WorldWideScience

Sample records for impact hydrologic processes

  1. Impact of physical permafrost processes on hydrological change

    Science.gov (United States)

    Hagemann, Stefan; Blome, Tanja; Beer, Christian; Ekici, Altug

    2015-04-01

    Permafrost or perennially frozen ground is an important part of the terrestrial cryosphere; roughly one quarter of Earth's land surface is underlain by permafrost. As it is a thermal phenomenon, its characteristics are highly dependent on climatic factors. The impact of the currently observed warming, which is projected to persist during the coming decades due to anthropogenic CO2 input, certainly has effects for the vast permafrost areas of the high northern latitudes. The quantification of these effects, however, is scientifically still an open question. This is partly due to the complexity of the system, where several feedbacks are interacting between land and atmosphere, sometimes counterbalancing each other. Moreover, until recently, many global circulation models (GCMs) and Earth system models (ESMs) lacked the sufficient representation of permafrost physics in their land surface schemes. Within the European Union FP7 project PAGE21, the land surface scheme JSBACH of the Max-Planck-Institute for Meteorology ESM (MPI-ESM) has been equipped with the representation of relevant physical processes for permafrost studies. These processes include the effects of freezing and thawing of soil water for both energy and water cycles, thermal properties depending on soil water and ice contents, and soil moisture movement being influenced by the presence of soil ice. In the present study, it will be analysed how these permafrost relevant processes impact projected hydrological changes over northern hemisphere high latitude land areas. For this analysis, the atmosphere-land part of MPI-ESM, ECHAM6-JSBACH, is driven by prescribed SST and sea ice in an AMIP2-type setup with and without the newly implemented permafrost processes. Observed SST and sea ice for 1979-1999 are used to consider induced changes in the simulated hydrological cycle. In addition, simulated SST and sea ice are taken from a MPI-ESM simulation conducted for CMIP5 following the RCP8.5 scenario. The

  2. Estimating impact of rainfall change on hydrological processes in Jianfengling rainforest watershed, China using BASINS-HSPF-CAT modeling system

    Science.gov (United States)

    Zhang Zhou; Ying Ouyang; Yide Li; Zhijun Qiu; Matt Moran

    2017-01-01

    Climate change over the past several decades has resulted in shifting rainfall pattern and modifying rain-fall intensity, which has exacerbated hydrological processes and added the uncertainty and instability tothese processes. This study ascertained impacts of potential future rainfall change on hydrological pro-cesses at the Jianfengling (JFL) tropical mountain...

  3. A question driven socio-hydrological modeling process

    Science.gov (United States)

    Garcia, M.; Portney, K.; Islam, S.

    2016-01-01

    Human and hydrological systems are coupled: human activity impacts the hydrological cycle and hydrological conditions can, but do not always, trigger changes in human systems. Traditional modeling approaches with no feedback between hydrological and human systems typically cannot offer insight into how different patterns of natural variability or human-induced changes may propagate through this coupled system. Modeling of coupled human-hydrological systems, also called socio-hydrological systems, recognizes the potential for humans to transform hydrological systems and for hydrological conditions to influence human behavior. However, this coupling introduces new challenges and existing literature does not offer clear guidance regarding model conceptualization. There are no universally accepted laws of human behavior as there are for the physical systems; furthermore, a shared understanding of important processes within the field is often used to develop hydrological models, but there is no such consensus on the relevant processes in socio-hydrological systems. Here we present a question driven process to address these challenges. Such an approach allows modeling structure, scope and detail to remain contingent on and adaptive to the question context. We demonstrate the utility of this process by revisiting a classic question in water resources engineering on reservoir operation rules: what is the impact of reservoir operation policy on the reliability of water supply for a growing city? Our example model couples hydrological and human systems by linking the rate of demand decreases to the past reliability to compare standard operating policy (SOP) with hedging policy (HP). The model shows that reservoir storage acts both as a buffer for variability and as a delay triggering oscillations around a sustainable level of demand. HP reduces the threshold for action thereby decreasing the delay and the oscillation effect. As a result, per capita demand decreases during

  4. Gradation of complexity and predictability of hydrological processes

    Science.gov (United States)

    Sang, Yan-Fang; Singh, Vijay P.; Wen, Jun; Liu, Changming

    2015-06-01

    Quantification of the complexity and predictability of hydrological systems is important for evaluating the impact of climate change on hydrological processes, and for guiding water activities. In the literature, the focus seems to have been on describing the complexity of spatiotemporal distribution of hydrological variables, but little attention has been paid to the study of complexity gradation, because the degree of absolute complexity of hydrological systems cannot be objectively evaluated. Here we show that complexity and predictability of hydrological processes can be graded into three ranks (low, middle, and high). The gradation is based on the difference in the energy distribution of hydrological series and that of white noise under multitemporal scales. It reflects different energy concentration levels and contents of deterministic components of the hydrological series in the three ranks. Higher energy concentration level reflects lower complexity and higher predictability, but scattered energy distribution being similar to white noise has the highest complexity and is almost unpredictable. We conclude that the three ranks (low, middle, and high) approximately correspond to deterministic, stochastic, and random hydrological systems, respectively. The result of complexity gradation can guide hydrological observations and modeling, and identification of similarity patterns among different hydrological systems.

  5. Estimation of climate change impacts on hydrology and floods in Finland

    Energy Technology Data Exchange (ETDEWEB)

    Veijalainen, N.

    2012-07-01

    Climate scenarios project increases in air temperature and precipitation in Finland during the 21st century and these will results in changes in hydrology. In this thesis climate change impacts on hydrology and floods in Finland were estimated with hydrological modelling and several climate scenarios. One of the goals was to understand the influence of different processes and catchment characteristics on the hydrological response to climate change in boreal conditions. The tool of the climate change impact assessment was the conceptual hydrological model WSFS (Watershed Simulation and Forecasting System). The studies employed and compared two methods of transferring the climate change signal from climate models to the WSFS hydrological model (delta change approach and direct bias corrected Regional Climate Model (RCM) data). Direct RCM data was used to simulate transient hydrological scenarios for 1951- 2100 and the simulation results were analysed to detect changes in water balance components and trends in discharge series. The results revealed that seasonal changes in discharges in Finland were the clearest impacts of climate change. Air temperature increase will affect snow accumulation and melt, increase winter discharge and decrease spring snowmelt discharge. The impacts of climate change on floods in Finland by 2070-2099 varied considerably depending on the location, catchment characteristics, timing of the floods and climate scenario. Floods caused by spring snowmelt decreased or remained unchanged, whereas autumn and winter floods caused by precipitation increased especially in large lakes and their outflow rivers. Since estimation of climate change impacts includes uncertainties in every step of the long modelling process, the accumulated uncertainties by the end of the process become large. The large differences between results from different climate scenarios highlight the need to use several climate scenarios in climate change impact studies

  6. Climate Change Impacts on the Hydrological Processes of a Small Agricultural Watershed

    Directory of Open Access Journals (Sweden)

    Sushant Mehan

    2016-11-01

    Full Text Available Weather extremes and climate variability directly impact the hydrological cycle influencing agricultural productivity. The issues related to climate change are of prime concern for every nation as its implications are posing negative impacts on society. In this study, we used three climate change scenarios to simulate the impact on local hydrology of a small agricultural watershed. The three emission scenarios from the Special Report on Emission Scenarios, of the Intergovernmental Panel on Climate Change (IPCC 2007 analyzed in this study were A2 (high emission, A1B (medium emission, and B1 (low emission. A process based hydrologic model SWAT (Soil and Water Assessment Tool was calibrated and validated for the Skunk Creek Watershed located in eastern South Dakota. The model performance coefficients revealed a strong correlation between simulated and observed stream flow at both monthly and daily time step. The Nash Sutcliffe Efficiency for monthly model performace was 0.87 for the calibration period and 0.76 for validation period. The future climate scenarios were built for the mid-21st century time period ranging from 2046 to 2065. The future climate data analysis showed an increase in temperatures between 2.2 °C to 3.3 °C and a decrease in precipitation from 1.8% to 4.5% expected under three different climate change scenarios. A sharp decline in stream flow (95.92%–96.32%, run-off (83.46%–87.00%, total water yield (90.67%–91.60%, soil water storage (89.99%–92.47%, and seasonal snow melt (37.64%–43.06% are predicted to occur by the mid-21st century. In addition, an increase in evapotranspirative losses (2%–3% is expected to occur within the watershed when compared with the baseline period. Overall, these results indicate that the watershed is highly susceptible to hydrological and agricultural drought due to limited water availability. These results are limited to the available climate projections, and future refinement in

  7. Predicting invasive species impacts on hydrological processes: the consequences of plant physiology for landscape processes

    CSIR Research Space (South Africa)

    Le Maitre, David C

    2004-01-01

    Full Text Available The adverse impacts of invading alien organisms are widely recognized as one of the major threats to biodiversity and are receiving growing recognition as a major socioeconomic threat. The hydrological impacts of alien plants have received less...

  8. Quantifying Direct and Indirect Impact of Future Climate on Sub-Arctic Hydrology

    Science.gov (United States)

    Endalamaw, A. M.; Bolton, W. R.; Young-Robertson, J. M.; Morton, D.; Hinzman, L. D.

    2016-12-01

    Projected future climate will have a significant impact on the hydrology of interior Alaskan sub-arctic watersheds, directly though the changes in precipitation and temperature patterns, and indirectly through the cryospheric and ecological impacts. Although the latter is the dominant factor controlling the hydrological processes in the interior Alaska sub-arctic, it is often overlooked in many climate change impact studies. In this study, we aim to quantify and compare the direct and indirect impact of the projected future climate on the hydrology of the interior Alaskan sub-arctic watersheds. The Variable Infiltration Capacity (VIC) meso-scale hydrological model will be implemented to simulate the hydrological processes, including runoff, evapotranspiration, and soil moisture dynamics in the Chena River Basin (area = 5400km2), located in the interior Alaska sub-arctic region. Permafrost and vegetation distribution will be derived from the Geophysical Institute Permafrost Lab (GIPL) model and the Lund-Potsdam-Jena Dynamic Global Model (LPJ) model, respectively. All models will be calibrated and validated using historical data. The Scenario Network for Alaskan and Arctic Planning (SNAP) 5-model average projected climate data products will be used as forcing data for each of these models. The direct impact of climate change on hydrology is estimated using surface parameterization derived from the present day permafrost and vegetation distribution, and future climate forcing from SNAP projected climate data products. Along with the projected future climate, outputs of GIPL and LPJ will be incorporated into the VIC model to estimate the indirect and overall impact of future climate on the hydrology processes in the interior Alaskan sub-arctic watersheds. Finally, we will present the potential hydrological and ecological changes by the end of the 21st century.

  9. Hydrological Process Simulation of Inland River Watershed: A Case Study of the Heihe River Basin with Multiple Hydrological Models

    Directory of Open Access Journals (Sweden)

    Lili Wang

    2018-04-01

    Full Text Available Simulating the hydrological processes of an inland river basin can help provide the scientific guidance to the policies of water allocation among different subbasins and water resource management groups within the subbasins. However, it is difficult to simulate the hydrological processes of an inland river basin with hydrological models due to the non-consistent hydrological characteristics of the entire basin. This study presents a solution to this problem with a case study about the hydrological process simulation in an inland river basin in China, Heihe River basin. It is divided into the upper, middle, and lower reaches based on the distinctive hydrological characteristics in the Heihe River basin, and three hydrological models are selected, applied, and tested to simulate the hydrological cycling processes for each reach. The upper reach is the contributing area with the complex runoff generation processes, therefore, the hydrological informatic modeling system (HIMS is utilized due to its combined runoff generation mechanisms. The middle reach has strong impacts of intensive human activities on the interactions of surface and subsurface flows, so a conceptual water balance model is applied to simulate the water balance process. For the lower reach, as the dissipative area with groundwater dominating the hydrological process, a groundwater modeling system with the embedment of MODFLOW model is applied to simulate the groundwater dynamics. Statistical parameters and water balance analysis prove that the three models have excellent performances in simulating the hydrological process of the three reaches. Therefore, it is an effective way to simulate the hydrological process of inland river basin with multiple hydrological models according to the characteristics of each subbasin.

  10. Linear infrastructure impacts on landscape hydrology.

    Science.gov (United States)

    Raiter, Keren G; Prober, Suzanne M; Possingham, Hugh P; Westcott, Fiona; Hobbs, Richard J

    2018-01-15

    The extent of roads and other forms of linear infrastructure is burgeoning worldwide, but their impacts are inadequately understood and thus poorly mitigated. Previous studies have identified many potential impacts, including alterations to the hydrological functions and soil processes upon which ecosystems depend. However, these impacts have seldom been quantified at a regional level, particularly in arid and semi-arid systems where the gap in knowledge is the greatest, and impacts potentially the most severe. To explore the effects of extensive track, road, and rail networks on surface hydrology at a regional level we assessed over 1000 km of linear infrastructure, including approx. 300 locations where ephemeral streams crossed linear infrastructure, in the largely intact landscapes of Australia's Great Western Woodlands. We found a high level of association between linear infrastructure and altered surface hydrology, with erosion and pooling 5 and 6 times as likely to occur on-road than off-road on average (1.06 erosional and 0.69 pooling features km -1 on vehicle tracks, compared with 0.22 and 0.12 km -1 , off-road, respectively). Erosion severity was greater in the presence of tracks, and 98% of crossings of ephemeral streamlines showed some evidence of impact on water movement (flow impedance (62%); diversion of flows (73%); flow concentration (76%); and/or channel initiation (31%)). Infrastructure type, pastoral land use, culvert presence, soil clay content and erodibility, mean annual rainfall, rainfall erosivity, topography and bare soil cover influenced the frequency and severity of these impacts. We conclude that linear infrastructure frequently affects ephemeral stream flows and intercepts natural overland and near-surface flows, artificially changing site-scale moisture regimes, with some parts of the landscape becoming abnormally wet and other parts becoming water-starved. In addition, linear infrastructure frequently triggers or exacerbates erosion

  11. Investigating impacts of natural and human-induced environmental changes on hydrological processes and flood hazards using a GIS-based hydrological/hydraulic model and remote sensing data

    Science.gov (United States)

    Wang, Lei

    Natural and human-induced environmental changes have been altering the earth's surface and hydrological processes, and thus directly contribute to the severity of flood hazards. To understand these changes and their impacts, this research developed a GIS-based hydrological and hydraulic modeling system, which incorporates state-of-the-art remote sensing data to simulate flood under various scenarios. The conceptual framework and technical issues of incorporating multi-scale remote sensing data have been addressed. This research develops an object-oriented hydrological modeling framework. Compared with traditional lumped or cell-based distributed hydrological modeling frameworks, the object-oriented framework allows basic spatial hydrologic units to have various size and irregular shape. This framework is capable of assimilating various GIS and remotely-sensed data with different spatial resolutions. It ensures the computational efficiency, while preserving sufficient spatial details of input data and model outputs. Sensitivity analysis and comparison of high resolution LIDAR DEM with traditional USGS 30m resolution DEM suggests that the use of LIDAR DEMs can greatly reduce uncertainty in calibration of flow parameters in the hydrologic model and hence increase the reliability of modeling results. In addition, subtle topographic features and hydrologic objects like surface depressions and detention basins can be extracted from the high resolution LiDAR DEMs. An innovative algorithm has been developed to efficiently delineate surface depressions and detention basins from LiDAR DEMs. Using a time series of Landsat images, a retrospective analysis of surface imperviousness has been conducted to assess the hydrologic impact of urbanization. The analysis reveals that with rapid urbanization the impervious surface has been increased from 10.1% to 38.4% for the case study area during 1974--2002. As a result, the peak flow for a 100-year flood event has increased by 20% and

  12. Ensemble catchment hydrological modelling for climate change impact analysis

    Science.gov (United States)

    Vansteenkiste, Thomas; Ntegeka, Victor; Willems, Patrick

    2014-05-01

    It is vital to investigate how the hydrological model structure affects the climate change impact given that future changes not in the range for which the models were calibrated or validated are likely. Thus an ensemble modelling approach which involves a diversity of models with different structures such as spatial resolutions and process descriptions is crucial. The ensemble modelling approach was applied to a set of models: from the lumped conceptual models NAM, PDM and VHM, an intermediate detailed and distributed model WetSpa, to the highly detailed and fully distributed model MIKE-SHE. Explicit focus was given to the high and low flow extremes. All models were calibrated for sub flows and quick flows derived from rainfall and potential evapotranspiration (ETo) time series. In general, all models were able to produce reliable estimates of the flow regimes under the current climate for extreme peak and low flows. An intercomparison of the low and high flow changes under changed climatic conditions was made using climate scenarios tailored for extremes. Tailoring was important for two reasons. First, since the use of many scenarios was not feasible it was necessary to construct few scenarios that would reasonably represent the range of extreme impacts. Second, scenarios would be more informative as changes in high and low flows would be easily traced to changes of ETo and rainfall; the tailored scenarios are constructed using seasonal changes that are defined using different levels of magnitude (high, mean and low) for rainfall and ETo. After simulation of these climate scenarios in the five hydrological models, close agreement was found among the models. The different models predicted similar range of peak flow changes. For the low flows, however, the differences in the projected impact range by different hydrological models was larger, particularly for the drier scenarios. This suggests that the hydrological model structure is critical in low flow predictions

  13. Modeling urbanized watershed flood response changes with distributed hydrological model: key hydrological processes, parameterization and case studies

    Science.gov (United States)

    Chen, Y.

    2017-12-01

    Urbanization is the world development trend for the past century, and the developing countries have been experiencing much rapider urbanization in the past decades. Urbanization brings many benefits to human beings, but also causes negative impacts, such as increasing flood risk. Impact of urbanization on flood response has long been observed, but quantitatively studying this effect still faces great challenges. For example, setting up an appropriate hydrological model representing the changed flood responses and determining accurate model parameters are very difficult in the urbanized or urbanizing watershed. In the Pearl River Delta area, rapidest urbanization has been observed in China for the past decades, and dozens of highly urbanized watersheds have been appeared. In this study, a physically based distributed watershed hydrological model, the Liuxihe model is employed and revised to simulate the hydrological processes of the highly urbanized watershed flood in the Pearl River Delta area. A virtual soil type is then defined in the terrain properties dataset, and its runoff production and routing algorithms are added to the Liuxihe model. Based on a parameter sensitive analysis, the key hydrological processes of a highly urbanized watershed is proposed, that provides insight into the hydrological processes and for parameter optimization. Based on the above analysis, the model is set up in the Songmushan watershed where there is hydrological data observation. A model parameter optimization and updating strategy is proposed based on the remotely sensed LUC types, which optimizes model parameters with PSO algorithm and updates them based on the changed LUC types. The model parameters in Songmushan watershed are regionalized at the Pearl River Delta area watersheds based on the LUC types of the other watersheds. A dozen watersheds in the highly urbanized area of Dongguan City in the Pearl River Delta area were studied for the flood response changes due to

  14. Hydrological processes and model representation: impact of soft data on calibration

    Science.gov (United States)

    J.G. Arnold; M.A. Youssef; H. Yen; M.J. White; A.Y. Sheshukov; A.M. Sadeghi; D.N. Moriasi; J.L. Steiner; Devendra Amatya; R.W. Skaggs; E.B. Haney; J. Jeong; M. Arabi; P.H. Gowda

    2015-01-01

    Hydrologic and water quality models are increasingly used to determine the environmental impacts of climate variability and land management. Due to differing model objectives and differences in monitored data, there are currently no universally accepted procedures for model calibration and validation in the literature. In an effort to develop accepted model calibration...

  15. Combined effects of climate models, hydrological model structures and land use scenarios on hydrological impacts of climate change

    DEFF Research Database (Denmark)

    Karlsson, Ida B.; Sonnenborg, Torben O.; Refsgaard, Jens Christian

    2016-01-01

    Impact studies of the hydrological response of future climate change are important for the water authorities when risk assessment, management and adaptation to a changing climate are carried out. The objective of this study was to model the combined effect of land use and climate changes...... use scenarios. The results revealed that even though the hydrological models all showed similar performance during calibration, the mean discharge response to climate change varied up to 30%, and the variations were even higher for extreme events (1th and 99th percentile). Land use changes appeared...... to cause little change in mean hydrological responses and little variation between hydrological models. Differences in hydrological model responses to land use were, however, significant for extremes due to dissimilarities in hydrological model structure and process equations. The climate model choice...

  16. Climate change impacts analysis on hydrological processes in the Weyib River basin in Ethiopia

    Science.gov (United States)

    Serur, Abdulkerim Bedewi; Sarma, Arup Kumar

    2017-12-01

    The study aims to examine the variation of hydrological processes (in terms of mean annual, seasonal, and monthly) under changing climate within the Weyib River basin in Ethiopia at both basin and sub-basin level using ArcSWAT hydrologic model. The climate change impacts on temperature and precipitation characteristics within the basin have been studied using GFDL-ESM2M, CanESM2, and GFDL-ESM2G models for RCP8.5, RCP4.5, and RCP2.6 scenarios from coupled model inter-comparison project 5 (CMIP5) which have been downscaled by SDSM. The results revealed that the mean annual temperature and precipitation reveal a statistically significant (at 5% significant level) increasing trend in the nine ESM-RCP scenarios for all the future time slices. The mean annual actual evapotranspiration, baseflow, soil water content, percolation, and water availability in the stream exhibit a rise for all the ESMs-RCP scenarios in the entire basin and in all the sub-basins. However, surface runoff and potential evapotranspiration show a decreasing trend. The mean annual water availability increases between 9.18 and 27.97% (RCP8.5), 3.98 and 19.61% (RCP4.5), and 11.82 and 17.06% (RCP2.6) in the entire basin. The sub-basin level analysis reveals that the annual, seasonal, and monthly variations of hydrological processes in all the sub-basins are similar regarding direction but different in magnitude as compared to that of the entire basin analysis. In addition, it is observed that there is a larger monthly and seasonal variation in hydrological processes as compared to the variation in annual scale. The net water availability tends to decline in the dry season; this might cause water shortage in the lowland region and greater increases in an intermediate and rainy seasons; this might cause flooding to some flood prone region of the basin. Since the variation of water availability among the sub-basins in upcoming period is high, there is a scope of meeting agriculture water demand through

  17. Diagnosing the impact of alternative calibration strategies on coupled hydrologic models

    Science.gov (United States)

    Smith, T. J.; Perera, C.; Corrigan, C.

    2017-12-01

    Hydrologic models represent a significant tool for understanding, predicting, and responding to the impacts of water on society and society on water resources and, as such, are used extensively in water resources planning and management. Given this important role, the validity and fidelity of hydrologic models is imperative. While extensive focus has been paid to improving hydrologic models through better process representation, better parameter estimation, and better uncertainty quantification, significant challenges remain. In this study, we explore a number of competing model calibration scenarios for simple, coupled snowmelt-runoff models to better understand the sensitivity / variability of parameterizations and its impact on model performance, robustness, fidelity, and transferability. Our analysis highlights the sensitivity of coupled snowmelt-runoff model parameterizations to alterations in calibration approach, underscores the concept of information content in hydrologic modeling, and provides insight into potential strategies for improving model robustness / fidelity.

  18. Hydrological impacts of urbanization at the catchment scale

    Science.gov (United States)

    Oudin, Ludovic; Salavati, Bahar; Furusho-Percot, Carina; Ribstein, Pierre; Saadi, Mohamed

    2018-04-01

    The impacts of urbanization on floods, droughts and the overall river regime have been largely investigated in the past few decades, but the quantification and the prediction of such impacts still remain a challenge in hydrology. We gathered a sample of 142 catchments that have a documented increase in urban areas over the hydrometeorological record period in the United States. The changes in river flow regimes due to urban spread were differentiated from climate variability using the GR4J conceptual hydrological model. High, low and mean flows were impacted at a threshold of a 10% total impervious area. Moreover, the historical evolution of urban landscape spatial patterns was used to further detail the urbanization process in terms of extent and fragmentation of urban areas throughout the catchment and to help interpret the divergent impacts observed in streamflow behaviors. Regression analysis pointed out the importance of major wastewater treatment facilities that might overpass the effects of imperviousness, and therefore further research should either take them explicitly into account or select a wastewater facility-free catchment sample to clearly evaluate the impacts of urban landscape on low flows.

  19. Adaptation of Land-Use Demands to the Impact of Climate Change on the Hydrological Processes of an Urbanized Watershed

    Science.gov (United States)

    Lin, Yu-Pin; Hong, Nien-Ming; Chiang, Li-Chi; Liu, Yen-Lan; Chu, Hone-Jay

    2012-01-01

    The adaptation of land-use patterns is an essential aspect of minimizing the inevitable impact of climate change at regional and local scales; for example, adapting watershed land-use patterns to mitigate the impact of climate change on a region’s hydrology. The objective of this study is to simulate and assess a region’s ability to adapt to hydrological changes by modifying land-use patterns in the Wu-Du watershed in northern Taiwan. A hydrological GWLF (Generalized Watershed Loading Functions) model is used to simulate three hydrological components, namely, runoff, groundwater and streamflow, based on various land-use scenarios under six global climate models. The land-use allocations are simulated by the CLUE-s model for the various development scenarios. The simulation results show that runoff and streamflow are strongly related to the precipitation levels predicted by different global climate models for the wet and dry seasons, but groundwater cycles are more related to land-use. The effects of climate change on groundwater and runoff can be mitigated by modifying current land-use patterns; and slowing the rate of urbanization would also reduce the impact of climate change on hydrological components. Thus, land-use adaptation on a local/regional scale provides an alternative way to reduce the impacts of global climate change on local hydrology. PMID:23202833

  20. Adaptation of Land-Use Demands to the Impact of Climate Change on the Hydrological Processes of an Urbanized Watershed

    OpenAIRE

    Lin, Yu-Pin; Hong, Nien-Ming; Chiang, Li-Chi; Liu, Yen-Lan; Chu, Hone-Jay

    2012-01-01

    The adaptation of land-use patterns is an essential aspect of minimizing the inevitable impact of climate change at regional and local scales; for example, adapting watershed land-use patterns to mitigate the impact of climate change on a region’s hydrology. The objective of this study is to simulate and assess a region’s ability to adapt to hydrological changes by modifying land-use patterns in the Wu-Du watershed in northern Taiwan. A hydrological GWLF (Generalized Watershed Loading Functio...

  1. Impact of vegetation dynamics on hydrological processes in a semi-arid basin by using a land surface-hydrology coupled model

    Energy Technology Data Exchange (ETDEWEB)

    Jiao, Yang; Lei, Huimin; Yang, Dawen; Huang, Maoyi; Liu, Dengfeng; Yuan, Xing

    2017-08-01

    Land surface models (LSMs) are widely used to understand the interactions between hydrological processes and vegetation dynamics, which is important for the attribution and prediction of regional hydrological variations. However, most LSMs have large uncertainties in their representations of ecohydrological processes due to deficiencies in hydrological parameterizations. In this study, the Community Land Model version 4 (CLM4) LSM was modified with an advanced runoff generation and flow routing scheme, resulting in a new land surface-hydrology coupled model, CLM-GBHM. Both models were implemented in the Wudinghe River Basin (WRB), which is a semi-arid basin located in the middle reaches of the Yellow River, China. Compared with CLM, CLM-GBHM increased the Nash Sutcliffe efficiency for daily river discharge simulation (1965–1969) from 0.03 to 0.23 and reduced the relative bias in water table depth simulations (2010–2012) from 32.4% to 13.4%. The CLM-GBHM simulations with static, remotely sensed and model-predicted vegetation conditions showed that the vegetation in the WRB began to recover in the 2000s due to the Grain for Green Program but had not reached the same level of vegetation cover as regions in natural eco-hydrological equilibrium. Compared with a simulation using remotely sensed vegetation cover, the simulation with a dynamic vegetation model that considers only climate-induced change showed a 10.3% increase in evapotranspiration, a 47.8% decrease in runoff, and a 62.7% and 71.3% deceleration in changing trend of the outlet river discharge before and after the year 2000, respectively. This result suggests that both natural and anthropogenic factors should be incorporated in dynamic vegetation models to better simulate the eco-hydrological cycle.

  2. Evaluating the Impacts of Urbanization on Hydrological Processes and Water Resources by Comparing Two Neighboring Basins

    Science.gov (United States)

    Shao, M.; Zhao, G.; Gao, H.

    2017-12-01

    Texas, the fastest growing state in the US, has seen significant land cover/land use change due to urbanization over the past decades. With most of the region being arid/semi-arid, water issues are unprecedentedly pressing. Among the 15 major river basins, two adjacent river basins located in south-central Texas—the San Antonio River Basin (SARB) and the Guadalupe River Basin (GRB)—form an ideal testbed for evaluating the impacts of urbanization on both hydrological processes and water resources. These two basins are similar in size and in climate pattern, but differ in terms of urbanization progress. In SARB, where the city of San Antonio is located, the impervious area has increased from 0.6% (1929) to 7.8% (2011). In contrast, there is little land cover change in the GRB. With regard to the underground components, both basins intersect with the Edward Aquifer (more than 15% of basin area in both cases). The Edward Aquifer acts as one of the major municipal water supplies for San Antonio, and as the water source for local agricultural uses (and for the surrounding habitat). This aquifer has the characteristic of being highly sensitive to changes in surface water conditions, like the descending trend of the underground water table due to over exploitation. In this study, a distributed hydrologic model—DHSVM (the Distributed Hydrology Soil Vegetation Model)—is used to compare the hydrologic characteristics (and their impacts on water resources) over the two basins. With a 200m spatial resolution, the model is calibrated and validated during the historical period over both basins. The objectives of the comparisons are two-fold: First, the urbanization effects on peak flows are evaluated for selected extreme rainfall events; Second, the Edward Aquifer recharge rate from surface water under flood and/or drought conditions within the two basins is analyzed. Furthermore, future urbanization scenarios are tested to provide information relevant to decision making.

  3. The evolution of process-based hydrologic models

    NARCIS (Netherlands)

    Clark, Martyn P.; Bierkens, Marc F.P.; Samaniego, Luis; Woods, Ross A.; Uijlenhoet, Remko; Bennett, Katrina E.; Pauwels, Valentijn R.N.; Cai, Xitian; Wood, Andrew W.; Peters-Lidard, Christa D.

    2017-01-01

    The diversity in hydrologic models has historically led to great controversy on the "correct" approach to process-based hydrologic modeling, with debates centered on the adequacy of process parameterizations, data limitations and uncertainty, and computational constraints on model analysis. In this

  4. Modeling Hydrologic Processes after Vegetation Restoration in an Urban Watershed with HEC-HMS

    Science.gov (United States)

    Stevenson, K.; Kinoshita, A. M.

    2017-12-01

    The San Diego River Watershed in California (USA) is highly urbanized, where stream channel geomorphology are directly affected by anthropogenic disturbances. Flooding and water quality concerns have led to an increased interest in improving the condition of urban waterways. Alvarado Creek, a 1200-meter section of a tributary to the San Diego River will be used as a case study to understand the degree to which restoration efforts reduce the impacts of climate change and anthropogenic activities on hydrologic processes and water quality in urban stream ecosystems. In 2016, non-native vegetation (i.e. Washingtonia spp. (fan palm), Phoenix canariensis (Canary Island palm)) and approximately 7257 kilograms of refuse were removed from the study reach. This research develops the United States Army Corp of Engineers Hydrologic Engineering Center's Hydraulic Modeling System (USACE HEC-HMS) using field-based data to model and predict the short- and long-term impacts of restoration on geomorphic and hydrologic processes. Observations include cross-sectional area, grain-size distributions, water quality, and continuous measurements of streamflow, temperature, and precipitation. Baseline and design storms are simulated before and after restoration. The model will be calibrated and validated using field observations. The design storms represent statistical likelihoods of storms occurrences, and the pre- and post-restoration hydrologic responses will be compared to evaluate the impact of vegetation and waste removal on runoff processes. Ultimately model parameters will be transferred to other urban creeks in San Diego that may potentially undergo restoration. Modeling will be used to learn about the response trajectory of rainfall-runoff processes following restoration efforts in urban streams and guide future management and restoration activities.

  5. Assimilation of remote sensing observations into a continuous distributed hydrological model: impacts on the hydrologic cycle

    Science.gov (United States)

    Laiolo, Paola; Gabellani, Simone; Campo, Lorenzo; Cenci, Luca; Silvestro, Francesco; Delogu, Fabio; Boni, Giorgio; Rudari, Roberto

    2015-04-01

    The reliable estimation of hydrological variables (e.g. soil moisture, evapotranspiration, surface temperature) in space and time is of fundamental importance in operational hydrology to improve the forecast of the rainfall-runoff response of catchments and, consequently, flood predictions. Nowadays remote sensing can offer a chance to provide good space-time estimates of several hydrological variables and then improve hydrological model performances especially in environments with scarce in-situ data. This work investigates the impact of the assimilation of different remote sensing products on the hydrological cycle by using a continuous physically based distributed hydrological model. Three soil moisture products derived by ASCAT (Advanced SCATterometer) are used to update the model state variables. The satellite-derived products are assimilated into the hydrological model using different assimilation techniques: a simple nudging and the Ensemble Kalman Filter. Moreover two assimilation strategies are evaluated to assess the impact of assimilating the satellite products at model spatial resolution or at the satellite scale. The experiments are carried out for three Italian catchments on multi year period. The benefits on the model predictions of discharge, LST, evapotranspiration and soil moisture dynamics are tested and discussed.

  6. Human Impacts on the Hydrologic Cycle: Comparing Global Climate Change and Local Water Management

    Science.gov (United States)

    Ferguson, I. M.; Maxwell, R. M.

    2010-12-01

    Anthropogenic climate change is significantly altering the hydrologic cycle at global and regional scales, with potentially devastating impacts on water resources. Recent studies demonstrate that hydrologic response to climate change will depend on local-scale feedbacks between groundwater, surface water, and land surface processes. These studies suggest that local water management practices that alter the quantity and distribution of water in the terrestrial system—e.g., groundwater pumping and irrigation—may also feed back across the hydrologic cycle, with impacts on land-atmosphere fluxes and thus weather and climate. Here we use an integrated hydrologic model to compare the impacts of large-scale climate change and local water management practices on water and energy budgets at local and watershed scales. We consider three climate scenarios (hot, hot+wet, and hot+dry) and three management scenarios (pumping only, irrigation only, and pumping+irrigation). Results demonstrate that impacts of local water management on basin-integrated groundwater storage, evapotranspiration, and stream discharge are comparable to those of changing climate conditions. However, impacts of climate change are shown to have a smaller magnitude and greater spatial extent, while impacts of pumping and irrigation are shown to have a greater magnitude but are local to areas where pumping and irrigation occur. These results have important implications regarding the scales of human impacts on both water resources and climate and the sustainability of water resources.

  7. Regional hydrological impacts of climate change: implications for water management in India

    Directory of Open Access Journals (Sweden)

    A. Mondal

    2015-04-01

    Full Text Available Climate change is most likely to introduce an additional stress to already stressed water systems in developing countries. Climate change is inherently linked with the hydrological cycle and is expected to cause significant alterations in regional water resources systems necessitating measures for adaptation and mitigation. Increasing temperatures, for example, are likely to change precipitation patterns resulting in alterations of regional water availability, evapotranspirative water demand of crops and vegetation, extremes of floods and droughts, and water quality. A comprehensive assessment of regional hydrological impacts of climate change is thus necessary. Global climate model simulations provide future projections of the climate system taking into consideration changes in external forcings, such as atmospheric carbon-dioxide and aerosols, especially those resulting from anthropogenic emissions. However, such simulations are typically run at a coarse scale, and are not equipped to reproduce regional hydrological processes. This paper summarizes recent research on the assessment of climate change impacts on regional hydrology, addressing the scale and physical processes mismatch issues. Particular attention is given to changes in water availability, irrigation demands and water quality. This paper also includes description of the methodologies developed to address uncertainties in the projections resulting from incomplete knowledge about future evolution of the human-induced emissions and from using multiple climate models. Approaches for investigating possible causes of historically observed changes in regional hydrological variables are also discussed. Illustrations of all the above-mentioned methods are provided for Indian regions with a view to specifically aiding water management in India.

  8. Evaluation of climate and land use changes on hydrologic processes in the Salt River Basin, Missouri, United States

    Science.gov (United States)

    The impact of climate and land use changes on hydrologic processes at the watershed scale is needed by land managers and policy makers to properly assess potential adaptation strategies. While numerous studies have been conducted on hydrologic processes in the Midwest, only a few have analyzed the l...

  9. Eco-hydrologic model cascades: Simulating land use and climate change impacts on hydrology, hydraulics and habitats for fish and macroinvertebrates.

    Science.gov (United States)

    Guse, Björn; Kail, Jochem; Radinger, Johannes; Schröder, Maria; Kiesel, Jens; Hering, Daniel; Wolter, Christian; Fohrer, Nicola

    2015-11-15

    Climate and land use changes affect the hydro- and biosphere at different spatial scales. These changes alter hydrological processes at the catchment scale, which impact hydrodynamics and habitat conditions for biota at the river reach scale. In order to investigate the impact of large-scale changes on biota, a cascade of models at different scales is required. Using scenario simulations, the impact of climate and land use change can be compared along the model cascade. Such a cascade of consecutively coupled models was applied in this study. Discharge and water quality are predicted with a hydrological model at the catchment scale. The hydraulic flow conditions are predicted by hydrodynamic models. The habitat suitability under these hydraulic and water quality conditions is assessed based on habitat models for fish and macroinvertebrates. This modelling cascade was applied to predict and compare the impacts of climate- and land use changes at different scales to finally assess their effects on fish and macroinvertebrates. Model simulations revealed that magnitude and direction of change differed along the modelling cascade. Whilst the hydrological model predicted a relevant decrease of discharge due to climate change, the hydraulic conditions changed less. Generally, the habitat suitability for fish decreased but this was strongly species-specific and suitability even increased for some species. In contrast to climate change, the effect of land use change on discharge was negligible. However, land use change had a stronger impact on the modelled nitrate concentrations affecting the abundances of macroinvertebrates. The scenario simulations for the two organism groups illustrated that direction and intensity of changes in habitat suitability are highly species-dependent. Thus, a joined model analysis of different organism groups combined with the results of hydrological and hydrodynamic models is recommended to assess the impact of climate and land use changes on

  10. Modelling hydrological processes and dissolved organic carbon dynamics in a rehabilitated Sphagnum-dominated peatland

    Science.gov (United States)

    Bernard-Jannin, Léonard; Binet, Stéphane; Gogo, Sébastien; Leroy, Fabien; Perdereau, Laurent; Laggoun-Défarge, Fatima

    2017-04-01

    Sphagnum-dominated peatlands represent a global major stock of carbon (C). Dissolved organic carbon (DOC) exports through runoff and leaching could reduce their potential C sink function and impact downstream water quality. DOC production in peatlands is strongly controlled by the hydrology, especially water table depth (WTD). Therefore, disturbances such as drainage can lead to increase DOC exports by lowering the WTD. Hydrological restoration (e.g. rewetting) can be undertaken to restore peatland functioning with an impact on DOC exports. The objective of this study is to assess the impact of drainage and rewetting on hydrological processes and their interactions with DOC dynamics in a Sphagnum dominated peatland. A hydrological model has been applied to a drained peatland (La Guette, France) which experienced a rewetting action on February 2014 and where WTD has been recorded in four piezometers at a 15 min time step since 2009. In addition, DOC concentrations in the peatland have been measured 6 times a year since 2014. The hydrological model is a WTD dependent reservoir model composed by two reservoirs representing the micro and macro porosity of the peatland (Binet et al., 2013). A DOC production module in both reservoirs was implemented based on temperature and WTD. The model was calibrated against WTD and DOC concentrations for each piezometer. The results show that the WTD in the study area is strongly affected by local meteorological conditions that could hide the effect of the rewetting action. The preliminary results evidenced that an additional source of water, identified as groundwater supply originating from the surrounding sandy layer aquifer, is necessary to maintain the water balance, especially during wet years (NS>0.8). Finally, the DOC module was able to describe DOC concentrations measured in the peatland and could be used to assess the impact of rewetting on DOC dynamics at different locations and to identify the factors of control of DOC

  11. Hydrological processes at the urban residential scale

    Science.gov (United States)

    Q. Xiao; E.G. McPherson; J.R. Simpson; S.L. Ustin

    2007-01-01

    In the face of increasing urbanization, there is growing interest in application of microscale hydrologic solutions to minimize storm runoff and conserve water at the source. In this study, a physically based numerical model was developed to understand hydrologic processes better at the urban residential scale and the interaction of these processes among different...

  12. Hydrological impacts of land use change in three diverse South African catchments

    Science.gov (United States)

    Warburton, Michele L.; Schulze, Roland E.; Jewitt, Graham P. W.

    2012-01-01

    SummaryIn order to meet society's needs for water, food, fuel and fibre, the earth's natural land cover and land use have been significantly changed. These changes have impacted on the hydrological responses and thus available water resources, as the hydrological responses of a catchment are dependent upon, and sensitive to, changes in the land use. The degree of anthropogenic modification of the land cover, the intensity of the land use changes and location of land uses within a catchment determines the extent to which land uses influences hydrological response of a catchment. The objective of the study was to improve understanding of the complex interactions between hydrological response and land use to aid in water resources planning. To achieve this, a hydrological model, viz. the ACRU agrohydrological model, which adequately represents hydrological processes and is sensitive to land use changes, was used to generate hydrological responses from three diverse, complex and operational South African catchments under both current land use and a baseline land cover. The selected catchments vary with respect to both land use and climate. The semi-arid sub-tropical Luvuvhu catchment has a large proportion of subsistence agriculture and informal residential areas, whereas in the winter rainfall Upper Breede catchment the primary land uses are commercial orchards and vineyards. The sub-humid Mgeni catchment is dominated by commercial plantation forestry in the upper reaches, commercial sugarcane and urban areas in the middle reaches, with the lower reaches dominated by urban areas. The hydrological responses of the selected catchments to land use change were complex. Results showed that the contributions of different land uses to the streamflow generated from a catchment is not proportional to the relative area of that land use, and the relative contribution of the land use to the catchment streamflow varies with the mean annual rainfall of the catchment. Furthermore

  13. Understanding The Individual Impacts Of Human Interventions And Climate Change On Hydrologic Variables In India

    Science.gov (United States)

    Sharma, T.; Chhabra, S., Jr.; Karmakar, S.; Ghosh, S.

    2015-12-01

    We have quantified the historical climate change and Land Use Land Cover (LULC) change impacts on the hydrologic variables of Indian subcontinent by using Variable Infiltration Capacity (VIC) mesoscale model at 0.5° spatial resolution and daily temporal resolution. The results indicate that the climate change in India has predominating effects on the basic water balance components such as water yield, evapotranspiration and soil moisture. This analysis is with the assumption of naturalised hydrologic cycle, i.e., the impacts of human interventions like construction of controlled (primarily dams, diversions and reservoirs) and water withdrawals structures are not taken into account. The assumption is unrealistic since there are numerous anthropogenic disturbances which result in large changes on vegetation composition and distribution patterns. These activities can directly or indirectly influence the dynamics of water cycle; subsequently affecting the hydrologic processes like plant transpiration, infiltration, evaporation, runoff and sublimation. Here, we have quantified the human interventions by using the reservoir and irrigation module of VIC model which incorporates the irrigation schemes, reservoir characteristics and water withdrawals. The impact of human interventions on hydrologic variables in many grids are found more predominant than climate change and might be detrimental to water resources at regional level. This spatial pattern of impacts will facilitate water manager and planners to design and station hydrologic structures for a sustainable water resources management.

  14. Large sample hydrology in NZ: Spatial organisation in process diagnostics

    Science.gov (United States)

    McMillan, H. K.; Woods, R. A.; Clark, M. P.

    2013-12-01

    A key question in hydrology is how to predict the dominant runoff generation processes in any given catchment. This knowledge is vital for a range of applications in forecasting hydrological response and related processes such as nutrient and sediment transport. A step towards this goal is to map dominant processes in locations where data is available. In this presentation, we use data from 900 flow gauging stations and 680 rain gauges in New Zealand, to assess hydrological processes. These catchments range in character from rolling pasture, to alluvial plains, to temperate rainforest, to volcanic areas. By taking advantage of so many flow regimes, we harness the benefits of large-sample and comparative hydrology to study patterns and spatial organisation in runoff processes, and their relationship to physical catchment characteristics. The approach we use to assess hydrological processes is based on the concept of diagnostic signatures. Diagnostic signatures in hydrology are targeted analyses of measured data which allow us to investigate specific aspects of catchment response. We apply signatures which target the water balance, the flood response and the recession behaviour. We explore the organisation, similarity and diversity in hydrological processes across the New Zealand landscape, and how these patterns change with scale. We discuss our findings in the context of the strong hydro-climatic gradients in New Zealand, and consider the implications for hydrological model building on a national scale.

  15. Simulating Complex, Cold-region Process Interactions Using a Multi-scale, Variable-complexity Hydrological Model

    Science.gov (United States)

    Marsh, C.; Pomeroy, J. W.; Wheater, H. S.

    2017-12-01

    Accurate management of water resources is necessary for social, economic, and environmental sustainability worldwide. In locations with seasonal snowcovers, the accurate prediction of these water resources is further complicated due to frozen soils, solid-phase precipitation, blowing snow transport, and snowcover-vegetation-atmosphere interactions. Complex process interactions and feedbacks are a key feature of hydrological systems and may result in emergent phenomena, i.e., the arising of novel and unexpected properties within a complex system. One example is the feedback associated with blowing snow redistribution, which can lead to drifts that cause locally-increased soil moisture, thus increasing plant growth that in turn subsequently impacts snow redistribution, creating larger drifts. Attempting to simulate these emergent behaviours is a significant challenge, however, and there is concern that process conceptualizations within current models are too incomplete to represent the needed interactions. An improved understanding of the role of emergence in hydrological systems often requires high resolution distributed numerical hydrological models that incorporate the relevant process dynamics. The Canadian Hydrological Model (CHM) provides a novel tool for examining cold region hydrological systems. Key features include efficient terrain representation, allowing simulations at various spatial scales, reduced computational overhead, and a modular process representation allowing for an alternative-hypothesis framework. Using both physics-based and conceptual process representations sourced from long term process studies and the current cold regions literature allows for comparison of process representations and importantly, their ability to produce emergent behaviours. Examining the system in a holistic, process-based manner can hopefully derive important insights and aid in development of improved process representations.

  16. An integrated crop and hydrologic modeling system to estimate hydrologic impacts of crop irrigation demands

    Science.gov (United States)

    R.T. McNider; C. Handyside; K. Doty; W.L. Ellenburg; J.F. Cruise; J.R. Christy; D. Moss; V. Sharda; G. Hoogenboom; Peter Caldwell

    2015-01-01

    The present paper discusses a coupled gridded crop modeling and hydrologic modeling system that can examine the benefits of irrigation and costs of irrigation and the coincident impact of the irrigation water withdrawals on surface water hydrology. The system is applied to the Southeastern U.S. The system tools to be discussed include a gridded version (GriDSSAT) of...

  17. A process-based typology of hydrological drought

    NARCIS (Netherlands)

    Loon, van A.F.; Lanen, van H.A.J.

    2012-01-01

    Hydrological drought events have very different causes and effects. Classifying these events into distinct types can be useful for both science and management. We propose a hydrological drought typology that is based on governing drought propagation processes derived from catchment-scale drought

  18. Evaluation of climate change impact on extreme hydrological event ...

    International Development Research Centre (IDRC) Digital Library (Canada)

    Changes in hydrological extremes will have implications on the design of future hydraulic structures, flood plain development, and water resource management. This study assesses the potential impact of climate change on extreme hydrological events in the Akaki River catchment area in and around Addis Ababa city.

  19. Design and Implementation of Hydrologic Process Knowledge-base Ontology: A case study for the Infiltration Process

    Science.gov (United States)

    Elag, M.; Goodall, J. L.

    2013-12-01

    Hydrologic modeling often requires the re-use and integration of models from different disciplines to simulate complex environmental systems. Component-based modeling introduces a flexible approach for integrating physical-based processes across disciplinary boundaries. Several hydrologic-related modeling communities have adopted the component-based approach for simulating complex physical systems by integrating model components across disciplinary boundaries in a workflow. However, it is not always straightforward to create these interdisciplinary models due to the lack of sufficient knowledge about a hydrologic process. This shortcoming is a result of using informal methods for organizing and sharing information about a hydrologic process. A knowledge-based ontology provides such standards and is considered the ideal approach for overcoming this challenge. The aims of this research are to present the methodology used in analyzing the basic hydrologic domain in order to identify hydrologic processes, the ontology itself, and how the proposed ontology is integrated with the Water Resources Component (WRC) ontology. The proposed ontology standardizes the definitions of a hydrologic process, the relationships between hydrologic processes, and their associated scientific equations. The objective of the proposed Hydrologic Process (HP) Ontology is to advance the idea of creating a unified knowledge framework for components' metadata by introducing a domain-level ontology for hydrologic processes. The HP ontology is a step toward an explicit and robust domain knowledge framework that can be evolved through the contribution of domain users. Analysis of the hydrologic domain is accomplished using the Formal Concept Approach (FCA), in which the infiltration process, an important hydrologic process, is examined. Two infiltration methods, the Green-Ampt and Philip's methods, were used to demonstrate the implementation of information in the HP ontology. Furthermore, a SPARQL

  20. A coupled stochastic rainfall-evapotranspiration model for hydrological impact analysis

    Science.gov (United States)

    Pham, Minh Tu; Vernieuwe, Hilde; De Baets, Bernard; Verhoest, Niko E. C.

    2018-02-01

    A hydrological impact analysis concerns the study of the consequences of certain scenarios on one or more variables or fluxes in the hydrological cycle. In such an exercise, discharge is often considered, as floods originating from extremely high discharges often cause damage. Investigating the impact of extreme discharges generally requires long time series of precipitation and evapotranspiration to be used to force a rainfall-runoff model. However, such kinds of data may not be available and one should resort to stochastically generated time series, even though the impact of using such data on the overall discharge, and especially on the extreme discharge events, is not well studied. In this paper, stochastically generated rainfall and corresponding evapotranspiration time series, generated by means of vine copulas, are used to force a simple conceptual hydrological model. The results obtained are comparable to the modelled discharge using observed forcing data. Yet, uncertainties in the modelled discharge increase with an increasing number of stochastically generated time series used. Notwithstanding this finding, it can be concluded that using a coupled stochastic rainfall-evapotranspiration model has great potential for hydrological impact analysis.

  1. An Alternative Approach to Overcome the Limitation of HRUs in Analyzing Hydrological Processes Based on Land Use/Cover Change

    Directory of Open Access Journals (Sweden)

    Fanhao Meng

    2018-04-01

    Full Text Available Since the concept of hydrological response units (HRUs is used widely in hydrological modeling, the land use change scenarios analysis based on HRU may have direct influence on hydrological processes due to its simplified flow routing and HRU spatial distribution. This paper intends to overcome this issue based on a new analysis approach to explain what impacts for the impact of land use/cover change on hydrological processes (LUCCIHP, and compare whether differences exist between the conventional approach and the improved approach. Therefore, we proposed a sub-basin segmentation approach to obtain more reasonable impact assessment of LUCC scenario by re-discretizing the HRUs and prolonging the flow path in which the LUCC occurs. As a scenario study, the SWAT model is used in the Aksu River Basin, China, to simulate the response of hydrological processes to LUCC over ten years. Moreover, the impacts of LUCC on hydrological processes before and after model modification are compared and analyzed at three levels (catchment scale, sub-basin scale and HRU scale. Comparative analysis of Nash–Sutcliffe coefficient (NSE, RSR and Pbias, model simulations before and after model improvement shows that NSE increased by up to 2%, RSR decreased from 0.73 to 0.72, and Pbias decreased from 0.13 to 0.05. The major LUCCs affecting hydrological elements in this basin are related to the degradation of grassland and snow/ice and expansion of farmland and bare land. Model simulations before and after model improvement show that the average variation of flow components in typical sub-basins (surface runoff, lateral flow and groundwater flow are changed by +11.09%, −4.51%, and −6.58%, and +10.53%, −1.55%, and −8.98% from the base period model scenario, respectively. Moreover, the spatial response of surface runoff at the HRU level reveals clear spatial differences between before and after model improvement. This alternative approach illustrates the potential

  2. Coupled Crop/Hydrology Model to Estimate Expanded Irrigation Impact on Water Resources

    Science.gov (United States)

    Handyside, C. T.; Cruise, J.

    2017-12-01

    A coupled agricultural and hydrologic systems model is used to examine the environmental impact of irrigation in the Southeast. A gridded crop model for the Southeast is used to determine regional irrigation demand. This irrigation demand is used in a regional hydrologic model to determine the hydrologic impact of irrigation. For the Southeast to maintain/expand irrigated agricultural production and provide adaptation to climate change and climate variability it will require integrated agricultural and hydrologic system models that can calculate irrigation demand and the impact of the this demand on the river hydrology. These integrated models can be used as (1) historical tools to examine vulnerability of expanded irrigation to past climate extremes (2) future tools to examine the sustainability of expanded irrigation under future climate scenarios and (3) a real-time tool to allow dynamic water resource management. Such tools are necessary to assure stakeholders and the public that irrigation can be carried out in a sustainable manner. The system tools to be discussed include a gridded version of the crop modeling system (DSSAT). The gridded model is referred to as GriDSSAT. The irrigation demand from GriDSSAT is coupled to a regional hydrologic model developed by the Eastern Forest Environmental Threat Assessment Center of the USDA Forest Service) (WaSSI). The crop model provides the dynamic irrigation demand which is a function of the weather. The hydrologic model includes all other competing uses of water. Examples of use the crop model coupled with the hydrologic model include historical analyses which show the change in hydrology as additional acres of irrigated land are added to water sheds. The first order change in hydrology is computed in terms of changes in the Water Availability Stress Index (WASSI) which is the ratio of water demand (irrigation, public water supply, industrial use, etc.) and water availability from the hydrologic model. Also

  3. Intercomparison of hydrological model structures and calibration approaches in climate scenario impact projections

    Science.gov (United States)

    Vansteenkiste, Thomas; Tavakoli, Mohsen; Ntegeka, Victor; De Smedt, Florimond; Batelaan, Okke; Pereira, Fernando; Willems, Patrick

    2014-11-01

    The objective of this paper is to investigate the effects of hydrological model structure and calibration on climate change impact results in hydrology. The uncertainty in the hydrological impact results is assessed by the relative change in runoff volumes and peak and low flow extremes from historical and future climate conditions. The effect of the hydrological model structure is examined through the use of five hydrological models with different spatial resolutions and process descriptions. These were applied to a medium sized catchment in Belgium. The models vary from the lumped conceptual NAM, PDM and VHM models over the intermediate detailed and distributed WetSpa model to the fully distributed MIKE SHE model. The latter model accounts for the 3D groundwater processes and interacts bi-directionally with a full hydrodynamic MIKE 11 river model. After careful and manual calibration of these models, accounting for the accuracy of the peak and low flow extremes and runoff subflows, and the changes in these extremes for changing rainfall conditions, the five models respond in a similar way to the climate scenarios over Belgium. Future projections on peak flows are highly uncertain with expected increases as well as decreases depending on the climate scenario. The projections on future low flows are more uniform; low flows decrease (up to 60%) for all models and for all climate scenarios. However, the uncertainties in the impact projections are high, mainly in the dry season. With respect to the model structural uncertainty, the PDM model simulates significantly higher runoff peak flows under future wet scenarios, which is explained by its specific model structure. For the low flow extremes, the MIKE SHE model projects significantly lower low flows in dry scenario conditions in comparison to the other models, probably due to its large difference in process descriptions for the groundwater component, the groundwater-river interactions. The effect of the model

  4. Assessing hydrological impacts of tree-based bioenergy feedstock

    CSIR Research Space (South Africa)

    Gush, Mark B

    2010-01-01

    Full Text Available This chapter provides a methodology for assessing the hydrological impacts of tree-based bioenergy feedstock. Based on experience gained in South Africa, it discusses the tasks required to reach an understanding of the likely water resource impacts...

  5. Sources of uncertainty in hydrological climate impact assessment: a cross-scale study

    Science.gov (United States)

    Hattermann, F. F.; Vetter, T.; Breuer, L.; Su, Buda; Daggupati, P.; Donnelly, C.; Fekete, B.; Flörke, F.; Gosling, S. N.; Hoffmann, P.; Liersch, S.; Masaki, Y.; Motovilov, Y.; Müller, C.; Samaniego, L.; Stacke, T.; Wada, Y.; Yang, T.; Krysnaova, V.

    2018-01-01

    Climate change impacts on water availability and hydrological extremes are major concerns as regards the Sustainable Development Goals. Impacts on hydrology are normally investigated as part of a modelling chain, in which climate projections from multiple climate models are used as inputs to multiple impact models, under different greenhouse gas emissions scenarios, which result in different amounts of global temperature rise. While the goal is generally to investigate the relevance of changes in climate for the water cycle, water resources or hydrological extremes, it is often the case that variations in other components of the model chain obscure the effect of climate scenario variation. This is particularly important when assessing the impacts of relatively lower magnitudes of global warming, such as those associated with the aspirational goals of the Paris Agreement. In our study, we use ANOVA (analyses of variance) to allocate and quantify the main sources of uncertainty in the hydrological impact modelling chain. In turn we determine the statistical significance of different sources of uncertainty. We achieve this by using a set of five climate models and up to 13 hydrological models, for nine large scale river basins across the globe, under four emissions scenarios. The impact variable we consider in our analysis is daily river discharge. We analyze overall water availability and flow regime, including seasonality, high flows and low flows. Scaling effects are investigated by separately looking at discharge generated by global and regional hydrological models respectively. Finally, we compare our results with other recently published studies. We find that small differences in global temperature rise associated with some emissions scenarios have mostly significant impacts on river discharge—however, climate model related uncertainty is so large that it obscures the sensitivity of the hydrological system.

  6. Uncertainties in hydrological extremes projections and its effects on decision-making processes in an Amazonian sub-basin.

    Science.gov (United States)

    Andres Rodriguez, Daniel; Garofolo, Lucas; Lazaro Siqueira Junior, Jose

    2013-04-01

    Uncertainties in Climate Change projections are affected by irreducible uncertainties due to knowledge's limitations, chaotic nature of climate system and human decision-making process. Such uncertainties affect the impact studies, complicating the decision-making process aimed at mitigation and adaptation. However, these uncertainties allow the possibility to develop exploratory analyses on system's vulnerability to different sceneries. Through these kinds of analyses it is possible to identify critical issues, which must be deeper studied. For this study we used several future's projections from General Circulation Models to feed a Hydrological Model, applied to the Amazonian sub-basin of Ji-Paraná. Hydrological Model integrations are performed for present historical time (1970-1990) and for future period (2010-2100). Extreme values analyses are performed to each simulated time series and results are compared with extremes events in present time. A simple approach to identify potential vulnerabilities consists of evaluating the hydrologic system response to climate variability and extreme events observed in the past, comparing them with the conditions projected for the future. Thus it is possible to identify critical issues that need attention and more detailed studies. For the goal of this work, we used socio-economic data from Brazilian Institute of Geography and Statistics, the Operator of the National Electric System, the Brazilian National Water Agency and scientific and press published information. This information is used to characterize impacts associated to extremes hydrological events in the basin during the present historical time and to evaluate potential impacts in the future face to the different hydrological projections. Results show inter-model variability results in a broad dispersion on projected extreme's values. The impact of such dispersion is differentiated for different aspects of socio-economic and natural systems and must be carefully

  7. Hydrologic impact of urbanization with extensive stormwater infiltration

    DEFF Research Database (Denmark)

    Locatelli, Luca; Mark, Ole; Mikkelsen, Peter Steen

    2017-01-01

    This paper presents a novel modeling analysis of a 40-year-long dataset to examine the impact of urbanization, with widespread stormwater infiltration, on groundwater levels and the water balance of a watershed. A dataset on the hydrologic impact of urbanization with extensive stormwater...

  8. Advancements in Hydrology and Erosion Process Understanding and Post-Fire Hydrologic and Erosion Model Development for Semi-Arid Landscapes

    Science.gov (United States)

    Williams, C. Jason; Pierson, Frederick B.; Al-Hamdan, Osama Z.; Robichaud, Peter R.; Nearing, Mark A.; Hernandez, Mariano; Weltz, Mark A.; Spaeth, Kenneth E.; Goodrich, David C.

    2017-04-01

    Fire activity continues to increase in semi-arid regions around the globe. Private and governmental land management entities are challenged with predicting and mitigating post-fire hydrologic and erosion responses on these landscapes. For more than a decade, a team of scientists with the US Department of Agriculture has collaborated on extensive post-fire hydrologic field research and the application of field research to development of post-fire hydrology and erosion predictive technologies. Experiments funded through this research investigated the impacts of fire on vegetation and soils and the effects of these fire-induced changes on infiltration, runoff generation, erodibility, and soil erosion processes. The distribution of study sites spans diverse topography across grassland, shrubland, and woodland landscapes throughout the western United States. Knowledge gleaned from the extensive field experiments was applied to develop and enhance physically-based models for hillslope- to watershed-scale runoff and erosion prediction. Our field research and subsequent data syntheses have identified key knowledge gaps and challenges regarding post-fire hydrology and erosion modeling. Our presentation details some consistent trends across a diverse domain and varying landscape conditions based on our extensive field campaigns. We demonstrate how field data have advanced our understanding of post-fire hydrology and erosion for semi-arid landscapes and highlight remaining key knowledge gaps. Lastly, we briefly show how our well-replicated experimental methodologies have contributed to advancements in hydrologic and erosion model development for the post-fire environment.

  9. Upscaling Empirically Based Conceptualisations to Model Tropical Dominant Hydrological Processes for Historical Land Use Change

    Science.gov (United States)

    Toohey, R.; Boll, J.; Brooks, E.; Jones, J.

    2009-12-01

    Surface runoff and percolation to ground water are two hydrological processes of concern to the Atlantic slope of Costa Rica because of their impacts on flooding and drinking water contamination. As per legislation, the Costa Rican Government funds land use management from the farm to the regional scale to improve or conserve hydrological ecosystem services. In this study, we examined how land use (e.g., forest, coffee, sugar cane, and pasture) affects hydrological response at the point, plot (1 m2), and the field scale (1-6ha) to empirically conceptualize the dominant hydrological processes in each land use. Using our field data, we upscaled these conceptual processes into a physically-based distributed hydrological model at the field, watershed (130 km2), and regional (1500 km2) scales. At the point and plot scales, the presence of macropores and large roots promoted greater vertical percolation and subsurface connectivity in the forest and coffee field sites. The lack of macropores and large roots, plus the addition of management artifacts (e.g., surface compaction and a plough layer), altered the dominant hydrological processes by increasing lateral flow and surface runoff in the pasture and sugar cane field sites. Macropores and topography were major influences on runoff generation at the field scale. Also at the field scale, antecedent moisture conditions suggest a threshold behavior as a temporal control on surface runoff generation. However, in this tropical climate with very intense rainstorms, annual surface runoff was less than 10% of annual precipitation at the field scale. Significant differences in soil and hydrological characteristics observed at the point and plot scales appear to have less significance when upscaled to the field scale. At the point and plot scales, percolation acted as the dominant hydrological process in this tropical environment. However, at the field scale for sugar cane and pasture sites, saturation-excess runoff increased as

  10. Scaling Hydrologic Processes in Boreal Forest Stands: New Eco-hydrological Perspectives or Deja vu?

    Science.gov (United States)

    Silins, U.; Lieffers, V. J.; Landhausser, S. M.; Mendoza, C. A.; Devito, K. J.; Petrone, R. M.; Gan, T. Y.

    2006-12-01

    The leaf area of forest canopies is both main attribute of stands controlling water balance through transpiration and interception, and "engine" driving stand growth, stand dynamics, and forest succession. While transpiration and interception dynamics are classic themes in forest hydrology, we present results from our eco-hydrological research on boreal trees to highlight how more recent eco-physiological insights into species specific controls over water use and leaf area such as hydraulic architecture, cavitation, sapwood-leaf area relationships, and root system controls over water uptake are providing new insights into integrated atmospheric-autecological controls over these hydrologic processes. These results are discussed in the context of newer eco-hydrological frameworks which may serve to aid in exploring how forest disturbance and subsequent trajectories of hydrologic recovery are likely to affect both forest growth dynamics and hydrology of forested landscapes in response to forest management, severe forest pest epidemics such as the Mountain Pine Beetle epidemic in Western Canada, and climate change.

  11. Mountaintop Removal Mining and Catchment Hydrology

    Directory of Open Access Journals (Sweden)

    Andrew J. Miller

    2014-03-01

    Full Text Available Mountaintop mining and valley fill (MTM/VF coal extraction, practiced in the Central Appalachian region, represents a dramatic landscape-scale disturbance. MTM operations remove as much as 300 m of rock, soil, and vegetation from ridge tops to access deep coal seams and much of this material is placed in adjacent headwater streams altering landcover, drainage network, and topography. In spite of its scale, extent, and potential for continued use, the effects MTM/VF on catchment hydrology is poorly understood. Previous reviews focus on water quality and ecosystem health impacts, but little is known about how MTM/VF affects hydrology, particularly the movement and storage of water, hence the hydrologic processes that ultimately control flood generation, water chemistry, and biology. This paper aggregates the existing knowledge about the hydrologic impacts of MTM/VF to identify areas where further scientific investigation is needed. While contemporary surface mining generally increases peak and total runoff, the limited MTM/VF studies reveal significant variability in hydrologic response. Significant knowledge gaps relate to limited understanding of hydrologic processes in these systems. Until the hydrologic impact of this practice is better understood, efforts to reduce water quantity and quality problems and ecosystem degradation will be difficult to achieve.

  12. Hydrological Process Simulation of Inland River Watershed: A Case Study of the Heihe River Basin with Multiple Hydrological Models

    OpenAIRE

    Lili Wang; Zhonggen Wang; Jingjie Yu; Yichi Zhang; Suzhen Dang

    2018-01-01

    Simulating the hydrological processes of an inland river basin can help provide the scientific guidance to the policies of water allocation among different subbasins and water resource management groups within the subbasins. However, it is difficult to simulate the hydrological processes of an inland river basin with hydrological models due to the non-consistent hydrological characteristics of the entire basin. This study presents a solution to this problem with a case study about the hydrolo...

  13. Hydrologic Impact of Harvesting and Road Construction in Mountainous Regime of Pacific Northwest

    Science.gov (United States)

    Du, E.; Hubbart, J.; Gravelle, J.; Link, T.

    2006-12-01

    The impact of forest management practices on hydrologic flow regimes have been debated for years. Vegetation removal and forest road construction are two anthropogenic disturbances that may affect watershed hydrology. The Mica Creek Experimental Watershed (MCEW), ID was initiated by Potlatch Corporation in 1990 to evaluate how contemporary forest harvest practices may impact water flows, quality and aquatic health. The study was recently expanded to identify the specific mechanisms producing the observed flow responses. The extensive and long term monitoring program in MCEW enables the validation of simulated internal watershed processes, thereby increasing our confidence in the ability of models to simulate the hydrologic effects of land cover change. The spatially-distributed, physically-based Distributed Hydrology Soil Vegetation Model (DHSVM), will be used to deconvolve the effects of canopy change, forest road construction, and climate variability in MCEW. First, the model performance will be assessed for pre-harvest, post-road, and post-harvest experimental periods. The model will then be used to explore how the flow regime would be expected to differ under historical, alternative management and future scenarios. A retrospective study of fully-harvested and increased forest road density (as opposed to current road density of 3 to 5 percent by surface area) will be compared with contemporary management practices. The impact of harvest patterns on sub-catchment flows will be assessed to understand the degree to which flow synchronization or desynchronization on confluent streams might affect cumulative downstream flow regime. Future scenarios will assess the potential impact of climatic variability that is expected to raise the transient snow zone and increase the wintertime rain to snow ratios in the Pacific Northwest. Variables such as harvest patterns and climate variation will be manipulated to project whether the hydrologic effects of land cover and

  14. [Advance in researches on the effect of forest on hydrological process].

    Science.gov (United States)

    Zhang, Zhiqiang; Yu, Xinxiao; Zhao, Yutao; Qin, Yongsheng

    2003-01-01

    According to the effects of forest on hydrological process, forest hydrology can be divided into three related aspects: experimental research on the effects of forest changing on hydrological process quantity and water quality; mechanism study on the effects of forest changing on hydrological cycle, and establishing and exploitating physical-based distributed forest hydrological model for resource management and engineering construction. Orientation experiment research can not only support the first-hand data for forest hydrological model, but also make clear the precipitation-runoff mechanisms. Research on runoff mechanisms can be valuable for the exploitation and improvement of physical based hydrological models. Moreover, the model can also improve the experimental and runoff mechanism researches. A review of above three aspects are summarized in this paper.

  15. An overview of current applications, challenges, and future trends in distributed process-based models in hydrology

    Science.gov (United States)

    Fatichi, Simone; Vivoni, Enrique R.; Odgen, Fred L; Ivanov, Valeriy Y; Mirus, Benjamin B.; Gochis, David; Downer, Charles W; Camporese, Matteo; Davison, Jason H; Ebel, Brian A.; Jones, Norm; Kim, Jongho; Mascaro, Giuseppe; Niswonger, Richard G.; Restrepo, Pedro; Rigon, Riccardo; Shen, Chaopeng; Sulis, Mauro; Tarboton, David

    2016-01-01

    Process-based hydrological models have a long history dating back to the 1960s. Criticized by some as over-parameterized, overly complex, and difficult to use, a more nuanced view is that these tools are necessary in many situations and, in a certain class of problems, they are the most appropriate type of hydrological model. This is especially the case in situations where knowledge of flow paths or distributed state variables and/or preservation of physical constraints is important. Examples of this include: spatiotemporal variability of soil moisture, groundwater flow and runoff generation, sediment and contaminant transport, or when feedbacks among various Earth’s system processes or understanding the impacts of climate non-stationarity are of primary concern. These are situations where process-based models excel and other models are unverifiable. This article presents this pragmatic view in the context of existing literature to justify the approach where applicable and necessary. We review how improvements in data availability, computational resources and algorithms have made detailed hydrological simulations a reality. Avenues for the future of process-based hydrological models are presented suggesting their use as virtual laboratories, for design purposes, and with a powerful treatment of uncertainty.

  16. An overview of current applications, challenges, and future trends in distributed process-based models in hydrology

    Science.gov (United States)

    Fatichi, Simone; Vivoni, Enrique R.; Ogden, Fred L.; Ivanov, Valeriy Y.; Mirus, Benjamin; Gochis, David; Downer, Charles W.; Camporese, Matteo; Davison, Jason H.; Ebel, Brian; Jones, Norm; Kim, Jongho; Mascaro, Giuseppe; Niswonger, Richard; Restrepo, Pedro; Rigon, Riccardo; Shen, Chaopeng; Sulis, Mauro; Tarboton, David

    2016-06-01

    Process-based hydrological models have a long history dating back to the 1960s. Criticized by some as over-parameterized, overly complex, and difficult to use, a more nuanced view is that these tools are necessary in many situations and, in a certain class of problems, they are the most appropriate type of hydrological model. This is especially the case in situations where knowledge of flow paths or distributed state variables and/or preservation of physical constraints is important. Examples of this include: spatiotemporal variability of soil moisture, groundwater flow and runoff generation, sediment and contaminant transport, or when feedbacks among various Earth's system processes or understanding the impacts of climate non-stationarity are of primary concern. These are situations where process-based models excel and other models are unverifiable. This article presents this pragmatic view in the context of existing literature to justify the approach where applicable and necessary. We review how improvements in data availability, computational resources and algorithms have made detailed hydrological simulations a reality. Avenues for the future of process-based hydrological models are presented suggesting their use as virtual laboratories, for design purposes, and with a powerful treatment of uncertainty.

  17. Hydrologic impacts of thawing permafrost—A review

    Science.gov (United States)

    Walvoord, Michelle Ann; Kurylyk, Barret L.

    2016-01-01

    Where present, permafrost exerts a primary control on water fluxes, flowpaths, and distribution. Climate warming and related drivers of soil thermal change are expected to modify the distribution of permafrost, leading to changing hydrologic conditions, including alterations in soil moisture, connectivity of inland waters, streamflow seasonality, and the partitioning of water stored above and below ground. The field of permafrost hydrology is undergoing rapid advancement with respect to multiscale observations, subsurface characterization, modeling, and integration with other disciplines. However, gaining predictive capability of the many interrelated consequences of climate change is a persistent challenge due to several factors. Observations of hydrologic change have been causally linked to permafrost thaw, but applications of process-based models needed to support and enhance the transferability of empirical linkages have often been restricted to generalized representations. Limitations stem from inadequate baseline permafrost and unfrozen hydrogeologic characterization, lack of historical data, and simplifications in structure and process representation needed to counter the high computational demands of cryohydrogeologic simulations. Further, due in part to the large degree of subsurface heterogeneity of permafrost landscapes and the nonuniformity in thaw patterns and rates, associations between various modes of permafrost thaw and hydrologic change are not readily scalable; even trajectories of change can differ. This review highlights promising advances in characterization and modeling of permafrost regions and presents ongoing research challenges toward projecting hydrologic and ecologic consequences of permafrost thaw at time and spatial scales that are useful to managers and researchers.

  18. Towards simplification of hydrologic modeling: identification of dominant processes

    Directory of Open Access Journals (Sweden)

    S. L. Markstrom

    2016-11-01

    Full Text Available parameter hydrologic model, has been applied to the conterminous US (CONUS. Parameter sensitivity analysis was used to identify: (1 the sensitive input parameters and (2 particular model output variables that could be associated with the dominant hydrologic process(es. Sensitivity values of 35 PRMS calibration parameters were computed using the Fourier amplitude sensitivity test procedure on 110 000 independent hydrologically based spatial modeling units covering the CONUS and then summarized to process (snowmelt, surface runoff, infiltration, soil moisture, evapotranspiration, interflow, baseflow, and runoff and model performance statistic (mean, coefficient of variation, and autoregressive lag 1. Identified parameters and processes provide insight into model performance at the location of each unit and allow the modeler to identify the most dominant process on the basis of which processes are associated with the most sensitive parameters. The results of this study indicate that: (1 the choice of performance statistic and output variables has a strong influence on parameter sensitivity, (2 the apparent model complexity to the modeler can be reduced by focusing on those processes that are associated with sensitive parameters and disregarding those that are not, (3 different processes require different numbers of parameters for simulation, and (4 some sensitive parameters influence only one hydrologic process, while others may influence many.

  19. Towards simplification of hydrologic modeling: Identification of dominant processes

    Science.gov (United States)

    Markstrom, Steven; Hay, Lauren E.; Clark, Martyn P.

    2016-01-01

    The Precipitation–Runoff Modeling System (PRMS), a distributed-parameter hydrologic model, has been applied to the conterminous US (CONUS). Parameter sensitivity analysis was used to identify: (1) the sensitive input parameters and (2) particular model output variables that could be associated with the dominant hydrologic process(es). Sensitivity values of 35 PRMS calibration parameters were computed using the Fourier amplitude sensitivity test procedure on 110 000 independent hydrologically based spatial modeling units covering the CONUS and then summarized to process (snowmelt, surface runoff, infiltration, soil moisture, evapotranspiration, interflow, baseflow, and runoff) and model performance statistic (mean, coefficient of variation, and autoregressive lag 1). Identified parameters and processes provide insight into model performance at the location of each unit and allow the modeler to identify the most dominant process on the basis of which processes are associated with the most sensitive parameters. The results of this study indicate that: (1) the choice of performance statistic and output variables has a strong influence on parameter sensitivity, (2) the apparent model complexity to the modeler can be reduced by focusing on those processes that are associated with sensitive parameters and disregarding those that are not, (3) different processes require different numbers of parameters for simulation, and (4) some sensitive parameters influence only one hydrologic process, while others may influence many

  20. The impact of runoff and surface hydrology on Titan's climate

    Science.gov (United States)

    Faulk, Sean; Lora, Juan; Mitchell, Jonathan

    2017-10-01

    Titan’s surface liquid distribution has been shown by general circulation models (GCMs) to greatly influence the hydrological cycle. Simulations from the Titan Atmospheric Model (TAM) with imposed polar methane “wetlands” reservoirs realistically produce many observed features of Titan’s atmosphere, whereas “aquaplanet” simulations with a global methane ocean are not as successful. In addition, wetlands simulations, unlike aquaplanet simulations, demonstrate strong correlations between extreme rainfall behavior and observed geomorphic features, indicating the influential role of precipitation in shaping Titan’s surface. The wetlands configuration is, in part, motivated by Titan’s large-scale topography featuring low-latitude highlands and high-latitude lowlands, with the implication being that methane may concentrate in the high-latitude lowlands by way of runoff and subsurface flow. However, the extent to which topography controls the surface liquid distribution and thus impacts the global hydrological cycle by driving surface and subsurface flow is unclear. Here we present TAM simulations wherein the imposed wetlands reservoirs are replaced by a surface runoff scheme that allows surface liquid to self-consistently redistribute under the influence of topography. To isolate the singular impact of surface runoff on Titan’s climatology, we run simulations without parameterizations of subsurface flow and topography-atmosphere interactions. We discuss the impact of surface runoff on the surface liquid distribution over seasonal timescales and compare the resulting hydrological cycle to observed cloud and surface features, as well as to the hydrological cycles of the TAM wetlands and aquaplanet simulations. While still idealized, this more realistic representation of Titan’s hydrology provides new insight into the complex interaction between Titan’s atmosphere and surface, demonstrates the influence of surface runoff on Titan’s global climate

  1. Impact of climate change on the streamflow hydrology of the Yangtze River in China

    Science.gov (United States)

    Tuotuo River basin, the source region of the Yangtze River, is the key area, where the impact of climate change has been observed on many of the hydrological processes of this central region of the Tibetan Plateau. In this study, we examined six global climate models (GCMs) under three Respectively ...

  2. Periodicity of Climatic, Hydrological and Lacustrine Sedimentation Processes in the South of the East-European Plain

    DEFF Research Database (Denmark)

    Lisetskii, F.N.; Stolba, Vladimir; Pichura, V.I.

    2013-01-01

    s did not result in an increase in the water volume in the Dnieper. This suggests that the declining sensitivity of the hydrological cycles to the climatic rhythms is the effect of a strong anthropogenic impact. Accordingly, the Dnieper water-volume formation period (1900–1946) optimal...... make it possible to define the contribution of annual sums of precipitation and air temperature to the riverine discharge, the study has established the climatic dependence of the hydrological processes. It has also demonstrated that an essential increase in the annual precipitation sums since the 1940...... for simulation has been defined, which most accurately reflects the impact of natural climatic factors on the riverine discharge. The regression model for the conditions when the water discharge is over 1686 m3/s can be used for prognosis (and retrognosis) of extreme hydrological events in the south of the East...

  3. Integrated Application of Remote Sensing, GIS and Hydrological Modeling to Estimate the Potential Impact Area of Earthquake-Induced Dammed Lakes

    Directory of Open Access Journals (Sweden)

    Bo Cao

    2017-10-01

    Full Text Available Dammed lakes are an important secondary hazard caused by earthquakes. They can induce further damage to nearby humans. Current hydrology calculation research on dammed lakes usually lacks spatial expressive ability and cannot accurately conduct impact assessment without the support of remote sensing, which obtains important characteristic information of dammed lakes. The current study aims to address the issues of the potential impact area estimate of earthquake-induced dammed lakes by combining remote sensing (RS, a geographic information system (GIS, and hydrological modeling. The Tangjiashan dammed lake induced by the Wenchuan earthquake was selected as the case for study. The elevation-versus-reservoir capacity curve was first calculated using the seed-growing algorithm based on digital elevation model (DEM data. The simulated annealing algorithm was applied to train the hydrological modeling parameters according to the historical hydrologic data. Then, the downstream water elevation variational process under different collapse capacity conditions was performed based on the obtained parameters. Finally, the downstream potential impact area was estimated by the highest water elevation values at different hydrologic sections. Results show that a flood with a collapse elevation of at least 680 m will impact the entire downstream region of Beichuan town. We conclude that spatial information technology combined with hydrological modeling can accurately predict and demonstrate the potential impact area with limited data resources. This paper provides a better guide for future immediate responses to dammed lake hazard mitigation.

  4. Hydrological response of a small catchment burned by experimental fire

    NARCIS (Netherlands)

    Stoof, C.R.; Vervoort, R.W.; Iwema, J.; Elsen, van den H.G.M.; Ferreira, A.J.D.; Ritsema, C.J.

    2012-01-01

    Fire can considerably change hydrological processes, increasing the risk of extreme flooding and erosion events. Although hydrological processes are largely affected by scale, catchment-scale studies on the hydrological impact of fire in Europe are scarce, and nested approaches are rarely used. We

  5. Identification and quantification of the hydrological impacts of imperviousness in urban catchments: a review.

    Science.gov (United States)

    Jacobson, Carol R

    2011-06-01

    Urbanisation produces numerous changes in the natural environments it replaces. The impacts include habitat fragmentation and changes to both the quality and quantity of the stormwater runoff, and result in changes to hydrological systems. This review integrates research in relatively diverse areas to examine how the impacts of urban imperviousness on hydrological systems can be quantified and modelled. It examines the nature of reported impacts of urbanisation on hydrological systems over four decades, including the effects of changes in imperviousness within catchments, and some inconsistencies in studies of the impacts of urbanisation. The distribution of imperviousness within urban areas is important in understanding the impacts of urbanisation and quantification requires detailed characterisation of urban areas. As a result most mapping of urban areas uses remote sensing techniques and this review examines a range of techniques using medium and high resolution imagery, including spectral unmixing. The third section examines the ways in which scientists and hydrological and environmental engineers model and quantify water flows in urban areas, the nature of hydrological models and methods for their calibration. The final section examines additional factors which influence the impact of impervious surfaces and some uncertainties that exist in current knowledge. Copyright © 2011 Elsevier Ltd. All rights reserved.

  6. Surface runoff in flat terrain: How field topography and runoff generating processes control hydrological connectivity

    NARCIS (Netherlands)

    Appels, W.M.; Bogaart, P.W.; Bogaart, P.W.; Zee, van der S.E.A.T.M.

    2016-01-01

    In flat lowland agricultural catchments in temperate climate zones with highly permeable sandy soils, surface runoff is a rare process with a large impact on the redistribution of sediments and solutes and stream water quality. We examine hydrological data obtained on two field sites in the

  7. Influences of Coupled Hydrologic and Microbial Processes on River Corridor Biogeochemistry and Ecology

    Science.gov (United States)

    Scheibe, T. D.; Song, H. S.; Stegen, J.; Graham, E.; Bao, J.; Goldman, A.; Zhou, T.; Crump, A.; Hou, Z.; Hammond, G. E.; Chen, X.; Huang, M.; Zhang, X.; Nelson, W. C.; Garayburu-Caruso, V. A.

    2017-12-01

    The exchange of water between rivers and surrounding subsurface environments (hydrologic exchange flows or HEFs) is a vital aspect of river ecology and watershed function. HEFs play a key role in water quality, nutrient cycling, and ecosystem health, and they modulate water temperatures and enhance exchange of terrestrial and aquatic nutrients, which lead to elevated biogeochemical activity. However, these coupled hydrologic and microbiological processes are not well understood, particularly in the context of large managed river systems with highly variable discharge, and are poorly represented in system-scale quantitative models. Using the 75 km Hanford Reach of the Columbia River as the research domain, we apply high-resolution flow simulations supported by field observations to understand how variable river discharge interacts with hydromorphic and hydrogeologic structures to generate HEFs and distributions of subsurface residence times. We combine this understanding of hydrologic processes with microbiological activity measurements and reactive transport models to elucidate the holistic impacts of variable discharge on river corridor (surface and subsurface) ecosystems. In particular, our project seeks to develop and test new conceptual and numerical models that explicitly incorporate i) the character (chemical speciation and thermodynamics) of natural organic matter as it varies along flow paths and through mixing of groundwater and surface water, and ii) the history-dependent response of microbial communities to varying time scales of inundation associated with fluctuations in river discharge. The results of these high-resolution mechanistic models are guiding formulation and parameterization of reduced-order models applicable at reach to watershed scales. New understanding of coupled hydrology and microbiology in the river corridor will play a key role in reduction of uncertainties associated with major Earth system biogeochemical fluxes, improving

  8. Human impact parameterizations in global hydrological models improve estimates of monthly discharges and hydrological extremes: a multi-model validation study

    NARCIS (Netherlands)

    Veldkamp, T I E; Zhao, F; Ward, P J; Moel, H de; Aerts, J C J H; Schmied, H Müller; Portmann, F T; Masaki, Y; Pokhrel, Y; Liu, X; Satoh, Yusuke; Gerten, Dieter; Gosling, S N; Zaherpour, J; Wada, Yoshihide

    2018-01-01

    Human activity has a profound influence on river discharges, hydrological extremes and water-related hazards. In this study, we compare the results of five state-of-the-art global hydrological models (GHMs) with observations to examine the role of human impact parameterizations (HIP) in the

  9. Synthesis of Hydrologic and Hydraulic Impacts : Technical Report

    Science.gov (United States)

    2012-08-01

    A substantial portion of the cost of highway projects (approximately 40%, according to one in-house TxDOT : estimate) is for drainage infrastructure, which is intended to minimize any adverse hydrologic and hydraulic : (H&H) impacts of the project. Y...

  10. Use of Isotopic Techniques for the Assessment of Hydrological Processes in Wetlands (Cienaga Colombia)

    Energy Technology Data Exchange (ETDEWEB)

    Betancur, T.; Santa, D.; Palacio, P.; Palacio, C.; Wills, B.; Hoyos, D. A. [Universidad de Antioquia, Medellin (Colombia)

    2013-07-15

    The Cienaga Colombia wetland is located in the Bajo Cauca Antioqueno region where the 'Man' river flows into the Cauca River. Hydrological processes on the Cienaga Colombia wetland are complex because of the interactive effects of both local and regional elements, associated with a typical tropical wet climatic regime. In this groundwater dependent wetland hydrological studies have been conducted, including hydrochemical analyses and isotope tracers, to describe and understand the interactions between groundwater and surface water, not only for the wetland itself but also for the entire catchment area. Rain samples (five year record) were used to obtain the LML: {delta}{sup 2}H = 8.03 {delta}{sup 18}O +9.9. The evaporation line is: {delta}{sup 2}H = 5.9 {delta}{sup 18}O - 7.3. According to the analyses, both groundwater and surface waters have the same isotopic signatures. Unsustainable land use practices along with current and predicted global environmental changes may cause negative impacts on the hydrological functioning of the region, affecting primarily, but not exclusively, evapotranspiration-recharge processes and the sustainability of the entire system. (author)

  11. Hydrologic Process-oriented Optimization of Electrical Resistivity Tomography

    Science.gov (United States)

    Hinnell, A.; Bechtold, M.; Ferre, T. A.; van der Kruk, J.

    2010-12-01

    Electrical resistivity tomography (ERT) is commonly used in hydrologic investigations. Advances in joint and coupled hydrogeophysical inversion have enhanced the quantitative use of ERT to construct and condition hydrologic models (i.e. identify hydrologic structure and estimate hydrologic parameters). However the selection of which electrical resistivity data to collect and use is often determined by a combination of data requirements for geophysical analysis, intuition on the part of the hydrogeophysicist and logistical constraints of the laboratory or field site. One of the advantages of coupled hydrogeophysical inversion is the direct link between the hydrologic model and the individual geophysical data used to condition the model. That is, there is no requirement to collect geophysical data suitable for independent geophysical inversion. The geophysical measurements collected can be optimized for estimation of hydrologic model parameters rather than to develop a geophysical model. Using a synthetic model of drip irrigation we evaluate the value of individual resistivity measurements to describe the soil hydraulic properties and then use this information to build a data set optimized for characterizing hydrologic processes. We then compare the information content in the optimized data set with the information content in a data set optimized using a Jacobian sensitivity analysis.

  12. Automatic pre-processing for an object-oriented distributed hydrological model using GRASS-GIS

    Science.gov (United States)

    Sanzana, P.; Jankowfsky, S.; Branger, F.; Braud, I.; Vargas, X.; Hitschfeld, N.

    2012-04-01

    Landscapes are very heterogeneous, which impact the hydrological processes occurring in the catchments, especially in the modeling of peri-urban catchments. The Hydrological Response Units (HRUs), resulting from the intersection of different maps, such as land use, soil types and geology, and flow networks, allow the representation of these elements in an explicit way, preserving natural and artificial contours of the different layers. These HRUs are used as model mesh in some distributed object-oriented hydrological models, allowing the application of a topological oriented approach. The connectivity between polygons and polylines provides a detailed representation of the water balance and overland flow in these distributed hydrological models, based on irregular hydro-landscape units. When computing fluxes between these HRUs, the geometrical parameters, such as the distance between the centroid of gravity of the HRUs and the river network, and the length of the perimeter, can impact the realism of the calculated overland, sub-surface and groundwater fluxes. Therefore, it is necessary to process the original model mesh in order to avoid these numerical problems. We present an automatic pre-processing implemented in the open source GRASS-GIS software, for which several Python scripts or some algorithms already available were used, such as the Triangle software. First, some scripts were developed to improve the topology of the various elements, such as snapping of the river network to the closest contours. When data are derived with remote sensing, such as vegetation areas, their perimeter has lots of right angles that were smoothed. Second, the algorithms more particularly address bad-shaped elements of the model mesh such as polygons with narrow shapes, marked irregular contours and/or the centroid outside of the polygons. To identify these elements we used shape descriptors. The convexity index was considered the best descriptor to identify them with a threshold

  13. Uncertainty of climate change impacts and consequences on the prediction of future hydrological trends

    International Nuclear Information System (INIS)

    Minville, M.; Brissette, F.; Leconte, R.

    2008-01-01

    In the future, water is very likely to be the resource that will be most severely affected by climate change. It has been shown that small perturbations in precipitation frequency and/or quantity can result in significant impacts on the mean annual discharge. Moreover, modest changes in natural inflows result in larger changes in reservoir storage. There is however great uncertainty linked to changes in both the magnitude and direction of future hydrological trends. This presentation discusses the various sources of this uncertainty and their potential impact on the prediction of future hydrological trends. A companion paper will look at adaptation potential, taking into account some of the sources of uncertainty discussed in this presentation. Uncertainty is separated into two main components: climatic uncertainty and 'model and methods' uncertainty. Climatic uncertainty is linked to uncertainty in future greenhouse gas emission scenarios (GHGES) and to general circulation models (GCMs), whose representation of topography and climate processes is imperfect, in large part due to computational limitations. The uncertainty linked to natural variability (which may or may not increase) is also part of the climatic uncertainty. 'Model and methods' uncertainty regroups the uncertainty linked to the different approaches and models needed to transform climate data so that they can be used by hydrological models (such as downscaling methods) and the uncertainty of the models themselves and of their use in a changed climate. The impacts of the various sources of uncertainty on the hydrology of a watershed are demonstrated on the Peribonka River basin (Quebec, Canada). The results indicate that all sources of uncertainty can be important and outline the importance of taking these sources into account for any impact and adaptation studies. Recommendations are outlined for such studies. (author)

  14. Hydrologic-Process-Based Soil Texture Classifications for Improved Visualization of Landscape Function

    Science.gov (United States)

    Groenendyk, Derek G.; Ferré, Ty P.A.; Thorp, Kelly R.; Rice, Amy K.

    2015-01-01

    Soils lie at the interface between the atmosphere and the subsurface and are a key component that control ecosystem services, food production, and many other processes at the Earth’s surface. There is a long-established convention for identifying and mapping soils by texture. These readily available, georeferenced soil maps and databases are used widely in environmental sciences. Here, we show that these traditional soil classifications can be inappropriate, contributing to bias and uncertainty in applications from slope stability to water resource management. We suggest a new approach to soil classification, with a detailed example from the science of hydrology. Hydrologic simulations based on common meteorological conditions were performed using HYDRUS-1D, spanning textures identified by the United States Department of Agriculture soil texture triangle. We consider these common conditions to be: drainage from saturation, infiltration onto a drained soil, and combined infiltration and drainage events. Using a k-means clustering algorithm, we created soil classifications based on the modeled hydrologic responses of these soils. The hydrologic-process-based classifications were compared to those based on soil texture and a single hydraulic property, Ks. Differences in classifications based on hydrologic response versus soil texture demonstrate that traditional soil texture classification is a poor predictor of hydrologic response. We then developed a QGIS plugin to construct soil maps combining a classification with georeferenced soil data from the Natural Resource Conservation Service. The spatial patterns of hydrologic response were more immediately informative, much simpler, and less ambiguous, for use in applications ranging from trafficability to irrigation management to flood control. The ease with which hydrologic-process-based classifications can be made, along with the improved quantitative predictions of soil responses and visualization of landscape

  15. Hydrologic connectivity and implications for ecosystem processes - Lessons from naked watersheds

    Science.gov (United States)

    Gooseff, Michael N.; Wlostowski, Adam; McKnight, Diane M.; Jaros, Chris

    2017-01-01

    Hydrologic connectivity has received great attention recently as our conceptual models of watersheds and water quality have evolved in the past several decades. However, the structural complexity of most temperate watersheds (i.e. connections among shallow soils, deep aquifers, the atmosphere and streams) and the dynamic seasonal changes that occur within them (i.e., plant senescence which impacts evapotranspiration) create significant challenges to characterizing or quantifying hydrologic connectivity. The McMurdo Dry Valleys, a polar desert in Antarctica, provide a unique opportunity to study hydrologic connectivity because there is no vegetative cover (and therefore no transpiration), and no deep aquifers connected to surface soils or streams. Glacier melt provides stream flow to well-established channels and closed-basin, ice-covered lakes on the valley floor. Streams are also connected to shallow hyporheic zones along their lengths, which are bounded at 75 cm depth by ice-cemented permafrost. These hydrologic features and connections provide water for and underpin biological communities. Hence, exchange of water among them provides a vector for exchange of energy and dissolved solutes. Connectivity is dynamic on timescales of a day to a flow season (6-12 weeks), as streamflow varies over these timescales. The timescales over which these connections occur is also dynamic. Exchanges between streams and hyporheic zones, for example, have been estimated to be as short as hours to as long as several weeks. These exchanges have significant implications for the biogeochemistry of these systems and the biotic communities in each feature. Here we evaluate the lessons we can learn about hydrologic connectivity in the MDV watersheds that are simplified in the context of processes occurring and water reservoirs included in the landscape, yet are sensitive to climate controls and contain substantial physical heterogeneity. We specifically explore several metrics that are

  16. Hydrological balance and water transport processes of partially sealed soils

    Science.gov (United States)

    Timm, Anne; Wessolek, Gerd

    2017-04-01

    With increased urbanisation, soil sealing and its drastic effects on hydrological processes have received a lot of attention. Based on safety concerns, there has been a clear focus on urban drainage and prevention of urban floods caused by storm water events. For this reason, any kind of sealing is often seen as impermeable runoff generator that prevents infiltration and evaporation. While many hydrological models, especially storm water models, have been developed, there are only a handful of empirical studies actually measuring the hydrological balance of (partially) sealed surfaces. These challenge the general assumption of negligible infiltration and evaporation and show that these processes take place even for severe sealing such as asphalt. Depending on the material, infiltration from partially sealed surfaces can be equal to that of vegetated ones. Therefore, more detailed knowledge is needed to improve our understanding and models. In Berlin, two partially sealed weighable lysimeters were equipped with multiple temperature and soil moisture sensors in order to study their hydrological balance, as well as water and heat transport processes within the soil profile. This combination of methods affirms previous observations and offers new insights into altered hydrological processes of partially sealed surfaces at a small temporal scale. It could be verified that not all precipitation is transformed into runoff. Even for a relatively high sealing degree of concrete slabs with narrow seams, evaporation and infiltration may exceed runoff. Due to the lack of plant roots, the hydrological balance is mostly governed by precipitation events and evaporation generally occurs directly after rainfall. However, both surfaces allow for upward water transport from the upper underlying soil layers, sometimes resulting in relatively low evaporation rates on days without precipitation. The individual response of the surfaces differs considerably, which illustrates how

  17. Modeling post-wildfire hydrological processes with ParFlow

    Science.gov (United States)

    Escobar, I. S.; Lopez, S. R.; Kinoshita, A. M.

    2017-12-01

    Wildfires alter the natural processes within a watershed, such as surface runoff, evapotranspiration rates, and subsurface water storage. Post-fire hydrologic models are typically one-dimensional, empirically-based models or two-dimensional, conceptually-based models with lumped parameter distributions. These models are useful for modeling and predictions at the watershed outlet; however, do not provide detailed, distributed hydrologic processes at the point scale within the watershed. This research uses ParFlow, a three-dimensional, distributed hydrologic model to simulate post-fire hydrologic processes by representing the spatial and temporal variability of soil burn severity (via hydrophobicity) and vegetation recovery. Using this approach, we are able to evaluate the change in post-fire water components (surface flow, lateral flow, baseflow, and evapotranspiration). This work builds upon previous field and remote sensing analysis conducted for the 2003 Old Fire Burn in Devil Canyon, located in southern California (USA). This model is initially developed for a hillslope defined by a 500 m by 1000 m lateral extent. The subsurface reaches 12.4 m and is assigned a variable cell thickness to explicitly consider soil burn severity throughout the stages of recovery and vegetation regrowth. We consider four slope and eight hydrophobic layer configurations. Evapotranspiration is used as a proxy for vegetation regrowth and is represented by the satellite-based Simplified Surface Energy Balance (SSEBOP) product. The pre- and post-fire surface runoff, subsurface storage, and surface storage interactions are evaluated at the point scale. Results will be used as a basis for developing and fine-tuning a watershed-scale model. Long-term simulations will advance our understanding of post-fire hydrological partitioning between water balance components and the spatial variability of watershed processes, providing improved guidance for post-fire watershed management. In reference

  18. Simulated Impact of Land Use Dynamics on Hydrology during a 20-year-period of Beles Basin in Ethiopia

    OpenAIRE

    Surur, Anwar

    2010-01-01

    Land use/cover has shown significant changes during the past three decades in Ethiopia especially in the highlands of the country. That resulted in changes in streamflows and other hydrological processes. The existing land and water resources system of the area is adversely affected due the rapid growth of population, deforestation, surface erosion and sediment transport. The main objective of this study is to evaluate the impact of land use/cover changes in the hydrology of Beles Basin, Ethi...

  19. 56 Hydrological Dynamics and Human Impact on Ecosystems of ...

    African Journals Online (AJOL)

    `123456789jkl''''#

    Hydrological Dynamics and Human Impact on Ecosystems of Lake Tana, Northwestern. Ethiopia. 1Amare ... and lake level data were evaluated to identify change in climate and lake level. The annual ... economic importance. The total area of ...

  20. Uncertainties in assessing climate change impacts on the hydrology of Mediterranean basins

    Science.gov (United States)

    Ludwig, Ralf

    2013-04-01

    subsequent variety of management options and adaptation strategies. Therefore, the 4-year FP7-project CLIMB (Climate induced changes on the hydrology of Mediterranean basins, GA: 244151) includes a major focus on the assessment and quantification of uncertainties. First, CLIMB employs a rigorous climate change model analysis, auditing the Global and Regional Climate Model data available through the ENSEMBLES and PRUDENCE initiatives. The audits lead to select the best regional performers as compared to observed values during the climatic reference period (1971- 2000). Specific bias correction and downscaling procedures are applied to provide the driving inputs and meet the demands of the subsequent impact models, transferring a future climate signal (2041-2070) into hydrological quantities at the catchment or landscape scale. However, very limited quantitative knowledge is as yet available about the role of hydrological model complexity for climate change impact assessment, where predictive power becomes more and more important and raises the demand for process-based and spatially explicit model types. Thus, CLIMB uses hydrological model ensembles to analyze the performance of existing models and works to identify the appropriate level of model complexity, and thus to determine the data specifications required to provide robust results in a climate change context. The presentation focuses on the CLIMB multi-level strategy to uncertainty assessment and highlights latest findings in some of the seven CLIMB case studies. In particular, the presentation will demonstrate the current constraints of hydro-meteorological data availability and processing and searches for solutions that can eventually be provided by integrating hydro-meteorology and ICT research communities.

  1. Climate change impact on available water resources obtained using multiple global climate and hydrology models

    Directory of Open Access Journals (Sweden)

    S. Hagemann

    2013-05-01

    Full Text Available Climate change is expected to alter the hydrological cycle resulting in large-scale impacts on water availability. However, future climate change impact assessments are highly uncertain. For the first time, multiple global climate (three and hydrological models (eight were used to systematically assess the hydrological response to climate change and project the future state of global water resources. This multi-model ensemble allows us to investigate how the hydrology models contribute to the uncertainty in projected hydrological changes compared to the climate models. Due to their systematic biases, GCM outputs cannot be used directly in hydrological impact studies, so a statistical bias correction has been applied. The results show a large spread in projected changes in water resources within the climate–hydrology modelling chain for some regions. They clearly demonstrate that climate models are not the only source of uncertainty for hydrological change, and that the spread resulting from the choice of the hydrology model is larger than the spread originating from the climate models over many areas. But there are also areas showing a robust change signal, such as at high latitudes and in some midlatitude regions, where the models agree on the sign of projected hydrological changes, indicative of higher confidence in this ensemble mean signal. In many catchments an increase of available water resources is expected but there are some severe decreases in Central and Southern Europe, the Middle East, the Mississippi River basin, southern Africa, southern China and south-eastern Australia.

  2. The 2002 Rodeo-Chediski Wildfire's impacts on southwestern ponderosa pine ecosystems, hydrology, and fuels

    Science.gov (United States)

    Peter F. Ffolliott; Cody L. Stropki; Hui Chen; Daniel G. Neary

    2011-01-01

    The Rodeo-Chediski Wildfire burned nearly 462,600 acres in north-central Arizona in the summer of 2002. The wildfire damaged or destroyed ecosystem resources and disrupted the hydrologic functioning within the impacted ponderosa pine (Pinus ponderosa) forests in a largely mosaic pattern. Impacts of the wildfire on ecosystem resources, factors important to hydrologic...

  3. A Framework to Assess the Cumulative Hydrological Impacts of Dams on flow Regime

    Science.gov (United States)

    Wang, Y.; Wang, D.

    2016-12-01

    In this study we proposed a framework to assess the cumulative impact of dams on hydrological regime, and the impacts of the Three Gorges Dam on flow regime in Yangtze River were investigated with the framework. We reconstructed the unregulated flow series to compare with the regulated flow series in the same period. Eco-surplus and eco-deficit and the Indicators of Hydrologic Alteration parameters were used to examine the hydrological regime change. Among IHA parameters, Wilcoxon signed-rank test and Principal Components Analysis identified the representative indicators of hydrological alterations. Eco-surplus and eco-deficit showed that the reservoir also changed the seasonal regime of the flows in autumn and winter. Annual extreme flows and October flows changes lead to negative ecological implications downstream from the Three Gorges Dam. Ecological operation for the Three Gorges Dam is necessary to mitigate the negative effects on the river ecosystem in the middle reach of Yangtze River. The framework proposed here could be a robust method to assess the cumulative impacts of reservoir operation.

  4. Characteristics and Impact of Imperviousness From a GIS-based Hydrological Perspective

    Science.gov (United States)

    Moglen, G. E.; Kim, S.

    2005-12-01

    With the concern that imperviousness can be differently quantified depending on data sources and methods, this study assessed imperviousness estimates using two different data sources: land use and land cover. Year 2000 land use developed by the Maryland Department of Planning was utilized to estimate imperviousness by assigning imperviousness coefficients to unique land use categories. These estimates were compared with imperviousness estimates based on satellite-derived land cover from the 2001 National Land Cover Dataset. Our study developed the relationships between these two estimates in the form of regression equations to convert imperviousness derived from one data source to the other. The regression equations are considered reliable, based on goodness-of-fit measures. Furthermore, this study examined how quantitatively different imperviousness estimates affect the prediction of hydrological response both in the flow regime and in the thermal regime. We assessed the relationships between indicators of hydrological response and imperviousness-descriptors. As indicators of flow variability, coefficient of variance, lag-one autocorrelation, and mean daily flow change were calculated based on measured mean daily stream flow from the water year 1997 to 2003. For thermal variability, indicators such as percent-days of surge, degree-day, and mean daily temperature difference were calculated base on measured stream temperature over several basins in Maryland. To describe imperviousness through the hydrological process, GIS-based spatially distributed hydrological models were developed based on a water-balance method and the SCS-CN method. Imperviousness estimates from land use and land cover were used as predictors in these models to examine the effect of imperviousness using different data sources on the prediction of hydrological response. Indicators of hydrological response were also regressed on aggregate imperviousness. This allowed for identifying if

  5. A system dynamic model to estimate hydrological processes and water use in a eucalypt plantation

    Science.gov (United States)

    Ying Ouyang; Daping Xu; Ted Leininger; Ningnan Zhang

    2016-01-01

    Eucalypts have been identified as one of the best feedstocks for bioenergy production due to theirfast-growth rate and coppicing ability. However, their water use efficiency along with the adverse envi-ronmental impacts is still a controversial issue. In this study, a system dynamic model was developed toestimate the hydrological processes and water use in a eucalyptus...

  6. Distributed simulation of long-term hydrological processes in a medium-sized periurban catchment under changing land use and rainwater management.

    Science.gov (United States)

    Labbas, Mériem; Braud, Isabelle; Branger, Flora; Kralisch, Sven

    2013-04-01

    Growing urbanization and related anthropogenic processes have a high potential to influence hydrological process dynamics. Typical consequences are an increase of surface imperviousness and modifications of water flow paths due to artificial channels and barriers (combined and separated system, sewer overflow device, roads, ditches, etc.). Periurban catchments, at the edge of large cities, are especially affected by fast anthropogenic modifications. They usually consist of a combination of natural areas, rural areas with dispersed settlements and urban areas mostly covered by built zones and spots of natural surfaces. In the context of the European Water Framework Directive (2000) and the Floods Directive (2007), integrated and sustainable solutions are needed to reduce flooding risks and river pollution at the scale of urban conglomerations or whole catchments. Their thorough management requires models able to assess the vulnerability of the territory and to compare the impact of different rainwater management options and planning issues. To address this question, we propose a methodology based on a multi-scale distributed hydrological modelling approach. It aims at quantifying the impact of ongoing urbanization and stormwater management on the long-term hydrological cycle in medium-sized periurban watershed. This method focuses on the understanding and formalization of dominant periurban hydrological processes from small scales (few ha to few km2) to larger scales (few hundred km2). The main objectives are to 1) simulate both urban and rural hydrological processes and 2) test the effects of different long-term land use and water management scenarios. The method relies on several tools and data: a distributed hydrological model adapted to the characteristics of periurban areas, land use and land cover maps from different dates (past, present, future) and information about rainwater management collected from local authorities. For the application of the method, the

  7. Long-Term Forest Hydrologic Monitoring in Coastal Carolinas

    Science.gov (United States)

    Devendra M. Amatya; Ge Sun; Carl C. Trettin; R. Wayne Skaggs

    2003-01-01

    Long-term hydrologic data are essential for understanding the hydrologic processes, as base line data for assessment of impacts and conservation of regional ecosystems, and for developing and testing eco-hydrological models. This study presents 6-year (1996-2001) of rainfall, water table and outflow data from a USDA Forest Service coastal experimental watershed on a...

  8. Assessment of variability in the hydrological cycle of the Loess Plateau, China: examining dependence structures of hydrological processes

    Science.gov (United States)

    Guo, A.; Wang, Y.

    2017-12-01

    Investigating variability in dependence structures of hydrological processes is of critical importance for developing an understanding of mechanisms of hydrological cycles in changing environments. In focusing on this topic, present work involves the following: (1) identifying and eliminating serial correlation and conditional heteroscedasticity in monthly streamflow (Q), precipitation (P) and potential evapotranspiration (PE) series using the ARMA-GARCH model (ARMA: autoregressive moving average; GARCH: generalized autoregressive conditional heteroscedasticity); (2) describing dependence structures of hydrological processes using partial copula coupled with the ARMA-GARCH model and identifying their variability via copula-based likelihood-ratio test method; and (3) determining conditional probability of annual Q under different climate scenarios on account of above results. This framework enables us to depict hydrological variables in the presence of conditional heteroscedasticity and to examine dependence structures of hydrological processes while excluding the influence of covariates by using partial copula-based ARMA-GARCH model. Eight major catchments across the Loess Plateau (LP) are used as study regions. Results indicate that (1) The occurrence of change points in dependence structures of Q and P (PE) varies across the LP. Change points of P-PE dependence structures in all regions almost fully correspond to the initiation of global warming, i.e., the early 1980s. (3) Conditional probabilities of annual Q under various P and PE scenarios are estimated from the 3-dimensional joint distribution of (Q, P and PE) based on the above change points. These findings shed light on mechanisms of the hydrological cycle and can guide water supply planning and management, particularly in changing environments.

  9. Simulating hydrological processes of a typical small mountainous catchment in Tibetan Plateau

    Science.gov (United States)

    Xu, Y. P.; Bai, Z.; Fu, Q.; Pan, S.; Zhu, C.

    2017-12-01

    Water cycle of small watersheds with seasonal/permanent frozen soil and snow pack in Tibetan Plateau is seriously affected by climate change. The objective of this study is to find out how much and in what way the frozen soil and snow pack will influence the hydrology of small mountainous catchments in cold regions and how can the performance of simulation by a distributed hydrological model be improved. The Dong catchment, a small catchment located in Tibetan Plateau, is used as a case study. Two measurement stations are set up to collect basic meteorological and hydrological data for the modeling purpose. Annual and interannual variations of runoff indices are first analyzed based on historic data series. The sources of runoff in dry periods and wet periods are analyzed respectively. Then, a distributed hydrology soil vegetation model (DHSVM) is adopted to simulate the hydrological process of Dong catchment based on limited data set. Global sensitivity analysis is applied to help determine the important processes of the catchment. Based on sensitivity analysis results, the Epsilon-Dominance Non-Dominated Sorted Genetic Algorithm II (ɛ-NSGAII) is finally added into the hydrological model to calibrate the hydrological model in a multi-objective way and analyze the performance of DHSVM model. The performance of simulation is evaluated with several evaluation indices. The final results show that frozen soil and snow pack do play an important role in hydrological processes in cold mountainous region, in particular in dry periods without precipitation, while in wet periods precipitation is often the main source of runoff. The results also show that although the DHSVM hydrological model has the potential to model the hydrology well in small mountainous catchments with very limited data in Tibetan Plateau, the simulation of hydrology in dry periods is not very satisfactory due to the model's insufficiency in simulating seasonal frozen soil.

  10. Regionalisation of Hydrological Indices to Assess Land-Use Change Impacts in the Tropical Andes

    Science.gov (United States)

    Buytaert, W.; Ochoa Tocachi, B. F.

    2014-12-01

    Andean ecosystems are major water sources for cities and communities located in the Tropical Andes; however, there is a considerable lack of knowledge about their hydrology. Two problems are especially important: (i) the lack of monitoring to assess the impacts of historical land-use and cover change and degradation (LUCCD) at catchment scale, and (ii) the high variability in climatic and hydrological conditions that complicate the evaluation of land management practices. This study analyses how a reliable LUCCD impacts assessment can be performed in an environment of high variability combined with data-scarcity and low-quality records. We use data from participatory hydrological monitoring activities in 20 catchments distributed along the tropical Andes. A set of 46 hydrological indices is calculated and regionalized by relating them to 42 physical catchment properties. Principal Component Analysis (PCA) is performed to maximise available data while minimising redundancy in the sets of variables. Hydrological model parameters are constrained by estimated indices, and different behavioural predictions are assembled to provide a generalised response on which we assess LUCCD impacts. Results from this methodology show that the attributed effects of LUCCD in pair-wise catchment comparisons may be overstated or hidden by different sources of uncertainty, including measurement inaccuracies and model structural errors. We propose extrapolation and evaluation in ungauged catchments as a way to regionalize LUCCD predictions and to provide statistically significant conclusions in the Andean region. These estimations may deliver reliable knowledge to evaluate the hydrological impact of different watershed management practices.

  11. Uncertainty of a hydrological climate change impact assessment - Is it really all about climate uncertainty?

    Science.gov (United States)

    Honti, Mark; Reichert, Peter; Scheidegger, Andreas; Stamm, Christian

    2013-04-01

    Climate change impact assessments have become more and more popular in hydrology since the middle 1980's with another boost after the publication of the IPCC AR4 report. During hundreds of impact studies a quasi-standard methodology emerged, which is mainly shaped by the growing public demand for predicting how water resources management or flood protection should change in the close future. The ``standard'' workflow considers future climate under a specific IPCC emission scenario simulated by global circulation models (GCMs), possibly downscaled by a regional climate model (RCM) and/or a stochastic weather generator. The output from the climate models is typically corrected for bias before feeding it into a calibrated hydrological model, which is run on the past and future meteorological data to analyse the impacts of climate change on the hydrological indicators of interest. The impact predictions are as uncertain as any forecast that tries to describe the behaviour of an extremely complex system decades into the future. Future climate predictions are uncertain due to the scenario uncertainty and the GCM model uncertainty that is obvious on finer resolution than continental scale. Like in any hierarchical model system, uncertainty propagates through the descendant components. Downscaling increases uncertainty with the deficiencies of RCMs and/or weather generators. Bias correction adds a strong deterministic shift to the input data. Finally the predictive uncertainty of the hydrological model ends the cascade that leads to the total uncertainty of the hydrological impact assessment. There is an emerging consensus between many studies on the relative importance of the different uncertainty sources. The prevailing perception is that GCM uncertainty dominates hydrological impact studies. There are only few studies, which found that the predictive uncertainty of hydrological models can be in the same range or even larger than climatic uncertainty. We carried out a

  12. Modeling the Hydrologic Processes of a Permeable Pavement ...

    Science.gov (United States)

    A permeable pavement system can capture stormwater to reduce runoff volume and flow rate, improve onsite groundwater recharge, and enhance pollutant controls within the site. A new unit process model for evaluating the hydrologic performance of a permeable pavement system has been developed in this study. The developed model can continuously simulate infiltration through the permeable pavement surface, exfiltration from the storage to the surrounding in situ soils, and clogging impacts on infiltration/exfiltration capacity at the pavement surface and the bottom of the subsurface storage unit. The exfiltration modeling component simulates vertical and horizontal exfiltration independently based on Darcy’s formula with the Green-Ampt approximation. The developed model can be arranged with physically-based modeling parameters, such as hydraulic conductivity, Manning’s friction flow parameters, saturated and field capacity volumetric water contents, porosity, density, etc. The developed model was calibrated using high-frequency observed data. The modeled water depths are well matched with the observed values (R2 = 0.90). The modeling results show that horizontal exfiltration through the side walls of the subsurface storage unit is a prevailing factor in determining the hydrologic performance of the system, especially where the storage unit is developed in a long, narrow shape; or with a high risk of bottom compaction and clogging. This paper presents unit

  13. Climate change impacts on hydrology and water resources

    Directory of Open Access Journals (Sweden)

    Fred Fokko Hattermann

    2015-04-01

    Full Text Available Aim of our study is to quantify the impacts of climate change on hydrology in the large river basins in Germany (Rhine, Elbe, Danube, Weser and Ems and thereby giving the range of impact uncertainty created by the most recent regional climate projections. The study shows mainly results for the A1B SRES (Special Report on Emission Scenario scenario by comparing the reference period 1981–2010 and the scenario periods 2031–2060 and 2061–2090 and using climate projections of a combination of 4 Global Climate Models (GCMs and 12 Regional Climate Models (RCMs as climate driver. The outcome is compared against impacts driven by a more recent RCP (Representative Emission Pathways scenario by using data of a statistical RCM. The results indicate that more robust conclusions can be drawn for some river basins, especially the Rhine and Danube basins, while diversity of results leads to higher uncertainty in the other river basins. The results also show that hydrology is very sensitive to changes in climate and effects of a general increase in precipitation can even be over-compensated by an increase in evapotranspiration. The decrease of runoff in late summer shown in most results can be an indicator for more pronounced droughts under scenario conditions.

  14. Simulations of ecosystem hydrological processes using a unified multi-scale model

    Energy Technology Data Exchange (ETDEWEB)

    Yang, Xiaofan; Liu, Chongxuan; Fang, Yilin; Hinkle, Ross; Li, Hong-Yi; Bailey, Vanessa; Bond-Lamberty, Ben

    2015-01-01

    This paper presents a unified multi-scale model (UMSM) that we developed to simulate hydrological processes in an ecosystem containing both surface water and groundwater. The UMSM approach modifies the Navier–Stokes equation by adding a Darcy force term to formulate a single set of equations to describe fluid momentum and uses a generalized equation to describe fluid mass balance. The advantage of the approach is that the single set of the equations can describe hydrological processes in both surface water and groundwater where different models are traditionally required to simulate fluid flow. This feature of the UMSM significantly facilitates modelling of hydrological processes in ecosystems, especially at locations where soil/sediment may be frequently inundated and drained in response to precipitation, regional hydrological and climate changes. In this paper, the UMSM was benchmarked using WASH123D, a model commonly used for simulating coupled surface water and groundwater flow. Disney Wilderness Preserve (DWP) site at the Kissimmee, Florida, where active field monitoring and measurements are ongoing to understand hydrological and biogeochemical processes, was then used as an example to illustrate the UMSM modelling approach. The simulations results demonstrated that the DWP site is subject to the frequent changes in soil saturation, the geometry and volume of surface water bodies, and groundwater and surface water exchange. All the hydrological phenomena in surface water and groundwater components including inundation and draining, river bank flow, groundwater table change, soil saturation, hydrological interactions between groundwater and surface water, and the migration of surface water and groundwater interfaces can be simultaneously simulated using the UMSM. Overall, the UMSM offers a cross-scale approach that is particularly suitable to simulate coupled surface and ground water flow in ecosystems with strong surface water and groundwater interactions.

  15. Climate and Landuse Change Impacts on hydrological processes and soil erosion in a dry Mediterranean agro-forested catchment, southern Portugal

    Science.gov (United States)

    Santos, Juliana; Nunes, João Pedro; Sampaio, Elsa; Moreira, Madalena; Lima, Júlio; Jacinto, Rita; Corte-Real, João

    2014-05-01

    Climate change is expected to increase aridity in the Mediterranean rim of Europe, due to decreasing rainfall and increasing temperatures. This could lead to impacts on soil erosion, since the lower rainfall could nevertheless become concentrated in higher intensity events during the wet season, while the more arid conditions could reduce vegetation cover, also due to climate-induced land-use changes. In consequence, there is an interest in understanding how climate change will affect the interaction between the timing of extreme rainfall events, hydrological processes, vegetation growth, soil cover and soil erosion. To study this issue, the SWAT eco-hydrological model was applied to Guadalupe, an agro-forested catchment (446 ha) located close to the city of Évora, with a Mediterranean inland climate. The landcover is a mix of dispersed cork oak forests ("montado"), annual crops, and agroforesty regions where the cork oaks are associated with crops or pasture; this land cover is representative of the dry regions of southern Portugal and Spain. The catchment has been instrumented since 2011 with a hydrometric station (water discharge and suspended sediment concentration data) and a soil moisture measurement station. There is also observed data of actual evapotranspiration, LAI and biomass production (in pasture; from 1999 and 2008) and runoff data and sediment yield measured in six 16m2 plots. Water balance, vegetation growth, soil erosion and sediment yield in SWAT was calibrated with this dataset. This work will present the dataset, modeling process, results for impacts of climate and land-use change scenarios for vegetation growth, soil erosion and sediment export, considering the climate and socio-economic scenarios A1b and B1 (based on SRES storylines). Climate scenarios were created by statistical downscaling from Global Circulation Models (GCMs) for the period 2071-2100 (30 years). The reference period was 1971-2000 (30 years). The SWAT model was used to

  16. Calibration process of highly parameterized semi-distributed hydrological model

    Science.gov (United States)

    Vidmar, Andrej; Brilly, Mitja

    2017-04-01

    Hydrological phenomena take place in the hydrological system, which is governed by nature, and are essentially stochastic. These phenomena are unique, non-recurring, and changeable across space and time. Since any river basin with its own natural characteristics and any hydrological event therein, are unique, this is a complex process that is not researched enough. Calibration is a procedure of determining the parameters of a model that are not known well enough. Input and output variables and mathematical model expressions are known, while only some parameters are unknown, which are determined by calibrating the model. The software used for hydrological modelling nowadays is equipped with sophisticated algorithms for calibration purposes without possibility to manage process by modeler. The results are not the best. We develop procedure for expert driven process of calibration. We use HBV-light-CLI hydrological model which has command line interface and coupling it with PEST. PEST is parameter estimation tool which is used widely in ground water modeling and can be used also on surface waters. Process of calibration managed by expert directly, and proportionally to the expert knowledge, affects the outcome of the inversion procedure and achieves better results than if the procedure had been left to the selected optimization algorithm. First step is to properly define spatial characteristic and structural design of semi-distributed model including all morphological and hydrological phenomena, like karstic area, alluvial area and forest area. This step includes and requires geological, meteorological, hydraulic and hydrological knowledge of modeler. Second step is to set initial parameter values at their preferred values based on expert knowledge. In this step we also define all parameter and observation groups. Peak data are essential in process of calibration if we are mainly interested in flood events. Each Sub Catchment in the model has own observations group

  17. Plot-scale field experiment of surface hydrologic processes with EOS implications

    Science.gov (United States)

    Laymon, Charles A.; Macari, Emir J.; Costes, Nicholas C.

    1992-01-01

    Plot-scale hydrologic field studies were initiated at NASA Marshall Space Flight Center to a) investigate the spatial and temporal variability of surface and subsurface hydrologic processes, particularly as affected by vegetation, and b) develop experimental techniques and associated instrumentation methodology to study hydrologic processes at increasingly large spatial scales. About 150 instruments, most of which are remotely operated, have been installed at the field site to monitor ground atmospheric conditions, precipitation, interception, soil-water status, and energy flux. This paper describes the nature of the field experiment, instrumentation and sampling rationale, and presents preliminary findings.

  18. Projected impact of climate change on hydrological regimes in the Philippines

    NARCIS (Netherlands)

    Tolentino, Pamela Louise M.; Poortinga, Ate; Kanamaru, Hideki; Keesstra, Saskia; Maroulis, Jerry; David, Carlos Primo C.; Ritsema, Coen J.

    2016-01-01

    The Philippines is one of the most vulnerable countries in the world to the potential impacts of climate change. To fully understand these potential impacts, especially on future hydrological regimes and water resources (2010-2050), 24 river basins located in the major agricultural provinces

  19. Hydrological response of a small catchment burned by experimental fire

    Directory of Open Access Journals (Sweden)

    C. R. Stoof

    2012-02-01

    Full Text Available Fire can considerably change hydrological processes, increasing the risk of extreme flooding and erosion events. Although hydrological processes are largely affected by scale, catchment-scale studies on the hydrological impact of fire in Europe are scarce, and nested approaches are rarely used. We performed a catchment-scale experimental fire to improve insight into the drivers of fire impact on hydrology. In north-central Portugal, rainfall, canopy interception, streamflow and soil moisture were monitored in small shrub-covered paired catchments pre- and post-fire. The shrub cover was medium dense to dense (44 to 84% and pre-fire canopy interception was on average 48.7% of total rainfall. Fire increased streamflow volumes 1.6 times more than predicted, resulting in increased runoff coefficients and changed rainfall-streamflow relationships – although the increase in streamflow per unit rainfall was only significant at the subcatchment-scale. Fire also fastened the response of topsoil moisture to rainfall from 2.7 to 2.1 h (p = 0.058, and caused more rapid drying of topsoils after rain events. Since soil physical changes due to fire were not apparent, we suggest that changes resulting from vegetation removal played an important role in increasing streamflow after fire. Results stress that fire impact on hydrology is largely affected by scale, highlight the hydrological impact of fire on small scales, and emphasize the risk of overestimating fire impact when upscaling plot-scale studies to the catchment-scale. Finally, they increase understanding of the processes contributing to post-fire flooding and erosion events.

  20. Climate Change Impacts on Sediment Transport In a Lowland Watershed System: Controlling Processes and Projection

    Science.gov (United States)

    al Aamery, N. M. H.; Mahoney, D. T.; Fox, J.

    2017-12-01

    Future climate change projections suggest extreme impacts on watershed hydrologic systems for some regions of the world including pronounced increases in surface runoff and instream flows. Yet, there remains a lack of research focused on how future changes in hydrologic extremes, as well as relative hydrologic mean changes, impact sediment redistribution within a watershed and sediment flux from a watershed. The authors hypothesized that variations in mean and extreme changes in turn may impact sediments in depositional and erosional dominance in a manner that may not be obvious to the watershed manager. Therefore, the objectives of this study were to investigate the inner processes connecting the combined effect of extreme climate change projections on the vegetation, upland erosion, and instream processes to produce changes in sediment redistribution within watersheds. To do so, research methods were carried out by the authors including simulating sediment processes in forecast and hindcast periods for a lowland watershed system. Publically available climate realizations from several climate factors and the Soil Water Assessment Tool (SWAT) were used to predict hydrologic conditions for the South Elkhorn Watershed in central Kentucky, USA to 2050. The results of the simulated extreme and mean hydrological components were used in simulating upland erosion with the connectivity processes consideration and thereafter used in building and simulating the instream erosion and deposition of sediment processes with the consideration of surface fine grain lamina (SFGL) layer controlling the benthic ecosystem. Results are used to suggest the dominance of erosional and depositional redistribution of sediments under different scenarios associated with extreme and mean hydrologic forecasting. The results are discussed in reference to the benthic ecology of the stream system providing insight on how water managers might consider sediment redistribution in a changing climate.

  1. Impacts of beaver dams on hydrologic and temperature regimes in a mountain stream

    Science.gov (United States)

    Majerova, M.; Neilson, B. T.; Schmadel, N. M.; Wheaton, J. M.; Snow, C. J.

    2015-08-01

    Beaver dams affect hydrologic processes, channel complexity, and stream temperature in part by inundating riparian areas, influencing groundwater-surface water interactions, and changing fluvial processes within stream systems. We explored the impacts of beaver dams on hydrologic and temperature regimes at different spatial and temporal scales within a mountain stream in northern Utah over a 3-year period spanning pre- and post-beaver colonization. Using continuous stream discharge, stream temperature, synoptic tracer experiments, and groundwater elevation measurements, we documented pre-beaver conditions in the first year of the study. In the second year, we captured the initial effects of three beaver dams, while the third year included the effects of ten dams. After beaver colonization, reach-scale (~ 750 m in length) discharge observations showed a shift from slightly losing to gaining. However, at the smaller sub-reach scale (ranging from 56 to 185 m in length), the discharge gains and losses increased in variability due to more complex flow pathways with beaver dams forcing overland flow, increasing surface and subsurface storage, and increasing groundwater elevations. At the reach scale, temperatures were found to increase by 0.38 °C (3.8 %), which in part is explained by a 230 % increase in mean reach residence time. At the smallest, beaver dam scale (including upstream ponded area, beaver dam structure, and immediate downstream section), there were notable increases in the thermal heterogeneity where warmer and cooler niches were created. Through the quantification of hydrologic and thermal changes at different spatial and temporal scales, we document increased variability during post-beaver colonization and highlight the need to understand the impacts of beaver dams on stream ecosystems and their potential role in stream restoration.

  2. Embedding complex hydrology in the climate system - towards fully coupled climate-hydrology models

    DEFF Research Database (Denmark)

    Butts, M.; Rasmussen, S.H.; Ridler, M.

    2013-01-01

    Motivated by the need to develop better tools to understand the impact of future management and climate change on water resources, we present a set of studies with the overall aim of developing a fully dynamic coupling between a comprehensive hydrological model, MIKE SHE, and a regional climate...... distributed parameters using satellite remote sensing. Secondly, field data are used to investigate the effects of model resolution and parameter scales for use in a coupled model. Finally, the development of the fully coupled climate-hydrology model is described and some of the challenges associated...... with coupling models for hydrological processes on sub-grid scales of the regional climate model are presented....

  3. Progress in studies on hydrological impacts of degrading permafrost in the Source Area of Yellow River on NE Qinghai-Tibet Plateau, SW China

    Science.gov (United States)

    Jin, H.; Ma, Q.; Jin, X.

    2017-12-01

    Permafrost degradation substantially impacts hydrological processes in the Source Area of the Yellow River (SAYR). Deepening active layer has directly led to a reduction of surface runoffs, alters the generation and dynamics of slope runoffs and groundwater, leading to a deepening of groundwater flow paths. At present, however, there is only a limited understanding of the hydrological impact mechanisms of degrading permafrost. On the basis of analyzing and evaluating the current states, changing history and developing trends of climate, permafrost and hydrological processes, this program aims at further and better quantifying the nature of these mechanisms linking the degrading permafrost with changing hydrological processes. The key scientific themes for this research are the characterization of interactions between ground freezing-thawing and hydrogeology in the SAYR. For this study, a coupling is made between geothermal states and the occurrences of taliks in river systems, in order to understand how expanding taliks control groundwater and surface-water interactions and how these interactions might intensify or weaken when the climate warms and dries persistently. Numerical models include freeze-thaw dynamics coupled to groundwater and surface flow processes. For the proper parameterization of these models, field and laboratory studies are conducted with a focus on the SAYR. Geophysical investigations are employed for mapping permafrost distribution in relation to landscape elements. Boreholes and water wells and observation sites for the hydrothermal processes and water tables are used for establishing the current thermal state of frozen ground and talik and monitor their changes over time, and serve to ground-truth surface geophysical observations. Boreholes and wellbores, water wells and active layer sites have provided access to the permafrost and aquifer systems, allowing the dating of ground-water and -ice and soil strata for elucidating the regional

  4. Physics-based simulations of the impacts forest management practices have on hydrologic response

    Science.gov (United States)

    Adrianne Carr; Keith Loague

    2012-01-01

    The impacts of logging on near-surface hydrologic response at the catchment and watershed scales were examined quantitatively using numerical simulation. The simulations were conducted with the Integrated Hydrology Model (InHM) for the North Fork of Caspar Creek Experimental Watershed, located near Fort Bragg, California. InHM is a comprehensive physics-based...

  5. Hydrological impacts of global land cover change and human water use

    NARCIS (Netherlands)

    Bosmans, J.H.C.; van Beek, L.P.H.; Sutanudjaja, E.H.; Bierkens, M.F.P.

    2017-01-01

    Human impacts on global terrestrial hydrology have been accelerating during the 20th century. These human impacts include the effects of reservoir building and human water use, as well as land cover change. To date, many global studies have focussed on human water use, but only a few focus on or

  6. ENSO impact on hydrology in Peru

    Science.gov (United States)

    Lavado-Casimiro, W. S.; Felipe, O.; Silvestre, E.; Bourrel, L.

    2013-04-01

    The El Niño and La Niña impacts on the hydrology of Peru were assessed based on discharge data (1968-2006) of 20 river catchments distributed over three drainage regions in Peru: 14 in the Pacific Coast (PC), 3 in the Lake Titicaca (TL) region, and 3 in the Amazonas (AM). To classify the El Niño and La Niña events, we used the Southern Oscillation Index (SOI) based on hydrological years (September to August). Using the SOI values, the events were re-classified as strong El Niño (SEN), moderate El Niño (MEN), normal years (N), moderate La Niña (MLN) and strong La Niña (SLN). On average during the SEN years, sharp increases occurred in the discharges in the north central area of the PC and decreases in the remaining discharge stations that were analyzed, while in the years of MEN events, these changes show different responses than those of the SEN. During the years classified as La Niña, positive changes are mostly observed in the majority of the stations in the rivers located in the center of Peru's Pacific Coast. Another important result of this work is that the Ilave River (south of the Titicaca watershed) shows higher positive (negative) impacts during La Niña (El Niño) years, a fact that is not clearly seen in the rivers of the northern part of the Titicaca watershed (Ramis and Huancane rivers).

  7. Assessing Hydrologic Impacts of Future Land Cover Change Scenarios in the San Pedro River (U.S./Mexico)

    Science.gov (United States)

    Long-term land-use and land cover change and their associated impacts pose critical challenges to sustaining vital hydrological ecosystem services for future generations. In this study, a methodology was developed to characterize hydrologic impacts from future urban growth throug...

  8. Impact of dam-induced hydrological changes on riparian vegetation

    Science.gov (United States)

    Tealdi, Stefano; Camporeale, Carlo; Ridolfi, Luca

    2010-05-01

    Hydrological disturbances are a key factor for the riparian vegetation, which is a highly dynamic ecosystem prone to external forcing. Random fluctuations of water stages drive in fact the alternation of periods of floods and exposure of the vegetated plots. During flooding, the plots are submerged and vegetation is damaged by burial, uprooting and anoxia, while during exposure periods vegetation grows according to the soil moisture content and the phreatic water table depth. The distribution of vegetation along the riparian transect is then directly connected to the stochasticity of river discharges. River damming can have remarkable impacts on the hydrology of a river and, consequently, on the riparian vegetation. Several field studies show how the river regulation induced by artificial reservoirs can greatly modify the statistical moments and the autocorrelation of the discharge time series. The vegetation responds to these changes reducing its overall heterogeneity, declining - substituted by exotic species - and shifting its starting position nearer or far away from the channel center. These latter processes are known as narrowing and widening, respectively. In our work we explore the effects of dam-induced hydrological changes on the narrowing/widening process and on the total biomass along the transect. To this aim we use an eco-hydrological stochastic model developed by Camporeale and Ridolfi [2006], which is able to give a realistic distribution of the biomass along the transect as a function of a few hydrologic, hydraulic and vegetation parameters. We apply the model to an exemplifying case, by investigating the vegetation response to a set of changes in mean discharge and coefficient of variation. The range of these changes is deduced from the analysis of field data in pre- and post-dam conditions. Firstly, we analyze the narrowing/widening process. In particular, we analyze two percentage differences of the starting transversal position with respect to

  9. Detection of Hydrological changes of Wujiang River

    Science.gov (United States)

    Dong, L.; Chen, Y.

    2016-12-01

    In the century our earth experienced a rapid environment changes due to strong human activities, which impactedthe earth'shydrology and water resources systems negatively, and causedsevere problems to the society, such as increased flood and drought risk, water pollution and ecosystem degradation. Understanding the variations of hydrological characteristics has important meaning to solve the problem of hydrology and water resources and maintain sustainable development of river basin water resources.This paper takesWujiangriveras an example,which is a typical medium watershedaffected by human activities seriously in southern China.Using the methods of Mann-Kendall test and serial cluster analysis, this paper studies the characteristics and laws of historical hydrological process inWujiang river, detectsthe impact of changing environment to watershed hydrological processes, based on the observed hydrological data of 36 years from 1980 to 2015 in three representative hydrological stationsnamedFenshi,Chixi and Pingshi. The results show that the annual runoffandannual precipitation has some kind of changes.

  10. Agricultural watershed modeling: a review for hydrology and soil erosion processes

    Directory of Open Access Journals (Sweden)

    Carlos Rogério de Mello

    2016-02-01

    Full Text Available ABSTRACT Models have been used by man for thousands of years to control his environment in a favorable way to better human living conditions. The use of hydrologic models has been a widely effective tool in order to support decision makers dealing with watersheds related to several economic and social activities, like public water supply, energy generation, and water availability for agriculture, among others. The purpose of this review is to briefly discuss some models on soil and water movement on landscapes (RUSLE, WEPP, GeoWEPP, LASH, DHSVM and AnnAGNPS to provide information about them to help and serve in a proper manner in order to discuss particular problems related to hydrology and soil erosion processes. Models have been changed and evaluated significantly in recent years, highlighting the use of remote sense, GIS and automatic calibration process, allowing them capable of simulating watersheds under a given land-use and climate change effects. However, hydrology models have almost the same physical structure, which is not enough for simulating problems related to the long-term effects of different land-uses. That has been our challenge for next future: to understand entirely the hydrology cycle, having as reference the critical zone, in which the hydrological processes act together from canopy to the bottom of aquifers.

  11. SWAT-simulated hydrological impact of land-use change in the Zanjanrood basin, Northwest Iran

    NARCIS (Netherlands)

    Ghaffari, G.; Ghodousi, J.; Ahmadi, H.; Keesstra, S.D.

    2010-01-01

    Understanding the impacts of land-use changes on hydrology at the watershed scale can facilitate development of sustainable water resource strategies. This paper investigates the hydrological effects of land-use change in Zanjanrood basin, Iran. The water balance was simulated using the Soil and

  12. Grasses for energy production: hydrological guidelines

    Energy Technology Data Exchange (ETDEWEB)

    Hall, R.L.

    2003-07-01

    This report provides hydrological guidelines for growers, land and water resource managers, environmental groups and other parties interested in utilising grasses for energy production. The aim of the report is to help interested parties decide if a location is suitable for planting energy grasses by considering whether potential hydrological impacts will have an adverse effect on crop productivity and yield. The guidelines consider: the water use of energy grasses compared with other crops; the factors governing water use; the water requirements for a productive crop; and the likely impacts on the availability and quantity of water. The report points out that there are still gaps in our knowledge of the processes controlling the water use and growth of energy grasses and notes that, in some situations, there will be considerable uncertainty in predictions of water use and the magnitude of the associated hydrological impacts.

  13. Hydrological impact of high-density small dams in a humid catchment, Southeast China

    Science.gov (United States)

    Lu, W.; Lei, H.; Yang, D.

    2017-12-01

    The Jiulong River basin is a humid catchment with a drainage area of 14,741 km2; however, it has over 1000 hydropower stations within it. Such catchment with high-density small dams is scarce in China. Yet few is known about the impact of high-density small dams on streamflow changes. To what extent the large number of dams alters the hydrologic patterns is a fundamental scientific issue for water resources management, flood control, and aquatic ecological environment protection. Firstly, trend and change point analyses are applied to determine the characteristics of inter-annual streamflow. Based on the detected change point, the study period is divided into two study periods, the ``natural'' and ``disturbed'' periods. Then, a geomorphology-based hydrological model (GBHM) and the fixing-changing method are adopted to evaluate the relative contributions of climate variations and damming to the changes in streamflow at each temporal scale (i.e., from daily, monthly to annual). Based on the simulated natural streamflow, the impact of dam construction on hydrologic alteration and aquatic ecological environment will be evaluated. The hydrologic signatures that will be investigated include flood peak, seasonality of streamflow, and the inter-annual variability of streamflow. In particular, the impacts of damming on aquatic ecological environment will be investigated using eco-flow metrics and indicators of hydrologic alteration (IHA) which contains 33 individual streamflow statistics that are closely related to aquatic ecosystem. The results of this study expect to provide a reference for reservoir operation considering both ecological and economic benefits of such operations in the catchment with high-density dams.

  14. Assessing wetland loss impacts on watershed hydrology using an improved modeling approach

    Science.gov (United States)

    Despite the importance of wetland impacts on water cycling, the Chesapeake Bay Watershed (CBW) has experienced significant wetland losses. The resultant environmental degradation has not been fully characterized. Our aim is to assess wetland loss impacts on watershed hydrology for an agricultural wa...

  15. Hydrological impacts of global land cover change and human water use

    Directory of Open Access Journals (Sweden)

    J. H. C. Bosmans

    2017-11-01

    Full Text Available Human impacts on global terrestrial hydrology have been accelerating during the 20th century. These human impacts include the effects of reservoir building and human water use, as well as land cover change. To date, many global studies have focussed on human water use, but only a few focus on or include the impact of land cover change. Here we use PCR-GLOBWB, a combined global hydrological and water resources model, to assess the impacts of land cover change as well as human water use globally in different climatic zones. Our results show that land cover change has a strong effect on the global hydrological cycle, on the same order of magnitude as the effect of human water use (applying irrigation, abstracting water, for industrial use for example, including reservoirs, etc.. When globally averaged, changing the land cover from that of 1850 to that of 2000 increases discharge through reduced evapotranspiration. The effect of land cover change shows large spatial variability in magnitude and sign of change depending on, for example, the specific land cover change and climate zone. Overall, land cover effects on evapotranspiration are largest for the transition of tall natural vegetation to crops in energy-limited equatorial and warm temperate regions. In contrast, the inclusion of irrigation, water abstraction and reservoirs reduces global discharge through enhanced evaporation over irrigated areas and reservoirs as well as through water consumption. Hence, in some areas land cover change and water distribution both reduce discharge, while in other areas the effects may partly cancel out. The relative importance of both types of impacts varies spatially across climatic zones. From this study we conclude that land cover change needs to be considered when studying anthropogenic impacts on water resources.

  16. An intercomparison of regional climate model data for hydrological impact studies in Denmark

    DEFF Research Database (Denmark)

    Van Roosmalen, Lieke Petronella G; Christensen, Jens Hesselbjerg; Butts, Michael

    2010-01-01

    The use of high-resolution regional climate models (RCM) to examine the hydrological impacts of climate change has grown significantly in recent years due to the improved representation of the local climate. However, the application is not straightforward because most RCMs are subject to consider......The use of high-resolution regional climate models (RCM) to examine the hydrological impacts of climate change has grown significantly in recent years due to the improved representation of the local climate. However, the application is not straightforward because most RCMs are subject...... to considerable systematic errors. In this study, projected climate change data from the RCM HIRHAM4 are used to generate climate scenario time series of precipitation, temperature, and reference evapotranspiration for the period 2071-2100 for hydrological impact assessments in Denmark. RCM output for the present......-day period (1961-1990) are compared to an observational data set, with precipitation corrected for undercatch and wetting losses, to quantify systematic model errors. A delta change method is applied to cope with these biases. A question arises as to how variable the climate change signals are...

  17. Hydrologic and cryospheric processes observed from space

    NARCIS (Netherlands)

    Menenti, M.; Li, X.; Wang, J.; Vereecken, H.; Li, J.; Mancini, M.; Liu, Q.; Jia, L.; Li, J.; Kuenzer, C.; Huang, S.; Yesou, H.; Wen, J.; Kerr, Y.; Cheng, X.; Gourmelen, N.; Ke, C.; Ludwig, R.; Lin, H.; Eineder, M.; Ma, Y.; Su, Z.B.

    2015-01-01

    Ten Dragon 3 projects deal with hydrologic and cryosphere processes, with a focus on the Himalayas and Qinghai – Tibet Plateau, but not limited to that. At the 1st Dragon 3 Progress Symposium in 2013 a significant potential for a better and deeper integration appeared very clearly and we worked out

  18. Impact of prescribed and repeated vegetation burning on blanket peat hydrology

    Science.gov (United States)

    Holden, Joseph; Brown, Lee; Palmer, Sheila; Johnston, Kerrylyn; Wearing, Catherine; Irvine, Brian

    2013-04-01

    In some peatlands there has been a tradition over the past century of burning vegetation to manage the landscape for a range of purposes. These include producing an environment suitable for game birds used in the gun sports industry and reducing the biomass fuel load to reduce possible wildfire damage to the peat. However, there have been few studies that have interrogated the impacts of this activity on peatland hydrological processes both at the plot scale and at the catchment scale. The EMBER project measured water tables, overland flow, hydraulic conductivity, stream discharge, and a myriad of aquatic invertebrate and peat physical and water chemistry indicators (at plot and stream scale) in ten upland blanket peat catchments in the UK. Five catchments were subject to a history of prescribed rotational patch burning with burning taking place each year over a proportion of the catchment (typically 5-10 %) but where for an individual patch the interval was typically 10-20 years. The other five catchments acted as controls which were not subject to burning, nor confounded by other detrimental activities such as drainage or forestry. Stream flows were flashier in response to rainfall in the catchments with prescribed burning patches and had greater rainfall to runoff efficiencies. Water tables were found to be significantly shallower with a smaller interquartile range for unburnt catchments. In the burnt catchments, more recently burnt plots had significantly greater mean water table depths and water table residence times were much less frequent within the upper 10 cm of the peat profile compared to plots that been burned more than a decade before. The water table residence curves will be explored in the presentation. The occurrence of overland flow was significantly impacted by both burning and time since burn with significantly less overland flow recorded for more recently burnt sites. This ties in well with our water table data since blanket peat systems are

  19. Responses of diatom communities to hydrological processes during rainfall events

    Science.gov (United States)

    Wu, Naicheng; Faber, Claas; Ulrich, Uta; Fohrer, Nicola

    2015-04-01

    The importance of diatoms as a tracer of hydrological processes has been recently recognized (Pfister et al. 2009, Pfister et al. 2011, Tauro et al. 2013). However, diatom variations in a short-term scale (e.g., sub-daily) during rainfall events have not been well documented yet. In this study, rainfall event-based diatom samples were taken at the outlet of the Kielstau catchment (50 km2), a lowland catchment in northern Germany. A total of nine rainfall events were caught from May 2013 to April 2014. Non-metric multidimensional scaling (NMDS) revealed that diatom communities of different events were well separated along NMDS axis I and II, indicating a remarkable temporal variation. By correlating water level (a proxy of discharge) and different diatom indices, close relationships were found. For example, species richness, biovolume (μm3), Shannon diversity and moisture index01 (%, classified according to van Dam et al. 1994) were positively related with water level at the beginning phase of the rainfall (i.e. increasing limb of discharge peak). However, in contrast, during the recession limb of the discharge peak, diatom indices showed distinct responses to water level declines in different rainfall events. These preliminary results indicate that diatom indices are highly related to hydrological processes. The next steps will include finding out the possible mechanisms of the above phenomena, and exploring the contributions of abiotic variables (e.g., hydrologic indices, nutrients) to diatom community patterns. Based on this and ongoing studies (Wu et al. unpublished data), we will incorporate diatom data into End Member Mixing Analysis (EMMA) and select the tracer set that is best suited for separation of different runoff components in our study catchment. Keywords: Diatoms, Rainfall event, Non-metric multidimensional scaling, Hydrological process, Indices References: Pfister L, McDonnell JJ, Wrede S, Hlúbiková D, Matgen P, Fenicia F, Ector L, Hoffmann L

  20. An Analysis of Land Use Change Dynamics and Its Impacts on Hydrological Processes in the Jialing River Basin

    Directory of Open Access Journals (Sweden)

    Tao Zhang

    2014-12-01

    Full Text Available Land use changes are important aspects of global change and affect regional water cycles, environmental quality, biodiversity and terrestrial ecosystems. To understand the temporal and spatial land use change in the Jialing River Basin and its impacts on the hydrological cycle, land use change models and the variable infiltration capacity (VIC model were applied separately to the Jialing River Basin. Real change and final change were analyzed to determine the consequences of land use changes and their hydrological consequences. Real change is defined as the total variation during a fixed period, including increases and decreases. Thus, real change is the sum of the absolute values of the decrease and the increase. Final change is defined as the difference between the beginning and end of a given period for a specific factor. Overall, the amounts of settlement and shrub land area changed significantly in the entire Jialing River (with final change rates of 20.77% and −16.07%, respectively, and real change rates of 34.2% and 30.1%, respectively, from 1985 to 1995, as well as final and real change rates of 29.37%, 12.40%, 39.9% and 32.8%, respectively, from 1995 to 2000. Compared with the final change, the real change highlighted the rate of change and the change in woodland area. The land use changes in the Lueyang (LY, Shehong (SH and Fengtan (FT subcatchments were more dynamic than in the other subcatchments. The economy, population and macro-policy were the main factors responsible for driving the land use changes. The decrease in woodland area in the LY subcatchment corresponded with an increase in evapotranspiration (ET and with decreases in the other hydrological elements. Overall, the final changes in the hydrological elements in the LY, SH and FT subcatchments were not significant due to the average and compensation effects. The LY subcatchment was mainly affected by the average effect, whereas the SH and FT subcatchments were affected

  1. Impact of remote sensing upon the planning, management and development of water resources. Summary of computers and computer growth trends for hydrologic modeling and the input of ERTS image data processing load

    Science.gov (United States)

    Castruccio, P. A.; Loats, H. L., Jr.

    1975-01-01

    An analysis of current computer usage by major water resources users was made to determine the trends of usage and costs for the principal hydrologic users/models. The laws and empirical relationships governing the growth of the data processing loads were described and applied to project the future data loads. Data loads for ERTS CCT image processing were computed and projected through the 1985 era. The analysis showns significant impact due to the utilization and processing of ERTS CCT's data.

  2. Impacts of correcting the inter-variable correlation of climate model outputs on hydrological modeling

    Science.gov (United States)

    Chen, Jie; Li, Chao; Brissette, François P.; Chen, Hua; Wang, Mingna; Essou, Gilles R. C.

    2018-05-01

    Bias correction is usually implemented prior to using climate model outputs for impact studies. However, bias correction methods that are commonly used treat climate variables independently and often ignore inter-variable dependencies. The effects of ignoring such dependencies on impact studies need to be investigated. This study aims to assess the impacts of correcting the inter-variable correlation of climate model outputs on hydrological modeling. To this end, a joint bias correction (JBC) method which corrects the joint distribution of two variables as a whole is compared with an independent bias correction (IBC) method; this is considered in terms of correcting simulations of precipitation and temperature from 26 climate models for hydrological modeling over 12 watersheds located in various climate regimes. The results show that the simulated precipitation and temperature are considerably biased not only in the individual distributions, but also in their correlations, which in turn result in biased hydrological simulations. In addition to reducing the biases of the individual characteristics of precipitation and temperature, the JBC method can also reduce the bias in precipitation-temperature (P-T) correlations. In terms of hydrological modeling, the JBC method performs significantly better than the IBC method for 11 out of the 12 watersheds over the calibration period. For the validation period, the advantages of the JBC method are greatly reduced as the performance becomes dependent on the watershed, GCM and hydrological metric considered. For arid/tropical and snowfall-rainfall-mixed watersheds, JBC performs better than IBC. For snowfall- or rainfall-dominated watersheds, however, the two methods behave similarly, with IBC performing somewhat better than JBC. Overall, the results emphasize the advantages of correcting the P-T correlation when using climate model-simulated precipitation and temperature to assess the impact of climate change on watershed

  3. Mechanisms controlling the impact of multi-year drought on mountain hydrology.

    Science.gov (United States)

    Bales, Roger C; Goulden, Michael L; Hunsaker, Carolyn T; Conklin, Martha H; Hartsough, Peter C; O'Geen, Anthony T; Hopmans, Jan W; Safeeq, Mohammad

    2018-01-12

    Mountain runoff ultimately reflects the difference between precipitation (P) and evapotranspiration (ET), as modulated by biogeophysical mechanisms that intensify or alleviate drought impacts. These modulating mechanisms are seldom measured and not fully understood. The impact of the warm 2012-15 California drought on the heavily instrumented Kings River basin provides an extraordinary opportunity to enumerate four mechanisms that controlled the impact of drought on mountain hydrology. Two mechanisms intensified the impact: (i) evaporative processes have first access to local precipitation, which decreased the fractional allocation of P to runoff in 2012-15 and reduced P-ET by 30% relative to previous years, and (ii) 2012-15 was 1 °C warmer than the previous decade, which increased ET relative to previous years and reduced P-ET by 5%. The other two mechanisms alleviated the impact: (iii) spatial heterogeneity and the continuing supply of runoff from higher elevations increased 2012-15 P-ET by 10% relative to that expected for a homogenous basin, and iv) drought-associated dieback and wildfire thinned the forest and decreased ET, which increased 2016 P-ET by 15%. These mechanisms are all important and may offset each other; analyses that neglect one or more will over or underestimate the impact of drought and warming on mountain runoff.

  4. An Educational Model for Hands-On Hydrology Education

    Science.gov (United States)

    AghaKouchak, A.; Nakhjiri, N.; Habib, E. H.

    2014-12-01

    This presentation provides an overview of a hands-on modeling tool developed for students in civil engineering and earth science disciplines to help them learn the fundamentals of hydrologic processes, model calibration, sensitivity analysis, uncertainty assessment, and practice conceptual thinking in solving engineering problems. The toolbox includes two simplified hydrologic models, namely HBV-EDU and HBV-Ensemble, designed as a complement to theoretical hydrology lectures. The models provide an interdisciplinary application-oriented learning environment that introduces the hydrologic phenomena through the use of a simplified conceptual hydrologic model. The toolbox can be used for in-class lab practices and homework assignments, and assessment of students' understanding of hydrological processes. Using this modeling toolbox, students can gain more insights into how hydrological processes (e.g., precipitation, snowmelt and snow accumulation, soil moisture, evapotranspiration and runoff generation) are interconnected. The educational toolbox includes a MATLAB Graphical User Interface (GUI) and an ensemble simulation scheme that can be used for teaching more advanced topics including uncertainty analysis, and ensemble simulation. Both models have been administered in a class for both in-class instruction and a final project, and students submitted their feedback about the toolbox. The results indicate that this educational software had a positive impact on students understanding and knowledge of hydrology.

  5. Using isotopes to improve impact and hydrological predictions of land-surface schemes in global climate models

    International Nuclear Information System (INIS)

    McGuffie, K.; Henderson-Sellers, A.

    2002-01-01

    Global climate model (GCM) predictions of the impact of large-scale land-use change date back to 1984 as do the earliest isotopic studies of large-basin hydrology. Despite this coincidence in interest and geography, with both papers focussed on the Amazon, there have been few studies that have tried to exploit isotopic information with the goal of improving climate model simulations of the land-surface. In this paper we analyze isotopic results from the IAEA global data base specifically with the goal of identifying signatures of potential value for improving global and regional climate model simulations of the land-surface. Evaluation of climate model predictions of the impacts of deforestation of the Amazon has been shown to be of significance by recent results which indicate impacts occurring distant from the Amazon i.e. tele-connections causing climate change elsewhere around the globe. It is suggested that these could be similar in magnitude and extent to the global impacts of ENSO events. Validation of GCM predictions associated with Amazonian deforestation are increasingly urgently required because of the additional effects of other aspects of climate change, particularly synergies occurring between forest removal and greenhouse gas increases, especially CO 2 . Here we examine three decades distributions of deuterium excess across the Amazon and use the results to evaluate the relative importance of the fractionating (partial evaporation) and non-fractionating (transpiration) processes. These results illuminate GCM scenarios of importance to the regional climate and hydrology: (i) the possible impact of increased stomatal resistance in the rainforest caused by higher levels of atmospheric CO2 [4]; and (ii) the consequences of the combined effects of deforestation and global warming on the regions climate and hydrology

  6. Climate change impacts on groundwater hydrology – where are the main uncertainties and can they be reduced?

    DEFF Research Database (Denmark)

    Refsgaard, Jens C.; Sonnenborg, Torben; Butts, Michael

    2016-01-01

    This paper assesses how various sources of uncertainty propagate through the uncertainty cascade from emission scenarios through climate models and hydrological models to impacts with particular focus on groundwater aspects for a number of coordinated studies in Denmark. We find results similar...... to surface water studies showing that climate model uncertainty dominates for projections of climate change impacts on streamflow and groundwater heads. However, we find uncertainties related to geological conceptualisation and hydrological model discretisation to be dominating for projections of well field...... climate-hydrology models....

  7. Hydrological functions of a mine-impacted and natural peatland-dominated watershed, James Bay Lowland

    Directory of Open Access Journals (Sweden)

    Melissa Leclair

    2015-09-01

    New hydrological insights: Deep seepage (groundwater recharge varied with marine sediment thickness and represented a significant loss to the local system. Large downward fluxes were also measured in fen systems that are typically local discharge zones. Evaporation rates were also found to be lower in the bogs and fens and where impacted by lower water tables. When evaluating the water balance, with only 14.5% of the watershed impacted by the mine, the hydrological function of the entire watershed is more driven by seasonal climate variations than mine dewatering.

  8. Assessing the cumulative impacts of geographically isolated wetlands on watershed hydrology using the SWAT model coupled with improved wetland modules.

    Science.gov (United States)

    Lee, S; Yeo, I-Y; Lang, M W; Sadeghi, A M; McCarty, G W; Moglen, G E; Evenson, G R

    2018-06-07

    Despite recognizing the importance of wetlands in the Coastal Plain of the Chesapeake Bay Watershed (CBW) in terms of ecosystem services, our understanding of wetland functions has mostly been limited to individual wetlands and overall catchment-scale wetland functions have rarely been investigated. This study is aimed at assessing the cumulative impacts of wetlands on watershed hydrology for an agricultural watershed within the Coastal Plain of the CBW using the Soil and Water Assessment Tool (SWAT). We employed two improved wetland modules for enhanced representation of physical processes and spatial distribution of riparian wetlands (RWs) and geographically isolated wetlands (GIWs). This study focused on GIWs as their hydrological impacts on watershed hydrology are poorly understood and GIWs are poorly protected. Multiple wetland scenarios were prepared by removing all or portions of the baseline GIW condition indicated by the U.S. Fish and Wildlife Service National Wetlands Inventory geospatial dataset. We further compared the impacts of GIWs and RWs on downstream flow (i.e., streamflow at the watershed outlet). Our simulation results showed that GIWs strongly influenced downstream flow by altering water transport mechanisms in upstream areas. Loss of all GIWs reduced both water routed to GIWs and water infiltrated into the soil through the bottom of GIWs, leading to an increase in surface runoff of 9% and a decrease in groundwater flow of 7% in upstream areas. These changes resulted in increased variability of downstream flow in response to extreme flow conditions. GIW loss also induced an increase in month to month variability of downstream flow and a decrease in the baseflow contribution to streamflow. Loss of all GIWs was shown to cause a greater fluctuation of downstream flow than loss of all RWs for this study site, due to a greater total water storage capacity of GIWs. Our findings indicate that GIWs play a significant role in controlling hydrological

  9. Green roof impact on the hydrological cycle components

    Science.gov (United States)

    Lamera, Carlotta; Rulli, Maria Cristina; Becciu, Gianfranco; Rosso, Renzo

    2013-04-01

    building by installing green roofs and, thus, providing a conversion of rooftops in pervious areas; the objective is modeling hydrological fluxes (interception, evapotranspiration, soil water fluxes in the surface and hypodermic components) in relation to climate forcing, basic technology components and geometric characteristics of green roof systems (thickness of the stratigraphy, soil layers and materials, vegetation typology and density). The sensitivity analysis of hydrological processes at different hydrological, climatic and geometric parameters has allowed to draw some general guidelines useful in the design and construction of this type of drainage systems.

  10. Sink or Swim: Adapting to the Hydrologic Impacts of Climate Change

    Science.gov (United States)

    Gleick, P. H.

    2014-12-01

    Climate changes lead to a wide range of societal and environmental impacts; indeed, strong evidence has accrued that such impacts are already occurring, as summarized by the newest National Climate Assessment and other analyses. Among the most important will be alterations in the hydrologic cycle, changes in water supply and demand, and impacts on existing water-related infrastructure. Because of the complexity of our water systems, adaptation responses will be equally complex. This problem has made it difficult for water managers and planners to develop and implement adaptation strategies. This talk will address three ways to think about water-related adaptation approaches to climate change: (1) strategies that are already being implemented to address population and economic changes without climate change; (2) whether these first-line strategies are appropriate for additional impacts that might result from climatic changes; and (3) new approaches that might be necessary for new, non-linear, or threshold impacts. An effort will also be made to differentiate between adaptation strategies that influence the hydrologic cycle directly (e.g., cloud seeding), those that influence supply management (e.g., construction of additional reservoirs or water-distribution systems), and those that affect water demand (e.g., removal of outdoor landscaping, installation of efficient irrigation systems).

  11. Impact of different satellite soil moisture products on the predictions of a continuous distributed hydrological model

    Science.gov (United States)

    Laiolo, P.; Gabellani, S.; Campo, L.; Silvestro, F.; Delogu, F.; Rudari, R.; Pulvirenti, L.; Boni, G.; Fascetti, F.; Pierdicca, N.; Crapolicchio, R.; Hasenauer, S.; Puca, S.

    2016-06-01

    The reliable estimation of hydrological variables in space and time is of fundamental importance in operational hydrology to improve the flood predictions and hydrological cycle description. Nowadays remotely sensed data can offer a chance to improve hydrological models especially in environments with scarce ground based data. The aim of this work is to update the state variables of a physically based, distributed and continuous hydrological model using four different satellite-derived data (three soil moisture products and a land surface temperature measurement) and one soil moisture analysis to evaluate, even with a non optimal technique, the impact on the hydrological cycle. The experiments were carried out for a small catchment, in the northern part of Italy, for the period July 2012-June 2013. The products were pre-processed according to their own characteristics and then they were assimilated into the model using a simple nudging technique. The benefits on the model predictions of discharge were tested against observations. The analysis showed a general improvement of the model discharge predictions, even with a simple assimilation technique, for all the assimilation experiments; the Nash-Sutcliffe model efficiency coefficient was increased from 0.6 (relative to the model without assimilation) to 0.7, moreover, errors on discharge were reduced up to the 10%. An added value to the model was found in the rainfall season (autumn): all the assimilation experiments reduced the errors up to the 20%. This demonstrated that discharge prediction of a distributed hydrological model, which works at fine scale resolution in a small basin, can be improved with the assimilation of coarse-scale satellite-derived data.

  12. The impact of green roof ageing on substrate characteristics and hydrological performance

    Science.gov (United States)

    De-Ville, Simon; Menon, Manoj; Jia, Xiaodong; Reed, George; Stovin, Virginia

    2017-04-01

    Green roofs contribute to stormwater management through the retention of rainfall and the detention of runoff. However, there is very limited knowledge concerning the evolution of green roof hydrological performance with system age. This study presents a non-invasive technique which allows for repeatable determination of key substrate characteristics over time, and evaluates the impact of observed substrate changes on hydrological performance. The physical properties of 12 green roof substrate cores have been evaluated using non-invasive X-ray microtomography (XMT) imaging. The cores comprised three replicates of two contrasting substrate types at two different ages: unused virgin samples; and 5-year-old samples from existing green roof test beds. Whilst significant structural differences (density, pore and particle sizes, tortuosity) between virgin and aged samples of a crushed brick substrate were observed, these differences did not significantly affect hydrological characteristics (maximum water holding capacity and saturated hydraulic conductivity). A contrasting substrate based upon a light expanded clay aggregate experienced increases in the number of fine particles and pores over time, which led to increases in maximum water holding capacity of 7%. In both substrates, the saturated hydraulic conductivity estimated from the XMT images was lower in aged compared with virgin samples. Comparisons between physically-derived and XMT-derived substrate hydrological properties showed that similar values and trends in the data were identified, confirming the suitability of the non-invasive XMT technique for monitoring changes in engineered substrates over time. The observed effects of ageing on hydrological performance were modelled as two distinct hydrological processes, retention and detention. Retention performance was determined via a moisture-flux model using physically-derived values of virgin and aged maximum water holding capacity. Increased water holding

  13. Development of capability for microtopography-resolving simulations of hydrologic processes in permafrost affected regions

    Science.gov (United States)

    Painter, S.; Moulton, J. D.; Berndt, M.; Coon, E.; Garimella, R.; Lewis, K. C.; Manzini, G.; Mishra, P.; Travis, B. J.; Wilson, C. J.

    2012-12-01

    The frozen soils of the Arctic and subarctic regions contain vast amounts of stored organic carbon. This carbon is vulnerable to release to the atmosphere as temperatures warm and permafrost degrades. Understanding the response of the subsurface and surface hydrologic system to degrading permafrost is key to understanding the rate, timing, and chemical form of potential carbon releases to the atmosphere. Simulating the hydrologic system in degrading permafrost regions is challenging because of the potential for topographic evolution and associated drainage network reorganization as permafrost thaws and massive ground ice melts. The critical process models required for simulating hydrology include subsurface thermal hydrology of freezing/thawing soils, thermal processes within ice wedges, mechanical deformation processes, overland flow, and surface energy balances including snow dynamics. A new simulation tool, the Arctic Terrestrial Simulator (ATS), is being developed to simulate these coupled processes. The computational infrastructure must accommodate fully unstructured grids that track evolving topography, allow accurate solutions on distorted grids, provide robust and efficient solutions on highly parallel computer architectures, and enable flexibility in the strategies for coupling among the various processes. The ATS is based on Amanzi (Moulton et al. 2012), an object-oriented multi-process simulator written in C++ that provides much of the necessary computational infrastructure. Status and plans for the ATS including major hydrologic process models and validation strategies will be presented. Highly parallel simulations of overland flow using high-resolution digital elevation maps of polygonal patterned ground landscapes demonstrate the feasibility of the approach. Simulations coupling three-phase subsurface thermal hydrology with a simple thaw-induced subsidence model illustrate the strong feedbacks among the processes. D. Moulton, M. Berndt, M. Day, J

  14. Hydrological Drought in the Anthropocene: Impacts of Local Water Extraction and Reservoir Regulation in the U.S.: Hydrological Drought in the Anthropocene

    Energy Technology Data Exchange (ETDEWEB)

    Wan, Wenhua [State Key Laboratory of Hydro-science and Engineering, Department of Hydraulic Engineering, Tsinghua University, Beijing China; Pacific Northwest National Laboratory, Richland WA USA; Zhao, Jianshi [State Key Laboratory of Hydro-science and Engineering, Department of Hydraulic Engineering, Tsinghua University, Beijing China; Li, Hong-Yi [Pacific Northwest National Laboratory, Richland WA USA; Now at Department of Land Resources and Environmental Sciences and Institute on Ecosystems, Montana State University, Bozeman MT USA; Mishra, Ashok [Glenn Department of Civil Engineering, Clemson University, Clemson SC USA; Ruby Leung, L. [Pacific Northwest National Laboratory, Richland WA USA; Hejazi, Mohamad [Pacific Northwest National Laboratory, Richland WA USA; Wang, Wei [The Ministry of Education Key Laboratory for Earth System Modeling, and Center for Earth System Science, Tsinghua University, Beijing China; Lu, Hui [The Ministry of Education Key Laboratory for Earth System Modeling, and Center for Earth System Science, Tsinghua University, Beijing China; Deng, Zhiqun [Pacific Northwest National Laboratory, Richland WA USA; Demissisie, Yonas [Department of Civil and Environmental Engineering, Washington State University, Pullman WA USA; Wang, Hao [State Key Laboratory of Hydro-science and Engineering, Department of Hydraulic Engineering, Tsinghua University, Beijing China; State Key Laboratory of Simulation and Regulation of Water Cycle in River Basin, China Institute of Hydropower and Water Resources, Beijing China

    2017-11-03

    Hydrological drought is a substantial negative deviation from normal hydrologic conditions and is influenced by climate and human activities such as water management. By perturbing the streamflow regime, climate change and water management may significantly alter drought characteristics in the future. Here we utilize a high-resolution integrated modeling framework that represents water management in terms of both local surface water extraction and reservoir regulation, and use the Standardized Streamflow Index (SSI) to quantify hydrological drought. We explore the impacts of water management on hydrological drought over the contiguous US in a warming climate with and without emissions mitigation. Despite the uncertainty of climate change impacts, local surface water extraction consistently intensifies drought that dominates at the regional to national scale. However, reservoir regulation alleviates drought by enhancing summer flow downstream of reservoirs. The relative dominance of drought intensification or relief is largely determined by the water demand, with drought intensification dominating in regions with intense water demand such as the Great Plains and California, while drought relief dominates in regions with low water demand. At the national level, water management increases the spatial extent of extreme drought despite some alleviations of moderate to severe drought. In an emissions mitigation scenario with increased irrigation demand for bioenergy production, water management intensifies drought more than the business-as-usual scenario at the national level, so the impacts of emissions mitigation must be evaluated by considering its benefit in reducing warming and evapotranspiration against its effects on increasing water demand and intensifying drought.

  15. Effect and relevance of the artificial drainage system when assessing the hydrologic impact of the imperviousness distribution within the watershed

    Science.gov (United States)

    Thenoux, M.; Gironas, J. A.; Mejia, A.

    2013-12-01

    Cities and urban growth have relevant environmental and social impacts, which could eventually be enhanced or reduced during the urban planning process. From the point of view of hydrology, impermeability and natural soil compaction are one of the main problems that urbanization brings to watershed. Previous studies demonstrate and quantify the impacts of the distribution of imperviousness in a watershed, both on runoff volumes and flow, and the quality and integrity of streams and receiving bodies. Moreover, some studies have investigated the optimal distribution of imperviousness, based on simulating different scenarios of land use change and its effects on runoff, mostly at the outlet of the watershed. However, these studies typically do not address the impact of artificial drainage system associated with the imperviousness scenarios, despite it is known that storm sewer coverage affects the flow accumulation and generation of flow hydrographs. This study seeks to quantify the effects and relevance of the artificial system when it comes to assess the hydrological impacts of the spatial distribution of imperviousness and to determine the characteristics of this influence. For this purpose, an existing model to generate imperviousness distribution scenarios is coupled with a model developed to automatically generate artificial drainage networks. These models are applied to a natural watershed to generate a variety of imperviousness and storm sewer layout scenarios, which are evaluate with a morphoclimatic instantaneous unit hydrograph model. We first tested the ability of this approach to represent the joint effects of imperviousness (i.e. level and distribution) and storm sewer coverage. We then quantified the effects of these variables on the hydrological response, considering also different return period in order to take into account the variability of the precipitation regime. Overall, we show that the layout and spatial coverage of the storm sewer system

  16. Analysis of the impact of climate change on groundwater related hydrological fluxes: a multi-model approach including different downscaling methods

    Directory of Open Access Journals (Sweden)

    S. Stoll

    2011-01-01

    Full Text Available Climate change related modifications in the spatio-temporal distribution of precipitation and evapotranspiration will have an impact on groundwater resources. This study presents a modelling approach exploiting the advantages of integrated hydrological modelling and a broad climate model basis. We applied the integrated MIKE SHE model on a perialpine, small catchment in northern Switzerland near Zurich. To examine the impact of climate change we forced the hydrological model with data from eight GCM-RCM combinations showing systematic biases which are corrected by three different statistical downscaling methods, not only for precipitation but also for the variables that govern potential evapotranspiration. The downscaling methods are evaluated in a split sample test and the sensitivity of the downscaling procedure on the hydrological fluxes is analyzed. The RCMs resulted in very different projections of potential evapotranspiration and, especially, precipitation. All three downscaling methods reduced the differences between the predictions of the RCMs and all corrected predictions showed no future groundwater stress which can be related to an expected increase in precipitation during winter. It turned out that especially the timing of the precipitation and thus recharge is very important for the future development of the groundwater levels. However, the simulation experiments revealed the weaknesses of the downscaling methods which directly influence the predicted hydrological fluxes, and thus also the predicted groundwater levels. The downscaling process is identified as an important source of uncertainty in hydrological impact studies, which has to be accounted for. Therefore it is strongly recommended to test different downscaling methods by using verification data before applying them to climate model data.

  17. [Hydrologic processes of the different landscape zones in Fenhe River headwater catchment].

    Science.gov (United States)

    Yang, Yong-Gang; Li, Cai-Mei; Qin, Zuo-Dong; Zou, Song-Bing

    2014-06-01

    There are few studies on the hydrologic processes of the landscape zone scales at present. Since the water environment is worsening, there is sharp contradiction between supply and demand of water resources in Shanxi province. The principle of the hydrologic processes of the landscape zones in Fenhe River headwater catchment was revealed by means of isotope tracing, hydrology geological exploration and water chemical signal study. The results showed that the subalpine meadow zone and the medium high mountain forest zone were main runoff formation regions in Fenhe River headwater catchment, while the sparse forest shrub zone and the mountain grassland zone lagged the temporal and spatial collection of the precipitation. Fenhe River water was mainly recharged by precipitation, groundwater, melt water of snow and frozen soil. This study suggested that the whole catchment precipitation hardly directly generated surface runoff, but was mostly transformed into groundwater or interflow, and finally concentrated into river channel, completed the "recharge-runoff-discharge" hydrologic processes. This study can provide scientific basis and reference for the containment of water environment deterioration, and is expected to deliver the comprehensive restoration of clear-water reflowing and the ecological environment in Shanxi province.

  18. Results from an International Simulation Study on Couples Thermal, Hydrological, and Mechanical (THM) Processes Near Geological Nuclear Waste Repositories

    International Nuclear Information System (INIS)

    J. Rutqvist; J.T. Birkholzer; M. Chijimatsu; O. Kolditz; Q.S. Liu; Y. Oda; W. Wang; C.Y. Zhang

    2006-01-01

    As part of the ongoing international code comparison project DECOVALEX, four research teams used five different models to simulate coupled thermal, hydrological, and mechanical (THM) processes near underground waste emplacement drifts. The simulations were conducted for two generic repository types with open or back-filled repository drifts under higher and lower post-closure temperature, respectively. In the completed first model inception phase of the project, a good agreement was achieved between the research teams in calculating THM responses for both repository types, although some disagreement in hydrological responses are currently being resolved. Good agreement in the basic thermal-mechanical responses was achieved for both repository types, even with some teams using relatively simplified thermal-elastic heat-conduction models that neglect complex near-field thermal-hydrological processes. The good agreement between the complex and simplified (and well-known) process models indicates that the basic thermal-mechanical responses can be predicted with a relatively high confidence level. The research teams have now moved on to the second phase of the project, the analysis of THM-induced permanent (irreversible) changes and the impact of those changes on the fluid flow field near an emplacement drift

  19. Impact of the operation of cascade reservoirs in upper Yangtze River on hydrological variability of the mainstream

    Science.gov (United States)

    Changjiang, Xu; Dongdong, Zhang

    2018-06-01

    As the impacts by climate changes and human activities are intensified, variability may occur in river's annual runoff as well as flood and low water characteristics. In order to understand the characteristics of variability in hydrological series, diagnosis and identification must be conducted specific to the variability of hydrological series, i.e., whether there was variability and where the variability began to occur. In this paper, the mainstream of Yangtze River was taken as the object of study. A model was established to simulate the impounding and operation of upstream cascade reservoirs so as to obtain the runoff of downstream hydrological control stations after the regulation by upstream reservoirs in different level years. The Range of Variability Approach was utilized to analyze the impact of the operation of upstream reservoirs on the variability of downstream. The results indicated that the overall hydrologic alterations of Yichang hydrological station in 2010 level year, 2015 level year and the forward level year were 68.4, 72.5 and 74.3 % respectively, belonging to high alteration in all three level years. The runoff series of mainstream hydrological stations presented variability in different degrees, where the runoff series of the four hydrological stations including Xiangjiaba, Gaochang and Wulong belonged to high alteration in the three level years; and the runoff series of Beibei hydrological station in 2010 level year belonged to medium alteration, and high alteration in 2015 level year and the forward level year. The study on the impact of the operation of cascade reservoirs in Upper Yangtze River on hydrological variability of the mainstream had important practical significance on the sustainable utilization of water resources, disaster prevention and mitigation, safe and efficient operation and management of water conservancy projects and stable development of the economic society.

  20. Assessment of climate change impact on hydrological extremes in two source regions of the Nile River Basin

    Directory of Open Access Journals (Sweden)

    M. T. Taye

    2011-01-01

    Full Text Available The potential impact of climate change was investigated on the hydrological extremes of Nyando River and Lake Tana catchments, which are located in two source regions of the Nile River basin. Climate change scenarios were developed for rainfall and potential evapotranspiration (ETo, considering 17 General Circulation Model (GCM simulations to better understand the range of possible future change. They were constructed by transferring the extracted climate change signals to the observed series using a frequency perturbation downscaling approach, which accounts for the changes in rainfall extremes. Projected changes under two future SRES emission scenarios A1B and B1 for the 2050s were considered. Two conceptual hydrological models were calibrated and used for the impact assessment. Their difference in simulating the flows under future climate scenarios was also investigated.

    The results reveal increasing mean runoff and extreme peak flows for Nyando catchment for the 2050s while unclear trend is observed for Lake Tana catchment for mean volumes and high/low flows. The hydrological models for Lake Tana catchment, however, performed better in simulating the hydrological regimes than for Nyando, which obviously also induces a difference in the reliability of the extreme future projections for both catchments. The unclear impact result for Lake Tana catchment implies that the GCM uncertainty is more important for explaining the unclear trend than the hydrological models uncertainty. Nevertheless, to have a better understanding of future impact, hydrological models need to be verified for their credibility of simulating extreme flows.

  1. Weather radar rainfall data in urban hydrology

    DEFF Research Database (Denmark)

    Thorndahl, Søren; Einfalt, Thomas; Willems, Patrick

    2017-01-01

    estimation, radar data adjustment and data quality, and (3) nowcasting of radar rainfall and real-time applications. Based on these three fields of research, the paper provides recommendations based on an updated overview of shortcomings, gains, and novel developments in relation to urban hydrological...... applications. The paper also reviews how the focus in urban hydrology research has shifted over the last decade to fields such as climate change impacts, resilience of urban areas to hydrological extremes, and online prediction/warning systems. It is discussed how radar rainfall data can add value......Application of weather radar data in urban hydrological applications has evolved significantly during the past decade as an alternative to traditional rainfall observations with rain gauges. Advances in radar hardware, data processing, numerical models, and emerging fields within urban hydrology...

  2. Improving Permafrost Hydrology Prediction Through Data-Model Integration

    Science.gov (United States)

    Wilson, C. J.; Andresen, C. G.; Atchley, A. L.; Bolton, W. R.; Busey, R.; Coon, E.; Charsley-Groffman, L.

    2017-12-01

    The CMIP5 Earth System Models were unable to adequately predict the fate of the 16GT of permafrost carbon in a warming climate due to poor representation of Arctic ecosystem processes. The DOE Office of Science Next Generation Ecosystem Experiment, NGEE-Arctic project aims to reduce uncertainty in the Arctic carbon cycle and its impact on the Earth's climate system by improved representation of the coupled physical, chemical and biological processes that drive how much buried carbon will be converted to CO2 and CH4, how fast this will happen, which form will dominate, and the degree to which increased plant productivity will offset increased soil carbon emissions. These processes fundamentally depend on permafrost thaw rate and its influence on surface and subsurface hydrology through thermal erosion, land subsidence and changes to groundwater flow pathways as soil, bedrock and alluvial pore ice and massive ground ice melts. LANL and its NGEE colleagues are co-developing data and models to better understand controls on permafrost degradation and improve prediction of the evolution of permafrost and its impact on Arctic hydrology. The LANL Advanced Terrestrial Simulator was built using a state of the art HPC software framework to enable the first fully coupled 3-dimensional surface-subsurface thermal-hydrology and land surface deformation simulations to simulate the evolution of the physical Arctic environment. Here we show how field data including hydrology, snow, vegetation, geochemistry and soil properties, are informing the development and application of the ATS to improve understanding of controls on permafrost stability and permafrost hydrology. The ATS is being used to inform parameterizations of complex coupled physical, ecological and biogeochemical processes for implementation in the DOE ACME land model, to better predict the role of changing Arctic hydrology on the global climate system. LA-UR-17-26566.

  3. Light-absorbing Particles in Snow and Ice: Measurement and Modeling of Climatic and Hydrological Impact

    Energy Technology Data Exchange (ETDEWEB)

    Qian, Yun; Yasunari, Teppei J.; Doherty, Sarah J.; Flanner, M. G.; Lau, William K.; Ming, J.; Wang, Hailong; Wang, Mo; Warren, Stephen G.; Zhang, Rudong

    2015-01-01

    Light absorbing particles (LAP, e.g., black carbon, brown carbon, and dust) influence water and energy budgets of the atmosphere and snowpack in multiple ways. In addition to their effects associated with atmospheric heating by absorption of solar radiation and interactions with clouds, LAP in snow on land and ice can reduce the surface reflectance (a.k.a., surface darkening), which is likely to accelerate the snow aging process and further reduces snow albedo and increases the speed of snowpack melt. LAP in snow and ice (LAPSI) has been identified as one of major forcings affecting climate change, e.g. in the fourth and fifth assessment reports of IPCC. However, the uncertainty level in quantifying this effect remains very high. In this review paper, we document various technical methods of measuring LAPSI and review the progress made in measuring the LAPSI in Arctic, Tibetan Plateau and other mid-latitude regions. We also report the progress in modeling the mass concentrations, albedo reduction, radiative forcing, andclimatic and hydrological impact of LAPSI at global and regional scales. Finally we identify some research needs for reducing the uncertainties in the impact of LAPSI on global and regional climate and the hydrological cycle.

  4. Impacts of climate and land-use changes on the hydrological dynamics in the upper Citarum River basin based on the J2000 hydrological model

    Science.gov (United States)

    Magenika Julian, Miga; Fink, Manfred; Fischer, Christian; Krause, Peter; Flügel, Wolfgang-Albert

    2015-04-01

    Changes of land-use and climate will most likely result in changes of the hydrological dynamics in river basins. Such changes can be noticed in the upper Citarum River basin (UCB), Java Island, Indonesia. This basin covers 1821km2 and is located in a hilly area of the backcountry of Jakarta. Between 2005 and 2009, the basin's forest cover has been reduced by 5.0%, residential areas grew around 8.2% expanding around the existing residential areas, and 3.9% of shrubland was converted into agricultural areas. From 1985 through 2009, the mean annual air temperature increased by 0.01° C/year; whereas, precipitation slightly decreased by 6.8mm/year. The process-oriented hydrological model JAMS/J2000 was adapted and implemented to assess the impact of land-use change and climate variability on the hydrological dynamics of this basin, including consideration of the temporal and spatial distributions. For this assessment, three scenarios based on realistic events were investigated; these consisted of the following (i) land-use changes in 2005 versus 2009; (ii) temperature increase from 1984 to 2009, while keeping a precipitation constant from year 1984; and (iii) variability of precipitation from 1984 to 2009, while keeping temperature constant from year 1984. The model-input conditions of land-use, precipitation, and temperature changes where applied individually, holding the other factors constant. Model simulations were conducted for the UCB. The J2000 model for the UCB was calibrated and validated using a split-sample approach. For model calibration and validation, fairly good objective functions were achieved: i.e. Nash-Sutcliffe efficiencies (E) by 0.79 and 0.76, log E of 0.89 and 0.84, coefficient of determination of 0.79 and 0.77, and a percent bias of -1.4% and -1.1%. From the model-simulation results, it was concluded that the land-use changes resulted in a slight increase in stream discharge (4.6%) and a decrease of evaporation of 3.7%. The analysis of the

  5. Time-series analysis of the long-term hydrologic impacts of afforestation in the Águeda watershed of North-Central Portugal

    Science.gov (United States)

    Hawtree, D.; Nunes, J. P.; Keizer, J. J.; Jacinto, R.; Santos, J.; Rial-Rivas, M. E.; Boulet, A.-K.; Tavares-Wahren, F.; Feger, K.-H.

    2014-11-01

    The north-central region of Portugal has undergone significant afforestation of the species Pinus pinaster and Eucalyptus globulus since the early 1900s; however, the long-term hydrologic impacts of this land cover change are not fully understood. To contribute to a better understanding of the potential hydrologic impacts of this land cover change, this study examines the temporal trends in 7 years of data from the Águeda watershed (part of the Vouga Basin) over the period of 1936 to 2010. Meteorological and hydrological records were analysed using a combined Thiel-Sen/Mann-Kendall trend testing approach, to assess the magnitude and significance of patterns in the observed data. These trend tests indicated that there had been no significant reduction in streamflow yield over either the entire test period, or during sub-record periods, despite the large-scale afforestation which had taken place. This lack of change is attributed to both the characteristics of the watershed and the nature of the land cover change. By contrast, a number of significant trends were found for baseflow index, which showed positive trends in the early data record (primarily during Pinus pinaster afforestation), followed by a reversal to negative trends later in the data record (primarily during Eucalyptus globulus afforestation). These changes are attributed to vegetation impacts on streamflow generating processes, both due to the species differences and to alterations in soil properties (i.e. promoting water repellency of the topsoil). These results highlight the importance of considering both vegetation types/dynamics and watershed characteristic when assessing hydrologic impacts, in particular with respect to soil properties.

  6. Future changes in Mekong River hydrology: impact of climate change and reservoir operation on discharge

    Directory of Open Access Journals (Sweden)

    H. Lauri

    2012-12-01

    Full Text Available The transboundary Mekong River is facing two ongoing changes that are expected to significantly impact its hydrology and the characteristics of its exceptional flood pulse. The rapid economic development of the riparian countries has led to massive plans for hydropower construction, and projected climate change is expected to alter the monsoon patterns and increase temperature in the basin. The aim of this study is to assess the cumulative impact of these factors on the hydrology of the Mekong within next 20–30 yr. We downscaled the output of five general circulation models (GCMs that were found to perform well in the Mekong region. For the simulation of reservoir operation, we used an optimisation approach to estimate the operation of multiple reservoirs, including both existing and planned hydropower reservoirs. For the hydrological assessment, we used a distributed hydrological model, VMod, with a grid resolution of 5 km × 5 km. In terms of climate change's impact on hydrology, we found a high variation in the discharge results depending on which of the GCMs is used as input. The simulated change in discharge at Kratie (Cambodia between the baseline (1982–1992 and projected time period (2032–2042 ranges from −11% to +15% for the wet season and −10% to +13% for the dry season. Our analysis also shows that the changes in discharge due to planned reservoir operations are clearly larger than those simulated due to climate change: 25–160% higher dry season flows and 5–24% lower flood peaks in Kratie. The projected cumulative impacts follow rather closely the reservoir operation impacts, with an envelope around them induced by the different GCMs. Our results thus indicate that within the coming 20–30 yr, the operation of planned hydropower reservoirs is likely to have a larger impact on the Mekong hydrograph than the impacts of climate change, particularly during the dry season. On the other hand, climate change will

  7. Global hydrological droughts in the 21st century under a changing hydrological regime

    NARCIS (Netherlands)

    Wanders, Niko|info:eu-repo/dai/nl/364253940; Wada, Yoshi|info:eu-repo/dai/nl/341387819; van Lanen, H.A.J

    2015-01-01

    Climate change very likely impacts future hydrological drought characteristics across the world. Here, we quantify the impact of climate change on future low flows and associated hydrological drought characteristics on a global scale using an alternative drought identification approach that

  8. HIMALA: climate impacts on glaciers, snow, and hydrology in the Himalayan region

    Science.gov (United States)

    Brown, Molly Elizabeth; Ouyang, Hua; Habib, Shahid; Shrestha, Basanta; Shrestha, Mandira; Panday, Prajjwal; Tzortziou, Maria; Policelli, Frederick; Artan, Guleid; Giriraj, Amarnath; Bajracharya, Sagar R.; Racoviteanu, Adina

    2010-01-01

    Glaciers are the largest reservoir of freshwater on Earth, supporting one third of the world's population. The Himalaya possess one of the largest resources of snow and ice, which act as a freshwater reservoir for more than 1.3 billion people. This article describes a new project called HIMALA, which focuses on utilizing satellite-based products for better understanding of hydrological processes of the river basins of the region. With support from the US Agency for International Development (USAID), the International Centre for Integrated Mountain Development (ICIMOD), together with its partners and member countries, has been working on the application of satellite-based rainfall estimates for flood prediction. The US National Aeronautics and Space Administration (NASA) partners are working with ICIMOD to incorporate snowmelt and glacier melt into a widely used hydrological model. Thus, through improved modeling of the contribution of snow and ice meltwater to river flow in the region, the HIMALA project will improve the ability of ICIMOD and its partners to understand the impact of weather and climate on floods, droughts, and other water- and climate-induced natural hazards in the Himalayan region in Afghanistan, Bangladesh, Bhutan, China, India, Myanmar, Nepal, and Pakistan.

  9. HIMALA: Climate Impacts on Glaciers, Snow, and Hydrology in the Himalayan Region

    Science.gov (United States)

    Brown, Molly Elizabeth; Ouyang, Hua; Habib, Shahid; Shrestha, Basanta; Shrestha, Mandira; Panday, Prajjwal; Tzortziou, Maria; Policelli, Frederick; Artan, Guleid; Giriraj, Amarnath; hide

    2010-01-01

    Glaciers are the largest reservoir of freshwater on Earth, supporting one third of the world s population. The Himalaya possess one of the largest resources of snow and ice, which act as a freshwater reservoir for more than 1.3 billion people. This article describes a new project called HIMALA, which focuses on utilizing satellite-based products for better understanding of hydrological processes of the river basins of the region. With support from the US Agency for International Development (USAID), the International Centre for Integrated Mountain Development (ICIMOD), together with its partners and member countries, has been working on the application of satellite-based rainfall estimates for flood prediction. The US National Aeronautics and Space Administration (NASA) partners are working with ICIMOD to incorporate snowmelt and glacier melt into a widely used hydrological model. Thus, through improved modeling of the contribution of snow and ice meltwater to river flow in the region, the HIMALA project will improve the ability of ICIMOD and its partners to understand the impact of weather and climate on floods, droughts, and other water- and climate-induced natural hazards in the Himalayan region in Afghanistan, Bangladesh, Bhutan, China, India, Myanmar, Nepal, and Pakistan.

  10. Possible Future Climate Change Impacts on the Hydrological Drought Events in the Weihe River Basin, China

    Directory of Open Access Journals (Sweden)

    Fei Yuan

    2016-01-01

    Full Text Available Quantitative evaluation of future climate change impacts on hydrological drought characteristics is one of important measures for implementing sustainable water resources management and effective disaster mitigation in drought-prone regions under the changing environment. In this study, a modeling system for projecting the potential future climate change impacts on hydrological droughts in the Weihe River basin (WRB in North China is presented. This system consists of a large-scale hydrological model driven by climate outputs from three climate models (CMs for future streamflow projections, a probabilistic model for univariate drought assessment, and a copula-based bivariate model for joint drought frequency analysis under historical and future climates. With the observed historical climate data as the inputs, the Variable Infiltration Capacity hydrological model projects an overall runoff reduction in the WRB under the Intergovernmental Panel on Climate Change A1B scenario. The univariate drought assessment found that although fewer hydrological drought events would occur under A1B scenario, drought duration and severity tend to increase remarkably. Moreover, the bivariate drought assessment reveals that future droughts in the same return period as the baseline droughts would become more serious. With these trends in the future, the hydrological drought situation in the WRB would be further deteriorated.

  11. Quantifying the sources of uncertainty in an ensemble of hydrological climate-impact projections

    Science.gov (United States)

    Aryal, Anil; Shrestha, Sangam; Babel, Mukand S.

    2018-01-01

    The objective of this paper is to quantify the various sources of uncertainty in the assessment of climate change impact on hydrology in the Tamakoshi River Basin, located in the north-eastern part of Nepal. Multiple climate and hydrological models were used to simulate future climate conditions and discharge in the basin. The simulated results of future climate and river discharge were analysed for the quantification of sources of uncertainty using two-way and three-way ANOVA. The results showed that temperature and precipitation in the study area are projected to change in near- (2010-2039), mid- (2040-2069) and far-future (2070-2099) periods. Maximum temperature is likely to rise by 1.75 °C under Representative Concentration Pathway (RCP) 4.5 and by 3.52 °C under RCP 8.5. Similarly, the minimum temperature is expected to rise by 2.10 °C under RCP 4.5 and by 3.73 °C under RCP 8.5 by the end of the twenty-first century. Similarly, the precipitation in the study area is expected to change by - 2.15% under RCP 4.5 and - 2.44% under RCP 8.5 scenarios. The future discharge in the study area was projected using two hydrological models, viz. Soil and Water Assessment Tool (SWAT) and Hydrologic Engineering Center's Hydrologic Modelling System (HEC-HMS). The SWAT model projected discharge is expected to change by small amount, whereas HEC-HMS model projected considerably lower discharge in future compared to the baseline period. The results also show that future climate variables and river hydrology contain uncertainty due to the choice of climate models, RCP scenarios, bias correction methods and hydrological models. During wet days, more uncertainty is observed due to the use of different climate models, whereas during dry days, the use of different hydrological models has a greater effect on uncertainty. Inter-comparison of the impacts of different climate models reveals that the REMO climate model shows higher uncertainty in the prediction of precipitation and

  12. Improving Robustness of Hydrologic Ensemble Predictions Through Probabilistic Pre- and Post-Processing in Sequential Data Assimilation

    Science.gov (United States)

    Wang, S.; Ancell, B. C.; Huang, G. H.; Baetz, B. W.

    2018-03-01

    Data assimilation using the ensemble Kalman filter (EnKF) has been increasingly recognized as a promising tool for probabilistic hydrologic predictions. However, little effort has been made to conduct the pre- and post-processing of assimilation experiments, posing a significant challenge in achieving the best performance of hydrologic predictions. This paper presents a unified data assimilation framework for improving the robustness of hydrologic ensemble predictions. Statistical pre-processing of assimilation experiments is conducted through the factorial design and analysis to identify the best EnKF settings with maximized performance. After the data assimilation operation, statistical post-processing analysis is also performed through the factorial polynomial chaos expansion to efficiently address uncertainties in hydrologic predictions, as well as to explicitly reveal potential interactions among model parameters and their contributions to the predictive accuracy. In addition, the Gaussian anamorphosis is used to establish a seamless bridge between data assimilation and uncertainty quantification of hydrologic predictions. Both synthetic and real data assimilation experiments are carried out to demonstrate feasibility and applicability of the proposed methodology in the Guadalupe River basin, Texas. Results suggest that statistical pre- and post-processing of data assimilation experiments provide meaningful insights into the dynamic behavior of hydrologic systems and enhance robustness of hydrologic ensemble predictions.

  13. Glacier beds that will be exposed in the future: How will geomorphologic and hydrologic processes develop?

    Science.gov (United States)

    Linsbauer, Andreas; Paul, Frank; Haeberli, Wilfried

    2014-05-01

    The rapid shrinkage of glaciers in the Alps has widespread impacts on relief development and hydrology. Slope failures, collapse of lateral moraines, loose debris in glacier fore-fields, new lakes and changing river beds are among the most visible impacts. They already require increased attention by tourists, monitoring by local authorities and mitigation measures (e.g. www.gletschersee.ch). A view into potential future developments (after glaciers have disappeared) is thus of high interest. With recently developed models that reconstruct glacier bed topography from easily available datasets (e.g. glacier outlines and a DEM) over entire mountain ranges, potential developments of the landscape and hydrology can be quantitatively determined. The modelled glacier beds - though they must be seen as a rough first order approximation only - also allows the investigation of a wide range of glaciological relations and dependencies that have been widely applied but were never investigated for a large sample of glaciers so far. A key reason is that information on glacier thickness distribution and total ice volume is sparse and that the future development of glaciers can only be modelled realistically when a glacier bed is available. Hence, with the glacier beds now available there is a larger number of geomorphological, glaciological and hydrological studies ahead of us. This presentation is providing an overview on the lessons learned about glaciers and their future development from the modelled glacier beds, the expected changes in hydrology (e.g. decreasing glacier volume and formation of new lakes) and potential impacts from the altered geomorphology (e.g. debuttressing of rock walls). In particular the flat tongues of larger valley glaciers are rather thick and leave oversteepened lateral moraines or rock walls behind, towering above overdeepenings in the glacier bed that might be filled with water. It is thus expected that the hazard potential will further increase in

  14. Modelling hydrologic and hydrodynamic processes in basins with large semi-arid wetlands

    Science.gov (United States)

    Fleischmann, Ayan; Siqueira, Vinícius; Paris, Adrien; Collischonn, Walter; Paiva, Rodrigo; Pontes, Paulo; Crétaux, Jean-François; Bergé-Nguyen, Muriel; Biancamaria, Sylvain; Gosset, Marielle; Calmant, Stephane; Tanimoun, Bachir

    2018-06-01

    Hydrological and hydrodynamic models are core tools for simulation of large basins and complex river systems associated to wetlands. Recent studies have pointed towards the importance of online coupling strategies, representing feedbacks between floodplain inundation and vertical hydrology. Especially across semi-arid regions, soil-floodplain interactions can be strong. In this study, we included a two-way coupling scheme in a large scale hydrological-hydrodynamic model (MGB) and tested different model structures, in order to assess which processes are important to be simulated in large semi-arid wetlands and how these processes interact with water budget components. To demonstrate benefits from this coupling over a validation case, the model was applied to the Upper Niger River basin encompassing the Niger Inner Delta, a vast semi-arid wetland in the Sahel Desert. Simulation was carried out from 1999 to 2014 with daily TMPA 3B42 precipitation as forcing, using both in-situ and remotely sensed data for calibration and validation. Model outputs were in good agreement with discharge and water levels at stations both upstream and downstream of the Inner Delta (Nash-Sutcliffe Efficiency (NSE) >0.6 for most gauges), as well as for flooded areas within the Delta region (NSE = 0.6; r = 0.85). Model estimates of annual water losses across the Delta varied between 20.1 and 30.6 km3/yr, while annual evapotranspiration ranged between 760 mm/yr and 1130 mm/yr. Evaluation of model structure indicated that representation of both floodplain channels hydrodynamics (storage, bifurcations, lateral connections) and vertical hydrological processes (floodplain water infiltration into soil column; evapotranspiration from soil and vegetation and evaporation of open water) are necessary to correctly simulate flood wave attenuation and evapotranspiration along the basin. Two-way coupled models are necessary to better understand processes in large semi-arid wetlands. Finally, such coupled

  15. Quantifying the impact of land use change on hydrological responses in the Upper Ganga Basin, India

    Science.gov (United States)

    Tsarouchi, Georgia-Marina; Mijic, Ana; Moulds, Simon; Chawla, Ila; Mujumdar, Pradeep; Buytaert, Wouter

    2013-04-01

    Quantifying how changes in land use affect the hydrological response at the river basin scale is a challenge in hydrological science and especially in the tropics where many regions are considered data sparse. Earlier work by the authors developed and used high-resolution, reconstructed land cover maps for northern India, based on satellite imagery and historic land-use maps for the years 1984, 1998 and 2010. Large-scale land use changes and their effects on landscape patterns can impact water supply in a watershed by altering hydrological processes such as evaporation, infiltration, surface runoff, groundwater discharge and stream flow. Three land use scenarios were tested to explore the sensitivity of the catchment's response to land use changes: (a) historic land use of 1984 with integrated evolution to 2010; (b) land use of 2010 remaining stable; and (c) hypothetical future projection of land use for 2030. The future scenario was produced with Markov chain analysis and generation of transition probability matrices, indicating transition potentials from one land use class to another. The study used socio-economic (population density), geographic (distances to roads and rivers, and location of protected areas) and biophysical drivers (suitability of soil for agricultural production, slope, aspect, and elevation). The distributed version of the land surface model JULES was integrated at a resolution of 0.01° for the years 1984 to 2030. Based on a sensitivity analysis, the most sensitive parameters were identified. Then, the model was calibrated against measured daily stream flow data. The impact of land use changes was investigated by calculating annual variations in hydrological components, differences in annual stream flow and surface runoff during the simulation period. The land use changes correspond to significant differences on the long-term hydrologic fluxes for each scenario. Once analysed from a future water resources perspective, the results will be

  16. Modeling the Hydrologic Processes of a Permeable Pavement System

    Science.gov (United States)

    A permeable pavement system can capture stormwater to reduce runoff volume and flow rate, improve onsite groundwater recharge, and enhance pollutant controls within the site. A new unit process model for evaluating the hydrologic performance of a permeable pavement system has be...

  17. Assessing climate change impact by integrated hydrological modelling

    Science.gov (United States)

    Lajer Hojberg, Anker; Jørgen Henriksen, Hans; Olsen, Martin; der Keur Peter, van; Seaby, Lauren Paige; Troldborg, Lars; Sonnenborg, Torben; Refsgaard, Jens Christian

    2013-04-01

    Future climate may have a profound effect on the freshwater cycle, which must be taken into consideration by water management for future planning. Developments in the future climate are nevertheless uncertain, thus adding to the challenge of managing an uncertain system. To support the water managers at various levels in Denmark, the national water resources model (DK-model) (Højberg et al., 2012; Stisen et al., 2012) was used to propagate future climate to hydrological response under considerations of the main sources of uncertainty. The DK-model is a physically based and fully distributed model constructed on the basis of the MIKE SHE/MIKE11 model system describing groundwater and surface water systems and the interaction between the domains. The model has been constructed for the entire 43.000 km2 land area of Denmark only excluding minor islands. Future climate from General Circulation Models (GCM) was downscaled by Regional Climate Models (RCM) by a distribution-based scaling method (Seaby et al., 2012). The same dataset was used to train all combinations of GCM-RCMs and they were found to represent the mean and variance at the seasonal basis equally well. Changes in hydrological response were computed by comparing the short term development from the period 1990 - 2010 to 2021 - 2050, which is the time span relevant for water management. To account for uncertainty in future climate predictions, hydrological response from the DK-model using nine combinations of GCMs and RCMs was analysed for two catchments representing the various hydrogeological conditions in Denmark. Three GCM-RCM combinations displaying high, mean and low future impacts were selected as representative climate models for which climate impact studies were carried out for the entire country. Parameter uncertainty was addressed by sensitivity analysis and was generally found to be of less importance compared to the uncertainty spanned by the GCM-RCM combinations. Analysis of the simulations

  18. Quantifying the Impact of geographically isolated wetlands on the downstream hydrology of a Canadian Prairie watershed

    Science.gov (United States)

    Muhammad, A.; Evenson, G. R.; Boluwade, A.; Jha, S. K.; Rasmussen, P. F.

    2016-12-01

    Hydrological processes are highly complex and strongly nonlinear and cannot be represented through simple means. Models are built to replicate these processes. However, models due to various sources of uncertainty including their structural capability often lead to inaccurate results. The aim of this study is to setup the soil water assessment tool (SWAT) for a watershed that is dominated by potholes in the Prairie region of Canada. The potholes not connected to the stream, also known as geographically isolated wetlands (GIWs), are dynamic in nature leading to a fill and spill situation due to varying surface runoff conditions. Significant land use changes have resulted in almost 70% of wetlands being lost and have posed threat of flooding to downstream areas. While some studies were devoted to identify the presence of potholes only few have explored the impacts of wetlands on the downstream hydrology. In this study, we follow Evenson et al., (2016) approach of modifying SWAT model. The modification enhances structural capability of SWAT while depicting the dynamics of wetlands at HRUs level. Redefining the formation of HRUs in such way effectively captures the spatial presence of potholes. We then routed the potholes' fill and spill hydrology to direct the flow to the potholes immediately downstream. The model was calibrated for 2005-2008 and verified over 2009-2011 at a daily time step. We tested our model with three land use change scenarios by varying the presence of potholes and evaluated its impact on the downstream hydrograph. We foresee a significant improvement in replicating stream flow using this novel approach. We believe that it will effectively improve the predictive power of SWAT for this highly complex sub basin (Upper Assiniboine catchment at Kamsack) located in Canadian Prairie.

  19. Hydrological and pollution processes in mining area of Fenhe River Basin in China.

    Science.gov (United States)

    Yang, Yonggang; Meng, Zhilong; Jiao, Wentao

    2018-03-01

    The hydrological and pollution processes are an important science problem for aquatic ecosystem. In this study, the samples of river water, reservoir water, shallow groundwater, deep groundwater, and precipitation in mining area are collected and analyzed. δD and δ 18 O are used to identify hydrological process. δ 15 N-NO 3 - and δ 18 O-NO 3 - are used to identify the sources and pollution process of NO 3 - . The results show that the various water bodies in Fenhe River Basin are slightly alkaline water. The ions in the water mainly come from rock weathering. The concentration of SO 4 2- is high due to the impact of coal mining activity. Deep groundwater is significantly less affected by evaporation and human activity, which is recharged by archaic groundwater. There are recharge and discharge between reservoir water, river water, soil water, and shallow groundwater. NO 3 - is the main N species in the study area, and forty-six percent of NO 3 - -N concentrations exceed the drinking water standard of China (NO 3 - -N ≤ 10 mg/L content). Nitrification is the main forming process of NO 3 - . Denitrification is also found in river water of some river branches. The sources of NO 3 - are mainly controlled by land use type along the riverbank. NO 3 - of river water in the upper reaches are come from nitrogen in precipitation and soil organic N. River water in the lower reaches is polluted by a mixture of soil organic N and fertilizers. Copyright © 2017 Elsevier Ltd. All rights reserved.

  20. Hydrological system dynamics of glaciated Karnali River Basin Nepal Himalaya using J2000 Hydrological model

    Science.gov (United States)

    Khatiwada, K. R.; Nepal, S.; Panthi, J., Sr.; Shrestha, M.

    2015-12-01

    Hydrological modelling plays an important role in understanding hydrological processes of a catchment. In the context of climate change, the understanding of hydrological characteristic of the catchment is very vital to understand how the climate change will affect the hydrological regime. This research facilitates in better understanding of the hydrological system dynamics of a himalayan mountainous catchment in western Nepal. The Karnali River, longest river flowing inside Nepal, is one of the three major basins of Nepal, having the area of 45269 sq. km. is unique. The basin has steep topography and high mountains to the northern side. The 40% of the basin is dominated by forest land while other land cover are: grass land, bare rocky land etc. About 2% of the areas in basin is covered by permanent glacier apart from that about 12% of basin has the snow and ice cover. There are 34 meteorological stations distributed across the basin. A process oriented distributed J2000 hydrologial model has been applied to understand the hydrological system dynamics. The model application provides distributed output of various hydrological components. The J2000 model applies Hydrological Response Unit (HRU) as a modelling entity. With 6861 HRU and 1010 reaches, the model was calibrated (1981-1999) and validated (2000-2004) at a daily scale using split-sample test. The model is able to capture the overall hydrological dynamics well. The rising limbs and recession limbs are simulated equally and with satisfactory ground water conditions. Based on the graphical and statistical evaluation of the model performance the model is able to simulate hydrological processes fairly well. Calibration shows that Nash Sutcliffe efficiency is 0.91, coefficient of determination is 0.92 Initial observation shows that during the pre-monsoon season(March to May) the glacial runoff is 25% of the total discharge while in the monsoon(June to September) season it is only 13%. The surface runoff

  1. Parameterization of a Hydrological Model for a Large, Ungauged Urban Catchment

    Directory of Open Access Journals (Sweden)

    Gerald Krebs

    2016-10-01

    Full Text Available Urbanization leads to the replacement of natural areas by impervious surfaces and affects the catchment hydrological cycle with adverse environmental impacts. Low impact development tools (LID that mimic hydrological processes of natural areas have been developed and applied to mitigate these impacts. Hydrological simulations are one possibility to evaluate the LID performance but the associated small-scale processes require a highly spatially distributed and explicit modeling approach. However, detailed data for model development are often not available for large urban areas, hampering the model parameterization. In this paper we propose a methodology to parameterize a hydrological model to a large, ungauged urban area by maintaining at the same time a detailed surface discretization for direct parameter manipulation for LID simulation and a firm reliance on available data for model conceptualization. Catchment delineation was based on a high-resolution digital elevation model (DEM and model parameterization relied on a novel model regionalization approach. The impact of automated delineation and model regionalization on simulation results was evaluated for three monitored study catchments (5.87–12.59 ha. The simulated runoff peak was most sensitive to accurate catchment discretization and calibration, while both the runoff volume and the fit of the hydrograph were less affected.

  2. Forest hydrology

    Science.gov (United States)

    Ge Sun; Devendra Amatya; Steve McNulty

    2016-01-01

    Forest hydrology studies the distribution, storage, movement, and quality of water and the hydrological processes in forest-dominated ecosystems. Forest hydrological science is regarded as the foundation of modern integrated water¬shed management. This chapter provides an overview of the history of forest hydrology and basic principles of this unique branch of...

  3. Climate change impact assessment on various components of the hydrological regime of the Malše river basin

    Czech Academy of Sciences Publication Activity Database

    Němečková, Soňa; Slámová, Romana; Šípek, Václav

    2011-01-01

    Roč. 59, č. 2 (2011), s. 131-143 ISSN 0042-790X R&D Projects: GA AV ČR IAA300600901; GA MŽP(CZ) SP/1A6/151/07 Institutional research plan: CEZ:AV0Z20600510 Keywords : climate change * hydrological modelling * hydrological cycle Subject RIV: DA - Hydrology ; Limnology Impact factor: 0.340, year: 2011

  4. Development and Application of an Integrated Model for Representing Hydrologic Processes and Irrigation at Residential Scale in Semiarid and Mediterranean Regions

    Science.gov (United States)

    Herrera, J. B.; Gironas, J. A.; Bonilla, C. A.; Vera, S.; Reyes, F. R.

    2015-12-01

    Urbanization alters physical and biological processes that take place in natural environments. New impervious areas change the hydrological processes, reducing infiltration and evapotranspiration and increasing direct runoff volumes and flow discharges. To reduce these effects at local scale, sustainable urban drainage systems, low impact development and best management practices have been developed and implemented. These technologies, which typically consider some type of green infrastructure (GI), simulate natural processes of capture, retention and infiltration to control flow discharges from frequent events and preserve the hydrological cycle. Applying these techniques in semiarid regions requires accounting for aspects related to the maintenance of green areas, such as the irrigation needs and the selection of the vegetation. This study develops the Integrated Hydrological Model at Residential Scale, IHMORS, which is a continuous model that simulates the most relevant hydrological processes together with irrigation processes of green areas. In the model contributing areas and drainage control practices are modeled by combining and connecting differents subareas subjected to surface processes (i.e. interception, evapotranspiration, infiltration and surface runoff) and sub-surface processes (percolation, redistribution and subsurface runoff). The model simulates these processes and accounts for the dynamics of the water content in different soil layers. The different components of the model were first tested using laboratory and numerical experiments, and then an application to a case study was carried out. In this application we assess the long-term performance in terms of runoff control and irrigation needs of green gardens with different vegetation, under different climate and irrigation practices. The model identifies significant differences in the performance of the alternatives and provides a good insight for the maintenance needs of GI for runoff control.

  5. Exploring the Influence of Topography on Belowground C Processes Using a Coupled Hydrologic-Biogeochemical Model

    Science.gov (United States)

    Shi, Y.; Davis, K. J.; Eissenstat, D. M.; Kaye, J. P.; Duffy, C.; Yu, X.; He, Y.

    2014-12-01

    Belowground carbon processes are affected by soil moisture and soil temperature, but current biogeochemical models are 1-D and cannot resolve topographically driven hill-slope soil moisture patterns, and cannot simulate the nonlinear effects of soil moisture on carbon processes. Coupling spatially-distributed physically-based hydrologic models with biogeochemical models may yield significant improvements in the representation of topographic influence on belowground C processes. We will couple the Flux-PIHM model to the Biome-BGC (BBGC) model. Flux-PIHM is a coupled physically-based land surface hydrologic model, which incorporates a land-surface scheme into the Penn State Integrated Hydrologic Model (PIHM). The land surface scheme is adapted from the Noah land surface model. Because PIHM is capable of simulating lateral water flow and deep groundwater, Flux-PIHM is able to represent the link between groundwater and the surface energy balance, as well as the land surface heterogeneities caused by topography. The coupled Flux-PIHM-BBGC model will be tested at the Susquehanna/Shale Hills critical zone observatory (SSHCZO). The abundant observations, including eddy covariance fluxes, soil moisture, groundwater level, sap flux, stream discharge, litterfall, leaf area index, above ground carbon stock, and soil carbon efflux, make SSHCZO an ideal test bed for the coupled model. In the coupled model, each Flux-PIHM model grid will couple a BBGC cell. Flux-PIHM will provide BBGC with soil moisture and soil temperature information, while BBGC provides Flux-PIHM with leaf area index. Preliminary results show that when Biome- BGC is driven by PIHM simulated soil moisture pattern, the simulated soil carbon is clearly impacted by topography.

  6. Understand the impacts of wetland restoration on peak flow and baseflow by coupling hydrologic and hydrodynamic models

    Science.gov (United States)

    Gao, H.; Sabo, J. L.

    2016-12-01

    Wetlands as the earth's kidneys provides various ecosystem services, such as absorbing pollutants, purifying freshwater, providing habitats for diverse ecosystems, sustaining species richness and biodiversity. From hydrologic perspective, wetlands can store storm-flood water in flooding seasons and release it afterwards, which will reduce flood peaks and reshape hydrograph. Therefore, as a green infrastructure and natural capital, wetlands provides a competent alternative to manage water resources in a green way, with potential to replace the widely criticized traditional gray infrastructure (i.e. dams and dikes) in certain cases. However, there are few systematic scientific tools to support our decision-making on site selection and allow us to quantitatively investigate the impacts of restored wetlands on hydrological process, not only in local scale but also in the view of entire catchment. In this study, we employed a topographic index, HAND (the Height Above the Nearest Drainage), to support our decision on potential site selection. Subsequently, a hydrological model (VIC, Variable Infiltration Capacity) was coupled with a macro-scale hydrodynamic model (CaMa-Flood, Catchment-Based Macro-scale Floodplain) to simulate the impact of wetland restoration on flood peaks and baseflow. The results demonstrated that topographic information is an essential factor to select wetland restoration location. Different reaches, wetlands area and the change of roughness coefficient should be taken into account while evaluating the impacts of wetland restoration. The simulated results also clearly illustrated that wetland restoration will increase the local storage and decrease the downstream peak flow which is beneficial for flood prevention. However, its impact on baseflow is ambiguous. Theoretically, restored wetlands will increase the baseflow due to the slower release of the stored flood water, but the increase of wetlands area may also increase the actual evaporation

  7. Assessment of the Impact of Climate Change on the Water Balances and Flooding Conditions of Peninsular Malaysia watersheds by a Coupled Numerical Climate Model - Watershed Hydrology Model

    Science.gov (United States)

    Ercan, A.; Kavvas, M. L.; Ishida, K.; Chen, Z. Q.; Amin, M. Z. M.; Shaaban, A. J.

    2017-12-01

    Impacts of climate change on the hydrologic processes under future climate change conditions were assessed over various watersheds of Peninsular Malaysia by means of a coupled regional climate and physically-based hydrology model that utilized an ensemble of future climate change projections. An ensemble of 15 different future climate realizations from coarse resolution global climate models' (GCMs) projections for the 21st century were dynamically downscaled to 6 km resolution over Peninsular Malaysia by a regional numerical climate model, which was then coupled with the watershed hydrology model WEHY through the atmospheric boundary layer over the selected watersheds of Peninsular Malaysia. Hydrologic simulations were carried out at hourly increments and at hillslope-scale in order to assess the impacts of climate change on the water balances and flooding conditions at the selected watersheds during the 21st century. The coupled regional climate and hydrology model was simulated for a duration of 90 years for each of the 15 realizations. It is demonstrated that the increase in mean monthly flows due to the impact of expected climate change during 2040-2100 is statistically significant at the selected watersheds. Furthermore, the flood frequency analyses for the selected watersheds indicate an overall increasing trend in the second half of the 21st century.

  8. Modeling of hydrological processes in arid agricultural regions

    Directory of Open Access Journals (Sweden)

    Jiang LI,Xiaomin MAO,Shaozhong KANG,David A. BARRY

    2015-12-01

    Full Text Available Understanding of hydrological processes, including consideration of interactions between vegetation growth and water transfer in the root zone, underpins efficient use of water resources in arid-zone agriculture. Water transfers take place in the soil-plant-atmosphere continuum, and include groundwater dynamics, unsaturated zone flow, evaporation/transpiration from vegetated/bare soil and surface water, agricultural canal/surface water flow and seepage, and well pumping. Models can be categorized into three classes: (1 regional distributed hydrological models with various land uses, (2 groundwater-soil-plant-atmosphere continuum models that neglect lateral water fluxes, and (3 coupled models with groundwater flow and unsaturated zone water dynamics. This review highlights, in addition, future research challenges in modeling arid-zone agricultural systems, e.g., to effectively assimilate data from remote sensing, and to fully reflect climate change effects at various model scales.

  9. Dryland soil hydrological processes and their impacts on the nitrogen balance in a soil-maize system of a freeze-thawing agricultural area.

    Directory of Open Access Journals (Sweden)

    Wei Ouyang

    Full Text Available Understanding the fates of soil hydrological processes and nitrogen (N is essential for optimizing the water and N in a dryland crop system with the goal of obtaining a maximum yield. Few investigations have addressed the dynamics of dryland N and its association with the soil hydrological process in a freeze-thawing agricultural area. With the daily monitoring of soil water content and acquisition rates at 15, 30, 60 and 90 cm depths, the soil hydrological process with the influence of rainfall was identified. The temporal-vertical soil water storage analysis indicated the local albic soil texture provided a stable soil water condition for maize growth with the rainfall as the only water source. Soil storage water averages at 0-20, 20-40 and 40-60 cm were observed to be 490.2, 593.8, and 358 m3 ha-1, respectively, during the growing season. The evapo-transpiration (ET, rainfall, and water loss analysis demonstrated that these factors increased in same temporal pattern and provided necessary water conditions for maize growth in a short period. The dry weight and N concentration of maize organs (root, leaf, stem, tassel, and grain demonstrated the N accumulation increased to a peak in the maturity period and that grain had the most N. The maximum N accumulative rate reached about 500 mg m-2d-1 in leaves and grain. Over the entire growing season, the soil nitrate N decreased by amounts ranging from 48.9 kg N ha-1 to 65.3 kg N ha-1 over the 90 cm profile and the loss of ammonia-N ranged from 9.79 to 12.69 kg N ha-1. With soil water loss and N balance calculation, the N usage efficiency (NUE over the 0-90 cm soil profile was 43%. The soil hydrological process due to special soil texture and the temporal features of rainfall determined the maize growth in the freeze-thawing agricultural area.

  10. Hydrological externalities and livelihoods impacts: Informed communities for better resource management

    Science.gov (United States)

    Reddy, V. Ratna

    2012-01-01

    SummaryHydrological knowledge or information has mostly remained in the domain of scientific community. The communities that interact with the hydrological aspects such as groundwater and surface water on a day to day basis are hardly aware of the information that could critically influence their livelihoods. From the perspective of the communities' information pertaining to groundwater aquifer characters, potential to provide the water resource, surface groundwater interactions in varying geo-hydrological conditions are important. The 'public good' nature of the resources and their linkages with ecological systems gives rise to externalities that could be pervasive. In a number of countries, especially the developing countries, groundwater is the single largest source of drinking as well as irrigation water. In the absence of scientific information with the communities, extraction of groundwater resources for productive purposes has become a risky venture leading to adverse impacts on livelihoods. The externalities associated with over exploitation of groundwater resources and the resulting widespread well failure is identified as one of the main reasons for pushing farmers into debt trap and one of the reasons for farmer suicides in India. The negative externalities are increasingly becoming severe in the context of climate variability. This paper attempts to highlight the importance of hydrological information to the user communities from a socioeconomic perspective using a newly developed framework 'REDUCE' based on theories of effective communication. It shows, based on the evidence, how farming communities are getting affected in the absence of the basic hydrological information across socioeconomic groups. It is argued, using relevant information that the negative externalities could be mitigated to a large extent with proper dissemination of information among the communities and capacitating them to measure and use the information on their own. In order to

  11. Using expert knowledge of the hydrological system to constrain multi-objective calibration of SWAT models

    Science.gov (United States)

    The SWAT model is a helpful tool to predict hydrological processes in a study catchment and their impact on the river discharge at the catchment outlet. For reliable discharge predictions, a precise simulation of hydrological processes is required. Therefore, SWAT has to be calibrated accurately to ...

  12. Hydrological impacts of precipitation extremes in the Huaihe River Basin, China.

    Science.gov (United States)

    Yang, Mangen; Chen, Xing; Cheng, Chad Shouquan

    2016-01-01

    Precipitation extremes play a key role in flooding risks over the Huaihe River Basin, which is important to understand their hydrological impacts. Based on observed daily precipitation and streamflow data from 1958 to 2009, eight precipitation indices and three streamflow indices were calculated for the study of hydrological impacts of precipitation extremes. The results indicate that the wet condition intensified in the summer wet season and the drought condition was getting worse in the autumn dry season in the later years of the past 50 years. The river basin had experienced higher heavy rainfall-related flooding risks in summer and more severe drought in autumn in the later of the period. The extreme precipitation events or consecutive heavy rain day events led to the substantial increases in streamflow extremes, which are the main causes of frequent floods in the Huaihe River Basin. The large inter-annual variation of precipitation anomalies in the upper and central Huaihe River Basin are the major contributor for the regional frequent floods and droughts.

  13. Water management in Angkor: human impacts on hydrology and sediment transportation.

    Science.gov (United States)

    Kummu, Matti

    2009-03-01

    The city of Angkor, capital of the Khmer empire from the 9th to 15th century CE, is well known for its impressive temples, but recent research has uncovered an extensive channel network stretching across over 1000 km2. The channel network with large reservoirs (termed baray) formed the structure of the city and was the basis for its water management. The annual long dry season associated with the monsoon climate has challenged water management for centuries, and the extensive water management system must have played an important role in the mitigation of such marked seasonality. However, by changing the natural water courses with off-take channels the original catchments were also reshaped. Moreover, severe problems of erosion and sedimentation in human built channels evolved and impacted on the whole water management system. This paper describes the present hydrology of the area and discusses the impacts of water management on hydrology during the Angkor era. The paper, moreover, attempts to summarise lessons that could be learnt from Angkorian water management that might apply to present challenges within the field.

  14. A system of automated processing of deep water hydrological information

    Science.gov (United States)

    Romantsov, V. A.; Dyubkin, I. A.; Klyukbin, L. N.

    1974-01-01

    An automated system for primary and scientific analysis of deep water hydrological information is presented. Primary processing of the data in this system is carried out on a drifting station, which also calculates the parameters of vertical stability of the sea layers, as well as their depths and altitudes. Methods of processing the raw data are described.

  15. Hydrologic impacts of climate change on the Nile River basin: Implications of the 2007 IPCC climate scenarios

    NARCIS (Netherlands)

    Beyene, T.; Lettenmaier, D.P.; Kabat, P.

    2010-01-01

    We assess the potential impacts of climate change on the hydrology and water resources of the Nile River basin using a macroscale hydrology model. Model inputs are bias corrected and spatially downscaled 21st Century simulations from 11 General Circulation Models (GCMs) and two global emissions

  16. Quantifying the impact of model inaccuracy in climate change impact assessment studies using an agro-hydrological model

    NARCIS (Netherlands)

    Droogers, P.; Loon, van A.F.; Immerzeel, W.W.

    2008-01-01

    Numerical simulation models are frequently applied to assess the impact of climate change on hydrology and agriculture. A common hypothesis is that unavoidable model errors are reflected in the reference situation as well as in the climate change situation so that by comparing reference to scenario

  17. Hydrological Impacts of Land Use Change and Climate Variability in the Headwater Region of the Heihe River Basin, Northwest China

    Science.gov (United States)

    Zhang, Ling; Nan, Zhuotong; Xu, Yi; Li, Shuo

    2016-01-01

    Land use change and climate variability are two key factors impacting watershed hydrology, which is strongly related to the availability of water resources and the sustainability of local ecosystems. This study assessed separate and combined hydrological impacts of land use change and climate variability in the headwater region of a typical arid inland river basin, known as the Heihe River Basin, northwest China, in the recent past (1995–2014) and near future (2015–2024), by combining two land use models (i.e., Markov chain model and Dyna-CLUE) with a hydrological model (i.e., SWAT). The potential impacts in the near future were explored using projected land use patterns and hypothetical climate scenarios established on the basis of analyzing long-term climatic observations. Land use changes in the recent past are dominated by the expansion of grassland and a decrease in farmland; meanwhile the climate develops with a wetting and warming trend. Land use changes in this period induce slight reductions in surface runoff, groundwater discharge and streamflow whereas climate changes produce pronounced increases in them. The joint hydrological impacts are similar to those solely induced by climate changes. Spatially, both the effects of land use change and climate variability vary with the sub-basin. The influences of land use changes are more identifiable in some sub-basins, compared with the basin-wide impacts. In the near future, climate changes tend to affect the hydrological regimes much more prominently than land use changes, leading to significant increases in all hydrological components. Nevertheless, the role of land use change should not be overlooked, especially if the climate becomes drier in the future, as in this case it may magnify the hydrological responses. PMID:27348224

  18. Hydrological Impacts of Land Use Change and Climate Variability in the Headwater Region of the Heihe River Basin, Northwest China.

    Science.gov (United States)

    Zhang, Ling; Nan, Zhuotong; Xu, Yi; Li, Shuo

    2016-01-01

    Land use change and climate variability are two key factors impacting watershed hydrology, which is strongly related to the availability of water resources and the sustainability of local ecosystems. This study assessed separate and combined hydrological impacts of land use change and climate variability in the headwater region of a typical arid inland river basin, known as the Heihe River Basin, northwest China, in the recent past (1995-2014) and near future (2015-2024), by combining two land use models (i.e., Markov chain model and Dyna-CLUE) with a hydrological model (i.e., SWAT). The potential impacts in the near future were explored using projected land use patterns and hypothetical climate scenarios established on the basis of analyzing long-term climatic observations. Land use changes in the recent past are dominated by the expansion of grassland and a decrease in farmland; meanwhile the climate develops with a wetting and warming trend. Land use changes in this period induce slight reductions in surface runoff, groundwater discharge and streamflow whereas climate changes produce pronounced increases in them. The joint hydrological impacts are similar to those solely induced by climate changes. Spatially, both the effects of land use change and climate variability vary with the sub-basin. The influences of land use changes are more identifiable in some sub-basins, compared with the basin-wide impacts. In the near future, climate changes tend to affect the hydrological regimes much more prominently than land use changes, leading to significant increases in all hydrological components. Nevertheless, the role of land use change should not be overlooked, especially if the climate becomes drier in the future, as in this case it may magnify the hydrological responses.

  19. Global Precipitation Responses to Land Hydrological Processes

    Science.gov (United States)

    Lo, M.; Famiglietti, J. S.

    2012-12-01

    Several studies have established that soil moisture increases after adding a groundwater component in land surface models due to the additional supply of subsurface water. However, impacts of groundwater on the spatial-temporal variability of precipitation have received little attention. Through the coupled groundwater-land-atmosphere model (NCAR Community Atmosphere Model + Community Land Model) simulations, this study explores how groundwater representation in the model alters the precipitation spatiotemporal distributions. Results indicate that the effect of groundwater on the amount of precipitation is not globally homogeneous. Lower tropospheric water vapor increases due to the presence of groundwater in the model. The increased water vapor destabilizes the atmosphere and enhances the vertical upward velocity and precipitation in tropical convective regions. Precipitation, therefore, is inhibited in the descending branch of convection. As a result, an asymmetric dipole is produced over tropical land regions along the equator during the summer. This is analogous to the "rich-get-richer" mechanism proposed by previous studies. Moreover, groundwater also increased short-term (seasonal) and long-term (interannual) memory of precipitation for some regions with suitable groundwater table depth and found to be a function of water table depth. Based on the spatial distributions of the one-month-lag autocorrelation coefficients as well as Hurst coefficients, air-land interaction can occur from short (several months) to long (several years) time scales. This study indicates the importance of land hydrological processes in the climate system and the necessity of including the subsurface processes in the global climate models.

  20. Impact of precipitation spatial resolution on the hydrological response of an integrated distributed water resources model

    DEFF Research Database (Denmark)

    Fu, Suhua; Sonnenborg, Torben; Jensen, Karsten Høgh

    2011-01-01

    Precipitation is a key input variable to hydrological models, and the spatial variability of the input is expected to impact the hydrological response predicted by a distributed model. In this study, the effect of spatial resolution of precipitation on runoff , recharge and groundwater head...... of the total catchment and runoff discharge hydrograph at watershed outlet. On the other hand, groundwater recharge and groundwater head were both aff ected. The impact of the spatial resolution of precipitation input is reduced with increasing catchment size. The effect on stream discharge is relatively low...... was analyzed in the Alergaarde catchment in Denmark. Six different precipitation spatial resolutions were used as inputs to a physically based, distributed hydrological model, the MIKE SHE model. The results showed that the resolution of precipitation input had no apparent effect on annual water balance...

  1. Evaluating the impact of hydrological uncertainty in assessing the impact of climate change on water resources of the Ebro River Basin (Spain)

    Science.gov (United States)

    Zambrano-Bigiarini, Mauricio; Bellin, Alberto; Majone, Bruno; Bovolo, C. Isabella; Blenkinsop, Stephen; Fowler, Hayley J.

    2010-05-01

    Quantification of the impacts of climate change on water resources depends on the emission scenario, climate model, downscaling technique and impact model used to drive the impact study. Uncertainties in projections of climate models and those involved in the quantification of its hydrological response limit the understanding of future impacts and complicate the assessment of mitigation policies. This work analyses the effects of climate change on water resources of the Ebro River Basin (NE Spain), considering the combined effect of uncertainty characterizing both the driving Regional Climate Model (RCM) and hydrological parameterization. In addition, we considered the relative importance of these two contributions. Hydrological simulations in a few test catchments within the basin were performed by using the SWAT model, a widely used hydrological model often applied to large-scale watersheds. After a preliminary sensitivity analysis with Latin Hypercube One-factor-At-a-Time (LH-OAT), the Generalized Likelihood Uncertainty Estimation (GLUE) methodology was used for selecting hydrological parameter sets that best reproduced the observed streamflow during the control period from 1961 to 1991, in terms of percentage of measured data bracketed by the 95% prediction uncertainty (95PPU), and the ratio between the average thickness of the 95PPU band and the standard deviation of the measured data. Following validation, the same parameter sets were used to simulate the effects of climate change on future streamflows. A simple bias-correction methodology was used for downscaling daily time series of precipitation and mean temperature from an ensemble of 6 RCM time-slice experiments. These were obtained from the PRUDENCE project for a control period (1961-1990) and for a future time period (2071-2100) using the medium-high SRES A2 emissions scenario. The bias-corrected future RCM scenarios were then used to drive the hydrological simulations during the future period

  2. Assessing Hydrologic Impacts of Future Land Cover Change Scenarios in the South Platte River Basin (CO, WY, & NE)

    Science.gov (United States)

    Long‐term land‐use and land cover change and their associated impacts pose critical challenges to sustaining vital hydrological ecosystem services for future generations. In this study, a methodology was developed on the San Pedro River Basin to characterize hydrologi...

  3. The impact of changing climate conditions on the hydrological behavior of several Mediterranean sub-catchments in Crete

    Science.gov (United States)

    Eirini Vozinaki, Anthi; Tapoglou, Evdokia; Tsanis, Ioannis

    2017-04-01

    Climate change, although is already happening, consists of a big threat capable of causing lots of inconveniences in future societies and their economies. In this work, the climate change impact on the hydrological behavior of several Mediterranean sub-catchments, in Crete, is presented. The sensitivity of these hydrological systems to several climate change scenarios is also provided. The HBV hydrological model has been used, calibrated and validated for the study sub-catchments against measured weather and streamflow data and inputs. The impact of climate change on several hydro-meteorological parameters (i.e. precipitation, streamflow etc.) and hydrological signatures (i.e. spring flood peak, length and volume, base flow, flow duration curves, seasonality etc.) have been statistically elaborated and analyzed, defining areas of increased probability risk associated additionally to flooding or drought. The potential impacts of climate change on current and future water resources have been quantified by driving HBV model with current and future scenarios, respectively, for specific climate periods. This work aims to present an integrated methodology for the definition of future climate and hydrological risks and the prediction of future water resources behavior. Future water resources management could be rationally effectuated, in Mediterranean sub-catchments prone to drought or flooding, using the proposed methodology. The research reported in this paper was fully supported by the Project "Innovative solutions to climate change adaptation and governance in the water management of the Region of Crete - AQUAMAN" funded within the framework of the EEA Financial Mechanism 2009-2014.

  4. Understanding the Dynamics of Socio-Hydrological Environment: a Conceptual Framework

    Science.gov (United States)

    Woyessa, Y.; Welderufael, W.; Edossa, D.

    2011-12-01

    Human actions affect ecological systems and the services they provide through various activities, such as land use, water use, pollution and climate change. Climate change is perhaps one of the most important sustainable development challenges that threaten to undo many of the development efforts being made to reach the targets set for the Millennium Development Goals. Understanding the change of ecosystems under different scenarios of climate and biophysical conditions could assist in bringing the issue of ecosystem services into decision making process. Similarly, the impacts of land use change on ecosystems and biodiversity have received considerable attention from ecologists and hydrologists alike. Land use change in a catchment can impact on water supply by altering hydrological processes, such as infiltration, groundwater recharge, base flow and direct runoff. In the past a variety of models were used for predicting land-use changes. Recently the focus has shifted away from using mathematically oriented models to agent-based modelling (ABM) approach to simulate land use scenarios. A conceptual framework is being developed which integrates climate change scenarios and the human dimension of land use decision into a hydrological model in order to assess its impacts on the socio-hydrological dynamics of a river basin. The following figures present the framework for the analysis and modelling of the socio-hydrological dynamics. Keywords: climate change, land use, river basin

  5. Evaluation of ecological instream flow using multiple ecological indicators with consideration of hydrological alterations

    Science.gov (United States)

    Zhang, Qiang; Gu, Xihui; Singh, Vijay P.; Chen, Xiaohong

    2015-10-01

    Dam-induced hydrological alterations and related ecological problems have been arousing considerable concern from hydrologists, ecologists, and policy-makers. The East River basin in China is the major provider of water resources for mega-cities within the Pearl River Delta and meets 80% of annual water demand of Hong Kong. In this study, ecodeficit and ecosurplus were analyzed to determine the ecological impact of water impoundments. Also, Do and DHRAM were employed to evaluate the degree of alteration of hydrological regimes, and ERHIs were analyzed to evaluate the influence of hydrological alterations on ecological diversity. Results indicate that: (1) the magnitude and frequency of high flows decrease and those of low flows increase due to the regulation of reservoirs; (2) variations of annual ecosurplus are mainly the result of precipitation changes and the annual ecodeficit is significantly influenced by reservoirs. However, ecodeficit and ecosurplus in other seasons, particularly autumn and winter, are more influenced by reservoir regulation; (3) impacts of reservoirs on hydrological regimes and eco-flow regimes are different from one station to another due to different degrees of influence of reservoirs on hydrological processes at different stations. The longer the distance between a reservoir and a hydrological station is, the weaker the influence the water reservoir has on the hydrological processes; (4) ecodeficit and ecosurplus can be accepted in the evaluation of alterations of hydrological processes at annual and seasonal time scales. Results of Shannon Index indicate decreasing biological diversity after the construction of water reservoirs, implying negative impacts of water reservoirs on biological diversity of a river basin and this should arouse considerable human concerns. This study provides a theoretical background for water resources management with consideration of eco-flow variations due to reservoir regulation in other highly

  6. A Watershed Scale Life Cycle Assessment Framework for Hydrologic Design

    Science.gov (United States)

    Tavakol-Davani, H.; Tavakol-Davani, PhD, H.; Burian, S. J.

    2017-12-01

    Sustainable hydrologic design has received attention from researchers with different backgrounds, including hydrologists and sustainability experts, recently. On one hand, hydrologists have been analyzing ways to achieve hydrologic goals through implementation of recent environmentally-friendly approaches, e.g. Green Infrastructure (GI) - without quantifying the life cycle environmental impacts of the infrastructure through the ISO Life Cycle Assessment (LCA) method. On the other hand, sustainability experts have been applying the LCA to study the life cycle impacts of water infrastructure - without considering the important hydrologic aspects through hydrologic and hydraulic (H&H) analysis. In fact, defining proper system elements for a watershed scale urban water sustainability study requires both H&H and LCA specialties, which reveals the necessity of performing an integrated, interdisciplinary study. Therefore, the present study developed a watershed scale coupled H&H-LCA framework to bring the hydrology and sustainability expertise together to contribute moving the current wage definition of sustainable hydrologic design towards onto a globally standard concept. The proposed framework was employed to study GIs for an urban watershed in Toledo, OH. Lastly, uncertainties associated with the proposed method and parameters were analyzed through a robust Monte Carlo simulation using parallel processing. Results indicated the necessity of both hydrologic and LCA components in the design procedure in order to achieve sustainability.

  7. The Mica Creek Experimental Watershed: An Outdoor Laboratory for the Investigation of Hydrologic Processes in a Continental/Maritime Mountainous Environment

    Science.gov (United States)

    Link, T. E.; Gravelle, J.; Hubbart, J.; Warnsing, A.; Du, E.; Boll, J.; Brooks, E.; Cundy, T.

    2004-12-01

    Experimental catchments have proven to be extremely useful for investigations focused on fundamental hydrologic processes and on the impacts of land cover change on hydrologic regimes and water quality. Recent studies have illustrated how watershed responses to experimental treatments vary greatly between watersheds with differing physical, ecological and hydroclimatic characteristics. Meteorological and hydrological data within catchments are needed to help identify how hydrologic mechanisms may be altered by land cover alterations, and to both constrain and develop spatially-distributed physically based models. Existing instrumentation at the Mica Creek Experimental Watershed (MCEW) in northern Idaho is a fourth-order catchment that is undergoing expansion to produce a comprehensive dataset for model development and testing. The experimental catchments encompass a 28 km2 area spanning elevations from 975 to 1725 m msl. Snow processes dominate the hydrology of the catchment and climate conditions in the winter alternate between cold, dry continental and warm, moist maritime weather systems. Landcover is dominated by 80 year old second growth conifer forests, with partially cut (thinned) and clear-cut sub-catchments. Climate and precipitation data are collected at a SNOTEL site, three primary, and seven supplemental meteorological stations stratified by elevation and canopy cover. Manual snow depth measurements are recorded every 1-2 weeks during snowmelt, stratified by aspect, elevation and canopy cover. An air temperature transect spans three second-order sub-catchments to track air temperature lapse rate dynamics. Precipitation gauge arrays are installed within thinned and closed-canopy stands to track throughfall and interception loss. Nine paired and nested sub-catchments are monitored for flow, temperature, sediment, and nutrients. Hydroclimatic data are augmented by LiDAR and hyperspectral imagery for determination of canopy and topographic structure

  8. Amplification of wildfire area burnt by hydrological drought in the humid tropics

    Science.gov (United States)

    Taufik, Muh; Torfs, Paul J. J. F.; Uijlenhoet, Remko; Jones, Philip D.; Murdiyarso, Daniel; van Lanen, Henny A. J.

    2017-06-01

    Borneo's diverse ecosystems, which are typical humid tropical conditions, are deteriorating rapidly, as the area is experiencing recurrent large-scale wildfires, affecting atmospheric composition and influencing regional climate processes. Studies suggest that climate-driven drought regulates wildfires, but these overlook subsurface processes leading to hydrological drought, an important driver. Here, we show that models which include hydrological processes better predict area burnt than those solely based on climate data. We report that the Borneo landscape has experienced a substantial hydrological drying trend since the early twentieth century, leading to progressive tree mortality, more severe than in other tropical regions. This has caused massive wildfires in lowland Borneo during the past two decades, which we show are clustered in years with large areas of hydrological drought coinciding with strong El Niño events. Statistical modelling evidence shows amplifying wildfires and greater area burnt in response to El Niño/Southern Oscillation (ENSO) strength, when hydrology is considered. These results highlight the importance of considering hydrological drought for wildfire prediction, and we recommend that hydrology should be considered in future studies of the impact of projected ENSO strength, including effects on tropical ecosystems, and biodiversity conservation.

  9. Controls on the Environmental Fate of Compounds Controlled by Coupled Hydrologic and Reactive Processes

    Science.gov (United States)

    Hixson, J.; Ward, A. S.; McConville, M.; Remucal, C.

    2017-12-01

    Current understanding of how compounds interact with hydrologic processes or reactive processes have been well established. However, the environmental fate for compounds that interact with hydrologic AND reactive processes is not well known, yet critical in evaluating environmental risk. Evaluations of risk are often simplified to homogenize processes in space and time and to assess processes independently of one another. However, we know spatial heterogeneity and time-variable reactivities complicate predictions of environmental transport and fate, and is further complicated by the interaction of these processes, limiting our ability to accurately predict risk. Compounds that interact with both systems, such as photolytic compounds, require that both components are fully understood in order to predict transport and fate. Release of photolytic compounds occurs through both unintentional releases and intentional loadings. Evaluating risks associated with unintentional releases and implementing best management practices for intentional releases requires an in-depth understanding of the sensitivity of photolytic compounds to external controls. Lampricides, such as 3-trifluoromethyl-4-nitrophenol (TFM), are broadly applied in the Great Lakes system to control the population of invasive sea lamprey. Over-dosing can yield fish kills and other detrimental impacts. Still, planning accounts for time of passage and dilution, but not the interaction of the physical and chemical systems (i.e., storage in the hyporheic zone and time-variable decay rates). In this study, we model a series of TFM applications to test the efficacy of dosing as a function of system characteristics. Overall, our results demonstrate the complexity associated with photo-sensitive compounds through stream-hyporheic systems, and highlight the need to better understand how physical and chemical systems interact to control transport and fate in the environment.

  10. A hydrologic drying bias in water-resource impact analyses of anthropogenic climate change

    Science.gov (United States)

    Milly, Paul; Dunne, Krista A.

    2017-01-01

    For water-resource planning, sensitivity of freshwater availability to anthropogenic climate change (ACC) often is analyzed with “offline” hydrologic models that use precipitation and potential evapotranspiration (Ep) as inputs. Because Ep is not a climate-model output, an intermediary model of Ep must be introduced to connect the climate model to the hydrologic model. Several Ep methods are used. The suitability of each can be assessed by noting a credible Ep method for offline analyses should be able to reproduce climate models’ ACC-driven changes in actual evapotranspiration in regions and seasons of negligible water stress (Ew). We quantified this ability for seven commonly used Ep methods and for a simple proportionality with available energy (“energy-only” method). With the exception of the energy-only method, all methods tend to overestimate substantially the increase in Ep associated with ACC. In an offline hydrologic model, the Ep-change biases produce excessive increases in actual evapotranspiration (E), whether the system experiences water stress or not, and thence strong negative biases in runoff change, as compared to hydrologic fluxes in the driving climate models. The runoff biases are comparable in magnitude to the ACC-induced runoff changes themselves. These results suggest future hydrologic drying (wetting) trends likely are being systematically and substantially overestimated (underestimated) in many water-resource impact analyses.

  11. Hydrological Response and Complex Impact Pathways of the 2015/2016 El Niño in Eastern and Southern Africa

    Science.gov (United States)

    Siderius, C.; Gannon, K. E.; Ndiyoi, M.; Opere, A.; Batisani, N.; Olago, D.; Pardoe, J.; Conway, D.

    2018-01-01

    The 2015/2016 El Niño has been classified as one of the three most severe on record. El Niño teleconnections are commonly associated with droughts in southern Africa and high precipitation in eastern Africa. Despite their relatively frequent occurrence, evidence for their hydrological effects and impacts beyond agriculture is limited. We examine the hydrological response and impact pathways of the 2015/2016 El Niño in eastern and southern Africa, focusing on Botswana, Kenya, and Zambia. We use in situ and remotely sensed time series of precipitation, river flow, and lake levels complemented by qualitative insights from interviews with key organizations in each country about awareness, impacts, and responses. Our results show that drought conditions prevailed in large parts of southern Africa, reducing runoff and contributing to unusually low lake levels in Botswana and Zambia. Key informants characterized this El Niño through record high temperatures and water supply disruption in Botswana and through hydroelectric load shedding in Zambia. Warnings of flood risk in Kenya were pronounced, but the El Niño teleconnection did not materialize as expected in 2015/2016. Extreme precipitation was limited and caused localized impacts. The hydrological impacts in southern Africa were severe and complex, strongly exacerbated by dry antecedent conditions, recent changes in exposure and sensitivity and management decisions. Improved understanding of hydrological responses and the complexity of differing impact pathways can support design of more adaptive, region-specific management strategies.

  12. Hydrological drought across the world: impact of climate and physical catchment structure

    Directory of Open Access Journals (Sweden)

    H. A. J. Van Lanen

    2013-05-01

    Full Text Available Large-scale hydrological drought studies have demonstrated spatial and temporal patterns in observed trends, and considerable difference exists among global hydrological models in their ability to reproduce these patterns. In this study a controlled modeling experiment has been set up to systematically explore the role of climate and physical catchment structure (soils and groundwater systems to better understand underlying drought-generating mechanisms. Daily climate data (1958–2001 of 1495 grid cells across the world were selected that represent Köppen–Geiger major climate types. These data were fed into a conceptual hydrological model. Nine realizations of physical catchment structure were defined for each grid cell, i.e., three soils with different soil moisture supply capacity and three groundwater systems (quickly, intermediately and slowly responding. Hydrological drought characteristics (number, duration and standardized deficit volume were identified from time series of daily discharge. Summary statistics showed that the equatorial and temperate climate types (A- and C-climates had about twice as many drought events as the arid and polar types (B- and E-climates, and the durations of more extreme droughts were about half the length. Selected soils under permanent grassland were found to have a minor effect on hydrological drought characteristics, whereas groundwater systems had major impact. Groundwater systems strongly controlled the hydrological drought characteristics of all climate types, but particularly those of the wetter A-, C- and D-climates because of higher recharge. The median number of droughts for quickly responding groundwater systems was about three times higher than for slowly responding systems. Groundwater systems substantially affected the duration, particularly of the more extreme drought events. Bivariate probability distributions of drought duration and standardized deficit for combinations of K

  13. Assessing hydrologic impacts of future Land Change scenarios in the San Pedro River (U.S./Mexico)

    Science.gov (United States)

    Kepner, W. G.; Burns, S.; Sidman, G.; Levick, L.; Goodrich, D. C.; Guertin, P.; Yee, W.; Scianni, M.

    2012-12-01

    An approach was developed to characterize the hydrologic impacts of urban expansion through time for the San Pedro River, a watershed of immense international importance that straddles the U.S./Mexico border. Future urban growth is a key driving force altering local and regional hydrology and is represented by decadal changes in housing density maps from 2010 to 2100 derived from the Integrated Climate and Land-Use Scenarios (ICLUS) database. ICLUS developed future housing density maps by adapting the Intergovernmental Panel on Climate Change (IPCC) Special Report on Emissions Scenarios (SRES) social, economic, and demographic storylines to the conterminous United States. To characterize the hydrologic impacts of future growth, the housing density maps were reclassified to National Land Cover Database 2006 land cover classes and used to parameterize the Soil and Water Assessment Tool (SWAT) using the Automated Geospatial Watershed Assessment (AGWA) tool. The presentation will report 1) the methodology for adapting the ICLUS data for use in AGWA as an approach to evaluate basin-wide impacts of development on water-quantity and -quality, 2) initial results of the application of the methodology, and 3) discuss implications of the analysis.

  14. Estimating uncertainty and its temporal variation related to global climate models in quantifying climate change impacts on hydrology

    Science.gov (United States)

    Shen, Mingxi; Chen, Jie; Zhuan, Meijia; Chen, Hua; Xu, Chong-Yu; Xiong, Lihua

    2018-01-01

    Uncertainty estimation of climate change impacts on hydrology has received much attention in the research community. The choice of a global climate model (GCM) is usually considered as the largest contributor to the uncertainty of climate change impacts. The temporal variation of GCM uncertainty needs to be investigated for making long-term decisions to deal with climate change. Accordingly, this study investigated the temporal variation (mainly long-term) of uncertainty related to the choice of a GCM in predicting climate change impacts on hydrology by using multi-GCMs over multiple continuous future periods. Specifically, twenty CMIP5 GCMs under RCP4.5 and RCP8.5 emission scenarios were adapted to adequately represent this uncertainty envelope, fifty-one 30-year future periods moving from 2021 to 2100 with 1-year interval were produced to express the temporal variation. Future climatic and hydrological regimes over all future periods were compared to those in the reference period (1971-2000) using a set of metrics, including mean and extremes. The periodicity of climatic and hydrological changes and their uncertainty were analyzed using wavelet analysis, while the trend was analyzed using Mann-Kendall trend test and regression analysis. The results showed that both future climate change (precipitation and temperature) and hydrological response predicted by the twenty GCMs were highly uncertain, and the uncertainty increased significantly over time. For example, the change of mean annual precipitation increased from 1.4% in 2021-2050 to 6.5% in 2071-2100 for RCP4.5 in terms of the median value of multi-models, but the projected uncertainty reached 21.7% in 2021-2050 and 25.1% in 2071-2100 for RCP4.5. The uncertainty under a high emission scenario (RCP8.5) was much larger than that under a relatively low emission scenario (RCP4.5). Almost all climatic and hydrological regimes and their uncertainty did not show significant periodicity at the P = .05 significance

  15. Transfer Relations Between Landscape Functions - The Hydrological Point of View

    Science.gov (United States)

    Fohrer, N.; Lenhart, T.; Eckhardt, K.; Frede, H.-G.

    EC market policies and regional subsidy programs have an enormous impact on local land use. This has far reaching consequences on various landscape functions. In the joint research project SFB299 at the Giessen University the effect of land use options on economic, ecological and hydrological landscape functions are under investigation. The continuous time step model SWAT-G (Eckhardt et al., 2000; Arnold et al., 1998) is employed to characterize the influence of land use patterns on hydrological processes. The model was calibrated and validated employing a split sample approach. For two mesoscale watersheds (Aar, 60 km2; Dietzhölze, 81 km2) located in the Lahn-Dill- Bergland, Germany, different land use scenarios were analyzed with regard to their hydrological impact. Additionally the effect of land use change was analyzed with an ecological and an agro-economic model. The impact of the stepwise changing land use was expressed as trade off relations between different landscape functions.

  16. Impact of climate change and climate anomalies on hydrologic and biogeochemical processes in an agricultural catchment of the Chesapeake Bay watershed, USA.

    Science.gov (United States)

    Wagena, Moges B; Collick, Amy S; Ross, Andrew C; Najjar, Raymond G; Rau, Benjamin; Sommerlot, Andrew R; Fuka, Daniel R; Kleinman, Peter J A; Easton, Zachary M

    2018-05-16

    Nutrient export from agricultural landscapes is a water quality concern and the cause of mitigation activities worldwide. Climate change impacts hydrology and nutrient cycling by changing soil moisture, stoichiometric nutrient ratios, and soil temperature, potentially complicating mitigation measures. This research quantifies the impact of climate change and climate anomalies on hydrology, nutrient cycling, and greenhouse gas emissions in an agricultural catchment of the Chesapeake Bay watershed. We force a calibrated model with seven downscaled and bias-corrected regional climate models and derived climate anomalies to assess their impact on hydrology and the export of nitrate (NO 3 -), phosphorus (P), and sediment, and emissions of nitrous oxide (N 2 O) and di-nitrogen (N 2 ). Model-average (±standard deviation) results indicate that climate change, through an increase in precipitation and temperature, will result in substantial increases in winter/spring flow (10.6 ± 12.3%), NO 3 - (17.3 ± 6.4%), dissolved P (32.3 ± 18.4%), total P (24.8 ± 16.9%), and sediment (25.2 ± 16.6%) export, and a slight increases in N 2 O (0.3 ± 4.8%) and N 2 (0.2 ± 11.8%) emissions. Conversely, decreases in summer flow (-29.1 ± 24.6%) and the export of dissolved P (-15.5 ± 26.4%), total P (-16.3 ± 20.7%), sediment (-20.7 ± 18.3%), and NO 3 - (-29.1 ± 27.8%) are driven by greater evapotranspiration from increasing summer temperatures. Decreases in N 2 O (-26.9 ± 15.7%) and N 2 (-36.6 ± 22.9%) are predicted in the summer and driven by drier soils. While the changes in flow are related directly to changes in precipitation and temperature, the changes in nutrient and sediment export are, to some extent, driven by changes in agricultural management that climate change induces, such as earlier spring tillage and altered nutrient application timing and by alterations to nutrient cycling in the soil. Copyright © 2018

  17. Simulation of future land use change and climate change impacts on hydrological processes in a tropical catchment

    Science.gov (United States)

    Marhaento, H.; Booij, M. J.; Hoekstra, A. Y.

    2017-12-01

    Future hydrological processes in the Samin catchment (278 km2) in Java, Indonesia have been simulated using the Soil and Water Assessment Tool (SWAT) model using inputs from predicted land use distributions in the period 2030 - 2050, bias corrected Regional Climate Model (RCM) output and output of six Global Climate Models (GCMs) to include climate model uncertainty. Two land use change scenarios namely a business-as-usual (BAU) scenario, where no measures are taken to control land use change, and a controlled (CON) scenario, where the future land use follows the land use planning, were used in the simulations together with two climate change scenarios namely Representative Concentration Pathway (RCP) 4.5 and 8.5. It was predicted that in 2050 settlement and agriculture area of the study catchment will increase by 33.9% and 3.5%, respectively under the BAU scenario, whereas agriculture area and evergreen forest will increase by 15.2% and 10.2%, respectively under the CON scenario. In comparison to the baseline conditions (1983 - 2005), the predicted mean annual maximum and minimum temperature in 2030 - 2050 will increase by an average of +10C, while changes in the mean annual rainfall range from -20% to +19% under RCP 4.5 and from -25% to +15% under RCP 8.5. The results show that land use change and climate change individually will cause changes in the water balance components, but that more pronounced changes are expected if the drivers are combined, in particular for changes in annual stream flow and surface runoff. It was observed that combination of the RCP 4.5 climate scenario and BAU land use scenario resulted in an increase of the mean annual stream flow from -7% to +64% and surface runoff from +21% to +102%, which is 40% and 60% more than when land use change is acting alone. Furthermore, under the CON scenario the annual stream flow and surface runoff could be potentially reduced by up to 10% and 30%, respectively indicating the effectiveness of applied

  18. RWater - A Novel Cyber-enabled Data-driven Educational Tool for Interpreting and Modeling Hydrologic Processes

    Science.gov (United States)

    Rajib, M. A.; Merwade, V.; Zhao, L.; Song, C.

    2014-12-01

    Explaining the complex cause-and-effect relationships in hydrologic cycle can often be challenging in a classroom with the use of traditional teaching approaches. With the availability of observed rainfall, streamflow and other hydrology data on the internet, it is possible to provide the necessary tools to students to explore these relationships and enhance their learning experience. From this perspective, a new online educational tool, called RWater, is developed using Purdue University's HUBzero technology. RWater's unique features include: (i) its accessibility including the R software from any java supported web browser; (ii) no installation of any software on user's computer; (iii) all the work and resulting data are stored in user's working directory on RWater server; and (iv) no prior programming experience with R software is necessary. In its current version, RWater can dynamically extract streamflow data from any USGS gaging station without any need for post-processing for use in the educational modules. By following data-driven modules, students can write small scripts in R and thereby create visualizations to identify the effect of rainfall distribution and watershed characteristics on runoff generation, investigate the impacts of landuse and climate change on streamflow, and explore the changes in extreme hydrologic events in actual locations. Each module contains relevant definitions, instructions on data extraction and coding, as well as conceptual questions based on the possible analyses which the students would perform. In order to assess its suitability in classroom implementation, and to evaluate users' perception over its utility, the current version of RWater has been tested with three different groups: (i) high school students, (ii) middle and high school teachers; and (iii) upper undergraduate/graduate students. The survey results from these trials suggest that the RWater has potential to improve students' understanding on various

  19. High resolution weather data for urban hydrological modelling and impact assessment, ICT requirements and future challenges

    Science.gov (United States)

    ten Veldhuis, Marie-claire; van Riemsdijk, Birna

    2013-04-01

    Hydrological analysis of urban catchments requires high resolution rainfall and catchment information because of the small size of these catchments, high spatial variability of the urban fabric, fast runoff processes and related short response times. Rainfall information available from traditional radar and rain gauge networks does no not meet the relevant scales of urban hydrology. A new type of weather radars, based on X-band frequency and equipped with Doppler and dual polarimetry capabilities, promises to provide more accurate rainfall estimates at the spatial and temporal scales that are required for urban hydrological analysis. Recently, the RAINGAIN project was started to analyse the applicability of this new type of radars in the context of urban hydrological modelling. In this project, meteorologists and hydrologists work closely together in several stages of urban hydrological analysis: from the acquisition procedure of novel and high-end radar products to data acquisition and processing, rainfall data retrieval, hydrological event analysis and forecasting. The project comprises of four pilot locations with various characteristics of weather radar equipment, ground stations, urban hydrological systems, modelling approaches and requirements. Access to data processing and modelling software is handled in different ways in the pilots, depending on ownership and user context. Sharing of data and software among pilots and with the outside world is an ongoing topic of discussion. The availability of high resolution weather data augments requirements with respect to the resolution of hydrological models and input data. This has led to the development of fully distributed hydrological models, the implementation of which remains limited by the unavailability of hydrological input data. On the other hand, if models are to be used in flood forecasting, hydrological models need to be computationally efficient to enable fast responses to extreme event conditions. This

  20. Impact of Uncertainty Characterization of Satellite Rainfall Inputs and Model Parameters on Hydrological Data Assimilation with the Ensemble Kalman Filter for Flood Prediction

    Science.gov (United States)

    Vergara, H. J.; Kirstetter, P.; Hong, Y.; Gourley, J. J.; Wang, X.

    2013-12-01

    the sensitivities of the EnKF is revealed examining the impact of uncertainty representation on the assimilation process and subsequent forecasts. The methodology is tested on the hydrologic modeling of a basin subject to recurrent flooding events triggered by landfalling tropical systems. An ensemble framework for flood forecasting is employed to simulate the hydrologic processes using different levels of model structural complexity. Tropical Rainfall Measuring Mission (TRMM)-based QPE are used to force the hydrologic modeling system. A radar-based QPE product is utilized as a reference to estimate errors in satellite rainfall estimates and to characterize the uncertainty in model inputs. This set-up contributes to the development of methodologies to understand and characterize the error in satellite rainfall in a hydrologic modeling framework. Consequently, the results from this study will provide guidance for the integration of other remote-sensing observations through data assimilation for a more complete picture of the hydrometeorological phenomena of interest.

  1. Yellowstone as an Analog for Thermal-Hydrological-Chemical Processes at Yucca Mountain

    International Nuclear Information System (INIS)

    Dobson, P. F.; Kneafsey, T. J.; Simmons, A.; Hulen, J.

    2001-01-01

    Enhanced water-rock interaction resulting from the emplacement of heat-generating nuclear waste in the potential geologic repository at Yucca Mountain, Nevada, may result in changes to fluid flow (resulting from mineral dissolution and precipitation in condensation and boiling zones, respectively). Studies of water-rock interaction in active and fossil geothermal systems (natural analogs) provide evidence for changes in permeability and porosity resulting from thermal-hydrological-chemical (THC) processes. The objective of this research is to document the effects of coupled THC processes at Yellowstone and then examine how differences in scale could influence the impact that these processes may have on the Yucca Mountain system. Subsurface samples from Yellowstone National Park, one of the largest active geothermal systems in the world, contain some the best examples of hydrothermal self-sealing found in geothermal systems. We selected core samples from two USGS research drill holes from the transition zone between conductive and convective portions of the geothermal system (where sealing was reported to occur). We analyzed the core, measuring the permeability, porosity, and grain density of selected samples to evaluate how lithology, texture, and degree of hydrothermal alteration influence matrix and fracture permeability

  2. Tsuga canadensis (L.) Carr, mortality will impact hydrologic processes in southern Appalachian forest ecosystems

    Science.gov (United States)

    Chelcy R. Ford; James M. Vose

    2007-01-01

    Eastern hemlock (Tsuga canadensis (L.) Carr.) is one of the principal riparian and cove canopy species in the southern Appalachian Mountains. Throughout its range, eastern hemlock is facing potential widespread mortality from the hemlock woolly adelgid (HWA). If HWA-induced eastern hemlock mortality alters hydrologic function, land managers...

  3. Landfilling: Hydrology

    DEFF Research Database (Denmark)

    Kjeldsen, Peter; Beaven, R.

    2011-01-01

    Landfill hydrology deals with the presence and movement of water through a landfill. The main objective in landfill hydrology is usually to predict leachate generation, but the presence and movement of water in a landfill also affect the degradation of the waste, the leaching of pollutants...... and the geotechnical stability of the fill. Understanding landfill hydrology is thus important for many aspects of landfill, in particular siting, design and operation. The objective of this chapter is to give a basic understanding of the hydrology of landfills, and to present ways to estimate leachate quantities...... under specific circumstances. Initially a general water balance equation is defined for a typical landfill, and the different parts of the water balance are discussed. A separate section discusses water flow and the hydrogeology of landfilled wastes and considers the impact of water short...

  4. Tamarix, hydrology and fluvial geomorphology: Chapter 7

    Science.gov (United States)

    Auerbach, Daniel A.; Merritt, David M.; Shafroth, Patrick B.; Sher, Anna A; Quigley, Martin F.

    2013-01-01

    This chapter explores the impact of hydrology and fluvial geomorphology on the distribution and abundance of Tamarix as well as the reciprocal effects of Tamarix on hydrologic and geomorphic conditions. It examines whether flow-regime alteration favors Tamarix establishment over native species, and how Tamarix stands modify processes involved in the narrowing of river channels and the formation of floodplains. It begins with an overview of the basic geomorphic and hydrologic character of rivers in the western United States before analyzing how this setting has contributed to the regional success of Tamarix. It then considers the influence of Tamarix on the hydrogeomorphic form and function of rivers and concludes by discussing how a changing climate, vegetation management, and continued water-resource development affect the future role of Tamarix in these ecosystems.

  5. Rainfall Simulator Experiments to Investigate Macropore Impacts on Hillslope Hydrological Response

    NARCIS (Netherlands)

    Smit, Y.; Teuling, Adriaan J.; van der Ploeg, Martine J.

    2016-01-01

    Understanding hillslope runoff response to intense rainfall is an important topic in hydrology, and is key to correct prediction of extreme stream flow, erosion and landslides. Although it is known that preferential flow processes activated by macropores are an important phenomena in understanding

  6. [Gene method for inconsistent hydrological frequency calculation. 2: Diagnosis system of hydrological genes and method of hydrological moment genes with inconsistent characters].

    Science.gov (United States)

    Xie, Ping; Zhao, Jiang Yan; Wu, Zi Yi; Sang, Yan Fang; Chen, Jie; Li, Bin Bin; Gu, Hai Ting

    2018-04-01

    The analysis of inconsistent hydrological series is one of the major problems that should be solved for engineering hydrological calculation in changing environment. In this study, the diffe-rences of non-consistency and non-stationarity were analyzed from the perspective of composition of hydrological series. The inconsistent hydrological phenomena were generalized into hydrological processes with inheritance, variability and evolution characteristics or regulations. Furthermore, the hydrological genes were identified following the theory of biological genes, while their inheritance bases and variability bases were determined based on composition of hydrological series under diffe-rent time scales. To identify and test the components of hydrological genes, we constructed a diagnosis system of hydrological genes. With the P-3 distribution as an example, we described the process of construction and expression of the moment genes to illustrate the inheritance, variability and evolution principles of hydrological genes. With the annual minimum 1-month runoff series of Yunjinghong station in Lancangjiang River basin as an example, we verified the feasibility and practicability of hydrological gene theory for the calculation of inconsistent hydrological frequency. The results showed that the method could be used to reveal the evolution of inconsistent hydrological series. Therefore, it provided a new research pathway for engineering hydrological calculation in changing environment and an essential reference for the assessment of water security.

  7. Long-term monitoring of UK river basins: the disconnections between the timescales of hydrological processes and watershed management planning

    Science.gov (United States)

    Howden, N. J. K.; Burt, T.; Worrall, F.

    2016-12-01

    The UK has a wealth of hydrological monitoring data that has both good coverage in space since the early 1970s, and also a few locations where records have been kept continuously for almost 150 years. Such datasets offer unique opportunities for the hydrologist to consider how the concepts of stationarity, change, and definitions of "baseline" resources should be used to shape how we build models of these systems, and how we devise appropriate and sustainable watershed management strategies. In this paper we consider some of the UK's longest hydrological and biogeochemical records, to explore how long records can be used to shape such understanding and, in some cases, how they can be used to identify new modes of behaviour that need to be incorporated into management planning, from the scale of individual watersheds right up to the national scale. We also consider how key timescales of hydrological responses that are evident within the data may pose major problems for watershed management unless appropriate attention is paid to the potential impacts of processes that work over decadal timescales - much longer than sub-decadal water industry investment cycles or short-term projects for watershed management planning. We use our long-term records to show how key processes can be identified, and to illustrate how careful interpretation of shorter term records will improve decision-making for water resource management.

  8. Impacts of microtopographic snow redistribution and lateral subsurface processes on hydrologic and thermal states in an Arctic polygonal ground ecosystem: a case study using ELM-3D v1.0

    Directory of Open Access Journals (Sweden)

    G. Bisht

    2018-01-01

    Full Text Available Microtopographic features, such as polygonal ground, are characteristic sources of landscape heterogeneity in the Alaskan Arctic coastal plain. Here, we analyze the effects of snow redistribution (SR and lateral subsurface processes on hydrologic and thermal states at a polygonal tundra site near Barrow, Alaska. We extended the land model integrated in the E3SM to redistribute incoming snow by accounting for microtopography and incorporated subsurface lateral transport of water and energy (ELM-3D v1.0. Multiple 10-year-long simulations were performed for a transect across a polygonal tundra landscape at the Barrow Environmental Observatory in Alaska to isolate the impact of SR and subsurface process representation. When SR was included, model predictions better agreed (higher R2, lower bias and RMSE with observed differences in snow depth between polygonal rims and centers. The model was also able to accurately reproduce observed soil temperature vertical profiles in the polygon rims and centers (overall bias, RMSE, and R2 of 0.59 °C, 1.82 °C, and 0.99, respectively. The spatial heterogeneity of snow depth during the winter due to SR generated surface soil temperature heterogeneity that propagated in depth and time and led to ∼ 10 cm shallower and  ∼ 5 cm deeper maximum annual thaw depths under the polygon rims and centers, respectively. Additionally, SR led to spatial heterogeneity in surface energy fluxes and soil moisture during the summer. Excluding lateral subsurface hydrologic and thermal processes led to small effects on mean states but an overestimation of spatial variability in soil moisture and soil temperature as subsurface liquid pressure and thermal gradients were artificially prevented from spatially dissipating over time. The effect of lateral subsurface processes on maximum thaw depths was modest, with mean absolute differences of ∼ 3 cm. Our integration of three-dimensional subsurface hydrologic and

  9. Impact of mesh tracks and low-ground-pressure vehicle use on blanket peat hydrology

    Science.gov (United States)

    McKendrick-Smith, Kathryn; Holden, Joseph; Parry, Lauren

    2016-04-01

    Peatlands are subject to multiple uses including drainage, farming and recreation. Low-ground-pressure vehicle access is desirable by land owners and tracks facilitate access. However, there is concern that such activity may impact peat hydrology and so granting permission for track installation has been problematic, particularly without evidence for decision-making. We present the first comprehensive study of mesh track and low-ground-pressure vehicle impacts on peatland hydrology. In the sub-arctic oceanic climate of the Moor House World Biosphere Reserve in the North Pennines, UK, a 1.5 km long experimental track was installed to investigate hydrological impacts. Surface vegetation was cut and the plastic mesh track pinned into the peat surface. The experimental track was split into 7 treatments, designed to reflect typical track usage (0 - 5 vehicle passes per week) and varying vehicle weight. The greatest hydrological impacts were expected for sections of track subject to more frequent vehicle use and in close proximity to the track. In total 554 dipwells (including 15 automated recording at 15-min intervals) were monitored for water-table depth, positioned to capture potential spatial variability in response. Before track installation, samples for vertical and lateral hydraulic conductivity (Ks) analysis (using the modified cube method) were taken at 0-10 cm depth from a frequently driven treatment (n = 15), an infrequently driven treatment (0.5 passes per week) (n = 15) and a control site with no track/driving (n = 15). The test was repeated after 16 months of track use. We present a spatially and temporally rich water-table dataset from the study site showing how the impacts of the track on water table are spatially highly variable. Water-table depths across the site were shallow, typically within the upper 10 cm of the peat profile for > 75% of the time. We show that mesh track and low-ground-pressure vehicle impacts on water-table depth were small except

  10. Analysis of spatio-temporal land cover changes for hydrological impact assessment within the Nyando River Basin of Kenya.

    Science.gov (United States)

    Olang, Luke Omondi; Kundu, Peter; Bauer, Thomas; Fürst, Josef

    2011-08-01

    The spatio-temporal changes in the land cover states of the Nyando Basin were investigated for auxiliary hydrological impact assessment. The predominant land cover types whose conversions could influence the hydrological response of the region were selected. Six Landsat images for 1973, 1986, and 2000 were processed to discern the changes based on a methodology that employs a hybrid of supervised and unsupervised classification schemes. The accuracy of the classifications were assessed using reference datasets processed in a GIS with the help of ground-based information obtained through participatory mapping techniques. To assess the possible hydrological effect of the detected changes during storm events, a physically based lumped approach for infiltration loss estimation was employed within five selected sub-basins. The results obtained indicated that forests in the basin declined by 20% while agricultural fields expanded by 16% during the entire period of study. Apparent from the land cover conversion matrices was that the majority of the forest decline was a consequence of agricultural expansion. The model results revealed decreased infiltration amounts by between 6% and 15%. The headwater regions with the vast deforestation were noted to be more vulnerable to the land cover change effects. Despite the haphazard land use patterns and uncertainties related to poor data quality for environmental monitoring and assessment, the study exposed the vast degradation and hence the need for sustainable land use planning for enhanced catchment management purposes.

  11. Wetland Hydrology

    Science.gov (United States)

    This chapter discusses the state of the science in wetland hydrology by touching upon the major hydraulic and hydrologic processes in these complex ecosystems, their measurement/estimation techniques, and modeling methods. It starts with the definition of wetlands, their benefit...

  12. Thresholds in Xeric Hydrology and Biogeochemistry

    Science.gov (United States)

    Meixner, T.; Brooks, P. D.; Simpson, S. C.; Soto, C. D.; Yuan, F.; Turner, D.; Richter, H.

    2011-12-01

    Due to water limitation, thresholds in hydrologic and biogeochemical processes are common in arid and semi-arid systems. Some of these thresholds such as those focused on rainfall runoff relationships have been well studied. However to gain a full picture of the role that thresholds play in driving the hydrology and biogeochemistry of xeric systems a full view of the entire array of processes at work is needed. Here a walk through the landscape of xeric systems will be conducted illustrating the powerful role of hydrologic thresholds on xeric system biogeochemistry. To understand xeric hydro-biogeochemistry two key ideas need to be focused on. First, it is important to start from a framework of reaction and transport. Second an understanding of the temporal and spatial components of thresholds that have a large impact on hydrologic and biogeochemical fluxes needs to be offered. In the uplands themselves episodic rewetting and drying of soils permits accelerated biogeochemical processing but also more gradual drainage of water through the subsurface than expected in simple conceptions of biogeochemical processes. Hydrologic thresholds (water content above hygroscopic) results in a stop start nutrient spiral of material across the landscape since runoff connecting uplands to xeric perennial riparian is episodic and often only transports materials a short distance (100's of m). This episodic movement results in important and counter-intuitive nutrient inputs to riparian zones but also significant processing and uptake of nutrients. The floods that transport these biogeochemicals also result in significant input to riparian groundwater and may be key to sustaining these critical ecosystems. Importantly the flood driven recharge process itself is a threshold process dependent on flood characteristics (floods greater than 100 cubic meters per second) and antecedent conditions (losing to near neutral gradients). Floods also appear to influence where arid and semi

  13. Time series analysis of the long-term hydrologic impacts of afforestation in the Águeda watershed of north-central Portugal

    Science.gov (United States)

    Hawtree, D.; Nunes, J. P.; Keizer, J. J.; Jacinto, R.; Santos, J.; Rial-Rivas, M. E.; Boulet, A.-K.; Tavares-Wahren, F.; Feger, K.-H.

    2015-07-01

    The north-central region of Portugal has undergone significant land cover change since the early 1900s, with large-scale replacement of natural vegetation types with plantation forests. This transition consisted of an initial conversion primarily to Pinus pinaster, followed by a secondary transition to Eucalyptus globulus. This land cover change is likely to have altered the hydrologic functioning of this region; however, these potential impacts are not fully understood. To contribute to a better understanding of the potential hydrologic impacts of this land cover change, this study examines the temporal trends in 75 years of data from the Águeda watershed (part of the Vouga Basin) over the period of 1936-2010. A number of hydrometeorological variables were analyzed using a combined Thiel-Sen/Mann-Kendall trend-testing approach, to assess the magnitude and significance of patterns in the observed data. These trend tests indicated that there have been no significant reductions in streamflow over either the entire test period, or during sub-record periods, despite the large-scale afforestation which has occurred. This lack of change in streamflow is attributed to the specific characteristics of the watershed and land cover change. By contrast, a number of significant trends were found for baseflow index, with positive trends in the early data record (primarily during Pinus pinaster afforestation), followed by negative trends later in the data record (primarily during Eucalyptus globulus afforestation). These trends are attributed to land use and vegetation impacts on streamflow generating processes, both due to species differences and to alterations in soil properties (i.e., infiltration capacity, soil water repellency). These results highlight the importance of considering both vegetation types/dynamics and watershed characteristic when assessing hydrologic impacts, in particular with respect to soil properties.

  14. Northern hydrology and water resources in a changing environment

    International Nuclear Information System (INIS)

    Kane, D.L.

    1993-01-01

    The role that climatic change may play in altering various components of the hydrologic cycle in Arctic regions is discussed. The hydrologic setting of these regions is first described, noting the importance of subsurface freezing and thawing on hydrologic pathways and the lack of incorporation of soil freezing and thawing into climate models. Major processes of interest in the relation between climate change and hydrology are the timing and magnitude of fluxes entering and leaving a basin: precipitation, evaporation and transpiration, and runoff. The active layer of the soil could be drastically increased by only a few degrees of surface warming. The natural hydrologic cycle has considerable yearly variation, tending to mask any hydrologic changes caused by climatic change. There are too many unknowns at present for an adequate prediction of the impact of climate change on the hydrologic cycle. The biggest uncertainty is how the timing and quantity of precipitation is going to change. This quantity could be altered by any major changes in vegetation, which would be closely related to the amount of warming. In hydrologic scenarios where air temperature rises 4 degree C over 50 y, under stable, high, and low precipitation conditions, there are no significant changes in hydrologic response. 24 refs., 6 figs

  15. Hydrology

    Science.gov (United States)

    Brutsaert, Wilfried

    2005-08-01

    Water in its different forms has always been a source of wonder, curiosity and practical concern for humans everywhere. Hydrology - An Introduction presents a coherent introduction to the fundamental principles of hydrology, based on the course that Wilfried Brutsaert has taught at Cornell University for the last thirty years. Hydrologic phenomena are dealt with at spatial and temporal scales at which they occur in nature. The physics and mathematics necessary to describe these phenomena are introduced and developed, and readers will require a working knowledge of calculus and basic fluid mechanics. The book will be invaluable as a textbook for entry-level courses in hydrology directed at advanced seniors and graduate students in physical science and engineering. In addition, the book will be more broadly of interest to professional scientists and engineers in hydrology, environmental science, meteorology, agronomy, geology, climatology, oceanology, glaciology and other earth sciences. Emphasis on fundamentals Clarification of the underlying physical processes Applications of fluid mechanics in the natural environment

  16. Rainfall Simulator Experiments to Investigate Macropore Impacts on Hillslope Hydrological Response

    Directory of Open Access Journals (Sweden)

    Yvonne Smit

    2016-11-01

    Full Text Available Understanding hillslope runoff response to intense rainfall is an important topic in hydrology, and is key to correct prediction of extreme stream flow, erosion and landslides. Although it is known that preferential flow processes activated by macropores are an important phenomena in understanding runoff processes inside a hillslope, hydrological models have generally not embraced the concept of an extra parameter that represents ‘macropores’ because of the complexity of the phenomenon. Therefore, it is relevant to investigate the influence of macropores on runoff processes in an experimental small artificial hillslope. Here, we report on a controlled experiment where we could isolate the influence of macropores without the need for assumptions regarding their characteristics. Two identical hillslopes were designed, of which one was filled with artificial macropores. Twelve artificial rainfall events were applied to the two hillslopes and results of drainage and soil moisture were investigated. After the experiments, it could be concluded that the influence of macropores on runoff processes was minimal. The S90 sand used for this research caused runoff to respond fast to rainfall, leading to little or no development of saturation near the macropores. In addition, soil moisture data showed a large amount of pendular water in the hillslopes, which implies that the soil has a low air entry value, and, in combination with the lack of vertical flow, could have caused the pressure difference between the matrix and the macropores to vanish sooner and result in equilibrium being reached in a relatively short time. Nevertheless, a better outline is given to determine a correct sand type for these types of experiments and, by using drainage recession analysis to investigate the influences of macropores on runoff, heterogeneity in rainfall intensity can be overcome. This study is a good point of reference to start future experiments from concerning

  17. Dynamical nexus of water supply, hydropower and environment based on the modeling of multiple socio-natural processes: from socio-hydrological perspective

    Science.gov (United States)

    Liu, D.; Wei, X.; Li, H. Y.; Lin, M.; Tian, F.; Huang, Q.

    2017-12-01

    In the socio-hydrological system, the ecological functions and environmental services, which are chosen to maintain, are determined by the preference of the society, which is making the trade-off among the values of riparian vegetation, fish, river landscape, water supply, hydropower, navigation and so on. As the society develops, the preference of the value will change and the ecological functions and environmental services which are chosen to maintain will change. The aim of the study is to focus on revealing the feedback relationship of water supply, hydropower and environment and the dynamical feedback mechanism at macro-scale, and to establish socio-hydrological evolution model of the watershed based on the modeling of multiple socio-natural processes. The study will aim at the Han River in China, analyze the impact of the water supply and hydropower on the ecology, hydrology and other environment elements, and study the effect on the water supply and hydropower to ensure the ecological and environmental water of the different level. Water supply and ecology are usually competitive. In some reservoirs, hydropower and ecology are synergic relationship while they are competitive in some reservoirs. The study will analyze the multiple mechanisms to implement the dynamical feedbacks of environment to hydropower, set up the quantitative relationship description of the feedback mechanisms, recognize the dominant processes in the feedback relationships of hydropower and environment and then analyze the positive and negative feedbacks in the feedback networks. The socio-hydrological evolution model at the watershed scale will be built and applied to simulate the long-term evolution processes of the watershed of the current situation. Dynamical nexus of water supply, hydropower and environment will be investigated.

  18. Assessing the impacts of dams and levees on the hydrologic record of the Middle and Lower Mississippi River, USA

    Science.gov (United States)

    Remo, Jonathan W.F.; Ickes, Brian; Ryherd, Julia K.; Guida, Ross J.; Therrell, Matthew D.

    2018-01-01

    The impacts of dams and levees on the long-term (>130 years) discharge record was assessed along a ~1200 km segment of the Mississippi River between St. Louis, Missouri, and Vicksburg, Mississippi. To aid in our evaluation of dam impacts, we used data from the U.S. National Inventory of Dams to calculate the rate of reservoir expansion at five long-term hydrologic monitoring stations along the study segment. We divided the hydrologic record at each station into three periods: (1) a pre-rapid reservoir expansion period; (2) a rapid reservoir expansion period; and (3) a post-rapid reservoir expansion period. We then used three approaches to assess changes in the hydrologic record at each station. Indicators of hydrologic alteration (IHA) and flow duration hydrographs were used to quantify changes in flow conditions between the pre- and post-rapid reservoir expansion periods. Auto-regressive interrupted time series analysis (ARITS) was used to assess trends in maximum annual discharge, mean annual discharge, minimum annual discharge, and standard deviation of daily discharges within a given water year. A one-dimensional HEC-RAS hydraulic model was used to assess the impact of levees on flood flows. Our results revealed that minimum annual discharges and low-flow IHA parameters showed the most significant changes. Additionally, increasing trends in minimum annual discharge during the rapid reservoir expansion period were found at three out of the five hydrologic monitoring stations. These IHA and ARITS results support previous findings consistent with the observation that reservoirs generally have the greatest impacts on low-flow conditions. River segment scale hydraulic modeling revealed levees can modestly increase peak flood discharges, while basin-scale hydrologic modeling assessments by the U.S. Army Corps of Engineers showed that tributary reservoirs reduced peak discharges by a similar magnitude (2 to 30%). This finding suggests that the effects of dams and

  19. Development of hydrological models and surface process modelization Study case in High Mountain slopes

    International Nuclear Information System (INIS)

    Loaiza, Juan Carlos; Pauwels, Valentijn R

    2011-01-01

    Hydrological models are useful because allow to predict fluxes into the hydrological systems, which is useful to predict foods and violent phenomenon associated to water fluxes, especially in materials under a high meteorization level. The combination of these models with meteorological predictions, especially with rainfall models, allow to model water behavior into the soil. On most of cases, this type of models is really sensible to evapotranspiration. On climatic studies, the superficial processes have to be represented adequately. Calibration and validation of these models is necessary to obtain reliable results. This paper is a practical exercise of application of complete hydrological information at detailed scale in a high mountain catchment, considering the soil use and types more representatives. The information of soil moisture, infiltration, runoff and rainfall is used to calibrate and validate TOPLATS hydrological model to simulate the behavior of soil moisture. The finds show that is possible to implement an hydrological model by means of soil moisture information use and an equation of calibration by Extended Kalman Filter (EKF).

  20. Hydrological processes in small catchments of mountain headwater lakes: The Tatra Mountains

    Czech Academy of Sciences Publication Activity Database

    Křeček, J.; Turek, Jan; Ljungren, E.; Stuchlík, E.; Šporka, F.

    2006-01-01

    Roč. 61, Suppl. 18 (2006), S1-S10 ISSN 0006-3088 R&D Projects: GA ČR GA103/04/0214 Grant - others:MSM(CZ) 6840770002; EC(XE) GOCE-CT-2003-505540; EC(XE) EVK1-CT-1999-00032 Institutional research plan: CEZ:AV0Z60170517 Keywords : alpine catchments * evapotranspiration * runoff genesis * precipitation Subject RIV: DA - Hydrology ; Limnology Impact factor: 0.213, year: 2006

  1. Short rotation coppice for energy production: hydrological guidelines

    Energy Technology Data Exchange (ETDEWEB)

    Hall, R.L.

    2003-07-01

    This report provides hydrological guidelines for growers, land and water resource managers, environmental groups and other parties interested in utilising short rotation coppice (SRC) for energy production. The aim of the report is to help interested parties decide if a location is suitable for SRC planting by considering whether potential hydrological impacts will have an adverse effect on crop productivity and yield. The guidelines consider: the water use of SRC compared with other crops; the factors governing water use; the water requirements for a productive crop; and the likely impacts on the availability and quantity of water. The report points out that there are still gaps in our knowledge of the processes controlling the water use and growth of SRC and notes that, in some situations, there will be considerable uncertainty in predictions.

  2. Determining hydrological changes in a small Arctic treeline basin using cold regions hydrological modelling and a pseudo-global warming approach

    Science.gov (United States)

    Krogh, S. A.; Pomeroy, J. W.

    2017-12-01

    Increasing temperatures are producing higher rainfall ratios, shorter snow-covered periods, permafrost thaw, more shrub coverage, more northerly treelines and greater interaction between groundwater and surface flow in Arctic basins. How these changes will impact the hydrology of the Arctic treeline environment represents a great challenge. To diagnose the future hydrology along the current Arctic treeline, a physically based cold regions model was used to simulate the hydrology of a small basin near Inuvik, Northwest Territories, Canada. The hydrological model includes hydrological processes such as snow redistribution and sublimation by wind, canopy interception of snow/rain and sublimation/evaporation, snowmelt energy balance, active layer freeze/thaw, infiltration into frozen and unfrozen soils, evapotranspiration, horizontal flow through organic terrain and snowpack, subsurface flow and streamflow routing. The model was driven with weather simulated by a high-resolution (4 km) numerical weather prediction model under two scenarios: (1) control run, using ERA-Interim boundary conditions (2001-2013) and (2) future, using a Pseudo-Global Warming (PGW) approach based on the RCP8.5 projections perturbing the control run. Transient changes in vegetation based on recent observations and ecological expectations were then used to re-parameterise the model. Historical hydrological simulations were validated against daily streamflow, snow water equivalent and active layer thickness records, showing the model's suitability in this environment. Strong annual warming ( 6 °C) and more precipitation ( 20%) were simulated by the PGW scenario, with winter precipitation and fall temperature showing the largest seasonal increase. The joint impact of climate and transient vegetation changes on snow accumulation and redistribution, evapotranspiration, active layer development, runoff generation and hydrograph characteristics are analyzed and discussed.

  3. Identifying influential data points in hydrological model calibration and their impact on streamflow predictions

    Science.gov (United States)

    Wright, David; Thyer, Mark; Westra, Seth

    2015-04-01

    Highly influential data points are those that have a disproportionately large impact on model performance, parameters and predictions. However, in current hydrological modelling practice the relative influence of individual data points on hydrological model calibration is not commonly evaluated. This presentation illustrates and evaluates several influence diagnostics tools that hydrological modellers can use to assess the relative influence of data. The feasibility and importance of including influence detection diagnostics as a standard tool in hydrological model calibration is discussed. Two classes of influence diagnostics are evaluated: (1) computationally demanding numerical "case deletion" diagnostics; and (2) computationally efficient analytical diagnostics, based on Cook's distance. These diagnostics are compared against hydrologically orientated diagnostics that describe changes in the model parameters (measured through the Mahalanobis distance), performance (objective function displacement) and predictions (mean and maximum streamflow). These influence diagnostics are applied to two case studies: a stage/discharge rating curve model, and a conceptual rainfall-runoff model (GR4J). Removing a single data point from the calibration resulted in differences to mean flow predictions of up to 6% for the rating curve model, and differences to mean and maximum flow predictions of up to 10% and 17%, respectively, for the hydrological model. When using the Nash-Sutcliffe efficiency in calibration, the computationally cheaper Cook's distance metrics produce similar results to the case-deletion metrics at a fraction of the computational cost. However, Cooks distance is adapted from linear regression with inherit assumptions on the data and is therefore less flexible than case deletion. Influential point detection diagnostics show great potential to improve current hydrological modelling practices by identifying highly influential data points. The findings of this

  4. Developing a Hydrologic Assessment Tool for Designing Bioretention in a watershed

    Science.gov (United States)

    Baek, Sangsoo; Ligaray, Mayzonee; Park, Jeong-Pyo; Kwon, Yongsung; Cho, Kyung Hwa

    2017-04-01

    Continuous urbanization has negatively impacted the ecological and hydrological environments at the global, regional, and local scales. This issue was addressed by developing Low Impact Development (LID) practices to deliver better hydrologic function and improve the environmental, economic, social and cultural outcomes. This study developed a modeling software to simulate and optimize bioretentions among LID in a given watershed. The model calculated a detailed soil infiltration process in bioretention with hydrological conditions and hydraulic facilities (e.g. riser and underdrain) and also generated an optimized plan using Flow Duration Curve (FDC). The optimization result from the simulation demonstrated that the location and size of bioretention, as well as the soil texture, are important elements for an efficient bioretention. We hope that the developed software in this study could be useful for establishing an appropriate scheme of LID installment

  5. Hydrological Drought in the Anthropocene: Impacts of Local Water Extraction and Reservoir Regulation in the U.S.

    Science.gov (United States)

    Wan, Wenhua; Zhao, Jianshi; Li, Hong-Yi; Mishra, Ashok; Ruby Leung, L.; Hejazi, Mohamad; Wang, Wei; Lu, Hui; Deng, Zhiqun; Demissisie, Yonas; Wang, Hao

    2017-11-01

    Hydrological drought is a substantial negative deviation from normal hydrologic conditions and is influenced by climate and human activities such as water management. By perturbing the streamflow regime, climate change and water management may significantly alter drought characteristics in the future. Here we utilize a high-resolution integrated modeling framework that represents water management in terms of both local surface water extraction and reservoir regulation and use the Standardized Streamflow Index to quantify hydrological drought. We explore the impacts of water management on hydrological drought over the contiguous U.S. in a warming climate with and without emissions mitigation. Despite the uncertainty of climate change impacts, local surface water extraction consistently intensifies drought that dominates at the regional to national scale. However, reservoir regulation alleviates drought by enhancing summer flow downstream of reservoirs. The relative dominance of drought intensification or relief is largely determined by the water demand, with drought intensification dominating in regions with intense water demand such as the Great Plains and California, while drought relief dominates in regions with low water demand. At the national level, water management increases the spatial extent of extreme drought despite some alleviations of moderate to severe drought. In an emissions mitigation scenario with increased irrigation demand for bioenergy production, water management intensifies drought more than the business-as-usual scenario at the national level, so the impacts of emissions mitigation must be evaluated by considering its benefit in reducing warming and evapotranspiration against its effects on increasing water demand and intensifying drought.

  6. Hydrology: The interdisciplinary science of water

    Science.gov (United States)

    Vogel, Richard M.; Lall, Upmanu; Cai, Ximing; Rajagopalan, Balaji; Weiskel, Peter K.; Hooper, Richard P.; Matalas, Nicholas C.

    2015-01-01

    We live in a world where biophysical and social processes are tightly coupled. Hydrologic systems change in response to a variety of natural and human forces such as climate variability and change, water use and water infrastructure, and land cover change. In turn, changes in hydrologic systems impact socioeconomic, ecological, and climate systems at a number of scales, leading to a coevolution of these interlinked systems. The Harvard Water Program, Hydrosociology, Integrated Water Resources Management, Ecohydrology, Hydromorphology, and Sociohydrology were all introduced to provide distinct, interdisciplinary perspectives on water problems to address the contemporary dynamics of human interaction with the hydrosphere and the evolution of the Earth’s hydrologic systems. Each of them addresses scientific, social, and engineering challenges related to how humans influence water systems and vice versa. There are now numerous examples in the literature of how holistic approaches can provide a structure and vision of the future of hydrology. We review selected examples, which taken together, describe the type of theoretical and applied integrated hydrologic analyses and associated curricular content required to address the societal issue of water resources sustainability. We describe a modern interdisciplinary science of hydrology needed to develop an in-depth understanding of the dynamics of the connectedness between human and natural systems and to determine effective solutions to resolve the complex water problems that the world faces today. Nearly, every theoretical hydrologic model introduced previously is in need of revision to accommodate how climate, land, vegetation, and socioeconomic factors interact, change, and evolve over time.

  7. Analysis of hydrological response to land use changes based on Low Impact Development—a case study on the southern area of Fangshan National Geopark in Nanjing city, China

    Science.gov (United States)

    Wang, Y.; Fu, D., Sr.

    2016-12-01

    The hydrological response to Land Use/Land Cover Changes (LUCC) is the most active field in the international hydrological science research, and it is also a particular concern in the process of Chinese urban construction and renewal, many studies have shown that large-scale land use change is an important factor leading to the regional climate and hydrological cycle changes. Therefore, International Geosphere-Biosphere Program (IGBP) and International Human Dimensions Programme on Global Environmental Change (IHDP), World Climate Research Program (WCRP) and International Programme of Biodiversity Science (DIVERSITAS) program take land use change as one core program. The change of regional vegetation ecosystem caused by land use change, in turn, has a very significant impact on the regional hydrological cycle. Currently the influence of hydrological processes attributed correlated with land-use type were not fully considered in urban LUCC, the hydrological effect on urban-scale LUCC has just started. Since 2015, Chinese government began to implement "Sponge City" construction, however, the sponge city construction often takes the water resources management as the target, and mainly focuses on the rational allocation of urban water resources in conjunction with ignoring the response of LUCC on the water system. The hydrological response on LUCC need to use the scenario design method to quantitatively analyze the influence degree of the hydrological change on LUCC. According to the control rate of the runoff volume and land information, the coverage rate of sponge facilities determined before planning, such as bioretention, permeable pavement and greening roof, are adjusted and then are checked on the basis of storage volume, the coverage rate of the sponge facilities that can accommodate the total runoff volume are put forward. This research addresses the hydrological response changes on the land use before and after the use of LID using the scenario design method

  8. Vegetation impact on the hydrology of an aeolian sandy soil in a continental climate

    Czech Academy of Sciences Publication Activity Database

    Lichner, Ľ.; Hallett, P. D.; Orfánus, T.; Czachor, H.; Rajkai, K.; Šír, Miloslav; Tesař, Miroslav

    2010-01-01

    Roč. 3, č. 4 (2010), s. 413-420 ISSN 1936-0584 R&D Projects: GA MŠk MEB0808114 Institutional research plan: CEZ:AV0Z20600510 Keywords : sandy soil * water repellency * plant cover * sorptivity * hydraulic conductivity Subject RIV: DA - Hydrology ; Limnology Impact factor: 1.835, year: 2010

  9. Modeling of hydrologic conditions and solute movement in processed oil shale waste embankments under simulated climatic conditions. Final report, November 1995

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1995-12-31

    A study is described on the hydrological and geotechnical behavior of an oil shale solid waste. The objective was to obtain information which can be used to assess the environmental impacts of oil shale solid waste disposal in the Green River Basin. The spent shale used in this study was combusted by the Lurgi-Ruhrgas process by Rio Blanco Oil Shale Company, Inc. Laboratory bench-scale testing included index properties, such as grain size distribution and Atterberg limits, and tests for engineering properties including hydraulic conductivity and shear strength. Large-scale tests were conducted on model spent shale waste embankments to evaluate hydrological response, including infiltration, runoff, and seepage. Large-scale tests were conducted at a field site in western Colorado and in the Environmental Simulation Laboratory (ESL)at the University of Wyoming. The ESL tests allowed the investigators to control rainfall and temperature, providing information on the hydrological response of spent shale under simulated severe climatic conditions. All experimental methods, materials, facilities, and instrumentation are described in detail, and results are given and discussed. 34 refs.

  10. Impact of the assimilation of satellite soil moisture and LST on the hydrological cycle

    Science.gov (United States)

    Laiolo, Paola; Gabellani, Simone; Delogu, Fabio; Silvestro, Francesco; Rudari, Roberto; Campo, Lorenzo; Boni, Giorgio

    2014-05-01

    The reliable estimation of hydrological variables (e.g. soil moisture, evapotranspiration, surface temperature) in space and time is of fundamental importance in operational hydrology to improve the forecast of the rainfall-runoff response of catchments and, consequently, flood predictions. Nowadays remote sensing can offer a chance to provide good space-time estimates of several hydrological variables and then improve hydrological model performances especially in environments with scarce ground based data. The aim of this work is to investigate the impacts on the performances of a distributed hydrological model (Continuum) of the assimilation of satellite-derived soil moisture products and Land Surface (LST). In this work three different soil moisture (SM) products, derived by ASCAT sensor, are used. These data are provided by the EUMETSAT's H-SAF (Satellite Application Facility on Support to Operational Hydrology and Water Management) program. The considered soil moisture products are: large scale surface soil moisture (SM OBS 1 - H07), small scale surface soil moisture (SM OBS 2 - H08) and profile index in the roots region (SM DAS 2 - H14). These data are compared with soil moisture estimated by Continuum model on the Orba catchment (800 km2), in the northern part of Italy, for the period July 2012-June 2013. Different assimilation experiments have been performed. The first experiment consists in the assimilation of the SM products by using a simple Nudging technique; the second one is the assimilation of only LST data, derived from MSG satellite, and the third is the assimilation of both SM products and LST. The benefits on the model predictions of discharge, LST and soil moisture dynamics were tested.

  11. Virtual hydrology observatory: an immersive visualization of hydrology modeling

    Science.gov (United States)

    Su, Simon; Cruz-Neira, Carolina; Habib, Emad; Gerndt, Andreas

    2009-02-01

    The Virtual Hydrology Observatory will provide students with the ability to observe the integrated hydrology simulation with an instructional interface by using a desktop based or immersive virtual reality setup. It is the goal of the virtual hydrology observatory application to facilitate the introduction of field experience and observational skills into hydrology courses through innovative virtual techniques that mimic activities during actual field visits. The simulation part of the application is developed from the integrated atmospheric forecast model: Weather Research and Forecasting (WRF), and the hydrology model: Gridded Surface/Subsurface Hydrologic Analysis (GSSHA). Both the output from WRF and GSSHA models are then used to generate the final visualization components of the Virtual Hydrology Observatory. The various visualization data processing techniques provided by VTK are 2D Delaunay triangulation and data optimization. Once all the visualization components are generated, they are integrated into the simulation data using VRFlowVis and VR Juggler software toolkit. VR Juggler is used primarily to provide the Virtual Hydrology Observatory application with fully immersive and real time 3D interaction experience; while VRFlowVis provides the integration framework for the hydrologic simulation data, graphical objects and user interaction. A six-sided CAVETM like system is used to run the Virtual Hydrology Observatory to provide the students with a fully immersive experience.

  12. Using a spatially-distributed hydrologic biogeochemistry model to study the spatial variation of carbon processes in a Critical Zone Observatory

    Science.gov (United States)

    Shi, Y.; Eissenstat, D. M.; Davis, K. J.; He, Y.

    2016-12-01

    Forest carbon processes are affected by, among other factors, soil moisture, soil temperature, soil nutrients and solar radiation. Most of the current biogeochemical models are 1-D and represent one point in space. Therefore, they cannot resolve the topographically driven hill-slope land surface heterogeneity or the spatial pattern of nutrient availability. A spatially distributed forest ecosystem model, Flux-PIHM-BGC, has been developed by coupling a 1-D mechanistic biogeochemical model Biome-BGC (BBGC) with a spatially distributed land surface hydrologic model, Flux-PIHM. Flux-PIHM is a coupled physically based model, which incorporates a land-surface scheme into the Penn State Integrated Hydrologic Model (PIHM). The land surface scheme is adapted from the Noah land surface model. Flux-PIHM is able to represent the link between groundwater and the surface energy balance, as well as the land surface heterogeneities caused by topography. In the coupled Flux-PIHM-BGC model, each Flux-PIHM model grid couples a 1-D BBGC model, while soil nitrogen is transported among model grids via subsurface water flow. In each grid, Flux-PIHM provides BBGC with soil moisture, soil temperature, and solar radiation information, while BBGC provides Flux-PIHM with leaf area index. The coupled Flux-PIHM-BGC model has been implemented at the Susquehanna/Shale Hills critical zone observatory (SSHCZO). Model results suggest that the vegetation and soil carbon distribution is primarily constrained by nitorgen availability (affected by nitorgen transport via topographically driven subsurface flow), and also constrained by solar radiation and root zone soil moisture. The predicted vegetation and soil carbon distribution generally agrees with the macro pattern observed within the watershed. The coupled ecosystem-hydrologic model provides an important tool to study the impact of topography on watershed carbon processes, as well as the impact of climate change on water resources.

  13. Understanding Greenland ice sheet hydrology using an integrated multi-scale approach

    International Nuclear Information System (INIS)

    Rennermalm, A K; Moustafa, S E; Mioduszewski, J; Robinson, D A; Chu, V W; Smith, L C; Forster, R R; Hagedorn, B; Harper, J T; Mote, T L; Shuman, C A; Tedesco, M

    2013-01-01

    Improved understanding of Greenland ice sheet hydrology is critically important for assessing its impact on current and future ice sheet dynamics and global sea level rise. This has motivated the collection and integration of in situ observations, model development, and remote sensing efforts to quantify meltwater production, as well as its phase changes, transport, and export. Particularly urgent is a better understanding of albedo feedbacks leading to enhanced surface melt, potential positive feedbacks between ice sheet hydrology and dynamics, and meltwater retention in firn. These processes are not isolated, but must be understood as part of a continuum of processes within an integrated system. This letter describes a systems approach to the study of Greenland ice sheet hydrology, emphasizing component interconnections and feedbacks, and highlighting research and observational needs. (letter)

  14. Impacts of Environmental Nanoparticles on Chemical, Biological and Hydrological Processes in Terrestrial Ecosystems

    Energy Technology Data Exchange (ETDEWEB)

    Qafoku, Nikolla

    2012-01-01

    This chapter provides insights on nanoparticle (NP) influence or control on the extent and timescales of single or coupled physical, chemical, biological and hydrological reactions and processes that occur in terrestrial ecosystems. Examples taken from the literature that show how terrestrial NPs may determine the fate of the aqueous and sorbed (adsorbed or precipitated) chemical species of nutrients and contaminants, are also included in this chapter. Specifically, in the first section, chapter objectives, term definitions and discussions on size-dependent properties, the origin and occurrence of NP in terrestrial ecosystems and NP toxicity, are included. In the second section, the topic of the binary interactions of NPs of different sizes, shapes, concentrations and ages with the soil solution chemical species is covered, focusing on NP formation, stability, aggregation, ability to serve as sorbents, or surface-mediated precipitation catalysts, or electron donors and acceptors. In the third section, aspects of the interactions in the ternary systems composed of environmental NP, nutrient/contaminant chemical species, and the soil/sediment matrix are discussed, focusing on the inhibitory and catalytic effects of environmental NP on nutrient/contaminant advective mobility and mass transfer, adsorption and desorption, dissolution and precipitation and redox reactions that occur in terrestrial ecosystems. These three review sections are followed by a short summary of future research needs and directions, the acknowledgements, the list of the references, and the figures.

  15. The Impacts of Climate Change on the Frozen Soil and Eco-hydrology in the Source Region of Yellow River, China

    Science.gov (United States)

    Qin, Y.; Yang, D.; Gao, B.

    2016-12-01

    The source region of Yellow River, located in the transition zone of discontinuous and continuous permafrost on the northeastern Tibetan Plateau, has experienced dramatic climate change during the past decades. The long-term changes in the seasonally frozen ground remarkably affected the eco-hydrological processes in the source region and the water availability in the middle and lower reaches. In this study, we employed a geomorphology-based eco-hydrological model (GBEHM) to quantitatively assess the impacts of climate change on the frozen soil and regional eco-hydrology. It was found that the air temperature has increased by 2.1 °C since the 1960s and most significantly during the recent decade (0.67 °C /10a), while there was no significant trend of the precipitation. Based on a 34-year (1981-2014) simulation, the maximum frozen soil depth was in the range of 0.7-2.1 m and decreased by 1.5-7.9 cm/10a because of the warming climate. The model simulation adequately reproduced the observed streamflow changes, including the drought period in the 1990s and wet period in the 2000s, and the variability in hydrological behavior was closely associated with the climate and landscape conditions. The vegetation responses to climate changes manifested as advancing green-up dates and increasing leaf area index at the initial stage of growing season. Our study shows that the ecohydrological processes are changing along with the frozen soil degradation in headwater areas on the Tibetan Plateau, which could influence the availability of water resources in the middle and lower reaches.

  16. Future changes in Mekong River hydrology: impact of climate change and reservoir operation on discharge

    NARCIS (Netherlands)

    Lauri, H.; de Moel, H.; Ward, P.J.; Räsänen, T.A.; Keskinen, M.; Kummu, M.S.

    2012-01-01

    The transboundary Mekong River is facing two ongoing changes that are expected to significantly impact its hydrology and the characteristics of its exceptional flood pulse. The rapid economic development of the riparian countries has led to massive plans for hydropower construction, and projected

  17. Global hydrological droughts in the 21st century under a changing hydrological regime

    Directory of Open Access Journals (Sweden)

    N. Wanders

    2015-01-01

    Full Text Available Climate change very likely impacts future hydrological drought characteristics across the world. Here, we quantify the impact of climate change on future low flows and associated hydrological drought characteristics on a global scale using an alternative drought identification approach that considers adaptation to future changes in hydrological regime. The global hydrological model PCR-GLOBWB was used to simulate daily discharge at 0.5° globally for 1971–2099. The model was forced with CMIP5 climate projections taken from five global circulation models (GCMs and four emission scenarios (representative concentration pathways, RCPs, from the Inter-Sectoral Impact Model Intercomparison Project. Drought events occur when discharge is below a threshold. The conventional variable threshold (VTM was calculated by deriving the threshold from the period 1971–2000. The transient variable threshold (VTMt is a non-stationary approach, where the threshold is based on the discharge values of the previous 30 years implying the threshold to vary every year during the 21st century. The VTMt adjusts to gradual changes in the hydrological regime as response to climate change. Results show a significant negative trend in the low flow regime over the 21st century for large parts of South America, southern Africa, Australia and the Mediterranean. In 40–52% of the world reduced low flows are projected, while increased low flows are found in the snow-dominated climates. In 27% of the global area both the drought duration and the deficit volume are expected to increase when applying the VTMt. However, this area will significantly increase to 62% when the VTM is applied. The mean global area in drought, with the VTMt, remains rather constant (11.7 to 13.4%, compared to the substantial increase when the VTM is applied (11.7 to 20%. The study illustrates that an alternative drought identification that considers adaptation to an altered hydrological regime has a

  18. Scaling considerations related to interactions of hydrologic, pedologic and geomorphic processes (Invited)

    Science.gov (United States)

    Sidle, R. C.

    2013-12-01

    Hydrologic, pedologic, and geomorphic processes are strongly interrelated and affected by scale. These interactions exert important controls on runoff generation, preferential flow, contaminant transport, surface erosion, and mass wasting. Measurement of hydraulic conductivity (K) and infiltration capacity at small scales generally underestimates these values for application at larger field, hillslope, or catchment scales. Both vertical and slope-parallel saturated flow and related contaminant transport are often influenced by interconnected networks of preferential flow paths, which are not captured in K measurements derived from soil cores. Using such K values in models may underestimate water and contaminant fluxes and runoff peaks. As shown in small-scale runoff plot studies, infiltration rates are typically lower than integrated infiltration across a hillslope or in headwater catchments. The resultant greater infiltration-excess overland flow in small plots compared to larger landscapes is attributed to the lack of preferential flow continuity; plot border effects; greater homogeneity of rainfall inputs, topography and soil physical properties; and magnified effects of hydrophobicity in small plots. At the hillslope scale, isolated areas with high infiltration capacity can greatly reduce surface runoff and surface erosion at the hillslope scale. These hydropedologic and hydrogeomorphic processes are also relevant to both occurrence and timing of landslides. The focus of many landslide studies has typically been either on small-scale vadose zone process and how these affect soil mechanical properties or on larger scale, more descriptive geomorphic studies. One of the issues in translating laboratory-based investigations on geotechnical behavior of soils to field scales where landslides occur is the characterization of large-scale hydrological processes and flow paths that occur in heterogeneous and anisotropic porous media. These processes are not only affected

  19. Hydrologic Design in the Anthropocene

    Science.gov (United States)

    Vogel, R. M.; Farmer, W. H.; Read, L.

    2014-12-01

    In an era dubbed the Anthropocene, the natural world is being transformed by a myriad of human influences. As anthropogenic impacts permeate hydrologic systems, hydrologists are challenged to fully account for such changes and develop new methods of hydrologic design. Deterministic watershed models (DWM), which can account for the impacts of changes in land use, climate and infrastructure, are becoming increasing popular for the design of flood and/or drought protection measures. As with all models that are calibrated to existing datasets, DWMs are subject to model error or uncertainty. In practice, the model error component of DWM predictions is typically ignored yet DWM simulations which ignore model error produce model output which cannot reproduce the statistical properties of the observations they are intended to replicate. In the context of hydrologic design, we demonstrate how ignoring model error can lead to systematic downward bias in flood quantiles, upward bias in drought quantiles and upward bias in water supply yields. By reincorporating model error, we document how DWM models can be used to generate results that mimic actual observations and preserve their statistical behavior. In addition to use of DWM for improved predictions in a changing world, improved communication of the risk and reliability is also needed. Traditional statements of risk and reliability in hydrologic design have been characterized by return periods, but such statements often assume that the annual probability of experiencing a design event remains constant throughout the project horizon. We document the general impact of nonstationarity on the average return period and reliability in the context of hydrologic design. Our analyses reveal that return periods do not provide meaningful expressions of the likelihood of future hydrologic events. Instead, knowledge of system reliability over future planning horizons can more effectively prepare society and communicate the likelihood

  20. Grid based calibration of SWAT hydrological models

    Directory of Open Access Journals (Sweden)

    D. Gorgan

    2012-07-01

    Full Text Available The calibration and execution of large hydrological models, such as SWAT (soil and water assessment tool, developed for large areas, high resolution, and huge input data, need not only quite a long execution time but also high computation resources. SWAT hydrological model supports studies and predictions of the impact of land management practices on water, sediment, and agricultural chemical yields in complex watersheds. The paper presents the gSWAT application as a web practical solution for environmental specialists to calibrate extensive hydrological models and to run scenarios, by hiding the complex control of processes and heterogeneous resources across the grid based high computation infrastructure. The paper highlights the basic functionalities of the gSWAT platform, and the features of the graphical user interface. The presentation is concerned with the development of working sessions, interactive control of calibration, direct and basic editing of parameters, process monitoring, and graphical and interactive visualization of the results. The experiments performed on different SWAT models and the obtained results argue the benefits brought by the grid parallel and distributed environment as a solution for the processing platform. All the instances of SWAT models used in the reported experiments have been developed through the enviroGRIDS project, targeting the Black Sea catchment area.

  1. [Socio-hydrology: A review].

    Science.gov (United States)

    Ding, Jing-yi; Zhao, Wen-wu; Fang, Xue-ning

    2015-04-01

    Socio-hydrology is an interdiscipline of hydrology, nature, society and humanity. It mainly explores the two-way feedbacks of coupled human-water system and its dynamic mechanism of co-evolution, and makes efforts to solve the issues that human faces today such as sustainable utilization of water resources. Starting from the background, formation process, and fundamental concept of socio-hydrology, this paper summarized the features of socio-hydrology. The main research content of socio-hydrology was reduced to three aspects: The tradeoff in coupled human-water system, interests in water resources management and virtual water research in coupled human-water system. And its differences as well as relations with traditional hydrology, eco-hydrology and hydro-sociology were dwelled on. Finally, with hope to promote the development of socio-hydrology researches in China, the paper made prospects for the development of the subject from following aspects: Completing academic content and deepening quantitative research, focusing on scale studies of socio-hydrology, fusing socio-hydrology and eco-hydrology.

  2. Hydrological Appraisal of Climate Change Impacts on the Water Resources of the Xijiang Basin, South China

    Directory of Open Access Journals (Sweden)

    Dehua Zhu

    2017-10-01

    Full Text Available Assessing the impact of climate change on streamflow is critical to understanding the changes to water resources and to improve water resource management. The use of hydrological models is a common practice to quantify and assess water resources in such situations. In this study, two hydrological models with different structures, e.g., a physically-based distributed model Liuxihe (LXH and a lumped conceptual model Xinanjiang (XAJ are employed to simulate the daily runoff in the Xijiang basin in South China, under historical (1964–2013 and future (2014–2099 climate conditions. The future climate series are downscaled from a global climate model (Beijing Climate Centre-Climate System Model, BCC-CSM version 1.1 by a high-resolution regional climate model under two representative concentration pathways—RCP4.5 and RCP8.5. The hydrological responses to climate change via the two rainfall–runoff models with different mathematical structures are compared, in relation to the uncertainties in hydrology and meteorology. It is found that the two rainfall–runoff models successfully simulate the historical runoff for the Xijiang basin, with a daily runoff Nash–Sutcliffe Efficiency of 0.80 for the LXH model and 0.89 for the XAJ model. The characteristics of high flow in the future are also analysed including their frequency (magnitude–return-period relationship. It shows that the distributed model could produce more streamflow and peak flow than the lumped model under the climate change scenarios. However the difference of the impact from the two climate scenarios is marginal on median monthly streamflow. The flood frequency analysis under climate change suggests that flood magnitudes in the future will be more severe than the historical floods with the same return period. Overall, the study reveals how uncertain it can be to quantify water resources with two different but well calibrated hydrological models.

  3. Climate impacts on the hydrology of prairie wetlands

    International Nuclear Information System (INIS)

    Woo, Mingko; Rowsell, R.D.

    1991-01-01

    A study was carried out in the St. Denis National Wildlife Area, 45 km east of Saskatoon, to observe the hydrological processes and the temporal and spatial variability of slough responses to climate. One slough was instrumented for detailed study, showing that the high water level in spring was supported by snowmelt. In summer, rainfall was the major source of water supply, but was exceeded by losses to evaporation and groundwater recharge, leading to a decline of the water table and complete drying by June 13th. The duration that water remains in sloughs varies temporally and spatially. Ephemeral sloughs, deriving water mainly from snowmelt, tend to occupy higher ground, temporary sloughs rely on precipitation and surface runoff, and may receive groundwater discharge during wetter years. Permanent sloughs often occupy lower areas, receiving water from precipitation, lateral runoff, and groundwater discharge which buffers them from year to year fluctuations in precipitation. Tree ring analyses showed that meltwater is the major factor influencing tree growth, correlating the spatial variability of slough inundation to the temporal variability of winter snowfall. A study of slough hydrology is important to the understanding of the responses of Prairie wetlands to climatic variability and change. 17 refs., 2 figs

  4. Linking Hydrology and Biogeochemistry to assess the impact of Lateral Nutrient Fluxes

    NARCIS (Netherlands)

    Rebel, K.T.; Osch, F. van; McGuire, K.J.; Rastetter, E.B.; Wassen, M.J.

    2010-01-01

    Until recently, it has been challenging to couple hydrological and biogeochemical processes at the watershed scale. We have coupled two models, WTB and MEL, to simulate lateral water and nutrient fluxes and their influence on ecosystem functioning. WTB is a spatially explicit water balance model.

  5. Explanation of climate and human impacts on sediment discharge change in Darwinian hydrology: Derivation of a differential equation

    Science.gov (United States)

    Zhang, Jianjun; Gao, Guangyao; Fu, Bojie; Zhang, Lu

    2018-04-01

    The assessment for impacts of climate variability and human activities on suspended sediment yield (SSY) change has long been a question of great interest. However, the sediment generation processes are sophisticated with high nonlinearity and great uncertainty, which give rise to extreme complexity for SSY change assessment in Newtonian approach. Consequently, few approaches can be simply but widely applied to decompose impacts of climatic variability and human activities on SSY change. Thus, it is an urgent need to develop advanced methods that are simple and robust. Since that the Newtonian approach is hardly achievable due to limitation of either observations or knowledge of mechanisms, there have been repeated calls to capture the hydrologic system in Darwinian approach for hydrological change prediction or explanation. As streamflow is the carrier of suspended sediment, SSY change are thus documented in changes of sediment concentrated flow and suspended sediment concentration - water discharge (C-Q) relationships. By deduced corollaries, a differential equation of sediment discharge change was derived to explicitly decompose impacts of climate variability and human activities in Darwinian hydrology. Besides, a new form of sediment rating curves was proposed and curved as C-Q relationships and probability distribution of sediment concentrated flow. River sediment flux can be revealed by this representation, which simply elucidates mechanism of SSY generation covering a range of time scales from finer than rainfall-event to long term. By the new sediment rating curves, the differential equation was partly solved using a segmentation algorithm proposed and validated in this paper, and then was submitted to water balance framework expressed by Budyko-type equation. Thus, for catchment management, hydrologists can obtain explicit explanation of how climate variation and human activities propagate through landscape and result in sediment discharge change. The

  6. The evolution of process-based hydrologic models: historical challenges and the collective quest for physical realism

    Science.gov (United States)

    Clark, M. P.; Nijssen, B.; Wood, A.; Mizukami, N.; Newman, A. J.

    2017-12-01

    The diversity in hydrologic models has historically led to great controversy on the "correct" approach to process-based hydrologic modeling, with debates centered on the adequacy of process parameterizations, data limitations and uncertainty, and computational constraints on model analysis. In this paper, we revisit key modeling challenges on requirements to (1) define suitable model equations, (2) define adequate model parameters, and (3) cope with limitations in computing power. We outline the historical modeling challenges, provide examples of modeling advances that address these challenges, and define outstanding research needs. We illustrate how modeling advances have been made by groups using models of different type and complexity, and we argue for the need to more effectively use our diversity of modeling approaches in order to advance our collective quest for physically realistic hydrologic models.

  7. Impacts of Biofuel-Induced Agricultural Land Use Changes on Watershed Hydrology and Water Quality

    Science.gov (United States)

    Lin, Z.; Zheng, H.

    2015-12-01

    The US Energy Independence and Security Act (EISA) of 2007 has contributed to widespread changes in agricultural land uses. The impact of these land use changes on regional water resources could also be significant. Agricultural land use changes were evaluated for the Red River of the North Basin (RRNB), an international river basin shared by the US and Canada. The influence of the land use changes on spring snowmelt flooding and downstream water quality was also assessed using watershed modeling. The planting areas for corn and soybean in the basin increased by 62% and 18%, while those for spring wheat, forest, and pasture decreased by 30%, 18%, and 50%, from 2006 to 2013. Although the magnitude of spring snowmelt peak flows in the Red River did not change from pre-EISA to post-EISA, our uncertainty analysis of the normalized hydrographs revealed that the downstream streamflows had a greater variability under the post-EISA land use scenario, which may lead to greater uncertainty in predicting spring snowmelt floods in the Red River. Hydrological simulation also showed that the sediment and nutrient loads at the basin's outlet in the US and Canada border increased under the post-EISA land use scenario, on average sediment increasing by 2.6%, TP by 14.1%, nitrate nitrogen by 5.9%, and TN by 9.1%. Potential impacts of the future biofuel crop scenarios on watershed hydrology and water quality in the RRNB were also simulated through integrated economic-hydrologic modeling.

  8. Multiple effects of hydrological connectivity on floodplain processes in human modified river systems

    Science.gov (United States)

    Hein, Thomas; Bondar-Kunze, Elisabeth; Preiner, Stefan; Reckendorfer, Walter; Tritthart, Michael; Weigelhofer, Gabriele; Welti, Nina

    2014-05-01

    Floodplain and riparian ecosystems provide multiple functions and services of importance for human well-being and are of strategic importance for different sectors at catchment scale. Especially floodplains in the vicinity of urban areas can be areas of conflicting interests ranging from different land use types, flood water retention, drinking water production and recreation to conservation of last remnants of former riverine landscape, as it is the case in floodplains in the Danube Nationalpark downstream Vienna. Many of these ecosystem functions and services are controlled by the exchange conditions between river main channel and floodplain systems, the hydrological connectivity. At the same time these systems have been highly altered and especially the connectivity has been severely impaired. Thus, far ranging effects of changes in hydrological connectivity at various levels can be expected in altered floodplain systems. The aim of this presentation is to explore the complex control of different ecosystem functions and associated services by different parameters of hydrological connectivity, ranging from nutrient, sediment and matter dynamics and biodiversity aspects. Increasing connectivity will be shown to impact microbial dynamics, sediment-water interactions, carbon dynamics and trophic conditions, thus affecting the fundamental functions of particular floodplain systems at various spatial and temporal scales. Based on these changes also the provision of ecosystem services of floodplains is affected. The results clearly show that hydrological connectivity needs to be considered in a sustainable management approach.

  9. Uncertainty in projected point precipitation extremes for hydrological impact analysis of climate change

    Science.gov (United States)

    Van Uytven, Els; Willems, Patrick

    2017-04-01

    Current trends in the hydro-meteorological variables indicate the potential impact of climate change on hydrological extremes. Therefore, they trigger an increased importance climate adaptation strategies in water management. The impact of climate change on hydro-meteorological and hydrological extremes is, however, highly uncertain. This is due to uncertainties introduced by the climate models, the internal variability inherent to the climate system, the greenhouse gas scenarios and the statistical downscaling methods. In view of the need to define sustainable climate adaptation strategies, there is a need to assess these uncertainties. This is commonly done by means of ensemble approaches. Because more and more climate models and statistical downscaling methods become available, there is a need to facilitate the climate impact and uncertainty analysis. A Climate Perturbation Tool has been developed for that purpose, which combines a set of statistical downscaling methods including weather typing, weather generator, transfer function and advanced perturbation based approaches. By use of an interactive interface, climate impact modelers can apply these statistical downscaling methods in a semi-automatic way to an ensemble of climate model runs. The tool is applicable to any region, but has been demonstrated so far to cases in Belgium, Suriname, Vietnam and Bangladesh. Time series representing future local-scale precipitation, temperature and potential evapotranspiration (PET) conditions were obtained, starting from time series of historical observations. Uncertainties on the future meteorological conditions are represented in two different ways: through an ensemble of time series, and a reduced set of synthetic scenarios. The both aim to span the full uncertainty range as assessed from the ensemble of climate model runs and downscaling methods. For Belgium, for instance, use was made of 100-year time series of 10-minutes precipitation observations and daily

  10. Initial hydrological modelling to assess impacts of different land uses on process hydrology in a small-scale semi-arid catchment in the Western Cape Province, South Africa

    CSIR Research Space (South Africa)

    Steudel, T

    2010-06-01

    Full Text Available in those areas. GIS DATA ? highly precise GPS field measurements and contour line information for digital elevation model (DEM) generation and watershed derivation ? different raster layers (spatial resolution = 7.6 m) containing plot specific...2000 is capable of representing the hydrological conditions within such a small- scale catchment (Fig. 5, Fig 6) OUTLOOK ? J2000 can be used for a detailed analysis of the individual hydrological components affected by land use change ? further...

  11. Upscaling from research watersheds: an essential stage of trustworthy general-purpose hydrologic model building

    Science.gov (United States)

    McNamara, J. P.; Semenova, O.; Restrepo, P. J.

    2011-12-01

    Highly instrumented research watersheds provide excellent opportunities for investigating hydrologic processes. A danger, however, is that the processes observed at a particular research watershed are too specific to the watershed and not representative even of the larger scale watershed that contains that particular research watershed. Thus, models developed based on those partial observations may not be suitable for general hydrologic use. Therefore demonstrating the upscaling of hydrologic process from research watersheds to larger watersheds is essential to validate concepts and test model structure. The Hydrograph model has been developed as a general-purpose process-based hydrologic distributed system. In its applications and further development we evaluate the scaling of model concepts and parameters in a wide range of hydrologic landscapes. All models, either lumped or distributed, are based on a discretization concept. It is common practice that watersheds are discretized into so called hydrologic units or hydrologic landscapes possessing assumed homogeneous hydrologic functioning. If a model structure is fixed, the difference in hydrologic functioning (difference in hydrologic landscapes) should be reflected by a specific set of model parameters. Research watersheds provide the possibility for reasonable detailed combining of processes into some typical hydrologic concept such as hydrologic units, hydrologic forms, and runoff formation complexes in the Hydrograph model. And here by upscaling we imply not the upscaling of a single process but upscaling of such unified hydrologic functioning. The simulation of runoff processes for the Dry Creek research watershed, Idaho, USA (27 km2) was undertaken using the Hydrograph model. The information on the watershed was provided by Boise State University and included a GIS database of watershed characteristics and a detailed hydrometeorological observational dataset. The model provided good simulation results in

  12. Effects of volcanic and hydrologic processes on forest vegetation: Chaitén Volcano, Chile

    Science.gov (United States)

    Frederick J. Swanson; Julia A. Jones; Charles M. Crisafulli; Antonio. Lara

    2013-01-01

    The 2008-2009 eruption of Chaiten Volcano (Chile) involved a variety of volcanic and associated hydrologic processes that damaged nearby forests. These processes included coarse (gravel) and fine (silt to sand) tephra fall, a laterally directed blast, fluvial deposition of remobilized tephra, a variety of low-temperature mass-movement processes, and a pyroclastic flow...

  13. Application of a hybrid multiscale approach to simulate hydrologic and biogeochemical processes in the river-groundwater interaction zone.

    Energy Technology Data Exchange (ETDEWEB)

    Hammond, Glenn Edward; Yang, Xiaofan; Song, Xuehang; Song, Hyun-Seob; Hou, Zhangshuan; Chen, Xingyuan; Liu, Yuanyuan; Scheibe, Tim

    2017-03-01

    The groundwater-surface water interaction zone (GSIZ) plays an important role in riverine and watershed ecosystems as the exchange of waters of variable composition and temperature (hydrologic exchange flows) stimulate microbial activity and associated biogeochemical reactions. Variable temporal and spatial scales of hydrologic exchange flows, heterogeneity of the subsurface environment, and complexity of biogeochemical reaction networks in the GSIZ present challenges to incorporation of fundamental process representations and model parameterization across a range of spatial scales (e.g. from pore-scale to field scale). This paper presents a novel hybrid multiscale simulation approach that couples hydrologic-biogeochemical (HBGC) processes between two distinct length scales of interest.

  14. Hydrological mixing and geochemical processes characterization in an estuarine/mangrove system using environmental tracers in Babitonga Bay (Santa Catarina, Brazil)

    Science.gov (United States)

    Barros Grace, Virgínia; Mas-Pla, Josep; Oliveira Novais, Therezinha; Sacchi, Elisa; Zuppi, Gian Maria

    2008-03-01

    The hydrologic complex of Babitonga Bay (Brazil) forms a vast environmental complex where agriculture, shellfish farming, and industries coexist with a unique natural area of Atlantic rain forest and mangrove systems. The origin of different continental hydrological components, the environmental transition between saline and freshwaters, and the influence of the seasonality on Babitonga Bay waters are evaluated using isotopes and chemistry. End-member mixing analysis is used to explore hydrological processes in the bay. We show that a mixing of waters from different origins takes place in the bay modifying its chemical characteristics. Furthermore, biogeochemical processes related to well-developed mangrove systems are responsible for an efficient bromide uptake, which limit its use as a tracer as commonly used in non-biologically active environments. Seasonal behaviours are also distinguished from our datasets. The rainy season (April) provides a homogenization of the hydrological processes that is not seen after the dry season (October), when larger spatial differences appear and when the effects of biological processes on the bay hydrochemistry are more dynamic, or can be better recognized. Moreover, Cl/Br and stable isotopes of water molecule allow a neat definition of the hydrological and biogeochemical processes that control chemical composition in coastal and transition areas.

  15. Local control on precipitation in a fully coupled climate-hydrology model.

    Science.gov (United States)

    Larsen, Morten A D; Christensen, Jens H; Drews, Martin; Butts, Michael B; Refsgaard, Jens C

    2016-03-10

    The ability to simulate regional precipitation realistically by climate models is essential to understand and adapt to climate change. Due to the complexity of associated processes, particularly at unresolved temporal and spatial scales this continues to be a major challenge. As a result, climate simulations of precipitation often exhibit substantial biases that affect the reliability of future projections. Here we demonstrate how a regional climate model (RCM) coupled to a distributed hydrological catchment model that fully integrates water and energy fluxes between the subsurface, land surface, plant cover and the atmosphere, enables a realistic representation of local precipitation. Substantial improvements in simulated precipitation dynamics on seasonal and longer time scales is seen for a simulation period of six years and can be attributed to a more complete treatment of hydrological sub-surface processes including groundwater and moisture feedback. A high degree of local influence on the atmosphere suggests that coupled climate-hydrology models have a potential for improving climate projections and the results further indicate a diminished need for bias correction in climate-hydrology impact studies.

  16. Review article: Hydrological modeling in glacierized catchments of central Asia - status and challenges

    Science.gov (United States)

    Chen, Yaning; Li, Weihong; Fang, Gonghuan; Li, Zhi

    2017-02-01

    Meltwater from glacierized catchments is one of the most important water supplies in central Asia. Therefore, the effects of climate change on glaciers and snow cover will have increasingly significant consequences for runoff. Hydrological modeling has become an indispensable research approach to water resources management in large glacierized river basins, but there is a lack of focus in the modeling of glacial discharge. This paper reviews the status of hydrological modeling in glacierized catchments of central Asia, discussing the limitations of the available models and extrapolating these to future challenges and directions. After reviewing recent efforts, we conclude that the main sources of uncertainty in assessing the regional hydrological impacts of climate change are the unreliable and incomplete data sets and the lack of understanding of the hydrological regimes of glacierized catchments of central Asia. Runoff trends indicate a complex response to changes in climate. For future variation of water resources, it is essential to quantify the responses of hydrologic processes to both climate change and shrinking glaciers in glacierized catchments, and scientific focus should be on reducing uncertainties linked to these processes.

  17. Coupling of Processes and Data in PennState Integrated Hydrologic Modeling (PIHM) System

    Science.gov (United States)

    Kumar, M.; Duffy, C.

    2007-12-01

    Full physical coupling, "natural" numerical coupling and parsimonious but accurate data coupling is needed to comprehensively and accurately capture the interaction between different components of a hydrologic continuum. Here we present a physically based, spatially distributed hydrologic model that incorporates all the three coupling strategies. Physical coupling of interception, snow melt, transpiration, overland flow, subsurface flow, river flow, macropore based infiltration and stormflow, flow through and over hydraulic structures likes weirs and dams, and evaporation from interception, ground and overland flow is performed. All the physically coupled components are numerically coupled through semi-discrete form of ordinary differential equations, that define each hydrologic process, using Finite-Volume based approach. The fully implicit solution methodology using CVODE solver solves for all the state variables simultaneously at each adaptive time steps thus providing robustness, stability and accuracy. The accurate data coupling is aided by use of constrained unstructured meshes, flexible data model and use of PIHMgis. The spatial adaptivity of decomposed domain and temporal adaptivity of the numerical solver facilitates capture of varied spatio-temporal scales that are inherent in hydrologic process interactions. The implementation of the model has been performed on a meso-scale Little-Juniata Watershed. Model results are validated by comparison of streamflow at multiple locations. We discuss some of the interesting hydrologic interactions between surface, subsurface and atmosphere witnessed during the year long simulation such as a) inverse relationship between evaporation from interception storage and transpiration b) relative influence of forcing (precipitation, temperature and radiation) and source (soil moisture and overland flow) on evaporation c) influence of local topography on gaining, loosing or "flow-through" behavior of river-aquifer interactions

  18. Climate change impact assessment on the hydrological regime of the Kaligandaki Basin, Nepal.

    Science.gov (United States)

    Bajracharya, Ajay Ratna; Bajracharya, Sagar Ratna; Shrestha, Arun Bhakta; Maharjan, Sudan Bikash

    2018-06-01

    The Hindu Kush-Himalayan region is an important global freshwater resource. The hydrological regime of the region is vulnerable to climatic variations, especially precipitation and temperature. In our study, we modelled the impact of climate change on the water balance and hydrological regime of the snow dominated Kaligandaki Basin. The Soil and Water Assessment Tool (SWAT) was used for a future projection of changes in the hydrological regime of the Kaligandaki basin based on Representative Concentration Pathways Scenarios (RCP 4.5 and RCP 8.5) of ensemble downscaled Coupled Model Intercomparison Project's (CMIP5) General Circulation Model (GCM) outputs. It is predicted to be a rise in the average annual temperature of over 4°C, and an increase in the average annual precipitation of over 26% by the end of the 21st century under RCP 8.5 scenario. Modeling results show these will lead to significant changes in the basin's water balance and hydrological regime. In particular, a 50% increase in discharge is expected at the outlet of the basin. Snowmelt contribution will largely be affected by climate change, and it is projected to increase by 90% by 2090.Water availability in the basin is not likely to decrease during the 21st century. The study demonstrates that the important water balance components of snowmelt, evapotranspiration, and water yield at higher elevations in the upper and middle sub-basins of the Kaligandaki Basin will be most affected by the increasing temperatures and precipitation. Copyright © 2018 The Authors. Published by Elsevier B.V. All rights reserved.

  19. Modeling of Andean Páramo Ecosystems’ Hydrological Response to Environmental Change

    Directory of Open Access Journals (Sweden)

    Francisco Flores-López

    2016-03-01

    Full Text Available In the Peruvian Andes, water infiltration from tropical wetlands, called páramo, generates headwaters for downstream rivers. The hydrological processes of these wetlands are not well understood within the larger hydrological system, impeding efforts to mitigate the rapid environmental changes anticipated due to regional population growth and climate change. This study constructed and calibrated a Water Evaluation and Planning (WEAP system model for ecosystems with sparse data in the Quiroz-Chipillico watershed in the Piura region of Peru. The model simulates the impacts of possible changes within the hydrological system to assist decision-makers in strategizing about sustainable development for the region, especially the páramo. Using scenarios designed with stakeholder participation, the WEAP model for the Quiroz-Chipillico watershed examines river headflow production, reservoir water levels, and demand coverage for downstream users when the upstream páramo and its environs are subjected to changes of temperature, precipitation, and land use. The model reveals that while temperature and precipitation changes can be expected to impact páramo water production, the anticipated land use changes will be a primary driver of hydrological responses in the páramo and subsequent changes downstream.

  20. Wildfire and aspect effects on hydrologic states after the 2010 Fourmile Canyon Fire

    Science.gov (United States)

    Ebel, Brian A.

    2013-01-01

    Wildfire can change how soils take in, store, and release water. This study examined differences in how burned and unburned plots on north versus south-facing slope aspects respond to rainfall. The largest wildfire impacts were litter/duff combustion on burned north-facing slopes versus soil-water retention reduction on burned south-facing slopes.Wildfire is one of the most significant disturbances in mountainous landscapes, affecting water supply and ecologic function and setting the stage for natural hazards such as flash floods. The impacts of wildfire can affect the entire hydrologic cycle. Measurements of soil-water content and matric potential in the near surface (top 30 cm) captured the hydrologic state in both burned and unburned hillslopes during the first spring through fall period (1 June–1 Oct. 2011) after the 2010 Fourmile Canyon Fire near Boulder, CO. This time span included different hydrologic periods characterized by cyclonic frontal storms (low-intensity, long duration), convective storms (high-intensity, short duration), and dry periods. In mountainous environments, aspect can also control hydrologic states, so north- vs. south-facing slopes were compared. Wildfire tended to homogenize soil-water contents across aspects and with depth in the soil, yet it also may have introduced an aspect control on matric potential that was not observed in unburned soils. Post-wildfire changes in hydrologic state were observed in south-facing soils, probably reflecting decreased soil-water retention after wildfire. North-facing soils were impacted the most, in terms of hydrologic state, by the loss of water storage in the combusted litter–duff layer and forest canopy, which had provided a large “hydrologic buffering” capacity when unburned. Unsaturated zone measurements showed increased variability in hydrologic states and more rapid state transitions in wildfire-impacted soils. A simple, qualitative analysis suggested that the range of unsaturated

  1. Projecting the Hydrologic Impacts of Climate Change on Montane Wetlands

    Science.gov (United States)

    Hamlet, Alan F.; Palen, Wendy J.; Lawler, Joshua J.; Halabisky, Meghan

    2015-01-01

    Wetlands are globally important ecosystems that provide critical services for natural communities and human society. Montane wetland ecosystems are expected to be among the most sensitive to changing climate, as their persistence depends on factors directly influenced by climate (e.g. precipitation, snowpack, evaporation). Despite their importance and climate sensitivity, wetlands tend to be understudied due to a lack of tools and data relative to what is available for other ecosystem types. Here, we develop and demonstrate a new method for projecting climate-induced hydrologic changes in montane wetlands. Using observed wetland water levels and soil moisture simulated by the physically based Variable Infiltration Capacity (VIC) hydrologic model, we developed site-specific regression models relating soil moisture to observed wetland water levels to simulate the hydrologic behavior of four types of montane wetlands (ephemeral, intermediate, perennial, permanent wetlands) in the U. S. Pacific Northwest. The hybrid models captured observed wetland dynamics in many cases, though were less robust in others. We then used these models to a) hindcast historical wetland behavior in response to observed climate variability (1916–2010 or later) and classify wetland types, and b) project the impacts of climate change on montane wetlands using global climate model scenarios for the 2040s and 2080s (A1B emissions scenario). These future projections show that climate-induced changes to key driving variables (reduced snowpack, higher evapotranspiration, extended summer drought) will result in earlier and faster drawdown in Pacific Northwest montane wetlands, leading to systematic reductions in water levels, shortened wetland hydroperiods, and increased probability of drying. Intermediate hydroperiod wetlands are projected to experience the greatest changes. For the 2080s scenario, widespread conversion of intermediate wetlands to fast-drying ephemeral wetlands will likely reduce

  2. Projecting the Hydrologic Impacts of Climate Change on Montane Wetlands.

    Science.gov (United States)

    Lee, Se-Yeun; Ryan, Maureen E; Hamlet, Alan F; Palen, Wendy J; Lawler, Joshua J; Halabisky, Meghan

    2015-01-01

    Wetlands are globally important ecosystems that provide critical services for natural communities and human society. Montane wetland ecosystems are expected to be among the most sensitive to changing climate, as their persistence depends on factors directly influenced by climate (e.g. precipitation, snowpack, evaporation). Despite their importance and climate sensitivity, wetlands tend to be understudied due to a lack of tools and data relative to what is available for other ecosystem types. Here, we develop and demonstrate a new method for projecting climate-induced hydrologic changes in montane wetlands. Using observed wetland water levels and soil moisture simulated by the physically based Variable Infiltration Capacity (VIC) hydrologic model, we developed site-specific regression models relating soil moisture to observed wetland water levels to simulate the hydrologic behavior of four types of montane wetlands (ephemeral, intermediate, perennial, permanent wetlands) in the U. S. Pacific Northwest. The hybrid models captured observed wetland dynamics in many cases, though were less robust in others. We then used these models to a) hindcast historical wetland behavior in response to observed climate variability (1916-2010 or later) and classify wetland types, and b) project the impacts of climate change on montane wetlands using global climate model scenarios for the 2040s and 2080s (A1B emissions scenario). These future projections show that climate-induced changes to key driving variables (reduced snowpack, higher evapotranspiration, extended summer drought) will result in earlier and faster drawdown in Pacific Northwest montane wetlands, leading to systematic reductions in water levels, shortened wetland hydroperiods, and increased probability of drying. Intermediate hydroperiod wetlands are projected to experience the greatest changes. For the 2080s scenario, widespread conversion of intermediate wetlands to fast-drying ephemeral wetlands will likely reduce

  3. Climate change impacts utilizing regional models for agriculture, hydrology and natural ecosystems

    Science.gov (United States)

    Kafatos, M.; Asrar, G. R.; El-Askary, H. M.; Hatzopoulos, N.; Kim, J.; Kim, S.; Medvigy, D.; Prasad, A. K.; Smith, E.; Stack, D. H.; Tremback, C.; Walko, R. L.

    2012-12-01

    Climate change impacts the entire Earth but with crucial and often catastrophic impacts at local and regional levels. Extreme phenomena such as fires, dust storms, droughts and other natural hazards present immediate risks and challenges. Such phenomena will become more extreme as climate change and anthropogenic activities accelerate in the future. We describe a major project funded by NIFA (Grant # 2011-67004-30224), under the joint NSF-DOE-USDA Earth System Models (EaSM) program, to investigate the impacts of climate variability and change on the agricultural and natural (i.e. rangeland) ecosystems in the Southwest USA using a combination of historical and present observations together with climate, and ecosystem models, both in hind-cast and forecast modes. The applicability of the methodology to other regions is relevant (for similar geographic regions as well as other parts of the world with different agriculture and ecosystems) and should advance the state of knowledge for regional impacts of climate change. A combination of multi-model global climate projections from the decadal predictability simulations, to downscale dynamically these projections using three regional climate models, combined with remote sensing MODIS and other data, in order to obtain high-resolution climate data that can be used with hydrological and ecosystem models for impacts analysis, is described in this presentation. Such analysis is needed to assess the future risks and potential impacts of projected changes on these natural and managed ecosystems. The results from our analysis can be used by scientists to assist extended communities to determine agricultural coping strategies, and is, therefore, of interest to wide communities of stakeholders. In future work we will be including surface hydrologic modeling and water resources, extend modeling to higher resolutions and include significantly more crops and geographical regions with different weather and climate conditions

  4. Five Guidelines for Selecting Hydrological Signatures

    Science.gov (United States)

    McMillan, H. K.; Westerberg, I.; Branger, F.

    2017-12-01

    Hydrological signatures are index values derived from observed or modeled series of hydrological data such as rainfall, flow or soil moisture. They are designed to extract relevant information about hydrological behavior, such as to identify dominant processes, and to determine the strength, speed and spatiotemporal variability of the rainfall-runoff response. Hydrological signatures play an important role in model evaluation. They allow us to test whether particular model structures or parameter sets accurately reproduce the runoff generation processes within the watershed of interest. Most modeling studies use a selection of different signatures to capture different aspects of the catchment response, for example evaluating overall flow distribution as well as high and low flow extremes and flow timing. Such studies often choose their own set of signatures, or may borrow subsets of signatures used in multiple other works. The link between signature values and hydrological processes is not always straightforward, leading to uncertainty and variability in hydrologists' signature choices. In this presentation, we aim to encourage a more rigorous approach to hydrological signature selection, which considers the ability of signatures to represent hydrological behavior and underlying processes for the catchment and application in question. To this end, we propose a set of guidelines for selecting hydrological signatures. We describe five criteria that any hydrological signature should conform to: Identifiability, Robustness, Consistency, Representativeness, and Discriminatory Power. We describe an example of the design process for a signature, assessing possible signature designs against the guidelines above. Due to their ubiquity, we chose a signature related to the Flow Duration Curve, selecting the FDC mid-section slope as a proposed signature to quantify catchment overall behavior and flashiness. We demonstrate how assessment against each guideline could be used to

  5. JAMS - a software platform for modular hydrological modelling

    Science.gov (United States)

    Kralisch, Sven; Fischer, Christian

    2015-04-01

    Current challenges of understanding and assessing the impacts of climate and land use changes on environmental systems demand for an ever-increasing integration of data and process knowledge in corresponding simulation models. Software frameworks that allow for a seamless creation of integrated models based on less complex components (domain models, process simulation routines) have therefore gained increasing attention during the last decade. JAMS is an Open-Source software framework that has been especially designed to cope with the challenges of eco-hydrological modelling. This is reflected by (i) its flexible approach for representing time and space, (ii) a strong separation of process simulation components from the declarative description of more complex models using domain specific XML, (iii) powerful analysis and visualization functions for spatial and temporal input and output data, and (iv) parameter optimization and uncertainty analysis functions commonly used in environmental modelling. Based on JAMS, different hydrological and nutrient-transport simulation models were implemented and successfully applied during the last years. We will present the JAMS core concepts and give an overview of models, simulation components and support tools available for that framework. Sample applications will be used to underline the advantages of component-based model designs and to show how JAMS can be used to address the challenges of integrated hydrological modelling.

  6. Algal Bio-Indication in Assessment of Hydrological Impact on Ecosystem in Wetlands of “Slavyansky Resort”

    Directory of Open Access Journals (Sweden)

    Klymiuk Valentina

    2015-06-01

    Full Text Available Algal bio-indication is commonly used in water quality assessment but can also help in assessing the impact of hydrology on freshwater wetland ecosystems.We identified 350 species and infraspecific taxa of algae from nine taxonomic divisions (Cyanoprokaryota, Chrysophyta, Euglenophyta,Dinophyta,Xanthophyta,Cryptophyta,Bacillariophyta,Chlorophyta,Charophyta in 121 phytoplankton samples collected between 2007-2013 from seven lakes in the wetlands of the Regional Landscape Park “Slavyansky Resort”, Ukraine. The algal species richness and phytoplankton biomass decreased as water salinity increased. In turn the water salinity was influenced by the inflow of groundwater, karst fracture and by the alluvial water tributaries of a paleoriver that affects the formation processes of lake-spring sulphide mud from the resort, which is often used for therapeutic purposes.

  7. Characterizing fate and transport properties in karst aquifers under different hydrologic conditions

    Science.gov (United States)

    Rodriguez, E.; Padilla, I. Y.

    2017-12-01

    Karst landscapes contain very productive aquifers. The hydraulic and hydrogeological characteristics of karst aquifers make these systems capable of storing and transporting large amount of water, but also highly vulnerable to contamination. Their extremely heterogeneous nature prevents accurate prediction in contaminant fate and transport. Even more challenging is to understand the impact of hydrologic conditions changes on fate and transport processes. This studies aims at characterizing fate and transport processes in the karst groundwater system of northern Puerto Rico under different hydrologic conditions. The study involves injecting rhodamine and uranine dyes into a sinkhole, and monitoring concentrations at a spring. Results show incomplete recovery of tracers, but breaking curves can be used to estimate advective, dispersive and mass transfer characteristic of the karst system. Preliminary results suggest significant differences in fate and transport characteristics under different hydrologic conditions.

  8. Snowpack Variation and Hydrologic Impacts across the Middle East and North Africa

    Science.gov (United States)

    Robinson, D. A.; Ward, M. N.

    2017-12-01

    The Middle East is a region historically sensitive to climate variability and change, and contains snowpacks that have been shown to be important inputs to key regional water resources, including the Tigris-Euphrates river system. Focusing on the Middle East (and the smaller snowpacks of northwestern Africa), this presentation aims to (i) quantify each year's snowpack development and recession over recent decades, highlighting interannual to decadal variability, and (ii) advance understanding on the connection between the snowpack variations and aspects of regional hydrology. The presentation draws on satellite-based products, station data, and model reanalyses. Variation is summarized using space-time statistical techniques, as well as simpler regional indices: Northwestern Iran / Southern Caucasus (NWIC, includes Zagros Mountains); Eastern Turkey (ETKY, includes Taurus Mountains); and smaller scale indices for Lebanon and the Atlas Mountains. The Interactive Multisensor Snow and Ice Mapping System archives daily snow cover extent at 24 km resolution for 1999-present (primarily from visible satellite imagery). These data show that for both NWIC and ETKY, the mean snow extent peaks in late January with substantial coverage ( 300,000 km2 in each region), contracting to near zero by late June. A very large mid-winter interannual variance is also shown, implying substantial variation in hydrologic impacts during spring melt. Variability and decadal trends are compared with station snow depth reports (Global Historical Climatology Network - Daily). Strong agreement gives confidence in data quality, as well as, indicating high covariation of depth and extent. The connection with hydrologic impacts is investigated using reanalysis products, including the Global Land Data Assimilation System V2, which for the Middle East, shows broad agreement with observed maximum snow extent and spring retreat. The connections internal to the reanalysis between snow cover, melt and

  9. Hydrology under change: an evaluation protocol to investigate how hydrological models deal with changing catchments

    Science.gov (United States)

    G. Thirel; V. Andreassian; C. Perrin; J.-N. Audouy; L. Berthet; Pamela Edwards; N. Folton; C. Furusho; A. Kuentz; J. Lerat; G. Lindstrom; E. Martin; T. Mathevet; R. Merz; J. Parajka; D. Ruelland; J. Vaze

    2015-01-01

    Testing hydrological models under changing conditions is essential to evaluate their ability to cope with changing catchments and their suitability for impact studies. With this perspective in mind, a workshop dedicated to this issue was held at the 2013 General Assembly of the International Association of Hydrological Sciences (IAHS) in Göteborg, Sweden, in July 2013...

  10. The IAHR project CCHE-Climate Change impact on the Hydrological cycle, water management and Engineering: an overview and preliminary results

    Science.gov (United States)

    Ranzi, Roberto; Kojiri, T.; Mynett, A.; Barontini, S.; van de Giesen, N.; Kolokytha, E.; Ngo, L. A.; Oreamuno, R.; Renard, B.; Sighomnou, D.; Vizina, A.

    2010-05-01

    IAHR, the International Association for Hydro-Environment Engineering and Research launched a research Project called Climate Change impact on the Hydrological cycle, water management and Engineering (IAHR CCHE Project). It was motivated by the fact that, although it is now well accepted that, in the light of the recent IPCC reports the vast majority of members of the scientific community are convinced that the climate is changing or at least will experience a significant fluctuation already during the current century, it is perceived that some hydrologists, water experts and hydraulic engineers are not yet ready to incorporate climate change scenarios in their designs for such projects as: - flood protection and river training, - dam rehabilitation, - water resources management under water scarcity and changes in the hydrological regimes. The objective of the project is to encourage a close co-operation between the scientific and engineering communities in taking appropriate and timely action in response to the impact of climate change on the hydrological regime and on water resource projects. The project aims at reporting on (a) the current state of knowledge as regards the impact of projected climate change on the hydrological regime in different regions of the world, where these regions are defined not just in geographic terms but also on the basis of their level of economic and water resources development; (b) the extent to which these impacts are recognized and taken into account by national water authorities, engineering organizations and other regulating bodies in setting their standard practices and procedures for the planning, design and operation of water works. These adaptation measures will include both "hard" responses, such as the construction or enlargement of engineering structures, and "soft" responses, such as changes in legislation or the operating rules of existing structures. An overview of the project and preliminary results extracted from of

  11. Spatiotemporal impacts of LULC changes on hydrology from the perspective of runoff generation mechanism using SWAT model with evolving parameters

    Science.gov (United States)

    Li, Y.; Chang, J.; Luo, L.

    2017-12-01

    It is of great importance for water resources management to model the truly hydrological process under changing environment, especially under significant changes of underlying surfaces like the Wei River Bain (WRB) where the subsurface hydrology is highly influenced by human activities, and to systematically investigate the interactions among LULC change, streamflow variation and changes in runoff generation process. Therefore, we proposed the idea of evolving parameters in hydrological model (SWAT) to reflect the changes in physical environment with different LULC conditions. Then with these evolving parameters, the spatiotemporal impacts of LULC changes on streamflow were quantified, and qualitative analysis was conducted to further explore how LULC changes affect the streamflow from the perspective of runoff generation mechanism. Results indicate the following: 1) evolving parameter calibration is not only effective but necessary to ensure the validity of the model when dealing with significant changes in underlying surfaces due to human activities. 2) compared to the baseline period, the streamflow in wet seasons increased in the 1990s but decreased in the 2000s. While at yearly and dry seasonal scales, the streamflow decreased in both two decades; 3) the expansion of cropland is the major contributor to the reduction of surface water component, thus causing the decline in streamflow at yearly and dry seasonal scales. While compared to the 1990s, the expansions of woodland in the middle stream and grassland in the downstream are the main stressors that increased the soil water component, thus leading to the more decline of the streamflow in the 2000s.

  12. Climate change impacts on freshwater wetland hydrology and vegetation cover cycling along a regional aridity gradient

    Science.gov (United States)

    Global mean temperature may increase up to 6°C by the end of this century and together with precipitation change may steepen regional aridity gradients, impacting the hydrology, productivity, diversity, and ecosystem goods and services from freshwater wetlands, where the water balance is tightly cou...

  13. Fiber‐optic distributed temperature sensing: A new tool for assessment and monitoring of hydrologic processes

    Science.gov (United States)

    Lane, John W.; Day-Lewis, Frederick D.; Johnson, Carole D.; Dawson, Cian B.; Nelms, David L.; Miller, Cheryl; Wheeler, Jerrod D.; Harvey, Charles F.; Karam, Hanan N.

    2008-01-01

    Fiber‐optic distributed temperature sensing (FO DTS) is an emerging technology for characterizing and monitoring a wide range of important earth processes. FO DTS utilizes laser light to measure temperature along the entire length of standard telecommunications optical fibers. The technology can measure temperature every meter over FO cables up to 30 kilometers (km) long. Commercially available systems can measure fiber temperature as often as 4 times per minute, with thermal precision ranging from 0.1 to 0.01 °C depending on measurement integration time. In 2006, the U.S. Geological Survey initiated a project to demonstrate and evaluate DTS as a technology to support hydrologic studies. This paper demonstrates the potential of the technology to assess and monitor hydrologic processes through case‐study examples of FO DTS monitoring of stream‐aquifer interaction on the Shenandoah River near Locke's Mill, Virginia, and on Fish Creek, near Jackson Hole, Wyoming, and estuary‐aquifer interaction on Waquoit Bay, Falmouth, Massachusetts. The ability to continuously observe temperature over large spatial scales with high spatial and temporal resolution provides a new opportunity to observe and monitor a wide range of hydrologic processes with application to other disciplines including hazards, climate‐change, and ecosystem monitoring.

  14. Toward the Development of a Cold Regions Regional-Scale Hydrologic Model, Final Project Report

    Energy Technology Data Exchange (ETDEWEB)

    Hinzman, Larry D [Univ. of Alaska, Fairbanks, AK (United States); Bolton, William Robert [Univ. of Alaska, Fairbanks, AK (United States); Young-Robertson, Jessica (Cable) [Univ. of Alaska, Fairbanks, AK (United States)

    2018-01-02

    This project improves meso-scale hydrologic modeling in the boreal forest by: (1) demonstrating the importance of capturing the heterogeneity of the landscape using small scale datasets for parameterization for both small and large basins; (2) demonstrating that in drier parts of the landscape and as the boreal forest dries with climate change, modeling approaches must consider the sensitivity of simulations to soil hydraulic parameters - such as residual water content - that are usually held constant. Thus, variability / flexibility in residual water content must be considered for accurate simulation of hydrologic processes in the boreal forest; (3) demonstrating that assessing climate change impacts on boreal forest hydrology through multiple model integration must account for direct effects of climate change (temperature and precipitation), and indirect effects from climate impacts on landscape characteristics (permafrost and vegetation distribution). Simulations demonstrated that climate change will increase runoff, but will increase ET to a greater extent and result in a drying of the landscape; and (4) vegetation plays a significant role in boreal hydrologic processes in permafrost free areas that have deciduous trees. This landscape type results in a decoupling of ET and precipitation, a tight coupling of ET and temperature, low runoff, and overall soil drying.

  15. Understanding controls of hydrologic processes across two headwater monolithological catchments using model-data synthesis

    Science.gov (United States)

    Xiao, D.; Shi, Y.; Hoagland, B.; Del Vecchio, J.; Russo, T. A.; DiBiase, R. A.; Li, L.

    2017-12-01

    How do watershed hydrologic processes differ in catchments derived from different lithology? This study compares two first order, deciduous forest watersheds in Pennsylvania, a sandstone watershed, Garner Run (GR, 1.34 km2), and a shale-derived watershed, Shale Hills (SH, 0.08 km2). Both watersheds are simulated using a combination of national datasets and field measurements, and a physics-based land surface hydrologic model, Flux-PIHM. We aim to evaluate the effects of lithology on watershed hydrology and assess if we can simulate a new watershed without intensive measurements, i.e., directly use calibration information from one watershed (SH) to reproduce hydrologic dynamics of another watershed (GR). Without any calibration, the model at GR based on national datasets and calibration inforamtion from SH cannot capture some discharge peaks or the baseflow during dry periods. The model prediction agrees well with the GR field discharge and soil moisture after calibrating the soil hydraulic parameters using the uncertainty based Hornberger-Spear-Young algorithm and the Latin Hypercube Sampling method. Agreeing with the field observation and national datasets, the difference in parameter values shows that the sandstone watershed has a larger averaged soil pore diameter, greater water storage created by porosity, lower water retention ability, and greater preferential flow. The water budget calculation shows that the riparian zone and the colluvial valley serves as buffer zones that stores water at GR. Using the same procedure, we compared Flux-PIHM simulations with and without a field measured surface boulder map at GR. When the boulder map is used, the prediction of areal averaged soil moisture is improved, without performing extra calibration. When calibrated separately, the cases with or without boulder map yield different calibration values, but their hydrologic predictions are similar, showing equifinality. The calibrated soil hydraulic parameter values in the

  16. Improving the spatial representation of basin hydrology and flow processes in the SWAT model

    OpenAIRE

    Rathjens, Hendrik

    2014-01-01

    This dissertation aims at improving the spatial representation of basin hydrology and flow processes in the SWAT model. Die vorliegende Dissertation stellt die methodischen Grundlage zur räumlich differenzierten Modellierung mit dem Modell SWAT dar.

  17. Assessing the hydrological impacts of agricultural changes upstream of the Tunisian World Heritage sea-connected Ichkeul Lake

    Directory of Open Access Journals (Sweden)

    J. Aouissi

    2015-03-01

    Full Text Available The impact of changes in agricultural land use and practices as a controlling driver of hydrologic response and as a source of diffuse pollution, are studied in the Joumine River basin, discharging into the Ichkeul Lake, northern Tunisia, a UNESCO World Heritage site since 1979. The lake is characterized by a very specific hydrological functioning based on a seasonal alternation of water levels and salinity through its link to the Mediterranean Sea. Three Landsat images, in situ surveys and SWAT modelling were used to simulate and assess streamflows and nitrate loads under retrospective land uses.

  18. [Review on HSPF model for simulation of hydrology and water quality processes].

    Science.gov (United States)

    Li, Zhao-fu; Liu, Hong-Yu; Li, Yan

    2012-07-01

    Hydrological Simulation Program-FORTRAN (HSPF), written in FORTRAN, is one ol the best semi-distributed hydrology and water quality models, which was first developed based on the Stanford Watershed Model. Many studies on HSPF model application were conducted. It can represent the contributions of sediment, nutrients, pesticides, conservatives and fecal coliforms from agricultural areas, continuously simulate water quantity and quality processes, as well as the effects of climate change and land use change on water quantity and quality. HSPF consists of three basic application components: PERLND (Pervious Land Segment) IMPLND (Impervious Land Segment), and RCHRES (free-flowing reach or mixed reservoirs). In general, HSPF has extensive application in the modeling of hydrology or water quality processes and the analysis of climate change and land use change. However, it has limited use in China. The main problems with HSPF include: (1) some algorithms and procedures still need to revise, (2) due to the high standard for input data, the accuracy of the model is limited by spatial and attribute data, (3) the model is only applicable for the simulation of well-mixed rivers, reservoirs and one-dimensional water bodies, it must be integrated with other models to solve more complex problems. At present, studies on HSPF model development are still undergoing, such as revision of model platform, extension of model function, method development for model calibration, and analysis of parameter sensitivity. With the accumulation of basic data and imorovement of data sharing, the HSPF model will be applied more extensively in China.

  19. Approaches to modelling hydrology and ecosystem interactions

    Science.gov (United States)

    Silberstein, Richard P.

    2014-05-01

    As the pressures of industry, agriculture and mining on groundwater resources increase there is a burgeoning un-met need to be able to capture these multiple, direct and indirect stresses in a formal framework that will enable better assessment of impact scenarios. While there are many catchment hydrological models and there are some models that represent ecological states and change (e.g. FLAMES, Liedloff and Cook, 2007), these have not been linked in any deterministic or substantive way. Without such coupled eco-hydrological models quantitative assessments of impacts from water use intensification on water dependent ecosystems under changing climate are difficult, if not impossible. The concept would include facility for direct and indirect water related stresses that may develop around mining and well operations, climate stresses, such as rainfall and temperature, biological stresses, such as diseases and invasive species, and competition such as encroachment from other competing land uses. Indirect water impacts could be, for example, a change in groundwater conditions has an impact on stream flow regime, and hence aquatic ecosystems. This paper reviews previous work examining models combining ecology and hydrology with a view to developing a conceptual framework linking a biophysically defensable model that combines ecosystem function with hydrology. The objective is to develop a model capable of representing the cumulative impact of multiple stresses on water resources and associated ecosystem function.

  20. Organic priority substances and microbial processes in river sediments subject to contrasting hydrological conditions.

    Science.gov (United States)

    Zoppini, Annamaria; Ademollo, Nicoletta; Amalfitano, Stefano; Casella, Patrizia; Patrolecco, Luisa; Polesello, Stefano

    2014-06-15

    Flood and drought events of higher intensity and frequency are expected to increase in arid and semi-arid regions, in which temporary rivers represent both a water resource and an aquatic ecosystem to be preserved. In this study, we explored the variation of two classes of hazardous substances (Polycyclic Aromatic Hydrocarbons and Nonylphenols) and the functioning of the microbial community in river sediments subject to hydrological fluctuations (Candelaro river basin, Italy). Overall, the concentration of pollutants (∑PAHs range 8-275ngg(-1); ∑NPs range 299-4858ngg(-1)) suggests a moderate degree of contamination. The conditions in which the sediments were tested, flow (high/low) and no flow (wet/dry/arid), were associated to significant differences in the chemical and microbial properties. The total organic carbon contribution decreased together with the stream flow reduction, while the contribution of C-PAHs and C-NPs tended to increase. NPs were relatively more concentrated in sediments under high flow, while the more hydrophobic PAHs accumulated under low and no flow conditions. Passing from high to no flow conditions, a gradual reduction of microbial processes was observed, to reach the lowest specific bacterial carbon production rates (0.06fmolCh(-1)cell(-1)), extracellular enzyme activities, and the highest doubling time (40h) in arid sediments. In conclusion, different scenarios for the mobilization of pollutants and microbial processes can be identified under contrasting hydrological conditions: (i) the mobilization of pollutants under high flow and a relatively higher probability for biodegradation; (ii) the accumulation of pollutants during low flow and lower probability for biodegradation; (iii) the drastic reduction of pollutant concentrations under dry and arid conditions, probably independently from the microbial activity (abiotic processes). Our findings let us infer that a multiple approach has to be considered for an appropriate water

  1. Impact of model structure on flow simulation and hydrological realism: from a lumped to a semi-distributed approach

    Science.gov (United States)

    Garavaglia, Federico; Le Lay, Matthieu; Gottardi, Fréderic; Garçon, Rémy; Gailhard, Joël; Paquet, Emmanuel; Mathevet, Thibault

    2017-08-01

    Model intercomparison experiments are widely used to investigate and improve hydrological model performance. However, a study based only on runoff simulation is not sufficient to discriminate between different model structures. Hence, there is a need to improve hydrological models for specific streamflow signatures (e.g., low and high flow) and multi-variable predictions (e.g., soil moisture, snow and groundwater). This study assesses the impact of model structure on flow simulation and hydrological realism using three versions of a hydrological model called MORDOR: the historical lumped structure and a revisited formulation available in both lumped and semi-distributed structures. In particular, the main goal of this paper is to investigate the relative impact of model equations and spatial discretization on flow simulation, snowpack representation and evapotranspiration estimation. Comparison of the models is based on an extensive dataset composed of 50 catchments located in French mountainous regions. The evaluation framework is founded on a multi-criterion split-sample strategy. All models were calibrated using an automatic optimization method based on an efficient genetic algorithm. The evaluation framework is enriched by the assessment of snow and evapotranspiration modeling against in situ and satellite data. The results showed that the new model formulations perform significantly better than the initial one in terms of the various streamflow signatures, snow and evapotranspiration predictions. The semi-distributed approach provides better calibration-validation performance for the snow cover area, snow water equivalent and runoff simulation, especially for nival catchments.

  2. Effects of volcanic and hydrologic processes on forest vegetation: Chaitén Volcano, Chile

    OpenAIRE

    Swanson,Frederick J; Jones,Julia A; Crisafulli,Charles M; Lara,Antonio

    2013-01-01

    The 2008-2009 eruption of Chaitén Volcano (Chile) involved a variety of volcanic and associated hydro-logic processes that damaged nearby forests. These processes included coarse (gravel) and fine (silt to sand) tephra fall, a laterally directed blast, fluvial deposition of remobilized tephra, a variety of low-temperature mass-movement processes, and a pyroclastic flow. Each of these geophysical processes constitutes a type of ecosystem disturbance which involves a distinctive suite of distur...

  3. Modelling of hydrologic processes and potential response to climate change through the use of a multisite SWAT

    DEFF Research Database (Denmark)

    Gül, G.O.; Rosbjerg, Dan

    2010-01-01

    Hydrologic models that use components for integrated modelling of surface water and groundwater systems help conveniently simulate the dynamically linked hydrologic and hydraulic processes that govern flow conditions in watersheds. The Soil and Water Assessment Tool (SWAT) is one such model...... that allows continuous simulations over long time periods in the land phase of the hydrologic cycle by incorporating surface water and groundwater interactions. This study provides a verified structure for the SWAT to evaluate existing flow regimes in a small-sized catchment in Denmark and examines a simple...... simulation to help quantify the effects of climate change on regional water quantities. SWAT can be regarded among the alternative hydrologic simulation tools applicable for catchments with similar characteristics and of similar sizes in Denmark. However, the modellers would be required to determine a proper...

  4. Impacts of climate change on the hydrological cycle over France and associated uncertainties

    Science.gov (United States)

    Dayon, Gildas; Boé, Julien; Martin, Éric; Gailhard, Joël

    2018-05-01

    This study deals with the evolution of the hydrological cycle over France during the 21st century. A large multi-member, multi-scenario, and multi-model ensemble of climate projections is downscaled with a new statistical method to drive a physically-based hydrological model with recent improvements. For a business-as-usual scenario, annual precipitation changes generally remain small, except over southern France, where decreases close to 20% are projected. Annual streamflows roughly decrease by 10% (±20%) on the Seine, by 20% (±20%) on the Loire, by 20% (±15%) on the Rhone and by 40% (±15%) on the Garonne. Attenuation measures, as implied by the other scenarios analyzed, lead to less severe changes. However, even with a scenario generally compatible with a limitation of global warming to two degrees, some notable impacts may still occur, with for example a decrease in summer river flows close to 25% for the Garonne.

  5. Simulation of hydrological balance on experimental catchments Všeminka and Dřevnice in the extreme periods 1992 and 1997

    Czech Academy of Sciences Publication Activity Database

    Kovář, P.; Cudlín, Pavel; Šafář, P.

    2004-01-01

    Roč. 50, č. 11 (2004), s. 478-483 ISSN 0370-663X R&D Projects: GA ČR GA103/99/1470 Institutional research plan: CEZ:AV0Z6087904 Keywords : water balance * rainfall- runoff processes * hydrological models Subject RIV: DA - Hydrology ; Limnology Impact factor: 0.379, year: 2004

  6. Subdivision of Texas watersheds for hydrologic modeling.

    Science.gov (United States)

    2009-06-01

    The purpose of this report is to present a set of findings and examples for subdivision of watersheds for hydrologic modeling. Three approaches were used to examine the impact of watershed subdivision on modeled hydrologic response: (1) An equal-area...

  7. Uncertainty in hydrological change modelling

    DEFF Research Database (Denmark)

    Seaby, Lauren Paige

    applied at the grid scale. Flux and state hydrological outputs which integrate responses over time and space showed more sensitivity to precipitation mean spatial biases and less so on extremes. In the investigated catchments, the projected change of groundwater levels and basin discharge between current......Hydrological change modelling methodologies generally use climate models outputs to force hydrological simulations under changed conditions. There are nested sources of uncertainty throughout this methodology, including choice of climate model and subsequent bias correction methods. This Ph.......D. study evaluates the uncertainty of the impact of climate change in hydrological simulations given multiple climate models and bias correction methods of varying complexity. Three distribution based scaling methods (DBS) were developed and benchmarked against a more simplistic and commonly used delta...

  8. [Baseflow separation methods in hydrological process research: a review].

    Science.gov (United States)

    Xu, Lei-Lei; Liu, Jing-Lin; Jin, Chang-Jie; Wang, An-Zhi; Guan, De-Xin; Wu, Jia-Bing; Yuan, Feng-Hui

    2011-11-01

    Baseflow separation research is regarded as one of the most important and difficult issues in hydrology and ecohydrology, but lacked of unified standards in the concepts and methods. This paper introduced the theories of baseflow separation based on the definitions of baseflow components, and analyzed the development course of different baseflow separation methods. Among the methods developed, graph separation method is simple and applicable but arbitrary, balance method accords with hydrological mechanism but is difficult in application, whereas time series separation method and isotopic method can overcome the subjective and arbitrary defects caused by graph separation method, and thus can obtain the baseflow procedure quickly and efficiently. In recent years, hydrological modeling, digital filtering, and isotopic method are the main methods used for baseflow separation.

  9. Preface to the Special Issue on ¡§Watershed Management and Impacts of Climate Change in Hydrology¡¨

    Directory of Open Access Journals (Sweden)

    Gour-Tsyh Yeh

    2012-01-01

    Full Text Available Although practice of hydrology can be traced back to as early as 5000 to 6000 years ago in ancient Mesopotamia, Egypt and China, the study of hydrology emerged as a discipline in the 17th century when Pierre Perrault, Edmé Mariotte and Edmond Halley conducted their experimental work on the hydrologic cycle. For quite a long period, hydrological education and research programs were offered primarily as an engineering discipline in universities in the United States and many East Asian countries. With our increasing understanding of the mechanisms of spatial and temporal distributions of water over large watersheds, and even the globe, and the capabilities of computer modeling of complicated hydrological processes, the study of hydrology has now extended to and interacted with meteorology, geophysics, environmental science, and mathematical statistics, and has established its own right as a branch of geoscience.

  10. Modeling alpine grasslands with two integrated hydrologic models: a comparison of the different process representation in CATHY and GEOtop

    Science.gov (United States)

    Camporese, M.; Bertoldi, G.; Bortoli, E.; Wohlfahrt, G.

    2017-12-01

    Integrated hydrologic surface-subsurface models (IHSSMs) are increasingly used as prediction tools to solve simultaneously states and fluxes in and between multiple terrestrial compartments (e.g., snow cover, surface water, groundwater), in an attempt to tackle environmental problems in a holistic approach. Two such models, CATHY and GEOtop, are used in this study to investigate their capabilities to reproduce hydrological processes in alpine grasslands. The two models differ significantly in the complexity of the representation of the surface energy balance and the solution of Richards equation for water flow in the variably saturated subsurface. The main goal of this research is to show how these differences in process representation can lead to different predictions of hydrologic states and fluxes, in the simulation of an experimental site located in the Venosta Valley (South Tyrol, Italy). Here, a large set of relevant hydrological data (e.g., evapotranspiration, soil moisture) has been collected, with ground and remote sensing observations. The area of interest is part of a Long-Term Ecological Research (LTER) site, a mountain steep, heterogeneous slope, where the predominant land use types are meadow, pasture, and forest. The comparison between data and model predictions, as well as between simulations with the two IHSSMs, contributes to advance our understanding of the tradeoffs between different complexities in modeĺs process representation, model accuracy, and the ability to explain observed hydrological dynamics in alpine environments.

  11. Genetic Programming for Automatic Hydrological Modelling

    Science.gov (United States)

    Chadalawada, Jayashree; Babovic, Vladan

    2017-04-01

    One of the recent challenges for the hydrologic research community is the need for the development of coupled systems that involves the integration of hydrologic, atmospheric and socio-economic relationships. This poses a requirement for novel modelling frameworks that can accurately represent complex systems, given, the limited understanding of underlying processes, increasing volume of data and high levels of uncertainity. Each of the existing hydrological models vary in terms of conceptualization and process representation and is the best suited to capture the environmental dynamics of a particular hydrological system. Data driven approaches can be used in the integration of alternative process hypotheses in order to achieve a unified theory at catchment scale. The key steps in the implementation of integrated modelling framework that is influenced by prior understanding and data, include, choice of the technique for the induction of knowledge from data, identification of alternative structural hypotheses, definition of rules, constraints for meaningful, intelligent combination of model component hypotheses and definition of evaluation metrics. This study aims at defining a Genetic Programming based modelling framework that test different conceptual model constructs based on wide range of objective functions and evolves accurate and parsimonious models that capture dominant hydrological processes at catchment scale. In this paper, GP initializes the evolutionary process using the modelling decisions inspired from the Superflex framework [Fenicia et al., 2011] and automatically combines them into model structures that are scrutinized against observed data using statistical, hydrological and flow duration curve based performance metrics. The collaboration between data driven and physical, conceptual modelling paradigms improves the ability to model and manage hydrologic systems. Fenicia, F., D. Kavetski, and H. H. Savenije (2011), Elements of a flexible approach

  12. Human impacts on terrestrial hydrology: climate change versus pumping and irrigation

    International Nuclear Information System (INIS)

    Ferguson, Ian M; Maxwell, Reed M

    2012-01-01

    Global climate change is altering terrestrial water and energy budgets, with subsequent impacts on surface and groundwater resources; recent studies have shown that local water management practices such as groundwater pumping and irrigation similarly alter terrestrial water and energy budgets over many agricultural regions, with potential feedbacks on weather and climate. Here we use a fully-integrated hydrologic model to directly compare effects of climate change and water management on terrestrial water and energy budgets of a representative agricultural watershed in the semi-arid Southern Great Plains, USA. At local scales, we find that the impacts of pumping and irrigation on latent heat flux, potential recharge and water table depth are similar in magnitude to the impacts of changing temperature and precipitation; however, the spatial distributions of climate and management impacts are substantially different. At the basin scale, the impacts on stream discharge and groundwater storage are remarkably similar. Notably, for the watershed and scenarios studied here, the changes in groundwater storage and stream discharge in response to a 2.5 °C temperature increase are nearly equivalent to those from groundwater-fed irrigation. Our results imply that many semi-arid basins worldwide that practice groundwater pumping and irrigation may already be experiencing similar impacts on surface water and groundwater resources to a warming climate. These results demonstrate that accurate assessment of climate change impacts and development of effective adaptation and mitigation strategies must account for local water management practices. (letter)

  13. Revisiting an interdisciplinary hydrological modelling project. A socio-hydrology (?) example from the early 2000s

    Science.gov (United States)

    Seidl, Roman; Barthel, Roland

    2016-04-01

    Interdisciplinary scientific and societal knowledge plays an increasingly important role in global change research. Also, in the field of water resources interdisciplinarity as well as cooperation with stakeholders from outside academia have been recognized as important. In this contribution, we revisit an integrated regional modelling system (DANUBIA), which was developed by an interdisciplinary team of researchers and relied on stakeholder participation in the framework of the GLOWA-Danube project from 2001 to 2011 (Mauser and Prasch 2016). As the model was developed before the current increase in literature on participatory modelling and interdisciplinarity, we ask how a socio-hydrology approach would have helped and in what way it would have made the work different. The present contribution firstly presents the interdisciplinary concept of DANUBIA, mainly with focus on the integration of human behaviour in a spatially explicit, process-based numerical modelling system (Roland Barthel, Janisch, Schwarz, Trifkovic, Nickel, Schulz, and Mauser 2008; R. Barthel, Nickel, Meleg, Trifkovic, and Braun 2005). Secondly, we compare the approaches to interdisciplinarity in GLOWA-Danube with concepts and ideas presented by socio-hydrology. Thirdly, we frame DANUBIA and a review of key literature on socio-hydrology in the context of a survey among hydrologists (N = 184). This discussion is used to highlight gaps and opportunities of the socio-hydrology approach. We show that the interdisciplinary aspect of the project and the participatory process of stakeholder integration in DANUBIA were not entirely successful. However, important insights were gained and important lessons were learnt. Against the background of these experiences we feel that in its current state, socio-hydrology is still lacking a plan for knowledge integration. Moreover, we consider necessary that socio-hydrology takes into account the lessons learnt from these earlier examples of knowledge integration

  14. Impact of Cryosphere Hydrological Changes on the River Runoff in the Tibetan Plateau

    Science.gov (United States)

    Wang, Y.; Yang, D.

    2015-12-01

    The Tibetan Plateau is the headwaters of many major rivers in Asia, the change in streamflow is significant for social and economic development and natural ecology in the middle and lower reaches. Located in the alpine region, streamflow in the plateau is mainly affected by the cryosphere hydrological processes. Due to global warming in recent decades, the Tibetan Plateau is experiencing glaciers shrinking and permafrost degradation. Accelerated glacier melt led to the increasing meltwater, thus affecting the streamflow. Permafrost is an important factor in stabilizing the water cycle and streamflow, the ecological degradation and the significant changes of rivers, lakes, swamps, wetlands and other hydrological environment in recent decades in the Tibetan plateau is closely related to permafrost degradation. Therefore, it is important to explore the impact of cryosphere hydrological changes on the streamflow for the future water management. This study uses a method of base flow separation and a stepwise multiple regression model to investigate the reasons for the runoff changes in different regions of the Tibetan Plateau during 1960-2000. The contribution of glacier melt to annual runoff is particularly estimated to explore the possible influences of soil freezing and thawing on annual runoff changes. The results show an increasing trend of the annual runoff in the upstream of Nujiang River, Lancang River and Qilian Mountains, dominated by the increasing of base flow; and a decreasing trend of the runoff in the upper reach of the Yarlung Zangbo River, Yellow River and Yangtze River, dominated by the reduction of quick flow. Change in the amount of runoff was mainly due to change in precipitation. Rising temperature accelerates the melting of glaciers and increases the summer quick flow. In addition, rising temperature may reduce the quick flow and increase the base flow due to change of the active permafrost layers, which leads to the increase of soil water storage

  15. Benchmarking observational uncertainties for hydrology (Invited)

    Science.gov (United States)

    McMillan, H. K.; Krueger, T.; Freer, J. E.; Westerberg, I.

    2013-12-01

    become more common for hydrologists to use multiple data types and sources within a single study. This may be driven by complex water management questions which integrate water quantity, quality and ecology; or by recognition of the value of auxiliary data to understand hydrological processes. We discuss briefly the impact of data uncertainty on the increasingly popular use of diagnostic signatures for hydrological process understanding and model development.

  16. Agro-hydrology and multi-temporal high-resolution remote sensing: toward an explicit spatial processes calibration

    Science.gov (United States)

    Ferrant, S.; Gascoin, S.; Veloso, A.; Salmon-Monviola, J.; Claverie, M.; Rivalland, V.; Dedieu, G.; Demarez, V.; Ceschia, E.; Probst, J.-L.; Durand, P.; Bustillo, V.

    2014-12-01

    The growing availability of high-resolution satellite image series offers new opportunities in agro-hydrological research and modeling. We investigated the possibilities offered for improving crop-growth dynamic simulation with the distributed agro-hydrological model: topography-based nitrogen transfer and transformation (TNT2). We used a leaf area index (LAI) map series derived from 105 Formosat-2 (F2) images covering the period 2006-2010. The TNT2 model (Beaujouan et al., 2002), calibrated against discharge and in-stream nitrate fluxes for the period 1985-2001, was tested on the 2005-2010 data set (climate, land use, agricultural practices, and discharge and nitrate fluxes at the outlet). Data from the first year (2005) were used to initialize the hydrological model. A priori agricultural practices obtained from an extensive field survey, such as seeding date, crop cultivar, and amount of fertilizer, were used as input variables. Continuous values of LAI as a function of cumulative daily temperature were obtained at the crop-field level by fitting a double logistic equation against discrete satellite-derived LAI. Model predictions of LAI dynamics using the a priori input parameters displayed temporal shifts from those observed LAI profiles that are irregularly distributed in space (between field crops) and time (between years). By resetting the seeding date at the crop-field level, we have developed an optimization method designed to efficiently minimize this temporal shift and better fit the crop growth against both the spatial observations and crop production. This optimization of simulated LAI has a negligible impact on water budgets at the catchment scale (1 mm yr-1 on average) but a noticeable impact on in-stream nitrogen fluxes (around 12%), which is of interest when considering nitrate stream contamination issues and the objectives of TNT2 modeling. This study demonstrates the potential contribution of the forthcoming high spatial and temporal resolution

  17. Modeling the Hydrological Regime of Turkana Lake (Kenya, Ethiopia) by Combining Spatially Distributed Hydrological Modeling and Remote Sensing Datasets

    Science.gov (United States)

    Anghileri, D.; Kaelin, A.; Peleg, N.; Fatichi, S.; Molnar, P.; Roques, C.; Longuevergne, L.; Burlando, P.

    2017-12-01

    Hydrological modeling in poorly gauged basins can benefit from the use of remote sensing datasets although there are challenges associated with the mismatch in spatial and temporal scales between catchment scale hydrological models and remote sensing products. We model the hydrological processes and long-term water budget of the Lake Turkana catchment, a transboundary basin between Kenya and Ethiopia, by integrating several remote sensing products into a spatially distributed and physically explicit model, Topkapi-ETH. Lake Turkana is the world largest desert lake draining a catchment of 145'500 km2. It has three main contributing rivers: the Omo river, which contributes most of the annual lake inflow, the Turkwel river, and the Kerio rivers, which contribute the remaining part. The lake levels have shown great variations in the last decades due to long-term climate fluctuations and the regulation of three reservoirs, Gibe I, II, and III, which significantly alter the hydrological seasonality. Another large reservoir is planned and may be built in the next decade, generating concerns about the fate of Lake Turkana in the long run because of this additional anthropogenic pressure and increasing evaporation driven by climate change. We consider different remote sensing datasets, i.e., TRMM-V7 for precipitation, MERRA-2 for temperature, as inputs to the spatially distributed hydrological model. We validate the simulation results with other remote sensing datasets, i.e., GRACE for total water storage anomalies, GLDAS-NOAH for soil moisture, ERA-Interim/Land for surface runoff, and TOPEX/Poseidon for satellite altimetry data. Results highlight how different remote sensing products can be integrated into a hydrological modeling framework accounting for their relative uncertainties. We also carried out simulations with the artificial reservoirs planned in the north part of the catchment and without any reservoirs, to assess their impacts on the catchment hydrological

  18. HESS Opinions "The art of hydrology"*

    Directory of Open Access Journals (Sweden)

    H. H. G. Savenije

    2009-02-01

    Full Text Available Hydrological modelling is the same as developing and encoding a hydrological theory. A hydrological model is not a tool but a hypothesis. The whole discussion about the inadequacy of hydrological models we have witnessed of late, is related to the wrong concept of what a model is. Good models don't exist. Instead of looking for the "best" model, we should aim at developing better models. The process of modelling should be top-down, learning from the data while at the same time connection should be established with underlying physical theory (bottom-up. As a result of heterogeneity occurring at all scales in hydrology, there always remains a need for calibration of models. This implies that we need tailor-made and site-specific models. Only flexible models are fit for this modelling process, as opposed to most of the established software or "one-size-fits-all" models. The process of modelling requires imagination, inspiration, creativity, ingenuity, experience and skill. These are qualities that belong to the field of art. Hydrology is an art as much as it is science and engineering.

  19. Impacts of Extreme Flooding on Hydrologic Connectivity and Water Quality in the Atlantic Coastal Plain and Implications for Vulnerable Populations

    Science.gov (United States)

    Riveros-Iregui, D. A.; Moser, H. A.; Christenson, E. C.; Gray, J.; Hedgespeth, M. L.; Jass, T. L.; Lowry, D. S.; Martin, K.; Nichols, E. G.; Stewart, J. R.; Emanuel, R. E.

    2017-12-01

    In October 2016, Hurricane Matthew brought extreme flooding to eastern North Carolina, including record regional flooding along the Lumber River and its tributaries in the North Carolina Coastal Plain. Situated in a region dominated by large-scale crop-cultivation and containing some of the highest densities of concentrated animal feeding operations (CAFOs) and animal processing operations in the U.S., the Lumber River watershed is also home to the Lumbee Tribe of American Indians. Most of the tribe's 60,000+ members live within or immediately adjacent to the 3,000 km2 watershed where they maintain deep cultural and historical connections. The region, however, also suffers from high rates of poverty and large disparities in healthcare, education, and infrastructure, conditions exacerbated by Hurricane Matthew. We summarize ongoing efforts to characterize the short- and long-term impacts of extreme flooding on water quality in (1) low gradient streams and riverine wetlands of the watershed; (2) surficial aquifers, which provide water resources for the local communities, and (3) public drinking water supplies, which derive from deeper, confined aquifers but whose infrastructure suffered widespread damage following Hurricane Matthew. Our results provide mechanistic understanding of flood-related connectivity across multiple hydrologic compartments, and provide important implications for how hydrological natural hazards combine with land use to drive water quality impacts and affect vulnerable populations.

  20. Some challenges in eco-hydrology

    Science.gov (United States)

    Porporato, A.

    2007-12-01

    The importance of the mutual interactions between biosphere in hydrosphere has become increasingly apparent in both the ecological and hydrological sciences. In hydrology, while the role of plants in controlling soil water balance has been recognized from some time, more subtle controls have also been realized, such as the impact of soil organic matter on soil water dynamics and soil properties, the plant control on infiltration, erosion, and geomorphology. Ecosystem dynamics and land-use changes have also been recognized to impact water availability and quality. On the other hand, biologists and ecologists have increased their attention towards the dynamics of the terrestrial water balance and its impact on plants (photosynthesis, plant growth and reproduction) as well as microbial life (and thus decomposition and the entire cycling of nutrients and carbon fluxes). In this eco-hydrological context, we discuss: (i) the need to distinguish complex from complicated eco- hydrologic behaviors, which are both expected to be present in systems with many degrees of freedom, spatial heterogeneity, nonlinearities and feedbacks (and with biological components). (ii) The use of ideas and tools from complex systems science and non-equilibrium statistical mechanics to explore possible emerging behaviors and patterns. (iii) The importance of intermittency and of the entire spectrum of eco-hydrologic fluctuations conferred by the system nonlinearities, and their connection to a possible theory of biologically- meaningful hydroclimatic extremes. (iv) The need for further research of basic questions yet unanswered (e.g., role of organic matter/roots on soil water balance and soil properties; vegetation control on infiltration; competition for water by plants; role of plant control on uptake (e.g., hydraulic lift)). (v) Ways to merge observations, minimalist models and complex numerical simulations as well as to increase communication of hydrologists with physicists, statisticians

  1. Hydrologic refugia, plants, and climate change.

    Science.gov (United States)

    McLaughlin, Blair C; Ackerly, David D; Klos, P Zion; Natali, Jennifer; Dawson, Todd E; Thompson, Sally E

    2017-08-01

    Climate, physical landscapes, and biota interact to generate heterogeneous hydrologic conditions in space and over time, which are reflected in spatial patterns of species distributions. As these species distributions respond to rapid climate change, microrefugia may support local species persistence in the face of deteriorating climatic suitability. Recent focus on temperature as a determinant of microrefugia insufficiently accounts for the importance of hydrologic processes and changing water availability with changing climate. Where water scarcity is a major limitation now or under future climates, hydrologic microrefugia are likely to prove essential for species persistence, particularly for sessile species and plants. Zones of high relative water availability - mesic microenvironments - are generated by a wide array of hydrologic processes, and may be loosely coupled to climatic processes and therefore buffered from climate change. Here, we review the mechanisms that generate mesic microenvironments and their likely robustness in the face of climate change. We argue that mesic microenvironments will act as species-specific refugia only if the nature and space/time variability in water availability are compatible with the ecological requirements of a target species. We illustrate this argument with case studies drawn from California oak woodland ecosystems. We posit that identification of hydrologic refugia could form a cornerstone of climate-cognizant conservation strategies, but that this would require improved understanding of climate change effects on key hydrologic processes, including frequently cryptic processes such as groundwater flow. © 2017 John Wiley & Sons Ltd.

  2. Perturbations in the initial soil moisture conditions: Impacts on hydrologic simulation in a large river basin

    Science.gov (United States)

    Niroula, Sundar; Halder, Subhadeep; Ghosh, Subimal

    2018-06-01

    Real time hydrologic forecasting requires near accurate initial condition of soil moisture; however, continuous monitoring of soil moisture is not operational in many regions, such as, in Ganga basin, extended in Nepal, India and Bangladesh. Here, we examine the impacts of perturbation/error in the initial soil moisture conditions on simulated soil moisture and streamflow in Ganga basin and its propagation, during the summer monsoon season (June to September). This provides information regarding the required minimum duration of model simulation for attaining the model stability. We use the Variable Infiltration Capacity model for hydrological simulations after validation. Multiple hydrologic simulations are performed, each of 21 days, initialized on every 5th day of the monsoon season for deficit, surplus and normal monsoon years. Each of these simulations is performed with the initial soil moisture condition obtained from long term runs along with positive and negative perturbations. The time required for the convergence of initial errors is obtained for all the cases. We find a quick convergence for the year with high rainfall as well as for the wet spells within a season. We further find high spatial variations in the time required for convergence; the region with high precipitation such as Lower Ganga basin attains convergence at a faster rate. Furthermore, deeper soil layers need more time for convergence. Our analysis is the first attempt on understanding the sensitivity of hydrological simulations of Ganga basin on initial soil moisture conditions. The results obtained here may be useful in understanding the spin-up requirements for operational hydrologic forecasts.

  3. The Scale Effects of Engineered Inlets in Urban Hydrologic Processes

    Science.gov (United States)

    Shevade, L.; Montalto, F. A.

    2017-12-01

    Runoff from urban surfaces is typically captured by engineered inlets for conveyance to receiving water bodies or treatment plants. Normative hydrologic and hydraulic (H&H) modeling tools generally assume 100% efficient inlets, though observations by the authors suggest this assumption is invalid. The discrepancy is key since the more efficiently the inlet, the more linearly hydrologic processes scale with catchment area. Using several years of remote sensing, the observed efficiencies of urban green infrastructure (GI) facility inlets in New York City are presented, as a function of the morphological and climatological properties of their catchments and events. The rainfall-runoff response is modeled with EPA to assess the degree of inaccuracy that the assumption of efficient inlets introduces in block and neighborhood-scale simulations. Next, an algorithm is presented that incorporates inlet efficiency into SWMM and the improved predictive skill evaluated using Nash-Sutcliffe and root-mean-square error (RMSE). The results are used to evaluate the extent to which decentralized green stormwater management facilities positioned at the low points of urban catchments ought to be designed with larger capacities than their counterparts located further upslope.

  4. HOBE – a hydrological observatory

    DEFF Research Database (Denmark)

    Jensen, Karsten Høgh; Illangasekare, Tissa

    2011-01-01

    In this paper a short introducO on is given to the Danish hydrological observatory—HOBE. We describe characteristics of the catchment, which is subject to experimental and modeling investigations. An overview is given of the research reported in this special section of the journal, which includes...... 11 papers of original research covering precipitation, evapotranspiration, emission of greenhouse gasses, unsaturated flow, groundwater–surface water interaction, and climate change impacts on hydrology....

  5. Coupling biophysical processes and water rights to simulate spatially distributed water use in an intensively managed hydrologic system

    Science.gov (United States)

    Han, Bangshuai; Benner, Shawn G.; Bolte, John P.; Vache, Kellie B.; Flores, Alejandro N.

    2017-07-01

    Humans have significantly altered the redistribution of water in intensively managed hydrologic systems, shifting the spatiotemporal patterns of surface water. Evaluating water availability requires integration of hydrologic processes and associated human influences. In this study, we summarize the development and evaluation of an extensible hydrologic model that explicitly integrates water rights to spatially distribute irrigation waters in a semi-arid agricultural region in the western US, using the Envision integrated modeling platform. The model captures both human and biophysical systems, particularly the diversion of water from the Boise River, which is the main water source that supports irrigated agriculture in this region. In agricultural areas, water demand is estimated as a function of crop type and local environmental conditions. Surface water to meet crop demand is diverted from the stream reaches, constrained by the amount of water available in the stream, the water-rights-appropriated amount, and the priority dates associated with particular places of use. Results, measured by flow rates at gaged stream and canal locations within the study area, suggest that the impacts of irrigation activities on the magnitude and timing of flows through this intensively managed system are well captured. The multi-year averaged diverted water from the Boise River matches observations well, reflecting the appropriation of water according to the water rights database. Because of the spatially explicit implementation of surface water diversion, the model can help diagnose places and times where water resources are likely insufficient to meet agricultural water demands, and inform future water management decisions.

  6. Model study of the impacts of future climate change on the hydrology of Ganges-Brahmaputra-Meghna (GBM) basin

    Science.gov (United States)

    Masood, M.; Yeh, P. J.-F.; Hanasaki, N.; Takeuchi, K.

    2014-06-01

    The intensity, duration, and geographic extent of floods in Bangladesh mostly depend on the combined influences of three river systems, Ganges, Brahmaputra and Meghna (GBM). In addition, climate change is likely to have significant effects on the hydrology and water resources of the GBM basins and might ultimately lead to more serious floods in Bangladesh. However, the assessment of climate change impacts on basin-scale hydrology by using well-constrained hydrologic modelling has rarely been conducted for GBM basins due to the lack of data for model calibration and validation. In this study, a macro-scale hydrologic model H08 has been applied regionally over the basin at a relatively fine grid resolution (10 km) by integrating the fine-resolution (~0.5 km) DEM data for accurate river networks delineation. The model has been calibrated via analyzing model parameter sensitivity and validated based on a long-term observed daily streamflow data. The impact of climate change on not only the runoff, but also the basin-scale hydrology including evapotranspiration, soil moisture and net radiation have been assessed in this study through three time-slice experiments; present-day (1979-2003), near-future (2015-2039) and far-future (2075-2099) periods. Results shows that, by the end of 21st century (a) the entire GBM basin is projected to be warmed by ~3°C (b) the changes of mean precipitation are projected to be +14.0, +10.4, and +15.2%, and the changes of mean runoff to be +14, +15, and +18% in the Brahmaputra, Ganges and Meghna basin respectively (c) evapotranspiration is predicted to increase significantly for the entire GBM basins (Brahmaputra: +14.4%, Ganges: +9.4%, Meghna: +8.8%) due to increased net radiation (Brahmaputra: +6%, Ganges: +5.9%, Meghna: +3.3%) as well as warmer air temperature. Changes of hydrologic variables will be larger in dry season (November-April) than that in wet season (May-October). Amongst three basins, Meghna shows the largest hydrological

  7. Evaporation of impact water droplets in interception processes: Historical precedence of the hypothesis and a brief literature overview

    Science.gov (United States)

    Dunkerley, David L.

    2009-10-01

    SummaryIntra-storm evaporation depths exceed post-storm evaporation depths in the interception of rainfall on plant canopies. An important fraction of the intra-storm evaporation may involve the small impact (or splash) droplets produced when raindrops, and perhaps gravity drops (drips released from plant parts), collide with wet plant surfaces. This idea has been presented as a new conception by Murakami [Murakami, S., 2006. A proposal for a new forest canopy interception mechanism: splash droplet evaporation. Journal of Hydrology 319, 72-82; Murakami, S., 2007a. Application of three canopy interception models to a young stand of Japanese cypress and interpretation in terms of interception mechanism. Journal of Hydrology 342, 305-319; Murakami, S., 2007b. A follow-up for the splash droplet evaporation hypothesis of canopy interception and remaining problems: why is humidity unsaturated during rainfall? In: Proceedings of the 20th Annual Conference. Japan Society of Hydrology and Water Resources (in Japanese). ] but was in fact advanced by Dunin [Dunin, F.X., O'Loughlin, E.M., Reyenga, W., 1988. Interception loss from eucalypt forest: lysimeter determination of hourly rates for long term evaluation. Hydrological Processes 2, 315-329] more than 20 years ago. In addition, Dunin et al. considered that canopy ventilation might be enhanced in intense rain. This note draws attention to the historical precedence of the work of Dunin et al. and also presents a short review of literature on impact droplet production, highlighting areas where data are still required for the full exploration of the role of droplet evaporation in canopy interception. Droplet production needs to be properly parameterised and included in models of interception processes and landsurface-atmosphere interactions.

  8. Applying Topographic Classification, Based on the Hydrological Process, to Design Habitat Linkages for Climate Change

    Directory of Open Access Journals (Sweden)

    Yongwon Mo

    2017-11-01

    Full Text Available The use of biodiversity surrogates has been discussed in the context of designing habitat linkages to support the migration of species affected by climate change. Topography has been proposed as a useful surrogate in the coarse-filter approach, as the hydrological process caused by topography such as erosion and accumulation is the basis of ecological processes. However, some studies that have designed topographic linkages as habitat linkages, so far have focused much on the shape of the topography (morphometric topographic classification with little emphasis on the hydrological processes (generic topographic classification to find such topographic linkages. We aimed to understand whether generic classification was valid for designing these linkages. First, we evaluated whether topographic classification is more appropriate for describing actual (coniferous and deciduous and potential (mammals and amphibians habitat distributions. Second, we analyzed the difference in the linkages between the morphometric and generic topographic classifications. The results showed that the generic classification represented the actual distribution of the trees, but neither the morphometric nor the generic classification could represent the potential animal distributions adequately. Our study demonstrated that the topographic classes, according to the generic classification, were arranged successively according to the flow of water, nutrients, and sediment; therefore, it would be advantageous to secure linkages with a width of 1 km or more. In addition, the edge effect would be smaller than with the morphometric classification. Accordingly, we suggest that topographic characteristics, based on the hydrological process, are required to design topographic linkages for climate change.

  9. Scenario-Based Impact Assessment of Land Use/Cover and Climate Changes on Watershed Hydrology in Heihe River Basin of Northwest China

    Directory of Open Access Journals (Sweden)

    Feng Wu

    2015-01-01

    Full Text Available This study evaluated hydrological impacts of potential climate and land use changes in Heihe River Basin of Northwest China. The future climate data for the simulation with Soil and Water Assessment Tool (SWAT were prepared using a dynamical downscaling method. The future land uses were simulated with the Dynamic Land Use System (DLS model by establishing Multinomial Logistic Regression (MNL model for six land use types. In 2006–2030, land uses in the basin will experience a significant change with a prominent increase in urban areas, a moderate increase in grassland, and a great decrease in unused land. Besides, the simulation results showed that in comparison to those during 1981–2005 the temperature and precipitation during 2006–2030 will change by +0.8°C and +10.8%, respectively. The land use change and climate change will jointly make the water yield change by +8.5%, while they will separately make the water yield change by −1.8% and +9.8%, respectively. The predicted large increase in future precipitation and the corresponding decrease in unused land will have substantial impacts on the watershed hydrology, especially on the surface runoff and streamflow. Therefore, to mitigate negative hydrological impacts and utilize positive impacts, both land use and climate changes should be considered in water resource planning for the Heihe River Basin.

  10. Debates—Hypothesis testing in hydrology: Introduction

    Science.gov (United States)

    Blöschl, Günter

    2017-03-01

    This paper introduces the papers in the "Debates—Hypothesis testing in hydrology" series. The four articles in the series discuss whether and how the process of testing hypotheses leads to progress in hydrology. Repeated experiments with controlled boundary conditions are rarely feasible in hydrology. Research is therefore not easily aligned with the classical scientific method of testing hypotheses. Hypotheses in hydrology are often enshrined in computer models which are tested against observed data. Testability may be limited due to model complexity and data uncertainty. All four articles suggest that hypothesis testing has contributed to progress in hydrology and is needed in the future. However, the procedure is usually not as systematic as the philosophy of science suggests. A greater emphasis on a creative reasoning process on the basis of clues and explorative analyses is therefore needed.

  11. Hydrological Impacts of Climate Change: A Case Study on the Ebro River Basin (Spain)

    Science.gov (United States)

    Zambrano-Bigiarini, M.; Bellin, A.; Majone, B.; Bovolo, C. I.; Blenkinsop, S.

    2009-12-01

    Uncertainty in projections from climate models limits the understanding of future hydrological impacts and complicates the assessment of mitigation policies. This work presents hydrological simulations of the Ebro River Basin (Spain), using both control (1961-1990) and future (2071-2100) climate scenarios, in order to investigate the effect of climate change on the water availability of the basin. Using the SWAT model, hydrological simulations were carried out for four catchments with different climatological regimes. Sets of model parameters were identified using sensitivity analysis, long-term calibration and uncertainty analysis procedures, which enabled the historical behaviour of the catchments to be reproduced. Following validation, the parameters were used to simulate the effects of climate change on future streamflow. Bias-corrected daily time series of precipitation and mean temperature from an ensemble of 6 Regional Climate Models (RCMs), using the SRES A2 emissions scenario, were used as drivers of the hydrological simulations during the future scenarios. Important annual and seasonal differences in the projected future precipitation and temperature fields were observed among the RCMs. However, a general decrease in annual mean precipitation and an increase in annual mean temperature relative to the control period were observed, with the strongest differences during the summer season. When these changes were used to project future streamflows, a general decrease was observed at the outlet of the catchments. Changes in streamflows were in general agreement with the projections of daily precipitation and temperature fields, with a larger drop in predicted monthly streamflows for catchments with more semi-arid climatological regimes, and seasonal differences that are related to the elevation range of the catchments.

  12. Modeling the hydrologic impacts of forest harvesting on Florida flatwoods

    Science.gov (United States)

    Ge Sun; Hans Rierkerk; Nicholas B. Comerford

    1998-01-01

    The great temporal and spatial variability of pine flatwoods hydrology suggests traditional short-term field methods may not be effective in evaluating the hydrologic effects of forest management. The flatwoods model was developed, calibrated and validated specifically for the cypress wetland-pine upland landscape. The model was applied to two typical flatwoods sites...

  13. Micro-scale hydrological field experiments in Romania

    Directory of Open Access Journals (Sweden)

    Minea Gabriel

    2016-02-01

    Full Text Available The paper (communication presents an overview of hydrologic field experiments at micro-scale in Romania. In order to experimentally investigate micro (plot-scale hydrological impact of soil erosion, the National Institute of Hydrology and Water Management founded Voineşti Experimental Basin (VES in 1964 and the Aldeni Experimental Basins (AEB in 1984. AEB and VES are located in the Curvature Subcarpathians. Experimental plots are organized in a double systems and have an area of 80 m2 (runoff plots at AEB and 300 m2 (water balance plots at VES. Land use of plot: first plot ”grass-land” is covered with perennial grass and second plot (control consists in ”bare soil”. Over the latter one, the soil is hoeing, which results in a greater development of infiltration than in the first plot. Experimental investigations at micro-scale are aimed towards determining the parameters of the water balance equation, during natural and artificial rainfalls, researching of flows and soil erosion processes on experimental plots, extrapolating relations involving runoff coefficients from a small scale to medium scale. Nowadays, the latest evolutions in data acquisition and transmission equipment are represented by sensors (such as: sensors to determinate the soil moisture content. Exploitation and dissemination of hydrologic data is accomplished by research themes/projects, year-books of basic data and papers.

  14. Hydrology and Conservation Ecology

    Science.gov (United States)

    Narayanan, M.

    2006-12-01

    Responses to change in the behavior of ecological systems are largely governed by interactions at different levels. Research is essential and is to be necessarily designed to gain insights into various interactions at the community level. Sustainable resource management is only possible if conservation of biodiversity can be accomplished by properly using the knowledge discovered. It is well known that the United States Department of Agriculture provides technical information, resources, and data necessary to assist the researchers in addressing their conservation needs. Conservation aims to protect, preserve and conserve the earth's natural resources. These include, but not limited to the conservation of soil, water, minerals, air, plants and all living beings. The United States Department of Agriculture also encourages farmers and ranchers to voluntarily address threats to soil and water. Protection of wetlands and wildlife habitat has been on the radar screen of conservation experts for a very long time. The main objective has always been to help farmers and landowners conform and comply with federal and state environmental laws. During the implementation phase, farmers should be encouraged to make beneficial, cost-effective changes to methods of irrigation systems. In some cases, the hydrologic regime of the project area can be thought of as principally an issue of river flow regimes for floodplain forests. In this presentation, the author tries to focus on the impact of hydrology and conservation ecology on global warming. He also discusses the impact of hydrology and conservation ecology global air concerns such as greenhouse gas concentrations in the atmosphere. References: Chow, V. T, D. R. Maidment, and L. W. Mays. 1988. Applied Hydrology. McGraw-Hill, Inc. U.S. Soil Conservation Service. Technical Release 55: Urban Hydrology for Small Watersheds. USDA (U.S. Department of Agriculture). June 1986. Lehner, B. and P. Döll (2004). Development and validation

  15. Surface Hydrological Processes of Rock Glaciated Basins in the San Juan Mountains, Colorado

    Science.gov (United States)

    Mateo, E. I.

    2017-12-01

    Glaciers in the western United States have been examined in terms of their summer meltwater contributions to regional hydrological systems. In the San Juan Mountains of Colorado where glaciers do not and cannot exist due to a rising zero-degree isotherm, rock glaciers take the place of valley glaciers during the summer runoff period. Most of the rock glaciers in Colorado are located on a northerly slope aspect, however, there are multiple in the southwest region of the state that occur on different aspects. This study asked how slope aspect and rising air temperatures influenced the hydrological processes of streams below rock glaciers in the San Juan Mountains during the 2016 summer season. This project focused on three basins, Yankee Boy basin, Blue Lakes basin, and Mill Creek basin, which are adjacent to each other and share a common peak, Gilpin Peak. Findings of this one-season study showed that air temperature significantly influenced stream discharge below each rock glacier. Discharge and air temperature patterns indicate a possible air temperature threshold during late summer when rock glacier melt increased at a greater rate. The results also suggest that slope aspect of rock glacier basins influences stream discharge, but temperature and precipitation are likely larger components of the melt regimes. The continuation of data collection during the 2017 summer season has allowed for more detailed analysis of the relationship between air temperature and rock glacier melt. This continual expansion of the original dataset is crucial for understanding the hydrological processes of surface runoff below rock glaciers.

  16. Disturbance Hydrology: Preparing for an Increasingly Disturbed Future

    Science.gov (United States)

    Mirus, Benjamin B.; Ebel, Brian A.; Mohr, Christian H.; Zegre, Nicolas

    2017-12-01

    This special issue is the result of several fruitful conference sessions on disturbance hydrology, which started at the 2013 AGU Fall Meeting in San Francisco and have continued every year since. The stimulating presentations and discussions surrounding those sessions have focused on understanding both the disruption of hydrologic functioning following discrete disturbances, as well as the subsequent recovery or change within the affected watershed system. Whereas some hydrologic disturbances are directly linked to anthropogenic activities, such as resource extraction, the contributions to this special issue focus primarily on those with indirect or less pronounced human involvement, such as bark-beetle infestation, wildfire, and other natural hazards. However, human activities are enhancing the severity and frequency of these seemingly natural disturbances, thereby contributing to acute hydrologic problems and hazards. Major research challenges for our increasingly disturbed planet include the lack of continuous pre and postdisturbance monitoring, hydrologic impacts that vary spatially and temporally based on environmental and hydroclimatic conditions, and the preponderance of overlapping or compounding disturbance sequences. In addition, a conceptual framework for characterizing commonalities and differences among hydrologic disturbances is still in its infancy. In this introduction to the special issue, we advance the fusion of concepts and terminology from ecology and hydrology to begin filling this gap. We briefly explore some preliminary approaches for comparing different disturbances and their hydrologic impacts, which provides a starting point for further dialogue and research progress.

  17. Disturbance hydrology: Preparing for an increasingly disturbed future

    Science.gov (United States)

    Mirus, Benjamin B.; Ebel, Brian A.; Mohr, Christian H.; Zegre, Nicolas

    2017-01-01

    This special issue is the result of several fruitful conference sessions on disturbance hydrology, which started at the 2013 AGU Fall Meeting in San Francisco and have continued every year since. The stimulating presentations and discussions surrounding those sessions have focused on understanding both the disruption of hydrologic functioning following discrete disturbances, as well as the subsequent recovery or change within the affected watershed system. Whereas some hydrologic disturbances are directly linked to anthropogenic activities, such as resource extraction, the contributions to this special issue focus primarily on those with indirect or less pronounced human involvement, such as bark-beetle infestation, wildfire, and other natural hazards. However, human activities are enhancing the severity and frequency of these seemingly natural disturbances, thereby contributing to acute hydrologic problems and hazards. Major research challenges for our increasingly disturbed planet include the lack of continuous pre- and post-disturbance monitoring, hydrologic impacts that vary spatially and temporally based on environmental and hydroclimatic conditions, and the preponderance of overlapping or compounding disturbance sequences. In addition, a conceptual framework for characterizing commonalities and differences among hydrologic disturbances is still in its infancy. In this introduction to the special issue, we advance the fusion of concepts and terminology from ecology and hydrology to begin filling this gap. We briefly explore some preliminary approaches for comparing different disturbances and their hydrologic impacts, which provides a starting point for further dialogue and research progress.

  18. Quantifying the Impacts of Outlet Control Structures on Lake Hydrology and Ecology

    Science.gov (United States)

    Budd, B. M.; Kendall, A. D.; Martin, S. L.; Hyndman, D. W.

    2012-12-01

    There have been limited studies of the impacts of lake level control structures on stream ecology and lake property erosion. We examine the influence of historical lake level management strategies on Higgins Lake in Michigan, which is regionally known for recreation, fisheries, and scenery. Lake control structures have potentially increased shoreline erosion and seasonally-reduced flow through the outlets, likely impacting fish habitat. Concerns over these issues spurred local land owners to seek a study on the possible hydrologic and ecological impacts of the removal or modification of the control structure. Bathymetry maps are fundamental to understanding and managing lake ecosystems. From the 1930's through the 1950's, these maps were developed for thousands of Michigan inland lakes using soundings lowered through holes cut in winter lake ice. Increased land use change and alterations of lake outlets have likely modified erosion and sedimentation rates of these lake systems. Our research includes bathymetry surveys of Higgins Lake using an Acoustic Doppler Current Profiler (ADCP) and side-scan sonar. The new higher-resolution bathymetry serves as the basis for simulating impacts of potential changes in lake management, on a verity of inpoint including shoreline position and fish habitat.

  19. Results From an International Simulation Study on Coupled Thermal, Hydrological, and Mechanical (THM) Processes Near Geological Nuclear Waste Repositories

    International Nuclear Information System (INIS)

    J. Rutqvist; D. Barr; J.T. Birkholzer; M. Chijimatsu; O. Kolditz; Q. Liu; Y. Oda; W. Wang; C. Zhang

    2006-01-01

    As part of the ongoing international DECOVALEX project, four research teams used five different models to simulate coupled thermal, hydrological, and mechanical (THM) processes near waste emplacement drifts of geological nuclear waste repositories. The simulations were conducted for two generic repository types, one with open and the other with back-filled repository drifts, under higher and lower postclosure temperatures, respectively. In the completed first model inception phase of the project, a good agreement was achieved between the research teams in calculating THM responses for both repository types, although some disagreement in hydrological responses is currently being resolved. In particular, good agreement in the basic thermal-mechanical responses was achieved for both repository types, even though some teams used relatively simplified thermal-elastic heat-conduction models that neglected complex near-field thermal-hydrological processes. The good agreement between the complex and simplified process models indicates that the basic thermal-mechanical responses can be predicted with a relatively high confidence level

  20. Model Calibration in Watershed Hydrology

    Science.gov (United States)

    Yilmaz, Koray K.; Vrugt, Jasper A.; Gupta, Hoshin V.; Sorooshian, Soroosh

    2009-01-01

    Hydrologic models use relatively simple mathematical equations to conceptualize and aggregate the complex, spatially distributed, and highly interrelated water, energy, and vegetation processes in a watershed. A consequence of process aggregation is that the model parameters often do not represent directly measurable entities and must, therefore, be estimated using measurements of the system inputs and outputs. During this process, known as model calibration, the parameters are adjusted so that the behavior of the model approximates, as closely and consistently as possible, the observed response of the hydrologic system over some historical period of time. This Chapter reviews the current state-of-the-art of model calibration in watershed hydrology with special emphasis on our own contributions in the last few decades. We discuss the historical background that has led to current perspectives, and review different approaches for manual and automatic single- and multi-objective parameter estimation. In particular, we highlight the recent developments in the calibration of distributed hydrologic models using parameter dimensionality reduction sampling, parameter regularization and parallel computing.

  1. Sensitivity of Hydrologic Response to Climate Model Debiasing Procedures

    Science.gov (United States)

    Channell, K.; Gronewold, A.; Rood, R. B.; Xiao, C.; Lofgren, B. M.; Hunter, T.

    2017-12-01

    Climate change is already having a profound impact on the global hydrologic cycle. In the Laurentian Great Lakes, changes in long-term evaporation and precipitation can lead to rapid water level fluctuations in the lakes, as evidenced by unprecedented change in water levels seen in the last two decades. These fluctuations often have an adverse impact on the region's human, environmental, and economic well-being, making accurate long-term water level projections invaluable to regional water resources management planning. Here we use hydrological components from a downscaled climate model (GFDL-CM3/WRF), to obtain future water supplies for the Great Lakes. We then apply a suite of bias correction procedures before propagating these water supplies through a routing model to produce lake water levels. Results using conventional bias correction methods suggest that water levels will decline by several feet in the coming century. However, methods that reflect the seasonal water cycle and explicitly debias individual hydrological components (overlake precipitation, overlake evaporation, runoff) imply that future water levels may be closer to their historical average. This discrepancy between debiased results indicates that water level forecasts are highly influenced by the bias correction method, a source of sensitivity that is commonly overlooked. Debiasing, however, does not remedy misrepresentation of the underlying physical processes in the climate model that produce these biases and contribute uncertainty to the hydrological projections. This uncertainty coupled with the differences in water level forecasts from varying bias correction methods are important for water management and long term planning in the Great Lakes region.

  2. An Analytical Solution for the Impact of Vegetation Changes on Hydrological Partitioning Within the Budyko Framework

    Science.gov (United States)

    Zhang, Shulei; Yang, Yuting; McVicar, Tim R.; Yang, Dawen

    2018-01-01

    Vegetation change is a critical factor that profoundly affects the terrestrial water cycle. Here we derive an analytical solution for the impact of vegetation changes on hydrological partitioning within the Budyko framework. This is achieved by deriving an analytical expression between leaf area index (LAI) change and the Budyko land surface parameter (n) change, through the combination of a steady state ecohydrological model with an analytical carbon cost-benefit model for plant rooting depth. Using China where vegetation coverage has experienced dramatic changes over the past two decades as a study case, we quantify the impact of LAI changes on the hydrological partitioning during 1982-2010 and predict the future influence of these changes for the 21st century using climate model projections. Results show that LAI change exhibits an increasing importance on altering hydrological partitioning as climate becomes drier. In semiarid and arid China, increased LAI has led to substantial streamflow reductions over the past three decades (on average -8.5% in 1990s and -11.7% in 2000s compared to the 1980s baseline), and this decreasing trend in streamflow is projected to continue toward the end of this century due to predicted LAI increases. Our result calls for caution regarding the large-scale revegetation activities currently being implemented in arid and semiarid China, which may result in serious future water scarcity issues here. The analytical model developed here is physically based and suitable for simultaneously assessing both vegetation changes and climate change induced changes to streamflow globally.

  3. An Integrated Decision Support System with Hydrological Processes and Socio-economic Assessments

    Science.gov (United States)

    Yu, Yang; Disse, Markus; Yu, Ruide

    2017-04-01

    The debate over the effectiveness of Integrated Water Resources Management (IWRM) in practice has lasted for years. As the complexity and scope of IWRM increases, the difficulties of hydrological modeling is shifting from the model itself into the links with other cognate sciences, to understand the interactions among water, earth, ecosystem and humans. This work presents the design and development of a decision support system (DSS) that links the outputs of hydrological models with real-time decision making on social-economic assessments and land use changes. Discharge and glacier geometry changes were simulated with hydrological model WASA. Irrigation and ecological water were simulated by a new commercial software MIKE HYDRO. Groundwater was simulated by MODFLOW. All the outputs of theses hydrological models were integrated as inputs into the DSS in three types of links: regression equations, stationary data inputs, or dynamic data inputs into DSS as the models running parallel in the simulation periods. Within DSS, three types of logics were established: equations, conditional statements and fuzzy logics. The programming was realized in C++. The implementation of DSS takes place in the Tarim River Basin. With the mainstream of 1,321km and located in an arid area in northwest China, the Tarim River is China's longest inland river. The Tarim basin on the northern edge of the Taklamakan desert is an extremely arid region. In this region, agricultural water consumption and allocation management are crucial to address the conflicts among irrigation water users from upstream to downstream. Since 2011, the German Ministry of Science and Education BMBF established the Sino-German SuMaRiO project, for the sustainable management of river oases along the Tarim River. Project SuMaRiO focus on realizable management strategies, considering social, economic and ecological criteria. This will have positive effects for nearly 10 million inhabitants of different ethnic groups

  4. iTree-Hydro: Snow hydrology update for the urban forest hydrology model

    Science.gov (United States)

    Yang Yang; Theodore A. Endreny; David J. Nowak

    2011-01-01

    This article presents snow hydrology updates made to iTree-Hydro, previously called the Urban Forest Effects—Hydrology model. iTree-Hydro Version 1 was a warm climate model developed by the USDA Forest Service to provide a process-based planning tool with robust water quantity and quality predictions given data limitations common to most urban areas. Cold climate...

  5. Simulating hydrological processes in a sub-basin of the Mekong using GBHM and RS data

    Directory of Open Access Journals (Sweden)

    W. Wang

    2015-05-01

    Full Text Available This paper presents simulations of daily hydrological process of the Mun River, the largest tributary of the Mekong, with a geomorphology-based hydrological model (GBHM driven by two forcing sets: traditional station data and grid data derived from remote sensing and GLDAS products. Driven by the station data, the Mun-GBHM model is successfully calibrated against the discharge observed in 1991, but the model accuracy decreases with the increase of simulation time during the validation period of 1992–1999. Driven by the TRMM rainfall and other meteorological data from GLDAS, using the same parameters as above, the model performs reliably at both the monthly and daily scale. Moreover, when the model is calibrated with one year of gridded data, its performance can be further improved. Our results demonstrate that TRMM and GLDAS are able to drive the GBHM so providing reliable hydrologic predictions in such data-poor or ungauged basins.

  6. Evaluation of Airborne Lidar Elevation Surfaces for Propagation of Coastal Inundation: The Importance of Hydrologic Connectivity

    Directory of Open Access Journals (Sweden)

    Sandra Poppenga

    2015-09-01

    Full Text Available Detailed information about coastal inundation is vital to understanding dynamic and populated areas that are impacted by storm surge and flooding. To understand these natural hazard risks, lidar elevation surfaces are frequently used to model inundation in coastal areas. A single-value surface method is sometimes used to inundate areas in lidar elevation surfaces that are below a specified elevation value. However, such an approach does not take into consideration hydrologic connectivity between elevation grids cells resulting in inland areas that should be hydrologically connected to the ocean, but are not. Because inland areas that should drain to the ocean are hydrologically disconnected by raised features in a lidar elevation surface, simply raising the water level to propagate coastal inundation will lead to inundation uncertainties. We took advantage of this problem to identify hydrologically disconnected inland areas to point out that they should be considered for coastal inundation, and that a lidar-based hydrologic surface should be developed with hydrologic connectivity prior to inundation analysis. The process of achieving hydrologic connectivity with hydrologic-enforcement is not new, however, the application of hydrologically-enforced lidar elevation surfaces for improved coastal inundation mapping as approached in this research is innovative. In this article, we propagated a high-resolution lidar elevation surface in coastal Staten Island, New York to demonstrate that inland areas lacking hydrologic connectivity to the ocean could potentially be included in inundation delineations. For inland areas that were hydrologically disconnected, we evaluated if drainage to the ocean was evident, and calculated an area exceeding 11 ha (~0.11 km2 that could be considered in inundation delineations. We also assessed land cover for each inland area to determine the type of physical surfaces that would be potentially impacted if the inland areas

  7. Evaluation of airborne lidar elevation surfaces for propagation of coastal inundation: the importance of hydrologic connectivity

    Science.gov (United States)

    Poppenga, Sandra K.; Worstell, Bruce B.

    2015-01-01

    Detailed information about coastal inundation is vital to understanding dynamic and populated areas that are impacted by storm surge and flooding. To understand these natural hazard risks, lidar elevation surfaces are frequently used to model inundation in coastal areas. A single-value surface method is sometimes used to inundate areas in lidar elevation surfaces that are below a specified elevation value. However, such an approach does not take into consideration hydrologic connectivity between elevation grids cells resulting in inland areas that should be hydrologically connected to the ocean, but are not. Because inland areas that should drain to the ocean are hydrologically disconnected by raised features in a lidar elevation surface, simply raising the water level to propagate coastal inundation will lead to inundation uncertainties. We took advantage of this problem to identify hydrologically disconnected inland areas to point out that they should be considered for coastal inundation, and that a lidar-based hydrologic surface should be developed with hydrologic connectivity prior to inundation analysis. The process of achieving hydrologic connectivity with hydrologic-enforcement is not new, however, the application of hydrologically-enforced lidar elevation surfaces for improved coastal inundation mapping as approached in this research is innovative. In this article, we propagated a high-resolution lidar elevation surface in coastal Staten Island, New York to demonstrate that inland areas lacking hydrologic connectivity to the ocean could potentially be included in inundation delineations. For inland areas that were hydrologically disconnected, we evaluated if drainage to the ocean was evident, and calculated an area exceeding 11 ha (~0.11 km2) that could be considered in inundation delineations. We also assessed land cover for each inland area to determine the type of physical surfaces that would be potentially impacted if the inland areas were considered as

  8. Advancing representation of hydrologic processes in the Soil and Water Assessment Tool (SWAT) through integration of the TOPographic MODEL (TOPMODEL) features

    Science.gov (United States)

    Chen, J.; Wu, Y.

    2012-01-01

    This paper presents a study of the integration of the Soil and Water Assessment Tool (SWAT) model and the TOPographic MODEL (TOPMODEL) features for enhancing the physical representation of hydrologic processes. In SWAT, four hydrologic processes, which are surface runoff, baseflow, groundwater re-evaporation and deep aquifer percolation, are modeled by using a group of empirical equations. The empirical equations usually constrain the simulation capability of relevant processes. To replace these equations and to model the influences of topography and water table variation on streamflow generation, the TOPMODEL features are integrated into SWAT, and a new model, the so-called SWAT-TOP, is developed. In the new model, the process of deep aquifer percolation is removed, the concept of groundwater re-evaporation is refined, and the processes of surface runoff and baseflow are remodeled. Consequently, three parameters in SWAT are discarded, and two new parameters to reflect the TOPMODEL features are introduced. SWAT-TOP and SWAT are applied to the East River basin in South China, and the results reveal that, compared with SWAT, the new model can provide a more reasonable simulation of the hydrologic processes of surface runoff, groundwater re-evaporation, and baseflow. This study evidences that an established hydrologic model can be further improved by integrating the features of another model, which is a possible way to enhance our understanding of the workings of catchments.

  9. The Importance of Hydrological Signature and Its Recurring Dynamics

    Science.gov (United States)

    Wendi, D.; Marwan, N.; Merz, B.

    2017-12-01

    Temporal changes in hydrology are known to be challenging to detect and attribute due to multiple drivers that include complex processes that are non-stationary and highly variable. These drivers, such as human-induced climate change, natural climate variability, implementation of flood defense, river training, and land use change, could impact variably on space-time scales and influence or mask each other. Besides, data depicting these drivers are often not available. One conventional approach of analyzing the change is based on discrete points of magnitude (e.g. the frequency of recurring extreme discharge) and often linearly quantified and hence do not reveal the potential change in the hydrological process. Moreover, discharge series are often subject to measurement errors, such as rating curve error especially in the case of flood peaks where observation are derived through extrapolation. In this study, the system dynamics inferred from the hydrological signature (i.e. the shape of hydrograph) is being emphasized. One example is to see if certain flood dynamics (instead of flood peak) in the recent years, had also occurred in the past (or rather extraordinary), and if so what is its recurring rate and if there had been a shift in its occurrence in time or seasonality (e.g. earlier snow melt dominant flood). The utilization of hydrological signature here is extended beyond those of classical hydrology such as base flow index, recession and rising limb slope, and time to peak. It is in fact all these characteristics combined i.e. from the start until the end of the hydrograph. Recurrence plot is used as a method to quantify and visualize the recurring hydrological signature through its phase space trajectories, and usually in the order of dimension above 2. Such phase space trajectories are constructed by embedding the time series into a series of variables (i.e. number of dimension) corresponding to the time delay. Since the method is rather novel in

  10. Improving student comprehension of the interconnectivity of the hydrologic cycle with a novel 'hydrology toolbox', integrated watershed model, and companion textbook

    Science.gov (United States)

    Huning, L. S.; Margulis, S. A.

    2013-12-01

    Concepts in introductory hydrology courses are often taught in the context of process-based modeling that ultimately is integrated into a watershed model. In an effort to reduce the learning curve associated with applying hydrologic concepts to real-world applications, we developed and incorporated a 'hydrology toolbox' that complements a new, companion textbook into introductory undergraduate hydrology courses. The hydrology toolbox contains the basic building blocks (functions coded in MATLAB) for an integrated spatially-distributed watershed model that makes hydrologic topics (e.g. precipitation, snow, radiation, evaporation, unsaturated flow, infiltration, groundwater, and runoff) more user-friendly and accessible for students. The toolbox functions can be used in a modular format so that students can study individual hydrologic processes and become familiar with the hydrology toolbox. This approach allows such courses to emphasize understanding and application of hydrologic concepts rather than computer coding or programming. While topics in introductory hydrology courses are often introduced and taught independently or semi-independently, they are inherently interconnected. These toolbox functions are therefore linked together at the end of the course to reinforce a holistic understanding of how these hydrologic processes are measured, interconnected, and modeled. They are integrated into a spatially-distributed watershed model or numerical laboratory where students can explore a range of topics such as rainfall-runoff modeling, urbanization, deforestation, watershed response to changes in parameters or forcings, etc. Model output can readily be visualized and analyzed by students to understand watershed response in a real river basin or a simple 'toy' basin. These tools complement the textbook, each of which has been well received by students in multiple hydrology courses with various disciplinary backgrounds. The same governing equations that students have

  11. A framework for human-hydrologic system model development integrating hydrology and water management: application to the Cutzamala water system in Mexico

    Science.gov (United States)

    Wi, S.; Freeman, S.; Brown, C.

    2017-12-01

    This study presents a general approach to developing computational models of human-hydrologic systems where human modification of hydrologic surface processes are significant or dominant. A river basin system is represented by a network of human-hydrologic response units (HHRUs) identified based on locations where river regulations happen (e.g., reservoir operation and diversions). Natural and human processes in HHRUs are simulated in a holistic framework that integrates component models representing rainfall-runoff, river routing, reservoir operation, flow diversion and water use processes. We illustrate the approach in a case study of the Cutzamala water system (CWS) in Mexico, a complex inter-basin water transfer system supplying the Mexico City Metropolitan Area (MCMA). The human-hydrologic system model for CWS (CUTZSIM) is evaluated in terms of streamflow and reservoir storages measured across the CWS and to water supplied for MCMA. The CUTZSIM improves the representation of hydrology and river-operation interaction and, in so doing, advances evaluation of system-wide water management consequences under altered climatic and demand regimes. The integrated modeling framework enables evaluation and simulation of model errors throughout the river basin, including errors in representation of the human component processes. Heretofore, model error evaluation, predictive error intervals and the resultant improved understanding have been limited to hydrologic processes. The general framework represents an initial step towards fuller understanding and prediction of the many and varied processes that determine the hydrologic fluxes and state variables in real river basins.

  12. Evaluating the Hydrologic Performance of Low Impact Development Scenarios in a Micro Urban Catchment

    Science.gov (United States)

    Li, Chunlin; Liu, Miao; Hu, Yuanman; Han, Rongqing; Shi, Tuo; Qu, Xiuqi; Wu, Yilin

    2018-01-01

    As urbanization progresses, increasingly impervious surfaces have changed the hydrological processes in cities and resulted in a major challenge for urban stormwater control. This study uses the urban stormwater model to evaluate the performance and costs of low impact development (LID) scenarios in a micro urban catchment. Rainfall-runoff data of three rainfall events were used for model calibration and validation. The pre-developed (PreDev) scenario, post-developed (PostDev) scenario, and three LID scenarios were used to evaluate the hydrologic performance of LID measures. Using reduction in annual runoff as the goal, the best solutions for each LID scenario were selected using cost-effectiveness curves. The simulation results indicated that the three designed LID scenarios could effectively reduce annual runoff volumes and pollutant loads compared with the PostDev scenario. The most effective scenario (MaxPerf) reduced annual runoff by 53.4%, followed by the sponge city (SpoPerf, 51.5%) and economy scenarios (EcoPerf, 43.1%). The runoff control efficiency of the MaxPerf and SpoPerf scenarios increased by 23.9% and 19.5%, respectively, when compared with the EcoPerf scenario; however, the costs increased by 104% and 83.6%. The reduction rates of four pollutants (TSS, TN, TP, and COD) under the MaxPerf scenario were 59.8–61.1%, followed by SpoPerf (53.9–58.3%) and EcoPerf (42.3–45.4%), and the costs of the three scenarios were 3.74, 3.47 and 1.83 million yuan, respectively. These results can provide guidance to urban stormwater managers in future urban planning to improve urban water security. PMID:29401747

  13. Evaluating post-wildfire hydrologic recovery using ParFlow in southern California

    Science.gov (United States)

    Lopez, S. R.; Kinoshita, A. M.; Atchley, A. L.

    2016-12-01

    Wildfires are naturally occurring hazards that can have catastrophic impacts. They can alter the natural processes within a watershed, such as surface runoff and subsurface water storage. Generally, post-fire hydrologic models are either one-dimensional, empirically-based models, or two-dimensional, conceptually-based models with lumped parameter distributions. These models are useful in providing runoff measurements at the watershed outlet; however, do not provide distributed hydrologic simulation at each point within the watershed. This research demonstrates how ParFlow, a three-dimensional, distributed hydrologic model can simulate post-fire hydrologic processes by representing soil burn severity (via hydrophobicity) and vegetation recovery as they vary both spatially and temporally. Using this approach, we are able to evaluate the change in post-fire water components (surface flow, lateral flow, baseflow, and evapotranspiration). This model is initially developed for a hillslope in Devil Canyon, burned in 2003 by the Old Fire in southern California (USA). The domain uses a 2m-cell size resolution over a 25 m by 25 m lateral extent. The subsurface reaches 2 m and is assigned a variable cell thickness, allowing an explicit consideration of the soil burn severity throughout the stages of recovery and vegetation regrowth. Vegetation regrowth is incorporated represented by satellite-based Enhanced Vegetation Index (EVI) products. The pre- and post-fire surface runoff, subsurface storage, and surface storage interactions are evaluated and will be used as a basis for developing a watershed-scale model. Long-term continuous simulations will advance our understanding of post-fire hydrological partitioning between water balance components and the spatial variability of watershed processes, providing improved guidance for post-fire watershed management.

  14. Modeling Pre- and Post- Wildfire Hydrologic Response to Vegetation Change in the Valles Caldera National Preserve, NM

    Science.gov (United States)

    Gregory, A. E.; Benedict, K. K.; Zhang, S.; Savickas, J.

    2017-12-01

    Large scale, high severity wildfires in forests have become increasingly prevalent in the western United States due to fire exclusion. Although past work has focused on the immediate consequences of wildfire (ie. runoff magnitude and debris flow), little has been done to understand the post wildfire hydrologic consequences of vegetation regrowth. Furthermore, vegetation is often characterized by static parameterizations within hydrological models. In order to understand the temporal relationship between hydrologic processes and revegetation, we modularized and partially automated the hydrologic modeling process to increase connectivity between remotely sensed data, the Virtual Watershed Platform (a data management resource, called the VWP), input meteorological data, and the Precipitation-Runoff Modeling System (PRMS). This process was used to run simulations in the Valles Caldera of NM, an area impacted by the 2011 Las Conchas Fire, in PRMS before and after the Las Conchas to evaluate hydrologic process changes. The modeling environment addressed some of the existing challenges faced by hydrological modelers. At present, modelers are somewhat limited in their ability to push the boundaries of hydrologic understanding. Specific issues faced by modelers include limited computational resources to model processes at large spatial and temporal scales, data storage capacity and accessibility from the modeling platform, computational and time contraints for experimental modeling, and the skills to integrate modeling software in ways that have not been explored. By taking an interdisciplinary approach, we were able to address some of these challenges by leveraging the skills of hydrologic, data, and computer scientists; and the technical capabilities provided by a combination of on-demand/high-performance computing, distributed data, and cloud services. The hydrologic modeling process was modularized to include options for distributing meteorological data, parameter space

  15. Investigation of Coupled Processes and Impact of High Temperature Limits in Argillite Rock

    International Nuclear Information System (INIS)

    Zheng, Liange; Rutqvist, Jonny; Kim, Kunhwi; Houseworth, Jim

    2015-01-01

    The focus of research within the UFD Campaign is on repository-induced interactions that may affect the key safety characteristics of an argillaceous rock. These include thermal-hydrological-mechanical-chemical (THMC) process interactions that occur as a result of repository construction and waste emplacement. Some of the key questions addressed in this report include the development of fracturing in the excavation damaged zone (EDZ) and THMC effects on the near-field argillaceous rock and buffer minerals and petrophysical characteristics, particularly the impacts of induced temperature rise caused by waste heat.

  16. Investigation of Coupled Processes and Impact of High Temperature Limits in Argillite Rock

    Energy Technology Data Exchange (ETDEWEB)

    Zheng, Liange [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States); Rutqvist, Jonny [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States); Kim, Kunhwi [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States); Houseworth, Jim [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States)

    2015-07-01

    The focus of research within the UFD Campaign is on repository-induced interactions that may affect the key safety characteristics of an argillaceous rock. These include thermal-hydrological-mechanical-chemical (THMC) process interactions that occur as a result of repository construction and waste emplacement. Some of the key questions addressed in this report include the development of fracturing in the excavation damaged zone (EDZ) and THMC effects on the near-field argillaceous rock and buffer minerals and petrophysical characteristics, particularly the impacts of induced temperature rise caused by waste heat.

  17. The testing of thermal-mechanical-hydrological-chemical processes using a large block

    International Nuclear Information System (INIS)

    Lin, W.; Wilder, D.G.; Blink, J.A.; Blair, S.C.; Buscheck, T.A.; Chesnut, D.A.; Glassley, W.E.; Lee, K.; Roberts, J.J.

    1994-01-01

    The radioactive decay heat from nuclear waste packages may, depending on the thermal load, create coupled thermal-mechanical-hydrological-chemical (TMHC) processes in the near-field environment of a repository. A group of tests on a large block (LBT) are planned to provide a timely opportunity to test and calibrate some of the TMHC model concepts. The LBT is advantageous for testing and verifying model concepts because the boundary conditions are controlled, and the block can be characterized before and after the experiment. A block of Topopah Spring tuff of about 3 x 3 x 4.5 m will be sawed and isolated at Fran Ridge, Nevada Test Site. Small blocks of the rock adjacent to the large block will be collected for laboratory testing of some individual thermal-mechanical, hydrological, and chemical processes. A constant load of about 4 MPa will be applied to the top and sides of the large block. The sides will be sealed with moisture and thermal barriers. The large block will be heated with one heater in each borehole and guard heaters on the sides so that a dry-out zone and a condensate zone will exist simultaneously. Temperature, moisture content, pore pressure, chemical composition, stress and displacement will be measured throughout the block during the heating and cool-down phases. The results from the experiments on small blocks and the tests on the large block will provide a better understanding of some concepts of the coupled TMHC processes

  18. Impact of land-use and climatic changes on hydrology of the Himalayan Basin: A case study of the Kosi Basin

    Science.gov (United States)

    Sharma, Keshav Prasad

    1997-10-01

    Land-use and climatic changes are of major concern in the Himalayan region because of their potential impacts on a predominantly agriculture-based economy and a regional hydrology dominated by strong seasonality. Such concerns are not limited to any particular basin but exist throughout the region including the downstream plain areas. As a representative basin of the Himalayas, we studied the Kosi basin (54,000 km2) located in the mountainous area of the central Himalayan region. We analyzed climatic and hydrologic information to assess the impacts of existing and potential future land-use and climatic changes over the basin. The assessment of anthropogenic inputs showed that the population grew at a compound growth rate of about one percent per annum over the basin during the last four decades. The comparison of land-use data based on the surveys made in the 1960s, and the surveys of 1978-79 did not reveal noticeable trends in land-use change. Analysis of meteorological and hydrological trends using parametric and nonparametric statistics for monthly data from 1947 to 1993 showed some increasing tendency for temperature and precipitation. Statistical tests of hydrological trends indicated an overall decrease of discharge along mainstem Kosi River and its major tributaries. The decreasing trends of streamflow were more significant during low-flow months. Statistical analysis of homogeneity showed that the climatological as well as the hydrological trends were more localized in nature lacking distinct basinwide significance. Statistical analysis of annual sediment time series, available for a single station on the Kosi River did not reveal a significant trend. We used water balance, statistical correlation, and distributed deterministic modeling approaches to analyze the hydrological sensitivity of the basin to possible land-use and climatic changes. The results indicated a stronger influence of basin characteristics compared to climatic characteristics on flow

  19. Managing the impact of climate change on the hydrology of the Gallocanta Basin, NE-Spain.

    Science.gov (United States)

    Kuhn, Nikolaus J; Baumhauer, Roland; Schütt, Brigitta

    2011-02-01

    The Gallocanta Basin represents an environment highly sensitive to climate change. Over the past 60 years, the Laguna de Gallocanta, an ephemeral lake situated in the closed Gallocanta basin, experienced a sequence of wet and dry phases. The lake and its surrounding wetlands are one of only a few bird sanctuaries left in NE-Spain for grey cranes on their annual migration from Scandinavia to northern Africa. Understanding the impact of climate change on basin hydrology is therefore of utmost importance for the appropriate management of the bird sanctuary. Changes in lake level are only weakly linked to annual rainfall, with reaction times between hours and months after rainfall. Both the total amount of rainfall over the reaction period, as well as individual extreme events, affect lake level. In this study the characteristics and frequencies of daily, event, monthly and bi-monthly rainfall over the past 60 years were analysed. The results revealed a clear link between increased frequencies of high magnitude rainfall and phases of water filling in the Laguna de Gallocanta. In the middle of the 20th century, the absolute amount of rainfall appears to have been more important for lake level, while more recently the frequency of high magnitude rainfall has emerged as the dominant variable. In the Gallocanta Basin, climate change and the distinct and continuing land use change since Spain joined the EU in 1986 have created an environment that is in a more or less constant state of transition. This highlights two challenges faced by hydrologists and climatologists involved in developing water management tools for the Gallocanta Basin in particular, but also other areas with sensitive and rapidly changing environments. Hydrologists have to understand the processes and the spatial and temporal patterns of surface-climate interaction in a watershed to assess the impact of climate change on its hydrology. Climatologists, on the other hand, have to develop climate models

  20. Concepts and Challenges in Disturbance Hydrology

    Science.gov (United States)

    Ebel, B. A.; Mirus, B. B.

    2016-12-01

    Landscape disturbances are increasing, often promoted and enhanced by climate shifts and human activities. Insect infestations, wildfires, earthquakes, urban development, forest harvest, mineral and petroleum resource extraction, and hurricanes are common landscape disturbances that can have profound hydrologic consequences. These cause relatively abrupt changes in the landscape, which alter local processes on plots and hillslopes in addition to coarser-scale processes across watersheds through cross-scale interactions. Shifts in soil properties and cover of vegetation and leaf litter change the water storage or buffering capacity as well as the hydrologic functional connectivity across multiple scales. These changes increase the risk of catastrophic flooding, erosion, and mass movements that degrade water resources, ecosystem services, and protection from hydrologically driven natural hazards. Although it is imperative that we understand the hydrologic effects of these disturbances, several major barriers exist. Four challenges are: (i) overlapping disturbances in space and time with unknown recovery trajectories, (ii) a paucity of long-term recovery records (>5 years duration), (iii) inefficacy of traditional modeling and parameterization approaches, and (iv) lack of pre-disturbance characterization. Examples of these challenges will be presented along with proposed opportunities for improved mechanistic understanding of processes and thresholds in disturbance hydrology.

  1. Understanding hydrologic budgets, dynamics in an arid basin and explore spatial scaling properties using Process-based Adaptive Watershed Simulator (PAWS)

    Science.gov (United States)

    Fang, K.; Shen, C.; Salve, R.

    2013-12-01

    The Southern California hot desert hosts a fragile ecosystem as well as a range of human economic activities, primarily mining, energy production and recreation. This inland arid landscape is characterized by occasional intensive precipitation events and year-round strong potential evapotranspiration. In this landscape, water and especially groundwater is vital for ecosystem functions and human use. However, the impact of recent development on the sustainability of groundwater resources in the area has not been thoroughly investigated. We apply an integrated, physically-based hydrologic-land surface model, the Process-based Adaptive Watershed Simulator + Community Land Model (PAWS+CLM) to evaluate the sustainability of the groundwater resources in the area. We elucidate the spatio-temporal patterns of hydrologic fluxes and budgets. The modeling results indicate that mountain front recharge is the essential recharging mechanism for the alluvial aquifer. Although pumping activities do not exceed annual-average recharge values, they are still expected to contribute significantly to groundwater drawdown in business-as-usual scenario. The impact of groundwater withdrawals is significant on the desert ecosystem. The relative importance of groundwater flow on NPP rises significantly as compared to other ecosystems. We further evaluate the fractal scaling properties of soil moisture in this very arid system and found the relationship to be much more static in time than that found in a humid continental climate system. The scaling exponents can be predicted using simple functions of the mean. Therefore, multi-scale model based on coarse-resolution surrogate model is expected to perform well in this system. The modeling result is also important for assessing the groundwater sustainability and impact of human activities in the desert environment.

  2. Nonstationary Hydrological Frequency Analysis: Theoretical Methods and Application Challenges

    Science.gov (United States)

    Xiong, L.

    2014-12-01

    Because of its great implications in the design and operation of hydraulic structures under changing environments (either climate change or anthropogenic changes), nonstationary hydrological frequency analysis has become so important and essential. Two important achievements have been made in methods. Without adhering to the consistency assumption in the traditional hydrological frequency analysis, the time-varying probability distribution of any hydrological variable can be established by linking the distribution parameters to some covariates such as time or physical variables with the help of some powerful tools like the Generalized Additive Model of Location, Scale and Shape (GAMLSS). With the help of copulas, the multivariate nonstationary hydrological frequency analysis has also become feasible. However, applications of the nonstationary hydrological frequency formula to the design and operation of hydraulic structures for coping with the impacts of changing environments in practice is still faced with many challenges. First, the nonstationary hydrological frequency formulae with time as covariate could only be extrapolated for a very short time period beyond the latest observation time, because such kind of formulae is not physically constrained and the extrapolated outcomes could be unrealistic. There are two physically reasonable methods that can be used for changing environments, one is to directly link the quantiles or the distribution parameters to some measureable physical factors, and the other is to use the derived probability distributions based on hydrological processes. However, both methods are with a certain degree of uncertainty. For the design and operation of hydraulic structures under changing environments, it is recommended that design results of both stationary and nonstationary methods be presented together and compared with each other, to help us understand the potential risks of each method.

  3. Effects of future climate change, CO2 enrichment, and vegetation structure variation on hydrological processes in China

    Science.gov (United States)

    Zhu, Qiuan; Jiang, Hong; Peng, Changhui; Liu, Jinxun; Fang, Xiuqin; Wei, Xiaohua; Liu, Shirong; Zhou, Guomo

    2012-01-01

    Investigating the relationship between factors (climate change, atmospheric CO2 concentrations enrichment, and vegetation structure) and hydrological processes is important for understanding and predicting the interaction between the hydrosphere and biosphere. The Integrated Biosphere Simulator (IBIS) was used to evaluate the effects of climate change, rising CO2, and vegetation structure on hydrological processes in China at the end of the 21st century. Seven simulations were implemented using the assemblage of the IPCC climate and CO2 concentration scenarios, SRES A2 and SRES B1. Analysis results suggest that (1) climate change will have increasing effects on runoff, evapotranspiration (ET), transpiration (T), and transpiration ratio (transpiration/evapotranspiration, T/E) in most hydrological regions of China except in the southernmost regions; (2) elevated CO2 concentrations will have increasing effects on runoff at the national scale, but at the hydrological region scale, the physiology effects induced by elevated CO2 concentration will depend on the vegetation types, climate conditions, and geographical background information with noticeable decreasing effects shown in the arid Inland region of China; (3) leaf area index (LAI) compensation effect and stomatal closure effect are the dominant factors on runoff in the arid Inland region and southern moist hydrological regions, respectively; (4) the magnitudes of climate change (especially the changing precipitation pattern) effects on the water cycle are much larger than those of the elevated CO2 concentration effects; however, increasing CO2 concentration will be one of the most important modifiers to the water cycle; (5) the water resource condition will be improved in northern China but depressed in southernmost China under the IPCC climate change scenarios, SRES A2 and SRES B1.

  4. Plan for a Sierra Nevada Hydrologic Observatory: Science Aims, Measurement Priorities, Research Opportunities and Expected Impacts

    Science.gov (United States)

    Bales, R.; Dozier, J.; Famiglietti, J.; Fogg, G.; Hopmans, J.; Kirchner, J.; Meixner, T.; Molotch, N.; Redmond, K.; Rice, R.; Sickman, J.; Warwick, J.

    2004-12-01

    In response to NSF's plans to establish a network of hydrologic observatories, a planning group is proposing a Sierra Nevada Hydrologic Observatory (SNHO). As argued in multiple consensus planning documents, the semi-arid mountain West is perhaps the highest priority for new hydrologic understanding. Based on input from over 100 individuals, it is proposed to initiate a mountain-range-scale study of the snow-dominated hydrology of the region, focusing on representative 1,000-5,000 km2 river basins originating in the Sierra Nevada and tributary to the Sacramento-San-Joaquin Delta. The SNHO objective is to provide the necessary infrastructure for improved understanding of surface-water and ground-water systems, their interactions and their linkages with ecosystems, biogeochemistry, agriculture, urban areas and water resources in semi-arid regions. The SNHO will include east-west transects of hydrological observations across the Sierra Nevada and into the basin and range system, in four distinct latitude bands that span much of the variability found in the semi-arid West. At least one transect will include agricultural and urban landscapes of the Great Central Valley. Investments in measurement systems will address scales from the mountain range down to the basin, headwater catchment and study plot. The intent is to provide representative measurements that will yield general knowledge as opposed to site-specific problem solving of a unique system. The broader, general science question posed by the planning group is: How do mountain hydrologic processes vary across landscapes, spanning a range of latitudes, elevations and thus climate, soils, geology and vegetation zones?\\" Embodied are additional broad questions for the hydrologic science community as a whole: (i) How do hydrologic systems that are subjected to multiple perturbations respond? (ii) How do pulses and changes propagate through the hydrologic system? (iii) What are the time lags and delays of stresses in

  5. An ensemble approach to assess hydrological models' contribution to uncertainties in the analysis of climate change impact on water resources

    Science.gov (United States)

    Velázquez, J. A.; Schmid, J.; Ricard, S.; Muerth, M. J.; Gauvin St-Denis, B.; Minville, M.; Chaumont, D.; Caya, D.; Ludwig, R.; Turcotte, R.

    2012-06-01

    Over the recent years, several research efforts investigated the impact of climate change on water resources for different regions of the world. The projection of future river flows is affected by different sources of uncertainty in the hydro-climatic modelling chain. One of the aims of the QBic3 project (Québec-Bavarian International Collaboration on Climate Change) is to assess the contribution to uncertainty of hydrological models by using an ensemble of hydrological models presenting a diversity of structural complexity (i.e. lumped, semi distributed and distributed models). The study investigates two humid, mid-latitude catchments with natural flow conditions; one located in Southern Québec (Canada) and one in Southern Bavaria (Germany). Daily flow is simulated with four different hydrological models, forced by outputs from regional climate models driven by a given number of GCMs' members over a reference (1971-2000) and a future (2041-2070) periods. The results show that the choice of the hydrological model does strongly affect the climate change response of selected hydrological indicators, especially those related to low flows. Indicators related to high flows seem less sensitive on the choice of the hydrological model. Therefore, the computationally less demanding models (usually simple, lumped and conceptual) give a significant level of trust for high and overall mean flows.

  6. Understanding the hydrologic impacts of wastewater treatment plant discharge to shallow groundwater: Before and after plant shutdown

    Science.gov (United States)

    Hubbard, Laura E.; Keefe, Steffanie H.; Kolpin, Dana W.; Barber, Larry B.; Duris, Joseph W.; Hutchinson, Kasey J.; Bradley, Paul M.

    2016-01-01

    Effluent-impacted surface water has the potential to transport not only water, but wastewater-derived contaminants to shallow groundwater systems. To better understand the effects of effluent discharge on in-stream and near-stream hydrologic conditions in wastewater-impacted systems, water-level changes were monitored in hyporheic-zone and shallow-groundwater piezometers in a reach of Fourmile Creek adjacent to and downstream of the Ankeny (Iowa, USA) wastewater treatment plant (WWTP). Water-level changes were monitored from approximately 1.5 months before to 0.5 months after WWTP closure. Diurnal patterns in WWTP discharge were closely mirrored in stream and shallow-groundwater levels immediately upstream and up to 3 km downstream of the outfall, indicating that such discharge was the primary control on water levels before shutdown. The hydrologic response to WWTP shutdown was immediately observed throughout the study reach, verifying the far-reaching hydraulic connectivity and associated contaminant transport risk. The movement of WWTP effluent into alluvial aquifers has implications for potential WWTP-derived contamination of shallow groundwater far removed from the WWTP outfall.

  7. Towards an integrated model of floodplain hydrology representing feedbacks and anthropogenic effects

    Science.gov (United States)

    Andreadis, K.; Schumann, G.; Voisin, N.; O'Loughlin, F.; Tesfa, T. K.; Bates, P.

    2017-12-01

    The exchange of water between hillslopes, river channels and floodplain can be quite complex and the difficulty in capturing the mechanisms behind it is exacerbated by the impact of human activities such as irrigation and reservoir operations. Although there has been a vast body of work on modeling hydrological processes, most of the resulting models have been limited with regards to aspects of the coupled human-natural system. For example, hydrologic models that represent processes such as evapotranspiration, infiltration, interception and groundwater dynamics often neglect anthropogenic effects or do not adequately represent the inherently two-dimensional floodplain flow. We present an integrated modeling framework that is comprised of the Variable Infiltration Capacity (VIC) hydrology model, the LISFLOOD-FP hydrodynamic model, and the Water resources Management (WM) model. The VIC model solves the energy and water balance over a gridded domain and simulates a number of hydrologic features such as snow, frozen soils, lakes and wetlands, while also representing irrigation demand from cropland areas. LISFLOOD-FP solves an approximation of the Saint-Venant equations to efficiently simulate flow in river channels and the floodplain. The implementation of WM accommodates a variety of operating rules in reservoirs and withdrawals due to consumptive demands, allowing the successful simulation of regulated flow. The models are coupled so as to allow feedbacks between their corresponding processes, therefore providing the ability to test different hypotheses about the floodplain hydrology of large-scale basins. We test this integrated framework over the Zambezi River basin by simulating its hydrology from 2000-2010, and evaluate the results against remotely sensed observations. Finally, we examine the sensitivity of streamflow and water inundation to changes in reservoir operations, precipitation and temperature.

  8. Agro-hydrology and multi temporal high resolution remote sensing: toward an explicit spatial processes calibration

    Science.gov (United States)

    Ferrant, S.; Gascoin, S.; Veloso, A.; Salmon-Monviola, J.; Claverie, M.; Rivalland, V.; Dedieu, G.; Demarez, V.; Ceschia, E.; Probst, J.-L.; Durand, P.; Bustillo, V.

    2014-07-01

    The recent and forthcoming availability of high resolution satellite image series offers new opportunities in agro-hydrological research and modeling. We investigated the perspective offered by improving the crop growth dynamic simulation using the distributed agro-hydrological model, Topography based Nitrogen transfer and Transformation (TNT2), using LAI map series derived from 105 Formosat-2 (F2) images during the period 2006-2010. The TNT2 model (Beaujouan et al., 2002), calibrated with discharge and in-stream nitrate fluxes for the period 1985-2001, was tested on the 2006-2010 dataset (climate, land use, agricultural practices, discharge and nitrate fluxes at the outlet). A priori agricultural practices obtained from an extensive field survey such as seeding date, crop cultivar, and fertilizer amount were used as input variables. Continuous values of LAI as a function of cumulative daily temperature were obtained at the crop field level by fitting a double logistic equation against discrete satellite-derived LAI. Model predictions of LAI dynamics with a priori input parameters showed an temporal shift with observed LAI profiles irregularly distributed in space (between field crops) and time (between years). By re-setting seeding date at the crop field level, we proposed an optimization method to minimize efficiently this temporal shift and better fit the crop growth against the spatial observations as well as crop production. This optimization of simulated LAI has a negligible impact on water budget at the catchment scale (1 mm yr-1 in average) but a noticeable impact on in-stream nitrogen fluxes (around 12%) which is of interest considering nitrate stream contamination issues and TNT2 model objectives. This study demonstrates the contribution of forthcoming high spatial and temporal resolution products of Sentinel-2 satellite mission in improving agro-hydrological modeling by constraining the spatial representation of crop productivity.

  9. Hydrology and Ecology Go to Court

    Science.gov (United States)

    Wise, W. R.; Crisman, T. L.

    2009-04-01

    The authors were involved in a high profile case in the United States District Court involving Lake Okeechobee and the Everglades Agricultural Area in the State of Florida. One of the central issues of the case rested on a theory that all navigable waters of the United States comprised one "unitary" water body, and as such, transfer of water from one navigable water to another did not require any permitting action. Should this theory have prevailed, great precedent would be set regarding inter-basin transfer of volumes of water capable of significantly impact to the ecologic structure and function of all involved basins. Furthermore, the impact would certainly have had demographic implications of great significance. We were asked to serve as an expert witnesses in the case charged with developing a strategy to demonstrate that three large irrigation canals were "meaningfully hydrologically distinct" (language from the U.S. Supreme Court opinion on a related case) from Lake Okeechobee, the second largest freshwater lake wholly in the continental U.S. Although a totally hydrologic approach could have been taken easily, it was thought better for the legal team to include an aquatic ecologic perspective, a true example of the linkage of the two disciplines into ecohydrology. Together, an argument was crafted to explain to the judge how, in fact, the waters could in no way be "unitary" in character and that they were "meaningfully hydrologically distinct." The fundamentals of the arguments rested on well known and established principles of physics, chemistry, and biology. It was incumbent upon the authors to educate the judge on how to think about hydrologic and ecologic principles. Issues of interest to the judge included a forensic assessment of the hydrologic and ecologic regime of the lake and the original Everglades system when the State of Florida first joined the U.S. While there are anecdotal archives that describe some elements of the system, there are few

  10. Impacts of Irrigation and Climate Change on Water Security: Using Stakeholder Engagement to Inform a Process-based Crop Model

    Science.gov (United States)

    Leonard, A.; Flores, A. N.; Han, B.; Som Castellano, R.; Steimke, A.

    2016-12-01

    Irrigation is an essential component for agricultural production in arid and semi-arid regions, accounting for a majority of global freshwater withdrawals used for human consumption. Since climate change affects both the spatiotemporal demand and availability of water in irrigated areas, agricultural productivity and water efficiency depend critically on how producers adapt and respond to climate change. It is necessary, therefore, to understand the coevolution and feedbacks between humans and agricultural systems. Integration of social and hydrologic processes can be achieved by active engagement with local stakeholders and applying their expertise to models of coupled human-environment systems. Here, we use a process based crop simulation model (EPIC) informed by stakeholder engagement to determine how both farm management and climate change influence regional agricultural water use and production in the Lower Boise River Basin (LBRB) of southwest Idaho. Specifically, we investigate how a shift from flood to sprinkler fed irrigation would impact a watershed's overall agricultural water use under RCP 4.5 and RCP 8.5 climate scenarios. The LBRB comprises about 3500 km2, of which 20% is dedicated to irrigated crops and another 40% to grass/pasture grazing land. Via interviews of stakeholders in the LBRB, we have determined that approximately 70% of irrigated lands in the region are flood irrigated. We model four common crops produced in the LBRB (alfalfa, corn, winter wheat, and sugarbeets) to investigate both hydrologic and agricultural impacts of irrigation and climatic drivers. Factors influencing farmers' decision to switch from flood to sprinkler irrigation include potential economic benefits, external financial incentives, and providing a buffer against future water shortages. These two irrigation practices are associated with significantly different surface water and energy budgets, and large-scale shifts in practice could substantially impact regional

  11. Urban Hydrology and Water Quality Modeling - Resolution Modeling Comparison for Water Quantity and Quality

    Science.gov (United States)

    Fry, T. J.; Maxwell, R. M.

    2014-12-01

    Urbanization presents challenging water resource problems for communities worldwide. The hydromodifications associated with urbanization results in increased runoff rates and volumes and increased peak flows. These hydrologic changes can lead to increased erosion and stream destabilization, decreased evapotranspiration, decreased ground water recharge, increases in pollutant loading, and localized anthropogenic climate change or Urban Heat Islands. Stormwater represents a complex and dynamic component of the urban water cycle that requires careful mitigation. With the implementation of Phase II rules under the CWA, stormwater management is shifting from a drainage-efficiency focus to a natural systems focus. The natural system focus, referred to as Low Impact Development (LID), or Green Infrastructure, uses best management practices (BMPs) to reduce the impacts caused by urbanization hydromodification. Large-scale patterns of stormwater runoff from urban environments are complex and it is unclear what the large-scale impacts of green infrastructure are on the water cycle. High resolution physically based hydrologic models can be used to more accurately simulate the urban hydrologic cycle. These types of models tend to be more dynamic and allow for greater flexibility in evaluating and accounting for various hydrologic processes in the urban environment that may be lost with lower resolution conceptual models. We propose to evaluate the effectiveness of high resolution models to accurately represent and determine the urban hydrologic cycle with the overall goal of being able to accurately assess the impacts of LID BMPs in urban environments. We propose to complete a rigorous model intercomparison between ParFlow and FLO-2D. Both of these models can be scaled to higher resolutions, allow for rainfall to be spatially and temporally input, and solve the shallow water equations. Each model is different in the way it accounts for infiltration, initial abstraction losses

  12. The Role of Anthropogenic Modifications in Landscape and Hydrological Organization of Mayma River Basin

    Directory of Open Access Journals (Sweden)

    Lubenets Liliya Fedorovna

    2015-04-01

    Full Text Available The landscape and hydrological organization of the territory is a mosaic of landscapes with different modes of water yield and water balance structure. The landscape and hydrological approach becomes very important under the lack of hydrometeorological information. The factors determining the landscape and hydrological organization of the Mayma river basin, located in the Russian Altai, are considered in the present article. The classification of the landscape and hydrological complexes based on the static and dynamic indicators is performed. The set of interpretive landscape and hydrological maps has been developed. The climatic and hydrological conditions provide the excess moisture over a larger part of the basin. The lithological and hydrological background is characterized by the predominance of rocks and thin weathering products. A peculiarity of the studied area is the prevalence of transit locations that creates risks of dangerous hydrological processes in case of excessive humidity. Using the remote sensing data, the main classes of ground cover are described. A significant anthropogenic impact on the basin landscapes is observed. The analysis of soil structure shows that anthropogenically modified (mostly situated on slopes soils make up approximately 30 %. It is assumed that it leads to the deterioration of the landscape and hydrological situation in the catchment. It is concluded that the landscape and hydrological approach allows solving the problems on minimizing the hydrological objects damage and optimizing the nature management in the catchment in the context of the lack of hydrometeorological information.

  13. Assessment of the effect of climate change on the hydrological cycle

    DEFF Research Database (Denmark)

    Karlsson, Ida Bjørnholt

    , implying that when doing a future impact study, hydrological predictions could be compromised when using hydrological models calibrated on present time series. The hydrological response to a future high-end emission scenario was also explored. The hydrological model simulations and drought indices analyses...... showed longer and dryer periods leading to enhanced root zone dryness, lowered river discharge, and decreasing groundwater head elevation increasing the risk of stream flow drought and crop failure. In contrast, wetter winters will lead to increased flood risks. Finally, the influence of choosing...... a specific impact study setup was also investigated by simulating and analysing results from three factors; four climate models in combinations with three hydrological models and four land use scenarios. Results showed that the climate model was the dominant uncertainty factor on stream flow and hydraulic...

  14. Assessing various options for rain water management in 2030 using prospective land use change scenarii and distributed hydrological modelling in the Yzeron experimental periurban catchment (ZABR/OTHU-OZCAR CZO observatory)

    OpenAIRE

    Braud, I.; Labbas, M.; Branger, F.

    2017-01-01

    Growing urbanization and related anthropogenic processes have a high potential to influence hydrological process dynamics. Periurban catchments, at the edge of large cities, are especially affected by fast anthropogenic modifications. Spatialized hydrological modeling tools, simulating the entire hydrological cycle and able to take into account the important heterogeneity of periurban watersheds can be used to assess the impact of storm water management practices and land cover change scenari...

  15. Modeling Lake Turkana Hydrology: Evaluating the potential hydrological impact of Gibe III reservoir on the Lake Turkana water levels using multi-source satellite data

    Science.gov (United States)

    Velpuri, N.; Senay, G. B.

    2012-12-01

    Ethiopia is currently building the Gibe III hydroelectric dam on the Omo River, which supplies >80% of the inflows to Lake Turkana, Kenya. On completion, the Gibe III dam will be the tallest dam in Africa (height of 241 m) with a storage capacity of 14.5 billion m3. Arguably, this is one of the most controversial hydro-power projects in the region because the nature of interactions and potential impacts of the dam regulated flows on Lake Turkana are not well understood due to its remote location and unavailability of reliable in situ hydrological datasets. In this research, we used a calibrated multi-source satellite data-driven water balance model for Lake Turkana that takes into account 12 years (1998-2009) of satellite rainfall, model routed runoff, lake/reservoir evapotranspiration, direct rain on lakes/reservoirs and releases from the dam to compute lake water levels. The model was used to evaluate the impact of the Gibe III dam using three different simple but robust approaches - a historical approach; a rainfall based sampling approach; and a non-parametric bootstrap resampling approach to generate rainfall-runoff scenarios. Modelling results indicate that, on average, the reservoir would take up to 8-10 months to reach minimum operation level of 201 m (initial impoundment period). During this period, the dam would regulate the lake inflows up to 50% and as a result the lake level would drop up to 2 m. However, after the initial impoundment period, due to releases from the dam, the rate of lake inflows would be around 10 m3/s less when compared to the rate without Gibe III (650 m3/s). Due to this, the lake levels will decline on average 1.5 m (3 m). Over the entire modeling period including the initial period of impoundment, the average rate of lake inflows due to Gibe III dam was estimated to be 500 m3/s. Results indicated that dam would also moderate the seasonal fluctuations in the lake. Areas along the Lake Turkana shoreline that are vulnerable to

  16. Developing a Three Processes Framework to Analyze Hydrologic Performance of Urban Stormwater Management in a Watershed Scale

    Science.gov (United States)

    Lyu, H.; Ni, G.; Sun, T.

    2016-12-01

    Urban stormwater management contributes to recover water cycle to a nearly natural situation. It is a challenge for analyzing the hydrologic performance in a watershed scale, since the measures are various of sorts and scales and work in different processes. A three processes framework is developed to simplify the urban hydrologic process on the surface and evaluate the urban stormwater management. The three processes include source utilization, transfer regulation and terminal detention, by which the stormwater is controlled in order or discharged. Methods for analyzing performance are based on the water controlled proportions by each process, which are calculated using USEPA Stormwater Management Model. A case study form Beijing is used to illustrate how the performance varies under a set of designed events of different return periods. This framework provides a method to assess urban stormwater management as a whole system considering the interaction between measures, and to examine if there is any weak process of an urban watershed to be improved. The results help to make better solutions of urban water crisis.

  17. Modelling Peatland Hydrology: Three cases from Northern Europe

    NARCIS (Netherlands)

    Querner, E.P.; Mioduszewski, W.; Povilaitis, A.; Slesicka, A.

    2010-01-01

    Many of the peatlands that used to extend over large parts of Northern Europe have been reclaimed for agriculture. Human influence continues to have a major impact on the hydrology of those that remain, affecting river flow and groundwater levels. In order to understand this hydrology it is

  18. Land Use/Land Cover Changes and Its Response to Hydrological Characteristics in the Upper Reaches of Minjiang River

    Science.gov (United States)

    Ma, Kai; Huang, Xiaorong; Guo, Biying; Wang, Yanqiu; Gao, Linyun

    2018-06-01

    Land use changes alter the hydrological characteristics of the land surface, and have significant impacts on hydrological cycle and water balance, the analysis of complex effects on natural systems has become one of the main concerns. In this study, we generated the land use conversion matrixes using ArcGIS and selected several landscape indexes (contagion index, CONTAG, Shannon's diversity index, SHDI, etc.) to evaluate the impact of land use/cover changes on hydrological process in the upper reaches of Minjiang River. We also used a statistical regression model which was established based on hydrology and precipitation data during the period of 1959-2008 to simulate the impacts of different land use conditions on rainfall and runoff in different periods. Our results showed that the simulated annual mean flow from 1985 to 1995 and 1995 to 2008 are 9.19 and 1.04 m3 s-1 lower than the measured values, respectively, which implied that the ecological protection measures should be strengthened in the study area. Our study could provide a scientific basis for water resource management and proper land use planning of upper reaches of Minjiang River.

  19. Visualizing complex (hydrological) systems with correlation matrices

    Science.gov (United States)

    Haas, J. C.

    2016-12-01

    When trying to understand or visualize the connections of different aspects of a complex system, this often requires deeper understanding to start with, or - in the case of geo data - complicated GIS software. To our knowledge, correlation matrices have rarely been used in hydrology (e.g. Stoll et al., 2011; van Loon and Laaha, 2015), yet they do provide an interesting option for data visualization and analysis. We present a simple, python based way - using a river catchment as an example - to visualize correlations and similarities in an easy and colorful way. We apply existing and easy to use python packages from various disciplines not necessarily linked to the Earth sciences and can thus quickly show how different aquifers work or react, and identify outliers, enabling this system to also be used for quality control of large datasets. Going beyond earlier work, we add a temporal and spatial element, enabling us to visualize how a system reacts to local phenomena such as for example a river, or changes over time, by visualizing the passing of time in an animated movie. References: van Loon, A.F., Laaha, G.: Hydrological drought severity explained by climate and catchment characteristics, Journal of Hydrology 526, 3-14, 2015, Drought processes, modeling, and mitigation Stoll, S., Hendricks Franssen, H. J., Barthel, R., Kinzelbach, W.: What can we learn from long-term groundwater data to improve climate change impact studies?, Hydrology and Earth System Sciences 15(12), 3861-3875, 2011

  20. Relating climate change signals and physiographic catchment properties to clustered hydrological response types

    Directory of Open Access Journals (Sweden)

    N. Köplin

    2012-07-01

    Full Text Available We propose an approach to reduce a comprehensive set of 186 mesoscale catchments in Switzerland to fewer response types to climate change and to name sensitive regions as well as catchment characteristics that govern hydrological change. We classified the hydrological responses of our study catchments through an agglomerative-hierarchical cluster analysis, and we related the dominant explanatory variables, i.e. the determining catchment properties and climate change signals, to the catchments' hydrological responses by means of redundancy analysis. All clusters except for one exhibit clearly decreasing summer runoff and increasing winter runoff. This seasonal shift was observed for the near future period (2025–2046 but is particularly obvious in the far future period (2074–2095. Within a certain elevation range (between 1000 and 2500 m a.s.l., the hydrological change is basically a function of elevation, because the latter governs the dominant hydro-climatological processes associated with temperature, e.g. the ratio of liquid to solid precipitation and snow melt processes. For catchments below the stated range, hydrological change is mainly a function of precipitation change, which is not as pronounced as the temperature signal is. Future impact studies in Switzerland can be conducted on a reduced sample of catchments representing the sensitive regions or covering a range of altitudes.

  1. Assessment of dam construction impact on hydrological regime changes in lowland river – A case of study: the Stare Miasto reservoir located on the Powa River

    Directory of Open Access Journals (Sweden)

    Sojka Mariusz

    2016-09-01

    Full Text Available The purpose of the presented research is analysis and assessment of the Stare Miasto reservoir impact on the hydrological regime changes of the Powa River. The reservoir was built in 2006 and is located in the central part of Poland. The total area of inundation in normal conditions is 90.68 ha and its capacity is 2.159 mln m3. Hydrological regime alteration of the Powa River is analysed on the basis of daily flows from the Posoka gauge station observed during period 1974–2014. Assessment of hydrological regime changes is carried out on the basis of Range of Variability Approach (RVA method. All calculations are made by means of Indicators of Hydrologic Alteration (IHA software version 7.1.0.10. The analysis shows that the Stare Miasto reservoir has a moderate impact on hydrological regime of the Powa River. Construction of the reservoir has positive effect on stability of minimal flows, which are important for protection of river ecosystems. The results obtained indicate that the Stare Miasto reservoir reduces a spring peak flow and enables to moderate control of floods.

  2. Are we using the right fuel to drive hydrological models? A climate impact study in the Upper Blue Nile

    Directory of Open Access Journals (Sweden)

    S. Liersch

    2018-04-01

    Full Text Available Climate simulations are the fuel to drive hydrological models that are used to assess the impacts of climate change and variability on hydrological parameters, such as river discharges, soil moisture, and evapotranspiration. Unlike with cars, where we know which fuel the engine requires, we never know in advance what unexpected side effects might be caused by the fuel we feed our models with. Sometimes we increase the fuel's octane number (bias correction to achieve better performance and find out that the model behaves differently but not always as was expected or desired. This study investigates the impacts of projected climate change on the hydrology of the Upper Blue Nile catchment using two model ensembles consisting of five global CMIP5 Earth system models and 10 regional climate models (CORDEX Africa. WATCH forcing data were used to calibrate an eco-hydrological model and to bias-correct both model ensembles using slightly differing approaches. On the one hand it was found that the bias correction methods considerably improved the performance of average rainfall characteristics in the reference period (1970–1999 in most of the cases. This also holds true for non-extreme discharge conditions between Q20 and Q80. On the other hand, bias-corrected simulations tend to overemphasize magnitudes of projected change signals and extremes. A general weakness of both uncorrected and bias-corrected simulations is the rather poor representation of high and low flows and their extremes, which were often deteriorated by bias correction. This inaccuracy is a crucial deficiency for regional impact studies dealing with water management issues and it is therefore important to analyse model performance and characteristics and the effect of bias correction, and eventually to exclude some climate models from the ensemble. However, the multi-model means of all ensembles project increasing average annual discharges in the Upper Blue Nile catchment and a shift

  3. Are we using the right fuel to drive hydrological models? A climate impact study in the Upper Blue Nile

    Science.gov (United States)

    Liersch, Stefan; Tecklenburg, Julia; Rust, Henning; Dobler, Andreas; Fischer, Madlen; Kruschke, Tim; Koch, Hagen; Fokko Hattermann, Fred

    2018-04-01

    Climate simulations are the fuel to drive hydrological models that are used to assess the impacts of climate change and variability on hydrological parameters, such as river discharges, soil moisture, and evapotranspiration. Unlike with cars, where we know which fuel the engine requires, we never know in advance what unexpected side effects might be caused by the fuel we feed our models with. Sometimes we increase the fuel's octane number (bias correction) to achieve better performance and find out that the model behaves differently but not always as was expected or desired. This study investigates the impacts of projected climate change on the hydrology of the Upper Blue Nile catchment using two model ensembles consisting of five global CMIP5 Earth system models and 10 regional climate models (CORDEX Africa). WATCH forcing data were used to calibrate an eco-hydrological model and to bias-correct both model ensembles using slightly differing approaches. On the one hand it was found that the bias correction methods considerably improved the performance of average rainfall characteristics in the reference period (1970-1999) in most of the cases. This also holds true for non-extreme discharge conditions between Q20 and Q80. On the other hand, bias-corrected simulations tend to overemphasize magnitudes of projected change signals and extremes. A general weakness of both uncorrected and bias-corrected simulations is the rather poor representation of high and low flows and their extremes, which were often deteriorated by bias correction. This inaccuracy is a crucial deficiency for regional impact studies dealing with water management issues and it is therefore important to analyse model performance and characteristics and the effect of bias correction, and eventually to exclude some climate models from the ensemble. However, the multi-model means of all ensembles project increasing average annual discharges in the Upper Blue Nile catchment and a shift in seasonal

  4. SWAT Modeling for Depression-Dominated Areas: How Do Depressions Manipulate Hydrologic Modeling?

    Directory of Open Access Journals (Sweden)

    Mohsen Tahmasebi Nasab

    2017-01-01

    Full Text Available Modeling hydrologic processes for depression-dominated areas such as the North American Prairie Pothole Region is complex and reliant on a clear understanding of dynamic filling-spilling-merging-splitting processes of numerous depressions over the surface. Puddles are spatially distributed over a watershed and their sizes, storages, and interactions vary over time. However, most hydrologic models fail to account for these dynamic processes. Like other traditional methods, depressions are filled as a required preprocessing step in the Soil and Water Assessment Tool (SWAT. The objective of this study was to facilitate hydrologic modeling for depression-dominated areas by coupling SWAT with a Puddle Delineation (PD algorithm. In the coupled PD-SWAT model, the PD algorithm was utilized to quantify topographic details, including the characteristics, distribution, and hierarchical relationships of depressions, which were incorporated into SWAT at the hydrologic response unit (HRU scale. The new PD-SWAT model was tested for a large watershed in North Dakota under real precipitation events. In addition, hydrologic modeling of a small watershed was conducted under two extreme high and low synthetic precipitation conditions. In particular, the PD-SWAT was compared against the regular SWAT based on depressionless DEMs. The impact of depressions on the hydrologic modeling of the large and small watersheds was evaluated. The simulation results for the large watershed indicated that SWAT systematically overestimated the outlet discharge, which can be attributed to the failure to account for the hydrologic effects of depressions. It was found from the PD-SWAT modeling results that at the HRU scale surface runoff initiation was significantly delayed due to the threshold control of depressions. Under the high precipitation scenario, depressions increased the surface runoff peak. However, the low precipitation scenario could not fully fill depressions to reach

  5. Improving the spatial representation of soil properties and hydrology using topographically derived initialization processes in the SWAT model

    Science.gov (United States)

    Topography exerts critical controls on many hydrologic, geomorphologic, and environmental biophysical processes. Unfortunately many watershed modeling systems use topography only to define basin boundaries and stream channels and do not explicitly account for the topographic controls on processes su...

  6. The PCR-GLOBWB global hydrological reanalysis product

    Science.gov (United States)

    Wanders, Niko; Bierkens, Marc; Sutanudjaja, Edwin; van Beek, Rens

    2014-05-01

    fields with consideration of local topographic and orographic effects. Results show that the model parameters can be successfully calibrated, while corrections to the forcing precipitation fields are substantial. Topography has the largest impact on the corrected precipitation and globally the precipitation is reduced by 3%. The calibrated model output is compared to the reference run of PCR-GLOBWB before calibration showing significant improvement in simulation of the global terrestrial water cycle. The RMSE is reduced by 10% on average, leading to improved discharge simulations, especially under base flow situations. The main outcome of this work is a 1960-2010 global reanalysis dataset that includes extensive daily hydrological components, such as precipitation, evaporation and transpiration, snow, soil moisture, groundwater storage and discharge. This reanalysis product may be used for understanding land surface memory processes, initializing regional studies and operational forecasts, as well as evaluating and improving our understanding of spatio-temporal variation of meteorological and hydrological processes. Moreover, The PCR-GLOBWB data assimilation framework developed in this work can also be extended by including more observational data, including remotely sensed data reflecting the distribution of energy and water (e.g., heat fluxes and soil moisture storage).

  7. From Rain Tanks to Catchments: Use of Low-Impact Development To Address Hydrologic Symptoms of the Urban Stream Syndrome.

    Science.gov (United States)

    Askarizadeh, Asal; Rippy, Megan A; Fletcher, Tim D; Feldman, David L; Peng, Jian; Bowler, Peter; Mehring, Andrew S; Winfrey, Brandon K; Vrugt, Jasper A; AghaKouchak, Amir; Jiang, Sunny C; Sanders, Brett F; Levin, Lisa A; Taylor, Scott; Grant, Stanley B

    2015-10-06

    Catchment urbanization perturbs the water and sediment budgets of streams, degrades stream health and function, and causes a constellation of flow, water quality, and ecological symptoms collectively known as the urban stream syndrome. Low-impact development (LID) technologies address the hydrologic symptoms of the urban stream syndrome by mimicking natural flow paths and restoring a natural water balance. Over annual time scales, the volumes of stormwater that should be infiltrated and harvested can be estimated from a catchment-scale water-balance given local climate conditions and preurban land cover. For all but the wettest regions of the world, a much larger volume of stormwater runoff should be harvested than infiltrated to maintain stream hydrology in a preurban state. Efforts to prevent or reverse hydrologic symptoms associated with the urban stream syndrome will therefore require: (1) selecting the right mix of LID technologies that provide regionally tailored ratios of stormwater harvesting and infiltration; (2) integrating these LID technologies into next-generation drainage systems; (3) maximizing potential cobenefits including water supply augmentation, flood protection, improved water quality, and urban amenities; and (4) long-term hydrologic monitoring to evaluate the efficacy of LID interventions.

  8. Potential impacts to perennial springs from tar sand mining, processing, and disposal on the Tavaputs Plateau, Utah, USA

    International Nuclear Information System (INIS)

    Johnson, William P.; Frederick, Logan E.; Millington, Mallory R.; Vala, David; Reese, Barbara K.; Freedman, Dina R.; Stenten, Christina J.; Trauscht, Jacob S.; Tingey, Christopher E.; Kip Solomon, D.; Fernandez, Diego P.; Bowen, Gabriel J.

    2015-01-01

    Similar to fracking, the development of tar sand mining in the U.S. has moved faster than understanding of potential water quality impacts. Potential water quality impacts of tar sand mining, processing, and disposal to springs in canyons incised approximately 200 m into the Tavaputs Plateau, at the Uinta Basin southern rim, Utah, USA, were evaluated by hydrogeochemical sampling to determine potential sources of recharge, and chemical thermodynamic estimations to determine potential changes in transfer of bitumen compounds to water. Because the ridgetops in an area of the Tavaputs Plateau named PR Spring are starting to be developed for their tar sand resource, there is concern for potential hydrologic connection between these ridgetops and perennial springs in adjacent canyons on which depend ranching families, livestock, wildlife and recreationalists. Samples were collected from perennial springs to examine possible progression with elevation of parameters such as temperature, specific conductance, pH, dissolved oxygen, isotopic tracers of phase change, water-rock interaction, and age since recharge. The groundwater age dates indicate that the springs are recharged locally. The progression of hydrogeochemical parameters with elevation, in combination with the relatively short groundwater residence times, indicate that the recharge zone for these springs includes the surrounding ridges, and thereby suggests a hydrologic connection between the mining, processing, disposal area and the springs. Estimations based on chemical thermodynamic approaches indicate that bitumen compounds will have greatly enhanced solubility in water that comes into contact with the residual bitumen–solvent mixture in disposed tailings relative to water that currently comes into contact with natural tar. - Highlights: • The potential water quality impacts of the first US tar sand development are considered. • Analyses of perennial springs in adjacent canyons indicate hydrologic

  9. Potential impacts to perennial springs from tar sand mining, processing, and disposal on the Tavaputs Plateau, Utah, USA

    Energy Technology Data Exchange (ETDEWEB)

    Johnson, William P.; Frederick, Logan E.; Millington, Mallory R. [University of Utah, Department of Geology & Geophysics, Salt lake City, UT 84112 (United States); Vala, David [Murray High School, Murray, UT 84107 (United States); Reese, Barbara K. [Butler Middle School, Cottonwood Heights, UT 84121 (United States); Freedman, Dina R. [Hillside Middle School, Salt Lake City, UT 84108 (United States); Stenten, Christina J. [Draper Park Middle School, Draper, UT 84020 (United States); Trauscht, Jacob S.; Tingey, Christopher E.; Kip Solomon, D.; Fernandez, Diego P.; Bowen, Gabriel J. [University of Utah, Department of Geology & Geophysics, Salt lake City, UT 84112 (United States)

    2015-11-01

    Similar to fracking, the development of tar sand mining in the U.S. has moved faster than understanding of potential water quality impacts. Potential water quality impacts of tar sand mining, processing, and disposal to springs in canyons incised approximately 200 m into the Tavaputs Plateau, at the Uinta Basin southern rim, Utah, USA, were evaluated by hydrogeochemical sampling to determine potential sources of recharge, and chemical thermodynamic estimations to determine potential changes in transfer of bitumen compounds to water. Because the ridgetops in an area of the Tavaputs Plateau named PR Spring are starting to be developed for their tar sand resource, there is concern for potential hydrologic connection between these ridgetops and perennial springs in adjacent canyons on which depend ranching families, livestock, wildlife and recreationalists. Samples were collected from perennial springs to examine possible progression with elevation of parameters such as temperature, specific conductance, pH, dissolved oxygen, isotopic tracers of phase change, water-rock interaction, and age since recharge. The groundwater age dates indicate that the springs are recharged locally. The progression of hydrogeochemical parameters with elevation, in combination with the relatively short groundwater residence times, indicate that the recharge zone for these springs includes the surrounding ridges, and thereby suggests a hydrologic connection between the mining, processing, disposal area and the springs. Estimations based on chemical thermodynamic approaches indicate that bitumen compounds will have greatly enhanced solubility in water that comes into contact with the residual bitumen–solvent mixture in disposed tailings relative to water that currently comes into contact with natural tar. - Highlights: • The potential water quality impacts of the first US tar sand development are considered. • Analyses of perennial springs in adjacent canyons indicate hydrologic

  10. Evaluation of different downscaling techniques for hydrological climate-change impact studies at the catchment scale

    Energy Technology Data Exchange (ETDEWEB)

    Teutschbein, Claudia [Stockholm University, Department of Physical Geography and Quaternary Geology, Stockholm (Sweden); Wetterhall, Fredrik [King' s College London, Department of Geography, Strand, London (United Kingdom); Swedish Meteorological and Hydrological Institute, Norrkoeping (Sweden); Seibert, Jan [Stockholm University, Department of Physical Geography and Quaternary Geology, Stockholm (Sweden); Uppsala University, Department of Earth Sciences, Uppsala (Sweden); University of Zurich, Department of Geography, Zurich (Switzerland)

    2011-11-15

    Hydrological modeling for climate-change impact assessment implies using meteorological variables simulated by global climate models (GCMs). Due to mismatching scales, coarse-resolution GCM output cannot be used directly for hydrological impact studies but rather needs to be downscaled. In this study, we investigated the variability of seasonal streamflow and flood-peak projections caused by the use of three statistical approaches to downscale precipitation from two GCMs for a meso-scale catchment in southeastern Sweden: (1) an analog method (AM), (2) a multi-objective fuzzy-rule-based classification (MOFRBC) and (3) the Statistical DownScaling Model (SDSM). The obtained higher-resolution precipitation values were then used to simulate daily streamflow for a control period (1961-1990) and for two future emission scenarios (2071-2100) with the precipitation-streamflow model HBV. The choice of downscaled precipitation time series had a major impact on the streamflow simulations, which was directly related to the ability of the downscaling approaches to reproduce observed precipitation. Although SDSM was considered to be most suitable for downscaling precipitation in the studied river basin, we highlighted the importance of an ensemble approach. The climate and streamflow change signals indicated that the current flow regime with a snowmelt-driven spring flood in April will likely change to a flow regime that is rather dominated by large winter streamflows. Spring flood events are expected to decrease considerably and occur earlier, whereas autumn flood peaks are projected to increase slightly. The simulations demonstrated that projections of future streamflow regimes are highly variable and can even partly point towards different directions. (orig.)

  11. Hydrologic processes of forested headwater watersheds across a physiographaic gradient in the southeastern United States

    Science.gov (United States)

    Ge Sun; Johnny Boggs; Steven G. McNulty; Devendra M. Amatya; Carl C. Trettin; Zhaohua Dai; James M. Vose; Ileana B. La Torre Torres; Timothy Callahan

    2008-01-01

    Understanding the hydrologic processes is the first step in making sound watershed management decisions including designing Best Management Practices for nonpoint source pollution control. Over the past fifty years, various forest experimental watersheds have been instrumented across the Carolinas through collaborative studies among federal, state, and private...

  12. Regional review: the hydrology of the Okavango Delta, Botswana-processes, data and modelling

    DEFF Research Database (Denmark)

    Milzow, C.; Kgotlhang, L.; Bauer-Gottwein, Peter

    2009-01-01

    The wetlands of the Okavango Delta accommodate a multitude of ecosystems with a large diversity in fauna and flora. They not only provide the traditional livelihood of the local communities but are also the basis of a tourism industry that generates substantial revenue for the whole of Botswana....... For the global community, the wetlands retain a tremendous pool of biodiversity. As the upstream states Angola and Namibia are developing, however, changes in the use of the water of the Okavango River and in the ecological status of the wetlands are to be expected. To predict these impacts, the hydrology...

  13. Application of oxygen-18 tracer techniques to arctic hydrological processes

    International Nuclear Information System (INIS)

    Cooper, L.W.; Solis, C.; Kane, D.L.; Hinzman, L.D.

    1993-01-01

    The δ 18 O value of streamflow at Imnavait Creek, Alaska, shifted dramatically from -30.3 per-thousand on 14 May, the first day of streamflow in 1990, to -22.5 per-thousand on 22 May, at the end of the snowmelt. Nevertheless, independent hydrological measurements of snow redistribution by wind, snow ablation, snow and soil mixture content, and snowmelt runoff indicate there cannot be significant mixing of meltwater with underlying ice-rich soils. An alternative explanation is that isotopic fractionation during the phase change from solid to liquid dominates the isotopic variation in streamflow during snowmelt and prevents a straightforward application of 18 O as a conservative hydrological tracer. By contrast, under dry antecedent conditions in late summer, 18 O appeared to be a suitable tracer following rain contributions to streamflow. Streamflow increased as a result of rainfall, but stream isotopic composition did not change until at least two hours after streamflow increased, implicating a wave, or piston-like mechanism for forcing open-quotes oldclose quotes water into the stream channel. Analyses of the stable hydrogen and oxygen isotope composition of various hydrological components within the watershed indicate the importance of evaporation as a dominant factor in the hydrological cycle; soil moisture, alteration as a result of evaporation. The analyses indicate that caution would be advised for any application of stable isotopes to hydrological studies in arctic watersheds. Proportions of snowmelt mixing with underlying soil water may be subject to overestimation because isotopic fractionation as snow melts can be similar in direction and magnitude to the isotopic mixing of snowmelt an soil waters. 40 refs., 7 figs., 1 tab

  14. Ecosystem processes at the watershed scale: hydrologic vegetation gradient as an indicator for lateral hydrologic connectivity of headwater catchments

    Science.gov (United States)

    Taehee Hwang; James M. Vose; Christina. Tague

    2012-01-01

    Lateral water flow in catchments can produce important patterns in water and nutrient fluxes and stores and also influences the long-term spatial development of forest ecosystems. Specifically, patterns of vegetation type and density along hydrologic flow paths can represent a signal of the redistribution of water and nitrogen mediated by lateral hydrologic flow. This...

  15. Hillslope hydrology and stability

    Science.gov (United States)

    Lu, Ning; Godt, Jonathan

    2012-01-01

    Landslides are caused by a failure of the mechanical balance within hillslopes. This balance is governed by two coupled physical processes: hydrological or subsurface flow and stress. The stabilizing strength of hillslope materials depends on effective stress, which is diminished by rainfall. This book presents a cutting-edge quantitative approach to understanding hydro-mechanical processes across variably saturated hillslope environments and to the study and prediction of rainfall-induced landslides. Topics covered include historic synthesis of hillslope geomorphology and hydrology, total and effective stress distributions, critical reviews of shear strength of hillslope materials and different bases for stability analysis. Exercises and homework problems are provided for students to engage with the theory in practice. This is an invaluable resource for graduate students and researchers in hydrology, geomorphology, engineering geology, geotechnical engineering and geomechanics and for professionals in the fields of civil and environmental engineering and natural hazard analysis.

  16. Modelling spatial and temporal variability of hydrologic impacts under climate changes over the Nenjiang River Basin, China

    Science.gov (United States)

    Chen, Hao; Zhang, Wanchang

    2017-10-01

    The Variable Infiltration Capacity (VIC) hydrologic model was adopted for investigating spatial and temporal variability of hydrologic impacts of climate change over the Nenjiang River Basin (NRB) based on a set of gridded forcing dataset at 1/12th degree resolution from 1970 to 2013. Basin-scale changes in the input forcing data and the simulated hydrological variables of the NRB, as well as station-scale changes in discharges for three major hydrometric stations were examined, which suggested that the model was performed fairly satisfactory in reproducing the observed discharges, meanwhile, the snow cover and evapotranspiration in temporal and spatial patterns were simulated reasonably corresponded to the remotely sensed ones. Wetland maps produced by multi-sources satellite images covering the entire basin between 1978 and 2008 were also utilized for investigating the responses and feedbacks of hydrological regimes on wetland dynamics. Results revealed that significant decreasing trends appeared in annual, spring and autumn streamflow demonstrated strong affection of precipitation and temperature changes over the study watershed, and the effects of climate change on the runoff reduction varied in the sub-basin area over different time scales. The proportion of evapotranspiration to precipitation characterized several severe fluctuations in droughts and floods took place in the region, which implied the enhanced sensitiveness and vulnerability of hydrologic regimes to changing environment of the region. Furthermore, it was found that the different types of wetlands undergone quite unique variation features with the varied hydro-meteorological conditions over the region, such as precipitation, evapotranspiration and soil moisture. This study provided effective scientific basis for water resource managers to develop effective eco-environment management plans and strategies that address the consequences of climate changes.

  17. Impact of forest maintenance on water shortages: Hydrologic modeling and effects of climate change.

    Science.gov (United States)

    Luo, Pingping; Zhou, Meimei; Deng, Hongzhang; Lyu, Jiqiang; Cao, Wenqiang; Takara, Kaoru; Nover, Daniel; Geoffrey Schladow, S

    2018-02-15

    The importance of water quantity for domestic and industrial water supply, agriculture, and the economy more broadly has led to the development of many water quantity assessment methods. In this study, surface flow and soil water in the forested upper reaches of the Yoshino River are compared using a distributed hydrological model with Forest Maintenance Module under two scenarios; before and after forest maintenance. We also examine the impact of forest maintenance on these variables during extreme droughts. Results show that surface flow and soil water increased after forest maintenance. In addition, projections of future water resources were estimated using a hydrological model and the output from a 20km mesh Global Climate Model (GCM20). River discharge for the near-future (2015-2039) is similar to that of the present (1979-2003). Estimated river discharge for the future (2075-2099) was found to be substantially more extreme than in the current period, with 12m 3 /s higher peak discharge in August and 7m 3 /s lower in July compared to the discharges of the present period. Soil water for the future is estimated to be lower than for the present and near future in May. The methods discussed in this study can be applied in other regions and the results help elucidate the impact of forests and climate change on water resources. Copyright © 2017 Elsevier B.V. All rights reserved.

  18. A Web service-based architecture for real-time hydrologic sensor networks

    Science.gov (United States)

    Wong, B. P.; Zhao, Y.; Kerkez, B.

    2014-12-01

    Recent advances in web services and cloud computing provide new means by which to process and respond to real-time data. This is particularly true of platforms built for the Internet of Things (IoT). These enterprise-scale platforms have been designed to exploit the IP-connectivity of sensors and actuators, providing a robust means by which to route real-time data feeds and respond to events of interest. While powerful and scalable, these platforms have yet to be adopted by the hydrologic community, where the value of real-time data impacts both scientists and decision makers. We discuss the use of one such IoT platform for the purpose of large-scale hydrologic measurements, showing how rapid deployment and ease-of-use allows scientists to focus on their experiment rather than software development. The platform is hardware agnostic, requiring only IP-connectivity of field devices to capture, store, process, and visualize data in real-time. We demonstrate the benefits of real-time data through a real-world use case by showing how our architecture enables the remote control of sensor nodes, thereby permitting the nodes to adaptively change sampling strategies to capture major hydrologic events of interest.

  19. Watershed Scale Impacts of Stormwater Green Infrastructure on Hydrology and Nutrient Fluxes in the Mid-Atlantic Region.

    Science.gov (United States)

    Jaffe, P. R.; Pennino, M. J.; McDonald, R.

    2015-12-01

    Stormwater green infrastructure (SGI), including rain gardens, detention ponds, bioswales, and green roofs, is being implemented in cities across the globe to help reduce flooding, decrease combined sewer overflows, and lessen pollutant transport to streams and rivers. Despite the increasing use of urban SGI, there is much uncertainty regarding the cumulative effects of multiple SGI projects on hydrology and water quality at the watershed scale. To assess the cumulative effects of SGI, major cities across the mid-Atlantic were selected based on availability of SGI, water quality, and stream flow data. The impact of SGI was evaluated by comparing similar watersheds, with and without SGI or by assessing how long-term changes in SGI impact hydrologic and water quality metrics over time. Most mid-Atlantic cities have a goal of achieving 10-75% SGI by 2030. Of these cites, Washington D.C. currently has the highest density of SGI (15.5%), while Philadelphia, PA and New York, NY have the lowest (0.14% and 0.28%, respectively). When comparing watersheds of similar size and percent impervious surface cover, watersheds with lower amounts of SGI, on average, show up to 40% greater annual total nitrogen and 75% greater total phosphorus loads and show flashier hydrology (as indicated by 35% greater average peak discharge, 26% more peak discharge events per year, and 21% higher peak-to-volume ratio) compared to watersheds with higher amounts of SGI. However, for cities with combined sewer systems (e.g. Washington, D.C. and Philadelphia, PA), there was no relationship between the level of combined sewer overflows (CSOs) and the amount of SGI, indicating the level of SGI may not yet be sufficient to reduce CSOs as intended. When comparing individual watersheds over time, increases in SGI show no significant effect on the long-term trends in nutrient loads or hydrologic variables, potentially being obscured by the larger effect of interannual variability.

  20. USGS Geospatial Fabric and Geo Data Portal for Continental Scale Hydrology Simulations

    Science.gov (United States)

    Sampson, K. M.; Newman, A. J.; Blodgett, D. L.; Viger, R.; Hay, L.; Clark, M. P.

    2013-12-01

    This presentation describes use of United States Geological Survey (USGS) data products and server-based resources for continental-scale hydrologic simulations. The USGS Modeling of Watershed Systems (MoWS) group provides a consistent national geospatial fabric built on NHDPlus. They have defined more than 100,000 hydrologic response units (HRUs) over the continental United States based on points of interest (POIs) and split into left and right bank based on the corresponding stream segment. Geophysical attributes are calculated for each HRU that can be used to define parameters in hydrologic and land-surface models. The Geo Data Portal (GDP) project at the USGS Center for Integrated Data Analytics (CIDA) provides access to downscaled climate datasets and processing services via web-interface and python modules for creating forcing datasets for any polygon (such as an HRU). These resources greatly reduce the labor required for creating model-ready data in-house, contributing to efficient and effective modeling applications. We will present an application of this USGS cyber-infrastructure for assessments of impacts of climate change on hydrology over the continental United States.

  1. Hydrological Processes Simulation at Plot Scale Using The Smap Model In The Semiarid | Simulação de processos hidrológicos na escala de lotes usando o modelo Smap em semi-árido

    Directory of Open Access Journals (Sweden)

    Iug Lopes

    2017-06-01

    Full Text Available Vegetation cover plays an important role on overland flow generation and erosion, directly impacting infiltration and soil water storage. The objective of this study was to investigate hydrological processes and soil moisture dynamics through conceptual modelling in intensively monitored experimental plots under natural rainfall with different soil cover conditions, in the Brazilian semiarid. Soil moisture was monthly monitored using a CPN 503 DR Neutron Probe device. Calibration curves previously defined were adopted for moisture assessment. Four experimental soil cover treatment were established: Cactus “Palma” barriers (PB; mulching (MC; Bare soil (BS and natural vegetation cover (NC. Nash-Sutcliffe (ENS coefficient and PBIAS index were adopted to assess hydrological processes analysis. The SMAP model successfully predicted the flow and humidity of the experimental plots for the natural cover and Mulching coverage, with a global ENS index of over 0.877. Scenarios of changes in soil cover have dramatically affected the modeling of water resources in the plots. The present study was important to improve the understanding and distinct hydrological processes relevance under different cover conditions in experimental plots in the semiarid.

  2. Climate change, land use and land cover change detection and its impact on hydrological hazards and sustainable development: a case study of Alaknanda river basin, Uttarakhand, India.

    Directory of Open Access Journals (Sweden)

    ABHAY SHANKAR PRASAD

    2017-05-01

    Full Text Available Extreme climatic events impact on the natural ecosystems of Alaknanda river basin which affect the socio-economic condition of the rural communities, loss of life, livelihood and natural resources. They pose a serious threat to normal life as well as the process of sustainable development. Rivers are fragile ecosystems which are globally important as water tower of the earth, reservoirs of rich biodiversity, and a popular destination for recreation, tourism and culture heritage. Rivers provides direct life support base for humankind. The unique Geo-climatic condition of Garhwal Himalaya, Alaknanda River basin, Uttarakhand makes it one of the most vulnerable regions in the India. Hydrological hazards are sudden calamities, which involve loss of life, property and livelihood. This paper presents a methodological approach for the integration of extreme events, climatic vulnerability, land use scenario, and flood risk assessment. Anthropogenic activities are continuously disturbing the natural system of the Garhwal Himalaya and its impact on extreme hydrological events. Factors causing these changes have been attempted to be understood through the use of GIS and Geospatial techniques. Human interference, unscientific developmental activities, agriculture extension, tourism activity and road construction are creating the hydrological hazards. Soil erosion and landslide have been recognised as major hazards in the high altitude region of Himalaya. This paper has analysed and evaluates the climate and livelihood vulnerability assessment and its adaptation for sustainable development in the near district headquarter (NDH away district headquarter (ADH determined mainly by a weighted matrix index. The Geospatial technique is used to find out the land use/cover change detection and secondary data is taken to carry out the analysis work. Primary data from each hotspot has been collected through a questionnaire survey and a Participatory Research Approach

  3. Impact of Climate Change on Hydrologic Extremes in the Upper Basin of the Yellow River Basin of China

    Directory of Open Access Journals (Sweden)

    Jun Wang

    2016-01-01

    Full Text Available To reveal the revolution law of hydrologic extremes in the next 50 years and analyze the impact of climate change on hydrologic extremes, the following main works were carried on: firstly, the long duration (15 d, 30 d, and 60 d rainfall extremes according to observed time-series and forecast time-series by dynamical climate model product (BCC-CSM-1.1 were deduced, respectively, on the basis that the quantitative estimation of the impact of climate change on rainfall extremes was conducted; secondly, the SWAT model was used to deduce design flood with the input of design rainfall for the next 50 years. On this basis, quantitative estimation of the impact of climate change on long duration flood volume extremes was conducted. It indicates that (1 the value of long duration rainfall extremes for given probabilities (1%, 2%, 5%, and 10% of the Tangnaihai basin will rise with slight increasing rate from 1% to 6% in the next 50 years and (2 long duration flood volume extremes of given probabilities of the Tangnaihai basin will rise with slight increasing rate from 1% to 6% in the next 50 years. The conclusions may provide technical supports for basin level planning of flood control and hydropower production.

  4. From engineering hydrology to Earth system science: milestones in the transformation of hydrologic science

    Directory of Open Access Journals (Sweden)

    M. Sivapalan

    2018-03-01

    Full Text Available Hydrology has undergone almost transformative changes over the past 50 years. Huge strides have been made in the transition from early empirical approaches to rigorous approaches based on the fluid mechanics of water movement on and below the land surface. However, progress has been hampered by problems posed by the presence of heterogeneity, including subsurface heterogeneity present at all scales. The inability to measure or map the heterogeneity everywhere prevented the development of balance equations and associated closure relations at the scales of interest, and has led to the virtual impasse we are presently in, in terms of development of physically based models needed for hydrologic predictions. An alternative to the mapping of heterogeneity everywhere is a new Earth system science view, which sees the heterogeneity as the end result of co-evolutionary hydrological, geomorphological, ecological, and pedological processes, each operating at a different rate, which help to shape the landscapes that we find in nature, including the heterogeneity that we do not readily see. The expectation is that instead of specifying exact details of the heterogeneity in our models, we can replace it (without loss of information with the ecosystem function that they perform. Guided by this new Earth system science perspective, development of hydrologic science is now addressing new questions using novel holistic co-evolutionary approaches as opposed to the physical, fluid mechanics based reductionist approaches that we inherited from the recent past. In the emergent Anthropocene, the co-evolutionary view has expanded further to involve interactions and feedbacks with human-social processes as well. In this paper, I present my own perspective of key milestones in the transformation of hydrologic science from engineering hydrology to Earth system science, drawn from the work of several students and colleagues of mine, and discuss their implication for

  5. From engineering hydrology to Earth system science: milestones in the transformation of hydrologic science

    Science.gov (United States)

    Sivapalan, Murugesu

    2018-03-01

    Hydrology has undergone almost transformative changes over the past 50 years. Huge strides have been made in the transition from early empirical approaches to rigorous approaches based on the fluid mechanics of water movement on and below the land surface. However, progress has been hampered by problems posed by the presence of heterogeneity, including subsurface heterogeneity present at all scales. The inability to measure or map the heterogeneity everywhere prevented the development of balance equations and associated closure relations at the scales of interest, and has led to the virtual impasse we are presently in, in terms of development of physically based models needed for hydrologic predictions. An alternative to the mapping of heterogeneity everywhere is a new Earth system science view, which sees the heterogeneity as the end result of co-evolutionary hydrological, geomorphological, ecological, and pedological processes, each operating at a different rate, which help to shape the landscapes that we find in nature, including the heterogeneity that we do not readily see. The expectation is that instead of specifying exact details of the heterogeneity in our models, we can replace it (without loss of information) with the ecosystem function that they perform. Guided by this new Earth system science perspective, development of hydrologic science is now addressing new questions using novel holistic co-evolutionary approaches as opposed to the physical, fluid mechanics based reductionist approaches that we inherited from the recent past. In the emergent Anthropocene, the co-evolutionary view has expanded further to involve interactions and feedbacks with human-social processes as well. In this paper, I present my own perspective of key milestones in the transformation of hydrologic science from engineering hydrology to Earth system science, drawn from the work of several students and colleagues of mine, and discuss their implication for hydrologic observations

  6. DCS Hydrology Submission for Susquehanna County PA

    Data.gov (United States)

    Federal Emergency Management Agency, Department of Homeland Security — Hydrology data include spatial datasets and data tables necessary for documenting the hydrologic processes for estimating flood discharges for a flood insurance...

  7. Hydrology and Oceanography Analysis Regarding The NPP Site Screening Process at Banten Province

    International Nuclear Information System (INIS)

    Yarianto-S-Budi-Susilo

    2007-01-01

    Regarding the NPP development in the future, it is needed to make inventory of potential site in the Java Island as well as in the outside Java Island. The NPP site inventory availability is to answer the energy demand challenge. Site screening process should be performed in accordance with the IAEA safety standard regarding the site selection, investigating several aspects related to the NPP safety (exclusion, safety and suitability factor) in the large area to obtain potential site candidates. For the site survey stage of hydrology and oceanography aspects, the analysis are more focused on the tidal phenomena along the north coastline, bathymetry, water resource, and hydrology system in the Banten Province. The method used are secondary data collection, field confirmation and internet searching. The result of the study showed that Tanjung Pujut and Tanjung Pasir are suitable based on the bathymetry and water intake facility consideration. Meanwhile Tanjung Kait and Tanjung Pasir more suitable considering tsunami aspects that may be generated by Krakatau Volcano. (author)

  8. Analysis of thermal-hydrologic-mechanical behavior near an emplacement drift at Yucca Mountain

    International Nuclear Information System (INIS)

    Rutqvist, Jonny; Tsang, Chin-Fu

    2002-01-01

    A coupled thermal, hydrologic and mechanical (THM) analysis is conducted to evaluate the impact of coupled THM processes on the performance of a potential nuclear waste repository at Yucca Mountain, Nevada. The analysis considers changes in rock mass porosity, permeability, and capillary pressure caused by rock deformations during drift excavation, as well as those caused by thermo-mechanically induced rock deformations after emplacement of the heat-generating waste. The analysis consists of a detailed calibration of coupled hydraulic-mechanical rock mass properties against field experiments, followed by a prediction of the coupled thermal, hydrologic, and mechanical behavior around a potential repository drift. For the particular problem studied and parameters used, the analysis indicates that the stress-induced permeability changes will be within one order of magnitude and that these permeability changes do not significantly impact the overall flow pattern around the repository drift

  9. Hydrologic classification of rivers based on cluster analysis of dimensionless hydrologic signatures: Applications for environmental instream flows

    Science.gov (United States)

    Praskievicz, S. J.; Luo, C.

    2017-12-01

    Classification of rivers is useful for a variety of purposes, such as generating and testing hypotheses about watershed controls on hydrology, predicting hydrologic variables for ungaged rivers, and setting goals for river management. In this research, we present a bottom-up (based on machine learning) river classification designed to investigate the underlying physical processes governing rivers' hydrologic regimes. The classification was developed for the entire state of Alabama, based on 248 United States Geological Survey (USGS) stream gages that met criteria for length and completeness of records. Five dimensionless hydrologic signatures were derived for each gage: slope of the flow duration curve (indicator of flow variability), baseflow index (ratio of baseflow to average streamflow), rising limb density (number of rising limbs per unit time), runoff ratio (ratio of long-term average streamflow to long-term average precipitation), and streamflow elasticity (sensitivity of streamflow to precipitation). We used a Bayesian clustering algorithm to classify the gages, based on the five hydrologic signatures, into distinct hydrologic regimes. We then used classification and regression trees (CART) to predict each gaged river's membership in different hydrologic regimes based on climatic and watershed variables. Using existing geospatial data, we applied the CART analysis to classify ungaged streams in Alabama, with the National Hydrography Dataset Plus (NHDPlus) catchment (average area 3 km2) as the unit of classification. The results of the classification can be used for meeting management and conservation objectives in Alabama, such as developing statewide standards for environmental instream flows. Such hydrologic classification approaches are promising for contributing to process-based understanding of river systems.

  10. Global impacts of the meat trade on in-stream organic river pollution: the importance of spatially distributed hydrological conditions

    Science.gov (United States)

    Wen, Yingrong; Schoups, Gerrit; van de Giesen, Nick

    2018-01-01

    In many regions of the world, intensive livestock farming has become a significant source of organic river pollution. As the international meat trade is growing rapidly, the environmental impacts of meat production within one country can occur either domestically or internationally. The goal of this paper is to quantify the impacts of the international meat trade on global organic river pollution at multiple scales (national, regional and gridded). Using the biological oxygen demand (BOD) as an overall indicator of organic river pollution, we compute the spatially distributed organic pollution in global river networks with and without a meat trade, where the without-trade scenario assumes that meat imports are replaced by local production. Our analysis reveals a reduction in the livestock population and production of organic pollutants at the global scale as a result of the international meat trade. However, the actual environmental impact of trade, as quantified by in-stream BOD concentrations, is negative; i.e. we find a slight increase in polluted river segments. More importantly, our results show large spatial variability in local (grid-scale) impacts that do not correlate with local changes in BOD loading, which illustrates: (1) the significance of accounting for the spatial heterogeneity of hydrological processes along river networks, and (2) the limited value of looking at country-level or global averages when estimating the actual impacts of trade on the environment.

  11. Sensitivity analysis for hydrology and pesticide supply towards the river in SWAT

    Science.gov (United States)

    Holvoet, K.; van Griensven, A.; Seuntjens, P.; Vanrolleghem, P. A.

    equipment, leaking tools, processing of spray waste on paved surfaces). As a consequence, it is of utmost importance that hydrology is well calibrated while--in this case--a correct estimation of the direct losses is of importance as well. Besides, a study of only the pesticide related parameters, i.e. application rate (kg/ha), application time (day), etc., reveals that the application time has much more impact than the application rate, which has itself a higher impact than errors in the daily rainfall observations.

  12. Hydrological model uncertainty due to spatial evapotranspiration estimation methods

    Czech Academy of Sciences Publication Activity Database

    Yu, X.; Lamačová, Anna; Duffy, Ch.; Krám, P.; Hruška, Jakub

    2016-01-01

    Roč. 90, part B (2016), s. 90-101 ISSN 0098-3004 R&D Projects: GA MŠk(CZ) LO1415 Institutional support: RVO:67179843 Keywords : Uncertainty * Evapotranspiration * Forest management * PIHM * Biome-BGC Subject RIV: DA - Hydrology ; Limnology OBOR OECD: Hydrology Impact factor: 2.533, year: 2016

  13. A conceptual framework for assessing cumulative impacts on the hydrology of nontidal wetlands

    Science.gov (United States)

    Winter, Thomas C.

    1988-01-01

    Wetlands occur in geologic and hydrologic settings that enhance the accumulation or retention of water. Regional slope, local relief, and permeability of the land surface are major controls on the formation of wetlands by surface-water sources. However, these landscape features also have significant control over groundwater flow systems, which commonly play a role in the formation of wetlands. Because the hydrologic system is a continuum, any modification of one component will have an effect on contiguous components. Disturbances commonly affecting the hydrologic system as it relates to wetlands include weather modification, alteration of plant communities, storage of surface water, road construction, drainage of surface water and soil water, alteration of groundwater recharge and discharge areas, and pumping of groundwater. Assessments of the cumulative effects of one or more of these disturbances on the hydrologic system as related to wetlands must take into account uncertainty in the measurements and in the assumptions that are made in hydrologic studies. For example, it may be appropriate to assume that regional groundwater flow systems are recharged in uplands and discharged in lowlands. However, a similar assumption commonly does not apply on a local scale, because of the spatial and temporal dynamics of groundwater recharge. Lack of appreciation of such hydrologic factors can lead to misunderstanding of the hydrologic function of wetlands within various parts of the landscape and mismanagement of wetland ecosystems.

  14. An Integrated Modelling System to Predict Hydrological Processes under Climate and Land-Use/Cover Change Scenarios

    Directory of Open Access Journals (Sweden)

    Babak Farjad

    2017-10-01

    Full Text Available This study proposes an integrated modeling system consisting of the physically-based MIKE SHE/MIKE 11 model, a cellular automata model, and general circulation models (GCMs scenarios to investigate the independent and combined effects of future climate and land-use/land-cover (LULC changes on the hydrology of a river system. The integrated modelling system is applied to the Elbow River watershed in southern Alberta, Canada in conjunction with extreme GCM scenarios and two LULC change scenarios in the 2020s and 2050s. Results reveal that LULC change substantially modifies the river flow regime in the east sub-catchment, where rapid urbanization is occurring. It is also shown that the change in LULC causes an increase in peak flows in both the 2020s and 2050s. The impacts of climate and LULC change on streamflow are positively correlated in winter and spring, which intensifies their influence and leads to a significant rise in streamflow, and, subsequently, increases the vulnerability of the watershed to spring floods. This study highlights the importance of using an integrated modeling approach to investigate both the independent and combined impacts of climate and LULC changes on the future of hydrology to improve our understanding of how watersheds will respond to climate and LULC changes.

  15. Hydrological Modeling in Alaska with WRF-Hydro

    Science.gov (United States)

    Elmer, N. J.; Zavodsky, B.; Molthan, A.

    2017-12-01

    The operational National Water Model (NWM), implemented in August 2016, is an instantiation of the Weather Research and Forecasting hydrological extension package (WRF-Hydro). Currently, the NWM only covers the contiguous United States, but will be expanded to include an Alaska domain in the future. It is well known that Alaska presents several hydrological modeling challenges, including unique arctic/sub-arctic hydrological processes not observed elsewhere in the United States and a severe lack of in-situ observations for model initialization. This project sets up an experimental version of WRF-Hydro in Alaska mimicking the NWM to gauge the ability of WRF-Hydro to represent hydrological processes in Alaska and identify model calibration challenges. Recent and upcoming launches of hydrology-focused NASA satellite missions such as the Soil Moisture Active Passive (SMAP) and Surface Water Ocean Topography (SWOT) expand the spatial and temporal coverage of observations in Alaska, so this study also lays the groundwork for assimilating these NASA datasets into WRF-Hydro in the future.

  16. Investigating the Capacity of Hydrological Models to Project Impacts of Climate Change in the Context of Water Allocation

    Science.gov (United States)

    Velez, Carlos; Maroy, Edith; Rocabado, Ivan; Pereira, Fernando

    2017-04-01

    To analyse the impacts of climate changes, hydrological models are used to project the hydrology responds under future conditions that normally differ from those for which they were calibrated. The challenge is to assess the validity of the projected effects when there is not data to validate it. A framework for testing the ability of models to project climate change was proposed by Refsgaard et al., (2014). The authors recommend the use of the differential-split sample test (DSST) in order to build confidence in the model projections. The method follow three steps: 1. A small number of sub-periods are selected according to one climate characteristics, 2. The calibration - validation test is applied on these periods, 3. The validation performances are compered to evaluate whether they vary significantly when climatic characteristics differ between calibration and validation. DSST rely on the existing records of climate and hydrological variables; and performances are estimated based on indicators of error between observed and simulated variables. Other authors suggest that, since climate models are not able to reproduce single events but rather statistical properties describing the climate, this should be reflected when testing hydrological models. Thus, performance criteria such as RMSE should be replaced by for instance flow duration curves or other distribution functions. Using this type of performance criteria, Van Steenbergen and Willems, (2012) proposed a method to test the validity of hydrological models in a climate changing context. The method is based on the evaluation of peak flow increases due to different levels of rainfall increases. In contrast to DSST, this method use the projected climate variability and it is especially useful to compare different modelling tools. In the framework of a water allocation project for the region of Flanders (Belgium) we calibrated three hydrological models: NAM, PDM and VHM; for 67 gauged sub-catchments with approx

  17. Advances in river ice hydrology 1999-2003

    Science.gov (United States)

    Morse, Brian; Hicks, Faye

    2005-01-01

    In the period 1999 to 2003, river ice has continued to have important socio-economic impacts in Canada and other Nordic countries. Concurrently, there have been many important advances in all areas of Canadian research into river ice engineering and hydrology. For example: (1) River ice processes were highlighted in two special journal issues (Canadian Journal of Civil Engineering in 2003 and Hydrological Processes in 2002) and at five conferences (Canadian Committee on River Ice Processes and the Environment in 1999, 2001 and 2003, and International Association of Hydraulic Research in 2000 and 2002). (2) A number of workers have clearly advanced our understanding of river ice processes by bringing together disparate information in comprehensive review articles. (3) There have been significant advances in river ice modelling. For example, both one-dimensional (e.g. RIVICE, RIVJAM, ICEJAM, HEC-RAS, etc.) and two-dimensional (2-D; www.river2d.ca) public-domain ice-jam models are now available. Work is ongoing to improve RIVER2D, and a commercial 2-D ice-process model is being developed. (4) The 1999-2003 period is notable for the number of distinctly hydrological and ecological studies. On the quantitative side, many are making efforts to determine streamflow during the winter period. On the ecological side, some new publications have addressed the link to water quality (temperature, dissolved oxygen, nutrients and pollutants), and others have dealt with sediment transport and geomorphology (particularly as it relates to break-up), stream ecology (plants, food cycle, etc.) and fish habitat.There is the growing recognition, that these types of study require collaborative efforts. In our view, the main areas requiring further work are: (1) to interface geomorphological and habitat models with quantitative river ice hydrodynamic models; (2) to develop a manager's toolbox (database management, remote sensing, forecasting, intervention methodologies, etc.) to enable

  18. Assessment of ecologically relevant hydrological change in China due to water use and reservoirs

    Directory of Open Access Journals (Sweden)

    J. Zhang

    2008-06-01

    Full Text Available As China's economy booms, increasing water use has significantly affected hydro-geomorphic processes and thus the ecology of surface waters. A large variety of hydrological changes arising from human activities such as reservoir construction and management, water abstraction, water diversion and agricultural land expansion have been sustained throughout China. Using the global scale hydrological and water use model WaterGAP, natural and anthropogenically altered flow conditions are calculated, taking into account flow alterations due to human water consumption and 580 large reservoirs. The impacts resulting from water consumption and reservoirs have been analyzed separately. A modified "Indicators of Hydrologic Alteration" approach is used to describe the human pressures on aquatic ecosystems due to anthropogenic alterations in river flow regimes. The changes in long-term average river discharge, average monthly mean discharge and coefficients of variation of monthly river discharges under natural and impacted conditions are compared and analyzed. The indicators show very significant alterations of natural river flow regimes in a large part of northern China and only minor alterations in most of southern China. The detected large alterations in long-term average river discharge, the seasonality of flows and the inter-annual variability in the northern half of China are very likely to have caused significant ecological impacts.

  19. Integrated Application of Remote Sensing, GIS and Hydrological Modeling to Estimate the Potential Impact Area of Earthquake-Induced Dammed Lakes

    OpenAIRE

    Bo Cao; Shengmei Yang; Song Ye

    2017-01-01

    Dammed lakes are an important secondary hazard caused by earthquakes. They can induce further damage to nearby humans. Current hydrology calculation research on dammed lakes usually lacks spatial expressive ability and cannot accurately conduct impact assessment without the support of remote sensing, which obtains important characteristic information of dammed lakes. The current study aims to address the issues of the potential impact area estimate of earthquake-induced dammed lakes by combin...

  20. Climate Change and Hydrological Extreme Events - Risks and Perspectives for Water Management in Bavaria and Québec

    Science.gov (United States)

    Ludwig, R.

    2017-12-01

    There is as yet no confirmed knowledge whether and how climate change contributes to the magnitude and frequency of hydrological extreme events and how regional water management could adapt to the corresponding risks. The ClimEx project (2015-2019) investigates the effects of climate change on the meteorological and hydrological extreme events and their implications for water management in Bavaria and Québec. High Performance Computing is employed to enable the complex simulations in a hydro-climatological model processing chain, resulting in a unique high-resolution and transient (1950-2100) dataset of climatological and meteorological forcing and hydrological response: (1) The climate module has developed a large ensemble of high resolution data (12km) of the CRCM5 RCM for Central Europe and North-Eastern North America, downscaled from 50 members of the CanESM2 GCM. The dataset is complemented by all available data from the Euro-CORDEX project to account for the assessment of both natural climate variability and climate change. The large ensemble with several thousand model years provides the potential to catch rare extreme events and thus improves the process understanding of extreme events with return periods of 1000+ years. (2) The hydrology module comprises process-based and spatially explicit model setups (e.g. WaSiM) for all major catchments in Bavaria and Southern Québec in high temporal (3h) and spatial (500m) resolution. The simulations form the basis for in depth analysis of hydrological extreme events based on the inputs from the large climate model dataset. The specific data situation enables to establish a new method for `virtual perfect prediction', which assesses climate change impacts on flood risk and water resources management by identifying patterns in the data which reveal preferential triggers of hydrological extreme events. The presentation will highlight first results from the analysis of the large scale ClimEx model ensemble, showing the

  1. Hydrological modeling of the pipestone creek watershed using the Soil Water Assessment Tool (SWAT: Assessing impacts of wetland drainage on hydrology

    Directory of Open Access Journals (Sweden)

    Cesar Perez-Valdivia

    2017-12-01

    Full Text Available Study region: Prairie Pothole Region of North America. Study focus: The Prairie Pothole Region of North America has experienced extensive wetland drainage, potentially impacting peak flows and annual flow volumes. Some of this drainage has occurred in closed basins, possibly impacting lake water levels of these systems. In this study we investigated the potential impact of wetland drainage on peak flows and annual volumes in a 2242 km2 watershed located in southeastern Saskatchewan (Canada using the Soil Water Assessment Tool (SWAT model. New hydrological insights: The SWAT model, which had been calibrated and validated at daily and monthly time steps for the 1997–2009 period, was used to assess the impact of wetland drainage using three hypothetical scenarios that drained 15, 30, and 50% of the non-contributing drainage area. Results of these simulations suggested that drainage increased spring peak flows by about 50, 79 and 113%, respectively while annual flow volumes increased by about 43, 68, and 98% in each scenario. Years that were wetter than normal presented increased peak flows and annual flow volumes below the average of the simulated period. Alternatively, summer peak flows presented smaller increases in terms of percentages during the simulated period. Keywords: Soil Water Assessment Tool (SWAT, Wetland drainage, Peak flow, Annual volume, Prairie Pothole Region

  2. Effects of hydrologic conditions on biogeochemical processes and organic pollutant degradation in salt marsh sediments

    Science.gov (United States)

    W. James Catallo

    2000-01-01

    This work addressed the influence of tidal vs. static hydrologic conditions on biogeochemical processes and the transformation of pollutant organic chemicals (eight representative N-, O-, and S-heterocycles (NOSHs) from coal chemicals, crude oils, and pyrogenic mixtures) in salt marsh sediments. The goals were to: (1) determine the effects of static (flooded, drained)...

  3. Multi-criteria evaluation of hydrological models

    Science.gov (United States)

    Rakovec, Oldrich; Clark, Martyn; Weerts, Albrecht; Hill, Mary; Teuling, Ryan; Uijlenhoet, Remko

    2013-04-01

    Over the last years, there is a tendency in the hydrological community to move from the simple conceptual models towards more complex, physically/process-based hydrological models. This is because conceptual models often fail to simulate the dynamics of the observations. However, there is little agreement on how much complexity needs to be considered within the complex process-based models. One way to proceed to is to improve understanding of what is important and unimportant in the models considered. The aim of this ongoing study is to evaluate structural model adequacy using alternative conceptual and process-based models of hydrological systems, with an emphasis on understanding how model complexity relates to observed hydrological processes. Some of the models require considerable execution time and the computationally frugal sensitivity analysis, model calibration and uncertainty quantification methods are well-suited to providing important insights for models with lengthy execution times. The current experiment evaluates two version of the Framework for Understanding Structural Errors (FUSE), which both enable running model inter-comparison experiments. One supports computationally efficient conceptual models, and the second supports more-process-based models that tend to have longer execution times. The conceptual FUSE combines components of 4 existing conceptual hydrological models. The process-based framework consists of different forms of Richard's equations, numerical solutions, groundwater parameterizations and hydraulic conductivity distribution. The hydrological analysis of the model processes has evolved from focusing only on simulated runoff (final model output), to also including other criteria such as soil moisture and groundwater levels. Parameter importance and associated structural importance are evaluated using different types of sensitivity analyses techniques, making use of both robust global methods (e.g. Sobol') as well as several

  4. Intensification of hydrological drought due to human activity in the middle reaches of the Yangtze River, China.

    Science.gov (United States)

    Zhang, Dan; Zhang, Qi; Qiu, Jiaming; Bai, Peng; Liang, Kang; Li, Xianghu

    2018-10-01

    Hydrological extremes are changing under the impacts of environmental change, i.e., climate variation and human activity, which can substantially influence ecosystems and the living environment of humans in affected region. This study investigates the impacts of environmental change on hydrological drought in the middle reaches of the Yangtze River in China based on hydrological modelling. Change points for streamflow into two major lakes and a reservoir in the study area were detected in the late 1980s using the Mann-Kendall test. Streamflow simulation by a water balance model was performed, and the resulting Kling-Gupta efficiency value was >0.90. Hydrological drought events were identified based on the simulated streamflow under different scenarios. The results show that the hydrological drought occurrence was increased by precipitation, whereas the drought peak value was increased by potential evapotranspiration. The impacts of precipitation and potential evapotranspiration on drought severity and duration varied in the study area. However, hydrological drought was intensified by the influence of human activity, which increased the severity, duration and peak value of droughts. The dominant factor for hydrological drought severity is precipitation, followed by potential evapotranspiration and human activity. The impacts of climate variation and human activity on drought severity are larger than on drought duration. In addition, environmental change is shown to have an "accumulation effect" on hydrological drought, demonstrating that the indirect impacts of environmental change on hydrological drought are much larger than the direct impacts on streamflow. This study improves our understanding of the responses of hydrological extremes to environmental change, which is useful for the management of water resources and the prediction of hydrological disasters. Copyright © 2018 Elsevier B.V. All rights reserved.

  5. Effects of coupled thermal, hydrological and chemical processes on nuclide transport

    International Nuclear Information System (INIS)

    Carnahan, C.L.

    1987-03-01

    Coupled thermal, hydrological and chemical processes can be classified in two categories. One category consists of the ''Onsager'' type of processes driven by gradients of thermodynamic state variables. These processes occur simultaneously with the direct transport processes. In particular, thermal osmosis, chemical osmosis and ultrafiltration may be prominent in semipermeable materials such as clays. The other category consists of processes affected indirectly by magnitudes of thermodynamic state variables. An important example of this category is the effect of temperature on rates of chemical reactions and chemical equilibria. Coupled processes in both categories may affect transport of radionuclides. Although computational models of limited extent have been constructed, there exists no model that accounts for the full set of THC-coupled processes. In the category of Onsager coupled processes, further model development and testing is severely constrained by a deficient data base of phenomenological coefficients. In the second category, the lack of a general description of effects of heterogeneous chemical reactions on permeability of porous media inhibits progress in quantitative modeling of hydrochemically coupled transport processes. Until fundamental data necessary for further model development have been acquired, validation efforts will be limited necessarily to testing of incomplete models of nuclide transport under closely controlled experimental conditions. 34 refs., 2 tabs

  6. Analysis of land cover change impact on flood events using remote sensing, GIS and hydrological models: a case study of the Nyando River Basin in Kenya

    International Nuclear Information System (INIS)

    Olang, L. O.

    2009-01-01

    In this study, land cover changes in the Nyando River basin (3500 km 2 ) of Kenya were analyzed and their impact of floods quantified. Three Landsat satellite images for 1973, 1986 and 2000 were acquired, processed and classified based on seven major land cover classes prevalent in the basin using a hybrid of supervised and non supervised classification procedures. The detected land cover changes, together with a DEM and a soil map of the basin, were then used to estimate physically based parameters for the selected hydrological models. The models were then used to estimate local and flood peak discharges and volumes arising from selected storm events for each state of the classified land cover dataset. To further understand how changes in the land cover may impact on the flood hydrology, three scenarios that represent quite extreme alternatives were formulated to study the possible bandwidth during floods. Land cover classification results revealed immense land degradation over the span of study. Forests reduced by an area of 488 km 2 representing a 20% decline, while agricultural fields expanded by 581 km 2 representing a 16% increase over the same period of time (1973-2000). Hydrological modeling results indicated that the basin underwent significant increase in the peak discharge value. The flood peak discharges in the whole basin were noted to have increased by at least 16% over the period of 1973 -2000.Flood volumes were also noted to have increased by at least 10% over the same period of time. (author) [de

  7. Hydrologic controls on equilibrium soil depths

    Science.gov (United States)

    Nicótina, L.; Tarboton, D. G.; Tesfa, T. K.; Rinaldo, A.

    2011-04-01

    This paper deals with modeling the mutual feedbacks between runoff production and geomorphological processes and attributes that lead to patterns of equilibrium soil depth. Our primary goal is an attempt to describe spatial patterns of soil depth resulting from long-term interactions between hydrologic forcings and soil production, erosion, and sediment transport processes under the framework of landscape dynamic equilibrium. Another goal is to set the premises for exploiting the role of soil depths in shaping the hydrologic response of a catchment. The relevance of the study stems from the massive improvement in hydrologic predictions for ungauged basins that would be achieved by using directly soil depths derived from geomorphic features remotely measured and objectively manipulated. Hydrological processes are here described by explicitly accounting for local soil depths and detailed catchment topography. Geomorphological processes are described by means of well-studied geomorphic transport laws. The modeling approach is applied to the semiarid Dry Creek Experimental Watershed, located near Boise, Idaho. Modeled soil depths are compared with field data obtained from an extensive survey of the catchment. Our results show the ability of the model to describe properly the mean soil depth and the broad features of the distribution of measured data. However, local comparisons show significant scatter whose origins are discussed.

  8. Towards Reproducibility in Computational Hydrology

    Science.gov (United States)

    Hutton, Christopher; Wagener, Thorsten; Freer, Jim; Han, Dawei; Duffy, Chris; Arheimer, Berit

    2017-04-01

    Reproducibility is a foundational principle in scientific research. The ability to independently re-run an experiment helps to verify the legitimacy of individual findings, and evolve (or reject) hypotheses and models of how environmental systems function, and move them from specific circumstances to more general theory. Yet in computational hydrology (and in environmental science more widely) the code and data that produces published results are not regularly made available, and even if they are made available, there remains a multitude of generally unreported choices that an individual scientist may have made that impact the study result. This situation strongly inhibits the ability of our community to reproduce and verify previous findings, as all the information and boundary conditions required to set up a computational experiment simply cannot be reported in an article's text alone. In Hutton et al 2016 [1], we argue that a cultural change is required in the computational hydrological community, in order to advance and make more robust the process of knowledge creation and hypothesis testing. We need to adopt common standards and infrastructures to: (1) make code readable and re-useable; (2) create well-documented workflows that combine re-useable code together with data to enable published scientific findings to be reproduced; (3) make code and workflows available, easy to find, and easy to interpret, using code and code metadata repositories. To create change we argue for improved graduate training in these areas. In this talk we reflect on our progress in achieving reproducible, open science in computational hydrology, which are relevant to the broader computational geoscience community. In particular, we draw on our experience in the Switch-On (EU funded) virtual water science laboratory (http://www.switch-on-vwsl.eu/participate/), which is an open platform for collaboration in hydrological experiments (e.g. [2]). While we use computational hydrology as

  9. Stochastic time series analysis of hydrology data for water resources

    Science.gov (United States)

    Sathish, S.; Khadar Babu, S. K.

    2017-11-01

    The prediction to current publication of stochastic time series analysis in hydrology and seasonal stage. The different statistical tests for predicting the hydrology time series on Thomas-Fiering model. The hydrology time series of flood flow have accept a great deal of consideration worldwide. The concentration of stochastic process areas of time series analysis method are expanding with develop concerns about seasonal periods and global warming. The recent trend by the researchers for testing seasonal periods in the hydrologic flowseries using stochastic process on Thomas-Fiering model. The present article proposed to predict the seasonal periods in hydrology using Thomas-Fiering model.

  10. Integrating retention soil filters into urban hydrologic models - Relevant processes and important parameters

    Science.gov (United States)

    Bachmann-Machnik, Anna; Meyer, Daniel; Waldhoff, Axel; Fuchs, Stephan; Dittmer, Ulrich

    2018-04-01

    Retention Soil Filters (RSFs), a form of vertical flow constructed wetlands specifically designed for combined sewer overflow (CSO) treatment, have proven to be an effective tool to mitigate negative impacts of CSOs on receiving water bodies. Long-term hydrologic simulations are used to predict the emissions from urban drainage systems during planning of stormwater management measures. So far no universally accepted model for RSF simulation exists. When simulating hydraulics and water quality in RSFs, an appropriate level of detail must be chosen for reasonable balancing between model complexity and model handling, considering the model input's level of uncertainty. The most crucial parameters determining the resultant uncertainties of the integrated sewer system and filter bed model were identified by evaluating a virtual drainage system with a Retention Soil Filter for CSO treatment. To determine reasonable parameter ranges for RSF simulations, data of 207 events from six full-scale RSF plants in Germany were analyzed. Data evaluation shows that even though different plants with varying loading and operation modes were examined, a simple model is sufficient to assess relevant suspended solids (SS), chemical oxygen demand (COD) and NH4 emissions from RSFs. Two conceptual RSF models with different degrees of complexity were assessed. These models were developed based on evaluation of data from full scale RSF plants and column experiments. Incorporated model processes are ammonium adsorption in the filter layer and degradation during subsequent dry weather period, filtration of SS and particulate COD (XCOD) to a constant background concentration and removal of solute COD (SCOD) by a constant removal rate during filter passage as well as sedimentation of SS and XCOD in the filter overflow. XCOD, SS and ammonium loads as well as ammonium concentration peaks are discharged primarily via RSF overflow not passing through the filter bed. Uncertainties of the integrated

  11. Human water consumption intensifies hydrological drought worldwide

    International Nuclear Information System (INIS)

    Wada, Yoshihide; Van Beek, Ludovicus P H; Wanders, Niko; Bierkens, Marc F P

    2013-01-01

    Over the past 50 years, human water use has more than doubled and affected streamflow over various regions of the world. However, it remains unclear to what degree human water consumption intensifies hydrological drought (the occurrence of anomalously low streamflow). Here, we quantify over the period 1960–2010 the impact of human water consumption on the intensity and frequency of hydrological drought worldwide. The results show that human water consumption substantially reduced local and downstream streamflow over Europe, North America and Asia, and subsequently intensified the magnitude of hydrological droughts by 10–500%, occurring during nation- and continent-wide drought events. Also, human water consumption alone increased global drought frequency by 27 (±6)%. The intensification of drought frequency is most severe over Asia (35 ± 7%), but also substantial over North America (25 ± 6%) and Europe (20 ± 5%). Importantly, the severe drought conditions are driven primarily by human water consumption over many parts of these regions. Irrigation is responsible for the intensification of hydrological droughts over the western and central US, southern Europe and Asia, whereas the impact of industrial and households’ consumption on the intensification is considerably larger over the eastern US and western and central Europe. Our findings reveal that human water consumption is one of the more important mechanisms intensifying hydrological drought, and is likely to remain as a major factor affecting drought intensity and frequency in the coming decades. (letter)

  12. GIS UTILITY FOR HYDROLOGICAL IMPACT EVALUATION CAUSED BY DAMAGES OF WATER SUPPLY NETWORK IN RURAL AREAS. APPLICATIONS IN BAIA MARE DEPRESSION

    Directory of Open Access Journals (Sweden)

    RADU ALEXANDRU MARIAN

    2012-11-01

    Full Text Available GIS utility for hydrological impact evaluation caused by damages of water supply network in rural areas. Applications in Baia Mare Depression. Occurrence of a failure within the water supply network is an element of risk with important hydrological implications. Although at first glance you might think that a pipe diameter of only 20 cm can generate large effects, however, in case of significant damage or even burst pipe, a good part of high water flow in the pipe (approx. 25 m3/h on average in the Baia Mare associated with a long duration of failure (several hours may be in the drain area, impact on the local community. Regarding rural settlements, surface drainage allow a quantity of water retention tank underground infiltration but in many cases lack of a sewage system effectively contribute to increased negative consequences related to such damage (flooding farms, roads, crops compromise of flooding or drought in the event of damage to the hot water supply pipe and so on. This paper focuses on the role of Geographic Information Systems (GIS to assess the impact of runoff induced by damages in rural areas. The study therefore spatial aspect, through GIS, on the one hand runoff along the flow path with the start point of the network fault location and view previous hydrological conditions of the terrain, and on the other hand the impact of runoff the rural community. Study area Dumbrăviţa settlement located in Baia Mare Depression. This village is part of water supply system to the south and southeast of Baia Mare.

  13. 2003 hydrological drought - natural disaster

    International Nuclear Information System (INIS)

    Trninic, Dusan; Bosnjak, Tomislava

    2004-01-01

    An exceptionally dry and warm period from February to early October 2003 resulted in hydrological drought with attributes of a natural disaster in most of the Croatian regions. The paper presents hydrological analysis of the Sava River near Zupanja for the period 1945-2003 (N=59 years). In defining maximum annual volumes of isolated waves below the reference discharges, the following reference discharges were used:Q 30,95% = 202m 3 s -1 - minimum mean 30-day discharge, 95 % probability, Q 30,80% = 254m 3 s -1 - minimum mean 30-day discharge, 80 % probability, Q 95% = 297m 3 s -1 - (H = -17cm minimum navigation level = 95 % of water level duration from average duration curve). The analysis results have shown that the hydrological drought recorded during the current year belongs to the most thoroughly studied droughts in 59 years. For example, hydrological analysis of the reference discharge of 297m 3 s -1 has shown that this year drought comes second, immediately after the driest year 1946. However, this year hydrological drought hit the record duration of 103 days, unlike the one from 1946, which lasted 98 days. It is interesting that the hydrological droughts affect the Sava River usually in autumn and summer, rarely in winter, and it has never been recorded in spring (referring to the analysed 1945-2003 period). In conclusion, some recommendations are given for increase in low streamflows and on possible impacts of climate changes on these flows.(Author)

  14. Watershed-scale impacts of stormwater green infrastructure on hydrology, nutrient fluxes, and combined sewer overflows in the mid-Atlantic region.

    Science.gov (United States)

    Pennino, Michael J; McDonald, Rob I; Jaffe, Peter R

    2016-09-15

    Stormwater green infrastructure (SGI), including rain gardens, detention ponds, bioswales, and green roofs, is being implemented in cities across the globe to reduce flooding, combined sewer overflows, and pollutant transport to streams and rivers. Despite the increasing use of urban SGI, few studies have quantified the cumulative effects of multiple SGI projects on hydrology and water quality at the watershed scale. To assess the effects of SGI, Washington, DC, Montgomery County, MD, and Baltimore County, MD, were selected based on the availability of data on SGI, water quality, and stream flow. The cumulative impact of SGI was evaluated over space and time by comparing watersheds with and without SGI, and by assessing how long-term changes in SGI impact hydrologic and water quality metrics over time. Most Mid-Atlantic municipalities have a goal of achieving 10-20% of the landscape drain runoff through SGI by 2030. Of these areas, Washington, DC currently has the greatest amount of SGI (12.7% of the landscape drained through SGI), while Baltimore County has the lowest (7.9%). When controlling for watersheds size and percent impervious surface cover, watersheds with greater amounts of SGI have less flashy hydrology, with 44% lower peak runoff, 26% less frequent runoff events, and 26% less variable runoff. Watersheds with more SGI also show 44% less NO3(-) and 48% less total nitrogen exports compared to watersheds with minimal SGI. There was no significant reduction in phosphorus exports or combined sewer overflows in watersheds with greater SGI. When comparing individual watersheds over time, increases in SGI corresponded to non-significant reductions in hydrologic flashiness compared to watersheds with no change in SGI. While the implementation of SGI is somewhat in its infancy in some regions, cities are beginning to have a scale of SGI where there are statistically significant differences in hydrologic patterns and water quality. Copyright © 2016 The Authors

  15. Wetland Hydrology | Science Inventory | US EPA

    Science.gov (United States)

    This chapter discusses the state of the science in wetland hydrology by touching upon the major hydraulic and hydrologic processes in these complex ecosystems, their measurement/estimation techniques, and modeling methods. It starts with the definition of wetlands, their benefits and types, and explains the role and importance of hydrology on wetland functioning. The chapter continues with the description of wetland hydrologic terms and related estimation and modeling techniques. The chapter provides a quick but valuable information regarding hydraulics of surface and subsurface flow, groundwater seepage/discharge, and modeling groundwater/surface water interactions in wetlands. Because of the aggregated effects of the wetlands at larger scales and their ecosystem services, wetland hydrology at the watershed scale is also discussed in which we elaborate on the proficiencies of some of the well-known watershed models in modeling wetland hydrology. This chapter can serve as a useful reference for eco-hydrologists, wetland researchers and decision makers as well as watershed hydrology modelers. In this chapter, the importance of hydrology for wetlands and their functional role are discussed. Wetland hydrologic terms and the major components of water budget in wetlands and how they can be estimated/modeled are also presented. Although this chapter does not provide a comprehensive coverage of wetland hydrology, it provides a quick understanding of the basic co

  16. Hydrologic testing in wells near the Idaho Chemical Processing Plant at the Idaho National Engineering Laboratory

    International Nuclear Information System (INIS)

    Johnson, G.S.; Olsen, J.H.; Ralston, D.R.

    1994-01-01

    The Snake River Plain aquifer beneath the INEL is often viewed as a 2-dimensional system, but may actually possess 3-dimensional properties of concern. A straddle-packer system is being used by the State's INEL Oversight Program to isolate specific aquifer intervals and define the 3-dimensional chemical and hydrologic characteristics of the aquifer. The hydrologic test results from wells USGS 44, 45, and 46 near the Idaho Chemical Processing Plant indicate that: (1) Vertical variation in static head is less than 0.3 feed, (2) barometric efficiencies are between 25 and 55 percent, and (3) the system responds to distant pumping as a multi-layered, but interconnected system. 3 refs., 7 figs., 3 tabs

  17. The need of the change of the conceptualisation of hydrologic processes under extreme conditions – taking reference evapotranspiration as an example

    Directory of Open Access Journals (Sweden)

    S. Liu

    2015-06-01

    Full Text Available What a hydrological model displays is the relationships between the output and input in daily, monthly, yearly and other temporal scales. In the case of climate change or other environment changes, the input of the hydrological model may show a gradual or abrupt change. There have been numerous documented studies to explore the response of output of the hydrological models to the change of the input with scenario simulation. Most of the studies assumed that the conceptualisation of hydrologic processes will remain, which may be true for the gradual change of the input. However, under extreme conditions the conceptualisation of hydrologic processes may be completely changed. Taking an example of the Allen's formula to calculate crop reference evapotranspiration (ET0 as a simple hydrological model, we analyze the alternation of the extreme in ET0 from 1955 to 2012 at the Chongling Experimental Station located in Hebei Province, China. The relationships between ET0 and the meteorological factors for the average values, minimum (maximum values at daily, monthly and annual scales are revealed. It is found the extreme of the output can follow the extreme of the input better when their relationship is more linear. For non-liner relationship, the extreme of the input cannot at all be reflected from the extreme of the output. Relatively, extreme event at daily scale is harder to be shown than that at monthly scale. The result implicates that a routine model may not be able to catch the response to extreme events and it is even more so as we extrapolate models to higher temperature/CO2 conditions in the future. Some possible choices for the improvements are suggested for predicting hydrological extremes.

  18. Embedding complex hydrology in the regional climate system – Dynamic coupling across different modelling domains

    DEFF Research Database (Denmark)

    Butts, Michael; Drews, Martin; Larsen, Morten Andreas Dahl

    2014-01-01

    the atmosphere and the groundwater via the land surface and can represent the lateral movement of water in both the surface and subsurface and their interactions, not normally accounted for in climate models. Meso-scale processes are important for climate in general and rainfall in particular. Hydrological......To improve our understanding of the impacts of feedback between the atmosphere and the terrestrial water cycle including groundwater and to improve the integration of water resource management modelling for climate adaption we have developed a dynamically coupled climate–hydrological modelling...... impacts are assessed at the catchment scale, the most important scale for water management. Feedback between groundwater, the land surface and the atmosphere occurs across a range of scales. Recognising this, the coupling was developed to allow dynamic exchange of water and energy at the catchment scale...

  19. Hydrology of prairie wetlands: Understanding the integrated surface-water and groundwater processes

    Science.gov (United States)

    Hayashi, Masaki; van der Kamp, Garth; Rosenberry, Donald O.

    2016-01-01

    Wetland managers and policy makers need to make decisions based on a sound scientific understanding of hydrological and ecological functions of wetlands. This article presents an overview of the hydrology of prairie wetlands intended for managers, policy makers, and researchers new to this field (e.g., graduate students), and a quantitative conceptual framework for understanding the hydrological functions of prairie wetlands and their responses to changes in climate and land use. The existence of prairie wetlands in the semi-arid environment of the Prairie-Pothole Region (PPR) depends on the lateral inputs of runoff water from their catchments because mean annual potential evaporation exceeds precipitation in the PPR. Therefore, it is critically important to consider wetlands and catchments as highly integrated hydrological units. The water balance of individual wetlands is strongly influenced by runoff from the catchment and the exchange of groundwater between the central pond and its moist margin. Land-use practices in the catchment have a sensitive effect on runoff and hence the water balance. Surface and subsurface storage and connectivity among individual wetlands controls the diversity of pond permanence within a wetland complex, resulting in a variety of eco-hydrological functionalities necessary for maintaining the integrity of prairie-wetland ecosystems.

  20. Hydrology of a nuclear-processing plant site, Rocky Flats, Jefferson County, Colorado

    Science.gov (United States)

    Hurr, R. Theodore

    1976-01-01

    Accidental releases of contaminants resulting from the operation of the U.S. Energy Research and Development Administration's nuclear-processing and recovery plant located on Rocky Flats will move at different rates through -different parts of the hydrologic system. Rates of movement are dependent upon the magnitude of the accidental release and the hydrologic conditions at the time of the release. For example, during wet periods, a contaminant resulting from a 5,000-gallon (19,000-1itre) release on the land surface would enter the ground-water system in about 2 to 12 hours. Ground-water flow in the Rocky Flats Alluvium might move the contaminant eastward at a rate of about 3 to 11 feet (0.9 to 3.4 metres) per day, if it remains dissolved. Maximum time to a point of discharge would be about 3 years; minimum time could be a few days. A contaminant entering a stream would then move at a rate of about 60 feet (18 metres) per minute under pool-and-riffle conditions. The rate of movement might be about 420 feet (128 metres) per minute under open-channel-flow conditions following intense thunderstorms.

  1. Climate Change and Socio-Hydrological Dynamics: Adaptations and Feedbacks

    Science.gov (United States)

    Woyessa, Yali E.; Welderufael, Worku A.

    2012-10-01

    A functioning ecological system results in ecosystem goods and services which are of direct value to human beings. Ecosystem services are the conditions and processes which sustain and fulfil human life, and maintain biodiversity and the production of ecosystem goods. However, human actions affect ecological systems and the services they provide through various activities, such as land use, water use, pollution and climate change. Climate change is perhaps one of the most important sustainable development challenges that threatens to undo many of the development efforts being made to reach the targets set for the Millennium Development Goals. Understanding the provision of ecosystem services and how they change under different scenarios of climate and biophysical conditions could assist in bringing the issue of ecosystem services into decision making process. Similarly, the impacts of land use change on ecosystems and biodiversity have received considerable attention from ecologists and hydrologists alike. Land use change in a catchment can impact on water supply by altering hydrological processes, such as infiltration, groundwater recharge, base flow and direct runoff. In the past a variety of models were used for predicting landuse changes. Recently, the focus has shifted away from using mathematically oriented models to agent-based modeling (ABM) approach to simulate land use scenarios. The agent-based perspective, with regard to land-use cover change, is centered on the general nature and rules of land-use decision making by individuals. A conceptual framework is developed to investigate the possibility of incorporating the human dimension of land use decision and climate change model into a hydrological model in order to assess the impact of future land use scenario and climate change on the ecological system in general and water resources in particular.

  2. How can hydrological modeling help to understand process dynamics in sparsely gauged tropical regions - case study Mata Âtlantica, Brazil

    Science.gov (United States)

    Künne, Annika; Penedo, Santiago; Schuler, Azeneth; Bardy Prado, Rachel; Kralisch, Sven; Flügel, Wolfgang-Albert

    2015-04-01

    To ensure long-term water security for domestic, agricultural and industrial use in the emerging country of Brazil with fast-growing markets and technologies, understanding of catchment hydrology is essential. Yet, hydrological analysis, high resolution temporal and spatial monitoring and reliable meteo-hydrological data are insufficient to fully understand hydrological processes in the region and to predict future trends. Physically based hydrological modeling can help to expose uncertainties of measured data, predict future trends and contribute to physical understanding about the watershed. The Brazilian Atlantic rainforest (Mata Atlântica) is one of the world's biodiversity hotspots. After the Portuguese colonization, its original expansion of 1.5 million km² was reduced to only 7% of the former area. Due to forest fragmentation, overexploitation and soil degradation, pressure on water resources in the region has significantly increased. Climatically, the region possesses distinctive wet and dry periods. While extreme precipitation events in the rainy season cause floods and landslides, dry periods can lead to water shortages, especially in the agricultural and domestic supply sectors. To ensure both, the protection of the remnants of Atlantic rainforest biome as well as water supply, a hydrological understanding of this sparsely gauged region is essential. We will present hydrological models of two meso- to large-scale catchments (Rio Macacu and Rio Dois Rios) within the Mata Âtlantica in the state of Rio de Janeiro. The results show how physically based models can contribute to hydrological system understanding within the region and answer what-if scenarios, supporting regional planners and decision makers in integrated water resources management.

  3. Advances in Canadian forest hydrology, 1999-2003

    Science.gov (United States)

    Buttle, J. M.; Creed, I. F.; Moore, R. D.

    2005-01-01

    Understanding key hydrological processes and properties is critical to sustaining the ecological, economic, social and cultural roles of Canada's varied forest types. This review examines recent progress in studying the hydrology of Canada's forest landscapes. Work in some areas, such as snow interception, accumulation and melt under forest cover, has led to modelling tools that can be readily applied for operational purposes. Our understanding in other areas, such as the link between runoff-generating processes in different forest landscapes and hydrochemical fluxes to receiving waters, is much more tentative. The 1999-2003 period saw considerable research examining hydrological and biogeochemical responses to natural and anthropogenic disturbance of forest landscapes, spurred by major funding initiatives at the provincial and federal levels. This work has provided valuable insight; however, application of the findings beyond the experimental site is often restricted by such issues as a limited consideration of the background variability of hydrological systems, incomplete appreciation of hydrological aspects at the experiment planning stage, and experimental design problems that often bedevil studies of basin response to disturbance. Overcoming these constraints will require, among other things, continued support for long-term hydroecological monitoring programmes, the embedding of process measurement and modelling studies within these programmes, and greater responsiveness to the vagaries of policy directions related to Canada's forest resources. Progress in these and related areas will contribute greatly to the development of hydrological indicators of sustainable forest management in Canada. Copyright

  4. CrowdHydrology: crowdsourcing hydrologic data and engaging citizen scientists.

    Science.gov (United States)

    Lowry, Christopher S; Fienen, Michael N

    2013-01-01

    Spatially and temporally distributed measurements of processes, such as baseflow at the watershed scale, come at substantial equipment and personnel cost. Research presented here focuses on building a crowdsourced database of inexpensive distributed stream stage measurements. Signs on staff gauges encourage citizen scientists to voluntarily send hydrologic measurements (e.g., stream stage) via text message to a server that stores and displays the data on the web. Based on the crowdsourced stream stage, we evaluate the accuracy of citizen scientist measurements and measurement approach. The results show that crowdsourced data collection is a supplemental method for collecting hydrologic data and a promising method of public engagement. © 2012, The Author(s). Ground Water © 2012, National Ground Water Association.

  5. Investigation of Relationship Between Hydrologic Processes of Precipitation, Evaporation and Stream Flow Using Linear Time Series Models (Case study: Western Basins of Lake Urmia)

    OpenAIRE

    M. Moravej; K. Khalili; J. Behmanesh

    2016-01-01

    Introduction: Studying the hydrological cycle, especially in large scales such as water catchments, is difficult and complicated despite the fact that the numbers of hydrological components are limited. This complexity rises from complex interactions between hydrological components and environment. Recognition, determination and modeling of all interactive processes are needed to address this issue, but it's not feasible for dealing with practical engineering problems. So, it is more convenie...

  6. Impact of Renewed Solar Dimming on Hydrology of River Basins in Peninsular India

    Science.gov (United States)

    Srivastava, R.; Soni, P.; Tripathi, S.

    2017-12-01

    A significant decrease in surface solar radiation (SSR) for the period 1970-2000 has been reported by observational studies over India. This trend has also been observed globally and is termed as solar dimming. A recent study reported a reversal in the SSR trends over India for the period 2001-2010. However, using SSR observations at 12 stations located across India, we found that a much stronger dimming has reappeared during the last decade (2006-2015). To analyse the hydrological impact of this renewed dimming, 28 river basins in peninsular India are studied using a semi-distributed hydrological model, Soil and Water Assessment Tool (SWAT). The area of these basins ranges from 1,260 km2 to 40,000 km2. The model was calibrated for the period 2003-2009 and validated for the period 2010-2014 using the daily discharge data. Experiments were performed, based on observed SSR trends and their uncertainties, to quantify their impacts on the water balance of each basin. The results suggest that a 5-10% decrease in SSR over the 9-year period, 2006-2014, resulted in a decrease of about 8% in annual evapotranspiration (ET). Seasonally, ET decreased during wet seasons (monsoon and post-monsoon) leading to increased ground water recharge, but increased during dry seasons (winter and pre-monsoon) resulting in reduced soil moisture. Changes in ET were also affected by the basin characteristics. Forested basins with clay loam soils were found to have higher ET changes than other basins. Annual discharge from the basins increased due to the decrease in annual ET caused by the decrease in SSR. The results suggest that effects of SSR trends on annual runoff are significant over peninsular Indian and should not to be neglected as they can affect river flow projections and freshwater availability.

  7. Contribution to the stochastically studies of space-time dependable hydrological processes

    International Nuclear Information System (INIS)

    Kjaevski, Ivancho

    2002-12-01

    One of the fundaments of today's planning and water economy is Science of Hydrology. Science of Hydrology through the history had followed the development of the water management systems. Water management systems, during the time from single-approach evolved to complex and multi purpose systems. The dynamic and development of the today's society contributed for increasing the demand of clean water, and in the same time, the resources of clean water in the nature are reduced. In this kind of conditions, water management systems should resolve problems that are more complicated during managing of water sources. Solving the problems in water management, enable development and applying new methods and technologies in planning and management with water resources and water management systems like: systematical analyses, operational research, hierarchy decisions, expert systems, computer technology etc. Planning and management of water sources needs historical measured data for hydro metrological processes. In our country there are data of hydro metrological processes in period of 50-70, but in some Europe countries there are data more than 100 years. Water economy trends follow the hydro metrological trend research. The basic statistic techniques like sampling, probability distribution function, correlation and regression, are used about one intended and simple water management problems. Solving new problems about water management needs using of space-time stochastic technique, modem mathematical and statistical techniques during simulation and optimization of complex water systems. We need tree phases of development of the techniques to get secure hydrological models: i) Estimate the quality of hydro meteorological data, analyzing of their consistency, and homogeneous; ii) Structural analyze of hydro meteorological processes; iii) Mathematical models for modeling hydro meteorological processes. Very often, the third phase is applied for analyzing and modeling of hydro

  8. Hydrology and hydraulics of Cypress Creek watershed, Texas during Hurricane Harvey and Impact of Potential Mitigation Measures.

    Science.gov (United States)

    El Hassan, A.; Fares, A.; Risch, E.

    2017-12-01

    Rain resulting from Hurricane Harvey stated to spread into Harris County late in August 25 and continued until August 31 2017. This high intensity rainfall caused catastrophic flooding across the Greater Houston Area and south Texas. The objectives of this study are to use the USACE Gridded Surface Subsurface Hydrologic Analysis model (GSSHA) to: i) simulate the hydrology and hydraulics of Cypress Creek watershed and quantify the impact of hurricane Harvey on it; and ii) test potential mitigation measures, e.g., construction of a third surface reservoir on the flooding and hydrology of this watershed. Cypress Creek watershed area is 733 km2. Simulations were conducted using precipitation from two sources a) the Multisensory Precipitation Estimator radar products (MPE) and Multi-Radar Multi-Sensor (MRMS) system. Streamflow was downloaded from the USGS gauge at the outlet of the watershed. The models performance using both precipitation data was very reasonable. The construction of an 8 m high embankment at the south central part of the watershed resulted in over 22% reduction of the peak flow of the stream and also reduction of the depth of inundation across the east part of the watershed. These and other mitigation scenarios will be further discussed in details during the presentation.

  9. River-floodplain Hydrologic Connectivity: Impact on Temporal and Spatial Floodplain Water Quality and Productivity Patterns

    Science.gov (United States)

    Gallo, E. L.; Ahearn, D.; Dahlgren, R. A.; Grosholz, E.

    2003-12-01

    Nutrient spiraling and cycling are critical processes for floodplain systems, but these have not been well studied in western North America. Floodplain production and function relies on the integrity of river-floodplain interactions, particularly during periods of hydrologic connectivity. The purpose of this study was to: (1) determine the importance of the timing and duration of river-floodplain hydrologic connectivity, (2) link flood event water quality to subsequent primary and secondary production, and (3) identify temporal and spatial patterns of floodplain production. The Cosumnes River watershed transports surface runoff and snowmelt from the Sierra Nevadas to the Sacramento-San Joaquin Delta. It is one of the few watersheds in California that has no major water diversions or impoundments; therefore the river responds to the natural watershed hydrology. The study site in southern Sacramento County is an unmanaged experimental floodplain, one of the few remaining floodplains in California. Weekly and flood-event water quality and macroinvertebrate sampling was conducted during the flood season from January through June in 2001 and 2002. Both water years were characterized by historically low river flows. On average, volatile suspended solids in the water column increased from 5 mg/l to 10 mg/l during early season periods of hydrologic connectivity (December - February), suggesting that during watershed flushing flood events, the river acts as a source of nutrients and organic matter to the floodplain. Following a flood event, invertebrate concentrations decreased on average from 26,000 individuals/m3 to 9,000 individuals/m3 for zooplankton and from 350 individuals/m2 to 65 individuals/m2 for benthic macro-invertebrate, suggesting a net dilution of invertebrates during flood events. Chlorophyll a (chl-a) levels were also diluted during flood events, on average from 25 ppb to 5 ppb. Zooplankton densities and chl-a levels quickly rose after flood events. On

  10. Adaptable Web Modules to Stimulate Active Learning in Engineering Hydrology using Data and Model Simulations of Three Regional Hydrologic Systems

    Science.gov (United States)

    Habib, E. H.; Tarboton, D. G.; Lall, U.; Bodin, M.; Rahill-Marier, B.; Chimmula, S.; Meselhe, E. A.; Ali, A.; Williams, D.; Ma, Y.

    2013-12-01

    The hydrologic community has long recognized the need for broad reform in hydrologic education. A paradigm shift is critically sought in undergraduate hydrology and water resource education by adopting context-rich, student-centered, and active learning strategies. Hydrologists currently deal with intricate issues rooted in complex natural ecosystems containing a multitude of interconnected processes. Advances in the multi-disciplinary field include observational settings such as Critical Zone and Water, Sustainability and Climate Observatories, Hydrologic Information Systems, instrumentation and modeling methods. These research advances theory and practices call for similar efforts and improvements in hydrologic education. The typical, text-book based approach in hydrologic education has focused on specific applications and/or unit processes associated with the hydrologic cycle with idealizations, rather than the contextual relations in the physical processes and the spatial and temporal dynamics connecting climate and ecosystems. An appreciation of the natural variability of these processes will lead to graduates with the ability to develop independent learning skills and understanding. This appreciation cannot be gained in curricula where field components such as observational and experimental data are deficient. These types of data are also critical when using simulation models to create environments that support this type of learning. Additional sources of observations in conjunction with models and field data are key to students understanding of the challenges associated with using models to represent such complex systems. Recent advances in scientific visualization and web-based technologies provide new opportunities for the development of active learning techniques utilizing ongoing research. The overall goal of the current study is to develop visual, case-based, data and simulation driven learning experiences to instructors and students through a web

  11. Weather radar rainfall data in urban hydrology

    NARCIS (Netherlands)

    Thorndahl, Søren; Einfalt, Thomas; Willems, Patrick; Ellerbæk Nielsen, Jesper; ten Veldhuis, J.A.E.; Arnbjerg-Nielsen, Karsten; Rasmussen, Michael R.; Molnar, Peter

    2017-01-01

    Application of weather radar data in urban hydrological applications has evolved significantly during the past decade as an alternative to traditional rainfall observations with rain gauges. Advances in radar hardware, data processing, numerical models, and emerging fields within urban hydrology

  12. airGRteaching: an R-package designed for teaching hydrology with lumped hydrological models

    Science.gov (United States)

    Thirel, Guillaume; Delaigue, Olivier; Coron, Laurent; Andréassian, Vazken; Brigode, Pierre

    2017-04-01

    Lumped hydrological models are useful and convenient tools for research, engineering and educational purposes. They propose catchment-scale representations of the precipitation-discharge relationship. Thanks to their limited data requirements, they can be easily implemented and run. With such models, it is possible to simulate a number of hydrological key processes over the catchment with limited structural and parametric complexity, typically evapotranspiration, runoff, underground losses, etc. The Hydrology Group at Irstea (Antony) has been developing a suite of rainfall-runoff models over the past 30 years. This resulted in a suite of models running at different time steps (from hourly to annual) applicable for various issues including water balance estimation, forecasting, simulation of impacts and scenario testing. Recently, Irstea has developed an easy-to-use R-package (R Core Team, 2016), called airGR (Coron et al., 2016, 2017), to make these models widely available. Although its initial target public was hydrological modellers, the package is already used for educational purposes. Indeed, simple models allow for rapidly visualising the effects of parameterizations and model components on flows hydrographs. In order to avoid the difficulties that students may have when manipulating R and datasets, we developed (Delaigue and Coron, 2016): - Three simplified functions to prepare data, calibrate a model and run a simulation - Simplified and dynamic plot functions - A shiny (Chang et al., 2016) interface that connects this R-package to a browser-based visualisation tool. On this interface, the students can use different hydrological models (including the possibility to use a snow-accounting model), manually modify their parameters and automatically calibrate their parameters with diverse objective functions. One of the visualisation tabs of the interface includes observed precipitation and temperature, simulated snowpack (if any), observed and simulated

  13. European Continental Scale Hydrological Model, Limitations and Challenges

    Science.gov (United States)

    Rouholahnejad, E.; Abbaspour, K.

    2014-12-01

    The pressures on water resources due to increasing levels of societal demand, increasing conflict of interest and uncertainties with regard to freshwater availability create challenges for water managers and policymakers in many parts of Europe. At the same time, climate change adds a new level of pressure and uncertainty with regard to freshwater supplies. On the other hand, the small-scale sectoral structure of water management is now reaching its limits. The integrated management of water in basins requires a new level of consideration where water bodies are to be viewed in the context of the whole river system and managed as a unit within their basins. In this research we present the limitations and challenges of modelling the hydrology of the continent Europe. The challenges include: data availability at continental scale and the use of globally available data, streamgauge data quality and their misleading impacts on model calibration, calibration of large-scale distributed model, uncertainty quantification, and computation time. We describe how to avoid over parameterization in calibration process and introduce a parallel processing scheme to overcome high computation time. We used Soil and Water Assessment Tool (SWAT) program as an integrated hydrology and crop growth simulator to model water resources of the Europe continent. Different components of water resources are simulated and crop yield and water quality are considered at the Hydrological Response Unit (HRU) level. The water resources are quantified at subbasin level with monthly time intervals for the period of 1970-2006. The use of a large-scale, high-resolution water resources models enables consistent and comprehensive examination of integrated system behavior through physically-based, data-driven simulation and provides the overall picture of water resources temporal and spatial distribution across the continent. The calibrated model and results provide information support to the European Water

  14. Climate Change Impacts on North Dakota: Agriculture and Hydrology

    Science.gov (United States)

    Kirilenko, Andrei; Zhang, Xiaodong; Lim, Yeo Howe; Teng, William L.

    2011-01-01

    North Dakota is one of the principal producers of agricultural commodities in the USA, including over half of the total spring wheat production. While the region includes some of the best agricultural lands in the world, the steep temperature and precipitation gradients also make it one of the most sensitive to climate change. Over the 20th century, both the temperature and the pattern of precipitation in the state have changed; one of the most dramatic examples of the consequences of this change is the Devils Lake flooding. In two studies, we estimated the climate change impacts on crop yields and on the hydrology of the Devils Lake basin. The projections of six GCMs, driven by three SRES scenarios were statistically downscaled for multiple locations throughout the state, for the 2020s, 2050s, and 2080s climate. Averaged over all GCMs, there is a small increase in precipitation, by 0.6 - 1.1% in 2020s, 3.1 - 3.5% in 2050s, and 3.0 - 7.6% in 2080s. This change in precipitation varies with the seasons, with cold seasons becoming wetter and warm seasons not changing.

  15. Isotope hydrology: applied discipline in earth sciences

    International Nuclear Information System (INIS)

    Froehlich, K.; Rozanski, K.; Araguas Araguas, L.

    1998-01-01

    The discipline 'isotope hydrology' is being reviewed from the perspective of the Isotope Hydrology Section of the International Atomic Energy Agency in Vienna. The Section was created in the late fifties and is activities involved int the scientific progress of the discipline. The role of the IAEA in the development of isotope hydrology has always been of a dual nature: on one hand, the Section has been and still is heavily engaged in supporting and coordinating further development of isotope methodologies, on the other hand, it serves as an interface between the methodological development in research institutes and the applied work using proven techniques in field projects on water resources assessment and management. The paper provides a brief overview of applications of isotope-based methodologies in hydrology, with emphasis on new trends and challenges related to man's growing impact on the water cycle. This contribution is a tribute to the memory of the former Head of the Isotope Hydrology Section, Jean-Charles Fontes, to whom we owe so much. (authors)

  16. Cross-scale intercomparison of climate change impacts simulated by regional and global hydrological models in eleven large river basins

    Energy Technology Data Exchange (ETDEWEB)

    Hattermann, F. F.; Krysanova, V.; Gosling, S. N.; Dankers, R.; Daggupati, P.; Donnelly, C.; Flörke, M.; Huang, S.; Motovilov, Y.; Buda, S.; Yang, T.; Müller, C.; Leng, G.; Tang, Q.; Portmann, F. T.; Hagemann, S.; Gerten, D.; Wada, Y.; Masaki, Y.; Alemayehu, T.; Satoh, Y.; Samaniego, L.

    2017-01-04

    Ideally, the results from models operating at different scales should agree in trend direction and magnitude of impacts under climate change. However, this implies that the sensitivity of impact models designed for either scale to climate variability and change is comparable. In this study, we compare hydrological changes simulated by 9 global and 9 regional hydrological models (HM) for 11 large river basins in all continents under reference and scenario conditions. The foci are on model validation runs, sensitivity of annual discharge to climate variability in the reference period, and sensitivity of the long-term average monthly seasonal dynamics to climate change. One major result is that the global models, mostly not calibrated against observations, often show a considerable bias in mean monthly discharge, whereas regional models show a much better reproduction of reference conditions. However, the sensitivity of two HM ensembles to climate variability is in general similar. The simulated climate change impacts in terms of long-term average monthly dynamics evaluated for HM ensemble medians and spreads show that the medians are to a certain extent comparable in some cases with distinct differences in others, and the spreads related to global models are mostly notably larger. Summarizing, this implies that global HMs are useful tools when looking at large-scale impacts of climate change and variability, but whenever impacts for a specific river basin or region are of interest, e.g. for complex water management applications, the regional-scale models validated against observed discharge should be used.

  17. On the Representation of Subgrid Microtopography Effects in Process-based Hydrologic Models

    Science.gov (United States)

    Jan, A.; Painter, S. L.; Coon, E. T.

    2017-12-01

    Increased availability of high-resolution digital elevation are enabling process-based hydrologic modeling on finer and finer scales. However, spatial variability in surface elevation (microtopography) exists below the scale of a typical hyper-resolution grid cell and has the potential to play a significant role in water retention, runoff, and surface/subsurface interactions. Though the concept of microtopographic features (depressions, obstructions) and the associated implications on flow and discharge are well established, representing those effects in watershed-scale integrated surface/subsurface hydrology models remains a challenge. Using the complex and coupled hydrologic environment of the Arctic polygonal tundra as an example, we study the effects of submeter topography and present a subgrid model parameterized by small-scale spatial heterogeneities for use in hyper-resolution models with polygons at a scale of 15-20 meters forming the surface cells. The subgrid model alters the flow and storage terms in the diffusion wave equation for surface flow. We compare our results against sub-meter scale simulations (acts as a benchmark for our simulations) and hyper-resolution models without the subgrid representation. The initiation of runoff in the fine-scale simulations is delayed and the recession curve is slowed relative to simulated runoff using the hyper-resolution model with no subgrid representation. Our subgrid modeling approach improves the representation of runoff and water retention relative to models that ignore subgrid topography. We evaluate different strategies for parameterizing subgrid model and present a classification-based method to efficiently move forward to larger landscapes. This work was supported by the Interoperable Design of Extreme-scale Application Software (IDEAS) project and the Next-Generation Ecosystem Experiments-Arctic (NGEE Arctic) project. NGEE-Arctic is supported by the Office of Biological and Environmental Research in the

  18. Isotope methods in hydrology

    International Nuclear Information System (INIS)

    Moser, H.; Rauert, W.

    1980-01-01

    Of the investigation methods used in hydrology, tracer methods hold a special place as they are the only ones which give direct insight into the movement and distribution processes taking place in surface and ground waters. Besides the labelling of water with salts and dyes, as in the past, in recent years the use of isotopes in hydrology, in water research and use, in ground-water protection and in hydraulic engineering has increased. This by no means replaces proven methods of hydrological investigation but tends rather to complement and expand them through inter-disciplinary cooperation. The book offers a general introduction to the application of various isotope methods to specific hydrogeological and hydrological problems. The idea is to place the hydrogeologist and the hydrologist in the position to recognize which isotope method will help him solve his particular problem or indeed, make a solution possible at all. He should also be able to recognize what the prerequisites are and what work and expenditure the use of such methods involves. May the book contribute to promoting cooperation between hydrogeologists, hydrologists, hydraulic engineers and isotope specialists, and thus supplement proven methods of investigation in hydrological research and water utilization and protection wherever the use of isotope methods proves to be of advantage. (orig./HP) [de

  19. Assessing the elements mobility through the regolith and their potential as tracers for hydrological processes

    Science.gov (United States)

    Moragues-Quiroga, Cristina; Hissler, Christophe; Chabaux, François; Legout, Arnaud; Stille, Peter

    2017-04-01

    Regoliths encompass different materials from the fresh bedrock to the top of the organic horizons. The regolith is a major component of the critical zone where fluxes of water, energy, solutes and matter occur. Therefore, its bio-physico-chemical properties drastically impact the water that percolates and/or stores in its different parts (organic and mineral soil horizons, and weathered and fractured bedrock). In order to better understand the critical zone functioning, we propose to assess the interaction between chemical elements from the regolith matrix and water during drainage infiltration. For this, we focus firstly on the potential mobility of different groups of major and trace elements according to a leaching experiment made on 10 different layers of a 7.5 m depth slate regolith, which covers a large part of the Rhenish Massif. Secondly, we carried out Sr-Nd-Pb-U-Th isotope analyses for 5 of these samples in both the untreated and leached samples. Given the specific chemical and mineralogical composition of each sampled material, our approach enables to trace the origin of major and trace elements and eventually assess their mobility. The results deliver valuable information on exchange processes at the water-mineral interface in the different zones of the regolith, which could improve the selection of tracers for the study of hydrological processes.

  20. A distributed eco-hydrological model and its application

    Directory of Open Access Journals (Sweden)

    Zong-xue Xu

    2017-10-01

    Full Text Available Eco-hydrological processes in arid areas are the focus of many hydrological and water resources studies. However, the hydrological cycle and the ecological system have usually been considered separately in most previous studies, and the correlation between the two has not been fully understood. Interdisciplinary research on eco-hydrological processes using multidisciplinary knowledge has been insufficient. In order to quantitatively analyze and evaluate the interaction between the ecosystem and the hydrological cycle, a new kind of eco-hydrological model, the ecology module for a grid-based integrated surface and groundwater model (Eco-GISMOD, is proposed with a two-way coupling approach, which combines the ecological model (EPIC and hydrological model (GISMOD by considering water exchange in the soil layer. Water interaction between different soil layers is simply described through a generalized physical process in various situations. A special method was used to simulate the water exchange between plants and the soil layer, taking into account precipitation, evapotranspiration, infiltration, soil water replenishment, and root water uptake. In order to evaluate the system performance, the Heihe River Basin in northwestern China was selected for a case study. The results show that forests and crops were generally growing well with sufficient water supply, but water shortages, especially in the summer, inhibited the growth of grass and caused grass degradation. This demonstrates that water requirements and water consumption for different kinds of vegetation can be estimated by considering the water-supply rules of Eco-GISMOD, which will be helpful for the planning and management of water resources in the future.

  1. Hydrologic Futures: Using Scenario Analysis to Evaluate Impacts of Forecasted Land Use Change on Hydrologic Services

    Science.gov (United States)

    Land cover and land use changes can substantially alter hydrologic ecosystem services. Water availability and quality can change with modifications to the type or amount of surface vegetation, the permeability of soil and other surfaces, and the introduction of contaminants throu...

  2. Citizen science in hydrology and water resources: opportunities for knowledge generation, ecosystem service management, and sustainable development

    Directory of Open Access Journals (Sweden)

    Wouter eBuytaert

    2014-10-01

    Full Text Available The participation of the general public in the research design, data collection and interpretation process together with scientists is often referred to as citizen science. While citizen science itself has existed since the start of scientific practice, developments in sensing technology, data processing and visualisation, and communication of ideas and results, are creating a wide range of new opportunities for public participation in scientific research. This paper reviews the state of citizen science in a hydrological context and explores the potential of citizen science to complement more traditional ways of scientific data collection and knowledge generation for hydrological sciences and water resources management. Although hydrological data collection often involves advanced technology, the advent of robust, cheap and low-maintenance sensing equipment provides unprecedented opportunities for data collection in a citizen science context. These data have a significant potential to create new hydrological knowledge, especially in relation to the characterisation of process heterogeneity, remote regions, and human impacts on the water cycle. However, the nature and quality of data collected in citizen science experiments is potentially very different from those of traditional monitoring networks. This poses challenges in terms of their processing, interpretation, and use, especially with regard to assimilation of traditional knowledge, the quantification of uncertainties, and their role in decision support. It also requires care in designing citizen science projects such that the generated data complement optimally other available knowledge. Lastly, we reflect on the challenges and opportunities in the integration of hydrologically-oriented citizen science in water resources management, the role of scientific knowledge in the decision-making process, and the potential contestation to established community institutions posed by co-generation of

  3. Characterizing urbanization impacts on floodplain through integrated land use, hydrologic, and hydraulic modeling: Applications to a watershed in northwest Houston, TX

    Science.gov (United States)

    Gori, A.; Juan, A.; Blessing, R.; Brody, S.; Bedient, P. B.

    2017-12-01

    The FEMA 100 year floodplain serves as the benchmark for characterizing and managing flood risk in the United States. However, it is usually generated by using methodologies that are too simplistic to accurately depict the spatial reality of flood risk, and often fail to consider non-stationary variables such as changing land use conditions or precipitation patterns. The impacts of these limitations are evidenced in Houston, TX, where rainfall-induced flooding has resulted in billions of dollars in commercial and residential damage over the past two decades, much of which has occurred outside of the 100 year floodplain. Specifically, rapid urbanization has drastically increased overland runoff and resulting peak flows, thereby exposing new areas to flood risks. It is therefore crucial to examine the impacts of future land development on floodplain depth and extent in order to develop effective long-term stormwater management and mitigation strategies. This study presents a methodology for characterizing the impacts of future development on flood risk in an urbanizing watershed by integrating land use projection and high-resolution hydrologic / hydraulic modeling. Development projections are generated by identifying historical land use/ land cover change (LULCC) drivers, which are incorporated into an artificial neural network (ANN) to predict development conditions out to 2040. Hydrologic modeling of current and projected land cover conditions is achieved through a physics-based distributed hydrologic model. Finally, a coupled 1D/2D unsteady hydraulic model is used to simulate floodplain depths and extents, and to generate floodplain maps for all considered scenarios. This methodology is applied to the Cypress Creek watershed in northwest Houston, TX, a partially-developed watershed which is expected to rapidly urbanize for the next few decades. The study quantifies floodplain changes (i.e., extent and depth) and the number of impacted residences, and also

  4. Elucidating Critical Zone Process Interactions with an Integrated Hydrology Model in a Headwaters Research Catchment

    Science.gov (United States)

    Collins, C.; Maxwell, R. M.

    2017-12-01

    to climate data thereby impacting the accuracy of hydrologic modeling of headwaters catchments used for water management and planning purposes and exploring the effects of climate change perturbations.

  5. Infrastructure to Support Hydrologic Research: Information Systems

    Science.gov (United States)

    Lall, U.; Duffy, C j

    2001-12-01

    Hydrologic Sciences are inherently interdisciplinary. Consequently, a myriad state variables are of interest to hydrologists. Hydrologic processes transcend many spatial and temporal scales, and their measurements reflect a variety of scales of support. The global water cycle is continuously modified by human activity through changes in land use, alteration of rivers, irrigation and groundwater pumping and through a modification of atmospheric composition. Since water is a solvent and a medium of transport, the water cycle fundamentally influences other material and energy cycles. This metaphor extends to the function that a hydrologic research information system needs to provide, to facilitate discovery in earth systems science, and to improve our capability to manage resources and hazards in a sustainable manner. At present, we have a variety of sources that provide data useful for hydrologic analyses, that range from massive remote sensed data sets, to sparsely sampled historical and paleo data. Consequently, the first objective of the Hydrologic Information Systems (HIS) group is to design a data services system that makes these data accessible in a uniform and useful way for specific, prioritized research goals. The design will include protocols for archiving and disseminating data from the Long Term Hydrologic Observatories (LTHOs), and comprehensive modeling experiments. Hydrology has a rich tradition of mathematical and statistical modeling of processes. However, given limited data and access to it, and a narrow focus that has not exploited connections to climatic and ecologic processes (among others), there have been only a few forays into diagnostic analyses of hydrologic fields, to identify and evaluate spatial and process teleconnections and an appropriate reduced space for modeling and understanding systems. The HIS initiative consequently proposes an investment in research and the provision of toolboxes to facilitate such analyses using the data

  6. A multiscale dataset for understanding complex eco-hydrological processes in a heterogeneous oasis system

    OpenAIRE

    Li, Xin; Liu, Shaomin; Xiao, Qin; Ma, Mingguo; Jin, Rui; Che, Tao; Wang, Weizhen; Hu, Xiaoli; Xu, Ziwei; Wen, Jianguang; Wang, Liangxu

    2017-01-01

    We introduce a multiscale dataset obtained from Heihe Watershed Allied Telemetry Experimental Research (HiWATER) in an oasis-desert area in 2012. Upscaling of eco-hydrological processes on a heterogeneous surface is a grand challenge. Progress in this field is hindered by the poor availability of multiscale observations. HiWATER is an experiment designed to address this challenge through instrumentation on hierarchically nested scales to obtain multiscale and multidisciplinary data. The HiWAT...

  7. Hydrological investigations of forest disturbance and land cover impacts in South-East Asia: a review.

    Science.gov (United States)

    Douglas, I

    1999-11-29

    Investigations of land management impacts on hydrology are well developed in South-East Asia, having been greatly extended by national organizations in the last two decades. Regional collaborative efforts, such as the ASEAN-US watershed programme, have helped develop skills and long-running monitoring programmes. Work in different countries is significant for particular aspects: the powerful effects of both cyclones and landsliding in Taiwan, the significance of lahars in Java, of small-scale agriculture in Thailand and plantation establishment in Malaysia. Different aid programmes have contributed specialist knowledge such as British work on reservoir sedimentation, Dutch, Swedish and British work on softwood plantations and US work in hill-tribe agriculture. Much has been achieved through individual university research projects, including PhD and MSc theses. The net result is that for most countries there is now good information on changes in the rainfall-run-off relationship due to forest disturbance or conversion, some information on the impacts on sediment delivery and erosion of hillslopes, but relatively little about the dynamics and magnitude of nutrient losses. Improvements have been made in the ability to model the consequences of forest conversion and of selective logging and exciting prospects exist for the development of better predictions of transfer of water from the hillslopes to the stream channels using techniques such as multilevel modelling. Understanding of the processes involved has advanced through the detailed monitoring made possible at permanent field stations such as that at Danum Valley, Sabah.

  8. Isotope hydrology and its impact in the developing world

    International Nuclear Information System (INIS)

    Verhagen, B.Th.

    2003-01-01

    Ground water has increasingly taken its place in the provision of safe, potable supply in the developing world. Large investments have been made in infrastructural development for rural ground water supply schemes, but far too little attention has been given to assess the sustainability of these supplies. Overexploitation of aquifers, evident in failing boreholes and deteriorating water quality, has become a world-wide concern. Developments in physics half a century ago established the basis of isotope hydrology. Radioactive isotopes give information on ground water dynamics and recharge rates whilst non-radioactive - or stable - isotopes indicate origins of ground water and delineate ground water bodies. Environmental isotope hydrology is increasingly seen as a powerful discipline in assessing ground water systems. This is particularly important in developing environments, where historical data is rarely available. Brief examples are presented of isotope applications to collaborative ground water studies conducted at the University of the Witwatersrand. Recharge estimates based on isotope 'snapshot' data conform well with results from subsequent long-term water level observations in the Kalahari of Botswana. The importance is demonstrated of irrigation return flow and pollution hazard to the Lomagundi dolomite of Zimbabwe. Isotopes suggest the source of high nitrate concentrations to an important ground water supply in Tanzania. Mechanisms of the release of arsenic into millions of tube wells in Bangladesh are put into perspective. Isotope hydrology as appropriate technology is highlighted in terms of its cost-effectiveness and the investigative empowerment of local investigators. (author)

  9. Modeling of hydrologic conditions and solute movement in processed oil shale waste embankments under simulated climatic conditions

    International Nuclear Information System (INIS)

    Reeves, T.L.; Turner, J.P.; Hasfurther, V.R.; Skinner, Q.D.

    1992-06-01

    The scope of this program is to study interacting hydrologic, geotechnical, and chemical factors affecting the behavior and disposal of combusted processed oil shale. The research combines bench-scale testing with large scale research sufficient to describe commercial scale embankment behavior. The large scale approach was accomplished by establishing five lysimeters, each 7.3 x 3.0 x 3.0 m deep, filled with processed oil shale that has been retorted and combusted by the Lurgi-Ruhrgas (Lurgi) process. Approximately 400 tons of Lurgi processed oil shale waste was provided by RBOSC to carry out this study. Research objectives were designed to evaluate hydrologic, geotechnical, and chemical properties and conditions which would affect the design and performance of large-scale embankments. The objectives of this research are: assess the unsaturated movement and redistribution of water and the development of potential saturated zones and drainage in disposed processed oil shale under natural and simulated climatic conditions; assess the unsaturated movement of solubles and major chemical constituents in disposed processed oil shale under natural and simulated climatic conditions; assess the physical and constitutive properties of the processed oil shale and determine potential changes in these properties caused by disposal and weathering by natural and simulated climatic conditions; assess the use of previously developed computer model(s) to describe the infiltration, unsaturated movement, redistribution, and drainage of water in disposed processed oil shale; evaluate the stability of field scale processed oil shale solid waste embankments using computer models

  10. Teaching geographical hydrology in a non-stationary world

    Science.gov (United States)

    Hendriks, Martin R.; Karssenberg, Derek

    2010-05-01

    Understanding hydrological processes in a non-stationary world requires knowledge of hydrological processes and their interactions. Also, one needs to understand the (non-linear) relations between the hydrological system and other parts of our Earth system, such as the climate system, the socio-economic system, and the ecosystem. To provide this knowledge and understanding we think that three components are essential when teaching geographical hydrology. First of all, a student needs to acquire a thorough understanding of classical hydrology. For this, knowledge of the basic hydrological equations, such as the energy equation (Bernoulli), flow equation (Darcy), continuity (or water balance) equation is needed. This, however, is not sufficient to make a student fully understand the interactions between hydrological compartments, or between hydrological subsystems and other parts of the Earth system. Therefore, secondly, a student also needs to be knowledgeable of methods by which the different subsystems can be coupled; in general, numerical models are used for this. A major disadvantage of numerical models is their complexity. A solution may be to use simpler models, provided that a student really understands how hydrological processes function in our real, non-stationary world. The challenge for a student then lies in understanding the interactions between the subsystems, and to be able to answer questions such as: what is the effect of a change in vegetation or land use on runoff? Thirdly, knowledge of field hydrology is of utmost importance. For this a student needs to be trained in the field. Fieldwork is very important as a student is confronted in the field with spatial and temporal variability, as well as with real life uncertainties, rather than being lured into believing the world as presented in hydrological textbooks and models, e.g. the world under study is homogeneous, isotropic, or lumped (averaged). Also, students in the field learn to plan and

  11. Darwinian hydrology: can the methodology Charles Darwin pioneered help hydrologic science?

    Science.gov (United States)

    Harman, C.; Troch, P. A.

    2013-05-01

    There have been repeated calls for a Darwinian approach to hydrologic science or for a synthesis of Darwinian and Newtonian approaches, to deepen understanding the hydrologic system in the larger landscape context, and so develop a better basis for predictions now and in an uncertain future. But what exactly makes a Darwinian approach to hydrology "Darwinian"? While there have now been a number of discussions of Darwinian approaches, many referencing Harte (2002), the term is potentially a source of confusion while its connections to Darwin remain allusive rather than explicit. Here we discuss the methods that Charles Darwin pioneered to understand a variety of complex systems in terms of their historical processes of change. We suggest that the Darwinian approach to hydrology follows his lead by focusing attention on the patterns of variation in populations, seeking hypotheses that explain these patterns in terms of the mechanisms and conditions that determine their historical development, using deduction and modeling to derive consequent hypotheses that follow from a proposed explanation, and critically testing these hypotheses against new observations. It is not sufficient to catalogue the patterns or predict them statistically. Nor is it sufficient for the explanations to amount to a "just-so" story not subject to critical analysis. Darwin's theories linked present-day variation to mechanisms that operated over history, and could be independently test and falsified by comparing new observations to the predictions of corollary hypotheses they generated. With a Darwinian framework in mind it is easy to see that a great deal of hydrologic research has already been done that contributes to a Darwinian hydrology - whether deliberately or not. The various heuristic methods that Darwin used to develop explanatory theories - extrapolating mechanisms, space for time substitution, and looking for signatures of history - have direct application in hydrologic science. Some

  12. A micro-hydrology computation ordering algorithm

    International Nuclear Information System (INIS)

    Croley, T.E. II

    1980-01-01

    Discrete-distributed-parameter models are essential for watershed modelling where practical consideration of spatial variations in watershed properties and inputs is desired. Such modelling is necessary for analysis of detailed hydrologic impacts from management strategies and land-use effects. Trade-offs between model validity and model complexity exist in resolution of the watershed. Once these are determined, the watershed is then broken into sub-areas which each have essentially spatially-uniform properties. Lumped-parameter (micro-hydrology) models are applied to these sub-areas and their outputs are combined through the use of a computation ordering technique, as illustrated by many discrete-distributed-parameter hydrology models. Manual ordering of these computations requires fore-thought, and is tedious, error prone, sometimes storage intensive and least adaptable to changes in watershed resolution. A programmable algorithm for ordering micro-hydrology computations is presented that enables automatic ordering of computations within the computer via an easily understood and easily implemented node definition, numbering and coding scheme. This scheme and the algorithm are detailed in logic flow-charts and an example application is presented. Extensions and modifications of the algorithm are easily made for complex geometries or differing micro-hydrology models. The algorithm is shown to be superior to manual ordering techniques and has potential use in high-resolution studies. (orig.)

  13. Investigation of Relationship Between Hydrologic Processes of Precipitation, Evaporation and Stream Flow Using Linear Time Series Models (Case study: Western Basins of Lake Urmia

    Directory of Open Access Journals (Sweden)

    M. Moravej

    2016-02-01

    Full Text Available Introduction: Studying the hydrological cycle, especially in large scales such as water catchments, is difficult and complicated despite the fact that the numbers of hydrological components are limited. This complexity rises from complex interactions between hydrological components and environment. Recognition, determination and modeling of all interactive processes are needed to address this issue, but it's not feasible for dealing with practical engineering problems. So, it is more convenient to consider hydrological components as stochastic phenomenon, and use stochastic models for modeling them. Stochastic simulation of time series models related to water resources, particularly hydrologic time series, have been widely used in recent decades in order to solve issues pertaining planning and management of water resource systems. In this study time series models fitted to the precipitation, evaporation and stream flow series separately and the relationships between stream flow and precipitation processes are investigated. In fact, the three mentioned processes should be modeled in parallel to each other in order to acquire a comprehensive vision of hydrological conditions in the region. Moreover, the relationship between the hydrologic processes has been mostly studied with respect to their trends. It is desirable to investigate the relationship between trends of hydrological processes and climate change, while the relationship of the models has not been taken into consideration. The main objective of this study is to investigate the relationship between hydrological processes and their effects on each other and the selected models. Material and Method: In the current study, the four sub-basins of Lake Urmia Basin namely Zolachay (A, Nazloochay (B, Shahrchay (C and Barandoozchay (D were considered. Precipitation, evaporation and stream flow time series were modeled by linear time series. Fundamental assumptions of time series analysis namely

  14. Socio-Hydrology: Conceptual and Methodological Challenges in the Bidirectional Coupling of Human and Water Systems

    Science.gov (United States)

    Scott, C. A.

    2014-12-01

    This presentation reviews conceptual advances in the emerging field of socio-hydrology that focuses on coupled human and water systems. An important current challenge is how to better couple the bidirectional influences between human and water systems, which lead to emergent dynamics. The interactions among (1) the structure and dynamics of systems with (2) human values and norms lead to (3) outcomes, which in turn influence subsequent interactions. Human influences on hydrological systems are relatively well understood, chiefly resulting from developments in the field of water resources. The ecosystem-service concept of cultural value has expanded understanding of decision-making beyond economic rationality criteria. Hydrological impacts on social processes are less well developed conceptually, but this is changing with growing attention to vulnerability, adaptation, and resilience, particularly in the face of climate change. Methodological limitations, especially in characterizing the range of human responses to hydrological events and drivers, still pose challenges to modeling bidirectional human-water influences. Evidence from multiple case studies, synthesized in more broadly generic syndromes, helps surmount these methodological limitations and offers the potential to improve characterization and quantification of socio-hydrological systems.

  15. Modelling the impacts of climate change on hydrology and water quality in a mediterranean limno-reservoir

    DEFF Research Database (Denmark)

    Molina-Navarro, Euginio; Trolle, Dennis; Martinez-Pérez, Silvia

    Assessment Tool (SWAT) model developed for a small Mediterranean catchment to quantify the potential effects of various climate change scenarios on catchment hydrology as well as the trophic state of a new kind of waterbody, a limno-reservoir (Pareja Limno-reservoir), created for environmental...... and recreational purposes. Simulations showed a noticeable impact of climate change in the river flow regime and consequently the water level of the limno-reservoir, especially during summer, complicating the fulfillment of its purposes. All the scenarios predicted a deterioration of trophic conditions...

  16. An eco-hydrological project on Turkey Creek watershed, South Carolina, U.S.A.

    Science.gov (United States)

    Devendra Amatya; Carl Trettin

    2008-01-01

    The low-gradient, forested wetland landscape of the southeastern United States’ Coastal Plain represents an important eco-hydrologic system, yet there is a very little information available on the region’s ecological, hydrological and biogeochemical processes. Long-term hydrologic monitoring can provide the information needed to understand basic hydrologic processes...

  17. Impact of Hydrologic and Micro-topographic Variabilities on Spatial Distribution of Mean Soil-Nitrogen Age

    Science.gov (United States)

    Woo, D.; Kumar, P.

    2015-12-01

    Excess reactive nitrogen in soils of intensively managed agricultural fields causes adverse environmental impact, and continues to remain a global concern. Many novel strategies have been developed to provide better management practices and, yet, the problem remains unresolved. The objective of this study is to develop a 3-dimensional model to characterize the spatially distributed ``age" of soil-nitrogen (nitrate and ammonia-ammonium) across a watershed. We use the general theory of age, which provides an assessment of the elapsed time since nitrogen is introduced into the soil system. Micro-topographic variability incorporates heterogeneity of nutrient transformations and transport associated with topographic depressions that form temporary ponds and produce prolonged periods of anoxic conditions, and roadside agricultural ditches that support rapid surface movement. This modeling effort utilizes 1-m Light Detection and Ranging (LiDAR) data. We find a significant correlation between hydrologic variability and mean nitrate age that enables assessment of preferential flow paths of nitrate leaching. The estimation of the mean nitrogen age can thus serve as a tool to disentangle complex nitrogen dynamics by providing the analysis of the time scales of soil-nitrogen transformation and transport processes without introducing additional parameters.

  18. Modeling the effect of urban infrastructure on hydrologic processes within i-Tree Hydro, a statistically and spatially distributed model

    Science.gov (United States)

    Taggart, T. P.; Endreny, T. A.; Nowak, D.

    2014-12-01

    Gray and green infrastructure in urban environments alters many natural hydrologic processes, creating an urban water balance unique to the developed environment. A common way to assess the consequences of impervious cover and grey infrastructure is by measuring runoff hydrographs. This focus on the watershed outlet masks the spatial variation of hydrologic process alterations across the urban environment in response to localized landscape characteristics. We attempt to represent this spatial variation in the urban environment using the statistically and spatially distributed i-Tree Hydro model, a scoping level urban forest effects water balance model. i-Tree Hydro has undergone expansion and modification to include the effect of green infrastructure processes, road network attributes, and urban pipe system leakages. These additions to the model are intended to increase the understanding of the altered urban hydrologic cycle by examining the effects of the location of these structures on the water balance. Specifically, the effect of these additional structures and functions on the spatially varying properties of interception, soil moisture and runoff generation. Differences in predicted properties and optimized parameter sets between the two models are examined and related to the recent landscape modifications. Datasets used in this study consist of watersheds and sewersheds within the Syracuse, NY metropolitan area, an urban area that has integrated green and gray infrastructure practices to alleviate stormwater problems.

  19. Coupled analysis on landscape pattern and hydrological processes in Yanhe watershed of China.

    Science.gov (United States)

    Li, J; Zhou, Z X

    2015-02-01

    As a typical experimental Soil and Water Conservation District, Yanhe watershed has long been plagued by soil erosion due to severe human disturbances. Exerting remote sensing (RS) and geographic information system (GIS) technology, this paper firstly analyzed and simulated ecological hydrological process in Yanhe watershed based on SWAT model, constructed a comprehensive landscape indices which was closely related to soil erosion, and reflected the coupling relationship between regional landscape pattern change and soil erosion. The results are as follows: (1) Areas of different land use types remained relatively stable from 1990 to 2000 and then changed drastically from 2000 to 2010, which was characterized by lawn expansion and cultivated land shrinkage. (2) In terms of the spatial heterogeneity of hydrological response unit (HRUs), the correlation coefficient of seven selected landscape indices and runoff was very small, and cannot pass all significant testing. But correlation between the indices and sediment yield except for Total Core Area (TCA) and Interspersion and Juxtaposition Index (IJI) was remarkable. (3) According to 'the source-sink' theory of soil erosion, new landscape index-slope-HRU landscape index (SHLI) was built, and reflected the relationship between landscape pattern and soil erosion processes to a certain extent. (4) Coupling relationship between SHLI in 2010 and annual sediment was very prominent. In the sub-basin scale, SHLI has obvious regional differentiation from annual sediment. Copyright © 2014 Elsevier B.V. All rights reserved.

  20. Historical trends and the long-term changes of the hydrological cycle components in a Mediterranean river basin.

    Science.gov (United States)

    Mentzafou, A; Wagner, S; Dimitriou, E

    2018-04-29

    Identifying the historical hydrometeorological trends in a river basin is necessary for understanding the dominant interactions between climate, human activities and local hydromorphological conditions. Estimating the hydrological reference conditions in a river is also crucial for estimating accurately the impacts from human water related activities and design appropriate water management schemes. In this effort, the output of a regional past climate model was used, covering the period from 1660 to 1990, in combination with a dynamic, spatially distributed, hydrologic model to estimate the past and recent trends in the main hydrologic parameters such as overland flow, water storages and evapotranspiration, in a Mediterranean river basin. The simulated past hydrologic conditions (1660-1960) were compared with the current hydrologic regime (1960-1990), to assess the magnitude of human and natural impacts on the identified hydrologic trends. The hydrological components of the recent period of 2008-2016 were also examined in relation to the impact of human activities. The estimated long-term trends of the hydrologic parameters were partially assigned to varying atmospheric forcing due to volcanic activity combined with spontaneous meteorological fluctuations. Copyright © 2018. Published by Elsevier B.V.

  1. Crowdsourcing to Acquire Hydrologic Data and Engage Citizen Scientists: CrowdHydrology

    Science.gov (United States)

    Fienen, Michael N.; Lowry, Chris

    2013-01-01

    Spatially and temporally distributed measurements of processes, such as baseflow at the watershed scale, come at substantial equipment and personnel cost. Research presented here focuses on building a crowdsourced database of inexpensive distributed stream stage measurements. Signs on staff gauges encourage citizen scientists to voluntarily send hydrologic measurements (e.g., stream stage) via text message to a server that stores and displays the data on the web. Based on the crowdsourced stream stage, we evaluate the accuracy of citizen scientist measurements and measurement approach. The results show that crowdsourced data collection is a supplemental method for collecting hydrologic data and a promising method of public engagement.

  2. A new perspective on the regional hydrologic cycle over North and South America

    Science.gov (United States)

    Weng, Shu-Ping

    The GEOS-1 vertically-integrated 3-hr moisture flux reanalyses and hourly-gridded United States station precipitation plus a satellite-based, 6-hr global precipitation estimate were employed to investigate the impacts of nocturnal low-level jets (LLJs) on the regional hydrological cycle over the central United States (Part I) and the subtropical plains of South America (Part II). Research stressed the influences of upper-level synoptic-scale waves (i.e., synoptic-scale forcings) upon the regional hydrologic processes, which were explored by the impacts associated with the occurrence of LLJ. Besides the conventional budget analysis, the adopted `synoptic-forcing approach' was proven illustrative in describing these impacts through the down-scaling process of LLJs. In Part 1, the major findings include: (1)the seasonal-averaged hydrological cycle over the Great Plains is strongly affected by the occurrence of GPLLJ, (2)the synoptic-scale forcing provided by the upper-level propagating jet (ULJ) streams is essential in generating the large-scale precipitation after the GPLLJ forms from the diurnal boundary layer process, (3)without the dynamic coupling between the ULJ and LLJ, the impact of LLJ on the hydrological cycle is demonstrated to be less important, and (4)the importance of synoptic-scale forcings in preconditioning the setting of wet/dry seasons in the interannual variability of rainfall anomaly is further illustrated by examining the changes of intensity as well as the occurrence frequency between the different types of LLJ. In Part II of this study, it was found that the occurrence of Andean LLJ represents a transient episode that detours the climatic rainfall activity along the South Atlantic Convergent Zone (SACZ) to the subtropical plains (Brazilian Nordeste) in its southwestern (northeastern) flank. The appearance of a seesaw pattern in the rainfall and flux convergence anomalies along the southeastern portion of South America, which is spatially in

  3. Accessibility assessment of Houston's roadway network during Harvey through integration of observed flood impacts and hydrologic modeling

    Science.gov (United States)

    Gidaris, I.; Gori, A.; Panakkal, P.; Padgett, J.; Bedient, P. B.

    2017-12-01

    The record-breaking rainfall produced over the Houston region by Hurricane Harvey resulted in catastrophic and unprecedented impacts on the region's infrastructure. Notably, Houston's transportation network was crippled, with almost every major highway flooded during the five-day event. Entire neighborhoods and subdivisions were inundated, rendering them completely inaccessible to rescue crews and emergency services. Harvey has tragically highlighted the vulnerability of major thoroughfares, as well as neighborhood roads, to severe inundation during extreme precipitation events. Furthermore, it has emphasized the need for detailed accessibility characterization of road networks under extreme event scenarios in order to determine which areas of the city are most vulnerable. This analysis assesses and tracks the accessibility of Houston's major highways during Harvey's evolution by utilizing road flood/closure data from the Texas DOT. In the absence of flooded/closure data for local roads, a hybrid approach is adopted that utilizes a physics-based hydrologic model to produce high-resolution inundation estimates for selected urban watersheds in the Houston area. In particular, hydrologic output in the form of inundation depths is used to estimate the operability of local roads. Ultimately, integration of hydrologic-based estimation of road conditions with observed data from DOT supports a network accessibility analysis of selected urban neighborhoods. This accessibility analysis can identify operable routes for emergency response (rescue crews, medical services, etc.) during the storm event.

  4. Developing predictive insight into changing water systems: use-inspired hydrologic science for the Anthropocene

    Science.gov (United States)

    Thompson, S. E.; Sivapalan, M.; Harman, C. J.; Srinivasan, V.; Hipsey, M. R.; Reed, P.; Montanari, A.; Blöschl, G.

    2013-12-01

    Globally, many different kinds of water resources management issues call for policy- and infrastructure-based responses. Yet responsible decision-making about water resources management raises a fundamental challenge for hydrologists: making predictions about water resources on decadal- to century-long timescales. Obtaining insight into hydrologic futures over 100 yr timescales forces researchers to address internal and exogenous changes in the properties of hydrologic systems. To do this, new hydrologic research must identify, describe and model feedbacks between water and other changing, coupled environmental subsystems. These models must be constrained to yield useful insights, despite the many likely sources of uncertainty in their predictions. Chief among these uncertainties are the impacts of the increasing role of human intervention in the global water cycle - a defining challenge for hydrology in the Anthropocene. Here we present a research agenda that proposes a suite of strategies to address these challenges from the perspectives of hydrologic science research. The research agenda focuses on the development of co-evolutionary hydrologic modeling to explore coupling across systems, and to address the implications of this coupling on the long-time behavior of the coupled systems. Three research directions support the development of these models: hydrologic reconstruction, comparative hydrology and model-data learning. These strategies focus on understanding hydrologic processes and feedbacks over long timescales, across many locations, and through strategic coupling of observational and model data in specific systems. We highlight the value of use-inspired and team-based science that is motivated by real-world hydrologic problems but targets improvements in fundamental understanding to support decision-making and management. Fully realizing the potential of this approach will ultimately require detailed integration of social science and physical science

  5. Multiple Changes in the Hydrologic Regime of the Yangtze River and the Possible Impact of Reservoirs

    Directory of Open Access Journals (Sweden)

    Feng Huang

    2016-09-01

    Full Text Available This paper investigates hydrologic changes in the Yangtze River using long-term daily stream flow records (1955–2013 collected from four flow gauging stations located from the upper to the lower reaches of the river. The hydrologic regime is quantified using the Indicators of Hydrologic Alteration, which statistically characterize hydrologic variation within each year. Scanning t-test is applied to analyze multiple changes in the hydrologic regime at different time scales. Then, coherency analysis is applied to identify common changes among different hydrologic indicators and across different reaches of the Yangtze River. The results point to various change patterns in the five components of hydrologic regime, including the magnitude of monthly water conditions, magnitude and duration of annual extreme water conditions, timing of annual extreme water conditions, frequency and duration of high and low pulses, and rate and frequency of water condition changes. The 32 hydrologic indicators feature multiple temporal-scale changes. Spatial variations can be observed in the hydrologic changes of the upper, middle, and lower reaches of the river. Common changes in different reaches consist of hydrologic indicators including the monthly flow in October and the low-flow indicators. The monthly flow in October is dominated by decreasing trends, while the monthly flows between January and March, the annual minimum 1/3/7/30/90-day flows, and the base flow index are characterized by increasing trends. Low pulse duration and total days of low pulses feature downward trends. The coherency analysis reveals significant relationships between the monthly flow in October and the low-flow indicators, indicating that reservoir regulation is an important factor behind the hydrologic changes.

  6. Revealing, Reducing, and Representing Uncertainties in New Hydrologic Projections for Climate-changed Futures

    Science.gov (United States)

    Arnold, Jeffrey; Clark, Martyn; Gutmann, Ethan; Wood, Andy; Nijssen, Bart; Rasmussen, Roy

    2016-04-01

    from the full range of uncertainties associated with all parts of the simulation chain, from global climate models with simulations of natural climate variability, through regional climate downscaling, and on to modeling of affected hydrologic processes and downstream water resources impacts. This talk will present part of the work underway now both to reveal and reduce some important uncertainties and to develop explicit guidance for future generation of quantitative hydroclimatic storylines. Topics will include: 1- model structural and parameter-set limitations of some methods widely used to quantify climate impacts to hydrologic processes [Gutmann et al., 2014; Newman et al., 2015]; 2- development and evaluation of new, spatially consistent, U.S. national-scale climate downscaling and hydrologic simulation capabilities directly relevant at the multiple scales of water-resource decision-making [Newman et al., 2015; Mizukami et al., 2015; Gutmann et al., 2016]; and 3- development and evaluation of advanced streamflow forecasting methods to reduce and represent integrated uncertainties in a tractable way [Wood et al., 2014; Wood et al., 2015]. A key focus will be areas where climatologic and hydrologic science is currently under-developed to inform decisions - or is perhaps wrongly scaled or misapplied in practice - indicating the need for additional fundamental science and interpretation.

  7. Impact of multicollinearity on small sample hydrologic regression models

    Science.gov (United States)

    Kroll, Charles N.; Song, Peter

    2013-06-01

    Often hydrologic regression models are developed with ordinary least squares (OLS) procedures. The use of OLS with highly correlated explanatory variables produces multicollinearity, which creates highly sensitive parameter estimators with inflated variances and improper model selection. It is not clear how to best address multicollinearity in hydrologic regression models. Here a Monte Carlo simulation is developed to compare four techniques to address multicollinearity: OLS, OLS with variance inflation factor screening (VIF), principal component regression (PCR), and partial least squares regression (PLS). The performance of these four techniques was observed for varying sample sizes, correlation coefficients between the explanatory variables, and model error variances consistent with hydrologic regional regression models. The negative effects of multicollinearity are magnified at smaller sample sizes, higher correlations between the variables, and larger model error variances (smaller R2). The Monte Carlo simulation indicates that if the true model is known, multicollinearity is present, and the estimation and statistical testing of regression parameters are of interest, then PCR or PLS should be employed. If the model is unknown, or if the interest is solely on model predictions, is it recommended that OLS be employed since using more complicated techniques did not produce any improvement in model performance. A leave-one-out cross-validation case study was also performed using low-streamflow data sets from the eastern United States. Results indicate that OLS with stepwise selection generally produces models across study regions with varying levels of multicollinearity that are as good as biased regression techniques such as PCR and PLS.

  8. Hydrological droughts in the 21st century, hotspots and uncertainties from a global multimodel ensemble experiment

    NARCIS (Netherlands)

    Prudhomme, C.; Giuntoli, L.; Robinson, E.L.; Clark, D.B.; Arnell, N.W.; Dankers, R.; Fekete, B.M.; Franssen, W.H.P.

    2014-01-01

    Increasing concentrations of greenhouse gases in the atmosphere are expected to modify the global water cycle with significant consequences for terrestrial hydrology. We assess the impact of climate change on hydrological droughts in a multimodel experiment including seven global impact models

  9. Observed Hydrologic Impacts of Landfalling Atmospheric Rivers in the Salt and Verde River Basins of Arizona, United States

    Science.gov (United States)

    Demaria, Eleonora M. C.; Dominguez, Francina; Hu, Huancui; von Glinski, Gerd; Robles, Marcos; Skindlov, Jonathan; Walter, James

    2017-12-01

    Atmospheric rivers (ARs), narrow atmospheric water vapor corridors, can contribute substantially to winter precipitation in the semiarid Southwest U.S., where natural ecosystems and humans compete for over-allocated water resources. We investigate the hydrologic impacts of 122 ARs that occurred in the Salt and Verde river basins in northeastern Arizona during the cold seasons from 1979 to 2009. We focus on the relationship between precipitation, snow water equivalent (SWE), soil moisture, and extreme flooding. During the cold season (October through March) ARs contribute an average of 25%/29% of total seasonal precipitation for the Salt/Verde river basins, respectively. However, they contribute disproportionately to total heavy precipitation and account for 64%/72% of extreme total daily precipitation (exceeding the 98th percentile). Excess precipitation during AR occurrences contributes to snow accumulation; on the other hand, warmer than normal temperatures during AR landfallings are linked to rain-on-snow processes, an increase in the basins' area contributing to runoff generation, and higher melting lines. Although not all AR events are linked to extreme flooding in the basins, they do account for larger runoff coefficients. On average, ARs generate 43% of the annual maximum flows for the period studied, with 25% of the events exceeding the 10 year return period. Our analysis shows that the devastating 1993 flooding event in the region was caused by AR events. These results illustrate the importance of AR activity on the hydrology of inland semiarid regions: ARs are critical for water resources, but they can also lead to extreme flooding that affects infrastructure and human activities.

  10. Hydrology and sediment yield calibration for the Barasona reservoir catchment (Spain) using SWAT

    Science.gov (United States)

    Palazón, Leticia; Navas, Ana

    2013-04-01

    Hydrological and soil erosion models, as Soil and Water Assessment Tool (SWAT), have become very useful tools and increasingly serve as vital components of integrated environmental assessments that provide information outside of direct field experiments and causal observation. The purpose of this study was to improve the calibration of SWAT model to use it in an alpine catchment as a simulator of processes related to water quality and soil erosion. SWAT is spatially semi-distributed, agro-hydrological model that operates on a daily time step (as a minimum) at basin scale. It is designed to predict the impact of management on water, sediment and agricultural chemical yields in ungaged catchments. SWAT provides physically based algorithms as an option to define many of the important components of the hydrologic cycle. The input requirements of the model are used to describe the climate, soil properties, topography, vegetation, and land management practices. SWAT analyzes small or large catchments by discretising into sub-basins, which are then further subdivided into hydrological response units (HRUs) with homogeneous land use, soil type and slope. SWAT model (SWAT2009) coupled with a GIS interface (ArcSWAT), was applied to the Barasona reservoir catchment located in the central Spanish Pyrenees. The 1509 km2 agro-forestry catchment presents a mountain type climate, an altitudinal range close to 3000 meters and a precipitation variation close to 1000 mm/km. The mountainous characteristics of the catchment, in addition to the scarcity of climate data in the region, require specific calibration for some processes. Snowfall and snowmelt are significant processes in the hydrologic regime of the area and were calibrated in a previous work. In this work some of the challenges of the catchment to model with SWAT which affected the hydrology and the sediment yield simulation were performed as improvement of the previous calibration. Two reservoirs, a karst system which

  11. The changing hydrology of a dammed Amazon

    Science.gov (United States)

    Timpe, Kelsie; Kaplan, David

    2017-01-01

    Developing countries around the world are expanding hydropower to meet growing energy demand. In the Brazilian Amazon, >200 dams are planned over the next 30 years, and questions about the impacts of current and future hydropower in this globally important watershed remain unanswered. In this context, we applied a hydrologic indicator method to quantify how existing Amazon dams have altered the natural flow regime and to identify predictors of alteration. The type and magnitude of hydrologic alteration varied widely by dam, but the largest changes were to critical characteristics of the flood pulse. Impacts were largest for low-elevation, large-reservoir dams; however, small dams had enormous impacts relative to electricity production. Finally, the “cumulative” effect of multiple dams was significant but only for some aspects of the flow regime. This analysis is a first step toward the development of environmental flows plans and policies relevant to the Amazon and other megadiverse river basins. PMID:29109972

  12. Status report: A hydrologic framework for the Oak Ridge Reservation

    International Nuclear Information System (INIS)

    Solomon, D.K.; Toran, L.E.; Dreier, R.B.; Moore, G.K.; McMaster, W.M.

    1992-05-01

    This first status report on the Hydrologic Studies Task of the Oak Ridge Reservation Hydrology and Geology Study (ORRHAGS) revises earlier concepts of subsurface hydrology and hydrogeochemistry of the ORR. A new classification of hydrogeologic units is given, as well as new interpretations of the gydrogeologic properties and processes that influence contaminant migration. The conceptual hydrologic framework introduced in this report is based primarily on reinterpretations of data acquired during earlier hydrologic investigations of waste areas at and near the three US Department of Energy Oak Ridge (DOE-OR) plant facilities. In addition to describing and interpreting the properties and processes of the groundwater systems as they are presently understood, this report describes surface water-subsurface water relations, influences on contaminant migration,and implications to environmental restoration, environmental monitoring, and waste management

  13. Status report: A hydrologic framework for the Oak Ridge Reservation

    Energy Technology Data Exchange (ETDEWEB)

    Solomon, D.K.; Toran, L.E.; Dreier, R.B. (Oak Ridge National Lab., TN (United States)); Moore, G.K.; McMaster, W.M. (Tennessee Univ., Knoxville, TN (United States). Dept. of Civil Engineering)

    1992-05-01

    This first status report on the Hydrologic Studies Task of the Oak Ridge Reservation Hydrology and Geology Study (ORRHAGS) revises earlier concepts of subsurface hydrology and hydrogeochemistry of the ORR. A new classification of hydrogeologic units is given, as well as new interpretations of the gydrogeologic properties and processes that influence contaminant migration. The conceptual hydrologic framework introduced in this report is based primarily on reinterpretations of data acquired during earlier hydrologic investigations of waste areas at and near the three US Department of Energy Oak Ridge (DOE-OR) plant facilities. In addition to describing and interpreting the properties and processes of the groundwater systems as they are presently understood, this report describes surface water-subsurface water relations, influences on contaminant migration,and implications to environmental restoration, environmental monitoring, and waste management.

  14. Impact of spatio-temporal scale of adjustment on variational assimilation of hydrologic and hydrometeorological data in operational distributed hydrologic models

    Science.gov (United States)

    Lee, H.; Seo, D.; McKee, P.; Corby, R.

    2009-12-01

    One of the large challenges in data assimilation (DA) into distributed hydrologic models is to reduce the large degrees of freedom involved in the inverse problem to avoid overfitting. To assess the sensitivity of the performance of DA to the dimensionality of the inverse problem, we design and carry out real-world experiments in which the control vector in variational DA (VAR) is solved at different scales in space and time, e.g., lumped, semi-distributed, and fully-distributed in space, and hourly, 6 hourly, etc., in time. The size of the control vector is related to the degrees of freedom in the inverse problem. For the assessment, we use the prototype 4-dimenational variational data assimilator (4DVAR) that assimilates streamflow, precipitation and potential evaporation data into the NWS Hydrology Laboratory’s Research Distributed Hydrologic Model (HL-RDHM). In this talk, we present the initial results for a number of basins in Oklahoma and Texas.

  15. Ground-water hydrology and radioactive waste disposal at the Hanford Site

    International Nuclear Information System (INIS)

    Law, A.G.

    1979-02-01

    This paper is a summary of the hydrologic activities conducted at the Hanford Site as a part of the environmental protection effort. The Site encompasses 1,480 square kilometers in the arid, southeastern part of Washington State. Precipitation averages about 160 millimeters per year with a negligible amount, if any, recharging the water table, which is from 50 to 100 meters below the ground surface. An unconfined aquifer occurs in the upper and middle Ringold Formations. The lower Ringold Formation along with interbed and interflow zones in the Saddle Mountain and Wanapum basalts forms a confined aquifer system. A potential exists for the interconnection of the unconfined and confined aquifer systems, especially near Gable Mountain where the anticlinal ridge was eroded by the catastrophic floods of the ancestral Columbia River system. Liquid wastes from chemical processing operations have resulted in large quantities of processing and cooling water disposed to ground via ponds, cribs, and ditches. The ground-water hydrology program at Hanford is designed: (1) to define and quantify the ground-water flow systems, (2) to evaluate the impact of the liquid waste discharges on these flow systems, and (3) to predict the impact on the ground-water systems of changes in system inputs. This work is conducted through a drilling, sampling, testing, and modeling program

  16. Perspective on Eco-Hydrology Developing Strategy in China

    Science.gov (United States)

    Xia, J.

    2017-12-01

    China is one of developing countries with higher eco-environmental press in the world due to large population and its socio-economic development. In China, water is not only the sources for life, but also the key for production, and the foundation for eco-system. Thus, Eco-hydrology becomes a fundamental also an applied sciences related to describe the hydrologic mechanisms that underlie ecologic patterns and processes. This paper addresses the issue of Eco-hydrology Developing Strategy in China, supported by Chinese Academy of Sciences (CAS). Major contents include four aspects, namely: (1) Demands and frontier of eco-hydrology in the world; (2) Major theories and approaches of Eco-hydrology; (3) Perspective of future development on Eco-hydrology; (4) Enacting and proposal for China development strategy on Eco-hydrology. Application fields involves urban, rural area, wetland, river & lake, forest and special regions in China, such as the arid and semi-arid region and so on. The goal is to promote the disciplinary development of eco-hydrology, and serve for national demands on ecological civilization construction in China.

  17. Changing Hydrology in Glacier-fed High Altitude Andean Peatbogs

    Science.gov (United States)

    Slayback, D. A.; Yager, K.; Baraer, M.; Mohr, K. I.; Argollo, J.; Wigmore, O.; Meneses, R. I.; Mark, B. G.

    2012-12-01

    Montane peatbogs in the glacierized Andean highlands of Peru and Bolivia provide critical forage for camelids (llama and alpaca) in regionally extensive pastoral agriculture systems. During the long dry season, these wetlands often provide the only available green forage. A key question for the future of these peatbog systems, and the livelihoods they support, is the impact of climate change and glacier recession on their hydrology, and thus forage production. We have already documented substantial regional glacier recession, of, on average, approximately 30% of surface area over the past two decades. As glaciers begin to retreat under climate change, there is initially a period of increased meltwater outflow, culminating in a period of "peak water", and followed by a continual decline in outflows. Based on previous work, we know that some glaciers in the region have already passed peak water conditions, and are now declining. To better understand the impacts of these processes on peatbog hydrology and productivity, we have begun collecting a variety of surface data at several study sites in both Bolivia and Peru. These include precipitation, stream flow, water levels, water chemistry and isotope analyses, and peatbog biodiversity and biomass. These measurements will be used in conjunction with a regional model driven by satellite data to predict likely future impacts. We will present the results from these initial surface measurements, and an overview of satellite datasets to be used in the regional model.

  18. Spatial interpolation schemes of daily precipitation for hydrologic modeling

    Science.gov (United States)

    Hwang, Y.; Clark, M.R.; Rajagopalan, B.; Leavesley, G.

    2012-01-01

    Distributed hydrologic models typically require spatial estimates of precipitation interpolated from sparsely located observational points to the specific grid points. We compare and contrast the performance of regression-based statistical methods for the spatial estimation of precipitation in two hydrologically different basins and confirmed that widely used regression-based estimation schemes fail to describe the realistic spatial variability of daily precipitation field. The methods assessed are: (1) inverse distance weighted average; (2) multiple linear regression (MLR); (3) climatological MLR; and (4) locally weighted polynomial regression (LWP). In order to improve the performance of the interpolations, the authors propose a two-step regression technique for effective daily precipitation estimation. In this simple two-step estimation process, precipitation occurrence is first generated via a logistic regression model before estimate the amount of precipitation separately on wet days. This process generated the precipitation occurrence, amount, and spatial correlation effectively. A distributed hydrologic model (PRMS) was used for the impact analysis in daily time step simulation. Multiple simulations suggested noticeable differences between the input alternatives generated by three different interpolation schemes. Differences are shown in overall simulation error against the observations, degree of explained variability, and seasonal volumes. Simulated streamflows also showed different characteristics in mean, maximum, minimum, and peak flows. Given the same parameter optimization technique, LWP input showed least streamflow error in Alapaha basin and CMLR input showed least error (still very close to LWP) in Animas basin. All of the two-step interpolation inputs resulted in lower streamflow error compared to the directly interpolated inputs. ?? 2011 Springer-Verlag.

  19. Hydrologic Modeling and Parameter Estimation under Data Scarcity for Java Island, Indonesia

    Science.gov (United States)

    Yanto, M.; Livneh, B.; Rajagopalan, B.; Kasprzyk, J. R.

    2015-12-01

    The Indonesian island of Java is routinely subjected to intense flooding, drought and related natural hazards, resulting in severe social and economic impacts. Although an improved understanding of the island's hydrology would help mitigate these risks, data scarcity issues make the modeling challenging. To this end, we developed a hydrological representation of Java using the Variable Infiltration Capacity (VIC) model, to simulate the hydrologic processes of several watersheds across the island. We measured the model performance using Nash-Sutcliffe Efficiency (NSE) at monthly time step. Data scarcity and quality issues for precipitation and streamflow warranted the application of a quality control procedure to data ensure consistency among watersheds resulting in 7 watersheds. To optimize the model performance, the calibration parameters were estimated using Borg Multi Objective Evolutionary Algorithm (Borg MOEA), which offers efficient searching of the parameter space, adaptive population sizing and local optima escape facility. The result shows that calibration performance is best (NSE ~ 0.6 - 0.9) in the eastern part of the domain and moderate (NSE ~ 0.3 - 0.5) in the western part of the island. The validation results are lower (NSE ~ 0.1 - 0.5) and (NSE ~ 0.1 - 0.4) in the east and west, respectively. We surmise that the presence of outliers and stark differences in the climate between calibration and validation periods in the western watersheds are responsible for low NSE in this region. In addition, we found that approximately 70% of total errors were contributed by less than 20% of total data. The spatial variability of model performance suggests the influence of both topographical and hydroclimatic controls on the hydrological processes. Most watersheds in eastern part perform better in wet season and vice versa for the western part. This modeling framework is one of the first attempts at comprehensively simulating the hydrology in this maritime, tropical

  20. Hydrological excitation of polar motion by different variables from the GLDAS models

    Science.gov (United States)

    Winska, Malgorzata; Nastula, Jolanta; Salstein, David

    2017-12-01

    Continental hydrological loading by land water, snow and ice is a process that is important for the full understanding of the excitation of polar motion. In this study, we compute different estimations of hydrological excitation functions of polar motion (as hydrological angular momentum, HAM) using various variables from the Global Land Data Assimilation System (GLDAS) models of the land-based hydrosphere. The main aim of this study is to show the influence of variables from different hydrological processes including evapotranspiration, runoff, snowmelt and soil moisture, on polar motion excitations at annual and short-term timescales. Hydrological excitation functions of polar motion are determined using selected variables of these GLDAS realizations. Furthermore, we use time-variable gravity field solutions from the Gravity Recovery and Climate Experiment (GRACE) to determine the hydrological mass effects on polar motion excitation. We first conduct an intercomparison of the maps of variations of regional hydrological excitation functions, timing and phase diagrams of different regional and global HAMs. Next, we estimate the hydrological signal in geodetically observed polar motion excitation as a residual by subtracting the contributions of atmospheric angular momentum and oceanic angular momentum. Finally, the hydrological excitations are compared with those hydrological signals determined from residuals of the observed polar motion excitation series. The results will help us understand the relative importance of polar motion excitation within the individual hydrological processes, based on hydrological modeling. This method will allow us to estimate how well the polar motion excitation budget in the seasonal and inter-annual spectral ranges can be closed.

  1. Projected Impact of Climate Change on Hydrological Regimes in the Philippines

    Science.gov (United States)

    Kanamaru, Hideki; Keesstra, Saskia; Maroulis, Jerry; David, Carlos Primo C.; Ritsema, Coen J.

    2016-01-01

    The Philippines is one of the most vulnerable countries in the world to the potential impacts of climate change. To fully understand these potential impacts, especially on future hydrological regimes and water resources (2010-2050), 24 river basins located in the major agricultural provinces throughout the Philippines were assessed. Calibrated using existing historical interpolated climate data, the STREAM model was used to assess future river flows derived from three global climate models (BCM2, CNCM3 and MPEH5) under two plausible scenarios (A1B and A2) and then compared with baseline scenarios (20th century). Results predict a general increase in water availability for most parts of the country. For the A1B scenario, CNCM3 and MPEH5 models predict an overall increase in river flows and river flow variability for most basins, with higher flow magnitudes and flow variability, while an increase in peak flow return periods is predicted for the middle and southern parts of the country during the wet season. However, in the north, the prognosis is for an increase in peak flow return periods for both wet and dry seasons. These findings suggest a general increase in water availability for agriculture, however, there is also the increased threat of flooding and enhanced soil erosion throughout the country. PMID:27749908

  2. Hydrological models for environmental management

    National Research Council Canada - National Science Library

    Bolgov, Mikhail V

    2002-01-01

    .... Stochastic modelling and forecasting cannot at present adequately represent the characteristics of hydrological regimes, nor analyze the influence of water on processes that arise in biological...

  3. Site study plan for regional hydrologic sampling and monitoring: Preliminary draft

    International Nuclear Information System (INIS)

    Dutton, A.R.

    1987-01-01

    The purpose of the Regional Hydrologic Studies Plan is to describe those field activities required for completion of the objectives of hydrologic activities. Many of these activities are regional in scope and are designed to provide a framework for understanding the hydrologic setting of the site and the hydrologic processes that influence site characteristics. Site Study Plans (SSPs) define activates at and in the immediate vicinity of the site. The activities specified in the Regional Hydrologic Studies Plan are performed beyond the confines of the site because the hydrologic systems extend beyond the site boundaries, because pertinent data that bear on site suitability are available outside of the site, and because natural analogues exist outside of the site that allow analysis of processes that are expected to operate within the site. 15 refs., 5 figs., 1 tab

  4. Testing the Structure of Hydrological Models using Genetic Programming

    Science.gov (United States)

    Selle, B.; Muttil, N.

    2009-04-01

    Genetic Programming is able to systematically explore many alternative model structures of different complexity from available input and response data. We hypothesised that genetic programming can be used to test the structure hydrological models and to identify dominant processes in hydrological systems. To test this, genetic programming was used to analyse a data set from a lysimeter experiment in southeastern Australia. The lysimeter experiment was conducted to quantify the deep percolation response under surface irrigated pasture to different soil types, water table depths and water ponding times during surface irrigation. Using genetic programming, a simple model of deep percolation was consistently evolved in multiple model runs. This simple and interpretable model confirmed the dominant process contributing to deep percolation represented in a conceptual model that was published earlier. Thus, this study shows that genetic programming can be used to evaluate the structure of hydrological models and to gain insight about the dominant processes in hydrological systems.

  5. GEOMORPHIC AND HYDROLOGIC INTERACTIONS IN THE DETERMINATION OF EQUILIBRIUM SOIL DEPTH

    Science.gov (United States)

    Nicotina, L.; Rinaldo, A.; Tarboton, D. G.

    2009-12-01

    In this work we propose numerical studies of the interactions between hydrology and geomorphology in the formation of the actual soil depth that drives ecologic and hydrologic processes. Sediment transport and geomorphic landscape evolution processes (i.e. erosion/deposition vs. soil production) strongly influence hydrology, carbon sequestration, soil formation and stream water chemistry. The process of rock conversion into soil originates a strong hydrologic control through the formation of the soil depth that participates to hydrologic processes, influence vegetation type and patterns and actively participate in the co-evolution mechanisms that shape the landscape. The description of spatial patterns in hydrology is usually constrained by the availability of field data, especially when dealing with quantities that are not easily measurable. In these circumstances it is deemed fundamental the capability of deriving hydrologic boundary conditions from physically based approaches. Here we aim, in a general framework, at the formulation of an integrated approach for the prediction of soil depth by mean of i) soil production models and ii) geomorphic transport laws. The processes that take place in the critical zone are driven by the extension of it and have foundamental importance over short time scales as well as on geologic time scales (i.e. as biota affects climate that drives hydrology and thus contributes on shaping the landscape). Our study aims at the investigation of the relationships between soil depth, topography and runoff production, we also address the mechanisms that bring to the development of actual patterns of soil depths which at the same time influence runoff. We use a schematic representation of the hydrologic processes that relies on the description of the topography (throuh a topographic wetness index) and the spatially variable soil depths. Such a model is applied in order to investigate the development of equilibrium soil depth patterns under

  6. A "total parameter estimation" method in the varification of distributed hydrological models

    Science.gov (United States)

    Wang, M.; Qin, D.; Wang, H.

    2011-12-01

    Conventionally hydrological models are used for runoff or flood forecasting, hence the determination of model parameters are common estimated based on discharge measurements at the catchment outlets. With the advancement in hydrological sciences and computer technology, distributed hydrological models based on the physical mechanism such as SWAT, MIKESHE, and WEP, have gradually become the mainstream models in hydrology sciences. However, the assessments of distributed hydrological models and model parameter determination still rely on runoff and occasionally, groundwater level measurements. It is essential in many countries, including China, to understand the local and regional water cycle: not only do we need to simulate the runoff generation process and for flood forecasting in wet areas, we also need to grasp the water cycle pathways and consumption process of transformation in arid and semi-arid regions for the conservation and integrated water resources management. As distributed hydrological model can simulate physical processes within a catchment, we can get a more realistic representation of the actual water cycle within the simulation model. Runoff is the combined result of various hydrological processes, using runoff for parameter estimation alone is inherits problematic and difficult to assess the accuracy. In particular, in the arid areas, such as the Haihe River Basin in China, runoff accounted for only 17% of the rainfall, and very concentrated during the rainy season from June to August each year. During other months, many of the perennial rivers within the river basin dry up. Thus using single runoff simulation does not fully utilize the distributed hydrological model in arid and semi-arid regions. This paper proposed a "total parameter estimation" method to verify the distributed hydrological models within various water cycle processes, including runoff, evapotranspiration, groundwater, and soil water; and apply it to the Haihe river basin in

  7. Impacts of road construction and removal on the hydrologic and geochemical function of a fen peatland

    Science.gov (United States)

    Wells, C. M.; Petrone, R. M.; Sutherland, G.; Price, J. S.

    2015-12-01

    Linear disturbances such as roads cover vast swaths of northeastern Alberta, the majority of which are wetlands with shallow and local hydrologic connections. Thus, the effects of road construction on wetland hydrological pathways can have significant implications on water movement within the region, and by extension the productivity of vegetation communities and carbon sequestration. However, little is known about the effect that roads have on wetland hydrology. In 2013, a gravel road built within a fen peatland was reclaimed to evaluate hydrologic impacts post removal. Prior to removal, ground and surface water flow was obstructed leading to surface ponding, and vegetation mortality was observed on the up-gradient (wet) side of the road. Rebounding of the peat column was observed throughout the fen immediately following road removal in 2013 (maximum of 12 cm, mean of 2 cm), with modest but slightly smaller expansion in 2014. For both years, peat rebound was greatest in areas where the road was removed. Peat physical properties contrasted sharply between the reclaimed road (RR) peat and the adjacent, unimpacted peatland (UP). Surface bulk densities (pb, 0-10 cm) ranged from 0.1-0.25 g cm-3 along the RR compared to 0.02-0.07 g cm-3 for the UP and on average, pb for all depths were lower at the RR compared to the UP. Similar spatial patterns were observed for peat porosity. Correspondingly low horizontal saturated hydraulic conductivities (Kh) were observed along the RR compared to the UP, averaging 5.7x10-4 m s-1 and 1.7x10-3 m s-1, respectively. The local flow system across the RR and thus subsurface flow was impeded by almost half (0.4 m d-1) compared to flow observed within the UP (0.8 m d-1), leading to ponding on the upgradient side. A marked change in hydrophysical properties and ground and surface water flow patterns post road removal has implications for plant reestablishment and restoration and will form the basis of further study.

  8. The Hydrologic Ensemble Prediction Experiment (HEPEX)

    Science.gov (United States)

    Wood, A. W.; Thielen, J.; Pappenberger, F.; Schaake, J. C.; Hartman, R. K.

    2012-12-01

    The Hydrologic Ensemble Prediction Experiment was established in March, 2004, at a workshop hosted by the European Center for Medium Range Weather Forecasting (ECMWF). With support from the US National Weather Service (NWS) and the European Commission (EC), the HEPEX goal was to bring the international hydrological and meteorological communities together to advance the understanding and adoption of hydrological ensemble forecasts for decision support in emergency management and water resources sectors. The strategy to meet this goal includes meetings that connect the user, forecast producer and research communities to exchange ideas, data and methods; the coordination of experiments to address specific challenges; and the formation of testbeds to facilitate shared experimentation. HEPEX has organized about a dozen international workshops, as well as sessions at scientific meetings (including AMS, AGU and EGU) and special issues of scientific journals where workshop results have been published. Today, the HEPEX mission is to demonstrate the added value of hydrological ensemble prediction systems (HEPS) for emergency management and water resources sectors to make decisions that have important consequences for economy, public health, safety, and the environment. HEPEX is now organised around six major themes that represent core elements of a hydrologic ensemble prediction enterprise: input and pre-processing, ensemble techniques, data assimilation, post-processing, verification, and communication and use in decision making. This poster presents an overview of recent and planned HEPEX activities, highlighting case studies that exemplify the focus and objectives of HEPEX.

  9. Hydrologic Responses to Land Use Change in the Loess Plateau: Case Study in the Upper Fenhe River Watershed

    Directory of Open Access Journals (Sweden)

    Zhixiang Lu

    2015-01-01

    Full Text Available We applied an integrated approach to investigate the impacts of land use and land cover (LULC changes on hydrology at different scales in the Loess Plateau of China. Hydrological modeling was conducted for the LULC maps from remote sensing images at two times in the Upper Fenhe River watershed using the SWAT model. The main LULC changes in this watershed from 1995 to 2010 were the transformation of farmland into forests, grassland, and built-up land. The simulation results showed that forested land contributed more than any other LULC class to water yield, but built-up land had most impact due to small initial loss and infiltration. At basin scale, a comparison of the simulated hydrological components of two LULC maps showed that there were slight increases in average annual potential evapotranspiration, actual evapotranspiration, and water yield, but soil water decreased, between the two intervals. In subbasins, obvious LULC changes did not have clear impacts on hydrology, and the impacts may be affected by precipitation conditions. By linking a hydrological model to remote sensing image analysis, our approach of quantifying the impacts of LULC changes on hydrology at different scales provide quantitative information for stakeholders in making decisions for land and water resource management.

  10. Hydrologic restoration in a dynamic subtropical mangrove-to-marsh ecotone

    Science.gov (United States)

    Howard, Rebecca J.; Day, Richard H.; Krauss, Ken W.; From, Andrew S.; Allain, Larry K.; Cormier, Nicole

    2017-01-01

    Extensive hydrologic modifications in coastal regions across the world have occurred to support infrastructure development, altering the function of many coastal wetlands. Wetland restoration success is dependent on the existence of hydrologic regimes that support development of appropriate soils and the growth and persistence of wetland vegetation. In Florida, United States, the Comprehensive Everglades Restoration Program (CERP) seeks to restore, protect, and preserve water resources of the greater Everglades region. Herein we describe vegetation dynamics in a mangrove-to-marsh ecotone within the impact area of a CERP hydrologic restoration project currently under development. Vegetation communities are also described for a similar area outside the project area. We found that vegetation shifts within the impact area occurred over a 7-year period; cover of herbaceous species varied by location, and an 88% increase in the total number of mangrove seedlings was documented. We attribute these shifts to the existing modified hydrologic regime, which is characterized by a low volume of freshwater sheet flow compared with historical conditions (i.e. before modification), as well as increased tidal influence. We also identified a significant trend of decreasing soil surface elevation at the impact area. The CERP restoration project is designed to increase freshwater sheet flow to the impact area. Information from our study characterizing existing vegetation dynamics prior to implementation of the restoration project is required to allow documentation of long-term project effects on plant community composition and structure within a framework of background variation, thereby allowing assessment of the project's success in restoring critical ecosystem functions.

  11. Technical basis and programmatic requirements for large block testing of coupled thermal-mechanical-hydrological-chemical processes

    International Nuclear Information System (INIS)

    Lin, Wunan.

    1993-09-01

    This document contains the technical basis and programmatic requirements for a scientific investigation plan that governs tests on a large block of tuff for understanding the coupled thermal- mechanical-hydrological-chemical processes. This study is part of the field testing described in Section 8.3.4.2.4.4.1 of the Site Characterization Plan (SCP) for the Yucca Mountain Project. The first, and most important objective is to understand the coupled TMHC processes in order to develop models that will predict the performance of a nuclear waste repository. The block and fracture properties (including hydrology and geochemistry) can be well characterized from at least five exposed surfaces, and the block can be dismantled for post-test examinations. The second objective is to provide preliminary data for development of models that will predict the quality and quantity of water in the near-field environment of a repository over the current 10,000 year regulatory period of radioactive decay. The third objective is to develop and evaluate the various measurement systems and techniques that will later be employed in the Engineered Barrier System Field Tests (EBSFT)

  12. Extracting climate signals from large hydrological data cubes using multivariate statistics - an example for the Mediterranean basin

    Science.gov (United States)

    Kauer, Agnes; Dorigo, Wouter; Bauer-Marschallinger, Bernhard

    2017-04-01

    Global warming is expected to change ocean-atmosphere oscillation patterns, e.g. the El Nino Southern Oscillation, and may thus have a substantial impact on water resources over land. Yet, the link between climate oscillations and terrestrial hydrology has large uncertainties. In particular, the climate in the Mediterranean basin is expected to be sensitive to global warming as it may increase insufficient and irregular water supply and lead to more frequent and intense droughts and heavy precipitation events. The ever increasing need for water in tourism and agriculture reinforce the problem. Therefore, the monitoring and better understanding of the hydrological cycle are crucial for this area. This study seeks to quantify the effect of regional climate modes, e.g. the Northern Atlantic Oscillation (NAO) on the hydrological cycle in the Mediterranean. We apply Empirical Orthogonal Functions (EOF) to a wide range of hydrological datasets to extract the major modes of variation over the study period. We use more than ten datasets describing precipitation, soil moisture, evapotranspiration, and changes in water mass with study periods ranging from one to three decades depending on the dataset. The resulting EOFs are then examined for correlations with regional climate modes using Spearman rank correlation analysis. This is done for the entire time span of the EOFs and for monthly and seasonally sampled data. We find relationships between the hydrological datasets and the climate modes NAO, Arctic Oscillation (AO), Eastern Atlantic (EA), and Tropical Northern Atlantic (TNA). Analyses of monthly and seasonally sampled data reveal high correlations especially in the winter months. However, the spatial extent of the data cube considered for the analyses have a large impact on the results. Our statistical analyses suggest an impact of regional climate modes on the hydrological cycle in the Mediterranean area and may provide valuable input for evaluating process

  13. Gsflow-py: An integrated hydrologic model development tool

    Science.gov (United States)

    Gardner, M.; Niswonger, R. G.; Morton, C.; Henson, W.; Huntington, J. L.

    2017-12-01

    Integrated hydrologic modeling encompasses a vast number of processes and specifications, variable in time and space, and development of model datasets can be arduous. Model input construction techniques have not been formalized or made easily reproducible. Creating the input files for integrated hydrologic models (IHM) requires complex GIS processing of raster and vector datasets from various sources. Developing stream network topology that is consistent with the model resolution digital elevation model is important for robust simulation of surface water and groundwater exchanges. Distribution of meteorologic parameters over the model domain is difficult in complex terrain at the model resolution scale, but is necessary to drive realistic simulations. Historically, development of input data for IHM models has required extensive GIS and computer programming expertise which has restricted the use of IHMs to research groups with available financial, human, and technical resources. Here we present a series of Python scripts that provide a formalized technique for the parameterization and development of integrated hydrologic model inputs for GSFLOW. With some modifications, this process could be applied to any regular grid hydrologic model. This Python toolkit automates many of the necessary and laborious processes of parameterization, including stream network development and cascade routing, land coverages, and meteorological distribution over the model domain.

  14. It's the parameters, stupid! Moving beyond multi-model and multi-physics approaches to characterize and reduce predictive uncertainty in process-based hydrological models

    Science.gov (United States)

    Clark, Martyn; Samaniego, Luis; Freer, Jim

    2014-05-01

    Multi-model and multi-physics approaches are a popular tool in environmental modelling, with many studies focusing on optimally combining output from multiple model simulations to reduce predictive errors and better characterize predictive uncertainty. However, a careful and systematic analysis of different hydrological models reveals that individual models are simply small permutations of a master modeling template, and inter-model differences are overwhelmed by uncertainty in the choice of the parameter values in the model equations. Furthermore, inter-model differences do not explicitly represent the uncertainty in modeling a given process, leading to many situations where different models provide the wrong results for the same reasons. In other cases, the available morphological data does not support the very fine spatial discretization of the landscape that typifies many modern applications of process-based models. To make the uncertainty characterization problem worse, the uncertain parameter values in process-based models are often fixed (hard-coded), and the models lack the agility necessary to represent the tremendous heterogeneity in natural systems. This presentation summarizes results from a systematic analysis of uncertainty in process-based hydrological models, where we explicitly analyze the myriad of subjective decisions made throughout both the model development and parameter estimation process. Results show that much of the uncertainty is aleatory in nature - given a "complete" representation of dominant hydrologic processes, uncertainty in process parameterizations can be represented using an ensemble of model parameters. Epistemic uncertainty associated with process interactions and scaling behavior is still important, and these uncertainties can be represented using an ensemble of different spatial configurations. Finally, uncertainty in forcing data can be represented using ensemble methods for spatial meteorological analysis. Our systematic

  15. Disagreement between Hydrological and Land Surface models on the water budgets in the Arctic: why is this and which of them is right?

    Science.gov (United States)

    Blyth, E.; Martinez-de la Torre, A.; Ellis, R.; Robinson, E.

    2017-12-01

    The fresh-water budget of the Artic region has a diverse range of impacts: the ecosystems of the region, ocean circulation response to Arctic freshwater, methane emissions through changing wetland extent as well as the available fresh water for human consumption. But there are many processes that control the budget including a seasonal snow packs building and thawing, freezing soils and permafrost, extensive organic soils and large wetland systems. All these processes interact to create a complex hydrological system. In this study we examine a suite of 10 models that bring all those processes together in a 25 year reanalysis of the global water budget. We assess their performance in the Arctic region. There are two approaches to modelling fresh-water flows at large scales, referred to here as `Hydrological' and `Land Surface' models. While both approaches include a physically based model of the water stores and fluxes, the Land Surface models links the water flows to an energy-based model for processes such as snow melt and soil freezing. This study will analyse the impact of that basic difference on the regional patterns of evapotranspiration, runoff generation and terrestrial water storage. For the evapotranspiration, the Hydrological models tend to have a bigger spatial range in the model bias (difference to observations), implying greater errors compared to the Land-Surface models. For instance, some regions such as Eastern Siberia have consistently lower Evaporation in the Hydrological models than the Land Surface models. For the Runoff however, the results are the other way round with a slightly higher spatial range in bias for the Land Surface models implying greater errors than the Hydrological models. A simple analysis would suggest that Hydrological models are designed to get the runoff right, while Land Surface models designed to get the evapotranspiration right. Tracing the source of the difference suggests that the difference comes from the treatment

  16. airGR: an R-package suitable for large sample hydrology presenting a suite of lumped hydrological models

    Science.gov (United States)

    Thirel, G.; Delaigue, O.; Coron, L.; Perrin, C.; Andreassian, V.

    2016-12-01

    Lumped hydrological models are useful and convenient tools for research, engineering and educational purposes. They propose catchment-scale representations of the precipitation-discharge relationship. Thanks to their limited data requirements, they can be easily implemented and run. With such models, it is possible to simulate a number of hydrological key processes over the catchment with limited structural and parametric complexity, typically evapotranspiration, runoff, underground losses, etc. The Hydrology Group at Irstea (Antony) has been developing a suite of rainfall-runoff models over the past 30 years with the main objectives of designing models as efficient as possible in terms of streamflow simulation, applicable to a wide range of catchments and having low data requirements. This resulted in a suite of models running at different time steps (from hourly to annual) applicable for various issues including water balance estimation, forecasting, simulation of impacts and scenario testing. Recently, Irstea has developed an easy-to-use R-package (R Core Team, 2015; Coron et al., 2016), called airGR, to make these models widely available. It includes: - the water balance annual GR1A (Mouehli et al., 2006), - the monthly GR2M (Mouehli, 2003) models, - three versions of the daily model, namely GR4J (Perrin et al., 2003), GR5J (Le Moine, 2008) and GR6J (Pushpalatha et al., 2011), - the hourly GR4H model (Mathevet, 2005), - a degree-day snow module CemaNeige (Valéry et al., 2014). The airGR package has been designed to facilitate the use by non-expert users and allow the addition of evaluation criteria, models or calibration algorithm selected by the end-user. Each model core is coded in FORTRAN to ensure low computational time. The other package functions (i.e. mainly the calibration algorithm and the efficiency criteria) are coded in R. The package is already used for educational purposes. It allows for convenient implementation of model inter-comparisons and

  17. Climate Change Impacts on the Upper Indus Hydrology: Sources, Shifts and Extremes.

    Directory of Open Access Journals (Sweden)

    A F Lutz

    Full Text Available The Indus basin heavily depends on its upstream mountainous part for the downstream supply of water while downstream demands are high. Since downstream demands will likely continue to increase, accurate hydrological projections for the future supply are important. We use an ensemble of statistically downscaled CMIP5 General Circulation Model outputs for RCP4.5 and RCP8.5 to force a cryospheric-hydrological model and generate transient hydrological projections for the entire 21st century for the upper Indus basin. Three methodological advances are introduced: (i A new precipitation dataset that corrects for the underestimation of high-altitude precipitation is used. (ii The model is calibrated using data on river runoff, snow cover and geodetic glacier mass balance. (iii An advanced statistical downscaling technique is used that accounts for changes in precipitation extremes. The analysis of the results focuses on changes in sources of runoff, seasonality and hydrological extremes. We conclude that the future of the upper Indus basin's water availability is highly uncertain in the long run, mainly due to the large spread in the future precipitation projections. Despite large uncertainties in the future climate and long-term water availability, basin-wide patterns and trends of seasonal shifts in water availability are consistent across climate change scenarios. Most prominent is the attenuation of the annual hydrograph and shift from summer peak flow towards the other seasons for most ensemble members. In addition there are distinct spatial patterns in the response that relate to monsoon influence and the importance of meltwater. Analysis of future hydrological extremes reveals that increases in intensity and frequency of extreme discharges are very likely for most of the upper Indus basin and most ensemble members.

  18. Climate Change Impacts on the Upper Indus Hydrology: Sources, Shifts and Extremes

    Science.gov (United States)

    Immerzeel, W. W.; Kraaijenbrink, P. D. A.; Shrestha, A. B.; Bierkens, M. F. P.

    2016-01-01

    The Indus basin heavily depends on its upstream mountainous part for the downstream supply of water while downstream demands are high. Since downstream demands will likely continue to increase, accurate hydrological projections for the future supply are important. We use an ensemble of statistically downscaled CMIP5 General Circulation Model outputs for RCP4.5 and RCP8.5 to force a cryospheric-hydrological model and generate transient hydrological projections for the entire 21st century for the upper Indus basin. Three methodological advances are introduced: (i) A new precipitation dataset that corrects for the underestimation of high-altitude precipitation is used. (ii) The model is calibrated using data on river runoff, snow cover and geodetic glacier mass balance. (iii) An advanced statistical downscaling technique is used that accounts for changes in precipitation extremes. The analysis of the results focuses on changes in sources of runoff, seasonality and hydrological extremes. We conclude that the future of the upper Indus basin’s water availability is highly uncertain in the long run, mainly due to the large spread in the future precipitation projections. Despite large uncertainties in the future climate and long-term water availability, basin-wide patterns and trends of seasonal shifts in water availability are consistent across climate change scenarios. Most prominent is the attenuation of the annual hydrograph and shift from summer peak flow towards the other seasons for most ensemble members. In addition there are distinct spatial patterns in the response that relate to monsoon influence and the importance of meltwater. Analysis of future hydrological extremes reveals that increases in intensity and frequency of extreme discharges are very likely for most of the upper Indus basin and most ensemble members. PMID:27828994

  19. Climate Change Impacts on the Upper Indus Hydrology: Sources, Shifts and Extremes.

    Science.gov (United States)

    Lutz, A F; Immerzeel, W W; Kraaijenbrink, P D A; Shrestha, A B; Bierkens, M F P

    2016-01-01

    The Indus basin heavily depends on its upstream mountainous part for the downstream supply of water while downstream demands are high. Since downstream demands will likely continue to increase, accurate hydrological projections for the future supply are important. We use an ensemble of statistically downscaled CMIP5 General Circulation Model outputs for RCP4.5 and RCP8.5 to force a cryospheric-hydrological model and generate transient hydrological projections for the entire 21st century for the upper Indus basin. Three methodological advances are introduced: (i) A new precipitation dataset that corrects for the underestimation of high-altitude precipitation is used. (ii) The model is calibrated using data on river runoff, snow cover and geodetic glacier mass balance. (iii) An advanced statistical downscaling technique is used that accounts for changes in precipitation extremes. The analysis of the results focuses on changes in sources of runoff, seasonality and hydrological extremes. We conclude that the future of the upper Indus basin's water availability is highly uncertain in the long run, mainly due to the large spread in the future precipitation projections. Despite large uncertainties in the future climate and long-term water availability, basin-wide patterns and trends of seasonal shifts in water availability are consistent across climate change scenarios. Most prominent is the attenuation of the annual hydrograph and shift from summer peak flow towards the other seasons for most ensemble members. In addition there are distinct spatial patterns in the response that relate to monsoon influence and the importance of meltwater. Analysis of future hydrological extremes reveals that increases in intensity and frequency of extreme discharges are very likely for most of the upper Indus basin and most ensemble members.

  20. Delineating landscape-scale processes of hydrology and plant dispersal for species-rich fen conservation : the Operational Landscape Unit approach

    NARCIS (Netherlands)

    Verhoeven, Jos T.A.; Beltman, Boudewijn; Janssen, Ron; Soons, Merel B.

    2017-01-01

    Restoration and conservation of species-rich nature reserves requires inclusion of landscape-scale connections and transport processes such as hydrologic flows and species dispersal. These are important because they provide suitable habitat conditions and an adequate species pool. This study aimed