does not disturb the authentic look of rehabilitated historic buildings. The efficiency of the air duct technical solution was verified by the results of tests (based on the measured moisture values conducted on a laboratory model. The experimental study showed that the moisture in the masonry equipped with the presented underground air duct had decreased considerably compared to the reference sample, namely by 43 % on average. The experimental study was numerically validated through numerical simulations performed with the program WUFI 2D.

  3. Investigation on Smoke Movement and Smoke Control for Atrium in Green and Sustainable Buildings

    DEFF Research Database (Denmark)

    Fang, Lui; Nielsen, Peter V.; Brohus, Henrik

    The concepts of green buildings and sustainable buildings are promoted actively in the developed countries. Targets are on protecting the environment, using less energy through natural ventilation provisions and daylight utilization, developing better waste management and taking resource...... design in the green or sustainable buildings with an atrium. Since the physics of air entrainment is not yet clearly understood, most of the fire plume expressions reported in the literature was derived empirically. Experiments and CFD simulation were used to study the different types of thermal plumes...... conservation into account. Architectural and building design, electrical and mechanical systems, and building management have to be upgraded. However, there are problems in dealing with fire safety, especially in complying with the existing prescriptive fire codes. A hot argument is that smoke control system...

  4. Nonstructural urban stormwater quality measures: building a knowledge base to improve their use.

    Science.gov (United States)

    Taylor, André C; Fletcher, Tim D

    2007-05-01

    This article summarizes a research project that investigated the use, performance, cost, and evaluation of nonstructural measures to improve urban stormwater quality. A survey of urban stormwater managers from Australia, New Zealand, and the United States revealed a widespread trend of increasing use of nonstructural measures among leading stormwater management agencies, with at least 76% of 41 types of nonstructural measures being found to be increasing in use. Data gathered from the survey, an international literature review, and a multicriteria analysis highlighted four nonstructural measures of greatest potential value: mandatory town planning controls that promote the adoption of low-impact development principles and techniques; development of strategic urban stormwater management plans for a city, shire, or catchment; stormwater management measures and programs for construction/building sites; and stormwater management activities related to municipal maintenance operations such as maintenance of the stormwater drainage network and manual litter collections. Knowledge gained on the use and performance of nonstructural measures from the survey, literature review, and three trial evaluation projects was used to develop tailored monitoring and evaluation guidelines for these types of measure. These guidelines incorporate a new evaluation framework based on seven alternative styles of evaluation that range from simply monitoring whether a nonstructural measure has been fully implemented to monitoring its impact on waterway health. This research helps to build the stormwater management industry's knowledge base concerning nonstructural measures and provides a practical tool to address common impediments associated with monitoring and evaluating the performance and cost of these measures.

  5. User evaluations of energy efficient buildings: the interplay of buildings and users in seven European case studies

    Energy Technology Data Exchange (ETDEWEB)

    Thomsen, Judith; Hauge, Aashild Lappegaard; Denizou, Karine; Jerkoe, Sidsel; Waagoe, Solvaar; Berker, Thomas

    2011-07-01

    The buildings in our study have been operational for just a short period and most of them are still in an adjustment phase. The findings show that users in all case studies often stressed the positive aspects connected to the newness and the architectural quality of the buildings. The interviews also show that energy efficiency is often regarded as a bonus or side effect that is gladly accepted but not the main criteria for choosing a house. Nonetheless, most residents seemed to appreciate the environmental benefits over time. Several respondents were also more concerned about the environment now than before they moved into or started to work in an energy efficient building, and they also reported more environmentally friendly behaviour. In most of the case studies, concerns were expressed about thermal comfort. Informants often experienced the building as too hot in the summer and/or too cold in the winter. This perceived discomfort caused different types of personal actions, which had a potential to interfere with the concept and the calculated energy balance. In order to improve internal conditions, the users in almost every case intervened with the planned use. They found common and known ways to improving their comfort in the buildings without considering how to optimize the new system. None of the respondents had much prior knowledge of energy efficient buildings before moving in or starting to work in the case study buildings. They did not know what to expect from their new environment, and were unfamiliar with the concepts. Many of the informants complained about a lack of information on systems and insufficient training. The studies also show that the occupants desired to control at least some operational aspects. Despite intermittent difficulties with thermal comfort, the tolerance for the buildings performance appeared to be high throughout all the case studies and many respondents were proud of 'their' buildings. Energy efficient buildings are not the

  6. User evaluations of energy efficient buildings: the interplay of buildings and users in seven European case studies

    Energy Technology Data Exchange (ETDEWEB)

    Thomsen, Judith; Hauge, Aashild Lappegaard; Denizou, Karine; Jerkoe, Sidsel; Waagoe, Solvaar; Berker, Thomas

    2011-07-01

    The buildings in our study have been operational for just a short period and most of them are still in an adjustment phase. The findings show that users in all case studies often stressed the positive aspects connected to the newness and the architectural quality of the buildings. The interviews also show that energy efficiency is often regarded as a bonus or side effect that is gladly accepted but not the main criteria for choosing a house. Nonetheless, most residents seemed to appreciate the environmental benefits over time. Several respondents were also more concerned about the environment now than before they moved into or started to work in an energy efficient building, and they also reported more environmentally friendly behaviour. In most of the case studies, concerns were expressed about thermal comfort. Informants often experienced the building as too hot in the summer and/or too cold in the winter. This perceived discomfort caused different types of personal actions, which had a potential to interfere with the concept and the calculated energy balance. In order to improve internal conditions, the users in almost every case intervened with the planned use. They found common and known ways to improving their comfort in the buildings without considering how to optimize the new system. None of the respondents had much prior knowledge of energy efficient buildings before moving in or starting to work in the case study buildings. They did not know what to expect from their new environment, and were unfamiliar with the concepts. Many of the informants complained about a lack of information on systems and insufficient training. The studies also show that the occupants desired to control at least some operational aspects. Despite intermittent difficulties with thermal comfort, the tolerance for the buildings performance appeared to be high throughout all the case studies and many respondents were proud of 'their' buildings. Energy efficient buildings are

  7. Energy and architecture: improvement of energy performance in existing buildings

    Energy Technology Data Exchange (ETDEWEB)

    Haase, Matthias; Wycmans, Annemie; Solbraa, Anne; Grytli, Eir

    2011-07-01

    This book aims to give an overview of different aspects of retrofitting existing buildings. The target group is students of architecture and building engineering as well as building professionals. Eight out of ten buildings which we will inhabit in 2050 already exist. This means that a great potential for reducing our carbon footprint lies in the existing building stock. Students from NTNU have used the renovation of a 1950s school building at Linesoeya in Soer-Trondelag as a case to increase their awareness and knowledge about the challenges building professionals need to overcome to unite technical details and high user quality into good environmental performance. The students were invited by the building owners and initiators of LIPA Eco Project to contribute to its development: By retrofitting an existing building to passive house standards and combining this with energy generated on site, LIPA Eco Project aims to provide a hands-on example with regard to energy efficiency, architectural design and craftsmanship for a low carbon society. The overall goal for this project is to raise awareness regarding resource efficiency measures in architecture and particularly in existing building mass.(au)

  8. BUSICO 3D: building simulation and control in unity 3D

    DEFF Research Database (Denmark)

    Fürst, Jonathan; Fierro, Gabe; Bonnet, Philippe

    2014-01-01

    In this demonstration, we present a novel system of building control and simulation focused on the integration of the physical and virtual worlds. Actuations and schedules can be manifested either in a physical space or in a virtualization of that space, allowing for more natural interactions...

  9. User-Preference-Driven Model Predictive Control of Residential Building Loads and Battery Storage for Demand Response: Preprint

    Energy Technology Data Exchange (ETDEWEB)

    Jin, Xin [National Renewable Energy Laboratory (NREL), Golden, CO (United States); Baker, Kyri A. [National Renewable Energy Laboratory (NREL), Golden, CO (United States); Christensen, Dane T. [National Renewable Energy Laboratory (NREL), Golden, CO (United States); Isley, Steven C. [National Renewable Energy Laboratory (NREL), Golden, CO (United States)

    2017-08-21

    This paper presents a user-preference-driven home energy management system (HEMS) for demand response (DR) with residential building loads and battery storage. The HEMS is based on a multi-objective model predictive control algorithm, where the objectives include energy cost, thermal comfort, and carbon emission. A multi-criterion decision making method originating from social science is used to quickly determine user preferences based on a brief survey and derive the weights of different objectives used in the optimization process. Besides the residential appliances used in the traditional DR programs, a home battery system is integrated into the HEMS to improve the flexibility and reliability of the DR resources. Simulation studies have been performed on field data from a residential building stock data set. Appliance models and usage patterns were learned from the data to predict the DR resource availability. Results indicate the HEMS was able to provide a significant amount of load reduction with less than 20% prediction error in both heating and cooling cases.

  10. Numerical prediction of energy consumption in buildings with controlled interior temperature

    Energy Technology Data Exchange (ETDEWEB)

    Jarošová, P.; Št’astník, S. [Brno University of Technology, Faculty of Civil Engineering, 602 00 Brno, Veveří 95, Czech Republic, e-mail jarosova.p@fce.vutbr.cz, stastnik.s@fce.vutbr.cz (Czech Republic)

    2015-03-10

    New European directives bring strong requirement to the energy consumption of building objects, supporting the renewable energy sources. Whereas in the case of family and similar houses this can lead up to absurd consequences, for building objects with controlled interior temperature the optimization of energy demand is really needed. The paper demonstrates the system approach to the modelling of thermal insulation and accumulation abilities of such objetcs, incorporating the significant influence of additional physical processes, as surface heat radiation and moisture-driven deterioration of insulation layers. An illustrative example shows the numerical prediction of energy consumption of a freezing plant in one Central European climatic year.

  11. Fuzzy logic applied to the control of the energy consumption in intelligent buildings; Logica fuzzy aplicada ao controle do consumo de energia eletrica em edificios inteligentes

    Energy Technology Data Exchange (ETDEWEB)

    Costa, Herbert R. do N.

    1998-02-01

    This work shows a study on the using of fuzzy control algorithms for the energy optimization of a standard building. The simulation of this type of control was performed using a central conditioned air model and the fuzzy control architecture already used in various control projects. This situation allowed a comparative study among the the control algorithms normally used in conditioned air installations, and the control performed through the building automation system, using an algorithm based on fuzzy logic.

  12. Simulations of the potential revenue from investment in improved indoor air quality in an office building

    DEFF Research Database (Denmark)

    Wargocki, Pawel; Djukanovic, Rade

    2005-01-01

    of improved worker performance; benefits from reduced health costs and sickness absence were not included. The building was simulated in a cold, a moderate and a hot climate. It was ventilated by a constant air volume (CAV) system with heat recovery and by a variable air volume (VAV) system with an economizer....... The air quality was improved by increasing the outdoor air supply rate and by reducing the pollution loads. These upgrades involved increased energy and HVAC maintenance costs, first costs of a HVAC system and building construction costs. But the additional investments were highly cost......-effective. The annual benefit due to improved air quality was up to 115 times higher than the increase in annual energy and maintenance costs. LCC analysis showed that productivity benefits resulting from a better indoor air quality were up to 60 times higher than the increased costs; the simple and discounted pay...

  13. Improved district heating substation efficiency with a new control strategy

    International Nuclear Information System (INIS)

    Gustafsson, Jonas; Delsing, Jerker; Deventer, Jan van

    2010-01-01

    In this paper, we describe a new alternative control approach for indirectly connected district heating substations. Simulations results showed that the new approach results in an increased ΔT across the substation. Results were obtained for both ideal and non-ideal operation of the system, meaning that less water must be pumped through the district heating network, and a higher overall fuel efficiency can be obtained in the district heating power plants. When a higher fuel efficiency is achieved, the usage of primary fuel sources can be reduced. Improved efficiency also increases the effective heat transfer capacity of a district heating network, allowing more customers to be connected to an existing network without increasing the heating plant or network capacity. Also, if combined heat and power plants are used to produce the heat, the increased ΔT will result in a further improved overall fuel efficiency, as more electricity can be produced with colder cooling water. The idea behind the new control method is to consider the temperature of the water supplying the district heating substation with heat, often referred to as the primary supply temperature. This represents a logical next step, as currently, the only parameter generally taken into account or measured when controlling the temperature level of the radiator circuit is the local outdoor temperature. In this paper we show how the primary supply temperature together with thermodynamic knowledge of the building can be used to maximize the ΔT across the district heating substation.

  14. User based preference indoor climate control

    OpenAIRE

    Zeiler, W.; Boxem, G.; Houten, van, M.A.; Wortel, W.; Velden, van der, J.A.J.; Kamphuis, I.G.; Hommelberg, M.P.F.; Tanabe, S.-I.; Kato, S.

    2007-01-01

    In comfort control strategy there is an exciting development based on inclusive design: the user’s preferences and their behaviour have become central in the building services control strategy. Synergy between end-user and building is the ultimate in the intelligent comfort control concept. This new comfort control technology is based on the use of the latest development in agent technology and can further reduce energy consumption of buildings while at the same time improve individual comfor...

  15. Assessing thermal comfort and energy efficiency in buildings by statistical quality control for autocorrelated data

    International Nuclear Information System (INIS)

    Barbeito, Inés; Zaragoza, Sonia; Tarrío-Saavedra, Javier; Naya, Salvador

    2017-01-01

    Highlights: • Intelligent web platform development for energy efficiency management in buildings. • Controlling and supervising thermal comfort and energy consumption in buildings. • Statistical quality control procedure to deal with autocorrelated data. • Open source alternative using R software. - Abstract: In this paper, a case study of performing a reliable statistical procedure to evaluate the quality of HVAC systems in buildings using data retrieved from an ad hoc big data web energy platform is presented. The proposed methodology based on statistical quality control (SQC) is used to analyze the real state of thermal comfort and energy efficiency of the offices of the company FRIDAMA (Spain) in a reliable way. Non-conformities or alarms, and the actual assignable causes of these out of control states are detected. The capability to meet specification requirements is also analyzed. Tools and packages implemented in the open-source R software are employed to apply the different procedures. First, this study proposes to fit ARIMA time series models to CTQ variables. Then, the application of Shewhart and EWMA control charts to the time series residuals is proposed to control and monitor thermal comfort and energy consumption in buildings. Once thermal comfort and consumption variability are estimated, the implementation of capability indexes for autocorrelated variables is proposed to calculate the degree to which standards specifications are met. According with case study results, the proposed methodology has detected real anomalies in HVAC installation, helping to detect assignable causes and to make appropriate decisions. One of the goals is to perform and describe step by step this statistical procedure in order to be replicated by practitioners in a better way.

  16. The use of social media for improving sustainable energy and building operation

    DEFF Research Database (Denmark)

    Knudsen, Helene Hjort

    2015-01-01

    This paper will draw perspectives of the experiences from the housing estate “Eight House”, using the social intranet media “Borigo”. How can Social Intranet Media support sustainable building operation with an overall aim of improving the residents’ sustainable practice? Can local operational...... managers of the residential area function as change agents in the process? What kind of process is needed? Can the use of social media support communities of practice?...

  17. COMPREHENSIVE DIAGNOSTIC AND IMPROVEMENT TOOLS FOR HVAC-SYSTEM INSTALLATIONS IN LIGHT COMMERCIAL BUILDINGS

    Energy Technology Data Exchange (ETDEWEB)

    Abram Conant; Mark Modera; Joe Pira; John Proctor; Mike Gebbie

    2004-10-31

    Proctor Engineering Group, Ltd. (PEG) and Carrier-Aeroseal LLP performed an investigation of opportunities for improving air conditioning and heating system performance in existing light commercial buildings. Comprehensive diagnostic and improvement tools were created to address equipment performance parameters (including airflow, refrigerant charge, and economizer operation), duct-system performance (including duct leakage, zonal flows and thermal-energy delivery), and combustion appliance safety within these buildings. This investigation, sponsored by the National Energy Technology Laboratory, a division of the U.S. Department of Energy, involved collaboration between PEG and Aeroseal in order to refine three technologies previously developed for the residential market: (1) an aerosol-based duct sealing technology that allows the ducts to be sealed remotely (i.e., without removing the ceiling tiles), (2) a computer-driven diagnostic and improvement-tracking tool for residential duct installations, and (3) an integrated diagnosis verification and customer satisfaction system utilizing a combined computer/human expert system for HVAC performance. Prior to this work the aerosol-sealing technology was virtually untested in the light commercial sector--mostly because the savings potential and practicality of this or any other type of duct sealing had not been documented. Based upon the field experiences of PEG and Aeroseal, the overall product was tailored to suit the skill sets of typical HVAC-contractor personnel.

  18. Building envelope

    CSIR Research Space (South Africa)

    Gibberd, Jeremy T

    2009-01-01

    Full Text Available for use in the building. This is done through photovoltaic and solar water heating panels and wind turbines. Ideally these are integrated in the design of the building envelope to improve the aesthetic quality of the building and minimise material... are naturally ventilated. Renewable energy The building envelope includes renewable energy generation such as photovoltaics, wind turbines and solar water heaters and 10% of the building’s energy requirements are generated from these sources. Views All...

  19. A new data-driven controllability measure with application in intelligent buildings

    DEFF Research Database (Denmark)

    Shaker, Hamid Reza; Lazarova-Molnar, Sanja

    2017-01-01

    and instrumentation within today's intelligent buildings enable collecting high quality data which could be used directly in data-based analysis and control methods. The area of data-based systems analysis and control is concentrating on developing analysis and control methods that rely on data collected from meters...... and sensors, and information obtained by data processing. This differs from the traditional model-based approaches that are based on mathematical models of systems. We propose and describe a data-driven controllability measure for discrete-time linear systems. The concept is developed within a data......-based system analysis and control framework. Therefore, only measured data is used to obtain the proposed controllability measure. The proposed controllability measure not only shows if the system is controllable or not, but also reveals the level of controllability, which is the information its previous...

  20. Optimal control of building storage systems using both ice storage and thermal mass – Part I: Simulation environment

    International Nuclear Information System (INIS)

    Hajiah, Ali; Krarti, Moncef

    2012-01-01

    Highlights: ► A simulation environment is described to account for both passive and active thermal energy storage (TES) systems. ► Laboratory testing results have been used to validate the predictions from the simulation environment. ► Optimal control strategies for TES systems have been developed as part of the simulation environment. - Abstract: This paper presents a simulation environment that can evaluate the benefits of using simultaneously building thermal capacitance and ice storage system to reduce total operating costs including energy and demand charges while maintaining adequate occupant comfort conditions within commercial buildings. The building thermal storage is controlled through pre-cooling strategies by setting space indoor air temperatures. The ice storage system is controlled by charging the ice tank and operating the chiller during low electrical charge periods and melting the ice during on-peak periods. Optimal controls for both building thermal storage and ice storage are developed to minimize energy charges, demand charges, or combined energy and demand charges. The results obtained from the simulation environment are validated using laboratory testing for an optimal controller.

  1. Energy requirements for new buildings in Finland

    Energy Technology Data Exchange (ETDEWEB)

    Airaksinen, M., Email: miimu.airaksinen@vtt.fi

    2012-06-15

    Buildings account for circa 40% of the total energy use in Europe [1] and for about 36% of the EU's total CO{sub 2} emissions [2], including the existing energy conservation in buildings [3]. Key features of the Finnish energy policy are improved energy efficiency and increased use of renewable energy sources. To achieve a sustainable shift in the energy system, a target set by the authorities, both energy savings and increased use of low-pollution energy sources are therefore priority areas. Building low-energy buildings is in accordance with the declared national aim of reducing energy use and thus reducing CO{sub 2} emissions. The main motivation in renewing building codes for new buildings was to build more energy efficiently, encourage the use the most efficient energy sources and to enhance the use of renewable energy sources. In addition the aim was to give more freedom to fi nd the real optimal solutions for energy efficiency by optimising all aspects including the building architecture and different systems with demand controls. However, in order to ensure the good quality of buildings certain minimum requirements for structure U-values are given. (orig.)

  2. Building Canada: Phase One

    Energy Technology Data Exchange (ETDEWEB)

    Anon

    2004-04-15

    The 'Building Canada' program modelled after the 'Building America' program, aims at increasing energy efficiency and affordability, primarily for single family homes. The program takes a holistic and whole house view, employing a systems approach and is committed to continuous improvement through testing, evaluation, retesting and novel construction practices. The program's objective is to re-engineer house designs so that builders can take advantage of advanced products and achieve maximum efficiency. Building Canada aims to achieve its objectives through partnership with the housing industry, focusing on increasing energy efficiency while reducing construction time, using and wasting fewer materials, forestalling call backs, and reducing overall costs. The Building Canada procedures encompass marketing, research of builder's operations, re-engineering mechanical systems, framing components and techniques, moisture control and thermal performance, construction, resolution of problems in re-engineered homes, and discussion of results in demonstration homes. The program as a whole is built on the feasibility study of a Building Canada program carried out in Nova Scotia and Ontario. Some of the results of this pilot study summarized in this report indicate that the Building Canada is not suitable for use by small builders. Benefits are most likely to be realized by only by builders constructing more than 100 homes annually.

  3. Optimum Installation of Sorptive Building Materials Using Contribution Ratio of Pollution Source for Improvement of Indoor Air Quality.

    Science.gov (United States)

    Park, Seonghyun; Seo, Janghoo

    2016-04-01

    Reinforcing the insulation and airtightness of buildings and the use of building materials containing new chemical substances have caused indoor air quality problems. Use of sorptive building materials along with removal of pollutants, constant ventilation, bake-out, etc. are gaining attention in Korea and Japan as methods for improving such indoor air quality problems. On the other hand, sorptive building materials are considered a passive method of reducing the concentration of pollutants, and their application should be reviewed in the early stages. Thus, in this research, activated carbon was prepared as a sorptive building material. Then, computational fluid dynamics (CFD) was conducted, and a method for optimal installation of sorptive building materials was derived according to the indoor environment using the contribution ratio of pollution source (CRP) index. The results show that a method for optimal installation of sorptive building materials can be derived by predicting the contribution ratio of pollutant sources according to the CRP index.

  4. Design of environmentally friendly calcium sulfate-based building materials : towards an improved indoor air quality

    NARCIS (Netherlands)

    Yu, Q.

    2012-01-01

    This thesis addresses the performance based design and development of an environmentally friendly calcium sulfate-based indoor building product towards an improved indoor air quality. Here "environmental friendly" is referred to the environment related subjects including: (1) the selection of raw

  5. China building energy consumption: Situation, challenges and corresponding measures

    International Nuclear Information System (INIS)

    Cai, W.G.; Wu, Y.; Zhong, Y.; Ren, H.

    2009-01-01

    As one of the biggest parts of total national energy consumption (TNEC), building energy consumption (BEC) catches public eyes and has been regarded as a crucial problem of the current society. For the past 20 years, BEC in china has been increasing at a high speed. To curb the rapid growing of BEC, china has enforced and implemented a series of policies. These include enforcing BEC constraints on new building projects, promoting more environment friendly building designs, establishing a more sophisticated legislation for building energy conservation, and increasing the total budget in the area of BEC control. This article analyzed china BEC situation and the challenges. As the main point, the measures required by China government to improve building energy efficiency were introduced as well.

  6. Leveraging corporate social responsibility to improve consumer safety of dietary supplements sold for weight loss and muscle building.

    Science.gov (United States)

    Kulkarni, Anvita; Huerto, Ryan; Roberto, Christina A; Austin, S Bryn

    2017-03-01

    The potential dangers associated with dietary supplements sold for weight loss and muscle building are well documented and increasingly garnering the attention of the media, public, and government leaders. Public health professionals have an opportunity to improve population health in the context of dietary supplement use by translating scientific evidence into action. In this commentary, we discuss the potential to motivate corporate social responsibility (CSR) among manufacturers and retailers of dietary supplements sold for weight loss and muscle building. We examine levers available to public health professionals for generating voluntary corporate self-regulation by reviewing examples from successful CSR initiatives in other domains of public health and offering recommendations highlighting effective advocacy strategies. We encourage public health professionals to use one or multiple advocacy strategies to improve consumer protections for dietary supplements sold for weight loss and muscle building.

  7. Moisture buffering and its consequence in whole building hygrothermal modeling

    DEFF Research Database (Denmark)

    Rode, Carsten; Grau, Karl

    2008-01-01

    Moisture absorption and desorption of materials in contact with indoor air of buildings can be used as a passive, i.e., nonmechanical, way to moderate the variation of indoor humidity. This phenomenon, which is recognized as,moisture buffering', could potentially be used as an attractive feature...... for ventilation if indoor humidity is a parameter for controlling ventilation rate, 2. it is possible to improve the perceived acceptability of indoor air, as judged by the temperature and humidity of the air, by using moisture buffering to control the indoor humidity. The results of the whole building...

  8. Control of City Shallow Buried Tunnel Blasting Hazard to Surface Buildings

    Directory of Open Access Journals (Sweden)

    Yang Deqiang

    2015-01-01

    Full Text Available Combining with the blasting test of an under-construction tunnel, this paper optimizes the overall blasting construction scheme. The optimized blasting scheme is used in the site construction test and the peak particle vibration velocity is strictly controlled under working conditions through blasting vibration monitoring to ensure the safety of surrounding buildings and structures in the construction process. The corresponding control measures are proposed to reduce the blasting vibration which brings certain guiding significance to the following construction project.

  9. Energy management systems in buildings

    Energy Technology Data Exchange (ETDEWEB)

    Lush, D. M.

    1979-07-01

    An investigation is made of the range of possibilities available from three types of systems (automatic control devices, building envelope, and the occupants) in buildings. The following subjects are discussed: general (buildings, design and personnel); new buildings (envelope, designers, energy and load calculations, plant design, general design parameters); existing buildings (conservation measures, general energy management, air conditioned buildings, industrial buildings); man and motivation (general, energy management and documentation, maintenance, motivation); automatic energy management systems (thermostatic controls, optimized plant start up, air conditioned and industrial buildings, building automatic systems). (MCW)

  10. Building envelope influence on the annual energy performance in office buildings

    Directory of Open Access Journals (Sweden)

    Harmati Norbert L.

    2016-01-01

    Full Text Available The objective of the research is to determine the quantitative influence of building envelope on the annual heating and cooling energy demand in office buildings demonstrated on a reference office-tower building located in Novi Sad, Serbia. The investigation intended to find preferable and applicable solutions for energy performance improvement in currently inefficient office buildings. A comparative and evaluative analysis was performed among the heating energy expenses and simulated values from the multi-zone model designed in EnergyPlus engine. The research determines an improved window to wall ratio using dynamic daylight simulation and presents the influence of glazing parameters (U-value, Solar heat gain coefficient - SHGC on the annual energy performance. Findings presented window to wall ratio reduction down to 30% and point out the significance of the SHGC parameter on the overall energy performance of buildings with high internal loads. The calculation of the air-ventilation energy demand according to EN 15251 is included respectively. Results offer effective methods for energy performance improvement in temperate climate conditions.

  11. Development of Universal Controller Architecture for SiC Based Power Electronic Building Blocks

    Science.gov (United States)

    2017-10-30

    SiC Based Power Electronic Building Blocks Award Number Title of Research 30 October 2017 SUBMITTED BY D R. HERBERT L. G INN, Pl DEPT. OF...Naval Research , Philadelphia PA, Aug. 2017. • Ginn, H.L. Bakos J., "Development of Universal Controller Architecture for SiC Based Power Electronic...Controller Implementation for MMC Converters", Workshop on Control Architectures for Modular Power Conversion Systems, Office of Naval Research , Arlington VA

  12. Editorial: disarmament, non proliferation, confidence-building measures, armament control

    International Nuclear Information System (INIS)

    Soutou, Georges-Henri

    2015-01-01

    After having described the vicious circle existing between disarmament and security as it appeared before and during the first World War, the author deals with the specific case of nuclear disarmament as it was first addressed just after the Second World War, and was then not accepted by the Russians. He comments the political and strategical approach adopted by the Kennedy administration, notably within the context of severe crises (Berlin and Cuba). This resulted in the re-establishment of a relationship between war and policy as defined by Clausewitz, but based on a trilogy of three inseparable pairs: deterrence and armament control, armament control and non proliferation, armament control and confidence-building measures. The author shows that this trilogy has been somehow operating until the end of Cold War, and that nothing works anymore since the end of Cold War and of the bipolar world

  13. Research on the Implementation of Technological Measures for Controlling Indoor Environmental Quality in Green Residential Buildings

    Science.gov (United States)

    Wang, Ruozhu; Liu, Pengda; Qian, Yongmei

    2018-02-01

    This paper analyzes the design technology of controlling indoor quality in engineering practice, it is proposed that, in framework system of green residential building design, how to realize the design idea of controlling the indoor environment quality, and the design technology with feasibility, including the sunshine and lighting, indoor air quality and thermal environment, sound insulation and noise reduction measures, etc.. The results of all will provide a good theoretical supportting for the design of green residential building.

  14. Hybrid Model-Based and Data-Driven Fault Detection and Diagnostics for Commercial Buildings: Preprint

    Energy Technology Data Exchange (ETDEWEB)

    Frank, Stephen; Heaney, Michael; Jin, Xin; Robertson, Joseph; Cheung, Howard; Elmore, Ryan; Henze, Gregor

    2016-08-01

    Commercial buildings often experience faults that produce undesirable behavior in building systems. Building faults waste energy, decrease occupants' comfort, and increase operating costs. Automated fault detection and diagnosis (FDD) tools for buildings help building owners discover and identify the root causes of faults in building systems, equipment, and controls. Proper implementation of FDD has the potential to simultaneously improve comfort, reduce energy use, and narrow the gap between actual and optimal building performance. However, conventional rule-based FDD requires expensive instrumentation and valuable engineering labor, which limit deployment opportunities. This paper presents a hybrid, automated FDD approach that combines building energy models and statistical learning tools to detect and diagnose faults noninvasively, using minimal sensors, with little customization. We compare and contrast the performance of several hybrid FDD algorithms for a small security building. Our results indicate that the algorithms can detect and diagnose several common faults, but more work is required to reduce false positive rates and improve diagnosis accuracy.

  15. Building regulations in energy efficiency: Compliance in England and Wales

    International Nuclear Information System (INIS)

    Pan Wei; Garmston, Helen

    2012-01-01

    There is an international pragmatic shift towards the use of building energy regulations, standards and codes to reduce building energy consumption. The UK Government revised Building Regulations in 2002, 2006 and 2010, towards more stringent energy efficiency standards and ultimately the target of ‘zero carbon’ new homes from 2016. This paper aims to: reveal levels of compliance with energy Building Regulations of new-build dwellings in England and Wales; explore underlying issues; and identify possible solutions. In total 376 new-build dwellings were investigated. The compliance revealed was poor, at a level of 35%; accompanied by 43% ‘grey compliance’ and 21% ‘grey non-compliance’ (due to insufficient evidence of achieving required carbon emissions reductions). It is a serious concern when building control approves so many dwellings when insufficient evidence of compliance has been received. Underlying issues were centred on: incorrect compilation and/or insufficient submission of carbon emissions calculations by builders/developers; inappropriate timings of such submissions; and a paucity of proper checks by building control. Exploring these issues reveals a complex system of factors influencing energy regulations compliance, which involves a wide range of stakeholders. The findings should inform the formulation and implementation of energy efficiency building regulations and policy in the future. - Highlights: ► The compliance with energy Building Regulations (England and Wales) was poor. ► The problematic implementation of energy Building Regulations is a serious concern. ► Identified issues suggest a lack of knowledge of builders and building control. ► There is a complex system of factors influencing energy regulations compliance. ► A systems approach is needed to improve compliance, while training is crucial.

  16. Savings through the use of adaptive predictive control of thermo-active building systems (TABS): A case study

    International Nuclear Information System (INIS)

    Schmelas, Martin; Feldmann, Thomas; Bollin, Elmar

    2017-01-01

    Highlights: •An adaptive and predictive algorithm for the control of TABS (AMLR) is evaluated. •Comparison of standard TABS control and AMLR over a period of nine month each. •Thermal comfort, energy and investment savings in a passive seminar building. •Reduction of peak power of chilled beams (auxiliary system) with AMLR algorithm. •Simplification of the TABS hydraulics with AMLR algorithm. -- Abstract: The building sector is one of the main consumers of energy. Therefore, heating and cooling concepts for renewable energy sources become increasingly important. For this purpose, low-temperature systems such as thermo-active building systems (TABS) are particularly suitable. This paper presents results of the use of a novel adaptive and predictive computation method, based on multiple linear regression (AMLR) for the control of TABS in a passive seminar building. Detailed comparisons are shown between the standard TABS and AMLR strategies over a period of nine months each. In addition to the reduction of thermal energy use by approx. 26% and a significant reduction of the TABS pump operation time, this paper focuses on investment savings in a passive seminar building through the use of the AMLR strategy. This includes the reduction of peak power of the chilled beams (auxiliary system) as well as a simplification of the TABS hydronic circuit and the saving of an external temperature sensor. The AMLR proves its practicality by learning from the historical building operation, by dealing with forecasting errors and it is easy to integrate into a building automation system.

  17. ImBuild: Impact of building energy efficiency programs

    Energy Technology Data Exchange (ETDEWEB)

    Scott, M.J.; Hostick, D.J.; Belzer, D.B.

    1998-04-01

    As part of measuring the impact of government programs on improving the energy efficiency of the Nation`s building stock, the Department of Energy Office of Building Technology, State and Community Programs (BTS) is interested in assessing the economic impacts of its portfolio of programs, specifically the potential impact on national employment and income. The special-purpose version of the IMPLAN model used in this study is called ImBuild. In comparison with simple economic multiplier approaches, such as Department of Commerce RIMS 2 system, ImBuild allows for more complete and automated analysis of the economic impacts of energy efficiency investments in buildings. ImBuild is also easier to use than existing macroeconomic simulation models. The authors conducted an analysis of three sample BTS energy programs: the residential generator-absorber heat exchange gas heat pump (GAX heat pump), the low power sulfur lamp (LPSL) in residential and commercial applications, and the Building America program. The GAX heat pump would address the market for the high-efficiency residential combined heating and cooling systems. The LPSL would replace some highly efficient fluorescent commercial lighting. Building America seeks to improve the energy efficiency of new factory-built, modular, manufactured, and small-volume, site-built homes through use of systems engineering concepts and early incorporation of new products and processes, and by increasing the demand for more energy-efficient homes. The authors analyze a scenario for market penetration of each of these technologies devised for BTS programs reported in the BTS GPRA Metrics Estimates, FY99 Budget Request, December 19, 1997. 46 figs., 4 tabs.

  18. RTDS implementation of an improved sliding mode based inverter controller for PV system.

    Science.gov (United States)

    Islam, Gazi; Muyeen, S M; Al-Durra, Ahmed; Hasanien, Hany M

    2016-05-01

    This paper proposes a novel approach for testing dynamics and control aspects of a large scale photovoltaic (PV) system in real time along with resolving design hindrances of controller parameters using Real Time Digital Simulator (RTDS). In general, the harmonic profile of a fast controller has wide distribution due to the large bandwidth of the controller. The major contribution of this paper is that the proposed control strategy gives an improved voltage harmonic profile and distribute it more around the switching frequency along with fast transient response; filter design, thus, becomes easier. The implementation of a control strategy with high bandwidth in small time steps of Real Time Digital Simulator (RTDS) is not straight forward. This paper shows a good methodology for the practitioners to implement such control scheme in RTDS. As a part of the industrial process, the controller parameters are optimized using particle swarm optimization (PSO) technique to improve the low voltage ride through (LVRT) performance under network disturbance. The response surface methodology (RSM) is well adapted to build analytical models for recovery time (Rt), maximum percentage overshoot (MPOS), settling time (Ts), and steady state error (Ess) of the voltage profile immediate after inverter under disturbance. A systematic approach of controller parameter optimization is detailed. The transient performance of the PSO based optimization method applied to the proposed sliding mode controlled PV inverter is compared with the results from genetic algorithm (GA) based optimization technique. The reported real time implementation challenges and controller optimization procedure are applicable to other control applications in the field of renewable and distributed generation systems. Copyright © 2015 ISA. Published by Elsevier Ltd. All rights reserved.

  19. Development of a methodology for life cycle building energy ratings

    International Nuclear Information System (INIS)

    Hernandez, Patxi; Kenny, Paul

    2011-01-01

    Traditionally the majority of building energy use has been linked to its operation (heating, cooling, lighting, etc.), and much attention has been directed to reduce this energy use through technical innovation, regulatory control and assessed through a wide range of rating methods. However buildings generally employ an increasing amount of materials and systems to reduce the energy use in operation, and energy embodied in these can constitute an important part of the building's life cycle energy use. For buildings with 'zero-energy' use in operation the embodied energy is indeed the only life cycle energy use. This is not addressed by current building energy assessment and rating methods. This paper proposes a methodology to extend building energy assessment and rating methods accounting for embodied energy of building components and systems. The methodology is applied to the EU Building Energy Rating method and, as an illustration, as implemented in Irish domestic buildings. A case study dwelling is used to illustrate the importance of embodied energy on life cycle energy performance, particularly relevant when energy use in operation tends to zero. The use of the Net Energy Ratio as an indicator to select appropriate building improvement measures is also presented and discussed. - Highlights: → The definitions for 'zero energy buildings' and current building energy ratings are examined. → There is a need to integrate a life cycle perspective within building energy ratings. → A life cycle building energy rating method (LC-BER), including embodied energy is presented. → Net Energy Ratio is proposed as an indicator to select building energy improvement options.

  20. Electrical Procedures and Environmental Control Systems. Building Maintenance. Module IV. Instructor's Guide.

    Science.gov (United States)

    Sloan, Garry

    This curriculum guide, one of six modules keyed to the building maintenance competency profile developed by industry and education professionals, provides materials for two units on electrical procedures and environmental control systems. Unit 1, on electrical procedures, includes the following lessons: electrical safety; troubleshooting and…

  1. Towards Smart Buildings Performance Testing as a Service

    DEFF Research Database (Denmark)

    Markoska, Elena; Lazarova-Molnar, Sanja

    2018-01-01

    Energy consumption in buildings accounts for ca. 40% of the world’s total energy consumption, yielding a call for attention to their performance and improvement of their behavior. The concept of performance testing has been developed as an approach to control, potentially lower, and bring awarene...

  2. The role of the continuous improvement tools of procesess in building relationships in supply chain

    Directory of Open Access Journals (Sweden)

    Maciej Urbaniak

    2015-03-01

    Full Text Available Background: The aim of this paper is to determine the importance of the quality management and environmental management systems as well as operational improvement tools (such as TPS, Six Sigma, and Lean Management in building partnerships in supply chain. Methods: This paper contains the results of survey in companies operating in Poland and an analysis of the requirements for suppliers in the implementation of the quality and environmental management systems elements as well as recommendation for them to implement process improvement tools (such as elements of the TPS, the concept of Lean Management and Six Sigma methodologies. Results: The results of the survey and the analysis of the examples show that companies that are buyers in the B2B market often define the very individualized to suppliers needs through detailed specifications defining the requirements for quality assurance, performance increases, (for example, shortening implementation cycles, efficiency (cost reduction, safety, reducing the negative impact on the environment. Conclusions: The effectiveness of the action on improving the quality of processes and products by building relationships with suppliers depends largely on the support provided to them. To achieve these objectives many companies introduce special development programs for suppliers.

  3. Cost-benefit analysis of improved air quality in an office building

    DEFF Research Database (Denmark)

    Djukanovic, R.; Wargocki, Pawel; Fanger, Povl Ole

    2002-01-01

    A cost-benefit analysis of measures to improve air quality in an existing air-conditoned office building (11581 m2, 864 employees) was carried out for hot, temperate and cold climates and for two operating modes: Variable Air Volume (VAV) with economizer; and Constant Air Volume (CAV) with heat...... recovery. The annual energy cost and first cost of the HVAC system were calculat4ed using DOE 2.1E for different levels of air quality (10-50% dissatisfied). This was achieved by changing the outdoor air supply rate and the pollution loads. Previous studies have documented a 1.1% increase in office...

  4. Building nurse leaders through the Institute for Healthcare Improvement Open School Student Quality Leadership Academy.

    Science.gov (United States)

    May, Cattleya; Cutting, Katharine N

    2014-01-01

    The Institute for Healthcare Improvement is an independent not-for-profit organization based in Cambridge, Massachusetts. It is a leading innovator in health and health care improvement with a global following.One important part of the IHI is the development and evolution of the "Open School." Launched in September 2008, the online community currently includes hundreds of thousands of students worldwide. The goals of the Open School are consistent with the IHI initial concepts: to build will for change, seek out innovation, share expertise, and build leaders. Each year, the Open School awards scholarships to select students to attend a Leadership Academy.The Student Quality Leadership Academy allows students to network with other future nurses, physicians, and health care administrators and explores how they feel about leadership. This is important to nursing as we will need to replace many leadership positions in the future, but often new nurses are uncertain about leadership roles.

  5. Occupant satisfaction with the acoustical environment : green office buildings before and after treatment

    Energy Technology Data Exchange (ETDEWEB)

    Hodgson, M. [British Columbia Univ., Vancouver, BC (Canada). School of Occupational and Environmental Hygiene, Acoustics and Noise Research Group

    2009-07-01

    Sustainable architecture is meant to preserve the environment and conserve natural resources, as well as provide an environment for the occupants that promotes wellbeing and productivity. Occupants generally claim that the acoustical environment is the least satisfactory aspect of green office buildings. They are dissatisfied with excessive noise and poor speech privacy. This paper reported on the results of 2 studies of the acoustical environments in green office buildings before and after acoustical-control measures were installed. Acoustical quality was evaluated by occupant-satisfaction surveys and acoustical-parameter measurements. The first study, which involved 6 green office buildings, showed that buildings designed to obtain LEED ratings are unlikely to have satisfactory acoustical environments. A naturally-ventilated, green university building with a poor acoustical environment was examined in the second study. The results of this study suggest that improving acoustical environments in green buildings requires good acoustical design, with input from an acoustical specialist from the beginning of the design process. The design should consider site selection and building orientation; external envelope and penetrations in it; building layout and internal partitions; HVAC systems; appropriate dimensioning of spaces; and the amount and location of sound absorbing treatments. The study also showed that a building's energy efficiency, lighting, ventilation, air-quality and acoustics are interconnected, and that no aspect can be successfully designed in isolation. It was concluded that optimized engineering-control measures can improve poor acoustical environments. 11 refs., 1 tab., 1 fig.

  6. Effects of team-building on communication and teamwork among nursing students.

    Science.gov (United States)

    Yi, Y J

    2016-03-01

    The aim of this study was to assess the effects of team-building on communication and teamwork (i.e. teamwork skills and team effectiveness) among nursing students. Team-building is effective for improving communication and teamwork among the nursing organization. However, the effects of team-building are not well known especially in Korea. This study used a quasi-experimental design. The sample was composed of 195 junior-year nursing students in Korea. The experimental group (100 subjects) participated in team-building activities over a 100-day period, whereas no intervention was applied to the control group (95 subjects). Pretest was conducted in both groups, and post-test was conducted after the 100-day intervention. The pre-post change in mean communication competence score did not differ between the two groups. However, the mean scores for teamwork skills and team effectiveness differed significantly between the two groups after team-building activity. This study was not a double-blind test, and randomized sampling was not implemented. Caution should thus be used when interpreting the findings. Team-building activities were effective for improving the teamwork skills and team effectiveness among Korean nursing students. It is recommended that team-building activities should be included regularly as an integral educational approach in nursing education. The findings suggest that suggests that team-building for improving communication and teamwork should be designated as one of the required criteria for nursing college programme accreditation in many countries, including Korea. However team-building requires further testing to verify this across cultures. Nurses need to receive formal team-building training for improving communication and teamwork, and formal education should be included in their job training schedule. It is recommended that communication competence and teamwork be used as one of job performance evaluations in their workplace. © 2015

  7. Development of quadrupled robot for disaster site - Improvement of stable walking control on uneven terrain - 15227

    International Nuclear Information System (INIS)

    Suganuma, N.; Mitsuya, Y.; Sonoura, T.; Matsuzaki, K.; Uehara, T.; Nakamura, N.

    2015-01-01

    At the Fukushima Daiichi Nuclear Power Station, which was seriously damaged by the Great East Japan Earthquake on March 11 in 2011, it has been difficult for workers to approach the reactor buildings due to the hazardous surrounding environment. The need had therefore arisen for remote-controlled robots to facilitate inspection and restoration works on behalf of workers in such high-level radiation environments. We have developed a quadruped walking robot that can carry various tools for decommissioning works. The robot can keep its balance while walking on uneven surfaces, slopes, and stairs due to control methods such as the autonomous determination of the leg trajectory and the center of gravity position of the robot, corrections of the leg landing positions and the body posture with an operator intervention according to the walking situation. This quadruped walking robot was applied to the investigation of suspected water leakage areas in the reactor building of Fukushima Daiichi Nuclear Power Station Unit 2 in December 2012. In this study, we have improved the walking stability on uneven terrains by modifying the swing leg trajectory to reduce the impulse force at the time of landing and dynamically controlling the center of gravity of the robot by controlling the body position and posture. A validity of the above control methods were confirmed by simulation and experiments. (authors)

  8. Building energy efficiency in rural China

    International Nuclear Information System (INIS)

    Evans, Meredydd; Yu, Sha; Song, Bo; Deng, Qinqin; Liu, Jing; Delgado, Alison

    2014-01-01

    Rural buildings in China now account for more than half of China's total building energy use. Forty percent of the floorspace in China is in rural villages and towns. Most of these buildings are very energy inefficient, and may struggle to provide for basic needs. They are cold in the winter, and often experience indoor air pollution from fuel use. The Chinese government plans to adopt a voluntary building energy code, or design standard, for rural homes. The goal is to build on China's success with codes in urban areas to improve efficiency and comfort in rural homes. The Chinese government recognizes rural buildings represent a major opportunity for improving national building energy efficiency. The challenges of rural China are also greater than those of urban areas in many ways because of the limited local capacity and low income levels. The Chinese government wants to expand on new programs to subsidize energy efficiency improvements in rural homes to build capacity for larger-scale improvement. This article summarizes the trends and status of rural building energy use in China. It then provides an overview of the new rural building design standard, and describes options and issues to move forward with implementation. - Highlights: • Building energy use is larger in rural China than in cities. • Rural buildings are very energy intensive, and energy use is growing with incomes. • A new design standard aims to help rural communities build more efficiently. • Important challenges remain with implementation

  9. Supporting Building Portfolio Investment and Policy Decision Making through an Integrated Building Utility Data Platform

    Energy Technology Data Exchange (ETDEWEB)

    Aziz, Azizan [Carnegie Mellon Univ., Pittsburgh, PA (United States); Lasternas, Bertrand [Carnegie Mellon Univ., Pittsburgh, PA (United States); Alschuler, Elena [US DOE; View Inc; Loftness, Vivian [Carnegie Mellon Univ., Pittsburgh, PA (United States); Wang, Haopeng [Carnegie Mellon Univ., Pittsburgh, PA (United States); Mo, Yunjeong [Carnegie Mellon Univ., Pittsburgh, PA (United States); Wang, Ting [Carnegie Mellon Univ., Pittsburgh, PA (United States); Zhang, Chenlu [Carnegie Mellon Univ., Pittsburgh, PA (United States); Sharma, Shilpi [Carnegie Mellon; Stevens, Ivana [Carnegie Mellon Univ., Pittsburgh, PA (United States)

    2016-03-18

    The American Recovery and Reinvestment Act stimulus funding of 2009 for smart grid projects resulted in the tripling of smart meters deployment. In 2012, the Green Button initiative provided utility customers with access to their real-time1 energy usage. The availability of finely granular data provides an enormous potential for energy data analytics and energy benchmarking. The sheer volume of time-series utility data from a large number of buildings also poses challenges in data collection, quality control, and database management for rigorous and meaningful analyses. In this paper, we will describe a building portfolio-level data analytics tool for operational optimization, business investment and policy assessment using 15-minute to monthly intervals utility data. The analytics tool is developed on top of the U.S. Department of Energy’s Standard Energy Efficiency Data (SEED) platform, an open source software application that manages energy performance data of large groups of buildings. To support the significantly large volume of granular interval data, we integrated a parallel time-series database to the existing relational database. The time-series database improves on the current utility data input, focusing on real-time data collection, storage, analytics and data quality control. The fully integrated data platform supports APIs for utility apps development by third party software developers. These apps will provide actionable intelligence for building owners and facilities managers. Unlike a commercial system, this platform is an open source platform funded by the U.S. Government, accessible to the public, researchers and other developers, to support initiatives in reducing building energy consumption.

  10. Proactive control for solar energy exploitation : A german high-inertia building case study

    NARCIS (Netherlands)

    Michailidis, IT; Baldi, S.; Pichler, MF; Kosmatopoulos, EB; Santiago, JR

    2015-01-01

    Energy efficient passive designs and constructions have been extensively studied in the last decades as a way to improve the ability of a building to store thermal energy, increase its thermal mass, increase passive insulation and reduce heat losses. However, many studies show that passive thermal

  11. Clinical coaching in primary care: Capable of improving control in patients with type 2 diabetes mellitus?

    Science.gov (United States)

    González-Guajardo, Eduardo Enrique; Salinas-Martínez, Ana María; Botello-García, Antonio; Mathiew-Quiros, Álvaro

    2016-06-01

    Few clinical coaching studies are both endorsed by real cases and focused on reducing suboptimal diabetes control. We evaluated the effectiveness of coaching on improving type 2 diabetes goals after 3 years of implementation in primary care. A cross-sectional study with follow up was conducted during 2008-2011. Coaching consisted of guiding family doctors to improve their clinical abilities, and it was conducted by a medical doctor trained in skill building, experiential learning, and goal setting. Effectiveness was assessed by means of fasting plasma glucose and glycosylated hemoglobin outcomes. The main analysis consisted of 1×3 and 2×3 repeated measures ANOVAs. A significant coaching×time interaction was observed, indicating that the difference in glucose between primary care units with and without coaching increased over time (Wilks' lambda multivariate test, PCoaching increased 1.4 times (95%CI 1.3, 1.5) the possibility of reaching the fasting glucose goal after controlling for baseline values. There was also a significant improvement in glycosylated hemoglobin (Bonferroni-corrected p-value for pairwise comparisons, Pcoaching was found to be worth the effort to improve type 2 diabetes control in primary care. Copyright © 2015 Primary Care Diabetes Europe. Published by Elsevier Ltd. All rights reserved.

  12. Developing Innovative Wall Systems that Improve Hygrothermal Performance of Residential Buildings

    Energy Technology Data Exchange (ETDEWEB)

    Robert Tichy; Chuck Murray

    2006-05-31

    This document serves as the Topical Report documenting work completed by Washington State University (WSU) under U.S. Department of Energy Grant, Developing Innovative Wall Systems that Improve Hygrothermal Performance of Residential Buildings. This project was conducted in collaboration with Oak Ridge National Laboratory (ORNL), and includes the participation of several industry partners including Weyerhaeuser, APA - The Engineered Wood Association, CertainTeed Corporation and Fortifiber. This document summarizes work completed by Washington State University August 2002 through June 2006. WSU's primary experimental role is the design and implementation of a field testing protocol that monitored long term changes in the hygrothermal response of wall systems. During the project period WSU constructed a test facility, developed a matrix of test wall designs, constructed and installed test walls in the test facility, installed instrumentation in the test walls and recorded data from the test wall specimens. Each year reports were published documenting the hygrothermal response of the test wall systems. Public presentation of the results was, and will continue to be, made available to the building industry at large by industry partners and the University.

  13. Balancing Hydronic Systems in Multifamily Buildings

    Energy Technology Data Exchange (ETDEWEB)

    Ruch, Russell [Partnership for Advanced Residential Retrofit, Chicago, IL (United States); Ludwig, Peter [Partnership for Advanced Residential Retrofit, Chicago, IL (United States); Maurer, Tessa [Partnership for Advanced Residential Retrofit, Chicago, IL (United States)

    2014-07-01

    In multifamily hydronic systems, temperature imbalance may be caused by undersized piping, improperly adjusted balancing valves, inefficient water temperature and flow levels, and owner/occupant interaction with the boilers, distribution, and controls. The imbalance leads to tenant discomfort, higher energy use intensity, and inefficient building operation. This research, conducted by Building America team Partnership for Advanced Residential Retrofit, explores cost-effective distribution upgrades and balancing measures in multifamily hydronic systems, providing a resource to contractors, auditors, and building owners on best practices to improve tenant comfort and lower operating costs. The team surveyed existing knowledge on cost-effective retrofits for optimizing distribution in typical multifamily hydronic systems, with the aim of identifying common situations and solutions, and then conducted case studies on two Chicago area buildings with known balancing issues in order to quantify the extent of temperature imbalance. At one of these buildings a booster pump was installed on a loop to an underheated wing of the building. This study found that unit temperature in a multifamily hydronic building can vary as much as 61°F, particularly if windows are opened or tenants use intermittent supplemental heating sources like oven ranges. Average temperature spread at the building as a result of this retrofit decreased from 22.1°F to 15.5°F.

  14. Assessment of Passive vs. Active Strategies for a School Building Design

    Directory of Open Access Journals (Sweden)

    Ji Eun Kang

    2015-11-01

    Full Text Available This paper presents a simulation study to reduce heating and cooling energy demand of a school building in Seoul Metropolitan Area, Korea. The aim of this study was to estimate the impact of passive vs. active approaches on energy savings in buildings using EnergyPlus simulation. By controlling lighting, the energy saving of the original school building design was found most significant, and increased by 32% when the design was improved. It is noteworthy that energy saving potential of each room varies significantly depending on the rooms’ thermal characteristics and orientation. Thus, the analysis of energy saving should be introduced at the individual space level, not at the whole building level. Additionally, the simulation studies should be involved for rational decision-making. Finally, it was concluded that priority should be given to passive building design strategies, such as building orientation, as well as control and utilization of solar radiation. These passive energy saving strategies are related to urban, architectural design, and engineering issues, and are more beneficial in terms of energy savings than active strategies.

  15. Improving the thermal integrity of new single-family detached residential buildings: Documentation for a regional database of capital costs and space conditioning load savings

    International Nuclear Information System (INIS)

    Koomey, J.G.; McMahon, J.E.; Wodley, C.

    1991-07-01

    This report summarizes the costs and space-conditioning load savings from improving new single-family building shells. It relies on survey data from the National Association of Home-builders (NAHB) to assess current insulation practices for these new buildings, and NAHB cost data (aggregated to the Federal region level) to estimate the costs of improving new single-family buildings beyond current practice. Space-conditioning load savings are estimated using a database of loads for prototype buildings developed at Lawrence Berkeley Laboratory, adjusted to reflect population-weighted average weather in each of the ten federal regions and for the nation as a whole

  16. Recovery Act. Advanced Load Identification and Management for Buildings

    Energy Technology Data Exchange (ETDEWEB)

    Yang, Yi [Eaton Corporation, Menomonee Falls, WI (United States); Casey, Patrick [Eaton Corporation, Menomonee Falls, WI (United States); Du, Liang [Eaton Corporation, Menomonee Falls, WI (United States); He, Dawei [Eaton Corporation, Menomonee Falls, WI (United States)

    2014-02-12

    In response to the U.S. Department of Energy (DoE)’s goal of achieving market ready, net-zero energy residential and commercial buildings by 2020 and 2025, Eaton partnered with the Department of Energy’s National Renewable Energy Laboratory (NREL) and Georgia Institute of Technology to develop an intelligent load identification and management technology enabled by a novel “smart power strip” to provide critical intelligence and information to improve the capability and functionality of building load analysis and building power management systems. Buildings account for 41% of the energy consumption in the United States, significantly more than either transportation or industrial. Within the building sector, plug loads account for a significant portion of energy consumption. Plug load consumes 15-20% of building energy on average. As building managers implement aggressive energy conservation measures, the proportion of plug load energy can increase to as much as 50% of building energy leaving plug loads as the largest remaining single source of energy consumption. This project focused on addressing plug-in load control and management to further improve building energy efficiency accomplished through effective load identification. The execution of the project falls into the following three major aspects; An intelligent load modeling, identification and prediction technology was developed to automatically determine the type, energy consumption, power quality, operation status and performance status of plug-in loads, using electric waveforms at a power outlet level. This project demonstrated the effectiveness of the developed technology through a large set of plug-in loads measurements and testing; A novel “Smart Power Strip (SPS) / Receptacle” prototype was developed to act as a vehicle to demonstrate the feasibility of load identification technology as a low-cost, embedded solution; and Market environment for plug-in load control and management solutions

  17. Building Acoustics

    Science.gov (United States)

    Cowan, James

    This chapter summarizes and explains key concepts of building acoustics. These issues include the behavior of sound waves in rooms, the most commonly used rating systems for sound and sound control in buildings, the most common noise sources found in buildings, practical noise control methods for these sources, and the specific topic of office acoustics. Common noise issues for multi-dwelling units can be derived from most of the sections of this chapter. Books can be and have been written on each of these topics, so the purpose of this chapter is to summarize this information and provide appropriate resources for further exploration of each topic.

  18. Building-level analyses to prospectively detect influenza outbreaks in long-term care facilities: New York City, 2013-2014.

    Science.gov (United States)

    Levin-Rector, Alison; Nivin, Beth; Yeung, Alice; Fine, Annie D; Greene, Sharon K

    2015-08-01

    Timely outbreak detection is necessary to successfully control influenza in long-term care facilities (LTCFs) and other institutions. To supplement nosocomial outbreak reports, calls from infection control staff, and active laboratory surveillance, the New York City (NYC) Department of Health and Mental Hygiene implemented an automated building-level analysis to proactively identify LTCFs with laboratory-confirmed influenza activity. Geocoded addresses of LTCFs in NYC were compared with geocoded residential addresses for all case-patients with laboratory-confirmed influenza reported through passive surveillance. An automated daily analysis used the geocoded building identification number, approximate text matching, and key-word searches to identify influenza in residents of LTCFs for review and follow-up by surveillance coordinators. Our aim was to determine whether the building analysis improved prospective outbreak detection during the 2013-2014 influenza season. Of 119 outbreaks identified in LTCFs, 109 (92%) were ever detected by the building analysis, and 55 (46%) were first detected by the building analysis. Of the 5,953 LTCF staff and residents who received antiviral prophylaxis during the 2013-2014 season, 929 (16%) were at LTCFs where outbreaks were initially detected by the building analysis. A novel building-level analysis improved influenza outbreak identification in LTCFs in NYC, prompting timely infection control measures. Copyright © 2015 Association for Professionals in Infection Control and Epidemiology, Inc. Published by Elsevier Inc. All rights reserved.

  19. Design of information-measuring and control systems for intelligent buildings. Trends of development

    Directory of Open Access Journals (Sweden)

    Petrova Irina Yur’evna

    2015-12-01

    Full Text Available The article considers the modern requirements for integrated management systems of a smart home. The authors propose a hierarchical classification of the levels of house automation, which allows allocating different levels of information transfer. The article considers the trends of development of information-measuring and control systems of intelligent buildings. The generalized scheme of information-measuring and control subsystems of an intelligent building are given. The energy-information model of the knowledge base of physical and technical effects described in the article allows developing a system of automated support of the conceptual stage of elements design in information measuring and control systems. With the help of this knowledge base the system allows dozens of times expanding the scope of knowledge actively used by specialists and two or three times reducing the time of creating new solutions by selecting the most efficient of the options and the underlying calculation of the essential characteristics of their conceptual models, which significantly reduces the number of created prototypes and field tests.

  20. Building tobacco control research in Thailand: meeting the need for innovative change in Asia.

    Science.gov (United States)

    Hamann, Stephen L; Mock, Jeremiah; Hense, Sibasis; Charoenca, Naowarut; Kungskulniti, Nipapun

    2012-01-28

    In low- and middle-income countries (LMICs) over the past two decades locally relevant tobacco control research has been scant. Experience shows that tobacco control measures should be based on sound research findings to ensure that measures are appropriate for local conditions and that they are likely to have an impact. Research should also be integrated within tobacco control measures to ensure ongoing learning and the production of knowledge. Thailand, a middle-income country, has a public health community with a record of successful tobacco control and a longstanding commitment to research. Thailand's comprehensive approach includes taxation; bans on tobacco advertising, sponsorship and promotion; smoke-free areas; graphic cigarette pack warnings; social marketing campaigns; cessation counseling; and an established tobacco control research program. The purpose of this study was to document and analyze the development of tobacco control research capacity in Thailand and the impact of research on Thai tobacco control measures. We used mixed methods including review of historical documentation and policy reports, qualitative interviews with key members of Thailand's tobacco control community, and an analysis of research productivity. In Thailand, tobacco control research has evolved through three phases: (1) discovery of the value of research in the policymaking arena, (2) development of a structure to support research capacity building through international collaborations supported by foreign funding agencies, and (3) delivery of locally relevant research made possible largely through substantial stable funding from a domestic health promotion foundation. Over two decades, Thai tobacco control advocates have constructed five steppingstones to success: (1) adapting foreign research to inform policymaking and lobbying for more support for domestic research; (2) attracting foreign funding agencies to support small-scale research and capacity building; (3

  1. Building tobacco control research in Thailand: meeting the need for innovative change in Asia

    Directory of Open Access Journals (Sweden)

    Hamann Stephen L

    2012-01-01

    Full Text Available Abstract Introduction In low- and middle-income countries (LMICs over the past two decades locally relevant tobacco control research has been scant. Experience shows that tobacco control measures should be based on sound research findings to ensure that measures are appropriate for local conditions and that they are likely to have an impact. Research should also be integrated within tobacco control measures to ensure ongoing learning and the production of knowledge. Thailand, a middle-income country, has a public health community with a record of successful tobacco control and a longstanding commitment to research. Thailand's comprehensive approach includes taxation; bans on tobacco advertising, sponsorship and promotion; smoke-free areas; graphic cigarette pack warnings; social marketing campaigns; cessation counseling; and an established tobacco control research program. The purpose of this study was to document and analyze the development of tobacco control research capacity in Thailand and the impact of research on Thai tobacco control measures. Method We used mixed methods including review of historical documentation and policy reports, qualitative interviews with key members of Thailand's tobacco control community, and an analysis of research productivity. Findings In Thailand, tobacco control research has evolved through three phases: (1 discovery of the value of research in the policymaking arena, (2 development of a structure to support research capacity building through international collaborations supported by foreign funding agencies, and (3 delivery of locally relevant research made possible largely through substantial stable funding from a domestic health promotion foundation. Over two decades, Thai tobacco control advocates have constructed five steppingstones to success: (1 adapting foreign research to inform policymaking and lobbying for more support for domestic research; (2 attracting foreign funding agencies to support small

  2. Cancer control in developing countries: using health data and health services research to measure and improve access, quality and efficiency

    Directory of Open Access Journals (Sweden)

    Kangolle Alfred CT

    2010-10-01

    Full Text Available Abstract Background Cancer is a rapidly increasing problem in developing countries. Access, quality and efficiency of cancer services in developing countries must be understood to advance effective cancer control programs. Health services research can provide insights into these areas. Discussion This article provides an overview of oncology health services in developing countries. We use selected examples from peer-reviewed literature in health services research and relevant publicly available documents. In spite of significant limitations in the available data, it is clear there are substantial barriers to access to cancer control in developing countries. This includes prevention, early detection, diagnosis/treatment and palliation. There are also substantial limitations in the quality of cancer control and a great need to improve economic efficiency. We describe how the application of health data may assist in optimizing (1 Structure: strengthening planning, collaboration, transparency, research development, education and capacity building. (2 Process: enabling follow-up, knowledge translation, patient safety and quality assurance. (3 Outcome: facilitating evaluation, monitoring and improvement of national cancer control efforts. There is currently limited data and capacity to use this data in developing countries for these purposes. Summary There is an urgent need to improve health services for cancer control in developing countries. Current resources and much-needed investments must be optimally managed. To achieve this, we would recommend investment in four key priorities: (1 Capacity building in oncology health services research, policy and planning relevant to developing countries. (2 Development of high-quality health data sources. (3 More oncology-related economic evaluations in developing countries. (4 Exploration of high-quality models of cancer control in developing countries. Meeting these needs will require national, regional and

  3. Cancer control in developing countries: using health data and health services research to measure and improve access, quality and efficiency.

    Science.gov (United States)

    Hanna, Timothy P; Kangolle, Alfred C T

    2010-10-13

    Cancer is a rapidly increasing problem in developing countries. Access, quality and efficiency of cancer services in developing countries must be understood to advance effective cancer control programs. Health services research can provide insights into these areas. This article provides an overview of oncology health services in developing countries. We use selected examples from peer-reviewed literature in health services research and relevant publicly available documents. In spite of significant limitations in the available data, it is clear there are substantial barriers to access to cancer control in developing countries. This includes prevention, early detection, diagnosis/treatment and palliation. There are also substantial limitations in the quality of cancer control and a great need to improve economic efficiency. We describe how the application of health data may assist in optimizing (1) Structure: strengthening planning, collaboration, transparency, research development, education and capacity building. (2) PROCESS: enabling follow-up, knowledge translation, patient safety and quality assurance. (3) OUTCOME: facilitating evaluation, monitoring and improvement of national cancer control efforts. There is currently limited data and capacity to use this data in developing countries for these purposes. There is an urgent need to improve health services for cancer control in developing countries. Current resources and much-needed investments must be optimally managed. To achieve this, we would recommend investment in four key priorities: (1) Capacity building in oncology health services research, policy and planning relevant to developing countries. (2) Development of high-quality health data sources. (3) More oncology-related economic evaluations in developing countries. (4) Exploration of high-quality models of cancer control in developing countries. Meeting these needs will require national, regional and international collaboration as well as political

  4. Controlling indoor climate. Passive cooling of residential buildings in hot-humid climates in China

    Energy Technology Data Exchange (ETDEWEB)

    Zhiwu, Wang

    1996-10-01

    Overheating is a paramount problem in residential buildings in hot and humid climates in China during summer. This study aims to deal with the overheating problem and the problem of poor air quality in dwellings. The main objective is to improve indoor thermal conditions by passive cooling approaches, climatisation techniques in buildings without auxiliary cooling from air conditioning equipment. This thesis focuses on the study of cross-ventilation in apartments, which is one of the most effective ways of natural cooling in a hot humid climate, but is also one of the least understood parts in controlling indoor climate. The Computational Fluid Dynamics (CFD) technique is used, which is a new approach, since cross-ventilation studies have been conventionally made by wind tunnel tests. The validations of the CFD technique are examined by a comparison between wind tunnel tests and computer simulations. The factors influencing indoor air movement are investigated for a single room. Cross-ventilation in two apartments is studied, and the air change efficiency in a Chinese kitchen is calculated with CFD techniques. The thermal performance of ventilated roofs, a simple and widely used type of roof in the region, is specially addressed by means of a full-scale measurement, wind tunnel tests and computer simulations. An integrated study of passive cooling approaches and factors affecting indoor thermal comfort is carried out through a case study in a southern Chinese city, Guangzhou. This thesis demonstrates that passive cooling measure have a high potential in significantly improving indoor thermal conditions during summer. This study also gives discussions and conclusions on the evaluation of indoor thermal environment; effects influencing cross-ventilation in apartments; design guidelines for ventilated roofs and an integrated study of passive cooling. 111 refs, 83 figs, 65 tabs

  5. Method for reducing excess heat supply experienced in typical Chinese district heating systems by achieving hydraulic balance and improving indoor air temperature control at the building level

    DEFF Research Database (Denmark)

    Zhang, Lipeng; Gudmundsson, Oddgeir; Thorsen, Jan Eric

    2016-01-01

    A common problem with Chinese district heating systems is that they supply more heat than the actual heat demand. The reason for this excess heat supply is the general failure to use control devices to adjust the indoor temperature and flow in the building heating systems in accordance with the a......A common problem with Chinese district heating systems is that they supply more heat than the actual heat demand. The reason for this excess heat supply is the general failure to use control devices to adjust the indoor temperature and flow in the building heating systems in accordance...... with the actual heat demand. This results in 15-30% of the total supplied heat being lost. This paper proposes an integrated approach that aims to reduce the excess heat loss by introducing pre-set thermostatic radiator valves combined with automatic balancing valves. Those devices establish hydraulic balance...... that once the hydraulic balance is achieved and indoor temperatures are controlled with this integrated approach, 17% heat savings and 42.8% pump electricity savings can be achieved. The energy savings will also have a positive environmental effect with seasonal reductions of 11 kg CO2, 0.1 kg SO2, and 0...

  6. Plataforma smart building

    OpenAIRE

    Cidrera Lopez, Alain

    2013-01-01

    The overall project is a system (hardware + software) that allows monitoring and control in a building / office different security systems, energy, communications, home automation, PKI's overall business that will increase all the efficiency of the building and the business and ensure the continuity of it. My participation in this Project will mainly focus on the development of hardware components, monitoring and control system (home automation, energy, safety control elements ...) and softwa...

  7. An Algorithm of Building Extraction in Urban Area Based on Improved Top-hat Transformations and LBP Elevation Texture

    Directory of Open Access Journals (Sweden)

    HE Manyun

    2017-09-01

    Full Text Available Classification of building and vegetation is difficult solely by LiDAR data and vegetation in shadows can't be eliminated only by aerial images. The improved top-hat transformations and local binary patterns (LBP elevation texture analysis for building extraction are proposed based on the fusion of aerial images and LiDAR data. Firstly, LiDAR data is reorganized into grid cell, the algorithm removes ground points through top-hat transform. Then, the vegetation points are extracted by normalized difference vegetation index (NDVI. Thirdly, according to the elevation information of LiDAR points, LBP elevation texture is calculated and achieving precise elimination of vegetation in shadows or surrounding to the buildings. At last, morphological operations are used to fill the holes of building roofs, and region growing for complete building edges. The simulation is based on the complex urban area in Vaihingen benchmark provided by ISPRS, the results show that the algorithm affording higher classification accuracy.

  8. Lighting energy efficiency in office buildings: Sri Lanka

    International Nuclear Information System (INIS)

    Wijayatunga, Priyantha D.C.; Fernando, W.J.L.S.; Ranasinghe, S.

    2003-01-01

    This paper describes a study conducted in the lighting sector of office buildings as a part of a broader research study aimed at developing building codes for Sri Lanka addressing lighting as well as thermal comfort in order to optimise the use of electricity within these buildings. The study covered different tasks performed in office buildings and the optimum lighting levels required to perform these tasks in the office environment in Sri Lanka. Also, it included assessing the visual performance of people involved in different activities under varying illumination levels in a controlled environment and a comparison of these optimum lighting levels with international standards. It can be seen that the required optimum lighting levels are generally lower in Sri Lanka in comparison to specified standard levels, and this scenario is likely to be similar in other developing countries too. These findings clearly emphasise the need to adopt lighting standards most appropriate to local conditions, in turn helping improve the energy efficiency within buildings

  9. Improving Reading Achievement of Chapter 1 Pull-Out Students through Self-Esteem Building Classes Involving Buddy Group and Teacher Participation.

    Science.gov (United States)

    Hershfield, Marlene

    A practicum attempted to improve the low reading achievement of Chapter 1 students in a low socioeconomic fifth-grade class by implementing a self-esteem building program. Activities were designed in a workbook format to complement class instruction in self-esteem building exercises. An emphasis on critical thinking skills was incorporated into…

  10. Balancing Hydronic Systems in Multifamily Buildings

    Energy Technology Data Exchange (ETDEWEB)

    Ruch, R.; Ludwig, P.; Maurer, T.

    2014-07-01

    In multifamily hydronic systems, temperature imbalance may be caused by undersized piping, improperly adjusted balancing valves, inefficient water temperature and flow levels, and owner/occupant interaction with the boilers, distribution and controls. The effects of imbalance include tenant discomfort, higher energy use intensity and inefficient building operation. This paper explores cost-effective distribution upgrades and balancing measures in multifamily hydronic systems, providing a resource to contractors, auditors, and building owners on best practices to improve tenant comfort and lower operating costs. The research was conducted by The Partnership for Advanced Residential Retrofit (PARR) in conjunction with Elevate Energy. The team surveyed existing knowledge on cost-effective retrofits for optimizing distribution in typical multifamily hydronic systems, with the aim of identifying common situations and solutions, and then conducted case studies on two Chicago area buildings with known balancing issues in order to quantify the extent of temperature imbalance. At one of these buildings a booster pump was installed on a loop to an underheated wing of the building. This study found that unit temperature in a multifamily hydronic building can vary as much as 61 degrees F, particularly if windows are opened or tenants use intermittent supplemental heating sources like oven ranges. Average temperature spread at the building as a result of this retrofit decreased from 22.1 degrees F to 15.5 degrees F.

  11. Effective Pneumatic Scheme and Control Strategy of a Climbing Robot for Class Wall Cleaning on High-rise Buildings

    Directory of Open Access Journals (Sweden)

    Guanghua Zong

    2008-11-01

    Full Text Available A new kind of pneumatic climbing robot is presented to meet the requirements of glass-wall cleaning for high-rise buildings, which is totally actuated by pneumatic cylinders and attached to the glass wall with vacuum suckers. Using the pneumatic actuators the climbing robot can be made lightweight and dexterous. At the same time the movement driven by pneumatic actuators has the characteristic of passive compliance. In order to solve the problems of high speed movement for the Y cylinder and precise position control of the X cylinder, the applied pneumatic schemes of X and Y cylinders are employed to drive the high-speed on-off solenoid valves and an ordinary valve to adjust the air-flow and pressure to the cylinders. Furthermore a method of segment and variable bang-bang controller is proposed to implement the accurate control of the position servo system for the X cylinder during the sideways movement. Testing results show that the novel approach can effectively improve the control quality. This cleaning robot can meet the requirements of realization.

  12. Effective Pneumatic Scheme and Control Strategy of a Climbing Robot for Class Wall Cleaning on High-rise Buildings

    Directory of Open Access Journals (Sweden)

    Houxiang Zhang

    2006-06-01

    Full Text Available A new kind of pneumatic climbing robot is presented to meet the requirements of glass-wall cleaning for high-rise buildings, which is totally actuated by pneumatic cylinders and attached to the glass wall with vacuum suckers. Using the pneumatic actuators the climbing robot can be made lightweight and dexterous. At the same time the movement driven by pneumatic actuators has the characteristic of passive compliance. In order to solve the problems of high speed movement for the Y cylinder and precise position control of the X cylinder, the applied pneumatic schemes of X and Y cylinders are employed to drive the high-speed on-off solenoid valves and an ordinary valve to adjust the air-flow and pressure to the cylinders. Furthermore a method of segment and variable bang-bang controller is proposed to implement the accurate control of the position servo system for the X cylinder during the sideways movement. Testing results show that the novel approach can effectively improve the control quality. This cleaning robot can meet the requirements of realization.

  13. Developing the Potential for Sustainable Improvement in Underperforming Schools: Capacity Building in the Socio-Cultural Dimension

    Science.gov (United States)

    Bennett, Jeffrey V.; Ylimaki, Rose M.; Dugan, Thad M.; Brunderman, Lynnette A.

    2014-01-01

    This mixed-method study examines Arizona principals' capacity-building skills and practices in Tier III schools aimed at developing potential for sustained improvements in student outcomes. Data sources included surveys (62 individuals) and semistructured interviews (29 individuals) of principals and staff (e.g. teachers, instructional coaches,…

  14. Assessment of gamma radiation exposure inside a newly constructed building and a proposed regulatory guideline for exposure control from natural radioactivity in future buildings

    International Nuclear Information System (INIS)

    Shukla, V.K.; Sadasivan, S.; Sundaram, V.K.; Nambi, K.S.V.

    1995-01-01

    Naturally occurring radionuclides in building materials are one of the sources of radiation exposure of the population. The various materials used for constructing a new building were assessed for 40 K, 232 Th and 238 U radioactivity and the external gamma dose rate inside the building was predicted by using the computer code QAD-CGGP. The external dose rate was also measured by a scintillation gamma monitor after the construction of the building. In the building studied, the floor and the ceilings are seen to contribute about 35% each of the total radiation dose inside the building from the natural radioactivity present in the construction materials and the underlying soil; the walls contributed about 15%. A sensitivity analysis assuming extreme conditions of radioactivity concentrations as are normally observed in the Indian context, indicates the possibility of indoor gamma radiation fields varying by two orders of magnitude. The possible control methodologies and recommendations are also discussed for keeping the population exposure as low as reasonable achievable. It is evaluated that radioactivity limits of 370 Bq.kg -1 of radium equivalent and 85 Bq.kg -1 of 226 Ra when applied concurrently, might limit the indoor exposure to reasonably accepted low levels of health risks. (author)

  15. Cost Control Strategies for Zero Energy Buildings: High-Performance Design and Construction on a Budget (Brochure)

    Energy Technology Data Exchange (ETDEWEB)

    2014-09-01

    There is mounting evidence that zero energy can, in many cases, be achieved within typical construction budgets. To ensure that the momentum behind zero energy buildings and other low-energy buildings will continue to grow, this guide assembles recommendations for replicating specific successes of early adopters who have met their energy goals while controlling costs. Contents include: discussion of recommended cost control strategies, which are grouped by project phase (acquisition and delivery, design, and construction) and accompanied by industry examples; recommendations for balancing key decision-making factors; and quick reference tables that can help teams apply strategies to specific projects.

  16. Improving control of the coal industry

    Energy Technology Data Exchange (ETDEWEB)

    Valkovyy, V I; Ignatyev, B N

    1982-01-01

    Questions of organizing control of the coal industry based on the use of ACS are examined. Improvement of control of the sector is done in the following main trends: pinpointing the distribution of rights; duties and responsibilities within the associations; more complete calculation of the positions; standard structures of the mines, open pits and other production units of the specific operating conditions; improvement in the forms and methods of controlling specialized production units; formation of style and methods of leadership corresponding to the modern conditions of production.

  17. Smart Building: Decision Making Architecture for Thermal Energy Management.

    Science.gov (United States)

    Uribe, Oscar Hernández; Martin, Juan Pablo San; Garcia-Alegre, María C; Santos, Matilde; Guinea, Domingo

    2015-10-30

    Smart applications of the Internet of Things are improving the performance of buildings, reducing energy demand. Local and smart networks, soft computing methodologies, machine intelligence algorithms and pervasive sensors are some of the basics of energy optimization strategies developed for the benefit of environmental sustainability and user comfort. This work presents a distributed sensor-processor-communication decision-making architecture to improve the acquisition, storage and transfer of thermal energy in buildings. The developed system is implemented in a near Zero-Energy Building (nZEB) prototype equipped with a built-in thermal solar collector, where optical properties are analysed; a low enthalpy geothermal accumulation system, segmented in different temperature zones; and an envelope that includes a dynamic thermal barrier. An intelligent control of this dynamic thermal barrier is applied to reduce the thermal energy demand (heating and cooling) caused by daily and seasonal weather variations. Simulations and experimental results are presented to highlight the nZEB thermal energy reduction.

  18. Smart Building: Decision Making Architecture for Thermal Energy Management

    Directory of Open Access Journals (Sweden)

    Oscar Hernández Uribe

    2015-10-01

    Full Text Available Smart applications of the Internet of Things are improving the performance of buildings, reducing energy demand. Local and smart networks, soft computing methodologies, machine intelligence algorithms and pervasive sensors are some of the basics of energy optimization strategies developed for the benefit of environmental sustainability and user comfort. This work presents a distributed sensor-processor-communication decision-making architecture to improve the acquisition, storage and transfer of thermal energy in buildings. The developed system is implemented in a near Zero-Energy Building (nZEB prototype equipped with a built-in thermal solar collector, where optical properties are analysed; a low enthalpy geothermal accumulation system, segmented in different temperature zones; and an envelope that includes a dynamic thermal barrier. An intelligent control of this dynamic thermal barrier is applied to reduce the thermal energy demand (heating and cooling caused by daily and seasonal weather variations. Simulations and experimental results are presented to highlight the nZEB thermal energy reduction.

  19. Improving Accuracy of Processing Through Active Control

    Directory of Open Access Journals (Sweden)

    N. N. Barbashov

    2016-01-01

    Full Text Available An important task of modern mathematical statistics with its methods based on the theory of probability is a scientific estimate of measurement results. There are certain costs under control, and under ineffective control when a customer has got defective products these costs are significantly higher because of parts recall.When machining the parts, under the influence of errors a range scatter of part dimensions is offset towards the tolerance limit. To improve a processing accuracy and avoid defective products involves reducing components of error in machining, i.e. to improve the accuracy of machine and tool, tool life, rigidity of the system, accuracy of the adjustment. In a given time it is also necessary to adapt machine.To improve an accuracy and a machining rate there, currently  become extensively popular various the in-process gaging devices and controlled machining that uses adaptive control systems for the process monitoring. Improving the accuracy in this case is compensation of a majority of technological errors. The in-cycle measuring sensors (sensors of active control allow processing accuracy improvement by one or two quality and provide a capability for simultaneous operation of several machines.Efficient use of in-cycle measuring sensors requires development of methods to control the accuracy through providing the appropriate adjustments. Methods based on the moving average, appear to be the most promising for accuracy control since they include data on the change in some last measured values of the parameter under control.

  20. Playing Action Video Games Improves Visuomotor Control.

    Science.gov (United States)

    Li, Li; Chen, Rongrong; Chen, Jing

    2016-08-01

    Can playing action video games improve visuomotor control? If so, can these games be used in training people to perform daily visuomotor-control tasks, such as driving? We found that action gamers have better lane-keeping and visuomotor-control skills than do non-action gamers. We then trained non-action gamers with action or nonaction video games. After they played a driving or first-person-shooter video game for 5 or 10 hr, their visuomotor control improved significantly. In contrast, non-action gamers showed no such improvement after they played a nonaction video game. Our model-driven analysis revealed that although different action video games have different effects on the sensorimotor system underlying visuomotor control, action gaming in general improves the responsiveness of the sensorimotor system to input error signals. The findings support a causal link between action gaming (for as little as 5 hr) and enhancement in visuomotor control, and suggest that action video games can be beneficial training tools for driving. © The Author(s) 2016.

  1. Toward city-scale water quality control: building a theory for smart stormwater systems

    Science.gov (United States)

    Kerkez, B.; Mullapudi, A. M.; Wong, B. P.

    2016-12-01

    Urban stormwater systems are rarely designed as actual systems. Rather, it is often assumed that individual Best Management Practices (BMPs) will add up to achieve desired watershed outcomes. Given the rise of BMPs and green infrastructure, we ask: does doing "best" at the local scale guarantee the "best" at the global scale? Existing studies suggest that the system-level performance of distributed stormwater practices may actually adversely impact watersheds by increasing downstream erosion and reducing water quality. Optimizing spatial placement may not be sufficient, however, since precipitation variability and other sources of uncertainty can drive the overall system into undesirable states. To that end, it is also important to control the temporal behavior of the system, which can be achieved by equipping stormwater elements (ponds, wetlands, basins, bioswales, etc.) with "smart" sensors and valves. Rather than building new infrastructure, this permits for existing assets to be repurposed and controlled to adapt to individual storm events. While we have learned how to build and deploy the necessary sensing and control technologies, we do not have a framework or theory that combines our knowledge of hydrology, hydraulics, water quality and control. We discuss the development of such a framework and investigate how existing water domain knowledge can be transferred into a system-theoretic context to enable real-time, city-scale stormwater control. We apply this framework to water quality control in an urban watershed in southeast Michigan, which has been heavily instrumented and retrofitted for control over the past year.

  2. Designing of zero energy office buildings in hot arid climate

    Energy Technology Data Exchange (ETDEWEB)

    Abdel-Gwad, Mohamed

    2011-07-01

    The designing of office buildings by using large glass areas to have a transparent building is an attractive approach in the modern office building architecture. This attitude increases the energy demand for cooling specially in the hot arid region which has long sun duration time, while the use of small glazing areas increases the energy demand for lighting. The use of uncontrolled natural ventilation increases the rate of hot ambient air flow which increases the building energy demand for cooling. At the same time, the use of mechanical ventilation to control the air change rate may increase the energy demand for fans. Some ideas such as low energy design concept are introduced for improving the building energy performance and different rating systems have been developed such as LEED, BREEAM and DGNB for evaluating building energy performance system. One of the new ideas for decreasing the dependence on fossil fuels and improving the use of renewable energy is the net zero-energy building concept in which the building generates enough renewable energy on site to equal or exceed its annual energy use. This work depends on using the potentials of mixing different energy strategies such as hybrid ventilation strategy, passive night cooling, passive chilled ceiling side by side with the integrating of photovoltaic modules into the building facade to produce energy and enrich the architectural aesthetics and finally reaching the Net Zero Energy Building. There are different definitions for zero energy buildings, however in this work the use of building-integrated Photovoltaic (BIPV) to provide the building with its annual energy needs is adopted, in order to reach to a Grid-Connected Net-Zero Energy Office Building in the hot arid desert zone represented by Cairo, Egypt. (orig.)

  3. Building research in diet and cognition: The BRIDGE randomized controlled trial.

    Science.gov (United States)

    Tussing-Humphreys, Lisa; Lamar, Melissa; Blumenthal, James A; Babyak, Michael; Fantuzzi, Giamila; Blumstein, Lara; Schiffer, Linda; Fitzgibbon, Marian L

    2017-08-01

    Obesity has been linked to cognitive impairment, cognitive decline and dementia. Given that 38.5% of U.S. adults 60years and older are obese and these numbers are rapidly increasing, strategies to decouple obesity from cognitive decline are needed. Innovative lifestyle strategies that may postpone the onset of subclinical symptoms or even arrest the transition to overt dementia in at-risk individuals are critically needed. Poor diet is central to the development of obesity and diet may affect cognition. Adherence to a Mediterranean Diet (MedDiet) is associated with reduced risk of cognitive impairment and dementia. Furthermore, weight loss through caloric restriction improves cognitive function. This paper describes the Building Research in Diet and CoGnition (BRIDGE) study, a randomized trial examining the effect of the MedDiet, with and without weight loss, on cognitive functioning in obese older adults. Obese (BMI≥30 and ≤50kg/m 2 ) older adults (≥55years) (n=180) will be randomized in a 2:2:1 allocation scheme to: Typical Diet Control; MedDiet alone, without weight loss; or MedDiet lifestyle intervention to promote weight loss and weight loss maintenance. Both MedDiet intervention groups will meet for one individual session and 27 group sessions over an 8-month period. Individuals in the control group will not receive instruction on changing lifestyle habits. Outcomes will be assessed at baseline, 8 and 14months. The primary outcome is cognitive functioning; secondary outcomes will include changes in body weight, diet, cardiovascular, metabolic, and inflammatory biomarkers. Copyright © 2017. Published by Elsevier Inc.

  4. Optimal controls of building storage systems using both ice storage and thermal mass – Part II: Parametric analysis

    International Nuclear Information System (INIS)

    Hajiah, Ali; Krarti, Moncef

    2012-01-01

    Highlights: ► A detailed analysis is presented to assess the performance of thermal energy storage (TES) systems. ► Utility rates have been found to be significant in assessing the operation of TES systems. ► Optimal control strategies for TES systems can save up to 40% of total energy cost of office buildings. - Abstract: This paper presents the results of a series of parametric analysis to investigate the factors that affect the effectiveness of using simultaneously building thermal capacitance and ice storage system to reduce total operating costs (including energy and demand costs) while maintaining adequate occupant comfort conditions in buildings. The analysis is based on a validated model-based simulation environment and includes several parameters including the optimization cost function, base chiller size, and ice storage tank capacity, and weather conditions. It found that the combined use of building thermal mass and active thermal energy storage system can save up to 40% of the total energy costs when integrated optimal control are considered to operate commercial buildings.

  5. Strategies for energy saving in buildings by means of automatic control; Estrategias de ahorro de energia en inmuebles mediante el control automatico

    Energy Technology Data Exchange (ETDEWEB)

    Garcia Trujillo, Oscar [Johnson Controls de Mexico S. A. de C. V., Mexico, D. F. (Mexico)

    1998-12-31

    In this paper some of the measures and strategies for energy saving that can be applied in different types of buildings, mainly in hotels and office buildings, are presented. The proposed actions are accomplished with the aid of the automatic control equipment and the operation and/or maintenance personnel that supervises and establishes the control parameters of each one of the strategies than are focused to the appropriate utilization of the electric energy. [Espanol] En este documento se presentan algunas de las medidas y estrategias de ahorro de energia que pueden ser aplicadas en diferentes tipos de inmuebles, principalmente en hoteles y en edificios de oficinas. Las acciones propuestas son realizadas con la ayuda del equipo de control automatico y del personal de operacion y/o mantenimiento quien supervisa y establece los parametros de control de cada una de las estrategias que son destinadas a la buena utilizacion de la energia electrica.

  6. Strategies for energy saving in buildings by means of automatic control; Estrategias de ahorro de energia en inmuebles mediante el control automatico

    Energy Technology Data Exchange (ETDEWEB)

    Garcia Trujillo, Oscar [Johnson Controls de Mexico S. A. de C. V., Mexico, D. F. (Mexico)

    1999-12-31

    In this paper some of the measures and strategies for energy saving that can be applied in different types of buildings, mainly in hotels and office buildings, are presented. The proposed actions are accomplished with the aid of the automatic control equipment and the operation and/or maintenance personnel that supervises and establishes the control parameters of each one of the strategies than are focused to the appropriate utilization of the electric energy. [Espanol] En este documento se presentan algunas de las medidas y estrategias de ahorro de energia que pueden ser aplicadas en diferentes tipos de inmuebles, principalmente en hoteles y en edificios de oficinas. Las acciones propuestas son realizadas con la ayuda del equipo de control automatico y del personal de operacion y/o mantenimiento quien supervisa y establece los parametros de control de cada una de las estrategias que son destinadas a la buena utilizacion de la energia electrica.

  7. BREEAM [Building Research Establishment Environmental Assessment Method] BRE [Building Research Establishment] assessment method for buildings

    International Nuclear Information System (INIS)

    Baldwin, R.

    1994-01-01

    Buildings account for a large share of environmental impacts in their construction, use, and demolition. In western Europe, buildings account for ca 50% of primary energy use (hence CO 2 output), far outweighing the contribution of the transport and industrial sectors. Other impacts from building energy use include the use of chemicals such as chlorofluorocarbons for cooling. In the United Kingdom, the Building Research Establishment (BRE) has developed a certificate system for environmental labelling of buildings so that the performance of the building against a set of defined environmental criteria can be made visible to clients. This system thus rewards positive actions to improve the environmental performance of buildings and assists in marketing to an environmentally aware clientele. Issues included in assessments for awarding the certificate are addressed under three main headings: global issues and use of resources, local issues, and indoor issues. Global issues include ozone depletion and CO 2 emissions; local issues include public health and water conservation; and indoor issues include air quality and lighting. 8 refs., 1 tab

  8. Noise, buildings and people

    Energy Technology Data Exchange (ETDEWEB)

    Croome, D J

    1977-01-01

    This book covers the physics of acoustics necessary to understand the analytical aspects of acoustical design and noise control in buildings. The major part is devoted to the problems of noise and man, and other chapters cover features of noise control in and around buildings. In an introduction, building environmental engineering is dealth with in general terms of architecture, creativity, systms design, etc. Aspects of the acoustical environment, noise sources in buildings, control of airborne and structure-borne noise and acoustical design techniques are covered in Part II. Items include: comfort, physiological response to noise and vibrations, noise criteria, human performance, speech communication, landscaped offices, sound generation by air-conditioning and heating equipment, building structure and noise attenuation, acoustical design. Part III gives some fundamentals of acoustics; mechanical vibration, wave motion, propagation of sound, structure-borne sound, behavior of sound in rooms, transmission of sound through structure. References include lists of British standards and booklets on health and safety at work.

  9. Proceedings of the workshop on the dynamic response of environmental control processes in buildings, Lafayette, Indiana, March 13-15, 1979

    Energy Technology Data Exchange (ETDEWEB)

    Tree, D.R.; McBride, M.F. (eds.)

    1979-01-01

    The purpose of this workshop was to consider how energy use in buildings can be reduced while maintaining the comfort of the occupants. It was postulated that optimization of energy use in buildings can be achieved through the use of operating strategies which consider the dynamic characteristics of comfort, the design and construction of the building, and the environmental control system. Working sessions were presented on equipment, controls, structures, human factors, circulation/distribution, design, operation and use pattern, management and codes, and energy storage. (LCL)

  10. General collaboration offer of Johnson Controls regarding the performance of air conditioning automatic control systems and other buildings` automatic control systems

    Energy Technology Data Exchange (ETDEWEB)

    Gniazdowski, J.

    1995-12-31

    JOHNSON CONTROLS manufactures measuring and control equipment (800 types) and is as well a {open_quotes}turn-key{close_quotes} supplier of complete automatic controls systems for heating, air conditioning, ventilation and refrigerating engineering branches. The Company also supplies Buildings` Computer-Based Supervision and Monitoring Systems that may be applied in both small and large structures. Since 1990 the company has been performing full-range trade and contracting activities on the Polish market. We have our own well-trained technical staff and we collaborate with a series of designing and contracting enterprises that enable us to have our projects carried out all over Poland. The prices of our supplies and services correspond with the level of the Polish market.

  11. Establishment of experimental equipments in irradiation technology development building

    International Nuclear Information System (INIS)

    Ishida, Takuya; Tanimoto, Masataka; Shibata, Akira; Kitagishi, Shigeru; Saito, Takashi; Ohmi, Masao; Nakamura, Jinichi; Tsuchiya, Kunihiko

    2011-06-01

    The Neutron Irradiation and Testing Reactor Center has developed new irradiation technologies to provide irradiation data with high technical value for the resume of the Japan Materials Testing Reactor (JMTR). For the purpose to perform assembling of capsules, materials tests, materials inspection and analysis of irradiation specimens for the development of irradiation capsules, improvement and maintenance of facilities were performed. From the viewpoint of effective use of existing buildings in the Oarai research and development center, the RI application development building was refurbished and maintained for above-mentioned purpose. The RI application development building is a released controlled area, and was used as storage of experimental equipments and stationeries. The building was named 'Irradiation Technology Development Building' after it refurbished and maintained. Eight laboratories were maintained based on the purpose of use, and the installation of the experimental apparatuses was started. A basic management procedure of the Irradiation Technology Development Building was established and has been operated. This report describes the refurbish work of the RI application development building, the installation and operation method of the experimental apparatuses and the basic management procedure of the Irradiation Technology Development Building. (author)

  12. A suggested guideline for exposure control from natural radioactivity in future buildings

    International Nuclear Information System (INIS)

    Nambi, K.S.V.; Shukla, V.K.

    1991-01-01

    Naturally occurring radionuclides in building materials are one of the sources of radiation exposure to the population. Their concentrations vary by about 2 to 3 orders of magnitude at different geographical locations. This paper proposes three control methodologies for keeping the population exposure as low as reasonably achievable. Tentative recommendations are also included. (author). 11 refs., 3 tabs., 2 appendixes

  13. Green rooms - schemes, feasible ways and aims concerning the improvement of the quality of life in residential buildings

    Energy Technology Data Exchange (ETDEWEB)

    Roehrbein, R.

    1986-06-01

    Both an improvement of environs and an improvement of the quality of buildings contribute to checking the economic, social and psychological motives of the migration from urban to rural areas. An introductory survey describes the constructional schemes (e.g. Le Corbusier) the relevant efforts are based on. The author stresses the trend towards more roominess and freedom of movement. A brief description of the development since 1945 is followed by a detailed discussion exemplifying the rehabilitation of urban areas. Along with cost calculations and regulatory aspects (planning, building ordinance, attached greenhouses) the author presents a four-room maisonnette model with one of its rooms designed as a 'green room'. The zone verte of the latter (5x5 m) proved to be ideally suited for various most attractive uses. (HWJ).

  14. Braking Control for Improving Ride Comfort

    Directory of Open Access Journals (Sweden)

    Lee Jonghyup

    2018-01-01

    Full Text Available While many vehicle control systems focus on vehicle safety and vehicle performance at high speeds, most driving conditions are very low risk situations. In such a driving situation, the ride comfort of the vehicle is the most important performance index of the vehicle. Electro mechanical brake (EMB and other brake-by-wire (BBW systems have been actively researched. As a result, braking actuators in vehicles are more freely controllable, and research on improving ride comfort is also possible. In this study, we develop a control algorithm that dramatically improves ride comfort in low risk braking situations. A method for minimizing the inconvenience of a passenger due to a suddenly changing acceleration at the moment when the vehicle is stopped is presented. For this purpose, an acceleration trajectory is generated that minimizes the discomfort index defined by the change in acceleration, jerk. A controller is also designed to track this trajectory. The algorithm that updates the trajectory is designed considering the error due to the phase lag occurring in the controller and the plant. In order to verify the performance of this controller, simulation verification is completed using a car simulator, Carsim. As a result, it is confirmed that the ride comfort is dramatically improved.

  15. Isotopic footprint: ¿does the forensic analyses improve forest control?

    Directory of Open Access Journals (Sweden)

    Ulrich Melessa

    2013-10-01

    Full Text Available In the Ecuadorian market a high percentage of timber from tropical forests is of illegal origin. Illegal acts and infringments along the production chain are more frequent if the concern species is valuable such as mahogany (Swietenia macrophylla and cedar (Cedrela odorata. In this regard, one of the most frequently falsified data is the geographical origin of wood. At date there is no forensic scientific method for determining objectively and independently the geographic source stated in the documentation of traded timber. The analysis of the isotope composition, known as a isotope fingerprint, has a clear special pattern and is feasible for this purpose.From Ecuador samples of mahogany and cedar were contributed to build a geo-referenced database and improve the method to make it more operational to serve in control and surveillance programs. This article explains the problems related to the subject, the method and its potential use. 

  16. AUTOMATED SYSTEM OF OPERATIONAL CONTROL HEATING AND AIR CONDITIONING OF BUILDINGS

    Directory of Open Access Journals (Sweden)

    PETRENKO A. O.

    2016-08-01

    Full Text Available Statement of the problem. Health and human performance largely determined by the conditions of climate and air quality in residential, administrative and residential and public buildings. At that, in turn, is influenced by the external environment and the climate, and the geometric dimensions of the room, and thermal performance building envelopes, and the location of the premises (Orientation, and many other factors. The result is the formation of complex systems, which control decision-making in conditions of multifactor [1]. In hygienic purposes it is necessary to strive to create the best indoor microclimate conditions, regardless of changes in the factors that affect the climate in residential, administrative and residential and public buildings. Develop systems to ensure the necessary microclimate parameters – it is a complex and important task, which will depend entirely comfortable and cozy environment for the person. The problem of the present time, there is a steady increase in the energy consumption of these systems, due to the rise in price of non-renewable energy sources, and our job is, to simulate the work of software systems necessary microclimate for the changes in the factors that affect it and to minimize the use of non-renewable energy sources. Analysis of recent research and publications. Domestic and foreign hygienists [2, 3, 4] to establish a connection between the climate in the room and in the workplace and the state of human health. Formation of the indoor climate of residential, administrative and residential and public buildings is influenced by many factors that have already noted earlier [5, 6]. Study of the processes of influence of various factors on human health is of great complexity. If we consider each process separately, and in this case they are not currently amenable to theoretical description clearer. To simulate the effect of these factors studies were conducted, which showed that, with sufficient

  17. Building information for systematic improvement of the prevention of hospital-acquired pressure ulcers with statistical process control charts and regression.

    Science.gov (United States)

    Padula, William V; Mishra, Manish K; Weaver, Christopher D; Yilmaz, Taygan; Splaine, Mark E

    2012-06-01

    To demonstrate complementary results of regression and statistical process control (SPC) chart analyses for hospital-acquired pressure ulcers (HAPUs), and identify possible links between changes and opportunities for improvement between hospital microsystems and macrosystems. Ordinary least squares and panel data regression of retrospective hospital billing data, and SPC charts of prospective patient records for a US tertiary-care facility (2004-2007). A prospective cohort of hospital inpatients at risk for HAPUs was the study population. There were 337 HAPU incidences hospital wide among 43 844 inpatients. A probit regression model predicted the correlation of age, gender and length of stay on HAPU incidence (pseudo R(2)=0.096). Panel data analysis determined that for each additional day in the hospital, there was a 0.28% increase in the likelihood of HAPU incidence. A p-chart of HAPU incidence showed a mean incidence rate of 1.17% remaining in statistical control. A t-chart showed the average time between events for the last 25 HAPUs was 13.25 days. There was one 57-day period between two incidences during the observation period. A p-chart addressing Braden scale assessments showed that 40.5% of all patients were risk stratified for HAPUs upon admission. SPC charts complement standard regression analysis. SPC amplifies patient outcomes at the microsystem level and is useful for guiding quality improvement. Macrosystems should monitor effective quality improvement initiatives in microsystems and aid the spread of successful initiatives to other microsystems, followed by system-wide analysis with regression. Although HAPU incidence in this study is below the national mean, there is still room to improve HAPU incidence in this hospital setting since 0% incidence is theoretically achievable. Further assessment of pressure ulcer incidence could illustrate improvement in the quality of care and prevent HAPUs.

  18. Hawaii-Okinawa Building Evaluations

    Energy Technology Data Exchange (ETDEWEB)

    Metzger, I.; Salasovich, J.

    2013-05-01

    NREL conducted energy evaluations at the Itoman City Hall building in Itoman, Okinawa Prefecture, Japan, and the Hawaii State Capitol building in Honolulu, Hawaii. This report summarizes the findings from the evaluations, including the best practices identified at each site and opportunities for improving energy efficiency and renewable energy. The findings from this evaluation are intended to inform energy efficient building design, energy efficiency technology, and management protocols for buildings in subtropical climates.

  19. Improving energy sustainability for public buildings in Italian mountain communities.

    Science.gov (United States)

    Mutani, Guglielmina; Cornaglia, Mauro; Berto, Massimo

    2018-05-01

    The objective of this work is to analyze and then optimize thermal energy consumptions of public buildings located within the mountain community of Lanzo, Ceronda and Casternone Valleys. Some measures have been proposed to reduce energy consumption and consequently the economic cost for energy production, as well as the harmful GHG emissions in the atmosphere. Initially, a study of the mountain territory has been carried out, because of its vast extension and climatic differences. Defined the communities and the buildings under investigation, energy dependant data were collected for the analysis of energy consumption monitoring: consumption data of three heating seasons, geometric buildings characteristics, type of opaque and transparent envelope, heating systems information with boiler performance and climatic data. Afterward, five buildings with critical energy performances were selected; for each of these buildings, different retrofit interventions have been hypothesized to reduce the energy consumption, with thermal insulation of vertical or horizontal structures, new windows or boiler substitution. The cost-optimal technique was used to choose the interventions that offered higher energy performance at lower costs; then a retrofit scenario has been planned with a specific financial investment. Finally, results showed possible future developments and scenarios related to buildings energy efficiency with regard to the topic of biomass exploitation and its local availability in this area. In this context, the biomass energy resource could to create a virtuous environmental, economic and social process, favouring also local development.

  20. Using ‘appreciative inquiry’ in India to improve infection control practices in maternity care: a qualitative study

    Directory of Open Access Journals (Sweden)

    Bharati Sharma

    2015-06-01

    Full Text Available Background: Infections acquired during childbirth are a common cause of maternal and perinatal mortality and morbidity. Changing provider behaviour and organisational settings within the health system is key to reducing the spread of infection. Objective: To explore the opinions of health personnel on health system factors related to infection control and their perceptions of change in a sample of hospital maternity units. Design: An organisational change process called ‘appreciative inquiry’ (AI was introduced in three maternity units of hospitals in Gujarat, India. AI is a change process that builds on recognition of positive actions, behaviours, and attitudes. In-depth interviews were conducted with health personnel to elicit information on the environment within which they work, including physical and organisational factors, motivation, awareness, practices, perceptions of their role, and other health system factors related to infection control activities. Data were obtained from three hospitals which implemented AI and another three not involved in the intervention. Results: Challenges which emerged included management processes (e.g. decision-making and problem-solving modalities, human resource shortages, and physical infrastructure (e.g. space, water, and electricity supplies. AI was perceived as having a positive influence on infection control practices. Respondents also said that management processes improved although some hospitals had already undergone an accreditation process which could have influenced the changes described. Participants reported that team relationships had been strengthened due to AI. Conclusion: Technical knowledge is often emphasised in health care settings and less attention is paid to factors such as team relationships, leadership, and problem solving. AI can contribute to improving infection control by catalysing and creating forums for team building, shared decision making and problem solving in an

  1. Robotic excavator trajectory control using an improved GA based PID controller

    Science.gov (United States)

    Feng, Hao; Yin, Chen-Bo; Weng, Wen-wen; Ma, Wei; Zhou, Jun-jing; Jia, Wen-hua; Zhang, Zi-li

    2018-05-01

    In order to achieve excellent trajectory tracking performances, an improved genetic algorithm (IGA) is presented to search for the optimal proportional-integral-derivative (PID) controller parameters for the robotic excavator. Firstly, the mathematical model of kinematic and electro-hydraulic proportional control system of the excavator are analyzed based on the mechanism modeling method. On this basis, the actual model of the electro-hydraulic proportional system are established by the identification experiment. Furthermore, the population, the fitness function, the crossover probability and mutation probability of the SGA are improved: the initial PID parameters are calculated by the Ziegler-Nichols (Z-N) tuning method and the initial population is generated near it; the fitness function is transformed to maintain the diversity of the population; the probability of crossover and mutation are adjusted automatically to avoid premature convergence. Moreover, a simulation study is carried out to evaluate the time response performance of the proposed controller, i.e., IGA based PID against the SGA and Z-N based PID controllers with a step signal. It was shown from the simulation study that the proposed controller provides the least rise time and settling time of 1.23 s and 1.81 s, respectively against the other tested controllers. Finally, two types of trajectories are designed to validate the performances of the control algorithms, and experiments are performed on the excavator trajectory control experimental platform. It was demonstrated from the experimental work that the proposed IGA based PID controller improves the trajectory accuracy of the horizontal line and slope line trajectories by 23.98% and 23.64%, respectively in comparison to the SGA tuned PID controller. The results further indicate that the proposed IGA tuning based PID controller is effective for improving the tracking accuracy, which may be employed in the trajectory control of an actual excavator.

  2. Modelica-based Modeling and Simulation to Support Research and Development in Building Energy and Control Systems

    Energy Technology Data Exchange (ETDEWEB)

    Wetter, Michael

    2009-02-12

    Traditional building simulation programs possess attributes that make them difficult to use for the design and analysis of building energy and control systems and for the support of model-based research and development of systems that may not already be implemented in these programs. This article presents characteristic features of such applications, and it shows how equation-based object-oriented modelling can meet requirements that arise in such applications. Next, the implementation of an open-source component model library for building energy systems is presented. The library has been developed using the equation-based object-oriented Modelica modelling language. Technical challenges of modelling and simulating such systems are discussed. Research needs are presented to make this technology accessible to user groups that have more stringent requirements with respect to the numerical robustness of simulation than a research community may have. Two examples are presented in which models from the here described library were used. The first example describes the design of a controller for a nonlinear model of a heating coil using model reduction and frequency domain analysis. The second example describes the tuning of control parameters for a static pressure reset controller of a variable air volume flow system. The tuning has been done by solving a non-convex optimization problem that minimizes fan energy subject to state constraints.

  3. Ventilated air cavities for the control of rising damp in historical buildings. Functional analysis

    Directory of Open Access Journals (Sweden)

    Mª T. Gil Muñoz

    2018-01-01

    Full Text Available This study analyzes the behavior of ventilated air cavities and their level of efficiency when used for the control of rising damp and the associated pathological damage in walls and foundations of historical buildings. The methodology is based on experiments on-site and monitoring. Knowledge of local climate conditions, the surroundings of the building, its construction features and the type of foundation constitute the preliminary conditions for the monitoring. In order to reach the goal we have measured several parameters according to a plan, developed graphical tools for the study, and prepared statistical data. The building of this system has not always been accompanied by a thorough assessment that would justify the intervention. The results show how this situation has affected the design strategies and sizing of the ventilated air cavities, limiting in many cases their efficiency.

  4. Embedded Sensors and Controls to Improve Component Performance and Reliability -- Bench-scale Testbed Design Report

    Energy Technology Data Exchange (ETDEWEB)

    Melin, Alexander M. [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Kisner, Roger A. [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Drira, Anis [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Reed, Frederick K. [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States)

    2015-09-01

    Embedded instrumentation and control systems that can operate in extreme environments are challenging due to restrictions on sensors and materials. As a part of the Department of Energy's Nuclear Energy Enabling Technology cross-cutting technology development programs Advanced Sensors and Instrumentation topic, this report details the design of a bench-scale embedded instrumentation and control testbed. The design goal of the bench-scale testbed is to build a re-configurable system that can rapidly deploy and test advanced control algorithms in a hardware in the loop setup. The bench-scale testbed will be designed as a fluid pump analog that uses active magnetic bearings to support the shaft. The testbed represents an application that would improve the efficiency and performance of high temperature (700 C) pumps for liquid salt reactors that operate in an extreme environment and provide many engineering challenges that can be overcome with embedded instrumentation and control. This report will give details of the mechanical design, electromagnetic design, geometry optimization, power electronics design, and initial control system design.

  5. Economic effects of energy efficiency improvements in the Finnish building stock

    International Nuclear Information System (INIS)

    Tuominen, Pekka; Forsström, Juha; Honkatukia, Juha

    2013-01-01

    This study estimates the economic effects of investing in energy efficiency in buildings on a national level. First conservation potentials in space heating for two different scenarios with different levels of investment in energy efficiency are quantified. This was done relying on statistical data and future projections of the development of the building stock. Then economic modeling was used to estimate the effects on energy sector and the economy at large. The results show that a rather modest increase resulting in a few percent rise in annual construction and renovation investments can decrease total primary energy consumption 3.8–5.3% by 2020 and 4.7–6.8% by 2050 compared to a baseline scenario. On the short term a slight decrease in the level of GDP and employment is expected. On the medium to long term, however, the effects on both would be positive. Furthermore, a significant drop in harmful emissions and hence external costs is anticipated. Overall, a clear net benefit is expected from improving energy efficiency. - Highlights: ► The possible cut in energy consumption: 3.8–5.3% by 2020 and 4.7–6.8% by 2050. ► Short term negative effects to GDP and long term positive effects are expected. ► A significant drop in harmful emissions and hence external costs is anticipated.

  6. A Combined Approach to Cartographic Displacement for Buildings Based on Skeleton and Improved Elastic Beam Algorithm

    Science.gov (United States)

    Liu, Yuangang; Guo, Qingsheng; Sun, Yageng; Ma, Xiaoya

    2014-01-01

    Scale reduction from source to target maps inevitably leads to conflicts of map symbols in cartography and geographic information systems (GIS). Displacement is one of the most important map generalization operators and it can be used to resolve the problems that arise from conflict among two or more map objects. In this paper, we propose a combined approach based on constraint Delaunay triangulation (CDT) skeleton and improved elastic beam algorithm for automated building displacement. In this approach, map data sets are first partitioned. Then the displacement operation is conducted in each partition as a cyclic and iterative process of conflict detection and resolution. In the iteration, the skeleton of the gap spaces is extracted using CDT. It then serves as an enhanced data model to detect conflicts and construct the proximity graph. Then, the proximity graph is adjusted using local grouping information. Under the action of forces derived from the detected conflicts, the proximity graph is deformed using the improved elastic beam algorithm. In this way, buildings are displaced to find an optimal compromise between related cartographic constraints. To validate this approach, two topographic map data sets (i.e., urban and suburban areas) were tested. The results were reasonable with respect to each constraint when the density of the map was not extremely high. In summary, the improvements include (1) an automated parameter-setting method for elastic beams, (2) explicit enforcement regarding the positional accuracy constraint, added by introducing drag forces, (3) preservation of local building groups through displacement over an adjusted proximity graph, and (4) an iterative strategy that is more likely to resolve the proximity conflicts than the one used in the existing elastic beam algorithm. PMID:25470727

  7. A Control Strategy of DC Building Microgrid Connected to the Neighborhood and AC Power Network

    Directory of Open Access Journals (Sweden)

    Thi Thuong Huyen Ma

    2017-05-01

    Full Text Available Recently, the use of DC microgrid distribution system has become more attractive than traditional AC systems due to their energy efficiency and ability to easily integrate with renewable energy sources and batteries. This paper proposes a 500 V DC microgrid which consists of a 20 kWp photovoltaic panel, batteries, and DC loads. A hierarchical control strategy to ensure balance power of the DC microgrid and the maintenance of common DC bus voltage is presented. The capability of exchanging power energy of the microgrid with the power system of neighborhood buildings is also considered. Typical operation modes are simulated in the Matlab/simulink environment to confirm the good performance of the controllers and the efficiency of appropriately controlling the charge–discharge of the battery system. This research is expected to bring benefits to the design and operation of the system, such as reducing the capacity of batteries, increasing the self-supply of buildings, and decreasing the electricity demand from the AC grid.

  8. Intelligent multi-objective optimization for building energy and comfort management

    Directory of Open Access Journals (Sweden)

    Pervez Hameed Shaikh

    2018-04-01

    Full Text Available The rapid economic and population growth in developing countries, effective and efficient energy usage has turned out to be crucial due to the rising concern of depleting fossil fuels, of which, one-third of primary energy is consumed in buildings and expected to rise by 53% up to 2030. This roaring sector posing a challenge, due to 90% of people spend most of their time in buildings, requires enhanced well-being of indoor environment and living standards. Therefore, building operations require more energy because most of the energy is consumed to make the indoor environment comfortable. Consequently, there is the need of improved energy efficiency to decrease energy consumption in buildings. In relation to this, the primary challenge of building control systems is the energy consumption and comfort level are generally conflicting to each other. Therefore, an important problem of sustainable smart buildings is to effectively manage the energy consumption and comfort and attain the trade-off between the two. Thus, smart buildings are becoming a trend of future construction that facilitates intelligent control in buildings for the fulfillment of occupant’s comfort level. In this study, an intelligent multi-objective system has been developed with evolutionary multi-objective genetic algorithm (MOGA optimization method. The corresponding case study simulation results for the effective management of users’ comfort and energy efficiency have been carried out. The case study results show the management of energy supply for each comfort parameter and maintain high comfort index achieving balance between the energy consumption and comfort level. Keywords: Energy, Buildings, Comfort, Management, Optimization, Trade-off

  9. Towards smart building structures : adaptive structures in earthquake and wind loading control response – a review

    NARCIS (Netherlands)

    Morales-Beltran, M.; Teuffel, P.M.

    2013-01-01

    This article is a review about applications for non-passive control response of buildings (namely active, hybrid and semi-active systems), wherein the degree of integration between control devices and structural system is explored. The purpose is to establish the current state-of-the-art in the

  10. Simplified Building Thermal Model Used for Optimal Control of Radiant Cooling System

    Directory of Open Access Journals (Sweden)

    Lei He

    2016-01-01

    Full Text Available MPC has the ability to optimize the system operation parameters for energy conservation. Recently, it has been used in HVAC systems for saving energy, but there are very few applications in radiant cooling systems. To implement MPC in buildings with radiant terminals, the predictions of cooling load and thermal environment are indispensable. In this paper, a simplified thermal model is proposed for predicting cooling load and thermal environment in buildings with radiant floor. In this thermal model, the black-box model is introduced to derive the incident solar radiation, while the genetic algorithm is utilized to identify the parameters of the thermal model. In order to further validate this simplified thermal model, simulated results from TRNSYS are compared with those from this model and the deviation is evaluated based on coefficient of variation of root mean square (CV. The results show that the simplified model can predict the operative temperature with a CV lower than 1% and predict cooling loads with a CV lower than 10%. For the purpose of supervisory control in HVAC systems, this simplified RC thermal model has an acceptable accuracy and can be used for further MPC in buildings with radiation terminals.

  11. An Overview of Demand Side Management Control Schemes for Buildings in Smart Grids

    DEFF Research Database (Denmark)

    Kosek, Anna Magdalena; Costanzo, Giuseppe Tommaso; Bindner, Henrik W.

    2013-01-01

    The increasing share of distributed energy resources and renewable energy in power systems results in a highly variable and less controllable energy production. Therefore, in order to ensure stability and to reduce the infrastructure and operation cost of the power grid, flexible and controllable...... of the power sector in mind and thus can differ significantly in their architecture, their integration into the various markets, their integration into distribution network operation and several other aspects. This paper proposes a classification of load control policies for demand side management in smart...... buildings, based on external behavior: direct, indirect, transactional and autonomous control; internal operation: decision support system scope, control strategy, failure handling and architecture. This classification assists in providing an overview of the control schemes as well as different ways...

  12. Improvement of internal book-keeping control at company "Balttranslaine"

    OpenAIRE

    Kolodinska, Aļona

    2012-01-01

    Master's thesis "Internal Accounting Control Improvement in Ltd."Balttranslaine"" is designed to determine the potential and directions for improving accounting controls Ltd. "Balttranslaine". The paper assesses Ltd. "Balttranslaine" internal accounting control system and develops proposals for its improvement, based on research on accounting control nature and its place in the overall company's internal control system, as well as the Latvian laws and regulations for construction and maint...

  13. Building partnership to improve migrants’ access to healthcare in Mumbai

    Directory of Open Access Journals (Sweden)

    Nilesh Chandrakant Gawde

    2015-11-01

    Full Text Available Objectives: An intervention to improve migrants’ access to healthcare was piloted in Mumbai with purpose of informing health policy and planning. This paper aims to describe the process of building partnership for improving migrants’ access to healthcare of the pilot intervention including the role played by different stakeholders and the contextual factors affecting the intervention. Methods: The process evaluation was based upon Baranowski and Stables’ framework. their Observations in community and conversations with stakeholders as recorded in daily diaries, minutes of pre-intervention workshops and stakeholder meetings served as data sources. Data were coded using the framework and descriptive summaries of evaluation components were prepared.Results: Recruitment of stakeholders was easier than sustaining their interest. Community representatives led the intervention assisted by government officials. They planned community level interventions to improve access to healthcare which involved predominantly information, education and communication activities for which pre-existing formal and informal social networks and community events were used. Although the intervention reached migrants living with families, single male migrants neither participated nor did the intervention reach them consistently. Contextual factors such as culture differences between migrants and native population and illegality in the nature of the settlement resulting in the exclusion from services were the barriers. Conclusion: Inclusive multi-stakeholder partnership including migrants themselves and using both formal and informal networks in community is a feasible strategy for health education and has potential to improve the migrants’ access to healthcare. However, there are challenges to the partnership process and new strategies to overcome these challenges need to be tested such as peer-led models for involvement of single male migrants. For sustaining such

  14. Building Partnership to Improve Migrants' Access to Healthcare in Mumbai.

    Science.gov (United States)

    Gawde, Nilesh Chandrakant; Sivakami, Muthusamy; Babu, Bontha V

    2015-01-01

    An intervention to improve migrants' access to healthcare was piloted in Mumbai with purpose of informing health policy and planning. This paper aims to describe the process of building partnership for improving migrants' access to healthcare of the pilot intervention, including the role played by different stakeholders and the contextual factors affecting the intervention. The process evaluation was based on Baranowski and Stables' framework. Observations in community and conversations with stakeholders as recorded in daily diaries, minutes of pre-intervention workshops, and stakeholder meetings served as data sources. Data were coded using the framework and descriptive summaries of evaluation components were prepared. Recruitment of stakeholders was easier than sustaining their interest. Community representatives led the intervention assisted by government officials. They planned community-level interventions to improve access to healthcare that involved predominantly information, education, and communication activities for which pre-existing formal and informal social networks and community events were used. Although the intervention reached migrants living with families, single male migrants neither participated nor did the intervention reach them consistently. Contextual factors such as culture differences between migrants and native population and illegality in the nature of the settlement, resulting in the exclusion from services, were the barriers. Inclusive multi-stakeholder partnership, including migrants themselves and using both formal and informal networks in community is a feasible strategy for health education and has potential to improve the migrants' access to healthcare. However, there are challenges to the partnership process and new strategies to overcome these challenges need to be tested such as peer-led models for involvement of single male migrants. For sustaining such efforts and mainstreaming migrants, addressing contextual factors and

  15. Features of Functioning the Integrated Building Thermal Model

    Directory of Open Access Journals (Sweden)

    Morozov Maxim N.

    2017-01-01

    Full Text Available A model of the building heating system, consisting of energy source, a distributed automatic control system, elements of individual heating unit and heating system is designed. Application Simulink of mathematical package Matlab is selected as a platform for the model. There are the specialized application Simscape libraries in aggregate with a wide range of Matlab mathematical tools allow to apply the “acausal” modeling concept. Implementation the “physical” representation of the object model gave improving the accuracy of the models. Principle of operation and features of the functioning of the thermal model is described. The investigations of building cooling dynamics were carried out.

  16. Smart Buildings: Business Case and Action Plan

    Energy Technology Data Exchange (ETDEWEB)

    Ehrlich, Paul; Diamond, Rick

    2009-04-01

    General Services Administration (GSA) has been a pioneer in using Smart Building technologies but it has yet to achieve the full benefits of an integrated, enterprise-wide Smart Building strategy. In July 2008, GSA developed an initial briefing memorandum that identified five actions for a Smart Buildings feasibility study: (1) Identify and cluster the major building systems under consideration for a Smart Buildings initiative; (2) Identify GSA priorities for these clusters; (3) Plan for future adoption of Smart Building strategies by identifying compatible hardware; (4) Develop a framework for implementing and testing Smart Building strategies and converged networks; and (5) Document relevant GSA and industry initiatives in this arena. Based on this briefing memorandum, PBS and FAS retained consultants from Lawrence Berkeley National Laboratory, Noblis, and the Building Intelligence Group to evaluate the potential for Smart Buildings within GSA, and to develop this report. The project has included extensive interviews with GSA staff (See Appendix A), a review of existing GSA standards and documents, and an examination of relevant GSA and industry initiatives. Based on interviews with GSA staff and a review of GSA standards and documents, the project team focused on four goals for evaluating how Smart Building technology can benefit GSA: (1) Achieve Energy Efficiency Mandates--Use Smart Building technology as a tool to meet EISA 2007 and EO 13423 goals for energy efficiency. (2) Enhance Property Management--Deploy enterprise tools for improved Operations and Maintenance (O&M) performance and verification. (3) Implement Network as the Fourth Utility--Utilize a converged broadband network to support Smart Building systems and provide GSA clients with connectivity for voice, data and video. (4) Enhance Safety and Security--Harmonize Physical Access Control Systems (PACS) with Smart Building Systems.

  17. Intelligent demand side management of residential building energy systems

    Science.gov (United States)

    Sinha, Maruti N.

    Advent of modern sensing technologies, data processing capabilities and rising cost of energy are driving the implementation of intelligent systems in buildings and houses which constitute 41% of total energy consumption. The primary motivation has been to provide a framework for demand-side management and to improve overall reliability. The entire formulation is to be implemented on NILM (Non-Intrusive Load Monitoring System), a smart meter. This is going to play a vital role in the future of demand side management. Utilities have started deploying smart meters throughout the world which will essentially help to establish communication between utility and consumers. This research is focused on investigation of a suitable thermal model of residential house, building up control system and developing diagnostic and energy usage forecast tool. The present work has considered measurement based approach to pursue. Identification of building thermal parameters is the very first step towards developing performance measurement and controls. The proposed identification technique is PEM (Prediction Error Method) based, discrete state-space model. The two different models have been devised. First model is focused toward energy usage forecast and diagnostics. Here one of the novel idea has been investigated which takes integral of thermal capacity to identify thermal model of house. The purpose of second identification is to build up a model for control strategy. The controller should be able to take into account the weather forecast information, deal with the operating point constraints and at the same time minimize the energy consumption. To design an optimal controller, MPC (Model Predictive Control) scheme has been implemented instead of present thermostatic/hysteretic control. This is a receding horizon approach. Capability of the proposed schemes has also been investigated.

  18. Animal thermoregulation: a review of insulation, physiology and behaviour relevant to temperature control in buildings.

    Science.gov (United States)

    McCafferty, D J; Pandraud, G; Gilles, J; Fabra-Puchol, M; Henry, P-Y

    2017-12-28

    Birds and mammals have evolved many thermal adaptations that are relevant to the bioinspired design of temperature control systems and energy management in buildings. Similar to many buildings, endothermic animals generate internal metabolic heat, are well insulated, regulate their temperature within set limits, modify microclimate and adjust thermal exchange with their environment. We review the major components of animal thermoregulation in endothermic birds and mammals that are pertinent to building engineering, in a world where climate is changing and reduction in energy use is needed. In animals, adjustment of insulation together with physiological and behavioural responses to changing environmental conditions fine-tune spatial and temporal regulation of body temperature, while also minimizing energy expenditure. These biological adaptations are characteristically flexible, allowing animals to alter their body temperatures to hourly, daily, or annual demands for energy. They exemplify how buildings could become more thermally reactive to meteorological fluctuations, capitalising on dynamic thermal materials and system properties. Based on this synthesis, we suggest that heat transfer modelling could be used to simulate these flexible biomimetic features and assess their success in reducing energy costs while maintaining thermal comfort for given building types.

  19. Steam System Balancing and Tuning for Multifamily Residential Buildings in Chicagoland - Second Year of Data Collection

    Energy Technology Data Exchange (ETDEWEB)

    Choi, J.; Ludwig, P.; Brand, L.

    2013-08-01

    Steam heated buildings often suffer from uneven heating as a result of poor control of the amount of steam entering each radiator. In order to satisfy the heating load to the coldest units, other units are overheated. As a result, some tenants complain of being too hot and open their windows in the middle of winter, while others complain of being too cold and are compelled to use supplemental heat sources. Building on previous research, CNT Energy identified 10 test buildings in Chicago and conducted a study to identify best practices for the methodology, typical costs, and energy savings associated with steam system balancing. A package of common steam balancing measures was assembled and data were collected on the buildings before and after these retrofits were installed to investigate the process, challenges, and the cost effectiveness of improving steam systems through improved venting and control systems. The test buildings that received venting upgrades and new control systems showed 10.2% savings on their natural gas heating load, with a simple payback of 5.1 years. The methodologies for and findings from this study are presented in detail in this report. This report has been updated from a version published in August 2012 to include natural gas usage information from the 2012 heating season and updated natural gas savings calculations.

  20. High-performance commercial building systems

    Energy Technology Data Exchange (ETDEWEB)

    Selkowitz, Stephen

    2003-10-01

    This report summarizes key technical accomplishments resulting from the three year PIER-funded R&D program, ''High Performance Commercial Building Systems'' (HPCBS). The program targets the commercial building sector in California, an end-use sector that accounts for about one-third of all California electricity consumption and an even larger fraction of peak demand, at a cost of over $10B/year. Commercial buildings also have a major impact on occupant health, comfort and productivity. Building design and operations practices that influence energy use are deeply engrained in a fragmented, risk-averse industry that is slow to change. Although California's aggressive standards efforts have resulted in new buildings designed to use less energy than those constructed 20 years ago, the actual savings realized are still well below technical and economic potentials. The broad goal of this program is to develop and deploy a set of energy-saving technologies, strategies, and techniques, and improve processes for designing, commissioning, and operating commercial buildings, while improving health, comfort, and performance of occupants, all in a manner consistent with sound economic investment practices. Results are to be broadly applicable to the commercial sector for different building sizes and types, e.g. offices and schools, for different classes of ownership, both public and private, and for owner-occupied as well as speculative buildings. The program aims to facilitate significant electricity use savings in the California commercial sector by 2015, while assuring that these savings are affordable and promote high quality indoor environments. The five linked technical program elements contain 14 projects with 41 distinct R&D tasks. Collectively they form a comprehensive Research, Development, and Demonstration (RD&D) program with the potential to capture large savings in the commercial building sector, providing significant economic benefits to

  1. An Improved Adaptive-Torque-Gain MPPT Control for Direct-Driven PMSG Wind Turbines Considering Wind Farm Turbulences

    Directory of Open Access Journals (Sweden)

    Xiaolian Zhang

    2016-11-01

    Full Text Available Maximum power point tracking (MPPT plays an important role in increasing the efficiency of a wind energy conversion system (WECS. In this paper, three conventional MPPT methods are reviewed: power signal feedback (PSF control, decreased torque gain (DTG control, and adaptive torque gain (ATG control, and their potential challenges are investigated. It is found out that the conventional MPPT method ignores the effect of wind turbine inertia and wind speed fluctuations, which lowers WECS efficiency. Accordingly, an improved adaptive torque gain (IATG method is proposed, which customizes adaptive torque gains and enhances MPPT performances. Specifically, the IATG control considers wind farm turbulences and works out the relationship between the optimal torque gains and the wind speed characteristics, which has not been reported in the literature. The IATG control is promising, especially under the ongoing trend of building wind farms with large-scale wind turbines and at low and medium wind speed sites.

  2. Irregular Shaped Building Design Optimization with Building Information Modelling

    Directory of Open Access Journals (Sweden)

    Lee Xia Sheng

    2016-01-01

    Full Text Available This research is to recognise the function of Building Information Modelling (BIM in design optimization for irregular shaped buildings. The study focuses on a conceptual irregular shaped “twisted” building design similar to some existing sculpture-like architectures. Form and function are the two most important aspects of new buildings, which are becoming more sophisticated as parts of equally sophisticated “systems” that we are living in. Nowadays, it is common to have irregular shaped or sculpture-like buildings which are very different when compared to regular buildings. Construction industry stakeholders are facing stiff challenges in many aspects such as buildability, cost effectiveness, delivery time and facility management when dealing with irregular shaped building projects. Building Information Modelling (BIM is being utilized to enable architects, engineers and constructors to gain improved visualization for irregular shaped buildings; this has a purpose of identifying critical issues before initiating physical construction work. In this study, three variations of design options differing in rotating angle: 30 degrees, 60 degrees and 90 degrees are created to conduct quantifiable comparisons. Discussions are focused on three major aspects including structural planning, usable building space, and structural constructability. This research concludes that Building Information Modelling is instrumental in facilitating design optimization for irregular shaped building. In the process of comparing different design variations, instead of just giving “yes or no” type of response, stakeholders can now easily visualize, evaluate and decide to achieve the right balance based on their own criteria. Therefore, construction project stakeholders are empowered with superior evaluation and decision making capability.

  3. Building Capacity for the Continuous Improvement of Health-Promoting Schools

    Science.gov (United States)

    Hoyle, Tena B.; Samek, Beverly B.; Valois, Robert F.

    2008-01-01

    Background: There has been much educational verbosity over the past decade related to building capacity for effective schools. However, there seems to be a scarcity of clarification about what is meant by school capacity building or how to accomplish and sustain this process. This article describes the preexisting conditions and ongoing processes…

  4. Control system design guide

    Energy Technology Data Exchange (ETDEWEB)

    Sellers, David; Friedman, Hannah; Haasl, Tudi; Bourassa, Norman; Piette, Mary Ann

    2003-05-01

    The ''Control System Design Guide'' (Design Guide) provides methods and recommendations for the control system design process and control point selection and installation. Control systems are often the most problematic system in a building. A good design process that takes into account maintenance, operation, and commissioning can lead to a smoothly operating and efficient building. To this end, the Design Guide provides a toolbox of templates for improving control system design and specification. HVAC designers are the primary audience for the Design Guide. The control design process it presents will help produce well-designed control systems that achieve efficient and robust operation. The spreadsheet examples for control valve schedules, damper schedules, and points lists can streamline the use of the control system design concepts set forth in the Design Guide by providing convenient starting points from which designers can build. Although each reader brings their own unique questions to the text, the Design Guide contains information that designers, commissioning providers, operators, and owners will find useful.

  5. Hitachi's proposed DCS solution for new build CANDU EC6 using the G-HIACS unified platform

    Energy Technology Data Exchange (ETDEWEB)

    Tan, D.; Ishii, K.; Otsuka, Y.; Uemura, K., E-mail: daisuke.tan.ye@hitachi.com [Hitachi Ltd., Infrastructure Systems Co., Ibaraki (Japan); Marko, P.E. [Hitachi Power Systems Canada Ltd., Power and Industry Div., Ontario (Canada)

    2013-07-01

    Hitachi Ltd. has developed the safe and secure functional safety DCS controller for potential new build NPP projects in the global market. Hitachi has improved the availability, maintainability, and reliability for its latest DCS systems named G-HIACS. In this latest paper on its DCS product development program, Hitachi would like to report a proposed DCS solution for new build CANDU NSP and BOP based on the G-HIACS Unified Architecture (R800FS/HSC800FS vSAFE Functional Safety Controller and R900/HSC900 General Purpose Controller) hybrid control system. (author)

  6. Instrument ampersand controls section (IA) improvements

    International Nuclear Information System (INIS)

    Kramer, C.; Paul, J.

    1993-01-01

    This portion of the panel session briefly delineates improvements in the Instrument and Controls (IA) Section over the past few years. These improvements are listed briefly in summary form. The status of publication of the IA Section of AG-1 is reviewed

  7. Energy Flexibility in Retail Buildings

    DEFF Research Database (Denmark)

    Ma, Zheng; Billanes, Joy Dalmacio; Kjærgaard, Mikkel Baun

    2017-01-01

    Retail buildings has an important role for demand side energy flexibility because of their high energy consumption, variety of energy flexibility resources, and centralized control via building control systems. Energy flexibility requires agreements and collaborations among different actors......), with the discussion of the stakeholders’ roles and their interrelation in delivering energy flexibility with the influential factors to the actual implementation of energy flexible operation of their buildings. Based on a literature analysis, the results cover stakeholders’ types and roles, perceptions (drivers......, barriers, and benefits), energy management activities and technology adoptions, and the stakeholders’ interaction for the energy flexibility in retail buildings....

  8. Does Self-Control Training Improve Self-Control? A Meta-Analysis.

    Science.gov (United States)

    Friese, Malte; Frankenbach, Julius; Job, Veronika; Loschelder, David D

    2017-11-01

    Self-control is positively associated with a host of beneficial outcomes. Therefore, psychological interventions that reliably improve self-control are of great societal value. A prominent idea suggests that training self-control by repeatedly overriding dominant responses should lead to broad improvements in self-control over time. Here, we conducted a random-effects meta-analysis based on robust variance estimation of the published and unpublished literature on self-control training effects. Results based on 33 studies and 158 effect sizes revealed a small-to-medium effect of g = 0.30, confidence interval (CI 95 ) [0.17, 0.42]. Moderator analyses found that training effects tended to be larger for (a) self-control stamina rather than strength, (b) studies with inactive compared to active control groups, (c) males than females, and (d) when proponents of the strength model of self-control were (co)authors of a study. Bias-correction techniques suggested the presence of small-study effects and/or publication bias and arrived at smaller effect size estimates (range: g corrected = .13 to .24). The mechanisms underlying the effect are poorly understood. There is not enough evidence to conclude that the repeated control of dominant responses is the critical element driving training effects.

  9. Optimising building net energy demand with dynamic BIPV shading

    International Nuclear Information System (INIS)

    Jayathissa, P.; Luzzatto, M.; Schmidli, J.; Hofer, J.; Nagy, Z.; Schlueter, A.

    2017-01-01

    Highlights: •Coupled analysis of PV generation and building energy using adaptive BIPV shading. •20–80% net energy saving compared to an equivalent static system. •The system can in some cases compensate for the entire heating/cooling/lighting load. •High resolution radiation simulation including impacts of module self shading. -- Abstract: The utilisation of a dynamic photovoltaic system for adaptive shading can improve building energy performance by controlling solar heat gains and natural lighting, while simultaneously generating electricity on site. This paper firstly presents an integrated simulation framework to couple photovoltaic electricity generation to building energy savings through adaptive shading. A high-resolution radiance and photovoltaic model calculates the photovoltaic electricity yield while taking into account partial shading between modules. The remaining solar irradiation that penetrates the window is used in a resistance-capacitance building thermal model. A simulation of all possible dynamic configurations is conducted for each hourly time step, of which the most energy efficient configuration is chosen. We then utilise this framework to determine the optimal orientation of the photovoltaic panels to maximise the electricity generation while minimising the building’s heating, lighting and cooling demand. An existing adaptive photovoltaic facade was used as a case study for evaluation. Our results report a 20–80% net energy saving compared to an equivalent static photovoltaic shading system depending on the efficiency of the heating and cooling system. In some cases the Adaptive Solar Facade can almost compensate for the entire energy demand of the office space behind it. The control of photovoltaic production on the facade, simultaneously with the building energy demand, opens up new methods of building management as the facade can control both the production and consumption of electricity.

  10. MANAGING THE BUILDING DESIGN PROCESS FOR SUSTAINABILTY AND IMPROVED QUALITY

    Directory of Open Access Journals (Sweden)

    Sunday Bobadoye

    2006-01-01

    Full Text Available The essence of building design process and management for building sustainability in the creation and maintenance of a qualitative architectural product is investigated in this paper. The design process, concept of building sustainability and particularly the quality of the built environment are discussed. Akure, a state capital in Nigeria was used as a case study. The principles and indicators for sustainability of buildings and its implications on the quality of the environment are examined in details. Survey findings include the views of the professionals on the clients, perception on the design process as well as management of projects, and the implications on the quality of the ensuring products and the city’s environment. The data were factor analyzed using varimax rotation criterion (with Kaiser Normalization. The results revealed that five factors were effective, with one of them exhibiting the greatest variability and individual differences. The variables that loaded on this factor were really the aspects of the process and management relating to the clients. The findings also revealed the professionals’ wrong attitude towards design process as shown with a very high degree of variability in the study. The paper concludes by recommending the enactment and enforcement of relevant policies with adequate education of the people and the involvement of all the stakeholders in the management of building projects and environmental programmes for the realization of a qualitative architectural product.

  11. Skills, systems and supports: An Aboriginal Community Controlled Health Service (Apunipima) approach to building health promotion evaluation capacity of staff.

    Science.gov (United States)

    Nichols, Nina; McFarlane, Kathryn; Gibson, Priscilla; Millard, Fiona; Packer, Andrew; McDonald, Malcolm

    2018-04-01

    Building the health promotion evaluation capacity of a workforce requires more than a focus on individual skills and confidence. We must also consider the organisational systems and supports that enable staff to embed learnings into practice. This paper describes the processes used to build health promotion evaluation capacity of staff in an Aboriginal Community Controlled Health Service (ACCHS). To build health promotion evaluation capacity three approaches were used: (i) workshops and mentoring; (ii) strengthening systems to support program reporting; and (iii) recruitment of staff with skills and experience. Pre- and post-questionnaires determined levels of individual skills and confidence, updated systems were assessed for adequacy to support new health promotion practices and surveys captured the usefulness of workshops and mentoring. There was increased participant skills and confidence. Participants completed program impact evaluation reports and results were successfully presented at national conferences. The health promotion team was then able to update in-house systems to support new health promotion practices. Ongoing collaboration with experienced in-house researchers provided basic research training and professional mentoring. Building health promotion evaluation capacity of staff in an ACCHS can be achieved by providing individual skill development, strengthening organisational systems and utilising professional support. SO WHAT?: Health promotion practitioners have an ongoing professional obligation to improve the quality of routine practice and embrace new initiatives. This report outlines a process of building evaluation capacity that promotes quality reporting of program impacts and outcomes, reflects on ways to enhance program strengths, and communicates these findings internally and to outside professional bodies. This is particularly significant for ACCHSs responsible for addressing the high burden of preventable disease in Aboriginal and

  12. Deflection Control in Composite Building by Using Belt Truss and Outriggers Systems

    OpenAIRE

    S. Fawzia; T. Fatima

    2010-01-01

    The design of high-rise building is more often dictated by its serviceability rather than strength. Structural Engineers are always striving to overcome challenge of controlling lateral deflection and storey drifts as well as self weight of structure imposed on foundation. One of the most effective techniques is the use of outrigger and belt truss system in Composite structures that can astutely solve the above two issues in High-rise constructions. This paper investig...

  13. From intelligent buildings to careful buildings : a concept to implement individual health and comfort demands

    NARCIS (Netherlands)

    Zeiler, W.; Wortel, W.; Houten, van M.A.; Hommelberg, M.P.F.; Kamphuis, I.G.; Jelsma, J.; Oliveira Fernandes, de E.; Gameiro da Silva, M.; Rosado Pinto, J.

    2006-01-01

    Buildings are built for users, so the user preferences and their behaviour should become leading in building services control strategy. The paper reviews 3 projects on intelligent process control. The insights of these projects were combined into a new technology; FACT, Forgiving Agent Comfort

  14. A Novel Distributed Economic Model Predictive Control Approach for Building Air-Conditioning Systems in Microgrids

    Directory of Open Access Journals (Sweden)

    Xinan Zhang

    2018-04-01

    Full Text Available With the penetration of grid-connected renewable energy generation, microgrids are facing stability and power quality problems caused by renewable intermittency. To alleviate such problems, demand side management (DSM of responsive loads, such as building air-conditioning system (BACS, has been proposed and studied. In recent years, numerous control approaches have been published for proper management of single BACS. The majority of these approaches focus on either the control of BACS for attenuating power fluctuations in the grid or the operating cost minimization on behalf of the residents. These two control objectives are paramount for BACS control in microgrids and can be conflicting. As such, they should be considered together in control design. As individual buildings may have different owners/residents, it is natural to control different BACSs in an autonomous and self-interested manner to minimize the operational costs for the owners/residents. Unfortunately, such “selfish” operation can result in abrupt and large power fluctuations at the point of common coupling (PCC of the microgrid due to lack of coordination. Consequently, the original objective of mitigating power fluctuations generated by renewable intermittency cannot be achieved. To minimize the operating costs of individual BACSs and simultaneously ensure desirable overall power flow at PCC, this paper proposes a novel distributed control framework based on the dissipativity theory. The proposed method achieves the objective of renewable intermittency mitigation through proper coordination of distributed BACS controllers and is scalable and computationally efficient. Simulation studies are carried out to illustrate the efficacy of the proposed control framework.

  15. Improvement on reliability of control system in power plant

    International Nuclear Information System (INIS)

    Taguchi, S.; Mizumoto, T.; Hirose, Y.; Kashiwai, J.; Takami, I.; Shono, M.; Roji, Y.; Kizaki, S.

    1985-01-01

    Studies made of Japanese PWR operating experiences have revealed that failures in the control system are the primary causes of unscheduled shutdowns. An attempt has, therefore, been made to improve the reliability of the control system in order to raise the plant reliability. The following are the procedures applied to solve the issue; study of operating experiences, fault tree analysis and failure mode and effects analysis. Improvement measures are developed for the control system whose failure threatens to cause the plant trip during the plant life. These systems are the main feedwater control system, rod control system, pressurizer control system and main steam control system in the primary control system. As a result, the plant unavailability is expected to be reduced significantly by applying the improvements. The improvements are applied to the plants under construction and the operating plants in co-operation with utilities and vendors. (author)

  16. Energy efficiency outlook in China’s urban buildings sector through 2030

    International Nuclear Information System (INIS)

    McNeil, Michael A.; Feng, Wei; Rue du Can, Stephane de la; Khanna, Nina Zheng; Ke, Jing; Zhou, Nan

    2016-01-01

    This study uses bottom-up modeling framework in order to quantify potential energy savings and emission reduction impacts from the implementation of energy efficiency programs in the building sector in China. Policies considered include (1) accelerated building codes in residential and commercial buildings, (2) increased penetration of district heat metering and controls, (3) district heating efficiency improvement, (4) building energy efficiency labeling programs and (5) retrofits of existing commercial buildings. Among these programs, we found that the implementation of building codes provide by far the largest savings opportunity, leading to an overall 17% reduction in overall space heating and cooling demand relative to the baseline. Second are energy efficiency labels with 6%, followed by reductions of losses associated with district heating representing 4% reduction and finally, retrofits representing only about a 1% savings. - Highlights: • We use a bottom-up modeling approach to quantify emission reduction from efficiency programs. • Heating and cooling are the main focus of this study. • We find that building codes lead to 17% reduction compare to the baseline. • Other programs analyzed concern district heat, building labeling and retrofits of buildings.

  17. Balancing the daylighting and energy performance of solar screens in residential desert buildings: Examination of screen axial rotation and opening aspect ratio

    KAUST Repository

    Sabry, Hanan; Sherif, Ahmed; Gadelhak, Mahmoud; Aly, Mohamed

    2014-01-01

    Solar screens are typically used to control solar access into building spaces. They proved their usefulness in improving the daylighting and energy performance of buildings in the hot arid desert environments which are endowed with abundance

  18. Application of fuzzy control in naturally ventilated buildings for summer conditions

    Energy Technology Data Exchange (ETDEWEB)

    Eftekhari, M.M. [Loughborough University (United Kingdom). Department of Civil and Building Engineering; Marjanovic, L.D. [University of Belgrade (Yugoslavia). Faculty of Mechanical Engineering

    2003-08-01

    The objective of this work is to develop a fuzzy controller for naturally ventilated buildings. Approximate reasoning has proven to be in many cases more successful control strategy than classically designed controlled scheme. In this paper the process of designing a supervisory control to provide thermal comfort and adequate air distribution inside a single-sided naturally ventilated test room is described. The controller is based on fuzzy logic reasoning and sets of linguistic rules in forms of IF-THEN rules are used. The inputs to the controller are the outside wind velocity, direction, outside and inside temperatures. The output is the position of the opening. A selection of membership functions for input and output variables are described and analysed. The control strategy consisting of the expert rules is then validated using experimental data from a naturally ventilated test room. The test room is located in a sheltered area and air flow inside the room, the air pressures and velocities across the openings together with indoor air temperature and velocity at four locations and six different levels were measured. Validation of the controller is performed in the test room by measuring the air distribution and thermal comfort inside the room with no control action. These data are then compared to the air temperature and velocity with the controller in action. The initial results are presented here, which shows that the controller is capable of providing better thermal comfort inside the room. (author)

  19. Improving electrical power systems reliability through locally controlled distributed curtailable load

    Science.gov (United States)

    Dehbozorgi, Mohammad Reza

    2000-10-01

    Improvements in power system reliability have always been of interest to both power companies and customers. Since there are no sizable electrical energy storage elements in electrical power systems, the generated power should match the load demand at any given time. Failure to meet this balance may cause severe system problems, including loss of generation and system blackouts. This thesis proposes a methodology which can respond to either loss of generation or loss of load. It is based on switching of electric water heaters using power system frequency as the controlling signal. The proposed methodology encounters, and the thesis has addressed, the following associated problems. The controller must be interfaced with the existing thermostat control. When necessary to switch on loads, the water in the tank should not be overheated. Rapid switching of blocks of load, or chattering, has been considered. The contributions of the thesis are: (A) A system has been proposed which makes a significant portion of the distributed loads connected to a power system to behave in a predetermined manner to improve the power system response during disturbances. (B) The action of the proposed system is transparent to the customers. (C) The thesis proposes a simple analysis for determining the amount of such loads which might be switched and relates this amount to the size of the disturbances which can occur in the utility. (D) The proposed system acts without any formal communication links, solely using the embedded information present system-wide. (E) The methodology of the thesis proposes switching of water heater loads based on a simple, localized frequency set-point controller. The thesis has identified the consequent problem of rapid switching of distributed loads, which is referred to as chattering. (F) Two approaches have been proposed to reduce chattering to tolerable levels. (G) A frequency controller has been designed and built according to the specifications required to

  20. Annunciation - building product team capabilities to support utility operational improvement

    International Nuclear Information System (INIS)

    Doucet, R.; Brown, R.; Trask, D.; Leger, R.; Mitchel, G.; Judd, R.; Davey, E.

    2003-01-01

    The purpose of this paper is to describe an AECL initiative to enhance the capabilities to assist utilities with undertaking annunciation improvement. This initiative was undertaken to complement a recent annunciation product upgrade, and in anticipation of developing commercial opportunities to assist Canadian and foreign utilities with control room annunciation improvement. Utilities are relying more and more on external engineering product and service providers to meet their plant support needs as they reduce in-house staffing to lower ongoing support costs. This evolving commercial environment places new demands on product and service providers, and provides new opportunities for increasing the proportion of product and service provider participation in plant improvement projects. This paper outlines recent AECL experience in the annunciation product area. The paper discusses the rationale for product support capability improvement, discusses the approaches undertaken, describes lessons learned, and outlines a proposed utility support model for assisting with future annunciation improvements. (author)

  1. Training Attentional Control Improves Cognitive and Motor Task Performance.

    Science.gov (United States)

    Ducrocq, Emmanuel; Wilson, Mark; Vine, Sam; Derakshan, Nazanin

    2016-10-01

    Attentional control is a necessary function for the regulation of goal-directed behavior. In three experiments we investigated whether training inhibitory control using a visual search task could improve task-specific measures of attentional control and performance. In Experiment 1 results revealed that training elicited a near-transfer effect, improving performance on a cognitive (antisaccade) task assessing inhibitory control. In Experiment 2 an initial far-transfer effect of training was observed on an index of attentional control validated for tennis. The principal aim of Experiment 3 was to expand on these findings by assessing objective gaze measures of inhibitory control during the performance of a tennis task. Training improved inhibitory control and performance when pressure was elevated, confirming the mechanisms by which cognitive anxiety impacts performance. These results suggest that attentional control training can improve inhibition and reduce taskspecific distractibility with promise of transfer to more efficient sporting performance in competitive contexts.

  2. Control technologies for quadruped walking robot to facilitate carrying operations in reactor buildings

    International Nuclear Information System (INIS)

    Suganuma, Naotaka; Uehara, Takuya; Nakamura, Norihito

    2014-01-01

    At the Fukushima Daiichi Nuclear Power Station of Tokyo Electric Power Co., Inc., which was seriously damaged by the Great East Japan Earthquake of March 11, 2011, it has been difficult for workers to approach the reactor buildings due to the hazardous surrounding environment. The need has therefore arsen for remote-controlled robots to facilitate inspection and restoration work on behalf of workers in such a high-level radiation environment. Toshiba has developed a quadruped walking robot that can carry various tools for decommissioning work. This robot is capable of maintaining its balance while walking on uneven surfaces, slopes, and stairs due to the adoption of control technologies to not only autonomously determine the leg trajectories and center of gravity, but also to correct the leg landing positions and posture with operator intervention according to the walking situation. It also offers high mobility and workability through a manipulation function that allows it to unload tools carried on its back storage area by using two of its legs like arms. This quadruped walking robot was applied to the investigation of suspected water leakage areas in the reactor building of Fukushima Daiichi Nuclear Power Station Unit 2 in December 2012. (author)

  3. Building 431 fire tests

    International Nuclear Information System (INIS)

    Alvares, N.J.; Beason, D.G.; Ford, H.W.; Magee, M.W.

    1977-01-01

    An extensive discussion of considerations for fire protection in the LLL mirror fusion test facility (MFTF) is presented. Because of the large volume and high bays of the building, sufficient data on fire detection is unavailable. Results of fire detection tests using controlled fire sources in the building are presented. Extensive data concerning the behavior of the building atmosphere are included. Candidate fire detection instrumentation and extinguishing systems for use in the building are briefly reviewed

  4. Design and development of Building energy simulation Software for prefabricated cabin type of industrial building (PCES)

    Science.gov (United States)

    Zhang, Jun; Li, Ri Yi

    2018-06-01

    Building energy simulation is an important supporting tool for green building design and building energy consumption assessment, At present, Building energy simulation software can't meet the needs of energy consumption analysis and cabinet level micro environment control design of prefabricated building. thermal physical model of prefabricated building is proposed in this paper, based on the physical model, the energy consumption calculation software of prefabricated cabin building(PCES) is developed. we can achieve building parameter setting, energy consumption simulation and building thermal process and energy consumption analysis by PCES.

  5. Changes in patient satisfaction related to hospital renovation: experience with a new clinical building.

    Science.gov (United States)

    Siddiqui, Zishan K; Zuccarelli, Rebecca; Durkin, Nowella; Wu, Albert W; Brotman, Daniel J

    2015-03-01

    There is an increasing trend toward designing hospitals with patient-centered features like reduced noise, improved natural light, visitor friendly facilities, well-decorated rooms, and hotel-like amenities. It has also been suggested that because patients cannot reliably distinguish positive experiences with the physical environment from positive experience with care, an improved hospital environment leads to higher satisfaction with physicians, nursing, food service, housekeeping, and higher overall satisfaction. To characterize changes in patient satisfaction that occurred when clinical services (comprised of stable nursing, physician, and unit teams) were relocated to a new clinical building with patient-centered features. We hypothesized that new building features would positively impact provider, ancillary staff, and overall satisfaction, as well as improved satisfaction with the facility. Natural experiment utilizing a pre-post design with concurrent controls. Academic tertiary care hospital. We included all patients discharged from 12 clinical units that relocated to the new clinical building who returned surveys in the 7.5-month period following the move. Premove baseline data were captured from the year prior to the move. Patients on unmoved clinical units who returned satisfaction surveys served as concurrent controls. Patient-centered design features incorporated into the new clinical building. All patients during the baseline period and control patients during the study period were located in usual patient rooms with standard hospital amenities. The primary outcome was satisfaction scores on the Press Ganey and Hospital Consumer Assessment of Healthcare Providers and Systems survey, dichotomized at highest category versus lower categories. We performed logistic regression to identify predictors of "top-box" scores. The move was associated with improved room- and visitor-related satisfaction without significant improvement in satisfaction with clinical

  6. Modernising ATLAS Software Build Infrastructure

    CERN Document Server

    Ritsch, Elmar; The ATLAS collaboration

    2017-01-01

    In the last year ATLAS has radically updated its software development infrastructure hugely reducing the complexity of building releases and greatly improving build speed, flexibility and code testing. The first step in this transition was the adoption of CMake as the software build system over the older CMT. This required the development of an automated translation from the old system to the new, followed by extensive testing and improvements. This resulted in a far more standard build process that was married to the method of building ATLAS software as a series of $12$ separate projects from Subversion. We then proceeded with a migration of the code base from Subversion to Git. As the Subversion repository had been structured to manage each package more or less independently there was no simple mapping that could be used to manage the migration into Git. Instead a specialist set of scripts that captured the software changes across official software releases was developed. With some clean up of the repositor...

  7. Rapid prototyping in order to improve building performance simulation for detailed design support

    NARCIS (Netherlands)

    Hopfe, C.J.; Hensen, J.L.M.; Stankov, P.

    2006-01-01

    Building performance simulation (BPS) is a powerful tool to support building and system designers in emulating how orientation, building type, HVAC system etc. interacts the overall building performance. Currently BPS is used only for code compliance in the detailed design, neither to make informed

  8. Building control in Australia; experiences with private sector involvement

    NARCIS (Netherlands)

    Van der Heijden, J.J.

    2008-01-01

    Facing issues with regulatory enforcement through municipal agencies, governments in Australia have reformed the enforcement of public building regulations. As a result, the private sector has been introduced in building regulatory enforcement regimes with differences amongst jurisdictions. In this

  9. Vision-based building energy diagnostics and retrofit analysis using 3D thermography and building information modeling

    Science.gov (United States)

    Ham, Youngjib

    The emerging energy crisis in the building sector and the legislative measures on improving energy efficiency are steering the construction industry towards adopting new energy efficient design concepts and construction methods that decrease the overall energy loads. However, the problems of energy efficiency are not only limited to the design and construction of new buildings. Today, a significant amount of input energy in existing buildings is still being wasted during the operational phase. One primary source of the energy waste is attributed to unnecessary heat flows through building envelopes during hot and cold seasons. This inefficiency increases the operational frequency of heating and cooling systems to keep the desired thermal comfort of building occupants, and ultimately results in excessive energy use. Improving thermal performance of building envelopes can reduce the energy consumption required for space conditioning and in turn provide building occupants with an optimal thermal comfort at a lower energy cost. In this sense, energy diagnostics and retrofit analysis for existing building envelopes are key enablers for improving energy efficiency. Since proper retrofit decisions of existing buildings directly translate into energy cost saving in the future, building practitioners are increasingly interested in methods for reliable identification of potential performance problems so that they can take timely corrective actions. However, sensing what and where energy problems are emerging or are likely to emerge and then analyzing how the problems influence the energy consumption are not trivial tasks. The overarching goal of this dissertation focuses on understanding the gaps in knowledge in methods for building energy diagnostics and retrofit analysis, and filling these gaps by devising a new method for multi-modal visual sensing and analytics using thermography and Building Information Modeling (BIM). First, to address the challenges in scaling and

  10. The Current State of Poison Control Centers in Pakistan and the Need for Capacity Building

    Directory of Open Access Journals (Sweden)

    Nadeem Khan

    2014-03-01

    Full Text Available Background: Chemical exposure is a major health problem globally. Poison control centers (PCCs play a leading role both in developed and developing countries in the prevention and control of poisonous chemical exposures. In this study, we aimed to assess the current state of PCCs in Pakistan and highlight capacity building needs in these centers. Methods: A cross-sectional survey of the two registered PCCs was done during August – December 2011. Necessary services of the PCCs were evaluated and the data were recorded on a predesigned checklist. Results: Both PCCs are affiliated to a tertiary care hospital. Clinical services to poisoned patients were available 24 hours a day / 7 days a week. Information on common local products was available to poison center staff. Both centers were involved in undergraduate and post graduate teaching. Telephone poison information service was not available in either of centers. There was a limited capacity for qualitative and analytical toxicology. Common antidotes were available. There were limited surveillance activities to capture toxic risks existing in the community and also a deficiency was observed in chemical disaster planning. Conclusion: PCCs in Pakistan need capacity building for specialized training in toxicology, toxicovigilance, chemical disaster planning, analytical laboratory tests and telephone service for consultation in poisoning cases.   How to cite this article: Khan NU, Mir MU, Khan UR, Khan AR, Ara J, Raja K, et al. The Current State of Poison Control Centers in Pakistan and the Need for Capacity Building. Asia Pac J Med Toxicol 2014;3:31-5.

  11. Stability and vibration control in synchrotron light source buildings

    Energy Technology Data Exchange (ETDEWEB)

    Godel, J.B.

    1991-01-01

    Synchrotron light sources have undergone three generations of development in the last two decades. The National Synchrotron Light Source (NSLS) at Brookhaven National Laboratory has two second generation'' storage rings that currently provide the world's most intense sources of photons in the VUV and X-ray spectral ranges. There are almost 90 beam lines serving a community of 2600 scientists from 370 institutions. They are engaged in basic and applied research in physics, chemistry, biology, medicine, materials science and various technologies. When design of the NSLS began in 1977, emphasis was given to the stability of the concrete slab on which the storage rings and experimental beam lines were placed. Stability is the result of controlling: vibration from sources internal and external to the building, thermal effects of air and water temperature variations, foundation settlement and contact between the slab and underlying subsoil. With the advent of new research where highly focused beams of x-rays must be placed on increasingly smaller targets located 35 meters or more from the source, and the development of x-ray lithography with resolutions approaching 0.1 micron at chip exposure stations, even greater attention to stability is required in building designs. This paper will review the results of the successful NSLS experience and give an integrated design approach that includes elements which contribute to instabilities, and the means available to reduce them to acceptable levels.

  12. Stability and vibration control in synchrotron light source buildings

    Energy Technology Data Exchange (ETDEWEB)

    Godel, J.B.

    1991-12-31

    Synchrotron light sources have undergone three generations of development in the last two decades. The National Synchrotron Light Source (NSLS) at Brookhaven National Laboratory has two ``second generation`` storage rings that currently provide the world`s most intense sources of photons in the VUV and X-ray spectral ranges. There are almost 90 beam lines serving a community of 2600 scientists from 370 institutions. They are engaged in basic and applied research in physics, chemistry, biology, medicine, materials science and various technologies. When design of the NSLS began in 1977, emphasis was given to the stability of the concrete slab on which the storage rings and experimental beam lines were placed. Stability is the result of controlling: vibration from sources internal and external to the building, thermal effects of air and water temperature variations, foundation settlement and contact between the slab and underlying subsoil. With the advent of new research where highly focused beams of x-rays must be placed on increasingly smaller targets located 35 meters or more from the source, and the development of x-ray lithography with resolutions approaching 0.1 micron at chip exposure stations, even greater attention to stability is required in building designs. This paper will review the results of the successful NSLS experience and give an integrated design approach that includes elements which contribute to instabilities, and the means available to reduce them to acceptable levels.

  13. Stability and vibration control in synchrotron light source buildings

    International Nuclear Information System (INIS)

    Godel, J.B.

    1991-01-01

    Synchrotron light sources have undergone three generations of development in the last two decades. The National Synchrotron Light Source (NSLS) at Brookhaven National Laboratory has two ''second generation'' storage rings that currently provide the world's most intense sources of photons in the VUV and X-ray spectral ranges. There are almost 90 beam lines serving a community of 2600 scientists from 370 institutions. They are engaged in basic and applied research in physics, chemistry, biology, medicine, materials science and various technologies. When design of the NSLS began in 1977, emphasis was given to the stability of the concrete slab on which the storage rings and experimental beam lines were placed. Stability is the result of controlling: vibration from sources internal and external to the building, thermal effects of air and water temperature variations, foundation settlement and contact between the slab and underlying subsoil. With the advent of new research where highly focused beams of x-rays must be placed on increasingly smaller targets located 35 meters or more from the source, and the development of x-ray lithography with resolutions approaching 0.1 micron at chip exposure stations, even greater attention to stability is required in building designs. This paper will review the results of the successful NSLS experience and give an integrated design approach that includes elements which contribute to instabilities, and the means available to reduce them to acceptable levels

  14. The study of thermal processes in control systems of heat consumption of buildings

    Science.gov (United States)

    Tsynaeva, E.; A, Tsynaeva

    2017-11-01

    The article discusses the main thermal processes in the automated control systems for heat consumption (ACSHC) of buildings, schematic diagrams of these systems, mathematical models used for description of thermal processes in ACSHC. Conducted verification represented by mathematical models. It was found that the efficiency of the operation of ACSHC depend from the external and internal factors. Numerical study of dynamic modes of operation of ACSHC.

  15. Improving Blood Pressure Control Using Smart Technology.

    Science.gov (United States)

    Ciemins, Elizabeth L; Arora, Anupama; Coombs, Nicholas C; Holloway, Barbara; Mullette, Elizabeth J; Garland, Robin; Walsh Bishop-Green, Shannon; Penso, Jerry; Coon, Patricia J

    2018-03-01

    The authors sought to determine if wireless oscillometric home blood pressure monitoring (HBPM) that integrates with smartphone technology improves blood pressure (BP) control among patients with new or existing uncontrolled hypertension (HTN). A prospective observational cohort study monitored BP control before and after an educational intervention and introduction to HBPM. Patients in the intervention group were instructed to track their BP using a smartphone device three to seven times per week. Cases were matched to controls at a 1:3 allocation ratio on several clinical characteristics over the same period and received usual care. The proportion of patients with controlled BP was compared between groups at pre- and postintervention, ∼9 months later. Results and Materials: The total study population included 484 patients with mean age 60 years (range 23-102 years), 47.7% female, and 84.6% Caucasian. Mean preintervention BP was 137.8 mm Hg systolic and 81.4 mm Hg diastolic. Mean BP control rates improved for patients who received HBPM from 42% to 67% compared with matched control patients who improved from 59% to 67% (p technology has the potential to improve HTN management among patients with uncontrolled or newly diagnosed HTN. Technology needs to be easy to use and operate and would work best when integrated into local electronic health record systems. In systems without this capability, medical assistants or other personnel may be trained to facilitate the process. Nurse navigator involvement was instrumental in bridging communication between the patients and provider.

  16. Sensitivity analysis for daily building operation from the energy and thermal comfort standpoint

    Directory of Open Access Journals (Sweden)

    Ignjatović Marko G.

    2016-01-01

    Full Text Available Improving energy performance of buildings is one of the most important tasks for reaching sustainability. Assessing building energy consumption is performed more often with specialized simulation tools. Sensitivity analysis proved to be a valuable tool for creating more reliable and realistic building energy models and better buildings. This paper briefly describes the methodology for running global sensitivity analysis and tools that can be used, and presents the results of such an analysis conducted for winter period, daily, on input variables covering a real building's operation, control and occupant related parameters that affect both thermal comfort and heating energy consumption. Two sets of inputs were created. The only difference between these sets is an addition of clothing insulation and occupant heat gain as input variables. The reference building was simulated for three distinctive winter weeks. Two additional input variables have an effect especially on thermal comfort, but they do not disturb the relative order of other influential input variables. The common influential variables for both energy consumption and thermal comfort were identified and are: air handling unit sup-ply temperature and airflow rate and control system related parameters. This can help in future research into implementing the simulation-assisted optimized operation in real buildings. [Projekat Ministarstva nauke Republike Srbije, br. TR-33051: The concept of sustainable energy supply of settlements with energy efficient buildings

  17. Haptic shared control improves hot cell remote handling despite controller inaccuracies

    NARCIS (Netherlands)

    van Oosterhout, J.; Abbink, D. A.; Koning, J. F.; Boessenkool, H.; Wildenbeest, J. G. W.; Heemskerk, C. J. M.

    2013-01-01

    A promising solution to improve task performance in ITER hot cell remote handling is the use of haptic shared control. Haptic shared control can assist the human operator along a safe and optimal path with continuous guiding forces from an intelligent autonomous controller. Previous research tested

  18. Network-Based Real-time Integrated Fire Detection and Alarm (FDA) System with Building Automation

    Science.gov (United States)

    Anwar, F.; Boby, R. I.; Rashid, M. M.; Alam, M. M.; Shaikh, Z.

    2017-11-01

    Fire alarm systems have become increasingly an important lifesaving technology in many aspects, such as applications to detect, monitor and control any fire hazard. A large sum of money is being spent annually to install and maintain the fire alarm systems in buildings to protect property and lives from the unexpected spread of fire. Several methods are already developed and it is improving on a daily basis to reduce the cost as well as increase quality. An integrated Fire Detection and Alarm (FDA) systems with building automation was studied, to reduce cost and improve their reliability by preventing false alarm. This work proposes an improved framework for FDA system to ensure a robust intelligent network of FDA control panels in real-time. A shortest path algorithmic was chosen for series of buildings connected by fiber optic network. The framework shares information and communicates with each fire alarm panels connected in peer to peer configuration and declare the network state using network address declaration from any building connected in network. The fiber-optic connection was proposed to reduce signal noises, thus increasing large area coverage, real-time communication and long-term safety. Based on this proposed method an experimental setup was designed and a prototype system was developed to validate the performance in practice. Also, the distributed network system was proposed to connect with an optional remote monitoring terminal panel to validate proposed network performance and ensure fire survivability where the information is sequentially transmitted. The proposed FDA system is different from traditional fire alarm and detection system in terms of topology as it manages group of buildings in an optimal and efficient manner.Introduction

  19. A Hybrid Backward-Forward Iterative Model for Improving Capacity Building of Earth Observations for Sustainable Societal Application

    Science.gov (United States)

    Hossain, F.; Iqbal, N.; Lee, H.; Muhammad, A.

    2015-12-01

    When it comes to building durable capacity for implementing state of the art technology and earth observation (EO) data for improved decision making, it has been long recognized that a unidirectional approach (from research to application) often does not work. Co-design of capacity building effort has recently been recommended as a better alternative. This approach is a two-way street where scientists and stakeholders engage intimately along the entire chain of actions from design of research experiments to packaging of decision making tools and each party provides an equal amount of input. Scientists execute research experiments based on boundary conditions and outputs that are defined as tangible by stakeholders for decision making. On the other hand, decision making tools are packaged by stakeholders with scientists ensuring the application-specific science is relevant. In this talk, we will overview one such iterative capacity building approach that we have implemented for gravimetry-based satellite (GRACE) EO data for improved groundwater management in Pakistan. We call our approach a hybrid approach where the initial step is a forward model involving a conventional short-term (3 day) capacity building workshop in the stakeholder environment addressing a very large audience. In this forward model, the net is cast wide to 'shortlist' a set of highly motivated stakeholder agency staffs who are then engaged more directly in 1-1 training. In the next step (the backward model), these short listed staffs are then brought back in the research environment of the scientists (supply) for 1-1 and long-term (6 months) intense brainstorming, training, and design of decision making tools. The advantage of this backward model is that it allows for a much better understanding for scientists of the ground conditions and hurdles of making a EO-based scientific innovation work for a specific decision making problem that is otherwise fundamentally impossible in conventional

  20. Vibration control of bridges and buildings hybrid system. Kyoryoter dot tatemono no shindo seigyo hybrid hoshiki

    Energy Technology Data Exchange (ETDEWEB)

    Tanida, K. (Ishikawajima-Harima Heavy Industries Co. Ltd., Tokyo (Japan))

    1991-11-15

    Multistory buildings, suspension bridges, and cable stayed bridges tend to become huge, and technology of controlling their vibration caused by strong winds and earthquakes is becoming an important subject for study. A description is made on a hybrid system which is a combination of the conventional passive system and active system, having merits of both of the systems. Verification test made using a model and an example of application to an actual bridge are introduced. This hybrid control system has been applied to the main tower of the cable stayed bridge on Route 12 of the Tokyo expressway. It is installed and in operation on the top of the tower to improve the workability, and can decrease the vibration of the tower caused by vortical excitation produced during the construction of the main tower. With the hybrid system, the actuator capacity can be reduced to about 1/5 for the similar damping performance to that of the active system with the same mass ratio. In addition, the weight of the equipment can be nearly halved in comparison with the passive system. Moreover, it has such a high safety characteristic as being used as a passive system when power supply is cut off because the controlling force of the system is smaller as compared with the active system. 2 refs., 11 figs.

  1. Improved design of HIRFL-CSR EVME bus controller

    International Nuclear Information System (INIS)

    Zhao Long; Liu Wufeng; Qiao Weimin; Jing Lan

    2009-01-01

    The EVME bus controller which is a key component of the HIRFL-CSR control system was improved. Besides reconfiguring the embedded Linux, a utility program was developed for data exchange between the controller and the database. The bus controller is based on ARM920T(ARM9) micro processor which is BGA packaged. The bus controller has the universal interface of VGA display, keyboard, and mouse. The backboard interface logic is programmed in an in-system configurable FPGA device. The bus can drive high current up to 64 mA, with the flexibility of the programmable signal definitions. All the improved performance helped the EVME bus controller play a crucial role in HIRFL-CSR control system. (authors)

  2. Improved Droop Control Strategy for Grid-Connected Inverters

    DEFF Research Database (Denmark)

    Abusara, Mohammad; Sharkh, Suleiman; Guerrero, Josep M.

    2015-01-01

    An improved control strategy for grid-connected inverters within microgrids is presented in this paper. The strategy is based on the classical P-ω and Q-V droop method. The improvement in the proposed control strategy is twofold: Firstly, the transient response of the droop controller is improved...... by replacing the traditional method of measuring average power, which is based on using a first order low pass filter, by a real time integration filter. This is shown to reduce the imported transient energy when connecting to the grid. Secondly, the steady state output current quality is improved by utilising...... a virtual inductance, which is shown to reject grid voltage harmonics disturbance and thus improve the output current THD. A small signal model of the inverter based on the transfer function approach is developed to analyse is stability and determine droop gains. Simulation and experimental results...

  3. TLCD Parametric Optimization for the Vibration Control of Building Structures Based on Linear Matrix Inequality

    OpenAIRE

    Huo, Linsheng; Qu, Chunxu; Li, Hongnan

    2014-01-01

    Passive liquid dampers have been used to effectively reduce the dynamic response of civil infrastructures subjected to earthquakes or strong winds. The design of liquid dampers for structural vibration control involves the determination of the optimal parameters. This paper presents an optimal design methodology for tuned liquid column dampers (TLCDs) based on the H∞ control theory. A practical structure, Dalian Xinghai Financial Business Building, is used to illustrate the feasibility of the...

  4. Team building and diagnostic training

    International Nuclear Information System (INIS)

    Bulmer, S.

    1987-01-01

    While developing a commercial training program to improve teamwork in control room crews, General Electric's Nuclear Training Services made an important discovery. Traditional training methods for developing teamwork and enhancing diagnostics capabilities are incomplete. Traditional methods generally help, but fail to fulfill the long-term needs of most teams. Teamwork has been treated as a short-term performance problem. Traditional diagnostic training suffers from a similar problem. Too often, it covers only the basic principles of decision-making, ignoring the development of expert diagnostic capabilities. In response to this discovery, they have developed comprehensive training in Team Building and Diagnostics

  5. An Observer-Based Controller with a LMI-Based Filter against Wind-Induced Motion for High-Rise Buildings

    Directory of Open Access Journals (Sweden)

    Chao-Jun Chen

    2017-01-01

    Full Text Available Active mass damper (AMD control system is proposed for high-rise buildings to resist a strong wind. However, negative influence of noise in sensors impedes the application of AMD systems in practice. To reduce the adverse influence of noise on AMD systems, a Kalman filter and a linear matrix inequality- (LMI- based filter are designed. Firstly, a ten-year return period fluctuating wind load is simulated by mixed autoregressive-moving average (MARMA method, and its reliability is tested by wind speed power spectrum and correlation analysis. Secondly, a designed state observer with different filters uses wind-induced acceleration responses of a high-rise building as the feedback signal that includes noise to calculate control force in this paper. Finally, these methods are applied to a numerical example of a high-rise building and an experiment of a single span four-storey steel frame. Both numerical and experimental results are presented to verify that both Kalman filter and LMI-based filter can effectively suppress noise, but only the latter can guarantee the stability of AMD parameters.

  6. Green Buildings and Health.

    Science.gov (United States)

    Allen, Joseph G; MacNaughton, Piers; Laurent, Jose Guillermo Cedeno; Flanigan, Skye S; Eitland, Erika Sita; Spengler, John D

    2015-09-01

    Green building design is becoming broadly adopted, with one green building standard reporting over 3.5 billion square feet certified to date. By definition, green buildings focus on minimizing impacts to the environment through reductions in energy usage, water usage, and minimizing environmental disturbances from the building site. Also by definition, but perhaps less widely recognized, green buildings aim to improve human health through design of healthy indoor environments. The benefits related to reduced energy and water consumption are well-documented, but the potential human health benefits of green buildings are only recently being investigated. The objective of our review was to examine the state of evidence on green building design as it specifically relates to indoor environmental quality and human health. Overall, the initial scientific evidence indicates better indoor environmental quality in green buildings versus non-green buildings, with direct benefits to human health for occupants of those buildings. A limitation of much of the research to date is the reliance on indirect, lagging and subjective measures of health. To address this, we propose a framework for identifying direct, objective and leading "Health Performance Indicators" for use in future studies of buildings and health.

  7. Energy Efficiency Potential in Existing Commercial Buildings: Review of Selected Recent Studies

    Energy Technology Data Exchange (ETDEWEB)

    Belzer, David B.

    2009-04-03

    This report reviews six recent studies (from 2002 through 2006) by states and utilities to assess the energy saving potential in existing commercial buildings. The studies cover all or portions of California, Connecticut, Vermont, Colorado, Illinois, and the Pacific Northwest. The studies clearly reveal that lighting remains the single largest and most cost effective end use that can be reduced to save energy. Overall the study indicated that with existing technologies and costs, a reasonable range of economic savings potential in existing commercial buildings is between 10 and 20 percent of current energy use. While not a focus of the study, an additional conclusion is that implementation of commercial building monitoring and controls would also play an important role in the nation’s efforts to improve energy efficiency of existing buildings.

  8. Strategies for Demand Response in Commercial Buildings

    Energy Technology Data Exchange (ETDEWEB)

    Watson, David S.; Kiliccote, Sila; Motegi, Naoya; Piette, Mary Ann

    2006-06-20

    This paper describes strategies that can be used in commercial buildings to temporarily reduce electric load in response to electric grid emergencies in which supplies are limited or in response to high prices that would be incurred if these strategies were not employed. The demand response strategies discussed herein are based on the results of three years of automated demand response field tests in which 28 commercial facilities with an occupied area totaling over 11 million ft{sup 2} were tested. Although the demand response events in the field tests were initiated remotely and performed automatically, the strategies used could also be initiated by on-site building operators and performed manually, if desired. While energy efficiency measures can be used during normal building operations, demand response measures are transient; they are employed to produce a temporary reduction in demand. Demand response strategies achieve reductions in electric demand by temporarily reducing the level of service in facilities. Heating ventilating and air conditioning (HVAC) and lighting are the systems most commonly adjusted for demand response in commercial buildings. The goal of demand response strategies is to meet the electric shed savings targets while minimizing any negative impacts on the occupants of the buildings or the processes that they perform. Occupant complaints were minimal in the field tests. In some cases, ''reductions'' in service level actually improved occupant comfort or productivity. In other cases, permanent improvements in efficiency were discovered through the planning and implementation of ''temporary'' demand response strategies. The DR strategies that are available to a given facility are based on factors such as the type of HVAC, lighting and energy management and control systems (EMCS) installed at the site.

  9. "The magic is in the mix": lessons from research capacity building in the Canadian tobacco control community, 2000-2010.

    Science.gov (United States)

    Riley, Barbara L; Viehbeck, Sarah M; Cohen, Joanna E; Chia, Marie C

    2013-02-25

    Global public health issues, including tobacco use, will be addressed most effectively if informed by relevant evidence. Additional capacity is needed to undertake and sustain relevant and rigorous research that will inform and enable learning from interventions. Despite the undisputed importance of research capacity building (RCB), there is little evidence about how to create relevant capacities. RCB for tobacco control in Canada from 2000-2010 offers a rich experience from which to learn. Lessons were derived using structured data collection from seven capacity-building initiatives and an invitational workshop, at which reflections on major contributions and lessons learned were discussed by initiative leads. Ten years of RCB for tobacco control in Canada revealed the importance of a) taking an organic approach to RCB, b) targeting and sustaining investments in a mix of RCB activities, c) vision and collaborative leadership at organizational and initiative levels, d) a focus on building community, and e) studying capacity building. The experience also provided tangible examples of RCB initiatives and how independent investments can be linked to create a coherent approach. Looking ahead, promising directions may include positioning RCB within a broader context of "field building", focusing on practical approaches to sustainability, and enhancing research on RCB.

  10. Primary energy implications of different design strategies for an apartment building

    International Nuclear Information System (INIS)

    Tettey, Uniben Yao Ayikoe; Dodoo, Ambrose; Gustavsson, Leif

    2016-01-01

    In this study, we explored the effects of different design strategies on final and primary energy use for production and operation of a newly constructed apartment building. We analysed alternatives of the building “As built” as well as to energy efficiency levels of the Swedish building code and passive house criteria. Our approach is based on achieving improved versions of the building alternatives from combination of design strategies giving the lowest space heating and cooling demand and primary energy use, respectively. We found that the combination of design strategies resulting in the improved building alternatives varies depending on the approach. The improved building alternatives gave up to 19–34% reduction in operation primary energy use compared to the initial alternatives. The share of production primary energy use of the improved building alternatives was 39–54% of the total primary energy use for production, space heating, space cooling and ventilation over 50-year lifespan, compared to 31–42% for the initial alternatives. This study emphasises the importance of incorporating appropriate design strategies to reduce primary energy use for building operation and suggests that combining such strategies with careful choice of building frame materials could result in significant primary energy savings in the built environment. - Highlights: • Primary energy implications of different design strategies were analysed. • The improved building alternatives had 19–34% lower operation primary energy use. • The improved building alternatives had higher production primary energy use. • Still, the improved building alternatives had lower overall primary energy use. • Design strategies should be combined with careful building frame material choice.

  11. Evaluation of Building Energy Saving Through the Development of Venetian Blinds' Optimal Control Algorithm According to the Orientation and Window-to-Wall Ratio

    Science.gov (United States)

    Kwon, Hyuk Ju; Yeon, Sang Hun; Lee, Keum Ho; Lee, Kwang Ho

    2018-02-01

    As various studies focusing on building energy saving have been continuously conducted, studies utilizing renewable energy sources, instead of fossil fuel, are needed. In particular, studies regarding solar energy are being carried out in the field of building science; in order to utilize such solar energy effectively, solar radiation being brought into the indoors should be acquired and blocked properly. Blinds are a typical solar radiation control device that is capable of controlling indoor thermal and light environments. However, slat-type blinds are manually controlled, giving a negative effect on building energy saving. In this regard, studies regarding the automatic control of slat-type blinds have been carried out for the last couple of decades. Therefore, this study aims to provide preliminary data for optimal control research through the controlling of slat angle in slat-type blinds by comprehensively considering various input variables. The window area ratio and orientation were selected as input variables. It was found that an optimal control algorithm was different among each window-to-wall ratio and window orientation. In addition, through comparing and analyzing the building energy saving performance for each condition by applying the developed algorithms to simulations, up to 20.7 % energy saving was shown in the cooling period and up to 12.3 % energy saving was shown in the heating period. In addition, building energy saving effect was greater as the window area ratio increased given the same orientation, and the effects of window-to-wall ratio in the cooling period were higher than those of window-to-wall ratio in the heating period.

  12. Natural ventilation systems to enhance sustainability in buildings: a review towards zero energy buildings in schools

    Science.gov (United States)

    Gil-Baez, Maite; Barrios-Padura, Ángela; Molina-Huelva, Marta; Chacartegui, Ricardo

    2017-11-01

    European regulations set the condition of Zero Energy Buildings for new buildings since 2020, with an intermediate milestone in 2018 for public buildings, in order to control greenhouse gases emissions control and climate change mitigation. Given that main fraction of energy consumption in buildings operation is due to HVAC systems, advances in its design and operation conditions are required. One key element for energy demand control is passive design of buildings. On this purpose, different recent studies and publications analyse natural ventilation systems potential to provide indoor air quality and comfort conditions minimizing electric power consumption. In these passive systems are of special relevance their capacities as passive cooling systems as well as air renovation systems, especially in high-density occupied spaces. With adequate designs, in warm/mild climates natural ventilation systems can be used along the whole year, maintaining indoor air quality and comfort conditions with small support of other heating/cooling systems. In this paper is analysed the state of the art of natural ventilation systems applied to high density occupied spaces with special focus on school buildings. The paper shows the potential and applicability of these systems for energy savings and discusses main criteria for their adequate integration in school building designs.

  13. Development and Application of a ZigBee-Based Building Energy Monitoring and Control System

    Directory of Open Access Journals (Sweden)

    Changhai Peng

    2014-01-01

    Full Text Available Increasing in energy consumption, particularly with the ever-increasing growth and development of urban systems, has become a major concern in most countries. In this paper, the authors propose a cost-effective ZigBee-based building energy monitoring and control system (ZBEMCS, which is composed of a gateway, a base station, and sensors. Specifically, a new hardware platform for power sensor nodes is developed to perform both local/remote power parameter measurement and power on/off switching for electric appliances. The experimental results show that the ZBEMCS can easily monitor energy usage with a high level of accuracy. Two typical applications of ZBEMCS such as subentry metering and household metering of building energy are presented. The former includes lighting socket electricity, HVAC electricity, power electricity and special electricity. The latter includes household metering according to the campus’s main function zone and each college or department. Therefore, this system can be used for energy consumption monitoring, long-term energy conservation planning, and the development of automated energy conservation for building applications.

  14. Influence of Pressure Build-Up Time of Compression Chamber on Improving the Operation Frequency of a Single-Piston Hydraulic Free-Piston Engine

    Directory of Open Access Journals (Sweden)

    Hai-bo Xie

    2013-01-01

    Full Text Available A single-piston hydraulic free-piston engine with a two-cylinder four-stroke diesel engine as its driver is introduced. It takes the free-piston assembly a certain time to move after the pressure in the compression chamber starts to increase. The time difference between the pressure increasing and the piston starting to move is defined as the pressure build-up time. The characteristics of the pressure build-up time and its influence on the performance of the free-piston engine are introduced and analyzed. Based on the basic law of dynamics of the free-piston assembly, the parameters which influence the pressure build-up time are analyzed. And then improvement and optimization are proposed to shorten the pressure build-up time.

  15. Improved model for the calculation of the energy demand for the energetic evaluation of non-residential buildings; Verbessertes Modell zur Berechnung des Energiebedarfs zur energetischen Bewertung von Nichtwohngebaeuden

    Energy Technology Data Exchange (ETDEWEB)

    Kempf, Heike

    2011-06-29

    The German Industrial Norm DIN V 18599, which is related to the German Energieeinsparverordnung (EnEV), addresses the energetic evaluation of nonresidential buildings. With its more than 800 pages it is very voluminous and complex. Due to the complex subject of DIN V 18599, discrepancies causing considerable differences in the overall result are possible. A further weak point in the current procedure for energetic evaluation is the composition of individual zones within the considered buildings and the subsequent effort for acquisition and determination of values needed during computation. Before a non-residential building can be evaluated energetically, the building has to be divided into individual areas with identical boundary conditions (zoning). The process of zoning is an elementary step within the balancing according to DIN V 18599. It provides, beside the determination of geometrical data, the basis for further computations. Thus, the energetic evaluation of non-residential buildings is based on the so-called Multiple-Zone-Model as described in DIN V 18599. Zoning, especially the gathering of data connected to it, is a very time-consuming task, because the building areas and volumes have to be determined for each zone individually. Nevertheless, zoning is mandatory because of the often completely different net energies to be provided. In order to reduce this effort, a Single-Zone-Model was added to the Energieeinsparverordnung, which may be used under certain preconditions. However, in comparison to the Multi-Zone-Model, differences in the evaluation results are possible. The elimination of weak points, that is to say the difference in time and result, is reached by the computation of the annual primary energy demand on the basis of an Improved-Single-Zone-Model. The Improved-Single-Zone-Model works with improved use values and includes computations of the Single-Zone-Model as well as the Multiple-Zone-Model. The advantage of the Improved

  16. Overview of the Westinghouse Small Modular Reactor building layout

    Energy Technology Data Exchange (ETDEWEB)

    Cronje, J. M. [Westinghouse Electric Company LLC, Centurion (South Africa); Van Wyk, J. J.; Memmott, M. J. [Westinghouse Electric Company LLC, Cranberry Township, PA (United States)

    2012-07-01

    above grade. This is an improvement to conventional reactor design since it prevents failures of multiple trains during floods or fires and other external events. The main control room is located below grade, with a remote shutdown room in a different quadrant. All defense in depth systems are placed on the nuclear island, primarily above grade, while the safety systems are located on lower floors. The economics of the Westinghouse SMR challenges the established approach of large Light Water Reactors (LWR) that utilized the economies of scale to reach economic competitiveness. To serve the market expectation of smaller capital investment and cost competitive energy, a modular design approach is implemented within the Westinghouse SMR. The Westinghouse SMR building layout integrates the three basic design constraints of modularization; transportation, handling and module-joining technology. (authors)

  17. Analyses of Public Utility Building - Students Designs, Aimed at their Energy Efficiency Improvement

    Science.gov (United States)

    Wołoszyn, Marek Adam

    2017-10-01

    Public utility buildings are formally, structurally and functionally complex entities. Frequently, the process of their design involves the retroactive reconsideration of energy engineering issues, once a building concept has already been completed. At that stage, minor formal corrections are made along with the design of the external layer of the building in order to satisfy applicable standards. Architecture students do the same when designing assigned public utility buildings. In order to demonstrate energy-related defects of building designs developed by students, the conduct of analyses was proposed. The completed designs of public utility buildings were examined with regard to energy efficiency of the solutions they feature through the application of the following programs: Ecotect, Vasari, and in case of simpler analyses ArchiCad program extensions were sufficient.

  18. Development of Ecological Buildings

    Directory of Open Access Journals (Sweden)

    Andrius Keizikas

    2011-04-01

    Full Text Available The article presents research on ecological buildings and their influence on the constructional sphere. The aim of the paper is to reveal the essence of ecological architecture showing substantial progress and its potential to stimulate architectural and technological growth. The article also describes relations between the ideas of ecological buildings and the ‘passive house’ concepts and aspects of development as well as describes the possibilities of improving building sustainability and energy efficiency. Article in Lithuanian

  19. Networked Lighting Power and Control Platform for Solid State Lighting in Commercial Office Applications

    Energy Technology Data Exchange (ETDEWEB)

    Covaro, Mark [Redwood Systems, Inc., Fremont, CA (United States)

    2012-08-15

    Redwood Systems' objective is to further accelerate the acceptance of solid state lighting (SSL) with fine grain and easy-to-use control. In addition, increased and improved sensor capability allows the building owner or user to gather data on the environment within the building. All of this at a cost equal to or less than that of code-compliant fluorescent lighting. The grant we requested and received has been used to further enhance the system with power conversion efficiency improvements and additional features. Some of these features, such as building management system (BMS) control, allow additional energy savings in non-lighting building systems.

  20. Measures taken by the building authorities in order to reduce radiation risks in buildings

    International Nuclear Information System (INIS)

    Tell, Wilhelm

    1980-01-01

    The Swedish radon commission has recommended that the risk of radiation and radon emission from the ground be considered when planning for new settlements, building materials with high radioactivity not be allowed for new buildings, and existing buildings with high levels of radioactivity be traced and improved. Maps of gamma radiation from the ground are being worked out showing areas with levels higher than 30 μR/h. Within such areas buildings should be planned taking the ultimate limits for new buildings into account. Building permits are granted for construction of new structures or extensive renovations if it can be shown that radiation levels within the buildings will be within legal limits: 70 Bq/m 3 for new buildings and 200 Bq/m 3 for existing ones. The radon commission has suggested that buildings with a radon daughter concentration exceeding 400 Bq/m 3 should be found and levels reduced to 200 Bq/m 3

  1. Can better modelling improve tokamak control?

    International Nuclear Information System (INIS)

    Lister, J.B.; Vyas, P.; Ward, D.J.; Albanese, R.; Ambrosino, G.; Ariola, M.; Villone, F.; Coutlis, A.; Limebeer, D.J.N.; Wainwright, J.P.

    1997-01-01

    The control of present day tokamaks usually relies upon primitive modelling and TCV is used to illustrate this. A counter example is provided by the successful implementation of high order SISO controllers on COMPASS-D. Suitable models of tokamaks are required to exploit the potential of modern control techniques. A physics based MIMO model of TCV is presented and validated with experimental closed loop responses. A system identified open loop model is also presented. An enhanced controller based on these models is designed and the performance improvements discussed. (author) 5 figs., 9 refs

  2. Four centuries on from Bacon: progress in building health research systems to improve health systems?

    Science.gov (United States)

    Hanney, Stephen R; González-Block, Miguel A

    2014-09-23

    In 1627, Francis Bacon's New Atlantis described a utopian society in which an embryonic research system contributed to meeting the needs of the society. In this editorial, we use some of the aspirations described in New Atlantis to provide a context within which to consider recent progress in building health research systems to improve health systems and population health. In particular, we reflect on efforts to build research capacity, link research to policy, identify the wider impacts made by the science, and generally build fully functioning research systems to address the needs identified. In 2014, Health Research Policy and Systems has continued to publish one-off papers and article collections covering a range of these issues in both high income countries and low- and middle-income countries. Analysis of these contributions, in the context of some earlier ones, is brought together to identify achievements, challenges and possible ways forward. We show how 2014 is likely to be a pivotal year in the development of ways to assess the impact of health research on policies, practice, health systems, population health, and economic benefits.We demonstrate how the increasing focus on health research systems will contribute to realising the hopes expressed in the World Health Report, 2013, namely that all nations would take a systematic approach to evaluating the outputs and applications resulting from their research investment.

  3. "Watts per person" paradigm to design net zero energy buildings: Examining technology interventions and integrating occupant feedback to reduce plug loads in a commercial building

    Science.gov (United States)

    Yagi Kim, Mika

    As building envelopes have improved due to more restrictive energy codes, internal loads have increased largely due to the proliferation of computers, electronics, appliances, imaging and audio visual equipment that continues to grow in commercial buildings. As the dependency on the internet for information and data transfer increases, the electricity demand will pose a challenge to design and operate Net Zero Energy Buildings (NZEBs). Plug Loads (PLs) as a proportion of the building load has become the largest non-regulated building energy load and represents the third highest electricity end-use in California's commercial office buildings, accounting for 23% of the total building electricity consumption (Ecova 2011,2). In the Annual Energy Outlook 2008 (AEO2008), prepared by the Energy Information Administration (EIA) that presents long-term projections of energy supply and demand through 2030 states that office equipment and personal computers are the "fastest growing electrical end uses" in the commercial sector. This thesis entitled "Watts Per Person" Paradigm to Design Net Zero Energy Buildings, measures the implementation of advanced controls and behavioral interventions to study the reduction of PL energy use in the commercial sector. By integrating real world data extracted from an energy efficient commercial building of its energy use, the results produce a new methodology on estimating PL energy use by calculating based on "Watts Per Person" and analyzes computational simulation methods to design NZEBs.

  4. Controlling Capital Costs in High Performance Office Buildings: A Review of Best Practices for Overcoming Cost Barriers

    Energy Technology Data Exchange (ETDEWEB)

    Pless, S.; Torcellini, P.

    2012-05-01

    This paper presents a set of 15 best practices for owners, designers, and construction teams of office buildings to reach high performance goals for energy efficiency, while maintaining a competitive budget. They are based on the recent experiences of the owner and design/build team for the Research Support Facility (RSF) on National Renewable Energy Facility's campus in Golden, CO, which show that achieving this outcome requires each key integrated team member to understand their opportunities to control capital costs.

  5. Modernising ATLAS Software Build Infrastructure

    CERN Document Server

    Gaycken, Goetz; The ATLAS collaboration

    2017-01-01

    In the last year ATLAS has radically updated its software development infrastructure hugely reducing the complexity of building releases and greatly improving build speed, flexibility and code testing. The first step in this transition was the adoption of CMake as the software build system over the older CMT. This required the development of an automated translation from the old system to the new, followed by extensive testing and improvements. This resulted in a far more standard build process that was married to the method of building ATLAS software as a series of 12 separate projects from SVN. We then proceeded with a migration of its code base from SVN to git. As the SVN repository had been structured to manage each package more or less independently there was no simple mapping that could be used to manage the migration into git. Instead a specialist set of scripts that captured the software changes across official software releases was developed. With some clean up of the repository and the policy of onl...

  6. Intelligent Facades for High Performance Green Buildings. Final Technical Report

    Energy Technology Data Exchange (ETDEWEB)

    Dyson, Anna [Rensselaer Polytechnic Inst., Troy, NY (United States)

    2017-03-01

    Intelligent Facades for High Performance Green Buildings: Previous research and development of intelligent facades systems has been limited in their contribution towards national goals for achieving on-site net zero buildings, because this R&D has failed to couple the many qualitative requirements of building envelopes such as the provision of daylighting, access to exterior views, satisfying aesthetic and cultural characteristics, with the quantitative metrics of energy harvesting, storage and redistribution. To achieve energy self-sufficiency from on-site solar resources, building envelopes can and must address this gamut of concerns simultaneously. With this project, we have undertaken a high-performance building- integrated combined-heat and power concentrating photovoltaic system with high temperature thermal capture, storage and transport towards multiple applications (BICPV/T). The critical contribution we are offering with the Integrated Concentrating Solar Façade (ICSF) is conceived to improve daylighting quality for improved health of occupants and mitigate solar heat gain while maximally capturing and transferring on- site solar energy. The ICSF accomplishes this multi-functionality by intercepting only the direct-normal component of solar energy (which is responsible for elevated cooling loads) thereby transforming a previously problematic source of energy into a high- quality resource that can be applied to building demands such as heating, cooling, dehumidification, domestic hot water, and possible further augmentation of electrical generation through organic Rankine cycles. With the ICSF technology, our team is addressing the global challenge in transitioning commercial and residential building stock towards on-site clean energy self-sufficiency, by fully integrating innovative environmental control systems strategies within an intelligent and responsively dynamic building envelope. The advantage of being able to use the entire solar spectrum for

  7. Optimized design and control of an off grid solar PV/hydrogen fuel cell power system for green buildings

    Science.gov (United States)

    Ghenai, C.; Bettayeb, M.

    2017-11-01

    Modelling, simulation, optimization and control strategies are used in this study to design a stand-alone solar PV/Fuel Cell/Battery/Generator hybrid power system to serve the electrical load of a commercial building. The main objective is to design an off grid energy system to meet the desired electric load of the commercial building with high renewable fraction, low emissions and low cost of energy. The goal is to manage the energy consumption of the building, reduce the associate cost and to switch from grid-tied fossil fuel power system to an off grid renewable and cleaner power system. Energy audit was performed in this study to determine the energy consumption of the building. Hourly simulations, modelling and optimization were performed to determine the performance and cost of the hybrid power configurations using different control strategies. The results show that the hybrid off grid solar PV/Fuel Cell/Generator/Battery/Inverter power system offers the best performance for the tested system architectures. From the total energy generated from the off grid hybrid power system, 73% is produced from the solar PV, 24% from the fuel cell and 3% from the backup Diesel generator. The produced power is used to meet all the AC load of the building without power shortage (system produces 18.2% excess power that can be used to serve the thermal load of the building. The proposed hybrid power system is sustainable, economically viable and environmentally friendly: High renewable fraction (66.1%), low levelized cost of energy (92 /MWh), and low carbon dioxide emissions (24 kg CO2/MWh) are achieved.

  8. Modeling and forecasting energy consumption for heterogeneous buildings using a physical–statistical approach

    International Nuclear Information System (INIS)

    Lü, Xiaoshu; Lu, Tao; Kibert, Charles J.; Viljanen, Martti

    2015-01-01

    Highlights: • This paper presents a new modeling method to forecast energy demands. • The model is based on physical–statistical approach to improving forecast accuracy. • A new method is proposed to address the heterogeneity challenge. • Comparison with measurements shows accurate forecasts of the model. • The first physical–statistical/heterogeneous building energy modeling approach is proposed and validated. - Abstract: Energy consumption forecasting is a critical and necessary input to planning and controlling energy usage in the building sector which accounts for 40% of the world’s energy use and the world’s greatest fraction of greenhouse gas emissions. However, due to the diversity and complexity of buildings as well as the random nature of weather conditions, energy consumption and loads are stochastic and difficult to predict. This paper presents a new methodology for energy demand forecasting that addresses the heterogeneity challenges in energy modeling of buildings. The new method is based on a physical–statistical approach designed to account for building heterogeneity to improve forecast accuracy. The physical model provides a theoretical input to characterize the underlying physical mechanism of energy flows. Then stochastic parameters are introduced into the physical model and the statistical time series model is formulated to reflect model uncertainties and individual heterogeneity in buildings. A new method of model generalization based on a convex hull technique is further derived to parameterize the individual-level model parameters for consistent model coefficients while maintaining satisfactory modeling accuracy for heterogeneous buildings. The proposed method and its validation are presented in detail for four different sports buildings with field measurements. The results show that the proposed methodology and model can provide a considerable improvement in forecasting accuracy

  9. Description of occupant behaviour in building energy simulation: state-of-art and concepts for improvements

    DEFF Research Database (Denmark)

    Fabi, Valentina; Andersen, Rune Vinther; Corgnati, Stefano Paolo

    2011-01-01

    of basic assumptions that affect the results. Therefore, the calculated energy performance may differ significantly from the real energy consumption. One of the key reasons is the current inability to properly model occupant behaviour and to quantify the associated uncertainties in building performance...... predictions. By consequence, a better description of parameters related to occupant behaviour is highly required. In this paper, the state of art in occupant behaviour modelling within energy simulation tools is analysed and some concepts related to possible improvements of simulation tools are proposed...

  10. Daylight and solar control in buildings. General evaluation and optimization of a new angle selective glazing facade

    Energy Technology Data Exchange (ETDEWEB)

    Frontini, Francesco

    2011-07-01

    Buildings account for almost 40% of the overall energy consumption in Europe. For the future energy scenarios, the building envelope, especially the facades, becomes really important as it provides the necessary area for the installation of PV modules or solar collectors to produce energy, using renewable energy sources. A new multifunctional building integrated photovoltaic (BIPV) glazed facade for this application is presented here. The new angle-selective see through facade combines four important tasks in one element: solar control, glare protection, visual contact and electricity generation. Mathematical analysis and complex simulations with the software Radiance are performed to optimize the geometry and to assess the visual impact and optical properties of the new window. In order to evaluate the impact of the new facade in building spaces a new method for modelling the total solar energy transmittance, in building energy simulations software, for complex glazing facades is presented. The new black-box-model (BBM) is implemented into ESP-r software and is validated. The BBM is used to assess the impact of modelling accurately the g-value of complex facade within building simulation. It is shown that the new method can significantly increase the accuracy of heating/cooling loads and room temperatures. (orig.)

  11. Report on design and technical standard planning of vibration controlling structure on the buildings, in the Tokai Reprocessing Facility, Power Reactor and Nuclear Fuel Development Corporation

    International Nuclear Information System (INIS)

    Uryu, Mitsuru; Terada, Shuji; Shinohara, Takaharu; Yamazaki, Toshihiko; Nakayama, Kazuhiko; Kondo, Toshinari; Hosoya, Hisashi

    1997-10-01

    The Tokai reprocessing facility buildings are constituted by a lower foundation, vibration controlling layers, and upper structure. At the vibration controlling layer, a laminated rubber aiming support of the building load and extension of the eigenfrequency and a damper aiming absorption of earthquake energy are provided. Of course, the facility buildings are directly supported at the arenaceous shale (Taga Layer) of the Miocene in the Neogene confirmed to the stablest ground, as well the buildings with high vibration resistant importance in Japan. This report shows that when the vibration controlling structure is adopted for the reprocessing facility buildings where such high vibration resistance is required, reduction of input acceleration for equipments and pipings can be achieved and the earthquake resistant safety can also be maintained with sufficient tolerance and reliability. (G.K.)

  12. Building automation and domotics. A special issue; Gebouwautomatisering en Domotica. Special

    Energy Technology Data Exchange (ETDEWEB)

    Becque, C.D. [ed.; Janssen, H.; Van Hulsen, E.J. [Getronics Gebouwautomatisering, Amsterdam (Netherlands); Westerhof, E. [Westermann Installaties, Leeuwarden (Netherlands); Bijman, J.N.M. [Afdeling Technologie, Intechnium, Woerden (Netherlands); Batavier, A.W.G. [Vakdiscipline Gebouwautomatisering, Technical Management, Amersfoort (Netherlands); Eshuis, B. [IPCO Engineering, Dordrecht (Netherlands); Harmsen, J.G. [Unica Regeltechniek, Zwolle (Netherlands); Van der Helm, R.Th.C.; Wortel, W.; Zeller, W. [Kropman, Rijswijk (Netherlands); Uythof, B.H. [Invenit, Domotica Platform Nederland, Amsterdam (Netherlands); Roemer, J.C. [ECN-DEGO, Petten (Netherlands); Koetsier, H.A. [HITECHnologies, IJsselstein (Netherlands)

    1999-12-01

    In 12 articles an overview is given of developments in the use of automation and domotics in different types of buildings. Previous specials on the same subject in this magazine were published in november 1989 and november 1995. Article 1 is on trends and developments in building automation and novelties in domotics. In the second article attention is paid to the necessary improvement of the project finalization for the indoor microclimate installation and the required automation. The third article deals with the use of digital control systems in the installation technology. In article four the activities in the municipality The Hague to save energy in municipal buildings are outlined. Already 100 building management systems of public schools are connected to a central computer. In the next three articles the design, installation and use of automated control and management systems in the new main office of the banking enterprise ABN AMRO in Amsterdam, Netherlands, In article eight the standardization of bus systems to integrate cables and equipment in building management systems is discussed. In the ninth article the subject is building automation by means of a Neuron chip-based Local Operating Network (LON), developed by the USA company Echelon. In article ten LON is also discussed, next to the software program InsiteView by means of which all the building installations and systems can be visualized via Internet. In the last two articles attention is paid to domotics: how to define this notion, its market, and whether the use of domotics saves energy or requires more energy.

  13. Improved control system power unit for large parachutes

    Science.gov (United States)

    Chandler, J. A.; Grubbs, T. M.

    1968-01-01

    Improved control system power unit drives the control surfaces of very large controllable parachutes. The design features subassemblies for determining control surface position and cable loading, and protection of the load sensor against the possibility of damage during manipulation.

  14. Team building: conceptual, methodological, and applied considerations.

    Science.gov (United States)

    Beauchamp, Mark R; McEwan, Desmond; Waldhauser, Katrina J

    2017-08-01

    Team building has been identified as an important method of improving the psychological climate in which teams operate, as well as overall team functioning. Within the context of sports, team building interventions have consistently been found to result in improvements in team effectiveness. In this paper we review the extant literature on team building in sport, and address a range of conceptual, methodological, and applied considerations that have the potential to advance theory, research, and applied intervention initiatives within the field. This involves expanding the scope of team building strategies that have, to date, primarily focused on developing group cohesion. Copyright © 2017 Elsevier Ltd. All rights reserved.

  15. Development of a new controller for simultaneous heating and cooling of office buildings

    DEFF Research Database (Denmark)

    Maccarini, Alessandro; Afshari, Alireza; Hultmark, Göran

    2016-01-01

    by signals of actual room air temperatures and return water temperature. Depending on the minimum and maximum air temperatures in the rooms, the supply water temperature was set by adjusting the return water temperature with two offsets, one for heating demand and one for cooling demand. The behaviour......This paper aims to develop a new controller to regulate the supply water temperature of a room-temperature loop integrated in a novel HVAC for office buildings. The main feature of the room-temperature loop is its ability to provide simultaneous heating and cooling by circulating water...... with a temperature of about 22 °C. Therefore, the same supply water temperature is delivered to all the thermal zones in the building, no matter whether a single zone needs heating or cooling. In previous studies, the supply water temperature varied between 20 °C and 23 °C, according to outdoor air temperature...

  16. An approach of point cloud denoising based on improved bilateral filtering

    Science.gov (United States)

    Zheng, Zeling; Jia, Songmin; Zhang, Guoliang; Li, Xiuzhi; Zhang, Xiangyin

    2018-04-01

    An omnidirectional mobile platform is designed for building point cloud based on an improved filtering algorithm which is employed to handle the depth image. First, the mobile platform can move flexibly and the control interface is convenient to control. Then, because the traditional bilateral filtering algorithm is time-consuming and inefficient, a novel method is proposed which called local bilateral filtering (LBF). LBF is applied to process depth image obtained by the Kinect sensor. The results show that the effect of removing noise is improved comparing with the bilateral filtering. In the condition of off-line, the color images and processed images are used to build point clouds. Finally, experimental results demonstrate that our method improves the speed of processing time of depth image and the effect of point cloud which has been built.

  17. Field Experience with and Potential for Multi-time Scale Grid Transactions from Responsive Commercial Buildings

    Energy Technology Data Exchange (ETDEWEB)

    Piette, Mary Ann; Kiliccote, Sila; Ghatikar, Girish

    2014-08-01

    The need for and concepts behind demand response are evolving. As the electric system changes with more intermittent renewable electric supply systems, there is a need to allow buildings to provide more flexible demand. This paper presents results from field studies and pilots, as well as engineering estimates of the potential capabilities of fast load responsiveness in commercial buildings. We present a sector wide analysis of flexible loads in commercial buildings, which was conducted to improve resource planning and determine which loads to evaluate in future demonstrations. These systems provide important capabilities for future transactional systems. The field analysis is based on results from California, plus projects in the northwest and east coast. End-uses considered include heating, ventilation, air conditioning and lighting. The timescales of control include day-ahead, as well as day-of, 10-minute ahead and even faster response. This technology can provide DR signals on different times scales to interact with responsive building loads. We describe the latency of the control systems in the building and the round trip communications with the wholesale grid operators.

  18. A moderate enthalpy and a low pollution load in healthy buildings

    DEFF Research Database (Denmark)

    Fanger, Povl Ole

    1998-01-01

    For the design of healthy buildings with a comfortable indoor environment, some general recommendations are provided. New research highlights the importance of controlling the enthalpy of indoor air at a moderate level, i.e., by controlling air temperature and relative humidity at a rather low...... level, still compatible with thermal comfort. A decrement of air temperature or humidity improves the perceived air quality and may decrease the required ventilation rate. A moderate air temperature and humidity plus individual control by radiation and conduction is recommended in order to decrease...

  19. Motion Normalized Proportional Control for Improved Pattern Recognition-Based Myoelectric Control.

    Science.gov (United States)

    Scheme, Erik; Lock, Blair; Hargrove, Levi; Hill, Wendy; Kuruganti, Usha; Englehart, Kevin

    2014-01-01

    This paper describes two novel proportional control algorithms for use with pattern recognition-based myoelectric control. The systems were designed to provide automatic configuration of motion-specific gains and to normalize the control space to the user's usable dynamic range. Class-specific normalization parameters were calculated using data collected during classifier training and require no additional user action or configuration. The new control schemes were compared to the standard method of deriving proportional control using a one degree of freedom Fitts' law test for each of the wrist flexion/extension, wrist pronation/supination and hand close/open degrees of freedom. Performance was evaluated using the Fitts' law throughput value as well as more descriptive metrics including path efficiency, overshoot, stopping distance and completion rate. The proposed normalization methods significantly outperformed the incumbent method in every performance category for able bodied subjects (p < 0.001) and nearly every category for amputee subjects. Furthermore, one proposed method significantly outperformed both other methods in throughput (p < 0.0001), yielding 21% and 40% improvement over the incumbent method for amputee and able bodied subjects, respectively. The proposed control schemes represent a computationally simple method of fundamentally improving myoelectric control users' ability to elicit robust, and controlled, proportional velocity commands.

  20. New developments in illumination, heating and cooling technologies for energy-efficient buildings

    International Nuclear Information System (INIS)

    Han, H.J.; Jeon, Y.I.; Lim, S.H.; Kim, W.W.; Chen, K.

    2010-01-01

    This paper gives a concise review of new designs and developments of illumination, heating and air-conditioning systems and technologies for energy-efficient buildings. Important breakthroughs in these areas include high-efficiency and/or reduced cost solar system components, LED lamps, smart windows, computer-controlled illumination systems, compact combined heat-power generation systems, and so on. To take advantage of these new technologies, hybrid or cascade energy systems have been proposed and/or investigated. A survey of innovative architectural and building envelope designs that have the potential to considerably reduce the illumination and heating and cooling costs for office buildings and residential houses is also included in the review. In addition, new designs and ideas that can be easily implemented to improve the energy efficiency and/or reduce greenhouse gas emissions and environmental impacts of new or existing buildings are proposed and discussed.

  1. Leadership in building automation aspired; Fuehrungsrolle in der Gebaeudeautomation angestrebt

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2002-04-01

    Siemens Building Technologies AG (SBT) aspires to global leadership in building automation and control. Building Automation, one of the six Divisions of Siemens Building Technologies, plans to increasingly offer concepts with comprehensive support for specific customer groups via its more than 500 branch offices worldwide. The basis for future building management systems is the new Desigo system, which includes not only integrated overall systems but also web-based services. The new building automation and control system is the culmination of the integration process for the systems of Landis and Gyr, Staefa Control System and Siemens GTA. (orig.) [German] Building Automation, eine der sechs Divisionen der Siemens Building Technologies AG, wird auf der bevorstehenden internationalen 'Light+Building 2002' das neue Gebaeudeautomationssystem Desigo praesentieren. Aus der Zusammenfuehrung der Gebaeudeautomationssysteme von Landis and Gyr, Staefa Control System und Siemens GTA ist dieses neue System entstanden, das auf internationalen Standards aufbaut. (orig.)

  2. Evaluation of building envelopes from the viewpoint of capability of controlling thermal environment; Onnetsu kankyo chosei noryoku ni yoru kenchiku gaihi no hyoka no kokoromi

    Energy Technology Data Exchange (ETDEWEB)

    Umeda, K; Ono, S [Taisei Corp., Tokyo (Japan); Shukuya, M [Musashi Institute of Technology, Tokyo (Japan)

    1996-10-27

    The ability that architectural space improves the thermal environment in comparison with outdoor environment is called the `capability of controlling thermal environment.` As the value becomes higher, the indoor thermal environment is more improved. In this paper, the controlling capability of six building envelopes with different window systems was compared. The heat transfer in the wall and window system is approximated using a lumped mass model of heat capacity to obtain a heat balance equation and combined with the heat balance equation in indoor air for backward difference. The wall surface temperature and indoor air temperature in a calculation model are then calculated. A radiation absorption coefficient is used for mutual radiation on each wall. In the model, the adjoining room or first- and second-floor rooms were made the same in conditions as the model on the assumption that the one-side lighted office in an RC reference floor is in the non-illumination and non-airconditioning state. In summer, the controlling capability remarkably varies depending on the window system. For the window facing the south, the annual capability is more advanced than in other directions and the indoor thermal environment is improved on the average. 7 refs., 12 figs., 1 tab.

  3. Sanitation of cultural monuments - Energy conervation. Energetic improvement of buildings listed as monuments; Kulturdenkmale sanieren - Energie sparen. Energetische Verbesserung denkmalgeschuetzter Gebaeude

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2010-08-15

    The contribution under consideration reports on an energetic improvement of buildings listed as monuments. Substantial aspects are designated which absolutely have to be considered in the energetic sanitation. Depending upon plant (solar thermal power or photovoltaics), dimensions and other design (cell type, colour, reflection) solutions can be found which only insignificantly impair the appearance of the architectural monument. Partners for buildings listed as monument are monument protection authorities. The contribution under consideration also presents an overview of public funding programs.

  4. IMCOM LONWORKS Building Automation Systems Implementation Strategy

    National Research Council Canada - National Science Library

    Schwenk, David M; Bush, Joseph; Hughes, Lucie M; Briggs, Stephen; White, Will

    2007-01-01

    Army Installations often expand their use of digital control systems for heating, ventilating, and air conditioning and other mechanical and electrical building systems on a building-by-building basis...

  5. Improving work control systems: The core team concept

    International Nuclear Information System (INIS)

    Jorgensen, M.D.; Simpson, W.W.

    1996-01-01

    The improved work control system at the Idaho Chemical Processing Plant minimizes review and approval time, maximizes field work time, and maintains full compliance with applicable requirements. The core team method gives ownership and accountability to knowledgeable individuals, and the teams use sophisticated scheduling techniques to improve information sharing and cost control and to establish accurate roll-up master schedules

  6. Data management for biofied building

    Science.gov (United States)

    Matsuura, Kohta; Mita, Akira

    2015-03-01

    Recently, Smart houses have been studied by many researchers to satisfy individual demands of residents. However, they are not feasible yet as they are very costly and require many sensors to be embedded into houses. Therefore, we suggest "Biofied Building". In Biofied Building, sensor agent robots conduct sensing, actuation, and control in their house. The robots monitor many parameters of human lives such as walking postures and emotion continuously. In this paper, a prototype network system and a data model for practical application for Biofied Building is pro-posed. In the system, functions of robots and servers are divided according to service flows in Biofield Buildings. The data model is designed to accumulate both the building data and the residents' data. Data sent from the robots and data analyzed in the servers are automatically registered into the database. Lastly, feasibility of this system is verified through lighting control simulation performed in an office space.

  7. Application of improved quality control technology to pressure vessels

    International Nuclear Information System (INIS)

    Kriedt, F.

    1985-01-01

    Within the last decade, ASME Boiler and Pressure Vessel Code Section VIII-1 instituted requirements for a formal written quality control system. The results, good and bad, of this requirement are discussed. The effects are far reaching from a national economic standpoint. Quality control technology has improved. These improvements are discussed and compared to existing requirements of the CODE. Recommended improvements are suggested

  8. Rise of the build infrastructure

    International Nuclear Information System (INIS)

    Eulisse, Giulio; Muzaffar, Shahzad; Abdurachmanov, David; Mendez, David

    2014-01-01

    CMS Offline Software, CMSSW, is an extremely large software project, with roughly 3 millions lines of code, two hundreds of active developers and two to three active development branches. Given the scale of the problem, both from a technical and a human point of view, being able to keep on track such a large project, bug free, and to deliver builds for different architectures is a challenge in itself. Moreover the challenges posed by the future migration of CMSSW to multithreading also require adapting and improving our QA tools. We present the work done in the last two years in our build and integration infrastructure, particularly in the form of improvements to our build tools, in the simplification and extensibility of our build infrastructure and the new features added to our QA and profiling tools. Finally we present our plans for the future directions for code management and how this reflects on our workflows and the underlying software infrastructure.

  9. Team Building e a enfermagem Team Building e enfermería Team Building and nursing

    Directory of Open Access Journals (Sweden)

    Filipa Homem

    2012-07-01

    : profundizar los conocimientos sobre Team Building, contextualizar el Team Building y reflexionar sobre su utilidad del Team Building en su contexto dentro de las prestaciones de atención de enfermería. De este modo, se realizaron búsquedas en la base de datos electrónica EBSCO, y se consultó la literatura relacionada con la psicología organizacional. Con esta investigación se concluyó que la estrategia de dinamización de equipo es útil aplicada a la enfermería, puede incluso mejorar la comunicación y las relaciones interpersonales, identificar fortalezas y debilidades de los equipos, proporcionar una mayor satisfacción en el trabajo y así, mejorar la calidad la atención sanitaria prestada.In this environment of growing dissatisfaction and unpredictability in nursing, it is increasingly important to motivate teams, giving them personal, relational, and communicative competencies and, above all, to build team working and thus improve productivity. Team Building emerges as an effective strategy to achieve positive results within organizations. Because it is a strategy not yet widely used in Portugal, we decided to look into the issue and reflect on its relevance and potential in nursing teams with the following objectives: to deepen knowledge about Team Building, to frame Team Building within the context of organizational theories, to describe different models of Team Building and to reflect on the usefulness of Team Building for the quality of nursing care. Articles were searched in EBSCO electronic databases, and organizational psychology literature was consulted. With this research, we conclude that Team Building applied to nursing can improve communication and interpersonal relationships, identify strengths and weaknesses of teams, provide greater job satisfaction and thus enhance the quality of health care provided.

  10. Haptic shared control improves hot cell remote handling despite controller inaccuracies

    International Nuclear Information System (INIS)

    Oosterhout, J. van; Abbink, D.A.; Koning, J.F.; Boessenkool, H.; Wildenbeest, J.G.W.; Heemskerk, C.J.M.

    2013-01-01

    Highlights: Haptic shared control is generally based upon perfect environment information. A realistic implementation holds model errors with respect to the environment. Operators were aided with inaccurate guiding forces during a peg-in-hole task. The results showed that small guiding inaccuracies still aid the operator. -- Abstract: A promising solution to improve task performance in ITER hot cell remote handling is the use of haptic shared control. Haptic shared control can assist the human operator along a safe and optimal path with continuous guiding forces from an intelligent autonomous controller. Previous research tested such controllers with accurate knowledge of the environment (giving flawless guiding forces), while in a practical implementation guidance forces will sometimes be flawed due to inaccurate models or sensor information. This research investigated the effect of zero and small (7.5 mm) errors on task performance compared to normal (unguided) operation. In a human factors experiment subjects performed a three dimensional virtual reality peg-in-hole type task (30 mm diameter; 0.1 mm clearance), with and without potentially flawed haptic shared control. The results showed that the presence of guiding forces, despite of small guiding errors, still improved task performance with respect to unguided operations

  11. Haptic shared control improves hot cell remote handling despite controller inaccuracies

    Energy Technology Data Exchange (ETDEWEB)

    Oosterhout, J. van, E-mail: J.vanOosterhout@differ.nl [Delft University of Technology, Faculty of 3mE, BioMechanical Engineering Department, Mekelweg 2, 2628 CD Delft (Netherlands); Abbink, D.A. [Delft University of Technology, Faculty of 3mE, BioMechanical Engineering Department, Mekelweg 2, 2628 CD Delft (Netherlands); Koning, J.F. [Heemskerk Innovative Technology B.V., Jonckerweg 12, 2201 DZ Noordwijk (Netherlands); Boessenkool, H. [FOM Institute DIFFER (Dutch Institute for Fundamental Energy Research), Association EURATOM-FOM, Partner in the Trilateral Euregio Cluster, PO Box 1207, 3430 BE Nieuwegein (Netherlands); Wildenbeest, J.G.W. [Delft University of Technology, Faculty of 3mE, BioMechanical Engineering Department, Mekelweg 2, 2628 CD Delft (Netherlands); Heemskerk Innovative Technology B.V., Jonckerweg 12, 2201 DZ Noordwijk (Netherlands); Heemskerk, C.J.M. [Heemskerk Innovative Technology B.V., Jonckerweg 12, 2201 DZ Noordwijk (Netherlands)

    2013-10-15

    Highlights: Haptic shared control is generally based upon perfect environment information. A realistic implementation holds model errors with respect to the environment. Operators were aided with inaccurate guiding forces during a peg-in-hole task. The results showed that small guiding inaccuracies still aid the operator. -- Abstract: A promising solution to improve task performance in ITER hot cell remote handling is the use of haptic shared control. Haptic shared control can assist the human operator along a safe and optimal path with continuous guiding forces from an intelligent autonomous controller. Previous research tested such controllers with accurate knowledge of the environment (giving flawless guiding forces), while in a practical implementation guidance forces will sometimes be flawed due to inaccurate models or sensor information. This research investigated the effect of zero and small (7.5 mm) errors on task performance compared to normal (unguided) operation. In a human factors experiment subjects performed a three dimensional virtual reality peg-in-hole type task (30 mm diameter; 0.1 mm clearance), with and without potentially flawed haptic shared control. The results showed that the presence of guiding forces, despite of small guiding errors, still improved task performance with respect to unguided operations.

  12. Existing buildings

    DEFF Research Database (Denmark)

    Gram-Hanssen, Kirsten

    2014-01-01

    their homes. These policy measures include building regulations, energy tax and different types of incentives and information dissemination. The conclusion calls for new and innovative policy measures to cope with the realities of renovations of owner-occupied houses and how energy efficiency improvement...

  13. Improving chemistry performance in CANDU plants

    International Nuclear Information System (INIS)

    Turner, C.; Guzonas, D.

    2010-01-01

    There is a strong interplay between coolant chemistry and materials selection in any nuclear power plant system. To achieve the design life of reactor components it is necessary to monitor and control relevant chemistry parameters, such as ionic conductivity, pH, concentrations of dissolved ions and redox species (e.g., hydrogen, hydrazine, oxygen) and the concentrations of suspended corrosion products. Chemistry specifications are set to achieve a balance between the sometimes conflicting requirements to minimize corrosion and radiological dose and to minimize operating and maintenance costs over the lifetime of the plant. For the past decade, Atomic Energy of Canada Limited (AECL) has taken a rigorous and disciplined approach to reviewing and updating all aspects of chemistry control in the CANDU® nuclear power plant (NPP). This approach has included proactively reviewing chemistry operating experience from existing CANDU® and other water-cooled NPPs worldwide to identify and address emerging issues, updating all of our chemistry control documentation to ensure that each chemistry parameter is linked to a specific requirement (e.g., reduce activity transport, monitor for condenser leak) and incorporating the latest results from our Research and Development (R and D) programs to ensure that all chemistry specifications are supported by a sound rationale. The results of this review and update have been incorporated into updated chemistry specifications and, in some cases, modified operating procedures for new and existing plants. In addition, recommendations have been made for design modifications to improve chemistry control in new build plants, especially during periods of shutdown and startup when chemistry control has traditionally been more challenging. Chemistry control in new-build CANDU® plants will rely increasingly on the use of on-line instrumentation interfaced directly to AECL's state-of-the-art chemistry monitoring, diagnostics and analysis

  14. WASTE HANDLING BUILDING FIRE PROTECTION SYSTEM DESCRIPTION DOCUMENT

    Energy Technology Data Exchange (ETDEWEB)

    J. D. Bigbee

    2000-06-21

    The Waste Handling Building Fire Protection System provides the capability to detect, control, and extinguish fires and/or mitigate explosions throughout the Waste Handling Building (WHB). Fire protection includes appropriate water-based and non-water-based suppression, as appropriate, and includes the distribution and delivery systems for the fire suppression agents. The Waste Handling Building Fire Protection System includes fire or explosion detection panel(s) controlling various detectors, system actuation, annunciators, equipment controls, and signal outputs. The system interfaces with the Waste Handling Building System for mounting of fire protection equipment and components, location of fire suppression equipment, suppression agent runoff, and locating fire rated barriers. The system interfaces with the Waste Handling Building System for adequate drainage and removal capabilities of liquid runoff resulting from fire protection discharges. The system interfaces with the Waste Handling Building Electrical Distribution System for power to operate, and with the Site Fire Protection System for fire protection water supply to automatic sprinklers, standpipes, and hose stations. The system interfaces with the Site Fire Protection System for fire signal transmission outside the WHB as needed to respond to a fire emergency, and with the Waste Handling Building Ventilation System to detect smoke and fire in specific areas, to protect building high-efficiency particulate air (HEPA) filters, and to control portions of the Waste Handling Building Ventilation System for smoke management and manual override capability. The system interfaces with the Monitored Geologic Repository (MGR) Operations Monitoring and Control System for annunciation, and condition status.

  15. WASTE HANDLING BUILDING FIRE PROTECTION SYSTEM DESCRIPTION DOCUMENT

    International Nuclear Information System (INIS)

    J. D. Bigbee

    2000-01-01

    The Waste Handling Building Fire Protection System provides the capability to detect, control, and extinguish fires and/or mitigate explosions throughout the Waste Handling Building (WHB). Fire protection includes appropriate water-based and non-water-based suppression, as appropriate, and includes the distribution and delivery systems for the fire suppression agents. The Waste Handling Building Fire Protection System includes fire or explosion detection panel(s) controlling various detectors, system actuation, annunciators, equipment controls, and signal outputs. The system interfaces with the Waste Handling Building System for mounting of fire protection equipment and components, location of fire suppression equipment, suppression agent runoff, and locating fire rated barriers. The system interfaces with the Waste Handling Building System for adequate drainage and removal capabilities of liquid runoff resulting from fire protection discharges. The system interfaces with the Waste Handling Building Electrical Distribution System for power to operate, and with the Site Fire Protection System for fire protection water supply to automatic sprinklers, standpipes, and hose stations. The system interfaces with the Site Fire Protection System for fire signal transmission outside the WHB as needed to respond to a fire emergency, and with the Waste Handling Building Ventilation System to detect smoke and fire in specific areas, to protect building high-efficiency particulate air (HEPA) filters, and to control portions of the Waste Handling Building Ventilation System for smoke management and manual override capability. The system interfaces with the Monitored Geologic Repository (MGR) Operations Monitoring and Control System for annunciation, and condition status

  16. Real-Time Occupant Based Plug-in Device Control Using ICT in Office Buildings

    Directory of Open Access Journals (Sweden)

    Woo-Bin Bae

    2016-03-01

    Full Text Available The purpose of this study is to reduce the unnecessary plug loads used by computers, monitors, and computer peripheral devices, all of which account for more than 95% of the entire plug loads of an office building. To this end, an occupant-based plug-in device control (OBC-P software was developed. The OBC-P software collects real-time information about the presence or absence of occupants who are connected to the access point through the Wifi and controls the power of monitors or computers, while a standby power off device controls computer peripheral devices. To measure the plug load saving of the occupant-based plug-in device control, an experiment was conducted, targeting 10 occupants of three research labs of the graduate school, for two weeks. The experiment results showed that it could save the plug loads of monitors and computer peripheral devices by 15% in the Awake mode, and by 26% in the Sleep mode.

  17. Structural Pain Compensating Flight Control

    Science.gov (United States)

    Miller, Chris J.

    2014-01-01

    The problem of control command and maneuver induced structural loads is an important aspect of any control system design. Designers must design the aircraft structure and the control architecture to achieve desired piloted control responses while limiting the imparted structural loads. The classical approach is to build the structure with high margins, restrict control surface commands to known good combinations, and train pilots to follow procedural maneuvering limitations. With recent advances in structural sensing and the continued desire to improve safety and vehicle fuel efficiency, it is both possible and desirable to develop control architectures that enable lighter vehicle weights while maintaining and improving protection against structural damage.

  18. Nuclear reactor building

    International Nuclear Information System (INIS)

    Oshima, Nobuaki.

    1991-01-01

    The secondary container in a nuclear reactor building is made of a transparent structure having a shielding performance such as lead glass, by which the inside of the secondary container can be seen without undergoing radiation exposure. In addition, an operator transportation facility capable of carrying about 5 to 10 operators at one time is disposed, and the side of the facility on the secondary container is constituted with a transparent material such as glass, to provide a structure capable of observing the inside of the secondary container. The ventilation and air conditioning in the operator's transportation facility is in communication with the atmosphere of a not-controlled area. Accordingly, operators at the outside of the reactor building can reach the operator's transportation facility without taking and procedures for entering the controlled area and without undergoing radiation exposure. The inside of the secondary container in the reactor building can be seen from various directions through the transparent structure having the shielding performance. (N.H.)

  19. The Improvement of Organizational and Functional Approaches of Implementation of Complex Energy Renovation of Odessa Historic Buildings

    Directory of Open Access Journals (Sweden)

    Posternak Irina

    2016-12-01

    Full Text Available Different systems act as one of the most promising forms of integration in the urban planning structure. In the process of formation of plans for social and economic development of major cities more often, there is a situation, when the improvement of resources efficiency needs not just a concentration of effort, but also some new and innovative forms of building production organization. It is proposed to establish in Odessa the "Corporate Scientific and Technical Complex of urban planning energy renovation" as an innovative organizational structure which practically uses the accumulated scientific and technical potential for the reconstruction of historic buildings in Odessa in 1820–920 using energy efficiency standards. It is necessary to organize courses in the form of accelerated training for workers of the occupation "master of finishing construction work" specialty "plasterer" for "KNTK GERek" effective functioning.

  20. Modeled effects of an improved building insulation scenario in Europe on air pollution, health and societal costs

    DEFF Research Database (Denmark)

    Bønløkke, Jakob Hjort; Holst, Gitte Juel; Sigsgaard, Torben

    2015-01-01

    scenario in Europe would have substantial benefits on health through improvements in air pollution. Health effects and societal cost savings may significantly counterbalance investment costs and should be taken into account when evaluating strategies for mitigation of global warming....... with extensions. Mean annual changes in the main air pollutants were derived for each country. World Health Organization (WHO) and European Union (EU) data on populations and on impacts of pollutants were used to derive health effects and costs. Effects on indoor air quality were not assessed. Results: Projected...... 78678 LY in Europe. A total of 7173 cases of persistent chronic bronchitis could be avoided annually. Several other health outcomes improved similarly. The saved societal costs totaled 6.64 billion € annually. Conclusions: In addition to carbon emission reductions, an improved building insulation...

  1. Risk Management in the Implementation of Smart Building Projects

    Directory of Open Access Journals (Sweden)

    Kankhva Vadim

    2017-01-01

    Full Text Available This article contains the results of a study of the risk control structure in the implementation of smart building projects, which are presented herein in the form of an operational risk management mechanism developed by the author and an improved definition of the risk management system. The mechanism is developed based on the analysis of a review of the current state of the construction sector and the existing organizational structures of construction companies, as well as based on the identification of new necessary functions and objectives of risk management systems. The results of the study can be used in the process of development and integration of risk management systems by the existing construction companies specialized in the construction of smart buildings.

  2. Tool coupling for the design and operation of building energy and control systems based on the Functional Mock-up Interface standard

    Energy Technology Data Exchange (ETDEWEB)

    Nouidui, Thierry Stephane; Wetter, Michael

    2014-03-01

    This paper describes software tools developed at the Lawrence Berkeley National Laboratory (LBNL) that can be coupled through the Functional Mock-up Interface standard in support of the design and operation of building energy and control systems. These tools have been developed to address the gaps and limitations encountered in legacy simulation tools. These tools were originally designed for the analysis of individual domains of buildings, and have been difficult to integrate with other tools for runtime data exchange. The coupling has been realized by use of the Functional Mock-up Interface for co-simulation, which standardizes an application programming interface for simulator interoperability that has been adopted in a variety of industrial domains. As a variety of coupling scenarios are possible, this paper provides users with guidance on what coupling may be best suited for their application. Furthermore, the paper illustrates how tools can be integrated into a building management system to support the operation of buildings. These tools may be a design model that is used for real-time performance monitoring, a fault detection and diagnostics algorithm, or a control sequence, each of which may be exported as a Functional Mock-up Unit and made available in a building management system as an input/output block. We anticipate that this capability can contribute to bridging the observed performance gap between design and operational energy use of buildings.

  3. Intelligent Facades for High Performance Green Buildings

    Energy Technology Data Exchange (ETDEWEB)

    Dyson, Anna [Rensselaer Polytechnic Inst., Troy, NY (United States)

    2017-03-01

    Progress Towards Net-Zero and Net-Positive-Energy Commercial Buildings and Urban Districts Through Intelligent Building Envelope Strategies Previous research and development of intelligent facades systems has been limited in their contribution towards national goals for achieving on-site net zero buildings, because this R&D has failed to couple the many qualitative requirements of building envelopes such as the provision of daylighting, access to exterior views, satisfying aesthetic and cultural characteristics, with the quantitative metrics of energy harvesting, storage and redistribution. To achieve energy self-sufficiency from on-site solar resources, building envelopes can and must address this gamut of concerns simultaneously. With this project, we have undertaken a high-performance building integrated combined-heat and power concentrating photovoltaic system with high temperature thermal capture, storage and transport towards multiple applications (BICPV/T). The critical contribution we are offering with the Integrated Concentrating Solar Façade (ICSF) is conceived to improve daylighting quality for improved health of occupants and mitigate solar heat gain while maximally capturing and transferring onsite solar energy. The ICSF accomplishes this multi-functionality by intercepting only the direct-normal component of solar energy (which is responsible for elevated cooling loads) thereby transforming a previously problematic source of energy into a high quality resource that can be applied to building demands such as heating, cooling, dehumidification, domestic hot water, and possible further augmentation of electrical generation through organic Rankine cycles. With the ICSF technology, our team is addressing the global challenge in transitioning commercial and residential building stock towards on-site clean energy self-sufficiency, by fully integrating innovative environmental control systems strategies within an intelligent and responsively dynamic building

  4. Thyristor-controlled reactor improves series capacitor applications

    Energy Technology Data Exchange (ETDEWEB)

    Renz, K.W.; Thumm, G.; Weiss, S. [Siemens AG, Erlangen (Germany)

    1995-12-31

    Environmental considerations make it more and more difficult to plan and erect new transmission lines. FACTS (Flexible AC Transmission Systems) technology can provide devices to improve the utility of AC transmission lines. The innovative combination of conventional fixed series capacitors and thyristor controlled reactors as a new FACTS device was introduced into a transmission system in 1992. This Advanced Series Compensation (ASC) system provides many advantages not available with conventional fixed series capacitor installations such as flexible direct and continuous control of the compensation level, direct and smooth power flow control and improved capacitor bank protection. This new technology offers enhanced system flexibility by control of transmission line overload conditions, reduction in fault currents, sub-synchronous resonance (SSR) mitigation and network power oscillation damping. The world-first three-phase installation at Kayenta Substation, USA, demonstrates that modern FACTS devices using SVC thyristor valve technology can be designed and operated successfully. 6 refs, 7 figs

  5. High Performance Building Mockup in FLEXLAB

    Energy Technology Data Exchange (ETDEWEB)

    McNeil, Andrew [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States); Kohler, Christian [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States); Lee, Eleanor S. [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States); Selkowitz, Stephen [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States)

    2017-08-30

    Genentech has ambitious energy and indoor environmental quality performance goals for Building 35 (B35) being constructed by Webcor at the South San Francisco campus. Genentech and Webcor contracted with the Lawrence Berkeley National Laboratory (LBNL) to test building systems including lighting, lighting controls, shade fabric, and automated shading controls in LBNL’s new FLEXLAB facility. The goal of the testing is to ensure that the systems installed in the new office building will function in a way that reduces energy consumption and provides a comfortable work environment for employees.

  6. Conceptual Architecture of Building Energy Management Open Source Software (BEMOSS)

    Energy Technology Data Exchange (ETDEWEB)

    Khamphanchai, Warodom; Saha, Avijit; Rathinavel, Kruthika; Kuzlu, Murat; Pipattanasomporn, Manisa; Rahman, Saifur; Akyol, Bora A.; Haack, Jereme N.

    2014-12-01

    The objective of this paper is to present a conceptual architecture of a Building Energy Management Open Source Software (BEMOSS) platform. The proposed BEMOSS platform is expected to improve sensing and control of equipment in small- and medium-sized buildings, reduce energy consumption and help implement demand response (DR). It aims to offer: scalability, robustness, plug and play, open protocol, interoperability, cost-effectiveness, as well as local and remote monitoring. In this paper, four essential layers of BEMOSS software architecture -- namely User Interface, Application and Data Management, Operating System and Framework, and Connectivity layers -- are presented. A laboratory test bed to demonstrate the functionality of BEMOSS located at the Advanced Research Institute of Virginia Tech is also briefly described.

  7. CO2 MONITORING FOR DEMAND CONTROLLED VENTILATION IN COMMERCIAL BUILDINGS

    Energy Technology Data Exchange (ETDEWEB)

    Fisk, William J.; Sullivan, Douglas P.; Faulkner, David; Eliseeva, Ekaterina

    2010-03-17

    Carbon dioxide (CO{sub 2}) sensors are often deployed in commercial buildings to obtain CO{sub 2} data that are used, in a process called demand-controlled ventilation, to automatically modulate rates of outdoor air ventilation. The objective is to keep ventilation rates at or above design specifications and code requirements and also to save energy by avoiding excessive ventilation rates. Demand controlled ventilation is most often used in spaces with highly variable and sometime dense occupancy. Reasonably accurate CO{sub 2} measurements are needed for successful demand controlled ventilation; however, prior research has suggested substantial measurement errors. Accordingly, this study evaluated: (a) the accuracy of 208 CO{sub 2} single-location sensors located in 34 commercial buildings, (b) the accuracy of four multi-location CO{sub 2} measurement systems that utilize tubing, valves, and pumps to measure at multiple locations with single CO{sub 2} sensors, and (c) the spatial variability of CO{sub 2} concentrations within meeting rooms. The field studies of the accuracy of single-location CO{sub 2} sensors included multi-concentration calibration checks of 90 sensors in which sensor accuracy was checked at multiple CO{sub 2} concentrations using primary standard calibration gases. From these evaluations, average errors were small, -26 ppm and -9 ppm at 760 and 1010 ppm, respectively; however, the averages of the absolute values of error were 118 ppm (16%) and 138 ppm (14%), at concentrations of 760 and 1010 ppm, respectively. The calibration data are generally well fit by a straight line as indicated by high values of R{sup 2}. The Title 24 standard specifies that sensor error must be certified as no greater than 75 ppm for a period of five years after sensor installation. At 1010 ppm, 40% of sensors had errors greater than {+-}75 ppm and 31% of sensors has errors greater than {+-}100 ppm. At 760 ppm, 47% of sensors had errors greater than {+-}75 ppm and 37% of

  8. Protocol to Manage Heritage-Building Interventions Using Heritage Building Information Modelling (HBIM

    Directory of Open Access Journals (Sweden)

    Isabel Jordan-Palomar

    2018-03-01

    Full Text Available The workflow in historic architecture projects presents problems related to the lack of clarity of processes, dispersion of information and the use of outdated tools. Different heritage organisations have showed interest in innovative methods to resolve those problems and improve cultural tourism for sustainable economic development. Building Information Modelling (BIM has emerged as a suitable computerised system for improving heritage management. Its application to historic buildings is named Historic BIM (HBIM. HBIM literature highlights the need for further research in terms of the overall processes of heritage projects, its practical implementation and a need for better cultural documentation. This work uses Design Science Research to develop a protocol to improve the workflow in heritage interdisciplinary projects. Research techniques used include documentary analysis, semi-structured interviews and focus groups. HBIM is proposed as a virtual model that will hold heritage data and will articulate processes. As a result, a simple and visual HBIM protocol was developed and applied in a real case study. The protocol was named BIMlegacy and it is divided into eight phases: building registration, determine intervention options, develop design for intervention, planning the physical intervention, physical intervention, handover, maintenance and culture dissemination. It contemplates all the stakeholders involved.

  9. Why building capacity is a necessary but insufficient condition for improved waste management in South Africa: The knowledge–behaviour relationship

    CSIR Research Space (South Africa)

    Godfrey, Linda K

    2010-10-01

    Full Text Available beliefs form behavioural intentions which result in behaviour. Findings show that building capacity, which support control beliefs, while certainly a necessary condition, is insufficient to change waste behaviour. Consideration needs to be given...

  10. How Building Systems Affect Worker Wellness

    Science.gov (United States)

    1994-03-01

    spatial configuration must strike a balance between the objective needs of the organization and the more subjective human ingredient. Good building...sense, building design for thermal comfort involves a balance between the building’s orientation, its windowing scheme, the use of thermal mass, and the...stated above. An improved quality of worklife and a humanized work environment are psychological incentives that can increase productivity. Worker specific

  11. Iterative-build OMIT maps: map improvement by iterative model building and refinement without model bias

    International Nuclear Information System (INIS)

    Terwilliger, Thomas C.; Grosse-Kunstleve, Ralf W.; Afonine, Pavel V.; Moriarty, Nigel W.; Adams, Paul D.; Read, Randy J.; Zwart, Peter H.; Hung, Li-Wei

    2008-01-01

    An OMIT procedure is presented that has the benefits of iterative model building density modification and refinement yet is essentially unbiased by the atomic model that is built. A procedure for carrying out iterative model building, density modification and refinement is presented in which the density in an OMIT region is essentially unbiased by an atomic model. Density from a set of overlapping OMIT regions can be combined to create a composite ‘iterative-build’ OMIT map that is everywhere unbiased by an atomic model but also everywhere benefiting from the model-based information present elsewhere in the unit cell. The procedure may have applications in the validation of specific features in atomic models as well as in overall model validation. The procedure is demonstrated with a molecular-replacement structure and with an experimentally phased structure and a variation on the method is demonstrated by removing model bias from a structure from the Protein Data Bank

  12. Numerical methods for optimizing the performance of buildings

    DEFF Research Database (Denmark)

    Pedersen, Frank

    2008-01-01

    The many different parties that influence design and control decisions for buildings, such as building owners, users, architects, consulting engineers, contractors, etx. may have different and to some extent conradicting requirements to buildings. Furthermore, national building regulations specif...

  13. SE Capstone Project: Building Systems Engineering Education and Workforce Capacity

    Science.gov (United States)

    2012-04-01

    This project developed a system to improve fuel efficiency by means of regenerative braking . The team designed a simple system that allows "bolt-on...air traffic control, social networking, credit/debit cards, and anti-lock brakes are only a few functions enabled by complex systems of systems . We...Building Systems Engineering Education and Workforce Capacity SE Capstone Project APRIL 2012 Report Documentation Page Form ApprovedOMB No. 0704

  14. Consumer Central Energy Flexibility in Office Buildings

    DEFF Research Database (Denmark)

    Billanes, Joy Dalmacio; Ma, Zheng; Jørgensen, Bo Nørregaard

    2017-01-01

    Energy flexibility in buildings will play an important role in the smart energy system. Office buildings have more potentials to provide energy flexibility to the grid compared to other types of buildings, due to the existing building management, control systems and large energy consumption....... Consumers in office buildings (building owners/managers and occupants) take a main role for adopting and engaging in building energy flexibility. In this paper provides a systematic review of consumer central energy flexibility in office buildings with the discussion of social, technical and business...... can boost energy flexibility in the office buildings....

  15. Overview of rural building energy efficiency in China

    International Nuclear Information System (INIS)

    He, Bao-jie; Yang, Li; Ye, Miao; Mou, Ben; Zhou, Yanan

    2014-01-01

    Over the past three decades, people's living standard in China has been greatly improved, accompanied by the rapid increasing building energy consumption. Rural building energy consumption has become one of the most important parts of the total energy consumption in China, which deserves to be paid much attention. It is of vital importance to promote building energy efficiency for the New Socialist Countryside and energy conservation and emission reduction. This paper provides an overview of building energy consumption in the countryside, which figures out the situation and challenges in energy-saving work. The government has worked for years on rural building code system aimed at narrowing the energy gap between urban areas, but it is in the beginning phase. This paper has analyzed the only special issues about rural building energy efficiency and the mandatory standards for urban buildings, which can facilitate the development of rural building energy efficiency. Based on the above analysis, some recommendations regarding the improvement of rural building energy efficiency are given. - Highlights: • Situation of rural energy consumption in China. • Challenges in rural building energy-saving work. • Design standard, special plan and some pilot projects are analyzed. • Effects of existing energy policies for urban buildings. • Some recommendations are given

  16. Development of safety enhancement technology of containment building

    International Nuclear Information System (INIS)

    Seo, Jeong Moon; Choun, Y. S.; Choi, I. K.

    2002-04-01

    This study consists of four research areas, (1) Seismic safety assessment, (2) Aging assessment of a containment building, (3) Prediction of long-term behavior and analysis of a containment building, (4) Performance verification of a containment building. In the seismic safety assessment area, responses of a containment building were monitored and the analysis method was verified. Also performed are the identification of earthquake characteristics and improvement of the seismic fragility analysis method. In the area of aging assessment of a containment building, we developed aging management code SLMS and database. Aging tests were performed for containment building materials and aging models were developed. Techniques for investigation, detection, and evaluation of aging were developed. In the area of prediction of long-term behavior and analysis of a containment building, we developed a non-linear structural analysis code NUCAS and material models. In the area of performance verification of a containment building, we analyzed the crack behavior of a containment wall and the behavior of the containment under internal pressure. We also improved the ISI methods for prestressed containment

  17. Potential Energy Flexibility for a Hot-Water Based Heating System in Smart Buildings Via Economic Model Predictive Control

    DEFF Research Database (Denmark)

    Ahmed, Awadelrahman M. A.; Zong, Yi; Mihet-Popa, Lucian

    2017-01-01

    This paper studies the potential of shifting the heating energy consumption in a residential building to low price periods based on varying electricity price signals suing Economic Model Predictive Control strategy. The investigated heating system consists of a heat pump incorporated with a hot...... water tank as active thermal energy storage, where two optimization problems are integrated together to optimize both the heat pump electricity consumption and the building heating consumption. A sensitivity analysis for the system flexibility is examined. The results revealed that the proposed...

  18. Evaluation of a fast power demand response strategy using active and passive building cold storages for smart grid applications

    International Nuclear Information System (INIS)

    Cui, Borui; Wang, Shengwei; Yan, Chengchu; Xue, Xue

    2015-01-01

    Highlights: • A fast power demand response strategy is developed for smart grid applications. • The developed strategy can provide immediate and stepped power demand reduction. • The demand reduction and building indoor temperature can be predicted accurately. • The demand reduction during the DR event is stable. - Abstract: Smart grid is considered as a promising solution in improving the power reliability and sustainability where demand response is one important ingredient. Demand response (DR) is a set of demand-side activities to reduce or shift electricity use to improve the electric grid efficiency and reliability. This paper presents the investigations on the power demand alternation potential for buildings involving both active and passive cold storages to support the demand response of buildings connected to smart grids. A control strategy is developed to provide immediate and stepped power demand reduction through shutting chiller(s) down when requested. The primary control objective of the developed control strategy is to restrain the building indoor temperature rise as to maintain indoor thermal comfort within certain level during the DR event. The chiller power reduction is also controlled under certain power reduction set-point. The results show that stepped and significant power reduction can be achieved through shutting chiller(s) down when requested. The power demand reduction and indoor temperature during the DR event can be also predicted accurately. The power demand reduction is stable which is predictable for the system operators

  19. Drinking Water Quality in Hospitals and Other Buildings ...

    Science.gov (United States)

    Drinking water quality entering large buildings is generally adequately controlled by the water utility, but localized problems may occur within building or “premise” plumbing. Particular concerns are loss of disinfectant residual and temperature variability, which may enhance pathogen activity and metallic corrosion. Disinfection systems are available to building managers and are being installed in a variety of commercial buildings (hospitals, hotels, office buildings.) Yet our understanding of such additional treatment and of how to monitor end water quality at these buildings is limited. This class lecture will discuss challenges in maintaining acceptable water quality in hospitals, schools and other buildings. To give a lecture to a class of graduate students (ENVE 6054: Physical/Chemical Processes for Water Quality Control) at the University of Cincinnati, by presenting past research projects.

  20. Building technologies program. 1995 annual report

    Energy Technology Data Exchange (ETDEWEB)

    Selkowitz, S.E.

    1996-05-01

    The 1995 annual report discusses laboratory activities in the Building Technology Program. The report is divided into four categories: windows and daylighting, lighting systems, building energy simulation, and advanced building systems. The objective of the Building Technologies program is to assist the U.S. building industry in achieving substantial reductions in building-sector energy use and associated greenhouse gas emissions while improving comfort, amenity, health, and productivity in the building sector. Past efforts have focused on windows and lighting, and on the simulation tools needed to integrate the full range of energy efficiency solutions into achievable, cost-effective design solutions for new and existing buildings. Current research is based on an integrated systems and life-cycle perspective to create cost-effective solutions for more energy-efficient, comfortable, and productive work and living environments. Sixteen subprograms are described in the report.