WorldWideScience

Sample records for impairs sleep-dependent cortical

  1. The sedating antidepressant trazodone impairs sleep-dependent cortical plasticity.

    Directory of Open Access Journals (Sweden)

    Sara J Aton

    2009-07-01

    Full Text Available Recent findings indicate that certain classes of hypnotics that target GABA(A receptors impair sleep-dependent brain plasticity. However, the effects of hypnotics acting at monoamine receptors (e.g., the antidepressant trazodone on this process are unknown. We therefore assessed the effects of commonly-prescribed medications for the treatment of insomnia (trazodone and the non-benzodiazepine GABA(A receptor agonists zaleplon and eszopiclone in a canonical model of sleep-dependent, in vivo synaptic plasticity in the primary visual cortex (V1 known as ocular dominance plasticity.After a 6-h baseline period of sleep/wake polysomnographic recording, cats underwent 6 h of continuous waking combined with monocular deprivation (MD to trigger synaptic remodeling. Cats subsequently received an i.p. injection of either vehicle, trazodone (10 mg/kg, zaleplon (10 mg/kg, or eszopiclone (1-10 mg/kg, and were allowed an 8-h period of post-MD sleep before ocular dominance plasticity was assessed. We found that while zaleplon and eszopiclone had profound effects on sleeping cortical electroencephalographic (EEG activity, only trazodone (which did not alter EEG activity significantly impaired sleep-dependent consolidation of ocular dominance plasticity. This was associated with deficits in both the normal depression of V1 neuronal responses to deprived-eye stimulation, and potentiation of responses to non-deprived eye stimulation, which accompany ocular dominance plasticity.Taken together, our data suggest that the monoamine receptors targeted by trazodone play an important role in sleep-dependent consolidation of synaptic plasticity. They also demonstrate that changes in sleep architecture are not necessarily reliable predictors of how hypnotics affect sleep-dependent neural functions.

  2. Neuronal Oscillations Indicate Sleep-dependent Changes in the Cortical Memory Trace.

    Science.gov (United States)

    Köster, Moritz; Finger, Holger; Kater, Maren-Jo; Schenk, Christoph; Gruber, Thomas

    2017-04-01

    Sleep promotes the consolidation of newly acquired associative memories. Here we used neuronal oscillations in the human EEG to investigate sleep-dependent changes in the cortical memory trace. The retrieval activity for object-color associations was assessed immediately after encoding and after 3 hr of sleep or wakefulness. Sleep had beneficial effects on memory performance and led to reduced event-related theta and gamma power during the retrieval of associative memories. Furthermore, event-related alpha suppression was attenuated in the wake group for memorized and novel stimuli. There were no sleep-dependent changes in retrieval activity for missed items or items retrieved without color. Thus, the sleep-dependent reduction in theta and gamma oscillations was specific for the retrieval of associative memories. In line with theoretical accounts on sleep-dependent memory consolidation, decreased theta may indicate reduced mediotemporal activity because of a transfer of information into neocortical networks during sleep, whereas reduced parietal gamma may reflect effects of synaptic downscaling. Changes in alpha suppression in the wake group possibly index reduced attentional resources that may also contribute to a lower memory performance in this group. These findings indicate that the consolidation of associative memories during sleep is associated with profound changes in the cortical memory trace and relies on multiple neuronal processes working in concert.

  3. Cortical visual impairment

    OpenAIRE

    Koželj, Urša

    2013-01-01

    In this thesis we discuss cortical visual impairment, diagnosis that is in the developed world in first place, since 20 percent of children with blindness or low vision are diagnosed with it. The objectives of the thesis are to define cortical visual impairment and the definition of characters suggestive of the cortical visual impairment as well as to search for causes that affect the growing diagnosis of cortical visual impairment. There are a lot of signs of cortical visual impairment. ...

  4. Initiation of sleep-dependent cortical-hippocampal correlations at wakefulness-sleep transition.

    Science.gov (United States)

    Haggerty, Daniel C; Ji, Daoyun

    2014-10-01

    Sleep is involved in memory consolidation. Current theories propose that sleep-dependent memory consolidation requires active communication between the hippocampus and neocortex. Indeed, it is known that neuronal activities in the hippocampus and various neocortical areas are correlated during slow-wave sleep. However, transitioning from wakefulness to slow-wave sleep is a gradual process. How the hippocampal-cortical correlation is established during the wakefulness-sleep transition is unknown. By examining local field potentials and multiunit activities in the rat hippocampus and visual cortex, we show that the wakefulness-sleep transition is characterized by sharp-wave ripple events in the hippocampus and high-voltage spike-wave events in the cortex, both of which are accompanied by highly synchronized multiunit activities in the corresponding area. Hippocampal ripple events occur earlier than the cortical high-voltage spike-wave events, and hippocampal ripple incidence is attenuated by the onset of cortical high-voltage spike waves. This attenuation leads to a temporary weak correlation in the hippocampal-cortical multiunit activities, which eventually evolves to a strong correlation as the brain enters slow-wave sleep. The results suggest that the hippocampal-cortical correlation is established through a concerted, two-step state change that first synchronizes the neuronal firing within each brain area and then couples the synchronized activities between the two regions. Copyright © 2014 the American Physiological Society.

  5. Sleep-dependent memory consolidation in healthy aging and mild cognitive impairment.

    Science.gov (United States)

    Pace-Schott, Edward F; Spencer, Rebecca M C

    2015-01-01

    Sleep quality and architecture as well as sleep's homeostatic and circadian controls change with healthy aging. Changes include reductions in slow-wave sleep's (SWS) percent and spectral power in the sleep electroencephalogram (EEG), number and amplitude of sleep spindles, rapid eye movement (REM) density and the amplitude of circadian rhythms, as well as a phase advance (moved earlier in time) of the brain's circadian clock. With mild cognitive impairment (MCI) there are further reductions of sleep quality, SWS, spindles, and percent REM, all of which further diminish, along with a profound disruption of circadian rhythmicity, with the conversion to Alzheimer's disease (AD). Sleep disorders may represent risk factors for dementias (e.g., REM Behavior Disorder presages Parkinson's disease) and sleep disorders are themselves extremely prevalent in neurodegenerative diseases. Working memory , formation of new episodic memories, and processing speed all decline with healthy aging whereas semantic, recognition, and emotional declarative memory are spared. In MCI, episodic and working memory further decline along with declines in semantic memory. In young adults, sleep-dependent memory consolidation (SDC) is widely observed for both declarative and procedural memory tasks. However, with healthy aging, although SDC for declarative memory is preserved, certain procedural tasks, such as motor-sequence learning, do not show SDC. In younger adults, fragmentation of sleep can reduce SDC, and a normative increase in sleep fragmentation may account for reduced SDC with healthy aging. Whereas sleep disorders such as insomnia, obstructive sleep apnea, and narcolepsy can impair SDC in the absence of neurodegenerative changes, the incidence of sleep disorders increases both with normal aging and, further, with neurodegenerative disease. Specific features of sleep architecture, such as sleep spindles and SWS are strongly linked to SDC. Diminution of these features with healthy aging

  6. Cortical Visual Impairment

    Science.gov (United States)

    ... resolves by one year of life. Is “cortical blindness” the same thing as CVI? Cortical blindness is ... What visual characteristics are associated with CVI? • Distinct color preferences • Variable level of vision loss, often demonstrating ...

  7. Cortical visual impairment: Characteristics and treatment

    Directory of Open Access Journals (Sweden)

    Vučinić Vesna

    2014-01-01

    Full Text Available According to the latest studies, Cortical visual impairment – CVI is one of the most common causes of problems and difficulties in visual functioning. It results from the impairment of the central part of visual system, i.e. visual cortex, posterior visual pathway, or both. The diagnosis is usually made in the first three years of life. The aim of this paper is to present the characteristics of children with CVI, and the strategies used for treatment. CVI has a negative impact on almost all developmental domains, visual-perceptive skills, motor skills, cognitive skills, and social skills. In children with CVI, vision ranges from the total inability to see to minimal visual perceptive difficulties, while more than 50% have multiple disabilities. Due to the progress in understanding the patterns of neuron activity and neuroplasticity, as well as the intensive studies of strengths and weaknesses of children with CVI, special treatment has been designed and performed in the last few decades, which provides optimal visual functioning in everyday life for these children.

  8. The cortical signature of impaired gesturing: Findings from schizophrenia

    Directory of Open Access Journals (Sweden)

    Petra Verena Viher

    2018-01-01

    Full Text Available Schizophrenia is characterized by deficits in gesturing that is important for nonverbal communication. Research in healthy participants and brain-damaged patients revealed a left-lateralized fronto-parieto-temporal network underlying gesture performance. First evidence from structural imaging studies in schizophrenia corroborates these results. However, as of yet, it is unclear if cortical thickness abnormalities contribute to impairments in gesture performance. We hypothesized that patients with deficits in gesture production show cortical thinning in 12 regions of interest (ROIs of a gesture network relevant for gesture performance and recognition. Forty patients with schizophrenia and 41 healthy controls performed hand and finger gestures as either imitation or pantomime. Group differences in cortical thickness between patients with deficits, patients without deficits, and controls were explored using a multivariate analysis of covariance. In addition, the relationship between gesture recognition and cortical thickness was investigated. Patients with deficits in gesture production had reduced cortical thickness in eight ROIs, including the pars opercularis of the inferior frontal gyrus, the superior and inferior parietal lobes, and the superior and middle temporal gyri. Gesture recognition correlated with cortical thickness in fewer, but mainly the same, ROIs within the patient sample. In conclusion, our results show that impaired gesture production and recognition in schizophrenia is associated with cortical thinning in distinct areas of the gesture network.

  9. Cortical Thickness and Episodic Memory Impairment in Systemic Lupus Erythematosus.

    Science.gov (United States)

    Bizzo, Bernardo Canedo; Sanchez, Tiago Arruda; Tukamoto, Gustavo; Zimmermann, Nicolle; Netto, Tania Maria; Gasparetto, Emerson Leandro

    2017-01-01

    The purpose of this study was to investigate differences in brain cortical thickness of systemic lupus erythematosus (SLE) patients with and without episodic memory impairment and healthy controls. We studied 51 patients divided in 2 groups (SLE with episodic memory deficit, n = 17; SLE without episodic memory deficit, n = 34) by the Rey Auditory Verbal Learning Test and 34 healthy controls. Groups were paired based on sex, age, education, Mini-Mental State Examination score, and accumulation of disease burden. Cortical thickness from magnetic resonance imaging scans was determined using the FreeSurfer software package. SLE patients with episodic memory deficits presented reduced cortical thickness in the left supramarginal cortex and superior temporal gyrus when compared to the control group and in the right superior frontal, caudal, and rostral middle frontal and precentral gyri when compared to the SLE group without episodic memory impairment considering time since diagnosis of SLE as covaried. There were no significant differences in the cortical thickness between the SLE without episodic memory and control groups. Different memory-related cortical regions thinning were found in the episodic memory deficit group when individually compared to the groups of patients without memory impairment and healthy controls. Copyright © 2016 by the American Society of Neuroimaging.

  10. Verbal memory impairments in schizophrenia associated with cortical thinning

    Directory of Open Access Journals (Sweden)

    S. Guimond

    2016-01-01

    Full Text Available Verbal memory (VM represents one of the most affected cognitive domains in schizophrenia. Multiple studies have shown that schizophrenia is associated with cortical abnormalities, but it remains unclear whether these are related to VM impairments. Considering the vast literature demonstrating the role of the frontal cortex, the parahippocampal cortex, and the hippocampus in VM, we examined the cortical thickness/volume of these regions. We used a categorical approach whereby 27 schizophrenia patients with ‘moderate to severe’ VM impairments were compared to 23 patients with ‘low to mild’ VM impairments and 23 healthy controls. A series of between-group vertex-wise GLM on cortical thickness were performed for specific regions of interest defining the parahippocampal gyrus and the frontal cortex. When compared to healthy controls, patients with ‘moderate to severe’ VM impairments revealed significantly thinner cortex in the left frontal lobe, and the parahippocampal gyri. When compared to patients with ‘low to mild’ VM impairments, patients with ‘moderate to severe’ VM impairments showed a trend of thinner cortex in similar regions. Virtually no differences were observed in the frontal area of patients with ‘low to mild’ VM impairments relative to controls. No significant group differences were observed in the hippocampus. Our results indicate that patients with greater VM impairments demonstrate significant cortical thinning in regions known to be important in VM performance. Treating VM deficits in schizophrenia could have a positive effect on the brain; thus, subgroups of patients with more severe VM deficits should be a prioritized target in the development of new cognitive treatments.

  11. Retrosplenial cortical thinning as a possible major contributor for cognitive impairment in HIV patients

    International Nuclear Information System (INIS)

    Shin, Na-Young; Hong, Jinwoo; Yoon, Uicheul; Choi, Jun Yong; Lee, Seung-Koo; Lim, Soo Mee

    2017-01-01

    To identify brain cortical regions relevant to HIV-associated neurocognitive disorder (HAND) in HIV patients. HIV patients with HAND (n = 10), those with intact cognition (HIV-IC; n = 12), and age-matched, seronegative controls (n = 11) were recruited. All participants were male and underwent 3-dimensional T1-weighted imaging. Both vertex-wise and region of interest (ROI) analyses were performed to analyse cortical thickness. Compared to controls, both HIV-IC and HAND showed decreased cortical thickness mainly in the bilateral primary sensorimotor areas, extending to the prefrontal and parietal cortices. When directly comparing HIV-IC and HAND, HAND showed cortical thinning in the left retrosplenial cortex, left dorsolateral prefrontal cortex, left inferior parietal lobule, bilateral superior medial prefrontal cortices, right temporoparietal junction and left hippocampus, and cortical thickening in the left middle occipital cortex. Left retrosplenial cortical thinning showed significant correlation with slower information processing, declined verbal memory and executive function, and impaired fine motor skills. This study supports previous research suggesting the selective vulnerability of the primary sensorimotor cortices and associations between cortical thinning in the prefrontal and parietal cortices and cognitive impairment in HIV-infected patients. Furthermore, for the first time, we propose retrosplenial cortical thinning as a possible major contributor to HIV-associated cognitive impairment. (orig.)

  12. Retrosplenial cortical thinning as a possible major contributor for cognitive impairment in HIV patients

    Energy Technology Data Exchange (ETDEWEB)

    Shin, Na-Young [The Catholic University of Korea, Department of Radiology, College of Medicine, Seoul (Korea, Republic of); Hong, Jinwoo; Yoon, Uicheul [Catholic University of Daegu, Department of Biomedical Engineering, College of Health and Medical Science, Gyeongsan-si, Gyeongbuk (Korea, Republic of); Choi, Jun Yong [Yonsei University College of Medicine, Department of Internal Medicine and AIDS Research Institute, Seoul (Korea, Republic of); Lee, Seung-Koo [Yonsei University College of Medicine, Department of Radiology, Seoul (Korea, Republic of); Lim, Soo Mee [Ewha Womans University, School of Medicine, Department of Radiology, Seoul (Korea, Republic of)

    2017-11-15

    To identify brain cortical regions relevant to HIV-associated neurocognitive disorder (HAND) in HIV patients. HIV patients with HAND (n = 10), those with intact cognition (HIV-IC; n = 12), and age-matched, seronegative controls (n = 11) were recruited. All participants were male and underwent 3-dimensional T1-weighted imaging. Both vertex-wise and region of interest (ROI) analyses were performed to analyse cortical thickness. Compared to controls, both HIV-IC and HAND showed decreased cortical thickness mainly in the bilateral primary sensorimotor areas, extending to the prefrontal and parietal cortices. When directly comparing HIV-IC and HAND, HAND showed cortical thinning in the left retrosplenial cortex, left dorsolateral prefrontal cortex, left inferior parietal lobule, bilateral superior medial prefrontal cortices, right temporoparietal junction and left hippocampus, and cortical thickening in the left middle occipital cortex. Left retrosplenial cortical thinning showed significant correlation with slower information processing, declined verbal memory and executive function, and impaired fine motor skills. This study supports previous research suggesting the selective vulnerability of the primary sensorimotor cortices and associations between cortical thinning in the prefrontal and parietal cortices and cognitive impairment in HIV-infected patients. Furthermore, for the first time, we propose retrosplenial cortical thinning as a possible major contributor to HIV-associated cognitive impairment. (orig.)

  13. How aging affects sleep-dependent memory consolidation?

    Directory of Open Access Journals (Sweden)

    Caroline eHarand

    2012-02-01

    Full Text Available Sleep plays multiple functions among which energy conservation or recuperative processes. Besides, growing evidence indicate that sleep plays also a major role in memory consolidation, a process by which recently acquired and labile memory traces are progressively strengthened into more permanent and/or enhanced forms. Indeed, memories are not stored as they were initially encoded but rather undergo a gradual reorganization process, which is favoured by the neurochemical environment and the electrophysiological activity observed during sleep. Two putative, probably not exclusive, models (hippocampo-neocortical dialogue and synaptic homeostasis hypothesis have been proposed to explain the beneficial effect of sleep on memory processes. It is worth noting that all data gathered until now emerged from studies conducted in young subjects. The investigation of the relationships between sleep and memory in older adults has sparked off little interest until recently. Though, aging is characterized by memory impairment, changes in sleep architecture, as well as brain and neurochemical alterations. All these elements suggest that sleep-dependent memory consolidation may be impaired or occurs differently in older adults.Here, we give an overview of the mechanisms governing sleep-dependent memory consolidation, and the crucial points of this complex process that may dysfunction and result in impaired memory consolidation in aging.

  14. The Reliability of the CVI Range: A Functional Vision Assessment for Children with Cortical Visual Impairment

    Science.gov (United States)

    Newcomb, Sandra

    2010-01-01

    Children who are identified as visually impaired frequently have a functional vision assessment as one way to determine how their visual impairment affects their educational performance. The CVI Range is a functional vision assessment for children with cortical visual impairment. The purpose of the study presented here was to examine the…

  15. Conversion Discriminative Analysis on Mild Cognitive Impairment Using Multiple Cortical Features from MR Images

    NARCIS (Netherlands)

    Guo, Shengwen; Lai, Chunren; Wu, Congling; Cen, Guiyin; Hariharan, A.; Vijayakumari, Anupa A.; Aarabi, Mohammad Hadi; Aballi, John; Nour, Abd Elazeim Abd Alla Mohamed; Abdelaziz, Mohammed; Abdolalizadeh, AmirHussein; Abdollahi, Mahsa; Abdul Aziz, Siti Aishah; Salam, Amritha Abdul; Abdulaziz, Nidhal; Abdulkadir, Ahmed; Abdullah, Sachal; Abdullah, Osama; Abrigo, Jill; Adachi, Noriaki; Adamson, Christopher; Adduru, Viraj; Adel, Tameem; Aderghal, Karim; Ades-Aron, Benjamin; Adeyosoye, Michael; Adlard, Paul; Srinivasa, Ag; Aganj, Iman; Agarwal, Ayush; Agarwal, Anupam; Agarwal, Anchit; Aguero, Cinthya; Aguiar, Pablo; Ahdidan, Jamila; Ahmad, Fayyaz; Ahmad, Rziwan; Ahmadi, Hessam; Ahmed, Nisar; Sid, Farid Ahmed; Ai, Edward; Ai, Qing; Aicha, Benyahia; Aitharaju, Sai; Aiyer, Aditya; Akkus, Zeynettin; Akodad, Sanae; Akramifard, Hamid; Aksman, Leon; Aktas, Said; Al-Janabi, Omar; Al-Nuaimi, Ali; AlAila, BahaaEddin; Alakwaa, Fadhl; Alam, Saruar; Alam, Fakhre; Alam Zaidi, Syed Farhan; Alan, Wiener; Alansari, Mukhtar; Alareqi, Ebrahim; Alberdi, Ane; Albsoul, Mohammad; Alderson, Thomas; Aleem, Hassan; Alex, Aishwarya; Alexander, Jacob; Alexopoulos, Panagiotis; Alfoldi, Jessica; Ali, Ayesha; Ali, Imdad; Alimoradian, Shirin; Aljabar, Paul; Aljabbouli, Hasan; Aljovic, Almir; Allen, Genevera; Alliende, Luz Maria; Almaguel, Frankis; Almgren, Hannes; Montes, Carmen Alonso; Alowaisheq, Tasneem; Alryalat, Saif Aldeen; Alsado, Majd; Alsaedi, Abdalrahman; Alshehri, Haifa; Altaf, Tooba; Altendahl, Marie; Altmann, Andre; Alvand, Ashkan; Filho, Manoel Alves; Alzubi, Raid; Amaral, Robert; Ambatipudi, Mythri; Amernath, Remya; Amlien, Inge; Amoroso, Nicola; Amri, Hakima; Anastasiou, Athanasios; Anbarasi, Jani; Anbarjafari, Gholamreza; Anderson, Wes; Anderson, Jeff; Anderson, Valerie; Anderson, Loretta; Andonov, Jovan; Andova, Vesna; Andreopoulou, Irene; Andrews, K. Abigail; Andrews, Cameron; Angeles, Michel; Anne-Laure, Aziz; Ansari, Ghulam Jillani; Ansari, Sharaf; Anstey, Kaarin; Antunes, Augusto; Aoshuang, Zhang; Aouf, Mazin; Aow Yong, Li Yew; Aporntewan, Chatchawit; Apostolova, Liana; Appiah, Frank; Apsvalka, Dace; Arab, Abazar; Araque Caballero, Miguel Ángel; Arbabyazd, Mohammad; Arbelaez, Pablo; Archer, Kellie; Ardekani, Babak; Aretouli, Eleni; Arfanakis, Konstantinos; Arisi, Ivan; Armentrout, Steven; Arnold, Matthias; Arnold, Steven; Arslan, Salim; Artacho-Perula, Emilio; Arthofer, Christoph; Aruchamy, Srinivasan; Arya, Zobair; Pizarro, Carlos Asensio; Ashford, Wes; Ashraf, Azhaar; Askland, Kathleen; Aslaksen, Per; Aslakson, Eric; Aso, Toshihiko; Astphan, Michele; Ataloglou, Dimitrios; Atay, Meltem; Athanas, Argus; Atri, Roozbeh; Au, April; Aurich, Maike; Avants, Brian; Awasthi, Niharika; Awate, Suyash; Ayaz, Aymen; Son, Yesim Aydin; Aydogan, Dogu Baran; Ayhan, Murat; Ayton, Scott; Aziz, Adel; Azmi, Mohd Hafrizal; Ba, Maowen; Bach, Kevin; Badea, Alexandra; Bag, Asim; Bagewadi, Shweta; Bai, Xiangqi; Bai, Zilong; Bai, Haoli; Baird, Geoffrey; Baiwen, Zhang; Baker, Elizabeth; Baker, John; Bakker, Arnold; Ball, Erika; Ballén Galindo, Miguel Ángel; Banaei, Amin; Bandyopadhyay, Dipankar; Bang, Ki Hun; Bangen, Katherine; Banks, Sarah; Banning, Leonie; Bao, Wan Yun; Barakat, Rita; Barbará, Eduardo; Barber, Philip; Barber, Robert; de Araujo, Flavia Roberta Barbosa; Barnes, Josephine; Barredo, Jennifer; Barret, Olivier; Barrett, Matthew; Barsamian, Barsam; Barsky, Andrey; Bartel, Fabian; Bartoszewicz, Jakub; Bartram-Shaw, David; Barwood, Caroline; Basavaraj, Suryakanth; Basavaraj, Arshitha; Basiouny, Ahmed; Baskaran, Bhuvaneshwari; Basu, Arindam; Baths, Veeky; Bathula, Deepti; Batmanghelich, Nematollah Kayhan; Bauer, Roman; Bauer, Corinna; Bawa, Vanshika; Bayley, Peter; Bayram, Ali; Bazi, Yakoub; Beach, Thomas; Beaudoin, Kristin; Beaulieu, Christian; Becker, Cassiano; Beckett, Laurel; Bedding, Alun; Beer, Simone; Beer, Joanne; Beg, Mirza Faisal; Behfar, Qumars; Behjat, Hamed; Behjat, Hamid; Behseta, Sam; Bekris, Lynn; Suresh, Mahanand Belathur; Belichenko, Nadia; Bellio, Maura; Belyaev, Mikhail; Bemiller, Shane; Ahmed, Olfa Ben; Ben Bouallègue, Fayçal; Benedikt, Michael; Benge, Jared; Benitez, Andreana; Benlloch, Jose María; Benn, Marianne; Benyoussef, El Mehdi; Bergeron, David; Bermudez, Elaine; Bessadok, Alaa; Betzel, Richard; Bezuidenhoudt, Mauritz; Bhagwat, Nikhil; Bhalerao, Shailesh; Bhandari, Anindya; Bhasin, Harsh; Bhati, Radhika; Bhatkoti, Pushkar; Bhatt, Priya; Bhattacharjee, Debotosh; Bhattacharyya, Sudeepa; Bi, Rui; Bi, Jinbo; Bi, Harvy; Biancardi, Alberto; Bidart, Rene; Bilgel, Murat; Billiet, Thibo; Binczyk, Franciszek; Bingsheng, Huang; Bird, Christopher; Bischof, Gérard; Bishnoi, Ram; Biswas, Shameek; Bjelke, David; Black, Sandra; Blackwood, Jennifer; Blaese, Elise; Blair, James; Blanchard, Gilles; Bloom, Toby; Blujus, Jenna; Blusztajn, Jan Krzysztof; Bo, Wu; Bo, Jun; Boda, Ravi; Boellaard, Ronald; Bogorodzki, Piotr; Bokde, Arun; Bolhasani, Ehsan; Bonakdarpour, Borna; Bonazzoli, Matthew; Bône, Alexandre; Borkowsky, Jennifer; Borrajo, Danielle; Bos, Isabelle; Bosco, Paolo; Bott, Nicholas; Rodrigues, Renato Botter Maio Lopes; Boughanmi, Amani; Bougias, Haralabos; Boulier, Thomas; Bourgeat, Pierrick; Bouyagoub, Samira; Bowes, Mike; Boyes, Richard; Bozoki, Andrea; Bradshaw, Tyler; Pereira, Joana Braga; Brahami, Yoann; Brambati, Simona Maria; Bras, Jose; Braskie, Meredith; Brecheisen, Ralph; Bregman, Noa; Brewer, James; Briassouli, Alexia; Brickman, Adam; Bridges, Robert; Brihmat, Nabila; Brinkmann, Benjamin; Britschgi, Markus; Broers, Thomas; Bron, Esther; Brown, Jesse; Brown, Matthew; Brown, Abel; Brown, Maria; Brunberg, James; Bu, Tao; Bubbico, Giovanna; Bubenik, Peter; Bubu, Omonigho; Buchanan, Daniel; Buchholz, Hans-Georg; Buchsbaum, Bradley; Buck, Katharina; Buckley, Rachel; Budgeon, Charley; Buhl, Derek; Sánchez, Manuel Buitrago; Bundela, Saurabh; Burciu, Irina; Burgos, Ninon; Burke, Shanna; Burn, Katherine; Burns, Jeffrey; Burns, Gully; Burzykowski, Tomasz; Bush, Sammie; Buss, Stephanie; Butcher, Bradley; Butt, Victoria; Buxbaum, Joseph; Sandeep, C. S.; Cabrera, Cristóbal; Cahyaningrum, Winda; Cai, Zhen-Nao; Cai, Siqi; Cai, Erik; Cajka, Tomas; Calamia, Matthew; Caligiuri, Maria Eugenia; Calixte, Christopher; Calon, Frederic; Cameron, Briana; Campbell, Roy; Lopez, Jose Antonio Campos; Cao, Hongliu; Cao, Jiguo; Cao, Guanqun; Cao, Bo; Capizzano, Aristides; Capon, Daniel; Carmasin, Jeremy; Carmichael, Owen; Carr, Sarah; Carrier, Jason; Carter, Greg; Carvalho, Luis; Carvalho, Janessa; Carvalho, Carolina; Casamitjana, Adrià; Casanova, Ramon; Casas, Josep R.; Cash, David; Castelluccio, Pete; Castiglioni, Isabella; Caswell, Carrie; Cattell, Liam; Cauda, Franco; Cepeda, Ileana; Çevik, Alper; Cha, Jungho; Chakrabarti, Shreya; Chakraborty, Shouvik; Chammam, Takwa; Chan, Christina; Chand, Ganesh; Chang, Catie; Chang, Yu-Ming; Chang, Rui; Chang, Hyunggi; Chang, Yu-Chuan; Chang, Ki Jung; Chang, Che-Wei; Chantrel, Steeve; Chao, Justin; Chao, Linda; Chapleau, Marianne; Charil, Arnaud; Chatterjee, Pratishtha; Chatterjee, Sambit; Chaudhry, Zainab; Chauhan, Harmanpreet; Chehade, Abdallah; Chekuri, Omkar; Cheloshkina, Kseniia; Chen, Jianhong; Chen, Gang; Chen, Geng; Chen, Ting-Huei; Chen, Yin Jie; Chen, Xi; Chen, Tzu-Chieh; Chen, Guojun; Chen, Shuzhong; Chen, Jerome; Chen, Fang; Chen, Kaifeng; Chen, Gennan; Chen, Jason; Chen, Guanhua; Chen, Ying-Hsiang; Chen, Ming-Hui; Chen, Chenbingyao; Chen, S. Y.; Chen, Hsu-Hsin; Chen, Xing; Chen, Kewei; Chen, Yuhan; Chen, Hugo; Chen, Rong; Chen, Ing-jou; Chen, Jun; Chen, Jean; Chen, Bo; Cheng, Danni; Cheng, Hewei; Cheng, Yong; Cheng, Yang; Cheng, Zhang; Cheng, Wai Ho; Chenhall, Tanya; Chepkoech, Joy-Loi; Cherukuri, Venkateswararao; Chhibber, Aparna; Chi, Haoyuan; Chi, Chih-Lin; Chiang, Gloria; Chiesa, Patrizia; Childress, Daniel Micah; Chilukuri, Yogitha; Fatt, Cherise Chin; Chincarini, Andrea; Ching, Christopher; Chiotis, Konstantinos; Cho, Soo Hyun; Cho, Yongrae; Cho, Sooyun; Choi, Jun-Sik; Choi, Hongyoon; Choi, Yeoreum; Choi, Sophia; Choi, Jaesik; Choi, Euna; Choo, I. L. Han; Chopra, Vishal; Chougrad, Hiba; Chouraki, Vincent; Christini, Amanda; Chu, Yufang; Chuang, Tzu-Chao; Chuanji, Luo; Chuanjian, Yu; Chun, Marvin; Chun, Sung; Chung, Ai; Chung, Yu-Min; Chung, Jung-Che; Chung, Ai Wern; Chung, Jaeeun; Chyzhyk, Darya; Ciarleglio, Adam; Cioli, Claudia; Cittanti, Corrado; Cives, Ana; Clark, Marissa; Clayton, David; Clement, Mark; Clifft, Daniel; Climer, Sharlee; Clouston, Sean; Clunie, David; Cohen, Phoebe; Cohen, Taco; Cole, Michael; Cole, James; Colletti, Patrick; Collingwood, Joanna; Comley, Robert; Conklin, Bryan; Conner, Lindsay; Conover, Joanne; Contardo-Berning, Ivona; Conway, Ronan; Copani, Agata; Coppola, Giovanni; Corbett, Syl; Corlier, Fabian; Correia, Rui; Cosman, Joshua; Costantino, Sebastian; Coubard, Olivier; Coulson, Elizabeth; Couser, Elizabeth; Cox, Kris; Coyle, Patrick; Cozzi, Brian; Craddock, Cameron; Crawford, Karen; Creese, Byron; Cribben, Ivor; Crisostomo-Wynne, Theodore; Crossley, Nicolas; Croteau, Etienne; Cruchaga, Carlos; Cuajungco, Math; Cui, Jing; Cui, Sue; Cullen, Nicholas; Cuneo, Daniel; Cutanda, Vicente; Cynader, Max; Binu, D.; D'Avossa, Giovanni; Dai, Tian; Dai, Peng; Dai, Hui; Davied Hong, Daivied Hong; Dakovic, Marko; Dalca, Adrian; Damiani, Stefano; Dammak, Mouna; Damoiseaux, Jessica; Dan, Zou; Dang, Xuan Hong; Dang, Shilpa; Daniel, Zinkert; Danjou, Fabrice; Darby, Eveleen; Darby, Ryan; Dardzinska, Agnieszka; Darst, Burcu; Darvesh, Sultan; Das, Kalyan; Das, Devsmita; Das, Sandhitsu; Das, Dulumani; Datta, Shounak; Dauvillier, Jérôme; Davatzikos, Christos; Davidson, Ian; de Boer, Renske; de Bruijne, Marleen; de Buhan, Maya; de Jager, Philip; de La Concha Vega, Nuño; de Lange, Siemon; de Luis Garcia, Rodrigo; de Marco, Matteo; de Sitter, Alexandra; Dean, Scott; Decarli, Charles; Decker, Summer; del Gaizo, John; Demir, Zeynep; Denby, Charles; Deng, Yanjia; Deng, Wanyu; Denisova, Kristina; Denney, William; Depue, Brendan; DeRamus, Thomas; Desikan, Rahul; Desplats, Paula; Desrosiers, Christian; Devadas, Vivek; Devanarayan, Viswanath; Devarajan, Sridharan; Devenyi, Gabriel; Dezhina, Zalina; Dhami, Devendra; Dharsee, Moyez; Dhillon, Permesh; Di, Xin; Di Mauro, Nicola; Diah, Kimberly; Diamond, Sara; Diaz-Asper, Catherine; Diciotti, Stefano; Dickerson, Bradford; Dickie, David Alexander; Dickinson, Philip; Dicks, Ellen; Diedrich, Karl; Dieumegarde, Louis; Dill, Vanderson; Dilliott, Allison; Ding, Zhaohua; Ding, Shanshan; Ding, Yanhui; Ding, Xiuhua; Ding, Xuemei; Dinov, Ivo; Dinu, Valentin; Diouf, Ibrahima; Dmitriev, Phillip; Dobromyslin, Vitaly; Dodge, Hiroko; Dolui, Sudipto; Dona, Olga; Dondelinger, Frank; Dong, Wen; Dong, Hao-Ming; Kehoe, Patricio Donnelly; Donohue, Michael; Dore, Vincent; Dougherty, Chase; Doughty, Mitchell; Dowling, N. Maritza; Doyle, Senan; Doyle, Andrew; Dragan, Matthew; Draganski, Bogdan; Draghici, Sorin; Dragomir, Andrei; Drake, Derek; Drake, Erin; Drd, Shilpa; Dronkers, Nina; Drozdowski, Madelyn; Du, Changde; Du, Yuhui; Du, Lei; Du, Guangwei; Du, Xingqi; Duan, Fang; Duan, Yuzhuo; Duan, Kuaikuai; Duchesne, Simon; Duggento, Andrea; Dukart, Juergen; Dumont, Matthieu; Dunn, Ruth; Duong, Vu; Duraisamy, Baskar; Duran, Tugce; Durrleman, Stanley; Dutta, Joyita; Dyrba, Martin; Dyvorne, Hadrien; R, Amulya E.; Eads, Jennifer; Eastman, Jennifer; Eaton, Susan; Edlund, Christopher; Edmonds, Emily; Edmondson, Mackenzie; Ehsan, Fatima; El-Gabalawy, Fady; Elander, Annie; Elango, Vidhya E.; Eldeeb, Ghaidaa; Elgamal, Fatmaelzahraa; Rodrigues, Yuri Elias; Elman, Jeremy; Elrakaiby, Nada; Emahazion, Tesfai; Emami, Behnaz; Embrechts, Jurriën; Emran Khan Emon, Mohammad Asif; Emrani, Saba; Emrani, Asieh; Emri, Miklós; Engelhardt, Barbara; Engle, Bob; Epstein, Noam; Er, Fusun; Erhardt, Erik; Eriksson, Oscar; Omay, Zeynep Erson; Escudero, Javier; Eshleman, Jason; Eskildsen, Simon; Espinosa, Luis; Essex, Ryan; Esteban, Oscar; Estrada, Karol; Ethell, Douglas; Ethridge, Kimberly; Ettehadi, Seyedrohollah; Eva, Bouguen; Evenden, Dave; Evtikheeve, Rina; Ewert, Siobhan; Fague, Scot; Fahmi, Rachid; Faizal, Sherin; Falahati, Farshad; Fan, Li; Fan, Zhen; Fan, Yong; Fan, Maohua; Fan, Yonghui; Fan, Sili; Fan, Ruzong; Fang, Chen; Fang, Xiaoling; Fanjul-Vélez, Félix; Fanti, Alessandro; Far, Bab; Farah, Martha; Farahani, Naemeh; Farahibozorg, Seyedehrezvan; Farahnak, Farhood; Farajpour, Maryam; Fardo, David; Farkhani, Sadaf; Farnsworth, Bryn; Farooq, Hamza; Farooq, Ammarah; Farouk, Yasmeen; Farrar, Danielle; Farrer, Lindsay; Fatemehh, Fatemeh; Fatemizadeh, Emad; Fatfat, Kim; Fatima, Shizza; Faux, Noel; Favan-Niven, Anne; Favary, Clélia; Fazlollahi, Amir; Fei, Gao; Feingold, Franklin; Feizi, Soheil; Félix, Eloy; Femminella, Grazia Daniela; Feng, Zijun; Feng, Ao; Feng, Brad; Feng, Xinyang; Feragen, Aasa; Fereidouni, Marzieh; Fernandes, Miguel; Fernández, Víctor; Ferrari, Ricardo; Ferraris, Sebastiano; Ferreira, Francisco; Ferreira, Luiz Kobuti; Ferreira, Hugo; Fiecas, Mark; Fieremans, Els; Fiford, Cassidy; Figurski, Michal; Filippi, Massimo; Filshtein, Teresa; Findley, Caleigh; Finger, Elizabeth; Firth, Nicholas; Fischer, Christopher; Fischer, Florian; Fitall, Simon; Fleet, Blair; Fleishman, Greg; Flokas, Lambros; Flores, Alberto; Focke, Niels; Fok, Wai Yan; Foldi, Nancy; Fôlego, Guilherme; Forero, Aura; Fornage, Myriam; Fos Guarinos, Belén; Founshtein, Gregory; Franc, Benjamin; Francois, Clement; Franke, Katja; Fraser, Mark; Frasier, Mark; Frederick, Blaise; Freitas, Fernandho; Escalin, Frency Jj; Freudenberg-Hua, Yun; Friedman, Brad; Friedmann, Theodore; Friedrich, Christoph M.; Frings, Lars; Frisoni, Giovanni; Fritzsche, Klaus; Frolov, Alexander; Frost, Robert; Fu, Ling; Fu, Zening; Fudao, Ke; Fuentes, Emmanuel; Fujishima, Motonobu; Fujiwara, Ken; Fukami, Tadanori; Funk, Cory; Furcila, Diana; Fuselier, Jessica; Nagarjuna Reddy, G.; Gaasterland, Terry; Gabelle, Audrey; Gahm, Jin; Gaiteri, Chris; Gajawelli, Niharika; Galantino, Alexis; Galarza Hernández, Javier; Galasko, Douglas; Galea, Liisa; Galisot, Gaetan; Sánchez, Antonio Javier Gallego; Gallins, Paul; Gamberger, Dragan; Gan, Hong Seng; Gan, Gavin; Ganapathi, Subha; Gancayco, Christina; Gangishetti, Umesh; Ganzetti, Marco; Gao, Fei; Gao, Jingjing; Gao, Linlin; Gao, Tianxiang; Gao, Yuanyuan; Gao, Xiaohong; Garani, Ranjini; Garbarino, Sara; Garcia, Ivan; Garcia, Xiadnai; Garcia, Jorge; Garcia, Tanya; Garcia Arias, Hernan Felipe; de La Garza, Angel Garcia; Gaig, Mireia Garcia; Novoa, Jorge Garcia; Valero, Mar Garcia; Garcia-Ojalvo, Jord; García-Polo, Pablo; Garg, Rahul; Garg, Gaurav; Garg, Divya; Garibotto, Valentina; Garvey, Matthew; Garza-Villarreal, Eduardo; Gaubert, Malo; Gauthier, Serge; Gavett, Brandon; Gavidia, Giovana; Gavtash, Barzin; Gawryluk, Jodie; Gbah, Messon; Ge, Tian; Geerts, Hugo; Geisser, Niklaus; Geng, Junxian; Gentili, Claudio; Gess, Felix; Ghaderi, Halleh; Ghahari, Shabnam; Ghanbari, Yaghoob; Ghazi-Saidi, Ladan; Ghodrati, Mojgan; Ghorbani, Behnaz; Ghoreishiamiri, Reyhaneh; Ghosal, Sayan; Ghosh, Sukanta; Ghosh, Saheb; Ghosh, Sreya; Ghoshal, Ankur; Giannicola, Galetta; Gibert, Karina; Gibson, Gary; Gieschke, Ronald; Gil Valencia, Jorge Mario; Gillen, Daniel; Giordani, Alessandro; Giraldo, Diana; Gispert, Juan D.; Gitelman, Darren; Giuffrida, Mario Valerio; Madhu, G. K.; Glass, Jesse; Glazier, Brad; Gleason, Carey; Glerean, Enrico; Glozman, Tanya; Godbey, Michael; Goettlich, Martin; Gogoi, Minakshi; Gola, Kelly; Golbabaei, Soroosh; Golden, Daniel; Goldstein, Felicia; Gomes, Carlos; de Olivera, Ramon Gomes Durães; Gomez, Isabel; Gomez Gonzalez, Juan Pablo; Gomez-Verdejo, Vanessa; Gong, Weikang; Gong, Enhao; Gong, Kuang; Gonneaud, Julie; Gonzalez, Clio; Gonzalez, Evelio; Gonzalez, Gerardo; Moreira, Eduardo Gonzalez; Goodman, James; Gopinath, Srinath; Gopu, Anusharani; Gordon, Brian; Gordon, David; Gordon, Mark; Gorriz, Juan Manuel; Gors, Dorothy; Göttler, Jens; Gounari, Xanthippi; Goyal, Devendra; Graf, John; Graff, Ariel; Graham, Leah; Graham, Jinko; Grajski, Kamil; Grami, Maziyar; Grand'Maison, Marilyn; Grant, Kiran; Grassi, Elena; Gray, Katherine; Grecchi, Elisabetta; Green, Robert; Green, Elaine; Greenberg, Jonathan; Greening, Steven; Greenwood, Bryson; Gregori, Johannes; Gregory, Michael; Greicius, Michael; Greve, Douglas; Griffin, Jason; Grill, Joshua; Grodner, Kelsey; Grolmusz, Vince; Groot, Perry; Groothuis, Irme; Gross, Alden; Grundstad, Arne; Grundy, Edward; Grzegorczyk, Tomasz; Nandith, G. S.; Gu, David; Gu, Jiena; Gu, Yun; Gu, Ginam; Guan, Sheng; Guan, Yuanfang; Guennel, Tobias; Guerin, Laurent; Guerrero, Ricardo; Guerrier, Laura; Guevara, Pamela; Guggari, Shankru; Roy, Abhijit Guha; Guidotti, Roberto; Guillon, Jérémy; Gulcher, Jeff; Gulia, Sarita; Gumedze, Freedom; Gunawardena, Nishan; Gunn, Roger; Guo, Michael; Guo, Xiao; Guo, Xingzhi; Guo, Yi; Kai, Zhang Guo; Zhao, Ma Guo; Gupta, Navin; Gupta, Anubha; Gupta, Ishaan; Guren, Onan; Gurnani, Ashita; Gurol, Mahmut Edip; Guzman, Gloria; Gyy, Gyy; Rajanna, Vanamala H.; Ha, Seongwook; Haacke, Ewart; Haaksma, Miriam; Habadi, Maryam; Habeck, Christian; Habes, Mohamad; Hackspiel Zarate, Maria Mercedes; Hadimani, Ravi; Hahn, William; Hahn, Tim; Haight, Thaddeus; Hair, Nicole; Haixing, Wang; Hajarolasvadi, Noushin; Hajjar, Ihab; Hajjo, Rima; Halchenko, Yaroslav; Hall, Anette; Hallock, Kevin; Hamdi, Shah Muhammad; Hameed, Farhan; Hamidian, Hajar; Han, Dong; Han, Yang; Han, Hio-Been; Han, Qingchang; Han, Beomsoo; Han, Duke; Han, Shizhong; Han, Xiaoxia; Han, Peipei; Han, Joo Yoon; Han, Dong-Sig; Handsaker, Robert; Hanna-Pladdy, Brenda; Hanseeuw, Bernard; Hansson, Björn; Hao, Yang; Hao, Jhon; Happ, Clara; Harischandra, Dilshan; Haritaoglu, Esin; Harris, Richard; Harris, Breanna; Hart, Brian; Hartzell, James; Harvey, Danielle; Hashimoto, Tsuyoshi; Hasooni, Hossein; Hassan, Moaied; Hassan, Mehdi; Hassanzadeh, Hamid Reza; Hassanzadeh, Oktie; Hatton, Sean; Hawchar, Jinan; Hayashi, Toshihiro; Hayashi, Norio; Hayes, Jasmeet; Hayete, Boris; Haynor, David; He, Linchen; He, Yan; He, Yao; He, Huiguang; Heegaard, Niels; Hefny, Mohamed; Heil, Julius; Heindel, William; Henderson, Samuel; Henf, Judith; Henriquez, Claudio; Herholz, Karl; Hermessi, Haithem; Hernandez, Monica; Herrera, Luis; Hibar, Derrek; Hidane, Moncef; Higuchi, Satomi; Hind, Jade; Hives, Florent; Hoang, Mimi; Hobel, Zachary; Hoffman, John; Hofmeister, Jeremy; Hohman, Timothy; Holder, Daniel; Holguin, Jess; Holmes, Robin; Hong, John; Hongliang, Zou; Hongyu, Guo; Hopkins, Paul; Hor, Soheil; Hornbeck, Russ; Horng, Andy; Horton, Wesley; Hosny, Khalid; Hosseini, Eghbal; Hosseini, Hadi; Hosseini, Zahra; Asl, Ehsan Hosseini; Hou, Beibei; Houghton, Richard; Houghton, Katherine; Householder, Erin; Howlett, James; Hsiao, John; Hsiao, Ing-Tsung; Hsu, Chih-Chin; Hu, Xixi; Hu, Lingjing; Hu, Nan; Hu, Kun; Hu, Tao; Hu, Li; Hu, Xiaolan; Hua, Fei; Huang, Marissa; Huang, Qi; Huang, Michelle; Huang, Chao; Huang, JunMing; Huang, Xingyuan; Huang, Yuhan; Huang, Sing-Hang; Huang, Shuai; Huang, Peiyu; Huang, Chun-Chao; Huang, Zhiyue; Huang, Meiyan; Huang, Zhiwen; Hubrich, Markus; Huestis, Michael; Huey, Edward; Hufton, Andrew; Huijbers, Willem; Huisman, Sjoerd; Hung, Joe; Hunsaker, Naomi; Hunt, Fostor; Huppertz, Hans-Jürgen; Huser, Vojtech; Hussain, Lal; Hutchison, R. Matthew; Hutton, Alexandre; Huyck, Els; Hwang, Jihye; Hyun, JungMoon; Iakovakis, Dimitris; Ibañez, Victoria; Ide, Kayoko; Igarashi, Takuma; Iglesias, Juan Eugenio; Muñoz, Laura Igual; Iidaka, Tetsuya; Ikeuchi, Takeshi; Ikhena, John; Ikuta, Toshikazu; Im, Hyung-Jun; Insausti, Ana; Insel, Philip; Invernizzi, Azzurra; Iosif, Ana-Maria; Ip, Nancy; Irizarry, Sierra; Irmak, Emrah; Irwin, David; Isaza, Mariano; Ishii, Makoto; Ishii, Kenji; Islam, Jyoti; Israel, Ariel; Isufi, Elvin; Ito, Kaori; Ito, Masato; Izquierdo, Walter; Alphin, J.; Akhila, J. A.; Jaberzadeh, Amir; Jackowiak, Edward; Jackson, Eric; Jackson, Chris; Jackson, Jonathan; Jacob, Samson; Jacobsen, Nina; Jacobsen, Jörn; Jacquemont, Thomas; Jacques, Nerline; Jaeger, Ralf; Jafari, Tahere; Jafari-Khouzani, Kourosh; Jagadish, Akshay Kumar; Jagtap, Priti; Jagust, William; Jahr, Joseph; Jain, Shubhankar; Jain, Shubham; Jaiswal, Ayush; Jaiswal, Akshay; Jait, Amine; Jakkoju, Chetan; Jakobsson, Andreas; James, Olga; James, Oliver; Jamlai, Maedeh; Jammeh, Emmanuel; Janardhana, Lajavanthi; Jang, Jinseong; Jang, Jae-Won; Jang, Jinhee; Jang, Hyesue; Janghel, Rekh Ram; Jawahar, Shasvat; Jean, Kharne; Jean-Baptiste, Schiratti; Jedynak, Bruno; Jefferson, Angela; Jennings, Danna; Jennings, Dominique; Jeon, Seun; Jeong, Yong; Jester, Charles; Jethwa, Ketan; Jha, Debesh; Ji, Gong-Jun; Ji, Chong; Ji, Jin; Jia, Bowen; Jiacheng, Lee; Jiajia, Guo; Jian, Weijian; Jiang, Shan; Jiang, Chunxiang; Jianhua, Gao; Jiao, Zhuqing; Jiao, Zeyu; Jiao, Du; Jimenez Alaniz, Juan Ramon; Gomez, Carolina Jimenez; Jiménez-Huete, Adolfo; Jimura, Koji; Jin, Yan; Jin, Zhu; Jogia, Jigar; Johansson, Per; John, Kimberley; Johnsen, Stian; Johnson, Leonard; Johnson, Sterling; Johnson, Kent; Johnston, Jane; Johnston, Stephen; Jomeiri, Alireza; Jonas, Katherine; Jones, Richard; Jones-Davis, Dorothy; Jönsson, Linus; Joseph, Jane; Joshi, Himanshu; Joshi, Shantanu; Joshi, Abhinay; Joyce, Katherine; Juengling, Freimut; Jung, Youngjin; Junker, Viv; Junwei, Ding; Jyothi, Singaraju; Jyotiyana, Monika; Sarthaj, K.; Kachouane, Mouloud; Kadian, Amit; Kaewaramsri, Yothin; Kaicheng, Li; Kaiser, Marcus; Kakinami, Lisa; Kalra, Sanjay; Kam, Hye Jin; Kamarudin, Nur Shazwani; Kaminker, Josh; Kandel, Benjamin; Kandiah, Nagaendran; Kaneko, Tomoki; Kang, Yun Seok; Kang, Ju Hee; Kang, Hakmook; Kang, Jian; Kansal, Anuraag; Kaouache, Mohammed; Kaplan, Adam; Kottaram, Akhil Karazhma; Karim, Faizan; Karimi-Mostowfi, Nicki; Karjoo, Mahboobe; Karlin, Daniel; Karp, Juliana; Karray, Chiheb; Kartsonis, Nick; Karu, Naama; Kasa, Jaya; Kasiri, Keyvan; Katako, Audrey; Kato, Ryo; Katsonis, Panagiotis; Katti, Hkkatti; Kaur, Prabhjot; Kauwe, John; Kawaguchi, Atsushi; Kazemi, Samaneh; Kazemi, Yosra; Rijan, K. C.; Kechin, Andrey; Kelkhoff, Douglas; Kelleher, Thomas; Kellner-Weldon, Frauke; Kennion, Oliver; Kerr, Daniel; Kesler, Shelli; Kesselman, Carl; Kessler, Daniel; Keuken, Max; Keyvanfard, Farzaneh; Khademi, April; Khajehnejad, Moein; Khan, Wasim; Khan, Tabrej; Khan, Hikmat; Khan, Anzalee; Khan, Samreen; Khanmohammadi, Sina; Khasanova, Tatiana; Khazaee, Ali; Khazan, Lenny; Kherif, Ferath; Khl, Aym; KHlif, Mohamed Salah; Khondoker, Mizanur; Khoo, Sok Kean; Khosrowabadi, Reza; Khurshid, Kiran; Kianfard, Reihaneh; Kida, Satoshi; Kiddle, Steven; Kikuchi, Masashi; Killiany, Ron; Kim, Jeongchul; Kim, Jong Hun; Kim, Hyunwoo; Kim, Jongin; Kim, Yeo Jin; Kim, Jung-Jae; Kim, Hang-Rai; Kim, Jaeyeol; Kim, Ki Hwan; Kim, Joseph; Kim, Younghoon; Kim, Mijung; Kim, Jeongsik; Kim, Bohyun; Kim, Taehyun; Kim, Heeyoung; Kim, Seonjik; Kim, Nakyoung; Kim, Byeongnam; Kim, ChanMi; Kim, Jeonghun; Kim, Seong Yoon; Kim, Sunhee; Kingery, Lisle; Kinnunen, Kirsi; Kinomes, Marie; Kirchner, Jan Hendrik; Caldwell, Jessica Kirkland; Kirwan, Brock; Kitamura, Chiemi; Kitty, Kitty; Kiviat, David; Kiyasova, Vera; Klein, Richard; Klein, Alison; Klein, Gregory; Klein, Jan; Kleinman, Aaron; Kling, Mitchel; Klinger, Joern; Klinger, Rebecca; Klink, Katharina; Kocaturk, Mustafa; Koch, Philipp Johannes; Kochova, Elena; Koenig, Loren; Koh, Natalie; Köhler, Jens Erik; Koikkalainen, Juha; Koini, Marisa; Kolachalama, Vijaya; Koncz, Rebecca; Kong, Xiang-Zhen; Kong, Vincent; Kong, Xiangzhen; Kong, Dehan; Kong, Linglong; Konukoglu, Ender; Kopeinigg, Daniel; Kopera, Krzysztof; Koppers, Simon; Korb, Matheus; Korfiatis, Panagiotis; Korolev, Igor; Korolev, Sergey; Korostyshevskiy, Valeriy; Koshiya, Heena; Kost, James; Kotari, Vikas; Koutra, Danai; Koychev, Ivan; Kruthika, K. R.; Krahnke, Tillmann; Krause, Matthew; Kraybill, Matt; Kriebel, Martin; Hari Krishna, M.; Krohn, Stephan; Kruggel, Frithjof; Kuceyeski, Amy; Kuhl, Donald; Kulshreshtha, Devang; Kumar, Santosh; Kumar, Sambath; Kumar, Kuldeep; Kumar, Anil; Kumar, Abhishek; Kumar, A.; Kumar, Saurabh; Kumar, Ashwani; Kumar, Ambar; Kumar, Dinesh; Kumar, Rishab; Kumarasinghe, Janaka; Kundu, Suprateek; Kung, Te-Han; Kuo, Li-Wei; Kuo, Phillip; Channappa, Usha Kuppe; Kuriakose, Elmy; Kurian, P.; Kwan, Kenneth; Kwasigroch, Arkadiusz; Kwon, Young Hye; Kyeong, Sunghyon; Fleur, Claire La; Wungo, Supriyadi La; Labbe, Tomas; Lacombe, Daniel; Lad, Meher; Lahoti, Geet; Lai, Ying Liang; Lai, Catherine; Lai, Dongbing; Laird, Dillon; Lakatos, Anita; Lam, Alice; Lama, Ramesh; Lambert, Christian; Landau, Susan; Landman, Bennett; Landre, Victor; Lane, Elizabeth; Lange, Catharina; Langenieux, Alexandre; Lareau, Caleb; Larson, Katelyn; Latif, Ghazanfar; Lauber, Ross; Lawliet, Z. H.; Lawrence, Emma; Lazar, Anca; Le, Ngan; Le, Thi Khuyen; Le, Matthieu; Guen, Yann Le; Scouiller, Stephanie Le; Leandrou, Stephanos; Leatherday, Christopher; Leavitt, Mackenzie; Ledbetter, Christina; Lee, Hyekyoung; Lee, Wook; Lee, Annie; Lee, Jaehong; Lee, Dongyoung; Lee, Joel; Lee, Song-Ting; Lee, Kuo-Jung; Lee, Subin; Lee, Jaeho; Lee, Catherine; Lee, Gyungtae; Lee, Suzee; Lee, Erik; Lee, Yunseong; Lee, Sang-Gil; Lee, Seonjoo; Lee, Peng Jung; Lee, Hyunna; Lee, Cheng-Hsien; Lee, Hengtong; Lee, Mi Ri; Lee, Ilgu; Lee, Qixiang; Lefterov, Iliya; Leger, Charlie; Lehallier, Benoit; Lei, B.; Lei, Shi; Lei, Hongxing; Lei, Haoyun; Leong, Tze Yun; Leong, Sharlene; Leoutsakos, Jeannie-Marie; Lepore, Natasha; Lerch, Ondrej; Leung, Yip Sang; Leung, Yuk Yee; Leung, Shuyu; Leung, Hoi-Chung; Leung, Ming-Ying; Levakov, Gidon; Levine, Abraham; Li, Chawn; Li, Miranda; Li, Huijie; Li, Junning; Li, Xiaofeng; Li, Yi; Li, Jinchao; Li, Tianhong; Li, Yongming; Li, Xiangrui; Li, Tieqiang; Li, Yan; Li, Fuhai; Li, Feijiang; Li, Shuyang; Li, Zhi; Li, Xing; Li, Rongjian; Li, Rui; Li, Y. U.; Li, Kang; Li, Zhenzhen; Li, Qingqin; Li, Wenjun; Li, Yang; Li, Jialu; Li, Guangyu; Li, Michelle; Li, Yibai; Li, Yupeng; Li, Tao; Li, Zhujun; Li, Yafen; Li, Muwei; Li, Xuan; Li, Yi-Ju; Li, Cen Sing; Li, X. W.; Li, Yingjie; Li, Lin; Li, Yihan Jessie; Li, Yaqing; Li, Xiantao; Li, Xingfeng; Li, Chenxi; Li, Chao; Li, Jicong; Li, Jiewei; Li, Tengfei; Li, Wei; Li, Xinzhong; Li, Nannan; Li, Chunfei; Li, Yeshu; Liang, Chen; Liang, Nanying; Liang, Jingjing; Liang, Shengxiang; Liang, Xiaoyun; Liang, Xia; Liang, Ying; Liberman, Sofia; Libon, David; Liébana, Sergio; Liedes, Hilkka; Lim, Wee Keong; Lim, Yen Ying; Lin, Yenching; Lin, Katherine; Lin, Ming; Lin, Ai-Ling; Lin, Ching-Heng; Lin, Bing; Lin, Lin; Lin, Jyh-Miin; Lin, W. M.; Lin, Chien-Tong; Lin, Liyan; Lin, Jing; Lindberg, Olof; Linesch, Paul; Linn, Kristin; Lippert, Christoph; Litovka, Nikita; Little, Graham; Liu, Man-Yun; Liu, Jin; Liu, Chin-Fu; Liu, Zhaowen; Liu, Eulanca; Liu, Weixiang; Liu, K. E.; Liu, Hao Chen; Liu, Jia; Liu, Richann; Liu, Dongbo; Liu, Victor; Liu, Wenjie; Liu, Tao; Liu, Xiaoli; Liu, Yong; Liu, Lin; Liu, Dan; Liu, Xiuwen; Liu, Mengmeng; Liu, Chia-Shang; Liu, Ying; Liu, Yan; Liu, Xueqing; Liu, Han; Liu, Chien-Liang; Liu, Sidong; Liu, Jundong; Liu, Yang; Liu, Tianming; Liu, Tingshan; Liu, Ning; Liu, Lan; Liuyu, Liuyu; Lizarraga, Gabriel; Llido, Jerome; Lobach, Iryna; Lockhart, Samuel; Loft, Henrik; Lohr, Kelly; Lon, Hoi Kei; Lone, Kashif Javed; Long, Ziyi; Long, Xiaojing; Longo, Frank; Alves, Isadora Lopes; Lopez, Guadalupe; Lorenzi, Marco; Lotan, Eyal; Louie, Gregory; Louis, Maxime; Loukas, Andreas; Love, Seth; Lowe, Deborah; Lu, Bin; Lu, Chia-Feng; Lu, Zixiang; Lu, Lijun; Lu, Pascal; Lu, Shen; Lu, Qing; Lu, Zheshen; Lu, Chuan; Lu, Patty; Lu, Hangquan; Lu, Bo; Luktuke, Yadnyesh; Luo, Wei; Luo, Suhuai; Luo, Sheng; Luo, Shaojun; Luo, Peggy; Luo, Shan; Luo, Weidong; Luo, Liao; Luo, Xiao; Lupton, Michelle; Lutz, Michael; Lv, Eric; Lyu, Juan; Angshul, M.; Radha, M. R.; Dinesh, M. S.; Ma, Xiangyu; Ma, Chao; Ma, Li; Ma, Yu; Ma, Qianli; MacArthur, Daniel; Macey, Paul; Mach, Eric; MacPhee, Imola; Madadi, Mahboubeh; Madan, Christopher; Madan, Bharat; Madero, Giovanny; Madhavan, Radhika; Madhyastha, Tara; Maeno, Nobuhisa; Magsood, Hamzah; Mah, Linda; Mahdavi, Shirin; Mahdavi, Asef; Mahmoud, Abeer; Mahmoud, Hentati; Mahmoud, Kariman; Mahmoudi, Ahmad; Dehkordi, Siamak Mahmoudian; Mahor, Monika; Mahseredjian, Taleen; Mai, Cha; Maia, Rui; Maiti, Taps; Maj, Carlo; Maji, Pradipta; Majidpour, Jafar; Makhlouf, Laouchedi; Makino, Satoshi; Makrievski, Stefan; Makse, Hernan; Malagi, Archana; Malakhova, Katerina; Malamon, John; Malashenkova, Irina; Malchano, Zach; Maleki-Balajoo, Somayeh; Malik, Sadia; Malik, Tamoor; Mallik, Abhirup; Malm, Tarja; Malpas, Charles; Malpica, Norberto; Malviya, Meenakshi; Mamandi, A.; Manandhar, Abinash; Mandal, Pravat; Mandali, Alekhya; Mane, Prajakta; Manning, Emily; Manoufali, Mohamed; Manser, Paul; Mantini, Dante; Mantri, Ninad; Manyakov, Nikolay; Manzak, Dİlek; Mao, Shuai; Maoyu, Tian; Maple Grødem, Jodi; Maravilla, Kenneth; Marco, Simonetti; Marcus, Daniel; Margetis, John; Margolin, Richard; Mariano, Laura; Marinescu, Razvan Valentin; Markett, Sebastian; Markiewicz, Pawel; Marnane, Michael; Maroof, Asif; Marple, Laura; Marques, Cristiane; Marrakchi, Linda; Marshall, Gad; Märtens, Kaspar; Mårtensson, Gustav; Marti, Cristian; Martin, Harold; Martinaud, Olivier; Martinez, Victor; Martinez, Oliver; Martinez, Jesus; Martinez, Carlos; Abadías, Neus Martinez; Torteya, Antonio Martinez; Martini, Jean-Baptiste; Martins, Samuel; Masciotra, Viviane; Masmoudi, Ahmed; Masny, Aliaksandr; Shah, Pir Masoom; Massaro, Tyler; Masumoto, Jun; Matan, Cristy; Mate, Karen; Mateus, Pedro; Mather, Mara; Mather, Karen; Mathew, Jesia; Mathias, Samuel; Mathiyalagan, Tamilalaghan; Matloff, Will; Matsubara, Keisuke; Matsubara, Takashi; Matsuda, Yukihisa; Matthews, Dawn; Mattis, Paul; May, Patrick; Mayburd, Anatoly; Mayo, Chantel; Mayordomo, Elvira; Mbuyi, Gaylord; McCallum, Colleen; McCann, Bryony; McCollough, Todd; McCormick, Shannon; McCurdy, Sean; McDonald, Carrie; McEligot, Archana; McEvoy, Linda; McGeown, William; McGinnis, Scott; McHugh, Thomas; McIntosh, Elissa; McIntosh, Randy; McKenzie, Andrew; McLaren, Donald; McMillan, Corey; McMillan, Alan; McPherson, Brent; McRae-McKee, Kevin; Zaini, Muhammad Hafiz Md; Meadowcroft, Mark; Mecca, Adam; Meda, Shashwath; Medikonda, Venkata Srinu; Meeker, Karin; Megherbi, Thinhinane; Mehmood, Anum; Mehrtash, Alireza; Meiberth, Dix; Meier, Dominik; Meijerman, Antoine; Mejia, Jose; Mekkayil, Lasitha; Meles, Sanne; Melie-Garcia, Lester; Melo, Hans; Melrose, Rebecca; Melzer, Corina; Mendes, Aline; Leon, Ricardo Antonio Mendoza; Gonzalez, Manuel Menendez; Meng, Dewen; Meng, Xianglai; Meng, Guilin; Mengel, David; Menon, Ramesh; Menon, Ravi; Mercado, Flavio; Messick, Viviana; Meyer, Pierre-Francois; Meyer, Carsten; Mezher, Adam; Mi, Liang; Miao, Hongyu; Michailovich, Oleg; Michels, Lars; Mickael, Guedj; Mikhail, Mark; Mikhno, Arthur; Milana, Diletta; Miller, Rachel; Miller, Brendan; Millikin, Colleen; Min, Byung Wook; Minadakis, George; Minghui, Hu; Chinh, Truong Minh; Minkova, Lora; Miranda, Michelle; Misevic, Dusan; Mishra, Amit; Mishra, Chetan; Mishra, Shiwangi; Mishra, Ashutosh; Mishra, Krishna; Misquitta, Karen; Mitchell, Brian; Mithawala, Keyur; Mitnitski, Arnold; Mitra, Sinjini; Mittal, Gaurav; Mittner, Matthias; Miyapuram, Krishna Prasad; Mlalazi, Rebaone; Mo, Daojun; Moghekar, Abhay; Moguilner, Sebastian; Moh, Heba; Mohabir, Mark; Mohajer, Bahram; Mohamed, Moataz; Mohammadi, Sadeq; Mohammadi-Nejad, Ali-Reza; Mohammady, Saed; Taqi, Arwa Mohammed; Mohan, Kishore Kumar; Mohy-Ud-Din, Hassan; Moitra, Dipanjan; Mojaradi, Mehdi; Mojtabavi, Alireza; Molina, Helena; Mollon, Jennifer; Molteni, Erika; Montajabi, Mohaddeseh; Montal, Victor; Montazami, Aram; Monté-Rubio, Gemma; Montembeault, Maxime; Montero-Odasso, Manuel; Montillo, Albert; Moon, Byung-Seung; Moon, Chan; Moon, Chooza; Moore, Archer; Morabito, Francesco C.; Moradi, Masoud; Moraes, Renato; Ballesteros, Orlando Morales; Morales-Henriquez, Daniela; Moratal, David; Moreno, Herman; Morihara, Ryuta; Mormino, Elizabeth; Morris, Jeffrey; Mortamet, Bénédicte; Morton, John; Moscato, Pablo; Rial, Alexis Moscoso; Mossa, Abdela Ahmed; Mottaghi, Setare; Mouelhi, Aymen; Moussavi, Arezou; Moustafa, Ahmed; Mowrey, Wenzhu; Mtetwa, Lungile; Muehlboeck, Sebastian; Mueller, Susanne; Mueller-Sarnowski, Felix; Mufidah, Ratna; Mukherjee, Rik; Mukherjee, Shubhabrata; Müller, Christian; Müller, Hans-Peter; Mullins, Paul; Mullins, Roger; Muncy, Nathan; Munir, Akhtar; Munirathinam, Ramesh; Munoz, David; Munro, Catherine; Muranevici, Gabriela; Rendon, Santiago Murillo; Murilo, Robson; Murphy, Sonya; Muscio, Cristina; Musso, Gabriel; Mustafa, Yasser; Myall, Daniel; Gayathri, N.; Nabavi, Shahab; Nabeel, Eman; Nagele, Robert; Naghshbandi, Hane; Naik, Shruti; Najmitabrizi, Neda; Nakawah, Mohammad Obadah; Nalls, Mike; Namboori, Krishnan; Nancy, Annie; Napolitano, Giulio; Narayan, Manjari; Narkhede, Atul; Naseri, Mahsa; Nasrallah, Ilya; Nasrallah, Fatima; Nassif, Rana; Nath, Sruthi R.; Nathoo, Farouk; Nation, Daniel; Naughton, Brian; Nault, Larry; Nautiyal, Deeksha; Nayak, Deepak Ranjan; Naz, Mufassra; Nazemian, Shayan; Nazeri, Arash; Neckoska, Emilija; Neelamegam, Malinee; Nehary, Ebrahim; Nelson, Peter; Nelson, Linda; Nematzadeh, Hosein; Nerur, Shubha; Nesteruk, Thomas; Neu, Scott; Ng, Yen-Bee; Nguyen, Tin; Nguyen, Thanh; Nguyen, Harrison; Nguyen, Nghi; Trung, Hieu Nguyen; Ni, Lucy; Nian, Yongjian; Nichols, Thomas; Nicodemus, Kristin; Nie, Yunlong; Nielsen, Casper; Nikolov, Robert; Nila, Jessica; Nishioka, Christopher; Njeh, Ines; Njie, Emalick; Nobakht, Samaneh; Noble, Andrew; Noda, Art; Noroozi, Ali; Norton, Derek; Nosarti, Chiara; Nosheny, Rachel; Notsu, Akifumi; Novak, Gerald; Nozadi, Seyed Hossein; Nu, Fen; Nudelman, Kelly; Nunes, Adonay; Nunes, Ana; Núñez, Christian; Nuno, Michelle; Nuriel, Tal; Nygaard, Haakon; Nyquist, Paul; O'Bott, Jacob; O'Charoen, Sirimon; O'Neill, William; O'Rawe, Jonathan; Obrzut, Grzegorz; Och, Ganzorig; Odaibo, David; Odry, Benjamin; Oehmichen, Axel; Ofori, Edward; Ogunsanmi, Abdulfatai; Oguz, Kaya; Oh, Jungsu; Oh, Minyoung; Oh, Hwamee; Ohigashi, Hironori; Oishi, Kenichi; Oishi, Naoya; Okhravi, Hamid; Okonkwo, Ozioma; Okyay, Savaş; Oliveira, Cyrill; Oliveira, João; Oliveira, Francisco; Oliver, Ruth; Olmos, Salvador; Olszowy, Wiktor; Oltra-Cucarella, Javier; Önen, Zehra; Ong, Rowena; Onoda, Keiichi; Onyike, Chiadi; Operto, Grégory; Oppedal, Ketil; Orejuela, Juan; Orhon, Atila; Orozco, Max; Ortuño, Juan; Osadebey, Michael; Osborn, Joseph; Osoba, Osonde; Ostadrahimi, Hamid; Ostovari, Parisa; Otis, Sarah; Overgaard, Shauna; Owen, Catrin Elin; Oxtoby, Neil; Öziç, Muhammet Üsame; Ozkaya, Gorkem; Okur, Ozlem Ozmen; Ozsolak, Fatih; Ozyildirim, Melis; Pa, Judy; Pacheco, Joe; Pack, Gary; Padilla, Daniel; Cerezo, Berizohar Padilla; Padovese, Bruno; Pae, Chongwon; Pagano, Gennaro; Pahuja, Gunjan; Pai, Shraddha; Pajavand, Shahryar; Pajula, Juha; Pak, Kyoungjune; Pakzad, Ashkan; Palaniappan, Mathiyalagan; Palanisamy, Sindhu; Palmqvist, Sebastian; Palsson, Frosti; Pan, Dan; Pan, Tiffany; Pan, Yuqing; Pan, Wei; Pan, Sun; Pan, Hongliang; Pan, Xiaoxi; Pandey, Lokesh; Pang, Qiaoyu; Pangilinan, Erin; Pannetier, Nicolas; Panpan, Xu; Panyavaraporn, Jantana; Pardini, Matteo; Paredes, José; Parikh, Jignesh; Park, Seongbeom; Park, Young Ho; Park, Min Tae; Park, Hyunjin; Park, Sejin; Park, JongSeong; Park, DooHyun; Park, Ji Eun; Park, Yuhyun; Park, Jiyong; Parker, Jason; Parker, Richard; Parodi, Alice; Bautista, Yohn Jairo Parra; Parrish, Marcus; Parthiban, Preethy; Pascariello, Guido; Pascual, Belen; Paskov, Hristo; Pasquini, Lorenzo; Tantaleán, Julio Sergio Eduardo Pastor; Pastur, Lucas; Patel, Raihaan; Patel, Sejal; Paterson, Ross; Paton, Bryan; Patriarche, Julia; Patriat, Rémi; Pattichis, Constantinos; Paul, Debashis; Pawar, Kuldeep; Pawlak, Mikolaj; Paz, Rotem; Pedroto, Maria; Pelekanos, Matthew; Péléraux, Annick; Peng, Dan; Peng, Jing; Pengfei, Tian; Perani, Daniela; Peraza, Luis; Pereira, Fabricio; Pereira, Francisco; Perkins, Diana; Perneczky, Robert; Persad, Umesh; Peter, Jessica; Peters, Mette; Peters, Ruth; Pether, Mark; Petrella, Jeffrey; Petrenko, Roman; Petrone, Paula; Petrov, Dmitry; Pezzatini, Daniele; Pfenning, Andreas; Pham, Chi-Tuan; Philipson, Pete; Phillips, Jeffrey; Phillips, Nicole; Phophalia, Ashish; Phuah, Chia-Ling; Pichai, Shanthi; Pichardo, Cesar; Binette, Alexa Pichet; Pietras, Olga; Pietrzyk, Mariusz; Pike, Kerryn; Pillai, Jagan; Piludu, Francesca; Pineda, Joanna; Ping, He; Pirraglia, Elizabeth; Pither, Richard; Piyush, Ranjan; Pizzi, Nick; Gonzalez, Luis Fernando Planella; Plassard, Andrew; Platero, Carlos; Plocharski, Maciej; Podhorski, Adam; Poggiali, Davide; Poghosyan, Mher; Pohl, Kilian; Poirier, Judes; Polakow, Jean Jacques; Politis, Marios; Poljak, Anne; Poloni, Katia Maria; Poole, Victoria; Poppenk, Jordan; Porsteinsson, Anton; Portelius, Erik; Posta, Filippo; Posthuma, Danielle; Potashman, Michele; Poulin, Stephane; Pourmennati, Bahar; Prahlad, Tejas; Pranav, Lee; Prasanth, Isaac; Prashar, Ajay; Prescott, Jeff; Prevedello, Luciano; Previtali, Fabio; Pricer, James; Prichard, James; Prince, Jerry; Prins, Samantha; Pritchard, Christopher; Priya, Priya; Priya, Anandh; Priyanka, Ahana; Properzi, Michael; Prosser, Angus; Proust-Lima, Cécile; Pruessner, Jens; Pu, Jian; Punjabi, Arjun; Punugu, Venkatapavani Pallavi; Puri, Dilip; Renjini, Anurenjan Purushothaman; Pyeon, DoYeong; Qader, Abu; Qi, Zeyao; Qi, Baihong; Qian, Xiaoning; Qian, Long; Qiao, Ju; Qiao, Jocelin; Qiaoli, Zhang; Qin, Hongsen; Qin, Wang; Qin, Tian; Qin, Yuanyuan; Qin, Qinxiaotie; Qin, Qiao; Qing, Zhao; Qiongling, Li; Qiu, Yu; Qiu, Wendy; Qiu, Deqiang; Qiu, Yingwei; Quadrelli, Scott; Qualls, Jake; Quan, Li; Quarg, Peter; Qureshi, Adnan; Anand, R.; Chitra, R.; Balaji, R.; Madhusudhan, R. N.; Raamana, Pradeep Reddy; Rabbia, Michael; Rabin, Laura; Radke, David; Pc, Muhammed Raees; Rafeiean, Mahsa; Raha, Oindrila; Rahimi, Amir; Arashloo, Shervin Rahimzadeh; Rai, Vipin; Rajamanickam, Karunanithi; Rajan, Surya; Rajapakse, Jagath; Rajaram, Sampath; Rajendran, Rajeswari; Rakovski, Cyril; Ramalhosa, Ivo; Raman, Fabio; Ramasamy, Ellankavi; Ramasangu, Hariharan; Ramirez, Alfredo; Ramos Pérez, Ana Victoria; Rana, Rahul; Rane, Swati; Rao, Anil; Rao, Vikram; Rashidi, Arash; Rasoanaivo, Oly; Rassem, Taha; Rastgoo, Hossein; Rath, Daniel; Ratnarajah, Nagulan; Ravikirthi, Prabhasa; Ravipati, Kaushik; RaviPrakash, Harish; Rawdha, Bousseta; Ray, Meredith; Ray, Debashree; Ray, Nilanjan; Ray, Dipankar; Ray, Soumi; Rebbah, Sana; Redding, Morgan; Regnerus, Bouke; Rehn, Patrick; Rehouma, Rokaya; Reid, Robert; Reimer, Alyssa; Reiss, Philip; Reitz, Christiane; Rekabi, Maryam; Rekik, Islem; Ren, Xuhua; Ren, Fujia; Ren, Xiaowei; Ren, Weijie; Renehan, William; Rennert, Lior; Rey, Samuel; Reyes, Pablo; Reza, Rifat; Rezaee, Khosro; Rhinn, Herve; Lorenzo, Pablo Ribalta; Ribeiro, Adèle Helena; Richards, John; Richards, Burt; Richards, Todd; Richardson, Hamish; Richiardi, Jonas; Richter, Nils; Ridge, Perry; Ridgway, Gerard; Ridha, Basil; Ried, Janina; Riedel, Brandalyn; Riphagen, Joost; Ritter, Kerstin; Rivaz, Hassan; Rivers-Auty, Jack; Allah, Mina Rizk; Rizzi, Massimo; Roalf, David; Robb, Catherine; Roberson, Erik; Robieson, Weining; Rocca-Serra, Philippe; Rodrigues, Marcos Antonio; Rodriguez, Alain; Aguiar, Güise Lorenzo Rodríguez; Rodriguez-Sanchez, Antonio; Rodriguez-Vieitez, Elena; Roes, Meighen; Rogalski, Emily; Rogers, James; Rogers, Baxter; Rohani, Hosna; Rollins, Carin; Rollo, Jenny; Romanillos, Adrian; Romero, Marcelo; Romero, Klaus; Rominger, Axel; Rondina, Jane; Ronquillo, Jeremiah; Roohparvar, Sanaz; Rosand, Jonathan; Rose, Gregory; Roshchupkin, Gennady; Rosoce, Jeremy; Ross, David; Ross, Joel; Ross, Owen; Rossi, Stephanie; Roussarie, Jean-Pierre; Roy, Arkaprava; Roy, Snehashis; Ruble, Cara; Rubright, Jonathan; Rudovic, Ognjen; Ruggiero, Denise; Rui, Qiao; Ruiz, Pablo; Rullmann, Michael; Rusmevichientong, Pimbucha; Russell, Rolf; Rutten, Julie; Saadatmand-Tarzjan, Mahdi; Saba, Valiallah; Sabuncu, Mert; Sacuiu, Simona; Sampathkumar, Srihari Sadhu; Sadikhov, Shamil; Saeedi, Sarah; Saf, Naz; Safapur, Alireza; Safi, Asad; Saint-Aubert, Laure; Saito, Noboru; Saito, Naomi; Sakata, Muneyuki; Frigerio, Carlo Sala; Sala-Llonch, Roser; Salah, Zainab; Salamanca, Luis; Salat, David; Salehzade, Mahdi; Salter, Hugh; Samatova, Nagiza; Sampat, Mehul; Gonzalez, Jorge Samper; Samtani, Mahesh; Samuel, Pearl; Bohorquez, Sandra Sanabria; Sanbao, Cheng; Sanchez, Iñigo; Sánchez, Irina; Sandella, Nick; Sanderlin, Ashley Hannah; Sanders, Elizabeth; Sankar, Tejas; Sanroma, Gerard; Sanson, Horacio; Santamaria, Mar; de Lourdes, Daniella; de Andrade, Luna Santana; Santhanam, Prasanna; Ribeiro, Andre Santos; Sardi, Pablo; Sardina, Davide; Saremi, Arvin; Sarica, Alessia; Sarnowski, Chloé; Sarraf, Saman; Saslow, Adam; Sato, Takayuki; Sato, Joao; Sattler, Sophia; Savic, Milos; Saxon, Jillian; Saya, Boson; Saykin, Andrew; Sbeiti, Elia; Scarapicchia, Vanessa; Scelsi, Marzia Antonella; Schaerer, Joel; Scharre, Douglas; Scherr, Martin; Schevenels, Klara; Schibler, Tony; Schiller, Florian; Schirmer, Markus; Schmansky, Nick; Schmidt, Marco; Schmidt, Paul; Schmitz, Taylor; Schmuker, Michael; Schneider, Anja; Schneider, Reinhard; Schoemaker, Dorothee; Schöll, Michael; Schouten, Tijn; Schramm, Hauke; Schreiber, Frank; Schultz, Timothy; Schultz, Aaron; Schürmann, Heike; Schwab, Patrick; Schwartz, Pamela; Schwarz, Adam; Schwarz, Christopher; Schwarzbauer, Christian; Scott, Julia; Scott, F. Jeffrey; Scott, David; Scussel, Artur; Seale, William; Seamons, John; Seemiller, Joseph; Sekine, Tetsuro; Selnes, Per; Sembritzki, Klaus; Senanayake, Vijitha; Seneca, Nicholas; Senjem, Matthew; Filho, Antonio Carlos Senra; Sensi, Stefano; Seo, Eun Hyun; Seo, Kangwon; Seong, Sibaek; Sepeta, Leigh; Seraji-Bozorgzad, Navid; Serra-Cayuela, Arnau; Seshadri, Sudha; Sgouros, Nicholas; Sha, Miao; Shackman, Alexander; Shafee, Rebecca; Shah, Rupali; Shah, Hitul; Shahid, Mohammad; Shahparian, Nastaran; Shakeri, Mahsa; Shams, Sara; Shams, Ali; Baboli, Aref Shams; Shamul, Naomi; Shan, Guogen; Shang, Yuan; Shao, Rui; Shao, Hanyu; Shao, Xiaozhe; Shaoxun, Yuan; Noghabi, Hossein Sharifi; Sharlene, Newman; Sharma, Avinash; Sharma, Ankita; Sharma, Aman; Shaw, Leslie; Shaw, Saurabh; Shcherbinin, Sergey; Sheline, Yvette; Shen, Li; Shen, Yanhe; Shen, Qian; Sherriff, Ian; Shi, Xin; Shi, Lei; Shi, Yonggang; Shi, Yue; Shi, Yupan; Shi, Jie; Shi, Feng; Shiban, Nisreen; Shields, Trevor; Shiiba, Takuro; Shiino, Akihiko; Shin, Peter; Shin, Hoo Chang; Shin, Daniel; Shine, James; Shinohara, Russell; Shirakashi, Yoshitomo; Shirali, Ramin; Shirer, William; Shiva, Karthik; Shmuel, Amir; Shojaei, Zahra; Shojaei, Samane; Shokouhi, Sepideh; Short, Jennifer; Shu, Qing; Shu, Ziyu; Shu, Hao; Shu, Xinghui; Shukla, Rahul; Sibilia, Francesca; Sikka, Apoorva; Rincón, Santiago Smith Silva; Silveira, Margarida; Simon, Howard; Simonneau, Michel; Simonovsky, Martin; Singanamalli, Asha; Singh, TirathaRaj; Singh, Ambuj; Singh, Satya; Singlelob, John; Sinha, Sampada; Sipko, Maciej; Sistla, Kamala; Sivera, Raphael; Skillbäck, Tobias; Skocik, Michael; Slade, Emily; Smisek, Miroslav; Smith, Louise; Smith, Emily; Smith, Elliot; Smith, Lidia; de Lima, John Wesley Soares; Soemedi, Rachel; Sohail, Aamir; Soheili-Nezhad, Sourena; Sokolow, Sophie; Sokurenko, Maria; Soldan, Anja; Soman, Salil; Sone, Je Yeong; Song, Joonyoung; Song, Xiaowei; Soni, Ameet; Soni, Priyank; Sonkar, Gaurav; Sonmez, Ege; Sonpatki, Pranali; Sorooshyari, Siamak; Diaz, Roberto Carlos Sotero; Sotolongo-Grau, Oscar; Sou, Ka Lon; Soursou, Georgia; Spampinato, Maria Vittoria; Spedding, Alexander; Spenger, Christian; Spiegel, Jonathan; Spiegel, RenÃ; Spies, Lothar; Spiro, Oliver; Spooner, Annette; Springate, Beth; Spronk, Marjolein; Squillario, Margherita; Sreenivasan, Karthik; Srikanth, Velandai; Srinivasan, Sneha; Srivastava, Mashrin; Srivastava, Anant; Srivatsa, Shantanu; Stage, Eddie; Stanley-Olson, Alexis; Steenland, Nelson; Steffener, Jason; Steyvers, Mark; Stickel, Ariana; Stone, David; Storkey, Amos; Storrs, Judd; Straminsky, Axel; Strittmatter, Stephen; Su, Yi; Sudmann-Day, Matthew; Sudre, Carole; Sudsanguan, Salintip; Sugishita, Morihiro; Suh, Devin; Suk, Heung-Il; Sulimov, Pavel; Sullivan, Margot; Sullivan, Kenneth; Sullivan, Jenna; Sumbaly, Ronak; Sun, Liyan; Sun, Xinwei; Sun, Haoran; Sun, Chung-Kai; Sun, Yongcong; Sun, Yu; Sun, Mingjie; Sun, Qian; Sun, Zeyu; Sun, Liang; Sun, Xiaoyan; Sun, Wei; Sundaramoorthy, Karthik Prakash; Sundaresan, Mali; Sunderland, John; Sundermann, Erin; Sunkishala, Raja; Surampudi, Govinda; Surampudi Venkata, Suresh Kumar; Surendran, Neha; Suresh, Adarsh; Suryavanshi, Priya; Susi, Gianluca; Suthaharan, Praveen; Sutphen, Courtney; Swati, Zar Nawab Khan; Sweet, Robert; Swinford, Cecily; Syaifullah, Ali Haidar; Szoeke, Cassandra; Sørensen, Lauge; Cuenco, Karen T.; Jafari, Hossein Tabatabaei; Tadayon, Ehsan; Taebi, Yasaman; Tahaei, Marzieh S.; Tahmasebi, Amir; Tai, Leon; Takahashi, Ryoji; Takahashi, Ryuichi; Takahashi, Hideyuki; Takao, Hidemasa; Takeuchi, Tomoko; Talib, Sophie; Taljan, Kyle; Tam, Angela; Tam, Roger; Tamang, Kishan; Tan, Chin Hong; Tan, Luqiao; Tan, Lin; Tan, Tian Swee; Tancredi, Daniel; Tanenbaum, Aaron; Tang, Yucong; Tang, Xiaoying; Tang, Chuangao; Tang, Cheng; Tang, Lingkai; Tang, Min; Tang, Hao; Tanigaki, Kenji; Tanoori, Betsabeh; Tansey, Wesley; Tantiwetchayanon, Khajonsak; Tanveer, M.; Tao, Qiushan; Tao, Chong; Tarawneh, Rawan; Tarnow, Eugen; Tartaglia, Maria Carmela; Tasaki, Shinya; Taswell, Koby; Taswell, Carl; Tatsuoka, Curtis; Taylan, Pakize; Taylor, Jonathan; Taylor, Brad; Tayubi, Iftikhar; Tchistiakova, Ekaterina; tee, Yee Kai; Teipel, Stefan; Temizer, Leyla; Kate, Mara Ten; Tenbergen, Carlijn; Tenenbaum, Jessica; Teng, Zi; Teng, Yuan-Ching; Teng, Edmond; Termenon, Maite; Terry, Eloise; Thaker, Ashesh; Theobald, Chuck; Thiel, Taylor; Thiele, Ines; Thiele, Frank; Thierry, Jean Pierre; Thirunavu, Vineeth; Thomas, Chris; Thomas, Kelsey; Thomas, Anoop Jacob; Thomas, Benjamin; Thomas, Ronald; Thomas, Adam; Thomopoulos, Sophia; Thompson, Gerard; Thompson, Jeff; Thompson, Will; Thompson, Paul; Thung, Kimhan; Tian, Sijia; Tierney, Mary; Tilquin, Florian; Tingay, Karen; Tirrell, Lee; Tirumalai, Sindhuja; Tobis, Jonathan; Todkari, Suhasini; Tohka, Jussi; Tokuda, Takahiko; Toledo, Juan B.; Toledo, Jon; Tolonen, Antti; Tombari, Federico; Tomiyama, Tetsuro; Tomola, Lauren; Tong, Yunjie; Tong, Liz; Tong, Li; Tong, Xiaoran; Torgerson, Carinna; Toro, Roberto; Torok, Levente; Toschi, Nicola; Tosto, Giuseppe; Tosun, Duygu; Tourandaz, Morteza; Toussaint, Paule; Towhidi, Sasan Maximilian; Towler, Stephen; Toyama, Teruhide; Tractenberg, Rochelle E.; Tran, Thao; Tran, Daniel; Trapani, Benjamin; Tremolizzo, Lucio; Tripathi, Shashi; Trittschuh, Emily; Trivedi, Ashish; Trojacanec, Katarina; Truong, Dennis; Tsanas, Athanasios; Tse, Kai-Hei; Tsoy, Elena; Tu, Yanshuai; Tubeleviciute-Aydin, Agne; Tubi, Meral; Tucholka, Alan; Tufail, Ahsan; Tumati, Shankar; Tuo, Shouheng; Tuovinen, Timo; Tustison, Nicholas; Tutunji, Rayyan; Tward, Daniel; Tyagi, Gaurav; Tzioras, Nikolaos; Raghavendra, U.; Uberti, Daniela; Uchiyama, Yoshikazu; Ueki, Masao; Ulug, Aziz; Umek, Robert; University, Northwestern; de Almeida, Sofia Urioste Y. Nunes; Urrutia, Leandro; Usama, Ahmed; Ustun, Ali Alp; Uus, Alena; Uyar, Muharrem Umit; Visalatchi, V.; Rajinikanth, V.; Vafaei, Amin; Vairre, Darlene; Vaishnavi, Sanjeev; Vaithinathan, Krishnakumar; Vakorin, Vasily; Hernández, Maria Valdés; van Bokhoven, Pieter; Deerlin, Vivianna Van; van der Brug, Marcel; Dijk, Koene Van; van Duijn, Cornelia; van Erp, Theo; van Hooren, Roy; Leemput, Koen Van; van Loenhoud, Anita; Schependom, Jeroen Van; van Velden, Floris; van Westen, Danielle; Vandekar, Simon; Vandijck, Manu; Vanhoutte, Matthieu; Vannini, Patrizia; Vansteenkiste, Elias; Varatharajah, Yogatheesan; Vardarajan, Badri; Varey, Stephen; Vargas, Hernan; Varkey, Julia; Varma, Susheel; Varma, Vijay; Varma, Sudhr; Vasanthakumar, Aparna; Vashi, Tejal; Vasilchuk, Kseniia; Vassileva, Albena; Vatsalan, Dinusha; Vb, Nastaran; Veeramacheneni, Teja; Veeranah, Darvesh; Vejdani, Kaveh; Veldsman, Michele; Velgos, Stefanie; Veloso, Adriano; Vemuri, Prashanthi; Venero, Cesar; Venkataraman, Ashwin; Venkatasubramanian, Palamadai; Venkatraghavan, Vikram; Venugopal, Vinisha; Venugopalan, Janani; Verbeeck, Rudi; Verbel, David; Verbist, Bie; Verdoliva, Luisa; Verma, Ajay Kumar; Verma, Tarun; Verma, Ishan; Veronese, Mattia; Grabovetsky, Alejandro Vicente; Victor, Jonathan; Vieira, Domingos; Vijayaraj, Vinesh Raja; Vikas, Vinutha; Vilaplana, Veronica; Vilaplana, Eduard; Villar, José Ramón; Vincent, Fabrice; Vinkler, Mojmir; Viswanath, Satish; Viswanathan, Srikrishnan; Vitek, Michael; Viti, Mario; Vladutu, Liviu; Vlock, Daniel; Voineskos, Aristotle; Vora, Anvi; Vos, Stephanie; Voyle, Nicola; Vrenken, Hugo; Vu, Tien Duong; Vucetic, Zivjena; Vuksanovic, Vesna; Wachinger, Christian; Wada, Masataka; Wade, Sara; Wagstyl, Konrad; Wahba, Grace; Waldorf, Johannes; Walker, Douglas; Moore, Kim Poki Walker; Walsh, Dominic; Wan, Lin; Wang, Di; Wang, Jane-Ling; Wang, Yongmao; Wang, Huaming; Wang, Miao; Wang, Zi-Rui; Wang, Zheyu; Wang, Z. E.; Wang, Lucy; Wang, Bin; Wang, Lei; Wang, Jason; Wang, Cathy; Wang, Jing; Wang, Xiuyuan; Wang, Dai; Wang, Lingyu; Wang, Jianjia; Wang, Yuan; Wang, Yujiang; Wang, Ming-Liang; Wang, De; Wang, Ling; Wang, Liangliang; Wang, Jianxin; Wang, Zhanyu; Wang, William Shi-Yuan; Wang, HuiFu; Wang, Weixin; Wang, Zhenxun; Wang, Wei; Wang, Junwen; Wang, Yipei; Wang, Shanshan; Wang, Yinying; Wang, Chengjia; Wang, Yuanjia; Wang, Kerry; Wang, Li-San; Wang, Kangcheng; Wang, Rui; Wang, Kai; Wang, Qian; Wang, Xinying; Wang, Xinglong; Wang, Jeff; Wang, Tianyi; Wang, Honglang; Wang, Xuekuan; Wang, Yongxiang; Wang, Hong; Wang, Silun; Waring, Stephen; Warren, David; Wasule, Vijay; Watanabe, Yoshiyuki; Wearn, Alfie; Wee, Chong-Yaw; Wegmayr, Viktor; Wehenkel, Marie; Wei, Rizhen; Wei, Zheng; Wei, Penghu; Wei, Yongbin; Wei, Guohui; Wei, Changshuai; Weichart, Emily; Weiler, Marina; Weise, Christopher; Weisong, Zhong; Weisshuhn, Philip; Weizheng, Yan; Wen, Canhong; Wen, Junhao; Wen, Wei; Wen, Zhenfu; Wen, Hao; Wenzel, Fabian; Werhane, Madeleine; Westaway, Shawn; Westlye, Lars T.; Westman, Eric; Whardana, Adithya; Whitcher, Brandon; Whittington, Alexander; Wicks, Stephen; Wiens, Jenna; Wildsmith, Kristin; Wilhelmsen, Kirk; Wilkinson, Andrea; Willette, Auriel; Williams, Kristin; Williams, Robert; Williams, Rebecca; Wilman, Alan; Wilmot, Beth; Wilson, Lorraine; Win, Juliet; Windpass, F. C.; Wink, Alle Meije; Winter, Nils; Winzeck, Stefan; Wirth, Miranka; Wishart, Heather; Wisniewski, Gary; Wiste, Heather; Wolpe, Noham; Wolz, Robin; Wong, Stephen; Wong, Swee Seong; Wong, Tak-Lam; Woo, Jongwook; Woo, Taekang; Woo, Young; Wood, Levi; Worth, Andrew; Wrenn, Jesse; Wright, Paul; Wu, Guorong; Wu, Lynn; Wu, Shawn; Wu, Menglin; Wu, Ruige; Wu, Shaoju; Wu, Chong; Wu, Juhao; Wu, Liyun; Wu, Yu-Te; Wu, Yuankai; Wu, Helen; Xia, Weiming; Xiang, Xu; Xiangmao, Kong; Xiao, Yiming; Xiao, Jie; Xiao, Y. U.; Xiaoxi, Ji; Xiaoya, Zhu; Xiaoying, Qi; Xie, Yuchen; Xie, Zhiyong; Xie, Lei; Xie, Xiancheng; Xin, Huang; Xingyi, Huang; Xiong, Yuanpeng; Xiong, Momiao; Xu, Yongchao; Xu, XiaoYing; Xu, Qiqi; Xu, Lijun; Xu, Hewen; Xu, Yunlong; Xu, Zhilei; Xu, Ziliang; Xu, Jiayuan; Xu, Yadong; Xu, Lu; Xu, Shuoyu; Xue, Fei; Xuesong, Yang; Xz, Zarric; Yadav, Rishi; Yaish, Aviv; Yakushev, Igor; Yamada, Shigeki; Yamamoto, Utako; Yamashita, Alexandre; Yamashita, Fumio; Yan, Li; Yan, Yu; Yan, Jianhua; Yan, Shiju; Yan, Chao-Gan; Yan, Qingyu; Yan, Jingwen; Yan, Chen; Yan, Meng; Yang, Meng; Yang, Bin; Yang, Jiarui; Yang, Zhi; Yang, Xianfeng; Yang, Sli; Yang, Liang; Yang, Robert; Yang, Aleex; Yang, Hyungjeong; Yang, ChengHao; Yang, Haiwei; Yang, Jhih-Ying; Yang, Xu; Yangyang, Xia; Yao, Xufeng; Yaping, Wang; Yaqiong, Bi; Yared, Surafael; Yashin, Anatoliy; Yassine, Hussein; Yau, Tat; Yavorsky, Christian; Ye, Chang; Ye, Byoung Seok; Ye, Joy; Ye, Yongkai; Ye, Yuting; Ye, Wu; Yelampalli, Praveen Kumar Reddy; Thomas Yeo, B. T.; Yi, Zhao; Yi, Wang; Yi, Yuan; Yijing, Ruan; Yilmaz, Zeynep; Yin, Baocai; Yin, Tang-Kai; Ying, Li; Yingjiang, Wu; Yiyun, Yu; Yoichiro, Sato; Yokoyama, Jennifer; Yong, Zhang; Yonghong, Shi; Yonghu, Guo; Yongqi, Huang; Yoo, Inwan; Yoon, So Hoon; Yoon, Jee Seok; Yoon, Seung-Yong; Yoshida, Hisako; Yoshio, Kiyofumi; You, Jia; You, You; You, Xiaozhen; Young, Alexandra; Yu, Peng; Yu, Jaemin; Yu, Lin; Yu, Sui; Yu, Philip S.; Yu, Guan; Yu, Fengli; Yu, Jiaxin; Yu, Shaode; Yu, Suizhi; Yu, Donghyeon; Yuan, Yue; Yuan, Shaofeng; Yuan, Shuai; Yuanyuan, Chen; Yue, Ye; Yue, Cynthia; Yunaiyama, Daisuke; YushaoChen, YushaoChen; Yushkevich, Paul; Yx, W.; Zafeiris, Dimitrios; Zagorchev, Lyubomir; Zalocusky, Kelly; Zamorano, Francisco; Zandifar, Azar; Zanella, Laura; Zang, Yufeng; Zanke, Brent; Zaranek, Alexander Wait; Zawaideh, Mazen; Zawawi, Nour; Zee, Jarcy; Zeighami, Yashar; Zeitzer, Jamie; Zemla, Jeffrey; Zeng, Qi; Zeng, Fan; Zeng, Donglin; Zeng, Wei; Zeng, Yingying; Ženko, Bernard; Zereshki, Ehsan; Zeskind, Benjamin; Zhan, Justin; Zhang, Chenghui; Zhang, Yixuan; Zhang, Xiong; Zhang, Li; Zhang, Zhi; Zhang, Jianlun; Zhang, Jing; Zhang, Jianwei; Zhang, Yufei; Zhang, Sai; Zhang, Shan; Zhang, Xiaoling; Zhang, Changle; Zhang, Qingtian; Zhang, Fan; Zhang, Xiangliang; Zhang, Linda; Zhang, Yingteng; Zhang, Jianhua; Zhang, Xiaoqun; Zhang, Ziwei; Zhang, Ping; Zhang, Tuo; Zhang, Bin; Zhang, Hong; Zhang, Yuping; Zhang, Zhan; Zhang, Yu; Zhang, Jie; Zhang, Lijun; Zhang, ChengZhi; Zhang, Jian; Zhang, Peng; Zhang, Zhengjun; Zhang, Wen; Zhang, Guishan; Zhang, Xixue; Zhang, Tianhao; Zhangyi, Zhangyi; Zhao, Wenting; Zhao, Xuewu; Zhao, Peng; Zhao, Yifei; Zhao, Xing-Ming; Zhao, Di; Zhao, Qian; Zhao, Yang; Zhao, Lu; Zheng, Lijuan; Zheng, Kaiping; Zheng, Weihao; Zheng, Du; Zheng, Muhua; Zheng, Qiang; Zheng, Bichen; Zheng, Lihong; Zhong, Wenxuan; Zhong, Yujia; Zhou, Tian; Zhou, Jiayin; Zhou, Zhen; Zhou, Yongxia; Zhou, Lixin; Zhou, Bowei; Zhou, Juan; Zhou, Qixin; Zhou, Levi; Zhou, Fengfeng; Zhou, Jiayu; Zhou, Luping; Zhou, Yun; Zhou, Yingjie; Zhou, Ying; Zhou, Frankie; Zhu, Zonghai; Zhu, Xiaoya; Zhu, Xiaolu; Zhu, Shanfeng; Zhu, David; Zhu, Hongxiao; Zhu, Lida; Zhu, Xiaofeng; Zhuxin, Jin; Zigon, Robert; Zille, Pascal; Zimmer, Eduardo; Zimmer, Jennifer; Zimmerman, Earl; Zimmerman, Karl; Zimmermann, Joelle; Zipperer, Erin; Zito, Giancarlo; Zou, Yang; Zuo, Maria; Zywiec, Andrew

    2017-01-01

    Neuroimaging measurements derived from magnetic resonance imaging provide important information required for detecting changes related to the progression of mild cognitive impairment (MCI). Cortical features and changes play a crucial role in revealing unique anatomical patterns of brain regions,

  16. SLEEP AND OLFACTORY CORTICAL PLASTICITY

    Directory of Open Access Journals (Sweden)

    Dylan eBarnes

    2014-04-01

    Full Text Available In many systems, sleep plays a vital role in memory consolidation and synaptic homeostasis. These processes together help store information of biological significance and reset synaptic circuits to facilitate acquisition of information in the future. In this review, we describe recent evidence of sleep-dependent changes in olfactory system structure and function which contribute to odor memory and perception. During slow-wave sleep, the piriform cortex becomes hypo-responsive to odor stimulation and instead displays sharp-wave activity similar to that observed within the hippocampal formation. Furthermore, the functional connectivity between the piriform cortex and other cortical and limbic regions is enhanced during slow-wave sleep compared to waking. This combination of conditions may allow odor memory consolidation to occur during a state of reduced external interference and facilitate association of odor memories with stored hedonic and contextual cues. Evidence consistent with sleep-dependent odor replay within olfactory cortical circuits is presented. These data suggest that both the strength and precision of odor memories is sleep-dependent. The work further emphasizes the critical role of synaptic plasticity and memory in not only odor memory but also basic odor perception. The work also suggests a possible link between sleep disturbances that are frequently co-morbid with a wide range of pathologies including Alzheimer’s disease, schizophrenia and depression and the known olfactory impairments associated with those disorders.

  17. Alterations of whole-brain cortical area and thickness in mild cognitive impairment and Alzheimer's disease.

    Science.gov (United States)

    Li, Chuanming; Wang, Jian; Gui, Li; Zheng, Jian; Liu, Chen; Du, Hanjian

    2011-01-01

    Gray matter volume and density of several brain regions, determined by magnetic resonance imaging (MRI), are decreased in Alzheimer's disease (AD). Animal studies have indicated that changes in cortical area size is relevant to thinking and behavior, but alterations of cortical area and thickness in the brains of individuals with AD or its likely precursor, mild cognitive impairment (MCI), have not been reported. In this study, 25 MCI subjects, 30 AD subjects, and 30 age-matched normal controls were recruited for brain MRI scans and Functional Activities Questionnaire (FAQ) assessments. Based on the model using FreeSurfer software, two brain lobes were divided into various regions according to the Desikan-Killiany atlas and the cortical area and thickness of every region was compared and analyzed. We found a significant increase in cortical area of several regions in the frontal and temporal cortices, which correlated negatively with MMSE scores, and a significant decrease in cortical area of several regions in the parietal cortex and the cingulate gyrus in AD subjects. Increased cortical area was also seen in some regions of the frontal and temporal cortices in MCI subjects, whereas the cortical thickness of the same regions was decreased. Our observations suggest characteristic differences of the cortical area and thickness in MCI, AD, and normal control subjects, and these changes may help diagnose both MCI and AD.

  18. Sleep-dependent memory consolidation in patients with sleep disorders.

    Science.gov (United States)

    Cipolli, Carlo; Mazzetti, Michela; Plazzi, Giuseppe

    2013-04-01

    Sleep can improve the off-line memory consolidation of new items of declarative and non-declarative information in healthy subjects, whereas acute sleep loss, as well as sleep restriction and fragmentation, impair consolidation. This suggests that, by modifying the amount and/or architecture of sleep, chronic sleep disorders may also lead to a lower gain in off-line consolidation, which in turn may be responsible for the varying levels of impaired performance at memory tasks usually observed in sleep-disordered patients. The experimental studies conducted to date have shown specific impairments of sleep-dependent consolidation overall for verbal and visual declarative information in patients with primary insomnia, for verbal declarative information in patients with obstructive sleep apnoeas, and for visual procedural skills in patients with narcolepsy-cataplexy. These findings corroborate the hypothesis that impaired consolidation is a consequence of the chronically altered organization of sleep. Moreover, they raise several novel questions as to: a) the reversibility of consolidation impairment in the case of effective treatment, b) the possible negative influence of altered prior sleep also on the encoding of new information, and c) the relationships between altered sleep and memory impairment in patients with other (medical, psychiatric or neurological) diseases associated with quantitative and/or qualitative changes of sleep architecture. Copyright © 2012 Elsevier Ltd. All rights reserved.

  19. Association between cortical thickness and CSF biomarkers in mild cognitive impairment and Alzheimer’s disease

    DEFF Research Database (Denmark)

    Mohades, Sara; Dubois, Jonathan; Parent, Maxime

    regional cortical thinning (CT) measured by Magnetic Resonance Imaging (MRI) and brain amyloidosis (measured by CSF Ab 1-42 concentrations), or tau hyperphosphorylation (tau 181; p-tau) in Alzheimer’s Disease (AD) and Mild Cognitive Impairment (MCI) patients. We test the hypothesis that the association...... (CN; n¼8) were obtained from the Alzheimer’s Disease Neuroimaging Initiative (ADNI) cohort. Cortical surface reconstruction and group registration were generated using Freesurfer. A general linear model was used to conduct regressions between CSF markers and cortical thickness. Results: Correlation...

  20. Visual Attention to Movement and Color in Children with Cortical Visual Impairment

    Science.gov (United States)

    Cohen-Maitre, Stacey Ann; Haerich, Paul

    2005-01-01

    This study investigated the ability of color and motion to elicit and maintain visual attention in a sample of children with cortical visual impairment (CVI). It found that colorful and moving objects may be used to engage children with CVI, increase their motivation to use their residual vision, and promote visual learning.

  1. Cortical Visual Impairment in Children: Presentation Intervention, and Prognosis in Educational Settings

    Science.gov (United States)

    Swift, Suzanne H.; Davidson, Roseanna C.; Weems, Linda J.

    2008-01-01

    Children with cortical visual impairment (CVI) exhibit distinct visual behaviors which are often misinterpreted. As the incidence of CVI is on the rise, this has subsequently caused an increased need for identification and intervention with these children from teaching and therapy service providers. Distinguishing children with CVI from children…

  2. Cortical Spreading Depression Closes Paravascular Space and Impairs Glymphatic Flow: Implications for Migraine Headache.

    Science.gov (United States)

    Schain, Aaron J; Melo-Carrillo, Agustin; Strassman, Andrew M; Burstein, Rami

    2017-03-15

    Functioning of the glymphatic system, a network of paravascular tunnels through which cortical interstitial solutes are cleared from the brain, has recently been linked to sleep and traumatic brain injury, both of which can affect the progression of migraine. This led us to investigate the connection between migraine and the glymphatic system. Taking advantage of a novel in vivo method we developed using two-photon microscopy to visualize the paravascular space (PVS) in naive uninjected mice, we show that a single wave of cortical spreading depression (CSD), an animal model of migraine aura, induces a rapid and nearly complete closure of the PVS around surface as well as penetrating cortical arteries and veins lasting several minutes, and gradually recovering over 30 min. A temporal mismatch between the constriction or dilation of the blood vessel lumen and the closure of the PVS suggests that this closure is not likely to result from changes in vessel diameter. We also show that CSD impairs glymphatic flow, as indicated by the reduced rate at which intraparenchymally injected dye was cleared from the cortex to the PVS. This is the first observation of a PVS closure in connection with an abnormal cortical event that underlies a neurological disorder. More specifically, the findings demonstrate a link between the glymphatic system and migraine, and suggest a novel mechanism for regulation of glymphatic flow. SIGNIFICANCE STATEMENT Impairment of brain solute clearance through the recently described glymphatic system has been linked with traumatic brain injury, prolonged wakefulness, and aging. This paper shows that cortical spreading depression, the neural correlate of migraine aura, closes the paravascular space and impairs glymphatic flow. This closure holds the potential to define a novel mechanism for regulation of glymphatic flow. It also implicates the glymphatic system in the altered cortical and endothelial functioning of the migraine brain. Copyright © 2017

  3. Impaired response inhibition and excess cortical thickness as candidate endophenotypes for trichotillomania

    DEFF Research Database (Denmark)

    Odlaug, Brian Lawrence; Chamberlain, Samuel R; Derbyshire, Katie L

    2014-01-01

    occupying an intermediate position. Permutation cluster analysis revealed significant excesses of cortical thickness in patients and their relatives compared to controls, in right inferior/middle frontal gyri (Brodmann Area, BA 47 & 11), right lingual gyrus (BA 18), left superior temporal cortex (BA 21......Trichotillomania is characterized by repetitive pulling out of one's own hair. Impaired response inhibition has been identified in patients with trichotillomania, along with gray matter density changes in distributed neural regions including frontal cortex. The objective of this study...

  4. Pronounced impairment of everyday skills and self-care in posterior cortical atrophy.

    Science.gov (United States)

    Shakespeare, Timothy J; Yong, Keir X X; Foxe, David; Hodges, John; Crutch, Sebastian J

    2015-01-01

    Posterior cortical atrophy (PCA) is a neurodegenerative syndrome characterized by progressive visual dysfunction and parietal, occipital, and occipitotemporal atrophy. The aim of this study was to compare the impact of PCA and typical Alzheimer's disease (tAD) on everyday functional abilities and neuropsychiatric status. The Cambridge Behavioural Inventory-Revised was given to carers of 32 PCA and 71 tAD patients. PCA patients showed significantly greater impairment in everyday skills and self-care while the tAD group showed greater impairment in aspects of memory and orientation, and motivation. We suggest that PCA poses specific challenges for those caring for people affected by the condition.

  5. Prediction of Alzheimer’s disease in mild cognitive impairment using sulcal morphology and cortical thickness

    DEFF Research Database (Denmark)

    Plocharski, Maciej; Østergaard, Lasse Riis

    2019-01-01

    converters, or MCIc). The purpose of this study was to predict future AD-conversion in patients with MCI using machine learning with sulcal morphology and cortical thickness measures as classification features. 32 sulci per subject were extracted from 1.5T T1-weighted ADNI database MRI scans of 90 MCIc......Mild cognitive impairment (MCI) is an intermediate condition between healthy ageing and dementia. The amnestic MCI is often a high risk factor for subsequent Alzheimer’s disease (AD) conversion. Some MCI patients never develop AD (MCI non-converters, or MCInc), but some do progress to AD (MCI...... subjects as future converters, (89.7% sensitivity, 84.4% specificity, 0.94 AUC), using 10-fold cross-validation. These results using sulcal and cortical features are superior to the state-of-the-art methods. The most discriminating predictive features were observed in the temporal and frontal lobes...

  6. Disruption of Transient Serotonin Accumulation by Non-Serotonin-Producing Neurons Impairs Cortical Map Development

    Directory of Open Access Journals (Sweden)

    Xiaoning Chen

    2015-01-01

    Full Text Available Polymorphisms that alter serotonin transporter SERT expression and functionality increase the risks for autism and psychiatric traits. Here, we investigate how SERT controls serotonin signaling in developing CNS in mice. SERT is transiently expressed in specific sets of glutamatergic neurons and uptakes extrasynaptic serotonin during perinatal CNS development. We show that SERT expression in glutamatergic thalamocortical axons (TCAs dictates sensory map architecture. Knockout of SERT in TCAs causes lasting alterations in TCA patterning, spatial organizations of cortical neurons, and dendritic arborization in sensory cortex. Pharmacological reduction of serotonin synthesis during the first postnatal week rescues sensory maps in SERTGluΔ mice. Furthermore, knockdown of SERT expression in serotonin-producing neurons does not impair barrel maps. We propose that spatiotemporal SERT expression in non-serotonin-producing neurons represents a determinant in early life genetic programming of cortical circuits. Perturbing this SERT function could be involved in the origin of sensory and cognitive deficits associated with neurodevelopmental disorders.

  7. Chronic post-stroke oropharyngeal dysphagia is associated with impaired cortical activation to pharyngeal sensory inputs.

    Science.gov (United States)

    Cabib, C; Ortega, O; Vilardell, N; Mundet, L; Clavé, P; Rofes, L

    2017-11-01

    The role of afferent sensory pathways in the pathophysiology of post-stroke oropharyngeal dysphagia is not known. We hypothesized that patients with chronic post-stroke dysphagia (PSD) would show impaired sensory cortical activation in the ipsilesional hemisphere. We studied 28 chronic unilateral post-stroke patients [17 PSD and 11 post-stroke non-dysphagic patients (PSnD)] and 11 age-matched healthy volunteers. Event-related sensory-evoked potentials to pharyngeal stimulation (pSEP) and sensory thresholds were assessed. We analyzed pSEP peak latency and amplitude (N1, P1, N2 and P2), and neurotopographic stroke characteristics from brain magnetic resonance imaging. Healthy volunteers presented a highly symmetric bihemispheric cortical pattern of brain activation at centroparietal areas (N1-P1 and N2-P2) to pharyngeal stimuli. In contrast, an asymmetric pattern of reduced ipsilesional activation was found in PSD (N2-P2; P = 0.026) but not in PSnD. PSD presented impaired safety of swallow (penetration-aspiration score: 4.3 ± 1.6), delayed laryngeal vestibule closure (360.0 ± 70.0 ms) and higher National Institute of Health Stroke Scale (7.0 ± 6.2 vs. 1.9 ± 1.4, P = 0.001) and Fazekas scores (3.0 ± 1.4 vs. 2.0 ± 1.1; P dysphagia is associated with stroke severity and degree of leukoaraoisis. Impaired conduction and cortical integration of pharyngeal sensory inputs at stroke site are key features of chronic PSD. These findings highlight the role of sensory pathways in the pathophysiology of post-stroke oropharyngeal dysphagia and offer a potential target for future treatments. © 2017 EAN.

  8. Prenatal exposure to arsenic impairs behavioral flexibility and cortical structure in mice

    Directory of Open Access Journals (Sweden)

    Kyaw Htet eAung

    2016-03-01

    Full Text Available Exposure to arsenic from well water in developing countries is suspected to cause developmental neurotoxicity. Although it has been demonstrated that exposure to sodium arsenite (NaAsO2 suppresses neurite outgrowth of cortical neurons in vitro, it is largely unknown how developmental exposure to NaAsO2 impairs higher brain function and affects cortical histology. Here, we investigated the effect of prenatal NaAsO2 exposure on the behavior of mice in adulthood, and evaluated histological changes in the prelimbic cortex (PrL, which is a part of the medial prefrontal cortex that is critically involved in cognition. Drinking water with or without NaAsO2 (85 ppm was provided to pregnant C3H mice from gestational days 8 to 18, and offspring of both sexes were subjected to cognitive behavioral analyses at 60 weeks of age. The brains of female offspring were subsequently harvested and used for morphometrical analyses. We found that both male and female mice prenatally exposed to NaAsO2 displayed an impaired adaptation to repetitive reversal tasks. In morphometrical analyses of Nissl- or Golgi-stained tissue sections, we found that NaAsO2 exposure was associated with a significant increase in the number of pyramidal neurons in layers V and VI of the PrL, but not other layers of the PrL. More strikingly, prenatal NaAsO2 exposure was associated with a significant decrease in neurite length but not dendrite spine density in all layers of the PrL. Taken together, our results indicate that prenatal exposure to NaAsO2 leads to behavioral inflexibility in adulthood and cortical disarrangement in the PrL might contribute to this behavioral impairment.

  9. The association of cognitive impairment with gray matter atrophy and cortical lesion load in clinically isolated syndrome.

    Science.gov (United States)

    Diker, Sevda; Has, Arzu Ceylan; Kurne, Aslı; Göçmen, Rahşan; Oğuz, Kader Karlı; Karabudak, Rana

    2016-11-01

    Multiple sclerosis can impair cognition from the early stages and has been shown to be associated with gray matter damage in addition to white matter pathology. To investigate the profile of cognitive impairment in clinically isolated syndrome (CIS), and the contribution of cortical inflammation, cortical and deep gray matter atrophy, and white matter lesions to cognitive decline. Thirty patients with clinically isolated syndrome and twenty demographically- matched healthy controls underwent neuropsychologic assessment through the Rao Brief Repeatable Battery, and brain magnetic resonance imaging with double inversion recovery using a 3T scanner. Patients with clinically isolated syndrome performed significantly worse than healthy controls on tests that evaluated verbal memory, visuospatial learning and memory, and verbal fluency. Significant deep gray matter atrophy was found in the patients but cortical volume was not lower than the controls. Visual memory tests correlated with the volume of the hippocampus, cerebral white matter and deep gray matter structures and with cerebellar cortical atrophy. Cortical or white matter lesion load did not affect cognitive test results. In our patients with CIS, it was shown that cognitive impairment was mainly related to cerebral white matter, cerebellar cortical and deep gray matter atrophy, but not with cortical inflammation, at least in the early stage of disease. Copyright © 2016 Elsevier B.V. All rights reserved.

  10. Congenital olfactory impairment is linked to cortical changes in prefrontal and limbic brain regions

    DEFF Research Database (Denmark)

    Karstensen, Helena Gásdal; Vestergaard, Martin; Baaré, William F C

    2018-01-01

    differently in individuals who suffer from lifelong olfactory deprivation relative to healthy normosmic individuals. To address this question, we examined if regional variations in gray matter volume were associated with smell ability in seventeen individuals with isolated congenital olfactory impairment (COI...... in left middle frontal gyrus and right superior frontal sulcus (SFS). COI subjects with severe olfactory impairment (anosmia) had reduced grey matter volume in the left mOFC and increased volume in right piriform cortex and SFS. Within the COI group olfactory ability, measured with the "Sniffin' Sticks...... piriform cortex, while olfactory identification was negatively associated with right SFS volume. Our findings suggest that lifelong olfactory deprivation trigger changes in the cortical volume of prefrontal and limbic brain regions previously linked to olfactory memory....

  11. Long-term exposure to noise impairs cortical sound processing and attention control.

    Science.gov (United States)

    Kujala, Teija; Shtyrov, Yury; Winkler, Istvan; Saher, Marieke; Tervaniemi, Mari; Sallinen, Mikael; Teder-Sälejärvi, Wolfgang; Alho, Kimmo; Reinikainen, Kalevi; Näätänen, Risto

    2004-11-01

    Long-term exposure to noise impairs human health, causing pathological changes in the inner ear as well as other anatomical and physiological deficits. Numerous individuals are daily exposed to excessive noise. However, there is a lack of systematic research on the effects of noise on cortical function. Here we report data showing that long-term exposure to noise has a persistent effect on central auditory processing and leads to concurrent behavioral deficits. We found that speech-sound discrimination was impaired in noise-exposed individuals, as indicated by behavioral responses and the mismatch negativity brain response. Furthermore, irrelevant sounds increased the distractibility of the noise-exposed subjects, which was shown by increased interference in task performance and aberrant brain responses. These results demonstrate that long-term exposure to noise has long-lasting detrimental effects on central auditory processing and attention control.

  12. Postnatal Ablation of Synaptic Retinoic Acid Signaling Impairs Cortical Information Processing and Sensory Discrimination in Mice.

    Science.gov (United States)

    Park, Esther; Tjia, Michelle; Zuo, Yi; Chen, Lu

    2018-06-06

    Retinoic acid (RA) and its receptors (RARs) are well established essential transcriptional regulators during embryonic development. Recent findings in cultured neurons identified an independent and critical post-transcriptional role of RA and RARα in the homeostatic regulation of excitatory and inhibitory synaptic transmission in mature neurons. However, the functional relevance of synaptic RA signaling in vivo has not been established. Here, using somatosensory cortex as a model system and the RARα conditional knock-out mouse as a tool, we applied multiple genetic manipulations to delete RARα postnatally in specific populations of cortical neurons, and asked whether synaptic RA signaling observed in cultured neurons is involved in cortical information processing in vivo Indeed, conditional ablation of RARα in mice via a CaMKIIα-Cre or a layer 5-Cre driver line or via somatosensory cortex-specific viral expression of Cre-recombinase impaired whisker-dependent texture discrimination, suggesting a critical requirement of RARα expression in L5 pyramidal neurons of somatosensory cortex for normal tactile sensory processing. Transcranial two-photon imaging revealed a significant increase in dendritic spine elimination on apical dendrites of somatosensory cortical layer 5 pyramidal neurons in these mice. Interestingly, the enhancement of spine elimination is whisker experience-dependent as whisker trimming rescued the spine elimination phenotype. Additionally, experiencing an enriched environment improved texture discrimination in RARα-deficient mice and reduced excessive spine pruning. Thus, RA signaling is essential for normal experience-dependent cortical circuit remodeling and sensory processing. SIGNIFICANCE STATEMENT The importance of synaptic RA signaling has been demonstrated in in vitro studies. However, whether RA signaling mediated by RARα contributes to neural circuit functions in vivo remains largely unknown. In this study, using a RARα conditional

  13. Impaired cortical processing of inspiratory loads in children with chronic respiratory defects

    Directory of Open Access Journals (Sweden)

    Clément Annick

    2007-09-01

    Full Text Available Abstract Background Inspiratory occlusion evoked cortical potentials (the respiratory related-evoked potentials, RREPs bear witness of the processing of changes in respiratory mechanics by the brain. Their impairment in children having suffered near-fatal asthma supports the hypothesis that relates asthma severity with the ability of the patients to perceive respiratory changes. It is not known whether or not chronic respiratory defects are associated with an alteration in brain processing of inspiratory loads. The aim of the present study was to compare the presence, the latencies and the amplitudes of the P1, N1, P2, and N2 components of the RREPs in children with chronic lung or neuromuscular disease. Methods RREPs were recorded in patients with stable asthma (n = 21, cystic fibrosis (n = 32, and neuromuscular disease (n = 16 and in healthy controls (n = 11. Results The 4 RREP components were significantly less frequently observed in the 3 groups of patients than in the controls. Within the patient groups, the N1 and the P2 components were significantly less frequently observed in the patients with asthma (16/21 for both components and cystic fibrosis (20/32 and 14/32 than in the patients with neuromuscular disease (15/16 and 16/16. When present, the latencies and amplitudes of the 4 components were similar in the patients and controls. Conclusion Chronic ventilatory defects in children are associated with an impaired cortical processing of afferent respiratory signals.

  14. Conversion Discriminative Analysis on Mild Cognitive Impairment Using Multiple Cortical Features from MR Images

    Directory of Open Access Journals (Sweden)

    Shengwen Guo

    2017-05-01

    Full Text Available Neuroimaging measurements derived from magnetic resonance imaging provide important information required for detecting changes related to the progression of mild cognitive impairment (MCI. Cortical features and changes play a crucial role in revealing unique anatomical patterns of brain regions, and further differentiate MCI patients from normal states. Four cortical features, namely, gray matter volume, cortical thickness, surface area, and mean curvature, were explored for discriminative analysis among three groups including the stable MCI (sMCI, the converted MCI (cMCI, and the normal control (NC groups. In this study, 158 subjects (72 NC, 46 sMCI, and 40 cMCI were selected from the Alzheimer's Disease Neuroimaging Initiative. A sparse-constrained regression model based on the l2-1-norm was introduced to reduce the feature dimensionality and retrieve essential features for the discrimination of the three groups by using a support vector machine (SVM. An optimized strategy of feature addition based on the weight of each feature was adopted for the SVM classifier in order to achieve the best classification performance. The baseline cortical features combined with the longitudinal measurements for 2 years of follow-up data yielded prominent classification results. In particular, the cortical thickness produced a classification with 98.84% accuracy, 97.5% sensitivity, and 100% specificity for the sMCI–cMCI comparison; 92.37% accuracy, 84.78% sensitivity, and 97.22% specificity for the cMCI–NC comparison; and 93.75% accuracy, 92.5% sensitivity, and 94.44% specificity for the sMCI–NC comparison. The best performances obtained by the SVM classifier using the essential features were 5–40% more than those using all of the retained features. The feasibility of the cortical features for the recognition of anatomical patterns was certified; thus, the proposed method has the potential to improve the clinical diagnosis of sub-types of MCI and

  15. Cortical atrophy rates in Alzheimer's patients and subjects with mild cognitive impairment from the AddNeuroMed data collection

    DEFF Research Database (Denmark)

    Eskildsen, Simon Fristed; Westman, Eric; Gwadry-Sridhar, Femida

    2010-01-01

    Background: The AddNeuroMed project is a multi-centre European project which aims to identify biomarkers in Alzheimer's disease (AD). In this study we measured the rate of cortical atrophy in AD patients, subjects with mild cognitive impairment (MCI), and healthy controls (HC) using MRI. Methods...... quality control for both the acquisition and image processing were included in the study. Cortical thickness was measured using FACE (fast accurate cortex extraction) and averaged within main lobes using a stereotaxic atlas. Atrophy rates were calculated as percent decrease in cortical thickness and rate...

  16. Visuo-Spatial Imagery Impairment in Posterior Cortical Atrophy: A Cognitive and SPECT Study

    Directory of Open Access Journals (Sweden)

    Simona Gardini

    2011-01-01

    Full Text Available This study investigated the cognitive profile and the cerebral perfusion pattern in a highly educated 70 year old gentleman with posterior cortical atrophy (PCA. Visuo-perceptual abilities, spatial memory, spatial representation and navigation, visuo-spatial mental imagery, semantic and episodic-autobiographical memory were assessed. Regional cerebral blood flow (rCBF was imaged with SPECT. Cognitive testing showed visual-perceptual impairment, apperceptive visual and landmark agnosia, topographical disorientation with way-finding deficits, impaired map learning and poor mental image generation. Semantic memory was normal, while episodic-autobiographical memory was impaired. Reduced rCBF was found mainly in the right hemisphere, in the precentral gyrus, posterior cingulate and middle temporal gyri, cuneus and precuneus, in the left superior temporal and lingual gyri and in the parahippocampus bilaterally. Hypoperfusion in occipito-parietal regions was associated with visuo-spatial deficits, whereas deficits in visuo-spatial mental imagery might reflect dysfunction related to hypoperfusion in the parahippocampus and precuneus, structures which are responsible for spatial and imagery processing. Dissociating performance between preserved semantic memory and poor episodic-autobiographical recall is consistent with a pattern of normal perfusion in frontal and anterior temporal regions but abnormal rCBF in the parahippocampi. The present findings indicate that PCA involves visuo-spatial imagery deficits and provide further validation to current neuro-cognitive models of spatial representation and topographical disorientation.

  17. The association between intra- and juxta-cortical pathology and cognitive impairment in multiple sclerosis by quantitative T2* mapping at 7 T MRI

    Directory of Open Access Journals (Sweden)

    Céline Louapre, MD, PhD

    2016-01-01

    Location of pathology across the cortical width and mantle showed selective correlation with impairment in differing cognitive domains. These findings may guide studies at lower field strength designed to develop surrogate markers of cognitive impairment in MS.

  18. Reduced cortical complexity in children with Prader-Willi Syndrome and its association with cognitive impairment and developmental delay.

    Science.gov (United States)

    Lukoshe, Akvile; Hokken-Koelega, Anita C; van der Lugt, Aad; White, Tonya

    2014-01-01

    Prader-Willi Syndrome (PWS) is a complex neurogenetic disorder with symptoms involving not only hypothalamic, but also a global, central nervous system dysfunction. Previously, qualitative studies reported polymicrogyria in adults with PWS. However, there have been no quantitative neuroimaging studies of cortical morphology in PWS and no studies to date in children with PWS. Thus, our aim was to investigate and quantify cortical complexity in children with PWS compared to healthy controls. In addition, we investigated differences between genetic subtypes of PWS and the relationship between cortical complexity and intelligence within the PWS group. High-resolution structural magnetic resonance images were acquired in 24 children with genetically confirmed PWS (12 carrying a deletion (DEL), 12 with maternal uniparental disomy (mUPD)) and 11 age- and sex-matched typically developing siblings as healthy controls. Local gyrification index (lGI) was obtained using the FreeSurfer software suite. Four large clusters, two in each hemisphere, comprising frontal, parietal and temporal lobes, had lower lGI in children with PWS, compared to healthy controls. Clusters with lower lGI also had significantly lower cortical surface area in children with PWS. No differences in cortical thickness of the clusters were found between the PWS and healthy controls. lGI correlated significantly with cortical surface area, but not with cortical thickness. Within the PWS group, lGI in both hemispheres correlated with Total IQ and Verbal IQ, but not with Performance IQ. Children with mUPD, compared to children with DEL, had two small clusters with lower lGI in the right hemisphere. lGI of these clusters correlated with cortical surface area, but not with cortical thickness or IQ. These results suggest that lower cortical complexity in children with PWS partially underlies cognitive impairment and developmental delay, probably due to alterations in gene networks that play a prominent role in

  19. Reduced cortical complexity in children with Prader-Willi Syndrome and its association with cognitive impairment and developmental delay.

    Directory of Open Access Journals (Sweden)

    Akvile Lukoshe

    Full Text Available BACKGROUND: Prader-Willi Syndrome (PWS is a complex neurogenetic disorder with symptoms involving not only hypothalamic, but also a global, central nervous system dysfunction. Previously, qualitative studies reported polymicrogyria in adults with PWS. However, there have been no quantitative neuroimaging studies of cortical morphology in PWS and no studies to date in children with PWS. Thus, our aim was to investigate and quantify cortical complexity in children with PWS compared to healthy controls. In addition, we investigated differences between genetic subtypes of PWS and the relationship between cortical complexity and intelligence within the PWS group. METHODS: High-resolution structural magnetic resonance images were acquired in 24 children with genetically confirmed PWS (12 carrying a deletion (DEL, 12 with maternal uniparental disomy (mUPD and 11 age- and sex-matched typically developing siblings as healthy controls. Local gyrification index (lGI was obtained using the FreeSurfer software suite. RESULTS: Four large clusters, two in each hemisphere, comprising frontal, parietal and temporal lobes, had lower lGI in children with PWS, compared to healthy controls. Clusters with lower lGI also had significantly lower cortical surface area in children with PWS. No differences in cortical thickness of the clusters were found between the PWS and healthy controls. lGI correlated significantly with cortical surface area, but not with cortical thickness. Within the PWS group, lGI in both hemispheres correlated with Total IQ and Verbal IQ, but not with Performance IQ. Children with mUPD, compared to children with DEL, had two small clusters with lower lGI in the right hemisphere. lGI of these clusters correlated with cortical surface area, but not with cortical thickness or IQ. CONCLUSIONS: These results suggest that lower cortical complexity in children with PWS partially underlies cognitive impairment and developmental delay, probably due to

  20. Shaping the aging brain: Role of auditory input patterns in the emergence of auditory cortical impairments

    Directory of Open Access Journals (Sweden)

    Brishna Soraya Kamal

    2013-09-01

    Full Text Available Age-related impairments in the primary auditory cortex (A1 include poor tuning selectivity, neural desynchronization and degraded responses to low-probability sounds. These changes have been largely attributed to reduced inhibition in the aged brain, and are thought to contribute to substantial hearing impairment in both humans and animals. Since many of these changes can be partially reversed with auditory training, it has been speculated that they might not be purely degenerative, but might rather represent negative plastic adjustments to noisy or distorted auditory signals reaching the brain. To test this hypothesis, we examined the impact of exposing young adult rats to 8 weeks of low-grade broadband noise on several aspects of A1 function and structure. We then characterized the same A1 elements in aging rats for comparison. We found that the impact of noise exposure on A1 tuning selectivity, temporal processing of auditory signal and responses to oddball tones was almost indistinguishable from the effect of natural aging. Moreover, noise exposure resulted in a reduction in the population of parvalbumin inhibitory interneurons and cortical myelin as previously documented in the aged group. Most of these changes reversed after returning the rats to a quiet environment. These results support the hypothesis that age-related changes in A1 have a strong activity-dependent component and indicate that the presence or absence of clear auditory input patterns might be a key factor in sustaining adult A1 function.

  1. Spatial contrast sensitivity vision loss in children with cortical visual impairment.

    Science.gov (United States)

    Good, William V; Hou, Chuan; Norcia, Anthony M

    2012-11-19

    Although cortical visual impairment (CVI) is the leading cause of bilateral vision impairment in children in Western countries, little is known about the effects of CVI on visual function. The aim of this study was to compare visual evoked potential measures of contrast sensitivity and grating acuity in children with CVI with those of age-matched typically developing controls. The swept parameter visual evoked potential (sVEP) was used to measure contrast sensitivity and grating acuity in 34 children with CVI at 5 months to 5 years of age and in 16 age-matched control children. Contrast thresholds and spatial frequency thresholds (grating acuities) were derived by extrapolating the tuning functions to zero amplitude. These thresholds and maximal suprathreshold response amplitudes were compared between groups. Among 34 children with CVI, 30 had measurable but reduced contrast sensitivity with a median threshold of 10.8% (range 5.0%-30.0% Michelson), and 32 had measurable but reduced grating acuity with median threshold 0.49 logMAR (9.8 c/deg, range 5-14 c/deg). These thresholds were significantly reduced, compared with age-matched control children. In addition, response amplitudes over the entire sweep range for both measures were significantly diminished in children with CVI compared with those of control children. Our results indicate that spatial contrast sensitivity and response amplitudes are strongly affected by CVI. The substantial degree of loss in contrast sensitivity suggests that contrast is a sensitive measure for evaluating vision deficits in patients with CVI.

  2. Cortical Cerebral Microinfarcts on 3 Tesla MRI in Patients with Vascular Cognitive Impairment.

    Science.gov (United States)

    Ferro, Doeschka A; van Veluw, Susanne J; Koek, Huiberdina L; Exalto, Lieza G; Biessels, Geert Jan

    2017-01-01

    Cerebral microinfarcts (CMIs) are small ischemic lesions that are a common neuropathological finding in patients with stroke or dementia. CMIs in the cortex can now be detected in vivo on 3 Tesla MRI. To determine the occurrence of CMIs and associated clinical features in patients with possible vascular cognitive impairment (VCI). 182 memory-clinic patients (mean age 71.4±10.6, 55% male) with vascular injury on brain MRI (i.e., possible VCI) underwent a standardized work-up including 3 Tesla MRI and cognitive assessment. A control group consisted of 70 cognitively normal subjects (mean age 70.6±4.7, 60% male). Cortical CMIs and other neuroimaging markers of vascular brain injury were rated according to established criteria. Occurrence of CMIs was higher (20%) in patients compared to controls (10%). Among patients, the presence of CMIs was associated with male sex, history of stroke, infarcts, and white matter hyperintensities. CMI presence was also associated with a diagnosis of vascular dementia and reduced performance in multiple cognitive domains. CMIs on 3 Tesla MRI are common in patients with possible VCI and co-occur with imaging markers of small and large vessel disease, likely reflecting a heterogeneous etiology. CMIs are associated with worse cognitive performance, independent of other markers of vascular brain injury.

  3. Impairment of GABA transporter GAT-1 terminates cortical recurrent network activity via enhanced phasic inhibition

    Directory of Open Access Journals (Sweden)

    Daniel Simon Razik

    2013-09-01

    Full Text Available In the central nervous system, GABA transporters (GATs very efficiently clear synaptically released GABA from the extracellular space, and thus exert a tight control on GABAergic inhibition. In neocortex, GABAergic inhibition is heavily recruited during recurrent phases of spontaneous action potential activity which alternate with neuronally quiet periods. Therefore, such activity should be quite sensitive to minute alterations of GAT function. Here, we explored the effects of a gradual impairment of GAT-1 and GAT-2/3 on spontaneous recurrent network activity – termed network bursts and silent periods – in organotypic slice cultures of rat neocortex. The GAT-1 specific antagonist NO-711 depressed activity already at nanomolar concentrations (IC50 for depression of spontaneous multiunit firing rate of 42 nM, reaching a level of 80% at 500-1000 nM. By contrast, the GAT-2/3 preferring antagonist SNAP-5114 had weaker and less consistent effects. Several lines of evidence pointed towards an enhancement of phasic GABAergic inhibition as the dominant activity-depressing mechanism: network bursts were drastically shortened, phasic GABAergic currents decayed slower, and neuronal excitability during ongoing activity was diminished. In silent periods, NO-711 had little effect on neuronal excitability or membrane resistance, quite in contrast to the effects of muscimol, a GABA mimetic which activates GABAA receptors tonically. Our results suggest that an enhancement of phasic GABAergic inhibition efficiently curtails cortical recurrent activity and may mediate antiepileptic effects of therapeutically relevant concentrations of GAT-1 antagonists.

  4. Impaired cognitive control mediates the relationship between cortical thickness of the superior frontal gyrus and role functioning in schizophrenia.

    Science.gov (United States)

    Tully, Laura M; Lincoln, Sarah Hope; Liyanage-Don, Nadia; Hooker, Christine I

    2014-02-01

    Structural abnormalities in the lateral prefrontal cortex (LPFC) are well-documented in schizophrenia and recent evidence suggests that these abnormalities relate to functional outcome. Cognitive control mechanisms, reliant on the LPFC, are impaired in schizophrenia and predict functional outcome, thus impaired cognitive control could mediate the relationship between neuroanatomical abnormalities in the LPFC and functional outcome. We used surface-based morphometry to investigate relationships between cortical surface characteristics, cognitive control, and measures of social and role functioning in 26 individuals with schizophrenia and 29 healthy controls. Results demonstrate that schizophrenia participants had thinner cortex in a region of the superior frontal gyrus (BA10). Across all participants, decreased cortical thickness in this region related to decreased cognitive control and decreased role functioning. Moreover, cognitive control fully mediated the relationship between cortical thickness in the superior frontal gyrus and role functioning, indicating that neuroanatomical abnormalities in the LPFC adversely impact role functioning via impaired cognitive control processes. Copyright © 2013 Elsevier B.V. All rights reserved.

  5. Sleep-dependent directional coupling between human neocortex and hippocampus.

    Science.gov (United States)

    Wagner, Tobias; Axmacher, Nikolai; Lehnertz, Klaus; Elger, Christian E; Fell, Jürgen

    2010-02-01

    Complex interactions between neocortex and hippocampus are the neural basis of memory formation. Two-step theories of memory formation suggest that initial encoding of novel information depends on the induction of rapid plasticity within the hippocampus, and is followed by a second sleep-dependent step of memory consolidation. These theories predict information flow from the neocortex into the hippocampus during waking state and in the reverse direction during sleep. However, experimental evidence that interactions between hippocampus and neocortex have a predominant direction which reverses during sleep rely on cross-correlation analysis of data from animal experiments and yielded inconsistent results. Here, we investigated directional coupling in intracranial EEG data from human subjects using a phase-modeling approach which is well suited to reveal functional interdependencies in oscillatory data. In general, we observed that the anterior hippocampus predominantly drives nearby and remote brain regions. Surprisingly, however, the influence of neocortical regions on the hippocampus significantly increased during sleep as compared to waking state. These results question the standard model of hippocampal-neocortical interactions and suggest that sleep-dependent consolidation is accomplished by an active retrieval of hippocampal information by the neocortex. Copyright 2009 Elsevier Srl. All rights reserved.

  6. A pilot study regarding basic knowledge of "cortical visual impairment in children" among ophthalmologists.

    Science.gov (United States)

    Maitreya, Amit; Rawat, Darshika; Pandey, Shubham

    2018-02-01

    A pilot study was done to evaluate knowledge regarding "cortical visual impairment (CVI) in children" among ophthalmologists. This study was conducted during the annual conference of a zonal ophthalmological society. All ophthalmologists who attended the conference were requested to participate in this study. Those who agreed were given a validated questionnaire to assess knowledge regarding CVI. Cronbach's alpha of the questionnaire was 0.6. Participants were asked to respond to multiple choice questions by choosing the single best option. The responses obtained were then evaluated. The total number of registered delegates in the conference was 448. A total of 103 ophthalmologists showed interest to participate in the study with a response rate of 22.9%. Only 89/103 interested delegates were included in the study as remaining were unaware of CVI. No participant gave correct answers to all questions. Although more than 80% of them knew the most common association (87%) and site of pathology (84%), only 52% were sure about clinical features and even lesser respondents (39%) knew that magnetic resonance imaging is the correct investigation of choice. The majority responded correctly that these children need eye examination (89%) and can be managed by rehabilitation through multidisciplinary approach (82%), but only 58% could recognize differential diagnoses and had a correct idea regarding the prognosis of CVI. There was no correlation between the number of patients diagnosed per month by the respondent with knowledge of the disease. In this pilot study, ophthalmologists were found to have limited knowledge regarding clinical features, investigation, differential diagnosis, and visual prognosis of CVI in children. There is a need to improve awareness regarding CVI among ophthalmologists.

  7. Differential effect of an anticholinergic antidepressant on sleep-dependent memory consolidation.

    Science.gov (United States)

    Goerke, Monique; Cohrs, Stefan; Rodenbeck, Andrea; Kunz, Dieter

    2014-05-01

    Rapid eye movement (REM) sleep is considered critical to the consolidation of procedural memory - the memory of skills and habits. Many antidepressants strongly suppress REM sleep, however, and procedural memory consolidation has been shown to be impaired in depressed patients on antidepressant therapy. As a result, it is important to determine whether antidepressive therapy can lead to amnestic impairment. We thus investigated the effects of the anticholinergic antidepressant amitriptyline on sleep-dependent memory consolidation. Double-blind, placebo-controlled, randomized, parallel-group study. Sleep laboratory. Twenty-five healthy men (mean age: 26.8 ± 5.6 y). 75 mg amitriptyline versus placebo. To test memory consolidation, a visual discrimination task, a finger-tapping task, the Rey-Osterrieth Complex Figure Test, and the Rey Auditory-Verbal Learning Test were performed. Sleep was measured using polysomnography. Our findings show that amitriptyline profoundly suppressed REM sleep and impaired perceptual skill learning, but not motor skill or declarative learning. Our study is the first to demonstrate that an antidepressant can affect procedural memory consolidation in healthy subjects. Moreover, considering the results of a recent study, in which selective serotonin reuptake inhibitors and serotonin-norepinephrine reuptake inhibitors were shown not to impair procedural memory consolidation, our findings suggest that procedural memory consolidation is not facilitated by the characteristics of REM sleep captured by visual sleep scoring, but rather by the high cholinergic tone associated with REM sleep. Our study contributes to the understanding of potentially undesirable behavioral effects of amitriptyline.

  8. Abnormality of cerebral cortical glucose metabolism in temporal lobe epilepsy with cognitive function impairment

    International Nuclear Information System (INIS)

    Bang-Hung Yang; Tsung-Szu Yeh; Tung-Ping Su; Jyh-Cheng Chen; Ren-Shyan Liu

    2004-01-01

    Objective: People with epilepsy commonly report having problems with their memory. Many indicate that memory difficulties significantly hinder their functioning at work, in school, and at home. Besides, some studies have reported that memory performance as a prognostic factor is of most value in patients with risk of refractory epilepsy and when used in a multidisciplinary setting. However, the cerebral cortical areas involving memory impairment in epilepsy is still unknown. The purpose of this study was to access changes of cerebral glucose metabolism of epilepsy patients using [F-18] fluorodeoxyglucose positron emission tomography (FDG PET). Method: Nine temporal lobe epilepsy patients were studied. Each patient was confirmed with lesions in right mesial temporal lobe by MRI, PET and EEG. Serial cognition function tests were performed. Regional cerebral glucose metabolism (rCMRglc) was measured by PET at 45 minutes after injection of 370 MBq of FDG. Parametric images were generated by grand mean scaling each scan to 50. The images were then transformed into standard stereotactic space. Statistical parametric mapping (SPM2) was applied to find the correlations between verbal memory, figure memory, perception intelligent quotation (PIQ) and rCMRglc in epilepsy patients. The changes of rCMRglc were significant if corrected p value was less than 0.05. Results: There was no significant relationship between figure memory score and verbal memory score. FDG-PET scan showed changes of rCMRglc positive related with verbal memory score in precentral gyms of right frontal lobe (Brodmann area 4, corrected p < 0.001, voxel size 240) and cingulated gyms of right limbic lobe (Brodmann area 32, corrected p=0.002, voxel size 143). No negative relationship was demonstrable between verbal memory and rCMRglc in this study. Besides, significanfiy positive correlation between figure memory was shown in cuneus of right occipital lobe (Brodmann area 18, corrected p < 0.001, voxel size

  9. Sleep-Dependent Modulation of Metabolic Rate in Drosophila.

    Science.gov (United States)

    Stahl, Bethany A; Slocumb, Melissa E; Chaitin, Hersh; DiAngelo, Justin R; Keene, Alex C

    2017-08-01

    Dysregulation of sleep is associated with metabolic diseases, and metabolic rate (MR) is acutely regulated by sleep-wake behavior. In humans and rodent models, sleep loss is associated with obesity, reduced metabolic rate, and negative energy balance, yet little is known about the neural mechanisms governing interactions between sleep and metabolism. We have developed a system to simultaneously measure sleep and MR in individual Drosophila, allowing for interrogation of neural systems governing interactions between sleep and metabolic rate. Like mammals, MR in flies is reduced during sleep and increased during sleep deprivation suggesting sleep-dependent regulation of MR is conserved across phyla. The reduction of MR during sleep is not simply a consequence of inactivity because MR is reduced ~30 minutes following the onset of sleep, raising the possibility that CO2 production provides a metric to distinguish different sleep states in the fruit fly. To examine the relationship between sleep and metabolism, we determined basal and sleep-dependent changes in MR is reduced in starved flies, suggesting that starvation inhibits normal sleep-associated effects on metabolic rate. Further, translin mutant flies that fail to suppress sleep during starvation demonstrate a lower basal metabolic rate, but this rate was further reduced in response to starvation, revealing that regulation of starvation-induced changes in MR and sleep duration are genetically distinct. Therefore, this system provides the unique ability to simultaneously measure sleep and oxidative metabolism, providing novel insight into the physiological changes associated with sleep and wakefulness in the fruit fly. © Sleep Research Society 2017. Published by Oxford University Press on behalf of the Sleep Research Society. All rights reserved. For permissions, please e-mail journals.permissions@oup.com.

  10. Cortical cholinergic hypofunction and behaviorial impairment produced by basal forebrain lesions in the rat

    International Nuclear Information System (INIS)

    Lerer, B.E.; Friedman, E.; Gamzu, E.

    1986-01-01

    The authors confirm the cortical ChAT and passive avoidance deficits resulting from bilateral KA lesions of the magnocellular nuclei of the basal forebrain (MNBF). Because of reported passive avoidance deficits, the authors were interested in whether bilateral MNBF lesions would interfere with learning in an active avoidance paradigm. Samples of rat cortex were stored at -80 C until assayed. ChAT was assayed by a modification method under saturating conditions; 20 mM choline and 2 mM C 14-acetylcoenzyme. The behavioral deficits assumed to be indicative of learning and memory problems were accompanied by a 20% decrease in cortical ChAT

  11. Emotional bias of sleep-dependent processing shifts from negative to positive with aging.

    Science.gov (United States)

    Jones, Bethany J; Schultz, Kurt S; Adams, Sydney; Baran, Bengi; Spencer, Rebecca M C

    2016-09-01

    Age-related memory decline has been proposed to result partially from impairments in memory consolidation over sleep. However, such decline may reflect a shift toward selective processing of positive information with age rather than impaired sleep-related mechanisms. In the present study, young and older adults viewed negative and neutral pictures or positive and neutral pictures and underwent a recognition test after sleep or wake. Subjective emotional reactivity and affect were also measured. Compared with waking, sleep preserved valence ratings and memory for positive but not negative pictures in older adults and negative but not positive pictures in young adults. In older adults, memory for positive pictures was associated with slow wave sleep. Furthermore, slow wave sleep predicted positive affect in older adults but was inversely related to positive affect in young adults. These relationships were strongest for older adults with high memory for positive pictures and young adults with high memory for negative pictures. Collectively, these results indicate preserved but selective sleep-dependent memory processing with healthy aging that may be biased to enhance emotional well-being. Copyright © 2016 Elsevier Inc. All rights reserved.

  12. Impaired decision-making and selective cortical frontal thinning in Cushing's syndrome.

    Science.gov (United States)

    Crespo, Iris; Esther, Granell-Moreno; Santos, Alicia; Valassi, Elena; Yolanda, Vives-Gilabert; De Juan-Delago, Manel; Webb, Susan M; Gómez-Ansón, Beatriz; Resmini, Eugenia

    2014-12-01

    Cushing's syndrome (CS) is caused by a glucocorticoid excess. This hypercortisolism can damage the prefrontal cortex, known to be important in decision-making. Our aim was to evaluate decision-making in CS and to explore cortical thickness. Thirty-five patients with CS (27 cured, eight medically treated) and thirty-five matched controls were evaluated using Iowa gambling task (IGT) and 3 Tesla magnetic resonance imaging (MRI) to assess cortical thickness. The IGT evaluates decision-making, including strategy and learning during the test. Cortical thickness was determined on MRI using freesurfer software tools, including a whole-brain analysis. There were no differences between medically treated and cured CS patients. They presented an altered decision-making strategy compared to controls, choosing a lower number of the safer cards (P behaviour was driven by short-term reward and long-term punishment, indicating learning problems because they did not use previous experience as a feedback factor to regulate their choices. These alterations in decision-making and the decreased cortical thickness in frontal areas suggest that chronic hypercortisolism promotes brain changes which are not completely reversible after endocrine remission. © 2014 John Wiley & Sons Ltd.

  13. The Limited Capacity of Sleep-Dependent Memory Consolidation

    Directory of Open Access Journals (Sweden)

    Gordon B Feld

    2016-09-01

    Full Text Available Sleep supports memory consolidation. However, the conceptually important influence of the amount of items encoded in a memory test on this effect has not been investigated. In two experiments, participants (n=101 learned lists of word-pairs varying in length (40, 160, 320 word-pairs in the evening before a night of sleep (sleep group or of sleep deprivation (wake group. After 36 h (including a night allowing recovery sleep retrieval was tested. Compared with wakefulness, post-learning sleep enhanced retention for the 160 word-pair condition (p < 0.01, importantly, this effect completely vanished for the 320 word-pair condition. This result indicates a limited capacity for sleep-dependent memory consolidation, which is consistent with an active system consolidation view on sleep’s role for memory, if it is complemented by processes of active forgetting and/or gist abstraction. Whereas the absolute benefit from sleep should have increased with increasing amounts of successfully encoded items, if sleep only passively protected memory from interference. Moreover, the finding that retention performance was significantly diminished for the 320 word-pair condition compared to the 160 word-pair condition in the sleep group, makes it tempting to speculate that with increasing loads of information encoded during wakefulness, sleep might favour processes of forgetting over consolidation.

  14. Anosognosia in mild cognitive impairment: Relationship to activation of cortical midline structures involved in self-appraisal

    Science.gov (United States)

    Ries, Michele L.; Jabbar, Britta M.; Schmitz, Taylor W.; Trivedi, Mehul A.; Gleason, Carey E.; Carlsson, Cynthia M.; Rowley, Howard A.; Asthana, Sanjay; Johnson, Sterling C.

    2009-01-01

    Awareness of cognitive dysfunction shown by individuals with Mild Cognitive Impairment (MCI), a condition conferring risk for Alzheimer’s disease (AD), is variable. Anosognosia, or unawareness of loss of function, is beginning to be recognized as an important clinical symptom of MCI. However, little is known about the brain substrates underlying this symptom. We hypothesized that MCI participants’ activation of cortical midline structures (CMS) during self-appraisal would covary with level of insight into cognitive difficulties (indexed by a discrepancy score between patient and informant ratings of cognitive decline in each MCI participant). To address this hypothesis, we first compared 16 MCI participants and 16 age-matched controls, examining brain regions showing conjoint or differential BOLD response during self-appraisal. Second, we used regression to investigate the relationship between awareness of deficit in MCI and BOLD activity during self-appraisal, controlling for extent of memory impairment. Between-group comparisons indicated that MCI participants show subtly attenuated CMS activity during self-appraisal. Regression analysis revealed a highly-significant relationship between BOLD response during self-appraisal and self-awareness of deficit in MCI. This finding highlights the level of anosognosia in MCI as an important predictor of response to self-appraisal in cortical midline structures, brain regions vulnerable to changes in early AD. PMID:17445294

  15. Impaired Cognition in Rats with Cortical Dysplasia: Additional Impact of Early-Life Seizures

    Science.gov (United States)

    Lucas, Marcella M.; Lenck-Santini, Pierre-Pascal; Holmes, Gregory L.; Scott, Rod C.

    2011-01-01

    One of the most common and serious co-morbidities in patients with epilepsy is cognitive impairment. While early-life seizures are considered a major cause for cognitive impairment, it is not known whether it is the seizures, the underlying neurological substrate or a combination that has the largest impact on eventual learning and memory. Teasing…

  16. Assessment of Cortical Visual Impairment in Infants with Periventricular Leukomalacia: a Pilot Event-Related fMRI Study

    Energy Technology Data Exchange (ETDEWEB)

    Yu, Bing; Guo, Qiyong [Shengjing Hospital of China Medical University, Shenyang (China); Fan, Guoguang [The First Hospital of China Medical University, Shenyang (China); Liu, Na [Greater China Region of Philips, Shanghai (China)

    2011-08-15

    We wanted to investigate the usefulness of event-related (ER) functional MRI (fMRI) for the assessment of cortical visual impairment in infants with periventricular leukomalacia (PVL). FMRI data were collected from 24 infants who suffered from PVL and from 12 age-matched normal controls. Slow ER fMRI was performed using a 3.0T MR scanner while visual stimuli were being presented. Data analysis was performed using Statistical Parametric Mapping software (SPM2), the SPM toolbox MarsBar was used to analyze the region of interest data, and the time to peak (TTP) of hemodynamic response functions (HRFs) was estimated for the surviving voxels. The number of activated voxels and the TTP values of HRFs were compared. Pearson correlation analysis was performed to compare visual impairment evaluated by using Teller Acuity Cards (TAC) with the number of activated voxels in the occipital lobes in all patients. In all 12 control infants, the blood oxygenation level-dependent (BOLD) signal was negative and the maximum response was located in the anterior and superior part of the calcarine fissure, and this might correspond to the anterior region of the primary visual cortex (PVC). In contrast, for the 24 cases of PVL, there were no activated pixels in the PVC in four subjects, small and weak activations in six subjects, deviated activations in seven subjects and both small and deviated activations in three subjects. The number of active voxels in the occipital lobe was significantly correlated with the TAC-evaluated visual impairment (p < 0.001). The mean TTP of the HRFs was significantly delayed in the cases of PVL as compared with that of the normal controls. Determining the characteristics of both the BOLD response and the ER fMRI activation may play an important role in the cortical visual assessment of infants with PVL.

  17. The association between intra- and juxta-cortical pathology and cognitive impairment in multiple sclerosis by quantitative T2* mapping at 7 T MRI.

    Science.gov (United States)

    Louapre, Céline; Govindarajan, Sindhuja T; Giannì, Costanza; Madigan, Nancy; Nielsen, A Scott; Sloane, Jacob A; Kinkel, Revere P; Mainero, Caterina

    2016-01-01

    Using quantitative T 2 * at 7 Tesla (T) magnetic resonance imaging, we investigated whether impairment in selective cognitive functions in multiple sclerosis (MS) can be explained by pathology in specific areas and/or layers of the cortex. Thirty-one MS patients underwent neuropsychological evaluation, acquisition of 7 T multi-echo T 2 * gradient-echo sequences, and 3 T anatomical images for cortical surfaces reconstruction. Seventeen age-matched healthy subjects served as controls. Cortical T 2 * maps were sampled at various depths throughout the cortex and juxtacortex. Relation between T 2 *, neuropsychological scores and a cognitive index (CI), calculated from a principal component analysis on the whole battery, was tested by a general linear model. Cognitive impairment correlated with T 2 * increase, independently from white matter lesions and cortical thickness, in cortical areas highly relevant for cognition belonging to the default-mode network (p < 0.05 corrected). Dysfunction in different cognitive functions correlated with longer T 2 * in selective cortical regions, most of which showed longer T 2 * relative to controls. For most tests, this association was strongest in deeper cortical layers. Executive dysfunction, however, was mainly related with pathology in juxtameningeal cortex. T 2 * explained up to 20% of the variance of the CI, independently of conventional imaging metrics (adjusted-R 2 : 52-67%, p < 5.10 - 4 ). Location of pathology across the cortical width and mantle showed selective correlation with impairment in differing cognitive domains. These findings may guide studies at lower field strength designed to develop surrogate markers of cognitive impairment in MS.

  18. High Insulin Levels in KK-Ay Diabetic Mice Cause Increased Cortical Bone Mass and Impaired Trabecular Micro-Structure

    Directory of Open Access Journals (Sweden)

    Cen Fu

    2015-04-01

    Full Text Available Type 2 diabetes mellitus (T2DM is a chronic disease characterized by hyperglycemia, hyperinsulinemia and complications, including obesity and osteoporosis. Rodents have been widely used to model human T2DM and investigate its effect on the skeleton. We aimed to investigate skeletal alterations in Yellow Kuo Kondo (KK-Ay diabetic mice displaying high insulin and glucose levels. Bone mineral density (BMD, micro-architecture and bone metabolism-related genes were analyzed. The total femoral areal BMD (aBMD, cortical volumetric BMD (vBMD and thickness were significantly increased in KK-Ay mice, while the trabecular vBMD and mineralized bone volume/tissue volume (BV/TV, trabecular thickness and number were decreased compared to C57BL mice. The expression of both osteoblast-related genes, such as osteocalcin (OC, bone sialoprotein, Type I Collagen, osteonectin, RUNX2 and OSX, and osteoclast-related genes, such as TRAP and TCIRG, were up-regulated in KK-Ay mice. Correlation analyses showed that serum insulin levels were positively associated with aBMD, cortical vBMD and thickness and negatively associated with trabecular vBMD and micro-architecture. In addition, serum insulin levels were positively related to osteoblast-related and osteoclast-related gene expression. Our data suggest that high insulin levels in KK-Ay diabetic mice may increase cortical bone mass and impair trabecular micro-structure by up-regulating osteoblast-and osteoclast-related gene expression.

  19. Cognitive impairment in Alzheimer's disease correlates with ventricular width and atrophy-corrected cortical glucose metabolism

    International Nuclear Information System (INIS)

    Slansky, I.; Herholz, K.; Pietrzyk, U.; Kessler, J.; Grond, M.; Mielke, R.; Heiss, W.D.

    1995-01-01

    We compared the correlation of PET and MRI with neuropsychological tests in 26 patients with probable Alzheimer's disease (AD). The width of the temporal horns and the third ventricle, regional metabolic rates of glucose (rCMRGlu) and the proportion of cerebrospinal fluid space in mesial temporal and temporoparietal cortical regions were measured with three-dimensionally coregistered PET and MRI in two planes perpendicular to the Sylvian fissure. Highly significant correlations between rCMRGlu and neuropsychological tests were found mainly in the temporoparietal cortex, with and without correction for atrophy. Correlations of similar magnitude were seen also between most tests and the width of the temporal horns and third ventricle. Changes in the third ventricle and mesial temporal lobe were best seen with MRI, whereas PET most clearly depicted alterations in neocortical association areas. These two aspects of the disease correlated with the severity of dementia to a similar degree. (orig.)

  20. Role of hippocampal and prefrontal cortical signaling pathways in dextromethorphan effect on morphine-induced memory impairment in rats.

    Science.gov (United States)

    Ghasemzadeh, Zahra; Rezayof, Ameneh

    2016-02-01

    Evidence suggests that dextromethorphan (DM), an NMDA receptor antagonist, induces memory impairment. Considering that DM is widely used in cough-treating medications, and the co-abuse of DM with morphine has recently been reported, the aims of the present study was (1) to investigate whether there is a functional interaction between morphine and DM in passive avoidance learning and (2) to assess the possible role of the hippocampal and prefrontal cortical (PFC) signaling pathways in the effects of the drugs on memory formation. Our findings indicated that post-training or pre-test administration of morphine (2 and 6 mg/kg) or DM (10-30 mg/kg) impaired memory consolidation and retrieval which was associated with the attenuation of the levels of phosphorylated Ca(2+)/calmodulin-dependent protein kinase II (p-CAMKII) and cAMP responsive element-binding protein (p-CREB) in the targeted sites. Moreover, the memory impairment induced by post-training administration of morphine was reversed by pre-test administration of the same dose of morphine or DM (30 mg/kg), indicating state-dependent learning (SDL) and a cross-SDL between the drugs. It is important to note that the levels of p-CAMKII/CAMKII and p-CREB/CREB in the hippocampus and the PFC increased in drugs-induced SDL. In addition, DM administration potentiated morphine-induced SDL which was related to the enhanced levels of hippocampal and PFC CAMKII-CREB signaling pathways. It can be concluded that there is a relationship between the hippocampus and the PFC in the effect of DM and/or morphine on memory retrieval. Moreover, a cross SDL can be induced between the co-administration of DM and morphine. Interestingly, CAMKII-CREB signaling pathways also mediate the drugs-induced SDL. Copyright © 2015 Elsevier Inc. All rights reserved.

  1. Abeta(1-42) injection causes memory impairment, lowered cortical and serum BDNF levels, and decreased hippocampal 5-HT(2A) levels

    DEFF Research Database (Denmark)

    Christensen, R; Marcussen, Anders Bue; Wörtwein, Gitta

    2008-01-01

    was used to monitor Abeta(1-42) induced memory impairment. Memory impairment was seen 22 days after injection of Abeta(1-42) in the experimental group and until termination of the experiments. In the Abeta(1-42) injected animals we saw an abolished increase in serum BDNF levels that was accompanied...... by significant lower BDNF levels in frontal cortex and by an 8.5% reduction in hippocampal 5-HT(2A) receptor levels. A tendency towards lowered cortical 5-HT(2A) was also observed. These results indicate that the Abeta(1-42) associated memory deficit is associated with an impaired BDNF regulation, which...

  2. Sensitivity of cortical auditory evoked potential detection for hearing-impaired infants in response to short speech sounds

    Directory of Open Access Journals (Sweden)

    Bram Van Dun

    2012-01-01

    Full Text Available

    Background: Cortical auditory evoked potentials (CAEPs are an emerging tool for hearing aid fitting evaluation in young children who cannot provide reliable behavioral feedback. It is therefore useful to determine the relationship between the sensation level of speech sounds and the detection sensitivity of CAEPs.

    Design and methods: Twenty-five sensorineurally hearing impaired infants with an age range of 8 to 30 months were tested once, 18 aided and 7 unaided. First, behavioral thresholds of speech stimuli /m/, /g/, and /t/ were determined using visual reinforcement orientation audiometry (VROA. Afterwards, the same speech stimuli were presented at 55, 65, and 75 dB SPL, and CAEP recordings were made. An automatic statistical detection paradigm was used for CAEP detection.

    Results: For sensation levels above 0, 10, and 20 dB respectively, detection sensitivities were equal to 72 ± 10, 75 ± 10, and 78 ± 12%. In 79% of the cases, automatic detection p-values became smaller when the sensation level was increased by 10 dB.

    Conclusions: The results of this study suggest that the presence or absence of CAEPs can provide some indication of the audibility of a speech sound for infants with sensorineural hearing loss. The detection of a CAEP provides confidence, to a degree commensurate with the detection probability, that the infant is detecting that sound at the level presented. When testing infants where the audibility of speech sounds has not been established behaviorally, the lack of a cortical response indicates the possibility, but by no means a certainty, that the sensation level is 10 dB or less.

  3. Automated Volumetry and Regional Thickness Analysis of Hippocampal Subfields and Medial Temporal Cortical Structures in Mild Cognitive Impairment

    Science.gov (United States)

    Yushkevich, Paul A.; Pluta, John B.; Wang, Hongzhi; Xie, Long; Ding, Song-Lin; Gertje, E. C.; Mancuso, Lauren; Kliot, Daria; Das, Sandhitsu R.; Wolk, David A.

    2014-01-01

    We evaluate a fully automatic technique for labeling hippocampal subfields and cortical subregions in the medial temporal lobe (MTL) in in vivo 3 Tesla MRI. The method performs segmentation on a T2-weighted MRI scan with 0.4 × 0.4 × 2.0 mm3 resolution, partial brain coverage, and oblique orientation. Hippocampal subfields, entorhinal cortex, and perirhinal cortex are labeled using a pipeline that combines multi-atlas label fusion and learning-based error correction. In contrast to earlier work on automatic subfield segmentation in T2-weighted MRI (Yushkevich et al., 2010), our approach requires no manual initialization, labels hippocampal subfields over a greater anterior-posterior extent, and labels the perirhinal cortex, which is further subdivided into Brodmann areas 35 and 36. The accuracy of the automatic segmentation relative to manual segmentation is measured using cross-validation in 29 subjects from a study of amnestic Mild Cognitive Impairment (aMCI), and is highest for the dentate gyrus (Dice coefficient is 0.823), CA1 (0.803), perirhinal cortex (0.797) and entorhinal cortex (0.786) labels. A larger cohort of 83 subjects is used to examine the effects of aMCI in the hippocampal region using both subfield volume and regional subfield thickness maps. Most significant differences between aMCI and healthy aging are observed bilaterally in the CA1 subfield and in the left Brodmann area 35. Thickness analysis results are consistent with volumetry, but provide additional regional specificity and suggest non-uniformity in the effects of aMCI on hippocampal subfields and MTL cortical subregions. PMID:25181316

  4. Memory suppression trades prolonged fear and sleep-dependent fear plasticity for the avoidance of current fear

    Science.gov (United States)

    Kuriyama, Kenichi; Honma, Motoyasu; Yoshiike, Takuya; Kim, Yoshiharu

    2013-07-01

    Sleep deprivation immediately following an aversive event reduces fear by preventing memory consolidation during homeostatic sleep. This suggests that acute insomnia might act prophylactically against the development of posttraumatic stress disorder (PTSD) even though it is also a possible risk factor for PTSD. We examined total sleep deprivation and memory suppression to evaluate the effects of these interventions on subsequent aversive memory formation and fear conditioning. Active suppression of aversive memory impaired retention of event memory. However, although the remembered fear was more reduced in sleep-deprived than sleep-control subjects, suppressed fear increased, and seemed to abandon the sleep-dependent plasticity of fear. Active memory suppression, which provides a psychological model for Freud's ego defense mechanism, enhances fear and casts doubt on the potential of acute insomnia as a prophylactic measure against PTSD. Our findings bring into question the role of sleep in aversive-memory consolidation in clinical PTSD pathophysiology.

  5. Impaired cerebral microcirculation induced by ammonium chloride in rats is due to cortical adenosine release

    DEFF Research Database (Denmark)

    Bjerring, Peter Nissen; Bjerrum, Esben Jannik; Larsen, Fin Stolze

    2018-01-01

    BACKGROUND: Liver failure results in hyperammonaemia, impaired regulation of cerebral microcirculation, encephalopathy and death. However, the key mediator that alters cerebral microcirculation remains unidentified. In this study we show that topical ammonium significantly increases periarteriolar......: In patients with liver failure disturbances in the brain function is caused in part by ammonia toxicity. In our project we have studied how ammonia, through adenosine release, affects the blood flow in the brain of rats. In our experimental model we demonstrated that the detrimental effect of ammonia on blood...... flow regulation was counteracted by blocking the adenosine receptors in the brain. With this observation we have identified a novel potential treatment target. If we can confirm our findings in a future clinical study it might help patients suffering from liver failure and the severe condition called...

  6. Increased 20-HETE synthesis explains reduced cerebral blood flow but not impaired neurovascular coupling after cortical spreading depression in rat cerebral cortex

    DEFF Research Database (Denmark)

    Fordsmann, Jonas Christoffer; ko, Rebecca; Choi, Hyun B

    2013-01-01

    Cortical spreading depression (CSD) is associated with release of arachidonic acid (AA), impaired neurovascular coupling, and reduced cerebral blood flow (CBF), caused by cortical vasoconstriction. We tested the hypothesis that the released AA is metabolized by the cytochrome P450 enzyme to produce...... neurovascular coupling after CSD. These findings suggest that CSD-induced increments in 20-HETE cause the reduction in CBF after CSD, and that the attenuation of stimulation-induced CBF responses after CSD has a different mechanism. We suggest that blockade of 20-HETE synthesis may be clinically relevant...

  7. Glycine Receptor Activation Impairs ATP-Induced Calcium Transients in Cultured Cortical Astrocytes

    Directory of Open Access Journals (Sweden)

    Tatiana P. Morais

    2018-01-01

    Full Text Available In central nervous system, glycine receptor (GlyR is mostly expressed in the spinal cord and brainstem, but glycinergic transmission related elements have also been identified in the brain. Astrocytes are active elements at the tripartite synapse, being responsible for the maintenance of brain homeostasis and for the fine-tuning of synaptic activity. These cells communicate, spontaneously or in response to a stimulus, by elevations in their cytosolic calcium (calcium transients, Ca2+T that can be propagated to other cells. How these Ca2+T are negatively modulated is yet poorly understood. In this work, we evaluated GlyR expression and its role on calcium signaling modulation in rat brain astrocytes. We first proved that GlyR, predominantly subunits α2 and β, was expressed in brain astrocytes and its localization was confirmed in the cytoplasm and astrocytic processes by immunohistochemistry assays. Calcium imaging experiments in cultured astrocytes showed that glycine (500 μM, a GlyR agonist, caused a concentration-dependent reduction in ATP-induced Ca2+T, an effect abolished by the GlyR antagonist, strychnine (0.8 μM, as well as by nocodazole (1 μM, known to impair GlyR anchorage to the plasma membrane. This effect was mimicked by activation of GABAAR, another Cl--permeable channel. In summary, we demonstrated that GlyR activation in astrocytes mediates an inhibitory effect upon ATP induced Ca2+T, which most probably involves changes in membrane permeability to Cl- and requires GlyR anchorage at the plasma membrane. GlyR in astrocytes may thus be part of a mechanism to modulate astrocyte-to-neuron communication.

  8. Olfactory insights into sleep-dependent learning and memory.

    Science.gov (United States)

    Shanahan, Laura K; Gottfried, Jay A

    2014-01-01

    Sleep is pervasive throughout most of the animal kingdom-even jellyfish and honeybees do it. Although the precise function of sleep remains elusive, research increasingly suggests that sleep plays a key role in memory consolidation. Newly formed memories are highly labile and susceptible to interference, and the sleep period offers an optimal window in which memories can be strengthened or modified. Interestingly, a small but growing research area has begun to explore the ability of odors to modulate memories during sleep. The unique anatomical organization of the olfactory system, including its intimate overlap with limbic systems mediating emotion and memory, and the lack of a requisite thalamic intermediary between the nasal periphery and olfactory cortex, suggests that odors may have privileged access to the brain during sleep. Indeed, it has become clear that the long-held assumption that odors have no impact on the sleeping brain is no longer tenable. Here, we summarize recent studies in both animal and human models showing that odor stimuli experienced in the waking state modulate olfactory cortical responses in sleep-like states, that delivery of odor contextual cues during sleep can enhance declarative memory and extinguish fear memory, and that olfactory associative learning can even be achieved entirely within sleep. Data reviewed here spotlight the emergence of a new research area that should hold far-reaching implications for future neuroscientific investigations of sleep, learning and memory, and olfactory system function. © 2014 Elsevier B.V. All rights reserved.

  9. Cortical Atrophy is Associated with Accelerated Cognitive Decline in Mild Cognitive Impairment with Subsyndromal Depression.

    Science.gov (United States)

    Gonzales, Mitzi M; Insel, Philip S; Nelson, Craig; Tosun, Duygu; Mattsson, Niklas; Mueller, Susanne G; Sacuiu, Simona; Bickford, David; Weiner, Michael W; Mackin, R Scott

    2017-09-01

    To investigate the association between cognitive decline and cortical atrophy in individuals with mild cognitive impairment (MCI) and chronic subsyndromal symptoms of depression (SSD) over a 4-year period. Prospective cohort study. Multicenter, clinic-based. Within the Alzheimer's Disease Neuroimaging Initiative repository, the Neuropsychiatric Inventory was used to identify individuals with MCI and stable endorsement (SSD group N = 32) or no endorsement (non-SSD group N = 69) of depressive symptoms across time points. Repeated measures of cognitive outcomes, cortical atrophy, and their associations were evaluated with mixed effects models adjusting for age, education, sex, and APOE genotype. The SSD group demonstrated accelerated decline on measures of global cognition (Alzheimer Disease Assessment Scale; df = 421, t = 2.242, p = 0.025), memory (Wechsler Memory Scale-Revised Logical Memory II; df = 244, t = -2.525, p = 0.011), information processing speed (Trail Making Test Parts A [df = 421, t = 2.376, p = 0.018] and B [df = 421, t = 2.533, p = 0.012]), and semantic fluency (Category Fluency; df = 424, t = -2.418, p = 0.016), as well as accelerated frontal lobe (df = 341, t = -2.648, p = 0.008) and anterior cingulate (df = 341, t = -3.786, p confrontation naming or for rate of atrophy in any other regions. Accelerated frontal lobe and anterior cingulate atrophy was associated with cognitive decline on measures of global cognition, information processing speed, and semantic fluency (all p < 0.05), but not memory. Individuals with chronic SSD may represent an MCI subgroup that is highly vulnerable to accelerated cognitive decline, an effect that may be governed by frontal lobe and anterior cingulate atrophy. Published by Elsevier Inc.

  10. Sleep-Dependent Reductions in Reality-Monitoring Errors Arise from More Conservative Decision Criteria

    Science.gov (United States)

    Westerberg, Carmen E.; Hawkins, Christopher A.; Rendon, Lauren

    2018-01-01

    Reality-monitoring errors occur when internally generated thoughts are remembered as external occurrences. We hypothesized that sleep-dependent memory consolidation could reduce them by strengthening connections between items and their contexts during an afternoon nap. Participants viewed words and imagined their referents. Pictures of the…

  11. Consolidation through the looking-glass: sleep-dependent proactive interference on visuomotor adaptation in children.

    Science.gov (United States)

    Urbain, Charline; Houyoux, Emeline; Albouy, Geneviève; Peigneux, Philippe

    2014-02-01

    Although a beneficial role of post-training sleep for declarative memory has been consistently evidenced in children, as in adults, available data suggest that procedural memory consolidation does not benefit from sleep in children. However, besides the absence of performance gains in children, sleep-dependent plasticity processes involved in procedural memory consolidation might be expressed through differential interference effects on the learning of novel but related procedural material. To test this hypothesis, 32 10-12-year-old children were trained on a motor rotation adaptation task. After either a sleep or a wake period, they were first retested on the same rotation applied at learning, thus assessing offline sleep-dependent changes in performance, then on the opposite (unlearned) rotation to assess sleep-dependent modulations in proactive interference coming from the consolidated visuomotor memory trace. Results show that children gradually improve performance over the learning session, showing effective adaptation to the imposed rotation. In line with previous findings, no sleep-dependent changes in performance were observed for the learned rotation. However, presentation of the opposite, unlearned deviation elicited significantly higher interference effects after post-training sleep than wakefulness in children. Considering that a definite feature of procedural motor memory and skill acquisition is the implementation of highly automatized motor behaviour, thus lacking flexibility, our results suggest a better integration and/or automation or motor adaptation skills after post-training sleep, eventually resulting in higher proactive interference effects on untrained material. © 2013 European Sleep Research Society.

  12. Chronic Underactivity of Medial Frontal Cortical β2-Containing Nicotinic Receptors Increases Clozapine-Induced Working Memory Impairment in Female Rats

    Science.gov (United States)

    Levin, Edward D.; Perkins, Abigail; Brotherton, Terrell; Qazi, Melissa; Berez, Chantal; Montalvo-Ortiz, Janitza; Davis, Kasey; Williams, Paul; Christopher, N. Channelle

    2009-01-01

    Nicotinic receptor decreases in the frontal cortex and hippocampus are important mediators of cognitive impairment in both schizophrenia and Alzheimer's disease. Drug treatments for these diseases should take into account the impacts of compromised brain function on drug response. This study investigated the impact of compromised nicotinic receptor activity in the frontal cortex in rats on memory function. Since both Alzheimer's disease and schizophrenia can involve psychosis, antipsychotic drugs are often given. The impacts of antipsychotic drugs on cognitive function have been found to be quite variable. It is the hypothesis of this and previous studies that the cognitive effects of antispychotic drugs on cognitive function depend on the integrity of brain systems involved in cognition. Previously in studies of the hippocampus, we found that chronic inhibition of β2-containing nicotinic receptors with dihydro-β-erythrodine (DHβE) impaired working memory and that this effect was attenuated by the antipsychotic drug clozapine. In contrast, chronic hippocampal α7 nicotinic receptor blockade with methyllycaconitine (MLA) potentiated the clozapine-induced memory impairment which is seen in rats without compromised nicotinic receptor activity. The current study determined medial frontal cortical α7 and β2-containing nicotinic receptor involvement in memory and the interactions with antipsychotic drug therapy with clozapine. Chronic DHβE and MLA infusion effects and interactions with systemic clozapine were assessed in female rats tested for memory on the radial-arm maze. Antipsychotic drug interactions with chronic systemic nicotine were investigated because nicotinic procognitive treatment has been proposed. The same local infusion DHβE dose that impaired memory with hippocampal infusion did not impair memory when infused in the medial frontal cortex. Frontal DHβE infusion potentiated clozapine-induced memory impairment, whereas previously the memory

  13. Chronic underactivity of medial frontal cortical beta2-containing nicotinic receptors increases clozapine-induced working memory impairment in female rats.

    Science.gov (United States)

    Levin, Edward D; Perkins, Abigail; Brotherton, Terrell; Qazi, Melissa; Berez, Chantal; Montalvo-Ortiz, Janitza; Davis, Kasey; Williams, Paul; Christopher, N Channelle

    2009-03-17

    Nicotinic receptor decreases in the frontal cortex and hippocampus are important mediators of cognitive impairment in both schizophrenia and Alzheimer's disease. Drug treatments for these diseases should take into account the impacts of compromised brain function on drug response. This study investigated the impact of compromised nicotinic receptor activity in the frontal cortex in rats on memory function. Since both Alzheimer's disease and schizophrenia can involve psychosis, antipsychotic drugs are often given. The impacts of antipsychotic drugs on cognitive function have been found to be quite variable. It is the hypothesis of this and previous studies that the cognitive effects of antispychotic drugs on cognitive function depend on the integrity of brain systems involved in cognition. Previously in studies of the hippocampus, we found that chronic inhibition of beta2-containing nicotinic receptors with dihydro-beta-erythrodine (DHbetaE) impaired working memory and that this effect was attenuated by the antipsychotic drug clozapine. In contrast, chronic hippocampal alpha7 nicotinic receptor blockade with methyllycaconitine (MLA) potentiated the clozapine-induced memory impairment which is seen in rats without compromised nicotinic receptor activity. The current study determined medial frontal cortical alpha7 and beta2-containing nicotinic receptor involvement in memory and the interactions with antipsychotic drug therapy with clozapine. Chronic DHbetaE and MLA infusion effects and interactions with systemic clozapine were assessed in female rats tested for memory on the radial-arm maze. Antipsychotic drug interactions with chronic systemic nicotine were investigated because nicotinic procognitive treatment has been proposed. The same local infusion DHbetaE dose that impaired memory with hippocampal infusion did not impair memory when infused in the medial frontal cortex. Frontal DHbetaE infusion potentiated clozapine-induced memory impairment, whereas previously

  14. Reorganization of motor cortex and impairment of motor performance induced by hindlimb unloading are partially reversed by cortical IGF-1 administration.

    Science.gov (United States)

    Mysoet, Julien; Canu, Marie-Hélène; Gillet, Christophe; Fourneau, Julie; Garnier, Cyril; Bastide, Bruno; Dupont, Erwan

    2017-01-15

    Immobilization, bed rest, or sedentary lifestyle, are known to induce a profound impairment in sensorimotor performance. These alterations are due to a combination of peripheral and central factors. Previous data conducted on a rat model of disuse (hindlimb unloading, HU) have shown a profound reorganization of motor cortex and an impairment of motor performance. Recently, our interest was turned towards the role of insulin-like growth factor 1 (IGF-1) in cerebral plasticity since this growth factor is considered as the mediator of beneficial effects of exercise on the central nervous system, and its cortical level is decreased after a 14-day period of HU. In the present study, we attempted to determine whether a chronic subdural administration of IGF-1 in HU rats could prevent deleterious effects of HU on the motor cortex and on motor activity. We demonstrated that HU induces a shrinkage of hindlimb cortical representation and an increase in current threshold to elicit a movement. Administration of IGF-1 in HU rats partially reversed these changes. The functional evaluation revealed that IGF-1 prevents the decrease in spontaneous activity found in HU rats and the changes in hip kinematics during overground locomotion, but had no effect of challenged locomotion (ladder rung walking test). Taken together, these data clearly indicate the implication of IGF-1 in cortical plastic mechanisms and in behavioral alteration induced by a decreased in sensorimotor activity. Copyright © 2016 Elsevier B.V. All rights reserved.

  15. Enhanced limbic/impaired cortical-loop connection onto the hippocampus of NHE rats: Application of resting-state functional connectivity in a preclinical ADHD model.

    Science.gov (United States)

    Zoratto, F; Palombelli, G M; Ruocco, L A; Carboni, E; Laviola, G; Sadile, A G; Adriani, W; Canese, R

    2017-08-30

    Due to a hyperfunctioning mesocorticolimbic system, Naples-High-Excitability (NHE) rats have been proposed to model for the meso-cortical variant of attention deficit/hyperactivity disorder (ADHD). Compared to Naples Random-Bred (NRB) controls, NHE rats show hyperactivity, impaired non-selective attention (Aspide et al., 1998), and impaired selective spatial attention (Ruocco et al., 2009a, 2014). Alteration in limbic functions has been proposed; however, resulting unbalance among forebrain areas has not been assessed yet. By resting-state functional Magnetic-Resonance Imaging (fMRI) in vivo, we investigated the connectivity of neuronal networks belonging to limbic vs. cortical loops in NHE and NRB rats (n=10 each). Notably, resting-state fMRI was applied using a multi-slice sagittal, gradient-echo sequence. Voxel-wise connectivity maps at rest, based on temporal correlation among fMRI time-series, were computed by seeding the hippocampus (Hip), nucleus accumbens (NAcc), dorsal striatum (dStr), amygdala (Amy) and dorsal/medial prefrontal cortex (PFC), both hemispheres. To summarize patterns of altered connection, clearly directional connectivity was evident within the cortical loop: bilaterally and specularly, from orbital and dorsal PFCs through dStr and hence towards Hip. Such network communication was reduced in NHE rats (also, with less mesencephalic/pontine innervation). Conversely, enhanced network activity emerged within the limbic loop of NHE rats: from left PFC, both through the NAcc and directly, to the Hip (all of which received greater ventral tegmental innervation, likely dopamine). Together with tuned-down cortical loop, this potentiated limbic loop may serve a major role in controlling ADHD-like behavioral symptoms in NHE rats. Copyright © 2017 Elsevier B.V. All rights reserved.

  16. HIV Infection Is Associated with Impaired Striatal Function during Inhibition with Normal Cortical Functioning on Functional MRI

    NARCIS (Netherlands)

    du Plessis, Stéfan; Vink, Matthijs; Joska, John A; Koutsilieri, Eleni; Bagadia, Asif; Stein, Dan J; Emsley, Robin

    2015-01-01

    The aim of the present study was to investigate the effect of HIV infection on cortical and subcortical regions of the frontal-striatal system involved in the inhibition of voluntary movement. Functional MRI (fMRI) studies suggest that human immunodeficiency virus (HIV) infection is associated with

  17. Cyclosporine A, FK506, and NIM811 ameliorate prolonged CBF reduction and impaired neurovascular coupling after cortical spreading depression

    DEFF Research Database (Denmark)

    Hansen, Henning Piilgaard; Witgen, Brent Marvin; Rasmussen, Peter

    2011-01-01

    Cortical spreading depression (CSD) is associated with mitochondrial depolarization, increasing intracellular Ca(2+), and the release of free fatty acids, which favor opening of the mitochondrial permeability transition pore (mPTP) and activation of calcineurin (CaN). Here, we test the hypothesis...

  18. Value of renal cortical thickness as a predictor of renal function impairment in chronic renal disease patients

    Directory of Open Access Journals (Sweden)

    Samia Rafael Yamashita

    2015-02-01

    Full Text Available Objective: To determine the presence of linear relationship between renal cortical thickness, bipolar length, and parenchymal thickness in chronic kidney disease patients presenting with different estimated glomerular filtration rates (GFRs and to assess the reproducibility of these measurements using ultrasonography. Materials and Methods: Ultrasonography was performed in 54 chronic renal failure patients. The scans were performed by two independent and blinded radiologists. The estimated GFR was calculated using the Cockcroft-Gault equation. Interobserver agreement was calculated and a linear correlation coefficient (r was determined in order to establish the relationship between the different renal measurements and estimated GFR. Results: The correlation between GFR and measurements of renal cortical thickness, bipolar length, and parenchymal thickness was, respectively, moderate (r = 0.478; p < 0.001, poor (r = 0.380; p = 0.004, and poor (r = 0.277; p = 0.116. The interobserver agreement was considered excellent (0.754 for measurements of cortical thickness and bipolar length (0.833, and satisfactory for parenchymal thickness (0.523. Conclusion: The interobserver reproducibility for renal measurements obtained was good. A moderate correlation was observed between estimated GFR and cortical thickness, but bipolar length and parenchymal thickness were poorly correlated.

  19. Cortical thickness in de novo patients with Parkinson disease and mild cognitive impairment with consideration of clinical phenotype and motor laterality.

    Science.gov (United States)

    Danti, S; Toschi, N; Diciotti, S; Tessa, C; Poletti, M; Del Dotto, P; Lucetti, C

    2015-12-01

    Parkinson's disease (PD) is a progressive neurodegenerative disorder with motor and non-motor symptoms, including cognitive deficits. Several magnetic resonance imaging approaches have been applied to investigate brain atrophy in PD. The aim of this study was to detect early structural cortical and subcortical changes in de novo PD whilst distinguishing cognitive status, clinical phenotype and motor laterality. Eighteen de novo PD with mild cognitive impairment (PD-MCI), 18 de novo PD without MCI (PD-NC) and 18 healthy control subjects were evaluated. In the PD-MCI group, nine were tremor dominant and nine were postural instability gait disorder (PIGD) phenotype; 11 had right-sided symptom dominance and seven had left-sided symptom dominance. FreeSurfer was used to measure cortical thickness/folding, subcortical structures and to study group differences as well as the association with clinical and neuropsychological data. Parkinson's disease with MCI showed regional thinning in the right frontal, right middle temporal areas and left insula compared to PD-NC. A reduction of the volume of the left and right thalamus and left hippocampus was found in PD-MCI compared to PD-NC. PD-MCI PIGD showed regional thinning in the right inferior parietal area compared to healthy controls. A decreased volume of the left thalamus was reported in PD-MCI with right-sided symptom dominance compared to PD-NC and PD-MCI with left-sided symptom dominance. When MCI was present, PD patients showed a fronto-temporo-parietal pattern of cortical thinning. This cortical pattern does not appear to be influenced by motor laterality, although one-sided symptom dominance may contribute to volumetric reduction of specific subcortical structures. © 2015 EAN.

  20. Impairment of preoperative language mapping by lesion location: a functional magnetic resonance imaging, navigated transcranial magnetic stimulation, and direct cortical stimulation study.

    Science.gov (United States)

    Ille, Sebastian; Sollmann, Nico; Hauck, Theresa; Maurer, Stefanie; Tanigawa, Noriko; Obermueller, Thomas; Negwer, Chiara; Droese, Doris; Boeckh-Behrens, Tobias; Meyer, Bernhard; Ringel, Florian; Krieg, Sandro M

    2015-08-01

    Language mapping by repetitive navigated transcranial magnetic stimulation (rTMS) is increasingly used and has already replaced functional MRI (fMRI) in some institutions for preoperative mapping of neurosurgical patients. Yet some factors affect the concordance of both methods with direct cortical stimulation (DCS), most likely by lesions affecting cortical oxygenation levels. Therefore, the impairment of the accuracy of rTMS and fMRI was analyzed and compared with DCS during awake surgery in patients with intraparenchymal lesions. Language mapping was performed by DCS, rTMS, and fMRI using an object-naming task in 27 patients with left-sided perisylvian lesions, and the induced language errors of each method were assigned to the cortical parcellation system. Subsequently, the receiver operating characteristics were calculated for rTMS and fMRI and compared with DCS as ground truth for regions with (w/) and without (w/o) the lesion in the mapped regions. The w/ subgroup revealed a sensitivity of 100% (w/o 100%), a specificity of 8% (w/o 5%), a positive predictive value of 34% (w/o: 53%), and a negative predictive value (NPV) of 100% (w/o: 100%) for the comparison of rTMS versus DCS. Findings for the comparison of fMRI versus DCS within the w/ subgroup revealed a sensitivity of 32% (w/o: 62%), a specificity of 88% (w/o: 60%), a positive predictive value of 56% (w/o: 62%), and a NPV of 73% (w/o: 60%). Although strengths and weaknesses exist for both rTMS and fMRI, the results show that rTMS is less affected by a brain lesion than fMRI, especially when performing mapping of language-negative cortical regions based on sensitivity and NPV.

  1. Cortical disconnection of the ipsilesional primary motor cortex is associated with gait speed and upper extremity motor impairment in chronic left hemispheric stroke.

    Science.gov (United States)

    Peters, Denise M; Fridriksson, Julius; Stewart, Jill C; Richardson, Jessica D; Rorden, Chris; Bonilha, Leonardo; Middleton, Addie; Gleichgerrcht, Ezequiel; Fritz, Stacy L

    2018-01-01

    Advances in neuroimaging have enabled the mapping of white matter connections across the entire brain, allowing for a more thorough examination of the extent of white matter disconnection after stroke. To assess how cortical disconnection contributes to motor impairments, we examined the relationship between structural brain connectivity and upper and lower extremity motor function in individuals with chronic stroke. Forty-three participants [mean age: 59.7 (±11.2) years; time poststroke: 64.4 (±58.8) months] underwent clinical motor assessments and MRI scanning. Nonparametric correlation analyses were performed to examine the relationship between structural connectivity amid a subsection of the motor network and upper/lower extremity motor function. Standard multiple linear regression analyses were performed to examine the relationship between cortical necrosis and disconnection of three main cortical areas of motor control [primary motor cortex (M1), premotor cortex (PMC), and supplementary motor area (SMA)] and motor function. Anatomical connectivity between ipsilesional M1/SMA and the (1) cerebral peduncle, (2) thalamus, and (3) red nucleus were significantly correlated with upper and lower extremity motor performance (P ≤ 0.003). M1-M1 interhemispheric connectivity was also significantly correlated with gross manual dexterity of the affected upper extremity (P = 0.001). Regression models with M1 lesion load and M1 disconnection (adjusted for time poststroke) explained a significant amount of variance in upper extremity motor performance (R 2  = 0.36-0.46) and gait speed (R 2  = 0.46), with M1 disconnection an independent predictor of motor performance. Cortical disconnection, especially of ipsilesional M1, could significantly contribute to variability seen in locomotor and upper extremity motor function and recovery in chronic stroke. Hum Brain Mapp 39:120-132, 2018. © 2017 Wiley Periodicals, Inc. © 2017 Wiley Periodicals, Inc.

  2. Cyclosporine A, FK506, and NIM811 ameliorate prolonged CBF reduction and impaired neurovascular coupling after cortical spreading depression

    DEFF Research Database (Denmark)

    Hansen, Henning Piilgaard; Witgen, Brent Marvin; Rasmussen, Peter

    2011-01-01

    Cortical spreading depression (CSD) is associated with mitochondrial depolarization, increasing intracellular Ca(2+), and the release of free fatty acids, which favor opening of the mitochondrial permeability transition pore (mPTP) and activation of calcineurin (CaN). Here, we test the hypothesis...... and the specific CaN blocker FK506. Cortical spreading depression was induced in rat frontal cortex. Electrocortical activity was recorded by glass microelectrodes, CBF by laser Doppler flowmetry, and tissue oxygen tension with polarographic microelectrodes. Electrocortical activity, basal CBF, CMRO(2......), and neurovascular and neurometabolic coupling were unaffected by all three drugs under control conditions. NIM811 augmented the rise in CBF observed during CSD. Cyclosporine A and FK506 ameliorated the persistent decrease in CBF after CSD. All three drugs prevented disruption of neurovascular coupling after CSD...

  3. Impaired social interaction and enhanced sensitivity to phencyclidine-induced deficits in novel object recognition in rats with cortical cholinergic denervation.

    Science.gov (United States)

    Savage, S; Kehr, J; Olson, L; Mattsson, A

    2011-11-10

    Dysregulated cholinergic neurotransmission has been implicated in the pathophysiology of schizophrenia, particularly negative symptoms and cognitive deficits. The aim of the present study was to evaluate the role of neocortical cholinergic innervation and of the N-methyl-d-aspartate (NMDA) receptor antagonist phencyclidine (PCP) on social interaction and novel object recognition (NOR), a declarative memory task. The cholinergic corticopetal projection was lesioned by local infusion of the immunotoxin 192 IgG-saporin into nucleus basalis magnocellularis of adult male Lister hooded rats. Behavior was assessed 2.5 weeks later in a social interaction paradigm followed by the NOR task. We found that selective cholinergic denervation of neocortex led to a significant reduction in duration of social interaction, specifically active social interaction. Acute administration of PCP (1.0 mg/kg, s.c.) caused a marked decrease of active social interaction, such that there was no longer a difference between intact and denervated animals. Neither cholinergic denervation alone, nor PCP (1.0 mg/kg, s.c.) alone blocked the ability of rats to recognize a novel object. However, when animals lacking cortical cholinergic innervation were challenged by PCP, they were no longer able to recognize a novel object. This study indicates that rats lacking cholinergic innervation of neocortex have impaired social interaction and specifically that the duration of active contact is shortened. Animals with severe cortical cholinergic hypofunction maintain the ability to perform in a declarative memory test, although the task is carried out less intensively. However, a provocation of psychosis-like behavior by a dose of PCP that does not by itself impair performance in normal animals, will abolish the ability to recognize novel objects in animals lacking cortical cholinergic innervation. The present findings support a possible role for cortical cholinergic hypofunction in the negative and cognitive

  4. Predictive timing functions of cortical beta oscillations are impaired in Parkinson's disease and influenced by L-DOPA and deep brain stimulation of the subthalamic nucleus

    Directory of Open Access Journals (Sweden)

    A. Gulberti

    2015-01-01

    Full Text Available Cortex-basal ganglia circuits participate in motor timing and temporal perception, and are important for the dynamic configuration of sensorimotor networks in response to exogenous demands. In Parkinson's disease (PD patients, rhythmic auditory stimulation (RAS induces motor performance benefits. Hitherto, little is known concerning contributions of the basal ganglia to sensory facilitation and cortical responses to RAS in PD. Therefore, we conducted an EEG study in 12 PD patients before and after surgery for subthalamic nucleus deep brain stimulation (STN-DBS and in 12 age-matched controls. Here we investigated the effects of levodopa and STN-DBS on resting-state EEG and on the cortical-response profile to slow and fast RAS in a passive-listening paradigm focusing on beta-band oscillations, which are important for auditory–motor coupling. The beta-modulation profile to RAS in healthy participants was characterized by local peaks preceding and following auditory stimuli. In PD patients RAS failed to induce pre-stimulus beta increases. The absence of pre-stimulus beta-band modulation may contribute to impaired rhythm perception in PD. Moreover, post-stimulus beta-band responses were highly abnormal during fast RAS in PD patients. Treatment with levodopa and STN-DBS reinstated a post-stimulus beta-modulation profile similar to controls, while STN-DBS reduced beta-band power in the resting-state. The treatment-sensitivity of beta oscillations suggests that STN-DBS may specifically improve timekeeping functions of cortical beta oscillations during fast auditory pacing.

  5. Predictive timing functions of cortical beta oscillations are impaired in Parkinson's disease and influenced by L-DOPA and deep brain stimulation of the subthalamic nucleus.

    Science.gov (United States)

    Gulberti, A; Moll, C K E; Hamel, W; Buhmann, C; Koeppen, J A; Boelmans, K; Zittel, S; Gerloff, C; Westphal, M; Schneider, T R; Engel, A K

    2015-01-01

    Cortex-basal ganglia circuits participate in motor timing and temporal perception, and are important for the dynamic configuration of sensorimotor networks in response to exogenous demands. In Parkinson's disease (PD) patients, rhythmic auditory stimulation (RAS) induces motor performance benefits. Hitherto, little is known concerning contributions of the basal ganglia to sensory facilitation and cortical responses to RAS in PD. Therefore, we conducted an EEG study in 12 PD patients before and after surgery for subthalamic nucleus deep brain stimulation (STN-DBS) and in 12 age-matched controls. Here we investigated the effects of levodopa and STN-DBS on resting-state EEG and on the cortical-response profile to slow and fast RAS in a passive-listening paradigm focusing on beta-band oscillations, which are important for auditory-motor coupling. The beta-modulation profile to RAS in healthy participants was characterized by local peaks preceding and following auditory stimuli. In PD patients RAS failed to induce pre-stimulus beta increases. The absence of pre-stimulus beta-band modulation may contribute to impaired rhythm perception in PD. Moreover, post-stimulus beta-band responses were highly abnormal during fast RAS in PD patients. Treatment with levodopa and STN-DBS reinstated a post-stimulus beta-modulation profile similar to controls, while STN-DBS reduced beta-band power in the resting-state. The treatment-sensitivity of beta oscillations suggests that STN-DBS may specifically improve timekeeping functions of cortical beta oscillations during fast auditory pacing.

  6. Cortical phase changes measured using 7-T MRI in subjects with subjective cognitive impairment, and their association with cognitive function

    NARCIS (Netherlands)

    Rooden, van Sanneke; Buijs, Mathijs; Vliet, van Marjolein E.; Versluis, Maarten J.; Webb, Andrew G.; Oleksik, Ania M.; Wiel, van de Lotte; Middelkoop, Huub A.M.; Blauw, Gerard Jan; Weverling-Rynsburger, Annelies W.E.; Goos, Jeroen D.C.; Flier, van der Wiesje M.; Koene, Ted; Scheltens, Philip; Barkhof, Frederik; Nieuwerth-van de Rest, Ondine; Slagboom, P.E.; Buchem, van Mark A.; Grond, van der Jeroen

    2016-01-01

    Studies have suggested that, in subjects with subjective cognitive impairment (SCI), Alzheimer's disease (AD)-like changes may occur in the brain. Recently, an in vivo study has indicated the potential of ultra-high-field MRI to visualize amyloid-beta (Aβ)-associated changes in the cortex in

  7. Cognitive impairment in Alzheimer`s disease correlates with ventricular width and atrophy-corrected cortical glucose metabolism

    Energy Technology Data Exchange (ETDEWEB)

    Slansky, I [Max-Planck-Inst. fuer Neurologische Forschung, Koeln (Germany); Herholz, K [Max-Planck-Inst. fuer Neurologische Forschung, Koeln (Germany); Pietrzyk, U [Max-Planck-Inst. fuer Neurologische Forschung, Koeln (Germany); Kessler, J [Max-Planck-Inst. fuer Neurologische Forschung, Koeln (Germany); Grond, M [Max-Planck-Inst. fuer Neurologische Forschung, Koeln (Germany); Mielke, R [Max-Planck-Inst. fuer Neurologische Forschung, Koeln (Germany); Heiss, W D [Max-Planck-Inst. fuer Neurologische Forschung, Koeln (Germany)

    1995-05-01

    We compared the correlation of PET and MRI with neuropsychological tests in 26 patients with probable Alzheimer`s disease (AD). The width of the temporal horns and the third ventricle, regional metabolic rates of glucose (rCMRGlu) and the proportion of cerebrospinal fluid space in mesial temporal and temporoparietal cortical regions were measured with three-dimensionally coregistered PET and MRI in two planes perpendicular to the Sylvian fissure. Highly significant correlations between rCMRGlu and neuropsychological tests were found mainly in the temporoparietal cortex, with and without correction for atrophy. Correlations of similar magnitude were seen also between most tests and the width of the temporal horns and third ventricle. Changes in the third ventricle and mesial temporal lobe were best seen with MRI, whereas PET most clearly depicted alterations in neocortical association areas. These two aspects of the disease correlated with the severity of dementia to a similar degree. (orig.)

  8. Altered sleep composition after traumatic brain injury does not affect declarative sleep-dependent memory consolidation

    Directory of Open Access Journals (Sweden)

    Janna eMantua

    2015-06-01

    Full Text Available Individuals with a history of traumatic brain injury (TBI often report sleep disturbances, which may be caused by changes in sleep architecture or reduced sleep quality (greater time awake after sleep onset, poorer sleep efficiency, and sleep stage proportion alterations. Sleep is beneficial for memory formation, and herein we examine whether altered sleep physiology following TBI has deleterious effects on sleep-dependent declarative memory consolidation. Participants learned a list of word pairs in the morning or evening, and recall was assessed 12-hrs later, following an interval awake or with overnight sleep. Young adult participants (18-22 yrs were assigned to one of four experimental groups: TBI Sleep (n=14, TBI Wake (n=12, non-TBI Sleep (n=15, non-TBI Wake (n=15. Each TBI participant was >1 yr post-injury. Sleep physiology was measured with polysomnography. Memory consolidation was assessed by comparing change in word-pair recall over 12-hr intersession intervals. The TBI group spent a significantly greater proportion of the night in SWS than the non-TBI group at the expense of NREM1. The TBI group also had marginally lower EEG delta power during SWS in the central region. Intersession changes in recall were greater for intervals with sleep than without sleep in both groups. However, despite abnormal sleep stage proportions for individuals with a TBI history, there was no difference in the intersession change in recall following sleep for the TBI and non-TBI groups. In both Sleep groups combined, there was a positive correlation between Intersession Change and the proportion of the night in NREM2 + SWS. Overall, sleep composition is altered following TBI but such deficits do not yield insufficiencies in sleep-dependent memory consolidation.

  9. Developmental cuprizone exposure impairs oligodendrocyte lineages differentially in cortical and white matter tissues and suppresses glutamatergic neurogenesis signals and synaptic plasticity in the hippocampal dentate gyrus of rats

    International Nuclear Information System (INIS)

    Abe, Hajime; Saito, Fumiyo; Tanaka, Takeshi; Mizukami, Sayaka; Hasegawa-Baba, Yasuko; Imatanaka, Nobuya; Akahori, Yumi; Yoshida, Toshinori; Shibutani, Makoto

    2016-01-01

    Developmental cuprizone (CPZ) exposure impairs rat hippocampal neurogenesis. Here, we captured the developmental neurotoxicity profile of CPZ using a region-specific expression microarray analysis in the hippocampal dentate gyrus, corpus callosum, cerebral cortex and cerebellar vermis of rat offspring exposed to 0, 0.1, or 0.4% CPZ in the maternal diet from gestation day 6 to postnatal day (PND) 21. Transcripts of those genes identified as altered were subjected to immunohistochemical analysis on PNDs 21 and 77. Our results showed that transcripts for myelinogenesis-related genes, including Cnp, were selectively downregulated in the cerebral cortex by CPZ at ≥ 0.1% or 0.4% on PND 21. CPZ at 0.4% decreased immunostaining intensity for 2′,3′-cyclic-nucleotide 3′-phosphodiesterase (CNPase) and CNPase + and OLIG2 + oligodendrocyte densities in the cerebral cortex, whereas CNPase immunostaining intensity alone was decreased in the corpus callosum. By contrast, a striking transcript upregulation for Klotho gene and an increased density of Klotho + oligodendrocytes were detected in the corpus callosum at ≥ 0.1%. In the dentate gyrus, CPZ at ≥ 0.1% or 0.4% decreased the transcript levels for Gria1, Grin2a and Ptgs2, genes related to the synapse and synaptic transmission, and the number of GRIA1 + and GRIN2A + hilar γ-aminobutyric acid (GABA)-ergic interneurons and cyclooxygenase-2 + granule cells. All changes were reversed at PND 77. Thus, developmental CPZ exposure reversibly decreased mature oligodendrocytes in both cortical and white matter tissues, and Klotho protected white matter oligodendrocyte growth. CPZ also reversibly targeted glutamatergic signals of GABAergic interneuron to affect dentate gyrus neurogenesis and synaptic plasticity in granule cells. - Highlights: • We examined developmental cuprizone (CPZ) neurotoxicity in maternally exposed rats. • Multiple brain region-specific global gene expression profiling was performed. • CPZ decreased

  10. Developmental cuprizone exposure impairs oligodendrocyte lineages differentially in cortical and white matter tissues and suppresses glutamatergic neurogenesis signals and synaptic plasticity in the hippocampal dentate gyrus of rats

    Energy Technology Data Exchange (ETDEWEB)

    Abe, Hajime [Laboratory of Veterinary Pathology, Tokyo University of Agriculture and Technology, 3-5-8 Saiwai-cho, Fuchu-shi, Tokyo 183-8509 (Japan); Pathogenetic Veterinary Science, United Graduate School of Veterinary Sciences, Gifu University, 1-1 Yanagido, Gifu-shi, Gifu 501-1193 (Japan); Saito, Fumiyo [Chemicals Evaluation and Research Institute, Japan, 1-4-25 Koraku, Bunkyo-ku, Tokyo 112-0004 (Japan); Tanaka, Takeshi; Mizukami, Sayaka [Laboratory of Veterinary Pathology, Tokyo University of Agriculture and Technology, 3-5-8 Saiwai-cho, Fuchu-shi, Tokyo 183-8509 (Japan); Pathogenetic Veterinary Science, United Graduate School of Veterinary Sciences, Gifu University, 1-1 Yanagido, Gifu-shi, Gifu 501-1193 (Japan); Hasegawa-Baba, Yasuko [Laboratory of Veterinary Pathology, Tokyo University of Agriculture and Technology, 3-5-8 Saiwai-cho, Fuchu-shi, Tokyo 183-8509 (Japan); Imatanaka, Nobuya; Akahori, Yumi [Chemicals Evaluation and Research Institute, Japan, 1-4-25 Koraku, Bunkyo-ku, Tokyo 112-0004 (Japan); Yoshida, Toshinori [Laboratory of Veterinary Pathology, Tokyo University of Agriculture and Technology, 3-5-8 Saiwai-cho, Fuchu-shi, Tokyo 183-8509 (Japan); Shibutani, Makoto, E-mail: mshibuta@cc.tuat.ac.jp [Laboratory of Veterinary Pathology, Tokyo University of Agriculture and Technology, 3-5-8 Saiwai-cho, Fuchu-shi, Tokyo 183-8509 (Japan)

    2016-01-01

    Developmental cuprizone (CPZ) exposure impairs rat hippocampal neurogenesis. Here, we captured the developmental neurotoxicity profile of CPZ using a region-specific expression microarray analysis in the hippocampal dentate gyrus, corpus callosum, cerebral cortex and cerebellar vermis of rat offspring exposed to 0, 0.1, or 0.4% CPZ in the maternal diet from gestation day 6 to postnatal day (PND) 21. Transcripts of those genes identified as altered were subjected to immunohistochemical analysis on PNDs 21 and 77. Our results showed that transcripts for myelinogenesis-related genes, including Cnp, were selectively downregulated in the cerebral cortex by CPZ at ≥ 0.1% or 0.4% on PND 21. CPZ at 0.4% decreased immunostaining intensity for 2′,3′-cyclic-nucleotide 3′-phosphodiesterase (CNPase) and CNPase{sup +} and OLIG2{sup +} oligodendrocyte densities in the cerebral cortex, whereas CNPase immunostaining intensity alone was decreased in the corpus callosum. By contrast, a striking transcript upregulation for Klotho gene and an increased density of Klotho{sup +} oligodendrocytes were detected in the corpus callosum at ≥ 0.1%. In the dentate gyrus, CPZ at ≥ 0.1% or 0.4% decreased the transcript levels for Gria1, Grin2a and Ptgs2, genes related to the synapse and synaptic transmission, and the number of GRIA1{sup +} and GRIN2A{sup +} hilar γ-aminobutyric acid (GABA)-ergic interneurons and cyclooxygenase-2{sup +} granule cells. All changes were reversed at PND 77. Thus, developmental CPZ exposure reversibly decreased mature oligodendrocytes in both cortical and white matter tissues, and Klotho protected white matter oligodendrocyte growth. CPZ also reversibly targeted glutamatergic signals of GABAergic interneuron to affect dentate gyrus neurogenesis and synaptic plasticity in granule cells. - Highlights: • We examined developmental cuprizone (CPZ) neurotoxicity in maternally exposed rats. • Multiple brain region-specific global gene expression profiling

  11. Mental States in Moving Shapes: Distinct Cortical and Subcortical Contributions to Theory of Mind Impairments in Dementia.

    Science.gov (United States)

    Synn, Artemis; Mothakunnel, Annu; Kumfor, Fiona; Chen, Yu; Piguet, Olivier; Hodges, John R; Irish, Muireann

    2018-01-01

    Impaired capacity for Theory of Mind (ToM) represents one of the hallmark features of the behavioral variant of frontotemporal dementia (bvFTD) and is suggested to underpin an array of socioemotional disturbances characteristic of this disorder. In contrast, while social processing typically remains intact in Alzheimer's disease (AD), the cognitive loading of socioemotional tasks may adversely impact mentalizing performance in AD. Here, we employed the Frith-Happé animations as a dynamic on-line assessment of mentalizing capacity with reduced incidental task demands in 18 bvFTD, 18 AD, and 25 age-matched Controls. Participants viewed silent animations in which geometric shapes interact in Random, Goal-Directed, and ToM conditions. An exclusive deficit in ToM classification was observed in bvFTD relative to Controls, while AD patients were impaired in the accurate classification of both Random and ToM trials. Correlation analyses revealed robust associations between ToM deficits and carer ratings of affective empathy disruption in bvFTD, and with episodic memory dysfunction in AD. Voxel-based morphometry analyses further identified dissociable neural correlates contingent on patient group. A distributed network of medial prefrontal, frontoinsular, striatal, lateral temporal, and parietal regions were implicated in the bvFTD group, whereas the right hippocampus correlated with task performance in AD. Notably, subregions of the cerebellum, including lobules I-IV and V, bilaterally were implicated in task performance irrespective of patient group. Our findings reveal new insights into the mechanisms potentially mediating ToM disruption in dementia syndromes, and suggest that the cerebellum may play a more prominent role in social cognition than previously appreciated.

  12. Mental Fatigue Alters Cortical Activation and Psychological Responses, Impairing Performance in a Distance-Based Cycling Trial

    Directory of Open Access Journals (Sweden)

    Flávio O. Pires

    2018-03-01

    Full Text Available Purpose: We sought to verify if alterations in prefrontal cortex (PFC activation and psychological responses would play along with impairments in pacing and performance of mentally fatigued cyclists.Materials and Methods: Eight recreational cyclists performed two preliminary sessions to familiarize them with the rapid visual information processing (RVP test, psychological scales and 20 km cycling time trial (TT20km (session 1, as well as to perform a VO2MAX test (session 2. Thereafter, they performed a TT20km either after a RVP test (30 min or a time-matched rest control session (session 3 and 4 in counterbalanced order. Performance and psychological responses were obtained throughout the TT20km while PFC electroencephalography (EEG was obtained at 10 and 20 km of the TT20km and throughout the RVP test. Increases in EEG theta band power indicated a mental fatigue condition. Repeated-measures mixed models design and post-hoc effect size (ES were used in comparisons.Results: Cyclists completed the trial ~2.7% slower in mental fatigue (34.3 ± 1.3 min than in control (33.4 ± 1.1 min, p = 0.02, very large ES, with a lower WMEAN (224.5 ± 17.9 W vs. 240.2 ± 20.9 W, respectively; p = 0.03; extremely large ES. There was a higher EEG theta band power during RVP test (p = 0.03; extremely large ES, which remained during the TT20km (p = 0.01; extremely large ES. RPE increased steeper in mental fatigue than in control, together with isolated reductions in motivation at 2th km (p = 0.04; extremely large ES, felt arousal at the 2nd and 4th km (p = 0.01; extremely large ES, and associative thoughts to exercise at the 6th and 16th km (p = 0.02; extremely large ES of the TT20km.Conclusions: Mentally fatigued recreational cyclists showed impaired performance, altered PFC activation and faster increase in RPE during a TT20km.

  13. Does abnormal sleep impair memory consolidation in schizophrenia?

    Directory of Open Access Journals (Sweden)

    Dara S Manoach

    2009-09-01

    Full Text Available Although disturbed sleep is a prominent feature of schizophrenia, its relation to the pathophysiology, signs, and symptoms of schizophrenia remains poorly understood. Sleep disturbances are well known to impair cognition in healthy individuals. Yet, in spite of its ubiquity in schizophrenia, abnormal sleep has generally been overlooked as a potential contributor to cognitive deficits. Amelioration of cognitive deficits is a current priority of the schizophrenia research community, but most efforts to define, characterize, and quantify cognitive deficits focus on cross-sectional measures. While this approach provides a valid snapshot of function, there is now overwhelming evidence that critical aspects of learning and memory consolidation happen offline, both over time and with sleep. Initial memory encoding is followed by a prolonged period of consolidation, integration, and reorganization, that continues over days or even years. Much of this evolution of memories is mediated by sleep. This article briefly reviews (i abnormal sleep in schizophrenia, (ii sleep-dependent memory consolidation in healthy individuals, (iii recent findings of impaired sleep-dependent memory consolidation in schizophrenia, and (iv implications of impaired sleep-dependent memory consolidation in schizophrenia. This literature suggests that abnormal sleep in schizophrenia disrupts attention and impairs sleep-dependent memory consolidation and task automation. We conclude that these sleep-dependent impairments may contribute substantially to generalized cognitive deficits in schizophrenia. Understanding this contribution may open new avenues to ameliorating cognitive dysfunction and thereby improve outcome in schizophrenia.

  14. Dreaming of a Learning Task is Associated with Enhanced Sleep-Dependent Memory Consolidation

    Science.gov (United States)

    Wamsley, Erin J.; Tucker, Matthew; Payne, Jessica D.; Benavides, Joseph; Stickgold, Robert

    2010-01-01

    Summary It is now well established that post-learning sleep is beneficial for human memory performance [1–5]. Meanwhile, human and animal studies demonstrate that learning-related neural activity is re-expressed during post-training non-rapid eye movement sleep (NREM) [6–9]. NREM sleep processes appear to be particularly beneficial for hippocampus-dependent forms of memory [1–3, 10]. These observations suggest that learning triggers the reactivation and reorganization of memory traces during sleep, a systems-level process that in turn enhances behavioral performance. Here, we hypothesized that dreaming about a learning experience during NREM sleep would be associated with improved performance on a hippocampus-dependent spatial memory task. Subjects (n=99) were trained on a virtual navigation task, and then retested on the same task 5 hours after initial training. Improved performance at retest was strongly associated with task-related dream imagery during an intervening afternoon nap. Task-related thoughts during wakefulness, in contrast, did not predict improved performance. These observations suggest that sleep-dependent memory consolidation in humans is facilitated by the offline reactivation of recently formed memories, and furthermore, that dream experiences reflect this memory processing. That similar effects were not seen during wakefulness suggests that these mnemonic processes are specific to the sleep state. PMID:20417102

  15. Use of Colchicine in Cortical Area 1 of the Hippocampus Impairs Transmission of Non-Motivational Information by the Pyramidal Cells

    Directory of Open Access Journals (Sweden)

    Nosaibeh Riahi Zaniani

    2013-11-01

    Full Text Available Colchicine, a potent neurotoxin derived from plants, has been recently introduced as a degenerative toxin of small pyramidal cells in the cortical area 1 of the hippocampus (CA1. In this study, the effect of the alkaloid in CA1 on the behaviors in the conditioning task was measured. Injections of colchicine (1,5 μg/rat, intra-CA1 was performed in the male Wistar rats, while the animals were settled and cannulated in a stereotaxic apparatus. In the control group solely injection of saline (1 μl/rat, intra-CA1 was used. One week later, all the animals passed the saline conditioning task using a three-day schedule of an unbiased paradigm. They were administered saline (1 ml/kg, s.c. twice a day throughout the conditioning phase. To evaluate the possible effects of cell injury by the toxin on the pyramidal cells, both the motivational signals while in the conditioning box and the non-motivational locomotive signs of the treated and control rats were measured. Based on the present study the alkaloid caused no change in the score of place conditioning, but affected both the sniffing and grooming behaviors in the group that received colchicine. However, the alkaloid did not show the significant effect on the rearing or compartment entering in the rats. According to the findings, the intra-CA1 injection of colchicine may impair the neuronal transmission of non-motivational information by the pyramidal cells in the dorsal hippocampus.

  16. Sleep Dependent Synaptic Down-Selection (II: Single Neuron Level Benefits for Matching, Selectivity, and Specificity

    Directory of Open Access Journals (Sweden)

    Atif eHashmi

    2013-10-01

    Full Text Available In a companion paper (Nere et al., this volume, we used computer simulations to show that a strategy of activity-dependent, on-line net synaptic potentiation during wake, followed by off-line synaptic depression during sleep, can provide a parsimonious account for several memory benefits of sleep at the systems level, including the consolidation of procedural and declarative memories, gist extraction, and integration of new with old memories. In this paper, we consider the theoretical benefits of this two-step process at the single neuron level and employ the theoretical notion of Matching between brain and environment to measure how this process increases the ability of the neuron to capture regularities in the environment and model them internally. We show that down-selection during sleep is beneficial for increasing or restoring Matching after learning, after integrating new with old memories, and after forgetting irrelevant material. By contrast, alternative schemes, such as additional potentiation in wake, potentiation in sleep, or synaptic renormalization in wake, decrease Matching. We also argue that, by selecting appropriate loops through the brain that tie feedforward synapses with feedback ones in the same dendritic domain, different subsets of neurons can learn to specialize for different contingencies and form sequences of nested perception-action loops. By potentiating such loops when interacting with the environment in wake, and depressing them when disconnected from the environment in sleep, neurons can learn to match the long-term statistical structure of the environment while avoiding spurious modes of functioning and catastrophic interference. Finally, such a two-step process has the additional benefit of desaturating the neuron's ability to learn and of maintaining cellular homeostasis. Thus, sleep-dependent synaptic renormalization offers a parsimonious account for both cellular and systems-level effects of sleep on learning

  17. Novel experience induces persistent sleep-dependent plasticity in the cortex but not in the hippocampus

    Directory of Open Access Journals (Sweden)

    Sidarta Ribeiro

    2007-10-01

    Full Text Available Episodic and spatial memories engage the hippocampus during acquisition but migrate to the cerebral cortex over time. We have recently proposed that the interplay between slow-wave (SWS and rapid eye movement (REM sleep propagates recent synaptic changes from the hippocampus to the cortex. To test this theory, we jointly assessed extracellular neuronal activity, local field potentials (LFP, and expression levels of plasticity-related immediate-early genes (IEG arc and zif-268 in rats exposed to novel spatio-tactile experience. Post-experience firing rate increases were strongest in SWS and lasted much longer in the cortex (hours than in the hippocampus (minutes. During REM sleep, firing rates showed strong temporal dependence across brain areas: cortical activation during experience predicted hippocampal activity in the first post-experience hour, while hippocampal activation during experience predicted cortical activity in the third post-experience hour. Four hours after experience, IEG expression was specifically upregulated during REM sleep in the cortex, but not in the hippocampus. Arc gene expression in the cortex was proportional to LFP amplitude in the spindle-range (10-14 Hz but not to firing rates, as expected from signals more related to dendritic input than to somatic output. The results indicate that hippocampo-cortical activation during waking is followed by multiple waves of cortical plasticity as full sleep cycles recur. The absence of equivalent changes in the hippocampus may explain its mnemonic disengagement over time.

  18. Combined effects of type 2 diabetes and hypertension associated with cortical thinning and impaired cerebrovascular reactivity relative to hypertension alone in older adults

    Directory of Open Access Journals (Sweden)

    Ekaterina Tchistiakova

    2014-01-01

    Conclusions: Individuals with T2DM and HTN showed decreased CVR and CThk compared to age-matched HTN controls. This study identifies brain regions that are impacted by the combined effects of comorbid T2DM and HTN conditions, with new evidence that the corresponding cortical thinning may contribute to cognitive decline.

  19. Disconnection mechanism and regional cortical atrophy contribute to impaired processing of facial expressions and theory of mind in multiple sclerosis: a structural MRI study.

    Science.gov (United States)

    Mike, Andrea; Strammer, Erzsebet; Aradi, Mihaly; Orsi, Gergely; Perlaki, Gabor; Hajnal, Andras; Sandor, Janos; Banati, Miklos; Illes, Eniko; Zaitsev, Alexander; Herold, Robert; Guttmann, Charles R G; Illes, Zsolt

    2013-01-01

    Successful socialization requires the ability of understanding of others' mental states. This ability called as mentalization (Theory of Mind) may become deficient and contribute to everyday life difficulties in multiple sclerosis. We aimed to explore the impact of brain pathology on mentalization performance in multiple sclerosis. Mentalization performance of 49 patients with multiple sclerosis was compared to 24 age- and gender matched healthy controls. T1- and T2-weighted three-dimensional brain MRI images were acquired at 3Tesla from patients with multiple sclerosis and 18 gender- and age matched healthy controls. We assessed overall brain cortical thickness in patients with multiple sclerosis and the scanned healthy controls, and measured the total and regional T1 and T2 white matter lesion volumes in patients with multiple sclerosis. Performances in tests of recognition of mental states and emotions from facial expressions and eye gazes correlated with both total T1-lesion load and regional T1-lesion load of association fiber tracts interconnecting cortical regions related to visual and emotion processing (genu and splenium of corpus callosum, right inferior longitudinal fasciculus, right inferior fronto-occipital fasciculus, uncinate fasciculus). Both of these tests showed correlations with specific cortical areas involved in emotion recognition from facial expressions (right and left fusiform face area, frontal eye filed), processing of emotions (right entorhinal cortex) and socially relevant information (left temporal pole). Thus, both disconnection mechanism due to white matter lesions and cortical thinning of specific brain areas may result in cognitive deficit in multiple sclerosis affecting emotion and mental state processing from facial expressions and contributing to everyday and social life difficulties of these patients.

  20. Disconnection mechanism and regional cortical atrophy contribute to impaired processing of facial expressions and theory of mind in multiple sclerosis: a structural MRI study.

    Directory of Open Access Journals (Sweden)

    Andrea Mike

    Full Text Available Successful socialization requires the ability of understanding of others' mental states. This ability called as mentalization (Theory of Mind may become deficient and contribute to everyday life difficulties in multiple sclerosis. We aimed to explore the impact of brain pathology on mentalization performance in multiple sclerosis. Mentalization performance of 49 patients with multiple sclerosis was compared to 24 age- and gender matched healthy controls. T1- and T2-weighted three-dimensional brain MRI images were acquired at 3Tesla from patients with multiple sclerosis and 18 gender- and age matched healthy controls. We assessed overall brain cortical thickness in patients with multiple sclerosis and the scanned healthy controls, and measured the total and regional T1 and T2 white matter lesion volumes in patients with multiple sclerosis. Performances in tests of recognition of mental states and emotions from facial expressions and eye gazes correlated with both total T1-lesion load and regional T1-lesion load of association fiber tracts interconnecting cortical regions related to visual and emotion processing (genu and splenium of corpus callosum, right inferior longitudinal fasciculus, right inferior fronto-occipital fasciculus, uncinate fasciculus. Both of these tests showed correlations with specific cortical areas involved in emotion recognition from facial expressions (right and left fusiform face area, frontal eye filed, processing of emotions (right entorhinal cortex and socially relevant information (left temporal pole. Thus, both disconnection mechanism due to white matter lesions and cortical thinning of specific brain areas may result in cognitive deficit in multiple sclerosis affecting emotion and mental state processing from facial expressions and contributing to everyday and social life difficulties of these patients.

  1. Sleep-Dependent Reactivation of Ensembles in Motor Cortex Promotes Skill Consolidation.

    Directory of Open Access Journals (Sweden)

    Dhakshin S Ramanathan

    Full Text Available Despite many prior studies demonstrating offline behavioral gains in motor skills after sleep, the underlying neural mechanisms remain poorly understood. To investigate the neurophysiological basis for offline gains, we performed single-unit recordings in motor cortex as rats learned a skilled upper-limb task. We found that sleep improved movement speed with preservation of accuracy. These offline improvements were linked to both replay of task-related ensembles during non-rapid eye movement (NREM sleep and temporal shifts that more tightly bound motor cortical ensembles to movements; such offline gains and temporal shifts were not evident with sleep restriction. Interestingly, replay was linked to the coincidence of slow-wave events and bursts of spindle activity. Neurons that experienced the most consistent replay also underwent the most significant temporal shift and binding to the motor task. Significantly, replay and the associated performance gains after sleep only occurred when animals first learned the skill; continued practice during later stages of learning (i.e., after motor kinematics had stabilized did not show evidence of replay. Our results highlight how replay of synchronous neural activity during sleep mediates large-scale neural plasticity and stabilizes kinematics during early motor learning.

  2. The Modulation of Pain by Circadian and Sleep-Dependent Processes: A Review of the Experimental Evidence

    DEFF Research Database (Denmark)

    Hagenauer, Megan; Crodelle, Jennifer; Piltz, Sofia Helena

    2017-01-01

    conditions, pain sensitivity varies across the 24 h day, with highest sensitivity occurring during the evening in humans. Pain sensitivity is also modulated by sleep behavior, with pain sensitivity increasing in response to the build-up of homeostatic sleep pressure following sleep deprivation or sleep...... of physiologically meaningful stimulation levels. Following this normalization, we find that the estimated impact of the daily rhythm and of sleep deprivation on experimental pain measurements is surprisingly consistent across different pain modalities. We also review evidence documenting the impact of circadian...... rhythms and sleep deprivation on the neural circuitry in the spinal cord underlying pain sensation. The characterization of sleep-dependent and circadian influences on pain sensitivity in this review paper is used to develop and constrain the mathematical models introduced in the two companion articles....

  3. EEG in Silent Small Vessel Disease : sLORETA Mapping Reveals Cortical Sources of Vascular Cognitive Impairment No Dementia in the Default Mode Network

    NARCIS (Netherlands)

    Sheorajpanday, Rishi V. A.; Marien, Peter; Weeren, Arie J. T. M.; Nagels, Guy; Saerens, Jos; van Putten, Michel J. A. M.; De Deyn, Peter P.

    Introduction: Vascular cognitive impairment, no dementia (vCIND) is a prevalent and potentially preventable disorder. Clinical presof the small vessel subcortical subtype may be insidious and difficult to diagnose in the initial stage. We investigated electroencephalographic sources of subcortical

  4. Memory consolidation in human sleep depends on inhibition of glucocorticoid release.

    Science.gov (United States)

    Plihal, W; Born, J

    1999-09-09

    Early sleep dominated by slow-wave sleep has been found to be particularly relevant for declarative memory formation via hippocampo-neocortical networks. Concurrently, early nocturnal sleep is characterized by an inhibition of glucocorticoid release from the adrenals. Here, we show in healthy humans that this inhibition serves to support declarative memory consolidation during sleep. Elevating plasma glucocorticoid concentration during early sleep by administration of cortisol impaired consolidation of paired associate words, but not of non-declarative memory of visuomotor skills. Since glucocorticoid concentration was enhanced only during retention sleep, but not during acquisition or retrieval, a specific effect on the consolidation process is indicated. Blocking mineralocorticoid receptors by canrenoate did not affect memory, suggesting inactivation of glucocorticoid receptors to be the essential prerequisite for memory consolidation during early sleep.

  5. Left dorso-lateral repetitive transcranial magnetic stimulation affects cortical excitability and functional connectivity, but does not impair cognition in major depression.

    Science.gov (United States)

    Shajahan, Polash M; Glabus, Mike F; Steele, J Douglas; Doris, Alan B; Anderson, Kay; Jenkins, Jenny A; Gooding, Patricia A; Ebmeier, Klaus P

    2002-06-01

    Transcranial magnetic stimulation (TMS) has been used for over a decade to investigate cortical function. More recently, it has been employed to treat conditions such as major depression. This study was designed to explore the effects of differential treatment parameters, such as stimulation frequency. In addition, the data were examined to determine whether a change in connectivity occurred following TMS. Fifteen patients with major depression were entered into a combined imaging and treatment experiment with single photon emission computed tomography (SPECT) and repetitive transcranial magnetic stimulation (rTMS) over left dorso-lateral prefrontal cortex (DLPFC). Brain perfusion during a verbal fluency task was compared between pre- and poststimulation conditions. Patients were then treated with 80% of motor threshold for a total of 10 days, using 5000 stimuli at 5, 10 or 20 Hz. Tests of cortical excitability and neuropsychological tests were done throughout the trial. Patients generally improved with treatment. There was no perceptible difference between stimulation frequencies, which may have reflected low study power. An increase in rostral anterior cingulate activation after the treatment day was associated with increased functional connectivity in the dorso-lateral frontal loop on the left and the limbic loop on both sides. No noticeable deterioration in neuropsychological function was observed. TMS at the stimulation frequencies used seems to be safe over a course of 5000 stimuli. It appears to have an activating effect in anterior limbic structures and increase functional connectivity in the neuroanatomical networks under the stimulation coil within an hour of stimulation.

  6. Sleep-dependent memory consolidation--what can be learnt from children?

    Science.gov (United States)

    Wilhelm, I; Prehn-Kristensen, A; Born, J

    2012-08-01

    Extensive research has been accumulated demonstrating that sleep is essential for processes of memory consolidation in adults. In children and infants, a great capacity to learn and to memorize coincides with longer and more intense sleep. Here, we review the available data on the influence of sleep on memory consolidation in healthy children and infants, as well as in children with attention-deficit/hyperactivity disorder (ADHD) as a model of prefrontal impairment, and consider possible mechanisms underlying age-dependent differences. Findings indicate a major role of slow wave sleep (SWS) for processes of memory consolidation during early development. Importantly, longer and deeper SWS during childhood appears to produce a distinctly superior strengthening of hippocampus-dependent declarative memories, but concurrently prevents an immediate benefit from sleep for procedural memories, as typically observed in adults. Studies of ADHD children point toward an essential contribution of prefrontal cortex to the preferential consolidation of declarative memory during SWS. Developmental studies of sleep represent a particularly promising approach for characterizing the supra-ordinate control of memory consolidation during sleep by prefrontal-hippocampal circuitry underlying the encoding of declarative memory. Copyright © 2012 Elsevier Ltd. All rights reserved.

  7. Targeted disruption of the Mast syndrome gene SPG21 in mice impairs hind limb function and alters axon branching in cultured cortical neurons

    Science.gov (United States)

    Soderblom, Cynthia; Stadler, Julia; Jupille, Henri; Blackstone, Craig; Shupliakov, Oleg

    2017-01-01

    Mast syndrome (SPG21) is a childhood-onset, autosomal recessive, complicated form of hereditary spastic paraplegia (HSP) characterized by dementia, thin corpus callosum, white matter abnormalities, and cerebellar and extrapyramidal signs in addition to spastic paraparesis. A nucleotide insertion resulting in premature truncation of the SPG21 gene product maspardin underlies this disorder, likely leading to loss of protein function. In this study, we generated SPG21−/− knockout mice by homologous recombination as a possible animal model for SPG21. Though SPG21−/− mice appeared normal at birth, within several months they developed gradually progressive hind limb dysfunction. Cerebral cortical neurons cultured from SPG21−/− mice exhibited significantly more axonal branching than neurons from wild-type animals, while comprehensive neuropathological analysis of SPG21−/− mice did not reveal definitive abnormalities. Since alterations in axon branching have been seen in neurons derived from animal models of other forms of HSP as well as motor neuron diseases, this may represent a common cellular pathogenic theme. PMID:20661613

  8. Prolonged Exposure of Cortical Neurons to Oligomeric Amyloid-β Impairs NMDA Receptor Function Via NADPH Oxidase-Mediated ROS Production: Protective Effect of Green Tea (--Epigallocatechin-3-Gallate

    Directory of Open Access Journals (Sweden)

    Yan He

    2011-01-01

    Full Text Available Excessive production of Aβ (amyloid β-peptide has been shown to play an important role in the pathogenesis of AD (Alzheimer's disease. Although not yet well understood, aggregation of Aβ is known to cause toxicity to neurons. Our recent study demonstrated the ability for oligomeric Aβ to stimulate the production of ROS (reactive oxygen species in neurons through an NMDA (N-methyl-D-aspartate-dependent pathway. However, whether prolonged exposure of neurons to aggregated Aβ is associated with impairment of NMDA receptor function has not been extensively investigated. In the present study, we show that prolonged exposure of primary cortical neurons to Aβ oligomers caused mitochondrial dysfunction, an attenuation of NMDA receptor-mediated Ca2+ influx and inhibition of NMDA-induced AA (arachidonic acid release. Mitochondrial dysfunction and the decrease in NMDA receptor activity due to oligomeric Aβ are associated with an increase in ROS production. Gp91ds-tat, a specific peptide inhibitor of NADPH oxidase, and Mn(III-tetrakis(4-benzoic acid-porphyrin chloride, an ROS scavenger, effectively abrogated Aβ-induced ROS production. Furthermore, Aβ-induced mitochondrial dysfunction, impairment of NMDA Ca2+ influx and ROS production were prevented by pretreatment of neurons with EGCG [(–-epigallocatechin-3-gallate], a major polyphenolic component of green tea. Taken together, these results support a role for NADPH oxidase-mediated ROS production in the cytotoxic effects of Aβ, and demonstrate the therapeutic potential of EGCG and other dietary polyphenols in delaying onset or retarding the progression of AD.

  9. Cortical and Subcortical Grey and White Matter Atrophy in Myotonic Dystrophies Type 1 and 2 Is Associated with Cognitive Impairment, Depression and Daytime Sleepiness.

    Directory of Open Access Journals (Sweden)

    Christiane Schneider-Gold

    Full Text Available Central nervous system involvement is one important clinical aspect of myotonic dystrophy type 1 and 2 (DM1 and DM2. We assessed CNS involvement DM1 and DM2 by 3T MRI and correlated clinical and neuocognitive symptoms with brain volumetry and voxel-based morphometry (VBM.12 patients with juvenile or classical DM1 and 16 adult DM2 patients underwent 3T MRI, a thorough neurological and neuropsychological examination and scoring of depression and daytime sleepiness. Volumes of brain, ventricles, cerebellum, brainstem, cervical cord, lesion load and VBM results of the patient groups were compared to 33 matched healthy subjects.Clinical symptoms were depression (more pronounced in DM2, excessive daytime sleepiness (more pronounced in DM1, reduced attention and flexibility of thinking, and deficits of short-term memory and visuo-spatial abilities in both patient groups. Both groups showed ventricular enlargement and supratentorial GM and WM atrophy, with prevalence for more GM atrophy and involvement of the motor system in DM1 and more WM reduction and affection of limbic structures in DM2. White matter was reduced in DM1 in the splenium of the corpus callosum and in left-hemispheric WM adjacent to the pre- and post-central gyrus. In DM2, the bilateral cingulate gyrus and subgyral medio-frontal and primary somato-sensory WM was affected. Significant structural-functional correlations of morphological MRI findings (global volumetry and VBM with clinical findings were found for reduced flexibility of thinking and atrophy of the left secondary visual cortex in DM1 and of distinct subcortical brain structures in DM2. In DM2, depression was associated with brainstem atrophy, Daytime sleepiness correlated with volume decrease in the middle cerebellar peduncles, pons/midbrain and the right medio-frontal cortex.GM and WM atrophy was significant in DM1 and DM2. Specific functional-structural associations related morphological changes to cognitive impairment

  10. Progressive posterior cortical dysfunction

    Directory of Open Access Journals (Sweden)

    Fábio Henrique de Gobbi Porto

    Full Text Available Abstract Progressive posterior cortical dysfunction (PPCD is an insidious syndrome characterized by prominent disorders of higher visual processing. It affects both dorsal (occipito-parietal and ventral (occipito-temporal pathways, disturbing visuospatial processing and visual recognition, respectively. We report a case of a 67-year-old woman presenting with progressive impairment of visual functions. Neurologic examination showed agraphia, alexia, hemispatial neglect (left side visual extinction, complete Balint's syndrome and visual agnosia. Magnetic resonance imaging showed circumscribed atrophy involving the bilateral parieto-occipital regions, slightly more predominant to the right . Our aim was to describe a case of this syndrome, to present a video showing the main abnormalities, and to discuss this unusual presentation of dementia. We believe this article can contribute by improving the recognition of PPCD.

  11. Progressive posterior cortical dysfunction

    Science.gov (United States)

    Porto, Fábio Henrique de Gobbi; Machado, Gislaine Cristina Lopes; Morillo, Lilian Schafirovits; Brucki, Sonia Maria Dozzi

    2010-01-01

    Progressive posterior cortical dysfunction (PPCD) is an insidious syndrome characterized by prominent disorders of higher visual processing. It affects both dorsal (occipito-parietal) and ventral (occipito-temporal) pathways, disturbing visuospatial processing and visual recognition, respectively. We report a case of a 67-year-old woman presenting with progressive impairment of visual functions. Neurologic examination showed agraphia, alexia, hemispatial neglect (left side visual extinction), complete Balint’s syndrome and visual agnosia. Magnetic resonance imaging showed circumscribed atrophy involving the bilateral parieto-occipital regions, slightly more predominant to the right. Our aim was to describe a case of this syndrome, to present a video showing the main abnormalities, and to discuss this unusual presentation of dementia. We believe this article can contribute by improving the recognition of PPCD. PMID:29213665

  12. Morphometric Changes in the Cortical Microvascular Network in Alzheimer's Disease

    NARCIS (Netherlands)

    Richard, E.; van Gool, W.A.; Hoozemans, J.J.M.; van Haastert, E.S.; Eikelenboom, P.; Rozemuller, A.J.M.; van de Berg, W.D.J.

    2010-01-01

    Alzheimer's disease (AD) pathology is accompanied by abnormalities of the microvasculature. Despite the potential importance of morphometric changes in the cortical capillary network on neuronal dysfunction and cognitive impairment, few autopsy studies have addressed this issue. In the present

  13. Widespread cortical thinning in patients with neuromyelitis optica spectrum disorder.

    Science.gov (United States)

    Kim, S-H; Kwak, K; Hyun, J-W; Jeong, I H; Jo, H-J; Joung, A; Kim, J-H; Lee, S H; Yun, S; Joo, J; Lee, J-M; Kim, H J

    2016-07-01

    Studies on cortical involvement and its relationship with cognitive function in patients with neuromyelitis optica spectrum disorder (NMOSD) remain scarce. The objective of this study was to compare cortical thickness on magnetic resonance imaging (MRI) between patients with NMOSD and multiple sclerosis (MS) and to investigate its relationship with clinical features and cognitive function. This observational clinical imaging study of 91 patients with NMOSD, 52 patients with MS and 44 healthy controls was conducted from 1 December 2013 to 30 April 2015 at the institutional referral center. Three tesla MRI of the brain and neuropsychological tests were performed. Cortical thickness was measured using three-dimensional surface-based analysis. Both sets of patients exhibited cortical thinning throughout the entire brain cortex. Patients with MS showed a significantly greater reduction in cortical thickness over broad regions of the bilateral frontal and parieto-temporal cortices and the left precuneus compared to those with NMOSD. Memory functions in patients with MS were correlated with broad regional cortical thinning, whereas no significant associations were observed between cortical thickness and cognitive function in patients with NMOSD. Widespread cortical thinning was observed in patients with NMOSD and MS, but the extent of cortical thinning was greater in patients with MS. The more severe cortical atrophy may contribute to memory impairment in patients with MS but not in those with NMOSD. These results provide in vivo evidence that the severity and clinical relevance of cortical thinning differ between NMOSD and MS. © 2016 EAN.

  14. Cortical areas involved in Arabic number reading.

    Science.gov (United States)

    Roux, F-E; Lubrano, V; Lauwers-Cances, V; Giussani, C; Démonet, J-F

    2008-01-15

    Distinct functional pathways for processing words and numbers have been hypothesized from the observation of dissociated impairments of these categories in brain-damaged patients. We aimed to identify the cortical areas involved in Arabic number reading process in patients operated on for various brain lesions. Direct cortical electrostimulation was prospectively used in 60 brain mappings. We used object naming and two reading tasks: alphabetic script (sentences and number words) and Arabic number reading. Cortical areas involved in Arabic number reading were identified according to location, type of interference, and distinctness from areas associated with other language tasks. Arabic number reading was sustained by small cortical areas, often extremely well localized (area (Brodmann area 45), the anterior part of the dominant supramarginal gyrus (Brodmann area 40; p area (Brodmann area 37; p areas.

  15. Cortical thickness abnormalities in late adolescence with online gaming addiction.

    Science.gov (United States)

    Yuan, Kai; Cheng, Ping; Dong, Tao; Bi, Yanzhi; Xing, Lihong; Yu, Dahua; Zhao, Limei; Dong, Minghao; von Deneen, Karen M; Liu, Yijun; Qin, Wei; Tian, Jie

    2013-01-01

    Online gaming addiction, as the most popular subtype of Internet addiction, had gained more and more attention from the whole world. However, the structural differences in cortical thickness of the brain between adolescents with online gaming addiction and healthy controls are not well unknown; neither was its association with the impaired cognitive control ability. High-resolution magnetic resonance imaging scans from late adolescence with online gaming addiction (n = 18) and age-, education- and gender-matched controls (n = 18) were acquired. The cortical thickness measurement method was employed to investigate alterations of cortical thickness in individuals with online gaming addiction. The color-word Stroop task was employed to investigate the functional implications of the cortical thickness abnormalities. Imaging data revealed increased cortical thickness in the left precentral cortex, precuneus, middle frontal cortex, inferior temporal and middle temporal cortices in late adolescence with online gaming addiction; meanwhile, the cortical thicknesses of the left lateral orbitofrontal cortex (OFC), insula, lingual gyrus, the right postcentral gyrus, entorhinal cortex and inferior parietal cortex were decreased. Correlation analysis demonstrated that the cortical thicknesses of the left precentral cortex, precuneus and lingual gyrus correlated with duration of online gaming addiction and the cortical thickness of the OFC correlated with the impaired task performance during the color-word Stroop task in adolescents with online gaming addiction. The findings in the current study suggested that the cortical thickness abnormalities of these regions may be implicated in the underlying pathophysiology of online gaming addiction.

  16. Cortical thickness abnormalities in late adolescence with online gaming addiction.

    Directory of Open Access Journals (Sweden)

    Kai Yuan

    Full Text Available Online gaming addiction, as the most popular subtype of Internet addiction, had gained more and more attention from the whole world. However, the structural differences in cortical thickness of the brain between adolescents with online gaming addiction and healthy controls are not well unknown; neither was its association with the impaired cognitive control ability. High-resolution magnetic resonance imaging scans from late adolescence with online gaming addiction (n = 18 and age-, education- and gender-matched controls (n = 18 were acquired. The cortical thickness measurement method was employed to investigate alterations of cortical thickness in individuals with online gaming addiction. The color-word Stroop task was employed to investigate the functional implications of the cortical thickness abnormalities. Imaging data revealed increased cortical thickness in the left precentral cortex, precuneus, middle frontal cortex, inferior temporal and middle temporal cortices in late adolescence with online gaming addiction; meanwhile, the cortical thicknesses of the left lateral orbitofrontal cortex (OFC, insula, lingual gyrus, the right postcentral gyrus, entorhinal cortex and inferior parietal cortex were decreased. Correlation analysis demonstrated that the cortical thicknesses of the left precentral cortex, precuneus and lingual gyrus correlated with duration of online gaming addiction and the cortical thickness of the OFC correlated with the impaired task performance during the color-word Stroop task in adolescents with online gaming addiction. The findings in the current study suggested that the cortical thickness abnormalities of these regions may be implicated in the underlying pathophysiology of online gaming addiction.

  17. Ascent to moderate altitude impairs overnight memory improvements.

    Science.gov (United States)

    Tesler, Noemi; Latshang, Tsogyal D; Lo Cascio, Christian M; Stadelmann, Katrin; Stoewhas, Anne-Christin; Kohler, Malcolm; Bloch, Konrad E; Achermann, Peter; Huber, Reto

    2015-02-01

    Several studies showed beneficial effects of sleep on memory performance. Slow waves, the electroencephalographic characteristic of deep sleep, reflected on the neuronal level by synchronous slow oscillations, seem crucial for these benefits. Traveling to moderate altitudes decreases deep sleep. In a randomized cross-over design healthy male subjects performed a visuo-motor learning task in Zurich (490 m) and at Davos Jakobshorn (2590 m) in random order. Memory performance was assessed immediately after learning, before sleep, and in the morning after a night of sleep. Sleep EEG recordings were performed during the nights. Our findings show an altitude induced reduction of sleep dependent memory performance. Moreover, this impaired sleep dependent memory performance was associated with reduced slow wave derived measures of neuronal synchronization. Our results are consistent with a critical role of slow waves for the beneficial effects of sleep on memory that is susceptible to natural environmental influences. Copyright © 2014 Elsevier Inc. All rights reserved.

  18. Rehabilitation of cortical blindness secondary to stroke.

    Science.gov (United States)

    Gaber, Tarek A-Z K

    2010-01-01

    Cortical blindness is a rare complication of posterior circulation stroke. However, its complex presentation with sensory, physical, cognitive and behavioural impairments makes it one of the most challenging. Appropriate approach from a rehabilitation standpoint was never reported. Our study aims to discuss the rehabilitation methods and outcomes of a cohort of patients with cortical blindness. The notes of all patients with cortical blindness referred to a local NHS rehabilitation service in the last 6~years were examined. Patients' demographics, presenting symptoms, scan findings, rehabilitation programmes and outcomes were documented. Seven patients presented to our service, six of them were males. The mean age was 63. Patients 1, 2 and 3 had total blindness with severe cognitive and behavioural impairments, wandering and akathisia. All of them failed to respond to any rehabilitation effort and the focus was on damage limitation. Pharmacological interventions had a modest impact on behaviour and sleep pattern. The 3 patients were discharged to a nursing facility. Patients 4, 5, 6 and 7 had partial blindness with variable severity. All of them suffered from significant memory impairment. However, none suffered from any behavioural, physical or other cognitive impairment. Rehabilitation efforts on 3 patients were carried out collaboratively between brain injury occupational therapists and sensory disability officers. All patients experienced significant improvement in handicap and they all maintained community placements. This small cohort of patients suggests that the rehabilitation philosophy and outcomes of these 2 distinct groups of either total or partial cortical blindness differ significantly.

  19. Decreased prefrontal cortical dopamine transmission in alcoholism.

    Science.gov (United States)

    Narendran, Rajesh; Mason, Neale Scott; Paris, Jennifer; Himes, Michael L; Douaihy, Antoine B; Frankle, W Gordon

    2014-08-01

    Basic studies have demonstrated that optimal levels of prefrontal cortical dopamine are critical to various executive functions such as working memory, attention, inhibitory control, and risk/reward decisions, all of which are impaired in addictive disorders such as alcoholism. Based on this and imaging studies of alcoholism that have demonstrated less dopamine in the striatum, the authors hypothesized decreased dopamine transmission in the prefrontal cortex in persons with alcohol dependence. To test this hypothesis, amphetamine and [11C]FLB 457 positron emission tomography were used to measure cortical dopamine transmission in 21 recently abstinent persons with alcohol dependence and 21 matched healthy comparison subjects. [11C]FLB 457 binding potential, specific compared to nondisplaceable uptake (BPND), was measured in subjects with kinetic analysis using the arterial input function both before and after 0.5 mg kg-1 of d-amphetamine. Amphetamine-induced displacement of [11C]FLB 457 binding potential (ΔBPND) was significantly smaller in the cortical regions in the alcohol-dependent group compared with the healthy comparison group. Cortical regions that demonstrated lower dopamine transmission in the alcohol-dependent group included the dorsolateral prefrontal cortex, medial prefrontal cortex, orbital frontal cortex, temporal cortex, and medial temporal lobe. The results of this study, for the first time, unambiguously demonstrate decreased dopamine transmission in the cortex in alcoholism. Further research is necessary to understand the clinical relevance of decreased cortical dopamine as to whether it is related to impaired executive function, relapse, and outcome in alcoholism.

  20. Basic visual function and cortical thickness patterns in posterior cortical atrophy.

    Science.gov (United States)

    Lehmann, Manja; Barnes, Josephine; Ridgway, Gerard R; Wattam-Bell, John; Warrington, Elizabeth K; Fox, Nick C; Crutch, Sebastian J

    2011-09-01

    Posterior cortical atrophy (PCA) is characterized by a progressive decline in higher-visual object and space processing, but the extent to which these deficits are underpinned by basic visual impairments is unknown. This study aimed to assess basic and higher-order visual deficits in 21 PCA patients. Basic visual skills including form detection and discrimination, color discrimination, motion coherence, and point localization were measured, and associations and dissociations between specific basic visual functions and measures of higher-order object and space perception were identified. All participants showed impairment in at least one aspect of basic visual processing. However, a number of dissociations between basic visual skills indicated a heterogeneous pattern of visual impairment among the PCA patients. Furthermore, basic visual impairments were associated with particular higher-order object and space perception deficits, but not with nonvisual parietal tasks, suggesting the specific involvement of visual networks in PCA. Cortical thickness analysis revealed trends toward lower cortical thickness in occipitotemporal (ventral) and occipitoparietal (dorsal) regions in patients with visuoperceptual and visuospatial deficits, respectively. However, there was also a lot of overlap in their patterns of cortical thinning. These findings suggest that different presentations of PCA represent points in a continuum of phenotypical variation.

  1. Oscillatory bands, neuronal synchrony and hippocampal function: implications of the effects of prenatal choline supplementation for sleep-dependent memory consolidation.

    Science.gov (United States)

    Cheng, Ruey-Kuang; Williams, Christina L; Meck, Warren H

    2008-10-27

    Choline supplementation of the maternal diet has long-term facilitative effects on spatial and temporal memory processes in the offspring. To further delineate the impact of early nutritional status on brain and behavior, we examined effects of prenatal-choline availability on hippocampal oscillatory frequency bands in 12 month-old male and female rats. Adult offspring of time-pregnant dams that were given a deficient level of choline (DEF=0.0 g/kg), sufficient choline (CON=1.1 g/kg) or supplemental choline (SUP=3.5 g/kg) in their chow during embryonic days (ED) 12-17 were implanted with an electroencephalograph (EEG) electrode in the hippocampal dentate gyrus in combination with an electromyograph (EMG) electrode patch implanted in the nuchal muscle. Five consecutive 8-h recording sessions revealed differential patterns of EEG activity as a function of awake, slow-wave sleep (SWS) and rapid-eye movement (REM) sleep states and prenatal choline status. The main finding was that SUP rats displayed increased power levels of gamma (30-100 Hz) band oscillations during all phases of the sleep/wake cycle. These findings are discussed within the context of a general review of neuronal oscillations (e.g., delta, theta, and gamma bands) and synchronization across multiple brain regions in relation to sleep-dependent memory consolidation in the hippocampus.

  2. Cortical bone metastases

    International Nuclear Information System (INIS)

    Davis, T.M. Jr.; Rogers, L.F.; Hendrix, R.W.

    1986-01-01

    Twenty-five cases of bone metastases involving the cortex alone are reviewed. Seven patients had primary lung carcinoma, while 18 had primary tumors not previously reported to produce cortical bone metastases (tumors of the breast, kidney, pancreas, adenocarcinoma of unknown origin, multiple myeloma). Radiographically, these cortical lesions were well circumscribed, osteolytic, and produced soft-tissue swelling and occasional periosteal reaction. A recurrent pattern of metadiaphyseal involvement of the long bones of the lower extremity (particularly the femur) was noted, and is discussed. Findings reported in the literature, review, pathophysiology, and the role of skeletal radiographs, bone scans, and CT scans in evaluating cortical bone metastases are addressed

  3. The enemy within: propagation of aberrant corticostriatal learning to cortical function in Parkinson's disease

    Directory of Open Access Journals (Sweden)

    Jeff A Beeler

    2013-09-01

    Full Text Available Motor dysfunction in Parkinson’s disease is believed to arise primarily from pathophysiology in the dorsal striatum and its related corticostriatal and thalamostriatal circuits during progressive dopamine denervation. One function of these circuits is to provide a filter that selectively facilitates or inhibits cortical activity to optimize cortical processing, making motor responses rapid and efficient. Corticostriatal synaptic plasticity mediates the learning that underlies this performance-optimizing filter. Under dopamine denervation, corticostriatal plasticity is altered, resulting in aberrant learning that induces inappropriate basal ganglia filtering that impedes rather than optimizes cortical processing. Human imaging suggests that increased cortical activity may compensate for striatal dysfunction in PD patients. In this Perspective article, we consider how aberrant learning at corticostriatal synapses may impair cortical processing and learning and undermine potential cortical compensatory mechanisms. Blocking or remediating aberrant corticostriatal plasticity may protect cortical function and support cortical compensatory mechanisms mitigating the functional decline associated with progressive dopamine denervation.

  4. SPECT in patients with cortical visual loss.

    Science.gov (United States)

    Silverman, I E; Galetta, S L; Gray, L G; Moster, M; Atlas, S W; Maurer, A H; Alavi, A

    1993-09-01

    Single-photon emission computed tomography (SPECT) with 99mTc-hexamethylpropyleneamine oxime (HMPAO) was used to investigate changes in cerebral blood flow in seven patients with cortical visual impairment. Traumatic brain injury (TBI) was the cause of cortical damage in two patients, cerebral ischemia in two patients and carbon monoxide (CO) poisoning, status epilepticus and Alzheimer's Disease (AD) each in three separate patients. The SPECT scans of the seven patients were compared to T2-weighted magnetic resonance image (MRI) scans of the brain to determine the correlation between functional and anatomical findings. In six of the seven patients, the qualitative interpretation of the SPECT studies supported the clinical findings (i.e., the visual field defect) by revealing altered regional cerebral blood flow (rCBF) in the appropriate regions of the visual pathway. MR scans in all of the patients, on the other hand, were either normal or disclosed smaller lesions than those detected by SPECT. We conclude that SPECT may reveal altered rCBF in patients with cortical visual impairment of various etiologies, even when MRI studies are normal or nondiagnostic.

  5. Abnormalities of fixation, saccade and pursuit in posterior cortical atrophy.

    Science.gov (United States)

    Shakespeare, Timothy J; Kaski, Diego; Yong, Keir X X; Paterson, Ross W; Slattery, Catherine F; Ryan, Natalie S; Schott, Jonathan M; Crutch, Sebastian J

    2015-07-01

    whose frequency correlated significantly with generalized reductions in cortical thickness. Patients with both posterior cortical atrophy and typical Alzheimer's disease showed lower gain in smooth pursuit compared to controls. The current study establishes that eye movement abnormalities are near-ubiquitous in posterior cortical atrophy, and highlights multiple aspects of saccadic performance which distinguish posterior cortical atrophy from typical Alzheimer's disease. We suggest the posterior cortical atrophy oculomotor profile (e.g. exacerbation of the saccadic gap/overlap effect, preserved saccadic velocity) reflects weak input from degraded occipito-parietal spatial representations of stimulus location into a superior collicular spatial map for eye movement regulation. This may indicate greater impairment of identification of oculomotor targets rather than generation of oculomotor movements. The results highlight the critical role of spatial attention and object identification but also precise stimulus localization in explaining the complex real world perception deficits observed in posterior cortical atrophy and many other patients with dementia-related visual impairment. © The Author (2015). Published by Oxford University Press on behalf of the Guarantors of Brain.

  6. Mapping cortical mesoscopic networks of single spiking cortical or sub-cortical neurons.

    Science.gov (United States)

    Xiao, Dongsheng; Vanni, Matthieu P; Mitelut, Catalin C; Chan, Allen W; LeDue, Jeffrey M; Xie, Yicheng; Chen, Andrew Cn; Swindale, Nicholas V; Murphy, Timothy H

    2017-02-04

    Understanding the basis of brain function requires knowledge of cortical operations over wide-spatial scales, but also within the context of single neurons. In vivo, wide-field GCaMP imaging and sub-cortical/cortical cellular electrophysiology were used in mice to investigate relationships between spontaneous single neuron spiking and mesoscopic cortical activity. We make use of a rich set of cortical activity motifs that are present in spontaneous activity in anesthetized and awake animals. A mesoscale spike-triggered averaging procedure allowed the identification of motifs that are preferentially linked to individual spiking neurons by employing genetically targeted indicators of neuronal activity. Thalamic neurons predicted and reported specific cycles of wide-scale cortical inhibition/excitation. In contrast, spike-triggered maps derived from single cortical neurons yielded spatio-temporal maps expected for regional cortical consensus function. This approach can define network relationships between any point source of neuronal spiking and mesoscale cortical maps.

  7. Visual Dysfunction in Posterior Cortical Atrophy

    Science.gov (United States)

    Maia da Silva, Mari N.; Millington, Rebecca S.; Bridge, Holly; James-Galton, Merle; Plant, Gordon T.

    2017-01-01

    Posterior cortical atrophy (PCA) is a syndromic diagnosis. It is characterized by progressive impairment of higher (cortical) visual function with imaging evidence of degeneration affecting the occipital, parietal, and posterior temporal lobes bilaterally. Most cases will prove to have Alzheimer pathology. The aim of this review is to summarize the development of the concept of this disorder since it was first introduced. A critical discussion of the evolving diagnostic criteria is presented and the differential diagnosis with regard to the underlying pathology is reviewed. Emphasis is given to the visual dysfunction that defines the disorder, and the classical deficits, such as simultanagnosia and visual agnosia, as well as the more recently recognized visual field defects, are reviewed, along with the evidence on their neural correlates. The latest developments on the imaging of PCA are summarized, with special attention to its role on the differential diagnosis with related conditions. PMID:28861031

  8. Visual Dysfunction in Posterior Cortical Atrophy

    Directory of Open Access Journals (Sweden)

    Mari N. Maia da Silva

    2017-08-01

    Full Text Available Posterior cortical atrophy (PCA is a syndromic diagnosis. It is characterized by progressive impairment of higher (cortical visual function with imaging evidence of degeneration affecting the occipital, parietal, and posterior temporal lobes bilaterally. Most cases will prove to have Alzheimer pathology. The aim of this review is to summarize the development of the concept of this disorder since it was first introduced. A critical discussion of the evolving diagnostic criteria is presented and the differential diagnosis with regard to the underlying pathology is reviewed. Emphasis is given to the visual dysfunction that defines the disorder, and the classical deficits, such as simultanagnosia and visual agnosia, as well as the more recently recognized visual field defects, are reviewed, along with the evidence on their neural correlates. The latest developments on the imaging of PCA are summarized, with special attention to its role on the differential diagnosis with related conditions.

  9. Cortical myoclonus and cerebellar pathology

    NARCIS (Netherlands)

    Tijssen, MAJ; Thom, M; Ellison, DW; Wilkins, P; Barnes, D; Thompson, PD; Brown, P

    2000-01-01

    Objective To study the electrophysiologic and pathologic findings in three patients with cortical myoclonus. In two patients the myoclonic ataxic syndrome was associated with proven celiac disease. Background: The pathologic findings in conditions associated with cortical myoclonus commonly involve

  10. Cortical myoclonus and cerebellar pathology

    NARCIS (Netherlands)

    Tijssen, M. A.; Thom, M.; Ellison, D. W.; Wilkins, P.; Barnes, D.; Thompson, P. D.; Brown, P.

    2000-01-01

    OBJECTIVE: To study the electrophysiologic and pathologic findings in three patients with cortical myoclonus. In two patients the myoclonic ataxic syndrome was associated with proven celiac disease. BACKGROUND: The pathologic findings in conditions associated with cortical myoclonus commonly involve

  11. Cholinergic systems are essential for late-stage maturation and refinement of motor cortical circuits

    Science.gov (United States)

    Ramanathan, Dhakshin S.; Conner, James M.; Anilkumar, Arjun A.

    2014-01-01

    Previous studies reported that early postnatal cholinergic lesions severely perturb early cortical development, impairing neuronal cortical migration and the formation of cortical dendrites and synapses. These severe effects of early postnatal cholinergic lesions preclude our ability to understand the contribution of cholinergic systems to the later-stage maturation of topographic cortical representations. To study cholinergic mechanisms contributing to the later maturation of motor cortical circuits, we first characterized the temporal course of cortical motor map development and maturation in rats. In this study, we focused our attention on the maturation of cortical motor representations after postnatal day 25 (PND 25), a time after neuronal migration has been accomplished and cortical volume has reached adult size. We found significant maturation of cortical motor representations after this time, including both an expansion of forelimb representations in motor cortex and a shift from proximal to distal forelimb representations to an extent unexplainable by simple volume enlargement of the neocortex. Specific cholinergic lesions placed at PND 24 impaired enlargement of distal forelimb representations in particular and markedly reduced the ability to learn skilled motor tasks as adults. These results identify a novel and essential role for cholinergic systems in the late refinement and maturation of cortical circuits. Dysfunctions in this system may constitute a mechanism of late-onset neurodevelopmental disorders such as Rett syndrome and schizophrenia. PMID:25505106

  12. Dementia with impaired glucose metabolism in late onset metachromatic leukodystrophy

    DEFF Research Database (Denmark)

    Johannsen, P.; Ehlers, L.; Hansen, Hans Jacob

    2001-01-01

    and attention deficits with a slow psychomotor speed. MR brain imaging displayed confluent hyperintensities of periventricular and subcortical white matter. Low levels of arylsulfatase A confirmed the diagnosis. Impaired cortical glucose metabolism especially of the medial temporal and frontal cortices...... was observed using positron emission tomography and fluor-18-labeled fluorodesoxyglucose. The neuropsychological deficits are related to the location of deficits in glucose metabolism....

  13. Cortical thickness, surface area, and folding alterations in male youths with conduct disorder and varying levels of callous–unemotional traits

    Directory of Open Access Journals (Sweden)

    Graeme Fairchild

    2015-01-01

    Conclusions: Cortical thinning in the superior temporal gyrus may contribute to the social cognitive impairments displayed by youths with CD, whereas reduced OFC SA may lead to impairments in emotion regulation and reward processing in youths with CD. The increased cortical folding observed in the insula may reflect a maturational delay in this region and could mediate the link between CU traits and empathy deficits. Altered cortical folding was observed in childhood-onset and adolescence-onset forms of CD.

  14. Multimodal surface-based morphometry reveals diffuse cortical atrophy in traumatic brain injury.

    Directory of Open Access Journals (Sweden)

    Sorenson Donna J

    2009-12-01

    Full Text Available Abstract Background Patients with traumatic brain injury (TBI often present with significant cognitive deficits without corresponding evidence of cortical damage on neuroradiological examinations. One explanation for this puzzling observation is that the diffuse cortical abnormalities that characterize TBI are difficult to detect with standard imaging procedures. Here we investigated a patient with severe TBI-related cognitive impairments whose scan was interpreted as normal by a board-certified radiologist in order to determine if quantitative neuroimaging could detect cortical abnormalities not evident with standard neuroimaging procedures. Methods Cortical abnormalities were quantified using multimodal surfaced-based morphometry (MSBM that statistically combined information from high-resolution structural MRI and diffusion tensor imaging (DTI. Normal values of cortical anatomy and cortical and pericortical DTI properties were quantified in a population of 43 healthy control subjects. Corresponding measures from the patient were obtained in two independent imaging sessions. These data were quantified using both the average values for each lobe and the measurements from each point on the cortical surface. The results were statistically analyzed as z-scores from the mean with a p Results The TBI patient showed significant regional abnormalities in cortical thickness, gray matter diffusivity and pericortical white matter integrity that replicated across imaging sessions. Consistent with the patient's impaired performance on neuropsychological tests of executive function, cortical abnormalities were most pronounced in the frontal lobes. Conclusions MSBM is a promising tool for detecting subtle cortical abnormalities with high sensitivity and selectivity. MSBM may be particularly useful in evaluating cortical structure in TBI and other neurological conditions that produce diffuse abnormalities in both cortical structure and tissue properties.

  15. Cortical Thinning and Altered Cortico-Cortical Structural Covariance of the Default Mode Network in Patients with Persistent Insomnia Symptoms.

    Science.gov (United States)

    Suh, Sooyeon; Kim, Hosung; Dang-Vu, Thien Thanh; Joo, Eunyeon; Shin, Chol

    2016-01-01

    Recent studies have suggested that structural abnormalities in insomnia may be linked with alterations in the default-mode network (DMN). This study compared cortical thickness and structural connectivity linked to the DMN in patients with persistent insomnia (PI) and good sleepers (GS). The current study used a clinical subsample from the longitudinal community-based Korean Genome and Epidemiology Study (KoGES). Cortical thickness and structural connectivity linked to the DMN in patients with persistent insomnia symptoms (PIS; n = 57) were compared to good sleepers (GS; n = 40). All participants underwent MRI acquisition. Based on literature review, we selected cortical regions corresponding to the DMN. A seed-based structural covariance analysis measured cortical thickness correlation between each seed region of the DMN and other cortical areas. Association of cortical thickness and covariance with sleep quality and neuropsychological assessments were further assessed. Compared to GS, cortical thinning was found in PIS in the anterior cingulate cortex, precentral cortex, and lateral prefrontal cortex. Decreased structural connectivity between anterior and posterior regions of the DMN was observed in the PIS group. Decreased structural covariance within the DMN was associated with higher PSQI scores. Cortical thinning in the lateral frontal lobe was related to poor performance in executive function in PIS. Disrupted structural covariance network in PIS might reflect malfunctioning of antero-posterior disconnection of the DMN during the wake to sleep transition that is commonly found during normal sleep. The observed structural network alteration may further implicate commonly observed sustained sleep difficulties and cognitive impairment in insomnia. © 2016 Associated Professional Sleep Societies, LLC.

  16. Impact of prenatal environmental stress on cortical development

    Directory of Open Access Journals (Sweden)

    Seiji eIshii

    2015-05-01

    Full Text Available Prenatal exposure of the developing brain to various types of environmental stress increases susceptibility to neuropsychiatric disorders such as autism, attention deficit hyperactivity disorder and schizophrenia. Given that even subtle perturbations by prenatal environmental stress in the cerebral cortex impair the cognitive and memory functions, this review focuses on underlying molecular mechanisms of pathological cortical development. We especially highlight recent works that utilized animal exposure models, human specimens or/and induced Pluripotent Stem (iPS cells to demonstrate: 1. molecular mechanisms shared by various types of environmental stressors, 2. the mechanisms by which the affected extracortical tissues indirectly impact the cortical development and function, and 3. interaction between prenatal environmental stress and the genetic predisposition of neuropsychiatric disorders. Finally, we discuss current challenges for achieving a comprehensive understanding of the role of environmentally disturbed molecular expressions in cortical maldevelopment, knowledge of which may eventually facilitate discovery of interventions for prenatal environment-linked neuropsychiatric disorders.

  17. Cortico-cortical communication dynamics

    Directory of Open Access Journals (Sweden)

    Per E Roland

    2014-05-01

    Full Text Available IIn principle, cortico-cortical communication dynamics is simple: neurons in one cortical area communicate by sending action potentials that release glutamate and excite their target neurons in other cortical areas. In practice, knowledge about cortico-cortical communication dynamics is minute. One reason is that no current technique can capture the fast spatio-temporal cortico-cortical evolution of action potential transmission and membrane conductances with sufficient spatial resolution. A combination of optogenetics and monosynaptic tracing with virus can reveal the spatio-temporal cortico-cortical dynamics of specific neurons and their targets, but does not reveal how the dynamics evolves under natural conditions. Spontaneous ongoing action potentials also spread across cortical areas and are difficult to separate from structured evoked and intrinsic brain activity such as thinking. At a certain state of evolution, the dynamics may engage larger populations of neurons to drive the brain to decisions, percepts and behaviors. For example, successfully evolving dynamics to sensory transients can appear at the mesoscopic scale revealing how the transient is perceived. As a consequence of these methodological and conceptual difficulties, studies in this field comprise a wide range of computational models, large-scale measurements (e.g., by MEG, EEG, and a combination of invasive measurements in animal experiments. Further obstacles and challenges of studying cortico-cortical communication dynamics are outlined in this critical review.

  18. Regional vulnerability of longitudinal cortical association connectivity

    Directory of Open Access Journals (Sweden)

    Rafael Ceschin

    2015-01-01

    Full Text Available Preterm born children with spastic diplegia type of cerebral palsy and white matter injury or periventricular leukomalacia (PVL, are known to have motor, visual and cognitive impairments. Most diffusion tensor imaging (DTI studies performed in this group have demonstrated widespread abnormalities using averaged deterministic tractography and voxel-based DTI measurements. Little is known about structural network correlates of white matter topography and reorganization in preterm cerebral palsy, despite the availability of new therapies and the need for brain imaging biomarkers. Here, we combined novel post-processing methodology of probabilistic tractography data in this preterm cohort to improve spatial and regional delineation of longitudinal cortical association tract abnormalities using an along-tract approach, and compared these data to structural DTI cortical network topology analysis. DTI images were acquired on 16 preterm children with cerebral palsy (mean age 5.6 ± 4 and 75 healthy controls (mean age 5.7 ± 3.4. Despite mean tract analysis, Tract-Based Spatial Statistics (TBSS and voxel-based morphometry (VBM demonstrating diffusely reduced fractional anisotropy (FA reduction in all white matter tracts, the along-tract analysis improved the detection of regional tract vulnerability. The along-tract map-structural network topology correlates revealed two associations: (1 reduced regional posterior–anterior gradient in FA of the longitudinal visual cortical association tracts (inferior fronto-occipital fasciculus, inferior longitudinal fasciculus, optic radiation, posterior thalamic radiation correlated with reduced posterior–anterior gradient of intra-regional (nodal efficiency metrics with relative sparing of frontal and temporal regions; and (2 reduced regional FA within frontal–thalamic–striatal white matter pathways (anterior limb/anterior thalamic radiation, superior longitudinal fasciculus and cortical spinal tract

  19. Modeling cortical circuits.

    Energy Technology Data Exchange (ETDEWEB)

    Rohrer, Brandon Robinson; Rothganger, Fredrick H.; Verzi, Stephen J.; Xavier, Patrick Gordon

    2010-09-01

    The neocortex is perhaps the highest region of the human brain, where audio and visual perception takes place along with many important cognitive functions. An important research goal is to describe the mechanisms implemented by the neocortex. There is an apparent regularity in the structure of the neocortex [Brodmann 1909, Mountcastle 1957] which may help simplify this task. The work reported here addresses the problem of how to describe the putative repeated units ('cortical circuits') in a manner that is easily understood and manipulated, with the long-term goal of developing a mathematical and algorithmic description of their function. The approach is to reduce each algorithm to an enhanced perceptron-like structure and describe its computation using difference equations. We organize this algorithmic processing into larger structures based on physiological observations, and implement key modeling concepts in software which runs on parallel computing hardware.

  20. Grammatical Impairments in PPA.

    Science.gov (United States)

    Thompson, Cynthia K; Mack, Jennifer E

    2014-09-01

    Grammatical impairments are commonly observed in the agrammatic subtype of primary progressive aphasia (PPA-G), whereas grammatical processing is relatively preserved in logopenic (PPA-L) and semantic (PPA-S) subtypes. We review research on grammatical deficits in PPA and associated neural mechanisms, with discussion focused on production and comprehension of four aspects of morphosyntactic structure: grammatical morphology, functional categories, verbs and verb argument structure, and complex syntactic structures. We also address assessment of grammatical deficits in PPA, with emphasis on behavioral tests of grammatical processing. Finally, we address research examining the effects of treatment for progressive grammatical impairments. PPA-G is associated with grammatical deficits that are evident across linguistic domains in both production and comprehension. PPA-G is associated with damage to regions including the left inferior frontal gyrus (IFG) and dorsal white matter tracts, which have been linked to impaired comprehension and production of complex sentences. Detailing grammatical deficits in PPA is important for estimating the trajectory of language decline and associated neuropathology. We, therefore, highlight several new assessment tools for examining different aspects of morphosyntactic processing in PPA. Individuals with PPA-G present with agrammatic deficit patterns distinct from those associated with PPA-L and PPA-S, but similar to those seen in agrammatism resulting from stroke, and patterns of cortical atrophy and white matter changes associated with PPA-G have been identified. Methods for clinical evaluation of agrammatism, focusing on comprehension and production of grammatical morphology, functional categories, verbs and verb argument structure, and complex syntactic structures are recommended and tools for this are emerging in the literature. Further research is needed to investigate the real-time processes underlying grammatical impairments in

  1. Cortical thickness abnormalities associated with dyslexia, independent of remediation status

    Science.gov (United States)

    Ma, Yizhou; Koyama, Maki S.; Milham, Michael P.; Castellanos, F. Xavier; Quinn, Brian T.; Pardoe, Heath; Wang, Xiuyuan; Kuzniecky, Ruben; Devinsky, Orrin; Thesen, Thomas; Blackmon, Karen

    2014-01-01

    Abnormalities in cortical structure are commonly observed in children with dyslexia in key regions of the “reading network.” Whether alteration in cortical features reflects pathology inherent to dyslexia or environmental influence (e.g., impoverished reading experience) remains unclear. To address this question, we compared MRI-derived metrics of cortical thickness (CT), surface area (SA), gray matter volume (GMV), and their lateralization across three different groups of children with a historical diagnosis of dyslexia, who varied in current reading level. We compared three dyslexia subgroups with: (1) persistent reading and spelling impairment; (2) remediated reading impairment (normal reading scores), and (3) remediated reading and spelling impairments (normal reading and spelling scores); and a control group of (4) typically developing children. All groups were matched for age, gender, handedness, and IQ. We hypothesized that the dyslexia group would show cortical abnormalities in regions of the reading network relative to controls, irrespective of remediation status. Such a finding would support that cortical abnormalities are inherent to dyslexia and are not a consequence of abnormal reading experience. Results revealed increased CT of the left fusiform gyrus in the dyslexia group relative to controls. Similarly, the dyslexia group showed CT increase of the right superior temporal gyrus, extending into the planum temporale, which resulted in a rightward CT asymmetry on lateralization indices. There were no group differences in SA, GMV, or their lateralization. These findings held true regardless of remediation status. Each reading level group showed the same “double hit” of atypically increased left fusiform CT and rightward superior temporal CT asymmetry. Thus, findings provide evidence that a developmental history of dyslexia is associated with CT abnormalities, independent of remediation status. PMID:25610779

  2. Functional specialisation within the cortical language network: effects of cortical dysfunction.

    Science.gov (United States)

    Vandenberghe, R

    2007-01-01

    In the 1990's neuroanatomical models of language and semantic memory have been mainly based on functional neuroimaging studies of brain activity in healthy volunteers and correlational studies between structural lesions in patients and behavioral deficits. In this paper we present a novel approach where we test models that have been developed in healthy volunteers by means of functional imaging in patients in combination with behavioral studies. Study populations consist of patients with focal cortical stroke (n = 2), amnestic mild cognitive impairment (n = 14) and primary progressive aphasia (n = 18). The experiments provide converging evidence that 1. the integrity of the right mid- and anterior fusiform gyrus is required for full and detailed retrieval of knowledge of visual attributes of concrete entities 2. the left posterior superior temporal sulcus is critically involved in lexical-semantic retrieval 3. the anterior temporal pole to the left functions as an associative structure that links the representations of meaning that are distribured over the cortical brain surface. Our experiments also provide us with new insight into the degradation and re-organisation of the language system in cortical neurodegenerative disease.

  3. Shortened cortical silent period in adductor spasmodic dysphonia: evidence for widespread cortical excitability.

    Science.gov (United States)

    Samargia, Sharyl; Schmidt, Rebekah; Kimberley, Teresa Jacobson

    2014-02-07

    The purpose of this study was to compare cortical inhibition in the hand region of the primary motor cortex between subjects with focal hand dystonia (FHD), adductor spasmodic dysphonia (AdSD), and healthy controls. Data from 28 subjects were analyzed (FHD n=11, 53.25 ± 8.74 y; AdSD: n=8, 56.38 ± 7.5 y; and healthy controls: n=941.67 ± 10.85 y). All subjects received single pulse TMS to the left motor cortex to measure cortical silent period (CSP) in the right first dorsal interosseus (FDI) muscle. Duration of the CSP was measured and compared across groups. A one-way ANCOVA with age as a covariate revealed a significant group effect (p<0.001). Post hoc analysis revealed significantly longer CSP duration in the healthy group vs. AdSD group (p<0.001) and FHD group (p<0.001). These results suggest impaired intracortical inhibition is a neurophysiologic characteristic of FHD and AdSD. In addition, the shortened CSP in AdSD provides evidence to support a widespread decrease in cortical inhibition in areas of the motor cortex that represent an asymptomatic region of the body. These findings may inform future investigations of differential diagnosis as well as alternative treatments for focal dystonias. Copyright © 2013 Elsevier Ireland Ltd. All rights reserved.

  4. Classification of Cortical Brain Malformations

    Directory of Open Access Journals (Sweden)

    J Gordon Millichap

    2008-03-01

    Full Text Available Clinical, radiological, and genetic classifications of 113 cases of malformations of cortical development (MCD were evaluated at the Erasmus Medical Center-Sophia Children's Hospital, Rotterdam, the Netherlands.

  5. Focal cortical dysplasia – review

    International Nuclear Information System (INIS)

    Kabat, Joanna; Król, Przemysław

    2012-01-01

    Focal cortical dysplasia is a malformation of cortical development, which is the most common cause of medically refractory epilepsy in the pediatric population and the second/third most common etiology of medically intractable seizures in adults. Both genetic and acquired factors are involved in the pathogenesis of cortical dysplasia. Numerous classifications of the complex structural abnormalities of focal cortical dysplasia have been proposed – from Taylor et al. in 1971 to the last modification of Palmini classification made by Blumcke in 2011. In general, three types of cortical dysplasia are recognized. Type I focal cortical dysplasia with mild symptomatic expression and late onset, is more often seen in adults, with changes present in the temporal lobe. Clinical symptoms are more severe in type II of cortical dysplasia usually seen in children. In this type, more extensive changes occur outside the temporal lobe with predilection for the frontal lobes. New type III is one of the above dysplasias with associated another principal lesion as hippocampal sclerosis, tumor, vascular malformation or acquired pathology during early life. Brain MRI imaging shows abnormalities in the majority of type II dysplasias and in only some of type I cortical dysplasias. The most common findings on MRI imaging include: focal cortical thickening or thinning, areas of focal brain atrophy, blurring of the gray-white junction, increased signal on T2- and FLAIR-weighted images in the gray and subcortical white matter often tapering toward the ventricle. On the basis of the MRI findings, it is possible to differentiate between type I and type II cortical dysplasia. A complete resection of the epileptogenic zone is required for seizure-free life. MRI imaging is very helpful to identify those patients who are likely to benefit from surgical treatment in a group of patients with drug-resistant epilepsy. However, in type I cortical dysplasia, MR imaging is often normal, and also in both

  6. Spatial integration and cortical dynamics.

    Science.gov (United States)

    Gilbert, C D; Das, A; Ito, M; Kapadia, M; Westheimer, G

    1996-01-23

    Cells in adult primary visual cortex are capable of integrating information over much larger portions of the visual field than was originally thought. Moreover, their receptive field properties can be altered by the context within which local features are presented and by changes in visual experience. The substrate for both spatial integration and cortical plasticity is likely to be found in a plexus of long-range horizontal connections, formed by cortical pyramidal cells, which link cells within each cortical area over distances of 6-8 mm. The relationship between horizontal connections and cortical functional architecture suggests a role in visual segmentation and spatial integration. The distribution of lateral interactions within striate cortex was visualized with optical recording, and their functional consequences were explored by using comparable stimuli in human psychophysical experiments and in recordings from alert monkeys. They may represent the substrate for perceptual phenomena such as illusory contours, surface fill-in, and contour saliency. The dynamic nature of receptive field properties and cortical architecture has been seen over time scales ranging from seconds to months. One can induce a remapping of the topography of visual cortex by making focal binocular retinal lesions. Shorter-term plasticity of cortical receptive fields was observed following brief periods of visual stimulation. The mechanisms involved entailed, for the short-term changes, altering the effectiveness of existing cortical connections, and for the long-term changes, sprouting of axon collaterals and synaptogenesis. The mutability of cortical function implies a continual process of calibration and normalization of the perception of visual attributes that is dependent on sensory experience throughout adulthood and might further represent the mechanism of perceptual learning.

  7. Spatial integration and cortical dynamics.

    OpenAIRE

    Gilbert, C D; Das, A; Ito, M; Kapadia, M; Westheimer, G

    1996-01-01

    Cells in adult primary visual cortex are capable of integrating information over much larger portions of the visual field than was originally thought. Moreover, their receptive field properties can be altered by the context within which local features are presented and by changes in visual experience. The substrate for both spatial integration and cortical plasticity is likely to be found in a plexus of long-range horizontal connections, formed by cortical pyramidal cells, which link cells wi...

  8. Hiperostosis cortical infantil

    Directory of Open Access Journals (Sweden)

    Salvador Javier Santos Medina

    2015-04-01

    Full Text Available La enfermedad de Caffey, o hiperostosis cortical infantil, es una rara enfermedad ósea autolimitada, que aparece de preferencia en lactantes con signos inespecíficos sistémicos; el más relevante es la reacción subperióstica e hiperostosis en varios huesos del cuerpo, con predilección en el 75-80 % de los casos por la mandíbula. Su pronóstico es bueno, la mayoría no deja secuelas. El propósito del presente trabajo es describir las características clínicas, presentes en un lactante de cinco meses de edad, atendido en el Hospital Pediátrico Provincial “Mártires de Las Tunas” con este diagnóstico, quien ingresó en el servicio de miscelánea B por una celulitis facial. Presentaba aumento de volumen en la región geniana izquierda, febrícola e inapetencia. Se impuso tratamiento con cefazolina y se egresó a los siete días. Acudió nuevamente con tumefacción blanda y difusa de ambas hemicaras, irritabilidad y fiebre. Se interconsultó con cirugía maxilofacial, se indicaron estudios sanguíneos y radiológicos. Se diagnosticó como enfermedad de Caffey, basado en la edad del niño, tumefacción facial sin signos inflamatorios agudos e hiperostosis en ambas corticales mandibulares a la radiografía AP mandíbula; unido a anemia ligera, leucocitosis y eritrosedimentación acelerada. El paciente se trató sintomáticamente y con antinflamatorios no esteroideos. Esta rara entidad se debe tener presente en casos de niños y lactantes con irritabilidad y fiebre inespecífica

  9. Cortical hypermetabolism in MCI subjects: a compensatory mechanism?

    International Nuclear Information System (INIS)

    Ashraf, A.; Fan, Z.; Brooks, D.J.; Edison, P.

    2015-01-01

    Alzheimer's disease (AD) is associated with amyloid accumulation that takes place decades before symptoms appear. Cognitive impairment in AD is associated with reduced glucose metabolism. However, neuronal plasticity/compensatory mechanisms might come into play before the onset of dementia. The aim of this study was to determine whether there is evidence of cortical hypermetabolism as a compensatory mechanism before amyloid deposition takes place in subjects with amnestic mild cognitive impairment (aMCI). Nine AD subjects and ten aMCI subjects had both [ 11 C]PIB and [ 18 F]FDG PET scans with arterial input in order to quantify the amyloid deposition and glucose metabolism in vivo in comparison with healthy control subjects who underwent either [ 11 C]PIB or [ 18 F]FDG PET scans. The [ 11 C]PIB PET scans were quantified using [ 11 C]PIB target region to cerebellum uptake ratio images created by integrating the activity collected from 60 to 90 min, and regional cerebral glucose metabolism was quantified using spectral analysis. In MCI subjects, cortical hypermetabolism was observed in four amyloid-negative subjects and one amyloid-positive subject, while hypometabolism was seen in five other MCI subjects with high amyloid load. Subjects with hypermetabolism and low amyloid did not convert to AD during clinical follow-up for 18 months in contrast to four amyloid-positive hypometabolic subjects who did convert to AD. This preliminary study suggests that compensatory hypermetabolism can occur in aMCI subjects, particularly in those who are amyloid-negative. The increase in metabolic rate in different cortical regions with predominance in the occipital cortex may be a compensatory response to the neuronal damage occurring early in the disease process. It may also reflect recruitment of relatively minimally affected cortical regions to compensate for reduced function in the temporoparietal cortical association areas. (orig.)

  10. Cortical hypermetabolism in MCI subjects: a compensatory mechanism?

    Energy Technology Data Exchange (ETDEWEB)

    Ashraf, A.; Fan, Z.; Brooks, D.J.; Edison, P. [Imperial College London, Neurology Imaging Unit, Division of Brain Sciences, London (United Kingdom)

    2014-09-30

    Alzheimer's disease (AD) is associated with amyloid accumulation that takes place decades before symptoms appear. Cognitive impairment in AD is associated with reduced glucose metabolism. However, neuronal plasticity/compensatory mechanisms might come into play before the onset of dementia. The aim of this study was to determine whether there is evidence of cortical hypermetabolism as a compensatory mechanism before amyloid deposition takes place in subjects with amnestic mild cognitive impairment (aMCI). Nine AD subjects and ten aMCI subjects had both [{sup 11}C]PIB and [{sup 18}F]FDG PET scans with arterial input in order to quantify the amyloid deposition and glucose metabolism in vivo in comparison with healthy control subjects who underwent either [{sup 11}C]PIB or [{sup 18}F]FDG PET scans. The [{sup 11}C]PIB PET scans were quantified using [{sup 11}C]PIB target region to cerebellum uptake ratio images created by integrating the activity collected from 60 to 90 min, and regional cerebral glucose metabolism was quantified using spectral analysis. In MCI subjects, cortical hypermetabolism was observed in four amyloid-negative subjects and one amyloid-positive subject, while hypometabolism was seen in five other MCI subjects with high amyloid load. Subjects with hypermetabolism and low amyloid did not convert to AD during clinical follow-up for 18 months in contrast to four amyloid-positive hypometabolic subjects who did convert to AD. This preliminary study suggests that compensatory hypermetabolism can occur in aMCI subjects, particularly in those who are amyloid-negative. The increase in metabolic rate in different cortical regions with predominance in the occipital cortex may be a compensatory response to the neuronal damage occurring early in the disease process. It may also reflect recruitment of relatively minimally affected cortical regions to compensate for reduced function in the temporoparietal cortical association areas. (orig.)

  11. Functional neural substrates of posterior cortical atrophy patients.

    Science.gov (United States)

    Shames, H; Raz, N; Levin, Netta

    2015-07-01

    Posterior cortical atrophy (PCA) is a neurodegenerative syndrome in which the most pronounced pathologic involvement is in the occipito-parietal visual regions. Herein, we aimed to better define the cortical reflection of this unique syndrome using a thorough battery of behavioral and functional MRI (fMRI) tests. Eight PCA patients underwent extensive testing to map their visual deficits. Assessments included visual functions associated with lower and higher components of the cortical hierarchy, as well as dorsal- and ventral-related cortical functions. fMRI was performed on five patients to examine the neuronal substrate of their visual functions. The PCA patient cohort exhibited stereopsis, saccadic eye movements and higher dorsal stream-related functional impairments, including simultant perception, image orientation, figure-from-ground segregation, closure and spatial orientation. In accordance with the behavioral findings, fMRI revealed intact activation in the ventral visual regions of face and object perception while more dorsal aspects of perception, including motion and gestalt perception, revealed impaired patterns of activity. In most of the patients, there was a lack of activity in the word form area, which is known to be linked to reading disorders. Finally, there was evidence of reduced cortical representation of the peripheral visual field, corresponding to the behaviorally assessed peripheral visual deficit. The findings are discussed in the context of networks extending from parietal regions, which mediate navigationally related processing, visually guided actions, eye movement control and working memory, suggesting that damage to these networks might explain the wide range of deficits in PCA patients.

  12. Abnormal cortical development after premature birth shown by altered allometric scaling of brain growth.

    Directory of Open Access Journals (Sweden)

    Olga Kapellou

    2006-08-01

    Full Text Available We postulated that during ontogenesis cortical surface area and cerebral volume are related by a scaling law whose exponent gives a quantitative measure of cortical development. We used this approach to investigate the hypothesis that premature termination of the intrauterine environment by preterm birth reduces cortical development in a dose-dependent manner, providing a neural substrate for functional impairment.We analyzed 274 magnetic resonance images that recorded brain growth from 23 to 48 wk of gestation in 113 extremely preterm infants born at 22 to 29 wk of gestation, 63 of whom underwent neurodevelopmental assessment at a median age of 2 y. Cortical surface area was related to cerebral volume by a scaling law with an exponent of 1.29 (95% confidence interval, 1.25-1.33, which was proportional to later neurodevelopmental impairment. Increasing prematurity and male gender were associated with a lower scaling exponent (p < 0.0001 independent of intrauterine or postnatal somatic growth.Human brain growth obeys an allometric scaling relation that is disrupted by preterm birth in a dose-dependent, sexually dimorphic fashion that directly parallels the incidence of neurodevelopmental impairments in preterm infants. This result focuses attention on brain growth and cortical development during the weeks following preterm delivery as a neural substrate for neurodevelopmental impairment after premature delivery.

  13. Visual Impairment

    Science.gov (United States)

    ... site Sitio para adolescentes Body Mind Sexual Health Food & Fitness Diseases & Conditions Infections Drugs & Alcohol School & Jobs Sports Expert Answers (Q&A) Staying Safe Videos for Educators Search English Español Visual Impairment KidsHealth / For Teens / Visual Impairment What's in ...

  14. The cortical signature of amyotrophic lateral sclerosis.

    Directory of Open Access Journals (Sweden)

    Federica Agosta

    Full Text Available The aim of this study was to explore the pattern of regional cortical thickness in patients with non-familial amyotrophic lateral sclerosis (ALS and to investigate whether cortical thinning is associated with disease progression rate. Cortical thickness analysis was performed in 44 ALS patients and 26 healthy controls. Group differences in cortical thickness and the age-by-group effects were assessed using vertex-by-vertex and multivariate linear models. The discriminatory ability of MRI variables in distinguishing patients from controls was estimated using the Concordance Statistics (C-statistic within logistic regression analyses. Correlations between cortical thickness measures and disease progression rate were tested using the Pearson coefficient. Relative to controls, ALS patients showed a bilateral cortical thinning of the primary motor, prefrontal and ventral frontal cortices, cingulate gyrus, insula, superior and inferior temporal and parietal regions, and medial and lateral occipital areas. There was a significant age-by-group effect in the sensorimotor cortices bilaterally, suggesting a stronger association between age and cortical thinning in ALS patients compared to controls. The mean cortical thickness of the sensorimotor cortices distinguished patients with ALS from controls (C-statistic ≥ 0.74. Cortical thinning of the left sensorimotor cortices was related to a faster clinical progression (r = -0.33, p = 0.03. Cortical thickness measurements allowed the detection and quantification of motor and extramotor involvement in patients with ALS. Cortical thinning of the precentral gyrus might offer a marker of upper motor neuron involvement and disease progression.

  15. The cortical signature of amyotrophic lateral sclerosis.

    Science.gov (United States)

    Agosta, Federica; Valsasina, Paola; Riva, Nilo; Copetti, Massimiliano; Messina, Maria Josè; Prelle, Alessandro; Comi, Giancarlo; Filippi, Massimo

    2012-01-01

    The aim of this study was to explore the pattern of regional cortical thickness in patients with non-familial amyotrophic lateral sclerosis (ALS) and to investigate whether cortical thinning is associated with disease progression rate. Cortical thickness analysis was performed in 44 ALS patients and 26 healthy controls. Group differences in cortical thickness and the age-by-group effects were assessed using vertex-by-vertex and multivariate linear models. The discriminatory ability of MRI variables in distinguishing patients from controls was estimated using the Concordance Statistics (C-statistic) within logistic regression analyses. Correlations between cortical thickness measures and disease progression rate were tested using the Pearson coefficient. Relative to controls, ALS patients showed a bilateral cortical thinning of the primary motor, prefrontal and ventral frontal cortices, cingulate gyrus, insula, superior and inferior temporal and parietal regions, and medial and lateral occipital areas. There was a significant age-by-group effect in the sensorimotor cortices bilaterally, suggesting a stronger association between age and cortical thinning in ALS patients compared to controls. The mean cortical thickness of the sensorimotor cortices distinguished patients with ALS from controls (C-statistic ≥ 0.74). Cortical thinning of the left sensorimotor cortices was related to a faster clinical progression (r = -0.33, p = 0.03). Cortical thickness measurements allowed the detection and quantification of motor and extramotor involvement in patients with ALS. Cortical thinning of the precentral gyrus might offer a marker of upper motor neuron involvement and disease progression.

  16. Cortical tremor: a variant of cortical reflex myoclonus.

    Science.gov (United States)

    Ikeda, A; Kakigi, R; Funai, N; Neshige, R; Kuroda, Y; Shibasaki, H

    1990-10-01

    Two patients with action tremor that was thought to originate in the cerebral cortex showed fine shivering-like finger twitching provoked mainly by action and posture. Surface EMG showed relatively rhythmic discharge at a rate of about 9 Hz, which resembled essential tremor. However, electrophysiologic studies revealed giant somatosensory evoked potentials (SEPs) with enhanced long-loop reflex and premovement cortical spike by the jerk-locked averaging method. Treatment with beta-blocker showed no effect, but anticonvulsants such as clonazepam, valproate, and primidone were effective to suppress the tremor and the amplitude of SEPs. We call this involuntary movement "cortical tremor," which is in fact a variant of cortical reflex myoclonus.

  17. Minimally conscious state or cortically mediated state?

    Science.gov (United States)

    Naccache, Lionel

    2018-04-01

    Durable impairments of consciousness are currently classified in three main neurological categories: comatose state, vegetative state (also recently coined unresponsive wakefulness syndrome) and minimally conscious state. While the introduction of minimally conscious state, in 2002, was a major progress to help clinicians recognize complex non-reflexive behaviours in the absence of functional communication, it raises several problems. The most important issue related to minimally conscious state lies in its criteria: while behavioural definition of minimally conscious state lacks any direct evidence of patient's conscious content or conscious state, it includes the adjective 'conscious'. I discuss this major problem in this review and propose a novel interpretation of minimally conscious state: its criteria do not inform us about the potential residual consciousness of patients, but they do inform us with certainty about the presence of a cortically mediated state. Based on this constructive criticism review, I suggest three proposals aiming at improving the way we describe the subjective and cognitive state of non-communicating patients. In particular, I present a tentative new classification of impairments of consciousness that combines behavioural evidence with functional brain imaging data, in order to probe directly and univocally residual conscious processes.

  18. Prominent microglial activation in cortical white matter is selectively associated with cortical atrophy in primary progressive aphasia.

    Science.gov (United States)

    Ohm, Daniel T; Kim, Garam; Gefen, Tamar; Rademaker, Alfred; Weintraub, Sandra; Bigio, Eileen; Mesulam, M-Marsel; Rogalski, Emily; Geula, Changiz

    2018-04-21

    Primary progressive aphasia (PPA) is a clinical syndrome characterized by selective language impairments associated with focal cortical atrophy favouring the language dominant hemisphere. PPA is associated with Alzheimer's disease (AD), frontotemporal lobar degeneration (FTLD), and significant accumulation of activated microglia. Activated microglia can initiate an inflammatory cascade that may contribute to neurodegeneration, but their quantitative distribution in cortical white matter and their relationship with cortical atrophy are unknown. We investigated white matter activated microglia and their association with grey matter atrophy in 10 PPA cases with either AD or FTLD-TDP pathology. Activated microglia were quantified with optical density measures of HLA-DR immunoreactivity in two regions with peak cortical atrophy, and one non-atrophied region within the language dominant hemisphere of each PPA case. Non-atrophied contralateral homologues of the language dominant regions were examined for hemispheric asymmetry. Qualitatively, greater densities of activated microglia were observed in cortical white matter when compared to grey matter. Quantitative analyses revealed significantly greater densities of activated microglia in the white matter of atrophied regions compared to non-atrophied regions in the language dominant hemisphere (p<0.05). Atrophied regions of the language dominant hemisphere also showed significantly more activated microglia compared to contralateral homologues (p<0.05). White matter activated microglia accumulate more in atrophied regions in the language dominant hemisphere of PPA. While microglial activation may constitute a response to neurodegenerative processes in white matter, the resultant inflammatory processes may also exacerbate disease progression and contribute to cortical atrophy. This article is protected by copyright. All rights reserved. This article is protected by copyright. All rights reserved.

  19. Impaired Driving

    Science.gov (United States)

    ... Get the Facts What Works: Strategies to Increase Car Seat and Booster Seat ... narcotics. 3 That’s one percent of the 111 million self-reported episodes of alcohol-impaired driving among U.S. ...

  20. Horizontal integration and cortical dynamics.

    Science.gov (United States)

    Gilbert, C D

    1992-07-01

    We have discussed several results that lead to a view that cells in the visual system are endowed with dynamic properties, influenced by context, expectation, and long-term modifications of the cortical network. These observations will be important for understanding how neuronal ensembles produce a system that perceives, remembers, and adapts to injury. The advantage to being able to observe changes at early stages in a sensory pathway is that one may be able to understand the way in which neuronal ensembles encode and represent images at the level of their receptive field properties, of cortical topographies, and of the patterns of connections between cells participating in a network.

  1. Sleep-related hippocampo-cortical interplay during emotional memory recollection.

    Directory of Open Access Journals (Sweden)

    Virginie Sterpenich

    2007-10-01

    Full Text Available Emotional events are usually better remembered than neutral ones. This effect is mediated in part by a modulation of the hippocampus by the amygdala. Sleep plays a role in the consolidation of declarative memory. We examined the impact of sleep and lack of sleep on the consolidation of emotional (negative and positive memories at the macroscopic systems level. Using functional MRI (fMRI, we compared the neural correlates of successful recollection by humans of emotional and neutral stimuli, 72 h after encoding, with or without total sleep deprivation during the first post-encoding night. In contrast to recollection of neutral and positive stimuli, which was deteriorated by sleep deprivation, similar recollection levels were achieved for negative stimuli in both groups. Successful recollection of emotional stimuli elicited larger responses in the hippocampus and various cortical areas, including the medial prefrontal cortex, in the sleep group than in the sleep deprived group. This effect was consistent across subjects for negative items but depended linearly on individual memory performance for positive items. In addition, the hippocampus and medial prefrontal cortex were functionally more connected during recollection of either negative or positive than neutral items, and more so in sleeping than in sleep-deprived subjects. In the sleep-deprived group, recollection of negative items elicited larger responses in the amygdala and an occipital area than in the sleep group. In contrast, no such difference in brain responses between groups was associated with recollection of positive stimuli. The results suggest that the emotional significance of memories influences their sleep-dependent systems-level consolidation. The recruitment of hippocampo-neocortical networks during recollection is enhanced after sleep and is hindered by sleep deprivation. After sleep deprivation, recollection of negative, potentially dangerous, memories recruits an alternate

  2. Is cortical bone hip? What determines cortical bone properties?

    Science.gov (United States)

    Epstein, Sol

    2007-07-01

    Increased bone turnover may produce a disturbance in bone structure which may result in fracture. In cortical bone, both reduction in turnover and increase in hip bone mineral density (BMD) may be necessary to decrease hip fracture risk and may require relatively greater proportionate changes than for trabecular bone. It should also be noted that increased porosity produces disproportionate reduction in bone strength, and studies have shown that increased cortical porosity and decreased cortical thickness are associated with hip fracture. Continued studies for determining the causes of bone strength and deterioration show distinct promise. Osteocyte viability has been observed to be an indicator of bone strength, with viability as the result of maintaining physiological levels of loading and osteocyte apoptosis as the result of a decrease in loading. Osteocyte apoptosis and decrease are major factors in the bone loss and fracture associated with aging. Both the osteocyte and periosteal cell layer are assuming greater importance in the process of maintaining skeletal integrity as our knowledge of these cells expand, as well being a target for pharmacological agents to reduce fracture especially in cortical bone. The bisphosphonate alendronate has been seen to have a positive effect on cortical bone by allowing customary periosteal growth, while reducing the rate of endocortical bone remodeling and slowing bone loss from the endocortical surface. Risedronate treatment effects were attributed to decrease in bone resorption and thus a decrease in fracture risk. Ibandronate has been seen to increase BMD as the spine and femur as well as a reduced incidence of new vertebral fractures and non vertebral on subset post hoc analysis. And treatment with the anabolic agent PTH(1-34) documented modeling and remodelling of quiescent and active bone surfaces. Receptor activator of nuclear factor kappa B ligand (RANKL) plays a key role in bone destruction, and the human monoclonal

  3. Reversible cortical blindness in a case of hepatic encephalopathy

    Directory of Open Access Journals (Sweden)

    Amlan Kanti Biswas

    2016-01-01

    Full Text Available Hepatic encephalopathy is a frequent and often fatal manifestation of chronic liver disease. The pathogenesis of hepatic encephalopathy is believed to be multifactorial including impaired blood-brain barrier function, imbalance between the excitatory and inhibitory neurotransmitters in cortex, accumulation of various toxic and false neurotransmitters, and lack of nutrients like oxygen and glucose. Signs and symptoms of hepatic encephalopathy varies and commonly ranges from personality changes, disturbed consciousness, sleep pattern alternation, intellectual deterioration, speech disturbances, asterixis to frank coma and even death. Reversible or transient cortical blindness is rare manifestation of hepatic encephalopathy. It may even precede the phase of altered consciousness in such patients. Very few similar cases have been reported worldwide. Hence, we would like to report a case of transient cortical blindness in a patient of hepatic encephalopathy.

  4. Physical Impairment

    Science.gov (United States)

    Trewin, Shari

    Many health conditions can lead to physical impairments that impact computer and Web access. Musculoskeletal conditions such as arthritis and cumulative trauma disorders can make movement stiff and painful. Movement disorders such as tremor, Parkinsonism and dystonia affect the ability to control movement, or to prevent unwanted movements. Often, the same underlying health condition also has sensory or cognitive effects. People with dexterity impairments may use a standard keyboard and mouse, or any of a wide range of alternative input mechanisms. Examples are given of the diverse ways that specific dexterity impairments and input mechanisms affect the fundamental actions of Web browsing. As the Web becomes increasingly sophisticated, and physically demanding, new access features at the Web browser and page level will be necessary.

  5. Impairment of Procedural Learning and Motor Intracortical Inhibition in Neurofibromatosis Type 1 Patients

    Directory of Open Access Journals (Sweden)

    Máximo Zimerman

    2015-10-01

    Interpretations: Collectively, the present results provide evidence that learning of a motor skill is impaired even in clinically intact NF1 patients based, at least partially, on a GABAergic-cortical dysfunctioning as suggested in previous animal work.

  6. Obstructive sleep apnea and cortical thickness in females and males.

    Science.gov (United States)

    Macey, Paul M; Haris, Natasha; Kumar, Rajesh; Thomas, M Albert; Woo, Mary A; Harper, Ronald M

    2018-01-01

    Obstructive sleep apnea (OSA) affects approximately 10% of adults, and alters brain gray and white matter. Psychological and physiological symptoms of the disorder are sex-specific, perhaps related to greater injury occurs in female than male patients in white matter. Our objective was to identify influences of OSA separated by sex on cortical gray matter. We assessed cortical thickness in 48 mild-severe OSA patients (mean age±std[range] = 46.5±9.0[30.8-62.7] years; apnea-hypopnea index = 32.6±21.1[6-102] events/hour; 12 female, 36 male; OSA severity: 5 mild, 18 moderate, 25 severe) and 62 controls (mean age = 47.7±8.9[30.9-65.8] years; 22 female, 40 male). All OSA patients were recently-diagnosed via polysomnography, and control subjects screened and a subset assessed with sleep studies. We used high-resolution magnetic resonance imaging to identify OSA-related cortical thinning, based on a model with condition and sex as independent variables. OSA and OSA-by-sex interaction effects were assessed (Pfrontal lobe in female OSA vs. all other groups. Significant thinning within the pre- and post-central gyri and the superior temporal gyrus, extending into the insula, appeared between the general OSA populations vs. control subjects. No areas showed increased thickness in OSA vs. controls or positive female OSA interaction effects. Reduced cortical thickness likely represents tissue atrophy from long term injury, including death of neurons and supporting glia from repeated intermittent hypoxic exposure in OSA, although disease comordities may also contribute to thinning. Lack of polysomnography in all control subjects means results may be confounded by undiagnosed OSA. The greater cortical injury in cognitive areas of female OSA patients may underlie enhanced symptoms in that group. The thinning associated with OSA in male and females OSA patients may contribute to autonomic dysregulation and impaired upper airway sensori-motor function.

  7. Pitch-Responsive Cortical Regions in Congenital Amusia.

    Science.gov (United States)

    Norman-Haignere, Sam V; Albouy, Philippe; Caclin, Anne; McDermott, Josh H; Kanwisher, Nancy G; Tillmann, Barbara

    2016-03-09

    Congenital amusia is a lifelong deficit in music perception thought to reflect an underlying impairment in the perception and memory of pitch. The neural basis of amusic impairments is actively debated. Some prior studies have suggested that amusia stems from impaired connectivity between auditory and frontal cortex. However, it remains possible that impairments in pitch coding within auditory cortex also contribute to the disorder, in part because prior studies have not measured responses from the cortical regions most implicated in pitch perception in normal individuals. We addressed this question by measuring fMRI responses in 11 subjects with amusia and 11 age- and education-matched controls to a stimulus contrast that reliably identifies pitch-responsive regions in normal individuals: harmonic tones versus frequency-matched noise. Our findings demonstrate that amusic individuals with a substantial pitch perception deficit exhibit clusters of pitch-responsive voxels that are comparable in extent, selectivity, and anatomical location to those of control participants. We discuss possible explanations for why amusics might be impaired at perceiving pitch relations despite exhibiting normal fMRI responses to pitch in their auditory cortex: (1) individual neurons within the pitch-responsive region might exhibit abnormal tuning or temporal coding not detectable with fMRI, (2) anatomical tracts that link pitch-responsive regions to other brain areas (e.g., frontal cortex) might be altered, and (3) cortical regions outside of pitch-responsive cortex might be abnormal. The ability to identify pitch-responsive regions in individual amusic subjects will make it possible to ask more precise questions about their role in amusia in future work. Copyright © 2016 the authors 0270-6474/16/362986-09$15.00/0.

  8. Cortical-Cortical Interactions And Sensory Information Processing in Autism

    Science.gov (United States)

    2008-04-30

    significant development for disseminating the results of biomedical research in our lifetime." Sir Paul Nurse , Cancer Research UK Your research papers...of the evidence for local cortical over-connectivity is anecdotal. Belmonte and colleagues suggested the co-morbidity with epilepsy that is highly...Tomma-Halme J, Lahti-Nuuttila P, Service E, Virsu V: Rate of information segregation in developmentally dyslexic children . Brain Lang 2000, 75:66-81

  9. Spatiotemporal Propagation of the Cortical Atrophy: Population and Individual Patterns

    Directory of Open Access Journals (Sweden)

    Igor Koval

    2018-05-01

    Full Text Available Repeated failures in clinical trials for Alzheimer’s disease (AD have raised a strong interest for the prodromal phase of the disease. A better understanding of the brain alterations during this early phase is crucial to diagnose patients sooner, to estimate an accurate disease stage, and to give a reliable prognosis. According to recent evidence, structural alterations in the brain are likely to be sensitive markers of the disease progression. Neuronal loss translates in specific spatiotemporal patterns of cortical atrophy, starting in the enthorinal cortex and spreading over other cortical regions according to specific propagation pathways. We developed a digital model of the cortical atrophy in the left hemisphere from prodromal to diseased phases, which is built on the temporal alignment and combination of several short-term observation data to reconstruct the long-term history of the disease. The model not only provides a description of the spatiotemporal patterns of cortical atrophy at the group level but also shows the variability of these patterns at the individual level in terms of difference in propagation pathways, speed of propagation, and age at propagation onset. Longitudinal MRI datasets of patients with mild cognitive impairments who converted to AD are used to reconstruct the cortical atrophy propagation across all disease stages. Each observation is considered as a signal spatially distributed on a network, such as the cortical mesh, each cortex location being associated to a node. We consider how the temporal profile of the signal varies across the network nodes. We introduce a statistical mixed-effect model to describe the evolution of the cortex alterations. To ensure a spatiotemporal smooth propagation of the alterations, we introduce a constrain on the propagation signal in the model such that neighboring nodes have similar profiles of the signal changes. Our generative model enables the reconstruction of personalized

  10. Sleep-Dependent Consolidation of Statistical Learning

    Science.gov (United States)

    Durrant, Simon J.; Taylor, Charlotte; Cairney, Scott; Lewis, Penelope A.

    2011-01-01

    The importance of sleep for memory consolidation has been firmly established over the past decade. Recent work has extended this by suggesting that sleep is also critical for the integration of disparate fragments of information into a unified schema, and for the abstraction of underlying rules. The question of which aspects of sleep play a…

  11. Imprinting and recalling cortical ensembles.

    Science.gov (United States)

    Carrillo-Reid, Luis; Yang, Weijian; Bando, Yuki; Peterka, Darcy S; Yuste, Rafael

    2016-08-12

    Neuronal ensembles are coactive groups of neurons that may represent building blocks of cortical circuits. These ensembles could be formed by Hebbian plasticity, whereby synapses between coactive neurons are strengthened. Here we report that repetitive activation with two-photon optogenetics of neuronal populations from ensembles in the visual cortex of awake mice builds neuronal ensembles that recur spontaneously after being imprinted and do not disrupt preexisting ones. Moreover, imprinted ensembles can be recalled by single- cell stimulation and remain coactive on consecutive days. Our results demonstrate the persistent reconfiguration of cortical circuits by two-photon optogenetics into neuronal ensembles that can perform pattern completion. Copyright © 2016, American Association for the Advancement of Science.

  12. Gray matter trophism, cognitive impairment, and depression in patients with multiple sclerosis.

    Science.gov (United States)

    Pravatà, Emanuele; Rocca, Maria A; Valsasina, Paola; Riccitelli, Gianna C; Gobbi, Claudio; Comi, Giancarlo; Falini, Andrea; Filippi, Massimo

    2017-12-01

    Cognitive impairment and depression frequently affects patients with multiple sclerosis (MS). However, the relationship between the occurrence of depression and cognitive impairment and the development of cortical atrophy has not been fully elucidated yet. To investigate the association of cortical and deep gray matter (GM) volume with depression and cognitive impairment in MS. Three-dimensional (3D) T1-weighted scans were obtained from 126 MS patients and 59 matched healthy controls. Cognitive impairment was assessed using the Brief Repeatable Battery of Neuropsychological Tests and depression with the Montgomery-Asberg Depression Rating Scale (MADRS). Using FreeSurfer and FIRST software, we assessed cortical thickness (CTh) and deep GM volumetry. Magnetic resonance imaging (MRI) variables explaining depression and cognitive impairment were investigated using factorial and classification analysis. Multivariate regression models correlated GM abnormalities with symptoms severity. Compared with controls, MS patients exhibited widespread bilateral cortical thinning involving all brain lobes. Depressed MS showed selective CTh decrease in fronto-temporal regions, whereas cognitive impairment MS exhibited widespread fronto-parietal cortical and subcortical GM atrophy. Frontal cortical thinning was the best predictor of depression ( C-statistic = 0.7), whereas thinning of the right precuneus and high T2 lesion volume best predicted cognitive impairment ( C-statistic = 0.8). MADRS severity correlated with right entorhinal cortex thinning, whereas cognitive impairment severity correlated with left entorhinal and thalamus atrophy. MS-related depression is linked to circumscribed CTh changes in areas deputed to emotional behavior, whereas cognitive impairment is correlated with cortical and subcortical GM atrophy of circuits involved in cognition.

  13. Incidental Transient Cortical Blindness after Lung Resection

    Science.gov (United States)

    Oncel, Murat; Sunam, Guven Sadi; Varoglu, Asuman Orhan; Karabagli, Hakan; Yildiran, Huseyin

    2016-01-01

    Transient vision loss after major surgical procedures is a rare clinical complication. The most common etiologies are cardiac, spinal, head, and neck surgeries. There has been no report on vision loss after lung resection. A 65-year-old man was admitted to our clinic with lung cancer. Resection was performed using right upper lobectomy with no complications. Cortical blindness developed 12 hours later in the postoperative period. Results from magnetic resonance imaging and diffusion-weighted investigations were normal. The neurologic examination was normal. The blood glucose level was 92 mg/dL and blood gas analysis showed a PO 2 of 82 mm Hg. After 24 hours, the patient began to see and could count fingers, and his vision was fully restored within 72 hours after this point. Autonomic dysfunction due to impaired microvascular structures in diabetes mellitus may induce posterior circulation dysfunction, even when the hemodynamic state is normal in the perioperative period. The physician must keep in mind that vision loss may occur after lung resection due to autonomic dysfunction, especially in older patients with diabetes mellitus. PMID:28824977

  14. [Schizophrenia and cortical GABA neurotransmission].

    Science.gov (United States)

    Hashimoto, Takanori; Matsubara, Takuro; Lewis, David A

    2010-01-01

    -synaptic GABA-A receptors. Our recent analyses demonstrated that this pattern exists across diverse cortical areas including the prefrontal, anterior cingulate, primary motor, and primary visual cortices. GABA neurotransmission by PV-containing and SST-containing neurons is important for the generation of cortical oscillatory activities in the gamma (30-100 Hz) and theta (4-7 Hz) bands, respectively. These oscillatory activities have been proposed to play critical roles in regulating the efficiency of information transfer between neurons and neuronal networks in the cortex. Altered cortical GABA neurotransmission appears to contribute to disturbances in diverse functions through affecting the generation of cortical oscillations in schizophrenia.

  15. Motor features in posterior cortical atrophy and their imaging correlates.

    Science.gov (United States)

    Ryan, Natalie S; Shakespeare, Timothy J; Lehmann, Manja; Keihaninejad, Shiva; Nicholas, Jennifer M; Leung, Kelvin K; Fox, Nick C; Crutch, Sebastian J

    2014-12-01

    Posterior cortical atrophy (PCA) is a neurodegenerative syndrome characterized by impaired higher visual processing skills; however, motor features more commonly associated with corticobasal syndrome may also occur. We investigated the frequency and clinical characteristics of motor features in 44 PCA patients and, with 30 controls, conducted voxel-based morphometry, cortical thickness, and subcortical volumetric analyses of their magnetic resonance imaging. Prominent limb rigidity was used to define a PCA-motor subgroup. A total of 30% (13) had PCA-motor; all demonstrating asymmetrical left upper limb rigidity. Limb apraxia was more frequent and asymmetrical in PCA-motor, as was myoclonus. Tremor and alien limb phenomena only occurred in this subgroup. The subgroups did not differ in neuropsychological test performance or apolipoprotein E4 allele frequency. Greater asymmetry of atrophy occurred in PCA-motor, particularly involving right frontoparietal and peri-rolandic cortices, putamen, and thalamus. The 9 patients (including 4 PCA-motor) with pathology or cerebrospinal fluid all showed evidence of Alzheimer's disease. Our data suggest that PCA patients with motor features have greater atrophy of contralateral sensorimotor areas but are still likely to have underlying Alzheimer's disease. Copyright © 2014 The Authors. Published by Elsevier Inc. All rights reserved.

  16. Motor features in posterior cortical atrophy and their imaging correlates☆

    Science.gov (United States)

    Ryan, Natalie S.; Shakespeare, Timothy J.; Lehmann, Manja; Keihaninejad, Shiva; Nicholas, Jennifer M.; Leung, Kelvin K.; Fox, Nick C.; Crutch, Sebastian J.

    2014-01-01

    Posterior cortical atrophy (PCA) is a neurodegenerative syndrome characterized by impaired higher visual processing skills; however, motor features more commonly associated with corticobasal syndrome may also occur. We investigated the frequency and clinical characteristics of motor features in 44 PCA patients and, with 30 controls, conducted voxel-based morphometry, cortical thickness, and subcortical volumetric analyses of their magnetic resonance imaging. Prominent limb rigidity was used to define a PCA-motor subgroup. A total of 30% (13) had PCA-motor; all demonstrating asymmetrical left upper limb rigidity. Limb apraxia was more frequent and asymmetrical in PCA-motor, as was myoclonus. Tremor and alien limb phenomena only occurred in this subgroup. The subgroups did not differ in neuropsychological test performance or apolipoprotein E4 allele frequency. Greater asymmetry of atrophy occurred in PCA-motor, particularly involving right frontoparietal and peri-rolandic cortices, putamen, and thalamus. The 9 patients (including 4 PCA-motor) with pathology or cerebrospinal fluid all showed evidence of Alzheimer's disease. Our data suggest that PCA patients with motor features have greater atrophy of contralateral sensorimotor areas but are still likely to have underlying Alzheimer's disease. PMID:25086839

  17. Bipolar disorder type I and II show distinct relationships between cortical thickness and executive function.

    Science.gov (United States)

    Abé, C; Rolstad, S; Petrovic, P; Ekman, C-J; Sparding, T; Ingvar, M; Landén, M

    2018-06-15

    Frontal cortical abnormalities and executive function impairment co-occur in bipolar disorder. Recent studies have shown that bipolar subtypes differ in the degree of structural and functional impairments. The relationships between cognitive performance and cortical integrity have not been clarified and might differ across patients with bipolar disorder type I, II, and healthy subjects. Using a vertex-wise whole-brain analysis, we investigated how cortical integrity, as measured by cortical thickness, correlates with executive performance in patients with bipolar disorder type I, II, and controls (N = 160). We found focal associations between executive function and cortical thickness in the medial prefrontal cortex in bipolar II patients and controls, but not in bipolar I disorder. In bipolar II patients, we observed additional correlations in lateral prefrontal and occipital regions. Our findings suggest that bipolar disorder patients show altered structure-function relationships, and importantly that those relationships may differ between bipolar subtypes. The findings are line with studies suggesting subtype-specific neurobiological and cognitive profiles. This study contributes to a better understanding of brain structure-function relationships in bipolar disorder and gives important insights into the neuropathophysiology of diagnostic subtypes. © 2018 The Authors Acta Psychiatrica Scandinavica Published by John Wiley & Sons Ltd.

  18. Spatial localization deficits and auditory cortical dysfunction in schizophrenia

    Science.gov (United States)

    Perrin, Megan A.; Butler, Pamela D.; DiCostanzo, Joanna; Forchelli, Gina; Silipo, Gail; Javitt, Daniel C.

    2014-01-01

    Background Schizophrenia is associated with deficits in the ability to discriminate auditory features such as pitch and duration that localize to primary cortical regions. Lesions of primary vs. secondary auditory cortex also produce differentiable effects on ability to localize and discriminate free-field sound, with primary cortical lesions affecting variability as well as accuracy of response. Variability of sound localization has not previously been studied in schizophrenia. Methods The study compared performance between patients with schizophrenia (n=21) and healthy controls (n=20) on sound localization and spatial discrimination tasks using low frequency tones generated from seven speakers concavely arranged with 30 degrees separation. Results For the sound localization task, patients showed reduced accuracy (p=0.004) and greater overall response variability (p=0.032), particularly in the right hemifield. Performance was also impaired on the spatial discrimination task (p=0.018). On both tasks, poorer accuracy in the right hemifield was associated with greater cognitive symptom severity. Better accuracy in the left hemifield was associated with greater hallucination severity on the sound localization task (p=0.026), but no significant association was found for the spatial discrimination task. Conclusion Patients show impairments in both sound localization and spatial discrimination of sounds presented free-field, with a pattern comparable to that of individuals with right superior temporal lobe lesions that include primary auditory cortex (Heschl’s gyrus). Right primary auditory cortex dysfunction may protect against hallucinations by influencing laterality of functioning. PMID:20619608

  19. Quantifying indices of short- and long-range white matter connectivity at each cortical vertex.

    Directory of Open Access Journals (Sweden)

    Maria Carmela Padula

    Full Text Available Several neurodevelopmental diseases are characterized by impairments in cortical morphology along with altered white matter connectivity. However, the relationship between these two measures is not yet clear. In this study, we propose a novel methodology to compute and display metrics of white matter connectivity at each cortical point. After co-registering the extremities of the tractography streamlines with the cortical surface, we computed two measures of connectivity at each cortical vertex: the mean tracts' length, and the proportion of short- and long-range connections. The proposed measures were tested in a clinical sample of 62 patients with 22q11.2 deletion syndrome (22q11DS and 57 typically developing individuals. Using these novel measures, we achieved a fine-grained visualization of the white matter connectivity patterns at each vertex of the cortical surface. We observed an intriguing pattern of both increased and decreased short- and long-range connectivity in 22q11DS, that provides novel information about the nature and topology of white matter alterations in the syndrome. We argue that the method presented in this study opens avenues for additional analyses of the relationship between cortical properties and patterns of underlying structural connectivity, which will help clarifying the intrinsic mechanisms that lead to altered brain structure in neurodevelopmental disorders.

  20. Age effects on cortical thickness in young Down's syndrome subjects: a cross-sectional gender study

    International Nuclear Information System (INIS)

    Romano, Andrea; Moraschi, Marta; Cornia, Riccardo; Stella, Giacomo; Bozzao, Alessandro; Gagliardo, Olga; Chiacchiararelli, Laura; Iani, Cristina; Albertini, Giorgio; Pierallini, Alberto

    2015-01-01

    The aim of this study was to determine differences in the characteristic pattern of age-related cortical thinning in men and women with Down's syndrome (DS) by means of MRI and automatic cortical thickness measurements and a cross-sectional design, in a large cohort of young subjects. Eighty-four subjects with DS, 30 females (11-35 years, mean age ± SD = 22.8 ± 5.9) and 54 males (11-35 years, mean age ± SD = 21.5 ± 6.5), were examined using a 1.5-T scanner. MRI-based quantification of cortical thickness was performed using FreeSurfer software package. For all subjects participating in the study, the Pearson product-moment correlation coefficient between age and mean cortical thickness values has been evaluated. A significant negative correlation between cortical thickness and age was found in female DS subjects, predominantly in frontal and parietal lobes, bilaterally. In male DS subjects, a significant negative correlation between cortical thickness and age was found in the right fronto-temporal lobes and cingulate regions. Whole brain mean cortical thickness values were significantly negative correlated with age only in female DS subjects. Females with Down's syndrome showed a strong correlation between cortical thickness and age, already in early age. We suggest that the cognitive impairment due to hormonal deficit in the postmenopausal period could be emphasized by the early structural decline of gray matter in female DS subjects. (orig.)

  1. Age effects on cortical thickness in young Down's syndrome subjects: a cross-sectional gender study

    Energy Technology Data Exchange (ETDEWEB)

    Romano, Andrea; Moraschi, Marta [San Raffaele Foundation Rome, Rehabilitation Facility Ceglie Messapica, Rome (Italy); Cornia, Riccardo; Stella, Giacomo [University of Modena and Reggio Emilia, Department of Education and Human Sciences, Emilia-Romagna (Italy); Bozzao, Alessandro; Gagliardo, Olga [University Sapienza, NESMOS, Department of Neuroradiology, S. Andrea Hospital, Rome (Italy); Chiacchiararelli, Laura [University Sapienza, Department of Medical Physics, S. Andrea Hospital, Rome (Italy); Iani, Cristina [University of Modena and Reggio Emilia, Department of Communication and Economy, Emilia-Romagna (Italy); Albertini, Giorgio [IRCSS San Raffaele Pisana, Department of Paediatrics, Rome (Italy); Pierallini, Alberto [IRCSS San Raffaele Pisana, Department of Radiology, Rome (Italy)

    2015-04-01

    The aim of this study was to determine differences in the characteristic pattern of age-related cortical thinning in men and women with Down's syndrome (DS) by means of MRI and automatic cortical thickness measurements and a cross-sectional design, in a large cohort of young subjects. Eighty-four subjects with DS, 30 females (11-35 years, mean age ± SD = 22.8 ± 5.9) and 54 males (11-35 years, mean age ± SD = 21.5 ± 6.5), were examined using a 1.5-T scanner. MRI-based quantification of cortical thickness was performed using FreeSurfer software package. For all subjects participating in the study, the Pearson product-moment correlation coefficient between age and mean cortical thickness values has been evaluated. A significant negative correlation between cortical thickness and age was found in female DS subjects, predominantly in frontal and parietal lobes, bilaterally. In male DS subjects, a significant negative correlation between cortical thickness and age was found in the right fronto-temporal lobes and cingulate regions. Whole brain mean cortical thickness values were significantly negative correlated with age only in female DS subjects. Females with Down's syndrome showed a strong correlation between cortical thickness and age, already in early age. We suggest that the cognitive impairment due to hormonal deficit in the postmenopausal period could be emphasized by the early structural decline of gray matter in female DS subjects. (orig.)

  2. MRI of focal cortical dysplasia

    International Nuclear Information System (INIS)

    Lee, B.C.P.; Hatfield, G.A.; Bourgeois, B.; Park, T.S.

    1998-01-01

    We studied nine cases of focal cortical dysplasia (FCD) by MRI, with surface-rendered 3D reconstructions. One case was also examined using single-voxel proton MR spectroscopy (MRS). The histological features were reviewed and correlated with the MRI findings. The gyri affected by FCD were enlarged and the signal of the cortex was slightly increased on T1-weighted images. The gray-white junction was indistinct. Signal from the subcortical white matter was decreased on T1- and increased on T2-weighted images in most cases. Contrast enhancement was seen in two cases. Proton MRS showed a spectrum identical to that of normal brain. (orig.) (orig.)

  3. Differential impact of partial cortical blindness on gaze strategies when sitting and walking - an immersive virtual reality study.

    Science.gov (United States)

    Iorizzo, Dana B; Riley, Meghan E; Hayhoe, Mary; Huxlin, Krystel R

    2011-05-25

    The present experiments aimed to characterize the visual performance of subjects with long-standing, unilateral cortical blindness when walking in a naturalistic, virtual environment. Under static, seated testing conditions, cortically blind subjects are known to exhibit compensatory eye movement strategies. However, they still complain of significant impairment in visual detection during navigation. To assess whether this is due to a change in compensatory eye movement strategy between sitting and walking, we measured eye and head movements in subjects asked to detect peripherally-presented, moving basketballs. When seated, cortically blind subjects detected ∼80% of balls, while controls detected almost all balls. Seated blind subjects did not make larger head movements than controls, but they consistently biased their fixation distribution towards their blind hemifield. When walking, head movements were similar in the two groups, but the fixation bias decreased to the point that fixation distribution in cortically blind subjects became similar to that in controls - with one major exception: at the time of basketball appearance, walking controls looked primarily at the far ground, in upper quadrants of the virtual field of view; cortically blind subjects looked significantly more at the near ground, in lower quadrants of the virtual field. Cortically blind subjects detected only 58% of the balls when walking while controls detected ∼90%. Thus, the adaptive gaze strategies adopted by cortically blind individuals as a compensation for their visual loss are strongest and most effective when seated and stationary. Walking significantly alters these gaze strategies in a way that seems to favor walking performance, but impairs peripheral target detection. It is possible that this impairment underlies the experienced difficulty of those with cortical blindness when navigating in real life. Copyright © 2011 Elsevier Ltd. All rights reserved.

  4. Acute hepatic encephalopathy with diffuse cortical lesions

    Energy Technology Data Exchange (ETDEWEB)

    Arnold, S.M.; Spreer, J.; Schumacher, M. [Section of Neuroradiology, Univ. of Freiburg (Germany); Els, T. [Dept. of Neurology, University of Freiburg (Germany)

    2001-07-01

    Acute hepatic encephalopathy is a poorly defined syndrome of heterogeneous aetiology. We report a 49-year-old woman with alcoholic cirrhosis and hereditary haemorrhagic telangiectasia who developed acute hepatic coma induced by severe gastrointestinal bleeding. Laboratory analysis revealed excessively elevated blood ammonia. MRI showed lesions compatible with chronic hepatic encephalopathy and widespread cortical signal change sparing the perirolandic and occipital cortex. The cortical lesions resembled those of hypoxic brain damage and were interpreted as acute toxic cortical laminar necrosis. (orig.)

  5. Communication and Wiring in the Cortical Connectome

    Directory of Open Access Journals (Sweden)

    Julian eBudd

    2012-10-01

    Full Text Available In cerebral cortex, the huge mass of axonal wiring that carries information between near and distant neurons is thought to provide the neural substrate for cognitive and perceptual function. The goal of mapping the connectivity of cortical axons at different spatial scales, the cortical connectome, is to trace the paths of information flow in cerebral cortex. To appreciate the relationship between the connectome and cortical function, we need to discover the nature and purpose of the wiring principles underlying cortical connectivity. A popular explanation has been that axonal length is strictly minimized both within and between cortical regions. In contrast, we have hypothesized the existence of a multi-scale principle of cortical wiring where to optimise communication there is a trade-off between spatial (construction and temporal (routing costs. Here, using recent evidence concerning cortical spatial networks we critically evaluate this hypothesis at neuron, local circuit, and pathway scales. We report three main conclusions. First, the axonal and dendritic arbor morphology of single neocortical neurons may be governed by a similar wiring principle, one that balances the conservation of cellular material and conduction delay. Second, the same principle may be observed for fibre tracts connecting cortical regions. Third, the absence of sufficient local circuit data currently prohibits any meaningful assessment of the hypothesis at this scale of cortical organization. To avoid neglecting neuron and microcircuit levels of cortical organization, the connectome framework should incorporate more morphological description. In addition, structural analyses of temporal cost for cortical circuits should take account of both axonal conduction and neuronal integration delays, which appear mostly of the same order of magnitude. We conclude the hypothesized trade-off between spatial and temporal costs may potentially offer a powerful explanation for

  6. Acute hepatic encephalopathy with diffuse cortical lesions

    International Nuclear Information System (INIS)

    Arnold, S.M.; Spreer, J.; Schumacher, M.; Els, T.

    2001-01-01

    Acute hepatic encephalopathy is a poorly defined syndrome of heterogeneous aetiology. We report a 49-year-old woman with alcoholic cirrhosis and hereditary haemorrhagic telangiectasia who developed acute hepatic coma induced by severe gastrointestinal bleeding. Laboratory analysis revealed excessively elevated blood ammonia. MRI showed lesions compatible with chronic hepatic encephalopathy and widespread cortical signal change sparing the perirolandic and occipital cortex. The cortical lesions resembled those of hypoxic brain damage and were interpreted as acute toxic cortical laminar necrosis. (orig.)

  7. Cortical representations of communication sounds.

    Science.gov (United States)

    Heiser, Marc A; Cheung, Steven W

    2008-10-01

    This review summarizes recent research into cortical processing of vocalizations in animals and humans. There has been a resurgent interest in this topic accompanied by an increased number of studies using animal models with complex vocalizations and new methods in human brain imaging. Recent results from such studies are discussed. Experiments have begun to reveal the bilateral cortical fields involved in communication sound processing and the transformations of neural representations that occur among those fields. Advances have also been made in understanding the neuronal basis of interaction between developmental exposures and behavioral experiences with vocalization perception. Exposure to sounds during the developmental period produces large effects on brain responses, as do a variety of specific trained tasks in adults. Studies have also uncovered a neural link between the motor production of vocalizations and the representation of vocalizations in cortex. Parallel experiments in humans and animals are answering important questions about vocalization processing in the central nervous system. This dual approach promises to reveal microscopic, mesoscopic, and macroscopic principles of large-scale dynamic interactions between brain regions that underlie the complex phenomenon of vocalization perception. Such advances will yield a greater understanding of the causes, consequences, and treatment of disorders related to speech processing.

  8. Should Individuals Who Do Not Fit the Definition of "Visual Impairment" Be Excluded from Visual Impairment Services?

    Science.gov (United States)

    Morse, Mary T.

    2017-01-01

    Cerebral or cortical visual impairment (CVI) is not the unknown condition it was 50 years ago. Although research had been conducted and papers published, it was not until the 1980s that it really became an issue of concern and much debate for educators. This interest was primarily sparked by the increasing numbers of children who had been…

  9. Cognitive impairment in Parkinson's disease

    Directory of Open Access Journals (Sweden)

    Jing YUAN

    2017-07-01

    Full Text Available Parkinson's disease cognitive impairment (PD-CI is one of the major non-motor symtoms (NMS of PD, including Parkinson's disease with mild cognitive impairment (PD - MCI and Parkinson's disease dementia (PDD. Executive dysfunction is relatively prominent, but other cognitive domains as visuospatial ability, memory and language can also be affected. Main risk factors for PD-CI include male gender, advanced age, low education, severe motor symptoms, low baseline cognitive function and excessive daytime sleepiness (EDS. Lewy bodies are main pathological changes, and Alzheimer's disease (AD related pathological changes can also be seen. The application value of decreased α?synuclein (α-Syn and β-amyloid 1-42 (Aβ1-42 levels in cerebrospinal fluid (CSF as biomarkers remains controversial. There are few related research and no defined pathogenic genes currently. Both dopaminergic pathway and acetylcholinergic pathway are involved in the occurrence of PD - CI as demonstrated in PET studies. Cortical and subcortical atrophy are associated with PD - CI as observed in MRI studies. Olfactory dysfunction may be one of the predictors of cognitive impairment. PDD and dementia with Lewy bodies (DLB share common biological characteristics, therefore the differential diagnosis sometimes is difficult. Cholinesterase inhibitors (ChEIs and memantine help to improve clinical symptoms, but treatment decision should be made with individualization. Cognitive behavioral treatment (CBT has potential clinical value and should be investigated by more studies. DOI: 10.3969/j.issn.1672-6731.2017.06.004

  10. Somatosensory cortices are required for the acquisition of morphine-induced conditioned place preference.

    Directory of Open Access Journals (Sweden)

    Zhiqiang Meng

    Full Text Available BACKGROUND: Sensory system information is thought to play an important role in drug addiction related responses. However, how somatic sensory information participates in the drug related behaviors is still unclear. Many studies demonstrated that drug addiction represents a pathological usurpation of neural mechanisms of learning and memory that normally relate to the pursuit of rewards. Thus, elucidate the role of somatic sensory in drug related learning and memory is of particular importance to understand the neurobiological mechanisms of drug addiction. PRINCIPAL FINDINGS: In the present study, we investigated the role of somatosensory system in reward-related associative learning using the conditioned place preference model. Lesions were made in somatosensory cortices either before or after conditioning training. We found that lesion of somatosensory cortices before, rather than after morphine conditioning impaired the acquisition of place preference. CONCLUSION: These results demonstrate that somatosensory cortices are necessary for the acquisition but not retention of morphine induced place preference.

  11. Molecular imaging of serotonin degeneration in mild cognitive impairment.

    Science.gov (United States)

    Smith, Gwenn S; Barrett, Frederick S; Joo, Jin Hui; Nassery, Najlla; Savonenko, Alena; Sodums, Devin J; Marano, Christopher M; Munro, Cynthia A; Brandt, Jason; Kraut, Michael A; Zhou, Yun; Wong, Dean F; Workman, Clifford I

    2017-09-01

    Neuropathological and neuroimaging studies have consistently demonstrated degeneration of monoamine systems, especially the serotonin system, in normal aging and Alzheimer's disease. The evidence for degeneration of the serotonin system in mild cognitive impairment is limited. Thus, the goal of the present study was to measure the serotonin transporter in vivo in mild cognitive impairment and healthy controls. The serotonin transporter is a selective marker of serotonin terminals and of the integrity of serotonin projections to cortical, subcortical and limbic regions and is found in high concentrations in the serotonergic cell bodies of origin of these projections (raphe nuclei). Twenty-eight participants with mild cognitive impairment (age 66.6±6.9, 16 males) and 28 healthy, cognitively normal, demographically matched controls (age 66.2±7.1, 15 males) underwent magnetic resonance imaging for measurement of grey matter volumes and high-resolution positron emission tomography with well-established radiotracers for the serotonin transporter and regional cerebral blood flow. Beta-amyloid imaging was performed to evaluate, in combination with the neuropsychological testing, the likelihood of subsequent cognitive decline in the participants with mild cognitive impairment. The following hypotheses were tested: 1) the serotonin transporter would be lower in mild cognitive impairment compared to controls in cortical and limbic regions, 2) in mild cognitive impairment relative to controls, the serotonin transporter would be lower to a greater extent and observed in a more widespread pattern than lower grey matter volumes or lower regional cerebral blood flow and 3) lower cortical and limbic serotonin transporters would be correlated with greater deficits in auditory-verbal and visual-spatial memory in mild cognitive impairment, not in controls. Reduced serotonin transporter availability was observed in mild cognitive impairment compared to controls in cortical and limbic

  12. Response of cortical bone to antiresorptive treatment

    DEFF Research Database (Denmark)

    Hyldstrup, Lars; Jørgensen, J T; Sørensen, T K

    2001-01-01

    of the spine, hip, and forearm. Longitudinal changes in bone densitometry were compared with changes captured by DXR: BMD evaluated by DXR (BMDDXR), cortical thickness of the second metacarpal (CTMC2), and porosity of cortical bone. The expected annual postmenopausal reduction in BMD in the control group...... treatment regimens used in the prevention of osteoporosis....

  13. Perceptual learning and adult cortical plasticity.

    Science.gov (United States)

    Gilbert, Charles D; Li, Wu; Piech, Valentin

    2009-06-15

    The visual cortex retains the capacity for experience-dependent changes, or plasticity, of cortical function and cortical circuitry, throughout life. These changes constitute the mechanism of perceptual learning in normal visual experience and in recovery of function after CNS damage. Such plasticity can be seen at multiple stages in the visual pathway, including primary visual cortex. The manifestation of the functional changes associated with perceptual learning involve both long term modification of cortical circuits during the course of learning, and short term dynamics in the functional properties of cortical neurons. These dynamics are subject to top-down influences of attention, expectation and perceptual task. As a consequence, each cortical area is an adaptive processor, altering its function in accordance to immediate perceptual demands.

  14. Meningeal defects alter the tangential migration of cortical interneurons in Foxc1hith/hith mice

    Directory of Open Access Journals (Sweden)

    Zarbalis Konstantinos

    2012-01-01

    Full Text Available Abstract Background Tangential migration presents the primary mode of migration of cortical interneurons translocating into the cerebral cortex from subpallial domains. This migration takes place in multiple streams with the most superficial one located in the cortical marginal zone. While a number of forebrain-expressed molecules regulating this process have emerged, it remains unclear to what extent structures outside the brain, like the forebrain meninges, are involved. Results We studied a unique Foxc1 hypomorph mouse model (Foxc1hith/hith with meningeal defects and impaired tangential migration of cortical interneurons. We identified a territorial correlation between meningeal defects and disruption of interneuron migration along the adjacent marginal zone in these animals, suggesting that impaired meningeal integrity might be the primary cause for the observed migration defects. Moreover, we postulate that the meningeal factor regulating tangential migration that is affected in homozygote mutants is the chemokine Cxcl12. In addition, by using chromatin immunoprecipitation analysis, we provide evidence that the Cxcl12 gene is a direct transcriptional target of Foxc1 in the meninges. Further, we observe migration defects of a lesser degree in Cajal-Retzius cells migrating within the cortical marginal zone, indicating a less important role for Cxcl12 in their migration. Finally, the developmental migration defects observed in Foxc1hith/hith mutants do not lead to obvious differences in interneuron distribution in the adult if compared to control animals. Conclusions Our results suggest a critical role for the forebrain meninges to promote during development the tangential migration of cortical interneurons along the cortical marginal zone and Cxcl12 as the factor responsible for this property.

  15. Brain inflammation accompanies amyloid in the majority of mild cognitive impairment cases due to Alzheimer's disease.

    Science.gov (United States)

    Parbo, Peter; Ismail, Rola; Hansen, Kim V; Amidi, Ali; Mårup, Frederik H; Gottrup, Hanne; Brændgaard, Hans; Eriksson, Bengt O; Eskildsen, Simon F; Lund, Torben E; Tietze, Anna; Edison, Paul; Pavese, Nicola; Stokholm, Morten G; Borghammer, Per; Hinz, Rainer; Aanerud, Joel; Brooks, David J

    2017-07-01

    See Kreisl (doi:10.1093/awx151) for a scientific commentary on this article.Subjects with mild cognitive impairment associated with cortical amyloid-β have a greatly increased risk of progressing to Alzheimer's disease. We hypothesized that neuroinflammation occurs early in Alzheimer's disease and would be present in most amyloid-positive mild cognitive impairment cases. 11C-Pittsburgh compound B and 11C-(R)-PK11195 positron emission tomography was used to determine the amyloid load and detect the extent of neuroinflammation (microglial activation) in 42 mild cognitive impairment cases. Twelve age-matched healthy control subjects had 11C-Pittsburgh compound B and 10 healthy control subjects had 11C-(R)-PK11195 positron emission tomography for comparison. Amyloid-positivity was defined as 11C-Pittsburgh compound B target-to-cerebellar ratio above 1.5 within a composite cortical volume of interest. Supervised cluster analysis was used to generate parametric maps of 11C-(R)-PK11195 binding potential. Levels of 11C-(R)-PK11195 binding potential were measured in a selection of cortical volumes of interest and at a voxel level. Twenty-six (62%) of 42 mild cognitive impairment cases showed a raised cortical amyloid load compared to healthy controls. Twenty-two (85%) of the 26 amyloid-positive mild cognitive impairment cases showed clusters of increased cortical microglial activation accompanying the amyloid. There was a positive correlation between levels of amyloid load and 11C-(R)-PK11195 binding potentials at a voxel level within subregions of frontal, parietal and temporal cortices. 11C-(R)-PK11195 positron emission tomography reveals increased inflammation in a majority of amyloid positive mild cognitive impairment cases, its cortical distribution overlapping that of amyloid deposition. © The Author (2017). Published by Oxford University Press on behalf of the Guarantors of Brain. All rights reserved. For Permissions, please email: journals.permissions@oup.com.

  16. Mediterranean diet, micronutrients and macronutrients, and MRI measures of cortical thickness.

    Science.gov (United States)

    Staubo, Sara C; Aakre, Jeremiah A; Vemuri, Prashanthi; Syrjanen, Jeremy A; Mielke, Michelle M; Geda, Yonas E; Kremers, Walter K; Machulda, Mary M; Knopman, David S; Petersen, Ronald C; Jack, Clifford R; Roberts, Rosebud O

    2017-02-01

    The Mediterranean diet (MeDi) is associated with reduced risk of cognitive impairment, but it is unclear whether it is associated with better brain imaging biomarkers. Among 672 cognitively normal participants (mean age, 79.8 years, 52.5% men), we investigated associations of MeDi score and MeDi components with magnetic resonance imaging measures of cortical thickness for the four lobes separately and averaged (average lobar). Higher MeDi score was associated with larger frontal, parietal, occipital, and average lobar cortical thickness. Higher legume and fish intakes were associated with larger cortical thickness: legumes with larger superior parietal, inferior parietal, precuneus, parietal, occipital, lingual, and fish with larger precuneus, superior parietal, posterior cingulate, parietal, and inferior parietal. Higher carbohydrate and sugar intakes were associated with lower entorhinal cortical thickness. In this sample of elderly persons, higher adherence to MeDi was associated with larger cortical thickness. These cross-sectional findings require validation in prospective studies. Copyright © 2016 the Alzheimer's Association. Published by Elsevier Inc. All rights reserved.

  17. Loss of MeCP2 From Forebrain Excitatory Neurons Leads to Cortical Hyperexcitation and Seizures

    Science.gov (United States)

    Zhang, Wen; Peterson, Matthew; Beyer, Barbara; Frankel, Wayne N.

    2014-01-01

    Mutations of MECP2 cause Rett syndrome (RTT), a neurodevelopmental disorder leading to loss of motor and cognitive functions, impaired social interactions, and seizure at young ages. Defects of neuronal circuit development and function are thought to be responsible for the symptoms of RTT. The majority of RTT patients show recurrent seizures, indicating that neuronal hyperexcitation is a common feature of RTT. However, mechanisms underlying hyperexcitation in RTT are poorly understood. Here we show that deletion of Mecp2 from cortical excitatory neurons but not forebrain inhibitory neurons in the mouse leads to spontaneous seizures. Selective deletion of Mecp2 from excitatory but not inhibitory neurons in the forebrain reduces GABAergic transmission in layer 5 pyramidal neurons in the prefrontal and somatosensory cortices. Loss of MeCP2 from cortical excitatory neurons reduces the number of GABAergic synapses in the cortex, and enhances the excitability of layer 5 pyramidal neurons. Using single-cell deletion of Mecp2 in layer 2/3 pyramidal neurons, we show that GABAergic transmission is reduced in neurons without MeCP2, but is normal in neighboring neurons with MeCP2. Together, these results suggest that MeCP2 in cortical excitatory neurons plays a critical role in the regulation of GABAergic transmission and cortical excitability. PMID:24523563

  18. Evidence for cortical structural plasticity in humans after a day of waking and sleep deprivation.

    Science.gov (United States)

    Elvsåshagen, Torbjørn; Zak, Nathalia; Norbom, Linn B; Pedersen, Per Ø; Quraishi, Sophia H; Bjørnerud, Atle; Alnæs, Dag; Doan, Nhat Trung; Malt, Ulrik F; Groote, Inge R; Westlye, Lars T

    2017-08-01

    Sleep is an evolutionarily conserved process required for human health and functioning. Insufficient sleep causes impairments across cognitive domains, and sleep deprivation can have rapid antidepressive effects in mood disorders. However, the neurobiological effects of waking and sleep are not well understood. Recently, animal studies indicated that waking and sleep are associated with substantial cortical structural plasticity. Here, we hypothesized that structural plasticity can be observed after a day of waking and sleep deprivation in the human cerebral cortex. To test this hypothesis, 61 healthy adult males underwent structural magnetic resonance imaging (MRI) at three time points: in the morning after a regular night's sleep, the evening of the same day, and the next morning, either after total sleep deprivation (N=41) or a night of sleep (N=20). We found significantly increased right prefrontal cortical thickness from morning to evening across all participants. In addition, pairwise comparisons in the deprived group between the two morning scans showed significant thinning of mainly bilateral medial parietal cortices after 23h of sleep deprivation, including the precuneus and posterior cingulate cortex. However, there were no significant group (sleep vs. sleep deprived group) by time interactions and we can therefore not rule out that other mechanisms than sleep deprivation per se underlie the bilateral medial parietal cortical thinning observed in the deprived group. Nonetheless, these cortices are thought to subserve wakefulness, are among the brain regions with highest metabolic rate during wake, and are considered some of the most sensitive cortical regions to a variety of insults. Furthermore, greater thinning within the left medial parietal cluster was associated with increased sleepiness after sleep deprivation. Together, these findings add to a growing body of data showing rapid structural plasticity within the human cerebral cortex detectable with

  19. Dance Experience and Associations with Cortical Gray Matter Thickness in the Aging Population

    OpenAIRE

    Porat, Shai; Goukasian, Naira; Hwang, Kristy S.; Zanto, Theodore; Do, Triet; Pierce, Jonathan; Joshi, Shantanu; Woo, Ellen; Apostolova, Liana G.

    2016-01-01

    Introduction: We investigated the effect dance experience may have on cortical gray matter thickness and cognitive performance in elderly participants with and without mild cognitive impairment (MCI). Methods: 39 cognitively normal and 48 MCI elderly participants completed a questionnaire regarding their lifetime experience with music, dance, and song. Participants identified themselves as either dancers or nondancers. All participants received structural 1.5-tesla MRI scans and detailed clin...

  20. Nanomolar Bifenthrin Alters Synchronous Ca2+ Oscillations and Cortical Neuron Development Independent of Sodium Channel Activity

    OpenAIRE

    Cao, Zhengyu; Cui, Yanjun; Nguyen, Hai M.; Jenkins, David Paul; Wulff, Heike; Pessah, Isaac N.

    2014-01-01

    Bifenthrin, a relatively stable type I pyrethroid that causes tremors and impairs motor activity in rodents, is broadly used. We investigated whether nanomolar bifenthrin alters synchronous Ca 2+ oscillations (SCOs) necessary for activity-dependent dendritic development. Primary mouse cortical neurons were cultured 8 or 9 days in vitro (DIV), loaded with the Ca2+ indicator Fluo-4, and imaged using a Fluorescence Imaging Plate Reader Tetra. Acute exposure to bifenthrin rapidly increased the fr...

  1. Síndrome oculoglandular de Parinaud como possível causa de catarata cortical

    OpenAIRE

    Hemerly, Mariana Heid Rocha; Mattos, Marcelo Berno; Saraiva, Fábio Petersen; Mattos, Fellipe Berno

    2014-01-01

    According to the World Health Organization, cataract is the leading cause of blindness and visual impairment throughout the world. However, the etiology of cataracts often remains unknown. This report describes the development of cortical cataract in a patient after Parinaud's oculoglandular syndrome caused by the fungus Sporothrix schenckii. De acordo com a Organização Mundial de Saúde, a catarata é a principal causa de cegueira e deficiência visual em todo o mundo. No entanto, a etiologi...

  2. Cortical feedback control of olfactory bulb circuits.

    Science.gov (United States)

    Boyd, Alison M; Sturgill, James F; Poo, Cindy; Isaacson, Jeffry S

    2012-12-20

    Olfactory cortex pyramidal cells integrate sensory input from olfactory bulb mitral and tufted (M/T) cells and project axons back to the bulb. However, the impact of cortical feedback projections on olfactory bulb circuits is unclear. Here, we selectively express channelrhodopsin-2 in olfactory cortex pyramidal cells and show that cortical feedback projections excite diverse populations of bulb interneurons. Activation of cortical fibers directly excites GABAergic granule cells, which in turn inhibit M/T cells. However, we show that cortical inputs preferentially target short axon cells that drive feedforward inhibition of granule cells. In vivo, activation of olfactory cortex that only weakly affects spontaneous M/T cell firing strongly gates odor-evoked M/T cell responses: cortical activity suppresses odor-evoked excitation and enhances odor-evoked inhibition. Together, these results indicate that although cortical projections have diverse actions on olfactory bulb microcircuits, the net effect of cortical feedback on M/T cells is an amplification of odor-evoked inhibition. Copyright © 2012 Elsevier Inc. All rights reserved.

  3. Discrimination of cortical laminae using MEG.

    Science.gov (United States)

    Troebinger, Luzia; López, José David; Lutti, Antoine; Bestmann, Sven; Barnes, Gareth

    2014-11-15

    Typically MEG source reconstruction is used to estimate the distribution of current flow on a single anatomically derived cortical surface model. In this study we use two such models representing superficial and deep cortical laminae. We establish how well we can discriminate between these two different cortical layer models based on the same MEG data in the presence of different levels of co-registration noise, Signal-to-Noise Ratio (SNR) and cortical patch size. We demonstrate that it is possible to make a distinction between superficial and deep cortical laminae for levels of co-registration noise of less than 2mm translation and 2° rotation at SNR > 11 dB. We also show that an incorrect estimate of cortical patch size will tend to bias layer estimates. We then use a 3D printed head-cast (Troebinger et al., 2014) to achieve comparable levels of co-registration noise, in an auditory evoked response paradigm, and show that it is possible to discriminate between these cortical layer models in real data. Copyright © 2014 The Authors. Published by Elsevier Inc. All rights reserved.

  4. Cortical Responses to Chinese Phonemes in Preschoolers Predict Their Literacy Skills at School Age.

    Science.gov (United States)

    Hong, Tian; Shuai, Lan; Frost, Stephen J; Landi, Nicole; Pugh, Kenneth R; Shu, Hua

    2018-01-01

    We investigated whether preschoolers with poor phonological awareness (PA) skills had impaired cortical basis for detecting speech feature, and whether speech perception influences future literacy outcomes in preschoolers. We recorded ERP responses to speech in 52 Chinese preschoolers. The results showed that the poor PA group processed speech changes differentially compared to control group in mismatch negativity (MMN) and late discriminative negativity (LDN). Furthermore, speech perception in kindergarten could predict literacy outcomes after literacy acquisition. These suggest that impairment in detecting speech features occurs before formal reading instruction, and that speech perception plays an important role in reading development.

  5. Title: Cytoskeletal proteins in cortical development and diseasesubtitle: Actin associated proteins in periventricular heterotopia

    Directory of Open Access Journals (Sweden)

    Gewei eLian

    2015-04-01

    Full Text Available The actin cytoskeleton regulates many important cellular processes in the brain, including cell division and proliferation, migration, and cytokinesis and differentiation. These developmental processes can be regulated through actin dependent vesicle and organelle movement, cell signaling, and the establishment and maintenance of cell junctions and cell shape. Many of these processes are mediated by extensive and intimate interactions of actin with cellular membranes and proteins. Disruption in the actin cytoskeleton in the brain gives rise to periventricular heterotopia (PH, a malformation of cortical development, characterized by abnormal neurons clustered deep in the brain along the lateral ventricles. This disorder can give rise to seizures, dyslexia and psychiatric disturbances. Anatomically, PH is characterized by a smaller brain (impaired proliferation, heterotopia (impaired initial migration and disruption along the neuroependymal lining (impaired cell-cell adhesion. Genes causal for PH have also been implicated in actin-dependent processes. The current review provides mechanistic insight into actin cytoskeletal regulation of cortical development in the context of this malformation of cortical development.

  6. Reye's syndrome with cortical laminar necrosis: MRI

    International Nuclear Information System (INIS)

    Kinoshita, T.; Takahashi, S.; Ishii, K.; Higano, S.; Matsumoto, K.; Sakamoto, K.; Haginoya, K.; Iinuma, K.

    1996-01-01

    Serial MRI findings are described in two patients with Reye's syndrome, demonstrating diffuse cortical and white matter changes. In the acute stage, T2-weighted images showed subtle but definite laminar high signal and contrast-enhanced T1-weighted images laminar enhancement, along the entire cerebral cortex bilaterally. In the chronic stage, unenhanced T1-weighted images showed diffuse cortical laminar high signal. These characteristic MRI features seemed very similar to those of laminar cortical necrosis in hypoxic brain damage. MRI also displayed delayed white matter changes with cerebral atrophy. (orig.)

  7. Cortical heterotopia in Aicardi's syndrome - CT findings

    International Nuclear Information System (INIS)

    Besenski, N.; Bosnjak, V.; Ligutic, I.; Marusic-Della Marina, B.

    1988-01-01

    The case of 5-month-old female infant with Aicardi's syndrome is presented. The main clinical features were severe developmental retardation and intractable epileptic seizures. Ophthalmoscopic examination revealed pathognomonic choriorethinopathy. Ultrasonic examination of the brain detected agenesis of the corpus callosum, whereas CT showed a coexisting malformation of the brain, i.e. cortical heterotopia of the gray matter. Agenesis of the corpus callosum is an entity well-recognized by sonography. However, ultrasonography is an insufficient modality for the visualization of cortical heterotopia which is common to all cases of Aicardi's syndrome. Therefore, in cases of suspected Aicardi's syndrome CT is recommended, as it enables the diagnosis of cortical heterotopia. (orig.)

  8. Degraded attentional modulation of cortical neural populations in strabismic amblyopia.

    Science.gov (United States)

    Hou, Chuan; Kim, Yee-Joon; Lai, Xin Jie; Verghese, Preeti

    2016-01-01

    Behavioral studies have reported reduced spatial attention in amblyopia, a developmental disorder of spatial vision. However, the neural populations in the visual cortex linked with these behavioral spatial attention deficits have not been identified. Here, we use functional MRI-informed electroencephalography source imaging to measure the effect of attention on neural population activity in the visual cortex of human adult strabismic amblyopes who were stereoblind. We show that compared with controls, the modulatory effects of selective visual attention on the input from the amblyopic eye are substantially reduced in the primary visual cortex (V1) as well as in extrastriate visual areas hV4 and hMT+. Degraded attentional modulation is also found in the normal-acuity fellow eye in areas hV4 and hMT+ but not in V1. These results provide electrophysiological evidence that abnormal binocular input during a developmental critical period may impact cortical connections between the visual cortex and higher level cortices beyond the known amblyopic losses in V1 and V2, suggesting that a deficit of attentional modulation in the visual cortex is an important component of the functional impairment in amblyopia. Furthermore, we find that degraded attentional modulation in V1 is correlated with the magnitude of interocular suppression and the depth of amblyopia. These results support the view that the visual suppression often seen in strabismic amblyopia might be a form of attentional neglect of the visual input to the amblyopic eye.

  9. Measurement of pharyngeal sensory cortical processing: technique and physiologic implications

    Directory of Open Access Journals (Sweden)

    Ringelstein E Bernd

    2009-07-01

    Full Text Available Abstract Background Dysphagia is a major complication of different diseases affecting both the central and peripheral nervous system. Pharyngeal sensory impairment is one of the main features of neurogenic dysphagia. Therefore an objective technique to examine the cortical processing of pharyngeal sensory input would be a helpful diagnostic tool in this context. We developed a simple paradigm to perform pneumatic stimulation to both sides of the pharyngeal wall. Whole-head MEG was employed to study changes in cortical activation during this pharyngeal stimulation in nine healthy subjects. Data were analyzed by means of synthetic aperture magnetometry (SAM and the group analysis of individual SAM data was performed using a permutation test. Results Our results revealed bilateral activation of the caudolateral primary somatosensory cortex following sensory pharyngeal stimulation with a slight lateralization to the side of stimulation. Conclusion The method introduced here is simple and easy to perform and might be applicable in the clinical setting. The results are in keeping with previous findings showing bihemispheric involvement in the complex task of sensory pharyngeal processing. They might also explain changes in deglutition after hemispheric strokes. The ipsilaterally lateralized processing is surprising and needs further investigation.

  10. Acute cortical deafness in a child with MELAS syndrome.

    Science.gov (United States)

    Pittet, Marie P; Idan, Roni B; Kern, Ilse; Guinand, Nils; Van, Hélène Cao; Toso, Seema; Fluss, Joël

    2016-05-01

    Auditory impairment in mitochondrial disorders are usually due to peripheral sensorineural dysfunction. Central deafness is only rarely reported. We report here an 11-year-old boy with MELAS syndrome who presented with subacute deafness after waking up from sleep. Peripheral hearing loss was rapidly excluded. A brain MRI documented bilateral stroke-like lesions predominantly affecting the superior temporal lobe, including the primary auditory cortex, confirming the central nature of deafness. Slow recovery was observed in the following weeks. This case serves to illustrate the numerous challenges caused by MELAS and the unusual occurrence of acute cortical deafness, that to our knowledge has not be described so far in a child in this setting.

  11. Multiple sclerosis with predominant, severe cognitive impairment

    Science.gov (United States)

    Staff, Nathan P.; Lucchinetti, Claudia F.; Keegan, B. Mark

    2009-01-01

    Objective To describe the characteristics of multiple sclerosis (MS) presenting with severe cognitive impairment as its primary disabling manifestation. Design Retrospective case series. Setting Tertiary referral center. Patients Patients were identified through the Mayo Clinic data retrieval system (1996–2008) with definite MS (McDonald criteria) and severe cognitive impairment as their primary neurological symptom without accompanying significant MS-related impairment or alternative diagnosis for cognitive dysfunction. Twenty-three patients meeting inclusion criteria were compared regarding demographics, clinical course and radiological features. Main Outcome Measures Demographic, clinical, and radiological characteristics of the disease. Results Twelve patients were men. The median age of the first clinical symptom suggestive of CNS demyelination was 33 years, and severe MS-related cognitive impairment developed at a median of 39 years. Cognitive impairment could be dichotomized as subacute fulminant (n=9) or chronic progressive (n=14) in presentation, which corresponded to subsequent relapsing or progressive MS courses. Study patients commonly exhibited psychiatric (65%), mild cerebellar (57%) and cortical symptoms and signs (e.g. seizure, aphasia, apraxia) (39%). Fourteen of 21 (67%), where documented, smoked cigarettes. Brain MRI demonstrated diffuse cerebral atrophy in 16 and gadolinium enhancing lesions in 11. Asymptomatic spinal cord MRI lesions were present in 12 of 16 patients (75%). Immunomodulatory therapies were generally ineffective in improving these patients. Conclusions We describe patients with MS whose clinical phenotype is characterized by severe cognitive dysfunction and prominent cortical and psychiatric signs presenting as a subacute fulminant or chronic progressive clinical course. Cigarette smokers may be over represented in this phenotype. PMID:19752304

  12. Biomechanics of far cortical locking.

    Science.gov (United States)

    Bottlang, Michael; Feist, Florian

    2011-02-01

    The development of far cortical locking (FCL) was motivated by a conundrum: locked plating constructs provide inherently rigid stabilization, yet they should facilitate biologic fixation and secondary bone healing that relies on flexible fixation to stimulate callus formation. Recent studies have confirmed that the high stiffness of standard locked plating constructs can suppress interfragmentary motion to a level that is insufficient to reliably promote secondary fracture healing by callus formation. Furthermore, rigid locking screws cause an uneven stress distribution that may lead to stress fracture at the end screw and stress shielding under the plate. This review summarizes four key features of FCL constructs that have been shown to enhance fixation and healing of fractures: flexible fixation, load distribution, progressive stiffening, and parallel interfragmentary motion. Specifically, flexible fixation provided by FCL reduces the stiffness of a locked plating construct by 80% to 88% to actively promote callus proliferation similar to an external fixator. Load is evenly distributed between FCL screws to mitigate stress risers at the end screw. Progressive stiffening occurs by near cortex support of FCL screws and provides additional support under elevated loading. Finally, parallel interfragmentary motion by the S-shaped flexion of FCL screws promotes symmetric callus formation. In combination, these features of FCL constructs have been shown to induce more callus and to yield significantly stronger and more consistent healing compared with standard locked plating constructs. As such, FCL constructs function as true internal fixators by replicating the biomechanical behavior and biologic healing response of external fixators.

  13. Perceptual incongruence influences bistability and cortical activation

    NARCIS (Netherlands)

    Brouwer, G.J.; Tong, F.; Hagoort, P.; van Ee, R.

    2009-01-01

    We employed a parametric psychophysical design in combination with functional imaging to examine the influence of metric changes in perceptual incongruence on perceptual alternation rates and cortical responses. Subjects viewed a bistable stimulus defined by incongruent depth cues; bistability

  14. Cortical electrophysiological network dynamics of feedback learning

    NARCIS (Netherlands)

    Cohen, M.X.; Wilmes, K.A.; van de Vijver, I.

    2011-01-01

    Understanding the neurophysiological mechanisms of learning is important for both fundamental and clinical neuroscience. We present a neurophysiologically inspired framework for understanding cortical mechanisms of feedback-guided learning. This framework is based on dynamic changes in systems-level

  15. The Diversity of Cortical Inhibitory Synapses

    Directory of Open Access Journals (Sweden)

    Yoshiyuki eKubota

    2016-04-01

    Full Text Available The most typical and well known inhibitory action in the cortical microcircuit is a strong inhibition on the target neuron by axo-somatic synapses. However, it has become clear that synaptic inhibition in the cortex is much more diverse and complicated. Firstly, at least ten or more inhibitory non-pyramidal cell subtypes engage in diverse inhibitory functions to produce the elaborate activity characteristic of the different cortical states. Each distinct non-pyramidal cell subtype has its own independent inhibitory function. Secondly, the inhibitory synapses innervate different neuronal domains, such as axons, spines, dendrites and soma, and their IPSP size is not uniform. Thus cortical inhibition is highly complex, with a wide variety of anatomical and physiological modes. Moreover, the functional significance of the various inhibitory synapse innervation styles and their unique structural dynamic behaviors differ from those of excitatory synapses. In this review, we summarize our current understanding of the inhibitory mechanisms of the cortical microcircuit.

  16. Autosomal dominant cortical tremor, myoclonus and epilepsy.

    Science.gov (United States)

    Striano, Pasquale; Zara, Federico

    2016-09-01

    The term 'cortical tremor' was first introduced by Ikeda and colleagues to indicate a postural and action-induced shivering movement of the hands which mimics essential tremor, but presents with the electrophysiological findings of cortical reflex myoclonus. The association between autosomal dominant cortical tremor, myoclonus and epilepsy (ADCME) was first recognized in Japanese families and is now increasingly reported worldwide, although it is described using different acronyms (BAFME, FAME, FEME, FCTE and others). The disease usually takes a benign course, although drug-resistant focal seizures or slight intellectual disability occur in some cases. Moreover, a worsening of cortical tremor and myoclonus is common in advanced age. Although not yet recognized by the International League Against Epilepsy (ILAE), this is a well-delineated epilepsy syndrome with remarkable features that clearly distinguishes it from other myoclonus epilepsies. Moreover, genetic studies of these families show heterogeneity and different susceptible chromosomal loci have been identified.

  17. Cortical thickness, surface area, and folding alterations in male youths with conduct disorder and varying levels of callous-unemotional traits.

    Science.gov (United States)

    Fairchild, Graeme; Toschi, Nicola; Hagan, Cindy C; Goodyer, Ian M; Calder, Andrew J; Passamonti, Luca

    2015-01-01

    Previous studies have reported changes in gray matter volume in youths with conduct disorder (CD), although these differences are difficult to interpret as they may have been driven by alterations in cortical thickness, surface area (SA), or folding. The objective of this study was to use surface-based morphometry (SBM) methods to compare male youths with CD and age and sex-matched healthy controls (HCs) in cortical thickness, SA, and folding. We also tested for structural differences between the childhood-onset and adolescence-onset subtypes of CD and performed regression analyses to assess for relationships between CD symptoms and callous-unemotional (CU) traits and SBM-derived measures. We acquired structural neuroimaging data from 20 HCs and 36 CD participants (18 with childhood-onset CD and 18 with adolescence-onset CD) and analyzed the data using FreeSurfer. Relative to HCs, youths with CD showed reduced cortical thickness in the superior temporal gyrus, reduced SA in the orbitofrontal cortex (OFC), and increased cortical folding in the insula. There were no significant differences between the childhood-onset and adolescence-onset CD subgroups in cortical thickness or SA, but several frontal and temporal regions showed increased cortical folding in childhood-onset relative to adolescence-onset CD participants. Both CD subgroups also showed increased cortical folding relative to HCs. CD symptoms were negatively correlated with OFC SA whereas CU traits were positively correlated with insula folding. Cortical thinning in the superior temporal gyrus may contribute to the social cognitive impairments displayed by youths with CD, whereas reduced OFC SA may lead to impairments in emotion regulation and reward processing in youths with CD. The increased cortical folding observed in the insula may reflect a maturational delay in this region and could mediate the link between CU traits and empathy deficits. Altered cortical folding was observed in childhood-onset and

  18. Extent of cortical involvement in amyotrophic lateral sclerosis--an analysis based on cortical thickness.

    Science.gov (United States)

    Thorns, Johannes; Jansma, Henk; Peschel, Thomas; Grosskreutz, Julian; Mohammadi, Bahram; Dengler, Reinhard; Münte, Thomas F

    2013-10-18

    Besides the defining involvement of upper and lower motor neurons, the involvement of extramotor structures has been increasingly acknowledged in amyotrophic lateral sclerosis (ALS). Here we investigated a group of 14 mildly to moderately affected ALS patients and 14 age-matched healthy control participants using cortical thickness analysis. Cortical thickness was determined from high resolution 3D T1 magnetic resonance images and involved semiautomatic segmentation in grey and white matter, cortical alignment and determination of thickness using the Laplace method. In addition to a whole-cortex analysis a region of interest approach was applied. ALS patients showed regions of significant cortical thinning in the pre- and postcentral gyri bilaterally. Further regions of cortical thinning included superior and inferior parietal lobule, angular and supramarginal gyrus, insula, superior frontal, temporal and occipital regions, thus further substantiating extramotor involvement in ALS. A relationship between cortical thickness of the right superior frontal cortex and clinical severity (assessed by the ALS functional rating scale) was also demonstrated. Cortical thickness is reduced in ALS not only in motor areas but in widespread non-motor cortical areas. Cortical thickness is related to clinical severity.

  19. Impairment in visual cognition in patients with Parkinson disease

    International Nuclear Information System (INIS)

    Hirayama, Kazumi; Ishioka, Toshiyuki

    2007-01-01

    Neural pathway for visual information processing involves retina, lateral geniculate body, primary visual cortex, and higher visual cortical areas, all of which have been reported to be disordered either functionally or pathologically in Parkinson disease (PD). As elementary visual disorders, there have been studies that reported reduced contrast sensitivity for middle to high spatial frequencies and impaired blue color perception. Most of those studies suggested retina as the damaged cite that is responsible for the impairments, whereas some studies pointed to the possible cortical involvement. Impairments of higher visual functions also have been reported. In the dorsal stream, impairments of object localization, depth perception, and mental rotation have been reported. In the ventral stream, object perception and visual integration of objects have been found to be impaired. A meta-analysis study, however, concluded that although there may be impairments in higher order functions like attention and problem solving capacity there is no firm evidence for the impairments of higher visual functions. Neuroimaging studies have found a relationship between reduced metabolism centered in the parietal lobe and impaired performance in higher visual functions. Impaired identification of overlapping figures has been reported in dementia with Lewy bodies a disease that is akin to PD. Capacity to discriminate textured areas has been found to be damaged in PD. We conducted a fluorodeoxyglucose-positron emission tomography (FDG-PET) study to explore the relationship between brain metabolism and perception of overlapping figures, perception of shapes defined by texture differences and perception of subjective contours in PD. It revealed that there is a correlation between reduced activation in lateral occipital complex and impaired performance for these tasks, suggesting some compromised ventral rout functions. (author)

  20. Cognitive Impairment in Infratentorial Strokes

    Directory of Open Access Journals (Sweden)

    Melek Kandemir

    2009-12-01

    Full Text Available OBJECTIVE: Beginning in the mid-1980s, with anatomical, behavioral, and neuropsychological evidence, it was suggested that the role of the cerebellum extends beyond a purely motor domain. A series of articles were published reviewing the potential role of the cerebellum in cognition. Both of these functions are supported by connections of dentate nucleus and frontal cortex through the thalamus. The cognitive profile of isolated subtentorial and cerebellar infarcts is related to the involved frontal circuit (especially executive functions. In this study, we aimed to demonstrate the cognitive profile of cerebellar and subtentorial infarcts. METHODS: Nineteen patients with infratentorial infarcts and 19 neurologically healthy individuals as a control group were included in this study. Neuropsychometric test battery was employed in both of the groups. RESULTS: Age, sex, education, clinical syndrome, and localization had no effect on the cognitive test performances. Performance on the California Verbal Learning Test, a verbal memory test, was worse in the patient group. Patients had difficulties in recognizing the items of the Rey-Osterrieth Complex Figure Test, and spent significantly more time to complete the trail making test part B. The patient group also demonstrated lower performance level in the verbal fluency test when compared to the control group. CONCLUSION: The cognitive impairment pattern of the verbal and visual memory tests and impairment determined on the verbal fluency test and the trail making tests may imply frontal impairment. Our results support the knowledge that cerebellar or brainstem strokes cause mild frontal type cognitive syndrome by damaging cerebello-ponto-thalamo-cortical pathways

  1. Mitochondrial dysfunction precedes depression of AMPK/AKT signaling in insulin resistance induced by high glucose in primary cortical neurons.

    Science.gov (United States)

    Peng, Yunhua; Liu, Jing; Shi, Le; Tang, Ying; Gao, Dan; Long, Jiangang; Liu, Jiankang

    2016-06-01

    Recent studies have demonstrated brain insulin signaling impairment and mitochondrial dysfunction in diabetes. Hyperinsulinemia and hyperlipidemia arising from diabetes have been linked to neuronal insulin resistance, and hyperglycemia induces peripheral sensory neuronal impairment and mitochondrial dysfunction. However, how brain glucose at diabetic conditions elicits cortical neuronal insulin signaling impairment and mitochondrial dysfunction remains unknown. In the present study, we cultured primary cortical neurons with high glucose levels and investigated the neuronal mitochondrial function and insulin response. We found that mitochondrial function was declined in presence of 10 mmol/L glucose, prior to the depression of AKT signaling in primary cortical neurons. We further demonstrated that the cerebral cortex of db/db mice exhibited both insulin resistance and loss of mitochondrial complex components. Moreover, we found that adenosine monophosphate-activated protein kinase (AMPK) inactivation is involved in high glucose-induced mitochondrial dysfunction and insulin resistance in primary cortical neurons and neuroblastoma cells, as well as in cerebral cortex of db/db mice, and all these impairments can be rescued by mitochondrial activator, resveratrol. Taken together, our results extend the finding that high glucose (≥10 mmol/L) comparable to diabetic brain extracellular glucose level leads to neuronal mitochondrial dysfunction and resultant insulin resistance, and targeting mitochondria-AMPK signaling might be a promising strategy to protect against diabetes-related neuronal impairment in central nerves system. We found that high glucose (≥10 mmol/L), comparable to diabetic brain extracellular glucose level, leads to neuronal mitochondrial dysfunction and resultant insulin resistance in an AMPK-dependent manner, and targeting mitochondria-AMPK signaling might be a promising strategy to protect against diabetes-related neuronal impairment in central

  2. Effects of Aging on Cortical Neural Dynamics and Local Sleep Homeostasis in Mice.

    Science.gov (United States)

    McKillop, Laura E; Fisher, Simon P; Cui, Nanyi; Peirson, Stuart N; Foster, Russell G; Wafford, Keith A; Vyazovskiy, Vladyslav V

    2018-04-18

    Healthy aging is associated with marked effects on sleep, including its daily amount and architecture, as well as the specific EEG oscillations. Neither the neurophysiological underpinnings nor the biological significance of these changes are understood, and crucially the question remains whether aging is associated with reduced sleep need or a diminished capacity to generate sufficient sleep. Here we tested the hypothesis that aging may affect local cortical networks, disrupting the capacity to generate and sustain sleep oscillations, and with it the local homeostatic response to sleep loss. We performed chronic recordings of cortical neural activity and local field potentials from the motor cortex in young and older male C57BL/6J mice, during spontaneous waking and sleep, as well as during sleep after sleep deprivation. In older animals, we observed an increase in the incidence of non-rapid eye movement sleep local field potential slow waves and their associated neuronal silent (OFF) periods, whereas the overall pattern of state-dependent cortical neuronal firing was generally similar between ages. Furthermore, we observed that the response to sleep deprivation at the level of local cortical network activity was not affected by aging. Our data thus suggest that the local cortical neural dynamics and local sleep homeostatic mechanisms, at least in the motor cortex, are not impaired during healthy senescence in mice. This indicates that powerful protective or compensatory mechanisms may exist to maintain neuronal function stable across the life span, counteracting global changes in sleep amount and architecture. SIGNIFICANCE STATEMENT The biological significance of age-dependent changes in sleep is unknown but may reflect either a diminished sleep need or a reduced capacity to generate deep sleep stages. As aging has been linked to profound disruptions in cortical sleep oscillations and because sleep need is reflected in specific patterns of cortical activity, we

  3. Motor cortex stimulation does not lead to functional recovery after experimental cortical injury in rats.

    Science.gov (United States)

    Schönfeld, Lisa-Maria; Jahanshahi, Ali; Lemmens, Evi; Bauwens, Matthias; Hescham, Sarah-Anna; Schipper, Sandra; Lagiere, Melanie; Hendrix, Sven; Temel, Yasin

    2017-01-01

    Motor impairments are among the major complications that develop after cortical damage caused by either stroke or traumatic brain injury. Motor cortex stimulation (MCS) can improve motor functions in animal models of stroke by inducing neuroplasticity. In the current study, the therapeutic effect of chronic MCS was assessed in a rat model of severe cortical damage. A controlled cortical impact (CCI) was applied to the forelimb area of the motor cortex followed by implantation of a flat electrode covering the lesioned area. Forelimb function was assessed using the Montoya staircase test and the cylinder test before and after a period of chronic MCS. Furthermore, the effect of MCS on tissue metabolism and lesion size was measured using [18F]-fluorodesoxyglucose (FDG) μPET scanning. CCI caused a considerable lesion at the level of the motor cortex and dorsal striatum together with a long-lasting behavioral phenotype of forelimb impairment. However, MCS applied to the CCI lesion did not lead to any improvement in limb functioning when compared to non-stimulated control rats. Also, MCS neither changed lesion size nor distribution of FDG. The use of MCS as a standalone treatment did not improve motor impairments in a rat model of severe cortical damage using our specific treatment modalities.

  4. Auditory cortical function during verbal episodic memory encoding in Alzheimer's disease.

    Science.gov (United States)

    Dhanjal, Novraj S; Warren, Jane E; Patel, Maneesh C; Wise, Richard J S

    2013-02-01

    Episodic memory encoding of a verbal message depends upon initial registration, which requires sustained auditory attention followed by deep semantic processing of the message. Motivated by previous data demonstrating modulation of auditory cortical activity during sustained attention to auditory stimuli, we investigated the response of the human auditory cortex during encoding of sentences to episodic memory. Subsequently, we investigated this response in patients with mild cognitive impairment (MCI) and probable Alzheimer's disease (pAD). Using functional magnetic resonance imaging, 31 healthy participants were studied. The response in 18 MCI and 18 pAD patients was then determined, and compared to 18 matched healthy controls. Subjects heard factual sentences, and subsequent retrieval performance indicated successful registration and episodic encoding. The healthy subjects demonstrated that suppression of auditory cortical responses was related to greater success in encoding heard sentences; and that this was also associated with greater activity in the semantic system. In contrast, there was reduced auditory cortical suppression in patients with MCI, and absence of suppression in pAD. Administration of a central cholinesterase inhibitor (ChI) partially restored the suppression in patients with pAD, and this was associated with an improvement in verbal memory. Verbal episodic memory impairment in AD is associated with altered auditory cortical function, reversible with a ChI. Although these results may indicate the direct influence of pathology in auditory cortex, they are also likely to indicate a partially reversible impairment of feedback from neocortical systems responsible for sustained attention and semantic processing. Copyright © 2012 American Neurological Association.

  5. Using principles of learning to inform language therapy design for children with specific language impairment.

    Science.gov (United States)

    Alt, Mary; Meyers, Christina; Ancharski, Alexandra

    2012-01-01

    Language treatment for children with specific language impairment (SLI) often takes months to achieve moderate results. Interventions often do not incorporate the principles that are known to affect learning in unimpaired learners. To outline some key findings about learning in typical populations and to suggest a model of how they might be applied to language treatment design as a catalyst for further research and discussion. Three main principles of implicit learning are reviewed: variability, complexity and sleep-dependent consolidation. After explaining these principles, evidence is provided as to how they influence learning tasks in unimpaired learners. Information is reviewed on principles of learning as they apply to impaired populations, current treatment designs are also reviewed that conform to the principles, and ways in which principles of learning might be incorporated into language treatment design are demonstrated. This paper provides an outline for how theoretical knowledge might be applied to clinical practice in an effort to promote discussion. Although the authors look forward to more specific details on how the principles of learning relate to impaired populations, there is ample evidence to suggest that these principles should be considered during treatment design. © 2012 Royal College of Speech and Language Therapists.

  6. Cognitive impairment and medial temporal lobe structure in young adults with a depressive episode.

    Science.gov (United States)

    Donix, Markus; Haussmann, Robert; Helling, Franziska; Zweiniger, Anne; Lange, Jan; Werner, Annett; Donix, Katharina L; Brandt, Moritz D; Linn, Jennifer; Bauer, Michael; Buthut, Maria

    2018-09-01

    Cognitive deficits are common in patients with a depressive episode although the predictors for their development and severity remain elusive. We investigated whether subjective and objective cognitive impairment in young depressed adults would be associated with cortical thinning in medial temporal subregions. High-resolution magnetic resonance imaging, cortical unfolding data analysis, and comprehensive assessments of subjective and objective cognitive abilities were performed on 27 young patients with a depressive episode (mean age: 29.0 ± 5.8 years) and 23 older participants without a history of a depressive disorder but amnestic mild cognitive impairment (68.5 ± 6.6 years) or normal cognition (65.2 ± 8.7 years). Thickness reductions in parahippocampal, perirhinal and fusiform cortices were associated with subjective memory deficits only among young patients with a depressive episode and a measurable cognitive impairment. Long-term longitudinal data would be desirable to determine the trajectories of cognitive impairment associated with depression in patients with or without cortical structure changes. The presence of clinically significant cognitive deficits in young people with a depressive episode may identify a patient population with extrahippocampal cortical thinning. Copyright © 2018 Elsevier B.V. All rights reserved.

  7. Cortical processing of swallowing in ALS patients with progressive dysphagia--a magnetoencephalographic study.

    Directory of Open Access Journals (Sweden)

    Inga K Teismann

    Full Text Available Amyotrophic lateral sclerosis (ALS is a rare disease causing degeneration of the upper and lower motor neuron. Involvement of the bulbar motor neurons often results in fast progressive dysphagia. While cortical compensation of dysphagia has been previously shown in stroke patients, this topic has not been addressed in patients suffering from ALS. In the present study, we investigated cortical activation during deglutition in two groups of ALS patients with either moderate or severe dysphagia. Whole-head MEG was employed on fourteen patients with sporadic ALS using a self-paced swallowing paradigm. Data were analyzed by means of time-frequency analysis and synthetic aperture magnetometry (SAM. Group analysis of individual SAM data was performed using a permutation test. We found a reduction of cortical swallowing related activation in ALS patients compared to healthy controls. Additionally a disease-related shift of hemispheric lateralization was observed. While healthy subjects showed bilateral cortical activation, the right sensorimotor cortex was predominantly involved in ALS patients. Both effects were even stronger in the group of patients with severe dysphagia. Our results suggest that bilateral degeneration of the upper motor neuron in the primary motor areas also impairs further adjusted motor areas, which leads to a strong reduction of 'swallowing related' cortical activation. While both hemispheres are affected by the degeneration a relatively stronger activation is seen in the right hemisphere. This right hemispheric lateralization of volitional swallowing observed in this study may be the only sign of cortical plasticity in dysphagic ALS patients. It may demonstrate compensational mechanisms in the right hemisphere which is known to predominantly coordinate the pharyngeal phase of deglutition. These results add new aspects to our understanding of the pathophysiology of dysphagia in ALS patients and beyond. The compensational

  8. Assessment of cortical and sub-cortical function in neonates by electrophysiological monitoring

    NARCIS (Netherlands)

    Jennekens, W.

    2012-01-01

    The aim of this thesis was the assessment of cortical and sub-cortical function in neonates by electrophysiological monitoring, i.e. to evaluate the function of the neonatal cortex and brainstem through quantitative analysis of signals readily available in the NICU. These signals include

  9. Osmosis in Cortical Collecting Tubules

    Science.gov (United States)

    Schafer, James A.; Troutman, Susan L.; Andreoli, Thomas E.

    1974-01-01

    The present experiments were designed to evaluate the effects of varying the osmolality of luminal solutions on the antidiuretic hormone (ADH)-independent water and solute permeability properties of isolated rabbit cortical collecting tubules. In the absence of ADH, the osmotic water permeability coefficient (cm s–1) Pfl→b, computed from volume flows from hypotonic lumen to isotonic bath, was 20 ± 4 x 10–4 (SEM); the value of Pfb→l in the absence of ADH, computed from volume flows from isotonic bath to hypertonic lumen, was 88 ± 15 x 10–4 cm s–1. We also measured apparent urea permeability coefficients (cm s–1) from 14C-urea fluxes from lumen to bath (P DDurea l→b) and from bath to lumen (P DDurea b→l). For hypotonic luminal solutions and isotonic bathing solutions, P DDurea l→b was 0.045 ± 0.004 x 10–4 and was unaffected by ADH. The ADH-independent values of P DDurea l→b and P urea b→l were, respectively, 0.216 ± 0.022 x 10–4 cm s–1 and 0.033 ± 0.002 x 10–4 cm s–1 for isotonic bathing solutions and luminal solutions made hypertonic with urea, i.e., there was an absolute increase in urea permeability and asymmetry of urea fluxes. Significantly, P DDurea l→b did not rise when luminal hypertonicity was produced by sucrose; and, bathing fluid hypertonicity did not alter tubular permeability to water or to urea. We interpret these data to indicate that luminal hypertonicity increased the leakiness of tight junctions to water and urea but not sucrose. Since the value of Pfb→l in the absence of ADH, when tight junctions were open to urea, was approximately half of the value of Pfl→b in the presence of ADH, when tight junctions were closed to urea, we conclude that tight junctions are negligible paracellular shunts for lumen to bath osmosis with ADH. These findings, together with those in the preceding paper, are discussed in terms of a solubility-diffusion model for water permeation in which ADH increases water solubility in

  10. Phosphorus magnetic resonance spectroscopy in malformations of cortical development

    Directory of Open Access Journals (Sweden)

    Celi Santos Andrade

    2013-07-01

    Full Text Available Introduction Malformations of cortical development (MCD result from disruptions in the dynamic process of cerebral corticogenesis and are important causes of epilepsy, motor deficits and cognitive impairment. Objectives The aim of this study was to evaluate phospholipids metabolism in vivo in a series of patients with epilepsy and MCD. Methods Thirty-seven patients with MCD and 31 control subjects were studied using three-dimensional phosphorus magnetic resonance spectroscopy (31P-MRS at a 3.0 T scanner. Quantification methods were applied to the following resonances: phosphoethanolamine (PE, phosphocholine (PC, glycerophosphoethanolamine (GPE, glycerophosphocholine (GPC, inorganic phosphate (Pi, phosphocreatine (PCr, and a-, b-, and g-adenosine triphosphate (ATP. The magnesium (Mg2+ levels and pH were calculated based on PCr, Pi and b-ATP chemical shifts. Results Compared to controls, the MCD lesions exhibited lower pH values and higher Mg2+ levels (p<0.05. The lesions also presented significant reduction of GPC and PDE, and an increased PME/PDE ratio. The otherwise normal appearing parenchyma also demonstrated lower pH values in the frontoparietal cortex and bilateral centrum semiovale. Conclusions Our data support the idea that metabolic impairments occur in the lesions of MCD, with propagation to remote normal appearing parenchyma. The results also suggest that there are membrane turnover disturbances in MCD lesions.

  11. Disrupted cortical connectivity theory as an explanatory model for autism spectrum disorders

    Science.gov (United States)

    Kana, Rajesh K.; Libero, Lauren E.; Moore, Marie S.

    2011-12-01

    Recent findings of neurological functioning in autism spectrum disorder (ASD) point to altered brain connectivity as a key feature of its pathophysiology. The cortical underconnectivity theory of ASD (Just et al., 2004) provides an integrated framework for addressing these new findings. This theory suggests that weaker functional connections among brain areas in those with ASD hamper their ability to accomplish complex cognitive and social tasks successfully. We will discuss this theory, but will modify the term underconnectivity to ‘disrupted cortical connectivity’ to capture patterns of both under- and over-connectivity in the brain. In this paper, we will review the existing literature on ASD to marshal supporting evidence for hypotheses formulated on the disrupted cortical connectivity theory. These hypotheses are: 1) underconnectivity in ASD is manifested mainly in long-distance cortical as well as subcortical connections rather than in short-distance cortical connections; 2) underconnectivity in ASD is manifested only in complex cognitive and social functions and not in low-level sensory and perceptual tasks; 3) functional underconnectivity in ASD may be the result of underlying anatomical abnormalities, such as problems in the integrity of white matter; 4) the ASD brain adapts to underconnectivity through compensatory strategies such as overconnectivity mainly in frontal and in posterior brain areas. This may be manifested as deficits in tasks that require frontal-parietal integration. While overconnectivity can be tested by examining the cortical minicolumn organization, long-distance underconnectivity can be tested by cognitively demanding tasks; and 5) functional underconnectivity in brain areas in ASD will be seen not only during complex tasks but also during task-free resting states. We will also discuss some empirical predictions that can be tested in future studies, such as: 1) how disrupted connectivity relates to cognitive impairments in skills

  12. Disrupted cortical connectivity theory as an explanatory model for autism spectrum disorders.

    Science.gov (United States)

    Kana, Rajesh K; Libero, Lauren E; Moore, Marie S

    2011-12-01

    Recent findings of neurological functioning in autism spectrum disorder (ASD) point to altered brain connectivity as a key feature of its pathophysiology. The cortical underconnectivity theory of ASD (Just et al., 2004) provides an integrated framework for addressing these new findings. This theory suggests that weaker functional connections among brain areas in those with ASD hamper their ability to accomplish complex cognitive and social tasks successfully. We will discuss this theory, but will modify the term underconnectivity to 'disrupted cortical connectivity' to capture patterns of both under- and over-connectivity in the brain. In this paper, we will review the existing literature on ASD to marshal supporting evidence for hypotheses formulated on the disrupted cortical connectivity theory. These hypotheses are: 1) underconnectivity in ASD is manifested mainly in long-distance cortical as well as subcortical connections rather than in short-distance cortical connections; 2) underconnectivity in ASD is manifested only in complex cognitive and social functions and not in low-level sensory and perceptual tasks; 3) functional underconnectivity in ASD may be the result of underlying anatomical abnormalities, such as problems in the integrity of white matter; 4) the ASD brain adapts to underconnectivity through compensatory strategies such as overconnectivity mainly in frontal and in posterior brain areas. This may be manifested as deficits in tasks that require frontal-parietal integration. While overconnectivity can be tested by examining the cortical minicolumn organization, long-distance underconnectivity can be tested by cognitively demanding tasks; and 5) functional underconnectivity in brain areas in ASD will be seen not only during complex tasks but also during task-free resting states. We will also discuss some empirical predictions that can be tested in future studies, such as: 1) how disrupted connectivity relates to cognitive impairments in skills such

  13. Impaired hand size estimation in CRPS.

    Science.gov (United States)

    Peltz, Elena; Seifert, Frank; Lanz, Stefan; Müller, Rüdiger; Maihöfner, Christian

    2011-10-01

    A triad of clinical symptoms, ie, autonomic, motor and sensory dysfunctions, characterizes complex regional pain syndromes (CRPS). Sensory dysfunction comprises sensory loss or spontaneous and stimulus-evoked pain. Furthermore, a disturbance in the body schema may occur. In the present study, patients with CRPS of the upper extremity and healthy controls estimated their hand sizes on the basis of expanded or compressed schematic drawings of hands. In patients with CRPS we found an impairment in accurate hand size estimation; patients estimated their own CRPS-affected hand to be larger than it actually was when measured objectively. Moreover, overestimation correlated significantly with disease duration, neglect score, and increase of two-point-discrimination-thresholds (TPDT) compared to the unaffected hand and to control subjects' estimations. In line with previous functional imaging studies in CRPS patients demonstrating changes in central somatotopic maps, we suggest an involvement of the central nervous system in this disruption of the body schema. Potential cortical areas may be the primary somatosensory and posterior parietal cortices, which have been proposed to play a critical role in integrating visuospatial information. CRPS patients perceive their affected hand to be bigger than it is. The magnitude of this overestimation correlates with disease duration, decreased tactile thresholds, and neglect-score. Suggesting a disrupted body schema as the source of this impairment, our findings corroborate the current assumption of a CNS involvement in CRPS. Copyright © 2011 American Pain Society. Published by Elsevier Inc. All rights reserved.

  14. High-spatial-resolution mapping of the oxygen concentration in cortical tissue (Conference Presentation)

    Science.gov (United States)

    Jaswal, Rajeshwer S.; Yaseen, Mohammad A.; Fu, Buyin; Boas, David A.; Sakadžic, Sava

    2016-03-01

    Due to a lack of imaging tools for high-resolution imaging of cortical tissue oxygenation, the detailed maps of the oxygen partial pressure (PO2) around arterioles, venules, and capillaries remain largely unknown. Therefore, we have limited knowledge about the mechanisms that secure sufficient oxygen delivery in microvascular domains during brain activation, and provide some metabolic reserve capacity in diseases that affect either microvascular networks or the regulation of cerebral blood flow (CBF). To address this challenge, we applied a Two-Photon PO2 Microscopy to map PO2 at different depths in mice cortices. Measurements were performed through the cranial window in the anesthetized healthy mice as well as in the mouse models of microvascular dysfunctions. In addition, microvascular morphology was recorded by the two-photon microscopy at the end of each experiment and subsequently segmented. Co-registration of the PO2 measurements and exact microvascular morphology enabled quantification of the tissue PO2 dependence on distance from the arterioles, capillaries, and venules at various depths. Our measurements reveal significant spatial heterogeneity of the cortical tissue PO2 distribution that is dominated by the high oxygenation in periarteriolar spaces. In cases of impaired oxygen delivery due to microvascular dysfunction, significant reduction in tissue oxygenation away from the arterioles was observed. These tissue domains may be the initial sites of cortical injury that can further exacerbate the progression of the disease.

  15. Cortical Thinning in Network-Associated Regions in Cognitively Normal and Below-Normal Range Schizophrenia

    Directory of Open Access Journals (Sweden)

    R. Walter Heinrichs

    2017-01-01

    Full Text Available This study assessed whether cortical thickness across the brain and regionally in terms of the default mode, salience, and central executive networks differentiates schizophrenia patients and healthy controls with normal range or below-normal range cognitive performance. Cognitive normality was defined using the MATRICS Consensus Cognitive Battery (MCCB composite score (T=50 ± 10 and structural magnetic resonance imaging was used to generate cortical thickness data. Whole brain analysis revealed that cognitively normal range controls (n=39 had greater cortical thickness than both cognitively normal (n=17 and below-normal range (n=49 patients. Cognitively normal controls also demonstrated greater thickness than patients in regions associated with the default mode and salience, but not central executive networks. No differences on any thickness measure were found between cognitively normal range and below-normal range controls (n=24 or between cognitively normal and below-normal range patients. In addition, structural covariance between network regions was high and similar across subgroups. Positive and negative symptom severity did not correlate with thickness values. Cortical thinning across the brain and regionally in relation to the default and salience networks may index shared aspects of the psychotic psychopathology that defines schizophrenia with no relation to cognitive impairment.

  16. Role of IGF-1 in cortical plasticity and functional deficit induced by sensorimotor restriction.

    Science.gov (United States)

    Mysoet, Julien; Dupont, Erwan; Bastide, Bruno; Canu, Marie-Hélène

    2015-09-01

    In the adult rat, sensorimotor restriction by hindlimb unloading (HU) is known to induce impairments in motor behavior as well as a disorganization of somatosensory cortex (shrinkage of the cortical representation of the hindpaw, enlargement of the cutaneous receptive fields, decreased cutaneous sensibility threshold). Recently, our team has demonstrated that IGF-1 level was decreased in the somatosensory cortex of rats submitted to a 14-day period of HU. To determine whether IGF-1 is involved in these plastic mechanisms, a chronic cortical infusion of this substance was performed by means of osmotic minipump. When administered in control rats, IGF-1 affects the size of receptive fields and the cutaneous threshold, but has no effect on the somatotopic map. In addition, when injected during the whole HU period, IGF-1 is interestingly implied in cortical changes due to hypoactivity: the shrinkage of somatotopic representation of hindlimb is prevented, whereas the enlargement of receptive fields is reduced. IGF-1 has no effect on the increase in neuronal response to peripheral stimulation. We also explored the functional consequences of IGF-1 level restoration on tactile sensory discrimination. In HU rats, the percentage of paw withdrawal after a light tactile stimulation was decreased, whereas it was similar to control level in HU-IGF-1 rats. Taken together, the data clearly indicate that IGF-1 plays a key-role in cortical plastic mechanisms and in behavioral alterations induced by a decrease in sensorimotor activity. Copyright © 2015 Elsevier B.V. All rights reserved.

  17. No association of cortical amyloid load and EEG connectivity in older people with subjective memory complaints

    Directory of Open Access Journals (Sweden)

    Stefan Teipel

    2018-01-01

    Full Text Available Changes in functional connectivity of cortical networks have been observed in resting-state EEG studies in healthy aging as well as preclinical and clinical stages of AD. Little information, however, exists on associations between EEG connectivity and cortical amyloid load in people with subjective memory complaints. Here, we determined the association of global cortical amyloid load, as measured by florbetapir-PET, with functional connectivity based on the phase-lag index of resting state EEG data for alpha and beta frequency bands in 318 cognitively normal individuals aged 70–85 years with subjective memory complaints from the INSIGHT-preAD cohort. Within the entire group we did not find any significant associations between global amyloid load and phase-lag index in any frequency band. Assessing exclusively the subgroup of amyloid-positive participants, we found enhancement of functional connectivity with higher global amyloid load in the alpha and a reduction in the beta frequency bands. In the amyloid-negative participants, higher amyloid load was associated with lower connectivity in the low alpha band. However, these correlations failed to reach significance after controlling for multiple comparisons. The absence of a strong amyloid effect on functional connectivity may represent a selection effect, where individuals remain in the cognitively normal group only if amyloid accumulation does not impair cortical functional connectivity.

  18. Role of nitric oxide and prostaglandin in the maintenance of cortical and renal medullary blood flow

    Directory of Open Access Journals (Sweden)

    S.I Gomez

    2008-02-01

    Full Text Available This study was undertaken in anesthetized dogs to evaluate the relative participation of prostaglandins (PGs and nitric oxide (NO in the maintenance of total renal blood flow (TRBF, and renal medullary blood flow (RMBF. It was hypothesized that the inhibition of NO should impair cortical and medullary circulation because of the synthesis of this compound in the endothelial cells of these two territories. In contrast, under normal conditions of perfusion pressure PG synthesis is confined to the renal medulla. Hence PG inhibition should predominantly impair the medullary circulation. The initial administration of 25 µM kg-1 min-1 NG-nitro-L-arginine methyl ester produced a significant 26% decrease in TRBF and a concomitant 34% fall in RMBF, while the subsequent inhibition of PGs with 5 mg/kg meclofenamate further reduced TRBF by 33% and RMBF by 89%. In contrast, the initial administration of meclofenamate failed to change TRBF, while decreasing RMBF by 49%. The subsequent blockade of NO decreased TRBF by 35% without further altering RMBF. These results indicate that initial PG synthesis inhibition predominantly alters the medullary circulation, whereas NO inhibition decreases both cortical and medullary flow. This latter change induced by NO renders cortical and RMBF susceptible to a further decrease by PG inhibition. However, the decrease in medullary circulation produced by NO inhibition is not further enhanced by subsequent PG inhibition.

  19. Periventricular Heterotopia: Shuttling of Proteins through Vesicles and Actin in Cortical Development and Disease

    Directory of Open Access Journals (Sweden)

    Volney L. Sheen

    2012-01-01

    Full Text Available During cortical development, proliferating neural progenitors exhibit polarized apical and basolateral membranes that are maintained by tightly controlled and membrane-specific vesicular trafficking pathways. Disruption of polarity through impaired delivery of proteins can alter cell fate decisions and consequent expansion of the progenitor pool, as well as impact the integrity of the neuroependymal lining. Loss of neuroependymal integrity disrupts radial glial scaffolding and alters initial neuronal migration from the ventricular zone. Vesicle trafficking is also required for maintenance of lipid and protein cycling within the leading and trailing edge of migratory neurons, as well as dendrites and synapses of mature neurons. Defects in this transport machinery disrupt neuronal identity, migration, and connectivity and give rise to a malformation of cortical development termed as periventricular heterotopia (PH. PH is characterized by a reduction in brain size, ectopic clusters of neurons localized along the lateral ventricle, and epilepsy and dyslexia. These anatomical anomalies correlate with developmental impairments in neural progenitor proliferation and specification, migration from loss of neuroependymal integrity and neuronal motility, and aberrant neuronal process extension. Genes causal for PH regulate vesicle-mediated endocytosis along an actin cytoskeletal network. This paper explores the role of these dynamic processes in cortical development and disease.

  20. Microtubule-targeting drugs rescue axonal swellings in cortical neurons from spastin knockout mice

    Directory of Open Access Journals (Sweden)

    Coralie Fassier

    2013-01-01

    Mutations in SPG4, encoding the microtubule-severing protein spastin, are responsible for the most frequent form of hereditary spastic paraplegia (HSP, a heterogeneous group of genetic diseases characterized by degeneration of the corticospinal tracts. We previously reported that mice harboring a deletion in Spg4, generating a premature stop codon, develop progressive axonal degeneration characterized by focal axonal swellings associated with impaired axonal transport. To further characterize the molecular and cellular mechanisms underlying this mutant phenotype, we have assessed microtubule dynamics and axonal transport in primary cultures of cortical neurons from spastin-mutant mice. We show an early and marked impairment of microtubule dynamics all along the axons of spastin-deficient cortical neurons, which is likely to be responsible for the occurrence of axonal swellings and cargo stalling. Our analysis also reveals that a modulation of microtubule dynamics by microtubule-targeting drugs rescues the mutant phenotype of cortical neurons. Together, these results contribute to a better understanding of the pathogenesis of SPG4-linked HSP and ascertain the influence of microtubule-targeted drugs on the early axonal phenotype in a mouse model of the disease.

  1. PET in malformations of cortical development

    International Nuclear Information System (INIS)

    Bouilleret, V.; O'Brien, T.J.; Bouilleret, V.; Bouilleret, V.; Chiron, C.; Chiron, C.

    2009-01-01

    Within the group of malformations of cortical development, focal cortical dysplasia (FCD) are an increasingly recognized cause of intractable epilepsy that can be cured by surgery. The success of cortical resection for intractable epilepsy is highly dependent on the accurate pre-surgical delineation of the regions responsible for generating seizures. [ 18 F]-FDG PET, which images cerebral metabolism studying brain glucose uptake, is the most established functional imaging modality in the evaluation of patients with epilepsy. The aim of this article is to review [ 18 F]-FDG PET usefulness as a pre-surgical tool in the evaluation of medically refractory partial epilepsy. It has an established place in assisting in the localisation and definition of FCD in patients with no lesion, or only a subtle abnormality, on MRI. The role of FDG-PET in defining the extent of the surgical resection is still uncertain and needs to be the focus of future research. (authors)

  2. Paradiaphyseal calcific tendinitis with cortical bone erosion.

    Science.gov (United States)

    Fritz, P; Bardin, T; Laredo, J D; Ziza, J M; D'Anglejan, G; Lansaman, J; Bucki, B; Forest, M; Kuntz, D

    1994-05-01

    To determine the clinical, radiologic, and histologic features of calcific tendinitis with cortical bone erosion. The records of 6 patients with paradiaphyseal calcific tendinitis and adjacent bone cortex erosion were reviewed. Calcific tendinitis involved the linea aspera in 4 patients, the bicipital groove in 1 patient, and the deltoid insertion in another. Calcium deposits were associated with cortical bone erosions, revealed on plain radiographs in 4 patients and computed tomography scans in 2. Bone scans were performed in 2 patients and showed local hyperfixation of the isotope. In 4 patients, suspicion of a neoplasm led to a biopsy. Calcium deposits appeared to be surrounded by a foreign body reaction with numerous giant cells. Apatite crystals were identified by transmission electron microscopy and elemental analysis in 1 surgical sample. Paradiaphyseal calcific tendinitis with cortical bone erosion is an uncommon presentation of apatite deposition disease.

  3. Reduced cortical thickness in gambling disorder

    DEFF Research Database (Denmark)

    Grant, Jon E; Odlaug, Brian Lawrence; Chamberlain, Samuel R

    2015-01-01

    with significant reductions (average 15.8-19.9 %) in cortical thickness, versus controls, predominantly in right frontal cortical regions. Pronounced right frontal morphometric brain abnormalities occur in gambling disorder, supporting neurobiological overlap with substance disorders and its recent......Gambling disorder has recently been recognized as a prototype 'behavioral addiction' by virtue of its inclusion in the DSM-5 category of 'Substance-Related and Addictive Disorders.' Despite its newly acquired status and prevalence rate of 1-3 % globally, relatively little is known regarding...... the neurobiology of this disorder. The aim of this study was to explore cortical morphometry in untreated gambling disorder, for the first time. Subjects with gambling disorder (N = 16) free from current psychotropic medication or psychiatric comorbidities, and healthy controls (N = 17), were entered...

  4. Rasmussen's encephalitis presenting as focal cortical dysplasia

    Directory of Open Access Journals (Sweden)

    D.J. O'Rourke

    2014-01-01

    Full Text Available Rasmussen's encephalitis is a rare syndrome characterized by intractable seizures, often associated with epilepsia partialis continua and symptoms of progressive hemispheric dysfunction. Seizures are usually the hallmark of presentation, but antiepileptic drug treatment fails in most patients and is ineffective against epilepsia partialis continua, which often requires surgical intervention. Co-occurrence of focal cortical dysplasia has only rarely been described and may have implications regarding pathophysiology and management. We describe a rare case of dual pathology of Rasmussen's encephalitis presenting as a focal cortical dysplasia (FCD and discuss the literature on this topic.

  5. Rasmussen's encephalitis presenting as focal cortical dysplasia

    Science.gov (United States)

    O'Rourke, D.J.; Bergin, A.; Rotenberg, A.; Peters, J.; Gorman, M.; Poduri, A.; Cryan, J.; Lidov, H.; Madsen, J.; Harini, C.

    2014-01-01

    Rasmussen's encephalitis is a rare syndrome characterized by intractable seizures, often associated with epilepsia partialis continua and symptoms of progressive hemispheric dysfunction. Seizures are usually the hallmark of presentation, but antiepileptic drug treatment fails in most patients and is ineffective against epilepsia partialis continua, which often requires surgical intervention. Co-occurrence of focal cortical dysplasia has only rarely been described and may have implications regarding pathophysiology and management. We describe a rare case of dual pathology of Rasmussen's encephalitis presenting as a focal cortical dysplasia (FCD) and discuss the literature on this topic. PMID:25667877

  6. Cortical Networks for Visual Self-Recognition

    Science.gov (United States)

    Sugiura, Motoaki

    This paper briefly reviews recent developments regarding the brain mechanisms of visual self-recognition. A special cognitive mechanism for visual self-recognition has been postulated based on behavioral and neuropsychological evidence, but its neural substrate remains controversial. Recent functional imaging studies suggest that multiple cortical mechanisms play self-specific roles during visual self-recognition, reconciling the existing controversy. Respective roles for the left occipitotemporal, right parietal, and frontal cortices in symbolic, visuospatial, and conceptual aspects of self-representation have been proposed.

  7. Cortical networks for visual self-recognition

    International Nuclear Information System (INIS)

    Sugiura, Motoaki

    2007-01-01

    This paper briefly reviews recent developments regarding the brain mechanisms of visual self-recognition. A special cognitive mechanism for visual self-recognition has been postulated based on behavioral and neuropsychological evidence, but its neural substrate remains controversial. Recent functional imaging studies suggest that multiple cortical mechanisms play self-specific roles during visual self-recognition, reconciling the existing controversy. Respective roles for the left occipitotemporal, right parietal, and frontal cortices in symbolic, visuospatial, and conceptual aspects of self-representation have been proposed. (author)

  8. Mild Cognitive Impairment (MCI)

    Science.gov (United States)

    Mild cognitive impairment (MCI) Overview Mild cognitive impairment (MCI) is an intermediate stage between the expected cognitive decline of normal aging and the more-serious decline of dementia. It ...

  9. Comparing the influence of crestal cortical bone and sinus floor cortical bone in posterior maxilla bi-cortical dental implantation: a three-dimensional finite element analysis.

    Science.gov (United States)

    Yan, Xu; Zhang, Xinwen; Chi, Weichao; Ai, Hongjun; Wu, Lin

    2015-05-01

    This study aimed to compare the influence of alveolar ridge cortical bone and sinus floor cortical bone in sinus areabi-cortical dental implantation by means of 3D finite element analysis. Three-dimensional finite element (FE) models in a posterior maxillary region with sinus membrane and the same height of alveolar ridge of 10 mm were generated according to the anatomical data of the sinus area. They were either with fixed thickness of crestal cortical bone and variable thickness of sinus floor cortical bone or vice versa. Ten models were assumed to be under immediate loading or conventional loading. The standard implant model based on the Nobel Biocare implant system was created via computer-aided design software. All materials were assumed to be isotropic and linearly elastic. An inclined force of 129 N was applied. Von Mises stress mainly concentrated on the surface of crestal cortical bone around the implant neck. For all the models, both the axial and buccolingual resonance frequencies of conventional loading were higher than those of immediate loading; however, the difference is less than 5%. The results showed that bi-cortical implant in sinus area increased the stability of the implant, especially for immediately loading implantation. The thickness of both crestal cortical bone and sinus floor cortical bone influenced implant micromotion and stress distribution; however, crestal cortical bone may be more important than sinus floor cortical bone.

  10. Adapting for Impaired Patrons.

    Science.gov (United States)

    Schuyler, Michael

    1999-01-01

    Describes how a library, with an MCI Corporation grant, approached the process of setting up computers for the visually impaired. Discusses preparations, which included hiring a visually-impaired user as a consultant and contacting the VIP (Visually Impaired Persons) group; equipment; problems with the graphical user interface; and training.…

  11. Evolving Models of Pavlovian Conditioning: Cerebellar Cortical Dynamics in Awake Behaving Mice

    Directory of Open Access Journals (Sweden)

    Michiel M. ten Brinke

    2015-12-01

    Full Text Available Three decades of electrophysiological research on cerebellar cortical activity underlying Pavlovian conditioning have expanded our understanding of motor learning in the brain. Purkinje cell simple spike suppression is considered to be crucial in the expression of conditional blink responses (CRs. However, trial-by-trial quantification of this link in awake behaving animals is lacking, and current hypotheses regarding the underlying plasticity mechanisms have diverged from the classical parallel fiber one to the Purkinje cell synapse LTD hypothesis. Here, we establish that acquired simple spike suppression, acquired conditioned stimulus (CS-related complex spike responses, and molecular layer interneuron (MLI activity predict the expression of CRs on a trial-by-trial basis using awake behaving mice. Additionally, we show that two independent transgenic mouse mutants with impaired MLI function exhibit motor learning deficits. Our findings suggest multiple cerebellar cortical plasticity mechanisms underlying simple spike suppression, and they implicate the broader involvement of the olivocerebellar module within the interstimulus interval.

  12. Role of secondary sensory cortices in emotional memory storage and retrieval in rats.

    Science.gov (United States)

    Sacco, Tiziana; Sacchetti, Benedetto

    2010-08-06

    Visual, acoustic, and olfactory stimuli associated with a highly charged emotional situation take on the affective qualities of that situation. Where the emotional meaning of a given sensory experience is stored is a matter of debate. We found that excitotoxic lesions of auditory, visual, or olfactory secondary sensory cortices impaired remote, but not recent, fear memories in rats. Amnesia was modality-specific and not due to an interference with sensory or emotional processes. In these sites, memory persistence was dependent on ongoing protein kinase Mzeta activity and was associated with an increased activity of layers II-IV, thus suggesting a synaptic strengthening of corticocortical connections. Lesions of the same areas left intact the memory of sensory stimuli not associated with any emotional charge. We propose that secondary sensory cortices support memory storage and retrieval of sensory stimuli that have acquired a behavioral salience with the experience.

  13. CERAD Neuropsychological Total Scores Reflect Cortical Thinning in Prodromal Alzheimer's Disease

    Directory of Open Access Journals (Sweden)

    T. Paajanen

    2013-11-01

    Full Text Available Background: Sensitive cognitive global scores are beneficial in screening and monitoring for prodromal Alzheimer's disease (AD. Early cortical changes provide a novel opportunity for validating established cognitive total scores against the biological disease markers. Methods: We examined how two different total scores of the Consortium to Establish a Registry for Alzheimer's Disease (CERAD battery and the Mini-Mental State Examination (MMSE are associated with cortical thickness (CTH in mild cognitive impairment (MCI and prodromal AD. Cognitive and magnetic resonance imaging (MRI data of 22 progressive MCI, 78 stable MCI, and 98 control subjects, and MRI data of 103 AD patients of the prospective multicenter study were analyzed. Results: CERAD total scores correlated with mean CTH more strongly (r = 0.34-0.38, p Conclusion: CERAD total scores are sensitive to the CTH signature of prodromal AD, which supports their biological validity in detecting early disease-related cognitive changes.

  14. Simplified Classification of Focal Cortical Dysplasia

    Directory of Open Access Journals (Sweden)

    J Gordon Millichap

    2002-09-01

    Full Text Available Sections of cortex from 52 of 224 (23% patients with cortical dysplasia, operated on for drug-resistant partial epilepsy, were retrospectively re-examined histologically at Niguarda Hospital, and Istituto Nazionale Neurologico ‘C. Besta’, Milan, Italy.

  15. Stroke rehabilitation using noninvasive cortical stimulation: aphasia.

    Science.gov (United States)

    Mylius, Veit; Zouari, Hela G; Ayache, Samar S; Farhat, Wassim H; Lefaucheur, Jean-Pascal

    2012-08-01

    Poststroke aphasia results from the lesion of cortical areas involved in the motor production of speech (Broca's aphasia) or in the semantic aspects of language comprehension (Wernicke's aphasia). Such lesions produce an important reorganization of speech/language-specific brain networks due to an imbalance between cortical facilitation and inhibition. In fact, functional recovery is associated with changes in the excitability of the damaged neural structures and their connections. Two main mechanisms are involved in poststroke aphasia recovery: the recruitment of perilesional regions of the left hemisphere in case of small lesion and the acquisition of language processing ability in homotopic areas of the nondominant right hemisphere when left hemispheric language abilities are permanently lost. There is some evidence that noninvasive cortical stimulation, especially when combined with language therapy or other therapeutic approaches, can promote aphasia recovery. Cortical stimulation was mainly used to either increase perilesional excitability or reduce contralesional activity based on the concept of reciprocal inhibition and maladaptive plasticity. However, recent studies also showed some positive effects of the reinforcement of neural activities in the contralateral right hemisphere, based on the potential compensatory role of the nondominant hemisphere in stroke recovery.

  16. Brain cortical characteristics of lifetime cognitive ageing.

    Science.gov (United States)

    Cox, Simon R; Bastin, Mark E; Ritchie, Stuart J; Dickie, David Alexander; Liewald, Dave C; Muñoz Maniega, Susana; Redmond, Paul; Royle, Natalie A; Pattie, Alison; Valdés Hernández, Maria; Corley, Janie; Aribisala, Benjamin S; McIntosh, Andrew M; Wardlaw, Joanna M; Deary, Ian J

    2018-01-01

    Regional cortical brain volume is the product of surface area and thickness. These measures exhibit partially distinct trajectories of change across the brain's cortex in older age, but it is unclear which cortical characteristics at which loci are sensitive to cognitive ageing differences. We examine associations between change in intelligence from age 11 to 73 years and regional cortical volume, surface area, and thickness measured at age 73 years in 568 community-dwelling older adults, all born in 1936. A relative positive change in intelligence from 11 to 73 was associated with larger volume and surface area in selective frontal, temporal, parietal, and occipital regions (r cognitive ageing and a thinner cortex for any region. Interestingly, thickness and surface area were phenotypically independent across bilateral lateral temporal loci, whose surface area was significantly related to change in intelligence. These findings suggest that associations between regional cortical volume and cognitive ageing differences are predominantly driven by surface area rather than thickness among healthy older adults. Regional brain surface area has been relatively underexplored, and is a potentially informative biomarker for identifying determinants of cognitive ageing differences.

  17. Neuroimaging of malformation of cortical development

    International Nuclear Information System (INIS)

    Zlatareva, D.; Hadjidekov, V.; Tournev, I.; Rossi, A.

    2012-01-01

    Malformations of cortical development (MCD) are heterogeneous group of disease which result from disruption of 3 main stages of cortical development.The common clinical presentation is refractory epilepsy and or developmental delay. The aim of this paper is to describe and analyze magnetic resonance (MR) findings and to present protocol for examination. We analyze MR findings in 17 patients with MCD. The average age was 12,1 year (from 2 months - 57 years). The main indications from reference physician are epilepsy and developmental delay. In 12 patients 1.5T MR was performed, and in 5 - 0.5T. Subependymal heterotopias was found in 6 patients, focal cortical dysplasia - 3. polymicrogyria - 3, schizencephaly - 2, hemimegalencephaly -1, lizencephaly -1, tuberous sclerosis -1. The most common MCD are heterotopias, focal cortical dysplasia, polymicrogyria. schizencephaiy, pachygyria and lizencephaly. In our study the number of patients is not big enough to make a conclusion about frequency of the forms of MCD and our goal is to analyze MR findings which are not well studied in our country. MRI is the method of choice for diagnosis of MCD. The protocol should be different from routine brain protocol to interpret the images with good quality and not miss the pathology. Knowledge of MR findings in MCD would help for genetic counselling in some cases or can predict prognosis in some patients. (authors)

  18. Response variability in balanced cortical networks

    DEFF Research Database (Denmark)

    Lerchner, Alexander; Ursta, C.; Hertz, J.

    2006-01-01

    We study the spike statistics of neurons in a network with dynamically balanced excitation and inhibition. Our model, intended to represent a generic cortical column, comprises randomly connected excitatory and inhibitory leaky integrate-and-fire neurons, driven by excitatory input from an external...

  19. Cortical enhancement in chronic subdural hematoma

    International Nuclear Information System (INIS)

    Taguchi, Yoshio; Sato, Jun; Makita, Tadatoshi; Hayashi, Shigetoshi; Nakamura, Norio.

    1981-01-01

    In the CT findings of chronic subdural hematoma, brain enhancement adjacent to a subdural hematoma was seen occasionally after the injection of a contrast material. The authors called this finding ''cortical enhancement'', and 35 cases of chronic subdural hematoma were studied concerning cortical enhancement in relation to age, clinical signs and symptoms, hematoma density, and volume of the hematoma. Eight cases out of the 35 were subjected to measurements of the regional cerebral blood flow preoperatively by the method of the carotid injection of Xe-133. Cortical enhancement was apt to be seen in the cases which revealed intracranial hypertension or disturbance of consciousness, in isodensity or mixed-density hematomas, and in huge subdural hematomas. There was no specific correlation with age distribution. The pathogenesis of cortical enhancement seemed to be the result of cerebral compression with an increase in the contrast material per unit of volume and a prolonged venous outflow from the hemisphere, but no characteristic feature was detected in the average regional cerebral blood flow in our cases. (author)

  20. Spontaneously emerging cortical representations of visual attributes

    Science.gov (United States)

    Kenet, Tal; Bibitchkov, Dmitri; Tsodyks, Misha; Grinvald, Amiram; Arieli, Amos

    2003-10-01

    Spontaneous cortical activity-ongoing activity in the absence of intentional sensory input-has been studied extensively, using methods ranging from EEG (electroencephalography), through voltage sensitive dye imaging, down to recordings from single neurons. Ongoing cortical activity has been shown to play a critical role in development, and must also be essential for processing sensory perception, because it modulates stimulus-evoked activity, and is correlated with behaviour. Yet its role in the processing of external information and its relationship to internal representations of sensory attributes remains unknown. Using voltage sensitive dye imaging, we previously established a close link between ongoing activity in the visual cortex of anaesthetized cats and the spontaneous firing of a single neuron. Here we report that such activity encompasses a set of dynamically switching cortical states, many of which correspond closely to orientation maps. When such an orientation state emerged spontaneously, it spanned several hypercolumns and was often followed by a state corresponding to a proximal orientation. We suggest that dynamically switching cortical states could represent the brain's internal context, and therefore reflect or influence memory, perception and behaviour.

  1. Critical fluctuations in cortical models near instability

    NARCIS (Netherlands)

    Aburn, M.J.; Holmes, C.A.; Roberts, J.A.; Boonstra, T.W.; Breakspear, M.

    2012-01-01

    Computational studies often proceed from the premise that cortical dynamics operate in a linearly stable domain, where fluctuations dissipate quickly and show only short memory. Studies of human electroencephalography (EEG), however, have shown significant autocorrelation at time lags on the scale

  2. Memory Impairment in Children with Language Impairment

    Science.gov (United States)

    Baird, Gillian; Dworzynski, Katharina; Slonims, Vicky; Simonoff, Emily

    2010-01-01

    Aim: The aim of this study was to assess whether any memory impairment co-occurring with language impairment is global, affecting both verbal and visual domains, or domain specific. Method: Visual and verbal memory, learning, and processing speed were assessed in children aged 6 years to 16 years 11 months (mean 9y 9m, SD 2y 6mo) with current,…

  3. Persistent increase in oxygen consumption and impaired neurovascular coupling after spreading depression in rat neocortex.

    Science.gov (United States)

    Piilgaard, Henning; Lauritzen, Martin

    2009-09-01

    Cortical spreading depression (CSD) is associated with a dramatic failure of brain ion homeostasis and increased energy metabolism. There is strong clinical and experimental evidence to suggest that CSD is the mechanism of migraine, and involved in progressive neuronal injury in stroke and head trauma. Here we tested the hypothesis that single episodes of CSD induced acute hypoxia, and prolonged impairment of neurovascular and neurometabolic coupling. Cortical spreading depression was induced in rat frontal cortex, whereas cortical electrical activity and local field potentials (LFPs) were recorded by glass microelectrodes, cerebral blood flow (CBF) by laser-Doppler flowmetry, and tissue oxygen tension (tpO(2)) with polarographic microelectrodes. Cortical spreading depression increased cerebral metabolic rate of oxygen (CMRO(2)) by 71%+/-6.7% and CBF by 238%+/-48.1% for 1 to 2 mins. For the following 2 h, basal tpO(2) and CBF were reduced whereas basal CMRO(2) was persistently elevated by 8.1%+/-2.9%. In addition, within first hour after CSD we found impaired neurovascular coupling (LFP versus CBF), whereas neurometabolic coupling (LFP versus CMRO(2)) remained unaffected. Impaired neurovascular coupling was explained by both reduced vascular reactivity and suppressed function of cortical inhibitory interneurons. The protracted effects of CSD on basal CMRO(2) and neurovascular coupling may contribute to cellular dysfunction in patients with migraine and acutely injured cerebral cortex.

  4. Assessment of cortical maturation with prenatal MRI. Part I: normal cortical maturation

    International Nuclear Information System (INIS)

    Fogliarini, Celine; Chaumoitre, Katia; Chapon, Frederique; Levrier, Olivier; Girard, Nadine; Fernandez, Carla; Figarella-Branger, Dominique

    2005-01-01

    Cortical maturation, especially gyral formation, follows a temporospatial schedule and is a good marker of fetal maturation. Although ultrasonography is still the imaging method of choice to evaluate fetal anatomy, MRI has an increasingly important role in the detection of brain abnormalities, especially of cortical development. Knowledge of MRI techniques in utero with the advantages and disadvantages of some sequences is necessary, in order to try to optimize the different magnetic resonance sequences to be able to make an early diagnosis. The different steps of cortical maturation known from histology represent the background necessary for the understanding of maturation in order to be then able to evaluate brain maturation through neuroimaging. Illustrations of the normal cortical maturation are given for each step accessible to MRI for both the cerebral hemispheres and the posterior fossa. (orig.)

  5. Assessment of cortical maturation with prenatal MRI. Part I: normal cortical maturation

    Energy Technology Data Exchange (ETDEWEB)

    Fogliarini, Celine [Faculte Timone, Centre de Resonance Magnetique Biologique et Medicale, Marseille (France); Chaumoitre, Katia [Hopital Nord, Department of Radiology, Marseille (France); Chapon, Frederique; Levrier, Olivier; Girard, Nadine [Hopital Timone, Department of Neuroradiology, Marseille Cedex 5 (France); Fernandez, Carla; Figarella-Branger, Dominique [Hopital Timone, Department of Pathology, Marseille (France)

    2005-08-01

    Cortical maturation, especially gyral formation, follows a temporospatial schedule and is a good marker of fetal maturation. Although ultrasonography is still the imaging method of choice to evaluate fetal anatomy, MRI has an increasingly important role in the detection of brain abnormalities, especially of cortical development. Knowledge of MRI techniques in utero with the advantages and disadvantages of some sequences is necessary, in order to try to optimize the different magnetic resonance sequences to be able to make an early diagnosis. The different steps of cortical maturation known from histology represent the background necessary for the understanding of maturation in order to be then able to evaluate brain maturation through neuroimaging. Illustrations of the normal cortical maturation are given for each step accessible to MRI for both the cerebral hemispheres and the posterior fossa. (orig.)

  6. Trajectories of cortical surface area and cortical volume maturation in normal brain development

    Directory of Open Access Journals (Sweden)

    Simon Ducharme

    2015-12-01

    Full Text Available This is a report of developmental trajectories of cortical surface area and cortical volume in the NIH MRI Study of Normal Brain Development. The quality-controlled sample included 384 individual typically-developing subjects with repeated scanning (1–3 per subject, total scans n=753 from 4.9 to 22.3 years of age. The best-fit model (cubic, quadratic, or first-order linear was identified at each vertex using mixed-effects models, with statistical correction for multiple comparisons using random field theory. Analyses were performed with and without controlling for total brain volume. These data are provided for reference and comparison with other databases. Further discussion and interpretation on cortical developmental trajectories can be found in the associated Ducharme et al.׳s article “Trajectories of cortical thickness maturation in normal brain development – the importance of quality control procedures” (Ducharme et al., 2015 [1].

  7. Cortical inactivation by cooling in small animals

    Directory of Open Access Journals (Sweden)

    Ben eCoomber

    2011-06-01

    Full Text Available Reversible inactivation of the cortex by surface cooling is a powerful method for studying the function of a particular area. Implanted cooling cryoloops have been used to study the role of individual cortical areas in auditory processing of awake-behaving cats. Cryoloops have also been used in rodents for reversible inactivation of the cortex, but recently there has been a concern that the cryoloop may also cool non-cortical structures either directly or via the perfusion of blood, cooled as it passed close to the cooling loop. In this study we have confirmed that the loop can inactivate most of the auditory cortex without causing a significant reduction in temperature of the auditory thalamus or other sub-cortical structures. We placed a cryoloop on the surface of the guinea pig cortex, cooled it to 2°C and measured thermal gradients across the neocortical surface. We found that the temperature dropped to 20-24°C among cells within a radius of about 2.5mm away from the loop. This temperature drop was sufficient to reduce activity of most cortical cells and led to the inactivation of almost the entire auditory region. When the temperature of thalamus, midbrain, and middle ear were measured directly during cortical cooling, there was a small drop in temperature (about 4°C but this was not sufficient to directly reduce neural activity. In an effort to visualise the extent of neural inactivation we measured the uptake of thallium ions following an intravenous injection. This confirmed that there was a large reduction of activity across much of the ipsilateral cortex and only a small reduction in subcortical structures.

  8. Functional MRI study of the brain with malformations of cortical development

    International Nuclear Information System (INIS)

    Zhang Lei; Zhou Wenjing; Jin Zhen; Li Ke; Zhang Chaoli

    2012-01-01

    Objective: To explore the patterns of motor and linguistic activation in cortical and its correlations with abnormal gray matter in patients with malformations of cortical development (MCD) and epilepsy. Methods: Seven MCD patients with epilepsy (2 patients with focal cortical dysplasia, 2 heterotopia, 2 schizencephaly, and 1 polymicrogyria) underwent blood-oxygen-level-dependent (BOLD) functional MRI (fMRI) in a 3 T MR scanner when practicing bilateral fingers tapping,toes twisting, verb generation, and picture naming.Functional images were post-processed by using SPM 5 software based on a general linear model (GLM) to generate activations above a uniform threshold with the cluster size (≥30 voxels, P<0.001 corrected). The activations were recognized and classified by two experienced neuroradiologists, and then compared with that in abnormal gray matter. Results: The clusters and intensities of motor activations were mainly located in the sensormotor cortex (SMC) and premotor area (PMA). In linguistic tasks, activations produced by verb generation were found in language-associated cortical regions and PMA with higher activation in Wernicke area, picture naming significantly in the visual cortex, and language in Broca area. Combination of the two linguistic tasks produced significant clusters and intensities in language cortex. For MCD patients with abnormal cortical abnormalities, motor and language task could produce neuronal activities within normal as well as abnormal cortex regions. In 6 patients who underwent respective surgery, epileptic seizures decreased significantly, and the follow-up images demonstrated no new neurological dysfunctions and cognitive impairments. Conclusions: fMRI can visualize neuronal activities in patients with MCD and epilepsy and demonstrate the motor and linguistic activations occurring in normal and abnormal gray matter. It should be cautious for surgery in patient with MCD and epilepsy. (authors)

  9. Pattern of regional cortical thinning associated with cognitive deterioration in Parkinson's disease.

    Directory of Open Access Journals (Sweden)

    Javier Pagonabarraga

    Full Text Available BACKGROUND: Dementia is a frequent and devastating complication in Parkinson's disease (PD. There is an intensive search for biomarkers that may predict the progression from normal cognition (PD-NC to dementia (PDD in PD. Mild cognitive impairment in PD (PD-MCI seems to represent a transitional state between PD-NC and PDD. Few studies have explored the structural changes that differentiate PD-NC from PD-MCI and PDD patients. OBJECTIVES AND METHODS: We aimed to analyze changes in cortical thickness on 3.0T Magnetic Resonance Imaging (MRI across stages of cognitive decline in a prospective sample of PD-NC (n = 26, PD-MCI (n = 26 and PDD (n = 20 patients, compared to a group of healthy subjects (HC (n = 18. Cortical thickness measurements were made using the automatic software Freesurfer. RESULTS: In a sample of 72 PD patients, a pattern of linear and progressive cortical thinning was observed between cognitive groups in cortical areas functionally specialized in declarative memory (entorhinal cortex, anterior temporal pole, semantic knowledge (parahippocampus, fusiform gyrus, and visuoperceptive integration (banks of the superior temporal sulcus, lingual gyrus, cuneus and precuneus. Positive correlation was observed between confrontation naming and thinning in the fusiform gyrus, parahippocampal gyrus and anterior temporal pole; clock copy with thinning of the precuneus, parahippocampal and lingual gyrus; and delayed memory with thinning of the bilateral anteromedial temporal cortex. CONCLUSIONS: The pattern of regional decreased cortical thickness that relates to cognitive deterioration is present in PD-MCI patients, involving areas that play a central role in the storage of prior experiences, integration of external perceptions, and semantic processing.

  10. Changes of cortical excitability as markers of antidepressant response in bipolar depression: preliminary data obtained by combining transcranial magnetic stimulation (TMS) and electroencephalography (EEG).

    Science.gov (United States)

    Canali, Paola; Sferrazza Papa, Giovanna; Casali, Adenauer G; Schiena, Giandomenico; Fecchio, Matteo; Pigorini, Andrea; Smeraldi, Enrico; Colombo, Cristina; Benedetti, Francesco

    2014-12-01

    It is still unclear which biological changes are needed to recover from a major depressive episode. Current perspectives focus on cortical synaptic neuroplasticity. Measures of cortical responses evoked by transcranial magnetic stimulation (TMS) change with sleep homeostasic pressure in humans and approximate measures of synaptic strength in animal models. Using repeated total sleep deprivation as a model of antidepressant treatment, we aimed to correlate recovery from depression with these measures of cortical excitability. We recorded electroencephalographic responses to TMS in the prefrontal cortex of 21 depressed inpatients with bipolar disorder treated with repeated sleep deprivation combined with light therapy. We performed seven TMS/electroencephalography sessions during one week and calculated three measures of cortical excitability. Cortical excitability progressively increased during the antidepressant treatment and as a function of time awake. Higher values differentiated responders from non-responders at baseline and during and after treatment on all measures. Changes in measures of cortical excitability parallel and predict antidepressant response to combined sleep deprivation and light therapy. Data suggest that promoting cortical plasticity in bipolar depression could be a major effect of successful antidepressant treatments, and that patients not responding could suffer a persistent impairment in their neuroplasticity mechanisms. © 2014 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd.

  11. Person identification based on multiscale matching of cortical images

    NARCIS (Netherlands)

    Kruizinga, P; Petkov, N; Hertzberger, B; Serazzi, G

    1995-01-01

    A set of so-called cortical images, motivated by the function of simple cells in the primary visual cortex of mammals, is computed from each of two input images and an image pyramid is constructed for each cortical image. The two sets of cortical image pyramids are matched synchronously and an

  12. Cortical gyrification is abnormal in children with prenatal alcohol exposure

    Directory of Open Access Journals (Sweden)

    Timothy J. Hendrickson

    2017-01-01

    Conclusions: Abnormalities in cortical development were seen across the brain in children with PAE compared to controls. Cortical gyrification and IQ were strongly correlated, suggesting that examining mechanisms by which alcohol disrupts cortical formation may yield clinically relevant insights and potential directions for early intervention.

  13. Sonic hedgehog promotes neurite outgrowth of cortical neurons under oxidative stress: Involving of mitochondria and energy metabolism.

    Science.gov (United States)

    He, Weiliang; Cui, Lili; Zhang, Cong; Zhang, Xiangjian; He, Junna; Xie, Yanzhao; Chen, Yanxia

    2017-01-01

    Oxidative stress has been demonstrated to be involved in the etiology of several neurobiological disorders. Sonic hedgehog (Shh), a secreted glycoprotein factor, has been implicated in promoting several aspects of brain remodeling process. Mitochondria may play an important role in controlling fundamental processes in neuroplasticity. However, little evidence is available about the effect and the potential mechanism of Shh on neurite outgrowth in primary cortical neurons under oxidative stress. Here, we revealed that Shh treatment significantly increased the viability of cortical neurons in a dose-dependent manner, which was damaged by hydrogen peroxide (H 2 O 2 ). Shh alleviated the apoptosis rate of H 2 O 2 -induced neurons. Shh also increased neuritogenesis injuried by H 2 O 2 in primary cortical neurons. Moreover, Shh reduced the generation of reactive oxygen species (ROS), increased the activities of SOD and and decreased the productions of MDA. In addition, Shh protected mitochondrial functions, elevated the cellular ATP levels and amelioratesd the impairment of mitochondrial complex II activities of cortical neurons induced by H 2 O 2 . In conclusion, all these results suggest that Shh acts as a prosurvival factor playing an essential role to neurite outgrowth of cortical neuron under H 2 O 2 -induced oxidative stress, possibly through counteracting ROS release and preventing mitochondrial dysfunction and ATP as well as mitochondrial complex II activities against oxidative stress. Copyright © 2016 Elsevier Inc. All rights reserved.

  14. Persistent increase in oxygen consumption and impaired neurovascular coupling after spreading depression in rat neocortex

    DEFF Research Database (Denmark)

    Hansen, Henning Piilgaard; Lauritzen, Martin

    2009-01-01

    trauma. Here we tested the hypothesis that single episodes of CSD induced acute hypoxia, and prolonged impairment of neurovascular and neurometabolic coupling. Cortical spreading depression was induced in rat frontal cortex, whereas cortical electrical activity and local field potentials (LFPs) were......Cortical spreading depression (CSD) is associated with a dramatic failure of brain ion homeostasis and increased energy metabolism. There is strong clinical and experimental evidence to suggest that CSD is the mechanism of migraine, and involved in progressive neuronal injury in stroke and head...... recorded by glass microelectrodes, cerebral blood flow (CBF) by laser-Doppler flowmetry, and tissue oxygen tension (tpO(2)) with polarographic microelectrodes. Cortical spreading depression increased cerebral metabolic rate of oxygen (CMRO(2)) by 71%+/-6.7% and CBF by 238%+/-48.1% for 1 to 2 mins...

  15. Cross-sensory gating in schizophrenia and autism spectrum disorder : EEG evidence for impaired brain connectivity?

    NARCIS (Netherlands)

    Magnee, Maurice J. C. M.; Oranje, Bob; van Engeland, Herman; Kahn, Rene S.; Kemner, Chantal

    Autism spectrum disorders (ASD) and schizophrenia are both neurodevelopmental disorders that have extensively been associated with impairments in functional brain connectivity. Using a cross-sensory P50 suppression paradigm, this study investigated low-level audiovisual interactions on cortical EEG

  16. Reduced modulation of scanpaths in response to task demands in posterior cortical atrophy.

    Science.gov (United States)

    Shakespeare, Timothy J; Pertzov, Yoni; Yong, Keir X X; Nicholas, Jennifer; Crutch, Sebastian J

    2015-02-01

    A difficulty in perceiving visual scenes is one of the most striking impairments experienced by patients with the clinico-radiological syndrome posterior cortical atrophy (PCA). However whilst a number of studies have investigated perception of relatively simple experimental stimuli in these individuals, little is known about multiple object and complex scene perception and the role of eye movements in posterior cortical atrophy. We embrace the distinction between high-level (top-down) and low-level (bottom-up) influences upon scanning eye movements when looking at scenes. This distinction was inspired by Yarbus (1967), who demonstrated how the location of our fixations is affected by task instructions and not only the stimulus' low level properties. We therefore examined how scanning patterns are influenced by task instructions and low-level visual properties in 7 patients with posterior cortical atrophy, 8 patients with typical Alzheimer's disease, and 19 healthy age-matched controls. Each participant viewed 10 scenes under four task conditions (encoding, recognition, search and description) whilst eye movements were recorded. The results reveal significant differences between groups in the impact of test instructions upon scanpaths. Across tasks without a search component, posterior cortical atrophy patients were significantly less consistent than typical Alzheimer's disease patients and controls in where they were looking. By contrast, when comparing search and non-search tasks, it was controls who exhibited lowest between-task similarity ratings, suggesting they were better able than posterior cortical atrophy or typical Alzheimer's disease patients to respond appropriately to high-level needs by looking at task-relevant regions of a scene. Posterior cortical atrophy patients had a significant tendency to fixate upon more low-level salient parts of the scenes than controls irrespective of the viewing task. The study provides a detailed characterisation of

  17. Visualizing stages of cortical atrophy in progressive MCI from the ADNI cohort

    DEFF Research Database (Denmark)

    Eskildsen, Simon Fristed; Fonov, Vladimir; Coupé, Pierrick

    Amnestic mild cognitive impairment (MCI) is considered a condition where patients are at risk of developing clinically definite Alzheimer’s disease (AD) with an annual conversion rate of approximately 15%[1]. AD is characterized by progressive brain atrophy with major impact on the cerebral cortex...... and visualize the cortical atrophy at different stages in patients who eventually converted to clinically definite AD. We selected patients with a diagnosis of MCI from the ADNI database who converted to AD during the follow-up period. T1-weighted MRI scans were collected at time of conversion(n=140...

  18. Posterior cortical atrophy - a prototypical case of dementia beginning with visual symptoms: case report

    Directory of Open Access Journals (Sweden)

    Leonardo Ferreira Caixeta

    2013-10-01

    Full Text Available Dementia presenting with prominent higher order visual symptoms may be observed in a range of neurodegenerative conditions and is often challenging to diagnose. We describe a case of progressive dementia presenting with prominent visual cortical symptoms. A 55-year-old, right-handed, woman with early onset of visual impairment not associated with anterior visual pathology, presenting with dyslexia, visual agnosia, Balint's syndrome, and spatial disorientation. Ophthalmologists should consider this condition especially in presenile patients with slowly progressive higher-order visual symptoms. Although described in association with different conditions, it may also occur in Alzheimer disease.

  19. Cerebral versus Ocular Visual Impairment: The Impact on Developmental Neuroplasticity.

    Science.gov (United States)

    Martín, Maria B C; Santos-Lozano, Alejandro; Martín-Hernández, Juan; López-Miguel, Alberto; Maldonado, Miguel; Baladrón, Carlos; Bauer, Corinna M; Merabet, Lotfi B

    2016-01-01

    Cortical/cerebral visual impairment (CVI) is clinically defined as significant visual dysfunction caused by injury to visual pathways and structures occurring during early perinatal development. Depending on the location and extent of damage, children with CVI often present with a myriad of visual deficits including decreased visual acuity and impaired visual field function. Most striking, however, are impairments in visual processing and attention which have a significant impact on learning, development, and independence. Within the educational arena, current evidence suggests that strategies designed for individuals with ocular visual impairment are not effective in the case of CVI. We propose that this variance may be related to differences in compensatory neuroplasticity related to the type of visual impairment, as well as underlying alterations in brain structural connectivity. We discuss the etiology and nature of visual impairments related to CVI, and how advanced neuroimaging techniques (i.e., diffusion-based imaging) may help uncover differences between ocular and cerebral causes of visual dysfunction. Revealing these differences may help in developing future strategies for the education and rehabilitation of individuals living with visual impairment.

  20. Functional cortical mapping of scale illusion

    International Nuclear Information System (INIS)

    Wang, Li-qun; Kuriki, Shinya

    2011-01-01

    We have studied cortical activation using 1.5 T fMRI during 'Scale Illusion', a kind of auditory illusion, in which subjects perceive smooth melodies while listening to dichotic irregular pitch sequences consisting of scale tones, in repeated phrases composed of eight tones. Four male and four female subjects listened to different stimuli, that including illusion-inducing tone sequence, monaural tone sequence and perceived pitch sequence with a control of white noises delivered to the right and left ears in random order. 32 scans with a repetition time (TR) 3 s Between 3 s interval for each type of the four stimuli were performed. In BOLD signals, activation was observed in the prefrontal and temporal cortices, parietal lobule and occipital areas by first-level group analysis. However, there existed large intersubject variability such that systematic tendency of the activation was not clear. The study will be continued to obtain larger number of subjects for group analysis. (author)

  1. Massive cortical reorganization in sighted Braille readers.

    Science.gov (United States)

    Siuda-Krzywicka, Katarzyna; Bola, Łukasz; Paplińska, Małgorzata; Sumera, Ewa; Jednoróg, Katarzyna; Marchewka, Artur; Śliwińska, Magdalena W; Amedi, Amir; Szwed, Marcin

    2016-03-15

    The brain is capable of large-scale reorganization in blindness or after massive injury. Such reorganization crosses the division into separate sensory cortices (visual, somatosensory...). As its result, the visual cortex of the blind becomes active during tactile Braille reading. Although the possibility of such reorganization in the normal, adult brain has been raised, definitive evidence has been lacking. Here, we demonstrate such extensive reorganization in normal, sighted adults who learned Braille while their brain activity was investigated with fMRI and transcranial magnetic stimulation (TMS). Subjects showed enhanced activity for tactile reading in the visual cortex, including the visual word form area (VWFA) that was modulated by their Braille reading speed and strengthened resting-state connectivity between visual and somatosensory cortices. Moreover, TMS disruption of VWFA activity decreased their tactile reading accuracy. Our results indicate that large-scale reorganization is a viable mechanism recruited when learning complex skills.

  2. Permanent Cortical Blindness After Bronchial Artery Embolization

    Energy Technology Data Exchange (ETDEWEB)

    Doorn, Colette S. van, E-mail: cvandoorn@gmail.com; De Boo, Diederick W., E-mail: d.w.deboo@amc.uva.nl [Academic Medical Centre, Department of Radiology (Netherlands); Weersink, Els J. M., E-mail: e.j.m.weersink@amc.uva.nl [Academic Medical Centre, Department of Pulmonology (Netherlands); Delden, Otto M. van, E-mail: o.m.vandelden@amc.uva.nl; Reekers, Jim A., E-mail: j.a.reekers@amc.uva.nl; Lienden, Krijn P. van, E-mail: k.p.vanlienden@amc.uva.nl [Academic Medical Centre, Department of Radiology (Netherlands)

    2013-12-15

    A 35-year-old female with a known medical history of cystic fibrosis was admitted to our institution for massive hemoptysis. CTA depicted a hypertrophied bronchial artery to the right upper lobe and showed signs of recent bleeding at that location. Bronchial artery embolization (BAE) was performed with gelfoam slurry, because pronounced shunting to the pulmonary artery was present. Immediately after BAE, the patient developed bilateral cortical blindness. Control angiography showed an initially not opacified anastomosis between the embolized bronchial artery and the right subclavian artery, near to the origin of the right vertebral artery. Cessation of outflow in the bronchial circulation reversed the flow through the anastomosis and allowed for spill of embolization material into the posterior circulation. Unfortunately the cortical blindness presented was permanent.

  3. Perceptual incongruence influences bistability and cortical activation.

    Directory of Open Access Journals (Sweden)

    Gijs Joost Brouwer

    Full Text Available We employed a parametric psychophysical design in combination with functional imaging to examine the influence of metric changes in perceptual incongruence on perceptual alternation rates and cortical responses. Subjects viewed a bistable stimulus defined by incongruent depth cues; bistability resulted from incongruence between binocular disparity and monocular perspective cues that specify different slants (slant rivalry. Psychophysical results revealed that perceptual alternation rates were positively correlated with the degree of perceived incongruence. Functional imaging revealed systematic increases in activity that paralleled the psychophysical results within anterior intraparietal sulcus, prior to the onset of perceptual alternations. We suggest that this cortical activity predicts the frequency of subsequent alternations, implying a putative causal role for these areas in initiating bistable perception. In contrast, areas implicated in form and depth processing (LOC and V3A were sensitive to the degree of slant, but failed to show increases in activity when these cues were in conflict.

  4. Plasticity of cortical excitatory-inhibitory balance.

    Science.gov (United States)

    Froemke, Robert C

    2015-07-08

    Synapses are highly plastic and are modified by changes in patterns of neural activity or sensory experience. Plasticity of cortical excitatory synapses is thought to be important for learning and memory, leading to alterations in sensory representations and cognitive maps. However, these changes must be coordinated across other synapses within local circuits to preserve neural coding schemes and the organization of excitatory and inhibitory inputs, i.e., excitatory-inhibitory balance. Recent studies indicate that inhibitory synapses are also plastic and are controlled directly by a large number of neuromodulators, particularly during episodes of learning. Many modulators transiently alter excitatory-inhibitory balance by decreasing inhibition, and thus disinhibition has emerged as a major mechanism by which neuromodulation might enable long-term synaptic modifications naturally. This review examines the relationships between neuromodulation and synaptic plasticity, focusing on the induction of long-term changes that collectively enhance cortical excitatory-inhibitory balance for improving perception and behavior.

  5. Shining a light on posterior cortical atrophy.

    Science.gov (United States)

    Crutch, Sebastian J; Schott, Jonathan M; Rabinovici, Gil D; Boeve, Bradley F; Cappa, Stefano F; Dickerson, Bradford C; Dubois, Bruno; Graff-Radford, Neill R; Krolak-Salmon, Pierre; Lehmann, Manja; Mendez, Mario F; Pijnenburg, Yolande; Ryan, Natalie S; Scheltens, Philip; Shakespeare, Tim; Tang-Wai, David F; van der Flier, Wiesje M; Bain, Lisa; Carrillo, Maria C; Fox, Nick C

    2013-07-01

    Posterior cortical atrophy (PCA) is a clinicoradiologic syndrome characterized by progressive decline in visual processing skills, relatively intact memory and language in the early stages, and atrophy of posterior brain regions. Misdiagnosis of PCA is common, owing not only to its relative rarity and unusual and variable presentation, but also because patients frequently first seek the opinion of an ophthalmologist, who may note normal eye examinations by their usual tests but may not appreciate cortical brain dysfunction. Seeking to raise awareness of the disease, stimulate research, and promote collaboration, a multidisciplinary group of PCA research clinicians formed an international working party, which had its first face-to-face meeting on July 13, 2012 in Vancouver, Canada, prior to the Alzheimer's Association International Conference. Copyright © 2013 The Alzheimer's Association. Published by Elsevier Inc. All rights reserved.

  6. Slow cortical evoked potentials after noise exposure

    Energy Technology Data Exchange (ETDEWEB)

    von Wedel, H; Opitz, H J

    1979-07-01

    Human cortical evoked potentials under conditions of stimuation are registrated in the post-stimulatory phase of a five minutes lasting equally masking white noise (90 dB HL). Changes of the evoked potentials during adaptation, possible analogy with high tone losses after noise representation and the origin of tinnitus are examined. Stimulation was started 3 sec after the off-effect of the noise. For five minutes periodically tone bursts were represented. Each train of stimulation consists of tone bursts of three frequencies: 2 kcs, 4 kcs, 8 kcs. The 0.5 sec lasting tones were separated by pauses of 2 sec. During the experiment stimulation and analysis were controlled by a computer. Changes in latency and amplitudes of the cortical evoked potentials were registered. Changes of the adaptation patterns as a function of the poststimulatory time are discussed.

  7. Thickened cortical bones in congenital neutropenia

    International Nuclear Information System (INIS)

    Boechat, M.I.; Gormley, L.S.; O'Laughlin, B.J.

    1987-01-01

    Congenital neutropenia is an uncommon entity which may be familial and has a wide spectrum of clinical expression. Three sisters with the severe form of the disease, that suffered from recurrent infections which lead to their demise are described. Review of their radiographs revealed the presence of cortical thickening of the bones. Although several syndroms with different bone abnormalities have been reported associated with neutropenia, the radiographic finding of thickened cortex in children with congenital neutropenia has not been previously described. (orig.)

  8. Thickened cortical bones in congenital neutropenia

    Energy Technology Data Exchange (ETDEWEB)

    Boechat, M.I.; Gormley, L.S.; O' Laughlin, B.J.

    1987-02-01

    Congenital neutropenia is an uncommon entity which may be familial and has a wide spectrum of clinical expression. Three sisters with the severe form of the disease, that suffered from recurrent infections which lead to their demise are described. Review of their radiographs revealed the presence of cortical thickening of the bones. Although several syndroms with different bone abnormalities have been reported associated with neutropenia, the radiographic finding of thickened cortex in children with congenital neutropenia has not been previously described.

  9. Motor cortical plasticity in Parkinson's disease.

    Science.gov (United States)

    Udupa, Kaviraja; Chen, Robert

    2013-09-04

    In Parkinson's disease (PD), there are alterations of the basal ganglia (BG) thalamocortical networks, primarily due to degeneration of nigrostriatal dopaminergic neurons. These changes in subcortical networks lead to plastic changes in primary motor cortex (M1), which mediates cortical motor output and is a potential target for treatment of PD. Studies investigating the motor cortical plasticity using non-invasive transcranial magnetic stimulation (TMS) have found altered plasticity in PD, but there are inconsistencies among these studies. This is likely because plasticity depends on many factors such as the extent of dopaminergic loss and disease severity, response to dopaminergic replacement therapies, development of l-DOPA-induced dyskinesias (LID), the plasticity protocol used, medication, and stimulation status in patients treated with deep brain stimulation (DBS). The influences of LID and DBS on BG and M1 plasticity have been explored in animal models and in PD patients. In addition, many other factors such age, genetic factors (e.g., brain derived neurotropic factor and other neurotransmitters or receptors polymorphism), emotional state, time of the day, physical fitness have been documented to play role in the extent of plasticity induced by TMS in human studies. In this review, we summarize the studies that investigated M1 plasticity in PD and demonstrate how these afore-mentioned factors affect motor cortical plasticity in PD. We conclude that it is important to consider the clinical, demographic, and technical factors that influence various plasticity protocols while developing these protocols as diagnostic or prognostic tools in PD. We also discuss how the modulation of cortical excitability and the plasticity with these non-invasive brain stimulation techniques facilitate the understanding of the pathophysiology of PD and help design potential therapeutic possibilities in this disorder.

  10. Motor cortical processing is causally involved in object recognition.

    Science.gov (United States)

    Decloe, Rebecca; Obhi, Sukhvinder S

    2013-12-14

    Motor activity during vicarious experience of actions is a widely reported and studied phenomenon, and motor system activity also accompanies observation of graspable objects in the absence of any actions. Such motor activity is thought to reflect simulation of the observed action, or preparation to interact with the object, respectively. Here, in an initial exploratory study, we ask whether motor activity during observation of object directed actions is involved in processes related to recognition of the object after initial exposure. Single pulse Transcranial Magnetic Stimulation (TMS) was applied over the thumb representation of the motor cortex, or over the vertex, during observation of a model thumb typing on a cell-phone, and performance on a phone recognition task at the end of the trial was assessed. Disrupting motor processing over the thumb representation 100 ms after the onset of the typing video impaired the ability to recognize the phone in the recognition test, whereas there was no such effect for TMS applied over the vertex and no TMS trials. Furthermore, this effect only manifested for videos observed from the first person perspective. In an additional control condition, there was no evidence for any effects of TMS to the thumb representation or vertex when observing and recognizing non-action related shape stimuli. Overall, these data provide evidence that motor cortical processing during observation of object-directed actions from a first person perspective is causally linked to the formation of enduring representations of objects-of-action.

  11. Motor cortical processing is causally involved in object recognition

    Science.gov (United States)

    2013-01-01

    Background Motor activity during vicarious experience of actions is a widely reported and studied phenomenon, and motor system activity also accompanies observation of graspable objects in the absence of any actions. Such motor activity is thought to reflect simulation of the observed action, or preparation to interact with the object, respectively. Results Here, in an initial exploratory study, we ask whether motor activity during observation of object directed actions is involved in processes related to recognition of the object after initial exposure. Single pulse Transcranial Magnetic Stimulation (TMS) was applied over the thumb representation of the motor cortex, or over the vertex, during observation of a model thumb typing on a cell-phone, and performance on a phone recognition task at the end of the trial was assessed. Disrupting motor processing over the thumb representation 100 ms after the onset of the typing video impaired the ability to recognize the phone in the recognition test, whereas there was no such effect for TMS applied over the vertex and no TMS trials. Furthermore, this effect only manifested for videos observed from the first person perspective. In an additional control condition, there was no evidence for any effects of TMS to the thumb representation or vertex when observing and recognizing non-action related shape stimuli. Conclusion Overall, these data provide evidence that motor cortical processing during observation of object-directed actions from a first person perspective is causally linked to the formation of enduring representations of objects-of-action. PMID:24330638

  12. Computational modeling of epidural cortical stimulation

    Science.gov (United States)

    Wongsarnpigoon, Amorn; Grill, Warren M.

    2008-12-01

    Epidural cortical stimulation (ECS) is a developing therapy to treat neurological disorders. However, it is not clear how the cortical anatomy or the polarity and position of the electrode affects current flow and neural activation in the cortex. We developed a 3D computational model simulating ECS over the precentral gyrus. With the electrode placed directly above the gyrus, about half of the stimulus current flowed through the crown of the gyrus while current density was low along the banks deep in the sulci. Beneath the electrode, neurons oriented perpendicular to the cortical surface were depolarized by anodic stimulation, and neurons oriented parallel to the boundary were depolarized by cathodic stimulation. Activation was localized to the crown of the gyrus, and neurons on the banks deep in the sulci were not polarized. During regulated voltage stimulation, the magnitude of the activating function was inversely proportional to the thickness of the CSF and dura. During regulated current stimulation, the activating function was not sensitive to the thickness of the dura but was slightly more sensitive than during regulated voltage stimulation to the thickness of the CSF. Varying the width of the gyrus and the position of the electrode altered the distribution of the activating function due to changes in the orientation of the neurons beneath the electrode. Bipolar stimulation, although often used in clinical practice, reduced spatial selectivity as well as selectivity for neuron orientation.

  13. Extensive cortical rewiring after brain injury.

    Science.gov (United States)

    Dancause, Numa; Barbay, Scott; Frost, Shawn B; Plautz, Erik J; Chen, Daofen; Zoubina, Elena V; Stowe, Ann M; Nudo, Randolph J

    2005-11-02

    Previously, we showed that the ventral premotor cortex (PMv) underwent neurophysiological remodeling after injury to the primary motor cortex (M1). In the present study, we examined cortical connections of PMv after such lesions. The neuroanatomical tract tracer biotinylated dextran amine was injected into the PMv hand area at least 5 months after ischemic injury to the M1 hand area. Comparison of labeling patterns between experimental and control animals demonstrated extensive proliferation of novel PMv terminal fields and the appearance of retrogradely labeled cell bodies within area 1/2 of the primary somatosensory cortex after M1 injury. Furthermore, evidence was found for alterations in the trajectory of PMv intracortical axons near the site of the lesion. The results suggest that M1 injury results in axonal sprouting near the ischemic injury and the establishment of novel connections within a distant target. These results support the hypothesis that, after a cortical injury, such as occurs after stroke, cortical areas distant from the injury undergo major neuroanatomical reorganization. Our results reveal an extraordinary anatomical rewiring capacity in the adult CNS after injury that may potentially play a role in recovery.

  14. Rab3A, a possible marker of cortical granules, participates in cortical granule exocytosis in mouse eggs

    Energy Technology Data Exchange (ETDEWEB)

    Bello, Oscar Daniel; Cappa, Andrea Isabel; Paola, Matilde de; Zanetti, María Natalia [Instituto de Histología y Embriología, CONICET – Universidad Nacional de Cuyo, Av. Libertador 80, 5500 Mendoza (Argentina); Fukuda, Mitsunori [Department of Developmental Biology and Neurosciences, Graduate School of Life Sciences, Tohoku University, Sendai, Miyagi 980-8578 (Japan); Fissore, Rafael A. [Department of Veterinary and Animal Sciences, University of Massachusetts Amherst, 661 North Pleasant Street, Amherst, MA 01003 (United States); Mayorga, Luis S. [Instituto de Histología y Embriología, CONICET – Universidad Nacional de Cuyo, Av. Libertador 80, 5500 Mendoza (Argentina); Michaut, Marcela A., E-mail: mmichaut@gmail.com [Instituto de Histología y Embriología, CONICET – Universidad Nacional de Cuyo, Av. Libertador 80, 5500 Mendoza (Argentina); Facultad de Ciencias Exactas y Naturales, Universidad Nacional de Cuyo (Argentina)

    2016-09-10

    Fusion of cortical granules with the oocyte plasma membrane is the most significant event to prevent polyspermy. This particular exocytosis, also known as cortical reaction, is regulated by calcium and its molecular mechanism is still not known. Rab3A, a member of the small GTP-binding protein superfamily, has been implicated in calcium-dependent exocytosis and is not yet clear whether Rab3A participates in cortical granules exocytosis. Here, we examine the involvement of Rab3A in the physiology of cortical granules, particularly, in their distribution during oocyte maturation and activation, and their participation in membrane fusion during cortical granule exocytosis. Immunofluorescence and Western blot analysis showed that Rab3A and cortical granules have a similar migration pattern during oocyte maturation, and that Rab3A is no longer detected after cortical granule exocytosis. These results suggested that Rab3A might be a marker of cortical granules. Overexpression of EGFP-Rab3A colocalized with cortical granules with a Pearson correlation coefficient of +0.967, indicating that Rab3A and cortical granules have almost a perfect colocalization in the egg cortical region. Using a functional assay, we demonstrated that microinjection of recombinant, prenylated and active GST-Rab3A triggered cortical granule exocytosis, indicating that Rab3A has an active role in this secretory pathway. To confirm this active role, we inhibited the function of endogenous Rab3A by microinjecting a polyclonal antibody raised against Rab3A prior to parthenogenetic activation. Our results showed that Rab3A antibody microinjection abolished cortical granule exocytosis in parthenogenetically activated oocytes. Altogether, our findings confirm that Rab3A might function as a marker of cortical granules and participates in cortical granule exocytosis in mouse eggs. - Highlights: • Rab3A has a similar migration pattern to cortical granules in mouse oocytes. • Rab3A can be a marker of

  15. Identifying and characterising cerebral visual impairment in children: a review.

    Science.gov (United States)

    Philip, Swetha Sara; Dutton, Gordon N

    2014-05-01

    Cerebral visual impairment (CVI) comprises visual malfunction due to retro-chiasmal visual and visual association pathway pathology. This can be isolated or accompany anterior visual pathway dysfunction. It is a major cause of low vision in children in the developed and developing world due to increasing survival in paediatric and neonatal care. CVI can present in many combinations and degrees. There are multiple causes and it is common in children with cerebral palsy. CVI can be identified easily, if a structured approach to history-taking is employed. This review describes the features of CVI and describes practical management strategies aimed at helping affected children. A literature review was undertaken using 'Medline' and 'Pubmed'. Search terms included cerebral visual impairment, cortical visual impairment, dorsal stream dysfunction and visual function in cerebral palsy. © 2014 The Authors. Clinical and Experimental Optometry © 2014 Optometrists Association Australia.

  16. Effect of age at onset on cortical thickness and cognition in posterior cortical atrophy.

    Science.gov (United States)

    Suárez-González, Aida; Lehmann, Manja; Shakespeare, Timothy J; Yong, Keir X X; Paterson, Ross W; Slattery, Catherine F; Foulkes, Alexander J M; Rabinovici, Gil D; Gil-Néciga, Eulogio; Roldán-Lora, Florinda; Schott, Jonathan M; Fox, Nick C; Crutch, Sebastian J

    2016-08-01

    Age at onset (AAO) has been shown to influence the phenotype of Alzheimer's disease (AD), but how it affects atypical presentations of AD remains unknown. Posterior cortical atrophy (PCA) is the most common form of atypical AD. In this study, we aimed to investigate the effect of AAO on cortical thickness and cognitive function in 98 PCA patients. We used Freesurfer (v5.3.0) to compare cortical thickness with AAO both as a continuous variable, and by dichotomizing the groups based on median age (58 years). In both the continuous and dichotomized analyses, we found a pattern suggestive of thinner cortex in precuneus and parietal areas in earlier-onset PCA, and lower cortical thickness in anterior cingulate and prefrontal cortex in later-onset PCA. These cortical thickness differences between PCA subgroups were consistent with earlier-onset PCA patients performing worse on cognitive tests involving parietal functions. Our results provide a suggestion that AAO may not only affect the clinico-anatomical characteristics in AD but may also affect atrophy patterns and cognition within atypical AD phenotypes. Copyright © 2016 The Authors. Published by Elsevier Inc. All rights reserved.

  17. Effect of age at onset on cortical thickness and cognition in posterior cortical atrophy

    Science.gov (United States)

    Suárez-González, Aida; Lehmann, Manja; Shakespeare, Timothy J.; Yong, Keir X.X.; Paterson, Ross W.; Slattery, Catherine F.; Foulkes, Alexander J.M.; Rabinovici, Gil D.; Gil-Néciga, Eulogio; Roldán-Lora, Florinda; Schott, Jonathan M.; Fox, Nick C.; Crutch, Sebastian J.

    2016-01-01

    Age at onset (AAO) has been shown to influence the phenotype of Alzheimer’s disease (AD), but how it affects atypical presentations of AD remains unknown. Posterior cortical atrophy (PCA) is the most common form of atypical AD. In this study, we aimed to investigate the effect of AAO on cortical thickness and cognitive function in 98 PCA patients. We used Freesurfer (v5.3.0) to compare cortical thickness with AAO both as a continuous variable, and by dichotomizing the groups based on median age (58 years). In both the continuous and dichotomized analyses, we found a pattern suggestive of thinner cortex in precuneus and parietal areas in earlier-onset PCA, and lower cortical thickness in anterior cingulate and prefrontal cortex in later-onset PCA. These cortical thickness differences between PCA subgroups were consistent with earlier-onset PCA patients performing worse on cognitive tests involving parietal functions. Our results provide a suggestion that AAO may not only affect the clinico-anatomical characteristics in AD but may also affect atrophy patterns and cognition within atypical AD phenotypes. PMID:27318138

  18. Criteria for driver impairment

    NARCIS (Netherlands)

    Brookhuis, K.A.; De Waard, D.; Fairclough, S.H

    2003-01-01

    Most traffic accidents can be attributed to driver impairment, e.g. inattention, fatigue, intoxication, etc. It is now technically feasible to monitor and diagnose driver behaviour with respect to impairment with the aid of a limited number of in-vehicle sensors. However, a valid framework for the

  19. Reduced cortical thickness and increased surface area in antisocial personality disorder.

    Science.gov (United States)

    Jiang, Weixiong; Li, Gang; Liu, Huasheng; Shi, Feng; Wang, Tao; Shen, Celina; Shen, Hui; Lee, Seong-Whan; Hu, Dewen; Wang, Wei; Shen, Dinggang

    2016-11-19

    Antisocial personality disorder (ASPD), one of whose characteristics is high impulsivity, is of great interest in the field of brain structure and function. However, little is known about possible impairments in the cortical anatomy in ASPD, in terms of cortical thickness (CTh) and surface area (SA), as well as their possible relationship with impulsivity. In this neuroimaging study, we first investigated the changes of CTh and SA in ASPD patients, in comparison to those of healthy controls, and then performed correlation analyses between these measures and the ability of impulse control. We found that ASPD patients showed thinner cortex while larger SA in several specific brain regions, i.e., bilateral superior frontal gyrus (SFG), orbitofrontal and triangularis, insula cortex, precuneus, middle frontal gyrus (MFG), middle temporal gyrus (MTG), and left bank of superior temporal sulcus (STS). In addition, we also found that the ability of impulse control was positively correlated with CTh in the SFG, MFG, orbitofrontal cortex (OFC), pars triangularis, superior temporal gyrus (STG), and insula cortex. To our knowledge, this study is the first to reveal simultaneous changes in CTh and SA in ASPD, as well as their relationship with impulsivity. These cortical structural changes may introduce uncontrolled and callous behavioral characteristic in ASPD patients, and these potential biomarkers may be very helpful in understanding the pathomechanism of ASPD. Copyright © 2016 IBRO. Published by Elsevier Ltd. All rights reserved.

  20. Therapeutic potential of the novel hybrid molecule JM-20 against focal cortical ischemia in rats

    Directory of Open Access Journals (Sweden)

    Yanier Núñez Figueredo

    2016-08-01

    Full Text Available Context: Despite the great mortality and morbidity of stroke, treatment options remain limited. We previously showed that JM-20, a novel synthetic molecule, possessed a strong neuroprotective effect in rats subjected to transient middle cerebral artery occlusion. However, to verify the robustness of the pre-clinical neuroprotective effects of JM-20 to get good prognosis in the translation to the clinic, it is necessary to use other experimental models of brain ischemia. Aims: To evaluate the neuroprotective effects of JM-20 following the onset of permanent focal cerebral ischemia induced in rats by thermocoagulation of blood into pial blood vessels of cerebral cortices. Methods: Ischemic lesion was induced by thermocoagulation of blood into pial blood vessels of primary motor and somatosensory cortices. Behavioral performance was evaluated by the cylinder testing for a period of 2, 3 and 7 days after surgery, and was followed by histopathological study in brain cortex stained with hematoxylin- eosin. Results: Ischemic injury resulted in impaired function of the forelimb evidenced by high asymmetry punctuation, and caused histopathological alterations indicative of tissue damage at cerebral cortex. JM-20 treatment (4 and 8 mg/kg significantly decreased asymmetry scores and histological alterations with a marked preservation of cortical neurons. Conclusions: The effects of permanent brain ischemia were strongly attenuated by JM-20 administration, which expands and improves the current preclinical data of JM-20 as neuroprotector against cerebral ischemia, and strongly support the examination of its translation to the clinic to treat acute ischemic stroke.

  1. APC/C-Cdh1 coordinates neurogenesis and cortical size during development

    Science.gov (United States)

    Delgado-Esteban, Maria; García-Higuera, Irene; Maestre, Carolina; Moreno, Sergio; Almeida, Angeles

    2013-12-01

    The morphology of the adult brain is the result of a delicate balance between neural progenitor proliferation and the initiation of neurogenesis in the embryonic period. Here we assessed whether the anaphase-promoting complex/cyclosome (APC/C) cofactor, Cdh1—which regulates mitosis exit and G1-phase length in dividing cells—regulates neurogenesis in vivo. We use an embryo-restricted Cdh1 knockout mouse model and show that functional APC/C-Cdh1 ubiquitin ligase activity is required for both terminal differentiation of cortical neurons in vitro and neurogenesis in vivo. Further, genetic ablation of Cdh1 impairs the ability of APC/C to promote neurogenesis by delaying the exit of the progenitor cells from the cell cycle. This causes replicative stress and p53-mediated apoptotic death resulting in decreased number of cortical neurons and cortex size. These results demonstrate that APC/C-Cdh1 coordinates cortical neurogenesis and size, thus posing Cdh1 in the molecular pathogenesis of congenital neurodevelopmental disorders, such as microcephaly.

  2. Aphasia with left occipitotemporal hypometabolism: a novel presentation of posterior cortical atrophy?

    Science.gov (United States)

    Wicklund, Meredith R; Duffy, Joseph R; Strand, Edythe A; Whitwell, Jennifer L; Machulda, Mary M; Josephs, Keith A

    2013-09-01

    Alzheimer's disease is a common neurodegenerative disease often characterized by initial episodic memory loss. Atypical focal cortical presentations have been described, including the logopenic variant of primary progressive aphasia (lvPPA) which presents with language impairment, and posterior cortical atrophy (PCA) which presents with prominent visuospatial deficits. Both lvPPA and PCA are characterized by specific patterns of hypometabolism: left temporoparietal in lvPPA and bilateral parietoccipital in PCA. However, not every patient fits neatly into these categories. We retrospectively identified two patients with progressive aphasia and visuospatial deficits from a speech and language based disorders study. The patients were further characterized by MRI, fluorodeoxyglucose F18 and Pittsburgh Compound B (PiB) positron emission tomography. Two women, aged 62 and 69, presented with a history of a few years of progressive aphasia characterized by fluent output with normal grammar and syntax, anomia without loss of word meaning, and relatively spared repetition. They demonstrated striking deficits in visuospatial function for which they were lacking insight. Prominent hypometabolism was noted in the left occipitotemporal region and diffuse retention of PiB was noted. Posterior cortical atrophy may present focally with left occipitotemporal metabolism characterized clinically with a progressive fluent aphasia and prominent ventral visuospatial deficits with loss of insight. Copyright © 2013 Elsevier Ltd. All rights reserved.

  3. Cortical drive to breathe in amyotrophic lateral sclerosis: a dyspnoea-worsening defence?

    Science.gov (United States)

    Georges, Marjolaine; Morawiec, Elise; Raux, Mathieu; Gonzalez-Bermejo, Jésus; Pradat, Pierre-François; Similowski, Thomas; Morélot-Panzini, Capucine

    2016-06-01

    Amyotrophic lateral sclerosis (ALS) is a neurodegenerative disease causing diaphragm weakness that can be partially compensated by inspiratory neck muscle recruitment. This disappears during sleep, which is compatible with a cortical contribution to the drive to breathe. We hypothesised that ALS patients with respiratory failure exhibit respiratory-related cortical activity, relieved by noninvasive ventilation (NIV) and related to dyspnoea.We studied 14 ALS patients with respiratory failure. Electroencephalographic recordings (EEGs) and electromyographic recordings of inspiratory neck muscles were performed during spontaneous breathing and NIV. Dyspnoea was evaluated using the Multidimensional Dyspnea Profile.Eight patients exhibited slow EEG negativities preceding inspiration (pre-inspiratory potentials) during spontaneous breathing. Pre-inspiratory potentials were attenuated during NIV (p=0.04). Patients without pre-inspiratory potentials presented more advanced forms of ALS and more severe respiratory impairment, but less severe dyspnoea. Patients with pre-inspiratory potentials had stronger inspiratory neck muscle activation and more severe dyspnoea during spontaneous breathing.ALS-related diaphragm weakness can engage cortical resources to augment the neural drive to breathe. This might reflect a compensatory mechanism, with the intensity of dyspnoea a negative consequence. Disease progression and the corresponding neural loss could abolish this phenomenon. A putative cognitive cost should be investigated. Copyright ©ERS 2016.

  4. Sensory-parietal cortical stimulation improves motor recovery in severe capsular infarct.

    Science.gov (United States)

    Kim, Ra Gyung; Cho, Jongwook; Ree, Jinkyue; Kim, Hyung-Sun; Rosa-Neto, Pedro; Kim, Jin-Myung; Lee, Min-Cheol; Kim, Hyoung-Ihl

    2016-12-01

    The prevalence of subcortical white matter strokes in elderly patients is on the rise, but these patients show mixed responses to conventional rehabilitative interventions. To examine whether cortical electrical stimulation can promote motor recovery after white matter stroke, we delivered stimulation to a small or wide region of sensory-parietal cortex for two weeks in a rodent model of circumscribed subcortical capsular infarct. The sham-operated group (SOG) showed persistent and severe motor impairments together with decreased activation in bilateral sensorimotor cortices and striatum. In contrast, sensory-parietal cortex stimulation significantly improved motor recovery: final recovery levels were 72.9% of prelesion levels in the wide stimulation group (WSG) and 37% of prelesion levels in the small stimulation group (SSG). The microPET imaging showed reversal of cortical diaschisis in both groups: in both hemispheres for the WSG, and in the hemisphere ipsilateral to stimulation in the SSG. In addition, we observed activation of the corpus callosum and subcortical corticostriatal structures after stimulation. The results from the c-Fos mapping study were grossly consistent with the microPET imaging. Sensory-parietal cortex stimulation may therefore be a useful strategy for overcoming the limits of rehabilitative training in patients with severe forms of subcortical capsular infarct. © The Author(s) 2015.

  5. Dance Experience and Associations with Cortical Gray Matter Thickness in the Aging Population.

    Science.gov (United States)

    Porat, Shai; Goukasian, Naira; Hwang, Kristy S; Zanto, Theodore; Do, Triet; Pierce, Jonathan; Joshi, Shantanu; Woo, Ellen; Apostolova, Liana G

    2016-01-01

    We investigated the effect dance experience may have on cortical gray matter thickness and cognitive performance in elderly participants with and without mild cognitive impairment (MCI). 39 cognitively normal and 48 MCI elderly participants completed a questionnaire regarding their lifetime experience with music, dance, and song. Participants identified themselves as either dancers or nondancers. All participants received structural 1.5-tesla MRI scans and detailed clinical and neuropsychological evaluations. An advanced 3D cortical mapping technique was then applied to calculate cortical thickness. Despite having a trend-level significantly thinner cortex, dancers performed better in cognitive tasks involving learning and memory, such as the California Verbal Learning Test-II (CVLT-II) short delay free recall (p = 0.004), the CVLT-II long delay free recall (p = 0.003), and the CVLT-II learning over trials 1-5 (p = 0.001). Together, these results suggest that dance may result in an enhancement of cognitive reserve in aging, which may help avert or delay MCI.

  6. Focal cortical malformations in children with early infantile epilepsy and PCDH19 mutations: case report.

    Science.gov (United States)

    Kurian, Mary; Korff, Christian M; Ranza, Emmanuelle; Bernasconi, Andrea; Lübbig, Anja; Nangia, Srishti; Ramelli, Gian Paolo; Wohlrab, Gabriele; Nordli, Douglas R; Bast, Thomas

    2018-01-01

    In this case report we assess the occurrence of cortical malformations in children with early infantile epilepsy associated with variants of the gene protocadherin 19 (PCDH19). We describe the clinical course, and electrographic, imaging, genetic, and neuropathological features in a cohort of female children with pharmacoresistant epilepsy. All five children (mean age 10y) had an early onset of epilepsy during infancy and a predominance of fever sensitive seizures occurring in clusters. Cognitive impairment was noted in four out of five patients. Radiological evidence of cortical malformations was present in all cases and, in two patients, validated by histology. Sanger sequencing and Multiplex Ligation-dependent Probe Amplification analysis of PCDH19 revealed pathogenic variants in four patients. In one patient, array comparative genomic hybridization showed a microdeletion encompassing PCDH19. We propose molecular testing and analysis of PCDH19 in patients with pharmacoresistant epilepsy, with onset in early infancy, seizures in clusters, and fever sensitivity. Structural lesions are to be searched in patients with PCDH19 pathogenic variants. Further, PCDH19 analysis should be considered in epilepsy surgery evaluation even in the presence of cerebral structural lesions. Focal cortical malformations and monogenic epilepsy syndromes may coexist. Structural lesions are to be searched for in patients with protocadherin 19 (PCDH19) pathogenic variants with refractory focal seizures. © 2017 Mac Keith Press.

  7. Dance Experience and Associations with Cortical Gray Matter Thickness in the Aging Population

    Directory of Open Access Journals (Sweden)

    Shai Porat

    2016-10-01

    Full Text Available Introduction: We investigated the effect dance experience may have on cortical gray matter thickness and cognitive performance in elderly participants with and without mild cognitive impairment (MCI. Methods: 39 cognitively normal and 48 MCI elderly participants completed a questionnaire regarding their lifetime experience with music, dance, and song. Participants identified themselves as either dancers or nondancers. All participants received structural 1.5-tesla MRI scans and detailed clinical and neuropsychological evaluations. An advanced 3D cortical mapping technique was then applied to calculate cortical thickness. Results: Despite having a trend-level significantly thinner cortex, dancers performed better in cognitive tasks involving learning and memory, such as the California Verbal Learning Test-II (CVLT-II short delay free recall (p = 0.004, the CVLT-II long delay free recall (p = 0.003, and the CVLT-II learning over trials 1-5 (p = 0.001. Discussion: Together, these results suggest that dance may result in an enhancement of cognitive reserve in aging, which may help avert or delay MCI.

  8. Age Effects on Cortical Thickness in Cognitively Normal Elderly Individuals

    Directory of Open Access Journals (Sweden)

    Sona Hurtz

    2014-07-01

    Full Text Available Background/Aims: Atrophy in both grey and white matter is found in normal aging. The prefrontal cortex and the frontal lobe white matter are thought to be the most affected regions. Our aim was to examine the effects of normal aging on cortical grey matter using a 3D quantitative cortical mapping method. Methods: We analyzed 1.5-tesla brain magnetic resonance imaging data from 44 cognitively normal elderly subjects using cortical pattern matching and cortical thickness analyses. Linear regression analysis was used to study the effect of age on cortical thickness. 3D map-wide correction for multiple comparisons was conducted with permutation analyses using a threshold of p Results: We found a significant negative association between age and cortical thickness in the right hemisphere (pcorrected = 0.009 and a trend level association in the left hemisphere (pcorrected = 0.081. Age-related changes were greatest in the sensorimotor, bilateral dorsal anterior cingulate and supplementary motor cortices, and the right posterior middle and inferior frontal gyri. Age effects greater in the medial than lateral visual association cortices were also seen bilaterally. Conclusion: Our novel method further validates that normal aging results in diffuse cortical thinning that is most pronounced in the frontal and visual association cortices.

  9. Dynamic Causal Modeling of the Cortical Responses to Wrist Perturbations

    Directory of Open Access Journals (Sweden)

    Yuan Yang

    2017-09-01

    Full Text Available Mechanical perturbations applied to the wrist joint typically evoke a stereotypical sequence of cortical and muscle responses. The early cortical responses (<100 ms are thought be involved in the “rapid” transcortical reaction to the perturbation while the late cortical responses (>100 ms are related to the “slow” transcortical reaction. Although previous studies indicated that both responses involve the primary motor cortex, it remains unclear if both responses are engaged by the same effective connectivity in the cortical network. To answer this question, we investigated the effective connectivity cortical network after a “ramp-and-hold” mechanical perturbation, in both the early (<100 ms and late (>100 ms periods, using dynamic causal modeling. Ramp-and-hold perturbations were applied to the wrist joint while the subject maintained an isometric wrist flexion. Cortical activity was recorded using a 128-channel electroencephalogram (EEG. We investigated how the perturbation modulated the effective connectivity for the early and late periods. Bayesian model comparisons suggested that different effective connectivity networks are engaged in these two periods. For the early period, we found that only a few cortico-cortical connections were modulated, while more complicated connectivity was identified in the cortical network during the late period with multiple modulated cortico-cortical connections. The limited early cortical network likely allows for a rapid muscle response without involving high-level cognitive processes, while the complexity of the late network may facilitate coordinated responses.

  10. State-dependent intrinsic predictability of cortical network dynamics.

    Directory of Open Access Journals (Sweden)

    Leila Fakhraei

    Full Text Available The information encoded in cortical circuit dynamics is fleeting, changing from moment to moment as new input arrives and ongoing intracortical interactions progress. A combination of deterministic and stochastic biophysical mechanisms governs how cortical dynamics at one moment evolve from cortical dynamics in recently preceding moments. Such temporal continuity of cortical dynamics is fundamental to many aspects of cortex function but is not well understood. Here we study temporal continuity by attempting to predict cortical population dynamics (multisite local field potential based on its own recent history in somatosensory cortex of anesthetized rats and in a computational network-level model. We found that the intrinsic predictability of cortical dynamics was dependent on multiple factors including cortical state, synaptic inhibition, and how far into the future the prediction extends. By pharmacologically tuning synaptic inhibition, we obtained a continuum of cortical states with asynchronous population activity at one extreme and stronger, spatially extended synchrony at the other extreme. Intermediate between these extremes we observed evidence for a special regime of population dynamics called criticality. Predictability of the near future (10-100 ms increased as the cortical state was tuned from asynchronous to synchronous. Predictability of the more distant future (>1 s was generally poor, but, surprisingly, was higher for asynchronous states compared to synchronous states. These experimental results were confirmed in a computational network model of spiking excitatory and inhibitory neurons. Our findings demonstrate that determinism and predictability of network dynamics depend on cortical state and the time-scale of the dynamics.

  11. Censoring distances based on labeled cortical distance maps in cortical morphometry.

    Science.gov (United States)

    Ceyhan, Elvan; Nishino, Tomoyuki; Alexopolous, Dimitrios; Todd, Richard D; Botteron, Kelly N; Miller, Michael I; Ratnanather, J Tilak

    2013-01-01

    It has been demonstrated that shape differences in cortical structures may be manifested in neuropsychiatric disorders. Such morphometric differences can be measured by labeled cortical distance mapping (LCDM) which characterizes the morphometry of the laminar cortical mantle of cortical structures. LCDM data consist of signed/labeled distances of gray matter (GM) voxels with respect to GM/white matter (WM) surface. Volumes and other summary measures for each subject and the pooled distances can help determine the morphometric differences between diagnostic groups, however they do not reveal all the morphometric information contained in LCDM distances. To extract more information from LCDM data, censoring of the pooled distances is introduced for each diagnostic group where the range of LCDM distances is partitioned at a fixed increment size; and at each censoring step, the distances not exceeding the censoring distance are kept. Censored LCDM distances inherit the advantages of the pooled distances but also provide information about the location of morphometric differences which cannot be obtained from the pooled distances. However, at each step, the censored distances aggregate, which might confound the results. The influence of data aggregation is investigated with an extensive Monte Carlo simulation analysis and it is demonstrated that this influence is negligible. As an illustrative example, GM of ventral medial prefrontal cortices (VMPFCs) of subjects with major depressive disorder (MDD), subjects at high risk (HR) of MDD, and healthy control (Ctrl) subjects are used. A significant reduction in laminar thickness of the VMPFC in MDD and HR subjects is observed compared to Ctrl subjects. Moreover, the GM LCDM distances (i.e., locations with respect to the GM/WM surface) for which these differences start to occur are determined. The methodology is also applicable to LCDM-based morphometric measures of other cortical structures affected by disease.

  12. Censoring Distances Based on Labeled Cortical Distance Maps in Cortical Morphometry

    Directory of Open Access Journals (Sweden)

    Elvan eCeyhan

    2013-10-01

    Full Text Available It has been demonstrated that shape differences are manifested in cortical structures due to neuropsychiatric disorders. Such morphometric differences can be measured by labeled cortical distance mapping (LCDM which characterizes the morphometry of the laminar cortical mantle of cortical structures. LCDM data consist of signed/labeled distances of gray matter (GM voxels with respect to GM/white matter (WM surface. Volumes and other summary measures for each subject and the pooled distances can help determine the morphometric differences between diagnostic groups, however they do not reveal all the morphometric information con-tained in LCDM distances. To extract more information from LCDM data, censoring of the pooled distances is introduced for each diagnostic group where the range of LCDM distances is partitioned at a fixed increment size; and at each censoring step, the distances not exceeding the censoring distance are kept. Censored LCDM distances inherit the advantages of the pooled distances but also provide information about the location of morphometric differences which cannot be obtained from the pooled distances. However, at each step, the censored distances aggregate, which might confound the results. The influence of data aggregation is investigated with an extensive Monte Carlo simulation analysis and it is demonstrated that this influence is negligible. As an illustrative example, GM of ventral medial prefrontal cortices (VMPFCs of subjects with major depressive disorder (MDD, subjects at high risk (HR of MDD, and healthy control (Ctrl subjects are used. A significant reduction in laminar thickness of the VMPFC in MDD and HR subjects is observed compared to Ctrl subjects. Moreover, the GM LCDM distances (i.e., locations with respect to the GM/WM surface for which these differences start to occur are determined. The methodology is also applicable to LCDM-based morphometric measures of other cortical structures affected by disease.

  13. Reduced frontal cortex thickness and cortical volume associated with pathological narcissism.

    Science.gov (United States)

    Mao, Yu; Sang, Na; Wang, Yongchao; Hou, Xin; Huang, Hui; Wei, Dongtao; Zhang, Jinfu; Qiu, Jiang

    2016-07-22

    Pathological narcissism is often characterized by arrogant behavior, a lack of empathy, and willingness to exploit other individuals. Generally, individuals with high levels of narcissism are more likely to suffer mental disorders. However, the brain structural basis of individual pathological narcissism trait among healthy people has not yet been investigated with surface-based morphometry. Thus, in this study, we investigated the relationship between cortical thickness (CT), cortical volume (CV), and individual pathological narcissism in a large healthy sample of 176 college students. Multiple regression was used to analyze the correlation between regional CT, CV, and the total Pathological Narcissism Inventory (PNI) score, adjusting for age, sex, and total intracranial volume. The results showed that the PNI score was significantly negatively associated with CT and CV in the right dorsolateral prefrontal cortex (DLPFC, key region of the central executive network, CEN), which might be associated with impaired emotion regulation processes. Furthermore, the PNI score showed significant negative associations with CV in the right postcentral gyrus, left medial prefrontal cortex (MPFC), and the CT in the right inferior frontal cortex (IFG, overlap with social brain network), which may be related to impairments in social cognition. Together, these findings suggest a unique structural basis for individual differences in pathological narcissism, distributed across different gray matter regions of the social brain network and CEN. Copyright © 2016 IBRO. Published by Elsevier Ltd. All rights reserved.

  14. Dysregulated Expression of Neuregulin-1 by Cortical Pyramidal Neurons Disrupts Synaptic Plasticity

    Directory of Open Access Journals (Sweden)

    Amit Agarwal

    2014-08-01

    Full Text Available Neuregulin-1 (NRG1 gene variants are associated with increased genetic risk for schizophrenia. It is unclear whether risk haplotypes cause elevated or decreased expression of NRG1 in the brains of schizophrenia patients, given that both findings have been reported from autopsy studies. To study NRG1 functions in vivo, we generated mouse mutants with reduced and elevated NRG1 levels and analyzed the impact on cortical functions. Loss of NRG1 from cortical projection neurons resulted in increased inhibitory neurotransmission, reduced synaptic plasticity, and hypoactivity. Neuronal overexpression of cysteine-rich domain (CRD-NRG1, the major brain isoform, caused unbalanced excitatory-inhibitory neurotransmission, reduced synaptic plasticity, abnormal spine growth, altered steady-state levels of synaptic plasticity-related proteins, and impaired sensorimotor gating. We conclude that an “optimal” level of NRG1 signaling balances excitatory and inhibitory neurotransmission in the cortex. Our data provide a potential pathomechanism for impaired synaptic plasticity and suggest that human NRG1 risk haplotypes exert a gain-of-function effect.

  15. Nonfluent/Agrammatic PPA with In-Vivo Cortical Amyloidosis and Pick’s Disease Pathology

    Directory of Open Access Journals (Sweden)

    Francesca Caso

    2013-01-01

    Full Text Available The role of biomarkers in predicting pathological findings in the frontotemporal dementia (FTD clinical spectrum disorders is still being explored. We present comprehensive, prospective longitudinal data for a 66 year old, right-handed female who met current criteria for the nonfluent/agrammatic variant of primary progressive aphasia (nfvPPA. She first presented with a 3-year history of progressive speech and language impairment mainly characterized by severe apraxia of speech. Neuropsychological and general motor functions remained relatively spared throughout the clinical course. Voxel-based morphometry (VBM showed selective cortical atrophy of the left posterior inferior frontal gyrus (IFG and underlying insula that worsened over time, extending along the left premotor strip. Five years after her first evaluation, she developed mild memory impairment and underwent PET-FDG and PiB scans that showed left frontal hypometabolism and cortical amyloidosis. Three years later (11 years from first symptom, post-mortem histopathological evaluation revealed Pick's disease, with severe degeneration of left IFG, mid-insula, and precentral gyrus. Alzheimer’s disease (AD (CERAD frequent/Braak Stage V was also detected. This patient demonstrates that biomarkers indicating brain amyloidosis should not be considered conclusive evidence that AD pathology accounts for a typical FTD clinical/anatomical syndrome.

  16. Dysregulated expression of neuregulin-1 by cortical pyramidal neurons disrupts synaptic plasticity.

    Science.gov (United States)

    Agarwal, Amit; Zhang, Mingyue; Trembak-Duff, Irina; Unterbarnscheidt, Tilmann; Radyushkin, Konstantin; Dibaj, Payam; Martins de Souza, Daniel; Boretius, Susann; Brzózka, Magdalena M; Steffens, Heinz; Berning, Sebastian; Teng, Zenghui; Gummert, Maike N; Tantra, Martesa; Guest, Peter C; Willig, Katrin I; Frahm, Jens; Hell, Stefan W; Bahn, Sabine; Rossner, Moritz J; Nave, Klaus-Armin; Ehrenreich, Hannelore; Zhang, Weiqi; Schwab, Markus H

    2014-08-21

    Neuregulin-1 (NRG1) gene variants are associated with increased genetic risk for schizophrenia. It is unclear whether risk haplotypes cause elevated or decreased expression of NRG1 in the brains of schizophrenia patients, given that both findings have been reported from autopsy studies. To study NRG1 functions in vivo, we generated mouse mutants with reduced and elevated NRG1 levels and analyzed the impact on cortical functions. Loss of NRG1 from cortical projection neurons resulted in increased inhibitory neurotransmission, reduced synaptic plasticity, and hypoactivity. Neuronal overexpression of cysteine-rich domain (CRD)-NRG1, the major brain isoform, caused unbalanced excitatory-inhibitory neurotransmission, reduced synaptic plasticity, abnormal spine growth, altered steady-state levels of synaptic plasticity-related proteins, and impaired sensorimotor gating. We conclude that an "optimal" level of NRG1 signaling balances excitatory and inhibitory neurotransmission in the cortex. Our data provide a potential pathomechanism for impaired synaptic plasticity and suggest that human NRG1 risk haplotypes exert a gain-of-function effect. Copyright © 2014 The Authors. Published by Elsevier Inc. All rights reserved.

  17. Radiation-induced abnormal cortical thickness in patients with nasopharyngeal carcinoma after radiotherapy

    Directory of Open Access Journals (Sweden)

    Jiabao Lin

    2017-01-01

    Full Text Available Conventional MRI studies showed that radiation-induced brain necrosis in patients with nasopharyngeal carcinoma (NPC in years after radiotherapy (RT could involve brain gray matter (GM and impair brain function. However, it is still unclear the radiation-induced brain morphological changes in NPC patients with normal-appearing GM in the early period after RT. In this study, we acquired high-resolution brain structural MRI data from three groups of patients, 22 before radiotherapy (pre-RT NPC patients with newly diagnosed but not yet medically treated, 22 NPC patients in the early-delayed stage after radiotherapy (post-RT-ED, and 20 NPC patients in the late-delayed stage after radiotherapy (post-RT-LD, and then analyzed the radiation-induced cortical thickness alteration in NPC patients after RT. Using a vertex-wise surface-based morphometry (SBM approach, we detected significantly decreased cortical thickness in the precentral gyrus (PreCG in the post-RT-ED group compared to the pre-RT group. And the post-RT-LD group showed significantly increased cortical thickness in widespread brain regions, including the bilateral inferior parietal, left isthmus of the cingulate, left bank of the superior temporal sulcus and left lateral occipital regions, compared to the pre-RT group, and in the bilateral PreCG compared to the post-RT-ED group. Similar analysis with ROI-wise SBM method also found the consistent results. These results indicated that radiation-induced brain injury mainly occurred in the post-RT-LD group and the cortical thickness alterations after RT were dynamic in different periods. Our findings may reflect the pathogenesis of radiation-induced brain injury in NPC patients with normal-appearing GM and an early intervention is necessary for protecting GM during RT.

  18. Reduction in Cortical Gamma Synchrony during Depolarized State of Slow Wave Activity in Mice

    Directory of Open Access Journals (Sweden)

    EUNJIN eHWANG

    2013-12-01

    Full Text Available EEG gamma band oscillations have been proposed to account for the neural synchronization crucial for perceptual integration. While increased gamma power and synchronization is generally observed during cognitive tasks performed during wake, several studies have additionally reported increased gamma power during sleep or anesthesia, raising questions about the characteristics of gamma oscillation during impaired consciousness and its role in conscious processing. Phase-amplitude modulation has been observed between slow wave activity (SWA, 0.5–4 Hz and gamma oscillations during ketamine/xylazine anesthesia or sleep, showing increased gamma activity corresponding to the depolarized (ON state of SWA. Here we divided gamma activity into its ON and OFF (hyperpolarized state components based on the phase of SWA induced by ketamine/xylazine anesthesia and compared their power and synchrony with wake state levels in mice. We further investigated the state-dependent changes in both gamma power and synchrony across primary motor and primary somatosensory cortical regions and their interconnected thalamic regions throughout anesthesia and recovery. As observed previously, gamma power was as high as during wake specifically during the ON state of SWA. However, the synchrony of this gamma activity between somatosensory-motor cortical regions was significantly reduced compared to the baseline wake state. In addition, the somatosensory-motor cortical synchrony of gamma oscillations was reduced and restored in an anesthetic state-dependent manner, reflecting the changing depth of anesthesia. Our results provide evidence that during anesthesia changes in long-range information integration between cortical regions might be more critical for changes in consciousness than changes in local gamma oscillatory power.

  19. Bone heat generated using conventional implant drills versus piezosurgery unit during apical cortical plate perforation.

    Science.gov (United States)

    Lajolo, Carlo; Valente, Nicola Alberto; Romandini, William Giuseppe; Petruzzi, Massimo; Verdugo, Fernando; D'Addona, Antonio

    2018-03-09

    The apical portion of the implant osteotomy receives less irrigation and cooling during surgical preparation. High bone temperatures, above the critical 10°C threshold, may impair osseointegration, particularly, around dense cortical bone. The aim of this study is to evaluate the apical cortical plate temperature increase with two different devices and pressure loads in a porcine rib ex-vivo model. Twenty-four implant sites were prepared on porcine ribs divided into 4 groups of 6 samples each according to the device used (conventional drill system or piezosurgery) and pressure load applied (1000 g or 1500 g). A rubber dam was used to isolate the apical cortical plate from the cooling effect of irrigation. Temperature variation measurements were taken using an infrared thermometer. The piezosurgery unit was 2 times more likely to increase the osteotomy temperature by 10.0°C (OR = 2; 95% CI = 1.136-3.522; p piezosurgery-1000 g) and 8.17°C (SD = 6.12) for group 4 (piezosurgery-1,500 g). The piezosurgery site preparation caused significantly higher temperature increase than conventional drills (p piezosurgery unit is a potential risk during implant site preparation. The piezosurgical device reached significantly higher temperatures than conventional drilling at the apical cortical portion of the osteotomy. The temperature increase is often higher than the critical 10°C threshold. This article is protected by copyright. All rights reserved. This article is protected by copyright. All rights reserved.

  20. CORTICAL RESPONSES TO SALIENT NOCICEPTIVE AND NOT NOCICEPTIVE STIMULI IN VEGETATIVE AND MINIMAL CONSCIOUS STATE

    Directory of Open Access Journals (Sweden)

    MARINA eDE TOMMASO

    2015-01-01

    Full Text Available Aims Questions regarding perception of pain in non-communicating patients and the management of pain continue to raise controversy both at a clinical and ethical level. The aim of this study was to examine the cortical response to salient multimodal visual, acoustic, somatosensory electric non nociceptive and nociceptive laser stimuli and their correlation with the clinical evaluation.Methods: Five Vegetative State (VS, 4 Minimally Conscious State (MCS patients and 11 age- and sex-matched controls were examined. Evoked responses were obtained by 64 scalp electrodes, while delivering auditory, visual, non-noxious electrical and noxious laser stimulation, which were randomly presented every 10 sec. Laser, somatosensory, auditory and visual evoked responses were identified as a negative-positive (N2-P2 vertex complex in the 500 msec post-stimulus time. We used Nociception Coma Scale-Revised (NCS-R and Coma Recovery Scale (CRS-R for clinical evaluation of pain perception and consciousness impairment.Results: The laser evoked potentials (LEPs were recognizable in all cases. Only one MCS patient showed a reliable cortical response to all the employed stimulus modalities. One VS patient did not present cortical responses to any other stimulus modality. In the remaining participants, auditory, visual and electrical related potentials were inconstantly present. Significant N2 and P2 latency prolongation occurred in both VS and MCS patients. The presence of a reliable cortical response to auditory, visual and electric stimuli was able to correctly classify VS and MCS patients with 90% accuracy. Laser P2 and N2 amplitudes were not correlated with the CRS-R and NCS-R scores, while auditory and electric related potentials amplitude were associated with the motor response to pain and consciousness recovery. Discussion: pain arousal may be a primary function also in vegetative state patients while the relevance of other stimulus modalities may indicate the

  1. Contribution of NMDA receptor hypofunction in prefrontal and cortical excitatory neurons to schizophrenia-like phenotypes.

    Directory of Open Access Journals (Sweden)

    Gregory R Rompala

    Full Text Available Pharmacological and genetic studies support a role for NMDA receptor (NMDAR hypofunction in the etiology of schizophrenia. We have previously demonstrated that NMDAR obligatory subunit 1 (GluN1 deletion in corticolimbic interneurons during early postnatal development is sufficient to confer schizophrenia-like phenotypes in mice. However, the consequence of NMDAR hypofunction in cortical excitatory neurons is not well delineated. Here, we characterize a conditional knockout mouse strain (CtxGluN1 KO mice, in which postnatal GluN1 deletion is largely confined to the excitatory neurons in layer II/III of the medial prefrontal cortex and sensory cortices, as evidenced by the lack of GluN1 mRNA expression in in situ hybridization immunocytochemistry as well as the lack of NMDA currents with in vitro recordings. Mutants were impaired in prepulse inhibition of the auditory startle reflex as well as object-based short-term memory. However, they did not exhibit impairments in additional hallmarks of schizophrenia-like phenotypes (e.g. spatial working memory, social behavior, saccharine preference, novelty and amphetamine-induced hyperlocomotion, and anxiety-related behavior. Furthermore, upon administration of the NMDA receptor antagonist, MK-801, there were no differences in locomotor activity versus controls. The mutant mice also showed negligible levels of reactive oxygen species production following chronic social isolation, and recording of miniature-EPSC/IPSCs from layer II/III excitatory neurons in medial prefrontal cortex suggested no alteration in GABAergic activity. All together, the mutant mice displayed cognitive deficits in the absence of additional behavioral or cellular phenotypes reflecting schizophrenia pathophysiology. Thus, NMDAR hypofunction in prefrontal and cortical excitatory neurons may recapitulate only a cognitive aspect of human schizophrenia symptoms.

  2. Contribution of NMDA receptor hypofunction in prefrontal and cortical excitatory neurons to schizophrenia-like phenotypes.

    Science.gov (United States)

    Rompala, Gregory R; Zsiros, Veronika; Zhang, Shuqin; Kolata, Stefan M; Nakazawa, Kazu

    2013-01-01

    Pharmacological and genetic studies support a role for NMDA receptor (NMDAR) hypofunction in the etiology of schizophrenia. We have previously demonstrated that NMDAR obligatory subunit 1 (GluN1) deletion in corticolimbic interneurons during early postnatal development is sufficient to confer schizophrenia-like phenotypes in mice. However, the consequence of NMDAR hypofunction in cortical excitatory neurons is not well delineated. Here, we characterize a conditional knockout mouse strain (CtxGluN1 KO mice), in which postnatal GluN1 deletion is largely confined to the excitatory neurons in layer II/III of the medial prefrontal cortex and sensory cortices, as evidenced by the lack of GluN1 mRNA expression in in situ hybridization immunocytochemistry as well as the lack of NMDA currents with in vitro recordings. Mutants were impaired in prepulse inhibition of the auditory startle reflex as well as object-based short-term memory. However, they did not exhibit impairments in additional hallmarks of schizophrenia-like phenotypes (e.g. spatial working memory, social behavior, saccharine preference, novelty and amphetamine-induced hyperlocomotion, and anxiety-related behavior). Furthermore, upon administration of the NMDA receptor antagonist, MK-801, there were no differences in locomotor activity versus controls. The mutant mice also showed negligible levels of reactive oxygen species production following chronic social isolation, and recording of miniature-EPSC/IPSCs from layer II/III excitatory neurons in medial prefrontal cortex suggested no alteration in GABAergic activity. All together, the mutant mice displayed cognitive deficits in the absence of additional behavioral or cellular phenotypes reflecting schizophrenia pathophysiology. Thus, NMDAR hypofunction in prefrontal and cortical excitatory neurons may recapitulate only a cognitive aspect of human schizophrenia symptoms.

  3. Exocytosis of gliotransmitters from cortical astrocytes: implications for synaptic plasticity and aging.

    Science.gov (United States)

    Lalo, Ulyana; Rasooli-Nejad, Seyed; Pankratov, Yuriy

    2014-10-01

    Maintaining brain function during aging is very important for mental and physical health. Recent studies showed a crucial importance of communication between two major types of brain cells: neurons transmitting electrical signals, and glial cells, which maintain the well-being and function of neurons. Still, the study of age-related changes in neuron-glia signalling is far from complete. We have shown previously that cortical astrocytes are capable of releasing ATP by a quantal soluble N-ethylmaleimide-sensitive factor-attachment protein receptor (SNARE) complex-dependent mechanism. Release of ATP from cortical astrocytes can be activated via various pathways, including direct UV-uncaging of intracellular Ca²⁺ or G-protein-coupled receptors. Importantly, release of both ATP and glutamate from neocortical astrocytes was not observed in brain slices of dominant-negative SNARE (dnSNARE) mice, expressing dnSNARE domain selectively in astrocytes. We also discovered that astrocyte-driven ATP can cause significant attenuation of synaptic inhibition in the pyramidal neurons via Ca²⁺-interaction between the neuronal ATP and γ-aminobutyric acid (GABA) receptors. Furthermore, we showed that astrocyte-derived ATP can facilitate the induction of long-term potentiation of synaptic plasticity in the neocortex. Our recent data have shown that an age-related decrease in the astroglial Ca²⁺ signalling can cause a substantial decrease in the exocytosis of gliotransmitters, in particular ATP. Age-related impairment of ATP release from cortical astrocytes can cause a decrease in the extent of astroglial modulation of synaptic transmission in the neocortex and can therefore contribute to the age-related impairment of synaptic plasticity and cognitive decline. Combined, our results strongly support the physiological relevance of glial exocytosis for glia-neuron communications and brain function.

  4. Aberrant cortical associative plasticity associated with severe adult Tourette syndrome.

    Science.gov (United States)

    Martín-Rodríguez, Juan Francisco; Ruiz-Rodríguez, María Adilia; Palomar, Francisco J; Cáceres-Redondo, María Teresa; Vargas, Laura; Porcacchia, Paolo; Gómez-Crespo, Mercedes; Huertas-Fernández, Ismael; Carrillo, Fátima; Madruga-Garrido, Marcos; Mir, Pablo

    2015-03-01

    Recent studies have shown altered cortical plasticity in adult patients with Tourette syndrome. However, the clinical significance of this finding remains elusive. Motor cortical plasticity was evaluated in 15 adult patients with severe Tourette syndrome and 16 healthy controls using the paired associative stimulation protocol by transcranial magnetic stimulation. Associations between paired associative stimulation-induced plasticity and relevant clinical variables, including cortical excitability, psychiatric comorbidities, drug treatment and tic severity, were assessed. Motor cortical plasticity was abnormally increased in patients with Tourette syndrome compared with healthy subjects. This abnormal plasticity was independently associated with tic severity. Patients with severe Tourette syndrome display abnormally increased cortical associative plasticity. This aberrant cortical plasticity was associated with tic severity, suggesting an underlying mechanism for tic pathophysiology. © 2015 International Parkinson and Movement Disorder Society.

  5. Congenital hearing impairment

    Energy Technology Data Exchange (ETDEWEB)

    Robson, Caroline D. [Children' s Hospital and Harvard Medical School, Division of Neuroradiology, Department of Radiology, Boston, MA (United States)

    2006-04-15

    Establishing the etiology of congenital hearing impairment can significantly improve treatment for certain causes of hearing loss and facilitates genetic counseling. High-resolution CT and MRI have contributed to the evaluation and management of hearing impairment. In addition, with the identification of innumerable genetic loci and genetic defects involved in hearing loss, genetic testing has emerged as an invaluable tool in the assessment of hearing impairment. Some of the common forms of congenital hearing loss are reviewed and their imaging features illustrated. (orig.)

  6. Congenital hearing impairment

    International Nuclear Information System (INIS)

    Robson, Caroline D.

    2006-01-01

    Establishing the etiology of congenital hearing impairment can significantly improve treatment for certain causes of hearing loss and facilitates genetic counseling. High-resolution CT and MRI have contributed to the evaluation and management of hearing impairment. In addition, with the identification of innumerable genetic loci and genetic defects involved in hearing loss, genetic testing has emerged as an invaluable tool in the assessment of hearing impairment. Some of the common forms of congenital hearing loss are reviewed and their imaging features illustrated. (orig.)

  7. Critical fluctuations in cortical models near instability

    Directory of Open Access Journals (Sweden)

    Matthew J. Aburn

    2012-08-01

    Full Text Available Computational studies often proceed from the premise that cortical dynamics operate in a linearly stable domain, where fluctuations dissipate quickly and show only short memory. Studies of human EEG, however, have shown significant autocorrelation at time lags on the scale of minutes, indicating the need to consider regimes where nonlinearities influence the dynamics. Statistical properties such as increased autocorrelation length, increased variance, power-law scaling and bistable switching have been suggested as generic indicators of the approach to bifurcation in nonlinear dynamical systems. We study temporal fluctuations in a widely-employed computational model (the Jansen-Rit model of cortical activity, examining the statistical signatures that accompany bifurcations. Approaching supercritical Hopf bifurcations through tuning of the background excitatory input, we find a dramatic increase in the autocorrelation length that depends sensitively on the direction in phase space of the input fluctuations and hence on which neuronal subpopulation is stochastically perturbed. Similar dependence on the input direction is found in the distribution of fluctuation size and duration, which show power law scaling that extends over four orders of magnitude at the Hopf bifurcation. We conjecture that the alignment in phase space between the input noise vector and the center manifold of the Hopf bifurcation is directly linked to these changes. These results are consistent with the possibility of statistical indicators of linear instability being detectable in real EEG time series. However, even in a simple cortical model, we find that these indicators may not necessarily be visible even when bifurcations are present because their expression can depend sensitively on the neuronal pathway of incoming fluctuations.

  8. Cognitive impairment after traumatic brain injury: a functional magnetic resonance imaging study using the Stroop task

    Energy Technology Data Exchange (ETDEWEB)

    Soeda, Akio; Iwama, Toru [Gifu University School of Medicine, Department of Neurosurgery, Gifu City (Japan); Nakashima, Toshihiko; Okumura, Ayumi; Shinoda, Jun [Kizawa Memorial Hospital, Chubu Medical Center for Prolonged Traumatic Brain Dysfunction, Department of Neurosurgery, Minokamo (Japan); Kuwata, Kazuo [Gifu University School of Medicine, Department of Biochemistry and Biophysics, Gifu (Japan)

    2005-07-01

    The anterior cingulate cortex (ACC) plays a key role in cognition, motor function, and emotion processing. However, little is known about how traumatic brain injury (TBI) affects the ACC system. Our purpose was to compare, by functional magnetic resonance imaging (fMRI) studies, the patterns of cortical activation in patients with cognitive impairment after TBI and those of normal subjects. Cortical activation maps of 11 right-handed healthy control subjects and five TBI patients with cognitive impairment were recorded in response to a Stroop task during a block-designed fMRI experiment. Statistical parametric mapping (SPM99) was used for individual subjects and group analysis. In TBI patients and controls, cortical activation, found in similar regions of the frontal, occipital, and parietal lobes, resembled patterns of activation documented in previous neuroimaging studies of the Stroop task in healthy controls. However, the TBI patients showed a relative decrease in ACC activity compared with the controls. Cognitive impairment in TBI patients seems to be associated with alterations in functional cerebral activity, especially less activation of the ACC. These changes are probably the result of destruction of neural networks after diffuse axonal injury and may reflect cortical disinhibition attributable to disconnection or compensation for an inefficient cognitive process. (orig.)

  9. Cognitive impairment after traumatic brain injury: a functional magnetic resonance imaging study using the Stroop task

    International Nuclear Information System (INIS)

    Soeda, Akio; Iwama, Toru; Nakashima, Toshihiko; Okumura, Ayumi; Shinoda, Jun; Kuwata, Kazuo

    2005-01-01

    The anterior cingulate cortex (ACC) plays a key role in cognition, motor function, and emotion processing. However, little is known about how traumatic brain injury (TBI) affects the ACC system. Our purpose was to compare, by functional magnetic resonance imaging (fMRI) studies, the patterns of cortical activation in patients with cognitive impairment after TBI and those of normal subjects. Cortical activation maps of 11 right-handed healthy control subjects and five TBI patients with cognitive impairment were recorded in response to a Stroop task during a block-designed fMRI experiment. Statistical parametric mapping (SPM99) was used for individual subjects and group analysis. In TBI patients and controls, cortical activation, found in similar regions of the frontal, occipital, and parietal lobes, resembled patterns of activation documented in previous neuroimaging studies of the Stroop task in healthy controls. However, the TBI patients showed a relative decrease in ACC activity compared with the controls. Cognitive impairment in TBI patients seems to be associated with alterations in functional cerebral activity, especially less activation of the ACC. These changes are probably the result of destruction of neural networks after diffuse axonal injury and may reflect cortical disinhibition attributable to disconnection or compensation for an inefficient cognitive process. (orig.)

  10. Impairments of motor-cortex responses to unilateral and bilateral direct current stimulation in schizophrenia

    Directory of Open Access Journals (Sweden)

    Alkomiet eHasan

    2013-10-01

    Full Text Available Transcranial direct current stimulation (tDCS is a non-invasive stimulation technique that can be applied to modulate cortical activity through induction of cortical plasticity. Since various neuropsychiatric disorders are characterised by fluctuations in cortical activity levels (e.g. schizophrenia, tDCS is increasingly investigated as a treatment tool. Several studies have shown that the induction of cortical plasticity following classical, unilateral tDCS is reduced or impaired in the stimulated and non-stimulated primary motor cortices (M1 of schizophrenia patients. Moreover, an alternative, bilateral tDCS setup has recently been shown to modulate cortical plasticity in both hemispheres in healthy subjects, highlighting another potential treatment approach. Here we present the first study comparing the efficacy of unilateral tDCS (cathode left M1, anode right supraorbital with simultaneous bilateral tDCS (cathode left M1, anode right M1 in schizophrenia patients. tDCS-induced cortical plasticity was monitored by investigating motor-evoked potentials induced by single-pulse transcranial magnetic stimulation applied to both hemispheres. Healthy subjects showed a reduction of left M1 excitability following unilateral tDCS on the stimulated left hemisphere and an increase in right M1 excitability following bilateral tDCS. In schizophrenia, no plasticity was induced following both stimulation paradigms. The pattern of these results indicates a complex interplay between plasticity and connectivity that is impaired in schizophrenia patients. Further studies are needed to clarify the biological underpinnings and clinical impact of these findings.

  11. Atypical calcific tendinitis with cortical erosions

    International Nuclear Information System (INIS)

    Kraemer, E.J.; El-Khoury, G.Y.

    2000-01-01

    Objective. To present and discuss six cases of calcific tendinitis in atypical locations (one at the insertion of the pectoralis major and five at the insertion of the gluteus maximus).Patients and results. All cases were associated with cortical erosions, and five had soft tissue calcifications. The initial presentation was confusing and the patients were suspected of having infection or neoplastic disease.Conclusion. Calcific tendinitis is a self-limiting condition. It is important to recognize the imaging features of this condition to avoid unnecessary investigation and surgery. (orig.)

  12. Mean field methods for cortical network dynamics

    DEFF Research Database (Denmark)

    Hertz, J.; Lerchner, Alexander; Ahmadi, M.

    2004-01-01

    We review the use of mean field theory for describing the dynamics of dense, randomly connected cortical circuits. For a simple network of excitatory and inhibitory leaky integrate- and-fire neurons, we can show how the firing irregularity, as measured by the Fano factor, increases...... with the strength of the synapses in the network and with the value to which the membrane potential is reset after a spike. Generalizing the model to include conductance-based synapses gives insight into the connection between the firing statistics and the high- conductance state observed experimentally in visual...

  13. Cisternography contribution in the cortical atrophy diagnosis

    International Nuclear Information System (INIS)

    Calegaro, J.U.M.; Balallai, N.; Suzuki, K.

    1975-01-01

    A 37 years-old woman suffered a car accident. On admission to hospital she presented: torpor, the right pupil greater than the left, both reacting to light, and left hemiparesis with homologous Babinski reflex. She was submitted to carotid arteriogram an air-contrast study without significant findings. Eletroencephalographic examination showed diffuse parenquimatous involvement of left cerebral hemisphery. Scinticisternography demonstrated delayed reabsorption of the radioactive tracer in both frontal areas. A subsequent trepanation made the diagnosis of cortical atrophy in the areas mentioned above. This case shows aditional information concerning anatomic detail provided by isotope cisternography, that eventually can't be detected by air-contrast study [pt

  14. Cerebral cortices of East african early hominids.

    Science.gov (United States)

    Falk, D

    1983-09-09

    An endocast of the frontal lobe of a reconstructed skull, which is approximately 2 million years old, from the Koobi Fora region of Kenya appears to represent the oldest human-like cortical sulcal pattern in the fossil record, while the endocast from another skull from the same region produces an endocast that appears apelike in its frontal lobe and similar to endocasts from earlier South African australopithecines. New analysis of paleoanatomical evidence thus indicates that at least two taxa of early hominids coexisted in East Africa.

  15. Hiperactivacion cortical y deterioro cognitivo en esquizofrenia

    OpenAIRE

    Suazo Bonnelly, Vanessa Johanna

    2014-01-01

    [ES] En este trabajo se estudió la actividad cerebral desorganizada y el deterioro cognitivo adjudicado a pacientes con esquizofrenia. Para estudiar la actividad cerebral se empleó una medida electroencefalográfica de ruido cortical (actividad promediada de fondo no ligada a la tarea) durante el desarrollo de una tarea sencilla (P300) en dos de las bandas oscilatorias (gamma y theta) más asociadas a la organización de la actividad cerebral según la literatura. Se utilizó una medida estructura...

  16. Cisternography contribution in the cortical atrophy diagnosis

    Energy Technology Data Exchange (ETDEWEB)

    Calegaro, J U.M. [Centro de Analises Clinicas e Medicina Nuclear, Londrina (Brazil); Balallai, N; Suzuki, K [Instituto de Neurologia e Neurocirurgia, Londrina (Brazil)

    1975-01-01

    A 37 years-old woman suffered a car accident. On admission to hospital she presented: torpor, the right pupil greater than the left, both reacting to light, and left hemiparesis with homologous Babinski reflex. She was submitted to carotid arteriogram an air-contrast study without significant findings. Eletroencephalographic examination showed diffuse parenquimatous involvement of left cerebral hemisphery. Scinticisternography demonstrated delayed reabsorption of the radioactive tracer in both frontal areas. A subsequent trepanation made the diagnosis of cortical atrophy in the areas mentioned above. This case shows aditional information concerning anatomic detail provided by isotope cisternography, that eventually can't be detected by air-contrast study.

  17. Localization of cortical areas activated by thinking.

    Science.gov (United States)

    Roland, P E; Friberg, L

    1985-05-01

    These experiments were undertaken to demonstrate that pure mental activity, thinking, increases the cerebral blood flow and that different types of thinking increase the regional cerebral blood flow (rCBF) in different cortical areas. As a first approach, thinking was defined as brain work in the form of operations on internal information, done by an awake subject. The rCBF was measured in 254 cortical regions in 11 subjects with the intracarotid 133Xe injection technique. In normal man, changes in the regional cortical metabolic rate of O2 leads to proportional changes in rCBF. One control study was taken with the subjects at rest. Then the rCBF was measured during three different simple algorithm tasks, each consisting of retrieval of a specific memory followed by a simple operation on the retrieved information. Once started, the information processing went on in the brain without any communication with the outside world. In 50-3 thinking, the subjects started with 50 and then, in their minds only, continuously subtracted 3 from the result. In jingle thinking the subjects internally jumped every second word in a nine-word circular jingle. In route-finding thinking the subjects imagined that they started at their front door and then walked alternatively to the left or the right each time they reached a corner. The rCBF increased only in homotypical cortical areas during thinking. The areas in the superior prefrontal cortex increased their rCBF equivalently during the three types of thinking. In the remaining parts of the prefrontal cortex there were multifocal increases of rCBF. The localizations and intensities of these rCBF increases depended on the type of internal operation occurring. The rCBF increased bilaterally in the angular cortex during 50-3 thinking. The rCBF increased in the right midtemporal cortex exclusively during jingle thinking. The intermediate and remote visual association areas, the superior occipital, posterior inferior temporal, and

  18. Outline of a novel architecture for cortical computation

    OpenAIRE

    Majumdar, Kaushik

    2007-01-01

    In this paper a novel architecture for cortical computation has been proposed. This architecture is composed of computing paths consisting of neurons and synapses only. These paths have been decomposed into lateral, longitudinal and vertical components. Cortical computation has then been decomposed into lateral computation (LaC), longitudinal computation (LoC) and vertical computation (VeC). It has been shown that various loop structures in the cortical circuit play important roles in cortica...

  19. Cerebral Metabolic Differences Associated with Cognitive Impairment in Parkinson's Disease.

    Directory of Open Access Journals (Sweden)

    Yilin Tang

    Full Text Available To characterize cerebral glucose metabolism associated with different cognitive states in Parkinson's disease (PD using 18F-fluorodeoxyglucose (FDG and Positron Emission Tomography (PET.Three groups of patients were recruited in this study including PD patients with dementia (PDD; n = 10, with mild cognitive impairment (PD-MCI; n = 20, and with no cognitive impairment (PD-NC; n = 30. The groups were matched for age, sex, education, disease duration, motor disability, levodopa equivalent dose and Geriatric Depression Rating Scale (GDS score. All subjects underwent a FDG-PET study. Maps of regional metabolism in the three groups were compared using statistical parametric mapping (SPM5.PD-MCI patients exhibited limited areas of hypometabolism in the frontal, temporal and parahippocampal gyrus compared with the PD-NC patients (p < 0.01. PDD patients had bilateral areas of hypometabolism in the frontal and posterior parietal-occipital lobes compared with PD-MCI patients (p < 0.01, and exhibited greater metabolic reductions in comparison with PD-NC patients (p < 0.01.Compared with PD-NC patients, hypometabolism was much higher in the PDD patients than in PD-MCI patients, mainly in the posterior cortical areas. The result might suggest an association between posterior cortical hypometabolism and more severe cognitive impairment. PD-MCI might be important for early targeted therapeutic intervention and disease modification.

  20. Frontal cortical control of posterior sensory and association cortices through the claustrum.

    Science.gov (United States)

    White, Michael G; Mathur, Brian N

    2018-04-06

    The claustrum is a telencephalic gray matter nucleus that is richly interconnected with the neocortex. This structure subserves top-down executive functions that require frontal cortical control of posterior cortical regions. However, functional anatomical support for the claustrum allowing for long-range intercortical communication is lacking. To test this, we performed a channelrhodopsin-assisted long-circuit mapping strategy in mouse brain slices. We find that anterior cingulate cortex input to the claustrum is transiently amplified by claustrum neurons that, in turn, project to parietal association cortex or to primary and secondary visual cortices. Additionally, we observe that claustrum drive of cortical neurons in parietal association cortex is layer-specific, eliciting action potential generation briefly in layers II/III, IV, and VI but not V. These data are the first to provide a functional anatomical substrate through claustrum that may underlie top-down functions, such as executive attention or working memory, providing critical insight to this most interconnected and enigmatic nucleus.

  1. Disruption of Cortical Connectivity during Remifentanil Administration Is Associated with Cognitive Impairment but Not with Analgesia

    DEFF Research Database (Denmark)

    Khodayari-Rostamabad, Ahmad; Olesen, Søren S; Graversen, Carina

    2015-01-01

    -theoretical measures and experimental pain tests were seen. CONCLUSIONS:: Remifentanil disrupts the functional connectivity network properties of the electroencephalogram. The findings give new insight into how opioids interfere with the normal brain functions and have the potential to be biomarkers for the sedative...

  2. Dietary carbohydrate in relation to cortical and nuclear lens opacities in the Melbourne Visual Impairment Project

    Science.gov (United States)

    PURPOSE: In vitro and in vivo animal studies suggest that dietary carbohydrates play a role in cataractogenesis. Few epidemiologic studies have been conducted to evaluate this association. The objective of this study was to examine the cross-sectional associations between total carbohydrate intake, ...

  3. Overweight is not associated with cortical thickness alterations in children

    Directory of Open Access Journals (Sweden)

    Rachel Jane Sharkey

    2015-02-01

    Full Text Available IntroductionSeveral studies report an association between body mass index (BMI and cortical thickness in adults. Some studies demonstrate diffuse cortical thinning in obesity, while others report effects in areas that are associated with self-regulation, such as lateral prefrontal cortex. MethodsThis study used multilevel modelling of data from the NIH Pediatric MRI Data Repository, a mixed longitudinal and cross-sectional database, to examine the relationship between cortical thickness and body weight in children. Cortical thickness was computed at 81,942 vertices of 716 MRI scans from 378 children aged between 4 and 18 years. Body mass index Z score for age was computed for each participant. We preformed vertex-wise statistical analysis of the relationship between cortical thickness and BMI, accounting for age and gender. In addition, cortical thickness was extracted from regions of interest in prefrontal cortex and insula.ResultsNo significant association between cortical thickness and BMI was found, either by statistical parametric mapping or by region of interest analysis. Results remained negative when the analysis was restricted to children aged 12-18.ConclusionsThe correlation between BMI and cortical thickness was not found in this large pediatric sample. The association between BMI and cortical thinning develops after adolescence. This has implications for the nature of the relationship between brain anatomy and weight gain.

  4. Impairments to Vision

    Science.gov (United States)

    ... an external Non-Government web site. Impairments to Vision Normal Vision Diabetic Retinopathy Age-related Macular Degeneration In this ... pictures, fixate on the nose to simulate the vision loss. In diabetic retinopathy, the blood vessels in ...

  5. Stormwater Impaired Watersheds

    Data.gov (United States)

    Vermont Center for Geographic Information — Stormwater impaired watersheds occuring on both the Priority Waters (Part D - Completed TMDL) and 303(d) list of waters (Part A - need TMDL) The Vermont State...

  6. Synaptic Changes in AMPA Receptor Subunit Expression in Cortical Parvalbumin Interneurons in the Stargazer Model of Absence Epilepsy

    Directory of Open Access Journals (Sweden)

    Nadia K. Adotevi

    2017-12-01

    Full Text Available Feedforward inhibition is essential to prevent run away excitation within the brain. Recent evidence suggests that a loss of feed-forward inhibition in the corticothalamocortical circuitry may underlie some absence seizures. However, it is unclear if this aberration is specifically linked to loss of synaptic excitation onto local fast-spiking parvalbumin-containing (PV+ inhibitory interneurons, which are responsible for mediating feedforward inhibition within cortical networks. We recently reported a global tissue loss of AMPA receptors (AMPARs, and a specific mistrafficking of these AMPARs in PV+ interneurons in the stargazer somatosensory cortex. The current study was aimed at investigating if cellular changes in AMPAR expression were translated into deficits in receptors at specific synapses in the feedforward inhibitory microcircuit. Using western blot immunolabeling on biochemically isolated synaptic fractions, we demonstrate a loss of AMPAR GluA1–4 subunits in the somatosensory cortex of stargazers compared to non-epileptic control mice. Furthermore, using double post-embedding immunogold-cytochemistry, we show a loss of GluA1–4-AMPARs at excitatory synapses onto cortical PV+ interneurons. Altogether, these data indicate a loss of synaptic AMPAR-mediated excitation of cortical PV+ inhibitory neurons. As the cortex is considered the site of initiation of spike wave discharges (SWDs within the corticothalamocortical circuitry, loss of AMPARs at cortical PV+ interneurons likely impairs feed-forward inhibitory output, and contributes to the generation of SWDs and absence seizures in stargazers.

  7. Cortical deficits of emotional face processing in adults with ADHD: its relation to social cognition and executive function.

    Science.gov (United States)

    Ibáñez, Agustin; Petroni, Agustin; Urquina, Hugo; Torrente, Fernando; Torralva, Teresa; Hurtado, Esteban; Guex, Raphael; Blenkmann, Alejandro; Beltrachini, Leandro; Muravchik, Carlos; Baez, Sandra; Cetkovich, Marcelo; Sigman, Mariano; Lischinsky, Alicia; Manes, Facundo

    2011-01-01

    Although it has been shown that adults with attention-deficit hyperactivity disorder (ADHD) have impaired social cognition, no previous study has reported the brain correlates of face valence processing. This study looked for behavioral, neuropsychological, and electrophysiological markers of emotion processing for faces (N170) in adult ADHD compared to controls matched by age, gender, educational level, and handedness. We designed an event-related potential (ERP) study based on a dual valence task (DVT), in which faces and words were presented to test the effects of stimulus type (faces, words, or face-word stimuli) and valence (positive versus negative). Individual signatures of cognitive functioning in participants with ADHD and controls were assessed with a comprehensive neuropsychological evaluation, including executive functioning (EF) and theory of mind (ToM). Compared to controls, the adult ADHD group showed deficits in N170 emotion modulation for facial stimuli. These N170 impairments were observed in the absence of any deficit in facial structural processing, suggesting a specific ADHD impairment in early facial emotion modulation. The cortical current density mapping of N170 yielded a main neural source of N170 at posterior section of fusiform gyrus (maximum at left hemisphere for words and right hemisphere for faces and simultaneous stimuli). Neural generators of N170 (fusiform gyrus) were reduced in ADHD. In those patients, N170 emotion processing was associated with performance on an emotional inference ToM task, and N170 from simultaneous stimuli was associated with EF, especially working memory. This is the first report to reveal an adult ADHD-specific impairment in the cortical modulation of emotion for faces and an association between N170 cortical measures and ToM and EF.

  8. Cortical bone mineral content in primary hyperparathyroidism

    International Nuclear Information System (INIS)

    Mautalen, C.; Reyes, H.R.; Ghiringhelli, G.; Fromm, G.

    1986-01-01

    The bone mineral content (BMC) of 35 patients with primary hyperparathyroidism (PHPT) was measured at the mid radius (95% cortical bone) by photon absorptiometry of a 241 Am source. The majority of the patients had an overt disease of moderate to severe degree. Average serum calcium of the group was 12.3 mg/100 ml (range 10.6 to 18.0 mg/100 ml). The percentage of normality of the BMC was (Av +- 1 SD) 75.1 +- 13.0% for the whole group. The average increment of BMC in 14 patients 9 to 26 months after parathyroidectomy was 9.9%, with a wide dispersion. However, a highly significant negative correlation (r: 0.83; P < 0.01) was found between the initial bone mass and the percentage increment per month after surgery. No furhter gain was observed 2 years after parathyroidectomy except in one patient with an extremely severe bone loss. In spite of the gain obtained after surgery the bone mass remained markedly diminished in most patients showing that the cortical bone loss caused by PHPT is mainly irreversible. (author)

  9. Cortical Thickness Changes Associated with Photoparoxysmal Response

    DEFF Research Database (Denmark)

    Hanganu, Alexandru; Groppa, Stanislav A; Deuschl, Günther

    2014-01-01

    Photoparoxysmal response (PPR) is an EEG trait of spike and spike-wave discharges in response to photic stimulation that is closely linked to idiopathic generalized epilepsy (IGE). In our previous studies we showed that PPR is associated with functional alterations in the occipital and frontal co...... in the occipital lobe, frontoparietal regions and temporal lobe, which also show functional changes associated with PPR. Patients with epilepsy present changes in the temporal lobe and supplementary motor area.......-positive-subjects presented a significant decrease of cortical thickness in the temporal cortex in the same group contrast. IGE patients exhibited lower cortical thickness in the temporal lobe bilaterally and in the right paracentral region in comparison to PPR-positive-subjects. Our study demonstrates structural changes......Photoparoxysmal response (PPR) is an EEG trait of spike and spike-wave discharges in response to photic stimulation that is closely linked to idiopathic generalized epilepsy (IGE). In our previous studies we showed that PPR is associated with functional alterations in the occipital and frontal...

  10. Cortical activation in patients with functional hemispherectomy.

    Science.gov (United States)

    Leonhardt, G; Bingel, U; Spiekermann, G; Kurthen, M; Müller, S; Hufnagel, A

    2001-10-01

    Functional hemispherectomy, a safe and effective therapeutical procedure in medically intractable epilepsy, offers the chance to investigate a strictly unilateral cortical activation in ipsilateral limb movement. We assessed the pattern of cortical activation in a group of patients following functional hemispherectomy. We measured regional cerebral blood flow (rCBF) in 6 patients postoperatively and 6 normal subjects with positron emission tomography using 15[O]H2O as a tracer. Brain activation was achieved by passive elbow movements of the affected arm. Analysis of group results and between-group comparisons were performed with statistical parametric mapping, (SPM96). In normal subjects brain activation was found contralaterally in the cranial sensorimotor cortex and the supplementary motor area and ipsilaterally in the inferior parietal cortex. In patients significant rCBF increases were found in the inferior parietal cortex, caudal sensorimotor cortex and the supplementary motor area ipsilaterally. The activation was weaker than in normal subjects. Compared with normal subjects patients showed additional activation in the premotor cortex, caudal sensorimotor cortex and the inferior parietal cortex of the remaining hemisphere. Less activation compared with normal subjects was found in the cranial sensorimotor cortex and the supplementary motor area. A functional network connecting the inferior parietal cortex, premotor cortex and the supplementary motor area as well as the existence of ipsilateral projections originating from these regions may explain why these areas are predominantly involved in reorganization confined to a single hemisphere.

  11. Scaling Up Cortical Control Inhibits Pain

    Directory of Open Access Journals (Sweden)

    Jahrane Dale

    2018-05-01

    Full Text Available Summary: Acute pain evokes protective neural and behavioral responses. Chronic pain, however, disrupts normal nociceptive processing. The prefrontal cortex (PFC is known to exert top-down regulation of sensory inputs; unfortunately, how individual PFC neurons respond to an acute pain signal is not well characterized. We found that neurons in the prelimbic region of the PFC increased firing rates of the neurons after noxious stimulations in free-moving rats. Chronic pain, however, suppressed both basal spontaneous and pain-evoked firing rates. Furthermore, we identified a linear correlation between basal and evoked firing rates of PFC neurons, whereby a decrease in basal firing leads to a nearly 2-fold reduction in pain-evoked response in chronic pain states. In contrast, enhancing basal PFC activity with low-frequency optogenetic stimulation scaled up prefrontal outputs to inhibit pain. These results demonstrate a cortical gain control system for nociceptive regulation and establish scaling up prefrontal outputs as an effective neuromodulation strategy to inhibit pain. : Dale et al. find that acute pain increases activity levels in the prefrontal cortex. Chronic pain reduces both basal spontaneous and pain-evoked activity in this region, whereas neurostimulation to restore basal activities can in turn enhance nociception-evoked prefrontal activities to inhibit pain. Keywords: chronic pain, neuromodulation, prefrontal cortex, PFC, cortical gain control

  12. Bayesian automated cortical segmentation for neonatal MRI

    Science.gov (United States)

    Chou, Zane; Paquette, Natacha; Ganesh, Bhavana; Wang, Yalin; Ceschin, Rafael; Nelson, Marvin D.; Macyszyn, Luke; Gaonkar, Bilwaj; Panigrahy, Ashok; Lepore, Natasha

    2017-11-01

    Several attempts have been made in the past few years to develop and implement an automated segmentation of neonatal brain structural MRI. However, accurate automated MRI segmentation remains challenging in this population because of the low signal-to-noise ratio, large partial volume effects and inter-individual anatomical variability of the neonatal brain. In this paper, we propose a learning method for segmenting the whole brain cortical grey matter on neonatal T2-weighted images. We trained our algorithm using a neonatal dataset composed of 3 fullterm and 4 preterm infants scanned at term equivalent age. Our segmentation pipeline combines the FAST algorithm from the FSL library software and a Bayesian segmentation approach to create a threshold matrix that minimizes the error of mislabeling brain tissue types. Our method shows promising results with our pilot training set. In both preterm and full-term neonates, automated Bayesian segmentation generates a smoother and more consistent parcellation compared to FAST, while successfully removing the subcortical structure and cleaning the edges of the cortical grey matter. This method show promising refinement of the FAST segmentation by considerably reducing manual input and editing required from the user, and further improving reliability and processing time of neonatal MR images. Further improvement will include a larger dataset of training images acquired from different manufacturers.

  13. Vascular cognitive impairment neuropathology guidelines (VCING): the contribution of cerebrovascular pathology to cognitive impairment.

    Science.gov (United States)

    Skrobot, Olivia A; Attems, Johannes; Esiri, Margaret; Hortobágyi, Tibor; Ironside, James W; Kalaria, Rajesh N; King, Andrew; Lammie, George A; Mann, David; Neal, James; Ben-Shlomo, Yoav; Kehoe, Patrick G; Love, Seth

    2016-11-01

    There are no generally accepted protocols for post-mortem assessment in cases of suspected vascular cognitive impairment. Neuropathologists from seven UK centres have collaborated in the development of a set of vascular cognitive impairment neuropathology guidelines (VCING), representing a validated consensus approach to the post-mortem assessment and scoring of cerebrovascular disease in relation to vascular cognitive impairment. The development had three stages: (i) agreement on a sampling protocol and scoring criteria, through a series of Delphi method surveys; (ii) determination of inter-rater reliability for each type of pathology in each region sampled (Gwet's AC2 coefficient); and (iii) empirical testing and validation of the criteria, by blinded post-mortem assessment of brain tissue from 113 individuals (55 to 100 years) without significant neurodegenerative disease who had had formal cognitive assessments within 12 months of death. Fourteen different vessel and parenchymal pathologies were assessed in 13 brain regions. Almost perfect agreement (AC2 > 0.8) was found when the agreed criteria were used for assessment of leptomeningeal, cortical and capillary cerebral amyloid angiopathy, large infarcts, lacunar infarcts, microhaemorrhage, larger haemorrhage, fibrinoid necrosis, microaneurysms, perivascular space dilation, perivascular haemosiderin leakage, and myelin loss. There was more variability (but still reasonably good agreement) in assessment of the severity of arteriolosclerosis (0.45-0.91) and microinfarcts (0.52-0.84). Regression analyses were undertaken to identify the best predictors of cognitive impairment. Seven pathologies-leptomeningeal cerebral amyloid angiopathy, large infarcts, lacunar infarcts, microinfarcts, arteriolosclerosis, perivascular space dilation and myelin loss-predicted cognitive impairment. Multivariable logistic regression determined the best predictive models of cognitive impairment. The preferred model included moderate

  14. Neurocognitive impairment in childhood chronic fatigue syndrome

    Directory of Open Access Journals (Sweden)

    Kei eMizuno

    2013-04-01

    Full Text Available Neurocognitive impairment is a feature of childhood chronic fatigue syndrome (CCFS. Several studies have demonstrated reduced attention control in CCFS patients in switching and divided attention tasks. In students, the extent of deterioration in task performance depends on the level of fatigue. Poor performance in switching and divided attention is common in both fatigued students and CCFS patients. Additionally, attentional functions show dramatic development from childhood to adolescence, suggesting that abnormal development of switching and divided attention may be induced by chronic fatigue. The brain structures associated with attentional control are situated in the frontal and parietal cortices, which are the last to mature, suggesting that severe fatigue in CCFS patients and students may inhibit normal structural and functional development in these regions. A combination of treatment with cognitive behavioral therapy and antidepressant medication is effective to improve attentional control processing in CCFS patients. Studies identifying the features of neurocognitive impairment in CCFS have improved our current understanding of the neurophysiological mechanisms of CCFS.

  15. Cortical thickness patterns as state biomarker of anorexia nervosa.

    Science.gov (United States)

    Lavagnino, Luca; Mwangi, Benson; Cao, Bo; Shott, Megan E; Soares, Jair C; Frank, Guido K W

    2018-03-01

    Only few studies have investigated cortical thickness in anorexia nervosa (AN), and it is unclear whether patterns of altered cortical thickness can be identified as biomarkers for AN. Cortical thickness was measured in 19 adult women with restricting-type AN, 24 individuals recovered from restricting-type AN (REC-AN) and 24 healthy controls. Those individuals with current or recovered from AN had previously shown altered regional cortical volumes across orbitofrontal cortex and insula. A linear relevance vector machine-learning algorithm estimated patterns of regional thickness across 24 subdivisions of those regions. Region-based analysis showed higher cortical thickness in AN and REC-AN, compared to controls, in the right medial orbital (olfactory) sulcus, and greater cortical thickness for short insular gyri in REC-AN versus controls bilaterally. The machine-learning algorithm identified a pattern of relatively higher right orbital, right insular and left middle frontal cortical thickness, but lower left orbital, right middle and inferior frontal, and bilateral superior frontal cortical thickness specific to AN versus controls (74% specificity and 74% sensitivity, χ 2 p < .004); predicted probabilities differed significantly between AN and controls (p < .023). No pattern significantly distinguished the REC-AN group from controls. Higher cortical thickness in medial orbitofrontal cortex and insula probably contributes to higher gray matter volume in AN in those regions. The machine-learning algorithm identified a mixed pattern of mostly higher orbital and insular, but relatively lower superior frontal cortical thickness in individuals with current AN. These novel results suggest that regional cortical thickness patterns could be state markers for AN. © 2018 Wiley Periodicals, Inc.

  16. Early and phasic cortical metabolic changes in vestibular neuritis onset.

    Directory of Open Access Journals (Sweden)

    Marco Alessandrini

    Full Text Available Functional brain activation studies described the presence of separate cortical areas responsible for central processing of peripheral vestibular information and reported their activation and interactions with other sensory modalities and the changes of this network associated to strategic peripheral or central vestibular lesions. It is already known that cortical changes induced by acute unilateral vestibular failure (UVF are various and undergo variations over time, revealing different cortical involved areas at the onset and recovery from symptoms. The present study aimed at reporting the earliest change in cortical metabolic activity during a paradigmatic form of UVF such as vestibular neuritis (VN, that is, a purely peripheral lesion of the vestibular system, that offers the opportunity to study the cortical response to altered vestibular processing. This research reports [(18F]fluorodeoxyglucose positron emission tomography brain scan data concerning the early cortical metabolic activity associated to symptoms onset in a group of eight patients suffering from VN. VN patients' cortical metabolic activity during the first two days from symptoms onset was compared to that recorded one month later and to a control healthy group. Beside the known cortical response in the sensorimotor network associated to vestibular deafferentation, we show for the first time the involvement of Entorhinal (BAs 28, 34 and Temporal (BA 38 cortices in early phases of symptomatology onset. We interpret these findings as the cortical counterparts of the attempt to reorient oneself in space counteracting the vertigo symptom (Bas 28, 34 and of the emotional response to the new pathologic condition (BA 38 respectively. These interpretations were further supported by changes in patients' subjective ratings in balance, anxiety, and depersonalization/derealization scores when tested at illness onset and one month later. The present findings contribute in expanding

  17. Causes of visual impairment in children: a study of 3,210 cases.

    Science.gov (United States)

    Haddad, Maria Aparecida Onuki; Sei, Mayumi; Sampaio, Marcos Wilson; Kara-José, Newton

    2007-01-01

    To determine causes of visual impairment in children at the Low Vision Service of the Ophthalmic Clinic at the University of São Paulo and at the Brazilian Association for the Visually Impaired People (Laramara), located in São Paulo, Brazil. This study evaluated 3,210 visually impaired children (49% female, 51% male; average age, 5.9 years). Visual impairment was present in 57% (visually impaired group) and 43% presented another associated disability (multiple disability group). The main causes of visual impairment in the visually impaired group were toxoplasmic macular retinochoroiditis (20.7%), retinal dystrophies (12.2%), retinopathy of prematurity (11.8%), ocular malformation (11.6%), congenital glaucoma (10.8%), optic atrophy (9.7%), and congenital cataracts (7.1%). The main causes of visual impairment in the multiple disability group were optic atrophy (37.7%), cortical visual impairment (19.7%), toxoplasmic macular retinochoroiditis (8.6%), retinopathy of prematurity (7.6%), ocular malformation (6.8%), congenital cataracts (6.1%), and degenerative disorders of the retina and macula (4.8%). The retina was the most frequently affected anatomic site in the visually impaired group (49.2%) and the optic nerve in the multiple disability group (39%). Primary, secondary, and tertiary prevention efforts for childhood blindness and visual rehabilitation must be considered in Latin America.

  18. [11C]PIB, [18F]FDG and MR imaging in patients with mild cognitive impairment

    DEFF Research Database (Denmark)

    Brück, A; Virta, J R; Koivunen, J

    2013-01-01

    Cortical glucose metabolism, brain amyloid β accumulation and hippocampal atrophy imaging have all been suggested as potential biomarkers in predicting which patients with mild cognitive impairment (MCI) will convert to Alzheimer's disease (AD). The aim of this study was to compare the prognostic...

  19. Cerebellar cortical infarct cavities and vertebral artery disease

    Energy Technology Data Exchange (ETDEWEB)

    Cocker, Laurens J.L. de [University Medical Center Utrecht, Department of Radiology, Utrecht (Netherlands); Kliniek Sint-Jan Radiologie, Brussels (Belgium); Compter, A.; Kappelle, L.J.; Worp, H.B. van der [University Medical Center Utrecht, Department of Neurology and Neurosurgery, Brain Center Rudolf Magnus, Utrecht (Netherlands); Luijten, P.R.; Hendrikse, J. [University Medical Center Utrecht, Department of Radiology, Utrecht (Netherlands)

    2016-09-15

    Cerebellar cortical infarct cavities are a newly recognised entity associated with atherothromboembolic cerebrovascular disease and worse physical functioning. We aimed to investigate the relationship of cerebellar cortical infarct cavities with symptomatic vertebrobasilar ischaemia and with vascular risk factors. We evaluated the MR images of 46 patients with a recent vertebrobasilar TIA or stroke and a symptomatic vertebral artery stenosis ≥50 % from the Vertebral Artery Stenting Trial (VAST) for the presence of cerebellar cortical infarct cavities ≤1.5 cm. At inclusion in VAST, data were obtained on age, sex, history of vertebrobasilar TIA or stroke, and vascular risk factors. Adjusted risk ratios were calculated with Poisson regression analyses for the relation between cerebellar cortical infarct cavities and vascular risk factors. Sixteen out of 46 (35 %) patients showed cerebellar cortical infarct cavities on the initial MRI, and only one of these 16 patients was known with a previous vertebrobasilar TIA or stroke. In patients with symptomatic vertebrobasilar ischaemia, risk factor profiles of patients with cerebellar cortical infarct cavities were not different from patients without these cavities. Cerebellar cortical infarct cavities are seen on MRI in as much as one third of patients with recently symptomatic vertebral artery stenosis. Since patients usually have no prior history of vertebrobasilar TIA or stroke, cerebellar cortical infarct cavities should be added to the spectrum of common incidental brain infarcts visible on routine MRI. (orig.)

  20. Amygdala activation for eye contact despite complete cortical blindness

    NARCIS (Netherlands)

    Burra, N.; Hervais-Adelman, A.; Kerzel, D.; Tamietto, M.; de Gelder, B.; Pegna, A.J.

    2013-01-01

    Cortical blindness refers to the loss of vision that occurs after destruction of the primary visual cortex. Although there is no sensory cortex and hence no conscious vision, some cortically blind patients show amygdala activation in response to facial or bodily expressions of emotion. Here we

  1. Coherence analysis differentiates between cortical myoclonic tremor and essential tremor

    NARCIS (Netherlands)

    van Rootselaar, AF; Maurits, NM; Koelman, JHTM; van der Hoeven, JH; Bour, LJ; Leenders, KL; Brown, P; Tijssen, MAJ

    Familial cortical myoclonic tremor with epilepsy (FCMTE) is characterized by a distal kinetic tremor, infrequent epileptic attacks, and autosomal dominant inheritance. The tremor is thought to originate from the motor cortex. In our patient group, a premovement cortical spike Could not be

  2. Increased Cortical Thickness in Professional On-Line Gamers

    Science.gov (United States)

    Hyun, Gi Jung; Shin, Yong Wook; Kim, Bung-Nyun; Cheong, Jae Hoon; Jin, Seong Nam

    2013-01-01

    Objective The bulk of recent studies have tested whether video games change the brain in terms of activity and cortical volume. However, such studies are limited by several factors including cross-sectional comparisons, co-morbidity, and short-term follow-up periods. In the present study, we hypothesized that cognitive flexibility and the volume of brain cortex would be correlated with the career length of on-line pro-gamers. Methods High-resolution magnetic resonance scans were acquired in twenty-three pro-gamers recruited from StarCraft pro-game teams. We measured cortical thickness in each individual using FreeSurfer and the cortical thickness was correlated with the career length and the performance of the pro-gamers. Results Career length was positively correlated with cortical thickness in three brain regions: right superior frontal gyrus, right superior parietal gyrus, and right precentral gyrus. Additionally, increased cortical thickness in the prefrontal cortex was correlated with winning rates of the pro-game league. Increased cortical thickness in the prefrontal and parietal cortices was also associated with higher performance of Wisconsin Card Sorting Test. Conclusion Our results suggest that in individuals without pathologic conditions, regular, long-term playing of on-line games is associated with volume changes in the prefrontal and parietal cortices, which are associated with cognitive flexibility. PMID:24474988

  3. Impact of prenatal polycyclic aromatic hydrocarbon exposure on behavior, cortical gene expression and DNA methylation of the Bdnf gene.

    Science.gov (United States)

    Miller, Rachel L; Yan, Zhonghai; Maher, Christina; Zhang, Hanjie; Gudsnuk, Kathryn; McDonald, Jacob; Champagne, Frances A

    2016-03-01

    Prenatal exposure to polycyclic aromatic hydrocarbons (PAH) has been associated with sustained effects on the brain and behavior in offspring. However, the mechanisms have yet to be determined. We hypothesized that prenatal exposure to ambient PAH in mice would be associated with impaired neurocognition, increased anxiety, altered cortical expression of Bdnf and Grin2b , and greater DNA methylation of Bdnf . Our results indicated that during open-field testing, prenatal PAH exposed offspring spent more time immobile and less time exploring. Females produced more fecal boli. Offspring prenatally exposed to PAH displayed modest reductions in overall exploration of objects. Further, prenatal PAH exposure was associated with lower cortical expression of Grin2b and Bdnf in males, and greater Bdnf IV promoter methylation. Epigenetic differences within the Bdnf IV promoter correlated with Bdnf gene expression, but not with the observed behavioral outcomes, suggesting that additional targets may account for these PAH-associated effects.

  4. Impact of prenatal polycyclic aromatic hydrocarbon exposure on behavior, cortical gene expression, and DNA methylation of the Bdnf gene

    Directory of Open Access Journals (Sweden)

    Rachel L. Miller

    2016-03-01

    Full Text Available Prenatal exposure to polycyclic aromatic hydrocarbons (PAH has been associated with sustained effects on the brain and behavior in offspring. However, the mechanisms have yet to be determined. We hypothesized that prenatal exposure to ambient PAH in mice would be associated with impaired neurocognition, increased anxiety, altered cortical expression of Bdnf and Grin2b, and greater DNA methylation of Bdnf. Our results indicated that during open-field testing, prenatal PAH–exposed offspring spent more time immobile and less time exploring. Females produced more fecal boli. Offspring prenatally exposed to PAH displayed modest reductions in overall exploration of objects. Further, prenatal PAH exposure was associated with lower cortical expression of Grin2b and Bdnf in males and greater Bdnf IV promoter methylation. Epigenetic differences within the Bdnf IV promoter correlated with Bdnf gene expression but not with the observed behavioral outcomes, suggesting that additional targets may account for these PAH-associated effects.

  5. Cortical neurogenesis in the absence of centrioles.

    Science.gov (United States)

    Insolera, Ryan; Bazzi, Hisham; Shao, Wei; Anderson, Kathryn V; Shi, Song-Hai

    2014-11-01

    Neuronal production in the mammalian cortex depends on extensive mitoses of radial glial progenitors (RGPs) residing in the ventricular zone (VZ). We examined the function of centrioles in RGPs during cortical neurogenesis in mice by conditional removal of SAS-4, a protein that is required for centriole biogenesis. SAS-4 deletion led to a progressive loss of centrioles, accompanied by RGP detachment from the VZ. Delocalized RGPs did not become outer subventricular zone RGPs (oRGs). Although they remained proliferative, ectopic RGPs, as well as those in the VZ, with a centrosomal deficit exhibited prolonged mitosis, p53 upregulation and apoptosis, resulting in neuronal loss and microcephaly. Simultaneous removal of p53 fully rescued RGP death and microcephaly, but not RGP delocalization and randomized mitotic spindle orientation. Our findings define the functions of centrioles in anchoring RGPs in the VZ and ensuring their efficient mitoses, and reveal the robust adaptability of RGPs in the developing cortex.

  6. Magnetoencephalography from signals to dynamic cortical networks

    CERN Document Server

    Aine, Cheryl

    2014-01-01

    "Magnetoencephalography (MEG) provides a time-accurate view into human brain function. The concerted action of neurons generates minute magnetic fields that can be detected---totally noninvasively---by sensitive multichannel magnetometers. The obtained millisecond accuracycomplements information obtained by other modern brain-imaging tools. Accurate timing is quintessential in normal brain function, often distorted in brain disorders. The noninvasiveness and time-sensitivityof MEG are great assets to developmental studies, as well. This multiauthored book covers an ambitiously wide range of MEG research from introductory to advanced level, from sensors to signals, and from focal sources to the dynamics of cortical networks. Written by active practioners of this multidisciplinary field, the book contains tutorials for newcomers and chapters of new challenging methods and emerging technologies to advanced MEG users. The reader will obtain a firm grasp of the possibilities of MEG in the study of audition, vision...

  7. Localization of cortical areas activated by thinking

    DEFF Research Database (Denmark)

    Roland, P E; Friberg, L

    1985-01-01

    midtemporal cortex exclusively during jingle thinking. The intermediate and remote visual association areas, the superior occipital, posterior inferior temporal, and posterior superior parietal cortex, increased their rCBF exclusively during route-finding thinking. We observed no decreases in rCBF. All r......These experiments were undertaken to demonstrate that pure mental activity, thinking, increases the cerebral blood flow and that different types of thinking increase the regional cerebral blood flow (rCBF) in different cortical areas. As a first approach, thinking was defined as brain work...... communication with the outside world. In 50-3 thinking, the subjects started with 50 and then, in their minds only, continuously subtracted 3 from the result. In jingle thinking the subjects internally jumped every second word in a nine-word circular jingle. In route-finding thinking the subjects imagined...

  8. Premotor and Motor Cortices Encode Reward.

    Directory of Open Access Journals (Sweden)

    Pavan Ramkumar

    Full Text Available Rewards associated with actions are critical for motivation and learning about the consequences of one's actions on the world. The motor cortices are involved in planning and executing movements, but it is unclear whether they encode reward over and above limb kinematics and dynamics. Here, we report a categorical reward signal in dorsal premotor (PMd and primary motor (M1 neurons that corresponds to an increase in firing rates when a trial was not rewarded regardless of whether or not a reward was expected. We show that this signal is unrelated to error magnitude, reward prediction error, or other task confounds such as reward consumption, return reach plan, or kinematic differences across rewarded and unrewarded trials. The availability of reward information in motor cortex is crucial for theories of reward-based learning and motivational influences on actions.

  9. Osteocyte lacunar properties in rat cortical bone

    DEFF Research Database (Denmark)

    Bach-Gansmo, Fiona Linnea; Weaver, James C.; Jensen, Mads Hartmann

    2015-01-01

    Recently, the roles of osteocytes in bone maintenance have gained increasing attention. Osteocytes reside in lacunae that are interconnected by canaliculi resulting in a vast cellular network within the mineralized bone matrix. As the structure of the lacuno-canalicular network is highly connected......-species but also inter-site variation in lacunar properties. Here, osteocyte lacunae in rat cortical bone have been studied using synchrotron radiation micro computed tomography (SR μCT) and backscattered electron (BE) microscopy. Quantitative lacunar geometric characteristics are reported based on the synchrotron...... radiation data, differentiating between circumferential lamellar bone and a central, more disordered bone type. From these studies, no significant differences were found in lacunar volumes between lamellar and central bone, whereas significant differences in lacunar orientation, shape and density values...

  10. Are the Symptoms of Parkinsonism Cortical in Origin?

    Directory of Open Access Journals (Sweden)

    Gordon W. Arbuthnott

    Full Text Available We present three reasons to suspect that the major deleterious consequence of dopamine loss from the striatum is a cortical malfunction. We suggest that it is cortex, rather than striatum, that should be considered as the source of the debilitating symptoms of Parkinson's disease (PD since: 1. Cortical synapses onto striatal dendritic spines are lost in PD. 2. All known treatments of the symptoms of PD disrupt beta oscillations. Oscillations that are also disrupted following antidromic activation of cortical neurons. 3. The final output of basal ganglia directly modulates thalamic connections to layer I of frontal cortical areas, regions intimately associated with motor behaviour.These three reasons combined with evidence that the current summary diagram of the basal ganglia involvement in PD is imprecise at best, suggest that a re-orientation of the treatment strategies towards cortical, rather than striatal malfunction, is overdue. Keywords: Parkinson's disease, Deep brain stimulation, Layer I, Motor cortex

  11. Jealousy increased by induced relative left frontal cortical activity.

    Science.gov (United States)

    Kelley, Nicholas J; Eastwick, Paul W; Harmon-Jones, Eddie; Schmeichel, Brandon J

    2015-10-01

    Asymmetric frontal cortical activity may be one key to the process linking social exclusion to jealous feelings. The current research examined the causal role of asymmetric frontal brain activity in modulating jealousy in response to social exclusion. Transcranial direct-current stimulation (tDCS) over the frontal cortex to manipulate asymmetric frontal cortical activity was combined with a modified version of the Cyberball paradigm designed to induce jealousy. After receiving 15 min of tDCS, participants were excluded by a desired partner and reported how jealous they felt. Among individuals who were excluded, tDCS to increase relative left frontal cortical activity caused greater levels of self-reported jealousy compared to tDCS to increase relative right frontal cortical activity or sham stimulation. Limitations concerning the specificity of this effect and implications for the role of the asymmetric prefrontal cortical activity in motivated behaviors are discussed. (c) 2015 APA, all rights reserved).

  12. Sleep Dependent Memory Consolidation in Children with Autism Spectrum Disorder.

    Science.gov (United States)

    Maski, Kiran; Holbrook, Hannah; Manoach, Dara; Hanson, Ellen; Kapur, Kush; Stickgold, Robert

    2015-12-01

    Examine the role of sleep in the consolidation of declarative memory in children with autism spectrum disorder (ASD). Case-control study. Home-based study with sleep and wake conditions. Twenty-two participants with ASD and 20 control participants between 9 and 16 y of age. Participants were trained to criterion on a spatial declarative memory task and then given a cued recall test. Retest occurred after a period of daytime wake (Wake) or a night of sleep (Sleep) with home-based polysomnography; Wake and Sleep conditions were counterbalanced. Children with ASD had poorer sleep efficiency than controls, but other sleep macroarchitectural and microarchitectural measures were comparable after controlling for age and medication use. Both groups demonstrated better memory consolidation across Sleep than Wake, although participants with ASD had poorer overall memory consolidation than controls. There was no interaction between group and condition. The change in performance across sleep, independent of medication and age, showed no significant relationships with any specific sleep parameters other than total sleep time and showed a trend toward less forgetting in the control group. This study shows that despite their more disturbed sleep quality, children with autism spectrum disorder (ASD) still demonstrate more stable memory consolidation across sleep than in wake conditions. The findings support the importance of sleep for stabilizing memory in children with and without neurodevelopmental disabilities. Our results suggest that improving sleep quality in children with ASD could have direct benefits to improving their overall cognitive functioning. © 2015 Associated Professional Sleep Societies, LLC.

  13. Sleep-dependent facilitation of episodic memory details.

    Science.gov (United States)

    van der Helm, Els; Gujar, Ninad; Nishida, Masaki; Walker, Matthew P

    2011-01-01

    While a role for sleep in declarative memory processing is established, the qualitative nature of this consolidation benefit, and the physiological mechanisms mediating it, remain debated. Here, we investigate the impact of sleep physiology on characteristics of episodic memory using an item- (memory elements) and context- (contextual details associated with those elements) learning paradigm; the latter being especially dependent on the hippocampus. Following back-to-back encoding of two word lists, each associated with a different context, participants were assigned to either a Nap-group, who obtained a 120-min nap, or a No Nap-group. Six hours post-encoding, participants performed a recognition test involving item-memory and context-memory judgments. In contrast to item-memory, which demonstrated no between-group differences, a significant benefit in context-memory developed in the Nap-group, the extent of which correlated both with the amount of stage-2 NREM sleep and frontal fast sleep-spindles. Furthermore, a difference was observed on the basis of word-list order, with the sleep benefit and associated physiological correlations being selective for the second word-list, learned last (most proximal to sleep). These findings suggest that sleep may preferentially benefit contextual (hippocampal-dependent) aspects of memory, supported by sleep-spindle oscillations, and that the temporal order of initial learning differentially determines subsequent offline consolidation.

  14. Sleep-dependent facilitation of episodic memory details.

    Directory of Open Access Journals (Sweden)

    Els van der Helm

    Full Text Available While a role for sleep in declarative memory processing is established, the qualitative nature of this consolidation benefit, and the physiological mechanisms mediating it, remain debated. Here, we investigate the impact of sleep physiology on characteristics of episodic memory using an item- (memory elements and context- (contextual details associated with those elements learning paradigm; the latter being especially dependent on the hippocampus. Following back-to-back encoding of two word lists, each associated with a different context, participants were assigned to either a Nap-group, who obtained a 120-min nap, or a No Nap-group. Six hours post-encoding, participants performed a recognition test involving item-memory and context-memory judgments. In contrast to item-memory, which demonstrated no between-group differences, a significant benefit in context-memory developed in the Nap-group, the extent of which correlated both with the amount of stage-2 NREM sleep and frontal fast sleep-spindles. Furthermore, a difference was observed on the basis of word-list order, with the sleep benefit and associated physiological correlations being selective for the second word-list, learned last (most proximal to sleep. These findings suggest that sleep may preferentially benefit contextual (hippocampal-dependent aspects of memory, supported by sleep-spindle oscillations, and that the temporal order of initial learning differentially determines subsequent offline consolidation.

  15. Targeted Memory Reactivation during Sleep Depends on Prior Learning.

    Science.gov (United States)

    Creery, Jessica D; Oudiette, Delphine; Antony, James W; Paller, Ken A

    2015-05-01

    When sounds associated with learning are presented again during slow-wave sleep, targeted memory reactivation (TMR) can produce improvements in subsequent location recall. Here we used TMR to investigate memory consolidation during an afternoon nap as a function of prior learning. Twenty healthy individuals (8 male, 19-23 y old). Participants learned to associate each of 50 common objects with a unique screen location. When each object appeared, its characteristic sound was played. After electroencephalography (EEG) electrodes were applied, location recall was assessed for each object, followed by a 90-min interval for sleep. During EEG-verified slow-wave sleep, half of the sounds were quietly presented over white noise. Recall was assessed 3 h after initial learning. A beneficial effect of TMR was found in the form of higher recall accuracy for cued objects compared to uncued objects when pre-sleep accuracy was used as an explanatory variable. An analysis of individual differences revealed that this benefit was greater for participants with higher pre-sleep recall accuracy. In an analysis for individual objects, cueing benefits were apparent as long as initial recall was not highly accurate. Sleep physiology analyses revealed that the cueing benefit correlated with delta power and fast spindle density. These findings substantiate the use of targeted memory reactivation (TMR) methods for manipulating consolidation during sleep. TMR can selectively strengthen memory storage for object-location associations learned prior to sleep, except for those near-perfectly memorized. Neural measures found in conjunction with TMR-induced strengthening provide additional evidence about mechanisms of sleep consolidation. © 2015 Associated Professional Sleep Societies, LLC.

  16. Sleep-dependent modulation of affectively guided decision-making.

    Science.gov (United States)

    Pace-Schott, Edward F; Nave, Genevieve; Morgan, Alexandra; Spencer, Rebecca M C

    2012-02-01

    A question of great interest in current sleep research is whether and how sleep might facilitate complex cognitive skills such as decision-making. The Iowa Gambling Task (IGT) was used to investigate effects of sleep on affect-guided decision-making. After a brief standardized preview of the IGT that was insufficient to learn its underlying rule, participants underwent a 12-h delay containing either a normal night's sleep (Sleep group; N = 28) or continuous daytime wake (Wake group; N = 26). Following the delay, both groups performed the full IGT. To control for circadian effects, two additional groups performed both the preview and the full task either in the morning (N = 17) or the evening (N = 21). In the IGT, four decks of cards were presented. Draws from two 'advantageous decks' yielded low play-money rewards, occasional low losses and, over multiple draws, a net gain. Draws from 'disadvantageous' decks yielded high rewards, occasional high losses and, over multiple draws, a net loss. Participants were instructed to win and avoid losing as much as possible, and better performance was defined as more advantageous draws. Relative to the wake group, the sleep group showed both superior behavioral outcome (more advantageous draws) and superior rule understanding (blindly judged from statements written at task completion). Neither measure differentiated the two control groups. These results illustrate a role of sleep in optimizing decision-making, a benefit that may be brought about by changes in underlying emotional or cognitive processes. © 2011 European Sleep Research Society.

  17. Contextual control of audiovisual integration in low-level sensory cortices

    NARCIS (Netherlands)

    Van Atteveldt, N.; Peterson, Bradley S; Schroeder, Charles E

    Potential sources of multisensory influences on low-level sensory cortices include direct projections from sensory cortices of different modalities, as well as more indirect feedback inputs from higher order multisensory cortical regions. These multiple architectures may be functionally

  18. Vascular cognitive impairment

    Directory of Open Access Journals (Sweden)

    N.V. Vakhnina

    2014-01-01

    Full Text Available Vascular pathology of the brain is the second most common cause of cognitive impairment after Alzheimer's disease. The article describes the modern concepts of etiology, pathogenetic mechanisms, clinical features and approaches to diagnosis and therapy of vascular cognitive impairment (VCI. Cerebrovascular accident, chronic cerebral circulatory insufficiency and their combination, sometimes in combination with a concomitant neurodegenerative process, are shown to be the major types of brain lesions leading to VCI. The clinical presentation of VCI is characterized by the neuropsychological status dominated by impairment of the executive frontal functions (planning, control, attention in combination with focal neurological symptoms. The diagnosis is based on comparing of the revealed neuropsychological and neurological features with neuroimaging data. Neurometabolic, acetylcholinergic, glutamatergic, and other vasoactive drugs and non-pharmacological methods are widely used to treat VCI. 

  19. Lithium and Renal Impairment

    DEFF Research Database (Denmark)

    Nielsen, René Ernst; Kessing, Lars Vedel; Nolen, Willem A

    2018-01-01

    INTRODUCTION: Lithium is established as an effective treatment of mania, of depression in bipolar and unipolar disorder, and in maintenance treatment of these disorders. However, due to the necessity of monitoring and concerns about irreversible adverse effects, in particular renal impairment......, after long-term use, lithium might be underutilized. METHODS: This study reviewed 6 large observational studies addressing the risk of impaired renal function associated with lithium treatment and methodological issues impacting interpretation of results. RESULTS: An increased risk of renal impairment...... associated with lithium treatment is suggested. This increased risk may, at least partly, be a result of surveillance bias. Additionally, the earliest studies pointed toward an increased risk of end-stage renal disease associated with lithium treatment, whereas the later and methodologically most sound...

  20. Cortical hubs form a module for multisensory integration on top of the hierarchy of cortical networks

    Directory of Open Access Journals (Sweden)

    Gorka Zamora-López

    2010-03-01

    Full Text Available Sensory stimuli entering the nervous system follow particular paths of processing, typically separated (segregated from the paths of other modal information. However, sensory perception, awareness and cognition emerge from the combination of information (integration. The corticocortical networks of cats and macaque monkeys display three prominent characteristics: (i modular organisation (facilitating the segregation, (ii abundant alternative processing paths and (iii the presence of highly connected hubs. Here, we study in detail the organisation and potential function of the cortical hubs by graph analysis and information theoretical methods. We find that the cortical hubs form a spatially delocalised, but topologically central module with the capacity to integrate multisensory information in a collaborative manner. With this, we resolve the underlying anatomical substrate that supports the simultaneous capacity of the cortex to segregate and to integrate multisensory information.

  1. Cortical influences drive amyotrophic lateral sclerosis.

    Science.gov (United States)

    Eisen, Andrew; Braak, Heiko; Del Tredici, Kelly; Lemon, Roger; Ludolph, Albert C; Kiernan, Matthew C

    2017-11-01

    The early motor manifestations of sporadic amyotrophic lateral sclerosis (ALS), while rarely documented, reflect failure of adaptive complex motor skills. The development of these skills correlates with progressive evolution of a direct corticomotoneuronal system that is unique to primates and markedly enhanced in humans. The failure of this system in ALS may translate into the split hand presentation, gait disturbance, split leg syndrome and bulbar symptomatology related to vocalisation and breathing, and possibly diffuse fasciculation, characteristic of ALS. Clinical neurophysiology of the brain employing transcranial magnetic stimulation has convincingly demonstrated a presymptomatic reduction or absence of short interval intracortical inhibition, accompanied by increased intracortical facilitation, indicating cortical hyperexcitability. The hallmark of the TDP-43 pathological signature of sporadic ALS is restricted to cortical areas as well as to subcortical nuclei that are under the direct control of corticofugal projections. This provides anatomical support that the origins of the TDP-43 pathology reside in the cerebral cortex itself, secondarily in corticofugal fibres and the subcortical targets with which they make monosynaptic connections. The latter feature explains the multisystem degeneration that characterises ALS. Consideration of ALS as a primary neurodegenerative disorder of the human brain may incorporate concepts of prion-like spread at synaptic terminals of corticofugal axons. Further, such a concept could explain the recognised widespread imaging abnormalities of the ALS neocortex and the accepted relationship between ALS and frontotemporal dementia. © Article author(s) (or their employer(s) unless otherwise stated in the text of the article) 2017. All rights reserved. No commercial use is permitted unless otherwise expressly granted.

  2. A Mechanistic Link from GABA to Cortical Architecture and Perception.

    Science.gov (United States)

    Kolasinski, James; Logan, John P; Hinson, Emily L; Manners, Daniel; Divanbeighi Zand, Amir P; Makin, Tamar R; Emir, Uzay E; Stagg, Charlotte J

    2017-06-05

    Understanding both the organization of the human cortex and its relation to the performance of distinct functions is fundamental in neuroscience. The primary sensory cortices display topographic organization, whereby receptive fields follow a characteristic pattern, from tonotopy to retinotopy to somatotopy [1]. GABAergic signaling is vital to the maintenance of cortical receptive fields [2]; however, it is unclear how this fine-grain inhibition relates to measurable patterns of perception [3, 4]. Based on perceptual changes following perturbation of the GABAergic system, it is conceivable that the resting level of cortical GABAergic tone directly relates to the spatial specificity of activation in response to a given input [5-7]. The specificity of cortical activation can be considered in terms of cortical tuning: greater cortical tuning yields more localized recruitment of cortical territory in response to a given input. We applied a combination of fMRI, MR spectroscopy, and psychophysics to substantiate the link between the cortical neurochemical milieu, the tuning of cortical activity, and variability in perceptual acuity, using human somatosensory cortex as a model. We provide data that explain human perceptual acuity in terms of both the underlying cellular and metabolic processes. Specifically, higher concentrations of sensorimotor GABA are associated with more selective cortical tuning, which in turn is associated with enhanced perception. These results show anatomical and neurochemical specificity and are replicated in an independent cohort. The mechanistic link from neurochemistry to perception provides a vital step in understanding population variability in sensory behavior, informing metabolic therapeutic interventions to restore perceptual abilities clinically. Copyright © 2017 The Author(s). Published by Elsevier Ltd.. All rights reserved.

  3. The biology and dynamics of mammalian cortical granules

    Directory of Open Access Journals (Sweden)

    Liu Min

    2011-11-01

    Full Text Available Abstract Cortical granules are membrane bound organelles located in the cortex of unfertilized oocytes. Following fertilization, cortical granules undergo exocytosis to release their contents into the perivitelline space. This secretory process, which is calcium dependent and SNARE protein-mediated pathway, is known as the cortical reaction. After exocytosis, the released cortical granule proteins are responsible for blocking polyspermy by modifying the oocytes' extracellular matrices, such as the zona pellucida in mammals. Mammalian cortical granules range in size from 0.2 um to 0.6 um in diameter and different from most other regulatory secretory organelles in that they are not renewed once released. These granules are only synthesized in female germ cells and transform an egg upon sperm entry; therefore, this unique cellular structure has inherent interest for our understanding of the biology of fertilization. Cortical granules are long thought to be static and awaiting in the cortex of unfertilized oocytes to be stimulated undergoing exocytosis upon gamete fusion. Not till recently, the dynamic nature of cortical granules is appreciated and understood. The latest studies of mammalian cortical granules document that this organelle is not only biochemically heterogeneous, but also displays complex distribution during oocyte development. Interestingly, some cortical granules undergo exocytosis prior to fertilization; and a number of granule components function beyond the time of fertilization in regulating embryonic cleavage and preimplantation development, demonstrating their functional significance in fertilization as well as early embryonic development. The following review will present studies that investigate the biology of cortical granules and will also discuss new findings that uncover the dynamic aspect of this organelle in mammals.

  4. Altered Regional Brain Cortical Thickness in Pediatric Obstructive Sleep Apnea

    Directory of Open Access Journals (Sweden)

    Paul M. Macey

    2018-01-01

    Full Text Available RationaleObstructive sleep apnea (OSA affects 2–5% of all children and is associated with cognitive and behavioral deficits, resulting in poor school performance. These psychological deficits may arise from brain injury, as seen in preliminary findings of lower gray matter volume among pediatric OSA patients. However, the psychological deficits in OSA are closely related to functions in the cortex, and such brain areas have not been specifically assessed. The objective was to determine whether cortical thickness, a marker of possible brain injury, is altered in children with OSA.MethodsWe examined regional brain cortical thicknesses using high-resolution T1-weighted magnetic resonance images in 16 pediatric OSA patients (8 males; mean age ± SD = 8.4 ± 1.2 years; mean apnea/hypopnea index ± SD = 11 ± 6 events/h and 138 controls (8.3 ± 1.1 years; 62 male; 138 subjects from the NIH Pediatric MRI database to identify cortical thickness differences in pediatric OSA subjects.ResultsCortical thinning occurred in multiple regions including the superior frontal, ventral medial prefrontal, and superior parietal cortices. The left side showed greater thinning in the superior frontal cortex. Cortical thickening was observed in bilateral precentral gyrus, mid-to-posterior insular cortices, and left central gyrus, as well as right anterior insula cortex.ConclusionChanges in cortical thickness are present in children with OSA and likely indicate disruption to neural developmental processes, including maturational patterns of cortical volume increases and synaptic pruning. Regions with thicker cortices may reflect inflammation or astrocyte activation. Both the thinning and thickening associated with OSA in children may contribute to the cognitive and behavioral dysfunction frequently found in the condition.

  5. Social communication impairments: pragmatics.

    Science.gov (United States)

    Russell, Robert L

    2007-06-01

    Social communication or pragmatic impairments are characterized and illustrated as involving inappropriate or ineffective use of language and gesture in social contexts. Three clinical vignettes illustrate different pragmatic impairments and the wealth of diagnostic information that can be garnered from observation of a child's social communication behavior. Definitions of, and developmental milestones in, domains of pragmatic competence are provided. Several screening instruments are suggested for use in assessing pragmatic competence within the time-frame of a pediatric examination. Frequent comorbid psychiatric conditions are described and a sample of current neurobiologic research is briefly summarized.

  6. Deficits in Beam-Walking After Neonatal Motor Cortical Lesions are not Spared by Fetal Cortical Transplants in Rats

    OpenAIRE

    Swenson, R. S.; Danielsen, E. H.; Klausen, B. S.; Erlich, E.; Zimmer, J.; Castro, A. J.

    1989-01-01

    Adult rats that sustained unilateral motor cortical lesions at birth demonstrated deficits in traversing an elevated narrow beam. These deficits, manifested by hindlimb slips off the edge of the beam, were not spared in animals that received fetal cortical transplants into the lesion cavity immediately after lesion placement.

  7. Organizational strategy influence on visual memory performance after stroke: cortical/subcortical and left/right hemisphere contrasts.

    Science.gov (United States)

    Lange, G; Waked, W; Kirshblum, S; DeLuca, J

    2000-01-01

    To examine how organizational strategy at encoding influences visual memory performance in stroke patients. Case control study. Postacute rehabilitation hospital. Stroke patients with right hemisphere damage (n = 20) versus left hemisphere damage (n = 15), and stroke patients with cortical damage (n = 11) versus subcortical damage (n = 19). Organizational strategy scores, recall performance on the Rey-Osterrieth Complex Figure (ROCF). Results demonstrated significantly greater organizational impairment and less accurate copy performance (i.e., encoding of visuospatial information on the ROCF) in the right compared to the left hemisphere group, and in the cortical relative to the subcortical group. Organizational strategy and copy accuracy scores were significantly related to each other. The absolute amount of immediate and delayed recall was significantly associated with poor organizational strategy scores. However, relative to the amount of visual information originally encoded, memory performances did not differ between groups. These findings suggest that visual memory impairments after stroke may be caused by a lack of organizational strategy affecting information encoding, rather than an impairment in memory storage or retrieval.

  8. Mapping cortical hand motor representation using TMS: A method to assess brain plasticity and a surrogate marker for recovery of function after stroke?

    Science.gov (United States)

    Lüdemann-Podubecká, Jitka; Nowak, Dennis Alexander

    2016-10-01

    Stroke is associated with reorganization within motor areas of both hemispheres. Mapping the cortical hand motor representation using transcranial magnetic stimulation may help to understand the relationship between motor cortex reorganization and motor recovery of the affected hand after stroke. A standardized review of the pertinent literature was performed. We identified 20 trials, which analyzed the relationship between the extent and/or location of cortical hand motor representation using transcranial magnetic stimulation and motor function and recovery of the affected hand. Several correlations were found between cortical reorganization and measures of hand motor impairment and recovery. A better understanding of the relationships between the extent and location of cortical hand motor representation and the motor impairment and motor recovery of the affected hand after stroke may contribute to a targeted use of non-invasive brain stimulation protocols. In the future motor mapping may help to guide brain stimulation techniques to the most effective motor area in an affected individual. Copyright © 2016 Elsevier Ltd. All rights reserved.

  9. Do gravity-related sensory information enable the enhancement of cortical proprioceptive inputs when planning a step in microgravity?

    Directory of Open Access Journals (Sweden)

    Anahid H Saradjian

    Full Text Available We recently found that the cortical response to proprioceptive stimulation was greater when participants were planning a step than when they stood still, and that this sensory facilitation was suppressed in microgravity. The aim of the present study was to test whether the absence of gravity-related sensory afferents during movement planning in microgravity prevented the proprioceptive cortical processing to be enhanced. We reestablished a reference frame in microgravity by providing and translating a horizontal support on which the participants were standing and verified whether this procedure restored the proprioceptive facilitation. The slight translation of the base of support (lateral direction, which occurred prior to step initiation, stimulated at least cutaneous and vestibular receptors. The sensitivity to proprioceptive stimulation was assessed by measuring the amplitude of the cortical somatosensory-evoked potential (SEP, over the Cz electrode following the vibration of the leg muscle. The vibration lasted 1 s and the participants were asked to either initiate a step at the vibration offset or to remain still. We found that the early SEP (90-160 ms was smaller when the platform was translated than when it remained stationary, revealing the existence of an interference phenomenon (i.e., when proprioceptive stimulation is preceded by the stimulation of different sensory modalities evoked by the platform translation. By contrast, the late SEP (550 ms post proprioceptive stimulation onset was greater when the translation preceded the vibration compared to a condition without pre-stimulation (i.e., no translation. This suggests that restoring a body reference system which is impaired in microgravity allowed a greater proprioceptive cortical processing. Importantly, however, the late SEP was similarly increased when participants either produced a step or remained still. We propose that the absence of step-induced facilitation of

  10. A novel approach for monitoring writing interferences during navigated transcranial magnetic stimulation mappings of writing related cortical areas.

    Science.gov (United States)

    Rogić Vidaković, Maja; Gabelica, Dragan; Vujović, Igor; Šoda, Joško; Batarelo, Nikolina; Džimbeg, Andrija; Zmajević Schönwald, Marina; Rotim, Krešimir; Đogaš, Zoran

    2015-11-30

    It has recently been shown that navigated repetitive transcranial magnetic stimulation (nTMS) is useful in preoperative neurosurgical mapping of motor and language brain areas. In TMS mapping of motor cortices the evoked responses can be quantitatively monitored by electromyographic (EMG) recordings. No such setup exists for monitoring of writing during nTMS mappings of writing related cortical areas. We present a novel approach for monitoring writing during nTMS mappings of motor writing related cortical areas. To our best knowledge, this is the first demonstration of quantitative monitoring of motor evoked responses from hand by EMG, and of pen related activity during writing with our custom made pen, together with the application of chronometric TMS design and patterned protocol of rTMS. The method was applied in four healthy subjects participating in writing during nTMS mapping of the premotor cortical area corresponding to BA 6 and close to the superior frontal sulcus. The results showed that stimulation impaired writing in all subjects. The corresponding spectra of measured signal related to writing movements was observed in the frequency band 0-20 Hz. Magnetic stimulation affected writing by suppressing normal writing frequency band. The proposed setup for monitoring of writing provides additional quantitative data for monitoring and the analysis of rTMS induced writing response modifications. The setup can be useful for investigation of neurophysiologic mechanisms of writing, for therapeutic effects of nTMS, and in preoperative mapping of language cortical areas in patients undergoing brain surgery. Copyright © 2015 Elsevier B.V. All rights reserved.

  11. Protein phosphatase 2ACα gene knock-out results in cortical atrophy through activating hippo cascade in neuronal progenitor cells.

    Science.gov (United States)

    Liu, Bo; Sun, Li-Hua; Huang, Yan-Fei; Guo, Li-Jun; Luo, Li-Shu

    2018-02-01

    Protein phosphatase 2ACα (PP2ACα), a vital member of the protein phosphatase family, has been studied primarily as a regulator for the development, growth and protein synthesis of a lot of cell types. Dysfunction of PP2ACα protein results in neurodegenerative disease; however, this finding has not been directly confirmed in the mouse model with PP2ACα gene knock-out. Therefore, in this study presented here, we generated the PP2ACα gene knock-out mouse model by the Cre-loxP targeting gene system, with the purpose to directly observe the regulatory role of PP2ACα gene in the development of mouse's cerebral cortex. We observe that knocking-out PP2ACα gene in the central nervous system (CNS) results in cortical neuronal shrinkage, synaptic plasticity impairments, and learning/memory deficits. Further study reveals that PP2ACα gene knock-out initiates Hippo cascade in cortical neuroprogenitor cells (NPCs), which blocks YAP translocation into the nuclei of NPCs. Notably, p73, directly targeted by Hippo cascade, can bind to the promoter of glutaminase2 (GLS2) that plays a dominant role in the enzymatic regulation of glutamate/glutamine cycle. Finally, we find that PP2ACα gene knock-out inhibits the glutamine synthesis through up-regulating the activity of phosphorylated-p73 in cortical NPCs. Taken together, it concludes that PP2ACα critically supports cortical neuronal growth and cognitive function via regulating the signaling transduction of Hippo-p73 cascade. And PP2ACα indirectly modulates the glutamine synthesis of cortical NPCs through targeting p73 that plays a direct transcriptional regulatory role in the gene expression of GLS2. Copyright © 2017 Elsevier Ltd. All rights reserved.

  12. Cortical reorganization in children with connatal spastic hemiparesis - a functional magnetic resonance imaging (fMRI) study; Kortikale Reorganisation bei Kindern mit konnataler spastischer Hemiparese - eine funktionelle Magnetresonanztomographie-(fMRT-)Studie

    Energy Technology Data Exchange (ETDEWEB)

    Moeller, F. [Universitaetsklinikum Schleswig-Holstein, Campus Kiel (Germany). Sektion fuer Neuroradiologie; Universitaetsklinikum Schleswig-Holstein, Campus Kiel (Germany). Klinik fuer Neuropaediatrie; Ulmer, S. [Universitaetsklinikum Schleswig-Holstein, Campus Kiel (Germany). Sektion fuer Neuroradiologie; Universitaetsklinikum Schleswig-Holstein, Campus Kiel (Germany). Klinik fuer Neurochirurgie; Wolff, S.; Jansen, O. [Universitaetsklinikum Schleswig-Holstein, Campus Kiel (Germany). Sektion fuer Neuroradiologie; Stephani, U. [Universitaetsklinikum Schleswig-Holstein, Campus Kiel (Germany). Klinik fuer Neuropaediatrie

    2005-11-15

    Purpose: We applied fMRI to investigate atypical cortical activation in patients with connatal spastic hemiparesis using voluntary movements of the hand, foot, and tongue. The relation between the findings from fMRI and the motor dysfunction was examined. Materials and Methods: 11 patients with connatal spastic hemiparesis were studied. Eight of these patients had periventricular leukomalacia (PVL), and three patients had cortical-subcortical lesions. To evaluate the severity of motor impairment tests for the upper and lower limb were performed. fMRI data were obtained in a block design using hand, foot, and tongue movements. As a control group, 14 healthy volunteers were examined with the fMRI protocol. Results: A laterally cortical representation of the paretic foot was found in three patients with PVL. In patients with cortical-subcortical lesions, tongue movements were associated with cortical activation restricted to the unaffected hemisphere. Movements of the paretic limb showed more ipsilateral activation in patients with PVL than in patients with cortical-subcortical lesions. Conclusion: Different types of structural damage such as PVL and cortical-subcortical lesions show differences in fMRI examination. (orig.)

  13. Medications and impaired driving.

    Science.gov (United States)

    Hetland, Amanda; Carr, David B

    2014-04-01

    To describe the association of specific medication classes with driving outcomes and provide clinical recommendations. The MEDLINE and EMBASE databases were searched for articles published from January 1973 to June 2013 on classes of medications associated with driving impairment. The search included outcome terms such as automobile driving, motor vehicle crash, driving simulator, and road tests. Only English-language articles that contained findings from observational or interventional designs with ≥ 10 participants were included in this review. Cross-sectional studies, case series, and case reports were excluded. Driving is an important task and activity for the majority of adults. Some commonly prescribed medications have been associated with driving impairment measured by road performance, driving simulation, and/or motor vehicle crashes. This review of 30 studies identified findings with barbiturates, benzodiazepines, hypnotics, antidepressants, opioid and nonsteroidal analgesics, anticonvulsants, antipsychotics, antiparkinsonian agents, skeletal muscle relaxants, antihistamines, anticholinergic medications, and hypoglycemic agents. Additional studies of medication impact on sedation, sleep latency, and psychomotor function, as well as the role of alcohol, are also discussed. Psychotropic agents and those with central nervous system side effects were associated with measures of impaired driving performance. It is difficult to determine if such associations are actually a result of medication use or the medical diagnosis itself. Regardless, clinicians should be aware of the increased risk of impaired driving with specific classes of medications, educate their patients, and/or consider safer alternatives.

  14. Do studies on cortical plasticity provide a rationale for using non invasive brain stimulation as a treatment for Parkinson’s disease patients?

    Directory of Open Access Journals (Sweden)

    Giacomo eKoch

    2013-11-01

    Full Text Available Animal models of Parkinson’s disease (PD have shown that key mechanisms of cortical plasticity such as long-term potentiation (LTP and long-term depression (LTD can be impaired by the PD pathology. In humans protocols of non-invasive brain stimulation, such as paired associative stimulation (PAS and theta burst stimulation (TBS, can be used to investigate cortical plasticity of the primary motor cortex. Through the amplitude of the motor evoked potential (MEP these transcranial magnetic stimulation methods allow to measure both LTP-like and LTD-like mechanisms of cortical plasticity. So far these protocols have reported some controversial findings when tested in PD patients. While various studies described evidence for reduced LTP- and LTD-like plasticity, others showed different results, demonstrating increased LTP-like and normal LTD-like plasticity. Recent evidence provided support to the hypothesis that these different patterns of cortical plasticity likely depend on the stage of the disease and on the concomitant administration of levo-dopa. However, it still unclear how and if these altered mechanisms of cortical plasticity can be taken as a reliable model to build appropriate protocols aimed at treating PD symptoms b

  15. Motor Cortex and Motor Cortical Interhemispheric Communication in Walking After Stroke: The Roles of Transcranial Magnetic Stimulation and Animal Models in Our Current and Future Understanding.

    Science.gov (United States)

    Charalambous, Charalambos C; Bowden, Mark G; Adkins, DeAnna L

    2016-01-01

    Despite the plethora of human neurophysiological research, the bilateral involvement of the leg motor cortical areas and their interhemispheric interaction during both normal and impaired human walking is poorly understood. Using transcranial magnetic stimulation (TMS), we have expanded our understanding of the role upper-extremity motor cortical areas play in normal movements and how stroke alters this role, and probed the efficacy of interventions to improve post-stroke arm function. However, similar investigations of the legs have lagged behind, in part, due to the anatomical difficulty in using TMS to stimulate the leg motor cortical areas. Additionally, leg movements are predominately bilaterally controlled and require interlimb coordination that may involve both hemispheres. The sensitive, but invasive, tools used in animal models of locomotion hold great potential for increasing our understanding of the bihemispheric motor cortical control of walking. In this review, we discuss 3 themes associated with the bihemispheric motor cortical control of walking after stroke: (a) what is known about the role of the bihemispheric motor cortical control in healthy and poststroke leg movements, (b) how the neural remodeling of the contralesional hemisphere can affect walking recovery after a stroke, and (c) what is the effect of behavioral rehabilitation training of walking on the neural remodeling of the motor cortical areas bilaterally. For each theme, we discuss how rodent models can enhance the present knowledge on human walking by testing hypotheses that cannot be investigated in humans, and how these findings can then be back-translated into the neurorehabilitation of poststroke walking. © The Author(s) 2015.

  16. Cortical underconnectivity coupled with preserved visuospatial cognition in autism: Evidence from an fMRI study of an embedded figures task

    OpenAIRE

    Damarla, Saudamini Roy; Keller, Timothy A.; Kana, Rajesh K.; Cherkassky, Vladimir L.; Williams, Diane L.; Minshew, Nancy J.; Just, Marcel Adam

    2010-01-01

    Individuals with high-functioning autism sometimes exhibit intact or superior performance on visuospatial tasks, in contrast to impaired functioning in other domains such as language comprehension, executive tasks, and social functions. The goal of the current study was to investigate the neural bases of preserved visuospatial processing in high-functioning autism from the perspective of the cortical underconnectivity theory. We used a combination of behavioral, functional magnetic resonance ...

  17. Altered 13C glucose metabolism in the cortico-striato-thalamo-cortical loop in the MK-801 rat model of schizophrenia

    DEFF Research Database (Denmark)

    Eyjolfsson, Elvar M; Nilsen, Linn Hege; Kondziella, Daniel

    2011-01-01

    Using a modified MK-801 (dizocilpine) N-methyl-D-aspartic acid (NMDA) receptor hypofunction model for schizophrenia, we analyzed glycolysis, as well as glutamatergic, GABAergic, and monoaminergic neurotransmitter synthesis and degradation. Rats received an injection of MK-801 daily for 6 days...... in all regions. In conclusion, neurotransmitter metabolism in the cortico-striato-thalamo-cortical loop is severely impaired in the MK-801 (dizocilpine) NMDA receptor hypofunction animal model for schizophrenia....

  18. Dynamics of Ionic Shifts in Cortical Spreading Depression.

    Science.gov (United States)

    Enger, Rune; Tang, Wannan; Vindedal, Gry Fluge; Jensen, Vidar; Johannes Helm, P; Sprengel, Rolf; Looger, Loren L; Nagelhus, Erlend A

    2015-11-01

    Cortical spreading depression is a slowly propagating wave of near-complete depolarization of brain cells followed by temporary suppression of neuronal activity. Accumulating evidence indicates that cortical spreading depression underlies the migraine aura and that similar waves promote tissue damage in stroke, trauma, and hemorrhage. Cortical spreading depression is characterized by neuronal swelling, profound elevation of extracellular potassium and glutamate, multiphasic blood flow changes, and drop in tissue oxygen tension. The slow speed of the cortical spreading depression wave implies that it is mediated by diffusion of a chemical substance, yet the identity of this substance and the pathway it follows are unknown. Intercellular spread between gap junction-coupled neurons or glial cells and interstitial diffusion of K(+) or glutamate have been proposed. Here we use extracellular direct current potential recordings, K(+)-sensitive microelectrodes, and 2-photon imaging with ultrasensitive Ca(2+) and glutamate fluorescent probes to elucidate the spatiotemporal dynamics of ionic shifts associated with the propagation of cortical spreading depression in the visual cortex of adult living mice. Our data argue against intercellular spread of Ca(2+) carrying the cortical spreading depression wavefront and are in favor of interstitial K(+) diffusion, rather than glutamate diffusion, as the leading event in cortical spreading depression. © The Author 2015. Published by Oxford University Press.

  19. Basal Forebrain Gating by Somatostatin Neurons Drives Prefrontal Cortical Activity.

    Science.gov (United States)

    Espinosa, Nelson; Alonso, Alejandra; Morales, Cristian; Espinosa, Pedro; Chávez, Andrés E; Fuentealba, Pablo

    2017-11-17

    The basal forebrain provides modulatory input to the cortex regulating brain states and cognitive processing. Somatostatin-expressing neurons constitute a heterogeneous GABAergic population known to functionally inhibit basal forebrain cortically projecting cells thus favoring sleep and cortical synchronization. However, it remains unclear if somatostatin cells can regulate population activity patterns in the basal forebrain and modulate cortical dynamics. Here, we demonstrate that somatostatin neurons regulate the corticopetal synaptic output of the basal forebrain impinging on cortical activity and behavior. Optogenetic inactivation of somatostatin neurons in vivo rapidly modified neural activity in the basal forebrain, with the consequent enhancement and desynchronization of activity in the prefrontal cortex, reflected in both neuronal spiking and network oscillations. Cortical activation was partially dependent on cholinergic transmission, suppressing slow waves and potentiating gamma oscillations. In addition, recruitment dynamics was cell type-specific, with interneurons showing similar temporal profiles, but stronger responses than pyramidal cells. Finally, optogenetic stimulation of quiescent animals during resting periods prompted locomotor activity, suggesting generalized cortical activation and increased arousal. Altogether, we provide physiological and behavioral evidence indicating that somatostatin neurons are pivotal in gating the synaptic output of the basal forebrain, thus indirectly controlling cortical operations via both cholinergic and non-cholinergic mechanisms. © The Author 2017. Published by Oxford University Press. All rights reserved. For Permissions, please e-mail: journals.permissions@oup.com.

  20. Influences of brain development and ageing on cortical interactive networks.

    Science.gov (United States)

    Zhu, Chengyu; Guo, Xiaoli; Jin, Zheng; Sun, Junfeng; Qiu, Yihong; Zhu, Yisheng; Tong, Shanbao

    2011-02-01

    To study the effect of brain development and ageing on the pattern of cortical interactive networks. By causality analysis of multichannel electroencephalograph (EEG) with partial directed coherence (PDC), we investigated the different neural networks involved in the whole cortex as well as the anterior and posterior areas in three age groups, i.e., children (0-10 years), mid-aged adults (26-38 years) and the elderly (56-80 years). By comparing the cortical interactive networks in different age groups, the following findings were concluded: (1) the cortical interactive network in the right hemisphere develops earlier than its left counterpart in the development stage; (2) the cortical interactive network of anterior cortex, especially at C3 and F3, is demonstrated to undergo far more extensive changes, compared with the posterior area during brain development and ageing; (3) the asymmetry of the cortical interactive networks declines during ageing with more loss of connectivity in the left frontal and central areas. The age-related variation of cortical interactive networks from resting EEG provides new insights into brain development and ageing. Our findings demonstrated that the PDC analysis of EEG is a powerful approach for characterizing the cortical functional connectivity during brain development and ageing. Copyright © 2010 International Federation of Clinical Neurophysiology. Published by Elsevier Ireland Ltd. All rights reserved.

  1. Early development of synchrony in cortical activations in the human.

    Science.gov (United States)

    Koolen, N; Dereymaeker, A; Räsänen, O; Jansen, K; Vervisch, J; Matic, V; Naulaers, G; De Vos, M; Van Huffel, S; Vanhatalo, S

    2016-05-13

    Early intermittent cortical activity is thought to play a crucial role in the growth of neuronal network development, and large scale brain networks are known to provide the basis for higher brain functions. Yet, the early development of the large scale synchrony in cortical activations is unknown. Here, we tested the hypothesis that the early intermittent cortical activations seen in the human scalp EEG show a clear developmental course during the last trimester of pregnancy, the period of intensive growth of cortico-cortical connections. We recorded scalp EEG from altogether 22 premature infants at post-menstrual age between 30 and 44 weeks, and the early cortical synchrony was quantified using recently introduced activation synchrony index (ASI). The developmental correlations of ASI were computed for individual EEG signals as well as anatomically and mathematically defined spatial subgroups. We report two main findings. First, we observed a robust and statistically significant increase in ASI in all cortical areas. Second, there were significant spatial gradients in the synchrony in fronto-occipital and left-to-right directions. These findings provide evidence that early cortical activity is increasingly synchronized across the neocortex. The ASI-based metrics introduced in our work allow direct translational comparison to in vivo animal models, as well as hold promise for implementation as a functional developmental biomarker in future research on human neonates. Copyright © 2016 The Authors. Published by Elsevier Ltd.. All rights reserved.

  2. The changing roles of neurons in the cortical subplate

    Directory of Open Access Journals (Sweden)

    Michael J Friedlander

    2009-08-01

    Full Text Available Neurons may serve different functions over the course of an organism’s life. Recent evidence suggests that cortical subplate neurons including those that reside in the white matter may perform longitudinal multi-tasking at different stages of development. These cells play a key role in early cortical development in coordinating thalamocortical reciprocal innervation. At later stages of development, they become integrated within the cortical microcircuitry. This type of longitudinal multi-tasking can enhance the capacity for information processing by populations of cells serving different functions over the lifespan. Subplate cells are initially derived when cells from the ventricular zone underlying the cortex migrate to the cortical preplate that is subsequently split by the differentiating neurons of the cortical plate with some neurons locating in the marginal zone and others settling below in the subplate (SP. While the cortical plate neurons form most of the cortical layers (layers 2-6, the marginal zone neurons form layer 1 and the SP neurons become interstitial cells of the white matter as well as forming a compact sublayer along the bottom of layer 6. After serving as transient innervation targets for thalamocortical axons, most of these cells die and layer 4 neurons become innervated by thalamic axons. However, 10-20% survives, remaining into adulthood along the bottom of layer 6 and as a scattered population of interstitial neurons in the white matter. Surviving subplate cells’ axons project throughout the overlying laminae, reaching layer 1 and issuing axon collaterals within white matter and in lower layer 6. This suggests that they participate in local synaptic networks, as well. Moreover, they receive excitatory and inhibitory synaptic inputs, potentially monitoring outputs from axon collaterals of cortical efferents, from cortical afferents and/or from each other. We explore our understanding of the functional connectivity of

  3. Cortical activity in tinnitus patients and its modification by phonostimulation

    Directory of Open Access Journals (Sweden)

    Katarzyna Pawlak-Osińska

    2013-04-01

    Full Text Available OBJECTIVE: The goal of this study was to observe spontaneous cortical activity and cortical activity modulated by tinnitus-matched sound in tinnitus patients and healthy subjects with no otoneurologic symptoms. METHOD: Data were prospectively collected from 50 tinnitus patients and 25 healthy subjects. Cortical activity was recorded in all subjects with eyes closed and open and during photostimulation, hyperventilation and acoustic stimulation using 19-channel quantitative electroencephalography. The sound applied in the tinnitus patients was individually matched with the ability to mask or equal the tinnitus. The maximal and mean amplitude of the delta, theta, alpha and beta waves and the type and amount of the pathologic EEG patterns were noted during each recording. Differences in cortical localization and the influence of sound stimuli on spontaneous cortical activity were evaluated between the groups. RESULTS: The tinnitus group exhibited decreased delta activity and increased alpha and beta activity. Hyperventilation increased the intensity of the differences. The tinnitus patients had more sharp-slow waves and increased slow wave amplitude. Sound stimuli modified the EEG recordings; the delta and beta wave amplitudes were increased, whereas the alpha-1 wave amplitude was decreased. Acoustic stimulation only slightly affected the temporal region. CONCLUSION: Cortical activity in the tinnitus patients clearly differed from that in healthy subjects, i.e., tinnitus is not a “phantom” sign. The changes in cortical activity included decreased delta wave amplitudes, increased alpha-1, beta-1 and beta-h wave amplitudes and pathologic patterns. Cortical activity modifications occurred predominantly in the temporal region. Acoustic stimulation affected spontaneous cortical activity only in tinnitus patients, and although the applied sound was individually matched, the pathologic changes were only slightly improved.

  4. Acetylcholine esterase activity in mild cognitive impairment and Alzheimer's disease

    International Nuclear Information System (INIS)

    Herholz, Karl

    2008-01-01

    Impairment of cholinergic neurotransmission is a well-established fact in Alzheimer's disease (AD), but there is controversy about its relevance at the early stages of the disease and in mild cognitive impairment (MCI). In vivo positron emission tomography imaging of cortical acetylcholine esterase (AChE) activity as a marker of cholinergic innervation that is expressed by cholinergic axons and cholinoceptive neurons has demonstrated a reduction of this enzyme activity in manifest AD. The technique is also useful to measure the inhibition of cerebral AChE induced by cholinesterase inhibitors for treatment of dementia symptoms. A reduction of cortical AchE activity was found consistently in all studies of AD and in few cases of MCI who later concerted to AD. The in vivo findings in MCI and very mild AD are still preliminary, and studies seem to suggest that cholinergic innervation and AChE as the main degrading enzyme are both reduced, which might result in partial compensation of their effect. (orig.)

  5. Visual discrimination training improves Humphrey perimetry in chronic cortically induced blindness.

    Science.gov (United States)

    Cavanaugh, Matthew R; Huxlin, Krystel R

    2017-05-09

    To assess if visual discrimination training improves performance on visual perimetry tests in chronic stroke patients with visual cortex involvement. 24-2 and 10-2 Humphrey visual fields were analyzed for 17 chronic cortically blind stroke patients prior to and following visual discrimination training, as well as in 5 untrained, cortically blind controls. Trained patients practiced direction discrimination, orientation discrimination, or both, at nonoverlapping, blind field locations. All pretraining and posttraining discrimination performance and Humphrey fields were collected with online eye tracking, ensuring gaze-contingent stimulus presentation. Trained patients recovered ∼108 degrees 2 of vision on average, while untrained patients spontaneously improved over an area of ∼16 degrees 2 . Improvement was not affected by patient age, time since lesion, size of initial deficit, or training type, but was proportional to the amount of training performed. Untrained patients counterbalanced their improvements with worsening of sensitivity over ∼9 degrees 2 of their visual field. Worsening was minimal in trained patients. Finally, although discrimination performance improved at all trained locations, changes in Humphrey sensitivity occurred both within trained regions and beyond, extending over a larger area along the blind field border. In adults with chronic cortical visual impairment, the blind field border appears to have enhanced plastic potential, which can be recruited by gaze-controlled visual discrimination training to expand the visible field. Our findings underscore a critical need for future studies to measure the effects of vision restoration approaches on perimetry in larger cohorts of patients. Copyright © 2017 The Author(s). Published by Wolters Kluwer Health, Inc. on behalf of the American Academy of Neurology.

  6. Persistent spatial working memory deficits in rats with bilateral cortical microgyria

    Directory of Open Access Journals (Sweden)

    Rosen Glenn D

    2008-10-01

    Full Text Available Abstract Background Anomalies of cortical neuronal migration (e.g., microgyria (MG and/or ectopias are associated with a variety of language and cognitive deficits in human populations. In rodents, postnatal focal freezing lesions lead to the formation of cortical microgyria similar to those seen in human dyslexic brains, and also cause subsequent deficits in rapid auditory processing similar to those reported in human language impaired populations. Thus convergent findings support the ongoing study of disruptions in neuronal migration in rats as a putative model to provide insight on human language disability. Since deficits in working memory using both verbal and non-verbal tasks also characterize dyslexic populations, the present study examined the effects of neonatally induced bilateral cortical microgyria (MG on working memory in adult male rats. Methods A delayed match-to-sample radial water maze task, in which the goal arm was altered among eight locations on a daily basis, was used to assess working memory performance in MG (n = 8 and sham (n = 10 littermates. Results Over a period of 60 sessions of testing (each session comprising one pre-delay sample trial, and one post-delay test trial, all rats showed learning as evidenced by a significant decrease in overall test errors. However, MG rats made significantly more errors than shams during initial testing, and this memory deficit was still evident after 60 days (12 weeks of testing. Analyses performed on daily error patterns showed that over the course of testing, MG rats utilized a strategy similar to shams (but with less effectiveness, as indicated by more errors. Conclusion These results indicate persistent abnormalities in the spatial working memory system in rats with induced disruptions of neocortical neuronal migration.

  7. Methamphetamine induces heme oxygenase-1 expression in cortical neurons and glia to prevent its toxicity

    International Nuclear Information System (INIS)

    Huang, Y.-N.; Wu, C.-H.; Lin, T.-C.; Wang, J.-Y.

    2009-01-01

    The impairment of cognitive and motor functions in humans and animals caused by methamphetamine (METH) administration underscores the importance of METH toxicity in cortical neurons. The heme oxygenase-1 (HO-1) exerts a cytoprotective effect against various neuronal injures; however, it remains unclear whether HO-1 is involved in METH-induced toxicity. We used primary cortical neuron/glia cocultures to explore the role of HO-1 in METH-induced toxicity. Exposure of cultured cells to various concentrations of METH (0.1, 0.5, 1, 3, 5, and 10 mM) led to cytotoxicity in a concentration-dependent manner. A METH concentration of 5 mM, which caused 50% of neuronal death and glial activation, was chosen for subsequent experiments. RT-PCR and Western blot analysis revealed that METH significantly induced HO-1 mRNA and protein expression, both preceded cell death. Double and triple immunofluorescence staining further identified HO-1-positive cells as activated astrocytes, microglia, and viable neurons, but not dying neurons. Inhibition of the p38 mitogen-activated protein kinase pathway significantly blocked HO-1 induction by METH and aggravated METH neurotoxicity. Inhibition of HO activity using tin protoporphyrine IX significantly reduced HO activity and exacerbated METH neurotoxicity. However, prior induction of HO-1 using cobalt protoporphyrine IX partially protected neurons from METH toxicity. Taken together, our results suggest that induction of HO-1 by METH via the p38 signaling pathway may be protective, albeit insufficient to completely protect cortical neurons from METH toxicity.

  8. Calcifying tendinitis of the rotator cuff with cortical bone erosion

    Energy Technology Data Exchange (ETDEWEB)

    Chan, Roxanne; Kim, David H.; Millett, Peter J. [Harvard Medical School, Brigham and Women' s Hospital, Boston, Massachusetts (United States); Weissman, Barbara N. [Harvard Medical School, Brigham and Women' s Hospital, Boston, Massachusetts (United States); Brigham and Women' s Hospital, Department of Radiology, Musculoskeletal Division, Boston (United States)

    2004-10-01

    Calcifying tendinitis occurs most commonly in the rotator cuff tendons, particularly involving the supraspinatus tendon insertion, and is often asymptomatic. Cortical erosion secondary to calcifying tendinitis has been reported in multiple locations, including in the rotator cuff tendons. We present a pathologically proven case of symptomatic calcifying tendinitis involving the infraspinatus tendon with cortical erosion with correlative radiographic, CT, and MR findings. The importance of considering this diagnosis when evaluating lytic lesions of the humerus and the imaging differential diagnosis of calcifying tendinitis and cortical erosion are discussed. (orig.)

  9. Calcifying tendinitis of the rotator cuff with cortical bone erosion

    International Nuclear Information System (INIS)

    Chan, Roxanne; Kim, David H.; Millett, Peter J.; Weissman, Barbara N.

    2004-01-01

    Calcifying tendinitis occurs most commonly in the rotator cuff tendons, particularly involving the supraspinatus tendon insertion, and is often asymptomatic. Cortical erosion secondary to calcifying tendinitis has been reported in multiple locations, including in the rotator cuff tendons. We present a pathologically proven case of symptomatic calcifying tendinitis involving the infraspinatus tendon with cortical erosion with correlative radiographic, CT, and MR findings. The importance of considering this diagnosis when evaluating lytic lesions of the humerus and the imaging differential diagnosis of calcifying tendinitis and cortical erosion are discussed. (orig.)

  10. The continuum of spreading depolarizations in acute cortical lesion development

    DEFF Research Database (Denmark)

    Hartings, Jed A; Shuttleworth, C William; Kirov, Sergei A

    2017-01-01

    A modern understanding of how cerebral cortical lesions develop after acute brain injury is based on Aristides Leão's historic discoveries of spreading depression and asphyxial/anoxic depolarization. Treated as separate entities for decades, we now appreciate that these events define a continuum....... The causal role of these waves in lesion development has been proven by real-time monitoring of electrophysiology, blood flow, and cytotoxic edema. The spreading depolarization continuum further applies to other models of acute cortical lesions, suggesting that it is a universal principle of cortical lesion...

  11. Bilateral Cerebellar Cortical Dysplasia without Other Malformations: A Case Report

    Energy Technology Data Exchange (ETDEWEB)

    Oh, Jung Seok; Ahn Kook Jin; Kim, Jee Young; Lee, Sun Jin; Park, Jeong Mi [Catholic University Yeouido St. Mary' s Hospital, College of Medicine, Seoul (Korea, Republic of)

    2010-06-15

    Recent advances in MRI have revealed congenital brain malformations and subtle developmental abnormalities of the cerebral and cerebellar cortical architecture. Typical cerebellar cortical dysplasia as a newly categorized cerebellar malformation, has been seen in patients with Fukuyama congenital muscular dystrophy. Cerebellar cortical dysplasia occurs at the embryonic stage and is often observed in healthy newborns. It is also incidentally and initially detected in adults without symptoms. To the best of our knowledge, cerebellar dysplasia without any related disorders is very rare. We describe the MRI findings in one patient with disorganized foliation of both cerebellar hemispheres without a related disorder or syndrome

  12. Acute hepatic encephalopathy presenting as cortical laminar necrosis: Case report

    International Nuclear Information System (INIS)

    Choi, Jong Mun; Kim, Yoon Hee; Roh, Sook Young

    2013-01-01

    We report on a 55-year-old man with alcoholic liver cirrhosis who presented with status epilepticus. Laboratory analysis showed markedly elevated blood ammonia. Brain magnetic resonance imaging (MRI) showed widespread cortical signal changes with restricted diffusion, involving both temporo-fronto-parietal cortex, while the perirolandic regions and occipital cortex were uniquely spared. A follow-up brain MRI demonstrated diffuse cortical atrophy with increased signals on T1-weighted images in both the basal ganglia and temporal lobe cortex, representing cortical laminar necrosis. We suggest that the brain lesions, in our case, represent a consequence of toxic effect of ammonia.

  13. Acute hepatic encephalopathy presenting as cortical laminar necrosis: Case report

    Energy Technology Data Exchange (ETDEWEB)

    Choi, Jong Mun; Kim, Yoon Hee; Roh, Sook Young [Bundang Jesaeng General Hospital, Daejin Medical Center, Seongnam (Korea, Republic of)

    2013-04-15

    We report on a 55-year-old man with alcoholic liver cirrhosis who presented with status epilepticus. Laboratory analysis showed markedly elevated blood ammonia. Brain magnetic resonance imaging (MRI) showed widespread cortical signal changes with restricted diffusion, involving both temporo-fronto-parietal cortex, while the perirolandic regions and occipital cortex were uniquely spared. A follow-up brain MRI demonstrated diffuse cortical atrophy with increased signals on T1-weighted images in both the basal ganglia and temporal lobe cortex, representing cortical laminar necrosis. We suggest that the brain lesions, in our case, represent a consequence of toxic effect of ammonia.

  14. Neuropsychiatric symptoms in Vascular Cognitive Impairment: A systematic review

    Directory of Open Access Journals (Sweden)

    Chan Tiel

    Full Text Available Neuropsychiatric symptoms or Behavioral and Psychological Symptoms of Dementia (BPSD are common and invariably appear at some point during the course of the disease, mediated both by cerebrovascular disease and neurodegenerative processes. Few studies have compared the profiles of BPSD in Vascular Cognitive Impairment (VCI of different subtypes (subcortical or cortical and clinical stages (Vascular Cognitive Impairment No Dementia [VaCIND] and Vascular Dementia [VaD].Objective:To review the BPSD associated with different subtypes and stages of VCI using the Neuropsychiatric Inventory (NPI.Methods:Medline, Scielo and Lilacs databases were searched for the period January 2000 to December 2014, with the key words: "BPSD AND Vascular Dementia, "NPI AND Vascular Dementia" and "NPI AND VCI. Qualitative analysis was performed on studies evaluating BPSD in VCI, using the Neuropsychiatric Inventory (NPI.Results:A total of 82 studies were retrieved of which 13 were eligible and thus included. Among the articles selected, 4 compared BPSD in Subcortical Vascular Dementia (SVaD versus Cortical-Subcortical Vascular Dementia (CSVaD, 3 involved comparisons between SVaD and VaCIND, 1 study analyzed differences between CSVaD and VaCIND, while 5 studies assessed BPSD in CSVaD. Subcortical and Cortical-Subcortical VaD were associated predominantly with Apathy and Depression. VaCIND may present fewer behavioral symptoms than VaD.Conclusion:The profile of BPSD differs for different stages of VCI. Determining the most prevalent BPSD in VCI subtypes might be helpful for improving early diagnosis and management of these symptoms.

  15. Cotinine improves visual recognition memory and decreases cortical Tau phosphorylation in the Tg6799 mice.

    Science.gov (United States)

    Grizzell, J Alex; Patel, Sagar; Barreto, George E; Echeverria, Valentina

    2017-08-01

    Alzheimer's disease (AD) is associated with the progressive aggregation of hyperphosphorylated forms of the microtubule associated protein Tau in the central nervous system. Cotinine, the main metabolite of nicotine, reduced working memory deficits, synaptic loss, and amyloid β peptide aggregation into oligomers and plaques as well as inhibited the cerebral Tau kinase, glycogen synthase 3β (GSK3β) in the transgenic (Tg)6799 (5XFAD) mice. In this study, the effect of cotinine on visual recognition memory and cortical Tau phosphorylation at the GSK3β sites Serine (Ser)-396/Ser-404 and phospho-CREB were investigated in the Tg6799 and non-transgenic (NT) littermate mice. Tg mice showed short-term visual recognition memory impairment in the novel object recognition test, and higher levels of Tau phosphorylation when compared to NT mice. Cotinine significantly improved visual recognition memory performance increased CREB phosphorylation and reduced cortical Tau phosphorylation. Potential mechanisms underlying theses beneficial effects are discussed. Copyright © 2017. Published by Elsevier Inc.

  16. Effects of SYN1Q555X mutation on cortical gray matter microstructure.

    Science.gov (United States)

    Cabana, Jean-François; Gilbert, Guillaume; Létourneau-Guillon, Laurent; Safi, Dima; Rouleau, Isabelle; Cossette, Patrick; Nguyen, Dang Khoa

    2018-04-19

    A new Q555X mutation on the SYN1 gene was recently found in several members of a family segregating dyslexia, epilepsy, and autism spectrum disorder. To describe the effects of this mutation on cortical gray matter microstructure, we performed a surface-based group study using novel diffusion and quantitative multiparametric imaging on 13 SYN1 Q555X mutation carriers and 13 age- and sex-matched controls. Specifically, diffusion kurtosis imaging (DKI) and neurite orientation and dispersion and density imaging (NODDI) were used to analyze multi-shell diffusion data and obtain parametric maps sensitive to tissue structure, while quantitative metrics sensitive to tissue composition (T1, T2* and relative proton density [PD]) were obtained from a multi-echo variable flip angle FLASH acquisition. Results showed significant microstructural alterations in several regions usually involved in oral and written language as well as dyslexia. The most significant changes in these regions were lowered mean diffusivity and increased fractional anisotropy. This study is, to our knowledge, the first to successfully use diffusion imaging and multiparametric mapping to detect cortical anomalies in a group of subjects with a well-defined genotype linked to language impairments, epilepsy and autism spectrum disorder (ASD). © 2018 Wiley Periodicals, Inc.

  17. Scene perception in posterior cortical atrophy: categorization, description and fixation patterns.

    Science.gov (United States)

    Shakespeare, Timothy J; Yong, Keir X X; Frost, Chris; Kim, Lois G; Warrington, Elizabeth K; Crutch, Sebastian J

    2013-01-01

    Partial or complete Balint's syndrome is a core feature of the clinico-radiological syndrome of posterior cortical atrophy (PCA), in which individuals experience a progressive deterioration of cortical vision. Although multi-object arrays are frequently used to detect simultanagnosia in the clinical assessment and diagnosis of PCA, to date there have been no group studies of scene perception in patients with the syndrome. The current study involved three linked experiments conducted in PCA patients and healthy controls. Experiment 1 evaluated the accuracy and latency of complex scene perception relative to individual faces and objects (color and grayscale) using a categorization paradigm. PCA patients were both less accurate (faces < scenes < objects) and slower (scenes < objects < faces) than controls on all categories, with performance strongly associated with their level of basic visual processing impairment; patients also showed a small advantage for color over grayscale stimuli. Experiment 2 involved free description of real world scenes. PCA patients generated fewer features and more misperceptions than controls, though perceptual errors were always consistent with the patient's global understanding of the scene (whether correct or not). Experiment 3 used eye tracking measures to compare patient and control eye movements over initial and subsequent fixations of scenes. Patients' fixation patterns were significantly different to those of young and age-matched controls, with comparable group differences for both initial and subsequent fixations. Overall, these findings describe the variability in everyday scene perception exhibited by individuals with PCA, and indicate the importance of exposure duration in the perception of complex scenes.

  18. Cortical atrophy and language network reorganization associated with a novel progranulin mutation.

    Science.gov (United States)

    Cruchaga, Carlos; Fernández-Seara, Maria A; Seijo-Martínez, Manuel; Samaranch, Lluis; Lorenzo, Elena; Hinrichs, Anthony; Irigoyen, Jaione; Maestro, Cristina; Prieto, Elena; Martí-Climent, Josep M; Arbizu, Javier; Pastor, Maria A; Pastor, Pau

    2009-08-01

    Progressive nonfluent aphasia (PNFA) is an early stage of frontotemporal degeneration. We identified a novel Cys521Tyr progranulin gene variant in a PNFA family that potentially disrupts disulphide bridging causing protein misfolding. To identify early neurodegeneration changes, we performed neuropsychological and neuroimaging studies in 6 family members (MRI [magnetic resonance imaging], fMRI [functional MRI], and 18f-fluorodeoxygenlucose positron emission tomography, including 4 mutation carriers, and in 9 unrelated controls. Voxel-based morphometry (VBM) of the carriers compared with controls showed significant cortical atrophy in language areas. Grey matter loss was distributed mainly in frontal lobes, being more prominent on the left. Clusters were located in the superior frontal gyri, left inferior frontal gyrus, left middle frontal gyrus, left middle temporal gyri and left posterior parietal areas, concordant with (18)FDG-PET hypometabolic areas. fMRI during semantic and phonemic covert word generation (CWGTs) and word listening tasks (WLTs) showed recruitment of attentional and working memory networks in the carriers indicative of functional reorganization. During CWGTs, activation in left prefrontal cortex and bilateral anterior insulae was present whereas WLT recruited mesial prefrontal and anterior temporal cortex. These findings suggest that Cys521Tyr could be associated with early brain impairment not limited to language areas and compensated by recruitment of bilateral auxiliary cortical areas.

  19. Increased cortical-limbic anatomical network connectivity in major depression revealed by diffusion tensor imaging.

    Directory of Open Access Journals (Sweden)

    Peng Fang

    Full Text Available Magnetic resonance imaging studies have reported significant functional and structural differences between depressed patients and controls. Little attention has been given, however, to the abnormalities in anatomical connectivity in depressed patients. In the present study, we aim to investigate the alterations in connectivity of whole-brain anatomical networks in those suffering from major depression by using machine learning approaches. Brain anatomical networks were extracted from diffusion magnetic resonance images obtained from both 22 first-episode, treatment-naive adults with major depressive disorder and 26 matched healthy controls. Using machine learning approaches, we differentiated depressed patients from healthy controls based on their whole-brain anatomical connectivity patterns and identified the most discriminating features that represent between-group differences. Classification results showed that 91.7% (patients=86.4%, controls=96.2%; permutation test, p<0.0001 of subjects were correctly classified via leave-one-out cross-validation. Moreover, the strengths of all the most discriminating connections were increased in depressed patients relative to the controls, and these connections were primarily located within the cortical-limbic network, especially the frontal-limbic network. These results not only provide initial steps toward the development of neurobiological diagnostic markers for major depressive disorder, but also suggest that abnormal cortical-limbic anatomical networks may contribute to the anatomical basis of emotional dysregulation and cognitive impairments associated with this disease.

  20. [Effect of intermittent hypoxia of sleep apnea on embryonic rat cortical neurons in vitro].

    Science.gov (United States)

    Zhang, Chanjuan; Li, Yanzhong; Wang, Yan

    2015-05-01

    To investigate the effects of different pattens of intermittent hypoxia on the activity and apoptosis of primary cultured rat embryonic cortical neurons, and to evaluate the role of intermittent hypoxia in the mechanism of obstructive sleep syndrom induced cognitive function loss. The embryonic cerebral cortical neurons were cultured in vitro and were identified by immunofluorescence. Cultured neurons were randomly divided into intermittent hypoxia group, intermittent normal oxygen group, persistent hypoxia group and the control group, and intermittent hypoxia group was divided into five subgroups according to different frequency and time-bound. Neurons were exposed in different modes of hypoxia. MTT colorimetry was used to detect the viability of the neurons, and DAPI colorated measurement was used to calculate the percentages of neuron apoptosis. There were significantly different effects between all subgroups of intermittent hypoxia and the continued hypoxia group on neuronal activity and apoptosis (P Intermittent hypoxia groups with different frequency and time had no difference in neuronal activity and apoptosis (P > 0.05). The effect of intermittent hypoxia was more serious than that of continued hypoxia on neuronal activity and apoptosis; The impact of intermittent hypoxia on neuronal activity and apoptosis may be an important factor in obstructive sleep apnea related cognitive impairment.

  1. Altered modular organization of structural cortical networks in children with autism.

    Directory of Open Access Journals (Sweden)

    Feng Shi

    Full Text Available Autism is a complex developmental disability that characterized by deficits in social interaction, language skills, repetitive stereotyped behaviors and restricted interests. Although great heterogeneity exists, previous findings suggest that autism has atypical brain connectivity patterns and disrupted small-world network properties. However, the organizational alterations in the autistic brain network are still poorly understood. We explored possible organizational alterations of 49 autistic children and 51 typically developing controls, by investigating their brain network metrics that are constructed upon cortical thickness correlations. Three modules were identified in controls, including cortical regions associated with brain functions of executive strategic, spatial/auditory/visual, and self-reference/episodic memory. There are also three modules found in autistic children with similar patterns. Compared with controls, autism demonstrates significantly reduced gross network modularity, and a larger number of inter-module connections. However, the autistic brain network demonstrates increased intra- and inter-module connectivity in brain regions including middle frontal gyrus, inferior parietal gyrus, and cingulate, suggesting one underlying compensatory mechanism associated with brain functions of self-reference and episodic memory. Results also show that there is increased correlation strength between regions inside frontal lobe, as well as impaired correlation strength between frontotemporal and frontoparietal regions. This alteration of correlation strength may contribute to the organization alteration of network structures in autistic brains.

  2. Personality Traits and Cortical Activity Affect Gambling Behavior in Parkinson's Disease.

    Science.gov (United States)

    Balconi, Michela; Siri, Chiara; Meucci, Nicoletta; Pezzoli, Gianni; Angioletti, Laura

    2018-03-26

    Pathological gambling (PG) in Parkinson's disease (PD) manifests as a persistent and uncontrollable gambling behavior, characterized by dysfunctional decision-making and emotional impairment related to high-risk decisions. The aim of this study was to explore the relationship between personality traits and prefrontal cortex activity in PD patients with or without PG. Thus, hemodynamic cortical activity measured by functional near-infrared spectroscopy (fNIRS) and Iowa Gambling Task (IGT) performance were recorded in forty-six PD patients, divided into three groups according to their gambling status: PD patients with active gambling behavior (PDG); PD patients who remitted from PG (PDNG); and a control group (CG) composed by patients with PD only. Results indicates that gambling behavior in PD patients is strongly predictive of dysfunctional cognitive strategy; affecting anomalous cortical response with a left hemispheric unbalance in dorsal areas; and it is related to more reward sensitivity than impulsivity personality components. PDG patients differed from PDNG and CG from both behavioral and brain response to decision-making. Overall, these effects confirm a pathological condition related to cognitive and emotional aspects which makes the patients with PGD victims of their dysfunctional behavior.

  3. The Roles of Cortical Slow Waves in Synaptic Plasticity and Memory Consolidation.

    Science.gov (United States)

    Miyamoto, Daisuke; Hirai, Daichi; Murayama, Masanori

    2017-01-01

    Sleep plays important roles in sensory and motor memory consolidation. Sleep oscillations, reflecting neural population activity, involve the reactivation of learning-related neurons and regulate synaptic strength and, thereby affect memory consolidation. Among sleep oscillations, slow waves (0.5-4 Hz) are closely associated with memory consolidation. For example, slow-wave power is regulated in an experience-dependent manner and correlates with acquired memory. Furthermore, manipulating slow waves can enhance or impair memory consolidation. During slow wave sleep, inter-areal interactions between the cortex and hippocampus (HC) have been proposed to consolidate declarative memory; however, interactions for non-declarative (HC-independent) memory remain largely uninvestigated. We recently showed that the directional influence in a slow-wave range through a top-down cortical long-range circuit is involved in the consolidation of non-declarative memory. At the synaptic level, the average cortical synaptic strength is known to be potentiated during wakefulness and depressed during sleep. Moreover, learning causes plasticity in a subset of synapses, allocating memory to them. Sleep may help to differentiate synaptic strength between allocated and non-allocated synapses (i.e., improving the signal-to-noise ratio, which may facilitate memory consolidation). Herein, we offer perspectives on inter-areal interactions and synaptic plasticity for memory consolidation during sleep.

  4. The Roles of Cortical Slow Waves in Synaptic Plasticity and Memory Consolidation

    Directory of Open Access Journals (Sweden)

    Daisuke Miyamoto

    2017-11-01

    Full Text Available Sleep plays important roles in sensory and motor memory consolidation. Sleep oscillations, reflecting neural population activity, involve the reactivation of learning-related neurons and regulate synaptic strength and, thereby affect memory consolidation. Among sleep oscillations, slow waves (0.5–4 Hz are closely associated with memory consolidation. For example, slow-wave power is regulated in an experience-dependent manner and correlates with acquired memory. Furthermore, manipulating slow waves can enhance or impair memory consolidation. During slow wave sleep, inter-areal interactions between the cortex and hippocampus (HC have been proposed to consolidate declarative memory; however, interactions for non-declarative (HC-independent memory remain largely uninvestigated. We recently showed that the directional influence in a slow-wave range through a top-down cortical long-range circuit is involved in the consolidation of non-declarative memory. At the synaptic level, the average cortical synaptic strength is known to be potentiated during wakefulness and depressed during sleep. Moreover, learning causes plasticity in a subset of synapses, allocating memory to them. Sleep may help to differentiate synaptic strength between allocated and non-allocated synapses (i.e., improving the signal-to-noise ratio, which may facilitate memory consolidation. Herein, we offer perspectives on inter-areal interactions and synaptic plasticity for memory consolidation during sleep.

  5. Cortical plasticity associated with Braille learning.

    Science.gov (United States)

    Hamilton, R H; Pascual-Leone, A

    1998-05-01

    Blind subjects who learn to read Braille must acquire the ability to extract spatial information from subtle tactile stimuli. In order to accomplish this, neuroplastic changes appear to take place. During Braille learning, the sensorimotor cortical area devoted to the representation of the reading finger enlarges. This enlargement follows a two-step process that can be demonstrated with transcranial magnetic stimulation mapping and suggests initial unmasking of existing connections and eventual establishment of more stable structural changes. In addition, Braille learning appears to be associated with the recruitment of parts of the occipital, formerly `visual', cortex (V1 and V2) for tactile information processing. In blind, proficient Braille readers, the occipital cortex can be shown not only to be associated with tactile Braille reading but also to be critical for reading accuracy. Recent studies suggest the possibility of applying non-invasive neurophysiological techniques to guide and improve functional outcomes of these plastic changes. Such interventions might provide a means of accelerating functional adjustment to blindness.

  6. Learning in AN Oscillatory Cortical Model

    Science.gov (United States)

    Scarpetta, Silvia; Li, Zhaoping; Hertz, John

    We study a model of generalized-Hebbian learning in asymmetric oscillatory neural networks modeling cortical areas such as hippocampus and olfactory cortex. The learning rule is based on the synaptic plasticity observed experimentally, in particular long-term potentiation and long-term depression of the synaptic efficacies depending on the relative timing of the pre- and postsynaptic activities during learning. The learned memory or representational states can be encoded by both the amplitude and the phase patterns of the oscillating neural populations, enabling more efficient and robust information coding than in conventional models of associative memory or input representation. Depending on the class of nonlinearity of the activation function, the model can function as an associative memory for oscillatory patterns (nonlinearity of class II) or can generalize from or interpolate between the learned states, appropriate for the function of input representation (nonlinearity of class I). In the former case, simulations of the model exhibits a first order transition between the "disordered state" and the "ordered" memory state.

  7. Altered cortical communication in amyotrophic lateral sclerosis.

    Science.gov (United States)

    Blain-Moraes, Stefanie; Mashour, George A; Lee, Heonsoo; Huggins, Jane E; Lee, Uncheol

    2013-05-24

    Amyotrophic lateral sclerosis (ALS) is a disorder associated primarily with the degeneration of the motor system. More recently, functional connectivity studies have demonstrated potentially adaptive changes in ALS brain organization, but disease-related changes in cortical communication remain unknown. We recruited individuals with ALS and age-matched controls to operate a brain-computer interface while electroencephalography was recorded over three sessions. Using normalized symbolic transfer entropy, we measured directed functional connectivity from frontal to parietal (feedback connectivity) and parietal to frontal (feedforward connectivity) regions. Feedback connectivity was not significantly different between groups, but feedforward connectivity was significantly higher in individuals with ALS. This result was consistent across a broad electroencephalographic spectrum (4-35 Hz), and in theta, alpha and beta frequency bands. Feedback connectivity has been associated with conscious state and was found to be independent of ALS symptom severity in this study, which may have significant implications for the detection of consciousness in individuals with advanced ALS. We suggest that increases in feedforward connectivity represent a compensatory response to the ALS-related loss of input such that sensory stimuli have sufficient strength to cross the threshold necessary for conscious processing in the global neuronal workspace. Copyright © 2013 Elsevier Ireland Ltd. All rights reserved.

  8. Possible Quantum Absorber Effects in Cortical Synchronization

    Science.gov (United States)

    Kämpf, Uwe

    The Wheeler-Feynman transactional "absorber" approach was proposed originally to account for anomalous resonance coupling between spatio-temporally distant measurement partners in entangled quantum states of so-called Einstein-Podolsky-Rosen paradoxes, e.g. of spatio-temporal non-locality, quantum teleportation, etc. Applied to quantum brain dynamics, however, this view provides an anticipative resonance coupling model for aspects of cortical synchronization and recurrent visual action control. It is proposed to consider the registered activation patterns of neuronal loops in so-called synfire chains not as a result of retarded brain communication processes, but rather as surface effects of a system of standing waves generated in the depth of visual processing. According to this view, they arise from a counterbalance between the actual input's delayed bottom-up data streams and top-down recurrent information-processing of advanced anticipative signals in a Wheeler-Feynman-type absorber mode. In the framework of a "time-loop" model, findings about mirror neurons in the brain cortex are suggested to be at least partially associated with temporal rather than spatial mirror functions of visual processing, similar to phase conjugate adaptive resonance-coupling in nonlinear optics.

  9. Cortical oscillatory activity during spatial echoic memory.

    Science.gov (United States)

    Kaiser, Jochen; Walker, Florian; Leiberg, Susanne; Lutzenberger, Werner

    2005-01-01

    In human magnetoencephalogram, we have found gamma-band activity (GBA), a putative measure of cortical network synchronization, during both bottom-up and top-down auditory processing. When sound positions had to be retained in short-term memory for 800 ms, enhanced GBA was detected over posterior parietal cortex, possibly reflecting the activation of higher sensory storage systems along the hypothesized auditory dorsal space processing stream. Additional prefrontal GBA increases suggested an involvement of central executive networks in stimulus maintenance. The present study assessed spatial echoic memory with the same stimuli but a shorter memorization interval of 200 ms. Statistical probability mapping revealed posterior parietal GBA increases at 80 Hz near the end of the memory phase and both gamma and theta enhancements in response to the test stimulus. In contrast to the previous short-term memory study, no prefrontal gamma or theta enhancements were detected. This suggests that spatial echoic memory is performed by networks along the putative auditory dorsal stream, without requiring an involvement of prefrontal executive regions.

  10. Facilitating text reading in posterior cortical atrophy.

    Science.gov (United States)

    Yong, Keir X X; Rajdev, Kishan; Shakespeare, Timothy J; Leff, Alexander P; Crutch, Sebastian J

    2015-07-28

    We report (1) the quantitative investigation of text reading in posterior cortical atrophy (PCA), and (2) the effects of 2 novel software-based reading aids that result in dramatic improvements in the reading ability of patients with PCA. Reading performance, eye movements, and fixations were assessed in patients with PCA and typical Alzheimer disease and in healthy controls (experiment 1). Two reading aids (single- and double-word) were evaluated based on the notion that reducing the spatial and oculomotor demands of text reading might support reading in PCA (experiment 2). Mean reading accuracy in patients with PCA was significantly worse (57%) compared with both patients with typical Alzheimer disease (98%) and healthy controls (99%); spatial aspects of passages were the primary determinants of text reading ability in PCA. Both aids led to considerable gains in reading accuracy (PCA mean reading accuracy: single-word reading aid = 96%; individual patient improvement range: 6%-270%) and self-rated measures of reading. Data suggest a greater efficiency of fixations and eye movements under the single-word reading aid in patients with PCA. These findings demonstrate how neurologic characterization of a neurodegenerative syndrome (PCA) and detailed cognitive analysis of an important everyday skill (reading) can combine to yield aids capable of supporting important everyday functional abilities. This study provides Class III evidence that for patients with PCA, 2 software-based reading aids (single-word and double-word) improve reading accuracy. © 2015 American Academy of Neurology.

  11. Cortical Integration of Audio-Visual Information

    Science.gov (United States)

    Vander Wyk, Brent C.; Ramsay, Gordon J.; Hudac, Caitlin M.; Jones, Warren; Lin, David; Klin, Ami; Lee, Su Mei; Pelphrey, Kevin A.

    2013-01-01

    We investigated the neural basis of audio-visual processing in speech and non-speech stimuli. Physically identical auditory stimuli (speech and sinusoidal tones) and visual stimuli (animated circles and ellipses) were used in this fMRI experiment. Relative to unimodal stimuli, each of the multimodal conjunctions showed increased activation in largely non-overlapping areas. The conjunction of Ellipse and Speech, which most resembles naturalistic audiovisual speech, showed higher activation in the right inferior frontal gyrus, fusiform gyri, left posterior superior temporal sulcus, and lateral occipital cortex. The conjunction of Circle and Tone, an arbitrary audio-visual pairing with no speech association, activated middle temporal gyri and lateral occipital cortex. The conjunction of Circle and Speech showed activation in lateral occipital cortex, and the conjunction of Ellipse and Tone did not show increased activation relative to unimodal stimuli. Further analysis revealed that middle temporal regions, although identified as multimodal only in the Circle-Tone condition, were more strongly active to Ellipse-Speech or Circle-Speech, but regions that were identified as multimodal for Ellipse-Speech were always strongest for Ellipse-Speech. Our results suggest that combinations of auditory and visual stimuli may together be processed by different cortical networks, depending on the extent to which speech or non-speech percepts are evoked. PMID:20709442

  12. Pitch perception prior to cortical maturation

    Science.gov (United States)

    Lau, Bonnie K.

    Pitch perception plays an important role in many complex auditory tasks including speech perception, music perception, and sound source segregation. Because of the protracted and extensive development of the human auditory cortex, pitch perception might be expected to mature, at least over the first few months of life. This dissertation investigates complex pitch perception in 3-month-olds, 7-month-olds and adults -- time points when the organization of the auditory pathway is distinctly different. Using an observer-based psychophysical procedure, a series of four studies were conducted to determine whether infants (1) discriminate the pitch of harmonic complex tones, (2) discriminate the pitch of unresolved harmonics, (3) discriminate the pitch of missing fundamental melodies, and (4) have comparable sensitivity to pitch and spectral changes as adult listeners. The stimuli used in these studies were harmonic complex tones, with energy missing at the fundamental frequency. Infants at both three and seven months of age discriminated the pitch of missing fundamental complexes composed of resolved and unresolved harmonics as well as missing fundamental melodies, demonstrating perception of complex pitch by three months of age. More surprisingly, infants in both age groups had lower pitch and spectral discrimination thresholds than adult listeners. Furthermore, no differences in performance on any of the tasks presented were observed between infants at three and seven months of age. These results suggest that subcortical processing is not only sufficient to support pitch perception prior to cortical maturation, but provides adult-like sensitivity to pitch by three months.

  13. Workbench surface editor of brain cortical surface

    Science.gov (United States)

    Dow, Douglas E.; Nowinski, Wieslaw L.; Serra, Luis

    1996-04-01

    We have developed a 3D reach-in tool to manually reconstruct 3D cortical surface patches from 2D brain atlas images. The first application of our cortex editor is building 3D functional maps, specifically Brodmann's areas. This tool may also be useful in clinical practice to adjust incorrectly mapped atlas regions due to the deforming effect of lesions. The cortex editor allows a domain expert to control the correlation of control points across slices. Correct correlation has been difficult for 3D reconstruction algorithms because the atlas slices are far apart and because of the complex topology of the cortex which differs so much from slice to slice. Also, higher precision of the resulting surfaces is demanded since these define 3D brain atlas features upon which future stereotactic surgery may be based. The cortex editor described in this paper provides a tool suitable for a domain expert to use in defining the 3D surface of a Brodmann's area.

  14. Lateralization of cortical negative motor areas.

    Science.gov (United States)

    Borggraefe, Ingo; Catarino, Claudia B; Rémi, Jan; Vollmar, Christian; Peraud, Aurelia; Winkler, Peter A; Noachtar, Soheyl

    2016-10-01

    The lateral and mesial aspects of the central and frontal cortex were studied by direct electrical stimulation of the cortex in epilepsy surgery candidates in order to determine the localization of unilateral and bilateral negative motor responses. Results of electrical cortical stimulation were examined in epilepsy surgery candidates in whom invasive electrodes were implanted. The exact localization of subdural electrodes was defined by fusion of 3-dimensional reconstructed MRI and CT images in 13 patients and by analysis of plane skull X-rays and intraoperative visual localization of the electrodes in another 7 patients. Results of electrical stimulation of the cortex were evaluated in a total of 128 patients in whom invasive electrodes were implanted for planning resective epilepsy surgery. Twenty patients, in whom negative motor responses were obtained, were included in the study. Bilateral upper limb negative motor responses were more often elicited from stimulation of the mesial frontal cortex whereas stimulation of the lateral central cortex leads to contralateral upper limb negative motor responses (pfrontal gyrus whereas contralateral negative motor responses localized predominantly in the anterior part of the precentral gyrus (pgyrus and the mesial fronto-central cortex showing functional differences with regard to unilateral and bilateral upper limb representation. The lateral fronto-central negative motor area serves predominantly contralateral upper limb motor control whereas the mesial frontal negative motor area represents bilateral upper limb movement control. Copyright © 2016 International Federation of Clinical Neurophysiology. Published by Elsevier Ireland Ltd. All rights reserved.

  15. Sulcal set optimization for cortical surface registration.

    Science.gov (United States)

    Joshi, Anand A; Pantazis, Dimitrios; Li, Quanzheng; Damasio, Hanna; Shattuck, David W; Toga, Arthur W; Leahy, Richard M

    2010-04-15

    Flat mapping based cortical surface registration constrained by manually traced sulcal curves has been widely used for inter subject comparisons of neuroanatomical data. Even for an experienced neuroanatomist, manual sulcal tracing can be quite time consuming, with the cost increasing with the number of sulcal curves used for registration. We present a method for estimation of an optimal subset of size N(C) from N possible candidate sulcal curves that minimizes a mean squared error metric over all combinations of N(C) curves. The resulting procedure allows us to estimate a subset with a reduced number of curves to be traced as part of the registration procedure leading to optimal use of manual labeling effort for registration. To minimize the error metric we analyze the correlation structure of the errors in the sulcal curves by modeling them as a multivariate Gaussian distribution. For a given subset of sulci used as constraints in surface registration, the proposed model estimates registration error based on the correlation structure of the sulcal errors. The optimal subset of constraint curves consists of the N(C) sulci that jointly minimize the estimated error variance for the subset of unconstrained curves conditioned on the N(C) constraint curves. The optimal subsets of sulci are presented and the estimated and actual registration errors for these subsets are computed. Copyright 2009 Elsevier Inc. All rights reserved.

  16. Femtosecond laser ablation of bovine cortical bone

    Science.gov (United States)

    Cangueiro, Liliana T.; Vilar, Rui; Botelho do Rego, Ana M.; Muralha, Vania S. F.

    2012-12-01

    We study the surface topographical, structural, and compositional modifications induced in bovine cortical bone by femtosecond laser ablation. The tests are performed in air, with a Yb:KYW chirped-pulse-regenerative amplification laser system (500 fs, 1030 nm) at fluences ranging from 0.55 to 2.24 J/cm2. The ablation process is monitored by acoustic emission measurements. The topography of the laser-treated surfaces is studied by scanning electron microscopy, and their constitution is characterized by glancing incidence x-ray diffraction, x-ray photoelectron spectroscopy, Fourier transform infrared spectroscopy, and micro-Raman spectroscopy. The results show that femtosecond laser ablation allows removing bone without melting, carbonization, or cracking. The structure and composition of the remaining tissue are essentially preserved, the only constitutional changes observed being a reduction of the organic material content and a partial recrystallization of hydroxyapatite in the most superficial region of samples. The results suggest that, within this fluence range, ablation occurs by a combination of thermal and electrostatic mechanisms, with the first type of mechanism predominating at lower fluences. The associated thermal effects explain the constitutional changes observed. We show that femtosecond lasers are a promising tool for delicate orthopaedic surgeries, where small amounts of bone must be cut with negligible damage, thus minimizing surgical trauma.

  17. Facilitating text reading in posterior cortical atrophy

    Science.gov (United States)

    Rajdev, Kishan; Shakespeare, Timothy J.; Leff, Alexander P.; Crutch, Sebastian J.

    2015-01-01

    Objective: We report (1) the quantitative investigation of text reading in posterior cortical atrophy (PCA), and (2) the effects of 2 novel software-based reading aids that result in dramatic improvements in the reading ability of patients with PCA. Methods: Reading performance, eye movements, and fixations were assessed in patients with PCA and typical Alzheimer disease and in healthy controls (experiment 1). Two reading aids (single- and double-word) were evaluated based on the notion that reducing the spatial and oculomotor demands of text reading might support reading in PCA (experiment 2). Results: Mean reading accuracy in patients with PCA was significantly worse (57%) compared with both patients with typical Alzheimer disease (98%) and healthy controls (99%); spatial aspects of passages were the primary determinants of text reading ability in PCA. Both aids led to considerable gains in reading accuracy (PCA mean reading accuracy: single-word reading aid = 96%; individual patient improvement range: 6%–270%) and self-rated measures of reading. Data suggest a greater efficiency of fixations and eye movements under the single-word reading aid in patients with PCA. Conclusions: These findings demonstrate how neurologic characterization of a neurodegenerative syndrome (PCA) and detailed cognitive analysis of an important everyday skill (reading) can combine to yield aids capable of supporting important everyday functional abilities. Classification of evidence: This study provides Class III evidence that for patients with PCA, 2 software-based reading aids (single-word and double-word) improve reading accuracy. PMID:26138948

  18. Characterization of Early Cortical Neural Network ...

    Science.gov (United States)

    We examined the development of neural network activity using microelectrode array (MEA) recordings made in multi-well MEA plates (mwMEAs) over the first 12 days in vitro (DIV). In primary cortical cultures made from postnatal rats, action potential spiking activity was essentially absent on DIV 2 and developed rapidly between DIV 5 and 12. Spiking activity was primarily sporadic and unorganized at early DIV, and became progressively more organized with time in culture, with bursting parameters, synchrony and network bursting increasing between DIV 5 and 12. We selected 12 features to describe network activity and principal components analysis using these features demonstrated a general segregation of data by age at both the well and plate levels. Using a combination of random forest classifiers and Support Vector Machines, we demonstrated that 4 features (CV of within burst ISI, CV of IBI, network spike rate and burst rate) were sufficient to predict the age (either DIV 5, 7, 9 or 12) of each well recording with >65% accuracy. When restricting the classification problem to a binary decision, we found that classification improved dramatically, e.g. 95% accuracy for discriminating DIV 5 vs DIV 12 wells. Further, we present a novel resampling approach to determine the number of wells that might be needed for conducting comparisons of different treatments using mwMEA plates. Overall, these results demonstrate that network development on mwMEA plates is similar to

  19. Visual impairment in children with congenital Zika syndrome.

    Science.gov (United States)

    Ventura, Liana O; Ventura, Camila V; Lawrence, Linda; van der Linden, Vanessa; van der Linden, Ana; Gois, Adriana L; Cavalcanti, Milena M; Barros, Eveline A; Dias, Natalia C; Berrocal, Audina M; Miller, Marilyn T

    2017-08-01

    To describe the visual impairment associated with ocular and neurological abnormalities in a cohort of children with congenital Zika syndrome (CZS). This cross-sectional study included infants with microcephaly born in Pernambuco, Brazil, from May to December 2015. Immunoglobulin M antibody capture enzyme-linked immunosorbent assay for the Zika virus on the cerebrospinal fluid samples was positive for all infants. Clinical evaluation consisted of comprehensive ophthalmologic examination including visual acuity, visual function assessment, visual developmental milestone, neurologic examination, and neuroimaging. A total of 32 infants (18 males [56%]) were included. Mean age at examination was 5.7 ± 0.9 months (range, 4-7 months). Visual function and visual developmental milestone could not be tested in 1 child (3%). Visual impairment was detected in 32 infants (100%). Retinal and/or optic nerve findings were observed in 14 patients (44%). There was no statistical difference between the patients with ocular findings and those without (P = 0.180). All patients (100%) demonstrated neurological and neuroimaging abnormalities; 3 (9%) presented with late-onset of microcephaly. Children with CZS demonstrated visual impairment regardless of retina and/or optic nerve abnormalities. This finding suggests that cortical/cerebral visual impairment may be the most common cause of blindness identified in children with CZS. Copyright © 2017 American Association for Pediatric Ophthalmology and Strabismus. Published by Elsevier Inc. All rights reserved.

  20. Cortical surface area and cortical thickness in the precuneus of adult humans.

    Science.gov (United States)

    Bruner, E; Román, F J; de la Cuétara, J M; Martin-Loeches, M; Colom, R

    2015-02-12

    The precuneus has received considerable attention in the last decade, because of its cognitive functions, its role as a central node of the brain networks, and its involvement in neurodegenerative processes. Paleoneurological studies suggested that form changes in the deep parietal areas represent a major character associated with the origin of the modern human brain morphology. A recent neuroanatomical survey based on shape analysis suggests that the proportions of the precuneus are also a determinant source of overall brain geometrical differences among adult individuals, influencing the brain spatial organization. Here, we evaluate the variation of cortical thickness and cortical surface area of the precuneus in a sample of adult humans, and their relation with geometry and cognition. Precuneal thickness and surface area are not correlated. There is a marked individual variation. The right precuneus is thinner and larger than the left one, but there are relevant fluctuating asymmetries, with only a modest correlation between the hemispheres. Males have a thicker cortex but differences in cortical area are not significant between sexes. The surface area of the precuneus shows a positive allometry with the brain surface area, although the correlation is modest. The dilation/contraction of the precuneus, described as a major factor of variability within adult humans, is associated with absolute increase/decrease of its surface, but not with variation in thickness. Precuneal thickness, precuneal surface area and precuneal morphology are not correlated with psychological factors such as intelligence, working memory, attention control, and processing speed, stressing further possible roles of this area in supporting default mode functions. Beyond gross morphology, the processes underlying the large phenotypic variation of the precuneus must be further investigated through specific cellular analyses, aimed at considering differences in cellular size, density

  1. An anterior-to-posterior shift in midline cortical activity in schizophrenia during self-reflection.

    Science.gov (United States)

    Holt, Daphne J; Cassidy, Brittany S; Andrews-Hanna, Jessica R; Lee, Su Mei; Coombs, Garth; Goff, Donald C; Gabrieli, John D; Moran, Joseph M

    2011-03-01

    Deficits in social cognition, including impairments in self-awareness, contribute to the overall functional disability associated with schizophrenia. Studies in healthy subjects have shown that social cognitive functions, including self-reflection, rely on the medial prefrontal cortex (mPFC) and posterior cingulate gyrus, and these regions exhibit highly correlated activity during "resting" states. In this study, we tested the hypothesis that patients with schizophrenia show dysfunction of this network during self-reflection and that this abnormal activity is associated with changes in the strength of resting-state correlations between these regions. Activation during self-reflection and control tasks was measured with functional magnetic resonance imaging in 19 patients with schizophrenia and 20 demographically matched control subjects. In addition, the resting-state functional connectivity of midline cortical areas showing abnormal self-reflection-related activation in schizophrenia was measured. Compared with control subjects, the schizophrenia patients demonstrated lower activation of the right ventral mPFC and greater activation of the mid/posterior cingulate gyri bilaterally during self-reflection, relative to a control task. A similar pattern was seen during overall social reflection. In addition, functional connectivity between the portion of the left mid/posterior cingulate gyrus showing abnormally elevated activity during self-reflection in schizophrenia, and the dorsal anterior cingulate gyrus was lower in the schizophrenia patients compared with control subjects. Schizophrenia is associated with an anterior-to-posterior shift in introspection-related activation, as well as changes in functional connectivity, of the midline cortex. These findings provide support for the hypothesis that aberrant midline cortical function contributes to social cognitive impairment in schizophrenia. Copyright © 2011 Society of Biological Psychiatry. Published by Elsevier

  2. Working with impairments

    OpenAIRE

    Maroesjka Versantvoort; Patricia van Echtelt

    2012-01-01

    Original title: Belemmerd aan het werk The Netherlands was long known as a country with high sickness absenteeism rates and a burgeoning group of people who were unfit for work. In response to this, many policy measures have been introduced in recent decades which attempt to limit the benefit volume and foster the reintegration of people with health impairments. What is the position of the Netherlands today in this regard? The main trends in sickness absenteeism, degree of incapacity for work...

  3. Age-Related Sensory Impairments and Risk of Cognitive Impairment

    Science.gov (United States)

    Fischer, Mary E; Cruickshanks, Karen J.; Schubert, Carla R; Pinto, Alex A; Carlsson, Cynthia M; Klein, Barbara EK; Klein, Ronald; Tweed, Ted S.

    2016-01-01

    Background/Objectives To evaluate the associations of sensory impairments with the 10-year risk of cognitive impairment. Previous work has primarily focused on the relationship between a single sensory system and cognition. Design The Epidemiology of Hearing Loss Study (EHLS) is a longitudinal, population-based study of aging in the Beaver Dam, WI community. Baseline examinations were conducted in 1993 and follow-up exams have been conducted every 5 years. Setting General community Participants EHLS members without cognitive impairment at EHLS-2 (1998–2000). There were 1,884 participants (mean age = 66.7 years) with complete EHLS-2 sensory data and follow-up information. Measurements Cognitive impairment was a Mini-Mental State Examination score of impairment was a pure-tone average of hearing thresholds (0.5, 1, 2 and 4 kHz) of > 25 decibel Hearing Level in either ear. Visual impairment was Pelli-Robson contrast sensitivity of impairment was a San Diego Odor Identification Test score of impairment were independently associated with cognitive impairment risk [Hearing: Hazard Ratio (HR) = 1.90, 95% Confidence Interval (C.I.) = 1.11, 3.26; Vision: HR = 2.05, 95% C.I. = 1.24, 3.38; Olfaction: HR = 3.92, 95% C.I. = 2.45, 6.26]. However, 85% with hearing impairment, 81% with visual impairment, and 76% with olfactory impairment did not develop cognitive impairment during follow-up. Conclusion The relationship between sensory impairment and cognitive impairment was not unique to one sensory system suggesting sensorineural health may be a marker of brain aging. The development of a combined sensorineurocognitive measure may be useful in uncovering mechanisms of healthy brain aging. PMID:27611845

  4. Cortical basis of communication: local computation, coordination, attention.

    Science.gov (United States)

    Alexandre, Frederic

    2009-03-01

    Human communication emerges from cortical processing, known to be implemented on a regular repetitive neuronal substratum. The supposed genericity of cortical processing has elicited a series of modeling works in computational neuroscience that underline the information flows driven by the cortical circuitry. In the minimalist framework underlying the current theories for the embodiment of cognition, such a generic cortical processing is exploited for the coordination of poles of representation, as is reported in this paper for the case of visual attention. Interestingly, this case emphasizes how abstract internal referents are built to conform to memory requirements. This paper proposes that these referents are the basis for communication in humans, which is firstly a coordination and an attentional procedure with regard to their congeners.

  5. Outline of a novel architecture for cortical computation.

    Science.gov (United States)

    Majumdar, Kaushik

    2008-03-01

    In this paper a novel architecture for cortical computation has been proposed. This architecture is composed of computing paths consisting of neurons and synapses. These paths have been decomposed into lateral, longitudinal and vertical components. Cortical computation has then been decomposed into lateral computation (LaC), longitudinal computation (LoC) and vertical computation (VeC). It has been shown that various loop structures in the cortical circuit play important roles in cortical computation as well as in memory storage and retrieval, keeping in conformity with the molecular basis of short and long term memory. A new learning scheme for the brain has also been proposed and how it is implemented within the proposed architecture has been explained. A few mathematical results about the architecture have been proposed, some of which are without proof.

  6. Disorganized Cortical Patches Suggest Prenatal Origin of Autism

    Science.gov (United States)

    ... 2014 Disorganized cortical patches suggest prenatal origin of autism NIH-funded study shows disrupted cell layering process ... study suggests that brain irregularities in children with autism can be traced back to prenatal development. “While ...

  7. Cortical desmoid of the humerus: radiographic and MRI correlation

    Energy Technology Data Exchange (ETDEWEB)

    Kay, Matthew; Counsel, Peter [Princess Margaret Hospital for Children, Department of Diagnostic Imaging, Perth (Australia); Perth Radiological Clinic, Perth (Australia); Wood, David [Princess Margaret Hospital for Children, Department of Orthopedic Surgery, Perth (Australia); Breidahl, William [Perth Radiological Clinic, Perth (Australia)

    2017-07-15

    Cortical desmoids are self-limiting fibro-osseous lesions commonly occurring at the medial supracondylar femur in active adolescents, at either the origin of the medial head of the gastrocnemius or at the insertion of the adductor magnus aponeurosis. Less commonly, in a similar demographic, cortical desmoids may occur in the proximal humerus medially at the insertion of the pectoralis major muscle or laterally at the insertion of the deltoid. The radiographic appearance of the proximal humerus cortical desmoid has been described previously, but not the MRI appearance. We present the radiographic and MRI appearances of a proximal humerus cortical desmoid in a young adolescent who presented for investigation of right shoulder pain. (orig.)

  8. Cortical laminar necrosis in brain infarcts: chronological changes on MRI

    Energy Technology Data Exchange (ETDEWEB)

    Komiyama, M. [Department of Neurosurgery, Osaka City General Hospital, 2-13-22, Miyakojima-Hondouri, Miyakojima, Osaka 534 (Japan); Nishikawa, M. [Department of Neurosurgery, Osaka City General Hospital, 2-13-22, Miyakojima-Hondouri, Miyakojima, Osaka 534 (Japan); Yasui, T. [Department of Neurosurgery, Osaka City General Hospital, 2-13-22, Miyakojima-Hondouri, Miyakojima, Osaka 534 (Japan)

    1997-07-10

    We studied the MRI characteristics of cortical laminar necrosis in ischaemic stroke. We reviewed 13 patients with cortical laminar high signal on T1-weighted images to analyse the chronological changes in signal intensity and contrast enhancement. High-density cortical lesions began to appear on T1-weighted images about 2 weeks after the ictus. At 1-2 months they were prominent. They began to fade from 3 months but could be seen up to 11 months. These cortical lesions showed isointensity or high intensity on T2-weighted images and did not show low intensity at any stage. Contrast enhancement of the laminar lesions was prominent at 1-2 months and became less apparent from 3 months, but could be seen up to 8 months. (orig.). With 6 figs., 1 tab.

  9. MicroRNA-338 modulates cortical neuronal placement and polarity.

    Science.gov (United States)

    Kos, Aron; de Mooij-Malsen, Annetrude J; van Bokhoven, Hans; Kaplan, Barry B; Martens, Gerard J; Kolk, Sharon M; Aschrafi, Armaz

    2017-07-03

    The precise spatial and temporal regulation of gene expression orchestrates the many intricate processes during brain development. In the present study we examined the role of the brain-enriched microRNA-338 (miR-338) during mouse cortical development. Reduction of miR-338 levels in the developing mouse cortex, using a sequence-specific miR-sponge, resulted in a loss of neuronal polarity in the cortical plate and significantly reduced the number of neurons within this cortical layer. Conversely, miR-338 overexpression in developing mouse cortex increased the number of neurons, which exhibited a multipolar morphology. All together, our results raise the possibility for a direct role for this non-coding RNA, which was recently associated with schizophrenia, in the regulation of cortical neuronal polarity and layer placement.

  10. Electrocorticographic discharge patterns in glioneuronal tumors and focal cortical dysplasia

    NARCIS (Netherlands)

    Ferrier, Cyrille H.; Aronica, Eleanora; Leijten, Frans S. S.; Spliet, Wim G. M.; van Huffelen, Alexander C.; van Rijen, Peter C.; Binnie, Colin D.

    2006-01-01

    PURPOSE: To determine whether highly epileptiform electrocorticographical discharge patterns occur in patients with glioneuronal tumors (GNTs) and focal cortical dysplasia (FCD) and whether specific histopathological features are related to such patterns. METHODS: The series consists of operated

  11. Cortical desmoid of the humerus: radiographic and MRI correlation

    International Nuclear Information System (INIS)

    Kay, Matthew; Counsel, Peter; Wood, David; Breidahl, William

    2017-01-01

    Cortical desmoids are self-limiting fibro-osseous lesions commonly occurring at the medial supracondylar femur in active adolescents, at either the origin of the medial head of the gastrocnemius or at the insertion of the adductor magnus aponeurosis. Less commonly, in a similar demographic, cortical desmoids may occur in the proximal humerus medially at the insertion of the pectoralis major muscle or laterally at the insertion of the deltoid. The radiographic appearance of the proximal humerus cortical desmoid has been described previously, but not the MRI appearance. We present the radiographic and MRI appearances of a proximal humerus cortical desmoid in a young adolescent who presented for investigation of right shoulder pain. (orig.)

  12. Disrupted Thalamus White Matter Anatomy and Posterior Default Mode Network Effective Connectivity in Amnestic Mild Cognitive Impairment

    Directory of Open Access Journals (Sweden)

    Thomas Alderson

    2017-11-01

    Full Text Available Alzheimer’s disease (AD and its prodromal state amnestic mild cognitive impairment (aMCI are characterized by widespread abnormalities in inter-areal white matter fiber pathways and parallel disruption of default mode network (DMN resting state functional and effective connectivity. In healthy subjects, DMN and task positive network interaction are modulated by the thalamus suggesting that abnormal task-based DMN deactivation in aMCI may be a consequence of impaired thalamo-cortical white matter circuitry. Thus, this article uses a multimodal approach to assess white matter integrity between thalamus and DMN components and associated effective connectivity in healthy controls (HCs relative to aMCI patients. Twenty-six HC and 20 older adults with aMCI underwent structural, functional and diffusion MRI scanning using the high angular resolution diffusion-weighted acquisition protocol. The DMN of each subject was identified using independent component analysis (ICA and resting state effective connectivity was calculated between thalamus and DMN nodes. White matter integrity changes between thalamus and DMN were investigated with constrained spherical deconvolution (CSD tractography. Significant structural deficits in thalamic white matter projection fibers to posterior DMN components posterior cingulate cortex (PCC and lateral inferior parietal lobe (IPL were identified together with significantly reduced effective connectivity from left thalamus to left IPL. Crucially, impaired thalamo-cortical white matter circuitry correlated with memory performance. Disrupted thalamo-cortical structure was accompanied by significant reductions in IPL and PCC cortico-cortical effective connectivity. No structural deficits were found between DMN nodes. Abnormal posterior DMN activity may be driven by changes in thalamic white matter connectivity; a view supported by the close ana