WorldWideScience

Sample records for impact resistant lamellar

  1. A case of acute postoperative keratitis after deep anterior lamellar keratoplasty by multidrug resistant Klebsiella

    Directory of Open Access Journals (Sweden)

    Leena Bajracharya

    2015-01-01

    Full Text Available A healthy lady of 42 years underwent deep anterior lamellar keratoplasty for granular dystrophy. The very next day, it was complicated by development of infectious keratitis. The organism was identified as multidrug resistant Klebsiella pneumoniae. Donor corneal button may be implicated in the transmission of infection in an otherwise uneventful surgery and follow-up. Nosocomial infections are usually severe, rapidly progressive and difficult to treat. Finally, the lady had to undergo therapeutic penetrating keratoplasty for complete resolution of infection.

  2. On the mechanism of crack propagation resistance of fully lamellar TiAl alloy

    International Nuclear Information System (INIS)

    Cao, R.; Yao, H.J.; Chen, J.H.; Zhang, J.

    2006-01-01

    The study was done using notched two-colony thick tensile specimens of a directionally solidified cast fully lamellar TiAl alloy. In-situ observations of fracture processes in scanning electron microscope (SEM) were combined with section-to-section related observations of fracture surfaces to investigate the crack growth process. Finite element method (FEM) calculations are carried out to evaluate the stresses for propagating cracks. The results reveal that: (1) the reason why enhancement of applied load is required to propagate the main crack, was attributed to that the main crack observed at the surface did not extend all the way through the specimen's thickness thus the stress field was still controlled by the notch, in which a definite stress required for extending a crack tip should be kept by increasing the applied load. (2) Crack propagation resistance is enhanced at colony boundaries, only when a change occurs from an inter-lamellar propagation to a trans-lamellar propagation (3) Ligament bridging toughening phenomena can be integrated into aforementioned mechanism. As a whole the processes of new crack nucleation with bridging ligament formation decreases the crack propagation resistance rather than increasing it. (4) In case the majority of microcracks are surface cracks, the effect of microcrack shielding is not obvious

  3. Effect of microstructure evolution of the lamellar alpha on impact toughness in a two-phase titanium alloy

    International Nuclear Information System (INIS)

    Xu, Jianwei; Zeng, Weidong; Zhao, Yawei; Jia, Zhiqiang

    2016-01-01

    The effects of the evolution of the lamellar alpha microstructure on the impact toughness of Ti-17 alloy are investigated. For this purpose, the beta-processed material is isothermally forged at 820 °C and subsequently heat treated using the combination of solid solution and aging treatment. Then the impact tests are carried out at room temperature. The corresponding microstructure and fracture surface are examined by scanning electron microscope (SEM). Microstructural observations reveal that globularization behavior is the main feature of microstructure evolution and the globularization fraction increases with the increasing of prestrain. However, globularization behavior has a negative influence on the impact toughness of Ti-17 alloy. In this work, the impact toughness have been obtained in the range of 29–55 J/cm 2 via varying globularization fraction of alpha phase. A linear relationship between the impact toughness and globularization fraction can be observed though the quantitative analysis. The linear equation is expressed as A=−0.3232f+59.885. The two major reasons can be used to explain the effect of globularization fraction on the impact property of Ti-17 alloy. One explanation is that the lamellar structure can provide excellent interfacial strengthening effect, which can improve the toughness of material, and makes it not easy to fracture. On the other hand, the fracture surface of specimen with the lamellar structure has larger amplitude of ups and downs. A long crack path length will be generated during fracture process. By contrast, the fracture of specimen with the equiaxed structure presents more flat surface and shorter crack path.

  4. Study of crack propagation mechanisms during Charpy impact toughness tests on both equiaxed and lamellar microstructures of Ti–6Al–4V titanium alloy

    Energy Technology Data Exchange (ETDEWEB)

    Buirette, Christophe, E-mail: christophe.buirette@ensiacet.fr [Institut Carnot CIRIMAT, ENSIACET, 4 allée Emile Monso, 31030 Toulouse (France); Huez, Julitte, E-mail: julitte.huez@ensiacet.fr [Institut Carnot CIRIMAT, ENSIACET, 4 allée Emile Monso, 31030 Toulouse (France); Gey, Nathalie, E-mail: Nathalie.gey@univ-lorraine.fr [Laboratoire d’Etude des Microstructures et de Mécanique des Matériaux (LEM3), UMR CNRS 7239, Université de Lorraine, Île du Saulcy, 57045 METZ Cedex 1 (France); DAMAS, Laboratory of Excellence on Design of Alloy Metals for Low-Mass Structures, Université de Lorraine (France); Vassel, Alain, E-mail: alain.vassel@titane.asso.fr [Association Française du Titane, 16 quai Ernest Renaud, BP 70515, 44105 Nantes Cedex 4 (France); Andrieu, Eric, E-mail: eric.andrieu@ensiacet.fr [Institut Carnot CIRIMAT, ENSIACET, 4 allée Emile Monso, 31030 Toulouse (France)

    2014-11-17

    The impact toughness of two highly textured rolled plates of Ti–6Al–4V alloy with an α equiaxed and an α lamellar microstructures has been investigated. The results show a strong anisotropy of the fracture energy for both materials and underline that a coincidence of the prismatic planes with the shear bands at the notch tip is favorable for higher fracture energies. Moreover, it is pointed out, as it was already done by previous studies, that the α lamellar microstructure presents higher fracture energy than the α equiaxed one. Thanks to electron back scattering diffraction, and tensile tests, local microstructure heterogeneities, called macrozones, have been observed and characterized. Their size depends on microstructure element and is larger for α lamellar microstructure than for the α equiaxed. High strain is localized on the macrozones favorably oriented for prismatic slip with respect to the direction of impact and leads to a particular dimple free zone on the fracture surface. The contribution of these macrozones in the fracture behavior, and more precisely on the crack propagation rate was evaluated; thus the effects of the macroscopic texture and of the microstructure element on the impact toughness are discussed separately.

  5. ABOUT INFLUENCE OF DIFFERENT SCHEMES IMPACT RADIATION ENVIRONMENTS AND LOADS ON REINFORCED LAMELLAR STRUCTURAL MEMBERS

    Directory of Open Access Journals (Sweden)

    Rafail B. Garibov

    2017-12-01

    Full Text Available The article discusses the model of deformation of fiber-reinforced concrete rectangular plate under the influence of radiation environments. In the calculation of the plate was considered different schemes impact of the applied external loads and radiation environments.

  6. Assessment of lamellar tearing

    International Nuclear Information System (INIS)

    McEnerney, J.W.

    1978-03-01

    Information on lamellar tearing is summarized and related to proposed ASME Code requirements. Lamellar tearing is characterized as a complex phenomenon related to poor short transverse ductility and through-thickness strain. The material, welding, and design variables that affect lamellar tearing are shown to be complex and interrelated. The commonly reported tests for assessing material susceptibility are described, with the controversy over their validity being carefully detailed. Although the use of a nondestructive test such as ultrasonic examination is most desirable, a widely applicable test method does not appear to be available. Of the destructive tests, the short transverse tensile reduction-of-area currently offers the most applicable means of assessing material susceptibility. However, because of the importance of matrix toughness, the short transverse Charpy V-notch test should be considered for use as an additional test if acceptance limits are developed. The ultrasonic detection of lamellar tears is susceptible to interpretation errors, which can make it overly conservative and lead to unnecessary repairs. The repair of tears is described as costly, difficult, and sometimes ineffective. Current design requirements appear to preclude any failures during static and fatigue service loads. However, without improvement of short transverse ductility, certain dynamic service loads could cause lamellar tearing failures. Two alternate design paths are recommended to prevent tearing during fabrication or service loading. The current and proposed ASME requirements dealing with lamellar tearing are reviewed and recommendations are made

  7. Updating the lamellar hypothesis of hippocampal organization

    Directory of Open Access Journals (Sweden)

    Robert S Sloviter

    2012-12-01

    Full Text Available In 1971, Andersen and colleagues proposed that excitatory activity in the entorhinal cortex propagates topographically to the dentate gyrus, and on through a trisynaptic circuit lying within transverse hippocampal slices or lamellae [Andersen, Bliss, and Skrede. 1971. Lamellar organization of hippocampal pathways. Exp Brain Res 13, 222-238]. In this way, a relatively simple structure might mediate complex functions in a manner analogous to the way independent piano keys can produce a nearly infinite variety of unique outputs. The lamellar hypothesis derives primary support from the lamellar distribution of dentate granule cell axons (the mossy fibers, which innervate dentate hilar neurons and area CA3 pyramidal cells and interneurons within the confines of a thin transverse hippocampal segment. Following the initial formulation of the lamellar hypothesis, anatomical studies revealed that unlike granule cells, hilar mossy cells, CA3 pyramidal cells, and Layer II entorhinal cells all form axonal projections that are more divergent along the longitudinal axis than the clearly lamellar mossy fiber pathway. The existence of pathways with translamellar distribution patterns has been interpreted, incorrectly in our view, as justifying outright rejection of the lamellar hypothesis [Amaral and Witter. 1989. The three-dimensional organization of the hippocampal formation: a review of anatomical data. Neuroscience 31, 571-591]. We suggest that the functional implications of longitudinally-projecting axons depend not on whether they exist, but on what they do. The observation that focal granule cell layer discharges normally inhibit, rather than excite, distant granule cells suggests that longitudinal axons in the dentate gyrus may mediate "lateral" inhibition and define lamellar function, rather than undermine it. In this review, we attempt a reconsideration of the evidence that most directly impacts the physiological concept of hippocampal lamellar

  8. ASSESSMENT OF RANGES OF POSSIBLE CHANGE OF TEMPORARY RESISTANCE OF CAST IRON WITH LAMELLAR AND FLAKED GRAPHITE ON THEIR HARDNESS

    Directory of Open Access Journals (Sweden)

    S. G. Sandomirskii

    2017-01-01

    Full Text Available The analysis of ranges of possible change of temporary resistance of sB of castings from ductile and gray cast iron is carried out. The analytical description of ranges of change of sВ depending on casting BH hardness is developed. It is shown that the range of change of sВ of pig-iron castings, wider in comparison with steel, with the measured hardness of BH is caused variations of forms and the amount of graphite inclusions at the considered classes of cast iron and influence of thickness of a wall of casting from gray cast iron on dependence of sВ (HB. The result is intended for determination of the guaranteed casting size sВ without her destruction, when there is no information on sВ of check test pieces.

  9. New techniques in lamellar keratoplasty.

    Science.gov (United States)

    Alio, Jorge L; Shah, Sunil; Barraquer, Carmen; Bilgihan, Kamil; Anwar, Mohammed; Melles, Gerrit R J

    2002-08-01

    In the past years, several lamellar keratoplasty surgical techniques have been developed, modified or improved in the past years, including microkeratome assisted anterior and posterior lamellar keratoplasty, anterior lamellar keratoplasty using air-dissection or visco-dissection, sutureless posterior lamellar keratoplasty, LASIK for postkeratoplasty astigmatism, and excimer laser assisted keratophakia for keratoconus or to manage complications after LASIK. These procedures may continue to gain interest as alternative procedures for a penetrating keratoplasty in the treatment of various corneal disorders.

  10. Impact resistant battery enclosure systems

    Science.gov (United States)

    Tsutsui, Waterloo; Feng, Yuezhong; Chen, Weinong Wayne; Siegmund, Thomas Heinrich

    2017-10-31

    Battery enclosure arrangements for a vehicular battery system. The arrangements, capable of impact resistance include plurality of battery cells and a plurality of kinetic energy absorbing elements. The arrangements further include a frame configured to encase the plurality of the kinetic energy absorbing elements and the battery cells. In some arrangements the frame and/or the kinetic energy absorbing elements can be made of topologically interlocked materials.

  11. LAMELLAR ICHTHYOSIS (COLLODION BABY

    Directory of Open Access Journals (Sweden)

    Paramarta IGE

    2012-11-01

    Full Text Available The ichthyosis are a heterogeneous group of hereditary and acquired disorder of keratinization which affected the epidermis characterized by presence of visible scales on the skin surface in the absence of inflammation. It can occur as a disease limited to the skin or in association with abnormalities of other organ systems. Lamelar ihthyosis (LI is one of two mayor autosomal recessive ichthyosis with an incidence of approximately one in 300,000. The diagnosis is based on clinical and pathologic finding. Infection is the most common complication, while prognosis of LI is depends on severity and complication of the disease. A case of lamellar ichthyosis in 0 day Balinese female baby was reported. The skin of the body was thick, plate-like appearance, scaling on the entire body, some of the thick skin was ruptured on chest and extremities. There were eclabium on the mouth and ectropion on the eyes. Histopathology examination showed hyperkeratosis without perivascular infiltration lymphocyte. The baby was given breast feeding, antibiotic, hydrocortisone cream and olium olivarum. The prognosis of the baby is good.

  12. Lamellar-lamellar phase separation of phospholipid bilayers induced by salting-in/-out effects

    Energy Technology Data Exchange (ETDEWEB)

    Hishida, Mafumi [Institute for Integrated Cell-Material Sciences, Kyoto University, Kyoto 606-8501 (Japan); Seto, Hideki, E-mail: hideki.seto@kek.jp [KENS and CMRC, Institute of Materials Structure Science, High Energy Accelerator Research Organization, Tsukuba 305-0801 (Japan)

    2011-01-01

    The multilamellar structure of phospholipid bilayers is stabilized by the interactions between bilayers. Although the lamellar repeat distance is uniquely determined at the balance point of interactions between bilayers, a lamellar-lamellar phase separation, where the two phases with different lamellar repeat distance coexist, has been reported in a case of adding a salt to the aqueous solution of lipids. In order to understand the physical mechanism of the lamellar-lamellar phase separation, the effects of adding monovalent salt on the lamellar structure are studied by visual observation and by small-angle X-ray scattering. Further, a theoretical model based on the mean field theory is introduced and it is concluded that the salting-in and -out effects of lipid bilayers trigger the lamellar-lamellar phase separation.

  13. Structural perfection of directionally solidified lamellar eutectics

    International Nuclear Information System (INIS)

    Attallah, T.; Gurzleski, J.E.

    1976-01-01

    The mechanisms for the formation of faults in lamellar eutectics are reviewed, and it is postulated that faults play several roles in eutectic freezing with their exact importance depending on the specific alloy system and the growth conditions. Faults are not the cause of lamellar spiralling although they are necessary for it to occur. Lamellar spiralling is found to occur only when the crystallographic orientations of the two eutectic phases lead to a growth component normal to the lamellar plane, and although some systems such as Pb-Sn normally spiral it is possible for them to achieve orientation relationships where no spiralling occurs

  14. Micro alloyed steel weldability and sensibility testing on the lamellar cracks appearance

    Directory of Open Access Journals (Sweden)

    S. Stojadinović

    2011-07-01

    Full Text Available In this work are given the testing results of mechanical properties welded joints and microstructure of micro alloyed steel as well as its sensitivity to lamellar cracks appearance. The obtained results show that steel has good resistance to lamellar cracks appearance and with an appropriate wire choice for welding, a good combination of mechanical properties could be obtained at room (ambience temperatures as well as at low temperatures.

  15. Mechanical behavior and related microstructural aspects of a nano-lamellar TiAl alloy at elevated temperatures

    International Nuclear Information System (INIS)

    Klein, T.; Usategui, L.; Rashkova, B.; Nó, M.L.; San Juan, J.; Clemens, H.; Mayer, S.

    2017-01-01

    Advanced intermetallic γ-TiAl based alloys, which solidify via the disordered β phase, such as the TNM"+ alloy, are considered as most promising candidates for structural applications at high temperatures in aero and automotive industries, where they are applied increasingly. Particularly creep resistant microstructures required for high-temperature application, i.e. fine fully lamellar microstructures, can be attained via two-step heat-treatments. Thereby, an increasing creep resistance is observed with decreasing lamellar interface spacing. Once lamellar structures reach nano-scaled dimensions, deformation mechanisms are altered dramatically. Hence, this study deals with a detailed characterization of the elevated temperature deformation phenomena prevailing in nano-lamellar TiAl alloys by the use of tensile creep experiments and mechanical spectroscopy. Upon creep exposure, microstructural changes occur in the lamellar structure, which are analyzed by the comparative utilization of X-ray diffraction, scanning and transmission electron microscopy as well as atom probe tomography. Creep activation parameters determined by mechanical characterization suggest the dominance of dislocation climb by a jog-pair formation process. The dislocations involved in deformation are, in nano-lamellar TiAl alloys, situated at the lamellar interfaces. During creep exposure the precipitation of β_o phase and ζ-silicide particles is observed emanating from the α_2 phase, which is due to the accumulation of Mo and Si at lamellar interfaces.

  16. Lamellar Micelles - Mediated Synthesis of Nanoscale Thick Sheets of Titania

    Czech Academy of Sciences Publication Activity Database

    Klusoň, P.; Lusková, H.; Šolcová, Olga; Matějová, Lenka; Cajthaml, Tomáš

    2007-01-01

    Roč. 61, 14-15 (2007), s. 2931-2934 ISSN 0167-577X R&D Projects: GA ČR(CZ) GA104/04/0963; GA ČR(CZ) GD203/03/H140 Institutional research plan: CEZ:AV0Z40720504; CEZ:AV0Z50200510 Keywords : nanostructures * lamellar titania * templating Subject RIV: CA - Inorganic Chemistry Impact factor: 1.625, year: 2007

  17. Spontaneous subconjunctival abscess in congenital lamellar ichthyosis

    Directory of Open Access Journals (Sweden)

    Shivanand C Bubanale

    2018-01-01

    Full Text Available Congenital lamellar ichthyosis is an autosomal recessive, heterogeneous disorder presenting at birth with generalized skin involvement. The most common ophthalmic manifestation noted is bilateral ectropion of the lower eyelids. A 1-month-old female neonate, the second born of a nonconsanguineous marriage, presented with 4 days' history of redness, discharge, and swelling in the right eye. There was severe right upper eyelid ectropion, conjunctival injection, chemosis, a subconjunctival mass on the temporal bulbar conjunctiva spontaneously draining pus and corneal haze. The anterior chamber, iris, lens and fundus appeared normal. Congenital lamellar ichthyosis was suspected because of scaling and excessive dryness of the entire body. The occurrence of a spontaneous subconjunctival abscess is not known in lamellar ichthyosis. We thus report the management of a rare case of unilateral upper eyelid ectropion, subconjunctival abscess with orbital cellulitis in congenital lamellar ichthyosis.

  18. Congenital lamellar ichthyosis, a case report.

    OpenAIRE

    Joaquín Saavedra D.; María José Sierralta S.; Cristian Saavedra D; Vanesa Rivera C; Francisco Cerda C.

    2014-01-01

    ABSTRACT INTRODUCTION: Lamellar Ichthyosis is a rare skin diseases belonging to the Group of the so-called genodermatoses. It is a form of congenital ichthyosis evident at birth. CASE REPORT: Male neonate, born at 36 weeks of gestation via cesarian section, appropriate for gestational age and Apgar Score 8. Nonconsanguineous parents. Affected brother with Ichthyosis lamellar. Is hospitalized in the Neonatal Intermediary Care Unit of the Hospital of San Fernando due to ...

  19. Resistance of Transparent Plastics to Impact

    Science.gov (United States)

    Axilrod, Benjamin M; Kline, Gordon M

    1939-01-01

    The problem of developing a windshield for aircraft which will withstand the effect of bird impacts during flight is a difficult one, as an estimate of the striking energy will indicate. If the average speed of the airplane is considered to be about 200 miles per hour and that of the bird about 70 miles per hour, the speed of the bird relative to the airplane may be as great as 400 feet per second. If a 4-pound bird is involved, a maximum impact energy of approximately 10,000 foot-pounds must be dissipated. To obtain this energy in a drop test in the Washington Monument, it would be necessary to drop a 20-pound weight down the 500-foot shaft. For both theoretical and practical reasons, it is necessary to keep the mass and speed more nearly like those to be encountered. However, to get an impact of about 10,000 foot-pounds with a 4-pound falling body, it would be necessary to drop it from a height of approximately one-half mile, neglecting air resistance. These facts will indicate some of the experimental obstacles in the way of simulating bird impacts against aircraft windshields.

  20. Strengthening behavior of beta phase in lamellar microstructure of TiAl alloys

    Science.gov (United States)

    Zhu, Hanliang; Seo, D. Y.; Maruyama, K.

    2010-01-01

    β phase can be introduced to TiAl alloys by the additions of β stabilizing elements such as Cr, Nb, W, and Mo. The β phase has a body-centered cubic lattice structure and is softer than the α2 and γ phases in TiAl alloys at elevated temperatures, and hence is thought to have a detrimental effect on creep strength. However, fine β precipitates can be formed at lamellar interfaces by proper heat treatment conditions and the β interfacial precipitate improves the creep resistance of fully lamellar TiAl alloys, since the phase interface of γ/β retards the motion of dislocations during creep. This paper reviews recent research on high-temperature strengthening behavior of the β phase in fully lamellar TiAl alloys.

  1. Influence of SMA reinforcement on the impact resistance of GFRP ...

    Indian Academy of Sciences (India)

    composite laminates under different temperatures ... GFRP laminates; shape memory alloy; low velocity impact; impact resistance; SEM. ... 25 J) with the temperature range of 50–120 ... C. The fibre used as reinforcement was S-type glass fibre.

  2. Ru complexes of Hoveyda–Grubbs type immobilized on lamellar zeolites: activity in olefin metathesis reactions

    Czech Academy of Sciences Publication Activity Database

    Balcar, Hynek; Žilková, Naděžda; Kubů, Martin; Mazur, Michal; Bastl, Zdeněk; Čejka, Jiří

    2015-01-01

    Roč. 11, NOV 2015 (2015), s. 2087-2096 ISSN 1860-5397 Institutional support: RVO:61388955 Keywords : Hoveyda-Grubbs type catalyst * hybrid catalysts * lamellar zeolites Subject RIV: CF - Physical ; Theoretical Chemistry Impact factor: 2.697, year: 2015

  3. Laser thermokeratoplasty after lamellar corneal cutting.

    Science.gov (United States)

    Ismail, M M; Pérez-Santonja, J J; Alió, J L

    1999-02-01

    To evaluate the effect of laser thermokeratoplasty (LTK) in eyes that previously had a lamellar corneal cut. University of Al-Azhar, Cairo, Egypt, and Instituto Oftalmológico de Alicante, Spain. In 15 eyes (10 patients), noncontact LTK was applied 6 to 8 weeks after a lamellar corneal cut had been made. Central pachymetry, keratometry, and videokeratography were performed and uncorrected visual acuity, best spectacle-corrected visual acuity (BSCVA), and manifest and cycloplegic refractions measured before and 1, 6, 12, and 18 months after LTK. Mean follow-up was 19.13 months. Mean refraction was +5.93 diopters (D) +/- 1.9 (SD) before LTK and -0.43 +/- 1.5 D at 1 month, +1.63 +/- 1.6 D at 6 months, 1.91 +/- 1.41 at 12 months, and +2.01 +/- 1.5 D at the end of the study. Total regression did not occur in any case. Mean BSCVA before LTK was 0.66 +/- 0.2, and spontaneous visual acuity at the end of the study was 0.58 +/- 0.18. No patient lost any lines of preoperative BSCVA. There was no significant difference between the results at 12 months and at the end of the study. Corneal lamellar cutting appeared to improve the magnitude of the refractive effect of noncontact LTK and to decrease the amount of regression.

  4. Resistance to fluoroquinolones and second-line injectable drugs: impact on multidrug-resistant TB outcomes

    NARCIS (Netherlands)

    Falzon, Dennis; Gandhi, Neel; Migliori, Giovanni B.; Sotgiu, Giovanni; Cox, Helen S.; Holtz, Timothy H.; Hollm-Delgado, Maria-Graciela; Keshavjee, Salmaan; Deriemer, Kathryn; Centis, Rosella; D'Ambrosio, Lia; Lange, Christoph G.; Bauer, Melissa; Menzies, Dick; Ahuja, S. D.; Ashkin, D.; Avendaño, M.; Banerjee, R.; Bauer, M.; Becerra, M. C.; Benedetti, A.; Burgos, M.; Centis, R.; Chan, E. D.; Chiang, C. Y.; Cobelens, F.; Cox, H.; D'Ambrosio, L.; de Lange, W. C. M.; DeRiemer, K.; Enarson, D.; Falzon, D.; Flanagan, K. L.; Flood, J.; Gandhi, N.; Garcia-Garcia, M. L.; Granich, R. M.; Hollm-Delgado, M. G.; Holtz, T. H.; Hopewell, P.; Iseman, M. D.; Jarlsberg, L. G.; Keshavjee, S.; Kim, H. R.; Koh, W. J.; Lancaster, J. L.; Lange, C.; Leimane, V.; Leung, C. C.; Li, J.

    2013-01-01

    A meta-analysis for response to treatment was undertaken using individual data of multidrug-resistant tuberculosis (MDR-TB) (resistance to isoniazid and rifampicin) patients from 26 centres. The analysis assessed the impact of additional resistance to fluoroquinolones and/or second-line injectable

  5. Wear and impact resistance of HVOF sprayedceramic matrix composites coating

    Science.gov (United States)

    Prawara, B.; Martides, E.; Priyono, B.; Ardy, H.; Rikardo, N.

    2016-02-01

    Ceramic coating has the mechanical properties of high hardness and it is well known for application on wear resistance, but on the other hand the resistance to impact load is low. Therefore its use is limited to applications that have no impact loading. The aim of this research was to obtain ceramic-metallic composite coating which has improved impact resistance compared to conventional ceramic coating. The high impact resistance of ceramic-metallic composite coating is obtained from dispersed metallic alloy phase in ceramic matrix. Ceramic Matrix Composites (CMC) powder with chrome carbide (Cr3C2) base and ceramic-metal NiAl-Al2O3 with various particle sizes as reinforced particle was deposited on mild steel substrate with High Velocity Oxygen Fuel (HVOF) thermal spray coating. Repeated impact test showed that reinforced metallic phase size influenced impact resistance of CMC coating. The ability of CMC coating to absorb impact energy has improved eight times and ten times compared with original Cr3C2 and hard chrome plating respectively. On the other hand the high temperature corrosion resistance of CMC coating showed up to 31 cycles of heating at 800°C and water quenching cooling.

  6. Mechanical properties of crossed-lamellar structures in biological shells: A review.

    Science.gov (United States)

    Li, X W; Ji, H M; Yang, W; Zhang, G P; Chen, D L

    2017-10-01

    The self-fabrication of materials in nature offers an alternate and powerful solution towards the grand challenge of designing advanced structural materials, where strength and toughness are always mutually exclusive. Crossed-lamellar structures are the most common microstructures in mollusks that are composed of aragonites and a small amount of organic materials. Such a distinctive composite structure has a fracture toughness being much higher than that of pure carbonate mineral. These structures exhibiting complex hierarchical microarchitectures that span several sub-level lamellae from microscale down to nanoscale, can be grouped into two types, i.e., platelet-like and fiber-like crossed-lamellar structures based on the shapes of basic building blocks. It has been demonstrated that these structures have a great potential to strengthen themselves during deformation. The observed underlying toughening mechanisms include microcracking, channel cracking, interlocking, uncracked-ligament bridging, aragonite fiber bridging, crack deflection and zig-zag, etc., which play vital roles in enhancing the fracture resistance of shells with the crossed-lamellar structures. The exploration and utilization of these important toughening mechanisms have attracted keen interests of materials scientists since they pave the way for the development of bio-inspired advanced composite materials for load-bearing structural applications. This article is aimed to review the characteristics of hierarchical structures and the mechanical properties of two kinds of crossed-lamellar structures, and further summarize the latest advances and biomimetic applications based on the unique crossed-lamellar structures. Copyright © 2017 Elsevier Ltd. All rights reserved.

  7. HCP to FCT + precipitate transformations in lamellar gamma-titanium aluminide alloys

    Science.gov (United States)

    Karadge, Mallikarjun Baburao

    Fully lamellar gamma-TiAl [alpha2(HCP) + gamma(FCT)] based alloys are potential structural materials for aerospace engine applications. Lamellar structure stabilization and additional strengthening mechanisms are major issues in the ongoing development of titanium aluminides due to the microstructural instability resulting from decomposition of the strengthening alpha 2 phase. This work addresses characterization of multi-component TiAl systems to identify the mechanism of lamellar structure refinement and assess the effects of light element additions (C and Si) on creep deformation behavior. Transmission electron microscopy studies directly confirmed for the first time that, fine lamellar structure is formed by the nucleation and growth of a large number of basal stacking faults on the 1/6 dislocations cross slipping repeatedly into and out of basal planes. This lamellar structure can be tailored by modifying jog heights through chemistry and thermal processing. alpha 2 → gamma transformation during heating (investigated by differential scanning calorimetry and X-ray diffraction) is a two step process involving the formation of a novel disordered FCC gamma' TiAl [with a(gamma') = c(gamma)] as an intermediate phase followed by ordering. Addition of carbon and silicon induced Ti2AlC H-type carbide precipitation inside the alpha2 lath and Ti 5(Al,Si)3 zeta-type silicide precipitation at the alpha 2/gamma interface. The H-carbides preserve alpha2/gamma type interfaces, while zeta-silicide precipitates restrict ledge growth and interfacial sliding enabling strong resistance to creep deformation.

  8. A Case Report of Ichthyosis Lamellar Syndrome

    Directory of Open Access Journals (Sweden)

    Gh. Eshghi

    2014-04-01

    Full Text Available Introduction: Ichthyosis lamellar syndrome is a rare genodermatosis and in most families is inherited as an autosomal recessive trait because of transglutaminase-1 deficiency. Case Report: Our patient was a 6 year old girl and she was the result of consanguinity. She had large plate-like scales. The scales had mosaic-like pattern and erythroderma was absent. Tautness of her facial skin was associated with ectropion and eclabion and hypoplasia of auricular cartilages. She had scarring alopecia because of taut skin (specially at the periphery of scalp. She also had palmoplantar keratoderma and secondary nail dystrophy and thanked nails. Her parents also gave us the history of heat intolerance and it is because of interaepi-dermal constriction of sweat ducts. Our patient had the history of recurrent ear infections and it is because of accumulation of scales in the external ear. Conclusion: Our patient underwent a biopsy and based on our clinical findings her diagnosis was lamellar ichthyosis. (Sci J Hamadan Univ Med Sci 2014; 21 (1:76-79

  9. Adsorption of dimeric surfactants in lamellar silicates

    Energy Technology Data Exchange (ETDEWEB)

    Balcerzak, Mateusz; Pietralik, Zuzanna [Department of Macromolecular Physics, Faculty of Physics, A. Mickiewicz University, Umultowska 85, 61-614 Poznań (Poland); Domka, Ludwik [Department of Metalorganic Chemistry, Faculty of Chemistry, A. Mickiewicz University, Grunwaldzka 6, 60-780 Poznań (Poland); Skrzypczak, Andrzej [Institute of Chemical Technology, Poznań University of Technology, Berdychowo 4, 60-965 Poznań (Poland); Kozak, Maciej, E-mail: mkozak@amu.edu.pl [Department of Macromolecular Physics, Faculty of Physics, A. Mickiewicz University, Umultowska 85, 61-614 Poznań (Poland)

    2015-12-01

    Highlights: • The intercalation of dimeric surfactants changed the morphology of MMT samples. • XRD indicated structures formed by surfactant molecules in interlayer space. • The four-step thermal decomposition of dimeric surfactant, confirms intercalation. - Abstract: The adsorption of different types of cationic surfactants in lamellar silicates changes their surface character from hydrophilic to hydrophobic. This study was undertaken to obtain lamellar silicates modified by a series of novel dimeric (gemini) surfactants of different length alkyl chains and to characterise these organophilised materials. Synthetic sodium montmorillonite SOMASIF® ME 100 (M) and enriched bentonite of natural origin (Nanoclay – hydrophilic bentonite®) were organophilised with dimeric (gemini) surfactants (1,1′-(1,4-butanediyl)bis(alkoxymethyl)imidazolium dichlorides). As a result of surfactant molecule adsorption in interlamellar space, the d-spacing (d{sub 001}) increased from 0.97 nm (for the anhydrous structure) to 2.04 nm. A Fourier transform infrared spectroscopy (FTIR) analysis of the modified systems reveals bands assigned to the stretching vibrations of the CH{sub 2} and CH{sub 3} groups and the scissoring vibrations of the NH group from the structure of the dimeric surfactants. Thermogravimetric (TG) and derivative thermogravimetric (DTG) studies imply a four-stage process of surfactant decomposition. Scanning electron microscopy (SEM) images provide information on the influence of dimeric surfactant intercalation into the silicate structures. Particles of the modified systems show a tendency toward the formation of irregularly shaped agglomerates.

  10. Structure-rheology relationship in a sheared lamellar fluid.

    Science.gov (United States)

    Jaju, S J; Kumaran, V

    2016-03-01

    The structure-rheology relationship in the shear alignment of a lamellar fluid is studied using a mesoscale model which provides access to the lamellar configurations and the rheology. Based on the equations and free energy functional, the complete set of dimensionless groups that characterize the system are the Reynolds number (ργL(2)/μ), the Schmidt number (μ/ρD), the Ericksen number (μγ/B), the interface sharpness parameter r, the ratio of the viscosities of the hydrophilic and hydrophobic parts μ(r), and the ratio of the system size and layer spacing (L/λ). Here, ρ and μ are the fluid density and average viscosity, γ is the applied strain rate, D is the coefficient of diffusion, B is the compression modulus, μ(r) is the maximum difference in the viscosity of the hydrophilic and hydrophobic parts divided by the average viscosity, and L is the system size in the cross-stream direction. The lattice Boltzmann method is used to solve the concentration and momentum equations for a two dimensional system of moderate size (L/λ=32) and for a low Reynolds number, and the other parameters are systematically varied to examine the qualitative features of the structure and viscosity evolution in different regimes. At low Schmidt numbers where mass diffusion is faster than momentum diffusion, there is fast local formation of randomly aligned domains with "grain boundaries," which are rotated by the shear flow to align along the extensional axis as time increases. This configuration offers a high resistance to flow, and the layers do not align in the flow direction even after 1000 strain units, resulting in a viscosity higher than that for an aligned lamellar phase. At high Schmidt numbers where momentum diffusion is fast, the shear flow disrupts layers before they are fully formed by diffusion, and alignment takes place by the breakage and reformation of layers by shear, resulting in defects (edge dislocations) embedded in a background of nearly aligned layers

  11. Endothelial cell density after deep anterior lamellar keratoplasty (Melles technique)

    NARCIS (Netherlands)

    van Dooren, Bart T. H.; Mulder, Paul G. H.; Nieuwendaal, Carla P.; Beekhuis, W. Houdijn; Melles, Gerrit R. J.

    2004-01-01

    To measure the recipient endothelial cell loss after the Melles technique for deep anterior lamellar keratoplasty. In 21 eyes of 21 patients, a deep anterior lamellar keratoplasty procedure was performed. Before surgery and at 6, 12, and 24 months after surgery, specular microscopy was performed to

  12. Endothelial cell density after deep anterior lamellar keratoplasty (Melles technique)

    NARCIS (Netherlands)

    Van Dooren, BTH; Mulder, PGH; Nieuwendaal, CP; Beekhuis, WH; Melles, GRJ

    PURPOSE: To measure the recipient endothelial cell loss after the Melles technique for deep anterior lamellar keratoplasty. METHODS: In 21 eyes of 21 patients, a deep anterior lamellar keratoplasty procedure was performed. Before surgery and at 6, 12, and 24 months after surgery, specular microscopy

  13. [Indications and surgical approach for lamellar macular holes and pseudoholes].

    Science.gov (United States)

    Haritoglou, C; Schumann, R G

    2017-12-01

    This article presents a discussion on the indications for surgical interventions of lamellar macular holes and pseudoholes. What are the criteria for deciding on the surgical intervention for lamellar macular holes and pseudoholes? The article is based on a literature search in PubMed RESULTS: Lamellar macular holes and pseudoholes are subdivided into degenerative and tractive alterations. Both entities are associated with relatively specific morphological and functional criteria, which correlate with the expected functional and morphological results of the surgical intervention. Patients with pseudoholes therefore profit more from a surgical intervention because alterations to the outer retina are less pronounced in these cases. The indications for surgery of lamellar macular holes and pseudoholes are established by the type of lamellar defect and the morphological and functional alterations associated with this condition.

  14. Effects of prestressing on impact resistance of concrete beams

    International Nuclear Information System (INIS)

    Mikami, H.; Kishi, N.; Matsuoka, K.G.; Mikami, T.; Nomachi, S.G.

    1995-01-01

    In this paper, the effects of prestressing on impact resistance of concrete beams using two types of prestressed concrete (PC) tendons are discussed based on experimental results. Aramids Fiber Reinforced Plastic rods and PC steel strand were used as PC tendons. To clarify the effects of prestressing on concrete beam impact resistance, dynamic behavior of prestressed and/or non-prestressed concrete beams with different PC tendon arrangements were considered. Impact test were performed using a 200 kg f free falling steel weight on to the center of beam. (author). 10 refs., 5 figs., 2 tabs

  15. Extended constitutive laws for lamellar phases

    Directory of Open Access Journals (Sweden)

    Chi-Deuk Yoo

    2013-10-01

    Full Text Available Classically, stress and strain rate in linear viscoelastic materials are related by a constitutive relationship involving the viscoelastic modulus G(t. The same constitutive law, within Linear Response Theory, relates currents of conserved quantities and gradients of existing conjugate variables, and it involves the autocorrelation functions of the currents in equilibrium. We explore the consequences of the latter relationship in the case of a mesoscale model of a block copolymer, and derive the resulting relationship between viscous friction and order parameter diffusion that would result in a lamellar phase. We also explicitly consider in our derivation the fact that the dissipative part of the stress tensor must be consistent with the uniaxial symmetry of the phase. We then obtain a relationship between the stress and order parameter autocorrelation functions that can be interpreted as an extended constitutive law, one that offers a way to determine them from microscopic experiment or numerical simulation.

  16. Impact resistance cryogenic bunker fuel tanks

    NARCIS (Netherlands)

    Voormeeren, L.O.; Atli-Veltin, B.; Vredeveldt, A.W.

    2014-01-01

    The increasing use of liquefied natural gas (LNG) as bunker fuel in ships, calls for an elaborate study regarding the risks involved. One particular issue is the vulnerability of cryogenic LNG storage tanks with respect to impact loadings, such as ship collisions and dropped objects. This requires

  17. Investigation on low velocity impact resistance of SMA composite material

    Science.gov (United States)

    Hu, Dianyin; Zhang, Long; Wang, Rongqiao; Zhang, Xiaoyong

    2016-04-01

    A method to improve low velocity impact resistance of aeroengine composite casing using shape memory alloy's properties of shape memory(SM) and super-elasticity(SE) is proposed in this study. Firstly, a numerical modeling of SMA reinforced composite laminate under low velocity impact load with impact velocity of 10 m/s is established based on its constitutive model implemented by the VUMAT subroutine of commercial software ABAQUS. Secondly, the responses of SMA composite laminate including stress and deflection distributions were achieved through transient analysis under low velocity impact load. Numerical results show that both peak stress and deflection values of SMA composite laminate are less than that without SMA, which proves that embedding SMA into the composite structure can effectively improve the low velocity impact performance of composite structure. Finally, the influence of SM and SE on low velocity impact resistance is quantitatively investigated. The values of peak stress and deflection of SMA composite based on SM property decrease by 18.28% and 9.43% respectively, compared with those without SMA, instead of 12.87% and 5.19% based on SE. In conclusion, this proposed model described the impact damage of SMA composite structure and turned to be a more beneficial method to enhance the impact resistance by utilizing SM effect.

  18. Preparation of textural lamellar tin deposits via electrodeposition

    Science.gov (United States)

    Wen, Xiaoyu; Pan, Xiaona; Wu, Libin; Li, Ruinan; Wang, Dan; Zhang, Jinqiu; Yang, Peixia

    2017-06-01

    Lamellar tin deposits were prepared by galvanostatical electroplating from the aqueous acidic-sulfate bath, with gelatin and benzalacetone dissolved in ethanol (ABA+EtOH) as additive, and their morphologies were investigated by scanning electron microscopy. Cathodic polarization curves revealed that the absorbability of ABA+EtOH on the cathode surface was higher than that of gelatin. X-ray diffraction analysis indicated preferred orientations of tin growth led to the formation of lamellar structure and distortion of tin lattice. The growth mechanism of lamellar tin was also discussed.

  19. Lamellar ichthyosis (collodian baby with severe bilateral ectropion

    Directory of Open Access Journals (Sweden)

    Boparai M

    1988-01-01

    Full Text Available A case of lamellar ichthyosis (collodian baby, is being reported. Skin biopsy has confirmed the diagnosis. Severe bilateral ectropion of thee eyelids was the prominent feature. Management of such cases has been briefly discussed.

  20. Radiation crosslinked block copolymer blends with improved impact resistance

    International Nuclear Information System (INIS)

    Saunders, F.L.; Pelletier, R.R.

    1976-01-01

    Polymer blends having high impact resistance after mechanical working are produced by blending together a non-elastomeric monovinylidene aromatic polymer such as polystyrene with an elastomeric copolymer, such as a block copolymer of styrene and butadiene, in the form of crosslinked, colloidal size particles

  1. The Impact of Argumentativeness on Resistance to Persuasion.

    Science.gov (United States)

    Kazoleas, Dean

    1993-01-01

    Examines the impact of argumentativeness on cognitive responses and attitude change of undergraduate college students. Finds that argumentative individuals generate greater numbers of counterarguments and are more resistant to persuasion. Indicates that attitude change for the highly argumentative individual is a function of both positive and…

  2. Oligosaccharides and glycolipids addition in charged lamellar phases

    International Nuclear Information System (INIS)

    Ricoul, F.

    1997-01-01

    The aim of this work is to study the addition of oligosaccharides and glycolipids in lamellar phases of the cationic surfactant DDAB (di-dodecyl-dimethyl-ammonium bromide). Two steps have been followed: the determination of phases prisms and the thermodynamic interpretation in terms of molecular interactions. In order to characterize these systems, two new experimental small angle scattering methods have been perfected: 1) a neutron scattering contrast variation method which allows to study the adsorption of aqueous solution in bilayers and 2) a capillary concentration gradient method to establish directly and quantitatively the phases diagrams of ternary systems by X rays scattering. It has been pointed out that the oligosaccharides induce a depletion attractive force on the lamellar-lamellar equilibrium of the DDAB when they are excluded of the most concentrated phase. For the two studied glycolipids: 2-O lauroyl-saccharose and N-lauroyl N-nonyl lactitol, the ternary phase diagrams water-DDAB-glycolipid have been established in terms of temperature. Critical points at ambient temperature have been given. The osmotic pressure in concentrated lamellar phases has been measured. It has been shown that glycolipids increase the hydration repulsion at short distance and that the electrostatic repulsion is outstanding and unchanged at high distance if there is at less 1 mole percent of ionic surfactant. In a dilute solution, glycolipids decrease the maximum swelling of lamellar phases, with a competition between the lamellar phase and the micellae dilute phase for water. (O.M.)

  3. Impact Resistance of Rubberized Self-Compacting Concrete

    Directory of Open Access Journals (Sweden)

    Eehab Khalil

    2015-04-01

    Full Text Available Impact loads due to ship collision on irrigation structures is significantly decreasing their durability. Loss of material and degradation are quite common problems facing lock walls and piers. In the current research, rubberized self-compacting concrete (SCC was used to investigate problems associated with impact. SCC with cement kiln dust cement replacement was used for that purpose. Concrete specimens were prepared with different crumb rubber ratios of 10% (RSCC-10, 20% (RSCC-20, 30% (RSCC-30, and 40% (RSCC-40 sand replacement by volume. Standard compressive, flexure, and splitting strength tests were conducted to monitor the effect of the added rubber on concrete behavior. Moreover, impact testing program was applied to specific specimens, cylinder of diameter 200 mm and thickness 50 mm, according to ACI committee 544 procedures. The number of blows to first and ultimate cracks was determined. The relationship between the mechanical properties and impact resilience is also presented. With the increase in rubber percentage the resistance to impact increased, but there was a decrease in specimen strength and modulus of elasticity. The variation in results was discussed and mix RSCC-30 exhibited the best impact resistance, 3 times over control mix with 40% reduction of compressive strength.

  4. Anatomical and Functional Results of Lamellar Macular Holes Surgery.

    Science.gov (United States)

    Papadopoulou, D; Donati, G; Mangioris, G; Pournaras, C J

    2016-04-01

    To determine the long-term surgical findings and outcomes after vitrectomy for symptomatic lamellar macular holes. We studied 28 patients with lamellar macular holes and central visual loss or distortion. All interventions were standard 25 G vitrectomy with membranectomy of the internal limiting membrane (ILM), peeling and gas tamponade with SF6 20 %. Operations were performed by a single experienced surgeon within the last 3 years. Best corrected visual acuity and optical coherence tomography appearance were determined preoperatively and postoperatively. Following the surgical procedure, all macular holes were closed; however, in 3 eyes, significant foveal thinning was associated with changes in the retinal pigment epithelium changes. The mean best-corrected visual acuity improved postoperatively in the majority of the patients (n: 21, mean 0.3 logMAR), stabilised in 4 patients and decreased in 3 patients (mean 0.4 logMAR). Spectral Domain-Optical coherence tomography (SD-OCT) showed resolution of the lamellar lesion and improved macular contour in all cases. We demonstrated improvement in postoperative vision and the anatomical reconstruction of the anatomical contour of the fovea in most eyes with symptomatic lamellar holes. These findings indicate that vitrectomy, membranectomy and ILM peeling with gas tamponade is a beneficial treatment of symptomatic lamellar macular holes. Georg Thieme Verlag KG Stuttgart · New York.

  5. Does lamellar surgery for keratoconus experience the popularity it deserves?

    Science.gov (United States)

    Wisse, Robert P L; van den Hoven, Célinde M L; Van der Lelij, Allegonda

    2014-08-01

    To analyse developments in surgical treatment for keratoconus (KC) by assessing rates and types of corneal surgery from 2005 to 2010. The Dutch Transplantation Foundation supplied data on all keratoplasty procedures for KC performed from 2005 to 2010 in the Netherlands. Registration was carried out by the eyebank at allocation and by the surgeon at the time of surgery. The type of surgery was categorized as either a penetrating or a lamellar procedure. Five hundred and seventy-five anonymized records were received, with excellent data completion (99%). Patients undergoing penetrating surgery had on average a lower visual acuity, higher k-readings and were slightly older compared with the lamellar group. A previous corneal hydrops was recorded for 19.1% of patients. Regular penetrating keratoplasty decreased in popularity from 79.7% in 2005 to 43.7% in 2010, due to the increased rate of lamellar surgery (42.5% in 2010) and 'mushroom' penetrating keratoplasty (13.8% in 2010). When hydrops cases were excluded, popularity became equal (47.6% penetrating versus 52.4% lamellar surgery, in 2010). Lamellar surgery is gaining in popularity, although regular penetrating keratoplasty is still the more commonly performed procedure. Only when hydrops cases are excluded do transplant rates become comparable. © 2013 Acta Ophthalmologica Scandinavica Foundation. Published by John Wiley & Sons Ltd.

  6. The Electrochemical Assembly of Semiconducting Organic-Inorganic Lamellar Domains for Photovoltaics

    Science.gov (United States)

    Herman, David John

    assembly of lamellae with orientations either parallel (on ITO) or perpendicular (on PEDOT:PSS) to the substrate. For surfactants without the spacer or with bolaamphiphilic design, the decrease in entropic freedom either during surface assembly or during lamellae growth is believed to result in uncontrolled orientations and heterogeneous morphologies. In all cases, the lack or low-density of solution micelles at the deposition conditions implied that the growth and orientation of lamellar structures is mediated by surfactant-substrate interactions and assemblies. Finally, the controlled deposition of quinquethiophene surfactant and ZnO lamellae with a periodicity of 2.5 nm was achieved. By optimizing the device architecture with an inverted design, the photovoltaic efficiency improved from 0.0008% to 0.01%. Converting the Zn(OH)2 to ZnO by annealing at 150 °C and pulsing the electrodeposition potential led to a three-fold improvement in efficiency to 0.035%. External quantum efficiency measurements indicate that pulsed depositions lead to better π-π stacking of the thiophenes inside the lamellar galleries. Although the seemingly ideal assembly between n- and p-type materials is approached and photovoltaic devices are demonstrated, the efficiencies remain limited due to high charge carrier resistances from the excess active layer thickness, which was required to prevent electrode shorting during device fabrication.

  7. Soft shell hard core concept for aircraft impact resistant design

    International Nuclear Information System (INIS)

    Chen, C.; Rieck, P.J.

    1978-01-01

    For nuclear power plants sited in the vicinity of airports, the hypothetical events of aircraft impact have to be designed for. The conventional design concept is to strengthen the exterior structure to resist the impact induced force. The stiffened structures have two (2) disadvantages; one is the high construction cost, and the other is the high reaction force induced as well as the vibrational effects on the interior equipment and piping systems. This new soft shell hard core concept can relieve the above shortcomings. In this concept, the essential equipment required for safety are installed inside the hard core area for protection and the non-essential equipment are maintained between the hard core and soft shell area. During a hypothetical impact event, the soft shell will collapse locally and absorb large amounts of kinetic energy; hence, it reduces the reaction force and the vibrational effects. The design and analysis of the soft shell concept are discussed. (Author)

  8. First principles calculations of interstitial and lamellar rhenium nitrides

    Energy Technology Data Exchange (ETDEWEB)

    Soto, G., E-mail: gerardo@cnyn.unam.mx [Universidad Nacional Autonoma de Mexico, Centro de Nanociencias y Nanotecnologia, Km 107 Carretera Tijuana-Ensenada, Ensenada Baja California (Mexico); Tiznado, H.; Reyes, A.; Cruz, W. de la [Universidad Nacional Autonoma de Mexico, Centro de Nanociencias y Nanotecnologia, Km 107 Carretera Tijuana-Ensenada, Ensenada Baja California (Mexico)

    2012-02-15

    Highlights: Black-Right-Pointing-Pointer The possible structures of rhenium nitride as a function of composition are analyzed. Black-Right-Pointing-Pointer The alloying energy is favorable for rhenium nitride in lamellar arrangements. Black-Right-Pointing-Pointer The structures produced by magnetron sputtering are metastable variations. Black-Right-Pointing-Pointer The structures produced by high-pressure high-temperature are stable configurations. Black-Right-Pointing-Pointer The lamellar structures are a new category of interstitial dissolutions. - Abstract: We report here a systematic first principles study of two classes of variable-composition rhenium nitride: i, interstitial rhenium nitride as a solid solution and ii, rhenium nitride in lamellar structures. The compounds in class i are cubic and hexagonal close-packed rhenium phases, with nitrogen in the octahedral and tetrahedral interstices of the metal, and they are formed without changes to the structure, except for slight distortions of the unit cells. In the compounds in class ii, by contrast, the nitrogen inclusion provokes stacking faults in the parent metal structure. These faults create trigonal-prismatic sites where the nitrogen residence is energetically favored. This second class of compounds produces lamellar structures, where the nitrogen lamellas are inserted among multiple rhenium layers. The Re{sub 3}N and Re{sub 2}N phases produced recently by high-temperature and high-pressure synthesis belong to this class. The ratio of the nitrogen layers to the rhenium layers is given by the composition. While the first principle calculations point to higher stability for the lamellar structures as opposed to the interstitial phases, the experimental evidence presented here demonstrates that the interstitial classes are synthesizable by plasma methods. We conclude that rhenium nitrides possess polymorphism and that the two-dimensional lamellar structures might represent an emerging class of materials

  9. First principles calculations of interstitial and lamellar rhenium nitrides

    International Nuclear Information System (INIS)

    Soto, G.; Tiznado, H.; Reyes, A.; Cruz, W. de la

    2012-01-01

    Highlights: ► The possible structures of rhenium nitride as a function of composition are analyzed. ► The alloying energy is favorable for rhenium nitride in lamellar arrangements. ► The structures produced by magnetron sputtering are metastable variations. ► The structures produced by high-pressure high-temperature are stable configurations. ► The lamellar structures are a new category of interstitial dissolutions. - Abstract: We report here a systematic first principles study of two classes of variable-composition rhenium nitride: i, interstitial rhenium nitride as a solid solution and ii, rhenium nitride in lamellar structures. The compounds in class i are cubic and hexagonal close-packed rhenium phases, with nitrogen in the octahedral and tetrahedral interstices of the metal, and they are formed without changes to the structure, except for slight distortions of the unit cells. In the compounds in class ii, by contrast, the nitrogen inclusion provokes stacking faults in the parent metal structure. These faults create trigonal-prismatic sites where the nitrogen residence is energetically favored. This second class of compounds produces lamellar structures, where the nitrogen lamellas are inserted among multiple rhenium layers. The Re 3 N and Re 2 N phases produced recently by high-temperature and high-pressure synthesis belong to this class. The ratio of the nitrogen layers to the rhenium layers is given by the composition. While the first principle calculations point to higher stability for the lamellar structures as opposed to the interstitial phases, the experimental evidence presented here demonstrates that the interstitial classes are synthesizable by plasma methods. We conclude that rhenium nitrides possess polymorphism and that the two-dimensional lamellar structures might represent an emerging class of materials within binary nitride chemistry.

  10. Analysis of Lamellar Structures with Application of Generalized Functions

    Directory of Open Access Journals (Sweden)

    Kipiani Gela

    2016-12-01

    Full Text Available Theory of differential equations in respect of the functional area is based on the basic concepts on generalized functions and splines. There are some basic concepts related to the theory of generalized functions and their properties are considered in relation to the rod systems and lamellar structures. The application of generalized functions gives the possibility to effectively calculate step-variable stiffness lamellar structures. There are also widely applied structures, in that several in which a number of parallel load bearing layers are interconnected by discrete-elastic links. For analysis of system under study, such as design diagrams, there are applied discrete and discrete-continual models.

  11. Simplistic graphene transfer process and its impact on contact resistance

    KAUST Repository

    Ghoneim, Mohamed T.; Smith, Casey; Hussain, Muhammad Mustafa

    2013-01-01

    Chemical vapor deposition based graphene grown on copper foil is attractive for electronic applications owing to its reliable growth process, large area coverage, and relatively defect free nature. However, transfer of the synthesized graphene to host substrate for subsequent device fabrication is extremely sensitive and can impact ultimate performance. Although ultra-high mobility is graphene's most prominent feature, problems with high contact resistance have severely limited its true potential. Therefore, we report a simple poly-(methyl methacrylate) based transfer process without post-annealing to achieve specific contact resistivity of 3.8 × 10−5 Ω cm2 which shows 80% reduction compared to previously reported values.

  12. Simplistic graphene transfer process and its impact on contact resistance

    KAUST Repository

    Ghoneim, Mohamed T.

    2013-05-09

    Chemical vapor deposition based graphene grown on copper foil is attractive for electronic applications owing to its reliable growth process, large area coverage, and relatively defect free nature. However, transfer of the synthesized graphene to host substrate for subsequent device fabrication is extremely sensitive and can impact ultimate performance. Although ultra-high mobility is graphene\\'s most prominent feature, problems with high contact resistance have severely limited its true potential. Therefore, we report a simple poly-(methyl methacrylate) based transfer process without post-annealing to achieve specific contact resistivity of 3.8 × 10−5 Ω cm2 which shows 80% reduction compared to previously reported values.

  13. Impact of drug resistance on the tuberculosis treatment outcome

    Directory of Open Access Journals (Sweden)

    E. Lesnic

    2017-03-01

    Full Text Available Background. The standard treatment of a new case of multidrug-resistant tuberculosis (MDR-TB according to WHO recommendations in the Republic of Moldova is performed since 2005 showing a low treatment succes. Actually the treatment success rate increased due to excluding of MDR-TB patients from the general cohort. The major rate of patients with low outcome is represented by the failed and lost to follow-up cases. The purpose of the study was to assess the impact of multidrug-resiatnce and MDR-TB on the tuberculosis treatment outcome. Materials and methods. A retrospective selective, descriptive study targeting social, demographic, economic and epidemiological peculiarities, case-management, diagnostic radiological aspects and microbiological characteristics of 187 patients with pulmonary tuberculosis registered during 2013–2015 distributed in two groups: 1st group (61 patients with established multidrug-resistant strains using conventional cultural methods and the 2nd group (126 patients with MDR-TB. Results. Multidrug-resistance was established more frequently in new cases and MDR-TB in two thirds of retreated patients. No difference was identified in gender and age distribution, social, economical, educational characteristics; case-management assessment identified a similar proportion of patients revealed by general practitioners and specialists, with low rate of screened high risk groups. All patients from the multidrug-resistant group began the standard treatment for drug-responsiveness tuberculosis before drug susceptibility testing and one third of MDR-TB group was treated from the onset with the DOTS-Plus regimen. Highest success rate was identified in the new-case subgroups of both groups and higher rate of died patients was determined in the retreated subgroups. Such a low rate of patients aggrevates the resistance. Conclusions. Early diagnosis, drug responsiveness testing and raising awareness among about treatment compliance will

  14. Hybrid Wound Filaments for Greater Resistance to Impacts

    Science.gov (United States)

    DeLay, Thomas K.; Patterson, James E.; Olson, Michael A.

    2008-01-01

    A hybrid material containing wound filaments made of a hybrid of high-strength carbon fibers and poly(phenylene benzobisoxazole) [PBO] fibers is discussed. This hybrid material is chosen in an effort to increase the ability of the pressure vessel to resist damage by low-speed impacts (e.g., dropping of tools on the vessel or bumping of the vessel against hard objects during installation and use) without significantly increasing the weight of the vessel. While the basic concept of hybridizing fibers in filament-wound structures is not new, the use of hybridization to increase resistance to impacts is an innovation, and can be expected to be of interest in the composite-pressure-vessel industry. The precise types and the proportions of the high-strength carbon fibers and the PBO fibers in the hybrid are chosen, along with the filament-winding pattern, to maximize the advantageous effects and minimize the disadvantageous effects of each material. In particular, one seeks to (1) take advantage of the ability of the carbon fibers to resist stress rupture while minimizing their contribution to vulnerability of the vessel to impact damage and (2) take advantage of the toughness of the PBO fibers while minimizing their contribution to vulnerability of the vessel to stress rupture. Experiments on prototype vessels fabricated according to this concept have shown promising results. At the time of reporting the information for this article, research toward understanding and optimizing the performances of PBO fibers so as to minimize their contribution to vulnerability of the pressure vessel to stress rupture had yet to be performed.

  15. Structural studies of lamellar surfactant systems under shear

    DEFF Research Database (Denmark)

    Mortensen, K.

    2001-01-01

    Recent experimental studies on concentrated surfactant systems are reviewed. Particular attention is focused on the transformation from planar lamellar sheets to multilamellar vesicles. It is discussed whether both of these states are thermodynamic stable, or if the MLV is an artifact of shear in...

  16. Polynomial modal analysis of lamellar diffraction gratings in conical mounting.

    Science.gov (United States)

    Randriamihaja, Manjakavola Honore; Granet, Gérard; Edee, Kofi; Raniriharinosy, Karyl

    2016-09-01

    An efficient numerical modal method for modeling a lamellar grating in conical mounting is presented. Within each region of the grating, the electromagnetic field is expanded onto Legendre polynomials, which allows us to enforce in an exact manner the boundary conditions that determine the eigensolutions. Our code is successfully validated by comparison with results obtained with the analytical modal method.

  17. Synthesis and characterization of a lamellar hydroxyapatite/DNA nanohybrid

    Energy Technology Data Exchange (ETDEWEB)

    Zuo Guifu; Wan Yizao; Meng Xianguang [School of Materials Science and Engineering, Tianjin University, Tianjin 300072 (China); Zhao Qing [School of Agriculture and Bioengineering, Tianjin University, Tianjin 300072 (China); Ren Kaijing [Department of Joint Surgery, Tianjin Hospital, Tianjin 300211 (China); Jia Shiru [Key Laboratory of Industrial Microbiology, Ministry of Education, Tianjin University of Science and Technology, 29, 13th Street, TEDA, Tianjin 300457 (China); Wang Jiehua, E-mail: gfzuo@tju.edu.cn [School of Agriculture and Bioengineering, Tianjin University, Tianjin 300072 (China)

    2011-04-15

    Research highlights: {yields} A lamellar hydroxyapatite (HAp)/DNA nanohybrid was prepared as a novel gene delivering vector. {yields} Gel electrophoresis analysis confirmed that the lamellar HAp could protect DNA from degradation of DNase I. {yields} The protected DNA in the HAp/DNA nanohybrid could be recovered readily under acid conditions. - Abstract: Two-dimensional layered materials exhibit desired functionalities when being used as gene delivery materials. In this study, a novel gene delivering vector, lamellar hydroxyapatite (HAp)/DNA nanohybrid was prepared. The structure of HAp/DNA nanohybrid was investigated by X-ray diffraction (XRD), scanning electron microscopy (SEM) and transmission electron microscopy (TEM). Fourier transform infrared (FT-IR) spectroscopy analysis revealed that ion-exchange occurred during the process. Gel electrophoresis analysis confirmed that the lamellar HAp could protect DNA from degradation of DNase I and the protected DNA could be recovered readily under acid conditions. Furthermore, the integrity of released DNA was confirmed by UV-vis spectra.

  18. Synthesis and characterization of a lamellar hydroxyapatite/DNA nanohybrid

    International Nuclear Information System (INIS)

    Zuo Guifu; Wan Yizao; Meng Xianguang; Zhao Qing; Ren Kaijing; Jia Shiru; Wang Jiehua

    2011-01-01

    Research highlights: → A lamellar hydroxyapatite (HAp)/DNA nanohybrid was prepared as a novel gene delivering vector. → Gel electrophoresis analysis confirmed that the lamellar HAp could protect DNA from degradation of DNase I. → The protected DNA in the HAp/DNA nanohybrid could be recovered readily under acid conditions. - Abstract: Two-dimensional layered materials exhibit desired functionalities when being used as gene delivery materials. In this study, a novel gene delivering vector, lamellar hydroxyapatite (HAp)/DNA nanohybrid was prepared. The structure of HAp/DNA nanohybrid was investigated by X-ray diffraction (XRD), scanning electron microscopy (SEM) and transmission electron microscopy (TEM). Fourier transform infrared (FT-IR) spectroscopy analysis revealed that ion-exchange occurred during the process. Gel electrophoresis analysis confirmed that the lamellar HAp could protect DNA from degradation of DNase I and the protected DNA could be recovered readily under acid conditions. Furthermore, the integrity of released DNA was confirmed by UV-vis spectra.

  19. Mechanisms of lamellar collagen formation in connective tissues.

    Science.gov (United States)

    Ghazanfari, Samaneh; Khademhosseini, Ali; Smit, Theodoor H

    2016-08-01

    The objective of tissue engineering is to regenerate functional tissues. Engineering functional tissues requires an understanding of the mechanisms that guide the formation and evolution of structure in the extracellular matrix (ECM). In particular, the three-dimensional (3D) collagen fiber arrangement is important as it is the key structural determinant that provides mechanical integrity and biological function. In this review, we survey the current knowledge on collagen organization mechanisms that can be applied to create well-structured functional lamellar tissues and in particular intervertebral disc and cornea. Thus far, the mechanisms behind the formation of cross-aligned collagen fibers in the lamellar structures is not fully understood. We start with cell-induced collagen alignment and strain-stabilization behavior mechanisms which can explain a single anisotropically aligned collagen fiber layer. These mechanisms may explain why there is anisotropy in a single layer in the first place. However, they cannot explain why a consecutive collagen layer is laid down with an alternating alignment. Therefore, we explored another mechanism, called liquid crystal phasing. While dense concentrations of collagen show such behavior, there is little evidence that the conditions for liquid crystal phasing are actually met in vivo. Instead, lysyl aldehyde-derived collagen cross-links have been found essential for correct lamellar matrix deposition. Furthermore, we suggest that supra-cellular (tissue-level) shear stress may be instrumental in the alignment of collagen fibers. Understanding the potential mechanisms behind the lamellar collagen structure in connective tissues will lead to further improvement of the regeneration strategies of functional complex lamellar tissues. Copyright © 2016 Elsevier Ltd. All rights reserved.

  20. Aligned composite structures for mitigation of impact damage and resistance to wear in dynamic environments

    Science.gov (United States)

    Mulligan, Anthony C.; Rigali, Mark J.; Sutaria, Manish P.; Popovich, Dragan; Halloran, Joseph P.; Fulcher, Michael L.; Cook, Randy C.

    2009-04-14

    Fibrous monolith composites having architectures that provide increased flaw insensitivity, improved hardness, wear resistance and damage tolerance and methods of manufacture thereof are provided for use in dynamic environments to mitigate impact damage and increase wear resistance.

  1. Magnetic properties of lamellar tetrataenite in Toluca iron meteorite

    International Nuclear Information System (INIS)

    Funaki, Minoru; Nagata, Takesi; Danon, J.

    1985-01-01

    Magnetic studies were conducted using lamellar tetrataenite extracted from the Toluca octahedrite by a diluted HCl etching technique. Natural remanent magnetization (NRM) in the lamellae is very stable against AF demagnetization and is quite intense, ranging from 2.58 to 37.42 x10 -2 emu/g. This NRM is completely demagnetized thermally at about 550 0 C. The most characteristic change in magnetic properties on heating to about 550 C 0 is a significant decrease in magnetic coercivity. This observation is consistent with the results obtained from chondrites. The paramagnetic component in lamellar tetrataenite, which is estimated by Moessbauer spectrum analyses, was not detected by conventional magnetic studies. (Author) [pt

  2. Insertion of anisotropic particles in lamellar surfactant phases

    International Nuclear Information System (INIS)

    Grillo, Isabelle

    1998-01-01

    We search for the interactions governing the possibility to mix organic and inorganic colloids. We use laponite, a synthetic anionic clay, made of 30 nm diameter and 1 nm thickness anisotropic disks. Three surfactant Systems, an anionic one (AOT), a cationic one (DDAB) and a nonionic one (C_1_2E_5) investigate three different cases of interaction forces. We establish experimentally the equilibrium phase diagrams and characterise the structure of these ternary Systems by SANS and SAXS experiments. We quantify the adsorption. An AOT bilayer surround the particle edges; an almost complete bilayer of DDAB and C_1_2E_5 is formed on the basal faces. SANS contrast variation experiments under controlled conditions along the adsorption isotherm of C_1_2E_5 allow to determine the average thickness of the adsorbed surfactant layer. In the monophasic lamellar domain, the particles stay between the membranes, when the spacing is larger than the particle thickness. In the biphasic domain, dense clay aggregates are in equilibrium with a lamellar phase, containing few amount of particles. They enter in the AOT bilayers when the space between the bilayers are smaller than 8 A. From the phase diagram and interaction forces study, three conditions of stability emerge: - an osmotic one: the osmotic lamellar pressure is higher or equal to the colloidal one. - an energetic one: the interaction energy between a particle and the surfactant bilayer is close to the particle energy in aqueous suspension. - an entropic one: particles should not inhibit the stabilising fluctuations of the lamellar phase. (author) [fr

  3. Oral manifestations of lamellar ichthyosis: A rare case report

    Directory of Open Access Journals (Sweden)

    Keerthi K Nair

    2016-01-01

    Full Text Available The ichthyoses are a heterogeneous group of disorders with both inherited and acquired forms. Autosomal recessive congenital ichthyosis (ARCI is a heterogeneous group of disorders that present at birth with the generalized involvement of skin without other systemic manifestations. Lamellar itchthyosis (LI is a nonsyndromic itchthyosis, which comes under the umbrella of ARCI. Little is only known about the oral manifestations of this disorder. We report a case of LI with oral manifestations.

  4. Association between lamellar body count and respiratory distress in neonates

    International Nuclear Information System (INIS)

    Bahasadri, Shoreh; Changizi, Nasrin

    2005-01-01

    Assessment of fetal lung maturity by a simple and rapid test has a pivotal role in obstetric managements. Lack of modern laboratory techniques in our country made US investigate whether lamellar body count (Lb) can be applied efficiently in the evaluation of fetal lung maturity. Lamellar body count was assessed in 104 un spun amniotic fluid samples taken from pregnant women admitted at A kbar Aba di Hospital, Tehran, Iran between May 2003 and November 2003 whose fetuses were at risk for respiratory distress syndrome (RDS). Cut-off points for LBC were determined to evaluate the risk of RDS. Standard clinical and radiographic criteria were used to diagnose RDS. An LBC of less than 10,000 was 99.1% specific for lung immaturity (positive predictive value = 99.1%, negative predictive value = 83.5%). The LBCs of greater than 45,000 eliminates RDS (negative predictive value = 98.9%). Lamellar body count is an easy, rapid and cost-effective test to assess fetal lung maturity in high-risk fetuses. Using the cut-off points of 10,000 and 45,000, LBC can serve as the first screening test of fetal lung maturity. (author)

  5. CuInS[sub 2] with lamellar morphology; 1: Efficient photoanodes in acidic polyiodide medium

    Energy Technology Data Exchange (ETDEWEB)

    Cattarin, S. (Inst. di Polarografia ed Elettrochimica Preparativa del C.N.R., Padova (Italy)); Dietz, N.; Lewerenz, H.J. (Hahn-Meitner-Inst., Berlin (Germany))

    1994-05-01

    CuInS[sub 2] grown in a steep temperature gradient acquires a peculiar lamellar morphology, similar to that of layered compound semiconductors. Thin electrodes (of thickness down to 30 to 40 [mu]m) can be prepared by cleavage, reducing series resistance in the bulk of the semiconductor. The liquid junction of n-CuInS[sub 2] with acidic polyiodide medium 2M HI, 2.5 M CaI[sub 2], 40 mM I[sub 2] was investigated. The best photoanodes attained quantum yields of monochromatic light of about 0.7 and conversion efficiencies above 7% under simulated AM1 sunlight. Their performance does not decrease substantially under moderately concentrated sunlight (300 to 400 mW cm[sup [minus]2]), due to small ohmic losses. Cell output appears quite stable during the first week of operation, but irregular electrode corrosion is observed, which may be detrimental to long term operation.

  6. Multidrug resistant bacteria in companion animals: impact on animal health and zoonotic aspects

    DEFF Research Database (Denmark)

    Damborg, Peter Panduro

    -resistant bacteria include methicillin-resistant Staphylococcus pseudintermedius (MRSP), methicillin-resistant Staphylococcus aureus (MRSA) and extended-spectrum beta-lactamase (ESBL)-producing Enterobacteriaceae. These bacteria will be described with focus on their prevalence across Europe, their impact on animal...

  7. Antimicrobial-Resistant Bacterial Populations and Antimicrobial Resistance Genes Obtained from Environments Impacted by Livestock and Municipal Waste.

    Directory of Open Access Journals (Sweden)

    Getahun E Agga

    Full Text Available This study compared the populations of antimicrobial-resistant bacteria and the repertoire of antimicrobial resistance genes in four environments: effluent of three municipal wastewater treatment facilities, three cattle feedlot runoff catchment ponds, three swine waste lagoons, and two "low impact" environments (an urban lake and a relict prairie. Multiple liquid and solid samples were collected from each environment. The prevalences and concentrations of antimicrobial-resistant (AMR Gram-negative (Escherichia coli and Salmonella enterica and Gram-positive (enterococci bacteria were determined from individual samples (n = 174. The prevalences of 84 antimicrobial resistance genes in metagenomic DNA isolated from samples pooled (n = 44 by collection date, location, and sample type were determined. The prevalences and concentrations of AMR E. coli and Salmonella were similar among the livestock and municipal sample sources. The levels of erythromycin-resistant enterococci were significantly higher in liquid samples from cattle catchment ponds and swine waste lagoons than in liquid samples from municipal wastewater treatment facilities, but solid samples from these environments did not differ significantly. Similarly, trimethoprim/sulfamethoxazole-resistant E. coli concentrations were significantly higher in swine liquid than in municipal liquid samples, but there was no difference in solid samples. Multivariate analysis of the distribution of antimicrobial resistance genes using principal coordinate analysis showed distinct clustering of samples with livestock (cattle and swine, low impact environment and municipal samples forming three separate clusters. The numbers of class A beta-lactamase, class C beta-lactamase, and fluoroquinolone resistance genes detected were significantly higher (P < 0.05 in municipal samples than in cattle runoff or swine lagoon samples. In conclusion, we report that AMR is a very widespread phenomenon and that similar

  8. Impact of Corrugated Paperboard Structure on Puncture Resistance

    Directory of Open Access Journals (Sweden)

    Vaidas Bivainis

    2015-03-01

    Full Text Available Thanks to its excellentprotective properties, lightness, a reasonable price, and ecology, corrugated paperboardis one of the most popular materials used in the production of packaging for variousproducts. During transportation or storage, packaging with goods can be exposedto the mass of other commodities, dropping from heights and transportationshock loads, which can lead to their puncture damage. Depending on the purposeand size of the packaging, the thickness, grammage, constituent paper layers,numbers of layers and type of fluting of corrugated paperboard used in itsproduction differ. A standard triangular prism, corrugated paperboard fixationplates and a universal tension-compression machine were used to investigate theimpact of corrugated paperboard structure and other parameters on the punctureresistance of the material. The investigation determines the maximum punctureload and estimates energy required to penetrate the corrugated paperboard. Itwas found that the greatest puncture resistance is demonstrated by paperboardwith a larger number of corrugating flutings and the board produced from harderpaper with a smaller amount of recycled paper. It was established that thegrammage of three-layered paperboard with two different fluting profiles has thegreatest impact on the level of static puncture energy.DOI: http://dx.doi.org/10.5755/j01.ms.21.1.5713

  9. Prevalence of transmitted drug resistance and impact of transmitted resistance on treatment success in the German HIV-1 Seroconverter Cohort.

    Directory of Open Access Journals (Sweden)

    Barbara Bartmeyer

    Full Text Available BACKGROUND: The aim of this study is to analyse the prevalence of transmitted drug resistance, TDR, and the impact of TDR on treatment success in the German HIV-1 Seroconverter Cohort. METHODS: Genotypic resistance analysis was performed in treatment-naïve study patients whose sample was available 1,312/1,564 (83.9% October 2008. A genotypic resistance result was obtained for 1,276/1,312 (97.3%. The resistance associated mutations were identified according to the surveillance drug resistance mutations list recommended for drug-naïve patients. Treatment success was determined as viral suppression below 500 copies/ml. RESULTS: Prevalence of TDR was stable at a high level between 1996 and 2007 in the German HIV-1 Seroconverter Cohort (N = 158/1,276; 12.4%; CI(wilson 10.7-14.3; p(for trend = 0.25. NRTI resistance was predominant (7.5% but decreased significantly over time (CI(Wilson: 6.2-9.1, p(for trend = 0.02. NNRTI resistance tended to increase over time (NNRTI: 3.5%; CI(Wilson: 2.6-4.6; p(for trend= 0.07, whereas PI resistance remained stable (PI: 3.0%; CI(Wilson: 2.1-4.0; p(for trend = 0.24. Resistance to all drug classes was frequently caused by singleton resistance mutations (NRTI 55.6%, PI 68.4%, NNRTI 99.1%. The majority of NRTI-resistant strains (79.8% carried resistance-associated mutations selected by the thymidine analogues zidovudine and stavudine. Preferably 2NRTI/1PIr combinations were prescribed as first line regimen in patients with resistant HIV as well as in patients with susceptible strains (susceptible 45.3%; 173/382 vs. resistant 65.5%; 40/61. The majority of patients in both groups were treated successfully within the first year after ART-initiation (susceptible: 89.9%; 62/69; resistant: 7/9; 77.8%. CONCLUSION: Overall prevalence of TDR remained stable at a high level but trends of resistance against drug classes differed over time. The significant decrease of NRTI-resistance in patients newly infected

  10. Precipitation kinetics of lamellar (γ) laths in a TiAl-base alloy

    International Nuclear Information System (INIS)

    Zhang, W.J.; Francesconi, L.; Evangelista, E.

    1997-01-01

    Titanium aluminide is a candidate material for high temperature applications. Although different types of microstructure have been produced in TiAl-base alloys, the fully-lamellar structure is currently regarded as the most attractive. This kind of microstructure can be characterized by the factors, namely, colony size, lamellar interspacing, the existence of Widmanstatten (secondary) laths, and the type of grain boundaries (smooth or interlocking). The objective of this paper is to examine the nucleation and growth kinetics of γ lamellar laths during continuous and isothermal cooling. These data are expected to benefit the understanding of the transformation mechanism and the design of lamellar TiAl microstructure for industrial application

  11. Blueberries? Impact on Insulin Resistance and Glucose Intolerance

    OpenAIRE

    Stull, April J.

    2016-01-01

    Blueberries are a rich source of polyphenols, which include anthocyanin bioactive compounds. Epidemiological evidence indicates that incorporating blueberries into the diet may lower the risk of developing type 2 diabetes (T2DM). These findings are supported by pre-clinical and clinical studies that have shown improvements in insulin resistance (i.e., increased insulin sensitivity) after obese and insulin-resistant rodents or humans consumed blueberries. Insulin resistance was assessed by hom...

  12. Complications and Management of Deep Anterior Lamellar Keratoplasty

    Directory of Open Access Journals (Sweden)

    Banu Torun Acar

    2014-10-01

    Full Text Available Objectives: To report the intraoperative and postoperative follow-up complications and management of these in deep anterior lamellar keratoplasty (DALK surgery. Materials and Methods: Two hundred eighty-four eyes of 252 patients followed up in our cornea clinic who underwent DALK using Anwar’s big-bubble technique with healthy Descemet’s membrane and endothelium were included in this study. Intraoperative and postoperative complications as well as the management and treatment of these complications were evaluated. Results: Big bubble was created in 220 (77.5% eyes of 284 eyes, and lamellar dissection was performed in 64 (22.5% eyes. Perforation occurred during trephination in 4 eyes, and the procedure was accomplished by penetrating keratoplasty (PK. Intraoperative microperforation occurred in 44 eyes. Perforation enlarged in 4 eyes and PK was performed. Operation was continued in 40 eyes with air injection into the anterior chamber. In postopertive follow-up period, double anterior chamber (DAC occurred in 32 of 40 eyes. DAC spontaneously regressed in 8 eyes, and air was given into the anterior chamber with a second surgical intervention in 24 eyes. DAC improved in 20 eyes. Four eyes underwent PK. Fungal keratitis evolved at the interface in one eye, because of no healing during the follow-up period, this eye underwent PK under antifungal therapy. Eyes with interface haze and Descemet’s membrane folds were followed. Conclusion: DALK is a difficult technique with a steep learning curve. In addition to the complications seen in PK, specific complications can occur in lamellar surgery. (Turk J Ophthalmol 2014; 44: 337-40

  13. Precipitation of lamellar gold nanocrystals in molten polymers

    International Nuclear Information System (INIS)

    Palomba, M.; Carotenuto, G.

    2016-01-01

    Non-aggregated lamellar gold crystals with regular shape (triangles, squares, pentagons, etc.) have been produced by thermal decomposition of gold chloride (AuCl) molecules in molten amorphous polymers (polystyrene and poly(methyl methacrylate)). Such covalent inorganic gold salt is high soluble into non-polar polymers and it thermally decomposes at temperatures compatible with the polymer thermal stability, producing gold atoms and chlorine radicals. At the end of the gold precipitation process, the polymer matrix resulted chemically modified because of the partial cross-linking process due to the gold atom formation reaction.

  14. Hierarchical transport of nanoparticles in a lyotropic lamellar phase

    International Nuclear Information System (INIS)

    Kimura, Yasuyuki; Mori, Teppei; Yamamoto, Akira; Mizuno, Daisuke

    2005-01-01

    The dynamics of nanosized colloidal particles dispersed in a hyper-swollen lyotropic lamellar phase of a nonionic surfactant has been studied by ac electrophoretic light scattering and direct tracking of particles under a microscope. The frequency spectrum of electrophoretic mobility shows two relaxation processes. These are originated from the hindrance of free diffusion of particles by the interaction between membranes and particles. By direct tracking measurement, we find that particles jump from site to site where they stay for a long time. This trap-jump process greatly decreases the mobility at low frequencies

  15. Synthesis and characterization of lamellar aragonite with hydrophobic property

    International Nuclear Information System (INIS)

    Wang Chengyu; Xu Yang; Liu Yalan; Li Jian

    2009-01-01

    A novel and simple synthetic method for the preparation of hydrophobic lamellar aragonite has been developed. The crystallization of aragonite was conducted by the reaction of sodium carbonate with calcium chloride in the presence of sodium stearate. The resulting products were characterized by powder X-ray diffraction (XRD), scanning electron microscopy (SEM), Fourier transform infrared spectroscopy (FTIR) and the contact angle. The results revealed that sodium stearate plays an important role in determining the structure and morphology of the sample. Besides, we have succeeded in surface modification of particles in situ at the same time. The contact angle of the modified aragonite reached 108.59 deg.

  16. Tests for determining impact resistance and strength of glass used for nuclear waste disposal

    International Nuclear Information System (INIS)

    Bunnell, L.R.

    1979-05-01

    Tests are described for determining the impact resistance (Section A) and static tensile strength (Section B) of glasses containing simulated or actual nuclear wastes. This report describes the development and use of these tests to rank different glasses, to assess effects of devitrification, and to examine the effect of impact energy on resulting surface area. For clarity this report is divided into two sections, Impact Resistance and Tensile Strength

  17. [Impact of fluoroquinolone use on multidrug-resistant bacteria emergence].

    Science.gov (United States)

    Nseir, S; Ader, F; Marquette, C-H; Durocher, A

    2005-01-01

    During the last two decades, fluoroquinolone use has significantly increased in Europe and in the USA. This could be explained by the arrival of newer fluoroquinolones with antipneumoccal activity. Increased use of fluoroquinolones is associated with higher rates of bacterial resistance to these antibiotics. Resistance of Gram-negative bacilli to fluoroquinolones is increasing in industrialized countries. In addition, fluoroquinolone use has been identified as a risk factor for colonization and infection to methicillin-resistant Staphylococcus aureus, Pseudomonas aeruginosa, Acinetobacter baumanni, extending-spectrum beta-lactamase producing Gram negative bacilli, and multidrug-resistant bacteria. Nosocomial infections due to multidrug-resistant bacteria are associated with higher mortality and morbidity rates. This could be related to more frequent inappropriate initial antibiotic treatment in these patients. Limiting the use of fluoroquinolones, limiting the duration of treatment with fluoroquinolones, and using appropriate dosage of these antibiotics could be suggested to reduce resistance to these antibiotics and to reduce the emergence of multidrug-resistant bacteria.

  18. Hybrid Technique of Lamellar Keratoplasty (DMEK-S

    Directory of Open Access Journals (Sweden)

    Pavel Studeny

    2013-01-01

    Full Text Available Purpose: To evaluate the outcomes of the hybrid technique of posterior lamellar keratoplasty (DMEK-S. Materials and Methods: 71 eyes of 55 patients enrolled in a single-center study underwent posterior lamellar keratoplasty with a hybrid lamella DMEK-S implanted using a solution implantation technique, owing to endothelial dysfunction. The outcome measures studied were visual acuity and endothelial cell density. Results: The rate of endothelial cell loss caused by surgery was 43.8%. During followups, we observed the stabilization of postoperative findings, or at minimum a very low rate of corneal endothelial cell loss. The UCDVA and BCDVA dramatically improved postoperatively. The rebubbling rate in our group of patients was 61.9%. We replaced the lamella due to its failure or malfunction in 17 patients (23.9%. Conclusion: In summary, DMEK-S combines the advantages of DSEK/DSAEK and DMEK. The central zone of bare Descemet’s membrane and endothelium allows for very good visual outcomes, and the peripheral rim allows for better manipulation of the lamella during implantation. It is an effective method of treating the endothelial dysfunction of various etiologies, but the high complication rate needs to be addressed before widespread implementation of the technique in the future.

  19. Preliminary Study on Impact Resistances of Fiber Reinforced Concrete Applied Nuclear Power Plants

    International Nuclear Information System (INIS)

    Jin, Byeong Moo; Kim, Young Jin; Jeon, Se Jin

    2013-01-01

    Studies to improve the impact resistance depending upon design parameters for fiber reinforced concrete, such as type of fibers and application ratio, are in progress. Authors assessed first the impact resistance of concrete walls depending upon fiber types and missile impact velocities. The safety assessment of nuclear power plants against large civil aircraft crashes have been accomplished for normal concrete and fiber reinforced concretes in this study. Studies on the safety assessments on the nuclear power plants against large civil aircraft crashes are ongoing actively. As a step of evaluating the applicability of fiber reinforced concrete in means of ensuring more structural safety of the nuclear power plants against impact, the impact resistance for the 1% steel and 2% polyamide fiber reinforced concretes have been evaluated. For reactor containment building structures, it seem there is no impact resistance enhancement of fiber reinforced concrete applied to reactor containment building in the cases of impact velocity 150 m/sec considered in this study. However this results from the pre-stressing forces which introduce compressive stresses in concrete wall and dome section of reactor containment building. Nonetheless there may be benefits to apply fiber reinforced concrete to nuclear power plants. For double containment type reactor containment building, the outer structure is a reinforced concrete structure. The impact resistances for non pre-stressed cylindrical reactor containment buildings are enhanced by 23 to 47 % for 2 % polyamide fiber reinforced concretes and 1 % steel fiber reinforced concretes respectively. For other buildings such as auxiliary building, compound building and fuel storage building surrounding the reactor containment building, there are so many reinforced concrete walls which are anticipated some enhancements of impact resistance by using fiber reinforced concretes. And heavier or faster large civil aircraft impacts produce higher

  20. Preliminary Study on Impact Resistances of Fiber Reinforced Concrete Applied Nuclear Power Plants

    Energy Technology Data Exchange (ETDEWEB)

    Jin, Byeong Moo; Kim, Young Jin; Jeon, Se Jin [Daewoo E and C Co. Ltd., Suwon (Korea, Republic of)

    2013-10-15

    Studies to improve the impact resistance depending upon design parameters for fiber reinforced concrete, such as type of fibers and application ratio, are in progress. Authors assessed first the impact resistance of concrete walls depending upon fiber types and missile impact velocities. The safety assessment of nuclear power plants against large civil aircraft crashes have been accomplished for normal concrete and fiber reinforced concretes in this study. Studies on the safety assessments on the nuclear power plants against large civil aircraft crashes are ongoing actively. As a step of evaluating the applicability of fiber reinforced concrete in means of ensuring more structural safety of the nuclear power plants against impact, the impact resistance for the 1% steel and 2% polyamide fiber reinforced concretes have been evaluated. For reactor containment building structures, it seem there is no impact resistance enhancement of fiber reinforced concrete applied to reactor containment building in the cases of impact velocity 150 m/sec considered in this study. However this results from the pre-stressing forces which introduce compressive stresses in concrete wall and dome section of reactor containment building. Nonetheless there may be benefits to apply fiber reinforced concrete to nuclear power plants. For double containment type reactor containment building, the outer structure is a reinforced concrete structure. The impact resistances for non pre-stressed cylindrical reactor containment buildings are enhanced by 23 to 47 % for 2 % polyamide fiber reinforced concretes and 1 % steel fiber reinforced concretes respectively. For other buildings such as auxiliary building, compound building and fuel storage building surrounding the reactor containment building, there are so many reinforced concrete walls which are anticipated some enhancements of impact resistance by using fiber reinforced concretes. And heavier or faster large civil aircraft impacts produce higher

  1. Corrosion resistant composite materials

    International Nuclear Information System (INIS)

    Ul'yanin, E.A.

    1986-01-01

    Foundations for corrosion-resistant composite materials design are considered with account of components compatibility. Fibrous and lamellar composites with metal matrix, dispersion-hardened steels and alloys, refractory metal carbides-, borides-, nitrides-, silicides-based composites are described. Cermet compositions and fields of their application, such as protective coatings for operation in agressive media at high temperatures, are presented

  2. Blueberries’ Impact on Insulin Resistance and Glucose Intolerance

    Directory of Open Access Journals (Sweden)

    April J. Stull

    2016-11-01

    Full Text Available Blueberries are a rich source of polyphenols, which include anthocyanin bioactive compounds. Epidemiological evidence indicates that incorporating blueberries into the diet may lower the risk of developing type 2 diabetes (T2DM. These findings are supported by pre-clinical and clinical studies that have shown improvements in insulin resistance (i.e., increased insulin sensitivity after obese and insulin-resistant rodents or humans consumed blueberries. Insulin resistance was assessed by homeostatic model assessment-estimated insulin resistance (HOMA-IR, insulin tolerance tests, and hyperinsulinemic-euglycemic clamps. Additionally, the improvements in glucose tolerance after blueberry consumption were assessed by glucose tolerance tests. However, firm conclusions regarding the anti-diabetic effect of blueberries cannot be drawn due to the small number of existing clinical studies. Although the current evidence is promising, more long-term, randomized, and placebo-controlled trials are needed to establish the role of blueberries in preventing or delaying T2DM.

  3. Impact of antimicrobial use during beef production on fecal occurrence of antimicrobial resistance

    Science.gov (United States)

    Objective: To determine the impact of typical antimicrobial use during cattle production on fecal occurrence of antimicrobial resistance by culture, quantitative PCR, and metagenomic sequencing. Experimental Design & Analysis: Feces were recovered from colons of 36 lots of "conventional" (CONV) ca...

  4. Residual stress effects on the impact resistance and strength of fiber composites

    Science.gov (United States)

    Chamis, C. C.

    1973-01-01

    Equations have been derived to predict degradation effects of microresidual stresses on impact resistance of unidirectional fiber composites. Equations also predict lamination residual stresses in multilayered angle ply composites.

  5. Effect of Isothermal Bainitic Quenching on Rail Steel Impact Strength and Wear Resistance

    Science.gov (United States)

    Çakir, Fatih Hayati; Çelik, Osman Nuri

    2017-09-01

    The effect of heat treatment regimes on hardness, impact strength, and wear resistance of rail steel for high-speed tracks (rail quality category R350HT) is studied. Analysis of steel properties with a different structure is compared: pearlitic, and upper and lower bainite. It is shown that the steel with bainitic structure has the best impact strength, but wear resistance is better for steel with a lower bainite structure.

  6. Impact of antibiotic restriction on resistance levels of Escherichia coli

    DEFF Research Database (Denmark)

    Boel, Jonas; Andreasen, Viggo; Jarløv, Jens Otto

    2016-01-01

    as a retrospective controlled interrupted time series (ITS) at two university teaching hospitals, intervention and control, with 736 and 552 beds, respectively. The study period was between January 2008 and September 2014. We used ITS analysis to determine significant changes in antibiotic use and resistance levels......% CI -177, -126)] and fluoroquinolones [-44.5 DDDs/1000 bed-days (95% CI -58.9, -30.1)]. Resistance of E. coli showed a significant change in slope for cefuroxime [-0.13 percentage points/month (95% CI -0.21, -0.057)] and ciprofloxacin [-0.15 percentage points/month (95% CI -0.26, -0.038)]. CONCLUSIONS......OBJECTIVES: We evaluated the effect of an antibiotic stewardship programme (ASP) on the use of antibiotics and resistance levels of Escherichia coli using a method that allowed direct comparison between an intervention hospital and a control hospital. METHODS: The study was conducted...

  7. Assessing the potential impact of artemisinin and partner drug resistance in sub-Saharan Africa.

    Science.gov (United States)

    Slater, Hannah C; Griffin, Jamie T; Ghani, Azra C; Okell, Lucy C

    2016-01-06

    Artemisinin and partner drug resistant malaria parasites have emerged in Southeast Asia. If resistance were to emerge in Africa it could have a devastating impact on malaria-related morbidity and mortality. This study estimates the potential impact of artemisinin and partner drug resistance on disease burden in Africa if it were to emerge. Using data from Asia and Africa, five possible artemisinin and partner drug resistance scenarios are characterized. An individual-based malaria transmission model is used to estimate the impact of each resistance scenario on clinical incidence and parasite prevalence across Africa. Artemisinin resistance is characterized by slow parasite clearance and partner drug resistance is associated with late clinical failure or late parasitological failure. Scenarios with high levels of recrudescent infections resulted in far greater increases in clinical incidence compared to scenarios with high levels of slow parasite clearance. Across Africa, it is estimated that artemisinin and partner drug resistance at levels similar to those observed in Oddar Meanchey province in Cambodia could result in an additional 78 million cases over a 5 year period, a 7% increase in cases compared to a scenario with no resistance. A scenario with high levels of slow clearance but no recrudescence resulted in an additional 10 million additional cases over the same period. Artemisinin resistance is potentially a more pressing concern than partner drug resistance due to the lack of viable alternatives. However, it is predicted that a failing partner drug will result in greater increases in malaria cases and morbidity than would be observed from artemisinin resistance only.

  8. Conductivity of an inverse lyotropic lamellar phase under shear flow

    Science.gov (United States)

    Panizza, P.; Soubiran, L.; Coulon, C.; Roux, D.

    2001-08-01

    We report conductivity measurements on solutions of closed compact monodisperse multilamellar vesicles (the so-called ``onion texture'') formed by shearing an inverse lyotropic lamellar Lα phase. The conductivity measured in different directions as a function of the applied shear rate reveals a small anisotropy of the onion structure due to the existence of free oriented membranes. The results are analyzed in terms of a simple model that allows one to deduce the conductivity tensor of the Lα phase itself and the proportion of free oriented membranes. The variation of these two parameters is measured along a dilution line and discussed. The high value of the conductivity perpendicular to the layers with respect to that of solvent suggests the existence of a mechanism of ionic transport through the insulating solvent.

  9. Functionalization of lamellar molybdenum disulphide nanocomposite with gold nanoparticles

    International Nuclear Information System (INIS)

    Lavayen, V.; O'Dwyer, C.; Ana, M.A. Santa; Mirabal, N.; Benavente, E.; Cardenas, G.; Gonzalez, G.; Torres, C.M. Sotomayor

    2007-01-01

    This work explores the functionalization of an organic-inorganic MoS 2 lamellar compound, prepared by a chemical liquid deposition method (CLD), that has an interlamellar distance of ∼5.2 nm, using clusters of gold nanoparticles. The gold nanoparticles have a mean diameter of 1.2 nm, a stability of ∼85 days, and a zeta potential measured to be ζ -6.8 mV (solid). The nanoparticles are localized in the hydrophilic zones, defined by the presence of amine groups of the surfactant between the lamella of MoS 2 . SEM, TEM, EDAX and electron diffraction provide conclusive evidence of the interlamellar insertion of the gold nanoparticles in the MoS 2

  10. Functionalization of lamellar molybdenum disulphide nanocomposite with gold nanoparticles

    Energy Technology Data Exchange (ETDEWEB)

    Lavayen, V. [Tyndall National Institute, University College Cork, Lee Maltings, Prospect Row, Cork (Ireland) and Department of Chemistry, Faculty of Sciences, Universidad de Chile, P.O. Box 653, Santiago (Chile)]. E-mail: vlavayen@tyndall.ie; O' Dwyer, C. [Tyndall National Institute, University College Cork, Lee Maltings, Prospect Row, Cork (Ireland); Ana, M.A. Santa [Department of Chemistry, Faculty of Sciences, Universidad de Chile, P.O. Box 653, Santiago (Chile); Mirabal, N. [Department of Chemistry, Faculty of Sciences, Universidad de Chile, P.O. Box 653, Santiago (Chile); Benavente, E. [Department of Chemistry, Universidad Tecnologica Metropolitana, P.O. Box 9845, Santiago (Chile); Cardenas, G. [Department of Polymers, Faculty of Chemistry Science, Universidad de Concepcion, P.O. Box 160-C, Concepcion (Chile); Gonzalez, G. [Department of Chemistry, Faculty of Sciences, Universidad de Chile, P.O. Box 653, Santiago (Chile); Torres, C.M. Sotomayor [Tyndall National Institute, University College Cork, Lee Maltings, Prospect Row, Cork (Ireland)

    2007-01-30

    This work explores the functionalization of an organic-inorganic MoS{sub 2} lamellar compound, prepared by a chemical liquid deposition method (CLD), that has an interlamellar distance of {approx}5.2 nm, using clusters of gold nanoparticles. The gold nanoparticles have a mean diameter of 1.2 nm, a stability of {approx}85 days, and a zeta potential measured to be {zeta} -6.8 mV (solid). The nanoparticles are localized in the hydrophilic zones, defined by the presence of amine groups of the surfactant between the lamella of MoS{sub 2}. SEM, TEM, EDAX and electron diffraction provide conclusive evidence of the interlamellar insertion of the gold nanoparticles in the MoS{sub 2}.

  11. Solvation thermodynamics of phenylalcohols in lamellar phase surfactant dispersions

    International Nuclear Information System (INIS)

    Martyniak, A.; Scheuermann, R.; Dilger, H.; Tucker, I.M.; Burkert, T.; Hashmi, A.S.K.; Vujosevic', D.; Roduner, E.

    2006-01-01

    The distribution and the stability of five phenylalcohols in a lamellar phase composed of simple bilayers separated by water at 298 and 348K is explored using avoided-level-crossing muon-spin resonance (ALC-μSR). The dependence of the alignment of the bilayer chains on temperature appears to be a crucial factor determining the phenylalcohol partitioning: increasing order of the surfactant tails leads to expulsion of the solute. Moreover, we observed a systematic trend, the longer the chain the deeper the phenyl group dips into the lipid bilayer. Recent studies have shown that the hydrophobic effect is adequate to describe membrane partitioning of small amphiphilic molecules. The solvation thermodynamic properties ΔG sol , ΔH sol , and ΔS sol which determine the solute transfer from the double layer into water prove that the distribution also strongly depends on shape, chemical nature and different structure of phenylalcohols

  12. Solvation thermodynamics of phenylalcohols in lamellar phase surfactant dispersions

    Energy Technology Data Exchange (ETDEWEB)

    Martyniak, A. [Institut fuer Physikalische Chemie, University of Stuttgart, Pfaffenwaldring 55, D-70569 Stuttgart (Germany); Scheuermann, R. [Laboratory for muon Spin Spectroscopy, Paul Scherrer Institute, CH-5232 Villigen (Switzerland); Dilger, H. [Institut fuer Physikalische Chemie, University of Stuttgart, Pfaffenwaldring 55, D-70569 Stuttgart (Germany); Tucker, I.M. [Unilever Research and Development, Port Sunlight, Wirral CH63 3JW (United Kingdom); Burkert, T. [Institut fuer Organische Chemie, University of Stuttgart, Pfaffenwaldring 55, D-70569 Stuttgart (Germany); Hashmi, A.S.K. [Institut fuer Organische Chemie, University of Stuttgart, Pfaffenwaldring 55, D-70569 Stuttgart (Germany); Vujosevic' , D. [Institut fuer Physikalische Chemie, University of Stuttgart, Pfaffenwaldring 55, D-70569 Stuttgart (Germany); Roduner, E. [Institut fuer Physikalische Chemie, University of Stuttgart, Pfaffenwaldring 55, D-70569 Stuttgart (Germany)]. E-mail: e.roduner@ipc.uni-stuttgart.de

    2006-03-31

    The distribution and the stability of five phenylalcohols in a lamellar phase composed of simple bilayers separated by water at 298 and 348K is explored using avoided-level-crossing muon-spin resonance (ALC-{mu}SR). The dependence of the alignment of the bilayer chains on temperature appears to be a crucial factor determining the phenylalcohol partitioning: increasing order of the surfactant tails leads to expulsion of the solute. Moreover, we observed a systematic trend, the longer the chain the deeper the phenyl group dips into the lipid bilayer. Recent studies have shown that the hydrophobic effect is adequate to describe membrane partitioning of small amphiphilic molecules. The solvation thermodynamic properties {delta}G{sub sol}, {delta}H{sub sol}, and {delta}S{sub sol} which determine the solute transfer from the double layer into water prove that the distribution also strongly depends on shape, chemical nature and different structure of phenylalcohols.

  13. Evaluation of the Impact Resistance of Various Composite Sandwich Beams by Vibration Tests

    Directory of Open Access Journals (Sweden)

    Amir Shahdin

    2011-01-01

    Full Text Available Impact resistance of different types of composite sandwich beams is evaluated by studying vibration response changes (natural frequency and damping ratio. This experimental works will help aerospace structural engineer in assess structural integrity using classification of impact resistance of various composite sandwich beams (entangled carbon and glass fibers, honeycomb and foam cores. Low velocity impacts are done below the barely visible impact damage (BVID limit in order to detect damage by vibration testing that is hardly visible on the surface. Experimental tests are done using both burst random and sine dwell testing in order to have a better confidence level on the extracted modal parameters. Results show that the entangled sandwich beams have a better resistance against impact as compared to classical core materials.

  14. Antibiotic and antiseptic resistance: impact on public health.

    Science.gov (United States)

    Levy, S B

    2000-10-01

    More and more we are moving patients from hospitals to homes for continued treatment. Vancomycin and triclosan were used for 30 years before any resistance emerged, because their applications were strictly limited. Today, after greatly increased use, resistance to both antibiotics and antibacterials has appeared. Of importance there are genetic links between resistance to antibiotics and to antibacterials. Health professionals and the public need to be educated about the rational use of drugs that affect the microbial world. The Alliance for the Prudent Use of Antibiotics, an international organization established in 1981 with members in more than 100 countries, has adopted education as its prime mission. Via its web site (www.apua.org) and linked information on reservoirs of antibiotic resistance (ROAR) among nonpathogenic bacteria, it reaches both providers and consumers. The message is simple: bacteria are needed for our survival. The vast majority of bacteria perform important functions that are crucial for our lives. Prudent use of both antibiotics and antibacterials must be championed to achieve and maintain the balanced microbial environment in which we have entered and evolved.

  15. Novel spatula and dissector for safer deep anterior lamellar keratoplasty

    Directory of Open Access Journals (Sweden)

    Gustavo ,2,3 Bonfadini

    2014-10-01

    Full Text Available Objective: We describe a novel spatula and dissector to facilitate the big-bubble technique in deep anterior lamellar keratoplasty (DALK. Methods: A 29-year-old man who was diagnosed with bilateral keratoconus underwent deep anterior lamellar keratoplasty (DALK. After 350μm partial thickness incision of the recipient cornea, the Bonfadini dissector was inserted at the deepest point in the peripheral incision and could be advanced to the center of the cornea safely because of its "semi-sharp" tip. After achieving the big-bubble (BB separation of Descemet membrane (DM from the overlying stroma, the anterior stromal disc was removed. Viscoelastic material was placed on the stromal bed to prevent uncontrolled collapse and perforation of DM during the paracentesis blade incision into the BB. We could detect the safe opening of the BB using the Bonfadini dissector by the leakage of air bubbles into the viscoelastic material. After injecting viscoelastic material into the BB space, we inserted the Bonfadini spatula into the bigbubble safely because of its curved profile and blunt edges. The groove along the length of the Bonfadini spatula enables safe and efficient incision or the residual stromal tissue using the pointed end of a sharp blade while protecting the underlying DM. After removal of posterior stroma, the donor button was sutured with 16 interrupted 10-0 nylon sutures. Results: This technique and the use of the Bonfadini spatula and dissector facilitate exposure of Descemet membrane. Conclusion: The smooth Bonfadini DALK spatula and dissector facilitate safe and efficient completion of DALK surgery.

  16. The resistance to impact of spent Magnox fuel transport flasks

    International Nuclear Information System (INIS)

    Anon.

    1985-01-01

    This book completes the papers of the four-year programme of research and demonstrations embarked upon by the CEGB in 1981, culminating in the spectacular train crash at Old Dalby in July 1984. It explains the CEGB's operations in relation to the transportation of spent Magnox fuel. The public tests described in this book are more effective in improving public understanding and confidence than any amount of explanations could have been, raising the wider question of how best the scientific community can respond to the legitimate concerns of the man and woman in the street about the generating of electricity from nuclear power. The contents are: Taking care; irradiated fuel transport in the UK; programming for flask safety; the use of scale models in impact testing; flask analytical studies; drop test facilities; demonstration drop test; a study of flask transport impact hazards; impact of Magnox irradiated fuel transport flasks into rock and concrete; rail crash demonstration scenarios; horizontal impact testing of quarter scale flasks using masonry targets; horizontal crash testing and analysis of model flatrols; flatrol test; analysis of full scale impact into an abutment; analysis of primary impact forces in the train crash demonstration; horizontal impact tests of quarter scale Magnox flasks and stylised model locomotives; predictive estimates for behaviour in the train crash demonstration; design and organization of the crash; execution of the crash demonstration by British Rail; instrumentation for the train crash demonstration; photography for the crash demonstration; a summary of the CEGB's flask accident impact studies

  17. Temporal Relationship Between Hyperuricemia and Insulin Resistance and Its Impact on Future Risk of Hypertension.

    Science.gov (United States)

    Han, Tianshu; Lan, Li; Qu, Rongge; Xu, Qian; Jiang, Ruyue; Na, Lixin; Sun, Changhao

    2017-10-01

    Although hyperuricemia and insulin resistance significantly correlated, their temporal sequence and how the sequence influence on future risk of hypertension are largely unknown. This study assessed temporal relationship between uric acid and insulin resistance and its impact on future risk of hypertension by examining a longitudinal cohort including 8543 subjects aged 20 to 74 years from China, with an average follow-up of 5.3 years. Measurements of fasting uric acid, as well as fasting and 2-hour serum glucose and insulin, were obtained at baseline and follow-up. Indicators of hepatic and peripheral insulin resistance were calculated. Cross-lagged panel and mediation analysis were used to examine the temporal relationship between uric acid and insulin resistance and its impact on follow-up hypertension. After adjusting for covariates, the cross-lagged path coefficients ( β 1 values) from baseline uric acid to follow-up insulin resistance indices were significantly greater than path coefficients ( β 2 values) from baseline insulin resistance indices to follow-up uric acid ( β 1 =0.110 versus β 2 =0.017; P hypertensive group were significantly greater than that in the normotensive group ( P hypertension, and the mediation effect of peripheral insulin resistance was significantly greater than that of hepatic insulin resistance (31.3% versus 13.2%; P hypertension than hepatic insulin resistance does. © 2017 American Heart Association, Inc.

  18. Impact resistance of sustainable construction material using light weight oil palm shells reinforced geogrid concrete slab

    International Nuclear Information System (INIS)

    Muda, Z C; Usman, F; Beddu, S; Alam, M A; Mustapha, K N; Birima, A H; Sidek, L M; Rashid, M A; Malik, G; Zarroq, O S

    2013-01-01

    This paper investigate the performance of lightweight oil palm shells (OPS) concrete slab with geogrid reinforcement of 300mm × 300mm size with 20mm, 30mm and 40 mm thick casted with different geogrid orientation and boundary conditions subjected to low impact projectile test. A self-fabricated drop-weight impact test rig with a steel ball weight of 1.2 kg drop at 1 m height has been used in this research work. The main variables for the study is to find the relationship of the impact resistance the slab thickness, boundary conditions and geogrid reinforcement orientation. Test results indicate that the used of the geogrid reinforcement increased the impact resistance under service (first) limit crack up to 5.9 times and at ultimate limit crack up to 20.1 times against the control sample (without geogrid). A good linear relationship has been established between first and ultimate crack resistance against the slab thickness. The orientation of the geogrid has minor significant to the crack resistance of the OPS concrete slab. OPS geogrid reinforced slab has a good crack resistance properties that can be utilized as a sustainable impact resistance construction materials.

  19. Strengthening of oxidation resistant materials for gas turbine applications. [treatment of silicon ceramics for increased flexural strength and impact resistance

    Science.gov (United States)

    Kirchner, H. P.

    1974-01-01

    Silicon nitride and silicon carbide ceramics were treated to form compressive surface layers. On the silicon carbide, quenching and thermal exposure treatments were used, and on the silicon nitride, quenching, carburizing, and a combination of quenching and carburizing were used. In some cases substantial improvements in impact resistance and/or flexural strength were observed. The presence of compressive surface stresses was demonstrated by slotted rod tests.

  20. Chromium Resistant Bacteria: Impact on Plant Growth in Soil Microcosm

    Directory of Open Access Journals (Sweden)

    Sayel Hanane

    2014-07-01

    Full Text Available Three chromium resistant bacterial strains, Pseudomonas fluorescens PF28, Enterobacter amnigenus EA31 and Enterococcus gallinarum S34 isolated from tannery waste contaminated soil were used in this study. All strains could resist a high concentration of K2Cr2O7 that is up to 300 mg/L. The effect of these strains on clover plants (Trifolium campestre in the presence of two chromium salts CrCl3 and K2Cr2O7 was studied in soil microcosm. Application of chromium salts adversely affected seed germination, root and shoot length. Bacterial inoculation improved the growth parameters under chromate stress when compared with non inoculated respective controls. There was observed more than 50% reduction of Cr(VI in inoculated soil microcosms, as compared to the uninoculated soil under the same conditions. The results obtained in this study are significant for the bioremediation of chromate pollution.

  1. Enterobacter cloacae complex: clinical impact and emerging antibiotic resistance.

    Science.gov (United States)

    Mezzatesta, Maria Lina; Gona, Floriana; Stefani, Stefania

    2012-07-01

    Species of the Enterobacter cloacae complex are widely encountered in nature, but they can act as pathogens. The biochemical and molecular studies on E. cloacae have shown genomic heterogeneity, comprising six species: Enterobacter cloacae, Enterobacter asburiae, Enterobacter hormaechei, Enterobacter kobei, Enterobacter ludwigii and Enterobacter nimipressuralis, E. cloacae and E. hormaechei are the most frequently isolated in human clinical specimens. Phenotypic identification of all species belonging to this taxon is usually difficult and not always reliable; therefore, molecular methods are often used. Although the E. cloacae complex strains are among the most common Enterobacter spp. causing nosocomial bloodstream infections in the last decade, little is known about their virulence-associated properties. By contrast, much has been published on the antibiotic-resistance features of these microorganisms. In fact, they are capable of overproducing AmpC β-lactamases by derepression of a chromosomal gene or by the acquisition of a transferable ampC gene on plasmids conferring the antibiotic resistance. Many other resistance determinants that are able to render ineffective almost all antibiotic families have been recently acquired. Most studies on antimicrobial susceptibility are focused on E. cloacae, E. hormaechei and E. asburiae; these studies reported small variations between the species, and the only significant differences had no discriminating features.

  2. The impact of chewing gum resistance on immediate free recall.

    Science.gov (United States)

    Rickman, Sarah; Johnson, Andrew; Miles, Christopher

    2013-08-01

    Although the facilitative effects of chewing gum on free recall have proved contentious (e.g., Tucha, Mecklinger, Maier, Hammerl, & Lange, 2004; Wilkinson, Scholey, & Wesnes, 2002), there are strong physiological grounds, for example, increased cerebral activity and blood flow following the act of mastication, to suppose facilitation. The present study manipulated resistance to mastication, that is, chewing four pellets versus one pellet of gum, with the assumption that increased resistance will accentuate cerebral activity and blood flow. Additionally, chewing rate was recorded for all participants. In a within-participants design, participants performed a series of immediate free recall tasks while chewing gum at learning (one or four pellets) and recall (one or four pellets). Increased chewing resistance was not associated with increased memory performance, despite consistent chewing rates for both the one and four pellet conditions at both learning and recall. However, a pattern of recall consistent with context-dependent memory was observed. Here, participants who chewed the equivalent number of gum pellets at both learning and recall experienced significantly superior word recall compared to those conditions where the number of gum pellets differed. ©2012 The British Psychological Society.

  3. Impact of electric and magnetic fields in a resistant medium on the ...

    African Journals Online (AJOL)

    In this paper, we compare the impact of electric and magnetic fields in a resistant medium on the velocity of a particle subject to varying path angles by using numerical integration of finite difference method. The results show that the magnetic field has much impact on the velocity than the electric field. Journal of the Nigerian ...

  4. Integrating soil conservation practices and glyphosate-resistant crops: impacts on soil.

    Science.gov (United States)

    Locke, Martin A; Zablotowicz, Robert M; Reddy, Krishna N

    2008-04-01

    Conservation practices often associated with glyphosate-resistant crops, e.g. limited tillage and crop cover, improve soil conditions, but only limited research has evaluated their effects on soil in combination with glyphosate-resistant crops. It is assumed that conservation practices have similar benefits to soil whether or not glyphosate-resistant crops are used. This paper reviews the impact on soil of conservation practices and glyphosate-resistant crops, and presents data from a Mississippi field trial comparing glyphosate-resistant and non-glyphosate-resistant maize (Zea mays L.) and cotton (Gossypium hirsutum L.) under limited tillage management. Results from the reduced-tillage study indicate differences in soil biological and chemical properties owing to glyphosate-resistant crops. Under continuous glyphosate-resistant maize, soils maintained greater soil organic carbon and nitrogen as compared with continuous non-glyphosate-resistant maize, but no differences were measured in continuous cotton or in cotton rotated with maize. Soil microbial community structure based on total fatty acid methyl ester analysis indicated a significant effect of glyphosate-resistant crop following 5 years of continuous glyphosate-resistant crop as compared with the non-glyphosate-resistant crop system. Results from this study, as well as the literature review, indicate differences attributable to the interaction of conservation practices and glyphosate-resistant crop, but many are transient and benign for the soil ecosystem. Glyphosate use may result in minor effects on soil biological/chemical properties. However, enhanced organic carbon and plant residues in surface soils under conservation practices may buffer potential effects of glyphosate. Long-term field research established under various cropping systems and ecological regions is needed for critical assessment of glyphosate-resistant crop and conservation practice interactions. Copyright (c) 2008 by John Wiley & Sons

  5. Fundamental studies of low velocity impact resistance of graphite fiber reinforced polymer matrix composites

    International Nuclear Information System (INIS)

    Bowles, K.J.

    1985-01-01

    A study was conducted to relate the impact resistance of graphite fiber reinforced composites with matrix properties through gaining an understanding of the basic mechanics involved in the deformation and fracture process, and the effect of the polymer matrix structure on these mechanisms. It was found that the resin matrix structure influences the composite impact resistance in at least two ways. The integration of flexibilizers into the polymer chain structure tends to reduce the T/sub G/ and the mechanical properties of the polymer. The reduction in the mechanical properties of the matrix does not enhance the composite impact resistance because it allows matrix controlled failure to initiate impact damage. Linear polymers, which contain no active groups for cross-linking, do not toughen composites because the fiber-matrix interfacial bond is not of sufficient strength to prevent interfacial failure from occurring. Toughness must be built into the basic polymer backbone and cross-linking structure

  6. The impact of triclosan on the spread of antibiotic resistance in the environment

    Directory of Open Access Journals (Sweden)

    Daniel E Carey

    2015-01-01

    Full Text Available Triclosan (TCS is a commonly used antimicrobial agent that enters wastewater treatment plants (WWTPs and the environment. An estimated 1.1x105 to 4.2x105 kg of TCS are discharged from these WWTPs per year in the United States. The abundance of TCS along with its antimicrobial properties have given rise to concern regarding its impact on antibiotic resistance in the environment. The objective of this review is to assess the state of knowledge regarding the impact of TCS on multidrug resistance in environmental settings, including engineered environments such as anaerobic digesters. Pure culture studies are reviewed in this paper to gain insight into the substantially smaller body of research surrounding the impacts of TCS on environmental microbial communities. Pure culture studies, mainly on pathogenic strains of bacteria, demonstrate that TCS is often associated with multidrug resistance. Research is lacking to quantify the current impacts of TCS discharge to the environment, but it is known that resistance to TCS and multidrug resistance can increase in environmental microbial communities exposed to TCS. Research plans are proposed to quantitatively define the conditions under which TCS selects for multidrug resistance in the environment.

  7. HIV protease drug resistance and its impact on inhibitor design.

    Science.gov (United States)

    Ala, P J; Rodgers, J D; Chang, C H

    1999-07-01

    The primary cause of resistance to the currently available HIV protease inhibitors is the accumulation of multiple mutations in the viral protease. So far more than 20 substitutions have been observed in the active site, dimer interface, surface loops and flaps of the homodimer. While many mutations reduce the protease's affinity for inhibitors, others appear to enhance its catalytic efficiency. This high degree of genetic flexibility has made the protease an elusive drug target. The design of the next generation of HIV protease inhibitors will be discussed in light of the current structural information.

  8. Hepatitis C Variability, Patterns of Resistance, and Impact on Therapy

    Directory of Open Access Journals (Sweden)

    Cristina Simona Strahotin

    2012-01-01

    Full Text Available Hepatitis C (HCV, a leading cause of chronic liver disease, cirrhosis, and hepatocellular carcinoma, is the most common indication for liver transplantation in the United States. Although annual incidence of infection has declined since the 1980s, aging of the currently infected population is expected to result in an increase in HCV burden. HCV is prone to develop resistance to antiviral drugs, and despite considerable efforts to understand the virus for effective treatments, our knowledge remains incomplete. This paper reviews HCV resistance mechanisms, the traditional treatment with and the new standard of care for hepatitis C treatment. Although these new treatments remain PEG-IFN-α- and ribavirin-based, they add one of the newly FDA approved direct antiviral agents, telaprevir or boceprevir. This new “triple therapy” has resulted in greater viral cure rates, although treatment failure remains a possibility. The future may belong to nucleoside/nucleotide analogues, non-nucleoside RNA-dependent RNA polymerase inhibitors, or cyclophilin inhibitors, and the treatment of HCV may ultimately parallel that of HIV. However, research should focus not only on effective treatments, but also on the development of a HCV vaccine, as this may prove to be the most cost-effective method of eradicating this disease.

  9. How externalities impact an evaluation of strategies to prevent antimicrobial resistance in health care organizations

    Directory of Open Access Journals (Sweden)

    Jenine R. Leal

    2017-06-01

    Full Text Available Abstract Background The rates of antimicrobial-resistant organisms (ARO continue to increase for both hospitalized and community patients. Few resources have been allocated to reduce the spread of resistance on global, national and local levels, in part because the broader economic impact of antimicrobial resistance (i.e. the externality is not fully considered when determining how much to invest to prevent AROs, including strategies to contain antimicrobial resistance, such as antimicrobial stewardship programs. To determine how best to measure and incorporate the impact of externalities associated with the antimicrobial resistance when making resource allocation decisions aimed to reduce antimicrobial resistance within healthcare facilities, we reviewed the literature to identify publications which 1 described the externalities of antimicrobial resistance, 2 described approaches to quantifying the externalities associated with antimicrobial resistance or 3 described macro-level policy options to consider the impact of externalities. Medline was reviewed to identify published studies up to September 2016. Main body An externality is a cost or a benefit associated with one person’s activity that impacts others who did not choose to incur that cost or benefit. We did not identify a well-accepted method of accurately quantifying the externality associated with antimicrobial resistance. We did identify three main methods that have gained popularity to try to take into account the externalities of antimicrobial resistance, including regulation, charges or taxes on the use of antimicrobials, and the right to trade permits or licenses for antimicrobial use. To our knowledge, regulating use of antimicrobials is the only strategy currently being used by health care systems to reduce antimicrobial use, and thereby reduce AROs. To justify expenditures on programs that reduce AROs (i.e. to formally incorporate the impact of the negative externality of

  10. The Impact of Morphology and Composition on the Resistivity and Oxidation Resistance of Metal Nanostructure Films

    Science.gov (United States)

    Stewart, Ian Edward

    Printed electronics, including transparent conductors, currently rely on expensive materials to generate high conductivity devices. Conductive inks for thick film applications utilizing inkjet, aerosol, and screen printing technologies are often comprised of expensive and rare silver particles. Thin film applications such as organic light emitting diodes (OLEDs) and organic photovoltaics (OPVs) predominantly employ indium tin oxide (ITO) as the transparent conductive layer which requires expensive and wasteful vapor deposition techniques. Thus an alternative to silver and ITO with similar performance in printed electronics warrants considerable attention. Copper nanomaterials, being orders of magnitude cheaper and more abundant than silver or indium, solution-coatable, and exhibiting a bulk conductivity only 6 % less than silver, have emerged as a promising candidate for incorporation in printed electronics. First, we examine the effect of nanomaterial shape on the conductivity of thick films. The inks used in such films often require annealing at elevated temperature in order to sinter the silver nanoparticles together and obtain low resistivities. We explore the change in morphology and resistivity that occurs upon heating thick films of silver nanowires (of two different lengths, Ag NWs), nanoparticles (Ag NPs), and microflakes (Ag MFs) deposited from water at temperatures between 70 and 400 °C. At the lowest temperatures, longer Ag NWs exhibited the lowest resistivity (1.8 x 10-5 O cm), suggesting that the resistivity of thick films of silver nanostructures is dominated by the contact resistance between particles. This result supported previous research showing that junction resistance between Ag NWs in thin film conductors also dominates optoelectronic performance. Since the goal is to replace silver with copper, we perform a similar analysis by using a pseudo-2D rod network modeling approach that has been modified to include lognormal distributions in length

  11. Formation of Lamellar Structured Oxide Dispersion Strengthening Layers in Zircaloy-4

    Energy Technology Data Exchange (ETDEWEB)

    Jung, Yang-Il; Park, Jung-Hwan; Park, Dong-Jun; Kim, Hyun-Gil; Yang, Jae-Ho; Koo, Yang-Hyun [Korea Atomic Energy Research Institute, Daejeon (Korea, Republic of); Lim, Yoon-Soo [Hanbat National University, Daejeon (Korea, Republic of)

    2016-10-15

    Korea Atomic Energy Research Institute (KAERI) is one of the leading organizations for developing ATF claddings. One concept is to form an oxidation-resistant layer on Zr cladding surface. The other is to increase high-temperature mechanical strength of Zr tube. The oxide dispersion strengthened (ODS) zirconium was proposed to increase the strength of the Zr-based alloy up to high temperatures. According to our previous investigations, the tensile strength of Zircaloy-4 was increased by up to 20% with the formation of a thin dispersed oxide layer with a thickness less than 10% of that of the Zircaloy-4 substrate. However, the tensile elongation of the samples decreased drastically. The brittle fracture was a major concern in development of the ODS Zircaloy-4. In this study, a lamellar structure of ODS layer was formed to increase ductility of the ODS Zircaloy-4. The mechanical properties were varied depending on the structure of ODS layer. For example, the partial formation of ODS layer with the thickness of 10% to the substrate thickness induced the increase in tensile strength up to about 20% than fresh Zircaloy-4.

  12. Numerical Study on the Projectile Impact Resistance of Multi-Layer Sandwich Panels with Cellular Cores

    Directory of Open Access Journals (Sweden)

    Liming Chen

    Full Text Available Abstract The projectile impact resistance of sandwich panels with cellular cores with different layer numbers has been numerically investigated by perpendicular impact of rigid blunt projectile in ABAQUS/Explicit. These panels with corrugation, hexagonal honeycomb and pyramidal truss cores are impacted at velocities between 50 m/s and 202 m/s while the relative density ranges from 0.001 to 0.15 The effects of core configuration and layer number on projectile impact resistance of sandwich panels with cellular cores are studied. At low impact velocity, sandwich panels with cellular cores outperform the corresponding solid ones and non-montonicity between relative density and projectile resistance of sandwich panels is found and analyzed. Multiplying layer can reduce the maximum central deflection of back face sheet of the above three sandwich panels except pyramidal truss ones in high relative density. Hexagonal honeycomb sandwich panel is beneficial to increasing layer numbers in lowering the contact force and prolonging the interaction time. At high impact velocity, though corrugation and honeycomb sandwich panels are inferior to the equal-weighted solid panels, pyramidal truss ones with high relative density outperform the corresponding solid panels. Multiplying layer is not the desirable way to improve high-velocity projectile resistance.

  13. Static resistance function for steel-plate composite (SC) walls subject to impactive loading

    Energy Technology Data Exchange (ETDEWEB)

    Bruhl, Jakob C., E-mail: jbruhl@purdue.edu; Varma, Amit H., E-mail: ahvarma@purdue.edu; Kim, Joo Min, E-mail: kim1493@purdue.edu

    2015-12-15

    Highlights: • An idealized static resistance function for SC walls is proposed. • The influence of design parameters on static resistance is explained. • SDOF models can accurately estimate global response of SC walls to missile impact. - Abstract: Steel-plate composite (SC) walls consist of a plain concrete core reinforced with two steel faceplates on the surfaces. Modules (consisting of steel faceplates, shear connectors and tie-bars) can be shop-fabricated and shipped to the site for erection and concrete casting, which expedites construction schedule and thus economy. SC structures have recently been used in nuclear power plant designs and are being considered for the next generation of small modular reactors. Design for impactive and impulsive loading is an important consideration for SC walls in safety-related nuclear facilities. The authors have previously developed design methods to prevent local failure (perforation) of SC walls due to missile impact. This paper presents the development of static resistance functions for use in single-degree-of-freedom (SDOF) analyses to predict the maximum displacement response of SC walls subjected to missile impact and designed to resist local failure (perforation). The static resistance function for SC walls is developed using results of numerical analyses and parametric studies conducted using benchmarked 3D finite element (FE) models. The influence of various design parameters are discussed and used to develop idealized bilinear resistance functions for SC walls with fixed edges and simply supported edges. Results from dynamic non-linear FE analysis of SC panels subjected to rigid missile impact are compared with the maximum displacements predicted by SDOF analyses using the bilinear resistance function.

  14. Static resistance function for steel-plate composite (SC) walls subject to impactive loading

    International Nuclear Information System (INIS)

    Bruhl, Jakob C.; Varma, Amit H.; Kim, Joo Min

    2015-01-01

    Highlights: • An idealized static resistance function for SC walls is proposed. • The influence of design parameters on static resistance is explained. • SDOF models can accurately estimate global response of SC walls to missile impact. - Abstract: Steel-plate composite (SC) walls consist of a plain concrete core reinforced with two steel faceplates on the surfaces. Modules (consisting of steel faceplates, shear connectors and tie-bars) can be shop-fabricated and shipped to the site for erection and concrete casting, which expedites construction schedule and thus economy. SC structures have recently been used in nuclear power plant designs and are being considered for the next generation of small modular reactors. Design for impactive and impulsive loading is an important consideration for SC walls in safety-related nuclear facilities. The authors have previously developed design methods to prevent local failure (perforation) of SC walls due to missile impact. This paper presents the development of static resistance functions for use in single-degree-of-freedom (SDOF) analyses to predict the maximum displacement response of SC walls subjected to missile impact and designed to resist local failure (perforation). The static resistance function for SC walls is developed using results of numerical analyses and parametric studies conducted using benchmarked 3D finite element (FE) models. The influence of various design parameters are discussed and used to develop idealized bilinear resistance functions for SC walls with fixed edges and simply supported edges. Results from dynamic non-linear FE analysis of SC panels subjected to rigid missile impact are compared with the maximum displacements predicted by SDOF analyses using the bilinear resistance function.

  15. Improvement of impact-resistance of a nuclear containment building using fiber reinforced concrete

    International Nuclear Information System (INIS)

    Jeon, Se-Jin; Jin, Byeong-Moo

    2016-01-01

    Highlights: • Impact-resistance of a structure can be improved by fiber reinforced concrete (FRC). • Material modeling of FRC is incorporated into finite element analysis of a structure. • A new index for impact-resistance is proposed based on plastic dissipation energy. • A nuclear power plant made of FRC shows improved resistance against aircraft crashes. - Abstract: Since the act of terrorism that occurred in the USA on September 11, 2001, the protection of nuclear power plants against large commercial aircraft crashes has been an emerging issue. Besides the verification of the safety of nuclear power plants in operation or in design, efficient methods for improving the impact-resistance of these structures have been investigated. Fiber reinforced concrete (FRC) has been generally accepted as an effective material for this purpose. In particular, FRC has been developed to improve the tensile behavior of concrete such as tensile strength, ductility and toughness. One of the main fields of application of FRC can be found in blast-protective or blast-resistant concrete structures. It is expected, therefore, that safety-related structures in a nuclear power plant can also be effectively protected from external blast, aircraft crash, etc. by applying FRC. In order to analytically verify the effect on structural behavior of applying FRC, the particular material properties of FRC should be incorporated into the material modeling of a structural analysis program. This study investigates the mathematical modeling of FRC, which represents various aspects of material behavior. Two numerical examples are provided to show the improved impact-resistance of a nuclear containment building that is expected when applying FRC in comparison with ordinary concrete. The analysis results show that the displacement decreases by 43–67% while the impact-resistance increases by 40–82%, depending on a fiber type.

  16. Improvement of impact-resistance of a nuclear containment building using fiber reinforced concrete

    Energy Technology Data Exchange (ETDEWEB)

    Jeon, Se-Jin, E-mail: conc@ajou.ac.kr [Ajou University, 206, World cup-ro, Yeongtong-gu, Suwon-si, Gyeonggi-do 16499 (Korea, Republic of); Jin, Byeong-Moo [DAEWOO E& C, Institute of Construction Technology, 20, Suil-ro 123beon-gil, Jangan-gu, Suwon-si, Gyeonggi-do 16297 (Korea, Republic of)

    2016-08-01

    Highlights: • Impact-resistance of a structure can be improved by fiber reinforced concrete (FRC). • Material modeling of FRC is incorporated into finite element analysis of a structure. • A new index for impact-resistance is proposed based on plastic dissipation energy. • A nuclear power plant made of FRC shows improved resistance against aircraft crashes. - Abstract: Since the act of terrorism that occurred in the USA on September 11, 2001, the protection of nuclear power plants against large commercial aircraft crashes has been an emerging issue. Besides the verification of the safety of nuclear power plants in operation or in design, efficient methods for improving the impact-resistance of these structures have been investigated. Fiber reinforced concrete (FRC) has been generally accepted as an effective material for this purpose. In particular, FRC has been developed to improve the tensile behavior of concrete such as tensile strength, ductility and toughness. One of the main fields of application of FRC can be found in blast-protective or blast-resistant concrete structures. It is expected, therefore, that safety-related structures in a nuclear power plant can also be effectively protected from external blast, aircraft crash, etc. by applying FRC. In order to analytically verify the effect on structural behavior of applying FRC, the particular material properties of FRC should be incorporated into the material modeling of a structural analysis program. This study investigates the mathematical modeling of FRC, which represents various aspects of material behavior. Two numerical examples are provided to show the improved impact-resistance of a nuclear containment building that is expected when applying FRC in comparison with ordinary concrete. The analysis results show that the displacement decreases by 43–67% while the impact-resistance increases by 40–82%, depending on a fiber type.

  17. Surfactant assisted synthesis of lamellar nanostructured LiFePO4 at 388 K

    International Nuclear Information System (INIS)

    Liu Chao; Ma Dongxia; Ji Xiujie; Zhao Shanshan; Li Song

    2011-01-01

    Lamellar nanostructured lithium iron phosphate (Lα-LFP) was synthesized using anion surfactant sodium dodecyl sulphonate (SDS) as supermolecular template in water-ethanol media at 388 K under self-generated pressure. FeSO 4 , (NH 4 ) 2 HPO 4 and LiOH were used as Fe, P and Li sources, respectively. The inorganic phase was analyzed by X-ray diffraction (XRD). The morphology and the lamellar nanostructure were observed by field emitting scanning electron microscopy (FESEM). The results showed that the synthesized Lα-LFP presents not only the ordered lamellar microstructure accumulated by 20-40-nm thick LFP layers, but also the consequent self-assembled blocky particles of 0.5-1 μm. In contrast, template free LFP (TF-LFP) show a flake-shaped and mess-orientated microstructure. As a soft template, SDS played the roles of inducing the lamellar nanostructure, purifying the inorganic phase and decreasing the synthesis temperature.

  18. Flux flow and proximity effects in aligned Pb--Cd eutectic lamellar structures

    Energy Technology Data Exchange (ETDEWEB)

    Spencer, C. R.

    1977-09-01

    A high speed directional solidification technique was used to fabricate lamellar Pb-Cd and (Pb-Mg)--(Cd-Mg) superconductor-normal metal composites in which all the lamellae are oriented perpendicular to the broad surface of the sample. These lamellar composites are found to behave like a large number (approximately 1000) of superconducting-normal-superconducting junctions. For the Pb-Cd eutectic system, the critical current densities and critical fields have shown no dependence upon the lamellar periods between 1.0 and 3.1 microns. The critical current density of the aligned lamellar Pb-Cd structures was enhanced approximately 50% when compared to quenched eutectic alloy and to pure Pb. The superconducting transition temperature, T/sub c/, varies inversely with the square of the thickness of the superconducting material as expected from Ginzburg-Landau theory. Upon annealing, the Pb lamellae change from type II to type I superconductivity.

  19. Flux flow and proximity effects in aligned Pb--Cd eutectic lamellar structures

    International Nuclear Information System (INIS)

    Spencer, C.R.

    1977-09-01

    A high speed directional solidification technique was used to fabricate lamellar Pb-Cd and (Pb-Mg)--(Cd-Mg) superconductor-normal metal composites in which all the lamellae are oriented perpendicular to the broad surface of the sample. These lamellar composites are found to behave like a large number (approximately 1000) of superconducting-normal-superconducting junctions. For the Pb-Cd eutectic system, the critical current densities and critical fields have shown no dependence upon the lamellar periods between 1.0 and 3.1 microns. The critical current density of the aligned lamellar Pb-Cd structures was enhanced approximately 50% when compared to quenched eutectic alloy and to pure Pb. The superconducting transition temperature, T/sub c/, varies inversely with the square of the thickness of the superconducting material as expected from Ginzburg-Landau theory. Upon annealing, the Pb lamellae change from type II to type I superconductivity

  20. Does human activity impact the natural antibiotic resistance background? Abundance of antibiotic resistance genes in 21 Swiss lakes.

    Science.gov (United States)

    Czekalski, Nadine; Sigdel, Radhika; Birtel, Julia; Matthews, Blake; Bürgmann, Helmut

    2015-08-01

    Antibiotic resistance genes (ARGs) are emerging environmental contaminants, known to be continuously discharged into the aquatic environment via human and animal waste. Freshwater aquatic environments represent potential reservoirs for ARG and potentially allow sewage-derived ARG to persist and spread in the environment. This may create increased opportunities for an eventual contact with, and gene transfer to, human and animal pathogens via the food chain or drinking water. However, assessment of this risk requires a better understanding of the level and variability of the natural resistance background and the extent of the human impact. We have analyzed water samples from 21 Swiss lakes, taken at sampling points that were not under the direct influence of local contamination sources and analyzed the relative abundance of ARG using quantitative real-time PCR. Copy numbers of genes mediating resistance to three different broad-spectrum antibiotic classes (sulfonamides: sul1, sul2, tetracyclines: tet(B), tet(M), tet(W) and fluoroquinolones: qnrA) were normalized to copy numbers of bacterial 16S rRNA genes. We used multiple linear regression to assess if ARG abundance is related to human activities in the catchment, microbial community composition and the eutrophication status of the lakes. Sul genes were detected in all sampled lakes, whereas only four lakes contained quantifiable numbers of tet genes, and qnrA remained below detection in all lakes. Our data indicate higher abundance of sul1 in lakes with increasing number and capacity of wastewater treatment plants (WWTPs) in the catchment. sul2 abundance was rather related to long water residence times and eutrophication status. Our study demonstrates the potential of freshwater lakes to preserve antibiotic resistance genes, and provides a reference for ARG abundance from lake systems with low human impact as a baseline for assessing ARG contamination in lake water. Copyright © 2015 Elsevier Ltd. All rights

  1. Microkeratome-assisted lamellar keratoplasty for keratoconus: stromal sandwich.

    Science.gov (United States)

    Bilgihan, Kamil; Ozdek, Sengül C; Sari, Ayça; Hasanreisoglu, Berati

    2003-07-01

    To evaluate microkeratome-assisted lamellar keratoplasty for the treatment of keratoconus when it is not possible to correct the astigmatic ametropia with contact lenses. Ophthalmology Department, School of Medicine, Gazi University, Ankara, Turkey. This prospective study comprised 9 eyes of 7 keratoconus patients with contact lens intolerance. The donor cornea was prepared with a microkeratome and punched with a 7.25 mm or 7.50 mm trephine. Following the creation of a standard 9.0 mm corneal flap in the host cornea, the donor stromal button was implanted under this corneal flap like a sandwich. Transepithelial photorefractive keratectomy or laser in situ keratomileusis was performed when the corneal topography and refraction stabilized by the end of the sixth postoperative month. Follow-up ranged from 7 to 22 months. All patients gained 5 or more lines (mean 7.2 lines +/- 1.6 [SD]), and no patient lost a line of vision. The mean corneal thickness was 432.7 +/- 36.1 micrometers preoperatively and 578.1 +/- 45.1 micrometers after refractive surgery. The early visual results of this surgical technique are promising and seem to be comparable to those with penetrating keratoplasty.

  2. Butterfly patterns in a sheared lamellar-system

    Energy Technology Data Exchange (ETDEWEB)

    Lindner, P [Institut Max von Laue - Paul Langevin (ILL), 38 - Grenoble (France); Zipfel, J; Richtering, W [Freiburg Univ. (Germany)

    1997-04-01

    A technologically important extension of `classical` scattering techniques is to investigate soft-matter systems under non-equilibrium conditions. Shear flow is known to have a profound influence on the structure and orientation of complex fluids like thermotropic or lyotropic liquid-crystals, colloidal and polymeric solutions. There is a fundamental interest in understanding the microscopic structure and dynamics of such complex fluids as the macroscopic material properties might change with the application of an external perturbation like shear. The following example illustrates a recent study of the influence of shear on the structure of a lyotropic lamellar phase. Results using a cone-and-plate and the ILL Couette type shear-cell were obtained by rheo-small-angle light scattering (rheo-SALS) and small-angle neutron scattering (SANS) at D11. Because of the broad range of momentum transfer Q available at D11 a characteristic butterfly-pattern with a scattering peak revealing both the structure and the supramolecular structure of the system could be detected at very low Q. (author). 5 refs.

  3. A Two-Dimensional Lamellar Membrane: MXene Nanosheet Stacks.

    Science.gov (United States)

    Ding, Li; Wei, Yanying; Wang, Yanjie; Chen, Hongbin; Caro, Jürgen; Wang, Haihui

    2017-02-06

    Two-dimensional (2D) materials are promising candidates for advanced water purification membranes. A new kind of lamellar membrane is based on a stack of 2D MXene nanosheets. Starting from compact Ti 3 AlC 2 , delaminated nanosheets of the composition Ti 3 C 2 T x with the functional groups T (O, OH, and/or F) can be produced by etching and ultrasonication and stapled on a porous support by vacuum filtration. The MXene membrane supported on anodic aluminum oxide (AAO) substrate shows excellent water permeance (more than 1000 L m -2  h -1  bar -1 ) and favorable rejection rate (over 90 %) for molecules with sizes larger than 2.5 nm. The water permeance through the MXene membrane is much higher than that of the most membranes with similar rejections. Long-time operation also reveals the outstanding stability of the MXene membrane for water purification. © 2017 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  4. Lamellar ichthyosis maps to chromosome 14q11

    Energy Technology Data Exchange (ETDEWEB)

    Russell, L.J.; Compton, J.G.; Bale, S.J. [and others

    1994-09-01

    Lamellar ichthyosis (LI) is a serious skin disorder inherited as an autosomal recessive trait and characterized by large, brown plate-like scales covering the body. Skin involvement is apparent at birth, often as a collodion membrane. Scarring alopecia, ectropion, and secondary hypohidrosis are frequent. We used a panel of candidates genes that are expressed in the epidermis to study seven multiplex Caucasian families in the U.S. and six inbred (multiplex and simplex) families in Egypt. We find no recombination (Z=9.11 at {theta}=0) in either set of families with transglutaminse 1 (TGM1), the gene encoding the enzyme responsible for cross-linking proteins to the cell envelope in the upper-most layer of the epidermis. In addition, striking homozygosity is observed in the inbred families for markers neighboring TGM1, defining a 9.3 cM candidate region which is bounded by MYH7 and D14S275. This is the first report of linkage in LI and suggests that further study of the TGM1 gene may identify the underlying pathogenesis of this severe, disfiguring disorder. Linkage-based genetic counseling and prenatal diagnosis is now available for informative at-risk families.

  5. Impact Resistance of Recycled Aggregate Concrete with Single and Hybrid Fibers

    Directory of Open Access Journals (Sweden)

    Ismail Sallehan

    2016-01-01

    Full Text Available This paper presents a recycled aggregate concrete (RAC mix that has been modified by adding treated recycled concrete aggregate (RCA and various types of fiber-reinforced systems. The effectiveness of these modifications in terms of energy absorption and impact resistance was evaluated and compared with that of the corresponding regular concrete, as well as with unmodified RAC specimens. Results clearly indicate that although modification of the RAC mix with treated RCA significantly enhances the impact resistance of RAC, further diversification with additional fiber, particularly those in hybrid form, can optimize the results.

  6. Impact resistance of uncoated SiC/SiC composites

    International Nuclear Information System (INIS)

    Bhatt, Ramakrishna T.; Choi, Sung R.; Cosgriff, Laura M.; Fox, Dennis S.; Lee, Kang N.

    2008-01-01

    Two-dimensional woven SiC/SiC composites fabricated by melt infiltration method were impact tested at room temperature and at 1316 deg. C in air using 1.59-mm diameter steel-ball projectiles at velocities ranging from 115 to 400 m/s. The extent of substrate damage with increasing projectile velocity was imaged and analyzed using optical and scanning electron microscopy, and non-destructive evaluation (NDE) methods such as pulsed thermography, and computed tomography. The impacted specimens were tensile tested at room temperature to determine their residual mechanical properties. Results indicate that at 115 m/s projectile velocity, the composite showed no noticeable surface or internal damage and retained its as-fabricated mechanical properties. As the projectile velocity increased above this value, the internal damage increased and mechanical properties degraded. At velocities >300 m/s, the projectile penetrated through the composite, but the composite retained ∼50% of the ultimate tensile strength of the as-fabricated composite and exhibited non-brittle failure. Predominant internal damages are delamination of fiber plies, fiber fracture and matrix shearing

  7. Evaluation of Impact Resistance of Concrete Overpack of Storage Cask

    Energy Technology Data Exchange (ETDEWEB)

    Lee, Sanghoon; Kim, Ki-Young; Jeon, Je-Eon; Seo, Ki-Seog [Korea Atomic Energy Research Institute, Daejeon (Korea, Republic of)

    2015-05-15

    The concrete overpack of the cask provides radiation shielding as well as physical protection for inner canister against external mechanical shock. When the overpack undergoes a severe missile impact which might be caused by tornado or aircraft crash, it should sustain minimal level of structural integrity so that the radiation shielding and the retrievability of canister are maintained. Empirical formulas have been developed for the evaluation of concrete damage but those formulas can be used only for local damage evaluation and not for global damage evaluation. In this research, a series of numerical simulations and tests have been performed to evaluate the damage of two types of concrete overpack segment models under high speed missile impact. It is shown that appropriate modeling of material failure is crucial in this kind of analyses and finding the correct failure parameters may not be straightforward. When comparing the simulation results with the test results, it is shown that neither setting, case 1 and 2 provides results with consistent agreement with test results. That is, case 1 setting is more close to reality in Type 1 model analysis, but for Type 2, case 2 setting provides more close results to the reality. In both the case, not enough deformation is predicted by simulation compared to the tests. Weak failure and eroding criteria give larger penetration depth with insufficient overall damage due to energy loss with element erosion.

  8. Use of mathematical modelling to assess the impact of vaccines on antibiotic resistance.

    Science.gov (United States)

    Atkins, Katherine E; Lafferty, Erin I; Deeny, Sarah R; Davies, Nicholas G; Robotham, Julie V; Jit, Mark

    2017-11-13

    Antibiotic resistance is a major global threat to the provision of safe and effective health care. To control antibiotic resistance, vaccines have been proposed as an essential intervention, complementing improvements in diagnostic testing, antibiotic stewardship, and drug pipelines. The decision to introduce or amend vaccination programmes is routinely based on mathematical modelling. However, few mathematical models address the impact of vaccination on antibiotic resistance. We reviewed the literature using PubMed to identify all studies that used an original mathematical model to quantify the impact of a vaccine on antibiotic resistance transmission within a human population. We reviewed the models from the resulting studies in the context of a new framework to elucidate the pathways through which vaccination might impact antibiotic resistance. We identified eight mathematical modelling studies; the state of the literature highlighted important gaps in our understanding. Notably, studies are limited in the range of pathways represented, their geographical scope, and the vaccine-pathogen combinations assessed. Furthermore, to translate model predictions into public health decision making, more work is needed to understand how model structure and parameterisation affects model predictions and how to embed these predictions within economic frameworks. Copyright © 2017 Elsevier Ltd. All rights reserved.

  9. Lamellar zirconium phosphates to host metals for catalytic purposes.

    Science.gov (United States)

    Ballesteros-Plata, Daniel; Infantes-Molina, Antonia; Rodríguez-Aguado, Elena; Braos-García, Pilar; Rodríguez-Castellón, Enrique

    2018-02-27

    In the present study a porous lamellar zirconium phosphate heterostructure (PPH) formed from zirconium(iv) phosphate expanded with silica galleries (P/Zr molar ratio equal to 2 and (Si + Zr)/P equal to 3) was prepared to host noble metals. Textural and structural characterization of PPH-noble metal materials was carried out in order to elucidate the location and dispersion of the metallic particles and the properties of the resulting material to be used in catalytic processes. In the present paper, their activity in the catalytic hydrodeoxygenation (HDO) reaction of dibenzofuran (DBF) was evaluated. X-ray diffraction (XRD), solid state nuclear magnetic resonance (NMR) and X-ray photoelectron spectroscopy (XPS) evidenced that the structure of the pillared zirconium phosphate material was not modified by the incorporation of Pt and Pd. Moreover, transmission electron microscopy (TEM) showed a different dispersion of the noble metal. The acidity of the resulting PPH-noble metal materials also changed, although in all cases the acidity was of weak nature, and the incorporation of noble metals affected Brønsted acid sites as observed from 31 P NMR spectra. In general, the textural, structural and acidic properties of the resulting materials suggest that PPH can be considered a good candidate to be used as a catalytic support. Thus, the catalytic results of the PPH-noble metal samples indicated that the Pd sample showed a stable behavior probably ascribed to a high dispersion of the active phase. However, the Pt sample suffered from fast deactivation. The selectivity to the reaction products was strongly dependent on the noble metal employed.

  10. Impact of temperatures to Hessian Fly resistance of selected wheat cultivars in the Great Plains Region

    Science.gov (United States)

    Changes in temperature can result in fundamental changes in plant physiology. This study investigated the impact of different temperatures from 14 to 26 °C on the resistance or susceptibility to the Hessian fly, Mayetiola destructor, of selected wheat cultivars that are either currently popular in ...

  11. Research on resistance characteristics of YBCO tape under short-time DC large current impact

    Science.gov (United States)

    Zhang, Zhifeng; Yang, Jiabin; Qiu, Qingquan; Zhang, Guomin; Lin, Liangzhen

    2017-06-01

    Research of the resistance characteristics of YBCO tape under short-time DC large current impact is the foundation of the developing DC superconducting fault current limiter (SFCL) for voltage source converter-based high voltage direct current system (VSC-HVDC), which is one of the valid approaches to solve the problems of renewable energy integration. SFCL can limit DC short-circuit and enhance the interrupting capabilities of DC circuit breakers. In this paper, under short-time DC large current impacts, the resistance features of naked tape of YBCO tape are studied to find the resistance - temperature change rule and the maximum impact current. The influence of insulation for the resistance - temperature characteristics of YBCO tape is studied by comparison tests with naked tape and insulating tape in 77 K. The influence of operating temperature on the tape is also studied under subcooled liquid nitrogen condition. For the current impact security of YBCO tape, the critical current degradation and top temperature are analyzed and worked as judgment standards. The testing results is helpful for in developing SFCL in VSC-HVDC.

  12. The rising impact of mathematical modelling in epidemiology: antibiotic resistance research as a case study

    Science.gov (United States)

    TEMIME, L.; HEJBLUM, G.; SETBON, M.; VALLERON, A. J.

    2008-01-01

    SUMMARY Mathematical modelling of infectious diseases has gradually become part of public health decision-making in recent years. However, the developing status of modelling in epidemiology and its relationship with other relevant scientific approaches have never been assessed quantitatively. Herein, using antibiotic resistance as a case study, 60 published models were analysed. Their interactions with other scientific fields are reported and their citation impact evaluated, as well as temporal trends. The yearly number of antibiotic resistance modelling publications increased significantly between 1990 and 2006. This rise cannot be explained by the surge of interest in resistance phenomena alone. Moreover, modelling articles are, on average, among the most frequently cited third of articles from the journal in which they were published. The results of this analysis, which might be applicable to other emerging public health problems, demonstrate the growing interest in mathematical modelling approaches to evaluate antibiotic resistance. PMID:17767792

  13. Boophilus microplus: BIOLOGICAL AND MOLECULAR ASPECTS OF ACARICIDE RESISTANCE AND THEIR IMPACT ON ANIMAL HEALTH.

    Directory of Open Access Journals (Sweden)

    Delia Inés Dominguez-García

    2009-11-01

    Full Text Available The Application of Ixodicidas has been considered for a long time the alternative for control of the cattle tick Boophilus microplus, however, its use is currently limited in reducing tick infestations, due to the appearance of resistant field tick populations. Ixodicide resistance is a growing problem that needs to be attended, because, it is currently affecting the competitiveness of the Mexican Cattle industry in general and in particular the income of cattle producers. The solution to this problem needs to increase the budget dedicated to basic research in order to elucidate the molecular mechanisms of ixodicide resistance leading to the discovery of new molecular targets for ixodicide resistance detection and recombinant vaccine development. The recent use of new genomic tools, as well as reverse genetics approaches, will provide an extraordinary contribution to the improvement of tick control strategies and ixodicide resistance mitigation programs. The aim of the present review is to make a compilation of different topics related with acaricide resistance in the cattle tick Boophilus microplus, starting with some biological and molecular considerations on its new classification, to the analysis of ixodicide resistance, its impact on the Mexican cattle industry and the perspective of the genomic research in order to solve the problems associated to tick control, new diagnostic tools and development of tick vaccines.

  14. Effect of impact energy on damage resistance and mechanical property of C/SiC composites under low velocity impact

    Energy Technology Data Exchange (ETDEWEB)

    Mei, Hui, E-mail: phdhuimei@yahoo.com; Yu, Changkui; Xu, Yawei; Han, Daoyang; Cheng, Laifei

    2017-02-27

    The present study investigated the damage resistance of two dimensional carbon fiber reinforced silicon carbide (C/SiCs) composites subjected to low velocity impact (LVI). Damage microstructures of specimens under different impact energies (E{sub i}) were characterized by infrared thermography, X-ray computed tomography and scanning electron microscopy. The real damage radii of specimens were found to change slightly with E{sub i}, whereas apparent damage radii where much larger. Overall, the fabricated 2D C/SiC composites exhibited good damage resistance to LVI with nominal post-impact tensile strengths remaining at 89.4%, 83.35%, 76.97%, and 74.84% of their pre-impacted counterpart of 158 MPa, for impact energies of 3, 4, 5, and 6 J, respectively. Compared with the as-received one, after LVI real tensile strengths of the C/SiC composite specimens increased by 5.84% for the E{sub i} of 3 J, 9.27% for 4 J, −1.83% for 5 J, −3.16% for 6 J.

  15. En face spectral domain optical coherence tomography analysis of lamellar macular holes.

    Science.gov (United States)

    Clamp, Michael F; Wilkes, Geoff; Leis, Laura S; McDonald, H Richard; Johnson, Robert N; Jumper, J Michael; Fu, Arthur D; Cunningham, Emmett T; Stewart, Paul J; Haug, Sara J; Lujan, Brandon J

    2014-07-01

    To analyze the anatomical characteristics of lamellar macular holes using cross-sectional and en face spectral domain optical coherence tomography. Forty-two lamellar macular holes were retrospectively identified for analysis. The location, cross-sectional length, and area of lamellar holes were measured using B-scans and en face imaging. The presence of photoreceptor inner segment/outer segment disruption and the presence or absence of epiretinal membrane formation were recorded. Forty-two lamellar macular holes were identified. Intraretinal splitting occurred within the outer plexiform layer in 97.6% of eyes. The area of intraretinal splitting in lamellar holes did not correlate with visual acuity. Eyes with inner segment/outer segment disruption had significantly worse mean logMAR visual acuity (0.363 ± 0.169; Snellen = 20/46) than in eyes without inner segment/outer segment disruption (0.203 ± 0.124; Snellen = 20/32) (analysis of variance, P = 0.004). Epiretinal membrane was present in 34 of 42 eyes (81.0%). En face imaging allowed for consistent detection and quantification of intraretinal splitting within the outer plexiform layer in patients with lamellar macular holes, supporting the notion that an area of anatomical weakness exists within Henle's fiber layer, presumably at the synaptic connection of these fibers within the outer plexiform layer. However, the en face area of intraretinal splitting did not correlate with visual acuity, disruption of the inner segment/outer segment junction was associated with significantly worse visual acuity in patients with lamellar macular holes.

  16. Vacuolar ATPase regulates surfactant secretion in rat alveolar type II cells by modulating lamellar body calcium.

    Directory of Open Access Journals (Sweden)

    Narendranath Reddy Chintagari

    2010-02-01

    Full Text Available Lung surfactant reduces surface tension and maintains the stability of alveoli. How surfactant is released from alveolar epithelial type II cells is not fully understood. Vacuolar ATPase (V-ATPase is the enzyme responsible for pumping H(+ into lamellar bodies and is required for the processing of surfactant proteins and the packaging of surfactant lipids. However, its role in lung surfactant secretion is unknown. Proteomic analysis revealed that vacuolar ATPase (V-ATPase dominated the alveolar type II cell lipid raft proteome. Western blotting confirmed the association of V-ATPase a1 and B1/2 subunits with lipid rafts and their enrichment in lamellar bodies. The dissipation of lamellar body pH gradient by Bafilomycin A1 (Baf A1, an inhibitor of V-ATPase, increased surfactant secretion. Baf A1-stimulated secretion was blocked by the intracellular Ca(2+ chelator, BAPTA-AM, the protein kinase C (PKC inhibitor, staurosporine, and the Ca(2+/calmodulin-dependent protein kinase II (CaMKII, KN-62. Baf A1 induced Ca(2+ release from isolated lamellar bodies. Thapsigargin reduced the Baf A1-induced secretion, indicating cross-talk between lamellar body and endoplasmic reticulum Ca(2+ pools. Stimulation of type II cells with surfactant secretagogues dissipated the pH gradient across lamellar bodies and disassembled the V-ATPase complex, indicating the physiological relevance of the V-ATPase-mediated surfactant secretion. Finally, silencing of V-ATPase a1 and B2 subunits decreased stimulated surfactant secretion, indicating that these subunits were crucial for surfactant secretion. We conclude that V-ATPase regulates surfactant secretion via an increased Ca(2+ mobilization from lamellar bodies and endoplasmic reticulum, and the activation of PKC and CaMKII. Our finding revealed a previously unrealized role of V-ATPase in surfactant secretion.

  17. Incidental Finding of Lamellar Calcification of the Falx Cerebri Leading to the Diagnosis of Gorlin-Goltz Syndrome

    Directory of Open Access Journals (Sweden)

    I. Saulite

    2013-10-01

    Full Text Available Here, we report the case of an incidental finding of lamellar calcification of the falx cerebri in a routine computed tomography scan of the head after an accidental trauma. This lamellar calcification led to the diagnosis of Gorlin-Goltz syndrome (GGS in the patient and her daughter. Lamellar calcification of the falx cerebri is a pathognomonic feature of GGS. Our case report highlights the importance of a multidisciplinary diagnostic approach to GGS.

  18. Incidental finding of lamellar calcification of the falx cerebri leading to the diagnosis of gorlin-goltz syndrome.

    Science.gov (United States)

    Saulite, I; Voykov, B; Mehra, T; Hoetzenecker, W; Guenova, E

    2013-01-01

    Here, we report the case of an incidental finding of lamellar calcification of the falx cerebri in a routine computed tomography scan of the head after an accidental trauma. This lamellar calcification led to the diagnosis of Gorlin-Goltz syndrome (GGS) in the patient and her daughter. Lamellar calcification of the falx cerebri is a pathognomonic feature of GGS. Our case report highlights the importance of a multidisciplinary diagnostic approach to GGS.

  19. Preliminary Study on Evaluation of Impact Resistance Performance of Fiber Reinforced Concrete Walls

    International Nuclear Information System (INIS)

    Jin, Byeong Moo; Lee, Yun Seok; Kim, Young Jin; Jeon, Se Jin

    2012-01-01

    As the safety assessments of nuclear power plants for the hypothetical large civil aircraft crash should be made mandatory, studies on large aircraft-nuclear power plant impact analyses and assessments studies are actively in progress. For the safety assessment of nuclear power plants against large civil aircraft crash, it is practically impossible to conduct full-scale experiments. Therefore, analysis using general purpose numerical analysis program accompanied by scale model experiments and element experiments has been adopted for the safety assessment. The safety of nuclear power plants against large civil aircraft crash is able to be accomplished by enhancement of the impact resistance performance, such as increasing the wall thickness, increasing the strength of concrete and using the fiber reinforced concrete which is able to be acquired by relatively simple process of adding fibers to a concrete mix without significant change of design and construction. A research for the enhancement of impact resistance performance depending upon design parameters for fiber reinforced concrete, such as type of fibers and application rate, is in progress. In this study, before the safety assessment of nuclear power plants against large civil aircraft crash, we assess the impact resistance performance of concrete wall depending upon type of fibers and impact velocity of objects

  20. Preliminary Study on Evaluation of Impact Resistance Performance of Fiber Reinforced Concrete Walls

    Energy Technology Data Exchange (ETDEWEB)

    Jin, Byeong Moo; Lee, Yun Seok; Kim, Young Jin [Daewoo E and C Co. Ltd., Suwon (Korea, Republic of); Jeon, Se Jin [Ajou University, Suwon (Korea, Republic of)

    2012-05-15

    As the safety assessments of nuclear power plants for the hypothetical large civil aircraft crash should be made mandatory, studies on large aircraft-nuclear power plant impact analyses and assessments studies are actively in progress. For the safety assessment of nuclear power plants against large civil aircraft crash, it is practically impossible to conduct full-scale experiments. Therefore, analysis using general purpose numerical analysis program accompanied by scale model experiments and element experiments has been adopted for the safety assessment. The safety of nuclear power plants against large civil aircraft crash is able to be accomplished by enhancement of the impact resistance performance, such as increasing the wall thickness, increasing the strength of concrete and using the fiber reinforced concrete which is able to be acquired by relatively simple process of adding fibers to a concrete mix without significant change of design and construction. A research for the enhancement of impact resistance performance depending upon design parameters for fiber reinforced concrete, such as type of fibers and application rate, is in progress. In this study, before the safety assessment of nuclear power plants against large civil aircraft crash, we assess the impact resistance performance of concrete wall depending upon type of fibers and impact velocity of objects

  1. Metagenomic profiles of antibiotic resistance genes (ARGs) between human impacted estuary and deep ocean sediments.

    Science.gov (United States)

    Chen, Baowei; Yang, Ying; Liang, Ximei; Yu, Ke; Zhang, Tong; Li, Xiangdong

    2013-11-19

    Knowledge of the origins and dissemination of antibiotic resistance genes (ARGs) is essential for understanding modern resistomes in the environment. The mechanisms of the dissemination of ARGs can be revealed through comparative studies on the metagenomic profiling of ARGs between relatively pristine and human-impacted environments. The deep ocean bed of the South China Sea (SCS) is considered to be largely devoid of anthropogenic impacts, while the Pearl River Estuary (PRE) in south China has been highly impacted by intensive human activities. Commonly used antibiotics (sulfamethazine, norfloxacin, ofloxacin, tetracycline, and erythromycin) have been detected through chemical analysis in the PRE sediments, but not in the SCS sediments. In the relatively pristine SCS sediments, the most prevalent and abundant ARGs are those related to resistance to macrolides and polypeptides, with efflux pumps as the predominant mechanism. In the contaminated PRE sediments, the typical ARG profiles suggest a prevailing resistance to antibiotics commonly used in human health and animal farming (including sulfonamides, fluoroquinolones, and aminoglycosides), and higher diversity in both genotype and resistance mechanism than those in the SCS. In particular, antibiotic inactivation significantly contributed to the resistance to aminoglycosides, β-lactams, and macrolides observed in the PRE sediments. There was a significant correlation in the levels of abundance of ARGs and those of mobile genetic elements (including integrons and plasmids), which serve as carriers in the dissemination of ARGs in the aquatic environment. The metagenomic results from the current study support the view that ARGs naturally originate in pristine environments, while human activities accelerate the dissemination of ARGs so that microbes would be able to tolerate selective environmental stress in response to anthropogenic impacts.

  2. ANALYSIS OF IMPACT OF CHANGING THE SHOCK ABSORBER RESISTANCE FACTOR ON ACCELERATING THE VEHICLE SPRUNG MASS

    Directory of Open Access Journals (Sweden)

    P. Rozhkov

    2017-12-01

    Full Text Available The change of acceleration of the vehicle sprung mass while changing the coefficient of resistance of the adaptive pendant shock absorber has been analyzed. Presentation of disturbing influence is taken as a harmonic function containing the initial phase. Solution of the system of differential equations is carried out taking into account the initial conditions. The mathematical modeling of the impact of the vehicle sprung mass vibrations at various moments of time of forming the actuating signal on the change of the coefficient of resistance allowed to formulate requirements to the system of adaptive suspension control.

  3. Direct Visualisation of the Structural Transformation between the Lyotropic Liquid Crystalline Lamellar and Bicontinuous Cubic Mesophase.

    Science.gov (United States)

    Tran, Nhiem; Zhai, Jiali; Conn, Charlotte E; Mulet, Xavier; Waddington, Lynne J; Drummond, Calum J

    2018-05-29

    The transition between the lyotropic liquid crystalline lamellar and the bicontinuous cubic mesophase drives multiple fundamental cellular processes involving changes in cell membrane topology including endocytosis and membrane budding. While several theoretical models have been proposed to explain this dynamic transformation, experimental validation of these models has been challenging due to the short lived nature of the intermediates present during the phase transition. Herein, we report the direct observation of a lamellar to bicontinuous cubic phase transition in nanoscale dispersions using a combination of cryogenic transmission electron microscopy and static small angle X-ray scattering. The results represent the first experimental confirmation of a theoretical model which proposed that the bicontinuous cubic phase originates from the centre of a lamellar vesicle, then propagates outward via the formation of inter-lamellar attachments and stalks. The observation was possible due to the precise control of the lipid composition to place the dispersion systems at the phase boundary of a lamellar and a cubic phase, allowing for the creation of long-lived structural intermediates. By surveying the nanoparticles using cryogenic transmission electron microscopy, a complete phase transition sequence was established.

  4. Remote manipulation of posterior lamellar corneal grafts using a magnetic field.

    Science.gov (United States)

    Nahum, Yoav; Barliya, Tilda; Bahar, Irit; Livnat, Tami; Nisgav, Yael; Weinberger, Dov

    2013-06-01

    In posterior lamellar keratoplasty procedures such as Descemet stripping endothelial keratoplasty and Descemet membrane endothelial keratoplasty, the lamellar graft is manipulated directly or by injecting an air bubble. This preliminary study sought to evaluate the feasibility of guiding lamellar corneal grafts by generating a magnetic field. Rabbit and porcine Descemet stripping endothelial keratoplasty and Descemet membrane endothelial keratoplasty grafts were manually produced and immersed in a ferromagnetic solution containing nanomagnetic particles conjugated to streptavidin or in gadoteric acid. For the feasibility study, grafts were transferred to an artificial anterior chamber or plastic test tube and a magnetic field was generated with a handheld NdFeB disc magnet. The presence and the sustainability of graft motion were documented under various conditions. For the semiquantitative study, whole or partial grafts were transferred to a plastic test tube after immersion, and the amount of tissue retraction induced by the remote magnet was graded. The grafts were successfully manipulated in all directions by the magnet, from a distance of up to 7 mm. They remained ferromagnetic more than 24 hours after immersion in the ferromagnetic solutions. The degree of retraction was affected by graft size, immersion time, time from immersion, and immersion solution. Posterior lamellar corneal grafts may be made ferromagnetic and remotely manipulated by creation of a magnetic field. The ferromagnetic properties are adjustable. This technique holds promise in attaching and repositioning grafts during keratoplasty. Further research is needed to assess the possible effects of ferromagnetic solutions on corneal endothelial cells and on lamellar graft clarity.

  5. Electrochemical properties and diffusion of a redox active surfactant incorporated in bicontinuous cubic and lamellar phase

    International Nuclear Information System (INIS)

    Kostela, J.; Elmgren, M.; Almgren, M.

    2005-01-01

    The objective of this study was to investigate the electrochemical behaviour of the divalent redox active surfactant, N-cetyl-N'-methylviologen (CMV), in bicontinuous cubic and lamellar phases. The liquid crystalline phases were prepared from the system glycerolmonooleate (GMO)-water (and brine)-cationic surfactant. A comparison of the phase behaviour of GMO with the monovalent cetyltrimethylammonium bromide (CTAB) and the divalent CMV surfactant showed that the surfactants gave about the same effect at the same surface charge density. The electrochemical measurements were made with a mixture of CTAB and CMV as the surfactant. Cyclic voltammetry was used to study the electrochemistry of CMV incorporated in the cubic and lamellar phases that were spread on a gold electrode. The E 0 -values in the cubic samples were more negative (-0.55 V versus SCE) than in the lamellar samples (-0.53 V versus SCE). This can be explained by the higher charge density in the lamellar phase. The diffusion coefficients were also measured in the cubic phase. The mass transport is slowed down about fifty times in the cubic phase compared to in the pure electrolyte. The concentration dependence on the diffusion coefficient was also investigated. No electron hopping could be observed, which suggest that diffusional movement of the redox probe is the main source of charge transport. By placing the samples on a conducting glass slide, spectroelectrochemical investigations were performed. In the lamellar phase strong dimerization was detected at high concentration of viologen, but much less in the cubic phase

  6. Predicting the impact of selection for scrapie resistance on PRNP genotype frequencies in goats.

    Science.gov (United States)

    Sacchi, Paola; Rasero, Roberto; Ru, Giuseppe; Aiassa, Eleonora; Colussi, Silvia; Ingravalle, Francesco; Peletto, Simone; Perrotta, Maria Gabriella; Sartore, Stefano; Soglia, Dominga; Acutis, Pierluigi

    2018-03-06

    The European Union has implemented breeding programmes to increase scrapie resistance in sheep. A similar approach can be applied also in goats since the K222 allele provides a level of resistance equivalent to that of ARR in sheep. The European Food Safety Authority stated that breeding for resistance could be offered as an option for Member States to control classical scrapie in goats. We assessed the impact of different breeding strategies on PRNP genotype frequencies using a mathematical model that describes in detail the evolution of K222 in two goat breeds, Chamois Coloured and Saanen. Different patterns of age structure and replacement rate were modelled as factors affecting response to selection. Breeding for scrapie resistance can be implemented in goats, even though the initial K222 frequencies in these breeds are not particularly favourable and the rate at which the resistant animals increase, both breeding and slaughtered for meat production, is slow. If the goal is not to achieve the fixation of resistance allele, it is advisable to carry out selection only until a desired frequency of K222-carriers has been attained. Nucleus selection vs. selection on the overall populations is less expensive but takes longer to reach the desired output. The programme performed on the two goat breeds serves as a model of the response the selection could have in other breeds that show different initial frequencies and population structure. In this respect, the model has a general applicability.

  7. Impact of doctors' resistance on success of drug utilization review system.

    Science.gov (United States)

    Choi, Jong Soo; Yun, Seong Hyeon; Kim, Dongsoo; Park, Seung Woo

    2014-04-01

    The drug utilization review (DUR) system, which checks any conflict event of medications, contributes to improve patient safety. One of the important barriers in its adoption is doctors' resistance. This study aimed to analyze the impacts of doctors' resistance on the success of the DUR system. This study adopted an augmented the DeLone and McLean Information System (D&M IS) Success Model (2003), which used doctors' resistance as a socio-technological measure. This study framework is the same as that of the D&M IS Success Model in that it is based on qualities, such as system, information, and services. The major difference is that this study excluded the variable 'use' because it was not statistically significant for mandatory systems. A survey of doctors who used computers to enter prescriptions was conducted at a Korean tertiary hospital in February 2012. This study is very meaningful in that it is the first study to explore the success factors of the DUR system associated with doctors' resistance. Doctors' resistance to the DUR system was not statistically associated with user usefulness, whereas it affected user satisfaction. The results indicate that doctors still complain of discomfort in using the DUR system in the outpatient clinical setting, even though they admit that it contributes to patient safety. To mitigate doctors' resistance and raise user satisfaction, more opinions from doctors regarding the DUR system have to be considered and have to be reflected in the system.

  8. Impact of colistin sulfate treatment of broilers on the presence of resistant bacteria and resistance genes in stored or composted manure.

    Science.gov (United States)

    Le Devendec, Laetitia; Mourand, Gwenaelle; Bougeard, Stéphanie; Léaustic, Julien; Jouy, Eric; Keita, Alassane; Couet, William; Rousset, Nathalie; Kempf, Isabelle

    2016-10-15

    The application of manure may result in contamination of the environment with antimicrobials, antimicrobial-resistant bacteria, resistance genes and plasmids. The aim of this study was to investigate the impact of the administration of colistin and of manure management on (i) the presence of colistin-resistant Escherichia coli, Klebsiella pneumoniae and Pseudomonas aeruginosa and (ii) the prevalence of various antimicrobial resistance genes in feces and in composted or stored manure. One flock of chickens was treated with colistin at the recommended dosage and a second flock was kept as an untreated control. Samples of feces, litter and stored or composted manure from both flocks were collected for isolation and determination of the colistin-susceptibility of E. coli, K. pneumoniae and P. aeruginosa and quantification of genes coding for resistance to different antimicrobials. The persistence of plasmids in stored or composted manure from colistin-treated broilers was also evaluated by plasmid capturing experiments. Results revealed that colistin administration to chickens had no apparent impact on the antimicrobial resistance of the dominant Enterobacteriaceae and P. aeruginosa populations in the chicken gut. Composting stimulated an apparently limited decrease in genes coding for resistance to different antimicrobial families. Importantly, it was shown that even after six weeks of composting or storage, plasmids carrying antimicrobial resistance genes could still be transferred to a recipient E. coli. In conclusion, composting is insufficient to completely eliminate the risk of spreading antimicrobial resistance through chicken manure. Copyright © 2015 Elsevier B.V. All rights reserved.

  9. In-Situ TEM Study of Interface Sliding and Migration in an Ultrafine Lamellar Structure

    Energy Technology Data Exchange (ETDEWEB)

    Hsiung, L M

    2005-12-06

    The instability of interfaces in an ultrafine TiAl-({gamma})/Ti{sub 3}Al-({alpha}{sub 2}) lamellar structure by straining at room temperature has been investigated using in-situ straining techniques performed in a transmission electron microscope. The purpose of this study is to obtain experimental evidence to support the creep mechanisms based upon the interface sliding in association with a cooperative movement of interfacial dislocations previously proposed to interpret the nearly linear creep behavior observed from ultrafine lamellar TiAl alloys. The results have revealed that both the sliding and migration of lamellar interfaces can take place simultaneously as a result of the cooperative movement of interfacial dislocations.

  10. Development of lamellar structures in natural waxes - an electron diffraction investigation

    Energy Technology Data Exchange (ETDEWEB)

    Dorset, Douglas L. [Electron Diffraction Department, Hauptman-Woodward Medical Research Institute, Inc., Buffalo, NY (United States)

    1999-06-07

    When they are recrystallized from the melt, natural plant or insect waxes tend to form solid phases with a nematic-like structure (i.e. a parallel array of polymethylene chains with little or no aggregation of the molecules into distinct layers). An electron diffraction study of carnauba wax and two types of beeswax has shown that the degree of molecular organization into lamellar structures can be enhanced by annealing in the presence of benzoic acid, which also acts as an epitaxial substrate. Nevertheless, the resultant layer structure in the annealed solid is not the same as that found for paraffin wax fractions refined from petroleum. Probably because of a small but significant fraction of a very long chain ingredient, the lamellar separation is incomplete, incorporating a number of 'bridging molecules' that span the nascent lamellar interface.The same phenomenon has been described recently for a low molecular weight polyethylene. (author)

  11. Development of lamellar structures in natural waxes - an electron diffraction investigation

    Science.gov (United States)

    Dorset, Douglas L.

    1999-06-01

    When they are recrystallized from the melt, natural plant or insect waxes tend to form solid phases with a nematic-like structure (i.e. a parallel array of polymethylene chains with little or no aggregation of the molecules into distinct layers). An electron diffraction study of carnauba wax and two types of beeswax has shown that the degree of molecular organization into lamellar structures can be enhanced by annealing in the presence of benzoic acid, which also acts as an epitaxial substrate. Nevertheless, the resultant layer structure in the annealed solid is not the same as that found for paraffin wax fractions refined from petroleum. Probably because of a small but significant fraction of a very long chain ingredient, the lamellar separation is incomplete, incorporating a number of `bridging molecules' that span the nascent lamellar interface.The same phenomenon has been described recently for a low molecular weight polyethylene.

  12. How do closed-compact multi-lamellar droplets form under shear flow? A possible mechanism

    Science.gov (United States)

    Courbin, L.; Pons, R.; Rouch, J.; Panizza, P.

    2003-01-01

    The formation of closed-compact multi-lamellar droplets obtained upon shearing both a lamellar phase (Lα) and a two-phase separated lamellar-sponge (Lα-L3) mixture is investigated as a function of the shear rate dot gamma, using small-angle light scattering (SALS) and cross-polarized optical microscopy. In both systems the formation of droplets occurs homogeneously in the cell at a well-defined wave vector qe propto dot gamma1/3 via a strain-controlled process. These results suggest that the formation of droplets may be monitored in both systems by a buckling instability of the lamellae as predicted from a recent theory.

  13. One- and two-dimensional fluids properties of smectic, lamellar and columnar liquid crystals

    CERN Document Server

    Jakli, Antal

    2006-01-01

    Smectic and lamellar liquid crystals are three-dimensional layered structures in which each layer behaves as a two-dimensional fluid. Because of their reduced dimensionality they have unique physical properties and challenging theoretical descriptions, and are the subject of much current research. One- and Two-Dimensional Fluids: Properties of Smectic, Lamellar and Columnar Liquid Crystals offers a comprehensive review of these phases and their applications. The book details the basic structures and properties of one- and two-dimensional fluids and the nature of phase transitions. The later chapters consider the optical, magnetic, and electrical properties of special structures, including uniformly and non-uniformly aligned anisotropic films, lyotropic lamellar systems, helical and chiral structures, and organic anisotropic materials. Topics also include typical and defective features, magnetic susceptibility, and electrical conductivity. The book concludes with a review of current and potential applications ...

  14. Morphological abnormalities and apoptosis in lamellar tissue of equines after intestinal obstruction and treatment with hydrocortisone

    Directory of Open Access Journals (Sweden)

    L.M Laskoski

    2010-12-01

    Full Text Available Four experimental groups of equines were used in order to study morphological abnormalities and apoptosis in lamellar tissue. Group Cg (control was composed of animals without any surgical procedure; group Ig (instrumented, animals that underwent enterotomy; group Tg (treated, animals that were subjected to intestinal obstruction and were treated with hydrocortisone; and group Ug (untreated, animals that were subjected to intestinal obstruction without treatment. The lamellar tissue was analyzed regarding the presence of tissue abnormalities and apoptosis. No morphological abnormalities were observed in animals of surgical groups, and no difference in apoptosis was observed between groups. It was concluded that intestinal obstruction allowed laminitis to develop, probably by systemic activation, and that the maneuvers performed in the enterotomy aggravated the process. Hydrocortisone did not aggravate the lesions of the lamellar tissue

  15. Impact of extensive antibiotic treatment on faecal carriage of antibiotic-resistant enterobacteria in children in a low resistance prevalence setting

    Science.gov (United States)

    Brandtzaeg, Petter; Høiby, E. Arne; Bohlin, Jon; Samuelsen, Ørjan; Steinbakk, Martin; Abrahamsen, Tore G.; Müller, Fredrik; Gammelsrud, Karianne Wiger

    2017-01-01

    We prospectively studied the consequences of extensive antibiotic treatment on faecal carriage of antibiotic-resistant enterobacteria in a cohort of children with cystic fibrosis (CF) and a cohort of children with cancer compared to healthy children with no or low antibiotic exposure. The study was conducted in Norway in a low resistance prevalence setting. Sixty longitudinally collected faecal samples from children with CF (n = 32), 88 samples from children with cancer (n = 45) and 127 samples from healthy children (n = 70) were examined. A direct MIC-gradient strip method was used to detect resistant Enterobacteriaceae by applying Etest strips directly onto agar-plates swabbed with faecal samples. Whole genome sequencing (WGS) data were analysed to identify resistance mechanisms in 28 multidrug-resistant Escherichia coli isolates. The prevalence of resistance to third-generation cephalosporins, gentamicin and ciprofloxacin was low in all the study groups. At inclusion the prevalence of ampicillin-resistant E. coli and trimethoprim-sulfamethoxazole-resistant E. coli in the CF group compared to healthy controls was 58.6% vs. 28.4% (p = 0.005) and 48.3% vs. 14.9% (p = 0.001), respectively, with a similar prevalence at the end of the study. The prevalence of resistant enterobacteria was not significantly different in the children with cancer compared to the healthy children, not even at the end of the study when the children with cancer had been treated with repeated courses of broad-spectrum antibiotics. Children with cancer were mainly treated with intravenous antibiotics, while the CF group mainly received peroral treatment. Our observations indicate that the mode of administration of antibiotics and the general level of antimicrobial resistance in the community may have an impact on emergence of resistance in intestinal enterobacteria during antibiotic treatment. The WGS analyses detected acquired resistance genes and/or chromosomal mutations that explained the

  16. Prospective malaria control using entomopathogenic fungi: comparative evaluation of impact on transmission and selection for resistance

    Directory of Open Access Journals (Sweden)

    Lynch Penelope A

    2012-11-01

    Full Text Available Abstract Background Chemical insecticides against adult mosquitoes are a key element in most malaria management programmes, but their efficacy is threatened by the evolution of insecticide-resistant mosquitoes. By killing only older mosquitoes, entomopathogenic fungi can in principle significantly impact parasite transmission while imposing much less selection for resistance. Here an assessment is made as to which of the wide range of possible virulence characteristics for fungal biopesticides best realise this potential. Methods With mathematical models that capture relevant timings and survival probabilities within successive feeding cycles, transmission and resistance-management metrics are used to compare susceptible and resistant mosquitoes exposed to no intervention, to conventional instant-kill interventions, and to delayed-action biopesticides with a wide range of virulence characteristics. Results Fungal biopesticides that generate high rates of mortality at around the time mosquitoes first become able to transmit the malaria parasite offer potential for large reductions in transmission while imposing low fitness costs. The best combinations of control and resistance management are generally accessed at high levels of coverage. Strains which have high virulence in malaria-infected mosquitoes but lower virulence in malaria-free mosquitoes offer the ultimate benefit in terms of minimizing selection pressure whilst maximizing impact on transmission. Exploiting this phenotype should be a target for product development. For indoor residual spray programmes, biopesticides may offer substantial advantages over the widely used pyrethroid-based insecticides. Not only do fungal biopesticides provide substantial resistance management gains in the long term, they may also provide greater reductions in transmission before resistance has evolved. This is because fungal spores do not have contact irritancy, reducing the chances that a blood

  17. Quantitative analysis of lamellar bodies in amniotic fluid as fetal pulmonary maturity indicator

    Directory of Open Access Journals (Sweden)

    Ljubić Vesna

    2009-01-01

    Full Text Available Background/Aim. Although lamellar bodies have been the center of interest over the last years, the published results of fetal pulmonary maturity determination according to their concentration in amniotic fluid are controversial. The aim of this study was to determine the significance of lamellar bodies, as well as the ratio lecithin/sphingomyelin (L/S in amniotic fluid for the assessment of fetal pulmonary maturity. Methods. This prospective 2-year study included 102 female examinees, ranging from 17 to 44 years of age, in whom lamellar bodies concentrations in amniotic fluid were determined to check the efficacy of the applied therapy for obtaining arteficial fetal pulmonary maturity. The shake test was applied as a comparative test for determining a quantitative L/S ratio. To determine a fetus maturity and development stage we followed up biparietal diameter, abdominal circumference, femure length, ponderal index at birth and body mass. Results. Out of a total of 102 amniocenteses within a period from 26th to 40th gestation week only 70 results were considered due to 32 unknown neonatal outcomes. Biparietal diameter was 224-362 mm, femur length 56 - 78 mm, ponderal index 1.22-2.84, fetus body mass 1300- 4 350 g. There was found a significant relation between gestation age and lamellar bodies concentration (R = 0.396398, p < 0.01, as well as between gestation age and the ratio L/S (R = 0.691297, p < 0.01. Also, there was a significant correlation of lamellar bodies concentration to the ratio L/S determined (R = 0.493609, p < 0.01. Conclusion. Determination of lamellar bodies concentration values is a reliable method to confirm fetal pulmonary maturity.

  18. Design methods to assess the resistance of Offshore wind Turbine Structures impacted by a ship

    OpenAIRE

    Echeverry Jaramillo, Sara; Le Sourne, Hervé; Bela, Andreea; Pire, Timothée; Rigo, Philippe

    2017-01-01

    The dynamic modes of jacket, monopile and Floating offshore wind turbines (FOWT) after a collision event are presented. The authors have developed simplified analytical formulations based on plastic limit analysis to assess the resistance of an offshore wind turbine jacket impacted by a ship. For the case of collisions with monopile foundations and FOWT, the crushing behavior and structure dynamics are studied by means of finite element simulations. Numerical results for both monopile and flo...

  19. Framework for Proliferation Resistance and Physical Protection for Nonproliferation Impact Assessments

    International Nuclear Information System (INIS)

    Bari, R.

    2008-01-01

    This report describes a framework for proliferation resistance and physical protection evaluation for the fuel cycle systems envisioned in the expansion of nuclear power for electricity generation. The methodology is based on an approach developed as part of the Generation IV technical evaluation framework and on a qualitative evaluation approach to policy factors similar to those that were introduced in previous Nonproliferation Impact Assessments performed by DOE

  20. An FEA study on impact resistance of bio-inspired CAD models

    OpenAIRE

    Page, T; Thorsteinsson, G

    2017-01-01

    The purpose of this paper is to explore the use of biomimetic methods in the design of armour systems. It focusses on biological structures found in nature that feature both rigid and flexible armours, analysing their structures and determining which are the most widely successful. A study was conducted on three bio-inspired structures built in Creo Parametric and tested using Finite Element Analysis (FEA) software to determine which structure had the best impact resistance. The study was con...

  1. Lamellar Diblock Copolymer Thin Films during Solvent Vapor Annealing Studied by GISAXS

    DEFF Research Database (Denmark)

    Zhang, Jianqi; Posselt, Dorthe; Smilgies, Detlef-M.

    2014-01-01

    The reorientation of lamellae and the dependence of the lamellar spacing, Dlam, on polymer volume fraction, ϕP, Dlam ∝ ϕP–β, in diblock copolymer thin films during solvent vapor annealing (SVA) are examined by combining white light interferometry (WLI) and grazing-incidence small-angle X-ray scat......The reorientation of lamellae and the dependence of the lamellar spacing, Dlam, on polymer volume fraction, ϕP, Dlam ∝ ϕP–β, in diblock copolymer thin films during solvent vapor annealing (SVA) are examined by combining white light interferometry (WLI) and grazing-incidence small-angle X...

  2. Acquired resistance of malarial parasites against artemisinin-based drugs: social and economic impacts

    Directory of Open Access Journals (Sweden)

    Johanna M Porter-Kelley

    2010-08-01

    Full Text Available Johanna M Porter-Kelley1, Joann Cofie2, Sophonie Jean2, Mark E Brooks1, Mia Lassiter1, DC Ghislaine Mayer21Life Sciences Department, ­Winston-Salem State University, Winston Salem, NC, USA; 2Department of Biology, Virginia Commonwealth University, Richmond, VA, USAAbstract: Malaria, a disease of poverty and high morbidity and mortality in the tropical world, has led to a worldwide search for control measures. To that end, good antimalarial chemotherapies have been difficult to find in the global market and those that seem to be most effective are rapidly becoming ineffective due to the emergence and spread of drug resistance. Artemisinin, a very effective yet expensive antimalarial, has quickly become the recommended drug of choice when all other possibilities fail. However, for all its promise as the next great antimalarial, the outlook is bleak. Resistance is developing to artemisinin while another effective antimalarial is not in sight. Malaria endemic areas which are mostly in developing countries must deal with the multifaceted process of changing and implementing new national malaria treatment guidelines. This requires complex interactions between several sectors of the affected society which in some cases take place within the context of political instability. Moreover, the cost associated with preventing and containing the spread of antimalarial resistance is detrimental to economic progress. This review addresses the impact of artemisinin resistance on the socioeconomic structure of malaria endemic countries.Keywords: artemisinin-based drugs, social, economic, malarial parasite resistance

  3. Vitamin D Supplementation Does Not Impact Insulin Resistance in Black and White Children.

    Science.gov (United States)

    Ferira, Ashley J; Laing, Emma M; Hausman, Dorothy B; Hall, Daniel B; McCabe, George P; Martin, Berdine R; Hill Gallant, Kathleen M; Warden, Stuart J; Weaver, Connie M; Peacock, Munro; Lewis, Richard D

    2016-04-01

    Vitamin D supplementation trials with diabetes-related outcomes have been conducted almost exclusively in adults and provide equivocal findings. The objective of this study was to determine the dose-response of vitamin D supplementation on fasting glucose, insulin, and a surrogate measure of insulin resistance in white and black children aged 9–13 years, who participated in the Georgia, Purdue, and Indiana University (or GAPI) trial: a 12-week multisite, randomized, triple-masked, dose-response, placebo-controlled vitamin D trial. Black and white children in the early stages of puberty (N = 323, 50% male, 51% black) were equally randomized to receive vitamin D3 (0, 400, 1000, 2000, or 4000 IU/day) for 12 weeks. Fasting serum 25-hydroxyvitamin D (25(OH)D), glucose and insulin were assessed at baseline and weeks 6 and 12. Homeostasis model assessment of insulin resistance was used as a surrogate measure of insulin resistance. Statistical analyses were conducted as intent-to-treat using a mixed effects model. Baseline serum 25(OH)D was inversely associated with insulin (r = −0.140, P = 0.017) and homeostasis model assessment of insulin resistance (r = −0.146, P = 0.012) after adjusting for race, sex, age, pubertal maturation, fat mass, and body mass index. Glucose, insulin, and insulin resistance increased (F > 5.79, P insulin resistance, vitamin D supplementation had no impact on fasting glucose, insulin, or a surrogate measure of insulin resistance over 12 weeks in apparently healthy children.

  4. Antimicrobial Resistance: Its Surveillance, Impact, and Alternative Management Strategies in Dairy Animals

    Science.gov (United States)

    Sharma, Chetan; Rokana, Namita; Chandra, Mudit; Singh, Brij Pal; Gulhane, Rohini Devidas; Gill, Jatinder Paul Singh; Ray, Pallab; Puniya, Anil Kumar; Panwar, Harsh

    2018-01-01

    Antimicrobial resistance (AMR), one among the most common priority areas identified by both national and international agencies, is mushrooming as a silent pandemic. The advancement in public health care through introduction of antibiotics against infectious agents is now being threatened by global development of multidrug-resistant strains. These strains are product of both continuous evolution and un-checked antimicrobial usage (AMU). Though antibiotic application in livestock has largely contributed toward health and productivity, it has also played significant role in evolution of resistant strains. Although, a significant emphasis has been given to AMR in humans, trends in animals, on other hand, are not much emphasized. Dairy farming involves surplus use of antibiotics as prophylactic and growth promoting agents. This non-therapeutic application of antibiotics, their dosage, and withdrawal period needs to be re-evaluated and rationally defined. A dairy animal also poses a serious risk of transmission of resistant strains to humans and environment. Outlining the scope of the problem is necessary for formulating and monitoring an active response to AMR. Effective and commendably connected surveillance programs at multidisciplinary level can contribute to better understand and minimize the emergence of resistance. Besides, it requires a renewed emphasis on investments into research for finding alternate, safe, cost effective, and innovative strategies, parallel to discovery of new antibiotics. Nevertheless, numerous direct or indirect novel approaches based on host–microbial interaction and molecular mechanisms of pathogens are also being developed and corroborated by researchers to combat the threat of resistance. This review places a concerted effort to club the current outline of AMU and AMR in dairy animals; ongoing global surveillance and monitoring programs; its impact at animal human interface; and strategies for combating resistance with an extensive

  5. Antimicrobial Resistance: Its Surveillance, Impact, and Alternative Management Strategies in Dairy Animals.

    Science.gov (United States)

    Sharma, Chetan; Rokana, Namita; Chandra, Mudit; Singh, Brij Pal; Gulhane, Rohini Devidas; Gill, Jatinder Paul Singh; Ray, Pallab; Puniya, Anil Kumar; Panwar, Harsh

    2017-01-01

    Antimicrobial resistance (AMR), one among the most common priority areas identified by both national and international agencies, is mushrooming as a silent pandemic. The advancement in public health care through introduction of antibiotics against infectious agents is now being threatened by global development of multidrug-resistant strains. These strains are product of both continuous evolution and un-checked antimicrobial usage (AMU). Though antibiotic application in livestock has largely contributed toward health and productivity, it has also played significant role in evolution of resistant strains. Although, a significant emphasis has been given to AMR in humans, trends in animals, on other hand, are not much emphasized. Dairy farming involves surplus use of antibiotics as prophylactic and growth promoting agents. This non-therapeutic application of antibiotics, their dosage, and withdrawal period needs to be re-evaluated and rationally defined. A dairy animal also poses a serious risk of transmission of resistant strains to humans and environment. Outlining the scope of the problem is necessary for formulating and monitoring an active response to AMR. Effective and commendably connected surveillance programs at multidisciplinary level can contribute to better understand and minimize the emergence of resistance. Besides, it requires a renewed emphasis on investments into research for finding alternate, safe, cost effective, and innovative strategies, parallel to discovery of new antibiotics. Nevertheless, numerous direct or indirect novel approaches based on host-microbial interaction and molecular mechanisms of pathogens are also being developed and corroborated by researchers to combat the threat of resistance. This review places a concerted effort to club the current outline of AMU and AMR in dairy animals; ongoing global surveillance and monitoring programs; its impact at animal human interface; and strategies for combating resistance with an extensive

  6. Possible impact of the standardized Category IV regimen on multidrug-resistant tuberculosis patients in Mumbai.

    Science.gov (United States)

    Udwadia, Zarir F; Mullerpattan, Jai Bharat; Shah, Kushal D; Rodrigues, Camilla S

    2016-01-01

    Treatment of multidrug-resistant tuberculosis (MDR-TB) in the Programmatic Management of Drug-resistant TB program involves a standard regimen with a 6-month intensive phase and an 18-month continuation phase. However, the local drug resistance patterns in high MDR regions such as Mumbai may not be adequately reflected in the design of the regimen for that particular area. The study was carried out at a private Tertiary Level Hospital in Mumbai in a mycobacteriology laboratory equipped to perform the second-line drug susceptibility testing (DST). We attempted to analyze the impact of prescribing the standardized Category IV regimen to all patients receiving a DST at our mycobacteriology laboratory. All samples confirmed to be MDR-TB and tested for the second-line drugs at Hinduja Hospital's Mycobacteriology Laboratory in the year 2012 were analyzed. A total of 1539 samples were analyzed. Of these, 464 (30.14%) were MDR-TB, 867 (56.33%) were MDR with fluoroquinolone resistance, and 198 (12.8%) were extensively drug-resistant TB. The average number of susceptible drugs per sample was 3.07 ± 1.29 (assuming 100% cycloserine susceptibility). Taking 4 effective drugs to be the cut or an effective regimen, the number of patients receiving 4 or more effective drugs from the standardized directly observed treatment, short-course plus regimen would be 516 (33.5%) while 66.5% of cases would receive 3 or less effective drugs. Our study shows that a high proportion of patients will have resistance to a number of the first- and second-line drugs. Local epidemiology must be factored in to avoid amplification of resistance.

  7. Antimicrobial Resistance: Its Surveillance, Impact, and Alternative Management Strategies in Dairy Animals

    Directory of Open Access Journals (Sweden)

    Chetan Sharma

    2018-01-01

    Full Text Available Antimicrobial resistance (AMR, one among the most common priority areas identified by both national and international agencies, is mushrooming as a silent pandemic. The advancement in public health care through introduction of antibiotics against infectious agents is now being threatened by global development of multidrug-resistant strains. These strains are product of both continuous evolution and un-checked antimicrobial usage (AMU. Though antibiotic application in livestock has largely contributed toward health and productivity, it has also played significant role in evolution of resistant strains. Although, a significant emphasis has been given to AMR in humans, trends in animals, on other hand, are not much emphasized. Dairy farming involves surplus use of antibiotics as prophylactic and growth promoting agents. This non-therapeutic application of antibiotics, their dosage, and withdrawal period needs to be re-evaluated and rationally defined. A dairy animal also poses a serious risk of transmission of resistant strains to humans and environment. Outlining the scope of the problem is necessary for formulating and monitoring an active response to AMR. Effective and commendably connected surveillance programs at multidisciplinary level can contribute to better understand and minimize the emergence of resistance. Besides, it requires a renewed emphasis on investments into research for finding alternate, safe, cost effective, and innovative strategies, parallel to discovery of new antibiotics. Nevertheless, numerous direct or indirect novel approaches based on host–microbial interaction and molecular mechanisms of pathogens are also being developed and corroborated by researchers to combat the threat of resistance. This review places a concerted effort to club the current outline of AMU and AMR in dairy animals; ongoing global surveillance and monitoring programs; its impact at animal human interface; and strategies for combating resistance

  8. Preparation and characterisation of polymeric lamellar substrate particles (PLSP)

    International Nuclear Information System (INIS)

    Khairullah, Noor Hasnah Mohamed

    2002-01-01

    Polymer microparticles have tremendous potential as the next generation of adjuvant systems to replace the only adjuvant currently widely registered for human use, alum. Based on aluminium salts, alum adjuvants work as short-term depots of adsorbed protein/antigens that slowly 'leak' into the body's immune system, inducing immunity by invoking a humoral response. The main disadvantage of alum adjuvants is that they do not raise sufficient antibody levels to induce long-term immunity. Hence, booster administrations are required. This drawback presents the biggest factor in the failure of many vaccination programmes. Polymer microparticulate systems can be fashioned to deliver sub-unit and peptide antigens in a continuous or controlled rate over a desired period of time, avoiding the need for booster doses. The design of mucosal vaccines is now centred upon the use of these polymeric carriers. The mucosal route for immunisation has many advantages over the more conventional systemic route, the most important of which, is the induction of both humoral and cellular immunity. Polymer microspheres of sizes <10μm are especially good candidates as oral vaccine adjuvants as they are taken up by the M cells of the Peyer's patches in the intestine. Numerous studies have been carried out on microspheres into which antigens have been encapsulated or entrapped. There are, however, problems associated with loss of antigenicity since formulation procedures involve the use of organic solvents and harsh shearing methods. Additionally, these antigens may be further degraded when the polymer material itself degrades in vivo and produces acidic species. A novel adjuvant system that avoids the above problems is currently being evaluated. Poly(l-lactide) (PLLA) polymeric lamellar substrate particles (PLSP) are promising as novel adjuvants for the controlled release of antigens. Reports have shown that the adsorption of antigens onto the surface of these particles can induce cellular

  9. The impact of meticillin-resistant Staphylococcus aureus on patients with advanced cancer and their family members: A qualitative study.

    Science.gov (United States)

    Gleeson, Aoife; Larkin, Philip; O'Sullivan, Niamh

    2016-04-01

    Little is known about the impact of meticillin-resistant Staphylococcus aureus on patients with advanced cancer, such as its impact on the quality of life of this vulnerable group. To date, research on meticillin-resistant Staphylococcus aureus in the palliative care setting has had a quantitative focus. The purpose of this study was to explore the impact of a meticillin-resistant Staphylococcus aureus diagnosis on patients and their carers. This article reports upon a qualitative interview study of nine patients with advanced cancer and meticillin-resistant Staphylococcus aureus and nine family members (n = 18). Framework analysis was used to analyse the data. Patients and family members of patients with advanced cancer either admitted to the specialist palliative care unit or receiving palliative care in the hospital setting, who had a laboratory confirmed diagnosis of meticillin-resistant Staphylococcus aureus colonisation, were considered for inclusion in the study. Four themes were identified using framework analysis: reactions to receiving a meticillin-resistant Staphylococcus aureus diagnosis, the need for effective communication of the meticillin-resistant Staphylococcus aureus diagnosis, the enigmatic nature of meticillin-resistant Staphylococcus aureus, and lessons to guide the future care of meticillin-resistant Staphylococcus aureus patients. This article indicates that meticillin-resistant Staphylococcus aureus can have a significant impact on advanced cancer patients and their families. This impact may be underestimated, but early and careful face-to-face explanation about meticillin-resistant Staphylococcus aureus and its implications can help patients and their families to cope better with it. These findings should be considered when developing policy relating to meticillin-resistant Staphylococcus aureus management and infection control in specialist palliative care settings. © The Author(s) 2015.

  10. Mechanical resistance of UO{sub 2} pellet by means of free-fall-impact testing

    Energy Technology Data Exchange (ETDEWEB)

    Jung, Tae-sik; Lee, Seung-jae; Kim, Jae-ik; Jo, Young-ho; Park, Bo-yong; Ko, Sang-ern [KEPCO NF, Daejeon (Korea, Republic of)

    2014-10-15

    A fuel rod failed during a power transient can be seen in Fig 1. and conjunction of a chipped pellet with a cladding crack has been observed in commercial reactors through the post-irradiation examinations. It revealed that missing-pellet-surface(MPS) was one of the reasons of the fuel failure. The mechanism of this failure mode that MPS induces the asymmetry of the pellet-cladding mechanical system mainly comprises a stress concentration at the inner surface resulting in non-classical PCI. The fracture toughness is largely close to material property. It is assumed that by optimizing surface design of UO{sub 2} pellet, the strength arises because theoretical strength is considerably affected by geometry as one of a parameter of factor 'f'. Pellet research for design optimization to achieve better resistance to external load should be accompanied with volumetric approach to the improvement of mechanical behavior of pellet being still ongoing. At this work, the resistance to external load is analyzed varying with the geometry of pellets and angles of impact on UO{sub 2} pellet surface by the free-fall-impact test method. The tested specimens were equivalently produced and sintered for having the same volumetric property such as sinter density and grain size expect the surface with different geometry design at the end face and shoulder which includes dish, chamfer and land in dimension and angle. Missing-pellet-surface(MPS) on UO{sub 2} pellet is inevitable behavior during manufacturing, handling and burning in reactor and brings about non-classical PCI behavior that could damage fuel rod integrity. For this reason, the free-fall-drop tester was developed by KEPCO NF Material Development laboratory in Daejeon for quantitatively investigating the mechanical behavior of UO{sub 2}. The free-fall-impact test is performed by dropping hammer on pellet shoulder with certain impact energy and at various angles. The result is quantitatively measured with weighing

  11. Tetracycline residues and tetracycline resistance genes in groundwater impacted by swine production facilities

    Science.gov (United States)

    Mackie, R.I.; Koike, S.; Krapac, I.; Chee-Sanford, J.; Maxwell, Susan; Aminov, R.I.

    2006-01-01

    Antibiotics are used at therapeutic levels to treat disease; at slightly lower levels as prophylactics; and at low, subtherapeutic levels for growth promotion and improvement of feed efficiency. Over 88% of swine producers in the United States gave antimicrobials to grower/finisher pigs in feed as a growth promoter in 2000. It is estimated that ca. 75% of antibiotics are not absorbed by animals and are excreted in urine and feces. The extensive use of antibiotics in swine production has resulted in antibiotic resistance in many intestinal bacteria, which are also excreted in swine feces, resulting in dissemination of resistance genes into the environment.To assess the impact of manure management on groundwater quality, groundwater samples have been collected near two swine confinement facilities that use lagoons for manure storage and treatment. Several key contaminant indicators-including inorganic ions, antibiotics, and antibiotic resistance genes-were analyzed in groundwater collected from the monitoring wells. Chloride, ammonium, potassium, and sodium were predominant inorganic constituents in the manure samples and served as indicators of groundwater contamination. Based on these analyses, shallow groundwater has been impacted by lagoon seepage at both sites. Liquid chromatography-mass spectroscopy (LC-MS) was used to measure the dissolved concentrations of tetracycline, chlortetracycline, and oxytetracycline in groundwater and manure. Although tetracyclines were regularly used at both facilities, they were infrequently detected in manure samples and then at relatively trace concentrations. Concentrations of all tetracyclines and their breakdown products in the groundwater sampled were generally less than 0.5 ??g/L.Bacterial tetracycline resistance genes served as distinct genotypic markers to indicate the dissemination and mobility of antibiotic resistance genes that originated from the lagoons. Applying PCR to genomic DNA extracted from the lagoon and

  12. Inverse cutting of posterior lamellar corneal grafts by a femtosecond laser

    DEFF Research Database (Denmark)

    Hjortdal, Jesper; Nielsen, Esben; Vestergaard, Anders Højslet

    2012-01-01

    (range: 1.400 to 2.000 cells per sq. mm). The grafts were of uniform thickness, but substantial interface haze was present in most grafts. Conclusions: Posterior lamellar corneal grafts can be prepared from the endothelial side using a femto-second laser. All grafts were clear after 6 months...

  13. Analytic theory of soft x-ray diffraction by lamellar multilayer gratings

    NARCIS (Netherlands)

    Kozhevnikov, I.V.; van der Meer, R.; Bastiaens, Hubertus M.J.; Boller, Klaus J.; Bijkerk, Frederik

    2011-01-01

    An analytic theory describing soft x-ray diffraction by Lamellar Multilayer Gratings (LMG) has been developed. The theory is derived from a coupled waves approach for LMGs operating in the single-order regime, where an incident plane wave can only excite a single diffraction order. The results from

  14. Chain elongation suppression of cyclic block copolymers in lamellar microphase-separated bulk

    NARCIS (Netherlands)

    Matsushita, Y; Iwata, H; Asari, T; Uchida, T; ten Brinke, G; Takano, A

    2004-01-01

    Chain elongation suppression of cyclic block copolymers in microphase-separated bulk was determined quantitatively. Solvent-cast and annealed films are confirmed to show alternating lamellar structure and their microdomain spacing D increases with increasing total molecular weight M according to the

  15. Early surfactant guided by lamellar body counts on gastric aspirate in very preterm infants

    DEFF Research Database (Denmark)

    Verder, Henrik Axel; Ebbesen, Finn Oluf; Fenger-Grøn, Jesper

    2013-01-01

    We have developed a rapid method, based on lamellar body counts (LBC) on gastric aspirate, for identifying newborns who will develop respiratory distress syndrome with a need for surfactant supplementation. Objective: We set out to test whether it was possible to improve the outcome when used in ...

  16. The lamellar period in symmetric diblock copolymer thin films studied by neutron reflectivity and AFM

    DEFF Research Database (Denmark)

    Gadegaard, N.; Almdal, K.; Larsen, N.B.

    1999-01-01

    The lamellar structure of a symmetric diblock copolymer was studied as a function of temperature. We used dPEP-PDMS with a molecular weight of 8.3 kg/mol as model system. The polymer was dissolved in chloroform and spin-casted on silicon wafers into thin uniform films. The degree and direction...

  17. Minimal compliance design for metal–ceramic composites with lamellar microstructures

    DEFF Research Database (Denmark)

    Piat, R.; Sinchuk, Y.; Vasoya, M.

    2011-01-01

    of lamellar domains. With local ceramic volume fraction and lamella orientation chosen as the design variables, a minimum compliance optimization problem is solved based on topology optimization and finite element methods for metal–ceramic samples with different geometries and boundary conditions...

  18. Effect of the Molecular Weight of AB Diblock Copolymers on the Lamellar Orientation in Thin Films

    DEFF Research Database (Denmark)

    Potemkin, Igor I.; Busch, Peter; Smilgies, Detlef-M

    2007-01-01

    We propose a theoretical explanation of the parallel and perpendicular lamellar orientations in free surface films of symmetric polystyrene-block-polybutadiene diblock copolymers on silicon substrates (with a native SiOx layer). Two approaches are developed: A correction to the strong segregation...

  19. Shear-induced morphology transition and microphase separation in a lamellar phase doped with clay particles.

    Science.gov (United States)

    Nettesheim, Florian; Grillo, Isabelle; Lindner, Peter; Richtering, Walter

    2004-05-11

    We report on the influence of shear on a nonionic lamellar phase of tetraethyleneglycol monododecyl ether (C12E4) in D2O containing clay particles (Laponite RD). The system was studied by means of small-angle light scattering (SALS) and small-angle neutron scattering (SANS) under shear. The SANS experiments were conducted using a H2O/D2O mixture of the respective scattering length density to selectively match the clay scattering. The rheological properties show the familiar shear thickening regime associated with the formation of multilamellar vesicles (MLVs) and a shear thinning regime at higher stresses. The variation of viscosity is less pronounced as commonly observed. In the shear thinning regime, depolarized SALS reveals an unexpectedly strong variation of the MLV size. SANS experiments using the samples with lamellar contrast reveal a change in interlamellar spacing of up to 30% at stresses that lead to MLV formation. This change is much more pronounced than the change observed, when shear suppresses thermal bilayer undulations. Microphase separation occurs, and as a consequence, the lamellar spacing decreases drastically. The coincidence of the change in lamellar spacing and the onset of MLV formation is a strong indication for a morphology-driven microphase separation.

  20. Multiscale Simulations of Lamellar PS–PEO Block Copolymers Doped with LiPF6 Ions

    KAUST Repository

    Sethuraman, Vaidyanathan; Mogurampelly, Santosh; Ganesan, Venkat

    2017-01-01

    We report the results of atomistic simulations of the structural equilibrium properties of PS–PEO block copolymer (BCP) melt in the ordered lamellar phase doped with LiPF6 salt. A hybrid simulation strategy, consisting of steps of coarse

  1. Ballistic resistance of honeycomb sandwich panels under in-plane high-velocity impact.

    Science.gov (United States)

    Qi, Chang; Yang, Shu; Wang, Dong; Yang, Li-Jun

    2013-01-01

    The dynamic responses of honeycomb sandwich panels (HSPs) subjected to in-plane projectile impact were studied by means of explicit nonlinear finite element simulations using LS-DYNA. The HSPs consisted of two identical aluminum alloy face-sheets and an aluminum honeycomb core featuring three types of unit cell configurations (regular, rectangular-shaped, and reentrant hexagons). The ballistic resistances of HSPs with the three core configurations were first analyzed. It was found that the HSP with the reentrant auxetic honeycomb core has the best ballistic resistance, due to the negative Poisson's ratio effect of the core. Parametric studies were then carried out to clarify the influences of both macroscopic (face-sheet and core thicknesses, core relative density) and mesoscopic (unit cell angle and size) parameters on the ballistic responses of the auxetic HSPs. Numerical results show that the perforation resistant capabilities of the auxetic HSPs increase as the values of the macroscopic parameters increase. However, the mesoscopic parameters show nonmonotonic effects on the panels' ballistic capacities. The empirical equations for projectile residual velocities were formulated in terms of impact velocity and the structural parameters. It was also found that the blunter projectiles result in higher ballistic limits of the auxetic HSPs.

  2. The impact of nosocomially-acquired resistant Pseudomonas aeruginosa infection in a burn unit.

    Science.gov (United States)

    Armour, Alexis D; Shankowsky, Heather A; Swanson, Todd; Lee, Jonathan; Tredget, Edward E

    2007-07-01

    Nosocomially-acquired Pseudomonas aeruginosa remains a serious cause of infection and septic mortality in burn patients. This study was conducted to quantify the impact of nosocomially-transmitted resistant P. aeruginosa in a burn population. Using a TRACS burn database, 48 patients with P. aeruginosa resistant to gentamicin were identified (Pseudomonas group). Thirty-nine were case-matched to controls without resistant P. aeruginosa cultures (control group) for age, total body surface area, admission year, and presence of inhalation injury. Mortality and various morbidity endpoints were examined, as well as antibiotic costs. There was a significantly higher mortality rate in the Pseudomonas group (33% vs. 8%, p products used (packed cells 51.1 +/- 8.0 vs. 21.1 +/- 3.4, p < 0.01; platelets 11.9 +/- 3.0 vs. 1.4 +/- 0.7, p < 0.01) were all significantly higher in the Pseudomonas group. Cost of antibiotics was also significantly higher ($2,658.52 +/- $647.93 vs. $829.22 +/- $152.82, p < 0.01). Nosocomial colonization or infection, or both, of burn patients with aminoglycoside-resistant P. aeruginosa is associated with significantly higher morbidity, mortality, and cost of care. Increased resource consumption did not prevent significantly higher mortality rates when compared with that of control patients. Thus, prevention, identification, and eradication of nosocomial Pseudomonas contamination are critical for cost-effective, successful burn care.

  3. Incorporation of poly-saccharidic derivatives in model biological systems: monolayers, lamellar phases and vesicles

    International Nuclear Information System (INIS)

    Deme, Bruno

    1995-01-01

    Our aim is to introduce a soluble polymer in a lyotropic lamellar phase, and to modify the force balance in the case of a collapsed system where no repulsive contribution overcomes the van der Waals attraction, except at very short distances where hydration forces dominate (i.e. a collapsed stack of membranes). Mixed layers of a synthetic lecithin (DMPC) and a hydrophobically modified polysaccharide (cholesteryl-pullulan, CHP) have been investigated at the air-water interface by surface tension experiments and by specular reflection of neutrons. The DMPC/CHP/water ternary phase diagram has been determined by small angle X-ray scattering (SAXS) and small angle neutron scattering (SANS). CHP derivatives are associative polymers bearing lateral cholesterol groups that interact with a polar phases such as phospholipid monolayers and biological membranes. These derivatives are surface active and self-aggregate in solution leading to the formation of soluble micellar type aggregates. The interaction of CHP derivatives with lipidic structures involves the anchoring of the cholesterol groups that yields to the tethering of the poly-saccharidic backbones at lipid/water interfaces. These poly-saccharidic backbones are flexible chains in good solvent in water. Using these derivatives and a new preparation procedure, we show that it is possible to avoid the depletion of the polysaccharide due to its steric exclusion by the collapsed DMPC lamellar phase. We are able to prepare samples at thermodynamic equilibrium with the polysaccharide solubilized in the lamellar phase, a situation opposed to the well known behavior of mixed polysaccharide/lecithin Systems commonly used in osmotic stress experiments. Here, the osmotic pressure of the chains confined in the lamellar lattice acts as a new long range repulsive contribution in the DMPC lyotropic L_α phase and results in the swelling of the lamellar phase at large membrane separations (570 A). Such bilayer separations allow out of

  4. Analysis of impact resistance of composite fan blade. Fukugozai fan blade no taishogekisei no kaiseki

    Energy Technology Data Exchange (ETDEWEB)

    Miyachi, T; Okumura, H; Otake, K; Sofue, Y [Japan Society for Aeronautical and Space Sciences, Tokyo (Japan)

    1992-01-05

    Numerical analysis of impact response was carried out when a bird strike was simulated to study the applicability of fiber reinforced composite material to fan blades for turbo-fan engines. The validity of the numerical analysis was verified by comparing the analyzed results with impact tested results of a fan-blade model of Ti-alloy. The impact resistance was studied by applying this method to fan blades of composite materials such as carbon fiber, epoxy resin and carbon-silicate fiber reinforced Ti-alloy. The finite element method was used for the analysis by dividing the model into triangular flat elements. The relation between the impact load, the deformation of blade and the strain, the natural frequency characteristics, the elastic modulus and hetrogeneity of blade were considered to analyze the impact response. The impact load by the strike of 1.5 lbs bird is very severe to the fan blades for turbo-fan engines having the thrust of 5 ton class. 23 refs., 23 figs., 3 tabs.

  5. Chain confinement, phase transitions, and lamellar structure in semicrystalline polymers, polymer blends and polymer nanocomposites

    Science.gov (United States)

    Chen, Huipeng

    Recent studies suggest that there are three phase fractions in semicrystalline polymers, the crystalline, the mobile amorphous and the rigid amorphous phases. Due to the distinct properties of the rigid amorphous fraction, RAF, it has been investigated for more than twenty years. In this thesis, a general method using quasi-isothermal temperature-modulated differential scaning calorimetry, DSC, is provided for the first time to obtain the temperature dependent RAF and the other two fractions, crystalline fraction and mobile amorphous fraction, MAF. For poly(ethylene terephthalate), PET, our results show RAF was vitrified during quasi-isothermal cooling after crystallization had been completed and became totally devitrified during quasi-isothermal heating before the start of melting. Several years after people initially discovered the existence of RAF, another issue arose relating to the physical location of RAF and mobile amorphous fraction, MAF, within a lamellar stack model. Two very different models to describe the location of RAF were proposed. In the Heterogeneous Stack Model, HET, RAF is located outside the lamellar stacks. In the Homogeneous Stack Model, HSM, RAF was located inside the lamellar stacks. To determine the lamellar structure of semicrystalline polymers comprising three phase, a general method is given in this thesis by using a combination of the DSC and small angle X-ray scattering, SAXS techniques. It has been applied to Nylon 6, isotactic polystyrene, iPS, and PET. It was found for all of these materials, the HSM model is correct to describe the lamellar structure. In addition to the determination of lamellar structures, this method can also provide the exact fraction of MAF inside and outside lamellar stacks for binary polymer blends. For binary polymer blends, MAF, normally is located partially inside and partially outside the lamellar stacks. However, the quantification of the MAF inside and outside the lamellar stacks has now been provided

  6. Impact of ertapenem on antimicrobial resistance in a sentinel group of Gram-negative bacilli: a 6 year antimicrobial resistance surveillance study.

    Science.gov (United States)

    Rodriguez-Osorio, Carlos A; Sanchez-Martinez, Cesar O; Araujo-Melendez, Javier; Criollo, Elia; Macias-Hernandez, Alejandro E; Ponce-de-Leon, Alfredo; Ponce-de-Leon, Sergio; Sifuentes-Osornio, Jose

    2015-03-01

    To determine the association between ertapenem and resistance of Escherichia coli, Pseudomonas aeruginosa, Klebsiella pneumoniae and Acinetobacter baumannii-calcoaceticus complex to different antimicrobials while adjusting for relevant hospital factors. This was a retrospective time-series study conducted at a tertiary care centre from September 2002 to August 2008. The specific impact of ertapenem on the resistance of these Gram-negative bacilli (GNB) was assessed by multiple linear regression analysis, adjusting for the average length of stay, rate of hospital-acquired infections and use of 10 other antimicrobials, including type 2 carbapenems. Unadjusted analyses revealed significant increases over the duration of the study in the number of GNB resistant to meropenem/imipenem among 1000 isolates each of E. coli (0.46 ± 0.22, P  0.05) with changes in resistance for any pathogen/antimicrobial combination. After controlling for confounders, ertapenem was not associated with changes in resistance in a group of sentinel GNB, although significant variations in resistance to different antimicrobials were observed in the unadjusted analyses. These results emphasize the importance of implementation of local resistance surveillance platforms and stewardship programmes to combat the global emergence and spread of antimicrobial resistance. © The Author 2014. Published by Oxford University Press on behalf of the British Society for Antimicrobial Chemotherapy. All rights reserved. For Permissions, please e-mail: journals.permissions@oup.com.

  7. Noise in the wire: The real impact of wire resistance for the Johnson(-like) noise based secure communicator

    International Nuclear Information System (INIS)

    Kish, Laszlo B.; Scheuer, Jacob

    2010-01-01

    We re-evaluate the impact of wire resistance on the noise voltage and current in the Johnson(-like) noise based secure communicator, correcting the result presented in [J. Scheuer, A. Yariv, Phys. Lett. A 359 (2006) 737]. The analysis shown here is based on the fluctuation-dissipation and the linear response theorems. The results indicate that the impact of wire resistance in practical communicators is significantly lower than the previous estimation.

  8. Impact of Pathogen Population Heterogeneity and Stress-Resistant Variants on Food Safety.

    Science.gov (United States)

    Abee, T; Koomen, J; Metselaar, K I; Zwietering, M H; den Besten, H M W

    2016-01-01

    This review elucidates the state-of-the-art knowledge about pathogen population heterogeneity and describes the genotypic and phenotypic analyses of persister subpopulations and stress-resistant variants. The molecular mechanisms underlying the generation of persister phenotypes and genetic variants are identified. Zooming in on Listeria monocytogenes, a comparative whole-genome sequence analysis of wild types and variants that enabled the identification of mutations in variants obtained after a single exposure to lethal food-relevant stresses is described. Genotypic and phenotypic features are compared to those for persistent strains isolated from food processing environments. Inactivation kinetics, models used for fitting, and the concept of kinetic modeling-based schemes for detection of variants are presented. Furthermore, robustness and fitness parameters of L. monocytogenes wild type and variants are used to model their performance in food chains. Finally, the impact of stress-resistant variants and persistence in food processing environments on food safety is discussed.

  9. Lamellar γ-AlOOH architectures: Synthesis and application for the removal of HCN

    International Nuclear Information System (INIS)

    Hou Hongwei; Zhu You; Tang Gangling; Hu Qingyuan

    2012-01-01

    Using hexadecyl trimethyl ammonium bromide (CTAB) as a structure-directing agent and precipitator, the complete synthesis of lamellar γ-AlOOH architectures was successfully accomplished via a hydrothermal route. Different product structures were obtained by varying the molar ratio of aluminum nitrate and CTAB. Several techniques, including X-ray powder diffraction, Fourier transform infrared spectroscopy, field-emission scanning electron microscopy, transmission electron microscopy, and differential scanning calorimetry thermal analysis, were used to characterize the products. The effects of CTAB concentration, reaction temperature and time, and the molar ratio of Al 3+ /CTAB on the product morphologies were investigated. The nitrogen adsorption and desorption measurements indicated that the γ-AlOOH architectures possess a Brunauer–Emmett–Teller surface area of approximately 75.02 m 2 /g. It was also demonstrated that 10 mg γ-AlOOH architectures can remove 45.3% of the HCN (1.68 μg/mL) from model wastewater. When 0.03 mg/cig γ-AlOOH architectures were combined with cigarette paper, 8.12% of the present HCN was adsorbed. These results indicate that lamellar γ-AlOOH architectures may be a potential adsorbent for removing HCN from highly toxic pollutant solutions and harmful cigarette smoke. Highlights: ► Hexadecyl trimethyl ammonium bromide (CTAB) was used as a structure-directing agent and precipitator. ► Hydrothermal treatment enables growth of lamellar γ-AlOOH architectures. ► Lamellar γ-AlOOH architectures were demonstrated to exhibit high BET surface area and excellent adsorptive capacity. ► HCN in contaminated water and cigarette smoke can be effectively removed by the prepared lamellar γ-AlOOH superstructures.

  10. Electrochemical properties and diffusion of a redox active surfactant incorporated in bicontinuous cubic and lamellar phase

    Energy Technology Data Exchange (ETDEWEB)

    Kostela, J. [Uppsala University, Department of Physical Chemistry, Box 579, S-75123 Uppsala (Sweden)]. E-mail: johan.kostela@fki.uu.se; Elmgren, M. [Uppsala University, Department of Physical Chemistry, Box 579, S-75123 Uppsala (Sweden); Almgren, M. [Uppsala University, Department of Physical Chemistry, Box 579, S-75123 Uppsala (Sweden)

    2005-05-30

    The objective of this study was to investigate the electrochemical behaviour of the divalent redox active surfactant, N-cetyl-N'-methylviologen (CMV), in bicontinuous cubic and lamellar phases. The liquid crystalline phases were prepared from the system glycerolmonooleate (GMO)-water (and brine)-cationic surfactant. A comparison of the phase behaviour of GMO with the monovalent cetyltrimethylammonium bromide (CTAB) and the divalent CMV surfactant showed that the surfactants gave about the same effect at the same surface charge density. The electrochemical measurements were made with a mixture of CTAB and CMV as the surfactant. Cyclic voltammetry was used to study the electrochemistry of CMV incorporated in the cubic and lamellar phases that were spread on a gold electrode. The E {sup 0}-values in the cubic samples were more negative (-0.55 V versus SCE) than in the lamellar samples (-0.53 V versus SCE). This can be explained by the higher charge density in the lamellar phase. The diffusion coefficients were also measured in the cubic phase. The mass transport is slowed down about fifty times in the cubic phase compared to in the pure electrolyte. The concentration dependence on the diffusion coefficient was also investigated. No electron hopping could be observed, which suggest that diffusional movement of the redox probe is the main source of charge transport. By placing the samples on a conducting glass slide, spectroelectrochemical investigations were performed. In the lamellar phase strong dimerization was detected at high concentration of viologen, but much less in the cubic phase.

  11. Effect of Aging Treatment on Impact Toughness and Corrosion Resistance of Super Duplex Stainless Steel

    Science.gov (United States)

    Kim, Jae-Hwan; Oh, Eun-Ji; Lee, Byung-Chan; Kang, Chang-Yong

    2016-01-01

    The effect of aging time on impact toughness and corrosion resistance of 25%Cr-7%Ni-2%Mo-4%W-0.2%N super duplex stainless steel from the viewpoint of intermetallic secondary phase variation was investigated with scanning electron microscopic observation with energy-dispersive x-ray spectroscopic analysis and transmission electron microscopy. The results clarified that R-phase is precipitated not only at the interface of ferrite and austenite but inside the ferrite at an initial stage of aging and then transformed into σ-phase from an aging time of 1 h, while the ferrite phase decomposed into γ2 and σ-phase with increase of aging time. This variation of the phases led to decrease of its impact toughness, and specifically, the R-phase was proved to be predominant in the degradation of the impact toughness at the initial stage of the aging. Additionally, these secondary phases led to deterioration of corrosion resistance because of Cr depletion.

  12. Quantitative studies on impact resistance of reinforced concrete panels with steel liners under impact loading. Part 1: Scaled model impact tests

    International Nuclear Information System (INIS)

    Tsubota, H.; Kasai, Y.; Koshika, N.; Morikawa, H.; Uchida, T.; Ohno, T.; Kogure, K.

    1993-01-01

    In recent years, extensive analytical and experimental studies have been carried out to establish a rational structural design method for nuclear power plants against local damage caused by various external missiles. Through these studies, several techniques for improving die impact resistance of reinforced concrete slabs have been proposed. Of these techniques, attaching a thin steel liner onto the impacted and/or rear face of the slab is considered to be one of the most effective methods. Muto et. al. carried out full-scale impact tests using actual aircraft engines and reported that a thin corrugated steel liner attached to the rear face of a concrete panel has a significant effect in preventing scattering of scabbed concrete debris from the rear face of the target. Based on many experimental and analytical studies, UKAEA reported that a steel liner attached to a reinforced concrete slab improves its perforation and scabbing resistance, and Walter et. al. proposed a formula for predicting the equivalent thickness of a slab with a steel liner attached. The object of this study was to evaluate quantitatively the effect of a steel liner attached to a reinforced concrete slab in preventing local damage caused by rigid missiles. To achieve the object, extensive impact tests were carried out. This paper summarizes the results of these tests

  13. Impact of the nanostructuration on the corrosion resistance and hardness of irradiated 316 austenitic stainless steels

    Energy Technology Data Exchange (ETDEWEB)

    Hug, E., E-mail: eric.hug@ensicaen.fr [Laboratoire de Cristallographie et Sciences des Matériaux, Normandie Université, CNRS UMR 6508, 6 Bd Maréchal Juin, 14050 Caen (France); Prasath Babu, R. [School of Materials, University of Manchester, M13 9PL (United Kingdom); Groupe de Physique des Matériaux, UMR CNRS 6634, Université et INSA de Rouen, Normandie Université, Saint-Etienne du Rouvray Cedex (France); Monnet, I. [Centre de recherches sur les Ions, les Matériaux et la Photonique CEA-CNRS, Normandie Université, 6 Bd Maréchal Juin, 14050 Caen (France); Etienne, A. [Groupe de Physique des Matériaux, UMR CNRS 6634, Université et INSA de Rouen, Normandie Université, Saint-Etienne du Rouvray Cedex (France); Moisy, F. [Centre de recherches sur les Ions, les Matériaux et la Photonique CEA-CNRS, Normandie Université, 6 Bd Maréchal Juin, 14050 Caen (France); Pralong, V. [Laboratoire de Cristallographie et Sciences des Matériaux, Normandie Université, CNRS UMR 6508, 6 Bd Maréchal Juin, 14050 Caen (France); Enikeev, N. [Institute of Physics of Advanced Materials, Ufa (Russian Federation); Saint Petersburg State University, Laboratory of the Mechanics of Bulk Nanostructured Materials, 198504 St. Petersburg (Russian Federation); Abramova, M. [Institute of Physics of Advanced Materials, Ufa (Russian Federation); and others

    2017-01-15

    Highlights: • Impacts of nanostructuration and irradiation on the properties of 316 stainless steels are reported. • Irradiation of nanostructured samples implies chromium depletion as than depicted in coarse grain specimens. • Hardness of nanocrystalline steels is only weakly affected by irradiation. • Corrosion resistance of the nanostructured and irradiated samples is less affected by the chromium depletion. - Abstract: The influence of grain size and irradiation defects on the mechanical behavior and the corrosion resistance of a 316 stainless steel have been investigated. Nanostructured samples were obtained by severe plastic deformation using high pressure torsion. Both coarse grain and nanostructured samples were irradiated with 10 MeV {sup 56}Fe{sup 5+} ions. Microstructures were characterized using transmission electron microscopy and atom probe tomography. Surface mechanical properties were evaluated thanks to hardness measurements and the corrosion resistance was studied in chloride environment. Nanostructuration by high pressure torsion followed by annealing leads to enrichment in chromium at grain boundaries. However, irradiation of nanostructured samples implies a chromium depletion of the same order than depicted in coarse grain specimens but without metallurgical damage like segregated dislocation loops or clusters. Potentiodynamic polarization tests highlight a definitive deterioration of the corrosion resistance of coarse grain steel with irradiation. Downsizing the grain to a few hundred of nanometers enhances the corrosion resistance of irradiated samples, despite the fact that the hardness of nanocrystalline austenitic steel is only weakly affected by irradiation. These new experimental results are discussed in the basis of couplings between mechanical and electrical properties of the passivated layer thanks to impedance spectroscopy measurements, hardness properties of the surfaces and local microstructure evolutions.

  14. Modeling creep deformation of a two-phase TiAI/Ti3Al alloy with a lamellar microstructure

    Science.gov (United States)

    Bartholomeusz, Michael F.; Wert, John A.

    1994-10-01

    A two-phase TiAl/Ti3Al alloy with a lamellar microstructure has been previously shown to exhibit a lower minimum creep rate than the minimum creep rates of the constituent TiAl and Ti3Al single-phase alloys. Fiducial-line experiments described in the present article demonstrate that the creep rates of the constituent phases within the two-phase TiAl/Ti3Al lamellar alloy tested in compression are more than an order of magnitude lower than the creep rates of single-phase TiAl and Ti3Al alloys tested in compression at the same stress and temperature. Additionally, the fiducial-line experiments show that no interfacial sliding of the phases in the TiAl/Ti3Al lamellar alloy occurs during creep. The lower creep rate of the lamellar alloy is attributed to enhanced hardening of the constituent phases within the lamellar microstructure. A composite-strength model has been formulated to predict the creep rate of the lamellar alloy, taking into account the lower creep rates of the constituent phases within the lamellar micro-structure. Application of the model yields a very good correlation between predicted and experimentally observed minimum creep rates over moderate stress and temperature ranges.

  15. Impact resistance and interlaminar fracture toughness of through-the-thickness reinforced graphite/epoxy

    Science.gov (United States)

    Dexter, H. B.; Funk, J. G.

    1986-01-01

    Five through-the-thickness stitch configurations are analyzed to determine the effect of impact resistance and interlaminar fracture toughness on T3000/3501-6 graphite/epoxy. The test specimens were stitched with either polyester or Kevlar yarns and with various stitch parameters. Tension and compression mechanical, impact and compression-after-impact, and double cantilever beam tests were conducted. It is observed that the stitched laminates have tension and compression strengths 20-25 percent lower than the strengths of unstitched laminates, the tension strength of stitched laminates is reduced with increasing number of stitches, and the compression strength increases as the number of stitches are increased. The impact data reveal that the Kevlar stitched laminates have less damage than unstitched laminates; the most effective configuration for suppressing impact damage and improving interlaminar fracture toughness consists of Kevlar yarns 1/4 inch apart with eight stitches per inch. The mode 1 critical strain energy release rate for the 1/4 inch Kevlar eight stitch laminate was calculated as 30 times higher than that of the unstitched.

  16. Influence of transverse reinforcement on perforation resistance of reinforced concrete slabs under hard missile impact

    International Nuclear Information System (INIS)

    Orbovic, Nebojsa; Sagals, Genadijs; Blahoianu, Andrei

    2015-01-01

    This paper describes the work conducted by the Canadian Nuclear Safety Commission (CNSC) related to the influence of transverse reinforcement on perforation capacity of reinforced concrete (RC) slabs under “hard” missile impact (impact with negligible missile deformations). The paper presents the results of three tests on reinforced concrete slabs conducted at VTT Technical Research Centre (Finland), along with the numerical simulations as well as a discussion of the current code provisions related to impactive loading. Transverse reinforcement is widely used for improving the shear and punching strength of concrete structures. However, the effect of this reinforcement on the perforation resistance under localized missile impact is still unclear. The goal of this paper is to fill the gap in the current literature related to this topic. Based on similar tests designed by the authors with missile velocity below perforation velocity, it was expected that transverse reinforcement would improve the perforation resistance. Three slabs were tested under almost identical conditions with the only difference being the transverse reinforcement. One slab was designed without transverse reinforcement, the second one with the transverse reinforcement in form of conventional stirrups with hooks and the third one with the transverse reinforcement in form of T-headed bars. Although the transverse reinforcement reduced the overall damage of the slabs (the rear face scabbing), the conclusion from the tests is that the transverse reinforcement does not have important influence on perforation capacity of concrete slabs under rigid missile impact. The slab with T-headed bars presented a slight improvement compared to the baseline specimen without transverse reinforcement. The slab with conventional stirrups presented slightly lower perforation capacity (higher residual missile velocity) than the slab without transverse reinforcement. In conclusion, the performed tests show slightly

  17. The impact of fecal sample processing on prevalence estimates for antibiotic-resistant Escherichia coli.

    Science.gov (United States)

    Omulo, Sylvia; Lofgren, Eric T; Mugoh, Maina; Alando, Moshe; Obiya, Joshua; Kipyegon, Korir; Kikwai, Gilbert; Gumbi, Wilson; Kariuki, Samuel; Call, Douglas R

    2017-05-01

    Investigators often rely on studies of Escherichia coli to characterize the burden of antibiotic resistance in a clinical or community setting. To determine if prevalence estimates for antibiotic resistance are sensitive to sample handling and interpretive criteria, we collected presumptive E. coli isolates (24 or 95 per stool sample) from a community in an urban informal settlement in Kenya. Isolates were tested for susceptibility to nine antibiotics using agar breakpoint assays and results were analyzed using generalized linear mixed models. We observed a 0.1). Prevalence estimates did not differ for five distinct E. coli colony morphologies on MacConkey agar plates (P>0.2). Successive re-plating of samples for up to five consecutive days had little to no impact on prevalence estimates. Finally, culturing E. coli under different conditions (with 5% CO 2 or micro-aerobic) did not affect estimates of prevalence. For the conditions tested in these experiments, minor modifications in sample processing protocols are unlikely to bias estimates of the prevalence of antibiotic-resistance for fecal E. coli. Copyright © 2017 Elsevier B.V. All rights reserved.

  18. Prior acetaminophen consumption impacts the early adaptive cellular response of human skeletal muscle to resistance exercise.

    Science.gov (United States)

    D'Lugos, Andrew C; Patel, Shivam H; Ormsby, Jordan C; Curtis, Donald P; Fry, Christopher S; Carroll, Chad C; Dickinson, Jared M

    2018-04-01

    Resistance exercise (RE) is a powerful stimulus for skeletal muscle adaptation. Previous data demonstrate that cyclooxygenase (COX)-inhibiting drugs alter the cellular mechanisms regulating the adaptive response of skeletal muscle. The purpose of this study was to determine whether prior consumption of the COX inhibitor acetaminophen (APAP) alters the immediate adaptive cellular response in human skeletal muscle after RE. In a double-blinded, randomized, crossover design, healthy young men ( n = 8, 25 ± 1 yr) performed two trials of unilateral knee extension RE (8 sets, 10 reps, 65% max strength). Subjects ingested either APAP (1,000 mg/6 h) or placebo (PLA) for 24 h before RE (final dose consumed immediately after RE). Muscle biopsies (vastus lateralis) were collected at rest and 1 h and 3 h after exercise. Mammalian target of rapamycin (mTOR) complex 1 signaling was assessed through immunoblot and immunohistochemistry, and mRNA expression of myogenic genes was examined via RT-qPCR. At 1 h p-rpS6 Ser240/244 was increased in both groups but to a greater extent in PLA. At 3 h p-S6K1 Thr389 was elevated only in PLA. Furthermore, localization of mTOR to the lysosome (LAMP2) in myosin heavy chain (MHC) II fibers increased 3 h after exercise only in PLA. mTOR-LAMP2 colocalization in MHC I fibers was greater in PLA vs. APAP 1 h after exercise. Myostatin mRNA expression was reduced 1 h after exercise only in PLA. MYF6 mRNA expression was increased 1 h and 3 h after exercise only in APAP. APAP consumption appears to alter the early adaptive cellular response of skeletal muscle to RE. These findings further highlight the mechanisms through which COX-inhibiting drugs impact the adaptive response of skeletal muscle to exercise. NEW & NOTEWORTHY The extent to which the cellular reaction to acetaminophen impacts the mechanisms regulating the adaptive response of human skeletal muscle to resistance exercise is not well understood. Consumption of acetaminophen before

  19. Advances in impact resistance testing for explosion-proof electrical equipment

    Directory of Open Access Journals (Sweden)

    Pasculescu Vlad Mihai

    2017-01-01

    Full Text Available The design, construction and exploitation of electrical equipment intended to be used in potentially explosive atmospheres presents a series of difficulties. Therefore, the approach of these phases requires special attention concerning technical, financial and occupational health and safety aspects. In order for them not to generate an ignition source for the explosive atmosphere, such equipment have to be subjected to a series of type tests aiming to decrease the explosion risk in technological installations which operate in potentially explosive atmospheres. Explosion protection being a concern of researchers and authorities worldwide, testing and certification of explosion-proof electrical equipment, required for their conformity assessment, are extremely important, taking into account the unexpected explosion hazard due to potentially explosive atmospheres, risk which has to be minimized in order to ensure the occupational health and safety of workers, for preventing material losses and for decreasing the environmental pollution. Besides others, one of the type tests, which shall be applied, for explosion-proof electrical equipment is the impact resistance test, described in detail in EN 60079 which specifies the general requirements for construction, testing and marking of electrical equipment and Ex components intended for use in explosive atmospheres. This paper presents an analysis on the requirements of the impact resistance test for explosion-proof electrical equipment and on the possibilities to improve this type of test, by making use of modern computer simulation tools based on finite element analysis, techniques which are widely used nowadays in the industry and for research purposes.

  20. The correlation of low-velocity impact resistance of graphite-fiber-reinforced composites with matrix properties

    Science.gov (United States)

    Bowles, Kenneth J.

    1988-01-01

    Summarized are basic studies that were conducted to correlate the impact resistance of graphite-fiber-reinforced composites with polymer matrix properties. Three crosslinked epoxy resins and a linear polysulfone were selected as composite matrices. As a group, these resins possess a significantly large range of mechanical properties. The mechanical properties of the resins and their respective composites were measured. Neat resin specimens and unidirectional and crossply composite specimens were impact tested with an instrumented dropweight tester. Impact resistances of the specimens were assesseed on the basis of loading capability, energy absorption, and extent of damage.

  1. The impacts of triclosan on anaerobic community structures, function, and antimicrobial resistance.

    Science.gov (United States)

    McNamara, Patrick J; LaPara, Timothy M; Novak, Paige J

    2014-07-01

    Triclosan is a widespread antimicrobial agent that accumulates in anaerobic digesters used to treat the residual solids generated at municipal wastewater treatment plants; there is very little information, however, about how triclosan impacts microbial communities in anaerobic digesters. We investigated how triclosan impacts the community structure, function and antimicrobial resistance genes in lab-scale anaerobic digesters. Previously exposed (to triclosan) communities were amended with 5, 50, and 500 mg/kg of triclosan, corresponding to the median, 95th percentile, and 4-fold higher than maximum triclosan concentration that has been detected in U.S. biosolids. Triclosan amendment caused all of the Bacteria and Archaea communities to structurally diverge from that of the control cultures (based on ARISA). At the end of the experiment, all triclosan-amended Archaea communities had diverged from the control communities, regardless of the triclosan concentration added. In contrast, over time the Bacteria communities that were amended with lower concentrations of triclosan (5 mg/kg and 50 mg/kg) initially diverged and then reconverged with the control community structure. Methane production at 500 mg/kg was nearly half the methane production in control cultures. At 50 mg/kg, a large variability in methane production was observed, suggesting that 50 mg/kg may be a tipping point where function begins to fail in some communities. When previously unexposed communities were exposed to 500 mg triclosan/kg, function was maintained, but the abundance of a gene encoding for triclosan resistance (mexB) increased. This research suggests that triclosan could inhibit methane production in anaerobic digesters if concentrations were to increase and may also select for resistant Bacteria. In both cases, microbial community composition and exposure history alter the influence of triclosan.

  2. The Impact of "Coat Protein-Mediated Virus Resistance" in Applied Plant Pathology and Basic Research.

    Science.gov (United States)

    Lindbo, John A; Falk, Bryce W

    2017-06-01

    Worldwide, plant viruses cause serious reductions in marketable crop yield and in some cases even plant death. In most cases, the most effective way to control virus diseases is through genetically controlled resistance. However, developing virus-resistant (VR) crops through traditional breeding can take many years, and in some cases is not even possible. Because of this, the demonstration of the first VR transgenic plants in 1985 generated much attention. This seminal report served as an inflection point for research in both basic and applied plant pathology, the results of which have dramatically changed both basic research and in a few cases, commercial crop production. The typical review article on this topic has focused on only basic or only applied research results stemming from this seminal discovery. This can make it difficult for the reader to appreciate the full impact of research on transgenic virus resistance, and the contributions from fundamental research that led to translational applications of this technology. In this review, we take a global view of this topic highlighting the significant changes to both basic and applied plant pathology research and commercial food production that have accumulated in the last 30 plus years. We present these milestones in the historical context of some of the scientific, economic, and environmental drivers for developing specific VR crops. The intent of this review is to provide a single document that adequately records the significant accomplishments of researchers in both basic and applied plant pathology research on this topic and how they relate to each other. We hope this review therefore serves as both an instructional tool for students new to the topic, as well as a source of conversation and discussion for how the technology of engineered virus resistance could be applied in the future.

  3. Antimicrobial stewardship through telemedicine and its impact on multi-drug resistance.

    Science.gov (United States)

    Dos Santos, Rodrigo P; Dalmora, Camila H; Lukasewicz, Stephani A; Carvalho, Otávio; Deutschendorf, Caroline; Lima, Raquel; Leitzke, Tiago; Correa, Nilson C; Gambetta, Marcelo V

    2018-01-01

    Introduction Telemedicine technologies are increasingly being incorporated into infectious disease practice. We aimed to demonstrate the impact of antimicrobial stewardship through telemedicine on bacterial resistance rates. Methods We conducted a quasi-experimental study in a 220-bed hospital in southern Brazil. An antimicrobial stewardship program incorporating the use of telemedicine was implemented. Resistance and antimicrobial consumption rates were determined and analysed using a segmented regression model. Results After the intervention, the rate of appropriate antimicrobial prescription increased from 51.4% at baseline to 81.4%. Significant reductions in the consumption of fluoroquinolones (level change, β = -0.80; P change, β = -0.01; P = 0.98), first-generation cephalosporins (level change, β = -0.91; P change, β = +0.01; P = 0.96), vancomycin (level change, β = -0.47; P = 0.04; trend change, β = +0.17; P = 0.66) and polymyxins (level change, β = -0.15; P = 0.56; trend change, β = -1.75; P change, β = +0.84; P change, β = +0.14; P = 0.41) and cefuroxime (level change, β = +0.21; P = 0.17; trend change, β = +0.66; P = 0.02). A significant decrease in the rate of carbapenem-resistant Acinetobacter spp. isolation (level change, β = +0.66; P = 0.01; trend change, β = -1.26; P resistance.

  4. Evaluation of the Internal and Borehole Resistances during Thermal Response Tests and Impact on Ground Heat Exchanger Design

    Directory of Open Access Journals (Sweden)

    Louis Lamarche

    2017-12-01

    Full Text Available The main parameters evaluated with a conventional thermal response test (TRT are the subsurface thermal conductivity surrounding the borehole and the effective borehole thermal resistance, when averaging the inlet and outlet temperature of a ground heat exchanger with the arithmetic mean. This effective resistance depends on two resistances: the 2D borehole resistance (Rb and the 2D internal resistance (Ra which is associated to the short-circuit effect between pipes in the borehole. This paper presents a field method to evaluate these two components separately. Two approaches are proposed. In the first case, the temperature at the bottom of the borehole is measured at the same time as the inlet and outlet temperatures as done in a conventional TRT. In the second case, different flow rates are used during the experiment to infer the internal resistance. Both approaches assumed a predefined temperature profile inside the borehole. The methods were applied to real experimental tests and compared with numerical simulations. Interesting results were found by comparison with theoretical resistances calculated with the multipole method. The motivation for this work is evidenced by analyzing the impact of the internal resistance on a typical geothermal system design. It is shown to be important to know both resistance components to predict the variation of the effective resistance when the flow rate and the height of the boreholes are changed during the design process.

  5. Symptoms and Impacts in Non-Metastatic Castration-Resistant Prostate Cancer: Qualitative Study Findings.

    Science.gov (United States)

    Tomaszewski, Erin L; Moise, Pierre; Krupnick, Robert N; Downing, Jared; Meyer, Margaret; Naidoo, Shevani; Holmstrom, Stefan

    2017-10-01

    We developed a conceptual model to define key concepts associated with patients' experiences with the signs, symptoms, and impacts of non-metastatic castration-resistant prostate cancer (M0-CRPC). A targeted review of peer-reviewed literature, and other publicly available information, identified and categorized symptoms and impacts related to early-stage prostate cancer. Semi-structured interviews with five clinical experts helped determine the most relevant and important concepts for patients with M0-CRPC. Qualitative interviews with 17 patients with M0-CRPC identified the most frequently experienced symptoms and impacts, and their degree of interference with patients' lives. The findings from these three lines of evidence were summarized in a conceptual model. Literature searches identified mainly urinary, intestinal, and sexual symptoms. Experts noted the symptoms most frequently mentioned by patients include erectile dysfunction, loss of sexual desire or interest, incontinence/leaking, urgency, and hot flashes. Patient interviews confirmed the high frequency of erectile dysfunction, loss of libido, urinary urgency, and incontinence. The most frequently mentioned impacts expressed by patients were the need to monitor/plan for urinary frequency, interference with/restriction of daily activities, and frustration or anxiety over diagnosis, symptoms, or treatment. Symptoms and impacts most frequently experienced by patients were typically not those with the greatest effects on their lives; rather, those with the greatest consequences were related to treatment. The leading concerns associated with M0-CRPC were related to voiding and sexual dysfunction. The most relevant symptoms and impacts expressed by patients may be a consequence of therapy rather than of the disease.

  6. Impact resistance performance of green construction material using light weight oil palm shells reinforced bamboo concrete slab

    International Nuclear Information System (INIS)

    Muda, Z C; Usman, F; Beddu, S; Alam, M A; Thiruchelvam, S; Sidek, L M; Basri, H; Saadi, S

    2013-01-01

    This paper investigate the performance of lightweight oil palm shells (OPS) concrete with varied bamboo reinforcement content for the concrete slab of 300mm x 300mm size reinforced with different thickness subjected to low impact projectile test. A self-fabricated drop-weight impact test rig with a steel ball weight of 1.2 kg drop at 1 m height has been used in this research work. The main variables for the study is to find the relationship of the impact resistance against the amount of bamboo reinforcement and slab thickness. A linear relationship has been established between first and ultimate crack resistance against bamboo diameters and slab thickness by the experiment. The linear relationship has also been established between the service (first) crack and ultimate crack resistance against the bamboo reinforcement diameter for a constant spacing for various slab thickness using 0.45 OPS and 0.6 OPS bamboo reinforced concrete. The increment in bamboo diameter has more effect on the first crack resistance than the ultimate crack resistance. The linear relationship has also been established between the service (first) crack and ultimate crack resistance against the various slab thickness. Increment in slab thickness of the slab has more effect on the crack resistance as compare to the increment in the diameter of the bamboo reinforcement.

  7. Insect-resistant biotech crops and their impacts on beneficial arthropods

    Science.gov (United States)

    Gatehouse, A. M. R.; Ferry, N.; Edwards, M. G.; Bell, H. A.

    2011-01-01

    With a projected population of 10 billion by 2050, an immediate priority for agriculture is to achieve increased crop yields in a sustainable and cost-effective way. The concept of using a transgenic approach was realized in the mid-1990s with the commercial introduction of genetically modified (GM) crops. By 2010, the global value of the seed alone was US $11.2 billion, with commercial biotech maize, soya bean grain and cotton valued at approximately US $150 billion. In recent years, it has become evident that insect-resistant crops expressing δ-endotoxin genes from Bacillus thuringiensis have made a significant beneficial impact on global agriculture, not least in terms of pest reduction and improved quality. However, because of the potential for pest populations to evolve resistance, and owing to lack of effective control of homopteran pests, alternative strategies are being developed. Some of these are based on Bacillus spp. or other insect pathogens, while others are based on the use of plant- and animal-derived genes. However, if such approaches are to play a useful role in crop protection, it is desirable that they do not have a negative impact on beneficial organisms at higher trophic levels thus affecting the functioning of the agro-ecosystem. This widely held concern over the ecological impacts of GM crops has led to the extensive examination of the potential effects of a range of transgene proteins on non-target and beneficial insects. The findings to date with respect to both commercial and experimental GM crops expressing anti-insect genes are discussed here, with particular emphasis on insect predators and parasitoids. PMID:21444317

  8. Insect-resistant biotech crops and their impacts on beneficial arthropods.

    Science.gov (United States)

    Gatehouse, A M R; Ferry, N; Edwards, M G; Bell, H A

    2011-05-12

    With a projected population of 10 billion by 2050, an immediate priority for agriculture is to achieve increased crop yields in a sustainable and cost-effective way. The concept of using a transgenic approach was realized in the mid-1990s with the commercial introduction of genetically modified (GM) crops. By 2010, the global value of the seed alone was US $11.2 billion, with commercial biotech maize, soya bean grain and cotton valued at approximately US $150 billion. In recent years, it has become evident that insect-resistant crops expressing δ-endotoxin genes from Bacillus thuringiensis have made a significant beneficial impact on global agriculture, not least in terms of pest reduction and improved quality. However, because of the potential for pest populations to evolve resistance, and owing to lack of effective control of homopteran pests, alternative strategies are being developed. Some of these are based on Bacillus spp. or other insect pathogens, while others are based on the use of plant- and animal-derived genes. However, if such approaches are to play a useful role in crop protection, it is desirable that they do not have a negative impact on beneficial organisms at higher trophic levels thus affecting the functioning of the agro-ecosystem. This widely held concern over the ecological impacts of GM crops has led to the extensive examination of the potential effects of a range of transgene proteins on non-target and beneficial insects. The findings to date with respect to both commercial and experimental GM crops expressing anti-insect genes are discussed here, with particular emphasis on insect predators and parasitoids.

  9. Evaluation of Microemulsion and Lamellar Liquid Crystalline Systems for Transdermal Zidovudine Delivery.

    Science.gov (United States)

    Carvalho, André Luis Menezes; Silva, José Alexsandro da; Lira, Ana Amélia Moreira; Conceição, Tamara Matos Freire; Nunes, Rogéria de Souza; de Albuquerque Junior, Ricardo Luiz Cavalcanti; Sarmento, Victor Hugo Vitorino; Leal, Leila Bastos; de Santana, Davi Pereira

    2016-07-01

    This study proposed to investigate and to compare colloidal carrier systems containing Zidovudine (3'-azido-3'-deoxythymidine) (AZT) for transdermal administration and optimization of antiretroviral therapy. Microemulsion (ME) and lamellar phase (LP) liquid crystal were obtained and selected from pseudoternary diagrams previously developed. Small-angle X-ray scattering and rheology analysis confirmed the presence of typical ME and liquid crystalline structures with lamellar arrangement, respectively. Both colloidal carrier systems, ME, and LP remained stable, homogeneous, and isotropic after AZT addition. In vitro permeation study (using pig ear skin) showed that the amount of permeated drug was higher for ME compared to the control and LP, obtaining a permeation enhancing effect on the order of approximately 2-fold (p drug permeation without causing apparent skin irritation. On the order hand, LP functioned as a drug reservoir reducing AZT partitioning into the skin. Copyright © 2016 American Pharmacists Association®. Published by Elsevier Inc. All rights reserved.

  10. Theory of X-ray scattering by strongly distorted aging alloys with lamellar distribution of inclusions

    International Nuclear Information System (INIS)

    Barabash, R.I.; Krivoglaz, M.A.; AN Ukrainskoj SSR, Kiev. Inst. Metallofiziki)

    1981-01-01

    The X-ray scattering by strongly distorted heterogeneous alloys containing inclusions of new phase particles is discussed. Two models describing the lamellar structure with various orientation of inclusion axes in different layers are studied. In the first model the dimensions of inclusions are small in comparison with the layer thickness and they are randomly distributed in it, in the second model lamellar inclusions stretch through the whole layer. It is shown that in both models the Debye broadened line intensity distribution consists of overlapping Lorentz curves. A case of inclusions oriented along directions [100] and layers perpendicular to axes [110] is analyzed in detail. The results obtained for this case are compared with experimental results for the Cu-Be alloy

  11. Self-consistent theory of steady-state lamellar solidification in binary eutectic systems

    International Nuclear Information System (INIS)

    Nash, G.E.; Glicksman, M.E.

    1976-01-01

    The potential theoretic methods developed recently at NRL for solving the diffusion equation are applied to the free-boundary problem describing lamellar eutectic solidification. Using these techniques, the original boundary value problem is reduced to a set of coupled integro-differential equations for the shape of the solid/liquid interface and various quantities defined on the interface. The behavior of the solutions is discussed in a qualitative fashion, leading to some interesting inferences regarding the nature of the eutectic solidification process. Using the information obtained from the analysis referred to above, an approximate theory of the lamellar-rod transition is formulated. The predictions of the theory are shown to be in qualitative agreement with experimental observations of this transition. In addition, a simplified version of the general integro-differential equations is developed and is used to assess the effect of interface curvature on the interfacial solute concentrations, and to check the new theory for consistency with experiment

  12. Closed compact Taylor's droplets in a phase-separated lamellar-sponge mixture under shear flow

    Science.gov (United States)

    Courbin, L.; Cristobal, G.; Rouch, J.; Panizza, P.

    2001-09-01

    We have studied by optical microscopy, small-angle light scattering, and rheology, the behavior under shear flow of a phase-separated lamellar-sponge (Lα - L3) ternary mixture. We observe in the Lα-rich region (ΦLα > 80%) the existence of a Newtonian assembly made of closed compact monodisperse lamellar droplets immersed in the sponge phase. Contrary to the classical onion glassy texture obtained upon shearing Lα phases, the droplet size scales herein as dot gamma-1, the inverse of the shear rate. This result is in good agreement with Taylor's picture. Above a critical shear rate, dot gammac, the droplets organize to form a single colloidal crystal whose lattice size varies as dot gamma-1/3. To the memory of Tess Melissa P.

  13. Creep mechanisms of fully-lamellar TiAl based upon interface sliding

    International Nuclear Information System (INIS)

    Hsiung, L.M.; Nieh, T.G.

    1999-01-01

    Deformation mechanisms of fully lamellar TiAl with a refined microstructure (γ lamellae: 100 approximately 300 nm thick, α 2 lamellae: 10 approximately 50 nm thick) crept at 760 C have been investigated. As a result of a fine structure, the motion and multiplication of lattice dislocations within both γ and α 2 lamellae are limited at low creep stresses ( 2 and γ/γ interfaces (i.e., interface sliding) is proposed to be the dominant deformation mechanism at low stresses. Lattice dislocations impinged on lamellar interfaces are found to be the major obstacles impeding the motion of interfacial dislocations. The number of impinged lattice dislocations increases as the applied stress increases and, subsequently, causes the pileup of interfacial dislocations along the interfaces. Accordingly, deformation twinning activated by the pileup of interfacial dislocations is proposed to be the dominant deformation mechanism at high stresses (>400 MPa)

  14. Phase-field-lattice Boltzmann study for lamellar eutectic growth in a natural convection melt

    Directory of Open Access Journals (Sweden)

    Ang Zhang

    2017-11-01

    Full Text Available In the present study, the influence of natural convection on the lamellar eutectic growth is determined by a phase-field-lattice Boltzmann study for Al-Cu eutectic alloy. The mass difference resulting from concentration difference led to the fluid flow, and a robust parallel and adaptive mesh refinement algorithm was employed to improve the computational efficiency without any compromising accuracy. Results show that the existence of natural convection would affect the growth undercooling and thus control the interface shape by adjusting the lamellar width. In particular, by alternating the magnitude of the solute expansion coefficient, the strength of the natural convection is changed. Corresponding microstructure patterns are discussed and compared with those under no-convection conditions.

  15. Creep characteristics of a hypoeutectic Mg-Ca binary alloy with a near-fully lamellar microstructure

    International Nuclear Information System (INIS)

    Terada, Yoshihiro; Tsukahara, Masashi; Shibayama, Atsushi; Murata, Yoshinori; Morinaga, Masahiko

    2011-01-01

    Highlights: → We develop a hypoeutectic Mg-Ca cast alloy with a near-fully lamellar microstructure. → Dislocations are introduced within the lamellar microstructure during casting. → The dislocation segments in the α-Mg plates are located on the basal planes. → Creep of the alloy is ascribed to the easy glide of the introduced dislocations. -- The creep behavior of a hypoeutectic Mg-14.8 mass% Ca cast alloy with an α-Mg/C14-Mg 2 Ca near-fully lamellar microstructure was investigated at 473 K. Transmission electron microscopy shows that dislocations are introduced within the lamellar microstructure of the alloy during casting; the dislocation segments in the α-Mg plates are located on basal planes. The stress exponent of the creep rate is unity in the early stage of transient creep. Creep deformation of the alloy is ascribed to the easy glide of the introduced dislocations.

  16. Soft solution synthesis and intense visible photoluminescence of lamellar zinc oxide hybrids

    International Nuclear Information System (INIS)

    Sağlam, Özge

    2013-01-01

    Graphical abstract: -- In this study, we demonstrate the synthesis of layered zinc oxide films intercalated with dodecyl sulphate ions by a simple soft solution process. The presence of potassium (K + ) and lithium (Li + ) ions in the precursor solution of layered zinc hydroxide resulted in lamellar hybrid zinc oxide films instead of layered zinc hydroxides. On the other hand, the addition of nickel phthalocyanine induces zinc hydroxide host layers which exhibit an intense blue emission. This is also promoted by K + and Li + ions

  17. Hierarchical Formation of Fibrillar and Lamellar Self-Assemblies from Guanosine-Based Motifs

    Directory of Open Access Journals (Sweden)

    Paolo Neviani

    2010-01-01

    Full Text Available Here we investigate the supramolecular polymerizations of two lipophilic guanosine derivatives in chloroform by light scattering technique and TEM experiments. The obtained data reveal the presence of several levels of organization due to the hierarchical self-assembly of the guanosine units in ribbons that in turn aggregate in fibrillar or lamellar soft structures. The elucidation of these structures furnishes an explanation to the physical behaviour of guanosine units which display organogelator properties.

  18. The Evolution of Splint Armour in Georgia and Byzantium: Lamellar and Scale Armour in the 10th-12th Centuries

    OpenAIRE

    TSURTSUMIA, Mamuka

    2011-01-01

    Byzantine technology was part of the military technology that existed in vast areas of Eurasia; hence study of the armament of its neighbours is important.The purpose of the present paper is to add new data about Byzantium’s Caucasian neighbour (namely, Georgia). Besides that, it also includes certain views about the stages of the evolution and provenance of splint (scale and lamellar) armour. This paper also attempts to clarify the difference between banded and linear suits of lamellar armou...

  19. In situ ultrahigh-resolution optical coherence tomography characterization of eye bank corneal tissue processed for lamellar keratoplasty.

    Science.gov (United States)

    Brown, Jamin S; Wang, Danling; Li, Xiaoli; Baluyot, Florence; Iliakis, Bernie; Lindquist, Thomas D; Shirakawa, Rika; Shen, Tueng T; Li, Xingde

    2008-08-01

    To use optical coherence tomography (OCT) as a noninvasive tool to perform in situ characterization of eye bank corneal tissue processed for lamellar keratoplasty. A custom-built ultrahigh-resolution OCT (UHR-OCT) was used to characterize donor corneal tissue that had been processed for lamellar keratoplasty. Twenty-seven donor corneas were analyzed. Four donor corneas were used as controls, whereas the rest were processed into donor corneal buttons for lamellar transplantation by using hand dissection, a microkeratome, or a femtosecond laser. UHR-OCT was also used to noninvasively characterize and monitor the viable corneal tissue immersed in storage medium over 3 weeks. The UHR-OCT captured high-resolution images of the donor corneal tissue in situ. This noninvasive technique showed the changes in donor corneal tissue morphology with time while in storage medium. The characteristics of the lamellar corneal tissue with each processing modality were clearly visible by UHR-OCT. The in situ characterization of the femtosecond laser-cut corneal tissue was noted to have more interface debris than shown by routine histology. The effects of the femtosecond laser microcavitation bubbles on the corneal tissue were well visualized at the edges of the lamellar flap while in storage medium. The results of our feasibility study show that UHR-OCT can provide superb, in situ microstructural characterization of eye bank corneal tissue noninvasively. The UHR-OCT interface findings and corneal endothelial disc thickness uniformity analysis are valuable information that may be used to optimize the modalities and parameters for lamellar tissue processing. The UHR-OCT is a powerful approach that will allow us to further evaluate the tissue response to different processing techniques for posterior lamellar keratoplasty. It may also provide information that can be used to correlate with postoperative clinical outcomes. UHR-OCT has the potential to become a routine part of tissue

  20. Excimer laser-assisted anterior lamellar keratoplasty for keratoconus, corneal problems after laser in situ keratomileusis, and corneal stromal opacities.

    Science.gov (United States)

    Bilgihan, Kamil; Ozdek, Sengül C; Sari, Ayça; Hasanreisoğlu, Berati

    2006-08-01

    To evaluate excimer laser-assisted anterior lamellar keratoplasty to augment thin corneas as in keratoconus ( .05). This technique presents a different modality for the treatment of keratoconus, post-LASIK corneal problems, and other corneal stromal opacities with anterior lamellar keratoplasty. Additional studies with more patients and longer follow-up will help determine the role of this technique as a substitute for penetrating keratoplasty in these patients.

  1. One-step exfoliation and surface modification of lamellar hydroxyapatite by intercalation of glucosamine

    Energy Technology Data Exchange (ETDEWEB)

    Luo, Honglin [Research Institute for Biomaterials and Transportation, East China Jiaotong University, Nanchang, 330013 (China); School of Materials Science and Engineering, Tianjin University, Tianjin, 300072 (China); Li, Wei; Ji, Dehui [Research Institute for Biomaterials and Transportation, East China Jiaotong University, Nanchang, 330013 (China); Zuo, Guifu [Hebei Provincial Key Laboratory of Inorganic Nonmetallic Materials, College of Materials Science and Engineering, Hebei United University, Tangshan, 063009 (China); Xiong, Guangyao, E-mail: xiongguangyao@163.com [Research Institute for Biomaterials and Transportation, East China Jiaotong University, Nanchang, 330013 (China); Zhu, Yong [School of Chemical Engineering, Tianjin University, Tianjin, 300072 (China); Li, Lili; Han, Ming [Research Institute for Biomaterials and Transportation, East China Jiaotong University, Nanchang, 330013 (China); Wu, Caoqun [School of Materials Science and Engineering, Tianjin University, Tianjin, 300072 (China); Wan, Yizao, E-mail: yzwantju@126.com [Research Institute for Biomaterials and Transportation, East China Jiaotong University, Nanchang, 330013 (China); School of Materials Science and Engineering, Tianjin University, Tianjin, 300072 (China)

    2016-04-15

    Effective exfoliation is crucial to the application of layered materials in many fields. Herein, we report a novel effective, scalable, and ecofriendly method for the exfoliation of lamellar HAp by glucosamine intercalation such that individual HAp nanoplates can be obtained. The as-exfoliated HAp nanoplates were characterized by Fourier transform infrared (FTIR), X-ray diffraction (XRD), transmission electron microscopy (TEM), and thermogravimetric (TG) analysis. It is found that the glucosamine intercalation not only results in complete exfoliation of lamellar HAp but also introduces the glucosamine molecules onto the surface of individual HAp nanoplates, thus obtaining separated glucosamine-grafted HAp nanoplates (Glu-HAps). Results from MTT assay demonstrate that glucosamine grafting on HAp nanoplates greatly improves the cell growth and proliferation as compared to nongrafted HAp counterparts. - Highlights: • Glucosamine was used as intercalation agent to exfoliate lamellar hydroxyapatite. • Glucosamine was grafted onto the as-exfoliated nanoplate-like hydroxyapatite. • Exfoliation and surface grafting were accomplished in one step. • Glucosamine-grafted HAp showed improved biocompatibility over nongrafted one.

  2. Fourier method for modeling slanted lamellar gratings of arbitrary end-surface shapes in conical mounting.

    Science.gov (United States)

    Li, Lifeng

    2015-10-01

    An efficient modal method for numerically modeling slanted lamellar gratings of isotropic dielectric or metallic media in conical mounting is presented. No restrictions are imposed on the slant angle and the length of the lamellae. The end surface of the lamellae can be arbitrary, subject to certain restrictions. An oblique coordinate system that is adapted to the slanted lamella sidewalls allows the most efficient way of representing and manipulating the electromagnetic fields. A translational coordinate system that is based on the oblique Cartesian coordinate system adapts to the end-surface profile of the lamellae, so that the latter can be handled simply and easily. Moreover, two matrix eigenvalue problems of size 2N × 2N, one for each fundamental polarization of the electromagnetic fields in the periodic lamellar structure, where N is the matrix truncation number, are derived to replace the 4N × 4N eigenvalue problem that has been used in the literature. The core idea leading to this success is the polarization decomposition of the electromagnetic fields inside the periodic lamellar region when the fields are expressed in the oblique translational coordinate system.

  3. A structural study of lamellar phases formed by nucleoside-functionalized lipids

    Energy Technology Data Exchange (ETDEWEB)

    Berti, D.; Fratini, E.; Baglioni, P. [Department of Chemistry and CSGI, University of Florence, Via G. Capponi 9, 50121 Florence (Italy); Dante, S.; Hauss, T. [Berlin Neutron Scattering Center, Hahn Meitner Institut, Glienicker Strasse 100, Wannsee, 14109 Berlin (Germany)

    2002-07-01

    We report a neutron-scattering investigation of lamellar phases formed by novel phospholipids bearing nucleosides at the polar-head-group region. These nucleolipids can interact through stacking and H-bond interactions, following a pattern that resembles base-base coupling in natural nucleic acids (DNA, RNA), i.e. they have similar recognition properties. Bilayer stacks formed of DPP-adenosine, DPP-uridine and their 1:1 mixture were investigated after equilibration in a 98% relative humidity atmosphere. The DPP-adenosine spectrum can be accounted for (in analogy to DPPC) by a lamellar phase with a smectic period of about 60 A. DPP-uridine displays a not so straightforward behavior that we have tentatively ascribed to the coexistence of lamellae with different smectic periods. In the 1:1 mixture the lamellar mesophase of DPP-uridine is retained, suggesting a specific interaction of the uridine polar-head group with the adenosine moiety of DPP-adenosine. It should be stressed that this behavior can be considered as an indication of the recognition process occurring at the polar-head-group region of the mixed phospholiponucleoside membrane. (orig.)

  4. Evaluation of Biaxial Mechanical Properties of Aortic Media Based on the Lamellar Microstructure

    Directory of Open Access Journals (Sweden)

    Hadi Taghizadeh

    2015-01-01

    Full Text Available Evaluation of the mechanical properties of arterial wall components is necessary for establishing a precise mechanical model applicable in various physiological and pathological conditions, such as remodeling. In this contribution, a new approach for the evaluation of the mechanical properties of aortic media accounting for the lamellar structure is proposed. We assumed aortic media to be composed of two sets of concentric layers, namely sheets of elastin (Layer I and interstitial layers composed of mostly collagen bundles, fine elastic fibers and smooth muscle cells (Layer II. Biaxial mechanical tests were carried out on human thoracic aortic samples, and histological staining was performed to distinguish wall lamellae for determining the dimensions of the layers. A neo-Hookean strain energy function (SEF for Layer I and a four-parameter exponential SEF for Layer II were allocated. Nonlinear regression was used to find the material parameters of the proposed microstructural model based on experimental data. The non-linear behavior of media layers confirmed the higher contribution of elastic tissue in lower strains and the gradual engagement of collagen fibers. The resulting model determines the nonlinear anisotropic behavior of aortic media through the lamellar microstructure and can be assistive in the study of wall remodeling due to alterations in lamellar structure during pathological conditions and aging.

  5. Reverse osmosis desalination of chitosan cross-linked graphene oxide/titania hybrid lamellar membranes.

    Science.gov (United States)

    Deng, Hui; Sun, Penzhan; Zhang, Yingjiu; Zhu, Hongwei

    2016-07-08

    With excellent mass transport properties, graphene oxide (GO)-based lamellar membranes are believed to have great potential in water desalination. In order to quantify whether GO-based membranes are indeed suitable for reverse osmosis (RO) desalination, three sub-micrometer thick GO-based lamellar membranes: GO-only, reduced GO (RGO)/titania (TO) nanosheets and RGO/TO/chitosan (CTS) are prepared, and their RO desalination performances are evaluated in a home-made RO test apparatus. The photoreduction of GO by TO improves the salt rejection, which increases slowly with the membrane thickness. The RGO/TO/CTS hybrid membranes exhibit higher rejection rates of only about 30% (greater than threefold improvement compared with a GO-only membrane) which is still inferior compared to other commercial RO membranes. The low rejection rates mainly arise from the pressure-induced weakening of the ion-GO interlayer interactions. Despite the advantages of simple, low-cost preparation, high permeability and selectivity of GO-based lamellar membranes, as the current desalination performances are not high enough to afford practical application, there still remains a great challenge to realize high performance separation membranes for water desalination applications.

  6. A structural study of lamellar phases formed by nucleoside-functionalized lipids

    CERN Document Server

    Berti, D; Baglioni, P; Dante, S; Hauss, T

    2002-01-01

    We report a neutron-scattering investigation of lamellar phases formed by novel phospholipids bearing nucleosides at the polar-head-group region. These nucleolipids can interact through stacking and H-bond interactions, following a pattern that resembles base-base coupling in natural nucleic acids (DNA, RNA), i.e. they have similar recognition properties. Bilayer stacks formed of DPP-adenosine, DPP-uridine and their 1:1 mixture were investigated after equilibration in a 98% relative humidity atmosphere. The DPP-adenosine spectrum can be accounted for (in analogy to DPPC) by a lamellar phase with a smectic period of about 60 A. DPP-uridine displays a not so straightforward behavior that we have tentatively ascribed to the coexistence of lamellae with different smectic periods. In the 1:1 mixture the lamellar mesophase of DPP-uridine is retained, suggesting a specific interaction of the uridine polar-head group with the adenosine moiety of DPP-adenosine. It should be stressed that this behavior can be considere...

  7. Finite element analysis for the initiation of lamellar tearing in welded joints

    International Nuclear Information System (INIS)

    Krieg, R.D.; Thomas, R.K.

    1980-01-01

    A numerical procedure using the finite element method is presented for predicting the initiation of lamellar tearing in fillet welded T-joints commonly employed in large structures. Starting with a prescribed geometry, the welding process is approximated by a known time-dependent volumetric heat source which simulates the arc heating and deposition of liquid metal. The transient nonlinear thermal and stress problems are then solved using finite element computer codes. Results of the elastic-plastic stress analysis are presented showing a predicted region of incipient lamellar tearing based on a ductile fracture theory which qualitatively agrees with the size and location of tears typically observed in photomicrographs. Additional insight into post failure crack length and stability is presented based on a simplified linear elastic fracture mechanics approach. Although the analysis procedure shows signs of promise, several weak points in the model are pointed out which must be improved before lamellar tearing can be quantified in an approach of this general type

  8. Failure mechanism of resistance-spot-welded specimens impacted on base material by bullets

    Directory of Open Access Journals (Sweden)

    Chunlei Fan

    2018-01-01

    Full Text Available The tests of bullet impact on the base material (BM of a simple specimen with a single resistance-spot-welded (RSW nugget of TRIP800 steel are performed to investigate the response of the RSW specimen to the ballistic debris impact on the RSW specimen. A one-stage gas gun is used to fire the bullets while a laser velocity interferometer system for any reflector (VISAR is used to measure the velocity histories of the free surfaces of the RSW specimen. The recovered RSW specimens are examined with the three-dimensional super depth digital microscope (SDDM and the scanning electro microscope (SEM. For the tests of small multiple-bullet impact, it is revealed that the wave train of the VISAR measured results and the detachment of the base material interfaces in the recovered RSW specimens are directly related to the reflection and refraction of the curved stress waves incoming to the interfaces and the free surfaces in the RSW specimens. The detachment of BM interfaces can lead to the impact failure of the RSW joints for the larger multiple-bullet impact at higher velocity, the mechanism of which is different from the case for normal incidence (spalling. For the tests of single large bullet impact, it is brought to light experimentally that the plastic strain concentration at the “notch tip” spurs either the crack near the RSW joint or the split of the nugget. The numerical simulation shows up the process of splitting the nugget: a crack initiates at the “notch tip”, propagates across the nugget interface and splits the nugget into two parts. It is indicated that the interaction between the stress waves and many interfaces/free surfaces in the RSW specimen under ballistic impact causes variable local stress triaxialities and stress Lode angles, which affects the deformation and fracture mechanism of the RSW specimen including stretching and shearing failure. It is shown that the impact failure of the RSW joints is a mixture of brittle

  9. Failure mechanism of resistance-spot-welded specimens impacted on base material by bullets

    Science.gov (United States)

    Fan, Chunlei; Ma, Bohan; Chen, Danian; Wang, Huanran; Ma, Dongfang

    2018-01-01

    The tests of bullet impact on the base material (BM) of a simple specimen with a single resistance-spot-welded (RSW) nugget of TRIP800 steel are performed to investigate the response of the RSW specimen to the ballistic debris impact on the RSW specimen. A one-stage gas gun is used to fire the bullets while a laser velocity interferometer system for any reflector (VISAR) is used to measure the velocity histories of the free surfaces of the RSW specimen. The recovered RSW specimens are examined with the three-dimensional super depth digital microscope (SDDM) and the scanning electro microscope (SEM). For the tests of small multiple-bullet impact, it is revealed that the wave train of the VISAR measured results and the detachment of the base material interfaces in the recovered RSW specimens are directly related to the reflection and refraction of the curved stress waves incoming to the interfaces and the free surfaces in the RSW specimens. The detachment of BM interfaces can lead to the impact failure of the RSW joints for the larger multiple-bullet impact at higher velocity, the mechanism of which is different from the case for normal incidence (spalling). For the tests of single large bullet impact, it is brought to light experimentally that the plastic strain concentration at the "notch tip" spurs either the crack near the RSW joint or the split of the nugget. The numerical simulation shows up the process of splitting the nugget: a crack initiates at the "notch tip", propagates across the nugget interface and splits the nugget into two parts. It is indicated that the interaction between the stress waves and many interfaces/free surfaces in the RSW specimen under ballistic impact causes variable local stress triaxialities and stress Lode angles, which affects the deformation and fracture mechanism of the RSW specimen including stretching and shearing failure. It is shown that the impact failure of the RSW joints is a mixture of brittle fracture and ductile

  10. Oligosaccharides and glycolipids addition in charged lamellar phases; Addition d`oligosaccharides et de glycolipides dans des phases lamellaires chargees

    Energy Technology Data Exchange (ETDEWEB)

    Ricoul, F

    1997-09-26

    The aim of this work is to study the addition of oligosaccharides and glycolipids in lamellar phases of the cationic surfactant DDAB (di-dodecyl-dimethyl-ammonium bromide). Two steps have been followed: the determination of phases prisms and the thermodynamic interpretation in terms of molecular interactions. In order to characterize these systems, two new experimental small angle scattering methods have been perfected: 1) a neutron scattering contrast variation method which allows to study the adsorption of aqueous solution in bilayers and 2) a capillary concentration gradient method to establish directly and quantitatively the phases diagrams of ternary systems by X rays scattering. It has been pointed out that the oligosaccharides induce a depletion attractive force on the lamellar-lamellar equilibrium of the DDAB when they are excluded of the most concentrated phase. For the two studied glycolipids: 2-O lauroyl-saccharose and N-lauroyl N-nonyl lactitol, the ternary phase diagrams water-DDAB-glycolipid have been established in terms of temperature. Critical points at ambient temperature have been given. The osmotic pressure in concentrated lamellar phases has been measured. It has been shown that glycolipids increase the hydration repulsion at short distance and that the electrostatic repulsion is outstanding and unchanged at high distance if there is at less 1 mole percent of ionic surfactant. In a dilute solution, glycolipids decrease the maximum swelling of lamellar phases, with a competition between the lamellar phase and the micellae dilute phase for water. (O.M.). 165 refs.

  11. At the Nexus of Antibiotics and Metals: The Impact of Cu and Zn on Antibiotic Activity and Resistance.

    Science.gov (United States)

    Poole, Keith

    2017-10-01

    Environmental influences on antibiotic activity and resistance can wreak havoc with in vivo antibiotic efficacy and, ultimately, antimicrobial chemotherapy. In nature, bacteria encounter a variety of metal ions, particularly copper (Cu) and zinc (Zn), as contaminants in soil and water, as feed additives in agriculture, as clinically-used antimicrobials, and as components of human antibacterial responses. Importantly, there is a growing body of evidence for Cu/Zn driving antibiotic resistance development in metal-exposed bacteria, owing to metal selection of genetic elements harbouring both metal and antibiotic resistance genes, and metal recruitment of antibiotic resistance mechanisms. Many classes of antibiotics also form complexes with metal cations, including Cu and Zn, and this can hinder (or enhance) antibiotic activity. This review highlights the ways in which Cu/Zn influence antibiotic resistance development and antibiotic activity, and in so doing impact in vivo antibiotic efficacy. Copyright © 2017 Elsevier Ltd. All rights reserved.

  12. Impact of Microbiota on Resistance to Ocular Pseudomonas aeruginosa-Induced Keratitis.

    Directory of Open Access Journals (Sweden)

    Abirami Kugadas

    2016-09-01

    Full Text Available The existence of the ocular microbiota has been reported but functional analyses to evaluate its significance in regulating ocular immunity are currently lacking. We compared the relative contribution of eye and gut commensals in regulating the ocular susceptibility to Pseudomonas aeruginosa-induced keratitis. We find that in health, the presence of microbiota strengthened the ocular innate immune barrier by significantly increasing the concentrations of immune effectors in the tear film, including secretory IgA and complement proteins. Consistent with this view, Swiss Webster (SW mice that are typically resistant to P. aeruginosa-induced keratitis become susceptible due to the lack of microbiota. This was exemplified by increased corneal bacterial burden and elevated pathology of the germ free (GF mice when compared to the conventionally maintained SW mice. The protective immunity was found to be dependent on both eye and gut microbiota with the eye microbiota having a moderate, but significant impact on the resistance to infection. These events were IL-1ß-dependent as corneal IL-1ß levels were decreased in the infected GF and antibiotic-treated mice when compared to the SPF controls, and neutralization of IL-1ß increased the ocular bacterial burden in the SPF mice. Monocolonizing GF mice with Coagulase Negative Staphylococcus sp. isolated from the conjunctival swabs was sufficient to restore resistance to infection. Cumulatively, these data underline a previously unappreciated role for microbiota in regulating susceptibility to ocular keratitis. We predict that these results will have significant implications for contact lens wearers, where alterations in the ocular commensal communities may render the ocular surface vulnerable to infections.

  13. Expansion of Viral Load Testing and the Potential Impact on HIV Drug Resistance.

    Science.gov (United States)

    Raizes, Elliot; Hader, Shannon; Birx, Deborah

    2017-12-01

    The US President's Emergency Plan for AIDS Relief (PEPFAR) supports aggressive scale-up of antiretroviral therapy (ART) in high-burden countries and across all genders and populations at risk toward global human immunodeficiency virus (HIV) epidemic control. PEPFAR recognizes the risk of HIV drug resistance (HIVDR) as a consequence of aggressive ART scale-up and is actively promoting 3 key steps to mitigate the impact of HIVDR: (1) routine access to routine viral load monitoring in all settings; (2) optimization of ART regimens; and (3) routine collection and analysis of HIVDR data to monitor the success of mitigation strategies. The transition to dolutegravir-based regimens in PEPFAR-supported countries and the continuous evolution of HIVDR surveillance strategies are essential elements of PEPFAR implementation. Published by Oxford University Press for the Infectious Diseases Society of America 2017. This work is written by (a) US Government employee(s) and is in the public domain in the US.

  14. IMPACT OF MICROBIOTA ON RESISTANCE TO OCULAR PSEUDOMONAS AERUGINOSA–INDUCED KERATITIS

    DEFF Research Database (Denmark)

    Kugadas, Abirami; Christiansen, Stig Hill; Sankaranarayanan, Saiprasad

    2016-01-01

    The existence of the ocular microbiota has been reported but functional analyses to evaluate its significance in regulating ocular immunity are currently lacking. We compared the relative contribution of eye and gut commensals in regulating the ocular susceptibility to Pseudomonas aeruginosa...... to be dependent on both eye and gut microbiota with the eye microbiota having a moderate, but significant impact on the resistance to infection. These events were IL-1ß–dependent as corneal IL-1ß levels were decreased in the infected GF and antibiotic-treated mice when compared to the SPF controls...... for microbiota in regulating susceptibility to ocular keratitis. We predict that these results will have significant implications for contact lens wearers, where alterations in the ocular commensal communities may render the ocular surface vulnerable to infections....

  15. Safety of stationary grinding machines - impact resistance of work zone enclosures.

    Science.gov (United States)

    Mewes, Detlef; Adler, Christian

    2017-09-01

    Guards on machine tools are intended to protect persons from being injured by parts ejected with high kinetic energy from the work zone of the machine. Stationary grinding machines are a typical example. Generally such machines are provided with abrasive product guards closely enveloping the grinding wheel. However, many machining tasks do not allow the use of abrasive product guards. In such cases, the work zone enclosure has to be dimensioned so that, in case of failure, grinding wheel fragments remain inside the machine's working zone. To obtain data for the dimensioning of work zone enclosures on stationary grinding machines, which must be operated without an abrasive product guard, burst tests were conducted with vitrified grinding wheels. The studies show that, contrary to widely held opinion, narrower grinding wheels can be more critical concerning the impact resistance than wider wheels although their fragment energy is smaller.

  16. Optimizing Wear Resistance and Impact Toughness in High Chromium Iron Mo-Ni Alloy

    Science.gov (United States)

    Singh, K. K.; Verma, R. S.; Murty, G. M. D.

    2009-06-01

    An alloy with carbon and chromium in the range of 2.0 to 2.5% and 20 to 25%, respectively, with the addition of Mo and Ni in the range of 1.0 to 1.5% each when heat-treated at a quenching temperature of 1010 °C and tempering temperature of 550 °C produces a hardness in the range of 54 to 56 HRC and a microstructure that consists of discontinuous bands of high volume (35-40%) of wear resistant primary (eutectic) carbides in a tempered martensitic matrix with uniformly dispersed secondary precipitates. This alloy has been found to possess adequate impact toughness (5-6 J/cm2) with a wear resistance of the order of 3-4 times superior to Mn steel and 1.25 times superior to martensitic stainless steel with a reduction in cost-to-life ratio by a factor of 1.25 in both the cases.

  17. A proposed analytic framework for determining the impact of an antimicrobial resistance intervention.

    Science.gov (United States)

    Grohn, Yrjo T; Carson, Carolee; Lanzas, Cristina; Pullum, Laura; Stanhope, Michael; Volkova, Victoriya

    2017-06-01

    Antimicrobial use (AMU) is increasingly threatened by antimicrobial resistance (AMR). The FDA is implementing risk mitigation measures promoting prudent AMU in food animals. Their evaluation is crucial: the AMU/AMR relationship is complex; a suitable framework to analyze interventions is unavailable. Systems science analysis, depicting variables and their associations, would help integrate mathematics/epidemiology to evaluate the relationship. This would identify informative data and models to evaluate interventions. This National Institute for Mathematical and Biological Synthesis AMR Working Group's report proposes a system framework to address the methodological gap linking livestock AMU and AMR in foodborne bacteria. It could evaluate how AMU (and interventions) impact AMR. We will evaluate pharmacokinetic/dynamic modeling techniques for projecting AMR selection pressure on enteric bacteria. We study two methods to model phenotypic AMR changes in bacteria in the food supply and evolutionary genotypic analyses determining molecular changes in phenotypic AMR. Systems science analysis integrates the methods, showing how resistance in the food supply is explained by AMU and concurrent factors influencing the whole system. This process is updated with data and techniques to improve prediction and inform improvements for AMU/AMR surveillance. Our proposed framework reflects both the AMR system's complexity, and desire for simple, reliable conclusions.

  18. DYNAMIC TIME HISTORY ANALYSIS OF BLAST RESISTANT DOOR USING BLAST LOAD MODELED AS IMPACT LOAD

    Directory of Open Access Journals (Sweden)

    Y. A. Pranata

    2012-06-01

    Full Text Available A blast resistant single door was designed to withstand a 0.91 bar blast pressure and 44 ms blast duration. The analysis was done using Dynamic Time History Analysis using Blast Load modeled as Impact Load for given duration. The material properties used have been modified to accommodate dynamic effects. The analysis was done using dynamic finite element method (fem for time of the blast duration, and the maximum/minimum internal forces and displacement were taken from the time history output, in order to know the behavior under blast load and estimate the safety margin of the door. Results obtained from this research indicated that the maximum z-displacement is 1.709 mm, while in the term of serviceability, the permitted is 25 mm. The maximum reaction force is 73,960 N, while the maximum anchor capacity is 82,069 N. On blast condition, the maximum frame stress is 71.71 MPa, the maximum hinge shear stress is 45.28 MPa. While on rebound condition, the maximum frame stress is 172.11 MPa, the maximum hinge shear stress is 29.46 MPa. The maximum door edge rotation is 0.44 degree, which is not exceed the permitted boundary (1.2 degree. Keywords: Dynamic time history, blast resistant door, single door, finite element method.

  19. Natural Diversity in Heat Resistance of Bacteria and Bacterial Spores: Impact on Food Safety and Quality.

    Science.gov (United States)

    den Besten, Heidy M W; Wells-Bennik, Marjon H J; Zwietering, Marcel H

    2018-03-25

    Heat treatments are widely used in food processing often with the aim of reducing or eliminating spoilage microorganisms and pathogens in food products. The efficacy of applying heat to control microorganisms is challenged by the natural diversity of microorganisms with respect to their heat robustness. This review gives an overview of the variations in heat resistances of various species and strains, describes modeling approaches to quantify heat robustness, and addresses the relevance and impact of the natural diversity of microorganisms when assessing heat inactivation. This comparison of heat resistances of microorganisms facilitates the evaluation of which (groups of) organisms might be troublesome in a production process in which heat treatment is critical to reducing the microbial contaminants, and also allows fine-tuning of the process parameters. Various sources of microbiological variability are discussed and compared for a range of species, including spore-forming and non-spore-forming pathogens and spoilage organisms. This benchmarking of variability factors gives crucial information about the most important factors that should be included in risk assessments to realistically predict heat inactivation of bacteria and spores as part of the measures for controlling shelf life and safety of food products.

  20. Reshaping the gut microbiota: Impact of low calorie sweeteners and the link to insulin resistance?

    Science.gov (United States)

    Nettleton, Jodi E; Reimer, Raylene A; Shearer, Jane

    2016-10-01

    Disruption in the gut microbiota is now recognized as an active contributor towards the development of obesity and insulin resistance. This review considers one class of dietary additives known to influence the gut microbiota that may predispose susceptible individuals to insulin resistance - the regular, long-term consumption of low-dose, low calorie sweeteners. While the data are controversial, mounting evidence suggests that low calorie sweeteners should not be dismissed as inert in the gut environment. Sucralose, aspartame and saccharin, all widely used to reduce energy content in foods and beverages to promote satiety and encourage weight loss, have been shown to disrupt the balance and diversity of gut microbiota. Fecal transplant experiments, wherein microbiota from low calorie sweetener consuming hosts are transferred into germ-free mice, show that this disruption is transferable and results in impaired glucose tolerance, a well-known risk factor towards the development of a number of metabolic disease states. As our understanding of the importance of the gut microbiota in metabolic health continues to grow, it will be increasingly important to consider the impact of all dietary components, including low calorie sweeteners, on gut microbiota and metabolic health. Copyright © 2016 Elsevier Inc. All rights reserved.

  1. Merging Bottom-Up with Top-Down: Continuous Lamellar Networks and Block Copolymer Lithography

    Science.gov (United States)

    Campbell, Ian Patrick

    Block copolymer lithography is an emerging nanopatterning technology with capabilities that may complement and eventually replace those provided by existing optical lithography techniques. This bottom-up process relies on the parallel self-assembly of macromolecules composed of covalently linked, chemically distinct blocks to generate periodic nanostructures. Among the myriad potential morphologies, lamellar structures formed by diblock copolymers with symmetric volume fractions have attracted the most interest as a patterning tool. When confined to thin films and directed to assemble with interfaces perpendicular to the substrate, two-dimensional domains are formed between the free surface and the substrate, and selective removal of a single block creates a nanostructured polymeric template. The substrate exposed between the polymeric features can subsequently be modified through standard top-down microfabrication processes to generate novel nanostructured materials. Despite tremendous progress in our understanding of block copolymer self-assembly, continuous two-dimensional materials have not yet been fabricated via this robust technique, which may enable nanostructured material combinations that cannot be fabricated through bottom-up methods. This thesis aims to study the effects of block copolymer composition and processing on the lamellar network morphology of polystyrene-block-poly(methyl methacrylate) (PS-b-PMMA) and utilize this knowledge to fabricate continuous two-dimensional materials through top-down methods. First, block copolymer composition was varied through homopolymer blending to explore the physical phenomena surrounding lamellar network continuity. After establishing a framework for tuning the continuity, the effects of various processing parameters were explored to engineer the network connectivity via defect annihilation processes. Precisely controlling the connectivity and continuity of lamellar networks through defect engineering and

  2. Mechanical property characterization and impact resistance of selected graphite/PEEK composite materials

    Science.gov (United States)

    Baker, Donald J.

    1994-01-01

    To use graphite polyetheretherketone (PEEK) material on highly curved surfaces requires that the material be drapable and easily conformable to the surface. This paper presents the mechanical property characterization and impact resistance results for laminates made from two types of graphite/PEEK materials that will conform to a curved surface. These laminates were made from two different material forms. These forms are: (1) a fabric where each yarn is a co-mingled Celion G30-500 3K graphite fiber and PEEK thermoplastic fiber; and (2) an interleaved material of Celion G30-500 3K graphite fabric interleaved with PEEK thermoplastic film. The experimental results from the fabric laminates are compared with results for laminates made from AS4/PEEK unidirectional tape. The results indicate that the tension and compression moduli for quasi-isotropic and orthotropic laminates made from fabric materials are at least 79 percent of the modulus of equivalent laminates made from tape material. The strength of fabric material laminates is at least 80 percent of laminates made from tape material. The evaluation of fabric material for shear stiffness indicates that a tape material laminate could be replaced by a fabric material laminate and still maintain 89 percent of the shear stiffness of the tape material laminate. The notched quasi-isotropic compression panel failure strength is 42 to 46 percent of the unnotched quasi-isotropic laminate strength. Damage area after impact with 20 ft-lbs of impact energy is larger for the co-mingled panels than for the interleaved panels. The inerleaved panels have less damage than panels made from tape material. Residual compression strength of quasi-isotropic panels after impact of 20 ft-lbs of energy varies between 33 percent of the undamaged quasi-isotropic material strength for the tape material and 38 percent of the undamaged quasi-isotropic material strength for the co-mingled fabric material.

  3. Impact of Rapid Susceptibility Testing and Antibiotic Selection Strategy on the Emergence and Spread of Antibiotic Resistance in Gonorrhea.

    Science.gov (United States)

    Tuite, Ashleigh R; Gift, Thomas L; Chesson, Harrell W; Hsu, Katherine; Salomon, Joshua A; Grad, Yonatan H

    2017-11-27

    Increasing antibiotic resistance limits treatment options for gonorrhea. We examined the impact of a hypothetical point-of-care (POC) test reporting antibiotic susceptibility profiles on slowing resistance spread. A mathematical model describing gonorrhea transmission incorporated resistance emergence probabilities and fitness costs associated with resistance based on characteristics of ciprofloxacin (A), azithromycin (B), and ceftriaxone (C). We evaluated time to 1% and 5% prevalence of resistant strains among all isolates with the following: (1) empiric treatment (B and C), and treatment guided by POC tests determining susceptibility to (2) A only and (3) all 3 antibiotics. Continued empiric treatment without POC testing was projected to result in >5% of isolates being resistant to both B and C within 15 years. Use of either POC test in 10% of identified cases delayed this by 5 years. The 3 antibiotic POC test delayed the time to reach 1% prevalence of triply-resistant strains by 6 years, whereas the A-only test resulted in no delay. Results were less sensitive to assumptions about fitness costs and test characteristics with increasing test uptake. Rapid diagnostics reporting antibiotic susceptibility may extend the usefulness of existing antibiotics for gonorrhea treatment, but ongoing monitoring of resistance patterns will be critical. © The Author 2017. Published by Oxford University Press for the Infectious Diseases Society of America.

  4. Effect of internal short fibers, steel reinforcement, and surface layer on impact and penetration resistance of concrete

    Directory of Open Access Journals (Sweden)

    Ali Abd_Elhakam Aliabdo

    2013-09-01

    Full Text Available This paper presents an experimental program to investigate the impact and penetration resistance of concrete. The research work is divided into two approaches. These approaches are effect of concrete constituents and effect of surface layer. Effect of concrete aggregate type, w/c ratio, fiber type, fiber shape, fiber volume fraction, and steel reinforcement is considered in the first approach. The second approach includes using fiber reinforced concrete and glass fiber reinforced polymer as surface layers. The evaluating tests include standard impact test according to ASTM D 1557 and suggested simulated penetration test to measure the impact and penetration resistance of concrete. The test results of plain and fibrous concrete from ASTM D 1557 method indicated that steel fiber with different configurations and using basalt have a great positive effect on impact resistance of concrete. Moreover, the simulated penetration test indicates that steel fibers are more effective than propylene fibers, type of coarse aggregate has negligible effect, and steel fiber volume fraction has a more significant influence than fiber shape for reinforced concrete test panels. Finally, as expectable, surface properties of tested concrete panels have a significant effect on impact and penetration resistance.

  5. Budget Impact of Enzalutamide for Chemotherapy-Naïve Metastatic Castration-Resistant Prostate Cancer.

    Science.gov (United States)

    Bui, Cat N; O'Day, Ken; Flanders, Scott; Oestreicher, Nina; Francis, Peter; Posta, Linda; Popelar, Breanna; Tang, Hong; Balk, Mark

    2016-02-01

    Prostate cancer is expected to account for approximately one quarter of all new diagnoses of cancer in American men in 2015. The cost of prostate cancer care is expected to reach $15.1 billion by the year 2020, up from $11.9 billion in 2010. Given the high burden of prostate cancer, health care payers are interested in quantifying the potential budget impact of new therapies. To estimate the budget impact of enzalutamide for the treatment of chemotherapy-naïve metastatic castration-resistant prostate cancer (mCRPC) from a U.S. payer perspective. A model was developed to assess the budget impact of enzalutamide for treatment of chemotherapy-naïve mCRPC patients in a hypothetical 1-million-member U.S. health plan over a 1-year time horizon. Comparators included abiraterone acetate, sipuleucel-T, radium Ra 223 dichloride, and docetaxel. Epidemiologic data, including National Cancer Institute Surveillance, Epidemiology, and End Results (SEER) incidence rates, were used to estimate the number of chemotherapy-naïve mCRPC patients. Dosing, administration, duration of therapy, and adverse event rates were based on package inserts and pivotal studies. Drug costs were obtained from RED BOOK and Centers for Medicare & Medicaid Services (CMS) average sales price pricing files, costs of administration and monitoring from the CMS physician fee schedule, and adverse events from the Agency for Healthcare Research and Quality Healthcare Cost and Utilization Project and published literature. Market shares were estimated for each comparator before and after adoption of enzalutamide. The incremental aggregate budget impact, per patient per year (PPPY), per patient per month (PPPM), and per member per month (PMPM), was calculated. One-way sensitivity analyses were performed. In a population of 115 chemotherapy-naïve mCRPC patients, adopting enzalutamide had an annual incremental budget impact of $510,641 ($4,426 PPPY, $369 PPPM, and $0.04 PMPM). Results were most sensitive to

  6. Impact of physiological variables and genetic background on myocardial frequency-resistivity relations in the intact beating murine heart.

    Science.gov (United States)

    Reyes, Maricela; Steinhelper, Mark E; Alvarez, Jorge A; Escobedo, Daniel; Pearce, John; Valvano, Jonathan W; Pollock, Brad H; Wei, Chia-Ling; Kottam, Anil; Altman, David; Bailey, Steven; Thomsen, Sharon; Lee, Shuko; Colston, James T; Oh, Jung Hwan; Freeman, Gregory L; Feldman, Marc D

    2006-10-01

    Conductance measurements for generation of an instantaneous left ventricular (LV) volume signal in the mouse are limited, because the volume signal is a combination of blood and LV muscle, and only the blood signal is desired. We have developed a conductance system that operates at two simultaneous frequencies to identify and remove the myocardial contribution to the instantaneous volume signal. This system is based on the observation that myocardial resistivity varies with frequency, whereas blood resistivity does not. For calculation of LV blood volume with the dual-frequency conductance system in mice, in vivo murine myocardial resistivity was measured and combined with an analytic approach. The goals of the present study were to identify and minimize the sources of error in the measurement of myocardial resistivity to enhance the accuracy of the dual-frequency conductance system. We extended these findings to a gene-altered mouse model to determine the impact of measured myocardial resistivity on the calculation of LV pressure-volume relations. We examined the impact of temperature, timing of the measurement during the cardiac cycle, breeding strain, anisotropy, and intrameasurement and interanimal variability on the measurement of intact murine myocardial resistivity. Applying this knowledge to diabetic and nondiabetic 11- and 20- to 24-wk-old mice, we demonstrated differences in myocardial resistivity at low frequencies, enhancement of LV systolic function at 11 wk and LV dilation at 20-24 wk, and histological and electron-microscopic studies demonstrating greater glycogen deposition in the diabetic mice. This study demonstrated the accurate technique of measuring myocardial resistivity and its impact on the determination of LV pressure-volume relations in gene-altered mice.

  7. Bloodstream infections caused by multi-drug resistant Proteus mirabilis: Epidemiology, risk factors and impact of multi-drug resistance.

    Science.gov (United States)

    Korytny, Alexander; Riesenberg, Klaris; Saidel-Odes, Lisa; Schlaeffer, Fransisc; Borer, Abraham

    2016-01-01

    The prevalence of antimicrobial co-resistance among ESBL-producing Enterobactereaceae is extremely high in Israel. Multidrug-resistant Proteus mirabilis strains (MDR-PM), resistant to almost all antibiotic classes have been described. The aim was to determine the risk factors for bloodstream infections caused by MDR-PM and clinical outcomes. A retrospective case-control study. Adult patients with PM bacteremia during 7 years were identified retrospectively and their files reviewed for demographics, underlying diseases, Charlson Comorbidity Index, treatment and outcome. One hundred and eighty patients with PM-bloodstream infection (BSI) were included; 90 cases with MDR-PM and 90 controls with sensitive PM (S-PM). Compared to controls, cases more frequently were from nursing homes, had recurrent hospital admissions in the past year and received antibiotic therapy in the previous 3 months, were bedridden and suffered from peripheral vascular disease and peptic ulcer disease (p < 0.001). Two-thirds of the MDR-PM isolates were ESBL-producers vs 4.4% of S-PM isolates (p < 0.001, OR = 47.6, 95% CI = 15.9-142.6). In-hospital crude mortality rate of patients with MDR-PM BSI was 37.7% vs 23.3% in those with S-PM BSI (p = 0.0359, OR = 2, 95% CI = 1.4-3.81). PM bacteremia in elderly and functionally-dependent patients is likely to be caused by nearly pan-resistant PM strains in the institution; 51.8% of the patients received inappropriate empiric antibiotic treatment. The crude mortality rate of patients with MDR-PM BSI was significantly higher than that of patients with S-PM BSI.

  8. How to measure the impacts of antibiotic resistance and antibiotic development on empiric therapy: new composite indices.

    Science.gov (United States)

    Hughes, Josie S; Hurford, Amy; Finley, Rita L; Patrick, David M; Wu, Jianhong; Morris, Andrew M

    2016-12-16

    We aimed to construct widely useable summary measures of the net impact of antibiotic resistance on empiric therapy. Summary measures are needed to communicate the importance of resistance, plan and evaluate interventions, and direct policy and investment. As an example, we retrospectively summarised the 2011 cumulative antibiogram from a Toronto academic intensive care unit. We developed two complementary indices to summarise the clinical impact of antibiotic resistance and drug availability on empiric therapy. The Empiric Coverage Index (ECI) measures susceptibility of common bacterial infections to available empiric antibiotics as a percentage. The Empiric Options Index (EOI) varies from 0 to 'the number of treatment options available', and measures the empiric value of the current stock of antibiotics as a depletable resource. The indices account for drug availability and the relative clinical importance of pathogens. We demonstrate meaning and use by examining the potential impact of new drugs and threatening bacterial strains. In our intensive care unit coverage of device-associated infections measured by the ECI remains high (98%), but 37-44% of treatment potential measured by the EOI has been lost. Without reserved drugs, the ECI is 86-88%. New cephalosporin/β-lactamase inhibitor combinations could increase the EOI, but no single drug can compensate for losses. Increasing methicillin-resistant Staphylococcus aureus (MRSA) prevalence would have little overall impact (ECI=98%, EOI=4.8-5.2) because many Gram-positives are already resistant to β-lactams. Aminoglycoside resistance, however, could have substantial clinical impact because they are among the few drugs that provide coverage of Gram-negative infections (ECI=97%, EOI=3.8-4.5). Our proposed indices summarise the local impact of antibiotic resistance on empiric coverage (ECI) and available empiric treatment options (EOI) using readily available data. Policymakers and drug developers can use the

  9. Transmission of drug resistant HIV and its potential impact on mortality and treatment outcomes in resource-limited settings

    DEFF Research Database (Denmark)

    Cambiano, Valentina; Bertagnolio, Silvia; Jordan, Michael R

    2013-01-01

    is the most cost-effective. Mathematical models can contribute to answer these questions. In order to estimate the potential long-term impact of TDR on mortality in people on ART we used the Synthesis transmission model. TDR is predicted to have potentially significant impact on future HIV mortality...... periods of unrecognized viral failure, during which drug-resistant virus can be transmitted and this could compromise the long-term effectiveness of currently available first-line regimens. In response to this concern, the World Health Organization recommends population-based surveys to detect whether...... the prevalence of resistance in ART-naive people is reaching alerting levels. Whereas adherence counseling has to be an integral component of any treatment program, it is still unclear which threshold of transmitted drug resistance (TDR) should trigger additional targeted public health actions and which action...

  10. Impact of contact and access resistances in graphene field-effect transistors on quartz substrates for radio frequency applications

    Energy Technology Data Exchange (ETDEWEB)

    Ramón, Michael E., E-mail: michael.ramon@utexas.edu, E-mail: hemacp@utexas.edu; Movva, Hema C. P., E-mail: michael.ramon@utexas.edu, E-mail: hemacp@utexas.edu; Fahad Chowdhury, Sk.; Parrish, Kristen N.; Rai, Amritesh; Akinwande, Deji; Banerjee, Sanjay K. [Microelectronics Research Center, Department of Electrical and Computer Engineering, The University of Texas at Austin, Austin, Texas 78758 (United States); Magnuson, Carl W.; Ruoff, Rodney S. [Department of Mechanical Engineering and the Materials Science and Engineering Program, The University of Texas at Austin, Austin, Texas 78712 (United States)

    2014-02-17

    High-frequency performance of graphene field-effect transistors (GFETs) has been limited largely by parasitic resistances, including contact resistance (R{sub C}) and access resistance (R{sub A}). Measurement of short-channel (500 nm) GFETs with short (200 nm) spin-on-doped source/drain access regions reveals negligible change in transit frequency (f{sub T}) after doping, as compared to ∼23% f{sub T} improvement for similarly sized undoped GFETs measured at low temperature, underscoring the impact of R{sub C} on high-frequency performance. DC measurements of undoped/doped short and long-channel GFETs highlight the increasing impact of R{sub A} for larger GFETs. Additionally, parasitic capacitances were minimized by device fabrication using graphene transferred onto low-capacitance quartz substrates.

  11. Impact of contact and access resistances in graphene field-effect transistors on quartz substrates for radio frequency applications

    International Nuclear Information System (INIS)

    Ramón, Michael E.; Movva, Hema C. P.; Fahad Chowdhury, Sk.; Parrish, Kristen N.; Rai, Amritesh; Akinwande, Deji; Banerjee, Sanjay K.; Magnuson, Carl W.; Ruoff, Rodney S.

    2014-01-01

    High-frequency performance of graphene field-effect transistors (GFETs) has been limited largely by parasitic resistances, including contact resistance (R C ) and access resistance (R A ). Measurement of short-channel (500 nm) GFETs with short (200 nm) spin-on-doped source/drain access regions reveals negligible change in transit frequency (f T ) after doping, as compared to ∼23% f T improvement for similarly sized undoped GFETs measured at low temperature, underscoring the impact of R C on high-frequency performance. DC measurements of undoped/doped short and long-channel GFETs highlight the increasing impact of R A for larger GFETs. Additionally, parasitic capacitances were minimized by device fabrication using graphene transferred onto low-capacitance quartz substrates

  12. Resistance Exercise Impacts Lean Muscle Mass in Women with Polycystic Ovary Syndrome.

    Science.gov (United States)

    Kogure, Gislaine Satyko; Miranda-Furtado, Cristiana Libardi; Silva, Rafael Costa; Melo, Anderson Sanches; Ferriani, Rui Alberto; De Sá, Marcos Felipe Silva; Dos Reis, Rosana Maria

    2016-04-01

    This study investigated the effects of progressive resistance training (PRT) on lean muscle mass (LMM) in women with or without polycystic ovary syndrome (PCOS) and its effects on metabolic factors and concentrations of related steroid hormones. This was a nonrandomized, therapeutic, open, single-arm study. All in all, 45 sedentary women with PCOS and 52 without (non-PCOS), 18-37 yr of age, with body mass indexes (BMI) of 18-39.9 kg·m(-2) of all races and social status, performed PRT three times a week for 4 months. Before and after PRT, the concentrations of hormones and metabolic factors and waist circumference were measured. LMM and total body fat percentage were determined using dual-energy x-ray absorptiometry. Clinical characteristics, LMM, and fasting glucose were adjusted for confounding covariables and compared using general linear mixed models. Each patient's menstrual history was taken before study enrollment and after PRT. PRT resulted in reduced plasma testosterone and fasting glucose levels. After PRT, the androstenedione concentration increased and the sex hormone-binding globulin concentration decreased in women with PCOS. The waist circumference was reduced (P lean mass (LM)/height2, increased in women with PCOS (P = 0.04). Women with PCOS showed increased muscle mass indexes of appendicular LM/height2 (P = 0.03) and LM/height2 (P women with PCOS (P = 0.01) at the baseline and after PRT. To our knowledge, this is the first report to show that resistance exercise alone can improve hyperandrogenism, reproductive function, and body composition by decreasing visceral fat and increasing LMM, but it has no metabolic impact on women with PCOS.

  13. Intra-species Genomic and Physiological Variability Impact Stress Resistance in Strains of Probiotic Potential.

    Science.gov (United States)

    Arnold, Jason W; Simpson, Joshua B; Roach, Jeffrey; Kwintkiewicz, Jakub; Azcarate-Peril, M Andrea

    2018-01-01

    Large-scale microbiome studies have established that most of the diversity contained in the gastrointestinal tract is represented at the strain level; however, exhaustive genomic and physiological characterization of human isolates is still lacking. With increased use of probiotics as interventions for gastrointestinal disorders, genomic and functional characterization of novel microorganisms becomes essential. In this study, we explored the impact of strain-level genomic variability on bacterial physiology of two novel human Lactobacillus rhamnosus strains (AMC143 and AMC010) of probiotic potential in relation to stress resistance. The strains showed differences with known probiotic strains ( L. rhamnosus GG, Lc705, and HN001) at the genomic level, including nucleotide polymorphisms, mutations in non-coding regulatory regions, and rearrangements of genomic architecture. Transcriptomics analysis revealed that gene expression profiles differed between strains when exposed to simulated gastrointestinal stresses, suggesting the presence of unique regulatory systems in each strain. In vitro physiological assays to test resistance to conditions mimicking the gut environment (acid, alkali, and bile stress) showed that growth of L. rhamnosus AMC143 was inhibited upon exposure to alkaline pH, while AMC010 and control strain LGG were unaffected. AMC143 also showed a significant survival advantage compared to the other strains upon bile exposure. Reverse transcription qPCR targeting the bile salt hydrolase gene ( bsh ) revealed that AMC143 expressed bsh poorly (a consequence of a deletion in the bsh promoter and truncation of bsh gene in AMC143), while AMC010 had significantly higher expression levels than AMC143 or LGG. Insertional inactivation of the bsh gene in AMC010 suggested that bsh could be detrimental to bacterial survival during bile stress. Together, these findings show that coupling of classical microbiology with functional genomics methods for the

  14. Intra-species Genomic and Physiological Variability Impact Stress Resistance in Strains of Probiotic Potential

    Directory of Open Access Journals (Sweden)

    Jason W. Arnold

    2018-02-01

    Full Text Available Large-scale microbiome studies have established that most of the diversity contained in the gastrointestinal tract is represented at the strain level; however, exhaustive genomic and physiological characterization of human isolates is still lacking. With increased use of probiotics as interventions for gastrointestinal disorders, genomic and functional characterization of novel microorganisms becomes essential. In this study, we explored the impact of strain-level genomic variability on bacterial physiology of two novel human Lactobacillus rhamnosus strains (AMC143 and AMC010 of probiotic potential in relation to stress resistance. The strains showed differences with known probiotic strains (L. rhamnosus GG, Lc705, and HN001 at the genomic level, including nucleotide polymorphisms, mutations in non-coding regulatory regions, and rearrangements of genomic architecture. Transcriptomics analysis revealed that gene expression profiles differed between strains when exposed to simulated gastrointestinal stresses, suggesting the presence of unique regulatory systems in each strain. In vitro physiological assays to test resistance to conditions mimicking the gut environment (acid, alkali, and bile stress showed that growth of L. rhamnosus AMC143 was inhibited upon exposure to alkaline pH, while AMC010 and control strain LGG were unaffected. AMC143 also showed a significant survival advantage compared to the other strains upon bile exposure. Reverse transcription qPCR targeting the bile salt hydrolase gene (bsh revealed that AMC143 expressed bsh poorly (a consequence of a deletion in the bsh promoter and truncation of bsh gene in AMC143, while AMC010 had significantly higher expression levels than AMC143 or LGG. Insertional inactivation of the bsh gene in AMC010 suggested that bsh could be detrimental to bacterial survival during bile stress. Together, these findings show that coupling of classical microbiology with functional genomics methods for the

  15. Systematic Review: Impact of point sources on antibiotic-resistant bacteria in the natural environment.

    Science.gov (United States)

    Bueno, I; Williams-Nguyen, J; Hwang, H; Sargeant, J M; Nault, A J; Singer, R S

    2018-02-01

    Point sources such as wastewater treatment plants and agricultural facilities may have a role in the dissemination of antibiotic-resistant bacteria (ARB) and antibiotic resistance genes (ARG). To analyse the evidence for increases in ARB in the natural environment associated with these point sources of ARB and ARG, we conducted a systematic review. We evaluated 5,247 records retrieved through database searches, including both studies that ascertained ARG and ARB outcomes. All studies were subjected to a screening process to assess relevance to the question and methodology to address our review question. A risk of bias assessment was conducted upon the final pool of studies included in the review. This article summarizes the evidence only for those studies with ARB outcomes (n = 47). Thirty-five studies were at high (n = 11) or at unclear (n = 24) risk of bias in the estimation of source effects due to lack of information and/or failure to control for confounders. Statistical analysis was used in ten studies, of which one assessed the effect of multiple sources using modelling approaches; none reported effect measures. Most studies reported higher ARB prevalence or concentration downstream/near the source. However, this evidence was primarily descriptive and it could not be concluded that there is a clear impact of point sources on increases in ARB in the environment. To quantify increases in ARB in the environment due to specific point sources, there is a need for studies that stress study design, control of biases and analytical tools to provide effect measure estimates. © 2017 Blackwell Verlag GmbH.

  16. 75 FR 53971 - Guidance for Industry and Food and Drug Administration Staff; Impact-Resistant Lenses: Questions...

    Science.gov (United States)

    2010-09-02

    ... DEPARTMENT OF HEALTH AND HUMAN SERVICES Food and Drug Administration [Docket No. FDA-2007-D-0367] Guidance for Industry and Food and Drug Administration Staff; Impact-Resistant Lenses: Questions and Answers; Availability AGENCY: Food and Drug Administration, HHS. ACTION: Notice. SUMMARY: The Food and...

  17. Static properties and impact resistance of a green Ultra-High Performance Hybrid Fibre Reinforced Concrete (UHPHFRC) : experiments and modeling

    NARCIS (Netherlands)

    Yu, R.; Spiesz, P.R.; Brouwers, H.J.H.

    2014-01-01

    This paper addresses the static properties and impact resistance of a "green" Ultra-High Performance Hybrid Fibre Reinforced Concrete (UHPHFRC). The design of concrete mixtures aims to achieve a densely compacted cementitious matrix, employing the modified Andreasen & Andersen particle packing

  18. Impact of weed control strategies on resistance evolution in Alopecurus myosuroides – a long-term field trial

    Directory of Open Access Journals (Sweden)

    Ulber, Lena

    2016-02-01

    Full Text Available The impact of various herbicide strategies on populations of Alopecurus myosuroides is investigated in a longterm field trial situated in Wendhausen (Germany since 2009. In the initial years of the field experiment, resistant populations were selected by means of repeated application of the same herbicide active ingredients. For the selection of different resistance profiles, herbicides with actives from different HRAC groups were used. The herbicide actives flupyrsulfuron, isoproturon und fenoxaprop-P were applied for two years on large plots. In a succeeding field trial starting in 2011, it was investigated if the now existing resistant field populations could be controlled by various herbicide strategies. Eight different strategies consisting of various herbicide combinations were tested. Resistance evolution was investigated by means of plant counts and molecular genetic analysis.

  19. Budgetary Impact of Cabazitaxel Use After Docetaxel Treatment for Metastatic Castration-Resistant Prostate Cancer.

    Science.gov (United States)

    Flannery, Kyle; Drea, Ed; Hudspeth, Louis; Corman, Shelby; Gao, Xin; Xue, Mei; Miao, Raymond

    2017-04-01

    With the approval of several new treatments for metastatic castration-resistant prostate cancer (mCRPC), budgetary impact is a concern for health plan decision makers. Budget impact models (BIMs) are becoming a requirement in many countries as part of formulary approval or reimbursement decisions. Cabazitaxel is a second-generation taxane developed to overcome resistance to docetaxel and is approved for the treatment of patients with mCRPC previously treated with a docetaxel-containing regimen. To estimate a 1-year projected budget impact of varying utilization rates of cabazitaxel as a second-line treatment for mCRPC following docetaxel, using a hypothetical U.S. private managed care plan with 1 million members. A BIM was developed to evaluate costs for currently available treatment options for patients with mCRPC previously treated with docetaxel. Treatments included in the model were cabazitaxel, abiraterone acetate, enzalutamide, and radium-223, with utilization rates derived from market research data. Medication costs were calculated according to published pricing benchmarks factored by dosing and duration of therapy as stated in the prescribing information for each agent. Published rates and costs of grade 3-4 adverse events were also factored into the model. In addition, the model reports budget impact under 2 scenarios. In the first base-case scenario, patient out-of-pocket costs were subtracted from the total cost of treatment. In the second scenario, all treatment costs were assumed to be paid by the plan. In a hypothetical 1 million-member health plan population, 100 patients were estimated to receive second-line treatment for mCRPC after treatment with docetaxel. Using current utilization rates for the 4 agents of interest, the base-case scenario estimated the cost of second-line treatment after docetaxel to be $6,331,704, or $0.528 per member per month (PMPM). In a scenario where cabazitaxel use increases from the base-rate case of 24% to a

  20. A Study of the Confinement Induced Sponge to Lamellar Phase Transformation by Direct Force Measurement

    International Nuclear Information System (INIS)

    Antelmi, David

    1996-10-01

    The interactions between two macroscopic walls immersed in an isotropic symmetric sponge phase (L_3) at different volume fractions, Φ, were studied with a surface force apparatus. The purpose of these experiments was to investigate the behaviour of the sponge phase when confined between two smooth rigid surfaces. Particular attention was given to investigating this behaviour as the bulk transition to the lamellar phase (L_α) was approached. At temperatures far from the L_3/L_α bulk transition temperature, the force-distance profile showed weak oscillations with a periodicity approximately equal to twice the characteristic length, ξ, measured for the sponge phase from small angle x-ray scattering. Furthermore, the oscillations were superimposed on an exponential attractive background that decayed with an order parameter correlation length of 2-3 times ξ The attractive background was explained by the enhancement of the sponge order in the vicinity of the rigid walls. The structural oscillations observed in the force-distance profile, although not completely understood, were discussed in terms of the packing of sponge cells (cell size ξ). The significance of the observed periodicity (2ξ) may indicate the importance of the symmetric nature of the sponge phase. By moving pairs of cells in response to an applied strain, the symmetry of the sponge structure is protected. As the temperature increased towards the L_3/L_α bulk transition temperature, an abrupt change in the force-distance profile was observed at a threshold separation labelled D*_i_n. A different force regime was observed for separations below D*_i_n which oscillated with a periodicity that was twice the reticular spacing, d, for a L_α phase of similar Φ. The force oscillations were superimposed on an attractive background that was almost linear. These observations were consistent with a first order phase transition from the sponge phase to the lamellar phase, induced by the confinement, where the

  1. Mechanical contribution of lamellar and interlamellar elastin along the mouse aorta.

    Science.gov (United States)

    Clark, T E; Lillie, M A; Vogl, A W; Gosline, J M; Shadwick, R E

    2015-10-15

    The mechanical properties of aortic elastin vary regionally, but the microstructural basis for this variation is unknown. This study was designed to identify the relative contributions of lamellar and interlamellar elastin to circumferential load bearing in the mouse thoracic and abdominal aortas. Forces developed in uniaxial tests of samples of fresh and autoclaved aorta were correlated with elastin content and morphology obtained from histology and multiphoton laser scanning microscopy. Autoclaving should render much of the interlamellar elastin mechanically incompetent. In autoclaved tissue force per unit sample width correlated with lamellar elastin content (P≪0.001) but not total elastin content. In fresh tissue at low strain where elastin dominates the mechanical response, forces were higher than in the autoclaved tissue, but force did not correlate with total elastin content. Therefore although interlamellar elastin likely contributed to the stiffness in the fresh aorta, its contribution appeared not in proportion to its quantity. In both fresh and autoclaved tissue, elastin stiffness consistently decreased along the abdominal aorta, a key area for aneurysm development, and this difference could not be fully accounted for on the basis of either lamellar or total elastin content. These findings are relevant to the development of mathematical models of arterial mechanics, particularly for mouse models of arterial diseases involving elastic tissue. In microstructural based models the quantity of each mural constituent determines its contribution to the total response. This study shows elastin's mechanical response cannot necessarily be accounted for on the basis of fibre quantity, orientation, and modulus. Copyright © 2015 Elsevier Ltd. All rights reserved.

  2. Comparison of synthetic glues and 10-0 nylon in rabbit lamellar keratoplasty.

    Science.gov (United States)

    Cho, Soon Young; Kim, Man Soo; Oh, Su Ja; Chung, Sung Kun

    2013-09-01

    To evaluate changes in mean keratometry and to compare wound repair with corneal lamellar grafts in rabbit eyes using human synthetic tissue adhesives and 10-0 nylon. Corneal grafts were made using a 6.0-mm-diameter trephine and blades in the eyes of 15 New Zealand white rabbits. Human fibrin tissue adhesive (Tisseel) was used in group 1, human fibrin tissue adhesive (Beriplast P) was used in group 2, polyethylene glycol adhesive (Coseal) was used in group 3, and 8 bite sutures with 10-0 nylon were used in group 4 (control) for lamellar keratoplasty. Four bite sutures were made with 10-0 nylon in groups 1, 2, and 3. Slit-lamp microscopy and keratometry were performed at 3 days and 1, 2, and 4 weeks after the surgery. Histopathologic and electromicroscopic examinations were performed 4 weeks after the surgery. No inflammation or corneal toxicity was seen in groups 1 and 2. Histologically, a few inflammatory cells were seen in groups 3 and 4. Groups 1, 2, and 3 showed no statistically significant changes in mean keratometry at 4 weeks postoperatively compared with preoperative mean keratometry (Wilcoxon signed-rank test, P = 0.178, 0.208, and 0.889, respectively). The control group showed significant changes in mean keratometry at 4 weeks postoperatively (Wilcoxon signed-rank test, P = 0.018). Human fibrin tissue adhesives were well tolerated in rabbit eyes, with no apparent corneal toxicity. Polyethylene glycol adhesive showed more inflammation and insufficient wound repair compared with human fibrin tissue adhesives. Therefore, human fibrin tissue adhesives can be used as an alternative to sutures in lamellar keratoplasty.

  3. Repair of articular osteochondral defects of the knee joint using a composite lamellar scaffold.

    Science.gov (United States)

    Lv, Y M; Yu, Q S

    2015-04-01

    The major problem with repair of an articular cartilage injury is the extensive difference in the structure and function of regenerated, compared with normal cartilage. Our work investigates the feasibility of repairing articular osteochondral defects in the canine knee joint using a composite lamellar scaffold of nano-ß-tricalcium phosphate (ß-TCP)/collagen (col) I and II with bone marrow stromal stem cells (BMSCs) and assesses its biological compatibility. The bone-cartilage scaffold was prepared as a laminated composite, using hydroxyapatite nanoparticles (nano-HAP)/collagen I/copolymer of polylactic acid-hydroxyacetic acid as the bony scaffold, and sodium hyaluronate/poly(lactic-co-glycolic acid) as the cartilaginous scaffold. Ten-to 12-month-old hybrid canines were randomly divided into an experimental group and a control group. BMSCs were obtained from the iliac crest of each animal, and only those of the third generation were used in experiments. An articular osteochondral defect was created in the right knee of dogs in both groups. Those in the experimental group were treated by implanting the composites consisting of the lamellar scaffold of ß-TCP/col I/col II/BMSCs. Those in the control group were left untreated. After 12 weeks of implantation, defects in the experimental group were filled with white semi-translucent tissue, protruding slightly over the peripheral cartilage surface. After 24 weeks, the defect space in the experimental group was filled with new cartilage tissues, finely integrated into surrounding normal cartilage. The lamellar scaffold of ß-TCP/col I/col II was gradually degraded and absorbed, while new cartilage tissue formed. In the control group, the defects were not repaired. This method can be used as a suitable scaffold material for the tissue-engineered repair of articular cartilage defects. Cite this article: Bone Joint Res 2015;4:56-64. ©2015 The British Editorial Society of Bone & Joint Surgery.

  4. Impact of Dietary Resistant Starch on the Human Gut Microbiome, Metaproteome, and Metabolome.

    Science.gov (United States)

    Maier, Tanja V; Lucio, Marianna; Lee, Lang Ho; VerBerkmoes, Nathan C; Brislawn, Colin J; Bernhardt, Jörg; Lamendella, Regina; McDermott, Jason E; Bergeron, Nathalie; Heinzmann, Silke S; Morton, James T; González, Antonio; Ackermann, Gail; Knight, Rob; Riedel, Katharina; Krauss, Ronald M; Schmitt-Kopplin, Philippe; Jansson, Janet K

    2017-10-17

    Diet can influence the composition of the human microbiome, and yet relatively few dietary ingredients have been systematically investigated with respect to their impact on the functional potential of the microbiome. Dietary resistant starch (RS) has been shown to have health benefits, but we lack a mechanistic understanding of the metabolic processes that occur in the gut during digestion of RS. Here, we collected samples during a dietary crossover study with diets containing large or small amounts of RS. We determined the impact of RS on the gut microbiome and metabolic pathways in the gut, using a combination of "omics" approaches, including 16S rRNA gene sequencing, metaproteomics, and metabolomics. This multiomics approach captured changes in the abundance of specific bacterial species, proteins, and metabolites after a diet high in resistant starch (HRS), providing key insights into the influence of dietary interventions on the gut microbiome. The combined data showed that a high-RS diet caused an increase in the ratio of Firmicutes to Bacteroidetes , including increases in relative abundances of some specific members of the Firmicutes and concurrent increases in enzymatic pathways and metabolites involved in lipid metabolism in the gut. IMPORTANCE This work was undertaken to obtain a mechanistic understanding of the complex interplay between diet and the microorganisms residing in the intestine. Although it is known that gut microbes play a key role in digestion of the food that we consume, the specific contributions of different microorganisms are not well understood. In addition, the metabolic pathways and resultant products of metabolism during digestion are highly complex. To address these knowledge gaps, we used a combination of molecular approaches to determine the identities of the microorganisms in the gut during digestion of dietary starch as well as the metabolic pathways that they carry out. Together, these data provide a more complete picture of

  5. Impact of Dietary Resistant Starch on the Human Gut Microbiome, Metaproteome, and Metabolome

    Energy Technology Data Exchange (ETDEWEB)

    Maier, Tanja V.; Lucio, Marianna; Lee, Lang Ho; VerBerkmoes, Nathan C.; Brislawn, Colin J.; Bernhardt, Jörg; Lamendella, Regina; McDermott, Jason E.; Bergeron, Nathalie; Heinzmann, Silke S.; Morton, James T.; González, Antonio; Ackermann, Gail; Knight, Rob; Riedel, Katharina; Krauss, Ronald M.; Schmitt-Kopplin, Philippe; Jansson, Janet K.; Moran, Mary Ann

    2017-10-17

    ABSTRACT

    Diet can influence the composition of the human microbiome, and yet relatively few dietary ingredients have been systematically investigated with respect to their impact on the functional potential of the microbiome. Dietary resistant starch (RS) has been shown to have health benefits, but we lack a mechanistic understanding of the metabolic processes that occur in the gut during digestion of RS. Here, we collected samples during a dietary crossover study with diets containing large or small amounts of RS. We determined the impact of RS on the gut microbiome and metabolic pathways in the gut, using a combination of “omics” approaches, including 16S rRNA gene sequencing, metaproteomics, and metabolomics. This multiomics approach captured changes in the abundance of specific bacterial species, proteins, and metabolites after a diet high in resistant starch (HRS), providing key insights into the influence of dietary interventions on the gut microbiome. The combined data showed that a high-RS diet caused an increase in the ratio ofFirmicutestoBacteroidetes, including increases in relative abundances of some specific members of theFirmicutesand concurrent increases in enzymatic pathways and metabolites involved in lipid metabolism in the gut.

    IMPORTANCEThis work was undertaken to obtain a mechanistic understanding of the complex interplay between diet and the microorganisms residing in the intestine. Although it is known that gut microbes play a key role in digestion of the food that we consume, the specific contributions of different microorganisms are not well understood. In addition, the metabolic pathways and resultant products of metabolism during digestion are highly complex. To address these knowledge gaps, we used a combination of molecular approaches to determine the identities of the microorganisms in the gut during digestion of dietary starch as well as the

  6. Investigation on impact resistance of steel plate reinforced concrete barriers against aircraft impact. Pt.3: Analyses of full-scale aircraft impact

    International Nuclear Information System (INIS)

    Jun Mizuno; Norihide Koshika; Eiichi Tanaka; Atsushi Suzuki; Yoshinori Mihara; Isao Nishimura

    2005-01-01

    Steel plate reinforced concrete (SC) walls and slabs are structural members in which the rebars of reinforced concrete are replaced by steel plates. Steel plate reinforced concrete structures are more attractive structural design alternatives to reinforced concrete structures, especially with thick, heavily reinforced walls and slabs such as nuclear structures, because they enable a much shorter construction period, greater earthquake resistant and more cost effectiveness. Experimental and analytical studies performed by the authors have also shown that SC structures are much more effective in mitigating damage against scaled aircraft models , as described in Parts 1 and 2 of this study. The objective of Part 3 was to determine the protective capability of SC walls and roofs against a full-scale aircraft impact by conducting numerical experiments to investigate the fracture behaviors and limit thicknesses of SC panels and to examine the effectiveness of SC panels in detail under design conditions. Furthermore, a simplified method is proposed for evaluating the localized damage induced by a full-scale engine impact. (authors)

  7. CST simulations of THz Smith–Purcell radiation from a lamellar grating with vacuum gaps

    International Nuclear Information System (INIS)

    Lekomtsev, K.; Karataev, P.; Tishchenko, A.A.; Urakawa, J.

    2015-01-01

    Smith–Purcell radiation (SPR) from a lamellar grating with vacuum gaps was calculated using Computer Simulation Technology (CST) Particle In Cell (PIC) solver. The shapes of the radiation distributions were compared with those of Resonant Diffraction Radiation theory. Study of calculation domain meshing was performed. Influence of a transverse bunch size on the calculation accuracy and an SPR intensity distribution was investigated. Dependencies of the SPR yield on Lorentz factor and grating strip depth were calculated and compared with previously reported theoretical and experimental studies

  8. CuInS[sub 2] with lamellar morphology; 2: Photoelectrochemical behavior of heterogeneous material

    Energy Technology Data Exchange (ETDEWEB)

    Cattarin, S. (Inst. di Polarografia ed Elettrochimica Preparativa del C.N.R., Padova (Italy)); Guerriero, P. (Inst. di Chimica e Tecnologie Inorganiche e dei Materiali Avanzati del C.N.R., Padova (Italy)); Razzini, G. (Applicata del Politecnico di Milano (Italy). Dipt. di Chimica Fisica); Lewerenz, H.J. (Hahn-Meitner-Inst., Berlin (Germany))

    1994-05-01

    Lamellar CuInS[sub 2] material grown in a steep temperature gradient shows heterogeneous composition and complex photoeffects. Besides predominant n-type behavior, the electrode surface has areas with intrinsic or p-type conductivity, the latter usually corresponding to indium-rich regions. An inverted (cathodic) photocurrent is observed at n-type electrodes polarized under accumulation conditions. Both spectral dependence, with a pronounced peak for energies around the bandgap, and quantum yields > 1 suggest that these photoeffects originate from photoconductivity phenomena in the crystal bulk. Variability in electronic properties limits the average performance of the material in solar cells.

  9. Ribbon phase in a phase-separated lyotropic lamellar-sponge mixture under shear flow

    Science.gov (United States)

    Cristobal, G.; Rouch, J.; Panizza, P.; Narayanan, T.

    2001-07-01

    We report the effect of shear flow on a phase-separated system composed of lyotropic lamellar (Lα) and sponge (L3) phases in a mixture of brine, surfactant, and cosurfactant. Optical microscopy, small-angle light, and x-ray scattering measurements are consistent with the existence of a steady state made of multilamellar ribbonlike structures aligned in the flow direction. At high shear rates, these ribbonlike structures become unstable and break up into monodisperse droplets resulting in a shear-thickening transition.

  10. Inverse cutting of posterior lamellar corneal grafts by a femtosecond laser.

    Science.gov (United States)

    Hjortdal, Jesper; Nielsen, Esben; Vestergaard, Anders; Søndergaard, Anders

    2012-01-01

    Posterior lamellar grafting of the cornea has become the preferred technique for treatment of corneal endothelial dysfunction. Posterior lamellar grafts are usually cut by a micro-keratome or a femto-second laser after the epithelial side of the donor cornea has been applanated. This approach often results in variable central graft thickness in different grafts and an increase in graft thickness towards the periphery in every graft. The purpose of this study was to evaluate if posterior lamellar grafts can be prepared from the endothelial side by a femto-second laser, resulting in reproducible, thin grafts of even thickness. A CZM 500 kHz Visumax femto-second laser was used. Organ cultured donor grafts were mounted in an artifical anterior chamber with the endothelial side up and out. Posterior grafts of 7.8 mm diameter and 130 micron thickness were prepared by femto-second laser cutting. A standard DSAEK procedure was performed in 10 patients with Fuchs endothelial dystrophy. Patients were followed-up regularly and evaluated by measurement of complications, visual acuity, corneal thickness (Pentacam HR), and endothelial cell density. Femto-laser cutting of grafts and surgery was uncomplicated. Rebubbling was necessary in 5 of 10 cases (normally only in 1 of 20 cases). All grafts were attached and cleared up during the first few weeks. After six months, the average visual acuity was 0.30 (range: 0.16 to 0.50), corneal thickness was 0.58 mm (range 0.51 to 0.63), and endothelial cell density was 1.570 per sq. mm (range: 1.400 to 2.000 cells per sq. mm). The grafts were of uniform thickness, but substantial interface haze was present in most grafts. Posterior lamellar corneal grafts can be prepared from the endothelial side using a femto-second laser. All grafts were clear after 6 months with satisfying endothelial cell counts. Poor visual acuity caused by interface scatter was observed in most patients. Femto-second laser cutting parameters needs to be optimised to

  11. The influence of a silica pillar in lamellar tetratitanate for selective catalytic reduction of NOx using NH3

    International Nuclear Information System (INIS)

    Nogueira da Cunha, Beatriz; Gonçalves, Alécia Maria; Gomes da Silveira, Rafael; Urquieta-González, Ernesto A.; Magalhães Nunes, Liliane

    2015-01-01

    Highlights: • Potassium ions significantly affected the SCR. • The introduction of silica in the catalyst promotes the NH 3 -SCR reaction. • The catalysts activities were not significantly influenced by SO 2 addition. - Abstract: Silica-pillared layered titanate (SiO 2 –Ti 4 O 9 ) was prepared by intercalating organosilanes into the interlayers of a layered K 2 Ti 4 O 9 followed by calcination at 500 °C. The lamellar titanates produced were used as a support to prepare vanadium catalysts (1 and 2 wt%) through wet impregnation for selective catalytic reduction (SCR) of NO. The catalysts were characterized using nitrogen adsorption (BET), X-ray diffraction (XRD), temperature programmed reduction (H 2 -TPR), nuclear magnetic resonance ( 29 Si NMR), and infrared spectroscopy (FT-IR). Reduction of NO by NH 3 was studied in a fixed-bed reactor packed with the catalysts and fed a mixture comprising 1% NH 3 , 1% NO, 10% O 2 , and 34 ppm SO 2 (when used) in helium. The results demonstrate that activity is correlated with the support, i.e., with acidic strength of catalysts. The potassium in the support, K 2 Ti 4 O 9 , significantly affected the reaction and level of vanadium species reduction. The catalyst (1VSiT) with 1 wt% vanadium impregnated on the SiO 2 –Ti 4 O 9 support reduced ∼80% of the NO. Approximately the same conversion rate was generated on the catalyst (2VSiT) with 2 wt% vanadium using the same support. The increased NH 3 adsorption demonstrate that introduction of silica in the catalyst promotes the NH 3 -SCR reaction. More importantly, 2VSiT and 1VSiT were strongly resistant to SO 2 poisoning

  12. Clinical impact of antimicrobial resistance in European hospitals: excess mortality and length of hospital stay related to methicillin-resistant Staphylococcus aureus bloodstream infections.

    LENUS (Irish Health Repository)

    de Kraker, Marlieke E A

    2011-04-01

    Antimicrobial resistance is threatening the successful management of nosocomial infections worldwide. Despite the therapeutic limitations imposed by methicillin-resistant Staphylococcus aureus (MRSA), its clinical impact is still debated. The objective of this study was to estimate the excess mortality and length of hospital stay (LOS) associated with MRSA bloodstream infections (BSI) in European hospitals. Between July 2007 and June 2008, a multicenter, prospective, parallel matched-cohort study was carried out in 13 tertiary care hospitals in as many European countries. Cohort I consisted of patients with MRSA BSI and cohort II of patients with methicillin-susceptible S. aureus (MSSA) BSI. The patients in both cohorts were matched for LOS prior to the onset of BSI with patients free of the respective BSI. Cohort I consisted of 248 MRSA patients and 453 controls and cohort II of 618 MSSA patients and 1,170 controls. Compared to the controls, MRSA patients had higher 30-day mortality (adjusted odds ratio [aOR] = 4.4) and higher hospital mortality (adjusted hazard ratio [aHR] = 3.5). Their excess LOS was 9.2 days. MSSA patients also had higher 30-day (aOR = 2.4) and hospital (aHR = 3.1) mortality and an excess LOS of 8.6 days. When the outcomes from the two cohorts were compared, an effect attributable to methicillin resistance was found for 30-day mortality (OR = 1.8; P = 0.04), but not for hospital mortality (HR = 1.1; P = 0.63) or LOS (difference = 0.6 days; P = 0.96). Irrespective of methicillin susceptibility, S. aureus BSI has a significant impact on morbidity and mortality. In addition, MRSA BSI leads to a fatal outcome more frequently than MSSA BSI. Infection control efforts in hospitals should aim to contain infections caused by both resistant and susceptible S. aureus.

  13. Antimicrobial stewardship in a Gastroenterology Department: Impact on antimicrobial consumption, antimicrobial resistance and clinical outcome.

    Science.gov (United States)

    Bedini, Andrea; De Maria, Nicola; Del Buono, Mariagrazia; Bianchini, Marcello; Mancini, Mauro; Binda, Cecilia; Brasacchio, Andrea; Orlando, Gabriella; Franceschini, Erica; Meschiari, Marianna; Sartini, Alessandro; Zona, Stefano; Paioli, Serena; Villa, Erica; Gyssens, Inge C; Mussini, Cristina

    2016-10-01

    A major cause of the increase in antimicrobial resistance is the inappropriate use of antimicrobials. To evaluate the impact on antimicrobial consumption and clinical outcome of an antimicrobial stewardship program in an Italian Gastroenterology Department. Between October 2014 and September 2015 (period B), a specialist in infectious diseases (ID) controlled all antimicrobial prescriptions and decided about the therapy in agreement with gastroenterologists. The defined daily doses of antimicrobials (DDDs), incidence of MDR-infections, mean length of stay and overall in-hospital mortality rate were compared with those of the same period in the previous 12-months (period A). During period B, the ID specialist performed 304 consultations: antimicrobials were continued in 44.4% of the cases, discontinued in 13.8%, not recommended in 12.1%, de-escalated 9.9%, escalated in 7.9%, and started in 4.0%. Comparing the 2 periods, we observed a decreased of antibiotics consumption (from 109.81 to 78.45 DDDs/100 patient-days, p=0.0005), antifungals (from 41.28 to 24.75 DDDs/100pd, p=0.0004), carbapenems (from 15.99 to 6.80 DDDsx100pd, p=0.0032), quinolones (from 35.79 to 17.82 DDDsx100pd, p=0.0079). No differences were observed in incidence of MDR-infections, length of hospital stay (LOS), and mortality rate. ASP program had a positive impact on reducing the consumption of antimicrobials, without an increase in LOS and mortality. Copyright © 2016 Editrice Gastroenterologica Italiana S.r.l. Published by Elsevier Ltd. All rights reserved.

  14. Impact of diabetes on treatment outcomes and long-term survival in multidrug-resistant tuberculosis.

    Science.gov (United States)

    Kang, Young Ae; Kim, Song Yee; Jo, Kyung-Wook; Kim, Hee Jin; Park, Seung-Kyu; Kim, Tae-Hyung; Kim, Eun Kyung; Lee, Ki Man; Lee, Sung Soon; Park, Jae Seuk; Koh, Won-Jung; Kim, Dae Yun; Shim, Tae Sun

    2013-01-01

    Few studies have investigated the impact of diabetes mellitus (DM), a globally increasing metabolic disease, on treatment outcomes and long-term survival in patients with multidrug-resistant forms of tuberculosis (MDR-TB). We analyzed outcomes in a large cohort to assess the impact of DM on treatment outcomes of patients with MDR-TB. MDR-TB patients newly diagnosed or retreated between 2000 and 2002 and followed for 8-11 years were retrospectively analyzed with respect to the effect of DM as a comorbidity on their treatment outcome and long-term survival. Of 1,407 patients with MDR-TB, 239 (17.0%) had coexisting DM. The mean age and body mass index were higher in MDR-TB patients with DM [MDR-TBDM(+)] than in those without DM [MDR-TBDM(-)]. Patients with MDR-TB and a comorbidity of DM had a significantly lower treatment success rate than those without a history of DM (36.0 vs. 47.2%, p = 0.002). In addition, DM was the negative predictor for MDR-TB treatment success in multivariate analyses [odds ratio 0.51, 95% confidence interval (CI) 0.26-0.99]. Mean survival times were also lower in MDR-TBDM(+) than in MDR-TBDM(-) patients (102 vs. 114 months, p = 0.001), with DM as a significant predictor of poor long-term survival in multivariate analyses (hazard ratio 1.59, 95% CI 1.01-2.50). Among MDR-TB patients, DM was a relatively common comorbidity. In patients undergoing treatment for MDR-TB and followed for 8-11 years, it was found to be independently associated with an increased risk of both treatment failure and death. Copyright © 2013 S. Karger AG, Basel.

  15. Lamellar ichthyosis

    Science.gov (United States)

    ... the palms and soles is thickened Treatment Collodion babies usually need to stay in the neonatal intensive care unit (NICU). They are placed in a high-humidity incubator. They will need extra feedings. Moisturizers need to ...

  16. Impact of selected parameters on the development of boiling and flow resistance in the minichannel

    Directory of Open Access Journals (Sweden)

    Piasecka Magdalena

    2015-01-01

    Full Text Available The paper presents results of flow boiling in a rectangular minichannel 1 mm deep, 40 mm wide and 360 mm long. The heating element for FC-72 flowing in the minichannel was the thin alloy foil designated as Haynes-230. There was a microstructure on the side of the foil which comes into contact with fluid in the channel. Two types of microstructured heating surfaces: one with micro-recesses distributed evenly and another with mini-recesses distributed unevenly were used. The paper compares the impact of the microstructured heating surface and minichannel positions on the development of boiling and two phase flow pressure drop. The local heat transfer coefficients and flow resistance obtained in experiment using three positions of the minichannel, e.g.: 0°, 90° and 180° were analyzed. The study of the selected thermal and flow parameters (mass flux density and inlet pressure, geometric parameters and type of cooling liquid on the boiling heat transfer was also conducted. The most important factor turned out to be channel orientation. Application of the enhanced heating surface caused the increase of the heat transfer coefficient from several to several tens per cent, in relation to the plain surface.

  17. Uncovering three-dimensional gradients in fibrillar orientation in an impact-resistant biological armour

    Science.gov (United States)

    Zhang, Y.; Paris, O.; Terrill, N. J.; Gupta, H. S.

    2016-05-01

    The complex hierarchical structure in biological and synthetic fibrous nanocomposites entails considerable difficulties in the interpretation of the crystallographic texture from diffraction data. Here, we present a novel reconstruction method to obtain the 3D distribution of fibres in such systems. An analytical expression is derived for the diffraction intensity from fibres, explaining the azimuthal intensity distribution in terms of the angles of the three dimensional fibre orientation distributions. The telson of stomatopod (mantis shrimp) serves as an example of natural biological armour whose high impact resistance property is believed to arise from the hierarchical organization of alpha chitin nanofibrils into fibres and twisted plywood (Bouligand) structures at the sub-micron and micron scale. Synchrotron microfocus scanning X-ray diffraction data on stomatopod telson were used as a test case to map the 3D fibre orientation across the entire tissue section. The method is applicable to a range of biological and biomimetic structures with graded 3D fibre texture at the sub-micron and micron length scales.

  18. The impact of R1and R3a genes on tuber resistance to late blight of the potato breeding clones

    Directory of Open Access Journals (Sweden)

    Zoteyeva Nadezhda

    2016-04-01

    Full Text Available Potato breeding clones were evaluated for resistance to late blight (agent Phytophthora infestans using tuber inoculation tests and for presence of the resistance alleles of R1 and R3a genes in polymerase chain reaction tests. Among clones tested those expressing high, moderate and low resistance were identified. The data were analysed for the impact of R1 and R3a genes on tuber resistance to late blight in tested plant material. In previous evaluations performed on smaller amount of clones the tuber resistance levels significantly depended on presence/absence of the resistance allele of R3a gene and did not depend on presence of R1 gene allele. In the current study the statistical analyses did not prove the significant difference in resistance levels depending on presence of the resistance alleles, neither of R1 gene, nor of R3a gene. Tuber resistant clones bearing R3a gene resistance alleles still noticeably prevailed over the clones bearing the alleles of R1 gene as well as over the clones bearing the no resistance alleles of both genes. In several cases the resistance of clones with detected resistance allele of R1 gene was higher compared to those derived from the same crosses and showing amplification of the allele of R3a gene or those with no resistance alleles. Clones accumulating the resistance alleles of both (R1 and R3a genes expressed high tuber resistance accompanied by necrotic reaction.

  19. Two types of lamellar phase in TTAB/water/pentanol system as detected by positron lifetime spectroscopy

    International Nuclear Information System (INIS)

    Khani, P.H.; Yadav, R.; Singh, K.C.; Jain, P.C.

    2004-01-01

    Positron lifetime measurements were performed in TTAB(Tetradecyl trimethyl ammonium bromide)/water/pentanol ternary systems prepared by adding varying amounts of pentanol to different mother solutions of TTAB/water system having fixed TTAB concentrations. Besides delineating various phase boundaries as obtained by other conventional techniques, positron annihilation parameters were also found to be sensitive in detecting two kinds of lamellar structures in the otherwise considered to be a single liquid crystalline D phase of the system. The existence of such lamellar structures has been demonstrated by a change in the trend of o-Ps lifetime parameter when the system passes from one type of lamellar structure to the other type. The results of such a finding are presented in this paper. (orig.)

  20. Modelling the impact of antimalarial quality on the transmission of sulfadoxine-pyrimethamine resistance in Plasmodium falciparum

    Directory of Open Access Journals (Sweden)

    Aleisha R. Brock

    2017-05-01

    Full Text Available Background: The use of poor quality antimalarial medicines, including the use of non-recommended medicines for treatment such as sulfadoxine-pyrimethamine (SP monotherapy, undermines malaria control and elimination efforts. Furthermore, the use of subtherapeutic doses of the active ingredient(s can theoretically promote the emergence and transmission of drug resistant parasites. Methods: We developed a deterministic compartmental model to quantify the impact of antimalarial medicine quality on the transmission of SP resistance, and validated it using sensitivity analysis and a comparison with data from Kenya collected in 2006. We modelled human and mosquito population dynamics, incorporating two Plasmodium falciparum subtypes (SP-sensitive and SP-resistant and both poor quality and good quality (artemether-lumefantrine antimalarial use. Findings: The model predicted that an increase in human malaria cases, and among these, an increase in the proportion of SP-resistant infections, resulted from an increase in poor quality SP antimalarial use, whether it was full- or half-dose SP monotherapy. Interpretation: Our findings suggest that an increase in poor quality antimalarial use predicts an increase in the transmission of resistance. This highlights the need for stricter control and regulation on the availability and use of poor quality antimalarial medicines, in order to offer safe and effective treatments, and work towards the eradication of malaria. Keywords: Deterministic compartmental model, Falsified antimalarial medicine, Substandard antimalarial treatments, Antimalarial quality, Plasmodium falciparum malaria, Drug resistance

  1. Fumonisin B₁ (FB₁) Induces Lamellar Separation and Alters Sphingolipid Metabolism of In Vitro Cultured Hoof Explants.

    Science.gov (United States)

    Reisinger, Nicole; Dohnal, Ilse; Nagl, Veronika; Schaumberger, Simone; Schatzmayr, Gerd; Mayer, Elisabeth

    2016-03-24

    One of the most important hoof diseases is laminitis. Yet, the pathology of laminitis is not fully understood. Different bacterial toxins, e.g. endotoxins or exotoxins, seem to play an important role. Additionally, ingestion of mycotoxins, toxic secondary metabolites of fungi, might contribute to the onset of laminitis. In this respect, fumonsins are of special interest since horses are regarded as species most susceptible to this group of mycotoxins. The aim of our study was to investigate the influence of fumonisin B₁ (FB₁) on primary isolated epidermal and dermal hoof cells, as well as on the lamellar tissue integrity and sphingolipid metabolism of hoof explants in vitro. There was no effect of FB₁ at any concentration on dermal or epidermal cells. However, FB₁ significantly reduced the separation force of explants after 24 h of incubation. The Sa/So ratio was significantly increased in supernatants of explants incubated with FB₁ (2.5-10 µg/mL) after 24 h. Observed effects on Sa/So ratio were linked to significantly increased sphinganine concentrations. Our study showed that FB₁ impairs the sphingolipid metabolism of explants and reduces lamellar integrity at non-cytotoxic concentrations. FB₁ might, therefore, affect hoof health. Further in vitro and in vivo studies are necessary to elucidate the effects of FB₁ on the equine hoof in more detail.

  2. Epiretinal proliferation in lamellar macular holes and full-thickness macular holes: clinical and surgical findings.

    Science.gov (United States)

    Lai, Tso-Ting; Chen, San-Ni; Yang, Chung-May

    2016-04-01

    To report the clinical findings and surgical outcomes of lamellar macular holes (LMH) with or without lamellar hole-associated epiretinal proliferation (LHEP), and those of full-thickness macular holes (FTMH) presenting with LHEP. From 2009 to 2013, consecutive cases of surgically treated LMH, and all FTMH cases with LHEP were reviewed, given a follow-up time over 1 year. In the LMH group (43 cases), those with LHEP (19 cases) had significantly thinner bases and larger openings than those without (24 cases). The rate of disrupted IS/OS line was higher in the LHEP subgroup preoperatively (68.4 % vs 37.5 %), but similar between subgroups postoperatively (36.8 % and 33.3 %). The preoperative and postoperative visual acuity showed no significant difference between two subgroups. In the FTMH group (13 cases), the average hole size was 219.2 ± 92.1 μm. Permanent or transient spontaneous hole closure was noted in 69.2 % of cases. An intact IS-OS line was found in only 23 % of cases at the final follow-up. In the LMH group, LHEP was associated with a more severe defect but didn't affect surgical outcomes. In the FTMH group, spontaneous hole closure was frequently noted. Despite small holes, disruption of IS-OS line was common after hole closure.

  3. Sutureless intrascleral intraocular lens fixation with lamellar dissection of scleral tunnel

    Directory of Open Access Journals (Sweden)

    Kawaji T

    2016-01-01

    Full Text Available Takahiro Kawaji,1,2 Tomoki Sato,2 Hidenobu Tanihara11Department of Ophthalmology, Faculty of Life Sciences, Kumamoto University, Chuo-ku, 2Sato Eye & Internal Medicine Clinic, Kumamoto, JapanPurpose: To report the results of sutureless scleral fixation of a posterior chamber intraocular lens (IOL by using our developed simple technique.Methods: We retrospectively reviewed the medical records of 48 eyes of 47 patients who underwent sutureless intrascleral IOL fixation by using our modified technique. A 25-gauge microvitreoretinal knife was used to perform sclerotomies and create limbus-parallel scleral tunnels with lamellar dissection in which the haptics were fixed.Results: The IOLs were fixed and centered well. The mean follow-up period was 26.7 months. Postoperative complications included smooth vitreous hemorrhage in four eyes (8.3%, cystoid macular edema in two eyes (4.2%, and iris capture of the IOL in two eyes (4.2%. No other complications, such as breakage of the IOL, spontaneous IOL dislocation, or retinal detachment, were detected during the follow-up period.Conclusion: The lamellar dissection of the limbus-parallel scleral tunnel can simplify the forceps-assisted introduction of the haptics into the scleral tunnel, and this technique seemed to be safe.Keywords: intraocular lenses, ophthalmologic surgical procedures, intrascleral fixation, sutureless fixation

  4. A novel ethanol templating synthesis of ordered lamellar superstructured crystalline zirconia

    Energy Technology Data Exchange (ETDEWEB)

    Liu Chao, E-mail: liuchao_tj@yahoo.com; Wang Bin [Key Laboratory for New Type of Functional Materials in Hebei Province, Hebei University of Technology (China); Ji Xiujie, E-mail: jxjchem@yahoo.com [State Key Laboratory of Hollow Fiber Membrane Materials and Processes, Tianjin Polytechnic University (China); Zhao Shanshan; Wu Jie; Jia Jianlong; Ma Dongxia [Key Laboratory for New Type of Functional Materials in Hebei Province, Hebei University of Technology (China)

    2012-03-15

    Soft template technique has attracted great interest, because it is a facile, inexpensive and efficient synthesis strategy for ordered superstructural systems. Here, a novel ethanol template was used to synthesize the ordered lamellar superstructured crystalline zirconia (L{alpha}-ZrO{sub 2}) without post-treatments and surfactants. ZrOCl{sub 2} and NaOH were served as Zr source and precipitant, respectively. XRD analysis showed that L{alpha}-ZrO{sub 2} is crystalline. XPS spectra indicated the physical adsorption of ethanol molecules in L{alpha}-ZrO{sub 2}. TEM further observed and proved the 1.36-nm period of superstructure detected and calculated by SAXRD (1.35 nm), which is composed of 0.68-nm thick ZrO{sub 2} and pore alternatively. In contrast, the template-free ZrO{sub 2} (TF-ZrO{sub 2}) presents no superstructure and is poorly crystallized. As a soft template, ethanol presents the roles of (i) inducing the growth of zirconia layers, (ii) directing the self-assembly of ordered lamellar superstructure, and (iii) decreasing the crystallization temperature. The possible mechanism of ethanol serving as a soft template was proposed and discussed in thermodynamics.

  5. A novel ethanol templating synthesis of ordered lamellar superstructured crystalline zirconia

    International Nuclear Information System (INIS)

    Liu Chao; Wang Bin; Ji Xiujie; Zhao Shanshan; Wu Jie; Jia Jianlong; Ma Dongxia

    2012-01-01

    Soft template technique has attracted great interest, because it is a facile, inexpensive and efficient synthesis strategy for ordered superstructural systems. Here, a novel ethanol template was used to synthesize the ordered lamellar superstructured crystalline zirconia (Lα-ZrO 2 ) without post-treatments and surfactants. ZrOCl 2 and NaOH were served as Zr source and precipitant, respectively. XRD analysis showed that Lα-ZrO 2 is crystalline. XPS spectra indicated the physical adsorption of ethanol molecules in Lα-ZrO 2 . TEM further observed and proved the 1.36-nm period of superstructure detected and calculated by SAXRD (1.35 nm), which is composed of 0.68-nm thick ZrO 2 and pore alternatively. In contrast, the template-free ZrO 2 (TF-ZrO 2 ) presents no superstructure and is poorly crystallized. As a soft template, ethanol presents the roles of (i) inducing the growth of zirconia layers, (ii) directing the self-assembly of ordered lamellar superstructure, and (iii) decreasing the crystallization temperature. The possible mechanism of ethanol serving as a soft template was proposed and discussed in thermodynamics.

  6. Microstructures and mechanical properties of directionally solidified Ni-25%Si full lamellar in situ composites

    International Nuclear Information System (INIS)

    Zhang, Binggang; Li, Xiaopeng; Wang, Ting; Liu, Zheng

    2016-01-01

    Directional solidification experiments have been performed on Ni-25 at% Si alloy using electron beam floating zone method. A fully regular eutectic microstructures consisting of Ni, γ-Ni 31 Si 12 and β 1 -Ni 3 Si have been obtained. The influences of the directional solidification rate on the microstructures and properties of the full lamellar structures have been studied. The results show that the relationship between the mean interphase spacing (λ) and withdrawal rate (v) meets λ=29.9v −0.65 . The hardness increases with the increasing of growth rate (v) and decreasing of the interlamellar spacing (λ) which meets the relationship of H V =445.2v 0.14 and H V =910λ −0.21 . The maximum compressive strength, 2576 MPa, for DS samples is obtained by 10 mm/h. The average fracture toughness value found for 5 mm/h, 7 mm/h, 10 mm/h is 28.3 MPa m 1/2 , 29.1 MPa m 1/2 and 35.9 MPa m 1/2 , respectively. The crack bridging and crack deflection/interface debonding are the main toughening mechanism of Ni-25 at% Si with full lamellar structures.

  7. Nucleation of the lamellar phase from the disordered phase of the renormalized Landau-Brazovskii model

    Science.gov (United States)

    Carilli, Michael F.; Delaney, Kris T.; Fredrickson, Glenn H.

    2018-02-01

    Using the zero-temperature string method, we investigate nucleation of a stable lamellar phase from a metastable disordered phase of the renormalized Landau-Brazovskii model at parameters explicitly connected to those of an experimentally accessible diblock copolymer melt. We find anisotropic critical nuclei in qualitative agreement with previous experimental and analytic predictions; we also find good quantitative agreement with the predictions of a single-mode analysis. We conduct a thorough search for critical nuclei containing various predicted and experimentally observed defect structures. The predictions of the renormalized model are assessed by simulating the bare Landau-Brazovskii model with fluctuations. We find that the renormalized model makes reasonable predictions for several important quantities, including the order-disorder transition (ODT). However, the critical nucleus size depends sharply on proximity to the ODT, so even small errors in the ODT predicted by the renormalized model lead to large errors in the predicted critical nucleus size. We conclude that the renormalized model is a poor tool to study nucleation in the fluctuating Landau-Brazovskii model, and recommend that future studies work with the fluctuating bare model directly, using well-chosen collective variables to investigate kinetic pathways in the disorder → lamellar transition.

  8. Lamellar Microdomains of Block-Copolymer-Based Ionic Supramolecules Exhibiting a Hierarchical Self-Assembly

    DEFF Research Database (Denmark)

    Ayoubi, Mehran Asad; Almdal, Kristoffer; Zhu, Kaizheng

    2014-01-01

    (Cn; n = 8, 12, and 16) trimethylammonium counterions (i.e., side chains) at various ion (pair) fractions X [i.e., counterion/side-chain grafting density; X = number of alkyl counterions (i.e., side chains) per acidic group of the parent PMAA block] these L-b-AC ionic supramolecules exhibit...... a spherical-in-lamellar hierarchical self-assembly. For these systems, (1) the effective Flory-Huggins interaction parameter between L- and AC-blocks chi'(Cn/x) was extracted, and (2) analysis of the lamellar microdomains showed that when there is an increase in X, alkyl counterion (i.e., side chain) length l......Based on a parent diblock copolymer of poly(styrene)-b-poly(methacrylic acid), PS-b-PMAA, linear-b-amphiphilic comb (L-b-AC) ionic supramolecules [Soft Matter 2013, 9, 1540-1555] are synthesized in which the poly(methacrylate) backbone of the ionic supramolecular AC-block is neutralized by alkyl...

  9. Preparation and electrochemical properties of lamellar MnO{sub 2} for supercapacitors

    Energy Technology Data Exchange (ETDEWEB)

    Yan, Jun; Wei, Tong [Key Laboratory of Superlight Materials and Surface Technology, Ministry of Education, College of Material Science and Chemical Engineering, Harbin Engineering University, Harbin 150001 (China); Cheng, Jie [Research Institute of Chemical Defense, Beijing 100083 (China); Fan, Zhuangjun, E-mail: fanzhj666@163.com [Key Laboratory of Superlight Materials and Surface Technology, Ministry of Education, College of Material Science and Chemical Engineering, Harbin Engineering University, Harbin 150001 (China); Zhang, Milin [Key Laboratory of Superlight Materials and Surface Technology, Ministry of Education, College of Material Science and Chemical Engineering, Harbin Engineering University, Harbin 150001 (China)

    2010-02-15

    Lamellar birnessite-type MnO{sub 2} materials were prepared by changing the pH of the initial reaction system via hydrothermal synthesis. The interlayer spacing of MnO{sub 2} with a layered structure increased gradually when the initial pH value varied from 12.43 to 2.81, while the MnO{sub 2}, composed of {alpha}-MnO{sub 2} and {gamma}-MnO{sub 2}, had a rod-like structure at pH 0.63. Electrochemical studies indicated that the specific capacitance of birnessite-type MnO{sub 2} was much higher than that of rod-like MnO{sub 2} at high discharge current densities due to the lamellar structure with fast intercalation/deintercalation of protons and high utilization of MnO{sub 2}. The initial specific capacitance of MnO{sub 2} prepared at pH 2.81 was 242.1 F g{sup -1} at 2 mA cm{sup -2} in 2 mol L{sup -1} (NH{sub 4}){sub 2}SO{sub 4} aqueous electrolyte. The capacitance increased by about 8.1% of initial capacitance after 200 cycles at a current density of 100 mA cm{sup -2}.

  10. Electroclinic effect in the chiral lamellar α phase of a lyotropic liquid crystal

    Science.gov (United States)

    Harjung, Marc D.; Giesselmann, Frank

    2018-03-01

    In thermotropic chiral Sm -A* phases, an electric field along the smectic layers breaks the D∞ symmetry of the Sm -A* phase and induces a tilt of the liquid crystal director. This so-called electroclinic effect (ECE) was first reported by Garoff and Meyer in 1977 and attracted substantial scientific and technological interest due to its linear and submicrosecond electro-optic response [S. Garoff and R. B. Meyer, Phys. Rev. A 19, 338 (1979), 10.1103/PhysRevA.19.338]. We now report the observation of an ECE in the pretransitional regime from a lyotropic chiral lamellar Lα* phase into a lyo-Sm -C* phase, the lyotropic analog to the thermotropic Sm -C* phase which was recently discovered by Bruckner et al. [Angew. Chem. Int. Ed. 52, 8934 (2013), 10.1002/anie.201303344]. We further show that the observed ECE has all signatures of its thermotropic counterpart, namely (i) the effect is chiral in nature and vanishes in the racemic Lα phase, (ii) the effect is essentially linear in the sign and magnitude of the electric field, and (iii) the magnitude of the effect diverges hyperbolically as the temperature approaches the critical temperature of the second order tilting transition. Specific deviations between the ECEs in chiral lamellar and chiral smectic phases are related to the internal field screening effect of electric double layers formed by inevitable ionic impurities in lyotropic phases.

  11. Growth crystallography and lamellar to rod transition in directionally solidified Nb--Nb2C eutectic composites

    International Nuclear Information System (INIS)

    David, S.A.; Santhanam, A.T.; Brody, H.D.

    1976-01-01

    The transition in morphology of the carbide phase is discussed in terms of the relative volume fraction of the phases, growth rate, and orientation relationships. The carbide morphology is influenced by the growth rate and carbon content. For constant growth rate increasing the volume fraction of the carbide phase favors the lamellar morphology. At low growth rates the lamellar morphology is favored, and at high growth rates the rod-like morphology is favored. Growth crystallography has no direct influence on the transition in carbide morphology

  12. Impact of anthropogenic activities on the dissemination of antibiotic resistance across ecological boundaries.

    Science.gov (United States)

    Tripathi, Vijay; Cytryn, Eddie

    2017-02-28

    Antibiotics are considered to be one of the major medical breakthroughs in history. Nonetheless, over the past four decades, antibiotic resistance has reached alarming levels worldwide and this trend is expected to continue to increase, leading some experts to forecast the coming of a 'post-antibiotic' era. Although antibiotic resistance in pathogens is traditionally linked to clinical environments, there is a rising concern that the global propagation of antibiotic resistance is also associated with environmental reservoirs that are linked to anthropogenic activities such as animal husbandry, agronomic practices and wastewater treatment. It is hypothesized that the emergence and dissemination of antibiotic-resistant bacteria (ARB) and antibiotic-resistant genes (ARGs) within and between environmental microbial communities can ultimately contribute to the acquisition of antibiotic resistance in human pathogens. Nonetheless, the scope of this phenomenon is not clear due to the complexity of microbial communities in the environment and methodological constraints that limit comprehensive in situ evaluation of microbial genomes. This review summarizes the current state of knowledge regarding antibiotic resistance in non-clinical environments, specifically focusing on the dissemination of antibiotic resistance across ecological boundaries and the contribution of this phenomenon to global antibiotic resistance. © 2017 The Author(s). Published by Portland Press Limited on behalf of the Biochemical Society.

  13. Impact of an antimicrobial stewardship programme on antibiotic usage and resistance in a tertiary hospital in China.

    Science.gov (United States)

    Zhang, Z-G; Chen, F; Ou, Y

    2017-10-01

    Antimicrobial misuse has been commonly observed in China. This phenomenon can cause antibiotic resistance. This study was designed to evaluate the impact of an antimicrobial stewardship programme implemented in a tertiary hospital in China from 2011 to 2014. The antimicrobial stewardship programme began in 2011. Data on the consumption of antibiotics and antimicrobial resistance between 2011 and 2014 were collected. Comparison of the 2011 data with those of 2014 showed that antibiotic defined daily doses/per 100 patient-days decreased from 92.5±2.8 to 35.8±1.2 (Padministrative management, especially information management, was effective in reducing antibiotic consumption and lessening antibiotic resistance. © 2017 John Wiley & Sons Ltd.

  14. Impact of antibiotic use in adult dairy cows on antimicrobial resistance of veterinary and human pathogens: a comprehensive review.

    Science.gov (United States)

    Oliver, Stephen P; Murinda, Shelton E; Jayarao, Bhushan M

    2011-03-01

    Antibiotics have saved millions of human lives, and their use has contributed significantly to improving human and animal health and well-being. Use of antibiotics in food-producing animals has resulted in healthier, more productive animals; lower disease incidence and reduced morbidity and mortality in humans and animals; and production of abundant quantities of nutritious, high-quality, and low-cost food for human consumption. In spite of these benefits, there is considerable concern from public health, food safety, and regulatory perspectives about the use of antimicrobials in food-producing animals. Over the last two decades, development of antimicrobial resistance resulting from agricultural use of antibiotics that could impact treatment of diseases affecting the human population that require antibiotic intervention has become a significant global public health concern. In the present review, we focus on antibiotic use in lactating and nonlactating cows in U.S. dairy herds, and address four key questions: (1) Are science-based data available to demonstrate antimicrobial resistance in veterinary pathogens that cause disease in dairy cows associated with use of antibiotics in adult dairy cows? (2) Are science-based data available to demonstrate that antimicrobial resistance in veterinary pathogens that cause disease in adult dairy cows impacts pathogens that cause disease in humans? (3) Does antimicrobial resistance impact the outcome of therapy? (4) Are antibiotics used prudently in the dairy industry? On the basis of this review, we conclude that scientific evidence does not support widespread, emerging resistance among pathogens isolated from dairy cows to antibacterial drugs even though many of these antibiotics have been used in the dairy industry for treatment and prevention of disease for several decades. However, it is clear that use of antibiotics in adult dairy cows and other food-producing animals does contribute to increased antimicrobial resistance

  15. Outstanding compressive creep strength in Cr/Ir-codoped (Mo0.85Nb0.15)Si2 crystals with the unique cross-lamellar microstructure.

    Science.gov (United States)

    Hagihara, Koji; Ikenishi, Takaaki; Araki, Haruka; Nakano, Takayoshi

    2017-06-21

    A (Mo 0.85 Nb 0.15 )Si 2 crystal with an oriented, lamellar, C40/C11 b two-phase microstructure is a promising ultrahigh-temperature (UHT) structural material, but its low room-temperature fracture toughness and low high-temperature strength prevent its practical application. As a possibility to overcome these problems, we first found a development of unique "cross-lamellar microstructure", by the cooping of Cr and Ir. The cross-lamellar microstructure consists of a rod-like C11 b -phase grains that extend along a direction perpendicular to the lamellar interface in addition to the C40/C11 b fine lamellae. In this study, the effectiveness of the cross-lamellar microstructure for improving the high-temperature creep deformation property, being the most essential for UHT materials, was examined by using the oriented crystals. The creep rate significantly reduced along a loading orientation parallel to the lamellar interface. Furthermore, the degradation in creep strength for other loading orientation that is not parallel to the lamellar interface, which has been a serious problem up to now, was also suppressed. The results demonstrated that the simultaneous improvement of high-temperature creep strength and room temperature fracture toughness can be first accomplished by the development of unique cross-lamellar microstructure, which opens a potential avenue for the development of novel UHT materials as alternatives to existing Ni-based superalloys.

  16. Impact of 12 weeks of resistance training on physical and functional fitness in elderly women

    Directory of Open Access Journals (Sweden)

    Aline Mendes Gerage

    2013-03-01

    Full Text Available DOI: http://dx.doi.org/10.5007/1980-0037.2013v15n2p145 The objective of the study was to analyze the impact of 12 weeks of resistance training (RT on physical functional fitness in elderly women. Fifty-one elderly women (66.1±4.4 years, apparently healthy, insufficiently active, and without prior experience in RT were randomly assigned into two groups: Training Group (TG = 24 and Control Group (CG = 27. The TG was submitted to a standardized RT program composed of eight exercises, performed in two sets of 10 to 15 repetitions, three times a week, and the CG was submitted to a 12 week stretching exercise program composed by two sessions per week of 30 minutes each. Their physical and functional fitness level was analyzed before and after the intervention period by motor testing to assess Right and Left Upper Limb Endurance (RULE, LULE, Lower Limb Endurance (LLE, Flexibility (FLEX, Manual Skills (MS, Ability to Put on Socks (APS, and Coordination (COORD. The TG had improved performance in LLE (+13.8%, RULE (+24.3%, LULE (+22.9%, and MS (- 0.9 s, whereas the CG improved performance in RULE (+13.9% and LULE (+14.1%, but had increased time in COORD by (+1.5 s, and these were the only tests showing significant interactions of group vs. time (p<0.05. The results suggest that 12 weeks of RT seem to be sufficient to induce positive changes on physical and functional fitness of healthy and previously untrained elderly women.

  17. Analysis of the impact of biomechanical traits of European black Poplar on riverbank flow resistance

    Science.gov (United States)

    Battista Chirico, Giovanni; Saulino, Luigi; Pasquino, Vittorio; Villani, Paolo; Rita, Angelo; Todaro, Luigi; Saracino, Antonio

    2016-04-01

    Predicting the effects of riparian plants on river flow dynamics is fundamental for an appropriate river management. Riparian woody vegetation enhances bank cohesion and provides ecosystem services by mitigating nutrient and sediment loads to the river flow and enhancing biodiversity. However riparian trees also contribute to river flow resistance and thus can have a significant impact on flow dynamics during flood events. The flow-plant interaction mainly depends on plant morphological characters (e.g. diameter, height, canopy size, foliage density) and biomechanical properties, such as its flexural rigidity. This study aims at testing the hypothesis that the hydrodynamic behaviour of the European black Poplar (∖textit{Populus nigra} L.), a common woody riparian plant, is influenced by specific biomechanical traits developed as result of its adaptation to different river ecosystems. We examine the morphological and biomechanical properties of living stems of black Poplar sampled in two different riverine environments in Southern Italy located only a few kilometres apart. The two sample sets of living stems exhibit similar morphological traits but significantly different Young module of elasticity. We compared the drag forces that the flow would exert on these two different sets of plants for a wide range of flow velocities, by employing a numerical model that accounts for the bending behaviour of the woody plant due to the hydrodynamic load, under the hypothesis of complete submergence. A Monte Carlo approach was applied in order to account for the stochastic variability of the morphological and mechanical parameters affecting plant biomechanical behaviour. We identified a threshold value of the plant diameter, above which the two sets of European black Poplars are subjected to drag forces that differ by more than 25{∖%} on average, for flow velocities larger than 1 m/s.

  18. Impact of Roux-en-Y Gastric Bypass on Metabolic Syndrome and Insulin Resistance Parameters

    Science.gov (United States)

    Gestic, Martinho Antonio; Utrini, Murillo Pimentel; Machado, Ricardo Rossetto; Geloneze, Bruno; Pareja, José Carlos; Chaim, Elinton Adami

    2014-01-01

    Abstract Background: Metabolic syndrome (MetS) is a complex association of clustering metabolic factors that increase risk of type 2 diabetes mellitus (T2DM) and cardiovascular disease. Surgical treatment has become an important tool to achieve its control. The aim of this study was to evaluate the impact of Roux-en-Y gastric bypass (RYGB) on MetS and its individual components, clinical characteristics, and biochemical features. Subjects and Methods: The study is a retrospective cohort of 96 subjects with MetS who underwent RYGB and were evaluated at baseline and after surgery. Clinical and biochemical features were analyzed. Results: After surgery, significant rates of resolution for MetS (88.5%), T2DM (90.6%), hypertension (85.6%), and dyslipidemias (54.2%) were found. Significant decreases in levels of fasting glucose, fasting insulin, hemoglobin A1c, low-density lipoprotein, and triglycerides and an increase in high-density lipoprotein level were also shown. The decrease in insulin resistance evaluated by homeostasis model assessment (HOMA-IR) was consistent. MetS resolution was associated with postoperative glycemic control, decreases in levels of fasting glucose, hemoglobin A1c, HOMA-IR, and triglycerides and in antihypertensive usage, and percentage weight loss. Conclusions: This study found high rates of resolution for MetS, T2DM, hypertension, and dyslipidemias after RYGB in obese patients. This finding was consistent with current literature. Hence RYGB should be largely indicated for this group of subjects as it is a safe and powerful tool to achieve MetS control. PMID:24299427

  19. Antimicrobial resistance of Pseudomonas spp. isolated from wastewater and wastewater-impacted marine coastal zone.

    Science.gov (United States)

    Luczkiewicz, Aneta; Kotlarska, Ewa; Artichowicz, Wojciech; Tarasewicz, Katarzyna; Fudala-Ksiazek, Sylwia

    2015-12-01

    In this study, species distribution and antimicrobial susceptibility of cultivated Pseudomonas spp. were studied in influent (INF), effluent (EFF), and marine outfall (MOut) of wastewater treatment plant (WWTP). The susceptibility was tested against 8 antimicrobial classes, active against Pseudomonas spp.: aminoglycosides, carbapenems, broad-spectrum cephalosporins from the 3rd and 4th generation, extended-spectrum penicillins, as well as their combination with the β-lactamase inhibitors, monobactams, fluoroquinolones, and polymyxins. Among identified species, resistance to all antimicrobials but colistin was shown by Pseudomonas putida, the predominant species in all sampling points. In other species, resistance was observed mainly against ceftazidime, ticarcillin, ticarcillin-clavulanate, and aztreonam, although some isolates of Pseudomonas aeruginosa, Pseudomonas fluorescens, Pseudomonas pseudoalcaligenes, and Pseudomonas protegens showed multidrug-resistance (MDR) phenotype. Among P. putida, resistance to β-lactams and to fluoroquinolones as well as multidrug resistance become more prevalent after wastewater treatment, but the resistance rate decreased in marine water samples. Obtained data, however, suggests that Pseudomonas spp. are equipped or are able to acquire a wide range of antibiotic resistance mechanisms, and thus should be monitored as possible source of resistance genes.

  20. Impact of integrated fish farming on antimicrobial resistance in a pond environment

    DEFF Research Database (Denmark)

    Petersen, Andreas; Andersen, Jens Strodl; Kaewmak, T.

    2002-01-01

    different antimicrobials was found for the indicator organism Acinetobacter spp. isolated from composite water-sediment samples. The initial resistance levels prior to the new production cycle were 1. to 5%. After 2 months the levels of resistance to oxytetracycline and sulfamethoxazole reached 100...

  1. Impact of intracellular chloride concentration on cisplatin accumulation in sensitive and resistant GLC4 cells

    NARCIS (Netherlands)

    Salerno, Milena; Yahia, Dalila; Dzamitika, Simplice; de Vries, Elisabeth G. E.; Pereira-Maia, Elene; Garnier-Suillerot, Arlette

    Resistance to cisplatin [cis-diamminedichloroplatinum(II), CDDP] chemotherapy is a major problem in the clinic. Understanding the molecular basis of the intracellular accumulation of CDDP and other platinum-based anticancer drugs is of importance in delineating the mechanism of resistance to these

  2. Impact determination of strength and resistance training on Glycoside hemoglobin and blood sugar on patients with type II diabetes”

    OpenAIRE

    Bahman Hasanvand; Kobra Karami; Abdollah Khodadi; Mehdi Valipour

    2011-01-01

    Background : This study determined the impact of strength and resistance training on hemoglobin Glycoside and glucose in type II diabetic patients in Khorramabad in 2009. Materials and Methods: This quasi-experimental study was carried out on 30 men with type 2 diabetes referred to laboratories in Khorramabad, selected by screening and interview and purposeful sampling . After the subjects completed questionnaires of medical records and written consent, they were randomly divided into th...

  3. Impact of family history on relations between insulin resistance, LDL cholesterol and carotid IMT in healthy adults.

    LENUS (Irish Health Repository)

    Anderwald, Christian

    2010-08-01

    Insulin resistance (IR) is implicated as an independent risk factor for vascular disease. The aim of this study was to assess the impact of family history (FH) of type 2 diabetes (T2DM) and\\/or cardiovascular disease (CVD) on the associations between IR, low-density-lipoprotein cholesterol (LDL-C) and subclinical atherosclerosis (common and internal carotid artery intima media thickness (IMT)) in healthy European adults.

  4. Impact damage resistance and damage suppression properties of shape memory alloys in hybrid composites—a review

    International Nuclear Information System (INIS)

    Angioni, S L; Meo, M; Foreman, A

    2011-01-01

    Composite materials are known to have a poor resistance to through-the-thickness impact loading. There are various methods for improving their impact damage tolerance, such as fiber toughening, matrix toughening, interface toughening, through-the-thickness reinforcements, and selective interlayers and hybrids. Hybrid composites with improved impact resistance are particularly useful in military and commercial civil applications. Hybridizing composites using shape memory alloys (SMA) is one solution since SMA materials can absorb the energy of the impact through superelastic deformation or recovery stress, reducing the effects of the impact on the composite structure. The SMA material may be embedded in the hybrid composites (SMAHC) in many different forms and also the characteristics of the fiber reinforcements may vary, such as SMA wires in woven laminates or SMA foils in unidirectional laminates, only to cite two examples. We will review the state of the art of SMAHC for the purpose of damage suppression. Both the active and passive damage suppression mechanisms will be considered. (topical review)

  5. Anaerobic digestion of nitrogen rich poultry manure: Impact of thermophilic biogas process on metal release and microbial resistances.

    Science.gov (United States)

    Anjum, Reshma; Grohmann, Elisabeth; Krakat, Niclas

    2017-02-01

    Poultry manure is a nitrogen rich fertilizer, which is usually recycled and spread on agricultural fields. Due to its high nutrient content, chicken manure is considered to be one of the most valuable animal wastes as organic fertilizer. However, when chicken litter is applied in its native form, concerns are raised as such fertilizers also include high amounts of antibiotic resistant pathogenic Bacteria and heavy metals. We studied the impact of an anaerobic thermophilic digestion process on poultry manure. Particularly, microbial antibiotic resistance profiles, mobile genetic elements promoting the resistance dissemination in the environment as well as the presence of heavy metals were focused in this study. The initiated heat treatment fostered a community shift from pathogenic to less pathogenic bacterial groups. Phenotypic and molecular studies demonstrated a clear reduction of multiple resistant pathogens and self-transmissible plasmids in the heat treated manure. That treatment also induced a higher release of metals and macroelements. Especially, Zn and Cu exceeded toxic thresholds. Although the concentrations of a few metals reached toxic levels after the anaerobic thermophilic treatment, the quality of poultry manure as organic fertilizer may raise significantly due to the elimination of antibiotic resistance genes (ARG) and self-transmissible plasmids. Copyright © 2016 Elsevier Ltd. All rights reserved.

  6. Heavy metal driven co-selection of antibiotic resistance in soil and water bodies impacted by agriculture and aquaculture.

    Science.gov (United States)

    Seiler, Claudia; Berendonk, Thomas U

    2012-01-01

    The use of antibiotic agents as growth promoters was banned in animal husbandry to prevent the selection and spread of antibiotic resistance. However, in addition to antibiotic agents, heavy metals used in animal farming and aquaculture might promote the spread of antibiotic resistance via co-selection. To investigate which heavy metals are likely to co-select for antibiotic resistance in soil and water, the available data on heavy metal pollution, heavy metal toxicity, heavy metal tolerance, and co-selection mechanisms was reviewed. Additionally, the risk of metal driven co-selection of antibiotic resistance in the environment was assessed based on heavy metal concentrations that potentially induce this co-selection process. Analyses of the data indicate that agricultural and aquacultural practices represent major sources of soil and water contamination with moderately to highly toxic metals such as mercury (Hg), cadmium (Cd), copper (Cu), and zinc (Zn). If those metals reach the environment and accumulate to critical concentrations they can trigger co-selection of antibiotic resistance. Furthermore, co-selection mechanisms for these heavy metals and clinically as well as veterinary relevant antibiotics have been described. Therefore, studies investigating co-selection in environments impacted by agriculture and aquaculture should focus on Hg, Cd, Cu, and Zn as selecting heavy metals. Nevertheless, the respective environmental background has to be taken into account.

  7. Heavy metal driven co-selection of antibiotic resistance in soil and water bodies impacted by agriculture and aquaculture

    Directory of Open Access Journals (Sweden)

    Claudia eSeiler

    2012-12-01

    Full Text Available The use of antibiotic agents as growth promoters was banned in animal husbandry to prevent the selection and spread of antibiotic resistance. However, in addition to antibiotic agents, heavy metals used in animal farming and aquaculture might promote the spread of antibiotic resistance via co-selection. To investigate which heavy metals are likely to co-select for antibiotic resistance in soil and water, the available data on heavy metal pollution, heavy metal toxicity, heavy metal tolerance and co-selection mechanisms was reviewed. Additionally, the risk of metal driven co-selection of antibiotic resistance in the environment was assessed based on heavy metal concentrations that potentially induce this co-selection process. Analyses of the data indicate that agricultural and aquacultural practices represent major sources of soil and water contamination with moderately to highly toxic metals such as copper (Cu and zinc (Zn. If those metals reach the environment and accumulate to selective concentrations they can trigger co-selection of antibiotic resistance. Furthermore, co-selection mechanisms for these heavy metals and clinically as well as veterinary relevant antibiotics have been described. Therefore, studies investigating co-selection in environments impacted by agriculture and aquaculture should focus on Cu and Zn as selecting heavy metals. Furthermore, results of the general selection mechanisms need to be carefully evaluated and the respective environmental background has to be taken into account.

  8. Multidrug resistant commensal Escherichia coli in animals and its impact for public health

    Directory of Open Access Journals (Sweden)

    Ama eSzmolka

    2013-09-01

    Full Text Available After the era of plentiful antibiotics we are alarmed by the increasing number of antibiotic resistant strains. The genetic flexibility and adaptability of E. coli to constantly changing environments allows to acquire a great number of antimicrobial resistance mechanisms. Commensal strains of E. coli as versatile residents of the lower intestine are also repeatedly challenged by antimicrobial pressures during the lifetime of their host. As a consequence, commensal strains acquire the respective resistance genes, and/or develop resistant mutants in order to survive and maintain microbial homeostasis in the lower intestinal tract. Thus, commensal E. coli strains are regarded as indicators of antimicrobial load on their hosts. This chapter provides a short historic background of the appearance and presumed origin and transfer of antimicrobial resistance genes in commensal intestinal E. coli of animals with comparative information on their pathogenic counterparts. The dynamics, development and ways of evolution of resistance in the E. coli populations differ according to hosts, resistance mechanisms and antimicrobial classes used. The most frequent tools of E. coli against a variety of antimicrobials are the efflux pumps and mobile resistance mechanisms carried by plasmids and/or other transferable elements. The emergence of hybrid plasmids (both resistance and virulence among E. coli is of further concern. Co-existence and co-transfer of these bad genes in this huge and most versatile in vivo compartment may represent an increased public health risk in the future. Significance of multidrug resistant (MDR commensal E. coli seem to be highest in the food animal industry, acting as reservoir for intra- and interspecific exchange and a source for spread of MDR determinants through contaminated food to humans. Thus, public health potential of MDR commensal E. coli of food animals can be a concern and needs monitoring and more molecular analysis in the

  9. Experimental research on microhardness and wear resistances of pure Cu subjected to surface dynamic plastic deformation by ultrasonic impact

    Science.gov (United States)

    Chen, Zhaoxia; He, Yangming

    2018-04-01

    Dynamic plastic deformation (DPD) has been induced in the surface of pure Cu by ultrasonic impact treating (UIT) with the varied impact current and coverage percentage. The microstructures of the treated surface were analyzed by a scanning electron microscope (SEM). And the wear resistance of pure Cu was experimentally researched both with the treated and untreated specimens. The effect of DPD on the hardness was also investigated using microhardness tester. The results show that the grains on the top surfaces of pure Cu are highly refined. The maximum depth of the plastic deformation layer is approximately 1400 µm. The larger the current and coverage percentage, the greater of the microhardness and wear resistance the treated surface layer of pure Cu will be. When the impact current is 2 A and coverage percentage is 300%, the microhardness and wear resistance of the treated sample is about 276.1% and 68.8% higher than that of the untreated specimen, respectively. But the properties of the treated sample deteriorate when the UIT current is 3 A and the coverage percentage is 300% because of the formation of a new phase forms in the treated surface.

  10. Effects of curing type, silica fume fineness, and fiber length on the mechanical properties and impact resistance of UHPFRC

    Directory of Open Access Journals (Sweden)

    Hasan Şahan Arel

    Full Text Available The effects of silica fume fineness and fiber aspect ratio on the compressive strength and impact resistance of ultra high-performance fiber-reinforced concrete (UHPFRC are investigated experimentally. To this end, UHPFRC mixtures are manufactured by combining silica fumes with different fineness (specific surface areas: 17,200, 20,000, and 27,600 m2/kg and hooked-end steel fibers with various aspect ratios (lengths: 8, 13, and 16 mm. The samples are subjected to standard curing, steam curing, and hot-water curing. Compressive strength tests are conducted after 7-, 28-, 56-, and 90-day curing periods, and an impact resistance experiment is performed after the 90th day. A steam-cured mixture of silica fumes with a specific surface area of 27,600 m2/kg and 16-mm-long fibers produce better results than the other mixtures in terms of mechanical properties. Moreover, impact resistance increases with the fiber aspect ratio. Keywords: Curing, Fineness, UHPFRC, Mechanical properties, Fiber

  11. Queratitis lamelar difusa después del Lasik Diffuse lamellar keratitis after LASIK

    Directory of Open Access Journals (Sweden)

    Lorelei Ortega Díaz

    2010-12-01

    Full Text Available OBJETIVO: Describir el comportamiento de la queratitis lamelar difusa como complicación después de emplear la técnica quirúrgica queratomileusis in situ con láser. MÉTODOS: Se realizó un estudio descriptivo, de corte transversal en el Servicio de Cirugía Refractiva Corneal del Instituto Cubano de Oftalmología "Ramón Pando Ferrer" en el último trimestre del año 2008. La muestra quedó conformada por 16 ojos a los que se les realizó la queratomileusis in situ con láser como técnica quirúrgica para corregir ametropía y que presentaron complicaciones con esta cirugía. Se analizaron variables como la agudeza visual sin corrección; los ojos con esta complicación fueron analizados según la clasificación de Linebarger. RESULTADOS: La frecuencia de queratitis lamelar difusa fue de 3,0 por cada 100. La agudeza visual no corregida se comportó entre 0,8 y 1,0 en 12 ojos de 16 afectados, el estadio 1 se presentó en 12 ojos. CONCLUSIONES: La queratitis lamelar difusa es una complicación poco frecuente, los casos que la padecieron alcanzaron una buena agudeza visual final sin corrección. Predominó la forma leve de este cuadro.OBJECTIVE: To describe the situation of Diffuse lamellar keratitis as a complication after in situ keratomileusis with laser. METHODS: A descriptive cross-sectional study was carried out in the Refractive Corneal Service of "Ramón Pando Ferrer" Cuban Institute of Ophthalmology during the last quarter of 2008. The sample embraced 16 eyes that underwent in situ keratomileusis plus laser as the refractive procedure to correct ametropy and presented with some complications. Visual acuity without correction was one the analyzed variables and the eyes with this type of complication were classified according to Linebarger´s classification. RESULTS: The diffuse lamellar keratitis frequency was 3.0 per one hundred cases, the visual acuity without correction was 0.8 to 1.0 in 12 out of 16 eyes whereas stage 1 was

  12. Retraction Note to: Ultra-High Strength and Ductile Lamellar-Structured Powder Metallurgy Binary Ti-Ta Alloys

    Science.gov (United States)

    Liu, Yong; Xu, Shenghang; Wang, Xin; Li, Kaiyang; Liu, Bin; Wu, Hong; Tang, Huiping

    2018-05-01

    The editors and authors have retracted the article, "Ultra-High Strength and Ductile Lamellar-Structured Powder Metallurgy Binary Ti-Ta Alloys" by Yong Liu, Shenghang Xu, Xin Wang, Kaiyang Li, Bin Liu, Hong Wu, and Huiping Tang (https://doi.org/10.1007/s11837-015-1801-1).

  13. Fatigue life analysis of unexpected failure in a lamellar TiAl alloy

    Energy Technology Data Exchange (ETDEWEB)

    Chan, K.S.

    1999-07-01

    Unexpected catastrophic failure occurred in specimens of a lamellar TiAl alloy tested by axial fatigue. The failure initiated at locations away from artificial defects introduced to the specimens as crack starters. Fractographic examination of the fracture surface revealed the presence of featureless, low-energy facets that suggested the catastrophic crack may have initiated in one or more large grains that cleaved on a cleavage plane or an interface. A crack growth analysis of fatigue life of the test specimens suggested that the catastrophic crack propagated at stress intensity levels below the large crack threshold. Furthermore, the catastrophic crack propagated at rates that were higher than the average rates exhibited by small cracks, as well as by the large crack under equivalent stress intensity ranges. Because of this, the conventional life prediction approach based on the large crack growth data grossly overpredicted the fatigue life.

  14. Numerical simulation of transformation-induced microscopic residual stress in ferrite-martensite lamellar steel

    International Nuclear Information System (INIS)

    Mikami, Y; Inao, A; Mochizuki, M; Toyoda, M

    2009-01-01

    The effect of transformation-induced microscopic residual stress on fatigue crack propagation behavior of ferrite-martensite lamellar steel was discussed. Fatigue tests of prestrained and non-prestrained specimens were performed. Inflections and branches at ferrite-martensite boundaries were observed in the non-prestrained specimens. On the other hand, less inflections and branches were found in the prestrained specimens. The experimental results showed that the transformation induced microscopic residual stress has influence on the fatigue crack propagation behavior. To estimate the microscopic residual, a numerical simulation method for the calculation of microscopic residual stress stress induced by martensitic transformation was performed. The simulation showed that compressive residual stress was generated in martensite layer, and the result agree with the experimental result that inflections and branches were observed at ferrite-martensite boundaries.

  15. Neutron spin-echo investigation of the microemulsion dynamics. in bicontinuous lamellar and droplet phases

    CERN Document Server

    Mihailescu, M; Endo, H; Allgaier, J; Gompper, G; Stellbrink, J; Richter, D; Jakobs, B; Sottmann, T; Faragó, B

    2002-01-01

    Using neutron spin-echo (NSE) spectroscopy in combination with dynamic light scattering (DLS), we performed an extensive investigation of the bicontinuous phase in ternary water-surfactant-oil microemulsions, with extension to lamellar and droplet phases. The dynamical behavior of surfactant monolayers of decyl-polyglycol-ether (C sub 1 sub 0 E sub 4) molecules, or mixtures of surfactant with long amphiphilic block-copolymers of type poly-ethylene propylene/poly-ethylene oxide (PEP-PEO) was studied, under comparable conditions. The investigation techniques provide access to different length scales relative to the characteristic periodicity length of the microemulsion structure. Information on the elastic bending modulus is obtained from the local scale dynamics in view of existing theoretical descriptions and is found to be in accordance with small angle neutron scattering (SANS) studies. Evidence for the modified elastic properties and additional interaction of the amphiphilic layers due to the polymer is mo...

  16. Pattern interpolation in thin films of lamellar, symmetric copolymers on nano-patterned substrates

    Science.gov (United States)

    Detcheverry, Francois; Nagpal, Umang; Liu, Guoliang; Nealey, Paul; de Pablo, Juan

    2009-03-01

    A molecular model of block copolymer systems is used to conduct a systematic study of the morphologies that arise when thin films of symmetric, lamellar forming block copolymer materials are deposited on nanopatterned surfaces. Over 500 distinct cases are considered. It is found that, in general, three distinct morphologies can arise depending on the strength of the substrate-polymer interactions, the film thickness, and the period of the substrate pattern. The relative stability of those morphologies is determined by direct calculation of the free energy differences. The dynamic propensity of those morphologies to emerge is examined by careful analysis of simulated trajectories. The results of this systematic study are used to interpret recent experimental data for films of polystyrene-PMMA copolymers on chemically nanopatterned surfaces.

  17. Instability of a Lamellar Phase under Shear Flow: Formation of Multilamellar Vesicles

    Science.gov (United States)

    Courbin, L.; Delville, J. P.; Rouch, J.; Panizza, P.

    2002-09-01

    The formation of closed-compact multilamellar vesicles (referred to in the literature as the ``onion texture'') obtained upon shearing lamellar phases is studied using small-angle light scattering and cross-polarized microscopy. By varying the shear rate γ ˙, the gap cell D, and the smectic distance d, we show that: (i)the formation of this structure occurs homogeneously in the cell at a well-defined wave vector qi, via a strain-controlled process, and (ii)the value of qi varies as (dγ ˙/D)1/3. These results strongly suggest that formation of multilamellar vesicles may be monitored by an undulation (buckling) instability of the membranes, as expected from theory.

  18. Formation of structural steady states in lamellar/sponge phase-separating fluids under shear flow

    Science.gov (United States)

    Panizza, P.; Courbin, L.; Cristobal, G.; Rouch, J.; Narayanan, T.

    2003-05-01

    We investigate the effect of shear flow on a lamellar-sponge phase-separating fluid when subjected to shear flow. We show the existence of two different steady states (droplets and ribbons structures) whose nature does not depend on the way to reach the two-phase unstable region of the phase diagram (temperature quench or stirring). The transition between ribbons and droplets is shear thickening and its nature strongly depends on what dynamical variable is imposed. If the stress is fixed, flow visualization shows the existence of shear bands at the transition, characteristic of coexistence in the cell between ribbons and droplets. In this shear-banding region, the viscosity oscillates. When the shear rate is fixed, no shear bands are observed. Instead, the transition exhibits a hysteretic behavior leading to a structural bi-stability of the phase-separating fluid under flow.

  19. The deformation twin in lamellar Ti 3Al/TiAl structure

    Science.gov (United States)

    Zhang, J. X.; Ye, H. Q.

    2003-04-01

    A Ti-48Al-2Cr (at.%) alloy consisting of γ+α 2 lamellar structure was deformed in compression at room temperature. Study by high resolution electron microscopy was carried out on the characteristic of induced γ T/α 2 interface. During deformation the γ T/α 2 interface presents a stepped structure and the γ/α 2 interface remains straight. The formation mechanism of γ T associated with misfit dislocations is proposed. 1/2[01 1¯] γ interfacial dislocation in the γ/α 2 interface can dissociate into a 1/6[ 1¯1 2¯] γ partial dislocation which glides on the ( 1¯11) γ plane and causes γ T to form.

  20. Fragmentation of α2 plates in a fully lamellar TiAl during creep

    International Nuclear Information System (INIS)

    Wang, J.G.; Hsiung, L.M.; Nieh, T.G.

    1999-01-01

    The fragmentation and spheroidization of α 2 laths in a fully-lamellar TiAl alloy during creep were examined. Three possible mechanisms, Rayleigh's perturbation model, subgrain boundary groove mechanism and intersection of deformation twins with α 2 lamellae were presented and discussed. During creep deformation, the pile-up of interfacial dislocations leads to a change of planar interface, which, in turn, causes a difference in local chemical potential, and further results in the spheroidization of α 2 lamellae. On the other hand, the deformation of the α 2 phase is expected to be induced by the high local stress concentration introduced by the pile up of interfacial dislocations. The dynamic recovery process may lead to the formation of subgrain boundaries in the α 2 lamellae, which results in the spheroidization and termination of α 2 lamellae with the aid of diffusion during creep

  1. Nucleation of the lamellar decomposition in a Ti-44Al-4Nb-4Zr alloy

    Energy Technology Data Exchange (ETDEWEB)

    Zhang, L.C.; Cheng, T.T.; Aindow, M

    2004-01-05

    The onset of the lamellar decomposition ({alpha}{yields}{alpha}{sub 2}+{gamma}) in a titanium aluminide alloy containing Nb and Zr has been studied by transmission electron microscopy. Samples water-quenched from the solution-treatment temperature of 1350 deg. C show fault-like features resembling those reported previously as the precursors for the formation of the {gamma} lamellae. High-resolution lattice images obtained from such features have revealed that the 'faults' are actually embryonic {gamma} lamellae, just a few atomic layers in thickness, which clearly exhibit the ordered L1{sub 0} structure. This implies that the {gamma} phase is formed directly, rather than via some intermediate disordered face-centred-cubic phase as suggested previously. Moreover, the character and configuration of the interfacial defects is consistent with this occurring in a diffusive-displacive manner with short-range fluxes across the risers of mobile perfect interfacial disconnections.

  2. Nucleation of the lamellar decomposition in a Ti-44Al-4Nb-4Zr alloy

    International Nuclear Information System (INIS)

    Zhang, L.C.; Cheng, T.T.; Aindow, M.

    2004-01-01

    The onset of the lamellar decomposition (α→α 2 +γ) in a titanium aluminide alloy containing Nb and Zr has been studied by transmission electron microscopy. Samples water-quenched from the solution-treatment temperature of 1350 deg. C show fault-like features resembling those reported previously as the precursors for the formation of the γ lamellae. High-resolution lattice images obtained from such features have revealed that the 'faults' are actually embryonic γ lamellae, just a few atomic layers in thickness, which clearly exhibit the ordered L1 0 structure. This implies that the γ phase is formed directly, rather than via some intermediate disordered face-centred-cubic phase as suggested previously. Moreover, the character and configuration of the interfacial defects is consistent with this occurring in a diffusive-displacive manner with short-range fluxes across the risers of mobile perfect interfacial disconnections

  3. Early byzantine lamellar armour from Carthago Spartaria (Cartagena, Spain

    Directory of Open Access Journals (Sweden)

    Vizcaíno Sánchez, Jaime

    2008-12-01

    Full Text Available This article presents an Early Byzantine lamellar armour, retrieved in the excavations at the quarter built over the Roman Theatre of Cartagena. The armour has close parallels with contemporary known material from the central and eastern Mediterranean or other sites, and it is an important find which increases the body of archeological evidence about Byzantine presence in Spania.

    Este artículo presenta una coraza laminar protobizantina hallada en las excavaciones del barrio construido sobre el teatro romano de Cartagena. La coraza tiene estrechos paralelos con materiales contemporáneos del Mediterráneo Central y Oriental u otros lugares, y es un importante hallazgo que incrementa la nómina de evidencias arqueológicas acerca de la presencia bizantina en Spania.

  4. Stress relaxation experiments on a lamellar polystyrene-polyisoprene diblock copolymer melt

    DEFF Research Database (Denmark)

    Holmqvist, P.; Castelletto, V.; Hamley, I.W.

    2001-01-01

    The non-linear rheology of the lamellar phase of a polystyrene-polyisoprene diblock copolymer is studied by oscillatory shear experiments. The relaxation of the shear modulus, G(t, gamma) is studied as a function of strain amplitude, gamma, up to large amplitude strains, gamma = 100%. The decay...... of G(t, gamma) is analysed using the model-independent CONTIN inverse Laplace transform algorithm to obtain a series of relaxation times, which reveals multiple relaxation processes. The timescale for the fastest relaxation processes is compared to those previously observed for diblock copolymer melts...... via dynamic light scattering experiments. The slowest relaxation process may be related to the shear-induced orientation of the lamellae. It is shown that time-strain separability G(t, gamma)= G(t)h(gamma) can be applied, and the damping function h(gamma) is consistent with a strongly strain...

  5. The structure of a lipid-water lamellar phase containing two types of lipid monolayers

    International Nuclear Information System (INIS)

    Ranck, J.L.; Luzzati, V.; Zaccai, G.

    1980-01-01

    One lamellar phase, observed in the mitochondrial lipids-water system at low temperature (ca 253 K) and at low water content (ca 15%), contains four lipid monolayers in its unit cell, two of type α and two of type β. Previous X-ray scattering studies of this phase led to an ambiguity: the phase could contain either two homogeneous bilayers, one α and one β, or two mixed bilayers, each formed by an α and a β monolayer. A solution to this problem was sought in a neutron scattering study as a function of the D 2 O/H 2 O ratio. Because of limited resolution, straightforward analysis of the neutron scattering data leads also to ambiguous results. Using a more sophisticated analysis based upon the zeroth- and second-order moments of the Patterson peaks relevant to the exchangeable components, it is shown that the weight of the evidence is in favour of a structure containing mixed bilayers. (Auth.)

  6. Multipulse NMR study of the lamellar mesophase of some liquid crystals

    International Nuclear Information System (INIS)

    Jasinski, A.; Morris, P.G.; Mansfield, P.

    1977-01-01

    Multipulse NMR techniques have been used to investigate the dynamic jproperties of cesium perfluoro-octanoate (CsPFO) and ammonium perfluoro-octanoate (APFO) + water systems, which are liquid crystals, over a wide range of temperautre and concentration. Axially symmetric fluorine chemical shift tensors have been measured for the CF 2 and CF 3 groups by performing a rotation study of an aligned sample (50% CsPFO : 50% D 2 O) at room temperature. The order parameter S in the lamellar mesophase of 72,2% CsPFO : 27,8% D 2 O and 70% APFO : 30% D 2 O has been obtained over as temperature range 20 0 C - 85 0 C by fitting the multipulse spectra. (author)

  7. Morphology and hot deformation of lamellar microstructures in zirconium and titanium alloys

    International Nuclear Information System (INIS)

    Vanderesse, N.

    2008-06-01

    This study aims at providing a precise description of the lamellar microstructures of two alloys, Zircaloy-4 and TA6V, and at characterizing their deformation at high temperature. New experimental techniques have been developed for these materials: instrumented Jominy end quench test, channel-die with mobile walls, X-ray microtomography. The main results underline the role of the alpha-GB phase formed at the prior beta grain boundaries on the variant selection in Zircaloy-4 and TA6-V. The three dimensional organization of the colonies in TA6V is also revealed for the first time and discussed in relationship with the formation of the microstructure. In hot compressed Zircaloy-4 several mechanisms of strain localization are observed. Twinning activity at 750 C, in particular, is clearly put into evidence. A classification of these heterogeneities is proposed and their influence on the recrystallization is discussed. (author)

  8. An ALC study of spin exchange of a muoniated cosurfactant in lamellar phase surfactant dispersions

    Energy Technology Data Exchange (ETDEWEB)

    Dilger, H. [Institute of Physical Chemistry, University of Stuttgart, Pfaffenwaldring 55, D-70569 Stuttgart (Germany)]. E-mail: h.dilger@ipc.uni-stuttgart.de; Martyniak, A. [Institute of Physical Chemistry, University of Stuttgart, Pfaffenwaldring 55, D-70569 Stuttgart (Germany); Scheuermann, R. [Laboratory for Muon Spin Spectroscopy, Paul Scherrer Institut, CH-5232 Villigen PSI (Switzerland); Vujosevic' , D. [Institute of Physical Chemistry, University of Stuttgart, Pfaffenwaldring 55, D-70569 Stuttgart (Germany); Tucker, I.M. [Unilever Research and Development, Port Sunlight, Wirral, CH63 3JW (United Kingdom); McKenzie, I. [Institute of Physical Chemistry, University of Stuttgart, Pfaffenwaldring 55, D-70569 Stuttgart (Germany); Roduner, E. [Institute of Physical Chemistry, University of Stuttgart, Pfaffenwaldring 55, D-70569 Stuttgart (Germany)

    2006-03-31

    The Avoided Level Crossing muon spin resonance (ALC-{mu}SR) technique has been used to measure the Heisenberg spin exchange rate between the Mu adducts of 2-phenylethanol (PEA) and Ni{sup 2+} in a concentrated lamellar phase dispersion composed of the dichain cationic surfactant 2,3-diheptadecyl ester ethoxypropyl-1,1,1-trimethylammonium chloride (DHTAC) and water. Ni{sup 2+} is only dissolved in the aqueous phase, therefore information about the local environment of the PEA can be extracted from the spin exchange rate. In the high-temperature (L{sub {alpha}}) phase the spin exchange is very slow, revealing that PEA preferentially resides in the headgroup regime of the surfactant. In the low-temperature (L{sub {beta}}) phase the spin exchange is diffusion controlled, because the PEA is expelled into the water region between the bilayers.

  9. An ALC study of spin exchange of a muoniated cosurfactant in lamellar phase surfactant dispersions

    International Nuclear Information System (INIS)

    Dilger, H.; Martyniak, A.; Scheuermann, R.; Vujosevic', D.; Tucker, I.M.; McKenzie, I.; Roduner, E.

    2006-01-01

    The Avoided Level Crossing muon spin resonance (ALC-μSR) technique has been used to measure the Heisenberg spin exchange rate between the Mu adducts of 2-phenylethanol (PEA) and Ni 2+ in a concentrated lamellar phase dispersion composed of the dichain cationic surfactant 2,3-diheptadecyl ester ethoxypropyl-1,1,1-trimethylammonium chloride (DHTAC) and water. Ni 2+ is only dissolved in the aqueous phase, therefore information about the local environment of the PEA can be extracted from the spin exchange rate. In the high-temperature (L α ) phase the spin exchange is very slow, revealing that PEA preferentially resides in the headgroup regime of the surfactant. In the low-temperature (L β ) phase the spin exchange is diffusion controlled, because the PEA is expelled into the water region between the bilayers

  10. Linear low density polyethylene (LLDPE) and lamellar zirconium phosphate (Zr P) composites: morphology and mechanical properties

    International Nuclear Information System (INIS)

    Silva, Daniela F.; Mandes, Luis C.; Lino, Adan S.

    2011-01-01

    Composites of linear low density polyethylene (LLDPE) and zirconium phosphate (ZrP) were prepared by extrusion in the molten state, containing 2 (w%) of the lamellar filler. The filler was previously synthesized by direct precipitation method and characterized. After processing, the composite and the pure virgin polymer were molded by compression in order to obtain films of 1 mm thick which were characterized by X-ray diffraction at high angle (WAXD), stress-strain mechanical analysis and scanning electron microscopy (SEM). The WAXD and SEM analysis showed that there was no intercalation of LLDPE in zirconium phosphate, possibly due to the fact that the layers do not have spacing enough to allow the intercalation of polymer chains in the galleries of the filler and thus allow the exfoliation. (author)

  11. Multiscale Simulations of Lamellar PS–PEO Block Copolymers Doped with LiPF6 Ions

    KAUST Repository

    Sethuraman, Vaidyanathan

    2017-06-02

    We report the results of atomistic simulations of the structural equilibrium properties of PS–PEO block copolymer (BCP) melt in the ordered lamellar phase doped with LiPF6 salt. A hybrid simulation strategy, consisting of steps of coarse-graining and inverse coarse-graining, was employed to equilibrate the melt at an atomistic resolution in the ordered phase. We characterize the structural distributions between different atoms/ions and compare the features arising in BCPs against the corresponding behavior in PEO homopolymers for different salt concentrations. In addition, the local structural distributions are characterized in the lamellar phase as a function of distance from the interface. The cation–anion radial distribution functions (RDF) display stronger coordination in the block copolymer melts at high salt concentrations, whereas the trends are reversed for low salt concentrations. Radial distribution functions isolated in the PEO and PS domains demonstrate that the stronger coordination seen in BCPs arises from the influence of both the higher fraction of ions segregated in the PS phase and the influence of interactions in the PS domain. Such a behavior also manifests in the cation–anion clusters, which show a larger fraction of free ions in the BCP. While the average number of free anions (cations) decreases with increasing salt concentration, higher order aggregates of LiPF6 increase with increasing salt concentration. Further, the cation–anion RDFs display spatial heterogeneity, with a stronger cation–anion binding in the interfacial region compared to bulk of the PEO domain.

  12. Ion transport mechanisms in lamellar phases of salt-doped PS–PEO block copolymer electrolytes

    KAUST Repository

    Sethuraman, Vaidyanathan

    2017-10-23

    We use a multiscale simulation strategy to elucidate, at an atomistic level, the mechanisms underlying ion transport in the lamellar phase of polystyrene–polyethylene oxide (PS–PEO) block copolymer (BCP) electrolytes doped with LiPF6 salts. Explicitly, we compare the results obtained for ion transport in the microphase separated block copolymer melts to those for salt-doped PEO homopolymer melts. In addition, we also present results for dynamics of the ions individually in the PEO and PS domains of the BCP melt, and locally as a function of the distance from the lamellar interfaces. When compared to the PEO homopolymer melt, ions were found to exhibit slower dynamics in both the block copolymer (overall) and in the PEO phase of the BCP melt. Such results are shown to arise from the effects of slower polymer segmental dynamics in the BCP melt and the coordination characteristics of the ions. Polymer backbone-ion residence times analyzed as a function of distance from the interface indicate that ions have a larger residence time near the interface compared to that near the bulk of lamella, and demonstrates the influence of the glassy PS blocks and microphase segregation on the ion transport properties. Ion transport mechanisms in BCP melts reveal that there exist five distinct mechanisms for ion transport along the backbone of the chain and exhibit qualitative differences from the behavior in homopolymer melts. We also present results as a function of salt concentration which show that the mean-squared displacements of the ions decrease with increasing salt concentration, and that the ion residence times near the polymer backbone increase with increasing salt concentration.

  13. Ion transport mechanisms in lamellar phases of salt-doped PS–PEO block copolymer electrolytes

    KAUST Repository

    Sethuraman, Vaidyanathan; Mogurampelly, Santosh; Ganesan, Venkat

    2017-01-01

    We use a multiscale simulation strategy to elucidate, at an atomistic level, the mechanisms underlying ion transport in the lamellar phase of polystyrene–polyethylene oxide (PS–PEO) block copolymer (BCP) electrolytes doped with LiPF6 salts. Explicitly, we compare the results obtained for ion transport in the microphase separated block copolymer melts to those for salt-doped PEO homopolymer melts. In addition, we also present results for dynamics of the ions individually in the PEO and PS domains of the BCP melt, and locally as a function of the distance from the lamellar interfaces. When compared to the PEO homopolymer melt, ions were found to exhibit slower dynamics in both the block copolymer (overall) and in the PEO phase of the BCP melt. Such results are shown to arise from the effects of slower polymer segmental dynamics in the BCP melt and the coordination characteristics of the ions. Polymer backbone-ion residence times analyzed as a function of distance from the interface indicate that ions have a larger residence time near the interface compared to that near the bulk of lamella, and demonstrates the influence of the glassy PS blocks and microphase segregation on the ion transport properties. Ion transport mechanisms in BCP melts reveal that there exist five distinct mechanisms for ion transport along the backbone of the chain and exhibit qualitative differences from the behavior in homopolymer melts. We also present results as a function of salt concentration which show that the mean-squared displacements of the ions decrease with increasing salt concentration, and that the ion residence times near the polymer backbone increase with increasing salt concentration.

  14. Effect of domain size and interface characteristics on the impact resistance of selected polymer composites

    Science.gov (United States)

    Viratyaporn, Wantinee

    Nanocomposite technology has advanced considerably in recent years and excellent engineering properties have been achieved in numerous systems. In multiphase materials the enhancement of properties relies heavily on the nature at the interphase region between polymer domains and nanoparticle reinforcements. Strong adhesion between the phases provides excellent load-transfer and good mechanical elastic modulus and strength, whereas weak interaction contributes to crack deflection mechanisms and toughness. Polymer molecules are large and the presence of comparably sized filler particles affects chain gyration, which in turn influences the conformation of the polymer and the properties of the composite. Nanoparticles were incorporated into a poly(methyl methacrylate) matrix by means of in situ free radical (bulk) polymerization. Aluminum oxide and zinc oxide nanoparticles were added to study the effects of particle chemistry and shape on selected mechanical properties such as impact resistance, which showed significant improvement at a certain loading of zinc oxide. The elongated shape of zinc oxide particles appears to promote crack deflection processes and to introduce a pull-out mechanism similar to that observed in fiber composite systems. Moreover, the thermal stability of PMMA was improved with the addition of nanoparticles, apparently by steric hindrance of polymer chain motion and a second mechanism related to the dipole inducing effect of the oxide particles. The sensitivity of infrared spectroscopy to changes in molecular dipoles was used to study the nature of the polymer/particle interface. The results revealed some interesting aspects of the secondary bonds between polymers and oxides. Raman spectroscopy was used to investigate the extent of polymerization and changes in polymer conformation. A degree of polymerization of 93% was achieved in neat PMMA, and even when 5.0 v/o of PGMEA was introduced into the system no monomer was detected. However, when

  15. Evaluation of resistance to horizontal loads and functional failure from impacts

    Directory of Open Access Journals (Sweden)

    Mendonça, P.

    2015-09-01

    Full Text Available This paper presents and discusses the results of the serviciability and use condition tests carried on an innovative solution for partitions, designated AdjustMembrane developed within a research project. The proposed system is a modular non-loadbearing wall, tensioned between the pavements and ceiling slabs, which are used as anchoring elements. It allows several advantages, related with the weight reduction to achieve a good sustainable performance, such as the reduction of construction costs, energy, and materials, and it is easy to recycle and to reuse, allowing self-construction. Apart from a general presentation of the partition technology, this paper presents and discusses the results of experimental tests carried out. From the results obtained, it is possible to conclude that the solution fulfils the requirements for this typology of wall in terms of resistance to horizontal loads induced by soft and hard body impacts.En este trabajo se presentan y discuten los resultados de ensayos de condiciones de servicio y seguridad de uso de una solución innovadora para particiones interiores, designada por AdjustMembrane y desarrollada en un proyecto de investigación. El sistema propuesto es una solución de partición modular no estructural, tensada entre los forjados de piso y de techo, que se utilizan como elementos de anclaje. Permite varias ventajas, relacionadas con la reducción de peso para lograr buenos indicadores de sostenibilidad, tales como la reducción de los costos de construcción, energía y materiales. Es fácil de reciclar y reutilizar, lo que permite la auto-construcción. Además de una presentación general de la tecnología de pared desarrollada, se presentan y discuten los resultados de algunos ensayos experimentales efectuados. A partir de los resultados obtenidos fue posible concluir que la solución cumple con los requisitos de resistencia a cargas horizontales y daños funcionales por impacto de cuerpo duro y blando

  16. The Epidemiology of Carbapenem-Resistant Enterobacteriaceae: The Impact and Evolution of a Global Menace

    Science.gov (United States)

    Weinstein, Robert A.

    2017-01-01

    Abstract Carbapenem-resistant Enterobacteriaceae (CRE) are a serious public health threat. Infections due to these organisms are associated with significant morbidity and mortality. Mechanisms of drug resistance in gram-negative bacteria (GNB) are numerous; β-lactamase genes carried on mobile genetic elements are a key mechanism for the rapid spread of antibiotic-resistant GNB worldwide. Transmissible carbapenem-resistance in Enterobacteriaceae has been recognized for the last 2 decades, but global dissemination of carbapenemase-producing Enterobacteriaceae (CPE) is a more recent problem that, once initiated, has been occurring at an alarming pace. In this article, we discuss the evolution of CRE, with a focus on the epidemiology of the CPE pandemic; review risk factors for colonization and infection with the most common transmissible CPE worldwide, Klebsiella pneumoniae carbapenemase–producing K. pneumoniae; and present strategies used to halt the striking spread of these deadly pathogens. PMID:28375512

  17. Regulation of Multidrug Resistance Proteins by Genistein in a Hepatocarcinoma Cell Line: Impact on Sorafenib Cytotoxicity

    OpenAIRE

    Rigalli, Juan Pablo; Ciriaci, Nadia; Arias, Agostina; Ceballos, Mar?a Paula; Villanueva, Silvina Stella Maris; Luquita, Marcelo Gabriel; Mottino, Aldo Domingo; Ghanem, Carolina In?s; Catania, Viviana Alicia; Ruiz, Mar?a Laura

    2015-01-01

    Hepatocellular carcinoma (HCC) is the fifth most frequent cancer worldwide. Sorafenib is the only drug available that improves the overall survival of HCC patients. P-glycoprotein (P-gp), Multidrug resistance-associated proteins 2 and 3 (MRP2 and 3) and Breast cancer resistance protein (BCRP) are efflux pumps that play a key role in cancer chemoresistance. Their modulation by dietary compounds may affect the intracellular accumulation and therapeutic efficacy of drugs that are substrates of t...

  18. Impact of Resistance Training on Skeletal Muscle Mitochondrial Biogenesis, Content, and Function

    Directory of Open Access Journals (Sweden)

    Thomas Groennebaek

    2017-09-01

    Full Text Available Skeletal muscle metabolic and contractile properties are reliant on muscle mitochondrial and myofibrillar protein turnover. The turnover of these specific protein pools is compromised during disease, aging, and inactivity. Oppositely, exercise can accentuate muscle protein turnover, thereby counteracting decay in muscle function. According to a traditional consensus, endurance exercise is required to drive mitochondrial adaptations, while resistance exercise is required to drive myofibrillar adaptations. However, concurrent practice of traditional endurance exercise and resistance exercise regimens to achieve both types of muscle adaptations is time-consuming, motivationally demanding, and contended to entail practice at intensity levels, that may not comply with clinical settings. It is therefore of principle interest to identify effective, yet feasible, exercise strategies that may positively affect both mitochondrial and myofibrillar protein turnover. Recently, reports indicate that traditional high-load resistance exercise can stimulate muscle mitochondrial biogenesis and mitochondrial respiratory function. Moreover, fatiguing low-load resistance exercise has been shown capable of promoting muscle hypertrophy and expectedly entails greater metabolic stress to potentially enhance mitochondrial adaptations. Consequently, fatiguing low-load resistance exercise regimens may possess the ability to stimulate muscle mitochondrial adaptations without compromising muscle myofibrillar accretion. However, the exact ability of resistance exercise to drive mitochondrial adaptations is debatable, not least due to some methodological challenges. The current review therefore aims to address the evidence on the effects of resistance exercise on skeletal muscle mitochondrial biogenesis, content and function. In prolongation, a perspective is taken on the specific potential of low-load resistance exercise on promoting mitochondrial adaptations.

  19. The impact of herbicide-resistant rice technology on phenotypic diversity and population structure of United States weedy rice.

    Science.gov (United States)

    Burgos, Nilda Roma; Singh, Vijay; Tseng, Te Ming; Black, Howard; Young, Nelson D; Huang, Zhongyun; Hyma, Katie E; Gealy, David R; Caicedo, Ana L

    2014-11-01

    The use of herbicide-resistant (HR) Clearfield rice (Oryza sativa) to control weedy rice has increased in the past 12 years to constitute about 60% of rice acreage in Arkansas, where most U.S. rice is grown. To assess the impact of HR cultivated rice on the herbicide resistance and population structure of weedy rice, weedy samples were collected from commercial fields with a history of Clearfield rice. Panicles from each weedy type were harvested and tested for resistance to imazethapyr. The majority of plants sampled had at least 20% resistant offspring. These resistant weeds were 97 to 199 cm tall and initiated flowering from 78 to 128 d, generally later than recorded for accessions collected prior to the widespread use of Clearfield rice (i.e. historical accessions). Whereas the majority (70%) of historical accessions had straw-colored hulls, only 30% of contemporary HR weedy rice had straw-colored hulls. Analysis of genotyping-by-sequencing data showed that HR weeds were not genetically structured according to hull color, whereas historical weedy rice was separated into straw-hull and black-hull populations. A significant portion of the local rice crop genome was introgressed into HR weedy rice, which was rare in historical weedy accessions. Admixture analyses showed that HR weeds tend to possess crop haplotypes in the portion of chromosome 2 containing the ACETOLACTATE SYNTHASE gene, which confers herbicide resistance to Clearfield rice. Thus, U.S. HR weedy rice is a distinct population relative to historical weedy rice and shows modifications in morphology and phenology that are relevant to weed management. © 2014 American Society of Plant Biologists. All Rights Reserved.

  20. Impact of thermal stress on evolutionary trajectories of pathogen resistance in three-spined stickleback (Gasterosteus aculeatus).

    Science.gov (United States)

    Schade, Franziska M; Shama, Lisa N S; Wegner, K Mathias

    2014-07-26

    Pathogens are a major regulatory force for host populations, especially under stressful conditions. Elevated temperatures may enhance the development of pathogens, increase the number of transmission stages, and can negatively influence host susceptibility depending on host thermal tolerance. As a net result, this can lead to a higher prevalence of epidemics during summer months. These conditions also apply to marine ecosystems, where possible ecological impacts and the population-specific potential for evolutionary responses to changing environments and increasing disease prevalence are, however, less known. Therefore, we investigated the influence of thermal stress on the evolutionary trajectories of disease resistance in three marine populations of three-spined sticklebacks Gasterosteus aculeatus by combining the effects of elevated temperature and infection with a bacterial strain of Vibrio sp. using a common garden experiment. We found that thermal stress had an impact on fish weight and especially on survival after infection after only short periods of thermal acclimation. Environmental stress reduced genetic differentiation (QST) between populations by releasing cryptic within-population variation. While life history traits displayed positive genetic correlations across environments with relatively weak genotype by environment interactions (GxE), environmental stress led to negative genetic correlations across environments in pathogen resistance. This reversal of genetic effects governing resistance is probably attributable to changing environment-dependent virulence mechanisms of the pathogen interacting differently with host genotypes, i.e. GPathogenxGHostxE or (GPathogenxE)x(GHostxE) interactions, rather than to pure host genetic effects, i.e. GHostxE interactions. To cope with climatic changes and the associated increase in pathogen virulence, host species require wide thermal tolerances and pathogen-resistant genotypes. The higher resistance we found

  1. Analysis of the impact of thermal resistance of the roof on the performance of photovoltaic roof tiles

    Directory of Open Access Journals (Sweden)

    Kurz Dariusz

    2017-01-01

    Full Text Available The paper explores the issues related to the impact of thermal resistance of the roof on the electrical parameters of photovoltaic roof tiles. The methodology of determination of the thermal resistance and thermal transmittance factor was presented in accordance with the applicable legal regulations and standards. A test station was presented for the purpose of measurement of the parameters of photovoltaic roof tiles depending on the structure of the roof substrate. Detailed analysis of selected building components as well as their impact on the design thermal resistance factor and thermal transmittance factor was carried out. Results of our own studies, which indicated a relation between the type of the roof structure and the values of the electricity generated by photovoltaic tiles, were presented. Based on the calculations, it was concluded that the generated outputs in the respective constructions differ by maximum 6%. For cells with the highest temperature, the performance of the PV roof tiles on the respective roof constructions fell within the range between 0.4% and 1.2% (depending on the conducted measurement and amounted to 8.76% (in reference to 9.97% for roof tiles with the lowest temperature.

  2. Application of Electrical Resistivity Imaging and Land Surveying in the Analysis of Underground Construction Impact on the Warsaw Scarp

    Directory of Open Access Journals (Sweden)

    Kaczmarek Łukasz

    2016-12-01

    Full Text Available The paper presents the analysis of the II Underground Line construction’s impact on the Warsaw Scarp with the use of the electrical resistivity imaging (ERI, also known as the electrical resistivity tomography and further total station position measurements.The underground passes under the scarp perpendicular in the area of Dynasy Street 6, in Down-town district.The electrical resistivity imaging was performed for recognition of the geological structure and a potential land slide surface or zone.The gradient system was used during the prospection. In these analyses, the longitudinal section was 40 m long, and the depth of survey amounted to 6 m. In the case of the 200 m long transverse section, the resulted depth of survey was 30 m.The geophysical image of the longitudinal section,does not contain loosening soil zones,which could indicates lip surface.Next, total station measurements, which were tied to the archival geodetic observations’ results, were carried out. The aim of the measurements was to verify the activity of the horizontal and vertical displacements. The TBM excavation process led to summary vertical displacements up to approx. 24 mm and horizontal displacements amounting to approx. 13 mm. To sum up, the current land surveys reveals minor under ground line’ s construction impact on the scarp displacement. Nevertheless, the sensitive urban environment requires further monitoring, especially that the operation loads can result in displacement rate change.

  3. Self-administered nicotine differentially impacts body weight gain in obesity-prone and obesity-resistant rats.

    Science.gov (United States)

    Rupprecht, Laura E; Smith, Tracy T; Donny, Eric C; Sved, Alan F

    2017-07-01

    Obesity and tobacco smoking represent the largest challenges to public health, but the causal relationship between nicotine and obesity is poorly understood. Nicotine suppresses body weight gain, a factor impacting smoking initiation and the failure to quit, particularly among obese smokers. The impact of nicotine on body weight regulation in obesity-prone and obesity-resistant populations consuming densely caloric diets is unknown. In the current experiment, body weight gain of adult male rats maintained on a high energy diet (31.8% kcal from fat) distributed into obesity-prone (OP), obesity-resistant (OR) and an intermediate group, which was placed on standard rodent chow (Chow). These rats were surgically implanted with intravenous catheters and allowed to self-administer nicotine (0 or 60μg/kg/infusion, a standard self-administration dose) in 1-h sessions for 20 consecutive days. Self-administered nicotine significantly suppressed body weight gain but not food intake in OP and Chow rats. Self-administered nicotine had no effect on body weight gain in OR rats. These data suggest that: 1) OR rats are also resistant to nicotine-induced suppression of body weight gain; and 2) nicotine may reduce levels of obesity in a subset of smokers prone to obesity. Copyright © 2017 Elsevier Inc. All rights reserved.

  4. Effect of dispersion hardening on impact resistance of EN AC-AlSi12Cu2Fe silumin

    Directory of Open Access Journals (Sweden)

    J. Pezda

    2009-04-01

    Full Text Available Development of modern technology have generated supply of better and better, more resistant structural materials not attainable earlier.Weight of metal structures is of a great importance, and as a consequence, also weight of materials used for a given structure. More often, for metal structures are used lightweight metals and their alloys, from which aluminum and its alloys have become the most widespread. These alloys, based on Al-Si equilibrium system, contain additional constituents (e.g.: Mg, Cu enabling, except modification,improvement of mechanical properties obtained in result of heat treatment. The paper presents an effect of modification process and heat treatment on impact resistance of EN AC-AlSi12Cu2Fe alloy. Solutioning and ageing temperatures were selected on base of registered curves of the ATD method. For the neareutectic EN AC-AlSi12Cu2Fe silumin one obtained growth of the impact resistance both due to performed modification treatment and performed heat treatments of the alloy.

  5. Agricultural impacts of glyphosate-resistant soybean cultivation in South America.

    Science.gov (United States)

    Cerdeira, Antonio L; Gazziero, Dionsio L P; Duke, Stephen O; Matallo, Marcus B

    2011-06-08

    In the 2009/2010 growing season, Brazil was the second largest world soybean producer, followed by Argentina. Glyphosate-resistant soybeans (GRS) are being cultivated in most of the soybean area in South America. Overall, the GRS system is beneficial to the environment when compared to conventional soybean. GRS resulted in a significant shift toward no-tillage practices in Brazil and Argentina, but weed resistance may reduce this trend. Probably the highest agricultural risk in adopting GRS in Brazil and South America is related to weed resistance due to use of glyphosate. Weed species in GRS fields have shifted in Brazil to those that can more successfully withstand glyphosate or to those that avoid the time of its application. Five weed species, in order of importance, Conyza bonariensis (L.) Cronquist, Conyza canadensis (L.) Cronquist, Lolium multiflorum Lam., Digitaria insularis (L.) Mez ex Ekman, and Euphorbia heterophylla L., have evolved resistance to glyphosate in GRS in Brazil. Conyza spp. are the most difficult to control. A glyphosate-resistant biotype of Sorghum halepense L. has evolved in GRS in Argentina and one of D. insularis in Paraguay. The following actions are proposed to minimize weed resistance problem: (a) rotation of GRS with conventional soybeans in order to rotate herbicide modes of action; (b) avoidance of lower than recommended glyphosate rates; (c) keeping soil covered with a crop or legume at intercrop intervals; (d) keeping machinery free of weed seeds; and (d) use of a preplant nonselective herbicide plus residuals to eliminate early weed interference with the crop and to minimize escapes from later applications of glyphosate due to natural resistance of older weeds and/or incomplete glyphosate coverage.

  6. Impact of Volcanic Ash on Road and Airfield Surface Skid Resistance

    Directory of Open Access Journals (Sweden)

    Daniel M. Blake

    2017-08-01

    Full Text Available Volcanic ash deposited on paved surfaces during volcanic eruptions often compromises skid resistance, which is a major component of safety. We adopt the British pendulum test method in laboratory conditions to investigate the skid resistance of road asphalt and airfield concrete surfaces covered by volcanic ash sourced from various locations in New Zealand. Controlled variations in ash characteristics include type, depth, wetness, particle size and soluble components. We use Stone Mastic Asphalt (SMA for most road surface experiments but also test porous asphalt, line-painted road surfaces, and a roller screed concrete mix used for airfields. Due to their importance for skid resistance, SMA surface macrotexture and microtexture are analysed with semi-quantitative image analysis, microscopy and a standardised sand patch volumetric test, which enables determination of the relative effectiveness of different cleaning techniques. We find that SMA surfaces covered by thin deposits (~1 mm of ash result in skid resistance values slightly lower than those observed on wet uncontaminated surfaces. At these depths, a higher relative soluble content for low-crystalline ash and a coarser particle size results in lower skid resistance. Skid resistance results for relatively thicker deposits (3–5 mm of non-vesiculated basaltic ash are similar to those for thin deposits. There are similarities between road asphalt and airfield concrete, although there is little difference in skid resistance between bare airfield surfaces and airfield surfaces covered by 1 mm of ash. Based on our findings, we provide recommendations for maintaining road safety and effective cleaning techniques in volcanic ash environments.

  7. Impact of treatment heterogeneity on drug resistance and supply chain costs.

    Science.gov (United States)

    Spiliotopoulou, Eirini; Boni, Maciej F; Yadav, Prashant

    2013-09-01

    The efficacy of scarce drugs for many infectious diseases is threatened by the emergence and spread of resistance. Multiple studies show that available drugs should be used in a socially optimal way to contain drug resistance. This paper studies the tradeoff between risk of drug resistance and operational costs when using multiple drugs for a specific disease. Using a model for disease transmission and resistance spread, we show that treatment with multiple drugs, on a population level, results in better resistance-related health outcomes, but more interestingly, the marginal benefit decreases as the number of drugs used increases. We compare this benefit with the corresponding change in procurement and safety stock holding costs that result from higher drug variety in the supply chain. Using a large-scale simulation based on malaria transmission dynamics, we show that disease prevalence seems to be a less important factor when deciding the optimal width of drug assortment, compared to the duration of one episode of the disease and the price of the drug(s) used. Our analysis shows that under a wide variety of scenarios for disease prevalence and drug cost, it is optimal to simultaneously deploy multiple drugs in the population. If the drug price is high, large volume purchasing discounts are available, and disease prevalence is high, it may be optimal to use only one drug. Our model lends insights to policy makers into the socially optimal size of drug assortment for a given context.

  8. Review of potential environmental impacts of transgenic glyphosate-resistant soybean in Brazil.

    Science.gov (United States)

    Cerdeira, Antonio L; Gazziero, Dionsio L P; Duke, Stephen O; Matallo, Marcus B; Spadotto, Claudio A

    2007-01-01

    Transgenic glyphosate-resistant soybeans (GRS) have been commercialized and grown extensively in the Western Hemisphere, including Brazil. Worldwide, several studies have shown that previous and potential effects of glyphosate on contamination of soil, water, and air are minimal, compared to those caused by the herbicides that they replace when GRS are adopted. In the USA and Argentina, the advent of glyphosate-resistant soybeans resulted in a significant shift to reduced- and no-tillage practices, thereby significantly reducing environmental degradation by agriculture. Similar shifts in tillage practiced with GRS might be expected in Brazil. Transgenes encoding glyphosate resistance in soybeans are highly unlikely to be a risk to wild plant species in Brazil. Soybean is almost completely self-pollinated and is a non-native species in Brazil, without wild relatives, making introgression of transgenes from GRS virtually impossible. Probably the highest agricultural risk in adopting GRS in Brazil is related to weed resistance. Weed species in GRS fields have shifted in Brazil to those that can more successfully withstand glyphosate or to those that avoid the time of its application. These include Chamaesyce hirta (erva-de-Santa-Luzia), Commelina benghalensis (trapoeraba), Spermacoce latifolia (erva-quente), Richardia brasiliensis (poaia-branca), and Ipomoea spp. (corda-de-viola). Four weed species, Conyza bonariensis, Conyza Canadensis (buva), Lolium multiflorum (azevem), and Euphorbia heterophylla (amendoim bravo), have evolved resistance to glyphosate in GRS in Brazil and have great potential to become problems.

  9. No impact on P-gp level in radio-resistant Mcf-7 cells

    International Nuclear Information System (INIS)

    Madhu, L.N.; Rao, Shama; Sarojini, B.K.

    2016-01-01

    Cancer has become the leading cause of human death worldwide. One possible cause for therapeutic failure is that residual tumor cells are reminiscent of stem cells, which ultimately give rise to secondary tumors or distant metastasis. The property of resistance to radiation therapy or chemotherapy might be the major clinical criterion to characterize 'cancer stem cells (CSCs)'. In the process of radiotherapy, the radiosensitive cancer will become a radioresistant one. Such radio-resistance cells might also show the characters of multi drug resistance (MRD) properties which may affect the chemotherapy process. The present study was carried out to know the expression level of P-gp, a MRD protein in radioresistance breast cancer cells. The study conducted by exposing the MCF-7 cells to 4Gy of gamma radiation

  10. Determine the Impact of Novel BRCA1 Translation Start Sites on Therapy Resistance in Ovarian Cancer

    Science.gov (United States)

    2017-09-01

    Award Number: W81XWH-15-1-0197 TITLE: PRINCIPAL INVESTIGATOR: Neil Johnson, Ph.D. CONTRACTING ORGANIZATION: Institute for Cancer Research...Therapy Resistance in Ovarian Cancer The views, opinions and/or findings contained in this report are those of the author(s) and should not be...Start Sites on Therapy 5b. GRANT NUMBER Resistance in Ovarian Cancer W81XWH-15-1-0197 5c. PROGRAM ELEMENT NUMBER 6. AUTHOR(S) 5d. PROJECT NUMBER Neil

  11. Tensile strength and impact resistance properties of materials used in prosthetic check sockets, copolymer sockets, and definitive laminated sockets.

    Science.gov (United States)

    Gerschutz, Maria J; Haynes, Michael L; Nixon, Derek M; Colvin, James M

    2011-01-01

    Prosthetic sockets serve as the interface between people with amputations and their prostheses. Although most materials used to make prosthetic sockets have been used for many years, knowledge of these materials' properties is limited, especially after they are subjected to fabrication processes. This study evaluated tensile and impact properties of the current state-of-the-art materials used to fabricate prosthetic check sockets, copolymer sockets, and definitive laminated sockets. Thermolyn Rigid and Orfitrans Stiff check socket materials produced significantly lower tensile strength and impact resistance than polyethylene terephthalate glycol (PETG). Copolymer socket materials exhibited greater resistance to impact forces than the check socket materials but lower tensile strengths than PETG. The heated molding processes, for the check socket and copolymer materials, reduced both tensile strength and elongation at break. Definitive laminated sockets were sorted according to fabrication techniques. Nyglass material had significantly higher elongation, indicating a more ductile material than carbon-based laminations. Carbon sockets with pigmented resin had higher tensile strength and modulus at break than nonpigmented carbon sockets. Elongation at yield and elongation at break were similar for both types of carbon-based laminations. The material properties determined in this study provide a foundation for understanding and improving the quality of prosthetic sockets using current fabrication materials and a basis for evaluating future technologies.

  12. Exercise and Prebiotics Produce Stress Resistance: Converging Impacts on Stress-Protective and Butyrate-Producing Gut Bacteria.

    Science.gov (United States)

    Mika, A; Rumian, N; Loughridge, A B; Fleshner, M

    2016-01-01

    The gut microbial ecosystem can mediate the negative health impacts of stress on the host. Stressor-induced disruptions in microbial ecology (dysbiosis) can lead to maladaptive health effects, while certain probiotic organisms and their metabolites can protect against these negative impacts. Prebiotic diets and exercise are feasible and cost-effective strategies that can increase stress-protective bacteria and produce resistance against the detrimental behavioral and neurobiological impacts of stress. The goal of this review is to describe research demonstrating that both prebiotic diets and exercise produce adaptations in gut ecology and the brain that arm the organism against inescapable stress-induced learned helplessness. The results of this research support the novel hypothesis that some of the stress-protective effects of prebiotics and exercise are due to increases in stress-protective gut microbial species and their metabolites. In addition, new evidence also suggests that prebiotic diet or exercise interventions are most effective if given early in life (juvenile-adolescence) when both the gut microbial ecosystem and the brain are plastic. Based on our new understanding of the mechanistic convergence of these interventions, it is feasible to propose that in adults, both interventions delivered in combination may elevate their efficacy to promote a stress-resistant phenotype. © 2016 Elsevier Inc. All rights reserved.

  13. Materials, Manufacturing, and Test Development of a Composite Fan Blade Leading Edge Subcomponent for Improved Impact Resistance

    Science.gov (United States)

    Miller, Sandi G.; Handschuh, Katherine; Sinnott, Matthew J.; Kohlman, Lee W.; Roberts, Gary D.; Martin, Richard E.; Ruggeri, Charles R.; Pereira, J. Michael

    2015-01-01

    Application of polymer matrix composite materials for jet engine fan blades is becoming attractive as an alternative to metallic blades; particularly for large engines where significant weight savings are recognized on moving to a composite structure. However, the weight benefit of the composite is offset by a reduction of aerodynamic efficiency resulting from a necessary increase in blade thickness; relative to the titanium blades. Blade dimensions are largely driven by resistance to damage on bird strike. Further development of the composite material is necessary to allow composite blade designs to approximate the dimensions of a metallic fan blade. The reduction in thickness over the state of the art composite blades is expected to translate into structural weight reduction, improved aerodynamic efficiency, and therefore reduced fuel consumption. This paper presents test article design, subcomponent blade leading edge fabrication, test method development, and initial results from ballistic impact of a gelatin projectile on the leading edge of composite fan blades. The simplified test article geometry was developed to realistically simulate a blade leading edge while decreasing fabrication complexity. Impact data is presented on baseline composite blades and toughened blades; where a considerable improvement to impact resistance was recorded.

  14. Determination of the influence of C24 D/(2R)- and L/(2S)-isomers of the CER[AP] on the lamellar structure of stratum corneum model systems using neutron diffraction.

    Science.gov (United States)

    Schmitt, Thomas; Lange, Stefan; Sonnenberger, Stefan; Dobner, Bodo; Demé, Bruno; Neubert, Reinhard H H; Gooris, Gert; Bouwstra, Joke A

    2017-12-01

    This study was able to investigate the different influence of the d- and l-ceramide [AP] on the lamellar as well as molecular nanostructure of stratum corneum simulating lipid model mixtures. In this case, neutron diffraction together with specifically deuterated ceramide was used as an effective tool to investigate the lamellar and the molecular nanostructure of the mixtures. It could clearly be demonstrated, that both isomers show distinctly different characteristics, even though the variation between both is only a single differently arranged OH-group. The l-ceramide [AP] promotes a crystalline like phase behaviour even if mixed with ceramide [NP], cholesterol and free fatty acids. The d-ceramide [AP] only shows crystalline-like features if mixed only with cholesterol and free fatty acids but adopts a native-like behaviour if additionally mixed with ceramide [NP]. It furthermore demonstrates that the l-ceramide [AP] should not be used for any applications concerning ceramide substitution. It could however possibly serve its own purpose, if this crystalline like behaviour has some kind of positive influence on the SC or can be utilized for any practical applications. The results obtained in this study demonstrate that the diastereomers of ceramide [AP] are an attractive target for further research because their influence on the lamellar as well as the nanostructure is exceptionally strong. Additionally, the results furthermore show a very strong influence on hydration of the model membrane. With these properties, the d-ceramide [AP] could be effectively used to simulate native like behaviour even in very simple mixtures and could also have a strong impact on the native stratum corneum as well as high relevance for dermal ceramide substitution. The unnatural l-ceramide [AP] on the other hand should be investigated further, to assess its applicability. Copyright © 2017 Elsevier B.V. All rights reserved.

  15. Fabrication and characterization of large size {sup 6}LiF/CaF{sub 2}:Eu eutectic composites with the ordered lamellar structure

    Energy Technology Data Exchange (ETDEWEB)

    Kawaguchi, Noriaki [Tokuyama Corporation, 3-3-1 Shibuya, Shibuya-ku, Tokyo 150-8383 (Japan); Fukuda, Kentaro, E-mail: ken-fukuda@tokuyama.co.jp [Tokuyama Corporation, 3-3-1 Shibuya, Shibuya-ku, Tokyo 150-8383 (Japan); Yanagida, Takayuki; Fujimoto, Yutaka; Yokota, Yuui [Institute of Multidisciplinary Research for Advanced Materials, Tohoku University, 2-1-1 Katahira, Aoba-ku, Sendai, Miyagi 980-8577 (Japan); Suyama, Toshihisa [Tokuyama Corporation, 3-3-1 Shibuya, Shibuya-ku, Tokyo 150-8383 (Japan); Watanabe, Kenichi; Yamazaki, Atsushi [Nagoya University, Furo-cho, Chikusa-ku, Nagoya 464-8603 (Japan); Yoshikawa, Akira [Institute of Multidisciplinary Research for Advanced Materials, Tohoku University, 2-1-1 Katahira, Aoba-ku, Sendai, Miyagi 980-8577 (Japan); New Industry Creation Hatchery Center, Tohoku University, 6-6-10 Aoba, Aramaki, Aoba-ku, Sendai 980-8579 (Japan)

    2011-10-01

    As alternative candidates for the {sup 3}He neutron detectors, {sup 6}LiF/CaF{sub 2}:Eu eutectic composites were fabricated and their scintillation properties were evaluated. Large size LiF/CaF{sub 2}:Eu eutectic composites of 58 mm diameter and 50 mm thickness were produced by Bridgman method. The composites had a finely ordered lamellar structure along the solidification direction. The lamellar structure was controlled by the direction and the rate of solidification, and it was optimized to improve the scintillation properties. Better results were achieved when thinner lamellar layers were aligned along the scintillation light path.

  16. Fabrication and characterization of large size 6LiF/CaF2:Eu eutectic composites with the ordered lamellar structure

    International Nuclear Information System (INIS)

    Kawaguchi, Noriaki; Fukuda, Kentaro; Yanagida, Takayuki; Fujimoto, Yutaka; Yokota, Yuui; Suyama, Toshihisa; Watanabe, Kenichi; Yamazaki, Atsushi; Yoshikawa, Akira

    2011-01-01

    As alternative candidates for the 3 He neutron detectors, 6 LiF/CaF 2 :Eu eutectic composites were fabricated and their scintillation properties were evaluated. Large size LiF/CaF 2 :Eu eutectic composites of 58 mm diameter and 50 mm thickness were produced by Bridgman method. The composites had a finely ordered lamellar structure along the solidification direction. The lamellar structure was controlled by the direction and the rate of solidification, and it was optimized to improve the scintillation properties. Better results were achieved when thinner lamellar layers were aligned along the scintillation light path.

  17. Impact of Bariatric Surgery on Heme Oxygenase-1, Inflammation, and Insulin Resistance in Morbid Obesity with Obstructive Sleep Apnea.

    Science.gov (United States)

    Tirado, Raquel; Masdeu, Maria José; Vigil, Laura; Rigla, Mercedes; Luna, Alexis; Rebasa, Pere; Pareja, Rocío; Hurtado, Marta; Caixàs, Assumpta

    2017-09-01

    Morbid obesity and obstructive sleep apnea (OSA) interact at an inflammatory level. Bariatric surgery reduces inflammatory responses associated with obesity. Heme oxygenase-1 (HO-1) is an enzyme with anti-inflammatory properties, which might be increased in morbid obesity or OSA. We studied morbidly obese patients with OSA to determine: (a) HO-1 plasma concentrations according to OSA severity and their relationship with insulin resistance and inflammation and (b) the impact of bariatric surgery on HO-1 and parameters of insulin resistance and inflammation. We analyzed the homeostasis model insulin resistance index (HOMA) and plasma concentrations of HO-1, tumor necrosis factor alpha, interleukin-6, interleukin-1-beta, C reactive protein (CRP), and adiponectin according to polysomnography findings in 66 morbidly obese patients before bariatric surgery and 12 months after surgery. Before surgery, HO-1 plasma concentrations were similar in three groups of patients with mild, moderate, and severe OSA, and correlated with HOMA (r = 0.27, p = 0.02). Twelve months after surgery, low-grade inflammation and insulin resistance had decreased in all the groups, but HO-1 plasma concentration had decreased only in the severe OSA group (p = 0.02). In this group, the reduction in HO-1 correlated with a reduction in CRP concentrations (r = 0.43, p = 0.04) and with improved HOMA score (r = 0.37, p = 0.03). Bariatric surgery decreases HO-1 concentrations in morbid obesity with severe OSA, and this decrease is associated with decreases in insulin resistance and in inflammation.

  18. Development and transmission of antimicrobial resistance among Gram-negative bacteria in animals and their public health impact.

    Science.gov (United States)

    Mukerji, Shewli; O'Dea, Mark; Barton, Mary; Kirkwood, Roy; Lee, Terence; Abraham, Sam

    2017-02-28

    Gram-negative bacteria are known to cause severe infections in both humans and animals. Antimicrobial resistance (AMR) in Gram-negative bacteria is a major challenge in the treatment of clinical infections globally due to the propensity of these organisms to rapidly develop resistance against antimicrobials in use. In addition, Gram-negative bacteria possess highly efficient mechanisms through which the AMR can be disseminated between pathogenic and commensal bacteria of the same or different species. These unique traits of Gram-negative bacteria have resulted in evolution of Gram-negative bacterial strains demonstrating resistance to multiple classes of antimicrobials. The evergrowing resistance issue has not only resulted in limitation of treatment options but also led to increased treatment costs and mortality rates in humans and animals. With few or no new antimicrobials in production to combat severe life-threatening infections, AMR has been described as the one of the most severe, long-term threats to human health. Aside from overuse and misuse of antimicrobials in humans, another factor that has exacerbated the emergence of AMR in Gram-negative bacteria is the veterinary use of antimicrobials that belong to the same classes considered to be critically important for treating serious life-threatening infections in humans. Despite the fact that development of AMR dates back to before the introduction of antimicrobials, the recent surge in the resistance towards all available critically important antimicrobials has emerged as a major public health issue. This review thus focuses on discussing the development, transmission and public health impact of AMR in Gram-negative bacteria in animals. © 2017 The Author(s). Published by Portland Press Limited on behalf of the Biochemical Society.

  19. Antimicrobial-resistant Gram-negative bacteria in febrile neutropenic patients with cancer: current epidemiology and clinical impact.

    Science.gov (United States)

    Trecarichi, Enrico M; Tumbarello, Mario

    2014-04-01

    In the recent years, several studies involving cancer patients have demonstrated a clear trend in the epidemiology of bacterial infections showing a shift in the prevalence from Gram-positive to Gram-negative bacteria and the extensive emergence of antimicrobial-resistant strains among Gram-negatives isolated from the blood. The aim of this systematic review was to examine the recent trends in epidemiology and antimicrobial resistance in Gram-negatives recovered from neutropenic cancer patients, with particular emphasis on the impact of antimicrobial resistance on the clinical outcome of severe infections caused by such microorganisms. Overall, from 2007 to date, the rate of Gram-negative bacteria recovery ranged from 24.7 to 75.8% (mean 51.3%) in cancer patient cohorts. Escherichia coli represented the most common species (mean frequency of isolation 32.1%) among the Gram-negatives, followed by Pseudomonas aeruginosa (mean frequency of isolation 20.1%). An increasing frequency of Acinetobacter spp. and Stenotrophomonas maltophilia was also reported. Increased rates of multidrug-resistant Gram-negative strains have been highlighted among Enterobacteriaceae and nonfermenting Gram-negative rods, despite discontinuation of fluoroquinolone-based antibacterial prophylaxis for neutropenic patients. In addition, antimicrobial resistance and/or the inadequacy of empirical antibiotic treatment have been frequently linked to a worse outcome in cancer patients with bloodstream infections caused by Gram-negative isolates. Sound knowledge of the local distribution of pathogens and their susceptibility patterns and prompt initiation of effective antimicrobial treatment for severe infections caused by Gram-negative bacteria are essential in cancer patients.

  20. Stepwise impact of urban wastewater treatment on the bacterial community structure, antibiotic contents, and prevalence of antimicrobial resistance.

    Science.gov (United States)

    Wang, Mingyu; Shen, Weitao; Yan, Lei; Wang, Xin-Hua; Xu, Hai

    2017-12-01

    Bacteria, antibiotics, and antibiotic resistance determinants are key biological pollutants in aquatic systems, which may lead to bacterial infections or prevent the cure of bacterial infections. In this study, we investigated how the wastewater treatment processes in wastewater treatment plants (WWTPs) affect these pollutants. We found that the addition of oxygen, polyaluminum chloride (PAC), and polyacrylamide (PAM), as well as ultraviolet (UV) disinfection could significantly alter the bacterial communities in the water samples. An overall shift from Gram-negative bacteria to Gram-positive bacteria was observed throughout the wastewater treatment steps, but the overall bacterial biomass was not reduced in the WWTP samples. The antibiotic contents were reduced by the WWTP, but the size of the reduction and the step when antibiotic degradation occurred differed among antibiotics. Ciprofloxacin, sulfamethoxazole and erythromycin could be removed completely by the WWTP, whereas cephalexin could not. The removal of ciprofloxacin, cephalexin, and erythromycin occurred in the anaerobic digester, whereas the removal of sulfamethoxazole occurred after the addition of PAC and PAM, and UV disinfection. Antimicrobial resistance determinants were highly prevalent in all of the samples analyzed, except for those targeting vancomycin and colistin. However, wastewater treatment was ineffective at removing antimicrobial resistance determinants from wastewater. There were strong correlations between intI1, floR, sul1, and ermB, thereby suggesting the importance of integrons for the spread of these antimicrobial resistance genes. In general, this study comprised a stepwise analysis of the impact of WWTPs on three biological pollutants: bacteria, antibiotics, and antimicrobial resistance determinants, where our results suggest that the design of WWTPs needs to be improved to address the threats due to these pollutants. Copyright © 2017 Elsevier Ltd. All rights reserved.

  1. Impacts of post-metallization annealing on the memory performance of Ti/HfO2-based resistive memory

    International Nuclear Information System (INIS)

    Chen, Pang-Shiu; Chen, Yu-Sheng; Lee, Heng-Yuan

    2013-01-01

    Impacts of post-metallization annealing (PMA) on bipolar resistance switching of Ti/HfO x stacked films were investigated. A Ti capping film as a scavenging layer with assistance of PMA is used to tune the dielectric strength of the 10-nm-thick HfO x layer. The polycrystalline microstructure of 10-nm-thick HfO x seems immune to the temperature of PMA in this work. The initial resistance and forming voltage in the Ti/HfO x devices mitigate as the increment of the annealing temperature. With enough annealing temperature (>450 °C), the device shows a good on/off ratio, high temperature operation ability and robust endurance (>10 6 cycles). Through the reaction between Ti and HfO x at 500 °C, the abundant oxygen ions are depleted from the insulator and the left charge-defects building conductive percolative paths in the dielectric layer. The operation-polarity independence of the form-free HfO x device in initial state is demonstrated. The forming-free memory with initial low resistance of 800 Ω at 0.1 V can be operated with stable bipolar resistance switching via initially positive or negative voltage sweep. The formless device with 10 nm thick HfO x also exhibits excellent nonvolatile memory performances, including enough on/off ratio, improved HRS uniformity and good high temperature retention (3 × 10 4 s at 200 °C). The results of this work suggest that the PMA temperature will affect the memory window and cycling reliability of the Ti/HfO x -based resistive memory. Optimum temperature (450 °C) will improve the memory performance of the Ti/HfO x stacked layer. (paper)

  2. Conception de couches minces tribologiques pour augmenter la resistance a l'erosion par impacts de particules

    Science.gov (United States)

    Hassani, Salim

    Solid particle erosion (SPE) is a serious problem in gas turbines, pumps, heat exchangers and piping systems in aircrafts and other applications. Sand and dust ingested by gas turbine engines may cause major damage to compressor gas path components, leading to severe performance degradation, excessive wear, increased maintenance and eventually premature failure of the engines. For the compressor section of aerospace gas turbine engines, in addition to the complex filtration systems used to screen the eroding particles, tribological coatings, such as TiN, Ti/TiN, CrN and TiAlN are used as protective layers of the base titanium alloy (Ti-6Al-4V) or stainless steels (17-4PH and 410) materials (substrates) against erosive wear. Such coatings can extend the service life of the components, but their performance still remains insufficient due to the complexity of failure mechanisms occurring upon SPE. Therefore, aerospace industry seeks to develop high performance coatings for the protection against erosion by solid particles. However, with many new materials used and tested for different applications and operation under different conditions, conducting experiments for each one of them is becoming increasingly difficult. Presently, coating selection criteria to prevent damage caused by erosion are based on trial and error experiments instead of prior design of coating's architecture and properties to maximize erosion resistance. The present work focuses on the use of advanced finite element (FE) methods to design erosion resistant (ER) coatings. It contributes a new methodology based on the analysis of transient stresses generated by a single impact event. Identification of coating architectures in which such stresses are minimized and crack propagation suppressed, allows one to predict and possibly minimize the erosion rate. Erosion mechanisms and governing erosion parameters are investigated to predict the coating behavior in simulated erosion conditions. The

  3. Impact of the nanostructuration on the corrosion resistance and hardness of irradiated 316 austenitic stainless steels

    Science.gov (United States)

    Hug, E.; Prasath Babu, R.; Monnet, I.; Etienne, A.; Moisy, F.; Pralong, V.; Enikeev, N.; Abramova, M.; Sauvage, X.; Radiguet, B.

    2017-01-01

    The influence of grain size and irradiation defects on the mechanical behavior and the corrosion resistance of a 316 stainless steel have been investigated. Nanostructured samples were obtained by severe plastic deformation using high pressure torsion. Both coarse grain and nanostructured samples were irradiated with 10 MeV 56Fe5+ ions. Microstructures were characterized using transmission electron microscopy and atom probe tomography. Surface mechanical properties were evaluated thanks to hardness measurements and the corrosion resistance was studied in chloride environment. Nanostructuration by high pressure torsion followed by annealing leads to enrichment in chromium at grain boundaries. However, irradiation of nanostructured samples implies a chromium depletion of the same order than depicted in coarse grain specimens but without metallurgical damage like segregated dislocation loops or clusters. Potentiodynamic polarization tests highlight a definitive deterioration of the corrosion resistance of coarse grain steel with irradiation. Downsizing the grain to a few hundred of nanometers enhances the corrosion resistance of irradiated samples, despite the fact that the hardness of nanocrystalline austenitic steel is only weakly affected by irradiation. These new experimental results are discussed in the basis of couplings between mechanical and electrical properties of the passivated layer thanks to impedance spectroscopy measurements, hardness properties of the surfaces and local microstructure evolutions.

  4. Resistant starch and energy balance: impact on weight loss and maintenance.

    Science.gov (United States)

    Higgins, Janine A

    2014-01-01

    The obesity epidemic has prompted researchers to find effective weight-loss and maintenance tools. Weight loss and subsequent maintenance are reliant on energy balance--the net difference between energy intake and energy expenditure. Negative energy balance, lower intake than expenditure, results in weight loss whereas positive energy balance, greater intake than expenditure, results in weight gain. Resistant starch has many attributes, which could promote weight loss and/or maintenance including reduced postprandial insulinemia, increased release of gut satiety peptides, increased fat oxidation, lower fat storage in adipocytes, and preservation of lean body mass. Retention of lean body mass during weight loss or maintenance would prevent the decrease in basal metabolic rate and, therefore, the decrease in total energy expenditure, that occurs with weight loss. In addition, the fiber-like properties of resistant starch may increase the thermic effect of food, thereby increasing total energy expenditure. Due to its ability to increase fat oxidation and reduce fat storage in adipocytes, resistant starch has recently been promoted in the popular press as a "weight loss wonder food". This review focuses on data describing the effects of resistant starch on body weight, energy intake, energy expenditure, and body composition to determine if there is sufficient evidence to warrant these claims.

  5. The Epidemiology of Carbapenem-Resistant Enterobacteriaceae: The Impact and Evolution of a Global Menace.

    Science.gov (United States)

    Logan, Latania K; Weinstein, Robert A

    2017-02-15

    Carbapenem-resistant Enterobacteriaceae (CRE) are a serious public health threat. Infections due to these organisms are associated with significant morbidity and mortality. Mechanisms of drug resistance in gram-negative bacteria (GNB) are numerous; β-lactamase genes carried on mobile genetic elements are a key mechanism for the rapid spread of antibiotic-resistant GNB worldwide. Transmissible carbapenem-resistance in Enterobacteriaceae has been recognized for the last 2 decades, but global dissemination of carbapenemase-producing Enterobacteriaceae (CPE) is a more recent problem that, once initiated, has been occurring at an alarming pace. In this article, we discuss the evolution of CRE, with a focus on the epidemiology of the CPE pandemic; review risk factors for colonization and infection with the most common transmissible CPE worldwide, Klebsiella pneumoniae carbapenemase-producing K. pneumoniae; and present strategies used to halt the striking spread of these deadly pathogens. © The Author 2017. Published by Oxford University Press for the Infectious Diseases Society of America. All rights reserved. For permissions, e-mail journals.permissions@oup.com.

  6. Improvement of wear-resistance of solid lubricants by ionic impact

    DEFF Research Database (Denmark)

    1993-01-01

    A solid lubricating material, preferentially as a coating, deposited on a substrate surface by conventional technique such as dipping in a suspension, painting, or spraying is bombarded with energetic ions fron an ion accelerator or in a plasma discharge. By such a treatment the wear resistance o...

  7. Impact of "raised without antibiotics" beef cattle production practices on occurrences of antimicrobial resistance

    Science.gov (United States)

    The specific antimicrobial resistance (AMR) decreases that can be expected from reducing antimicrobial (AM) use in U.S. beef production have not been defined. To address this data gap, feces were recovered from 36 lots of “raised without antibiotics” (RWA) and 36 lots of “conventional” (CONV) beef c...

  8. Impact of raised without antibiotics practices on occurrences of antimicrobial resistance

    Science.gov (United States)

    Background: The increasing occurrence of antimicrobial-resistant human infections has been attributed to the use of antimicrobials in a variety of applications including food-animal production. "Raised without antibiotics" (RWA) meat production has been offered as a practice to reduce antimicrobial-...

  9. The impact of child-resistant containers on the incidence of paraffin ...

    African Journals Online (AJOL)

    The commonest cause of accidental poisoning in the South African black paediatric population is paraffin ingestion. In this intervention study a specifically designed child-resistant container (CRG) was introduced to evaluate whether its use would decrease the incidence ofparaffin ingestion. CRCs were distributed to 20 000 ...

  10. The socioeconomic impact of multidrug resistant tuberculosis on patients: results from Ethiopia, Indonesia and Kazakhstan

    NARCIS (Netherlands)

    van den Hof, Susan; Collins, David; Hafidz, Firdaus; Beyene, Demissew; Tursynbayeva, Aigul; Tiemersma, Edine

    2016-01-01

    One of the main goals of the post-2015 global tuberculosis (TB) strategy is that no families affected by TB face catastrophic costs. We revised an existing TB patient cost measurement tool to specifically also measure multi-drug resistant (MDR) TB patients' costs and applied it in Ethiopia,

  11. Lamellar-crossing-structured Ni(OH){sub 2}/CNTs/Ni(OH){sub 2} nanocomposite for electrochemical supercapacitor materials

    Energy Technology Data Exchange (ETDEWEB)

    Wu, Qingnan [Department of Chemistry, State Key Laboratory of Pollution Control and Resource Reuse, Tongji University, Shanghai 200092 (China); Wen, Ming, E-mail: m_wen@tongji.edu.cn [Department of Chemistry, State Key Laboratory of Pollution Control and Resource Reuse, Tongji University, Shanghai 200092 (China); Shanghai Key Lab of Chemical Assessment and Sustainability, Tongji University, Shanghai 200092 (China); Chen, Shipei [Department of Chemistry, State Key Laboratory of Pollution Control and Resource Reuse, Tongji University, Shanghai 200092 (China); Wu, Qingsheng [Department of Chemistry, State Key Laboratory of Pollution Control and Resource Reuse, Tongji University, Shanghai 200092 (China); Shanghai Key Lab of Chemical Assessment and Sustainability, Tongji University, Shanghai 200092 (China)

    2015-10-15

    Ni(OH){sub 2}/CNTs/Ni(OH){sub 2} lamellar-crossing-nanostructure with a single lamellar spacing of ∼5 nm was effectively constructed through two-phase-interface reaction process followed by the CNTs crossed among the lamellar-nanostructured Ni(OH){sub 2}. The resultant nanocomposite can offer large active surface areas and short diffusion paths for electrons and ions, and is investigated as a potential pseudocapacitor electrode material for electrochemical energy storage applications. Electrochemical data demonstrate that the as-prepared nanocomposite exhibits a high specific capacitance of ∼1600 F g{sup −1} at the scan rate of 1 mV s{sup −1} in 6 M KOH solution at normal pressure and temperature, which is great higher than Ni(OH){sub 2} (∼1200 F g{sup −1}). Furthermore, Ni(OH){sub 2}/CNTs/Ni(OH){sub 2} nanocomposite shows a higher energy density (∼125 Wh kg{sup −1}, 2 A g{sup −1}) and has a slightly decrease of 5% in specific capacitance after 1000 continuous charge/discharge cycles. - Graphical abstract: As-constructed Ni(OH){sub 2}/CNTs/Ni(OH){sub 2} lamellar-crossing-nanostructure exhibits remarkable enhancement in electrochemical stability and high specific capacity of ∼1600 F g{sup −1} at a scan rate of 1 mV s{sup −1}, suggesting promising potential for supercapacitor applications. - Highlights: • New designed lamellar-crossing-structured Ni(OH){sub 2}/CNTs/Ni(OH){sub 2} nanocomposites have been firstly reported in this work. • Ni(OH){sub 2}/CNTs/Ni(OH){sub 2} lamellar-crossing-nanostructures show firm nanostructure and excellent electrochemical stability. • Ni(OH){sub 2}/CNTs/Ni(OH){sub 2} nanocomposites exhibit excellent specific capacitance. • Ni(OH){sub 2}/CNTs/Ni(OH){sub 2} nanocomposites have the potential application in electrochemical energy storage applications.

  12. The Effect of Adding Different Types of Natural Fibers on Mechanical Properties and Impact Resistance of Concrete

    OpenAIRE

    Sarmed Fadhil; Mohanad Yaseen

    2015-01-01

    The purpose of this study is to evaluate the effect of natural fibers: sisal and palm fibers on the different properties of concrete have been investigated through a number of tests. The properties investigated include compressive strength, flexural strength, splitting tensile strength and impact resistance of concrete. Sisal fiber has been used at three percentages of total mixture volume (0.6, 1.20 and 1.8%, respectively), while the palm fiber has been added in (2.5, 5.0 and 7.5%, respectiv...

  13. Impact of Fluoroquinolone Resistance Mutations on Gonococcal Fitness and In Vivo Selection for Compensatory Mutations

    Science.gov (United States)

    Kunz, Anjali N.; Begum, Afrin A.; Wu, Hong; D'Ambrozio, Jonathan A.; Robinson, James M.; Shafer, William M.; Bash, Margaret C.; Jerse, Ann E.

    2012-01-01

    Background. Quinolone-resistant Neisseria gonorrhoeae (QRNG) arise from mutations in gyrA (intermediate resistance) or gyrA and parC (resistance). Here we tested the consequence of commonly isolated gyrA91/95 and parC86 mutations on gonococcal fitness. Methods. Mutant gyrA91/95 and parC86 alleles were introduced into wild-type gonococci or an isogenic mutant that is resistant to macrolides due to an mtrR−79 mutation. Wild-type and mutant bacteria were compared for growth in vitro and in competitive murine infection. Results. In vitro growth was reduced with increasing numbers of mutations. Interestingly, the gyrA91/95 mutation conferred an in vivo fitness benefit to wild-type and mtrR−79 mutant gonococci. The gyrA91/95, parC86 mutant, in contrast, showed a slight fitness defect in vivo, and the gyrA91/95, parC86, mtrR−79 mutant was markedly less fit relative to the parent strains. A ciprofloxacin-resistant (CipR) mutant was selected during infection with the gyrA91/95, parC86, mtrR−79 mutant in which the mtrR−79 mutation was repaired and the gyrA91 mutation was altered. This in vivo–selected mutant grew as well as the wild-type strain in vitro. Conclusions. gyrA91/95 mutations may contribute to the spread of QRNG. Further acquisition of a parC86 mutation abrogates this fitness advantage; however, compensatory mutations can occur that restore in vivo fitness and maintain CipR. PMID:22492860

  14. Impact of an Environmental Cleaning Intervention on the Presence of Methicillin-Resistant Staphylococcus aureus and Vancomycin-Resistant Enterococci on Surfaces in Intensive Care Unit Rooms

    Science.gov (United States)

    Goodman, Eric R.; Platt, Richard; Bass, Richard; Onderdonk, Andrew B.; Yokoe, Deborah S.; Huang, Susan S.

    2009-01-01

    OBJECTIVES To evaluate the adequacy of discharge room cleaning and the impact of a cleaning intervention on the presence of methicillin-resistant Staphylococcus aureus (MRSA) and vancomycin-resistant enterococci (VRE) on environmental surfaces in intensive care unit (ICU) rooms. DESIGN Prospective environmental study. SETTING AND SAMPLE Convenience sample of ICU rooms in an academic hospital. METHODS AND INTERVENTION The intervention consisted of (1) a change from the use of pour bottles to bucket immersion for applying disinfectant to cleaning cloths, (2) an educational campaign, and (3) feedback regarding adequacy of discharge cleaning. Cleaning of 15 surfaces was evaluated by inspecting for removal of a preapplied mark, visible only with an ultraviolet lamp (“black light”). Six surfaces were cultured for MRSA or VRE contamination. Outcomes of mark removal and culture positivity were evaluated by χ2 testing and generalized linear mixed models, clustering by room. RESULTS The black-light mark was removed from 44% of surfaces at baseline, compared with 71% during the intervention (P <.001). The intervention increased the likelihood of removal of black-light marks after discharge cleaning (odds ratio, 4.4; P < .001), controlling for ICU type (medical vs surgical) and type of surface. The intervention reduced the likelihood of an environmental culture positive for MRSA or VRE (proportion of cultures positive, 45% at baseline vs 27% during the intervention; adjusted odds ratio, 0.4; P = .02). Broad, flat surfaces were more likely to be cleaned than were doorknobs and sink or toilet handles. CONCLUSIONS Increasing the volume of disinfectant applied to environmental surfaces, providing education for Environmental Services staff, and instituting feedback with a black-light marker improved cleaning and reduced the frequency of MRSA and VRE contamination. PMID:18624666

  15. Effect of Prior Fatigue-Stressing on the Impact Resistance of Chromium-Molybdenum Aircraft Steel

    Science.gov (United States)

    1943-03-01

    mental tests of various physical ant! rnpchanical properties. Such studies cannot be +=xp?cted to reveal what fatigue is’i but they are important for...nounced the gr~ atar th- @longe.tian during impact. ql onga- tion undpr impact was d~tsrmincd on a 2-inch gagfilpngth and is ~xpressi?d in inch-s of

  16. The estimate of permittivity of anisotropic composites with lamellar inclusions by the self-assessment method

    Directory of Open Access Journals (Sweden)

    V. S. Zarubin

    2015-01-01

    Full Text Available Composites are widely used as structural or thermal protection materials; they are used as well as functional materials in a large number of different electrical devices and as dielectrics. This composite has one of the most important characteristics the relative permittivity. It depends primarily on the dielectric properties of the inclusions and the matrix as well as the shape and volume content of the inclusions.In this paper, a mathematical model of the interaction of the electrostatic fields in an isotropic plate and in the surrounding homogeneous anisotropic medium is constructed. This model describes the dielectric properties of the composite with such inclusions. A variant of the same orientation of lamellar inclusions is considered, which leads to the special case of anisotropy of the dielectric properties of the composite that has transverse isotropy towards the direction perpendicular to the inclusions. The shape of inclusions is represented as an oblate ellipsoid of revolution (spheroid. Transformation of the differential equation describing the distribution of the electric potential transversely to isotropic medium surrounding the spheroidal inclusion, to the Laplace equation with the subsequent transition from the initial spheroid to the given ellipsoid of rotation allows us to apply the self-assessment method for the determination of the dielectric properties of the composite. This method equates the result of averaging the perturbation of the electrostatic field in the inclusions and the matrix particles towards the unperturbed fields in the environment to zero.The constructed mathematical model allows us to determine the electrostatic field disturbance in the inclusions and the matrix particles towards the unperturbed field given in the environment at a distance from the inclusions and the matrix particles, much larger than their characteristic dimensions. By averaging the perturbation of the electrostatic field in all the

  17. The evaluation of dynamic cracking resistance of chosen casting alloys in the aspect of the impact bending test

    Directory of Open Access Journals (Sweden)

    J.Sadowski

    2008-10-01

    Full Text Available The increase of quality and durability of produced casting alloys can be evaluated on the base of material tests performed on a high level. One of such modern test methods are tests of the dynamic damage process of materials and the evaluation on the base of obtained courses F(f, F(t of parameters of dynamic cracking resistance KId, JId, performed with the usage of instrumented Charpy pendulums. In the paper there was presented the evaluation of dynamic cracking resistance parameters of casting alloys such as: AK12 aluminum alloy, L20G cast steel and spheroid cast iron. The methodology of the evaluation of that parameters was described and their change as well, for the AK12 alloy with the cold work different level, L20G cast steel cooled from different temperatures in the range +20oC -60oC, and for the spheroid cast iron in different stages of treatment i.e. raw state, after normalization, spheroid annealing and graphitizing annealing.Obtained parameters of dynamic cracking resistance KId, JId of tested casting alloys enabled to define the critical value of the ad defect that can be tolerated by tested castings in different work conditions with impact loadings.

  18. High-Q operation of superconducting rf cavities: Potential impact of thermocurrents on the rf surface resistance

    Directory of Open Access Journals (Sweden)

    J.-M. Vogt

    2015-04-01

    Full Text Available For many new accelerator applications, superconducting radio frequency systems are the enabling technology. In particular for CW applications, much effort is being expended to minimize the power dissipation (surface resistance of niobium cavities. Starting in 2009, we suggested a means of reducing the residual resistance by performing a thermal cycle [O. Kugeler et al., in Proceedings of the 14th International Conference on RF Superconductivity (2009, p. 352], a procedure of warming up a cavity after initial cooldown to about 20 K and cooling it down again. In subsequent studies [J. M. Vogt, O. Kugeler, and J. Knobloch, Phys. Rev. ST Accel. Beams 16, 102002 (2013], this technique was used to manipulate the residual resistance by more than a factor of 2. It was postulated that thermocurrents during cooldown generate additional trapped magnetic flux that impacts the cavity quality factor. Here, we present a more extensive study that includes measurements of two additional passband modes and that confirms the effect. In this paper, we also discuss simulations that support the claim. While the layout of the cavity LHe tank system is cylindrically symmetric, we show that the temperature dependence of the material parameters results in a nonsymmetric current distribution. Hence a significant amount of magnetic flux can be generated at the rf surface.

  19. The Escherichia coli Cpx envelope stress response regulates genes of diverse function that impact antibiotic resistance and membrane integrity.

    Science.gov (United States)

    Raivio, Tracy L; Leblanc, Shannon K D; Price, Nancy L

    2013-06-01

    The Cpx envelope stress response mediates adaptation to stresses that cause envelope protein misfolding. Adaptation is partly conferred through increased expression of protein folding and degradation factors. The Cpx response also plays a conserved role in the regulation of virulence determinant expression and impacts antibiotic resistance. We sought to identify adaptive mechanisms that may be involved in these important functions by characterizing changes in the transcriptome of two different Escherichia coli strains when the Cpx response is induced. We show that, while there is considerable strain- and condition-specific variability in the Cpx response, the regulon is enriched for proteins and functions that are inner membrane associated under all conditions. Genes that were changed by Cpx pathway induction under all conditions were involved in a number of cellular functions and included several intergenic regions, suggesting that posttranscriptional regulation is important during Cpx-mediated adaptation. Some Cpx-regulated genes are centrally involved in energetics and play a role in antibiotic resistance. We show that a number of small, uncharacterized envelope proteins are Cpx regulated and at least two of these affect phenotypes associated with membrane integrity. Altogether, our work suggests new mechanisms of Cpx-mediated envelope stress adaptation and antibiotic resistance.

  20. Modulation of Steroidogenic Pathway in Rat Granulosa Cells with Subclinical Cd Exposure and Insulin Resistance: An Impact on Female Fertility

    Directory of Open Access Journals (Sweden)

    Muskaan Belani

    2014-01-01

    Full Text Available Changes in lifestyle lead to insulin resistance (IR in females ultimately predisposing them towards infertility. In addition, cadmium (Cd, an environmental endocrine disruptor, is reported for detrimental effects on granulosa cells, thus leading to ovarian dysfunction. A combination of these factors, lifestyle and environment, seems to play a role in etiology of idiopathic infertility that accounts for 50% amongst the total infertility cases. To address this issue, we made an attempt to investigate the extent of Cd impact on insulin-resistant (IR granulosa cells. We exposed adult female Charles Foster rats to dexamethasone and confirmed IR condition by fasting insulin resistance index (FIRI. On treatment of IR rats with Cd, the preliminary studies demonstrated prolonged estrous cyclicity, decrease in serum estradiol concentrations, abnormal histology of ovary, and increased granulosa cell death. Further gene and protein expression studies of steroidogenic acute regulatory (StAR protein, 17β-hydroxysteroid dehydrogenase (17β-HSD, and cytochrome P450 aromatase (CYP19A1 were performed. Protein expression studies demonstrated significant decrease in treated groups when compared with control. Study revealed that, in spite of the molecular parameters being affected at varied level, overall ovarian physiology is maximally affected in IR and Cd coexposed group, thus mimicking the condition similar to those prevailing in infertile females.

  1. Antibiotic resistance genes in surface water of eutrophic urban lakes are related to heavy metals, antibiotics, lake morphology and anthropic impact.

    Science.gov (United States)

    Yang, Yuyi; Xu, Chen; Cao, Xinhua; Lin, Hui; Wang, Jun

    2017-08-01

    Urban lakes are impacted by heavy human activities and represent potential reservoirs for antibiotic resistance genes. In this study, six urban lakes in Wuhan, central China were selected to analyze the distribution of sulfonamide resistance (sul) genes, tetracycline resistance (tet) genes and quinolone resistance (qnr) genes and their relationship with heavy metals, antibiotics, lake morphology and anthropic impact. sul1 and sul2 were detected in all six lakes and dominated the types of antibiotic resistance genes, which accounted for 86.28-97.79% of the total antibiotic resistance gene abundance. For eight tested tet genes, antibiotic efflux pumps (tetA, tetB, tetC, and tetG) genes were all observed in six lakes and had higher relative abundance than ribosomal protection protein genes (tetM and tetQ). For 4 plasmid mediated quinolone resistance genes, only qnrD is found in all six lakes. The class I integron (intI1) is also found to be a very important media for antibiotic resistance gene propagation in urban lakes. The results of redundancy analysis and variation partitioning analysis showed that antibiotic and co-selection with heavy metals were the major factors driving the propagation of antibiotic resistance genes in six urban lakes. The heavily eutrophic Nanhu Lake and Shahu Lake which located in a high density building area with heavy human activities had the higher relative abundance of total antibiotic resistance genes. Our study could provide a useful reference for antibiotic resistance gene abundance in urban lakes with high anthropic impact.

  2. Impact of Aerobic and Resistance Exercise on the Health of HIV-Infected Persons

    Science.gov (United States)

    Hand, Gregory A.; Lyerly, G. William; Jaggers, Jason R.; Dudgeon, Wesley D.

    2010-01-01

    Individuals infected with HIV experience numerous comorbidities caused by the disease progression and medications, lack of (or inability to perform) physical activity, malnutrition, or a combination of these causes. Common symptoms include loss of muscle mass, fatigue, lypodystrophy, lypoatrophy, and decreases in strength, functional capacity, and overall quality of life. Studies have shown that exercise is a potential treatment of many of these symptoms. Research suggests that exercise may produce beneficial physiological changes in the HIV-infected population such as improved body composition and increases in both strength and endurance. In addition, psychological conditions such as depression and anxiety have been shown to be positively affected by exercise. The purpose of this review is to examine the literature regarding effects of aerobic, resistance, and combined aerobic and resistance exercise training on HIV-infected individuals. PMID:20508736

  3. Can resistance training impact MRI outcomes in relapsing-remitting multiple sclerosis?

    DEFF Research Database (Denmark)

    Kjølhede, Tue; Siemonsen, Susanne; Wenzel, Damian

    2017-01-01

    BACKGROUND: Multiple sclerosis (MS) is characterised by accelerated brain atrophy, which relates to disease progression. Previous research shows that progressive resistance training (PRT) can counteract brain atrophy in other populations. OBJECTIVE: To evaluate the effects of PRT by magnetic...... lifestyle followed by PRT). Assessments included disability measures and MRI (lesion load, global brain volume, percentage brain volume change (PBVC) and cortical thickness). RESULTS: While the MS Functional Composite score improved, Expanded Disability Status Scale, lesion load and global brain volumes did...

  4. Impact of Air Entraining Method on the Resistance of Concrete to Internal Cracking

    Science.gov (United States)

    Wawrzeńczyk, Jerzy; Molendowska, Agnieszka

    2017-10-01

    This paper presents the test results of air entrained concrete mixtures made at a constant W/C ratio of 0.44. Three different air entraining agents were used: polymer microspheres, glass microspheres and a conventional air entraining admixture. The aim of this study was to compare the effectiveness of the air entraining methods. Concrete mixture tests were performed for consistency (slump test), density and, in the case of AEA series, air content by pressure method. Hardened concrete tests were performed for compressive strength, water absorption, resistance to chloride ingress, and freeze-thaw durability - resistance to internal cracking tests were conducted in accordance with PN-88/B-06250 on cube specimens and with the modified ASTM C666 A test method on beam specimens; porosity characteristics (A, A300, \\bar L) were determined to PN-EN 480-11:1998. No significant mass and length changes were recorded for the concrete air entrained with the conventional methods or with polymer microspheres. The results indicate that polymer microspheres are a very good alternative to traditional air entraining methods for concrete, providing effective air entrainment and protection from freezing and thawing. The glass microsphere-based concretes showed insufficient freeze-thaw resistance. The test results indicate that both the conventional methods (AEA) and the air entrainment by polymer microspheres are effective air entraining methods. It has to be noted that in the case of the use of polymer microspheres, a comparable value of \\bar L and a very good freeze-thaw resistance can be achieved at a noticeably lower air and micropore contents and at lower strength loss.

  5. Increasing antibiotic resistance among uropathogens isolated during years 2006-2009: impact on the empirical management

    Directory of Open Access Journals (Sweden)

    Hamid Mohammad-Jafari

    2012-02-01

    Full Text Available Urinary tract infections (UTI are one of the most common infections with an increasing resistance to antimicrobial agents. PURPOSE: Empirical initial antibiotic treatment of UTI must rely on susceptible data from local studies. MATERIALS AND METHODS: Retrospective analysis of isolated bacteria from children with UTIs was performed at the university hospital during years 2006-2009. The findings were compared with data collected in a similar study carried out in 2002- 2003. RESULTS: A total of 1439 uropathogens were isolated. Escherichia coli (E.coli was the leading cause, followed by Enterobacter, and other gram negative bacilli. It was observed resistance of E.coli to ceftriaxone, cefexime, amikacin, gentamycin, and nalidixic acid; Enterobacter to cefexime; and the resistance of gram negative bacilli to gentamicin and cefexime increased significantly. The highest effective antibiotic was Imipenem, ciprofloxacin, and amikacin with 96.7%, 95% and 91% sensitivity rates , respectively, followed by ceftriaxone 77.2%, gentamicin 77%, nitrofurantoin 76.4%, nalidixic acid 74.3% and cefexime with 70%. CONCLUSION: The use of nitrofurantoin or nalidixic acid as initial empirical antibacterial therapy for cystitis seems appropriate. For cases of simple febrile UTI, the use of initial parenteral therapies with amikacin or ceftriaxone followed by an oral third generation cephalosporin also seemed appropriated, and in cases of severely ill patients or complicated UTI, imipenem as monotherapy or, a combination of Ceftriaxone with an aminoglycoside, are recommended.

  6. Impact of abiotic factors on frost resistance and cold acclimation in Salix species and clones

    Energy Technology Data Exchange (ETDEWEB)

    Fircks, H. von [Swedish Univ. of Agricultural Sciences, Uppsala (Sweden). Dept. of Short Rotation Forestry

    1996-12-31

    The effects of mineral nitrogen, photoperiod and day-night temperature on frost resistance and growth cessation in Salix species and clones are discussed. Increased nitrogen supply and imbalances between nitrogen and other elements might cause extensive frost damage in plants of Salix. Vegetation frosts below -3 deg C reduces the level of annual yield. Although Salix clones differ in resistance to freezing stress, the capacity to recover and grow after frosts are equal essential properties which affect the growth and biomass production of shoots after night frosts in June. Early autumn frosts causing freezing damage not only may delay the onset of growth cessation and cold acclimation, but also affect the winter survival of shoots. Increased nitrogen supply prior to cold acclimation postponed growth cessation and cold acclimation. Differences in nutrient status in plants cause also differences in retranslocation of mineral nutrients. Absence of damaging autumn frosts allow plants irrespective of nitrogen status to develop a frost resistance of at least - 80 deg C. 21 refs, 1 fig, 3 tabs

  7. Impact of Nickel silicide Rear Metallization on Series Resistance of Crystalline Silicon Solar Cells

    KAUST Repository

    Bahabry, Rabab R

    2018-01-11

    The Silicon-based solar cell is one of the most important enablers toward high efficiency and low-cost clean energy resource. Metallization of silicon-based solar cells typically utilizes screen printed silver-Aluminium (Ag-Al) which affects the optimal electrical performance. To date, metal silicide-based ohmic contacts are occasionally used as an alternative candidate only to the front contact grid lines in crystalline silicon (c-Si) based solar cells. In this paper, we investigate the electrical characteristics of nickel mono-silicide (NiSi)/Cu-Al ohmic contact on the rear side of c-Si solar cells. We observe a significant enhancement in the fill factor of around 6.5% for NiSi/Cu-Al rear contacts leading to increasing the efficiency by 1.2% compared to Ag-Al. This is attributed to the improvement of the parasitic resistance in which the series resistance decreased by 0.737 Ω.cm². Further, we complement experimental observation with a simulation of different contact resistance values, which manifests NiSi/Cu-Al rear contact as a promising low-cost metallization for c-Si solar cells with enhanced efficiency.

  8. Targeted inactivation of the murine Abca3 gene leads to respiratory failure in newborns with defective lamellar bodies

    International Nuclear Information System (INIS)

    Hammel, Markus; Michel, Geert; Hoefer, Christina; Klaften, Matthias; Mueller-Hoecker, Josef; Angelis, Martin Hrabe de; Holzinger, Andreas

    2007-01-01

    Mutations in the human ABCA3 gene, encoding an ABC-transporter, are associated with respiratory failure in newborns and pediatric interstitial lung disease. In order to study disease mechanisms, a transgenic mouse model with a disrupted Abca3 gene was generated by targeting embryonic stem cells. While heterozygous animals developed normally and were fertile, individuals homozygous for the altered allele (Abca3-/-) died within one hour after birth from respiratory failure, ABCA3 protein being undetectable. Abca3-/- newborns showed atelectasis of the lung in comparison to a normal gas content in unaffected or heterozygous littermates. Electron microscopy demonstrated the absence of normal lamellar bodies in type II pneumocytes. Instead, condensed structures with apparent absence of lipid content were found. We conclude that ABCA3 is required for the formation of lamellar bodies and lung surfactant function. The phenotype of respiratory failure immediately after birth corresponds to the clinical course of severe ABCA3 mutations in human newborns

  9. The Evolution of Splint Armour in Georgia and Byzantium: Lamellar and Scale Armour in the 10th-12th Centuries

    Directory of Open Access Journals (Sweden)

    Mamuka TSURTSUMIA

    2011-10-01

    Full Text Available Byzantine technology was part of the military technology that existed in vast areas of Eurasia; hence study of the armament of its neighbours is important.The purpose of the present paper is to add new data about Byzantium’s Caucasian neighbour (namely, Georgia. Besides that, it also includes certain views about the stages of the evolution and provenance of splint (scale and lamellar armour. This paper also attempts to clarify the difference between banded and linear suits of lamellar armour.There is no doubt that the Byzantine military machine exercised considerable influence on its neighbours, though an opposite phenomenon can also be noticed. The article shows that changes in armour were taking place almost simultaneously in the Byzantine Empire and the Georgian kingdoms and that some of the types of armour that were widespread in Byzantium may have originated in Georgia.

  10. Intense luminescence emission from rare-earth-doped MoO3 nanoplates and lamellar crystals for optoelectronic applications

    International Nuclear Information System (INIS)

    Vila, M; Díaz-Guerra, C; Jerez, D; Piqueras, J; Lorenz, K; Alves, E

    2014-01-01

    Strong and stable room-temperature photoluminescence (PL) emission is achieved in MoO 3 nanoplates and lamellar crystals doped with Er and Eu by ion implantation and subsequent annealing. Micro-Raman and PL spectroscopy reveal that optical activation of the rare earth ions and recovery of the original MoO 3 structure are achieved for shorter annealing treatments and for lower temperatures in nanoplates, as compared with lamellar crystals. Er seems to be more readily incorporated into optically active sites in the oxide lattice than Eu. The influence of the dimensionality of the host sample on the characteristics of the PL emission of both rare earth dopants is addressed. (paper)

  11. Non-linear impact of glutathione depletion on C. elegans life span and stress resistance

    Directory of Open Access Journals (Sweden)

    Nadine Urban

    2017-04-01

    Full Text Available The redox environment in cells and organisms is set by low-molecular mass and protein-bound thiols, with glutathione (GSH representing a major intracellular redox buffer. Subtle thiol oxidation elicits signal transduction processes and adaptive responses to cope with stressors, whereas highly oxidizing conditions may provoke cell death. We here tested how thiol depletion affects life span, stress resistance and stress signaling in the model organism Caenorhabditis elegans. Diethyl maleate (DEM, an α,β-unsaturated carbonyl compound that conjugates to GSH and other thiols, decreased C. elegans life span at a concentration of 1 mM. In contrast, low and moderate doses of DEM (10–100 µM increased mean and maximum life span and improved resistance against oxidative stress. DEM-induced life span extension was not detectable in worms deficient in either the FoxO orthologue, DAF-16, or the Nrf2 orthologue, SKN-1, pointing to a collaborative role of the two transcription factors in life span extension induced by thiol depletion. Cytoprotective target genes of DAF-16 and SKN-1 were upregulated after at least 3 days of exposure to 100 µM DEM, but not 1 mM DEM, whereas only 1 mM DEM caused upregulation of egl-1, a gene controlled by a p53-orthologue, CEP-1. In order to test whether depletion of GSH may elicit effects similar to DEM, we suppressed GSH biosynthesis in worms by attenuating γ-glutamylcysteine synthetase (gcs-1 expression through RNAi. The decline in GSH levels elicited by gcs-1 knockdown starting at young adult stage did not impair viability, but increased both stress resistance and life expectancy of the worms. In contrast, gcs-1 knockdown commencing right after hatching impaired nematode stress resistance and rendered young adult worms prone to vulval ruptures during egg-laying. Thus, modest decrease in GSH levels in young adult worms may promote stress resistance and life span, whereas depletion of GSH is detrimental to freshly

  12. Non-linear impact of glutathione depletion on C. elegans life span and stress resistance.

    Science.gov (United States)

    Urban, Nadine; Tsitsipatis, Dimitrios; Hausig, Franziska; Kreuzer, Katrin; Erler, Katrin; Stein, Vanessa; Ristow, Michael; Steinbrenner, Holger; Klotz, Lars-Oliver

    2017-04-01

    The redox environment in cells and organisms is set by low-molecular mass and protein-bound thiols, with glutathione (GSH) representing a major intracellular redox buffer. Subtle thiol oxidation elicits signal transduction processes and adaptive responses to cope with stressors, whereas highly oxidizing conditions may provoke cell death. We here tested how thiol depletion affects life span, stress resistance and stress signaling in the model organism Caenorhabditis elegans. Diethyl maleate (DEM), an α,β-unsaturated carbonyl compound that conjugates to GSH and other thiols, decreased C. elegans life span at a concentration of 1mM. In contrast, low and moderate doses of DEM (10-100µM) increased mean and maximum life span and improved resistance against oxidative stress. DEM-induced life span extension was not detectable in worms deficient in either the FoxO orthologue, DAF-16, or the Nrf2 orthologue, SKN-1, pointing to a collaborative role of the two transcription factors in life span extension induced by thiol depletion. Cytoprotective target genes of DAF-16 and SKN-1 were upregulated after at least 3 days of exposure to 100µM DEM, but not 1mM DEM, whereas only 1mM DEM caused upregulation of egl-1, a gene controlled by a p53-orthologue, CEP-1. In order to test whether depletion of GSH may elicit effects similar to DEM, we suppressed GSH biosynthesis in worms by attenuating γ-glutamylcysteine synthetase (gcs-1) expression through RNAi. The decline in GSH levels elicited by gcs-1 knockdown starting at young adult stage did not impair viability, but increased both stress resistance and life expectancy of the worms. In contrast, gcs-1 knockdown commencing right after hatching impaired nematode stress resistance and rendered young adult worms prone to vulval ruptures during egg-laying. Thus, modest decrease in GSH levels in young adult worms may promote stress resistance and life span, whereas depletion of GSH is detrimental to freshly hatched and developing worms

  13. Clinical observation of corneal lamellar debridement combined with sutureless amniotic membrane transplantation for the treatment of superficial fungal keratitis

    Directory of Open Access Journals (Sweden)

    Huang Zhang

    2014-09-01

    Full Text Available AIM:To evaluate the clinical efficacy of corneal lamellar debridement combined with sutureless amniotic membrane transplantation for the treatment of superficial fungal keratitis.METHODS:Totally 22 cases(22 eyeswith superficial fungal keratitis were referred to our hospital from April 2012 to October 2013. The patients with persistent cornea ulcer after treatment of local and systemic antifungal drugs underwent corneal lamellar debridement combined with sutureless amniotic membrane transplantation, and the recipient bed was covered with an amniotic membrane using fibrin sealant during the operation. All patients were still given topical antifungal therapy for 1-2mo after operation. The followed-up time was 3mo or above. We observed the corneal healing and amniotic membrane adhesion by split lamp microscope, and investigated the transformation of amniotic membrane and fungal infection recurrence with confocal microscope. RESULTS: Corneal edema and anterior chamber reaction of 21 patients disappeared gradually, and no amniotic membrane graft dissolved and shed off within 1-2wk postoperatively. Two weeks after operation, the graft integrated into the corneal and the corneal wounds' thickness increased gradually, the corneal epithelium reconstructed and corneas became clear. Four weeks after operation, the corneal scarring developed gradually and fluorescence staining was negative. Nineteen cases' amniotic membranes that adhered with the cornea dissolved 4wk after operation. There were different degrees of corneal nebula or macula remained 3mo postoperatively. All patients' vision improved in varying degrees, except in 1 case with fungal keratitis who had been cured by lamellar keratoplasty.CONCLUSION:Corneal lamellar debridement combined with sutureless amniotic membrane transplantation can effectively remove the foci of inflammation, improve the local efficacy, shorten the operation time, relieve the postoperative reaction, and promote cornea

  14. Standard Test Method for Determining Resistance of Photovoltaic Modules to Hail by Impact with Propelled Ice Balls

    CERN Document Server

    American Society for Testing and Materials. Philadelphia

    2010-01-01

    1.1 This test method provides a procedure for determining the ability of photovoltaic modules to withstand impact forces of falling hail. Propelled ice balls are used to simulate falling hailstones. 1.2 This test method defines test specimens and methods for mounting specimens, specifies impact locations on each test specimen, provides an equation for determining the velocity of any size ice ball, provides a method for impacting the test specimens with ice balls, provides a method for determining changes in electrical performance, and specifies parameters that must be recorded and reported. 1.3 This test method does not establish pass or fail levels. The determination of acceptable or unacceptable levels of ice ball impact resistance is beyond the scope of this test method. 1.4 The size of the ice ball to be used in conducting this test is not specified. This test method can be used with various sizes of ice balls. 1.5 This test method may be applied to concentrator and nonconcentrator modules. 1.6 The v...

  15. Standard Practice for Determining Resistance of Solar Collector Covers to Hail by Impact With Propelled Ice Balls

    CERN Document Server

    American Society for Testing and Materials. Philadelphia

    1992-01-01

    1.1 This practice covers a procedure for determining the ability of cover plates for flat-plate solar collectors to withstand impact forces of falling hail. Propelled ice balls are used to simulate falling hailstones. This practice is not intended to apply to photovoltaic cells or arrays. 1.2 This practice defines two types of test specimens, describes methods for mounting specimens, specifies impact locations on each test specimen, provides an equation for determining the velocity of any size ice ball, provides a method for impacting the test specimens with ice balls, and specifies parameters that must be recorded and reported. 1.3 This practice does not establish pass or fail levels. The determination of acceptable or unacceptable levels of ice-ball impact resistance is beyond the scope of this practice. 1.4 The size of ice ball to be used in conducting this test is not specified in this practice. This practice can be used with various sizes of ice balls. 1.5 The categories of solar collector cover plat...

  16. Bilateral diffuse lamellar keratitis triggered by permanent eyeliner tattoo treatment: A case report.

    Science.gov (United States)

    Lu, Cheng-Wei; Liu, Xiu-Fen; Zhou, Dan-Dan; Kong, Yu-Jiao; Qi, Xiao-Feng; Liu, Tao-Tao; Qu, Ting; Pan, Xiao-Tao; Liu, Cong; Hao, Ji-Long

    2017-07-01

    Diffuse lamellar keratitis (DLK) is a sterile inflammation of the cornea, which may occur after laser-assisted in situ keratomileusis (LASIK) surgery. Little is known about the association of DLK with permanent eyeliner tattoo. The present case report describes the case of a 37-year-old Chinese woman who developed severe foreign body sensation in both eyes 1 week after receiving bilateral permanent eyeliner tattoo treatment. The patient had received bilateral LASIK surgery 10 years previously. Slit-lamp biomicroscopy revealed diffused granular infiltrates precipitated around the edge of the corneal flaps in both eyes. After topical treatment, DLK persisted. Therefore, the patient underwent surgery to remove the corneal epithelium around the DLK lesion. There was no recurrence of the disease during the 3-month observation period. To our knowledge, this is the first case report describing a case of late-onset of DLK that was triggered by permanent eyeliner tattoo. Doctors should be aware of the diagnosis and treatment of this complication associated with the application of permanent eyeliner tattoo as the popularity of this cosmetic procedure increases.

  17. Image-guided modified deep anterior lamellar keratoplasty (DALK) corneal transplant using intraoperative optical coherence tomography

    Science.gov (United States)

    Tao, Yuankai K.; LaBarbera, Michael; Ehlers, Justis P.; Srivastava, Sunil K.; Dupps, William J.

    2015-03-01

    Deep anterior lamellar keratoplasty (DALK) is an alternative to full-thickness corneal transplant and has advantages including the absence of allograft rejection; shortened duration of topical corticosteroid treatment and reduced associated risk of glaucoma, cataract, or infection; and enables use of grafts with poor endothelial quality. DALK begins by performing a trephination of approximately 80% stromal thickness, as measured by pachymetry. After removal of the anterior stoma, a needle is inserted into the residual stroma to inject air or viscoelastic to dissect Descemet's membrane. These procedures are inherently difficult and intraoperative rates of Descemet's membrane perforation between 4-39% have been reported. Optical coherence tomography (OCT) provides high-resolution images of tissue microstructures in the cornea, including Descemet's membrane, and allows quantitation of corneal layer thicknesses. Here, we use crosssectional intraoperative OCT (iOCT) measurements of corneal thickness during surgery and a novel micrometeradjustable biopsy punch to precision-cut the stroma down to Descemet's membrane. Our prototype cutting tool allows us to establish a dissection plane at the corneal endothelium interface, mitigates variability in cut-depths as a result of tremor, reduces procedure complexity, and reduces complication rates. iOCT-guided modified DALK procedures were performed on 47 cadaveric porcine eyes by non-experts and achieved a perforation rate of ~5% with a mean corneal dissection time care.

  18. Analysis and prediction of stacking sequences in intercalated lamellar vanadium phosphates

    Energy Technology Data Exchange (ETDEWEB)

    Gautier, Romain [Institut des Sciences Chimiques de Rennes, UMR 6226 CNRS - Ecole Nationale Superieure de Chimie de Rennes (France); Centre Nationale de la Recherche Scientifique (CNRS), Institut des Materiaux Jean Rouxel (IMN), Universite de Nantes (France); Fourre, Yoann; Furet, Eric; Gautier, Regis; Le Fur, Eric [Institut des Sciences Chimiques de Rennes, UMR 6226 CNRS - Ecole Nationale Superieure de Chimie de Rennes (France)

    2015-04-15

    An approach is presented that enables the analysis and prediction of stacking sequences in intercalated lamellar vanadium phosphates. A comparison of previously reported vanadium phosphates reveals two modes of intercalation: (i) 3d transition metal ions intercalated between VOPO{sub 4} layers and (ii) alkali/alkaline earth metal ions between VOPO{sub 4}.H{sub 2}O layers. Both intercalations were investigated using DFT calculations in order to understand the relative shifts of the vanadium phosphate layers. These calculations in addition to an analysis of the stacking sequences in previously reported materials enable the prediction of the crystal structures of M{sub x}(VOPO{sub 4}).yH{sub 2}O (M = Cs{sup +}, Cd{sup 2+} and Sn{sup 2+}). Experimental realization and structural determination of Cd(VOPO{sub 4}){sub 2}.4H{sub 2}O by single-crystal X-ray diffraction confirmed the predicted stacking sequences. (Copyright copyright 2015 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim)

  19. Clinical study of the clusters of diffuse lamellar keratitis after laser corneal refractive surgery

    Directory of Open Access Journals (Sweden)

    Qing-Hong Lin

    2017-06-01

    Full Text Available AIM: To investigate the potential causes and management of the clusters of diffuse lamellar keratitis(DLKafter laser corneal refractive surgery. METHODS: The study enrolled 98 eyes(53 patientscomplicated with DLK after receiving laser in situ keratomileusis(LASIK, FS-LASIK or small-incision lenticule extraction(SMILEin our center from February 10th,2016 to February 22th,2016. They were given clinical classification treatments according to corneal layer inflammatory extent and then followed up after 1, 3, 5, 7, 10d and 1mo. RESULTS: The clusters of DLK occurred 5 times in the study period. The incidence and degree of DLK significantly decreased after changed the sterilization, surgical equipments, temperature and humidity of the operating room. There were 80 eyes(82%had stage 1 DLK, 11 eyes(11%had stage 2, 4 eyes(4%had stage 3 and 3 eyes(3%had stage 4. The incidence of DLK after FS-LASIK was 40%(79 eyes in 42 patients, that after LASIK assistant by Hastome keratome was 45%(10 eyes in 5 patients, that after SMILE was 20%(9 eyes in 6 patients. After intensive treatment, as glucocorticoid treatment and flap lifting flushing, all cases recovered within 1mo. CONCLUSION: The outbreak of DLK may be associated with the disposable item, flushing liquor, temperature and humidity of the operating room. Early diagnosis, prevention and treatment are the key of decreasing the incidence of DLK.

  20. Molecular Dynamics Study on Nucleation Behavior and Lamellar Mergence of Polyethylene Globule Crystallization

    Science.gov (United States)

    Yang, Xiaozhen; Wang, Simiao

    2012-02-01

    The site order parameter (SOP) has been adopted to analyze various order structure formation and distribution during the crystallization of a multi-chain polyethylene globule simulated by molecular dynamics. We found that the nucleation relies on crystallinity fluctuation with increase of amplitude, and the baby nucleus in the fluctuation suddenly appears with different shape and increasing size. In the growth stage, a number of lamellar mergence was observed and their selective behaviors were suggested to be related to the orientation difference between the merging lamellae. We obtained that SOP distribution of all atoms in the system during crystallization appears with two peaks: one for the amorphous phase and the other for the crystalline phase. Mesomorphic structures with medium orders locate between the two peaks as an order promotion pathway. Obtained data show that the medium order structure fluctuates at the growth front and does not always be available; the medium order structure existing at the front is not always good for developing. It is possibly caused by chain entanglement.

  1. Toward an equilibrium structure in lamellar diblock copolymer thin films using solvent vapor annealing

    DEFF Research Database (Denmark)

    Sepe, Alessandro; Zhang, Jianqi; Perlich, Jan

    2016-01-01

    Solvent vapor annealing (SVA) is frequently used to improve the ordering in diblock copolymer thin films. An important question is which SVA protocol should be chosen to ensure thermodynamic equilibrium. Here, we investigate two thin films from a low molar-mass, lamellae-forming polystyrene....... SVA cycles were carried out with cyclohexane, and the structural changes were followed in-situ using time-resolved grazing-incidence small-angle X-ray scattering (GISAXS). Before and after SVA, Dlam,par is significantly lower than in the bulk, i.e. the equi-librium value of Dlam,par in thin film...... glassy again, affinely. During the second SVA cycle on the thin film, the scaling behavior of the lamellar thickness is identical to the one during the first drying and to the drying behavior of the thicker film. We conclude that one cycle of solvent vapor treatment with a degree of swelling of ca. 1...

  2. Investigation on the Effect of Sulfur and Titanium on the Microstructure of Lamellar Graphite Iron

    DEFF Research Database (Denmark)

    Moumeni, Elham; Stefanescu, Doru Michael; Tiedje, Niels Skat

    2013-01-01

    The goal of this work was to identify the inclusions in lamellar graphite cast iron in an effort to explain the nucleation of the phases of interest. Four samples of approximately the same carbon equivalent but different levels of sulfur and titanium were studied. The Ti/S ratios were from 0...... of complex Al, Ca, Mg oxide. An increased titanium level of 0.35 pct produced superfine interdendritic graphite (~10 μm) at low (0.012 wt pct) as well as at high-S contents. Ti also caused increased segregation in the microstructure of the analyzed irons and larger eutectic grains (cells). TiC did not appear...... to be a nucleation site for the primary austenite as it was found mostly at the periphery of the secondary arms of the austenite, in the last region to solidify. The effect of titanium in refining the graphite and increasing the austenite fraction can be explained through the widening of the liquidus...

  3. Investigation of Dendrite Coarsening in Complex Shaped Lamellar Graphite Iron Castings

    Directory of Open Access Journals (Sweden)

    Péter Svidró

    2017-07-01

    Full Text Available Shrinkage porosity and metal expansion penetration are two casting defects that appear frequently during the production of complex-shaped lamellar graphite iron components. These casting defects are formed during the solidification and usually form in the part of the casting which solidifies last. The position of the area that solidifies last is dependent on the thermal conditions. Test castings with thermal conditions like those existing in a complex-shaped casting were successfully applied to provoke a shrinkage porosity defect and a metal expansion penetration defect. The investigation of the primary dendrite morphology in the defected positions indicates a maximum intradendritic space, where the shrinkage porosity and metal expansion penetration defects appear. Moving away from the defect formation area, the intradendritic space decreases. A comparison of the intradendritic space with the simulated local solidification times indicates a strong relationship, which can be explained by the dynamic coarsening process. More specifically, long local solidification times facilitates the formation of a locally coarsened austenite morphology. This, in turn, enables the formation of a shrinkage porosity or a metal expansion penetration.

  4. Lamellar boundary alignment of DS-processed TiAl-W alloys by a solidification procedure

    Science.gov (United States)

    Jung, In-Soo; Oh, Myung-Hoon; Park, No-Jin; Kumar, K. Sharvan; Wee, Dang-Moon

    2007-12-01

    In this study, a β solidification procedure was used to align the lamellae in a Ti-47Al-2W (at.%) alloy parallel to the growth direction. The Bridgman technique and the floating zone process were used for directional solidification. The mechanical properties of the directionally solidified alloy were evaluated in tension at room temperature and at 800°C. At a growth rate of 30 mm/h (with the floating zone approach), the lamellae were well aligned parallel to the growth direction. The aligned lamellae yielded excellent room temperature tensile ductility. The tensile yield strength at 800°C was similar to that at room temperature. The orientation of the γ lamellar laths in the directionally solidified ingots, which were manufactured by means of a floating zone process, was identified with the aid of electron backscattered diffraction analysis. On the basis of this analysis, the preferred growth direction of the bcc-β dendrites that formed at high temperatures close to the melting point was inferred to be [001]β at a growth rate of 30 mm/h and [111]β at a growth rate of 90 mm/h.

  5. Hydrophobic nanoparticles promote lamellar to inverted hexagonal transition in phospholipid mesophases.

    Science.gov (United States)

    Bulpett, Jennifer M; Snow, Tim; Quignon, Benoit; Beddoes, Charlotte M; Tang, T-Y D; Mann, Stephen; Shebanova, Olga; Pizzey, Claire L; Terrill, Nicholas J; Davis, Sean A; Briscoe, Wuge H

    2015-12-07

    This study focuses on how the mesophase transition behaviour of the phospholipid dioleoyl phosphatidylethanolamine (DOPE) is altered by the presence of 10 nm hydrophobic and 14 nm hydrophilic silica nanoparticles (NPs) at different concentrations. The lamellar to inverted hexagonal phase transition (Lα-HII) of phospholipids is energetically analogous to the membrane fusion process, therefore understanding the Lα-HII transition with nanoparticulate additives is relevant to how membrane fusion may be affected by these additives, in this case the silica NPs. The overriding observation is that the HII/Lα boundaries in the DOPE p-T phase diagram were shifted by the presence of NPs: the hydrophobic NPs enlarged the HII phase region and thus encouraged the inverted hexagonal (HII) phase to occur at lower temperatures, whilst hydrophilic NPs appeared to stabilise the Lα phase region. This effect was also NP-concentration dependent, with a more pronounced effect for higher concentration of the hydrophobic NPs, but the trend was less clear cut for the hydrophilic NPs. There was no evidence that the NPs were intercalated into the mesophases, and as such it was likely that they might have undergone microphase separation and resided at the mesophase domain boundaries. Whilst the loci and exact roles of the NPs invite further investigation, we tentatively discuss these results in terms of both the surface chemistry of the NPs and the effect of their curvature on the elastic bending energy considerations during the mesophase transition.

  6. Solid solutions of hydrogen uranyl phosphate and hydrogen uranyl arsenate. A family of luminescent, lamellar hosts

    International Nuclear Information System (INIS)

    Dorhout, P.K.; Rosenthal, G.L.; Ellis, A.B.

    1988-01-01

    Hydrogen uranyl phosphate, HUO 2 PO 4 x 4H 2 O (HUP), and hydrogen uranyl arsenate, HUO 2 AsO 4 x 4H 2 O (HUAs), form solid solutions of composition HUO 2 (PO 4 ) 1-x (AsO 4 )x (HUPAs), representing a family of lamellar, luminescent solids that can serve as hosts for intercalation chemistry. The solids are prepared by aqueous precipitation reactions from uranyl nitrate and mixtures of phosphoric and arsenic acids; thermogravimetric analysis indicates that the phases are tetrahydrates, like HUP and HUAs. Powder x-ray diffraction data reveal the HUPAs solids to be single phases whose lattice constants increase with X, in rough accord with Vegard's law Spectral shifts observed for the HUPAs samples. Emission from the solids is efficient (quantum yields of ∼ 0.2) and long-lived (lifetimes of ∼ 150 μs), although the measured values are uniformly smaller than those of HUP and HUAs; unimolecular radiative and nonradiative rate constants for excited-state decay of ∼ 1500 and 5000 s -1 , respectively, have been calculated for the compounds. 18 refs., 5 figs., 2 tabs

  7. Mechanisms of High Temperature Resistance of Synechocystis sp. PCC 6803: An Impact of Histidine Kinase 34

    Directory of Open Access Journals (Sweden)

    Jan Červený

    2015-03-01

    Full Text Available Synechocystis sp. PCC 6803 is a widely used model cyanobacterium for studying responses and acclimation to different abiotic stresses. Changes in transcriptome, proteome, lipidome, and photosynthesis in response to short term heat stress are well studied in this organism, and histidine kinase 34 (Hik34 is shown to play an important role in mediating such response. Corresponding data on long term responses, however, are fragmentary and vary depending on parameters of experiments and methods of data collection, and thus are hard to compare. In order to elucidate how the early stress responses help cells to sustain long-term heat stress, as well as the role of Hik34 in prolonged acclimation, we examined the resistance to long-term heat stress of wild-type and ΔHik34 mutant of Synechocystis. In this work, we were able to precisely control the long term experimental conditions by cultivating Synechocystis in automated photobioreactors, measuring selected physiological parameters within a time range of minutes. In addition, morphological and ultrastructural changes in cells were analyzed and western blotting of individual proteins was used to study the heat stress-affected protein expression. We have shown that the majority of wild type cell population was able to recover after 24 h of cultivation at 44 °C. In contrast, while ΔHik34 mutant cells were resistant to heat stress within its first hours, they could not recover after 24 h long high temperature treatment. We demonstrated that the early induction of HspA expression and maintenance of high amount of other HSPs throughout the heat incubation is critical for successful adaptation to long-term stress. In addition, it appears that histidine kinase Hik34 is an essential component for the long term high temperature resistance.

  8. Mechanisms of High Temperature Resistance of Synechocystis sp. PCC 6803: An Impact of Histidine Kinase 34.

    Science.gov (United States)

    Červený, Jan; Sinetova, Maria A; Zavřel, Tomáš; Los, Dmitry A

    2015-03-02

    Synechocystis sp. PCC 6803 is a widely used model cyanobacterium for studying responses and acclimation to different abiotic stresses. Changes in transcriptome, proteome, lipidome, and photosynthesis in response to short term heat stress are well studied in this organism, and histidine kinase 34 (Hik34) is shown to play an important role in mediating such response. Corresponding data on long term responses, however, are fragmentary and vary depending on parameters of experiments and methods of data collection, and thus are hard to compare. In order to elucidate how the early stress responses help cells to sustain long-term heat stress, as well as the role of Hik34 in prolonged acclimation, we examined the resistance to long-term heat stress of wild-type and ΔHik34 mutant of Synechocystis. In this work, we were able to precisely control the long term experimental conditions by cultivating Synechocystis in automated photobioreactors, measuring selected physiological parameters within a time range of minutes. In addition, morphological and ultrastructural changes in cells were analyzed and western blotting of individual proteins was used to study the heat stress-affected protein expression. We have shown that the majority of wild type cell population was able to recover after 24 h of cultivation at 44 °C. In contrast, while ΔHik34 mutant cells were resistant to heat stress within its first hours, they could not recover after 24 h long high temperature treatment. We demonstrated that the early induction of HspA expression and maintenance of high amount of other HSPs throughout the heat incubation is critical for successful adaptation to long-term stress. In addition, it appears that histidine kinase Hik34 is an essential component for the long term high temperature resistance.

  9. Molecular epidemiology of TB – Its impact on multidrug-resistant tuberculosis control in China☆

    Directory of Open Access Journals (Sweden)

    Biao Xu

    2015-01-01

    Results: In total, 238 bacteriologic confirmed pulmonary TB patients from DQ and 393 from GY diagnosed between 2008 and 2011 were recruited in the study. Of the 631 isolates, 220 (34.9% were resistant to at least one anti-TB drug, including 95 (15.1% simultaneously resistant to isoniazid and rifampicin or MDR, albeit with the similar distribution between DQ and GY (32/238 vs. 63/393; p, 0.378. The MIRU-VNTR genotyping revealed 35 isolates from DQ and 86 from GY exhibited 15 and 32 clustering patterns with four patterns shared between two counties. Compared with GY county, DQ had a significantly lower clustering proportion in MTB isolates susceptible to first-line drugs (25/167 vs. 46/198; p, 0.047 and total drug resistant TB isolates (12/71 vs. 44/149; p, 0.044, but a similar clustering proportion in MDR-TB isolates (8/32 vs. 18/63; p, 0.712. A significant higher clustering proportion was observed in the previously treated patients in both counties, but in the sputum smear-positive patients with cavitaries only in GY. Comparing the previously treated patients between the two counties, the proportion of MDR-TB and clustering proportion exhibited a similar distribution, while the average age of previously treated patients in DQ is significantly older than that in GY. Conclusions: A lower proportion of recent transmissions was observed in the county with long-term DOTS implementation. However, DOTS itself might not have worked enough on blocking the recent transmission of MDR-TB. This observation suggests the urgent needs of implementing the Stop-TB strategies; in particular, accelerating the use of rapid molecularbasedTBdiagnosisand drug susceptibility testing, providing active case findings in a high risk population of MDR-TB and enhancing infection control in high MDR-TB burden countries.

  10. Computational Model for Impact-Resisting Critical Thickness of High-Speed Machine Outer Protective Plate

    Science.gov (United States)

    Wu, Huaying; Wang, Li Zhong; Wang, Yantao; Yuan, Xiaolei

    2018-05-01

    The blade or surface grinding blade of the hypervelocity grinding wheel may be damaged due to too high rotation rate of the spindle of the machine and then fly out. Its speed as a projectile may severely endanger the field persons. Critical thickness model of the protective plate of the high-speed machine is studied in this paper. For easy analysis, the shapes of the possible impact objects flying from the high-speed machine are simplified as sharp-nose model, ball-nose model and flat-nose model. Whose front ending shape to represent point, line and surface contacting. Impact analysis based on J-C model is performed for the low-carbon steel plate with different thicknesses in this paper. One critical thickness computational model for the protective plate of high-speed machine is established according to the damage characteristics of the thin plate to get relation among plate thickness and mass, shape and size and impact speed of impact object. The air cannon is used for impact test. The model accuracy is validated. This model can guide identification of the thickness of single-layer outer protective plate of a high-speed machine.

  11. Evaluation of the impact of frost resistances on potential altitudinal limit of trees.

    Science.gov (United States)

    Charrier, Guillaume; Cochard, Hervé; Améglio, Thierry

    2013-09-01

    Winter physiology of woody plants is a key issue in temperate biomes. Here, we investigated different frost resistance mechanisms on 1-year-old branches of 11 European tree species from November until budburst: (i) frost hardiness of living cells (by electrolyte leakage method), (ii) winter embolism sensitivity (by percentage loss of conductivity: PLC) and (iii) phenological variation of budburst (by thermal time to budburst). These ecophysiological traits were analyzed according to the potential altitudinal limit, which is highly related to frost exposure. Seasonal frost hardiness and PLC changes are relatively different across species. Maximal PLC observed in winter (PLCMax) was the factor most closely related to potential altitudinal limit. Moreover, PLCMax was related to the mean hydraulic diameter of vessels (indicating embolism sensitivity) and to osmotic compounds (indicating ability of living cells to refill xylem conducting elements). Winter embolism formation seems to be counterbalanced by active refilling from living cells. These results enabled us to model potential altitudinal limit according to three of the physiological/anatomical parameters studied. Monitoring different frost resistance strategies brings new insights to our understanding of the altitudinal limits of trees.

  12. Anthelmintic resistance impact on tropical beef cattle productivity: effect on weight gain of weaned calves.

    Science.gov (United States)

    Borges, Fernando A; Almeida, Gabriel D; Heckler, Rafael P; Lemes, Raul T; Onizuka, Marcel K V; Borges, Dyego G L

    2013-03-01

    The performance of grazing cattle in tropical areas is deeply influenced by parasitism, and the increasing reports of resistance are a threat to effective nematode control. The present study aimed to evaluate the effect of avermectins on the performance of weaned calves naturally infected by ivermectin-resistant gastrointestinal nematodes. The effect of four commercial endectocides (ivermectin 2.25 % + abamectin 1.25 %, ivermectin 3.15 %, doramectin 3.15 %, and doramectin 1 %) on parasitism and performance of a hundred weaned Nellore calves were evaluated during 112 days. The most effective anthelmintic showed efficacy of 84 % and resulted in an increase (P < 0.05) of live weight gain of 11.85 kg, compared to untreated group, 9.05 and 9.41 kg compared to those treated with more ineffective avermectins which showed efficacy of 0 and 48.2 %, respectively. A significant (P < 0.05) and weak negative correlation (r = -0.22) between the eggs per gram (EPG) and body weight was observed, indicating that even the low mean EPG (175 ± 150) observed at day 0 in the control group, with predominance of Haemonchus sp., was responsible for production losses. These results indicate that control of nematode parasites in beef cattle in the weaning phase may not result in increased productivity when carried out without technical criteria.

  13. ASSESSMENT OF IMPACT OF COHERENT LIGHT ON RESISTANCE OF PLANTS GROWING IN UNFAVOURABLE ENVIRONMENTAL CONDITIONS

    Directory of Open Access Journals (Sweden)

    Małgorzata Śliwka

    2014-04-01

    Full Text Available The results of experiments on the effect of the coherent light emitted by lasers on plant material show that properly selected laser stimulation parameters, such as: wavelength, power, time and type of exposure, allow to obtain a greater growth of plant biomass, changes in the content of elements in the biomass and increasing plant resistance to unfavorable environmental conditions. The aim of this study was to determine the effect of laser stimulation on selected plant species (Iris pseudoacorus L., Lemna minor L. to increase their resistance to low temperatures and the ability to adapt to an environment polluted by mining activities (Phelum pratense L.. Plants from experimental groups (Iris pseudoacorus L., Phelum pratense L., Lemna minor L. were stimulated with coherent light with specific characteristics. To irradiate plants from experimental groups different algorithms of stimulation parameters, differentiating the method and time of exposure were used. Plants group without the stimulation, were the reference group. The article discusses the results of preliminary experiments carried out on a laboratory scale and pot experiments.

  14. Effects of stacking sequence on impact damage resistance and residual strength for quasi-isotropic laminates

    Science.gov (United States)

    Dost, Ernest F.; Ilcewicz, Larry B.; Avery, William B.; Coxon, Brian R.

    1991-01-01

    Residual strength of an impacted composite laminate is dependent on details of the damage state. Stacking sequence was varied to judge its effect on damage caused by low-velocity impact. This was done for quasi-isotropic layups of a toughened composite material. Experimental observations on changes in the impact damage state and postimpact compressive performance were presented for seven different laminate stacking sequences. The applicability and limitations of analysis compared to experimental results were also discussed. Postimpact compressive behavior was found to be a strong function of the laminate stacking sequence. This relationship was found to depend on thickness, stacking sequence, size, and location of sublaminates that comprise the impact damage state. The postimpact strength for specimens with a relatively symmetric distribution of damage through the laminate thickness was accurately predicted by models that accounted for sublaminate stability and in-plane stress redistribution. An asymmetric distribution of damage in some laminate stacking sequences tended to alter specimen stability. Geometrically nonlinear finite element analysis was used to predict this behavior.

  15. The impact of contextual factors on auditors' ability to resist management pressure

    NARCIS (Netherlands)

    Dijk, M. van; Jansman, A.J.E.

    1999-01-01

    This study examines the impact of the extend to which auditors will be able to justify errors in case of litigation, the strategy of the audit firm, the authority of the client’s management to choose the audit firm and the extend to which auditors are successful in their careers on auditors’

  16. Antibiotic Resistance in Animal-waste-impacted Farm Soil: From Molecular Mechanisms to Microbial Evolution and Ecology

    Science.gov (United States)

    You, Y.; Ward, M. J.; Hilpert, M.

    2012-12-01

    Antibiotic resistance is a growing public health problem worldwide and the routine use of antibiotics in industrial animal production has sparked debate on whether this practice might constitute an environmental and public health concern. At a broiler farm, electromagnetic induction (EMI) surveying assisted soil sampling from a chicken-waste-impacted site and a marginally affected site. Consistent with the EMI survey, disparity existed between the two sites with regard to soil pH, tetracycline resistance (TcR) levels among heterotrophic culturable soil bacteria, and the incidence/prevalence of a number of tet and erm genes in the soils. No significant difference was observed in these aspects between the marginally affected site and several sites in a regional state forest that has not been in agricultural use for decades. Shortly after our sampling, the farm closed down and all the waste was removed. This unique change in situation offered us an unusual opportunity to examine the reversibility of any impact of the chicken waste on the soil microbial community. Two years after the event, several antibiotic resistance genes (ARGs) were still detected in the waste-impacted soil, and quantitative real-time PCR (qPCR) data showed that their relative abundance remained at substantial levels. A mobilizable tet(L)-carrying plasmid, pSU1, was identified in several chicken-waste-exposed soil bacteria of three different genera. Quantification of the plasmid's mobilization gene suggested that pSU1 had contributed to the prevalence and persistence of tet(L) in the waste-impacted soil. A second mobilizable tet(L)-carrying plasmid, pBSDMV9, isolated from the same soil, contained a region with 98.8% nucleotide identity to pSU1. The mosaic structure of the plasmids and the highly conserved nature of the tet(L) genes suggested that plasmid rearrangement favoring the acquisition of tet(L) may have occurred in the soil relatively recently. Additionally, in one chicken

  17. Environmental Impact of Tributyltin-Resistant Marine Bacteria in the Indigenous Microbial Population of Tributyltin-Polluted Surface Sediments.

    Science.gov (United States)

    Mimura, Haruo; Yagi, Masahiro; Yoshida, Kazutoshi

    2017-01-01

     We compared the TBT-resistant ability of resting cells prepared from isolates that formed colonies on nutrient agar plates containing 100 µM tributyltin (TBT) chloride, such as Photobacterium sp. TKY1, Halomonas sp. TKY2, and Photobacterium sp. NGY1, with those from taxonomically similar type strains. Photobacterium sp. TKY1 showed the highest ability among those three isolates. The number of surviving Photobacterium sp. TKY1 cells was hardly decreased after 1 h of exposure to 100 µM TBTCl, regardless of the number of resting cells in the range from 10 9.4 to 10 4.2 CFU mL -1 . In such an experimental condition, the maximum number of TBT molecules available to associate with a single cell was estimated to be approximately 6.0 x 10 11.8 . Resting cells prepared from type strains Photobacterium ganghwense JCM 12487 T and P. halotolerans LMG 22194 T , which have 16S rDNA sequences highly homologous with those of Photobacterium sp. TKY1, showed sensitivity to TBT, indicating that TBT-resistant marine bacterial species are not closely related in spite of their taxonomic similarity. We also estimated the impact of TBT-resistant bacterial species to indigenous microbial populations of TBT-polluted surface sediments. The number of surviving TBT-sensitive Vibrio natriegens ATCC 14048 T cells, 10 6.2±0.3 CFU mL -1 , was reduced to 10 4.4±0.4 CFU mL -1 when TBT-resistant Photobacterium sp. TKY1 cells, 10 9.1±0.2 CFU mL -1 , coexisted with 10 9.4±0.2 CFU mL -1 of V. natriegens ATCC 14048 T cells in the presence of 100 µM TBTCl. These results indicate that the toxicity of TBT to TBT-sensitive marine bacterial populations might be enhanced when a TBT-resistant marine bacterial species inhabits TBT-polluted surface sediments.

  18. Impact of the PROVAUR stewardship programme on linezolid resistance in a tertiary university hospital: a before-and-after interventional study.

    Science.gov (United States)

    García-Martínez, Lucrecia; Gracia-Ahulfinger, Irene; Machuca, Isabel; Cantisán, Sara; De La Fuente, Soraya; Natera, Clara; Pérez-Nadales, Elena; Vidal, Elisa; Rivero, Antonio; Rodríguez-Lopez, Fernando; Del Prado, José Ramón; Torre-Cisneros, Julián

    2016-09-01

    There is little evidence of the impact of antimicrobial stewardship programmes on antimicrobial resistance. To study the efficacy and safety of a package of educational and interventional measures to optimize linezolid use and its impact on bacterial resistance. A quasi-experimental study was designed and carried out before and after implementation of a stewardship programme in hospitalized patients with Gram-positive infections treated with linezolid. The intervention reduced linezolid consumption by 76%. The risk of linezolid-resistant CoNS isolates (OR = 0.37; 95% CI = 0.27-0.49; P linezolid use can contribute to reducing the resistance rate of CoNS and E. faecalis to this antibiotic. © The Author 2016. Published by Oxford University Press on behalf of the British Society for Antimicrobial Chemotherapy. All rights reserved. For Permissions, please e-mail: journals.permissions@oup.com.

  19. Investigation on impact resistance of steel plate reinforced concrete barriers against aircraft impact. Pt.2: Simulation analysis of scale model impact tests

    International Nuclear Information System (INIS)

    Jun Mizuno; Norihide Koshika; Hiroshi Morikawa; Kentaro Wakimoto; Ryusuke Fukuda

    2005-01-01

    Steel plate reinforced concrete (SC) structure is one in which the rebars of conventional reinforced concrete (RC) structures are replaced with external steel plates attached to inner concrete with headed studs. SC structures are considered to be more effective than RC structures against aircraft impact, so their application to outer walls and roofs of risk-sensitive structures such as nuclear-related structures is expected to mitigate damage to critical components. The objective of this study was to investigate the fracture behavior and perforation thickness of SC panels against aircraft impact through impact tests and simulation analyses. Objectives of this paper are to analytically investigate the protection performance of SC panels against aircraft model impact through simulation analyses of 1/7.5 scale aircraft model impact tests presented in Part 1 of this study using a discrete element method (DEM), and to examine the applicability and validity of the DEM. Simulation analyses by a finite element method (FEM) were also performed to evaluate its applicability. The fracture process and damage to the SC test panels as well as the aircraft models are closely simulated by the discrete element analyses. The various impact responses and failure mechanisms, such as deceleration curves of projectile, velocity of debris from rear face and deformation mode of SC panels, are also simulated closely by the DEM analyses. The results of analyses confirm the shock-proof performance of SC panels against aircraft impact, and the applicability and validity of DEM for evaluating the complex phenomena of an aircraft impact against an SC panel. The finite element analysis closely simulates the deformation of the SC test panel and strains of rear steel plate where the global bending deformation mode is dominant. (authors)

  20. Ballistic Impact Resistance of Plain Woven Kenaf/Aramid Reinforced Polyvinyl Butyral Laminated Hybrid Composite

    Directory of Open Access Journals (Sweden)

    Suhad D. Salman

    2016-07-01

    Full Text Available Traditionally, the helmet shell has been used to provide protection against head injuries and fatalities caused by ballistic threats. In this study, because of the high cost of aramid fibres and the necessity for environmentally friendly alternatives, a portion of aramid was replaced with plain woven kenaf fibre, with different arrangements and thicknesses, without jeopardising the requirements demanded by U.S. Army helmet specifications. Furthermore, novel helmets were produced and tested to reduce the dependency on the ballistic resistance components. Their use could lead to helmets that are less costly and more easily available than conventional helmet armour. The hybrid materials subjected to ballistic tests were composed of 19 layers and were fabricated by the hot press technique using different numbers and configurations of plain woven kenaf and aramid layers. In the case of ballistic performance tests, a positive effect was found for the hybridisation of kenaf and aramid laminated composites.

  1. Impact of heat treatments on the fatigue resistance of different rotary nickel-titanium instruments.

    Science.gov (United States)

    Braga, Lígia Carolina Moreira; Faria Silva, Ana Cristina; Buono, Vicente Tadeu Lopes; de Azevedo Bahia, Maria Guiomar

    2014-09-01

    The aim of this study was to assess the influence of M-Wire (Dentsply Tulsa Dental Specialties, Tulsa, OK) and controlled memory technologies on the fatigue resistance of rotary nickel-titanium (NiTi) files by comparing files made using these 2 technologies with conventional NiTi files. Files with a similar cross-sectional design and diameter were chosen for the study: new 30/.06 files of the EndoWave (EW; J. Morita Corp, Osaka, Japan), HyFlex (HF; Coltene/Whaledent, Inc, Cuyahoga Falls, OH), ProFile Vortex (PV; Dentsply Tulsa Dental Specialties, Tulsa, OK), and Typhoon (TYP; Clinician's Choice Dental Products, New Milford, CT) systems together with ProTaper Universal F2 instruments (PTU F2; Dentsply Maillefer, Ballaigues, Switzerland). The compositions and transformation temperatures of the instruments were analyzed using x-ray energy-dispersive spectroscopy and differential scanning calorimetry, whereas the mean file diameter values at 3 mm from the tip (D3) were measured using image analysis software. The average number of cycles to failure was determined using a fatigue test device. X-ray energy-dispersive spectroscopy analysis showed that, on average, all the instruments exhibited the same chemical composition, namely, 51% Ni-49% Ti. The PV, TYP, and HF files exhibited increased transformation temperatures. The PTU F2, PV, and TYP files had similar D3 values, which were less than those of the EW and HF files. The average number of cycles to failure values were 150% higher for the TYP files compared with the PV files and 390% higher for the HF files compared with the EW files. M-Wire and controlled memory technologies increase the fatigue resistance of rotary NiTi files. Copyright © 2014 American Association of Endodontists. Published by Elsevier Inc. All rights reserved.

  2. Impact of ethylene oxide gas sterilization of duodenoscopes after a carbapenem-resistant Enterobacteriaceae outbreak.

    Science.gov (United States)

    Naryzhny, Igor; Silas, Dean; Chi, Kenneth

    2016-08-01

    Carbapenem-resistant Enterobacteriaceae (CRE) outbreaks have been implicated at several medical institutions involving gastroenterology laboratories and, specifically, duodenoscopes. Currently, there are no specific guidelines to eradicate or prevent the outbreak of this bacteria. We describe ethylene oxide (ETO) gas sterilizations of duodenoscopes to address this issue. A complete investigation of the gastroenterology laboratory and an evaluation by the Centers for Disease Control and Prevention concluded that no lapses were found in the reprocessing of the equipment. With no deficiencies to address, we began a novel cleaning process using surgical ETO gas sterilizers in addition to standard endoscope reprocessing recommendations and guidelines, all while trying to eradicate the CRE contamination and prevent future recurrences. We also instituted a surveillance system for recurrence of CRE contamination via monthly cultures of the duodenoscopes. Between October 2013 and April 2014, 589 ERCPs were performed with 645 ETO gas sterilizations of 6 duodenoscopes. Given the extra 16 hours needed to sterilize the duodenoscopes, our institution incurred costs resulting from purchasing additional equipment and surveillance cultures. Four duodenoscopes sustained damage during this period; however, this could not be directly attributed to the sterilization process. Furthermore, after an 18-month success period we encountered a positive CRE culture after sterilization, albeit of a different strain than originally detected during the outbreak. The duodenoscope underwent additional ETO gas sterilization, with a negative repeated culture; all potentially exposed individuals screened negative for CRE. Proper use of high-level disinfection alone may not eliminate multidrug-resistant organisms from duodenoscopes. In this single-center study, the addition of ETO sterilization and frequent monitoring with cultures reduced duodenoscope contamination and eliminated clinical infections

  3. Antibacterial Treatment of Meticillin-Resistant Staphylococcus Aureus Complicated Skin and Soft Tissue Infections: a Cost and Budget Impact Analysis in Greek Hospitals

    OpenAIRE

    Athanasakis, Kostas; Petrakis, Ioannis; Ollandezos, Mark; Tsoulas, Christos; Patel, Dipen A.; Karampli, Eleftheria; Kyriopoulos, John

    2014-01-01

    Introduction Meticillin-resistant staphylococcus aureus (MRSA) is an important cause of antimicrobial-resistant infections worldwide. Its prevalence remains high in the Greek hospital setting. Complicated skin and soft tissue infections (cSSTIs) due to MRSA are associated with prolonged hospitalization, additional healthcare costs and significant morbidity. The purpose of this study was to conduct a cost analysis and a budget impact analysis relative to different management scenarios for MRSA...

  4. Impact of BCRP/MXR, MRP1 and MDR1/P-Glycoprotein on thermoresistant variants of atypical and classical multidrug resistant cancer cells

    DEFF Research Database (Denmark)

    Stein, Ulrike; Lage, Hermann; Jordan, Andreas

    2002-01-01

    The impact of the ABC transporters breast cancer resistance protein/mitoxantrone resistance associated transporter (BCRP/MXR), multidrug resistance-associated protein 1 (MRP1) and multidrug resistance gene-1/P-glycoprotein (MDR1/PGP) on the multidrug resistance (MDR) phenotype in chemoresistance...... expression of BCRP/MXR and of MRP1 were clearly enhanced (vs. parental and classical MDR lines). MDR1/PGP expression was distinctly elevated in the classical MDR subline EPG85-257RDB (vs. parental and atypical MDR sublines). In all thermoresistant counterparts basal expression of BCRP/MXR, MRP1 and MDR1/PGP...... was increased relative to thermosensitive sublines. Although it could be shown that the overexpressed ABC transporters were functionally active, however, no decreased drug accumulations of doxorubicin, mitoxantrone and rhodamine 123 were observed. Thus, expression of BCRP/MXR, MRP1 and MDR1/PGP was found...

  5. The Impact Resistance of Fiber-Reinforced Polymer Composites: A Review

    OpenAIRE

    Mahmood Mehrdad Shokrieh; Majid Jamal Omidi

    2012-01-01

    Fiber reinforced composites are widely used instead of traditional materials in various technological applications. Therefore, by considering the extensive applications of these materials, a proper knowledge of their impact behavior (from low- to high-velocity) as well as their static behavior is necessary. In order to study the effects of strain rates on the behavior of these materials, special testing machines are needed. Most of the research efforts in this feld are focused on application ...

  6. The Impact Resistance of Fiber-Reinforced Polymer Composites: A Review

    Directory of Open Access Journals (Sweden)

    Mahmood Mehrdad Shokrieh

    2012-12-01

    Full Text Available Fiber reinforced composites are widely used instead of traditional materials in various technological applications. Therefore, by considering the extensive applications of these materials, a proper knowledge of their impact behavior (from low- to high-velocity as well as their static behavior is necessary. In order to study the effects of strain rates on the behavior of these materials, special testing machines are needed. Most of the research efforts in this feld are focused on application of real loading and gripping boundary conditions on the testing specimens. In this paper, a detailed review of different types of impact testing techniques and the strain rate dependence of mechanical and strength properties of polymer composite materials  are presented. In this respect, an attempt is made to present and summarize the methods of impact tests and the strain rate effects on the tensile, compressive, shear and bending properties of the fber-reinforced polymer composite materials. Moreover, a classifcation of the state-of-the-art of the testing techniques to characterize composite material properties in a wide range of strain rates are also given.

  7. Fishnet model for failure probability tail of nacre-like imbricated lamellar materials

    Science.gov (United States)

    Luo, Wen; Bažant, Zdeněk P.

    2017-12-01

    Nacre, the iridescent material of the shells of pearl oysters and abalone, consists mostly of aragonite (a form of CaCO3), a brittle constituent of relatively low strength (≈10 MPa). Yet it has astonishing mean tensile strength (≈150 MPa) and fracture energy (≈350 to 1,240 J/m2). The reasons have recently become well understood: (i) the nanoscale thickness (≈300 nm) of nacre's building blocks, the aragonite lamellae (or platelets), and (ii) the imbricated, or staggered, arrangement of these lamellea, bound by biopolymer layers only ≈25 nm thick, occupying engineering applications, however, the failure probability of ≤10-6 is generally required. To guarantee it, the type of probability density function (pdf) of strength, including its tail, must be determined. This objective, not pursued previously, is hardly achievable by experiments alone, since >10^8 tests of specimens would be needed. Here we outline a statistical model of strength that resembles a fishnet pulled diagonally, captures the tail of pdf of strength and, importantly, allows analytical safety assessments of nacreous materials. The analysis shows that, in terms of safety, the imbricated lamellar structure provides a major additional advantage—˜10% strength increase at tail failure probability 10^-6 and a 1 to 2 orders of magnitude tail probability decrease at fixed stress. Another advantage is that a high scatter of microstructure properties diminishes the strength difference between the mean and the probability tail, compared with the weakest link model. These advantages of nacre-like materials are here justified analytically and supported by millions of Monte Carlo simulations.

  8. Diamond knife-assisted deep anterior lamellar keratoplasty to manage keratoconus.

    Science.gov (United States)

    Vajpayee, Rasik B; Maharana, Prafulla K; Sharma, Namrata; Agarwal, Tushar; Jhanji, Vishal

    2014-02-01

    To evaluate the outcomes of a new surgical technique, diamond knife-assisted deep anterior lamellar keratoplasty (DALK), and compare its visual and refractive results with big-bubble DALK in cases of keratoconus. Tertiary eyecare hospital. Comparative case series. The visual and surgical outcomes of diamond knife-assisted DALK were compared with those of successful big-bubble DALK. Diamond knife-assisted DALK was performed in 19 eyes and big-bubble DALK, in 11 eyes. All surgeries were completed successfully. No intraoperative or postoperative complications occurred with diamond knife-assisted DALK. Six months after diamond knife-assisted DALK, the mean corrected distance visual acuity (CDVA) improved significantly from 1.87 logMAR ± 0.22 (SD) to 0.23 ± 0.06 logMAR, the mean keratometry improved from 65.99 ± 8.86 diopters (D) to 45.13 ± 1.16 D, and the mean keratometric cylinder improved from 7.99 ± 3.81 D to 2.87 ± 0.59 D (all P=.005). Postoperatively, the mean refractive astigmatism was 2.55 ± 0.49 D and the mean spherical equivalent was -1.97 ± 0.56 D. The mean logMAR CDVA (P = .06), postoperative keratometry (P=.64), refractive cylinder (P=.63), and endothelial cell loss (P=.11) were comparable between diamond knife-assisted DALK and big-bubble DALK. Diamond knife-assisted DALK was effective and predictable as a surgical technique for management of keratoconus cases. This technique has the potential to offer visual and refractive outcomes comparable to those of big-bubble DALK. No author has a financial or proprietary interest in any material or method mentioned. Copyright © 2013 ASCRS and ESCRS. Published by Elsevier Inc. All rights reserved.

  9. Energetics of a hexagonal-lamellar-hexagonal-phase transition sequence in dioleoylphosphatidylethanolamine membranes

    International Nuclear Information System (INIS)

    Gawrisch, K.; Parsegian, V.A.; Hajduk, D.A.; Tate, M.W.; Gruner, S.M.; Fuller, N.L.; Rand, R.P.

    1992-01-01

    The phase diagram of DOPE/water dispersions was investigated by NMR and X-ray diffraction in the water concentration range from 2 to 20 water molecules per lipid and in the temperature range from -5 to +50C. At temperature above 22C, the dispersions form an inverse (H II ) phase at all water concentrations. Below 25C, an H II phase occurs at high water concentrations, an L α phase is formed at intermediate water concentrations, and finally the system switches back to an H II phase at low water concentrations. The enthalpy of the L α -H II -phase transition is +0.3 kcal/mol as measured by differential scanning calorimetry. Using 31 P and 2 H NMR and X-ray diffraction. The authors measured the trapped water volumes in H II and L α phases as a function of osmotic pressure. The change of the H II -phase free energy as a function of hydration was calculated by integrating the osmotic pressure vs trapped water volume curve. The phase diagram calculated on the basis of the known enthalpy of transition and the osmotic pressure vs water volume curves is in good agreement with the measured one. The H II -L α -H II double-phase transition at temperatures below 22C can be shown to be a consequence of (1) the greater degree of hydration of the H II phase in excess water and (2) the relative sensitivities with which the lamellar and hexagonal phases dehydrate with increasing osmotic pressure. These results demonstrate the usefulness of osmotic stress measurements to understand lipid-phase diagrams

  10. Thermal Conductivity of Superconductors in the Intermediate State: Size Effect in a Longitudinal Lamellar Structure

    International Nuclear Information System (INIS)

    Suter, J.M.; Rinderer, L.

    1978-01-01

    The thermal conductivity of type I superconductors has been measured in a well-defined, optically controlled intermediate-state configuration the so-called longitudinal lamellar structure (LLS). A regular arrangement of alternating normal and superconducting lamellas is obtained in an elongated plate by applying the magnetic field obliquely (following Sharvin) and decreasing it from the critical values. The heat current is set parallel to the lamellas. Due to the peculiar reflection law governing the quasiparticle reflections at a normal-superconductor interphase boundary, the thermal conductivity of the LLS is reduced when the electronic mean free path is larger than or comparable to the width of the lamellas. As first pointed out by Andreev, the reflection occurs with vecotr-momentum conservation, and only the quasiparticles moving nearly parallel to the lamellas can transport heat efficiently. The corresponding reduction of the thermal conductivity is a size effect.Systematic measurements of the thermal conductivity of the LLS in high-purity lead and tin are interpreted in terms of the size-effect model. The parameters of the model were experimentally determined in a preliminary study, to enable an unambiguous comparison with the theory. In particular, the geometrical aspects of the structures were studied using a magnetooptical technique. Interesting results on the characteristics of the LLS were obtained. The thermal conductivity data on lead essentially confirm the size-effect description. In tin heat transport by the lamellas of both types takes place, the heat carriers being the electrons (T > or approx. = 1.6 K). The discrepancy between the predictions of the size-effect model and the observed values in tin are attributed to an oversimplified calculation of the contribution of the superconducting lamellas to the conductivity

  11. Intrastromal Corneal Ring Segments for Astigmatism Correction after Deep Anterior Lamellar Keratoplasty

    Directory of Open Access Journals (Sweden)

    Júlio C. D. Arantes

    2017-01-01

    Full Text Available Background. To evaluate the change in corneal astigmatism after intrastromal corneal ring segment (ICRS implantation in keratoconus patients with previous deep anterior lamellar keratoplasty (DALK. Design was a longitudinal, retrospective, interventional study. The study included 25 eyes of 24 patients with keratoconus who had DALK performed at least two years prior to ICRS implantation. All patients had a clear corneal graft with up to 8.00 D of corneal astigmatism and intolerance to contact lenses. The studied parameters were age, sex, corrected distance visual acuity (CDVA, maximum keratometry (K1, minimum keratometry (K2, spherical equivalent, and astigmatism. There was a statistically significant decrease in the postintervention analysis as follows: 3.5 D reduction in K1 (p<0.001; 1.53 D in K2 (p=0.005; and 2.52 D (p<0.001 in the average K. The spherical equivalent reduced from −3.67 D (±2.74 to −0.71 D (±2.35 (p<0.001. The topographic astigmatism reduced from 3.87 D preoperatively to 1.90 D postoperatively (p<0.001. The CDVA improved from 0.33 (±0.10 to 0.20 (±0.09, p<0.001. ICRS implantation is a useful option for the correction of astigmatism after DALK as it yields significant visual, topographic, and refractive results.

  12. Conformational dynamics of dry lamellar crystals of sugar based lipids: an atomistic simulation study.

    Directory of Open Access Journals (Sweden)

    Vijayan ManickamAchari

    Full Text Available The rational design of a glycolipid application (e.g. drug delivery with a tailored property depends on the detailed understanding of its structure and dynamics. Because of the complexity of sugar stereochemistry, we have undertaken a simulation study on the conformational dynamics of a set of synthetic glycosides with different sugar groups and chain design, namely dodecyl β-maltoside, dodecyl β-cellobioside, dodecyl β-isomaltoside and a C12C10 branched β-maltoside under anhydrous conditions. We examined the chain structure in detail, including the chain packing, gauche/trans conformations and chain tilting. In addition, we also investigated the rotational dynamics of the headgroup and alkyl chains. Monoalkylated glycosides possess a small amount of gauche conformers (∼20% in the hydrophobic region of the lamellar crystal (LC phase. In contrast, the branched chain glycolipid in the fluid Lα phase has a high gauche population of up to ∼40%. Rotational diffusion analysis reveals that the carbons closest to the headgroup have the highest correlation times. Furthermore, its value depends on sugar type, where the rotational dynamics of an isomaltose was found to be 11-15% and more restrained near the sugar, possibly due to the chain disorder and partial inter-digitation compared to the other monoalkylated lipids. Intriguingly, the present simulation demonstrates the chain from the branched glycolipid bilayer has the ability to enter into the hydrophilic region. This interesting feature of the anhydrous glycolipid bilayer simulation appears to arise from a combination of lipid crowding and the amphoteric nature of the sugar headgroups.

  13. Impact of nursing home residence on hospital epidemiology of meticillin-resistant Staphylococcus aureus: a perspective from Asia.

    Science.gov (United States)

    Verrall, A; Merchant, R; Dillon, J; Ying, D; Fisher, D

    2013-03-01

    In a Singapore hospital practising meticillin-resistant Staphylococcus aureus (MRSA) admission screening, the relative risk for MRSA colonization for those admitted from nursing homes was 6.89 (95% confidence interval: 5.74-8.26; 41% of 190 vs 6.0% of 14,849). However, the MRSA burden on admission attributable to nursing home residence was low (6.9%). Risk factors independently associated with MRSA colonization in patients admitted from nursing homes were previous hospital admissions, broken skin, prior use of antibiotics and Chinese ethnicity. Low rates of nursing home use means that the overall impact of nursing home residence on MRSA in our hospital is low. Copyright © 2012 The Healthcare Infection Society. Published by Elsevier Ltd. All rights reserved.

  14. Estimation of mountain slope stability depending on ground consistency and slip-slide resistance changes on impact of dynamic forces

    Science.gov (United States)

    Hayroyan, H. S.; Hayroyan, S. H.; Karapetyan, K. A.

    2018-04-01

    In this paper, three types of clayish soils with different consistency and humidity properties and slip-slide resistance indexes are considered on impact of different cyclic shear stresses. The side-surface deformation charts are constructed on the basis of experimental data obtained testing cylindrical soil samples. It is shown that the fluctuation amplitude depends on time and the consistency index depends on the humidity condition in the soil inner contact and the connectivity coefficients. Consequently, each experiment is interpreted. The main result of this research is that it is necessary to make corrections in the currently active schemes of slip-hazardous slopes stability estimation, which is a crucial problem requiring ASAP solution.

  15. Rheophysics of Lamellar Phases Rhéophysiques de phases lamellaires

    Directory of Open Access Journals (Sweden)

    Roux D.

    2006-12-01

    Full Text Available We have developed several techniques to study the effect of shear on complex fluids. These techniques are based on shear cells specially adapted to scattering techniques or transport properties. A brief description of the cells will be given together with the results that can be obtained using these techniques. Exemples on lyotropic systems will be detailed. The effect of shear on lyotropic lamellar phases is studied by light scattering, neutron scattering and microscopic observations. We found three different states of orientation separated with out-of-equilibrium transitions. In the state at very low shear rate, the lamellar phase is, in average, oriented with the layers in the shear plane and a few dislocations remains in the direction of the flow. In the intermediate state, the layers organize themselves into monodisperse multilayer vesicles (MLV whose size is controlled by the shear rate. The last state corresponds to the same orientation than the first one but with no dislocations in the flow direction. The second state of orientation : leading to the MLV structure, is more precisely studied. It is shown that the size of the MLV is fixed by a balance between the viscous and elastic stresses and varies as the inverse square root of the shear rate. A possible mechanism for the formation of this structure is proposed. We show that this structure can be swollen in a solvent leading to a monodisperse emulsion of a lamellar structure in an isotropic liquid. Linear and nonlinear rheological properties are measured and discussed. It is shown that the viscosity is sensitive to the structure and varies of several order of magnitude depending in which phase of orientation the system is. Both shear thickening and shear thinning are described and explanations in terms or orientation transitions are given. The discovery of the oriented to MLV instability is the basis a very efficient process leading to well controlled microcapsules made of surfactant

  16. Impact of restricted amoxicillin/clavulanic acid use on Escherichia coli resistance--antibiotic DU90% profiles with bacterial resistance rates: a visual presentation.

    Science.gov (United States)

    Mimica Matanovic, Suzana; Bergman, Ulf; Vukovic, Dubravka; Wettermark, Björn; Vlahovic-Palcevski, Vera

    2010-10-01

    High use of amoxicillin/clavulanic acid (AMC) at the University Hospital Osijek (Croatia) contributed to high rates of resistance in Enterobacteriaceae, in particular Escherichia coli (50%). Thus, in order to decrease bacterial resistance, AMC use was restricted. We present results of the restriction on resistance amongst antibiotics accounting for 90% of antibiotic use [drug utilisation 90% (DU90%)]. Data were analysed on antibiotic use and microbiological susceptibility of E. coli during two 9-month periods, before and after the restriction of AMC use. Drug use was presented as numbers of defined daily doses (DDDs) and DDDs/100 bed-days. Resistance of E. coli to antibiotics was presented as percentages of isolated strains in the DU90% segment. Use of AMC was 16 DDDs/100 bed-days or 30% of all antibiotics before the intervention. Use of AMC fell to 2 DDDs/100 bed-days or 4% after the intervention, and resistance of E. coli fell from 37% to 11%. In conclusion, restricted use of AMC resulted in a significant decrease of E. coli resistance. DU90% resistance profiles are simple and useful tools in highlighting problems in antibiotic use and resistance but may also be useful in long-term follow-up of antibiotic policy. Copyright 2010 Elsevier B.V. and the International Society of Chemotherapy. All rights reserved.

  17. Non-genetic impact factors on chronological lifespan and stress resistance of baker’s yeast

    Directory of Open Access Journals (Sweden)

    Michael Sauer

    2016-04-01

    Full Text Available Survival under nutrient limitation is an essential feature of microbial cells, and it is defined by the chronological lifespan. We summarize recent findings, illustrating how crucial the choice of the experimental setup is for the interpretation of data in this field. Especially the impact of oxygen supply differs depending on the culture type, highlighting the differences of alternatives like the retentostat to classical batch cultures. Finally the importance of culture conditions on cell aging and survival in biotechnological processes is highlighted.

  18. Smoking impact on grip strength and fatigue resistance: implications for exercise and hand therapy practice.

    Science.gov (United States)

    Al-Obaidi, Saud; Al-Sayegh, Nowall; Nadar, Mohammed

    2014-07-01

    Grip strength assessment reflects on overall health of the musculoskeletal system and is a predictor of functional prognosis and mortality. The purpose of this study was: examine whether grip-strength and fatigue resistance are impaired in smokers, determine if smoking-related impairments (fatigue-index) can be predicted by demographic data, duration of smoking, packets smoked-per-day, and physical activity. Maximum isometric grip strength (MIGS) of male smokers (n = 111) and nonsmokers (n = 66) was measured before/after induced fatigue using Jamar dynamometer at 5-handle positions. Fatigue index was calculated based on percentage change in MIGS initially and after induced fatigue. Number of repetitions to squeeze the soft rubber ball to induce fatigue was significantly lower in smokers compared with nonsmokers (t = 10.6, P smoking status on MIGS scores was significantly different between smokers and nonsmokers after induced fatigue (β = -3.98, standard error = 0.59, P Smoking status was the strongest significant independent predictor of the fatigue-index. Smokers demonstrated reduced grip strength and fast fatigability in comparison with nonsmokers.

  19. Impact of ac/dc spark anodizing on the corrosion resistance of Al-Cu alloys

    Energy Technology Data Exchange (ETDEWEB)

    Alsrayheen, Enam, E-mail: ealsrayh@ucalgary.ca [Department of Chemistry, University of Calgary, 2500 University Drive NW, Calgary AB, T2N 1N4 (Canada); McLeod, Eric, E-mail: hmolero@ucalgary.ca [Department of Chemistry, University of Calgary, 2500 University Drive NW, Calgary AB, T2N 1N4 (Canada); Rateick, Richard, E-mail: richard.rateick@honeywell.com [Department of Chemistry, University of Calgary, 2500 University Drive NW, Calgary AB, T2N 1N4 (Canada); Molero, Hebert, E-mail: Eric.McLeod@stmu.ab.ca [Department of Chemistry, University of Calgary, 2500 University Drive NW, Calgary AB, T2N 1N4 (Canada); Birss, Viola, E-mail: birss@ucalgary.ca [Department of Chemistry, University of Calgary, 2500 University Drive NW, Calgary AB, T2N 1N4 (Canada)

    2011-07-01

    An ac/dc spark anodization method was used to deposit an oxide film (6 {+-} 3 {mu}m in thickness) on the Al-Cu alloy AA2219. The oxide films were formed at 10 mA/cm{sup 2} for 30 min in an alkaline silicate solution, showing three main stages of growth. Scanning electron microscopy and electron microprobe analysis revealed that the oxide films are not uniform and consist of three main layers, an inner Al-rich barrier layer ({approx}1 {mu}m), an intermediate Al-Si mixed oxide layer ({approx}2 {+-} 1 {mu}m), and an outer porous Si-rich layer ({approx}3 {+-} 3 {mu}m). In addition, microscopic analysis showed that the Al{sub 2}Cu intermetallics present in the alloy have not been excessively oxidized during the anodization process and thus are retained beneath the oxide film, as desired. The coating passivity and corrosion resistance, evaluated using linear sweep voltammetry (LSV) in pH 7 borate buffer solution and electrochemical impedance spectroscopy (EIS) in 0.86 M NaCl solution, respectively, were both significantly improved after spark-anodization.

  20. In vivo non-thermal irreversible electroporation impact on rat liver galvanic apparent internal resistance

    International Nuclear Information System (INIS)

    Golberg, A; Laufer, S; Rabinowitch, H D; Rubinsky, B

    2011-01-01

    Non-thermal irreversible electroporation (NTIRE) is a biophysical phenomenon which involves application of electric field pulses to cells or tissues, causing certain rearrangements in the membrane structure leading to cell death. The treated tissue ac impedance changes induced by electroporation were shown to be the indicators for NTIRE efficiency. In a previous study we characterized in vitro tissue galvanic apparent internal resistance (GAIR) changes due to NTIRE. Here we describe an in vivo study in which we monitored the GAIR changes of a rat liver treated by NTIRE. Electrical pulses were delivered through the same Zn/Cu electrodes by which GAIR was measured. GAIR was measured before and for 3 h after the treatment at 15 min intervals. The results were compared to the established ac bioimpedance measurement method. A decrease of 33% was measured immediately after the NTIRE treatment and a 40% decrease was measured after 3 h in GAIR values; in the same time 40% and 47% decrease respectively were measured by ac bioimpedance analyses. The temperature increase due to the NTIRE was only 0.5 deg. C. The results open the way for an inexpensive, self-powered in vivo real-time NTIRE effectiveness measurement.

  1. Impact of the Residual Resistivity Ratio on the Stability of Nb$_{3}$Sn Magnets

    CERN Document Server

    Bordini, B; Oberli, L; Rossi, L; Takala, E

    2012-01-01

    The CERN Large Hadron Collider (LHC) is envisioned to be upgraded in 2020 to increase the luminosity of the machine. The major upgrade will consist in replacing the NbTi quadrupole magnets of the interaction regions with larger aperture magnets. The Nb$_{3}$Sn technology is the preferred option for this upgrade. The critical current density Jc of Nb$_{3}$Sn strands have reached sufficiently high values (in excess of 3000 A/mm2 at 12 T and 4.2 K) allowing larger aperture/stronger field magnets. Nevertheless, such large Jc values may cause magneto-thermal instabilities that can drastically reduce the conductor performance by quenching the superconductor prematurely. In Nb$_{3}$Sn magnets, a relevant parameter for preventing premature quenches induced by magneto-thermal instabilities is the Residual Resistivity Ratio (RRR) of the conductor stabilizing copper. An experimental and theoretical study was carried out to investigate how much the value of the RRR affects the magnet stability and to identify the proper ...

  2. In vivo non-thermal irreversible electroporation impact on rat liver galvanic apparent internal resistance

    Energy Technology Data Exchange (ETDEWEB)

    Golberg, A; Laufer, S [Center for Bioengineering in the Service of Humanity and Society, School of Computer Science and Engineering, Hebrew University of Jerusalem, Jerusalem 91904 (Israel); Rabinowitch, H D [Robert H Smith Faculty of Agriculture, Food and Environment, Robert H Smith Institute of Plant Science and Genetics in Agriculture, Hebrew University of Jerusalem, Rehovot 76 100 (Israel); Rubinsky, B, E-mail: Rabin@agri.huji.ac.il [Department of Mechanical Engineering, Graduate Program in Biophysics, University of California at Berkeley, Berkeley, CA 84720 (United States)

    2011-02-21

    Non-thermal irreversible electroporation (NTIRE) is a biophysical phenomenon which involves application of electric field pulses to cells or tissues, causing certain rearrangements in the membrane structure leading to cell death. The treated tissue ac impedance changes induced by electroporation were shown to be the indicators for NTIRE efficiency. In a previous study we characterized in vitro tissue galvanic apparent internal resistance (GAIR) changes due to NTIRE. Here we describe an in vivo study in which we monitored the GAIR changes of a rat liver treated by NTIRE. Electrical pulses were delivered through the same Zn/Cu electrodes by which GAIR was measured. GAIR was measured before and for 3 h after the treatment at 15 min intervals. The results were compared to the established ac bioimpedance measurement method. A decrease of 33% was measured immediately after the NTIRE treatment and a 40% decrease was measured after 3 h in GAIR values; in the same time 40% and 47% decrease respectively were measured by ac bioimpedance analyses. The temperature increase due to the NTIRE was only 0.5 deg. C. The results open the way for an inexpensive, self-powered in vivo real-time NTIRE effectiveness measurement.

  3. Impact of Insulin Resistance on Silent and Ongoing Myocardial Damage in Normal Subjects: The Takahata Study

    Directory of Open Access Journals (Sweden)

    Taro Narumi

    2012-01-01

    Full Text Available Background. Insulin resistance (IR is part of the metabolic syndrome (Mets that develops after lifestyle changes and obesity. Although the association between Mets and myocardial injury is well known, the effect of IR on myocardial damage remains unclear. Methods and Results. We studied 2200 normal subjects who participated in a community-based health check in the town of Takahata in northern Japan. The presence of IR was assessed by homeostasis model assessment ratio, and the serum level of heart-type fatty acid binding protein (H-FABP was measured as a maker of silent and ongoing myocardial damage. H-FABP levels were significantly higher in subjects with IR and Mets than in those without metabolic disorder regardless of gender. Multivariate logistic analysis showed that the presence of IR was independently associated with latent myocardial damage (odds ratio: 1.574, 95% confidence interval 1.1–2.3 similar to the presence of Mets. Conclusions. In a screening of healthy subjects, IR and Mets were similarly related to higher H-FABP levels, suggesting that there may be an asymptomatic population in the early stages of metabolic disorder that is exposed to myocardial damage and might be susceptible to silent heart failure.

  4. IMPACT OF ANGIOTENSIN-CONVERTING ENZYME GENE POLYMORPHISM ON THE DEVELOPMENT OF INSULIN RESISTANCE SYNDROME

    Directory of Open Access Journals (Sweden)

    G. E. Roitberg

    2013-01-01

    Full Text Available Objective: to analyze the distribution of components of insulin resistance (IR syndrome and to study the frequency of their combinations in relation to the genotypes and allelic variants of the angiotensin-converting enzyme (ACE gene.Subjects and methods. A group of clinically healthy patients (50 women and 42 men with different genotypes of the ACE gene was examined.The distribution of IR syndrome components and the frequency of their combinations were analyzed in relation to the genotypes and allelicvariants of the ACE gene.Results. A group of D allele carriers compared to A allele ones showed a pronounced tendency for the frequency of IR to reduce due to thehigher proportion of patients with complete IR syndrome. This observation becomes statistically significant in the assessment of homozygous variants of the ACE gene. At the same time dyslipidemia and hypertension in the presence of IR significantly more frequently occurred in patients with the DD genotype than in those with genotype II.Conclusion. There was a marked predominance of the manifestations of IR syndrome with a complete set of components in the DD genotypicgroup, which confirms the significant strong association between ACE gene polymorphism and IR syndrome.

  5. Impact Assessment of Atmospheric Dust on Foliage Pigments and Pollution Resistances of Plants Grown Nearby Coal Based Thermal Power Plants.

    Science.gov (United States)

    Hariram, Manisha; Sahu, Ravi; Elumalai, Suresh Pandian

    2018-01-01

    Plant species grown in the vicinity of thermal power plants (TPP) are one of the immobile substrates to sink most of the pollutants emitted from their stacks. The continuous exposure of toxic pollutants to these plants may affect their resistances and essential biochemical's concentrations. In the present study, we estimated the impact of dust load generated by a TPPs to plant's dust retention capacity and pollution resistances (APTI and API). The observed ambient air quality index (AQI) showed that the surroundings of TPPs are in the severe air pollution category. Observed AQI was greater than 100 in the surrounding area of TPP. The mean dust load on plant foliage was significantly greater in the polluted site compared with the control site: 4.45 ± 1.96 versus 1.38 ± 0.41 mg cm -2 . Nearby, TPP highest and lowest dust load were founded in F. benghalensis (7.58 ± 0.74) and F. religiosa (2.25 ± 0.12 mg cm -2 ) respectively. Analysis revealed the strong negative correlation between dust load and essential pigments of foliage, such as chlorophyll content, carotenoids, pH of foliage extract, and relative water content. Conversely, strong positive correlation was observed with the ascorbic acid content of plant species. Correlation and percentage change analysis in ascorbic acid content for the polluted site against the control site showed the adverse impact on plants due to dust load. Based on their responses to dust pollution, A. scholaris, P. longifolia, and M. indica were observed as most suitable plant species. Estimation of DRC, chlorophyll a/b ratio, APTI and API revealed the A. scholaris, F. benghalensis, P. longifolia, and M. indica as the most suitable plant species for green belt formation. The high gradation was obtained in A. scholaris, F. benghalensis, P. longifolia, and M. indica for opted parameters and showed their most suitability for green belt formation. Salient features of the present study provide useful evidences to estimate the

  6. Impact of manure fertilization on the abundance of antibiotic-resistant bacteria and frequency of detection of antibiotic resistance genes in soil and on vegetables at harvest.

    Science.gov (United States)

    Marti, Romain; Scott, Andrew; Tien, Yuan-Ching; Murray, Roger; Sabourin, Lyne; Zhang, Yun; Topp, Edward

    2013-09-01

    Consumption of vegetables represents a route of direct human exposure to bacteria found in soil. The present study evaluated the complement of bacteria resistant to various antibiotics on vegetables often eaten raw (tomato, cucumber, pepper, carrot, radish, lettuce) and how this might vary with growth in soil fertilized inorganically or with dairy or swine manure. Vegetables were sown into field plots immediately following fertilization and harvested when of marketable quality. Vegetable and soil samples were evaluated for viable antibiotic-resistant bacteria by plate count on Chromocult medium supplemented with antibiotics at clinical breakpoint concentrations. DNA was extracted from soil and vegetables and evaluated by PCR for the presence of 46 gene targets associated with plasmid incompatibility groups, integrons, or antibiotic resistance genes. Soil receiving manure was enriched in antibiotic-resistant bacteria and various antibiotic resistance determinants. There was no coherent corresponding increase in the abundance of antibiotic-resistant bacteria enumerated from any vegetable grown in manure-fertilized soil. Numerous antibiotic resistance determinants were detected in DNA extracted from vegetables grown in unmanured soil. A smaller number of determinants were additionally detected on vegetables grown only in manured and not in unmanured soil. Overall, consumption of raw vegetables represents a route of human exposure to antibiotic-resistant bacteria and resistance determinants naturally present in soil. However, the detection of some determinants on vegetables grown only in freshly manured soil reinforces the advisability of pretreating manure through composting or other stabilization processes or mandating offset times between manuring and harvesting vegetables for human consumption.

  7. Impact of reclaimed water irrigation on antibiotic resistance in public parks, Beijing, China

    International Nuclear Information System (INIS)

    Wang, Feng-Hua; Qiao, Min; Lv, Zhen-E; Guo, Guang-Xia; Jia, Yan; Su, Yu-Hong; Zhu, Yong-Guan

    2014-01-01

    The abundance and distribution of antibiotics and antibiotic resistance genes (ARGs) in soils from six parks using reclaimed water in Beijing, China, were characterized. Three classes of commonly used antibiotics (tetracycles, quinolones, and sulfonamides) were analyzed by liquid chromatography-tandem mass spectrometry (LC-MS/MS). The highest concentrations of tetracyclines and quinolones were 145.2 μg kg −1 and 79.2 μg kg −1 , respectively. Detected tetG, tetW, sulI, and sulII genes were quantified by quantitative PCR. ARGs exhibited various abundances for different park soils. The integrase gene (intI1) as an indicator of horizontal gene transfer potential was also detected in high abundance, and had significant positive correlation with tetG, sulI, and sulII genes, suggesting that intI1 may be involved in ARGs dissemination. Both sulII and intI1 clones had high homology with some classes of pathogenic bacteria, such as Klebsiella oxytoca, Acinetobacter baumannii, Shigella flexneri, which could trigger potential public health concern. Highlights: • Reclaimed water irrigation could increase the concentration of antibiotics and ARGs in urban park soils. • ARGs can be persistent in the irrigated park soils, even without antibiotic selection pressure. • Both sulII and intI1 clones had high homology with some classes of pathogenic bacteria. -- The release of residual antibiotics and ARGs from reclaimed water could result in the proliferation of ARGs in irrigated park soils

  8. The impact of transsphenoidal surgery on glucose homeostasis and insulin resistance in acromegaly.

    Science.gov (United States)

    Stelmachowska-Banaś, Maria; Zieliński, Grzegorz; Zdunowski, Piotr; Podgórski, Jan; Zgliczyński, Wocjiech

    2011-01-01

    Impaired glucose tolerance and overt diabetes mellitus are frequently associated with acro-megaly. The aim of this study was to find out whether these alterations could be reversed after transsphenoidal surgery. Two hundred and thirty-nine acromegalic patients were studied before and 6-12 months after transsphenoidal surgery. Diagnosis of active acromegaly was established on the basis of widely recognized criteria. In each patient, glucose and insulin concentrations were assessed during the 75 γ oral glucose tolerance test (OGTT). To estimate insulin resistance, we used homeostasis model assessment (HOMA-IR) and the quantitative insulin sensitivity check index (QUICKI). At the moment of diagnosis, diabetes mellitus was present in 25% of the acromegalic patients. After surgery, the pre-valence of diabetes mellitus normalized to the level present in the general Polish population. We found a statistically significant reduction after surgery in plasma glucose levels both fasting (89.45 ± 13.92 mg/dL vs. 99.12 ± 17.33 mg/dL, p surgery compared to the moment of diagnosis (15.44 ± 8.80 mIU/mL vs. 23.40 ± 10.24 mIU/mL, p transsphenoidal surgery, there was a significant reduction in HOMA-IR (3.08 vs. 6.76, p surgery in fasting glucose and insulin levels between patients with controlled and in-adequately controlled disease. We conclude that in acromegalic patients glucose homeostasis alterations and insulin sensitivity can be normalized after transsphenoidal surgery, even if strict biochemical cure criteria are not fulfilled.

  9. Femtosecond laser-assisted deep anterior lamellar keratoplasty in phototherapeutic keratectomy versus the big-bubble technique in keratoconus

    Directory of Open Access Journals (Sweden)

    Jarbas Pereira de Macedo

    2018-05-01

    Full Text Available AIM: To compare the functional and anatomic results of femtosecond laser (FSL-assisted deep anterior lamellar keratoplasty (DALK associated with phototherapeutic keratectomy (PTK and FSL-assisted DALK performed using the big-bubble technique in keratoconus. METHODS: During the first phase of the study, an electron microscopy histopathology pilot study was conducted that included four unsuitable donor corneas divided into two groups: in FSL group, FSL lamellar cuts were performed on two corneas and in FSL+PTK group, PTK was performed at the stromal beds of two corneas after FSL lamellar cuts were made. During the second phase of the study, a randomized clinical trial was conducted that included two treatment groups of patients with keratoconus: group 1 (n=14 eyes underwent FSL-assisted DALK associated with PTK and group 2 (n=12 eyes underwent FSL-assisted DALK associated with the big-bubble technique. The main outcome measures were the postoperative visual acuity (VA and optical coherence tomography (OCT measurements, confocal microscopic findings, and contrast sensitivity. RESULTS: In the pilot study, histopathology showed a more regular stromal bed in the FSL+PTK group. In the clinical trial, group 1 had significantly worse best spectacle-corrected VA and contrast sensitivity (P<0.05 for both comparisons. The residual stromal bed measured by OCT was significantly (P<0.05 thicker in group 1. Confocal microscopy detected opacities only at the donor-receptor interface in group 1. CONCLUSION: Patients with keratoconus treated with FSL-assisted DALK performed using the big-bubble technique fare better than treated with FSL-assisted DALK associated with PTK.

  10. Simultaneous topography-guided PRK followed by corneal collagen cross-linking after lamellar keratoplasty for keratoconus

    Directory of Open Access Journals (Sweden)

    Spadea L

    2012-11-01

    Full Text Available Leopoldo Spadea,1 Marino Paroli21University of L’Aquila, Department of Biotechnological and Applied Clinical Sciences, Eye Clinic, L’Aquila, 2La Sapienza University, Department of Biotechnology and Medical-Surgical Sciences, Latina, ItalyBackground: The purpose of this paper is to report the results of using combined treatment of customized excimer laser-assisted photorefractive keratectomy (PRK and prophylactic corneal collagen crosslinking (CXL for residual refractive error in a group of patients who had previously undergone lamellar keratoplasty for keratoconus.Methods: The study included 14 eyes from 14 patients who had originally been treated for keratoconus in one eye by excimer laser-assisted lamellar keratoplasty (ELLK, and subsequently presented with residual ametropia (-6.11 D ± 2.48, range -2.50 to -9.50. After a mean 40.1 ± 12.4 months since ELLK they underwent combined simultaneous corneal regularization treatment with topographically guided transepithelial excimer laser PRK (central corneal regularization and corneal CXL induced by riboflavin-ultraviolet A.Results: After a mean 15 ± 6.5 (range 6–24 months, all eyes gained at least one Snellen line of uncorrected distance visual acuity (range 1–10. No patient lost lines of corrected distance visual acuity, and four patients gained three lines of corrected distance visual acuity. Mean manifest refractive spherical equivalent was -0.79 ± 2.09 (range +1 to -3.0 D, and topographic keratometric astigmatism was 5.02 ± 2.93 (range 0.8–8.9 D. All the corneas remained clear (haze < 1.Conclusion: The combination of customized PRK and corneal CXL provided safe and effective results in the management of corneal regularization for refractive purposes after ELLK for keratoconus.Keywords: corneal collagen crosslinking, excimer laser-assisted lamellar keratoplasty, photorefractive keratectomy

  11. Queratitis lamelar difusa después de un corte incompleto Diffuse lamellar keratitis after incomplete corneal flap cut

    Directory of Open Access Journals (Sweden)

    Yanaisa Riverón Ruiz

    2012-12-01

    Full Text Available La queratitis lamelar difusa es una inflamación estéril de la interfase lamelar que suele presentarse 24 horas después de la realización de la queratomileusis in situ asistida con láser y potencialmente puede comprometer la agudeza visual final. Se presenta un paciente de 25 años de edad con antecedentes de cirugía refractiva corneal mediante queratomileusis in situ con láser en el ojo derecho, que tuvo como complicación durante el acto quirúrgico un corte incompleto. En el posoperatorio inmediato se le diagnosticó una queratitis lamelar difusa. Se aplicó tratamiento local y se obtuvo la recuperación visual total del paciente con estabilidad del defecto refractivo. Esto permite posteriormente realizarle la corrección mediante cirugía refractiva de superficie.The diffuse lamellar keratitis is a sterile swelling of the lamellar interface which arises generally 24 hours after laser in situ keratomileusis and might affect the final visual acuity. A 25 years- old patient with history of corneal refractive surgery by laser in situ keratomileusis on his right eye was reported. He suffered from an incomplete corneal flap cut as complication during the surgical procedure, and a diffuse lamellar keratitis was detected at the immediate postsurgical visit. Total visual recovery and the refractive defect stability were attained through local treatment. This allows further correcting the defect by means of a surface refractive surgery in the future.

  12. The ultra-structural organization of the elastic network in the intra- and inter-lamellar matrix of the intervertebral disc.

    Science.gov (United States)

    Tavakoli, J; Elliott, D M; Costi, J J

    2017-08-01

    The inter-lamellar matrix (ILM)-located between adjacent lamellae of the annulus fibrosus-consists of a complex structure of elastic fibers, while elastic fibers of the intra-lamellar region are aligned predominantly parallel to the collagen fibers. The organization of elastic fibers under low magnification, in both inter- and intra-lamellar regions, was studied by light microscopic analysis of histologically prepared samples; however, little is known about their ultrastructure. An ultrastructural visualization of elastic fibers in the inter-lamellar matrix is crucial for describing their contribution to structural integrity, as well as mechanical properties of the annulus fibrosus. The aims of this study were twofold: first, to present an ultrastructural analysis of the elastic fiber network in the ILM and intra-lamellar region, including cross section (CS) and in-plane (IP) lamellae, of the AF using Scanning Electron Microscopy (SEM) and second, to -compare the elastic fiber orientation between the ILM and intra-lamellar region. Four samples (lumbar sheep discs) from adjacent sections (30μm thickness) of anterior annulus were partially digested by a developed NaOH-sonication method for visualization of elastic fibers by SEM. Elastic fiber orientation and distribution were quantified relative to the tangential to circumferential reference axis. Visualization of the ILM under high magnification revealed a dense network of elastic fibers that has not been previously described. Within the ILM, elastic fibers form a complex network, consisting of different size and shape fibers, which differed to those located in the intra-lamellar region. For both regions, the majority of fibers were oriented near 0° with respect to tangential to circumferential (TCD) direction and two minor symmetrical orientations of approximately±45°. Statistically, the orientation of elastic fibers between the ILM and intra-lamellar region was not different (p=0.171). The present study used

  13. Impact of transgenic wheat with wheat yellow mosaic virus resistance on microbial community diversity and enzyme activity in rhizosphere soil.

    Science.gov (United States)

    Wu, Jirong; Yu, Mingzheng; Xu, Jianhong; Du, Juan; Ji, Fang; Dong, Fei; Li, Xinhai; Shi, Jianrong

    2014-01-01

    The transgenic wheat line N12-1 containing the WYMV-Nib8 gene was obtained previously through particle bombardment, and it can effectively control the wheat yellow mosaic virus (WYMV) disease transmitted by Polymyxa graminis at turngreen stage. Due to insertion of an exogenous gene, the transcriptome of wheat may be altered and affect root exudates. Thus, it is important to investigate the potential environmental risk of transgenic wheat before commercial release because of potential undesirable ecological side effects. Our 2-year study at two different experimental locations was performed to analyze the impact of transgenic wheat N12-1 on bacterial and fungal community diversity in rhizosphere soil using polymerase chain reaction-denaturing gel gradient electrophoresis (PCR-DGGE) at four growth stages (seeding stage, turngreen stage, grain-filling stage, and maturing stage). We also explored the activities of urease, sucrase and dehydrogenase in rhizosphere soil. The results showed that there was little difference in bacterial and fungal community diversity in rhizosphere soil between N12-1 and its recipient Y158 by comparing Shannon's, Simpson's diversity index and evenness (except at one or two growth stages). Regarding enzyme activity, only one significant difference was found during the maturing stage at Xinxiang in 2011 for dehydrogenase. Significant growth stage variation was observed during 2 years at two experimental locations for both soil microbial community diversity and enzyme activity. Analysis of bands from the gel for fungal community diversity showed that the majority of fungi were uncultured. The results of this study suggested that virus-resistant transgenic wheat had no adverse impact on microbial community diversity and enzyme activity in rhizosphere soil during 2 continuous years at two different experimental locations. This study provides a theoretical basis for environmental impact monitoring of transgenic wheat when the introduced gene is

  14. Impact of transgenic wheat with wheat yellow mosaic virus resistance on microbial community diversity and enzyme activity in rhizosphere soil.

    Directory of Open Access Journals (Sweden)

    Jirong Wu

    Full Text Available The transgenic wheat line N12-1 containing the WYMV-Nib8 gene was obtained previously through particle bombardment, and it can effectively control the wheat yellow mosaic virus (WYMV disease transmitted by Polymyxa graminis at turngreen stage. Due to insertion of an exogenous gene, the transcriptome of wheat may be altered and affect root exudates. Thus, it is important to investigate the potential environmental risk of transgenic wheat before commercial release because of potential undesirable ecological side effects. Our 2-year study at two different experimental locations was performed to analyze the impact of transgenic wheat N12-1 on bacterial and fungal community diversity in rhizosphere soil using polymerase chain reaction-denaturing gel gradient electrophoresis (PCR-DGGE at four growth stages (seeding stage, turngreen stage, grain-filling stage, and maturing stage. We also explored the activities of urease, sucrase and dehydrogenase in rhizosphere soil. The results showed that there was little difference in bacterial and fungal community diversity in rhizosphere soil between N12-1 and its recipient Y158 by comparing Shannon's, Simpson's diversity index and evenness (except at one or two growth stages. Regarding enzyme activity, only one significant difference was found during the maturing stage at Xinxiang in 2011 for dehydrogenase. Significant growth stage variation was observed during 2 years at two experimental locations for both soil microbial community diversity and enzyme activity. Analysis of bands from the gel for fungal community diversity showed that the majority of fungi were uncultured. The results of this study suggested that virus-resistant transgenic wheat had no adverse impact on microbial community diversity and enzyme activity in rhizosphere soil during 2 continuous years at two different experimental locations. This study provides a theoretical basis for environmental impact monitoring of transgenic wheat when the

  15. The Potential Impact of Up-Front Drug Sensitivity Testing on India's Epidemic of Multi-Drug Resistant Tuberculosis.

    Directory of Open Access Journals (Sweden)

    Kuldeep Singh Sachdeva

    Full Text Available In India as elsewhere, multi-drug resistance (MDR poses a serious challenge in the control of tuberculosis (TB. The End TB strategy, recently approved by the world health assembly, aims to reduce TB deaths by 95% and new cases by 90% between 2015 and 2035. A key pillar of this approach is early diagnosis of tuberculosis, including use of higher-sensitivity diagnostic testing and universal rapid drug susceptibility testing (DST. Despite limitations of current laboratory assays, universal access to rapid DST could become more feasible with the advent of new and emerging technologies. Here we use a mathematical model of TB transmission, calibrated to the TB epidemic in India, to explore the potential impact of a major national scale-up of rapid DST. To inform key parameters in a clinical setting, we take GeneXpert as an example of a technology that could enable such scale-up. We draw from a recent multi-centric demonstration study conducted in India that involved upfront Xpert MTB/RIF testing of all TB suspects.We find that widespread, public-sector deployment of high-sensitivity diagnostic testing and universal DST appropriately linked with treatment could substantially impact MDR-TB in India. Achieving 75% access over 3 years amongst all cases being diagnosed for TB in the public sector alone could avert over 180,000 cases of MDR-TB (95% CI 44187 - 317077 cases between 2015 and 2025. Sufficiently wide deployment of Xpert could, moreover, turn an increasing MDR epidemic into a diminishing one. Synergistic effects were observed with assumptions of simultaneously improving MDR-TB treatment outcomes. Our results illustrate the potential impact of new and emerging technologies that enable widespread, timely DST, and the important effect that universal rapid DST in the public sector can have on the MDR-TB epidemic in India.

  16. The application of Lorentz transmission electron microscopy to the study of lamellar magnetism in hematite-ilmenite

    DEFF Research Database (Denmark)

    Kasama, Takeshi; Dunin-Borkowski, Rafal E.; Asaka, T

    2009-01-01

    . However, the magnitude of the experimental contrast is higher than that in the simulations, suggesting that an alternative origin for the observed asymmetry cannot be ruled out. Electron tomography was used to show that the lamellae have lens-like shapes and that (001) planes make up a significant...... in hematite. The likelihood that lamellar magnetism may be responsible for this contrast is assessed using simulations that incorporate interfacial magnetic moments on the (001) basal planes of hematite and ilmenite. The simulations suggest qualitatively that the asymmetric contrast is magnetic in origin...

  17. Small-angle neutron scattering investigation of the chain conformation of lamellar polystyrene/isoprene phase in solid state

    International Nuclear Information System (INIS)

    Constantinescu, L.M.

    1994-01-01

    Small-angle neutron scattering has been used in the study of chain conformation of lamellar styrene/isoprene block copolymers oriented in large single crystals. The radius of gyration of deuterated polystyrene chains around the normal to the interface has been measured. By comparing this direct evolution of the lateral dimension of the chains with the average chain separation given by the molecular area (the surface available at the interface for each covalent bond linking the blocks together) we characterized the transverse interpenetration degree of the chains. The polystyrene chains are displayed in simple strata own micro-domains, without an important interpenetration. (Author) 9 Figs., 2 Tabs., 25 Refs

  18. Fishnet statistics for probabilistic strength and scaling of nacreous imbricated lamellar materials

    Science.gov (United States)

    Luo, Wen; Bažant, Zdeněk P.

    2017-12-01

    Similar to nacre (or brick masonry), imbricated (or staggered) lamellar structures are widely found in nature and man-made materials, and are of interest for biomimetics. They can achieve high defect insensitivity and fracture toughness, as demonstrated in previous studies. But the probability distribution with a realistic far-left tail is apparently unknown. Here, strictly for statistical purposes, the microstructure of nacre is approximated by a diagonally pulled fishnet with quasibrittle links representing the shear bonds between parallel lamellae (or platelets). The probability distribution of fishnet strength is calculated as a sum of a rapidly convergent series of the failure probabilities after the rupture of one, two, three, etc., links. Each of them represents a combination of joint probabilities and of additive probabilities of disjoint events, modified near the zone of failed links by the stress redistributions caused by previously failed links. Based on previous nano- and multi-scale studies at Northwestern, the strength distribution of each link, characterizing the interlamellar shear bond, is assumed to be a Gauss-Weibull graft, but with a deeper Weibull tail than in Type 1 failure of non-imbricated quasibrittle materials. The autocorrelation length is considered equal to the link length. The size of the zone of failed links at maximum load increases with the coefficient of variation (CoV) of link strength, and also with fishnet size. With an increasing width-to-length aspect ratio, a rectangular fishnet gradually transits from the weakest-link chain to the fiber bundle, as the limit cases. The fishnet strength at failure probability 10-6 grows with the width-to-length ratio. For a square fishnet boundary, the strength at 10-6 failure probability is about 11% higher, while at fixed load the failure probability is about 25-times higher than it is for the non-imbricated case. This is a major safety advantage of the fishnet architecture over particulate

  19. Confocal microscopy findings in deep anterior lamellar keratoplasty performed after Descemet's stripping automated endothelial keratoplasty

    Directory of Open Access Journals (Sweden)

    Pang A

    2014-01-01

    Full Text Available Audrey Pang,1,2 Karim Mohamed-Noriega,1 Anita S Chan,1,3–5 Jodbhir S Mehta1,3 1Singapore National Eye Centre, 2Department of Ophthalmology, Tan Tock Seng Hospital, 3Singapore Eye Research Institute, 4Department of Histopathology, Pathology, Singapore General Hospital, 5Department of Ophthalmology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore Background: This study describes the in vivo confocal microscopy findings in two patients who had deep anterior lamellar keratoplasty (DALK following Descemet's stripping automated endothelial keratoplasty (DSAEK. Methods: The study reviewed the cases of two patients who first underwent DSAEK followed by DALK when their vision failed to improve due to residual stromal scarring. In the first case, a DSAEK was performed for a patient with pseudophakic bullous keratopathy. After surgery, the patient's vision failed to improve satisfactorily due to residual anterior stromal opacity and irregularity. Subsequently, the patient underwent a DALK. The same two consecutive operations were performed for a second patient with keratoconus whose previous penetrating keratoplasty had failed and had secondary graft ectasia. In vivo confocal microscopy was performed 2 months after the DALK surgery in both cases. Results: At 3 months after DALK, the best-corrected visual acuity was 6/30 in case 1 and 6/24 in case 2. In vivo confocal microscopy in both cases revealed the presence of quiescent keratocytes in the stroma layers of the DSAEK and DALK grafts, which was similar in the central and peripheral cornea. There was no activated keratocytes or haze noted in the interface between the grafts. Conclusion: Our short-term results show that performing a DALK after a DSAEK is an effective way of restoring cornea clarity in patients with residual anterior stromal opacity. In vivo confocal microscopy showed that there were no activated keratocytes seen in the interface of the grafts, which suggests

  20. Standard Test Method for Impact Resistance of Monolithic Polycarbonate Sheet by Means of a Falling Weight

    CERN Document Server

    American Society for Testing and Materials. Philadelphia

    1995-01-01

    1.1 This test method covers the determination of the energy required to initiate failure in monolithic polycarbonate sheet material under specified conditions of impact using a free falling weight. 1.2 Two specimen types are defined as follows: 1.2.1 Type A consists of a flat plate test specimen and employs a clamped ring support. 1.2.2 Type B consists of a simply supported three-point loaded beam specimen (Fig. 1) and is recommended for use with material which can not be failed using the Type A specimen. For a maximum drop height of 6.096 m (20 ft) and a maximum drop weight of 22.68 kg (50 lb), virgin polycarbonate greater than 12.70 mm (1/2 in.) thick will probably require use of the Type B specimen. Note 1 - See also ASTM Methods: D 1709, D 2444 and D 3029. This standard does not purport to address all of the safety concerns, if any, associated with its use. It is the responsibility of the user of this standard to establish appropriate safety and health practices and determine the applicability of reg...

  1. Subclinical Hypothyroidism in PCOS: Impact on Presentation, Insulin Resistance, and Cardiovascular Risk

    Directory of Open Access Journals (Sweden)

    Qun Yu

    2016-01-01

    Full Text Available Aim of Study. To assess status of thyroid function and thyroid disorders particularly subclinical hypothyroidism (SCH in subjects with polycystic ovarian syndrome (PCOS and impact of SCH on various clinical and biochemical parameters and cardiovascular risk in PCOS. Methods. Hundred females diagnosed with PCOS as per Rotterdam criteria and 100 normal controls were recruited and were subjected to elaborate anthropometric, clinical, and biochemical assessment. Results. Notable findings included significantly higher frequency of subjects with subclinical hypothyroidism (p=0.0002, autoimmune thyroiditis (p<0.001, and goitre (p=0.02 in polycystic ovarian syndrome subjects compared to control subjects. Further SCH PCOS subjects were found to harbor significantly higher HOMA-IR (p<0.05 and frequency of subjects with dyslipidemia (p<0.05 compared to both euthyroid PCOS and euthyroid control subjects. Though frequency of subjects with cardiovascular risk factors was higher in SCH PCOS group than euthyroid PCOS group, it failed to reach statistical significance. Conclusion. We concluded that PCOS is associated with high incidence of SCH and AIT compared to normal population and SCH poses increased risk of cardiovascular disorder in PCOS.

  2. Impact of co-carriage of IncA/C plasmids with additional plasmids on the transfer of antimicrobial resistance in Salmonella enterica isolates.

    Science.gov (United States)

    Han, Jing; Pendleton, Sean J; Deck, Joanna; Singh, Ruby; Gilbert, Jeffrey; Johnson, Timothy J; Sanad, Yasser M; Nayak, Rajesh; Foley, Steven L

    2018-04-20

    Antimicrobial resistance in Salmonella enterica is often plasmid encoded. A key resistance plasmid group is the incompatibility group (Inc) A/C plasmids that often carry multiple resistance determinants. Previous studies showed that IncA/C plasmids were often co-located with other plasmids. The current study was undertaken to evaluate the impact of plasmid co-carriage on antimicrobial resistance and plasmid transfer. A total of 1267 Salmonella isolates, representing multiple serotypes and sources were previously subjected to susceptibility testing and 251 isolates with resistance to at least 5 antimicrobial agents were identified for further study. Each isolate was subjected to PCR-based replicon typing, and those with IncA/C plasmids were selected for plasmid isolation, PCR-based mapping of IncA/C plasmid backbone genes, and conjugation assays to evaluate resistance plasmid transferability. Of the 87 identified IncA/C positive isolates, approximately 75% carried a plasmid with another identified replicon type, with the most common being I1 (39%), FIA, FIIA, FIB and HI2 (each 15%). PCR-based mapping indicated significant diversity in IncA/C backbone content, especially in regions encoding transfer-associated and hypothetical proteins. Conjugation experiments showed that nearly 68% of the isolates transferred resistance plasmids, with 90% containing additional identified plasmids or larger (>50 kb) non-typeable plasmids. The majority of IncA/C-positive strains were able to conjugally transfer antimicrobial resistance to the recipient, encoded by IncA/C and/or co-carried plasmids. These findings highlight the importance of co-located plasmids for resistance dissemination either by directly transferring resistance genes or by potentially providing the needed conjugation machinery for IncA/C plasmid transfer. Copyright © 2018. Published by Elsevier B.V.

  3. Impact of the resistive wall impedance on beam dynamics in the Future Circular e^{+}e^{-} Collider

    Directory of Open Access Journals (Sweden)

    M. Migliorati

    2018-04-01

    Full Text Available The Future Circular Collider study, which aims at designing post-LHC particle accelerator options, is entering in the final stage, which foresees a conceptual design report containing the basic requirements for a hadron and a lepton collider, as well as options for an electron-proton machine. Due to the high beam intensities of these accelerators, collective effects have to be carefully analyzed. Among them, the finite conductivity of the beam vacuum chamber represents a major source of impedance for the electron-positron collider. By using numerical and analytical tools, a parametric study of longitudinal and transverse instabilities caused by the resistive wall is performed in this paper for the case of the Future Circular Collider lepton machine, by taking into account also the effects of coating, used to fight the electron cloud build up. It will be proved that under certain assumptions the coupling impedance of a two layer system does not depend on the conductivity of the coating and this property represents an important characteristic for the choice of the material itself. The results and findings of this study have an impact on the machine design in several aspects. In particular the quite low threshold of single bunch instabilities with respect to the nominal beam current and the not negligible power losses due to the resistive wall are shown, together with the necessity of a new feedback system to counteract the fast transverse coupled bunch instability. The importance of a round vacuum chamber to avoid the quadrupolar tune shift is also discussed. Finally the crucial importance of the beam pipe material coating and thickness choice for the above results is underlined.

  4. Impact of the resistive wall impedance on beam dynamics in the Future Circular e+e- Collider

    Science.gov (United States)

    Migliorati, M.; Belli, E.; Zobov, M.

    2018-04-01

    The Future Circular Collider study, which aims at designing post-LHC particle accelerator options, is entering in the final stage, which foresees a conceptual design report containing the basic requirements for a hadron and a lepton collider, as well as options for an electron-proton machine. Due to the high beam intensities of these accelerators, collective effects have to be carefully analyzed. Among them, the finite conductivity of the beam vacuum chamber represents a major source of impedance for the electron-positron collider. By using numerical and analytical tools, a parametric study of longitudinal and transverse instabilities caused by the resistive wall is performed in this paper for the case of the Future Circular Collider lepton machine, by taking into account also the effects of coating, used to fight the electron cloud build up. It will be proved that under certain assumptions the coupling impedance of a two layer system does not depend on the conductivity of the coating and this property represents an important characteristic for the choice of the material itself. The results and findings of this study have an impact on the machine design in several aspects. In particular the quite low threshold of single bunch instabilities with respect to the nominal beam current and the not negligible power losses due to the resistive wall are shown, together with the necessity of a new feedback system to counteract the fast transverse coupled bunch instability. The importance of a round vacuum chamber to avoid the quadrupolar tune shift is also discussed. Finally the crucial importance of the beam pipe material coating and thickness choice for the above results is underlined.

  5. A quantitative and constraint-specific method to assess the potential impact of new agricultural technology : the case of frost resistant potato for the Altiplano (Peru and Bolivia)

    NARCIS (Netherlands)

    Hijmans, R.J.; Condori, B.; Carrillo, R.; Kropff, M.J.

    2003-01-01

    A quantitative and constraint-specific approach to assess the potential impact of new agricultural technology is described and applied to frost resistant potato cultivars for the Altiplano (Peru and Bolivia). The approach uses geo-referenced databases and a simulation model. Calculations are made

  6. Role of cytochrome P450s in insecticide resistance: impact on the control of mosquito-borne diseases and use of insecticides on Earth.

    Science.gov (United States)

    David, Jean-Philippe; Ismail, Hanafy Mahmoud; Chandor-Proust, Alexia; Paine, Mark John Ingraham

    2013-02-19

    The fight against diseases spread by mosquitoes and other insects has enormous environmental, economic and social consequences. Chemical insecticides remain the first line of defence but the control of diseases, especially malaria and dengue fever, is being increasingly undermined by insecticide resistance. Mosquitoes have a large repertoire of P450s (over 100 genes). By pinpointing the key enzymes associated with insecticide resistance we can begin to develop new tools to aid the implementation of control interventions and reduce their environmental impact on Earth. Recent technological advances are helping us to build a functional profile of the P450 determinants of insecticide metabolic resistance in mosquitoes. Alongside, the cross-responses of mosquito P450s to insecticides and pollutants are also being investigated. Such research will provide the means to produce diagnostic tools for early detection of P450s linked to resistance. It will also enable the design of new insecticides with optimized efficacy in different environments.

  7. Impact of phenolic compounds and related enzymes in Sorghum varieties for resistance and susceptibility to biotic and abiotic stresses

    NARCIS (Netherlands)

    Dicko, M.H.; Gruppen, H.; Barro, C.; Traore, A.S.; Berkel, van W.J.H.; Voragen, A.G.J.

    2005-01-01

    Contents of phenolic compounds and related enzymes before and after sorghum grain germination were compared between varieties either resistant or susceptible to biotic (sooty stripe, sorghum midge, leaf anthracnose, striga, and grain molds) and abiotic (lodging, drought resistance, and photoperiod

  8. Spectral phasor analysis of LAURDAN fluorescence in live A549 lung cells to study the hydration and time evolution of intracellular lamellar body-like structures

    DEFF Research Database (Denmark)

    Malacrida, Leonel; Astrada, Soledad; Briva, Arturo

    2016-01-01

    Using LAURDAN spectral imaging and spectral phasor analysis we concurrently studied the growth and hydration state of subcellular organelles (lamellar body-like, LB-like) from live A549 lung cancer cells at different post-confluence days. Our results reveal a time dependent two-step process...... governing the size and hydration of these intracellular LB-like structures. Specifically, a first step (days 1 to 7) is characterized by an increase in their size, followed by a second one (days 7 to 14) where the organelles display a decrease in their global hydration properties. Interestingly, our results...... also show that their hydration properties significantly differ from those observed in well-characterized artificial lamellar model membranes, challenging the notion that a pure lamellar membrane organization is present in these organelles at intracellular conditions. Finally, these LB-like structures...

  9. Simultaneous topography-guided PRK followed by corneal collagen cross-linking after lamellar keratoplasty for keratoconus.

    Science.gov (United States)

    Spadea, Leopoldo; Paroli, Marino

    2012-01-01

    The purpose of this paper is to report the results of using combined treatment of customized excimer laser-assisted photorefractive keratectomy (PRK) and prophylactic corneal collagen crosslinking (CXL) for residual refractive error in a group of patients who had previously undergone lamellar keratoplasty for keratoconus. The study included 14 eyes from 14 patients who had originally been treated for keratoconus in one eye by excimer laser-assisted lamellar keratoplasty (ELLK), and subsequently presented with residual ametropia (-6.11 D ± 2.48, range -2.50 to -9.50). After a mean 40.1 ± 12.4 months since ELLK they underwent combined simultaneous corneal regularization treatment with topographically guided transepithelial excimer laser PRK (central corneal regularization) and corneal CXL induced by riboflavin-ultraviolet A. After a mean 15 ± 6.5 (range 6-24) months, all eyes gained at least one Snellen line of uncorrected distance visual acuity (range 1-10). No patient lost lines of corrected distance visual acuity, and four patients gained three lines of corrected distance visual acuity. Mean manifest refractive spherical equivalent was -0.79 ± 2.09 (range +1 to -3.0) D, and topographic keratometric astigmatism was 5.02 ± 2.93 (range 0.8-8.9) D. All the corneas remained clear (haze PRK and corneal CXL provided safe and effective results in the management of corneal regularization for refractive purposes after ELLK for keratoconus.

  10. Diffuse lamellar keratitis after laser in situ keratomileusis with the Moria LSK-One and Carriazo-Barraquer microkeratomes.

    Science.gov (United States)

    Thammano, Pavika; Rana, Azhar N; Talamo, Jonathan H

    2003-10-01

    To assess risk factors for and incidence of diffuse lamellar keratitis (DLK) and to investigate whether microkeratome design is associated with the incidence of DLK. The Laser Eye Consultants of Boston, Boston and Waltham, Massachusetts, USA. In a retrospective nonrandomized comparative study, 1122 consecutive primary laser in situ keratomileusis (LASIK) treatments (584 patients) were analyzed to determine the incidence of DLK using 2 different microkeratome designs (Moria LSK-One [LSK] and Moria Carriazo-Barraquer [C-B]). The incidence of DLK was as determined by clinical signs. The overall incidence of DLK was 2.23%. The incidence in the LSK and C-B groups was 1.09% and 4.38%, respectively, with a statistically significant difference in incidence between the 2 groups (P<.01). Epithelial irregularities increased the risk for DLK. There was no significant statistical difference in sex, age, operating room location, type of laser, or time of day the surgery was performed between the 2 groups or between eyes that had DLK and eyes without DLK. The incidence of DLK using the C-B microkeratome fell significantly after May 2000, when new cleaning methods for this device were introduced. Different microkeratomes and how they are maintained may influence the incidence of DLK. Diffuse lamellar keratitis is more common after LASIK in a setting of epithelial irregularities, whether or not an actual epithelial defect is created.

  11. Stability of the lamellar structure in Mo-TiC eutectic composite under a low vacuum at high temperatures

    International Nuclear Information System (INIS)

    Goto, Shoji; Nishijima, Yuzo; Yoshinaga, Hideo

    1986-01-01

    Thermal stability of the lamellar structure in a Mo-TiC eutectic composite has been investigated through the heat-treatment at 1523 - 2223 K for 5.76 x 10 4 - 3.6 x 10 5 s under a low vacuum pressure of 13 mPa. It was found that the TiC phase in the eutectic lamellar disappeared above the critical temperature of about 1750 K, but below the critical temperature the disappearance of TiC phase was hardly observed and TiO film was formed on the surface. The Mo matrix phase was not oxidized and was stable at all test temperatures, since its affinity for oxygen is lower than that for carbon and titanium. It is presumed that at higer temperatures the disappearance process of TiC phase is controlled by the diffusion of carbon atoms through the matrix to the surface, and carbon and titanium atoms on the surface are removed by CO gas formation and TiO evaporation, respectively, but at lower temperatures the evaporation of TiO is so slow that the TiO film is formed on the surface. (author)

  12. Structure of lamellar lipid domains and corneocyte envelopes of murine stratum corneum. An X-ray diffraction study

    International Nuclear Information System (INIS)

    White, S.H.; Mirejovsky, D.; King, G.I.

    1988-01-01

    The lipid of the outermost layer of the skin is confined largely to the extracellular spaces surrounding the corneocytes of the stratum corneum where it forms a multilamellar adhesive matrix to act as the major permeability barrier of the skin. Knowledge of the molecular architecture of these intercellular domains is important for understanding various skin pathologies and their treatment, percutaneous drug delivery, and the cosmetic maintenance of the skin. The authors have surveyed by X-ray diffraction the structure of the intercellular domains and the extracted lipids of murine stratum corneum (SC) at 25, 45, and 70 0 C which are temperatures in the vicinity of known thermal phase transitions. The intercellular domains produce lamellar diffraction patterns with a Bragg spacing of 131 +/- 2 A. Lipid extracted from the SC and dispersed in excess water does not produce a simple lamellar diffraction pattern at any temperature studied, however. This and other facts suggest that another component, probably a protein, must be present to control the architecture of the intercellular lipid domains. They have also obtained diffraction patterns attributable to the protein envelopes of the corneocytes. The patterns suggest a β-pleated sheet organizational scheme. No diffraction patterns were observed that could be attributed to keratin

  13. Modeling the economic impact of linezolid versus vancomycin in confirmed nosocomial pneumonia caused by methicillin-resistant Staphylococcus aureus.

    Science.gov (United States)

    Patel, Dipen A; Shorr, Andrew F; Chastre, Jean; Niederman, Michael; Simor, Andrew; Stephens, Jennifer M; Charbonneau, Claudie; Gao, Xin; Nathwani, Dilip

    2014-07-22

    We compared the economic impacts of linezolid and vancomycin for the treatment of hospitalized patients with methicillin-resistant Staphylococcus aureus (MRSA)-confirmed nosocomial pneumonia. We used a 4-week decision tree model incorporating published data and expert opinion on clinical parameters, resource use and costs (in 2012 US dollars), such as efficacy, mortality, serious adverse events, treatment duration and length of hospital stay. The results presented are from a US payer perspective. The base case first-line treatment duration for patients with MRSA-confirmed nosocomial pneumonia was 10 days. Clinical treatment success (used for the cost-effectiveness ratio) and failure due to lack of efficacy, serious adverse events or mortality were possible clinical outcomes that could impact costs. Cost of treatment and incremental cost-effectiveness per successfully treated patient were calculated for linezolid versus vancomycin. Univariate (one-way) and probabilistic sensitivity analyses were conducted. The model allowed us to calculate the total base case inpatient costs as $46,168 (linezolid) and $46,992 (vancomycin). The incremental cost-effectiveness ratio favored linezolid (versus vancomycin), with lower costs ($824 less) and greater efficacy (+2.7% absolute difference in the proportion of patients successfully treated for MRSA nosocomial pneumonia). Approximately 80% of the total treatment costs were attributed to hospital stay (primarily in the intensive care unit). The results of our probabilistic sensitivity analysis indicated that linezolid is the cost-effective alternative under varying willingness to pay thresholds. These model results show that linezolid has a favorable incremental cost-effectiveness ratio compared to vancomycin for MRSA-confirmed nosocomial pneumonia, largely attributable to the higher clinical trial response rate of patients treated with linezolid. The higher drug acquisition cost of linezolid was offset by lower treatment failure

  14. The influence of multiscale fillers reinforcement into impact resistance and energy absorption properties of polyamide 6 and polypropylene nanocomposite structures

    International Nuclear Information System (INIS)

    Silva, Francesco; Njuguna, James; Sachse, Sophia; Pielichowski, Krzysztof; Leszczynska, Agnieszka; Giacomelli, Marco

    2013-01-01

    Highlights: ► Significant improvement in PA composites impact resistance performance. ► Decrease in energy absorption capabilities of PP, this phenomenon is explained. ► Positive effects on mechanical and interphase properties of the matrix material. ► Transition from brittle to ductile fracture mode established. ► Two different toughening mechanisms were observed and explained. - Abstract: Three-phase composites (thermoplastic polymer, glass-fibres and nano-particles) were investigated as an alternative to two-phase (polymer and glass-fibres) composites. The effect of matrix and reinforcement material on the energy absorption capabilities of composite structures was studied in details in this paper. Dynamic and quasi-static axial collapse of conical structures was conducted using a high energy drop tower, as well as Instron universal testing machine. The impact event was recorded using a high-speed camera and the fracture surface was investigated with scanning electron microscopy (SEM). Attention was directed towards the relation between micro and macro fracture process with crack propagation mechanism and energy absorbed by the structure. The obtained results indicated an important influence of filler and matrix material on the energy absorption capabilities of the polymer composites. A significant increase in specific energy absorption (SEA) was observed in polyamide 6 (PA6) reinforced with nano-silica particles and glass-spheres, whereas addition of montmorillonite (MMT) caused a decrease in that property. On the other hand, very little influence of the secondary reinforcement on the energy absorption capabilities of polypropylene (PP) composites was found

  15. Prevalence of β-lactamase genes in domestic washing machines and dishwashers and the impact of laundering processes on antibiotic-resistant bacteria.

    Science.gov (United States)

    Rehberg, L; Frontzek, A; Melhus, Å; Bockmühl, D P

    2017-12-01

    To investigate the prevalence of β-lactamase genes in domestic washing machines and dishwashers, and the decontamination efficacy of laundering. For the first investigation, swab samples from washing machines (n = 29) and dishwashers (n = 24) were analysed by real-time quantitative PCR to detect genes encoding β-lactamases. To test the impact of laundering on resistant bacteria, cotton test swatches were artificially contaminated with susceptible and resistant strains of Pseudomonas aeruginosa, Klebsiella pneumoniae and Staphylococcus aureus within a second investigation. They were washed in a domestic washing machine with or without activated oxygen bleach (AOB)-containing detergent at 20-50°C. β-Lactamase genes (most commonly of the AmpC- and OXA-type) were detected in 79% of the washing machines and in 96% of the dishwashers and Pseudomonadaceae dominated the microbiota. The level of bacterial reduction after laundering was ≥80% for all Ps. aeruginosa and Kl. pneumoniae strains, while it was only 37-61% for the methicillin-resistant Staph. aureus outbreak strain. In general, the reduction was tendentially higher for susceptible bacteria than for the resistant outbreak strains, especially for Staph. aureus. β-Lactamase genes seem to be frequently present in domestic appliances and may pose a potential risk for cross-contamination and horizontal transfer of genes encoding resistance against clinically important β-lactams. In general, higher temperatures and the use of AOB can improve the reduction of antibiotic-resistant bacteria, including Staph. aureus which appears to be less susceptible to the decontamination effect of laundering. Data on the presence of antibiotic-resistant bacteria in the domestic environment are limited. This study suggests that β-lactamase genes in washing machines and dishwashers are frequent, and that antibiotic-resistant strains are generally more resistant to the used washing conditions. © 2017 The Society for

  16. Potential impact of genetically modified Lepidoptera-resistant Brassica napus in biodiversity hotspots: Sicily as a theoretical model.

    Science.gov (United States)

    Manachini, Barbara; Bazan, Giuseppe; Schicchi, Rosario

    2018-03-14

    The general increase of the cultivation and trade of Bt transgenic plants resistant to Lepidoptera pests raises concerns regarding the conservation of animal and plant biodiversity. Demand for biofuels has increased the cultivation and importation of oilseed rape (Brassica napus L.), including transgenic lines. In environmental risk assessments (ERAs) for its potential future cultivation as well as for food and feed uses, the impact on wild Brassicaeae relatives and on non-target Lepidoptera should be assessed. Here we consider the potential exposure of butterflies as results of possible cultivation or naturalization of spilled seed in Sicily (Italy). Diurnal Lepidoptera, which are pollinators, can be exposed directly to the insecticidal proteins as larvae (mainly of Pieridae) through the host and through the pollen that can deposit on other host plants. Adults can be exposed via pollen and nectar. The flight periods of butterflies were recorded, and they were found to overlap for about 90% of the flowering period of B. napus for the majority of the species. In addition, B. napus has a high potential to hybridise with endemic taxa belonging to the B. oleracea group. This could lead to an exposure of non-target Lepidoptera if introgression of the Bt gene into a wild population happens. A rank of the risk for butterflies and wild relatives of oilseed rape is given. We conclude that, in environmental risk assessments, attention should be paid to plant-insect interaction especially in a biodiversity hotspot such as Sicily. © 2018 Institute of Zoology, Chinese Academy of Sciences.

  17. Timing of Initiating Glycopeptide Therapy for Methicillin-Resistant Staphylococcus aureus Bacteremia: The Impact on Clinical Outcome

    Directory of Open Access Journals (Sweden)

    Chen-Hsiang Lee

    2013-01-01

    Full Text Available When a Staphylococcus-like organism (SLO is microscopically found in Gram staining of blood culture (BC specimen, it seems reasonable to administrate a glycopeptide (GP for empirical therapy. The paper investigates the risk factors for 14-day mortality in patients with methicillin-resistance Staphylococcus aureus bacteremia (MRSAB and clarifies the impact of the timing for initiating GP therapy. A retrospective study identifies patients with MRSAB (endocarditis was excluded between 2006 and 2009. Patients were categorized as receiving GP at the interval before a preliminary BC report indicating the growth of SLO and the onward 24 hours or receiving GP 24 h after a preliminary BC report indicating the growth of SLO. Total 339 patients were enrolled. There was no difference on the 14-day overall or infection-related mortality rates at the time to administer GP. Multivariate analysis disclosed pneumonia (OR = 4.47; of 95% CI; of 2.09–9.58; and high APACHE II score (OR, 2.81, with 95% CI, 1.19–6.65; were independent risk factors for infection-related mortality. The mortality rate did not decrease following administrating GP immediately after a preliminary BC indicating SLO growth. An additional research for the optimal timing for initiating GP treatment is warranted.

  18. The Impact of a Universal Decolonization Protocol on Hospital-Acquired Methicillin-Resistant Staphylococcus aureus in a Burn Population.

    Science.gov (United States)

    Johnson, Arthur T; Nygaard, Rachel M; Cohen, Ellie M; Fey, Ryan M; Wagner, Anne Lambert

    Hospital-acquired (HA) methicillin-resistant Staphylococcus aureus (MRSA) is a leading cause of HA infections and a significant concern for burn centers. The use of 2% chlorhexidine-impregnated wipes and nasal mupirocin significantly decreases the rate of HA-MRSA in adult intensive care units. The aim of this study was to examine the impact of universal decolonization on the rate of MRSA conversion in an American Burn Association verified adult and pediatric burn center. Universal decolonization protocol consisting of daily chlorhexidine baths and a 5-day course of nasal mupirocin was implemented in the burn unit. MRSA screening both on admission and weekly and contact isolation practices were in place in pre-decolonization and post-decolonization periods. Patient data were analyzed 2 years before and 1 year after implementation of the protocol. The incidence rate of MRSA was significantly decreased after the implementation of the decolonization protocol (11.8 vs 1.0 per 1000 patient days, P burn patients are at greater risk for invasive infection leading to severe complications and death. The prevalence of HA-MRSA at our institution's burn center was significantly decreased after the implementation of a universal decolonization protocol.

  19. Impact of non-target-site-resistance on herbicidal activity of imazamox on blackgrass (Alopecurus myosuroides Huds. in comparison to other ALS-graminicides

    Directory of Open Access Journals (Sweden)

    Sievernich, Bernd

    2014-02-01

    Full Text Available A black-grass (Alopecurus myosuroides Huds. resistance-monitoring conducted by BASF in 2010 - 2012 revealed a high number of accessions with resistance against imazamox. However, application of imazamoxbased products in a winter crop was limited to winter beans in France and United Kingdom only until the introduction of the Clearfield®-production system in autumn 2012 in winter oilseed rape. It is therefore assumed that the resistance mechanisms were probably selected by the frequent use of ACCase- and ALSinhibitors in winter crop rotations during the last 2 decades. Resistance level for each product-biotype combination was calculated according the “R”-classification system (S, R?, RR, RRR by directly comparing the product performance on a biotype versus untreated control. Majority of resistant biotypes did not show a target-site mutation at the known codon Pro197 or Trp574. In order to better evaluate the impact of Non-Target-Site-Resistance (NTSR on the activity of BEYOND (imazamox, ATLANTIS WG (mesosulfuron+iodosulfuron and ABAK (pyroxsulam, biotypes who have shown an ALS-target-site mutation were removed from further analysis. At the dose rate of 35 g ai/ha BEYOND provided good activity on susceptible biotypes of black-grass almost matching up with ATLANTIS WG and ABAK. However, activity of BEYOND declined stronger on biotypes classified as R? or RR for that product, while ATLANTIS WG and ABAK hardly showed any decline in control on this group of biotypes when applied at the recommended dose rate. It is assumed that the underlying NTSR-mechanism is not effective enough yet to confer resistance to ATLANTIS WG and ABAK, but on BEYOND. In contrast, biotypes classified as R? for ATLANTIS WG did show a stronger impact on the activity of BEYOND and ABAK then of ATLANTIS WG. These differences in control level probably do translate into differences in selection pressure as well.

  20. Pleuromutilins: use in food-producing animals in the European Union, development of resistance and impact on human and animal health.

    Science.gov (United States)

    van Duijkeren, Engeline; Greko, Christina; Pringle, Märit; Baptiste, Keith Edward; Catry, Boudewijn; Jukes, Helen; Moreno, Miguel A; Pomba, M Constança Matias Ferreira; Pyörälä, Satu; Rantala, Merja; Ružauskas, Modestas; Sanders, Pascal; Teale, Christopher; Threlfall, E John; Torren-Edo, Jordi; Törneke, Karolina

    2014-08-01

    Pleuromutilins (tiamulin and valnemulin) are antimicrobial agents that are used mainly in veterinary medicine, especially for swine and to a lesser extent for poultry and rabbits. In pigs, tiamulin and valnemulin are used to treat swine dysentery, spirochaete-associated diarrhoea, porcine proliferative enteropathy, enzootic pneumonia and other infections where Mycoplasma is involved. There are concerns about the reported increases in the MICs of tiamulin and valnemulin for porcine Brachyspira hyodysenteriae isolates from different European countries, as only a limited number of antimicrobials are available for the treatment of swine dysentery where resistance to these antimicrobials is already common and widespread. The loss of pleuromutilins as effective tools to treat swine dysentery because of further increases in resistance or as a consequence of restrictions would present a considerable threat to pig health, welfare and productivity. In humans, only one product containing pleuromutilins (retapamulin) is authorized currently for topical use; however, products for oral and intravenous administration to humans with serious multidrug-resistant skin infections and respiratory infections, including those caused by methicillin-resistant Staphylococcus aureus (MRSA), are being developed. The objective of this review is to summarize the current knowledge on the usage of pleuromutilins, resistance development and the potential impact of this resistance on animal and human health. © The Author 2014. Published by Oxford University Press on behalf of the British Society for Antimicrobial Chemotherapy. All rights reserved. For Permissions, please e-mail: journals.permissions@oup.com.

  1. Disentangling the impact of resistance and ambivalence on therapy outcomes in cognitive behavioural therapy for generalized anxiety disorder.

    Science.gov (United States)

    Button, Melissa L; Westra, Henny A; Hara, Kimberley M; Aviram, Adi

    2015-01-01

    Resistance and ambivalence about change are increasingly recognized as important determinants of treatment outcomes. Moreover, resistance and ambivalence are thought to be theoretically related in that clients who are more ambivalent about change are more likely to demonstrate resistance to the process and tasks of treatment. In the context of cognitive behavioural therapy (CBT) for generalized anxiety disorder, the present study simultaneously examined early resistance and ambivalence using two observer-based coding systems in order to determine their inter-relationship and, importantly, to investigate their relative contributions to outcome. Resistance was also coded during mid-treatment in order to investigate possible mediation pathways. Early ambivalence (clients' arguments against change or counter-change talk) was found to be no longer related to outcomes when early resistance was taken into account, suggesting that disharmony in the therapeutic relationship is more important to outcomes than ambivalence per se. Moreover, mid-treatment resistance partially mediated the relationship between early resistance and post-treatment worry severity. That is, higher early opposition to therapist direction is related to poorer outcomes, in part because it is associated with greater resistance during the working phase of CBT. The findings underscore the critical need for therapists to be sensitive to identifying resistance early and throughout treatment.

  2. The relationship of thioredoxin-1 and cisplatin resistance: its impact on ROS and oxidative metabolism in lung cancer cells.

    Science.gov (United States)

    Wangpaichitr, Medhi; Sullivan, Elizabeth J; Theodoropoulos, George; Wu, Chunjing; You, Min; Feun, Lynn G; Lampidis, Theodore J; Kuo, Macus T; Savaraj, Niramol

    2012-03-01

    Elimination of cisplatin-resistant lung cancer cells remains a major obstacle. We have shown that cisplatin-resistant tumors have higher reactive oxygen species (ROS) levels and can be exploited for targeted therapy. Here, we show that increased secretion of the antioxidant thioredoxin-1 (TRX1) resulted in lowered intracellular TRX1 and contributed to higher ROS in cisplatin-resistant tumors in vivo and in vitro. By reconstituting TRX1 protein in cisplatin-resistant cells, we increased sensitivity to cisplatin but decreased sensitivity to elesclomol (ROS inducer). Conversely, decreased TRX1 protein in parental cells reduced the sensitivity to cisplatin but increased sensitivity to elesclomol. Cisplatin-resistant cells had increased endogenous oxygen consumption and mitochondrial activity but decreased lactic acid production. They also exhibited higher levels of argininosuccinate synthetase (ASS) and fumarase mRNA, which contributed to oxidative metabolism (OXMET) when compared with parental cells. Restoring intracellular TRX1 protein in cisplatin-resistant cells resulted in lowering ASS and fumarase mRNAs, which in turn sensitized them to arginine deprivation. Interestingly, cisplatin-resistant cells also had significantly higher basal levels of acetyl-CoA carboxylase (ACC) and fatty acid synthase (FAS). Overexpressing TRX1 lowered ACC and FAS proteins expressions in cisplatin-resistant cells. Chemical inhibition and short interfering RNA of ACC resulted in significant cell death in cisplatin-resistant compared with parental cells. Conversely, TRX1 overexpressed cisplatin-resistant cells resisted 5-(tetradecyloxy)-2-furoic acid (TOFA)-induced death. Collectively, lowering TRX1 expression through increased secretion leads cisplatin-resistant cells to higher ROS production and increased dependency on OXMET. These changes raise an intriguing therapeutic potential for future therapy in cisplatin-resistant lung cancer.

  3. Microbial Indicators, Pathogens, and Antibiotic Resistance in Groundwater Impacted by Animal Farming: Field Scale to Basin Scale

    Science.gov (United States)

    Harter, T.; Li, X.; Atwill, E. R.; Packman, A. I.

    2015-12-01

    Several surveys of microbial indicators and pathogens were conducted to determine the impact of confined animal farming operations (CAFOs) on shallow, local, and regional groundwater quality in the Central Valley aquifer system, California. The aquifer system consists of highly heterogeneous, alluvial, unconsolidated coarse- to fine-grained sediments and is among the largest aquifers in the U.S.. Overlying landuse includes 3 million ha of irrigated agriculture and 1.7 million mature dairy cows in nearly 1,500 CAFOs.