WorldWideScience

Sample records for immunotherapy targeting ebv-expressing

  1. Targeted immunotherapy in Hodgkin lymphoma

    Hutchings, Martin

    2015-01-01

    In this issue of Blood, Rothe et al introduce a new principle of targeted Hodgkin lymphoma (HL) immunotherapy in their report from a phase 1 study of the bispecific anti-CD30/CD16A antibody construct AFM13.......In this issue of Blood, Rothe et al introduce a new principle of targeted Hodgkin lymphoma (HL) immunotherapy in their report from a phase 1 study of the bispecific anti-CD30/CD16A antibody construct AFM13....

  2. Immunotherapy Targets in Pediatric Cancer

    Orentas, Rimas J.; Lee, Daniel W.; Mackall, Crystal, E-mail: rimas.orentas@nih.gov, E-mail: mackallc@mail.nih.gov [Pediatric Oncology Branch, National Cancer Institute, National Institutes of Health, Bethesda, MD (United States)

    2012-01-30

    Immunotherapy for cancer has shown increasing success and there is ample evidence to expect that progress gleaned in immune targeting of adult cancers can be translated to pediatric oncology. This manuscript reviews principles that guide selection of targets for immunotherapy of cancer, emphasizing the similarities and distinctions between oncogene-inhibition targets and immune targets. It follows with a detailed review of molecules expressed by pediatric tumors that are already under study as immune targets or are good candidates for future studies of immune targeting. Distinctions are made between cell surface antigens that can be targeted in an MHC independent manner using antibodies, antibody derivatives, or chimeric antigen receptors versus intracellular antigens which must be targeted with MHC restricted T cell therapies. Among the most advanced immune targets for childhood cancer are CD19 and CD22 on hematologic malignancies, GD2 on solid tumors, and NY-ESO-1 expressed by a majority of synovial sarcomas, but several other molecules reviewed here also have properties which suggest that they too could serve as effective targets for immunotherapy of childhood cancer.

  3. Immunotherapy Targets in Pediatric Cancer

    Orentas, Rimas J.; Lee, Daniel W.; Mackall, Crystal

    2012-01-01

    Immunotherapy for cancer has shown increasing success and there is ample evidence to expect that progress gleaned in immune targeting of adult cancers can be translated to pediatric oncology. This manuscript reviews principles that guide selection of targets for immunotherapy of cancer, emphasizing the similarities and distinctions between oncogene-inhibition targets and immune targets. It follows with a detailed review of molecules expressed by pediatric tumors that are already under study as immune targets or are good candidates for future studies of immune targeting. Distinctions are made between cell surface antigens that can be targeted in an MHC independent manner using antibodies, antibody derivatives, or chimeric antigen receptors versus intracellular antigens which must be targeted with MHC restricted T cell therapies. Among the most advanced immune targets for childhood cancer are CD19 and CD22 on hematologic malignancies, GD2 on solid tumors, and NY-ESO-1 expressed by a majority of synovial sarcomas, but several other molecules reviewed here also have properties which suggest that they too could serve as effective targets for immunotherapy of childhood cancer.

  4. Bioinformatics for cancer immunotherapy target discovery

    Olsen, Lars Rønn; Campos, Benito; Barnkob, Mike Stein

    2014-01-01

    therapy target discovery in a bioinformatics analysis pipeline. We describe specialized bioinformatics tools and databases for three main bottlenecks in immunotherapy target discovery: the cataloging of potentially antigenic proteins, the identification of potential HLA binders, and the selection epitopes...

  5. PROSTVAC® targeted immunotherapy candidate for prostate cancer.

    Shore, Neal D

    2014-01-01

    Targeted immunotherapies represent a valid strategy for the treatment of metastatic castrate-resistant prostate cancer. A randomized, double-blind, Phase II clinical trial of PROSTVAC® demonstrated a statistically significant improvement in overall survival and a large, global, Phase III trial with overall survival as the primary end point is ongoing. PROSTVAC immunotherapy contains the transgenes for prostate-specific antigen and three costimulatory molecules (designated TRICOM). Research suggests that PROSTVAC not only targets prostate-specific antigen, but also other tumor antigens via antigen cascade. PROSTVAC is well tolerated and has been safely combined with other cancer therapies, including hormonal therapy, radiotherapy, another immunotherapy and chemotherapy. Even greater benefits of PROSTVAC may be recognized in earlier-stage disease and low-disease burden settings where immunotherapy can trigger a long-lasting immune response.

  6. Targeting nanoparticles to dendritic cells for immunotherapy.

    Cruz, L.J.; Tacken, P.J.; Rueda, F.; Domingo, J.C.; Albericio, F.; Figdor, C.G.

    2012-01-01

    Dendritic cells (DCs) are key players in the initiation of adaptive immune responses and are currently exploited in immunotherapy for treatment of cancer and infectious diseases. Development of targeted nanodelivery systems carrying vaccine components, including antigens and adjuvants, to DCs in

  7. Immunotherapy Targets Common Cancer Mutation

    In a study of an immune therapy for colorectal cancer that involved a single patient, researchers identified a method for targeting the cancer-causing protein produced by a mutant form of the KRAS gene.

  8. Lung Squamous Cell Carcinoma Stem Cells as Immunotherapy Targets

    2017-08-01

    AWARD NUMBER: W81XWH-16-1-0260 TITLE: Lung Squamous Cell Carcinoma Stem Cells as Immunotherapy Targets PRINCIPAL INVESTIGATOR: Carla Kim... Cell Carcinoma Stem Cells as Immunotherapy Targets 5a. CONTRACT NUMBER 5b. GRANT NUMBER W81XWH-16-1-0260 5c. PROGRAM ELEMENT NUMBER 6. AUTHOR(S...SUPPLEMENTARY NOTES 14. ABSTRACT Lung squamous cell carcinoma (SCC) is the second most common type of lung cancer, and immunotherapy is a promising new

  9. Are ovarian cancer stem cells the target for innovative immunotherapy?

    Wang L

    2018-05-01

    Full Text Available Liang Wang, Tianmin Xu, Manhua Cui Department of Gynecology and Obstetrics, The Second Hospital of Jilin University, Changchun, Jilin, People’s Republic of China Abstract: Cancer stem cells (CSCs, a subpopulation of cancer cells with the ability of self-renewal and differentiation, are believed to be responsible for tumor generation, progression, metastasis, and relapse. Ovarian cancer, the most malignant gynecological cancer, has consistent pathology behavior with CSC model, which suggests that therapies based on ovarian cancer stem cells (OCSCs can gain a more successful prognosis. Much evidence has proved that epigenetic mechanism played an important role in tumor formation and sustainment. Since CSCs are generally resistant to conventional therapies (chemotherapy and radiotherapy, immunotherapy is a more effective method that has been implemented in the clinic. Chimeric antigen receptor (CAR- T cell, an adoptive cellular immunotherapy, which results in apparent elimination of tumor in both hematologic and solid cancers, could be used for ovarian cancer. This review covers the basic conception of CSCs and OCSCs, the implication of epigenetic mechanism underlying cancer evolution considering CSC model, the immunotherapies reported for ovarian cancer targeting OCSCs currently, and the relationship between immune system and hierarchy cancer organized by CSCs. Particularly, the promising prospects and potential pitfalls of targeting OCSC surface markers to design CAR-T cellular immunotherapy are discussed here. Keywords: cancer stem cells, ovarian cancer, epigenetics, tumor cell surface marker, immunotherapy, CAR

  10. Immunotherapy

    ... More Immunotherapy Immunotherapy Print Glossary Immunotherapy, also called biological therapy, utilizes your own immune system to fight cancer. ... she regularly tests your blood between and after treatment is completed to look ... of breath, a drop in blood pressure, an irregular heartbeat, chest pain ...

  11. Immunogenic Targets for Specific Immunotherapy in Multiple Myeloma

    Lu Zhang

    2012-01-01

    Full Text Available Multiple myeloma remains an incurable disease although the prognosis has been improved by novel therapeutics and agents recently. Relapse occurs in the majority of patients and becomes fatal finally. Immunotherapy might be a powerful intervention to maintain a long-lasting control of minimal residual disease or to even eradicate disseminated tumor cells. Several tumor-associated antigens have been identified in patients with multiple myeloma. These antigens are expressed in a tumor-specific or tumor-restricted pattern, are able to elicit immune response, and thus could serve as targets for immunotherapy. This review discusses immunogenic antigens with therapeutic potential for multiple myeloma.

  12. Toll-like receptors as targets for allergen immunotherapy.

    Aryan, Zahra; Rezaei, Nima

    2015-12-01

    Toll-like receptors (TLRs) are novel and promising targets for allergen immunotherapy. Bench studies suggest that TLR agonists reduce Th2 responses and ameliorate airway hyper-responsiveness. In addition, clinical trials are at initial phases to evaluate the safety and efficacy of TLR agonists for the allergen immunotherapy of patients with allergic rhinitis and asthma. (Figure is included in full-text article.) To date, two allergy vaccine-containing TLR agonists have been investigated in clinical trials; Pollinex Quattro and AIC. The former contains monophosphoryl lipid, a TLR4 agonist and the latter contains, CpG motifs activating the TLR9 cascade. Preseasonal subcutaneous injection of both of these allergy vaccines has been safe and efficacious in control of nasal symptoms of patients with allergic rhinitis. CRX-675 (a TLR4 agonist), AZD8848 (a TLR7 agonist), VTX-1463 (a TLR8 agonist) and 1018 ISS and QbG10 (TLR9 agonists) are currently in clinical development for allergic rhinitis and asthma. TLR agonists herald promising results for allergen immunotherapy of patients with allergic rhinitis and asthma. Future research should be directed at utilizing these agents for immunotherapy of food allergy (for instance, peanut allergy) as well.

  13. Immunotherapy (For Parents)

    ... Staying Safe Videos for Educators Search English Español Immunotherapy KidsHealth / For Parents / Immunotherapy What's in this article? ... Types of Immunotherapy Side Effects Outlook Print About Immunotherapy Immunotherapy, also known as targeted therapy or biotherapy, ...

  14. Programmed death-1 & its ligands: promising targets for cancer immunotherapy.

    Shrimali, Rajeev K; Janik, John E; Abu-Eid, Rasha; Mkrtichyan, Mikayel; Khleif, Samir N

    2015-01-01

    Novel strategies for cancer treatment involving blockade of immune inhibitors have shown significant progress toward understanding the molecular mechanism of tumor immune evasion. The preclinical findings and clinical responses associated with programmed death-1 (PD-1) and PD-ligand pathway blockade seem promising, making these targets highly sought for cancer immunotherapy. In fact, the anti-PD-1 antibodies, pembrolizumab and nivolumab, were recently approved by the US FDA for the treatment of unresectable and metastatic melanoma resistant to anticytotoxic T-lymphocyte antigen-4 antibody (ipilimumab) and BRAF inhibitor. Here, we discuss strategies of combining PD-1/PD-ligand interaction inhibitors with other immune checkpoint modulators and standard-of-care therapy to break immune tolerance and induce a potent antitumor activity, which is currently a research area of key scientific pursuit.

  15. Advance in Targeted Immunotherapy for Graft-Versus-Host Disease

    Lingling Zhang

    2018-05-01

    Full Text Available Graft-versus-host disease (GVHD is a serious and deadly complication of patients, who undergo hematopoietic stem cell transplantation (HSCT. Despite prophylactic treatment with immunosuppressive agents, 20–80% of recipients develop acute GVHD after HSCT. And the incidence rates of chronic GVHD range from 6 to 80%. Standard therapeutic strategies are still lacking, although considerable advances have been gained in knowing of the predisposing factors, pathology, and diagnosis of GVHD. Targeting immune cells, such as regulatory T cells, as well as tolerogenic dendritic cells or mesenchymal stromal cells (MSCs display considerable benefit in the relief of GVHD through the deletion of alloactivated T cells. Monoclonal antibodies targeting cytokines or signaling molecules have been demonstrated to be beneficial for the prevention of GVHD. However, these remain to be verified in clinical therapy. It is also important and necessary to consider adopting individualized treatment based on GVHD subtypes, pathological mechanisms involved and stages. In the future, it is hoped that the identification of novel therapeutic targets and systematic research strategies may yield novel safe and effective approaches in clinic to improve outcomes of GVHD further. In this article, we reviewed the current advances in targeted immunotherapy for the prevention of GVHD.

  16. Targeting Cytosolic Nucleic Acid-Sensing Pathways for Cancer Immunotherapies.

    Iurescia, Sandra; Fioretti, Daniela; Rinaldi, Monica

    2018-01-01

    The innate immune system provides the first line of defense against pathogen infection though also influences pathways involved in cancer immunosurveillance. The innate immune system relies on a limited set of germ line-encoded sensors termed pattern recognition receptors (PRRs), signaling proteins and immune response factors. Cytosolic receptors mediate recognition of danger damage-associated molecular patterns (DAMPs) signals. Once activated, these sensors trigger multiple signaling cascades, converging on the production of type I interferons and proinflammatory cytokines. Recent studies revealed that PRRs respond to nucleic acids (NA) released by dying, damaged, cancer cells, as danger DAMPs signals, and presence of signaling proteins across cancer types suggests that these signaling mechanisms may be involved in cancer biology. DAMPs play important roles in shaping adaptive immune responses through the activation of innate immune cells and immunological response to danger DAMPs signals is crucial for the host response to cancer and tumor rejection. Furthermore, PRRs mediate the response to NA in several vaccination strategies, including DNA immunization. As route of double-strand DNA intracellular entry, DNA immunization leads to expression of key components of cytosolic NA-sensing pathways. The involvement of NA-sensing mechanisms in the antitumor response makes these pathways attractive drug targets. Natural and synthetic agonists of NA-sensing pathways can trigger cell death in malignant cells, recruit immune cells, such as DCs, CD8 + T cells, and NK cells, into the tumor microenvironment and are being explored as promising adjuvants in cancer immunotherapies. In this minireview, we discuss how cGAS-STING and RIG-I-MAVS pathways have been targeted for cancer treatment in preclinical translational researches. In addition, we present a targeted selection of recent clinical trials employing agonists of cytosolic NA-sensing pathways showing how these pathways

  17. Immunotherapy targets metastatic breast cancer–cell mutations

    A novel approach to immunotherapy developed by NCI researchers led to the complete regression of breast cancer in a patient who was unresponsive to all other treatments. The findings were published in Nature Medicine.

  18. In vivo CRISPR screening identifies Ptpn2 as a cancer immunotherapy target.

    Manguso, Robert T; Pope, Hans W; Zimmer, Margaret D; Brown, Flavian D; Yates, Kathleen B; Miller, Brian C; Collins, Natalie B; Bi, Kevin; LaFleur, Martin W; Juneja, Vikram R; Weiss, Sarah A; Lo, Jennifer; Fisher, David E; Miao, Diana; Van Allen, Eliezer; Root, David E; Sharpe, Arlene H; Doench, John G; Haining, W Nicholas

    2017-07-27

    Immunotherapy with PD-1 checkpoint blockade is effective in only a minority of patients with cancer, suggesting that additional treatment strategies are needed. Here we use a pooled in vivo genetic screening approach using CRISPR-Cas9 genome editing in transplantable tumours in mice treated with immunotherapy to discover previously undescribed immunotherapy targets. We tested 2,368 genes expressed by melanoma cells to identify those that synergize with or cause resistance to checkpoint blockade. We recovered the known immune evasion molecules PD-L1 and CD47, and confirmed that defects in interferon-γ signalling caused resistance to immunotherapy. Tumours were sensitized to immunotherapy by deletion of genes involved in several diverse pathways, including NF-κB signalling, antigen presentation and the unfolded protein response. In addition, deletion of the protein tyrosine phosphatase PTPN2 in tumour cells increased the efficacy of immunotherapy by enhancing interferon-γ-mediated effects on antigen presentation and growth suppression. In vivo genetic screens in tumour models can identify new immunotherapy targets in unanticipated pathways.

  19. Targeted immunotherapy in acute myeloblastic leukemia: from animals to humans.

    Robin, Marie; Schlageter, Marie-Hélène; Chomienne, Christine; Padua, Rose-Ann

    2005-10-01

    Immunity against acute myeloid leukemia (AML) is demonstrated in humans by the graft-versus-leukemia effect in allogeneic hematopoietic stem cell transplantation. Specific leukemic antigens have progressively been discovered and circulating specific T lymphocytes against Wilms tumor antigen, proteinase peptide or fusion-proteins produced from aberrant oncogenic chromosomal translocations have been detected in leukemic patients. However, due to the fact that leukemic blasts develop various escape mechanisms, antileukemic specific immunity is not able to control leukemic cell proliferation. The aim of immunotherapy is to overcome tolerance and boost immunity to elicit an efficient immune response against leukemia. We review different immunotherapy strategies tested in preclinical animal models of AML and the human trials that spurred from encouraging results obtained in animal models, demonstrate the feasibility of immunotherapy in AML patients.

  20. ErbB-targeted CAR T-cell immunotherapy of cancer.

    Whilding, Lynsey M; Maher, John

    2015-01-01

    Chimeric antigen receptor (CAR) based immunotherapy has been under development for the last 25 years and is now a promising new treatment modality in the field of cancer immunotherapy. The approach involves genetically engineering T cells to target malignant cells through expression of a bespoke fusion receptor that couples an HLA-independent antigen recognition domain to one or more intracellular T-cell activating modules. Multiple clinical trials are now underway in several centers to investigate CAR T-cell immunotherapy of diverse hematologic and solid tumor types. The most successful results have been achieved in the treatment of patients with B-cell malignancies, in whom several complete and durable responses have been achieved. This review focuses on the preclinical and clinical development of CAR T-cell immunotherapy of solid cancers, targeted against members of the ErbB family.

  1. Immunotherapy targeting immune check-point(s) in brain metastases.

    Di Giacomo, Anna Maria; Valente, Monica; Covre, Alessia; Danielli, Riccardo; Maio, Michele

    2017-08-01

    Immunotherapy with monoclonal antibodies (mAb) directed to different immune check-point(s) is showing a significant clinical impact in a growing number of human tumors of different histotype, both in terms of disease response and long-term survival patients. In this rapidly changing scenario, treatment of brain metastases remains an high unmeet medical need, and the efficacy of immunotherapy in these highly dismal clinical setting remains to be largely demonstrated. Nevertheless, up-coming observations are beginning to suggest a clinical potential of cancer immunotherapy also in brain metastases, regardless the underlying tumor histotype. These observations remain to be validated in larger clinical trials eventually designed also to address the efficacy of therapeutic mAb to immune check-point(s) within multimodality therapies for brain metastases. Noteworthy, the initial proofs of efficacy on immunotherapy in central nervous system metastases are already fostering clinical trials investigating its therapeutic potential also in primary brain tumors. We here review ongoing immunotherapeutic approaches to brain metastases and primary brain tumors, and the foreseeable strategies to overcome their main biologic hurdles and clinical challenges. Copyright © 2017 Elsevier Ltd. All rights reserved.

  2. Targeting CD8+ T-cell tolerance for cancer immunotherapy.

    Jackson, Stephanie R; Yuan, Jinyun; Teague, Ryan M

    2014-01-01

    In the final issue of Science in 2013, the American Association of Science recognized progress in the field of cancer immunotherapy as the 'Breakthrough of the Year.' The achievements were actually twofold, owing to the early success of genetically engineered chimeric antigen receptors (CAR) and to the mounting clinical triumphs achieved with checkpoint blockade antibodies. While fundamentally very different, the common thread of these independent strategies is the ability to prevent or overcome mechanisms of CD8(+) T-cell tolerance for improved tumor immunity. Here we discuss how circumventing T-cell tolerance has provided experimental insights that have guided the field of clinical cancer immunotherapy to a place where real breakthroughs can finally be claimed.

  3. Novel targets for natural killer/T-cell lymphoma immunotherapy.

    Kumai, Takumi; Kobayashi, Hiroya; Harabuchi, Yasuaki

    2016-01-01

    Extranodal natural killer/T-cell lymphoma, nasal type (NKTL) is a rare but highly aggressive Epstein-Barr virus-related malignancy, which mainly occurs in nasopharyngeal and nasal/paranasal areas. In addition to its high prevalence in Asian, Central American and South American populations, its incidence rate has been gradually increasing in Western countries. The current mainstay of treatment is a combination of multiple chemotherapies and irradiation. Although chemoradiotherapy can cure NKTL, it often causes severe and fatal adverse events. Because a growing body of evidence suggests that immunotherapy is effective against hematological malignancies, this treatment could provide an alternative to chemoradiotherapy for treatment of NKTL. In this review, we focus on how recent findings could be used to develop efficient immunotherapies against NKTL.

  4. Cytomegalovirus-targeted immunotherapy and glioblastoma: hype or hope?

    Ferguson, Sherise D; Srinivasan, Visish M; Ghali, Michael Gz; Heimberger, Amy B

    2016-01-01

    Malignant gliomas, including glioblastoma (GBM), are the most common primary brain tumors. Despite extensive research only modest gains have been made in long-term survival. Standard of care involves maximizing safe surgical resection followed by concurrent chemoradiation with temozolomide. Immunotherapy for GBM is an area of intense research in recent years. New immunotherapies, although promising, have not been integrated into standard practice. Human cytomegalovirus (HCMV) is a DNA virus of the family Herpesviridae. Human seroprevalence is approximately 80%, and in most cases, is associated with asymptomatic infection. HCMV may be an important agent in the initiation, promotion and/or progression of tumorigenesis. Regardless of a possible etiologic role in GBM, interest has centered on exploiting this association for development of immunomodulatory therapies.

  5. Regulatory T Cells: Potential Target in Anticancer Immunotherapy

    Chi-Mou Juang

    2007-09-01

    Full Text Available The concept of regulatory T cells was first described in the early 1970s, and regulatory T cells were called suppressive T cells at that time. Studies that followed have demonstrated that these suppressive T cells negatively regulated tumor immunity and contributed to tumor growth in mice. Despite the importance of these studies, there was extensive skepticism about the existence of these cells, and the concept of suppressive T cells left the center stage of immunologic research for decades. Interleukin-2 receptor α-chain, CD25, was first demonstrated in 1995 to serve as a phenotypic marker for CD4+ regulatory cells. Henceforth, research of regulatory T cells boomed. Regulatory T cells are involved in the pathogenesis of cancer, autoimmune disease, transplantation immunology, and immune tolerance in pregnancy. Recent evidence has demonstrated that regulatory T cellmediated immunosuppression is one of the crucial tumor immune evasion mechanisms and the main obstacle of successful cancer immunotherapy. The mechanism and the potential clinical application of regulatory T cells in cancer immunotherapy are discussed.

  6. A protein in neuroblastoma could be a target of immunotoxins or immunotherapy | Center for Cancer Research

    A cell surface protein, glycoprotein glypican-2 (GPC2), has been found to be an effective therapeutic target in cell cultures and mouse models that mimic childhood neuroblastoma.  The CCR scientists who made this discovery, reported July 24, 2017, in PNAS, have also produced immunotoxins and chimeric antigen receptor (CAR) T cells, a type of immunotherapy, that have shown

  7. Targeting NK cells for anti-cancer immunotherapy: clinical and pre-clinical approaches

    Sebastian eCarotta

    2016-04-01

    Full Text Available The recent success of checkpoint blockade has highlighted the potential of immunotherapy approaches for cancer treatment. While the majority of approved immunotherapy drugs target T cell subsets, it is appreciated that other components of the immune system have important roles in tumor immune-surveillance as well and thus represent promising additional targets for immunotherapy. Natural killer cells are the body’s first line of defense against infected or transformed cells as they kill target cells in an antigen-independent manner. Although several studies have clearly demonstrated the active role of NK cells in cancer-immune surveillance, only few clinically approved therapies currently exist that harness their potential. Our increased understanding of NK cell biology over the past few years has renewed the interest in NK cell based anti-cancer therapies, which has lead to a steady increase of NK cell based clinical and pre-clinical trials. Here, the role of NK cells in cancer immunesurveillance is summarized and several novel approaches to enhance NK cell cytotoxicity against cancer are discussed.

  8. TIM-3 as a Target for Cancer Immunotherapy and Mechanisms of Action

    Wenwen Du

    2017-03-01

    Full Text Available Cancer immunotherapy has produced impressive clinical results in recent years. Despite the success of the checkpoint blockade strategies targeting cytotoxic T lymphocyte antigen 4 (CTLA-4 and programmed death receptor 1 (PD-1, a large portion of cancer patients have not yet benefited from this novel therapy. T cell immunoglobulin and mucin domain 3 (TIM-3 has been shown to mediate immune tolerance in mouse models of infectious diseases, alloimmunity, autoimmunity, and tumor Immunity. Thus, targeting TIM-3 emerges as a promising approach for further improvement of current immunotherapy. Despite a large amount of experimental data showing an immune suppressive function of TIM-3 in vivo, the exact mechanisms are not well understood. To enable effective targeting of TIM-3 for tumor immunotherapy, further in-depth mechanistic studies are warranted. These studies will also provide much-needed insight for the rational design of novel combination therapy with other checkpoint blockers. In this review, we summarize key evidence supporting an immune regulatory role of TIM-3 and discuss possible mechanisms of action.

  9. CD19-Targeted CAR T Cells as Novel Cancer Immunotherapy for Relapsed or Refractory B-Cell Acute Lymphoblastic Leukemia

    Davila, Marco L.; Brentjens, Renier J.

    2016-01-01

    Immunotherapy has demonstrated significant potential for the treatment of patients with chemotherapy-resistant hematologic malignancies and solid tumors. One type of immunotherapy involves the adoptive transfer of T cells that have been genetically modified with a chimeric antigen receptor (CAR) to target a tumor. These hybrid proteins are composed of the antigen-binding domains of an antibody fused to T-cell receptor signaling machinery. CAR T cells that target CD19 recently have made the ju...

  10. Targeting myeloid cells using nanoparticles to improve cancer immunotherapy.

    Amoozgar, Zohreh; Goldberg, Michael S

    2015-08-30

    While nanoparticles have traditionally been used to deliver cytotoxic drugs directly to tumors to induce cancer cell death, emerging data suggest that nanoparticles are likely to generate a larger impact on oncology through the delivery of agents that can stimulate antitumor immunity. Tumor-targeted nanocarriers have generally been used to localize chemotherapeutics to tumors and thus decrease off-target toxicity while enhancing efficacy. Challengingly, tumor heterogeneity and evolution render tumor-intrinsic approaches likely to succumb to relapse. The immune system offers exquisite specificity, cytocidal potency, and long-term activity that leverage an adaptive memory response. For this reason, the ability to manipulate immune cell specificity and function would be desirable, and nanoparticles represent an exciting means by which to perform such manipulation. Dendritic cells and tumor-associated macrophages are cells of the myeloid lineage that function as natural phagocytes, so they naturally take up nanoparticles. Dendritic cells direct the specificity and potency of cellular immune responses that can be targeted for cancer vaccines. Herein, we discuss the specific criteria needed for efficient vaccine design, including but not limited to the route of administration, size, morphology, surface charge, targeting ligands, and nanoparticle composition. In contrast, tumor-associated macrophages are critical mediators of immunosuppression whose trans-migratory abilities can be exploited to localize therapeutics to the tumor core and which can be directly targeted for elimination or for repolarization to a tumor suppressive phenotype. It is likely that a combination of targeting dendritic cells to stimulate antitumor immunity and tumor-associated macrophages to reduce immune suppression will impart significant benefits and result in durable antitumor responses. Copyright © 2014 Elsevier B.V. All rights reserved.

  11. Immunotherapies for Targeting Ancient Retrovirus during Breast Cancer

    2014-03-01

    observed with increased HERV-K antigen expression when compared to EL4 parental cell as negative control (Figure 2B). No significant killing was...with HERV-K+ targets compared to tumor cells co-cultured with No DNA control T cells. Absence of such difference was seen with EL4 parental target...cells can be specifically redirected against HERV-K antigen expressing tumor. To analyze the specificity of HERV-K CAR, EL4 cells (HERV-K neg) were

  12. Y-Trap Cancer Immunotherapy Drug Targets Two Proteins

    Two groups of researchers, working independently, have fused a TGF-beta receptor to a monoclonal antibody that targets a checkpoint protein. The result, this Cancer Currents blog describes, is a single hybrid molecule called a Y-trap that blocks two pathways used by tumors to evade the immune system.

  13. Antiangiogenic immunotherapy targeting Flk-1, DNA vaccine and adoptive T cell transfer, inhibits ocular neovascularization

    Zhang, Han [Department of Ophthalmology, Graduate School of Medical Sciences, Kyushu University, 3-1-1 Maidashi, Higashi-Ku, Fukuoka 812-8582 (Japan); Sonoda, Koh-Hei, E-mail: sonodak@med.kyushu-u.ac.jp [Department of Ophthalmology, Graduate School of Medical Sciences, Kyushu University, 3-1-1 Maidashi, Higashi-Ku, Fukuoka 812-8582 (Japan); Hijioka, Kuniaki; Qiao, Hong; Oshima, Yuji; Ishibashi, Tatsuro [Department of Ophthalmology, Graduate School of Medical Sciences, Kyushu University, 3-1-1 Maidashi, Higashi-Ku, Fukuoka 812-8582 (Japan)

    2009-04-17

    Ocular neovascularization (NV) is the primary cause of blindness in a wide range of ocular diseases. The exact mechanism underlying the pathogenesis of ocular NV is not yet well understood, and so there is no satisfactory therapy for ocular NV. Here, we describe a strategy targeting Flk-1, a self-antigen overexpressed on proliferating endothelial cells in ocular NV, by antiangiogenic immunotherapy-DNA vaccine and adoptive T cell therapy. An oral DNA vaccine encoding Flk-1 carried by attenuated Salmonella typhimurium markedly suppressed development of laser-induced choroidal NV. We further demonstrated that adoptive transfer of vaccine-induced CD8{sup +} T cells reduced pathological preretinal NV, with a concomitant facilitation of physiological revascularization after oxygen-induced retinal vessel obliteration. However, physiological retinal vascular development was unaffected in neonatal mice transferred with vaccine-induced CD8{sup +} T cells. These findings suggested that antiangiogenic immunotherapy targeting Flk-1 such as vaccination and adoptive immunotherapy may contribute to future therapies for ocular NV.

  14. Antiangiogenic immunotherapy targeting Flk-1, DNA vaccine and adoptive T cell transfer, inhibits ocular neovascularization

    Zhang, Han; Sonoda, Koh-Hei; Hijioka, Kuniaki; Qiao, Hong; Oshima, Yuji; Ishibashi, Tatsuro

    2009-01-01

    Ocular neovascularization (NV) is the primary cause of blindness in a wide range of ocular diseases. The exact mechanism underlying the pathogenesis of ocular NV is not yet well understood, and so there is no satisfactory therapy for ocular NV. Here, we describe a strategy targeting Flk-1, a self-antigen overexpressed on proliferating endothelial cells in ocular NV, by antiangiogenic immunotherapy-DNA vaccine and adoptive T cell therapy. An oral DNA vaccine encoding Flk-1 carried by attenuated Salmonella typhimurium markedly suppressed development of laser-induced choroidal NV. We further demonstrated that adoptive transfer of vaccine-induced CD8 + T cells reduced pathological preretinal NV, with a concomitant facilitation of physiological revascularization after oxygen-induced retinal vessel obliteration. However, physiological retinal vascular development was unaffected in neonatal mice transferred with vaccine-induced CD8 + T cells. These findings suggested that antiangiogenic immunotherapy targeting Flk-1 such as vaccination and adoptive immunotherapy may contribute to future therapies for ocular NV.

  15. Biomarkers for immunotherapy in bladder cancer: a moving target.

    Aggen, David H; Drake, Charles G

    2017-11-21

    Treatment options for metastatic urothelial carcinoma (mUC) remained relative unchanged over the last 30 years with combination chemotherapy as the mainstay of treatment. Within the last year the landscape for mUC has seismically shifted following the approval of five therapies targeting the programmed cell death protein (PD-1)/programmed cell death ligand 1 (PD-L1) axis. Notably, the anti-PD-1 antibody pembrolizumab demonstrated improved OS relative to chemotherapy in a randomized phase III study for second line treatment of mUC; this level 1 evidence led to approval from the U.S. Food and Drug Administration (FDA). The PD-1 antibody nivolumab also demonstrated an overall survival benefit, in this case in comparison to historical controls. Similarly, antibodies targeting PD-L1 including atezolizumab, durvalumab, and avelumab have now received accelerated approval from the FDA as second line treatments for mUC, with durable response lasting more than 1 year in some patients. Some of these agents are approved in the first line setting as well - based on single-arm phase II studies atezolizumab and pembrolizumab received accelerated approval for first-line treatment of cisplatin ineligible patients. Despite these multiple approvals, the development of clinically useful biomarkers to determine the optimal treatment for patients remains somewhat elusive. In this review, we examine key clinical trial results with anti-PD1/PD-L1 antibodies and discuss progress towards developing novel biomarkers beyond PD-L1 expression.

  16. Targeting B7x and B7-H3 as New Immunotherapies for Prostate Cancer

    2016-09-01

    activated and express receptors for B7x and B7-H3 and human prostate cancer cells express B7x or B7-H3. FACS showed the approach how we identified human...Immunomodu- latory pathways include members of the TNF receptor family and their ligands which have been studied as targets for cancer immunotherapy. These...urothelial bladder cancer patients resulting in an FDA breakthrough designation [50], and MSB0010718C which exhibits antitumor activ- ity by blocking PD-L1

  17. Temperature distribution in target tumor tissue and photothermal tissue destruction during laser immunotherapy

    Doughty, Austin; Hasanjee, Aamr; Pettitt, Alex; Silk, Kegan; Liu, Hong; Chen, Wei R.; Zhou, Feifan

    2016-03-01

    Laser Immunotherapy is a novel cancer treatment modality that has seen much success in treating many different types of cancer, both in animal studies and in clinical trials. The treatment consists of the synergistic interaction between photothermal laser irradiation and the local injection of an immunoadjuvant. As a result of the therapy, the host immune system launches a systemic antitumor response. The photothermal effect induced by the laser irradiation has multiple effects at different temperature elevations which are all required for optimal response. Therefore, determining the temperature distribution in the target tumor during the laser irradiation in laser immunotherapy is crucial to facilitate the treatment of cancers. To investigate the temperature distribution in the target tumor, female Wistar Furth rats were injected with metastatic mammary tumor cells and, upon sufficient tumor growth, underwent laser irradiation and were monitored using thermocouples connected to locally-inserted needle probes and infrared thermography. From the study, we determined that the maximum central tumor temperature was higher for tumors of less volume. Additionally, we determined that the temperature near the edge of the tumor as measured with a thermocouple had a strong correlation with the maximum temperature value in the infrared camera measurement.

  18. A review of allergoid immunotherapy: is cat allergy a suitable target?

    Nguyen, Nhung T; Raskopf, Esther; Shah-Hosseini, Kija; Zadoyan, Gregor; Mösges, Ralph

    2016-01-01

    To modify the course of allergy, different types of specific allergen immunotherapy have been developed such as sublingual immunotherapy and subcutaneous immunotherapy with native allergens or subcutaneous immunotherapy with polymerized allergoids. However, the optimal specific immunotherapy, especially for cat allergy, remains undetermined. Few studies investigating immunotherapy in cat allergy have been published, and the risk of serious adverse reactions and systemic reactions has often been an important issue. Monomeric allergoids have lower allergenic potential while their immunogenicity remains constant, resulting in excellent safety with notable efficacy. Specific immunotherapy with monomeric allergoids could, therefore, be of high value, especially in cat allergy as well as other types of allergy, and bring relief to a great community of patients.

  19. Dendritic cell based PSMA immunotherapy for prostate cancer using a CD40-targeted adenovirus vector.

    Briana Jill Williams

    Full Text Available Human prostate tumor vaccine and gene therapy trials using ex vivo methods to prime dendritic cells (DCs with prostate specific membrane antigen (PSMA have been somewhat successful, but to date the lengthy ex vivo manipulation of DCs has limited the widespread clinical utility of this approach. Our goal was to improve upon cancer vaccination with tumor antigens by delivering PSMA via a CD40-targeted adenovirus vector directly to DCs as an efficient means for activation and antigen presentation to T-cells. To test this approach, we developed a mouse model of prostate cancer by generating clonal derivatives of the mouse RM-1 prostate cancer cell line expressing human PSMA (RM-1-PSMA cells. To maximize antigen presentation in target cells, both MHC class I and TAP protein expression was induced in RM-1 cells by transduction with an Ad vector expressing interferon-gamma (Ad5-IFNγ. Administering DCs infected ex vivo with CD40-targeted Ad5-huPSMA, as well as direct intraperitoneal injection of the vector, resulted in high levels of tumor-specific CTL responses against RM-1-PSMA cells pretreated with Ad5-IFNγ as target cells. CD40 targeting significantly improved the therapeutic antitumor efficacy of Ad5-huPSMA encoding PSMA when combined with Ad5-IFNγ in the RM-1-PSMA model. These results suggest that a CD-targeted adenovirus delivering PSMA may be effective clinically for prostate cancer immunotherapy.

  20. Novel antibody-based drugs for PD-L1 and TRAIL-R targeted cancer immunotherapy

    Hendriks, Djoke

    2017-01-01

    Immunotherapy aims to destroy cancer cells using cells or molecules of the immune system. This can be achieved by either targeting cancer cells directly or by improving an ongoing anticancer immune response in the patient. It was recently discovered that cancer cells overexpress PD-L1 protein on

  1. Cytomegalovirus and immunotherapy: opportunistic pathogen, novel target for cancer and a promising vaccine vector.

    Quinn, Michael; Erkes, Dan A; Snyder, Christopher M

    2016-02-01

    Cytomegalovirus (CMV) is a β-herpesvirus that infects most people in the world and is almost always asymptomatic in the healthy host. However, CMV persists for life, requiring continuous immune surveillance to prevent disease and thus, CMV is a frequent complication in immune compromised patients. Many groups have been exploring the potential for adoptive T-cell therapies to control CMV reactivation as well as the progression of solid tumors harboring CMV. In addition, CMV itself is being explored as a vaccine vector for eliciting potent T-cell responses. This review will discuss key features of the basic biology of CMV-specific T cells as well as highlighting unanswered questions and ongoing work in the development of T-cell-based immunotherapies to target CMV.

  2. Recent Advances in Targeting CD8 T-Cell Immunity for More Effective Cancer Immunotherapy

    Aurélie Durgeau

    2018-01-01

    Full Text Available Recent advances in cancer treatment have emerged from new immunotherapies targeting T-cell inhibitory receptors, including cytotoxic T-lymphocyte associated antigen (CTLA-4 and programmed cell death (PD-1. In this context, anti-CTLA-4 and anti-PD-1 monoclonal antibodies have demonstrated survival benefits in numerous cancers, including melanoma and non-small-cell lung carcinoma. PD-1-expressing CD8+ T lymphocytes appear to play a major role in the response to these immune checkpoint inhibitors (ICI. Cytotoxic T lymphocytes (CTL eliminate malignant cells through recognition by the T-cell receptor (TCR of specific antigenic peptides presented on the surface of cancer cells by major histocompatibility complex class I/beta-2-microglobulin complexes, and through killing of target cells, mainly by releasing the content of secretory lysosomes containing perforin and granzyme B. T-cell adhesion molecules and, in particular, lymphocyte-function-associated antigen-1 and CD103 integrins, and their cognate ligands, respectively, intercellular adhesion molecule 1 and E-cadherin, on target cells, are involved in strengthening the interaction between CTL and tumor cells. Tumor-specific CTL have been isolated from tumor-infiltrating lymphocytes and peripheral blood lymphocytes (PBL of patients with varied cancers. TCRβ-chain gene usage indicated that CTL identified in vitro selectively expanded in vivo at the tumor site compared to autologous PBL. Moreover, functional studies indicated that these CTL mediate human leukocyte antigen class I-restricted cytotoxic activity toward autologous tumor cells. Several of them recognize truly tumor-specific antigens encoded by mutated genes, also known as neoantigens, which likely play a key role in antitumor CD8 T-cell immunity. Accordingly, it has been shown that the presence of T lymphocytes directed toward tumor neoantigens is associated with patient response to immunotherapies, including ICI, adoptive cell transfer

  3. Microarray Gene Expression Analysis to Evaluate Cell Type Specific Expression of Targets Relevant for Immunotherapy of Hematological Malignancies.

    M J Pont

    Full Text Available Cellular immunotherapy has proven to be effective in the treatment of hematological cancers by donor lymphocyte infusion after allogeneic hematopoietic stem cell transplantation and more recently by targeted therapy with chimeric antigen or T-cell receptor-engineered T cells. However, dependent on the tissue distribution of the antigens that are targeted, anti-tumor responses can be accompanied by undesired side effects. Therefore, detailed tissue distribution analysis is essential to estimate potential efficacy and toxicity of candidate targets for immunotherapy of hematological malignancies. We performed microarray gene expression analysis of hematological malignancies of different origins, healthy hematopoietic cells and various non-hematopoietic cell types from organs that are often targeted in detrimental immune responses after allogeneic stem cell transplantation leading to graft-versus-host disease. Non-hematopoietic cells were also cultured in the presence of IFN-γ to analyze gene expression under inflammatory circumstances. Gene expression was investigated by Illumina HT12.0 microarrays and quality control analysis was performed to confirm the cell-type origin and exclude contamination of non-hematopoietic cell samples with peripheral blood cells. Microarray data were validated by quantitative RT-PCR showing strong correlations between both platforms. Detailed gene expression profiles were generated for various minor histocompatibility antigens and B-cell surface antigens to illustrate the value of the microarray dataset to estimate efficacy and toxicity of candidate targets for immunotherapy. In conclusion, our microarray database provides a relevant platform to analyze and select candidate antigens with hematopoietic (lineage-restricted expression as potential targets for immunotherapy of hematological cancers.

  4. Antibody targeting of phosphatidylserine for the detection and immunotherapy of cancer

    Belzile O

    2018-01-01

    Full Text Available Olivier Belzile,1 Xianming Huang,2,3 Jian Gong,2,3 Jay Carlson,2,3 Alan J Schroit,1 Rolf A Brekken,1 Bruce D Freimark2,3 1Hamon Center for Therapeutic Oncology Research, University of Texas Southwestern Medical Center, Dallas, TX, 2Department of Preclinical Research, 3Department of Antibody Discovery, Peregrine Pharmaceuticals, Inc., Tustin, CA, USA Abstract: Phosphatidylserine (PS is a negatively charged phospholipid in all eukaryotic cells that is actively sequestered to the inner leaflet of the cell membrane. Exposure of PS on apoptotic cells is a normal physiological process that triggers their rapid removal by phagocytic engulfment under noninflammatory conditions via receptors primarily expressed on immune cells. PS is aberrantly exposed in the tumor microenvironment and contributes to the overall immunosuppressive signals that antagonize the development of local and systemic antitumor immune responses. PS-mediated immunosuppression in the tumor microenvironment is further exacerbated by chemotherapy and radiation treatments that result in increased levels of PS on dying cells and necrotic tissue. Antibodies targeting PS localize to tumors and block PS-mediated immunosuppression. Targeting exposed PS in the tumor microenvironment may be a novel approach to enhance immune responses to cancer. Keywords: immunosuppression, tumor microenvironment, immunotherapy, imaging, phosphatidylserine, bavituximab

  5. Immunotherapy for the treatment of Alzheimer's disease: amyloid-β or tau, which is the right target?

    Castillo-Carranza DL

    2013-12-01

    Full Text Available Diana L Castillo-Carranza,1,2 Marcos J Guerrero-Muñoz,1,2 Rakez Kayed1–31Mitchell Center for Neurodegenerative Diseases, 2Departments of Neurology, Neuroscience, and Cell Biology, 3Sealy Center for Vaccine Development, University of Texas Medical Branch, Galveston, TX, USAAbstract: Alzheimer's disease (AD is characterized by the presence of amyloid plaques composed mainly of amyloid-β (Aβ protein. Overproduction or slow clearance of Aβ initiates a cascade of pathologic events that may lead to formation of neurofibrillary tangles, neuronal cell death, and dementia. Although immunotherapy in animal models has been demonstrated to be successful at removing plaques or prefibrillar forms of Aβ, clinical trials have yielded disappointing results. The lack of substantial cognitive improvement obtained by targeting Aβ raises the question of whether or not this is the correct target. Another important pathologic process in the AD brain is tau aggregation, which seems to become independent once initiated. Recent studies targeting tau in AD mouse models have displayed evidence of cognitive improvement, providing a novel therapeutic approach for the treatment of AD. In this review, we describe new advances in immunotherapy targeting Aβ peptide and tau protein, as well as future directions.Keywords: immunotherapy, Alzheimer's disease, β-amyloid, tau

  6. Perspectives on future Alzheimer therapies: amyloid-β protofibrils - a new target for immunotherapy with BAN2401 in Alzheimer's disease.

    Lannfelt, Lars; Möller, Christer; Basun, Hans; Osswald, Gunilla; Sehlin, Dag; Satlin, Andrew; Logovinsky, Veronika; Gellerfors, Pär

    2014-01-01

    The symptomatic drugs currently on the market for Alzheimer's disease (AD) have no effect on disease progression, and this creates a large unmet medical need. The type of drug that has developed most rapidly in the last decade is immunotherapy: vaccines and, especially, passive vaccination with monoclonal antibodies. Antibodies are attractive drugs as they can be made highly specific for their target and often with few side effects. Data from recent clinical AD trials indicate that a treatment effect by immunotherapy is possible, providing hope for a new generation of drugs. The first anti-amyloid-beta (anti-Aβ) vaccine developed by Elan, AN1792, was halted in phase 2 because of aseptic meningoencephalitis. However, in a follow-up study, patients with antibody response to the vaccine demonstrated reduced cognitive decline, supporting the hypothesis that Aβ immunotherapy may have clinically relevant effects. Bapineuzumab (Elan/Pfizer Inc./Johnson & Johnson), a monoclonal antibody targeting fibrillar Aβ, was stopped because the desired clinical effect was not seen. Solanezumab (Eli Lilly and Company) was developed to target soluble, monomeric Aβ. In two phase 3 studies, Solanezumab did not meet primary endpoints. When data from the two studies were pooled, a positive pattern emerged, revealing a significant slowing of cognitive decline in the subgroup of mild AD. The Arctic mutation has been shown to specifically increase the formation of soluble Aβ protofibrils, an Aβ species shown to be toxic to neurons and likely to be present in all cases of AD. A monoclonal antibody, mAb158, was developed to target Aβ protofibrils with high selectivity. It has at least a 1,000-fold higher selectivity for protofibrils as compared with monomers of Aβ, thus targeting the toxic species of the peptide. A humanized version of mAb158, BAN2401, has now entered a clinical phase 2b trial in a collaboration between BioArctic Neuroscience and Eisai without the safety concerns seen

  7. Immunotherapy targeting α-synuclein, with relevance for future treatment of Parkinson's disease and other Lewy body disorders.

    Lindström, Veronica; Ihse, Elisabet; Fagerqvist, Therese; Bergström, Joakim; Nordström, Eva; Möller, Christer; Lannfelt, Lars; Ingelsson, Martin

    2014-01-01

    Immunotherapy targeting α-synuclein has evolved as a potential therapeutic strategy for neurodegenerative diseases, such as Parkinson's disease, and initial studies on cellular and animal models have shown promising results. α-synuclein vaccination of transgenic mice reduced the number of brain inclusions, whereas passive immunization studies demonstrated that antibodies against the C-terminus of α-synuclein can pass the blood-brain barrier and affect the pathology. In addition, preliminary evidence suggests that transgenic mice treated with an antibody directed against α-synuclein oligomers/protofibrils resulted in reduced levels of such species in the CNS. The underlying mechanisms of immunotherapy are not yet fully understood, but may include antibody-mediated clearance of pre-existing aggregates, prevention of protein propagation between cells and microglia-dependent protein clearance. Thus, immunotherapy targeting α-synuclein holds promise, but needs to be further developed as a future disease-modifying treatment in Parkinson's disease and other α-synucleinopathies.

  8. Sarcoma Immunotherapy

    Gouw, Launce G.; Jones, Kevin B.; Sharma, Sunil; Randall, R. Lor

    2011-01-01

    Much of our knowledge regarding cancer immunotherapy has been derived from sarcoma models. However, translation of preclinical findings to bedside success has been limited in this disease, though several intriguing clinical studies hint at the potential efficacy of this treatment modality. The rarity and heterogeneity of tumors of mesenchymal origin continues to be a challenge from a therapeutic standpoint. Nonetheless, sarcomas remain attractive targets for immunotherapy, as they can be characterized by specific epitopes, either from their mesenchymal origins or specific alterations in gene products. To date, standard vaccine trials have proven disappointing, likely due to mechanisms by which tumors equilibrate with and ultimately escape immune surveillance. More sophisticated approaches will likely require multimodal techniques, both by enhancing immunity, but also geared towards overcoming innate mechanisms of immunosuppression that favor tumorigenesis

  9. Sarcoma Immunotherapy

    Gouw, Launce G., E-mail: launce.gouw@hsc.utah.edu [Departments of Oncology, Huntsman Cancer Institute at the University of Utah, 2000 Circle of Hope, Salt Lake City, UT 84112 (United States); Jones, Kevin B. [Departments of Orthopaedic Surgery, Huntsman Cancer Institute at the University of Utah, 2000 Circle of Hope, Salt Lake City, UT 84112 (United States); Sharma, Sunil [Departments of Oncology, Huntsman Cancer Institute at the University of Utah, 2000 Circle of Hope, Salt Lake City, UT 84112 (United States); Randall, R. Lor [Departments of Orthopaedic Surgery, Huntsman Cancer Institute at the University of Utah, 2000 Circle of Hope, Salt Lake City, UT 84112 (United States)

    2011-11-10

    Much of our knowledge regarding cancer immunotherapy has been derived from sarcoma models. However, translation of preclinical findings to bedside success has been limited in this disease, though several intriguing clinical studies hint at the potential efficacy of this treatment modality. The rarity and heterogeneity of tumors of mesenchymal origin continues to be a challenge from a therapeutic standpoint. Nonetheless, sarcomas remain attractive targets for immunotherapy, as they can be characterized by specific epitopes, either from their mesenchymal origins or specific alterations in gene products. To date, standard vaccine trials have proven disappointing, likely due to mechanisms by which tumors equilibrate with and ultimately escape immune surveillance. More sophisticated approaches will likely require multimodal techniques, both by enhancing immunity, but also geared towards overcoming innate mechanisms of immunosuppression that favor tumorigenesis.

  10. CD19-Targeted CAR T cells as novel cancer immunotherapy for relapsed or refractory B-cell acute lymphoblastic leukemia.

    Davila, Marco L; Brentjens, Renier J

    2016-10-01

    Immunotherapy has demonstrated significant potential for the treatment of patients with chemotherapy-resistant hematologic malignancies and solid tumors. One type of immunotherapy involves the adoptive transfer of T cells that have been genetically modified with a chimeric antigen receptor (CAR) to target a tumor. These hybrid proteins are composed of the antigen-binding domains of an antibody fused to T-cell receptor signaling machinery. CAR T cells that target CD19 recently have made the jump from the laboratory to the clinic, and the results have been remarkable. CD19-targeted CAR T cells have induced complete remissions of disease in up to 90% of patients with relapsed or refractory B-cell acute lymphoblastic leukemia (B-ALL), who have an expected complete response rate of 30% in response to chemotherapy. The high efficacy of CAR T cells in B-ALL suggests that regulatory approval of this therapy for this routinely fatal leukemia is on the horizon. We review the preclinical development of CAR T cells and their early clinical application for lymphoma. We also provide a comprehensive analysis of the use of CAR T cells in patients with B-ALL. In addition, we discuss the unique toxicities associated with this therapy and the management schemes that have been developed.

  11. Targeting the immunoregulatory indoleamine 2,3 dioxygenase pathway in immunotherapy

    Johnson, Burles A; Baban, Babak; Mellor, Andrew L

    2009-01-01

    Natural immune tolerance is a formidable barrier to successful immunotherapy to treat established cancers and chronic infections. Conversely, creating robust immune tolerance via immunotherapy is the major goal in treating autoimmune and allergic diseases, and enhancing survival of transplanted organs and tissues. In this review, we focus on a natural mechanism that creates local T-cell tolerance in many clinically relevant settings of chronic inflammation involving expression of the cytosolic enzyme indoleamine 2,3-dioxygenase (IDO) by specialized subsets of dendritic cells. IDO-expressing dendritic cells suppress antigen-specific T-cell responses directly, and induce bystander suppression by activating regulatory T cells. Thus, manipulating IDO is a promising strategy to treat a range of chronic inflammatory diseases. PMID:20161103

  12. Targeting B7x and B7-H3 as New Immunotherapies for Prostate Cancer

    2017-11-01

    prostate   cancer  and  other   cancers .   15. SUBJECT TERMS B7x, B7-H3, HHLA2, TMIGD2, Receptors , Immune Checkpoint, Prostate Cancer , Monoclonal...H3,  HHLA2,  TMIGD2,   Receptors ,  Immune  Checkpoint,   Prostate   Cancer ,   Monoclonal  Antibodies,  Crystal  Structure,  Immunotherapy,  T  Cells... prostate   cancer  immunotherapy.       Unlike  B7x  and  B7-­H3  whose   receptors  have  not  been  found  yet,  we  have   quickly  discovered  two

  13. Minimal residual disease after surgery of HPV 16-associated tumours as target for immunotherapy

    Bubeník, Jan; Reiniš, Milan; Šímová, Jana

    2006-01-01

    Roč. 18, Supplement 1 (2006), - ISSN 1107-3756. [World Congress on Advances in Oncology /11./ and International Symposium on Molecular Medicine /9./. 12.10.2006-14.10.2006, Hersonissos] R&D Projects: GA MZd(CZ) NR7807; GA ČR(CZ) GA301/04/0492; GA AV ČR(CZ) IAA500520605 Institutional research plan: CEZ:AV0Z50520514 Keywords : minimal residual disease * HPV16 * immunotherapy Subject RIV: EB - Genetics ; Molecular Biology

  14. Immunotherapy for infectious diseases

    Jacobson, Jeffrey M

    2002-01-01

    .... The review of the current state of anti-HIV immunotherapy covers HIV-specific passive and active immunization strategies, gene therapy, and host cell-targeted approaches for treating HIV infection...

  15. Molecular Pathways: Targeting the Stimulator of Interferon Genes (STING) in the Immunotherapy of Cancer.

    Corrales, Leticia; Gajewski, Thomas F

    2015-11-01

    Novel immunotherapy approaches are transforming the treatment of cancer, yet many patients remain refractory to these agents. One hypothesis is that immunotherapy fails because of a tumor microenvironment that fails to support recruitment of immune cells, including CD8(+) T cells. Therefore, new approaches designed to initiate a de novo antitumor immune response from within the tumor microenvironment are being pursued. Recent evidence has indicated that spontaneous activation of the Stimulator of Interferon Genes (STING) pathway within tumor-resident dendritic cells leads to type I IFN production and adaptive immune responses against tumors. This pathway is activated in the presence of cytosolic DNA that is detected by the sensor cyclic GMP-AMP synthase (cGAS) and generates cyclic GMP-AMP (cGAMP), which binds and activates STING. As a therapeutic approach, intratumoral injection of STING agonists has demonstrated profound therapeutic effects in multiple mouse tumor models, including melanoma, colon, breast, prostate, and fibrosarcoma. Better characterization of the STING pathway in human tumor recognition, and the development of new pharmacologic approaches to engage this pathway within the tumor microenvironment in patients, are important areas for clinical translation. ©2015 American Association for Cancer Research.

  16. Dendritic cells for active anti-cancer immunotherapy: targeting activation pathways through genetic modification.

    Breckpot, Karine; Escors, David

    2009-12-01

    Tumour immunotherapy has become a treatment modality for cancer, harnessing the immune system to recognize and eradicate tumour cells specifically. It is based on the expression of tumour associated antigens (TAA) by the tumour cells and aims at the induction of TAA-specific effector T cell responses, whilst overruling various mechanisms that can hamper the anti-tumour immune response, e.g. regulatory T cells (Treg). (Re-) activation of effector T cells requires the completion of a carefully orchestrated series of specific steps. Particularly important is the provision of TAA presentation and strong stimulatory signals, delivered by co-stimulatory surface molecules and cytokines. These can only be delivered by professional antigen-presenting cells, in particular dendritic cells (DC). Therefore, DC need to be loaded with TAA and appropriately activated. It is not surprising that an extensive part of DC research has focused on the delivery of both TAA and activation signals to DC, developing a one step approach to obtain potent stimulatory DC. The simultaneous delivery of TAA and activation signals is therefore the topic of this review, emphasizing the role of DC in mediating T cell activation and how we can manipulate DC for the pill-pose of enhancing tumour immunotherapy. As we gain a better understanding of the molecular and cellular mechanisms that mediate induction of TAA-specific T cells, rational approaches for the activation of T cell responses can be developed for the treatment of cancer.

  17. The “Trojan Horse” Approach to Tumor Immunotherapy: Targeting the Tumor Microenvironment

    Delia Nelson

    2014-01-01

    Full Text Available Most anticancer therapies including immunotherapies are given systemically; yet therapies given directly into tumors may be more effective, particularly those that overcome natural suppressive factors in the tumor microenvironment. The “Trojan Horse” approach of intratumoural delivery aims to promote immune-mediated destruction by inducing microenvironmental changes within the tumour at the same time as avoiding the systemic toxicity that is often associated with more “full frontal” treatments such as transfer of large numbers of laboratory-expanded tumor-specific cytotoxic T lymphocytes or large intravenous doses of cytokine. Numerous studies have demonstrated that intratumoural therapy has the capacity to minimizing local suppression, inducing sufficient “dangerous” tumor cell death to cross-prime strong immune responses, and rending tumor blood vessels amenable to immune cell traffic to induce effector cell changes in secondary lymphoid organs. However, the key to its success is the design of a sound rational approach based on evidence. There is compelling preclinical data for local immunotherapy approaches in tumor immunology. This review summarises how immune events within a tumour can be modified by local approaches, how this can affect systemic antitumor immunity such that distal sites are attacked, and what approaches have been proven most successful so far in animals and patients.

  18. Molecular diagnosis and immunotherapy.

    Sastre, Joaquín; Sastre-Ibañez, Marina

    2016-12-01

    To describe recent insights into how molecular diagnosis can improve indication and selection of suitable allergens for specific immunotherapy and increase the safety of this therapy. As specific allergen immunotherapy targets specific allergens, identification of the disease-eliciting allergen is a prerequisite for accurate prescription of treatment. In areas of complex sensitization to aeroallergens or in cases of hymenoptera venom allergy, the use of molecular diagnosis has demonstrated that it may lead to a change in indication and selection of allergens for immunotherapy in a large proportion of patients when compared with diagnosis based on skin prick testing and/or specific IgE determination with commercial extracts. These changes in immunotherapy prescription aided by molecular diagnosis have been demonstrated to be cost-effective in some scenarios. Certain patterns of sensitization to grass or olive pollen and bee allergens may identify patients with higher risk of adverse reaction during immunotherapy. Molecular diagnosis, when used with other tools and patients' clinical records, can help clinicians better to select the most appropriate patients and allergens for specific immunotherapy and, in some cases, predict the risk of adverse reactions. The pattern of sensitization to allergens could potentially predict the efficacy of allergen immunotherapy provided that these immunotherapy products contain a sufficient amount of these allergens. Nevertheless, multiplex assay remains a third-level approach, not to be used as screening method in current practice.

  19. Cancer Immunotherapy

    Immunotherapy is a cancer treatment that helps your immune system fight cancer. It is a type of biological therapy. Biological therapy uses substances ... t yet use immunotherapy as often as other cancer treatments, such as surgery, chemotherapy, and radiation therapy. ...

  20. Restriction of GAGE protein expression to subpopulations of cancer cells is independent of genotype and may limit the use of GAGE proteins as targets for cancer immunotherapy

    Gjerstorff, M F; Johansen, L E; Nielsen, O

    2006-01-01

    The GAGE cancer testis antigen gene family encodes products that can be recognized by autologous T cells, and GAGE proteins have been suggested as potential targets for cancer immunotherapy. Analysis of GAGE expression in tumours has primarily been performed at the level of gene transcription, wh...

  1. Direct molecular mimicry enables off-target cardiovascular toxicity by an enhanced affinity TCR designed for cancer immunotherapy.

    Raman, Marine C C; Rizkallah, Pierre J; Simmons, Ruth; Donnellan, Zoe; Dukes, Joseph; Bossi, Giovanna; Le Provost, Gabrielle S; Todorov, Penio; Baston, Emma; Hickman, Emma; Mahon, Tara; Hassan, Namir; Vuidepot, Annelise; Sami, Malkit; Cole, David K; Jakobsen, Bent K

    2016-01-13

    Natural T-cell responses generally lack the potency to eradicate cancer. Enhanced affinity T-cell receptors (TCRs) provide an ideal approach to target cancer cells, with emerging clinical data showing significant promise. Nevertheless, the risk of off target reactivity remains a key concern, as exemplified in a recent clinical report describing fatal cardiac toxicity, following administration of MAGE-A3 specific TCR-engineered T-cells, mediated through cross-reactivity with an unrelated epitope from the Titin protein presented on cardiac tissue. Here, we investigated the structural mechanism enabling TCR cross-recognition of MAGE-A3 and Titin, and applied the resulting data to rationally design mutants with improved antigen discrimination, providing a proof-of-concept strategy for altering the fine specificity of a TCR towards an intended target antigen. This study represents the first example of direct molecular mimicry leading to clinically relevant fatal toxicity, mediated by a modified enhanced affinity TCR designed for cancer immunotherapy. Furthermore, these data demonstrate that self-antigens that are expressed at high levels on healthy tissue should be treated with extreme caution when designing immuno-therapeutics.

  2. GD2-targeted immunotherapy and potential value of circulating microRNAs in neuroblastoma.

    Gholamin, Sharareh; Mirzaei, Hamed; Razavi, Seyed-Mostafa; Hassanian, Seyed Mahdi; Saadatpour, Leila; Masoudifar, Aria; ShahidSales, Soodabeh; Avan, Amir

    2018-02-01

    Neuroblastoma (NB) with various clinical presentation is a known childhood malignancy. Despite significant progress in treatment of NB afflicted patients, high risk disease is usually associated with poor outcome, resulting in long-term survival of less that 50%. Known as a disease most commonly originated form the nerve roots, the variants involved in NB imitation and progression remain to be elucidated. The outcome of low to intermediate risk disease is favorable whereas the high risk NB disease with dismal prognosis, positing the necessity of novel approaches for early detection and prognostication of advanced disease. Tailored immunotherapy approaches have shown significant improvement in high-risk NB patients. It has found a link between Gangliosides and progression of NB. The vast majority of neuroblastoma tumors express elevated levels of GD2, opening new insight into using anti-GD2 drugs as potential treatments for NBs. Implication of anti-GD2 monoclonal antibodies for treatment of high risk NBs triggers further investigation to unearth novel biomarkers as prognostic and response biomarker to guide additional multimodal tailored treatment approaches. A growing body of evidence supports the usefulness of miRNAs to evaluate high risk NBs response to anti-GD2 drugs and further prevent drug-related toxicities in refractory or recurrent NBs. miRNAs and circulating proteins in body fluids (plasma and serum) present as potential biomarkers in early detection of NBs. Here, we summarize various biomarkers involved in diagnosis, prognosis and response to treatment in patients with NB. We further attempted to overview prognostic biomarkers in response to treatment with anti-GD2 drugs. © 2017 Wiley Periodicals, Inc.

  3. New routes of allergen immunotherapy.

    Aricigil, Mitat; Muluk, Nuray Bayar; Sakarya, Engin Umut; Sakalar, Emine Güven; Senturk, Mehmet; Reisacher, William R; Cingi, Cemal

    2016-11-01

    Allergen immunotherapy is the only cure for immunoglobulin E mediated type I respiratory allergies. Subcutaneous immunotherapy (SCIT) and sublingual immunotherapy (SLIT) are the most common treatments. In this article, we reviewed new routes of allergen immunotherapy. Data on alternative routes to allow intralymphatic immunotherapy (ILIT), epicutaneous immunotherapy (EPIT), local nasal immunotherapy (LNIT), oral immunotherapy (OIT), and oral mucosal immunotherapy (OMIT) were gathered from the literature and were discussed. ILIT features direct injection of allergens into lymph nodes. ILIT may be clinically effective after only a few injections and induces allergen-specific immunoglobulin G, similarly to SCIT. A limitation of ILIT is that intralymphatic injections are required. EPIT features allergen administration by using patches mounted on the skin. EPIT seeks to target epidermal antigen-presenting Langerhans cells rather than mast cells or the vasculature; this should reduce both local and systemic adverse effects. LNIT involves the spraying of allergen extracts into the nasal cavity. Natural or chemically modified allergens (the latter, termed allergoids, lack immunoglobulin E reactivity) are prepared in a soluble form. OIT involves the regular administration of small amounts of a food allergen by mouth and commences with low oral doses, which are then increased as tolerance develops. OMIT seeks to deliver allergenic proteins to an expanded population of Langerhans cells in the mucosa of the oral cavity. ILIT, EPIT, LNIT, OIT, and OMIT are new routes for allergen immunotherapy. They are safe and effective.

  4. Identification of Cell Surface Proteins as Potential Immunotherapy Targets in 12 Pediatric Cancers

    Orentas, Rimas J. [Immunology Section, Pediatric Oncology Branch, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD (United States); Yang, James J. [Immunology Section, Pediatric Oncology Branch, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD (United States); Oncogenomics Section, Advanced Technology Center, Pediatric Oncology Branch, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Gaithersburg, MD (United States); Wen, Xinyu; Wei, Jun S. [Oncogenomics Section, Advanced Technology Center, Pediatric Oncology Branch, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Gaithersburg, MD (United States); Mackall, Crystal L. [Immunology Section, Pediatric Oncology Branch, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD (United States); Khan, Javed, E-mail: rimas.orentas@nih.gov [Oncogenomics Section, Advanced Technology Center, Pediatric Oncology Branch, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Gaithersburg, MD (United States)

    2012-12-17

    Technological advances now allow us to rapidly produce CARs and other antibody-derived therapeutics targeting cell surface receptors. To maximize the potential of these new technologies, relevant extracellular targets must be identified. The Pediatric Oncology Branch of the NCI curates a freely accessible database of gene expression data for both pediatric cancers and normal tissues, through which we have defined discrete sets of over-expressed transcripts in 12 pediatric cancer subtypes as compared to normal tissues. We coupled gene expression profiles to current annotation databases (i.e., Affymetrix, Gene Ontology, Entrez Gene), in order to categorize transcripts by their sub-cellular location. In this manner we generated a list of potential immune targets expressed on the cell surface, ranked by their difference from normal tissue. Global differences from normal between each of the pediatric tumor types studied varied, indicating that some malignancies expressed transcript sets that were more highly diverged from normal tissues than others. The validity of our approach is seen by our findings for pre-B cell ALL, where targets currently in clinical trials were top-ranked hits (CD19, CD22). For some cancers, reagents already in development could potentially be applied to a new disease class, as exemplified by CD30 expression on sarcomas. Moreover, several potential new targets shared among several pediatric solid tumors are herein identified, such as MCAM (MUC18), metadherin (MTDH), and glypican-2 (GPC2). These targets have been identified at the mRNA level and are yet to be validated at the protein level. The safety of targeting these antigens has yet to be demonstrated and therefore the identified transcripts should be considered preliminary candidates for new CAR and therapeutic antibody targets. Prospective candidate targets will be evaluated by proteomic analysis including Westerns and immunohistochemistry of normal and tumor tissues.

  5. Fine and Predictable Tuning of TALEN Gene Editing Targeting for Improved T Cell Adoptive Immunotherapy.

    Gautron, Anne-Sophie; Juillerat, Alexandre; Guyot, Valérie; Filhol, Jean-Marie; Dessez, Emilie; Duclert, Aymeric; Duchateau, Philippe; Poirot, Laurent

    2017-12-15

    Using a TALEN-mediated gene-editing approach, we have previously described a process for the large-scale manufacturing of "off-the-shelf" CAR T cells from third-party donor T cells by disrupting the gene encoding TCRα constant chain (TRAC). Taking advantage of a previously described strategy to control TALEN targeting based on the exclusion capacities of non-conventional RVDs, we have developed highly efficient and specific nucleases targeting a key T cell immune checkpoint, PD-1, to improve engineered CAR T cells' functionalities. Here, we demonstrate that this approach allows combined TRAC and PDCD1 TALEN processing at the desired locus while eliminating low-frequency off-site processing. Thus, by replacing few RVDs, we provide here an easy and rapid redesign of optimal TALEN combinations. We anticipate that this method can greatly benefit multiplex editing, which is of key importance especially for therapeutic applications where high editing efficiencies need to be associated with maximal specificity and safety. Copyright © 2017 The Authors. Published by Elsevier Inc. All rights reserved.

  6. Fine and Predictable Tuning of TALEN Gene Editing Targeting for Improved T Cell Adoptive Immunotherapy

    Anne-Sophie Gautron

    2017-12-01

    Full Text Available Using a TALEN-mediated gene-editing approach, we have previously described a process for the large-scale manufacturing of “off-the-shelf” CAR T cells from third-party donor T cells by disrupting the gene encoding TCRα constant chain (TRAC. Taking advantage of a previously described strategy to control TALEN targeting based on the exclusion capacities of non-conventional RVDs, we have developed highly efficient and specific nucleases targeting a key T cell immune checkpoint, PD-1, to improve engineered CAR T cells’ functionalities. Here, we demonstrate that this approach allows combined TRAC and PDCD1 TALEN processing at the desired locus while eliminating low-frequency off-site processing. Thus, by replacing few RVDs, we provide here an easy and rapid redesign of optimal TALEN combinations. We anticipate that this method can greatly benefit multiplex editing, which is of key importance especially for therapeutic applications where high editing efficiencies need to be associated with maximal specificity and safety.

  7. Development of effective tumor immunotherapy using a novel dendritic cell-targeting Toll-like receptor ligand.

    Nadeeka H De Silva

    Full Text Available Although dendritic cell (DC-based immunotherapy shows little toxicity, improvements should be necessary to obtain satisfactory clinical outcome. Using interferon-gamma injection along with DCs, we previously obtained significant clinical responses against small or early stage malignant tumors in dogs. However, improvement was necessary to be effective to largely developed or metastatic tumors. To obtain effective methods applicable to those tumors, we herein used a DC-targeting Toll-like receptor ligand, h11c, and examined the therapeutic effects in murine subcutaneous and visceral tumor models and also in the clinical treatment of canine cancers. In murine experiments, most and significant inhibition of tumor growth and extended survival was observed in the group treated with the combination of h11c-activated DCs in combination with interferon-gamma and a cyclooxygenase2 inhibitor. Both monocytic and granulocytic myeloid-derived suppressor cells were significantly reduced by the combined treatment. Following the successful results in mice, the combined treatment was examined against canine cancers, which spontaneously generated like as those in human. The combined treatment elicited significant clinical responses against a nonepithelial malignant tumor and a malignant fibrous histiocytoma. The treatment was also successful against a bone-metastasis of squamous cell carcinoma. In the successful cases, the marked increase of tumor-responding T cells and decrease of myeloid-derived suppressor cells and regulatory T cells was observed in their peripheral blood. Although the combined treatment permitted the growth of lung cancer of renal carcinoma-metastasis, the marked elevated and long-term maintaining of the tumor-responding T cells was observed in the patient dog. Overall, the combined treatment gave rise to emphatic amelioration in DC-based cancer therapy.

  8. The Emerging Role of PD-1/PD-L1-Targeting Immunotherapy in the Treatment of Metastatic Urothelial Carcinoma.

    Gwynn, Morgan E; DeRemer, David L

    2018-01-01

    To summarize and evaluate immunotherapy agents targeting programmed cell death protein-1 (PD-1) and programmed death ligand-1 (PD-L1) recently approved for the treatment of metastatic urothelial carcinomas (UC). A literature review was performed using PubMed (2012 to June 2017), the American Society of Clinical Oncology abstract databases (2012 to June 2017 Annual Meetings/symposia), and the America Association for Cancer Research symposia (2012 to June 2017). A search using clinicaltrials.gov was conducted to identify studies for atezolizumab, avelumab, durvalumab, nivolumab, and pembrolizumab. English language phase I to III studies assessing PD-1 and PD-L1 in UC were incorporated. Atezolizumab, avelumab, durvalumab, nivolumab, and pembrolizumab have demonstrated clinical efficacy with tolerable toxicities in patients with metastatic UC with disease progression following platinum-based chemotherapy. Anti-PD-1/PD-L1 therapies may provide overall survival advantage; these are currently being evaluated in ongoing phase 3 studies. Greater objective response rates seem to be observed in PD-L1-positive patients versus PD-L1-negative patients, but methodologies in this assessment differ among clinical trials. The identification of biomarkers that provide greater insight into patients who positively respond to PD-1/PD-L1 therapies are needed. Treatment options for metastatic UC have expanded to include PD-1/PD-L1 therapies. These agents should be strongly considered as second-line therapy over single-agent chemotherapy for patients who fail or progress after platinum-based treatment.

  9. Invariant NKT cells as novel targets for immunotherapy in solid tumors.

    Pilones, Karsten A; Aryankalayil, Joseph; Demaria, Sandra

    2012-01-01

    Natural killer T (NKT) cells are a small population of lymphocytes that possess characteristics of both innate and adaptive immune cells. They are uniquely poised to respond rapidly to infection and inflammation and produce cytokines that critically shape the ensuing adaptive cellular response. Therefore, they represent promising therapeutic targets. In cancer, NKT cells are attributed a role in immunosurveillance. NKT cells also act as potent activators of antitumor immunity when stimulated with a synthetic agonist in experimental models. However, in some settings, NKT cells seem to act as suppressors and regulators of antitumor immunity. Here we briefly review current data supporting these paradoxical roles of NKT cells and their regulation. Increased understanding of the signals that determine the function of NKT cells in cancer will be essential to improve current strategies for NKT-cell-based immunotherapeutic approaches.

  10. Chondroitin Sulfate Proteoglycan 4 and Its Potential As an Antibody Immunotherapy Target across Different Tumor Types

    Kristina M. Ilieva

    2018-01-01

    Full Text Available Overexpression of the chondroitin sulfate proteoglycan 4 (CSPG4 has been associated with the pathology of multiple types of such as melanoma, breast cancer, squamous cell carcinoma, mesothelioma, neuroblastoma, adult and pediatric sarcomas, and some hematological cancers. CSPG4 has been reported to exhibit a role in the growth and survival as well as in the spreading and metastasis of tumor cells. CSPG4 is overexpressed in several malignant diseases, while it is thought to have restricted and low expression in normal tissues. Thus, CSPG4 has become the target of numerous anticancer treatment approaches, including monoclonal antibody-based therapies. This study reviews key potential anti-CSPG4 antibody and immune-based therapies and examines their direct antiproliferative/metastatic and immune activating mechanisms of action.

  11. Invariant NKT Cells as Novel Targets for Immunotherapy in Solid Tumors

    Karsten A. Pilones

    2012-01-01

    Full Text Available Natural killer T (NKT cells are a small population of lymphocytes that possess characteristics of both innate and adaptive immune cells. They are uniquely poised to respond rapidly to infection and inflammation and produce cytokines that critically shape the ensuing adaptive cellular response. Therefore, they represent promising therapeutic targets. In cancer, NKT cells are attributed a role in immunosurveillance. NKT cells also act as potent activators of antitumor immunity when stimulated with a synthetic agonist in experimental models. However, in some settings, NKT cells seem to act as suppressors and regulators of antitumor immunity. Here we briefly review current data supporting these paradoxical roles of NKT cells and their regulation. Increased understanding of the signals that determine the function of NKT cells in cancer will be essential to improve current strategies for NKT-cell-based immunotherapeutic approaches.

  12. Sequential cancer immunotherapy: targeted activity of dimeric TNF and IL-8

    Adrian, Nicole; Siebenborn, Uta; Fadle, Natalie; Plesko, Margarita; Fischer, Eliane; Wüest, Thomas; Stenner, Frank; Mertens, Joachim C.; Knuth, Alexander; Ritter, Gerd; Old, Lloyd J.; Renner, Christoph

    2009-01-01

    Polymorphonuclear neutrophils (PMNs) are potent effectors of inflammation and their attempts to respond to cancer are suggested by their systemic, regional and intratumoral activation. We previously reported on the recruitment of CD11b+ leukocytes due to tumor site-specific enrichment of TNF activity after intravenous administration of a dimeric TNF immunokine with specificity for fibroblast activation protein (FAP). However, TNF-induced chemo-attraction and extravasation of PMNs from blood into the tumor is a multistep process essentially mediated by interleukin 8. With the aim to amplify the TNF-induced and IL-8-mediated chemotactic response, we generated immunocytokines by N-terminal fusion of a human anti-FAP scFv fragment with human IL-8 (IL-872) and its N-terminally truncated form IL-83-72. Due to the dramatic difference in chemotaxis induction in vitro, we favored the mature chemokine fused to the anti-FAP scFv for further investigation in vivo. BALB/c nu/nu mice were simultaneously xenografted with FAP-positive or -negative tumors and extended chemo-attraction of PMNs was only detectable in FAP-expressing tissue after intravenous administration of the anti-FAP scFv-IL-872 construct. As TNF-activated PMNs are likewise producers and primary targets for IL-8, we investigated the therapeutic efficacy of co-administration of both effectors: Sequential application of scFv-IL-872 and dimeric IgG1-TNF fusion proteins significantly enhanced anti-tumor activity when compared either to a single effector treatment regimen or sequential application of non-targeted cytokines, indicating that the tumor-restricted sequential application of IL-872 and TNF is a promising approach for cancer therapy. PMID:19267427

  13. Cancer immunotherapy

    Cairns, Linda; Aspeslagh, Sandrine; Anichini, Andrea

    2016-01-01

    This report covers the Immunotherapy sessions of the 2016 Organisation of European Cancer Institutes (OECI) Oncology Days meeting, which was held on 15th-17th June 2016 in Brussels, Belgium. Immunotherapy is a potential cancer treatment that uses an individual's immune system to fight the tumour....... In recent years significant advances have been made in this field in the treatment of several advanced cancers. Cancer immunotherapies include monoclonal antibodies that are designed to attack a very specific part of the cancer cell and immune checkpoint inhibitors which are molecules that stimulate...... or block the inhibition of the immune system. Other cancer immunotherapies include vaccines and T cell infusions. This report will summarise some of the research that is going on in this field and will give us an update on where we are at present....

  14. Staphylococcal Bicomponent Pore-Forming Toxins: Targets for Prophylaxis and Immunotherapy

    M. Javad Aman

    2014-03-01

    Full Text Available Staphylococccus aureus represents one of the most challenging human pathogens as well as a common colonizer of human skin and mucosal surfaces. S. aureus causes a wide range of diseases from skin and soft tissue infection (SSTI to debilitating and life-threatening conditions such as osteomyelitis, endocarditis, and necrotizing pneumonia. The range of diseases reflects the remarkable diversity of the virulence factors produced by this pathogen, including surface antigens involved in the establishment of infection and a large number of toxins that mediate a vast array of cellular responses. The staphylococcal toxins are generally believed to have evolved to disarm the innate immune system, the first line of defense against this pathogen. This review focuses on recent advances on elucidating the biological functions of S. aureus bicomponent pore-forming toxins (BCPFTs and their utility as targets for preventive and therapeutic intervention. These toxins are cytolytic to a variety of immune cells, primarily neutrophils, as well as cells with a critical barrier function. The lytic activity of BCPFTs towards immune cells implies a critical role in immune evasion, and a number of epidemiological studies and animal experiments relate these toxins to clinical disease, particularly SSTI and necrotizing pneumonia. Antibody-mediated neutralization of this lytic activity may provide a strategy for development of toxoid-based vaccines or immunotherapeutics for prevention or mitigation of clinical diseases. However, certain BCPFTs have been proposed to act as danger signals that may alert the immune system through an inflammatory response. The utility of a neutralizing vaccination strategy must be weighed against such immune-activating potential.

  15. Staphylococcal bicomponent pore-forming toxins: targets for prophylaxis and immunotherapy.

    Aman, M Javad; Adhikari, Rajan P

    2014-03-04

    Staphylococccus aureus represents one of the most challenging human pathogens as well as a common colonizer of human skin and mucosal surfaces. S. aureus causes a wide range of diseases from skin and soft tissue infection (SSTI) to debilitating and life-threatening conditions such as osteomyelitis, endocarditis, and necrotizing pneumonia. The range of diseases reflects the remarkable diversity of the virulence factors produced by this pathogen, including surface antigens involved in the establishment of infection and a large number of toxins that mediate a vast array of cellular responses. The staphylococcal toxins are generally believed to have evolved to disarm the innate immune system, the first line of defense against this pathogen. This review focuses on recent advances on elucidating the biological functions of S. aureus bicomponent pore-forming toxins (BCPFTs) and their utility as targets for preventive and therapeutic intervention. These toxins are cytolytic to a variety of immune cells, primarily neutrophils, as well as cells with a critical barrier function. The lytic activity of BCPFTs towards immune cells implies a critical role in immune evasion, and a number of epidemiological studies and animal experiments relate these toxins to clinical disease, particularly SSTI and necrotizing pneumonia. Antibody-mediated neutralization of this lytic activity may provide a strategy for development of toxoid-based vaccines or immunotherapeutics for prevention or mitigation of clinical diseases. However, certain BCPFTs have been proposed to act as danger signals that may alert the immune system through an inflammatory response. The utility of a neutralizing vaccination strategy must be weighed against such immune-activating potential.

  16. Immunotherapy for Gastroesophageal Cancer

    Emily F. Goode

    2016-09-01

    Full Text Available Survival for patients with advanced oesophageal and stomach cancer is poor; together these cancers are responsible for more than a million deaths per year globally. As chemotherapy and targeted therapies such as trastuzumab and ramucirumab result in modest improvements in survival but not long-term cure for such patients, development of alternative treatment approaches is warranted. Novel immunotherapy drugs such as checkpoint inhibitors have been paradigm changing in melanoma, non-small cell lung cancer and urothelial cancers. In this review, we assess the early evidence for efficacy of immunotherapy in patients with gastroesophageal cancer in addition to considering biomarkers associated with response to these treatments. Early results of Anti- Programmed Cell Death Protein-1 (anti-PD-1, anti-PD-L1 and anti-Cytotoxic T-lymphocyte assosciated protein-4 (anti-CTLA4 trials are examined, and we conclude with a discussion on the future direction for immunotherapy for gastroesophageal cancer patients.

  17. MHC-I Ligand Discovery Using Targeted Database Searches of Mass Spectrometry Data: Implications for T-Cell Immunotherapies

    Murphy, J. Patrick; Konda, Prathyusha; Kowalewski, Daniel J.

    2017-01-01

    Class I major histocompatibility complex (MHC-I)-bound peptide ligands dictate the activation and specificity of CD8+ T cells and thus are important for devising T-cell immunotherapies. In recent times, advances in mass spectrometry (MS) have enabled the precise identification of these MHC-I pept...

  18. Bioinformatic Description of Immunotherapy Targets for Pediatric T-Cell Leukemia and the Impact of Normal Gene Sets Used for Comparison

    Rimas J Orentas

    2014-06-01

    Full Text Available Pediatric lymphoid leukemia has the highest cure rate of all pediatric malignancies, yet due to its prevalence, still accounts for the majority of childhood cancer deaths and requires long-term highly toxic therapy. The ability to target B-cell ALL with immunoglobulin-like binders, whether anti-CD22 antibody or anti-CD19 CAR-Ts, has impacted treatment options for some patients. The development of new ways to target B cell antigens continues at rapid pace. T-cell ALL accounts for up to 20% of childhood leukemia but has yet to see a set of high value immunotherapeutic targets identified. To find new targets for T-ALL immunotherapy, we employed a bioinformatic comparison to broad normal tissue arrays, hematopoietic stem cells (HSC, and mature lymphocytes, then filtered the results for transcripts encoding plasma membrane proteins. T-ALL bears a core T cell signature and transcripts encoding TCR/CD3 components and canonical markers of T cell development predominate, especially when comparison was made to normal tissue or HSC. However, when comparison to mature lymphocytes was also undertaken, we identified two antigens that may drive, or be associated with leukemogenesis; TALLA-1 and hedgehog interacting protein, HHIP. In addition, TCR subfamilies, CD1, activation and adhesion markers, membrane organizing molecules, and receptors linked to metabolism and inflammation were also identified. Of these, only CD52, CD37, and CD98 are currently being targeted clinically. This work provides a set of targets to be considered for future development of immunotherapies for T-ALL.

  19. P-MAPA immunotherapy potentiates the effect of cisplatin on serous ovarian carcinoma through targeting TLR4 signaling.

    de Almeida Chuffa, Luiz Gustavo; de Moura Ferreira, Grazielle; Lupi, Luiz Antonio; da Silva Nunes, Iseu; Fávaro, Wagner José

    2018-01-17

    Toll-like receptors (TLRs) are transmembrane proteins expressed on the surface of ovarian cancer (OC) and immune cells. Identifying the specific roles of the TLR-mediated signaling pathways in OC cells is important to guide new treatments. Because immunotherapies have emerged as the adjuvant treatment for patients with OC, we investigated the effect of a promising immunotherapeutic strategy based on protein aggregate magnesium-ammonium phospholinoleate-palmitoleate anhydride (P-MAPA) combined with cisplatin (CIS) on the TLR2 and TLR4 signaling pathways via myeloid differentiation factor 88 (MyD88) and TLR-associated activator of interferon (TRIF) in an in vivo model of OC. Tumors were chemically induced by a single injection of 100 μg of 7,12-dimethylbenz(a)anthracene (DMBA) directly under the left ovarian bursa in Fischer 344 rats. After the rats developed serous papillary OC, they were given P-MAPA, CIS or the combination P-MAPA+CIS as therapies. To understand the effects of the treatments, we assessed the tumor size, histopathology, and the TLR2- and TLR4-mediated inflammatory responses. Although CIS therapy was more effective than P-MAPA in reducing the tumor size, P-MAPA immunotherapy significantly increased the expressions of TLR2 and TLR4. More importantly, the combination of P-MAPA with CIS showed a greater survival rate compared to CIS alone, and exhibited a significant reduction in tumor volume compared to P-MAPA alone. The combination therapy also promoted the increase in the levels of the following OC-related proteins: TLR4, MyD88, TRIF, inhibitor of phosphorylated NF-kB alpha (p-IkBα), and nuclear factor kappa B (NF-kB p65) in both cytoplasmic and nuclear sites. While P-MAPA had no apparent effect on tumor necrosis factor alpha (TNF-α) and interleukin (IL)-6, it seems to increase interferon-γ (IFN-γ), which may induce the Thelper (Th1)-mediated immune response. Collectively, our results suggest that P-MAPA immunotherapy combined with cisplatin

  20. Immunotherapy in genitourinary malignancies

    Kathan Mehta

    2017-04-01

    Full Text Available Abstract Treatment of cancer patients involves a multidisciplinary approach including surgery, radiotherapy, and chemotherapy. Traditionally, patients with metastatic disease are treated with combination chemotherapies or targeted agents. These cytotoxic agents have good response rates and achieve palliation; however, complete responses are rarely seen. The field of cancer immunology has made rapid advances in the past 20 years. Recently, a number of agents and vaccines, which modulate the immune system to allow it to detect and target cancer cells, are being developed. The benefit of these agents is twofold, it enhances the ability the body’s own immune system to fight cancer, thus has a lower incidence of side effects compared to conventional cytotoxic chemotherapy. Secondly, a small but substantial number of patients with metastatic disease are cured by immunotherapy or achieve durable responses lasting for a number of years. In this article, we review the FDA-approved immunotherapy agents in the field of genitourinary malignancies. We also summarize new immunotherapy agents being evaluated in clinical studies either as single agents or as a combination.

  1. Rational combinations of immunotherapy for pancreatic ductal adenocarcinoma.

    Blair, Alex B; Zheng, Lei

    2017-06-01

    The complex interaction between the immune system, the tumor and the microenvironment in pancreatic ductal adenocarcinoma (PDA) leads to the resistance of PDA to immunotherapy. To overcome this resistance, combination immunotherapy is being proposed. However, rational combinations that target multiple aspects of the complex anti-tumor immune response are warranted. Novel clinical trials will investigate and optimize the combination immunotherapy for PDA.

  2. Novel immunotherapy and treatment modality for severe food allergies.

    Nagakura, Ken-Ichi; Sato, Sakura; Yanagida, Noriyuki; Ebisawa, Motohiro

    2017-06-01

    In recent years, many studies on oral immunotherapy (OIT) have been conducted; however, few have focused on severe food allergies. The purpose of this review was to assess the efficacy and safety of oral immunotherapies for patients with severe food allergy. We reviewed multiple immunotherapy reports published within a few years or reports focusing on severe food allergies. We also investigated recent studies on OIT and novel food allergy management. Immunotherapies targeting low-dose antigen exposure and oral food challenges using low-dose target volumes may be safer than conventional OIT. It is necessary to consider which immunotherapy regimen is appropriate based on allergy severity of the patient.

  3. Immunotherapy of Genitourinary Malignancies

    Teruo Inamoto

    2012-01-01

    Full Text Available Most cancer patients are treated with some combination of surgery, radiation, and chemotherapy. Despite recent advances in local therapy with curative intent, chemotherapeutic treatments for metastatic disease often remain unsatisfying due to severe side effects and incomplete long-term remission. Therefore, the evaluation of novel therapeutic options is of great interest. Conventional, along with newer treatment strategies target the immune system that suppresses genitourinary (GU malignancies. Metastatic renal cell carcinoma and non-muscle-invasive bladder caner represent the most immune-responsive types of all human cancer. This review examines the rationale and emerging evidence supporting the anticancer activity of immunotherapy, against GU malignancies.

  4. Tissue factor is an angiogenic-specific receptor for factor VII-targeted immunotherapy and photodynamic therapy.

    Hu, Zhiwei; Cheng, Jijun; Xu, Jie; Ruf, Wolfram; Lockwood, Charles J

    2017-02-01

    Identification of target molecules specific for angiogenic vascular endothelial cells (VEC), the inner layer of pathological neovasculature, is critical for discovery and development of neovascular-targeting therapy for angiogenesis-dependent human diseases, notably cancer, macular degeneration and endometriosis, in which vascular endothelial growth factor (VEGF) plays a central pathophysiological role. Using VEGF-stimulated vascular endothelial cells (VECs) isolated from microvessels, venous and arterial blood vessels as in vitro angiogenic models and unstimulated VECs as a quiescent VEC model, we examined the expression of tissue factor (TF), a membrane-bound receptor on the angiogenic VEC models compared with quiescent VEC controls. We found that TF is specifically expressed on angiogenic VECs in a time-dependent manner in microvessels, venous and arterial vessels. TF-targeted therapeutic agents, including factor VII (fVII)-IgG1 Fc and fVII-conjugated photosensitizer, can selectively bind angiogenic VECs, but not the quiescent VECs. Moreover, fVII-targeted photodynamic therapy can selectively and completely eradicate angiogenic VECs. We conclude that TF is an angiogenic-specific receptor and the target molecule for fVII-targeted therapeutics. This study supports clinical trials of TF-targeted therapeutics for the treatment of angiogenesis-dependent diseases such as cancer, macular degeneration and endometriosis.

  5. Dynamic contrast enhanced MRI detects early response to adoptive NK cellular immunotherapy targeting the NG2 proteoglycan in a rat model of glioblastoma.

    Cecilie Brekke Rygh

    Full Text Available There are currently no established radiological parameters that predict response to immunotherapy. We hypothesised that multiparametric, longitudinal magnetic resonance imaging (MRI of physiological parameters and pharmacokinetic models might detect early biological responses to immunotherapy for glioblastoma targeting NG2/CSPG4 with mAb9.2.27 combined with natural killer (NK cells. Contrast enhanced conventional T1-weighted MRI at 7±1 and 17±2 days post-treatment failed to detect differences in tumour size between the treatment groups, whereas, follow-up scans at 3 months demonstrated diminished signal intensity and tumour volume in the surviving NK+mAb9.2.27 treated animals. Notably, interstitial volume fraction (ve, was significantly increased in the NK+mAb9.2.27 combination therapy group compared mAb9.2.27 and NK cell monotherapy groups (p = 0.002 and p = 0.017 respectively in cohort 1 animals treated with 1 million NK cells. ve was reproducibly increased in the combination NK+mAb9.2.27 compared to NK cell monotherapy in cohort 2 treated with increased dose of 2 million NK cells (p<0.0001, indicating greater cell death induced by NK+mAb9.2.27 treatment. The interstitial volume fraction in the NK monotherapy group was significantly reduced compared to mAb9.2.27 monotherapy (p<0.0001 and untreated controls (p = 0.014 in the cohort 2 animals. NK cells in monotherapy were unable to kill the U87MG cells that highly expressed class I human leucocyte antigens, and diminished stress ligands for activating receptors. A significant association between apparent diffusion coefficient (ADC of water and ve in combination NK+mAb9.2.27 and NK monotherapy treated tumours was evident, where increased ADC corresponded to reduced ve in both cases. Collectively, these data support histological measures at end-stage demonstrating diminished tumour cell proliferation and pronounced apoptosis in the NK+mAb9.2.27 treated tumours compared to the other

  6. Evaluating the cellular targets of anti-4-1BB agonist antibody during immunotherapy of a pre-established tumor in mice.

    Gloria H Y Lin

    2010-06-01

    Full Text Available Manipulation of the immune system represents a promising avenue for cancer therapy. Rational advances in immunotherapy of cancer will require an understanding of the precise correlates of protection. Agonistic antibodies against the tumor necrosis factor receptor family member 4-1BB are emerging as a promising tool in cancer therapy, with evidence that these antibodies expand both T cells as well as innate immune cells. Depletion studies have suggested that several cell types can play a role in these immunotherapeutic regimens, but do not reveal which cells must directly receive the 4-1BB signals for effective therapy.We show that re-activated memory T cells are superior to resting memory T cells in control of an 8-day pre-established E.G7 tumor in mice. We find that ex vivo activation of the memory T cells allows the activated effectors to continue to divide and enter the tumor, regardless of antigen-specificity; however, only antigen-specific reactivated memory T cells show any efficacy in tumor control. When agonistic anti-4-1BB antibody is combined with this optimized adoptive T cell therapy, 80% of mice survive and are fully protected from tumor rechallenge. Using 4-1BB-deficient mice and mixed bone marrow chimeras, we find that it is sufficient to have 4-1BB only on the endogenous host alphabeta T cells or only on the transferred T cells for the effects of anti-4-1BB to be realized. Conversely, although multiple immune cell types express 4-1BB and both T cells and APC expand during anti-4-1BB therapy, 4-1BB on cells other than alphabeta T cells is neither necessary nor sufficient for the effect of anti-4-1BB in this adoptive immunotherapy model.This study establishes alphabeta T cells rather than innate immune cells as the critical target in anti-4-1BB therapy of a pre-established tumor. The study also demonstrates that ex vivo activation of memory T cells prior to infusion allows antigen-specific tumor control without the need for

  7. Beyond CD19: Opportunities for future development of targeted immunotherapy in pediatric relapsed-refractory acute leukemia

    Haneen eShalabi

    2015-10-01

    Full Text Available Chimeric antigen receptor (CAR T cell therapy has been used as a targeted approach in cancer therapy. Relapsed and refractory acute leukemia in pediatrics has been difficult to treat with conventional therapy due to dose limiting toxicities. With the recent success of CD 19 CAR in pediatric patients with B cell ALL, this mode of therapy has become a very attractive option for these patients with high risk disease. In this review, we will discuss current treatment paradigms of pediatric acute leukemia, and potential therapeutic targets for additional high risk populations, including T cell ALL, AML, and infant ALL.

  8. Immunotherapy in multimodality treatment

    Anon.

    1989-01-01

    Application of immunotherapy for treatment of oncologic patients is considered. Monoclonal antibodies (MCA) are used for immunotherapy both independently and as carriers of various toxins, chemopreparations and radioactive isotopes. It is shown that immunotherapy should be considered as one of additional methods of multimodulity treatment of patients with malignant tumors

  9. Immunotherapy by targeting of VGKC complex for seizure control and prevention of cognitive impairment in a mouse model of epilepsy.

    Fan, Zhiliang; Feng, Xiaojuan; Fan, Zhigang; Zhu, Xingyuan; Yin, Shaohua

    2018-05-09

    Epilepsy is a type of refractory neurologic disorder mental disease, which is associated with cognitive impairments and memory dysfunction. However, the potential mechanisms of epilepsy are not well understood. Previous evidence has identified the voltage gated potassium channel complex (VGKC) as a target in various cohorts of patients with epilepsy. In the present study, the efficacy of an antibody against VGKC (anti‑VGKC) for the treatment of epilepsy in mice was investigated. A mouse model of lithium‑pilocarpine temporal lobe epilepsy was established and anti‑VGKC treatment was administered for 30 days. Memory impairment, anxiety, visual attention, inhibitory control and neuronal loss were measured in the mouse model of lithium‑pilocarpine temporal lobe epilepsy. The results revealed that epileptic mice treated with anti‑VGKC were able to learn the task and presented attention impairment, even a tendency toward impulsivity and compulsivity. It was also exhibited that anti‑VGKC treatment decreased neuronal loss in structures classically associated with attentional performance in hippocampus. Mice who received Anti‑VGKC treatment had inhibited motor seizures and hippocampal damage as compared with control mice. In conclusion, these results indicated that anti‑VGKC treatment may present benefits for improvements of the condition of motor attention impairment and cognitive competence, which suggests that VGKC may be a potential target for the treatment of epilepsy.

  10. FAST: Towards safe and effective subcutaneous immunotherapy of persistent life-threatening food allergies

    Zuidmeer-Jongejan, Laurian; Fernandez-Rivas, Montserrat; Poulsen, Lars K.; Neubauer, Angela; Asturias, Juan; Blom, Lars; Boye, Joyce; Bindslev-Jensen, Carsten; Clausen, Michael; Ferrara, Rosa; Garosi, Paula; Huber, Hans; Jensen, Bettina M.; Koppelman, Stef; Kowalski, Marek L.; Lewandowska-Polak, Anna; Linhart, Birgit; Maillere, Bernard; Mari, Adriano; Martinez, Alberto; Mills, Clare En; Nicoletti, Claudio; Opstelten, Dirk-Jan; Papadopoulos, Nikos G.; Portoles, Antonio; Rigby, Neil; Scala, Enrico; Schnoor, Heidi J.; Sigursdottir, Sigurveig; Stavroulakis, Georg; Stolz, Frank; Swoboda, Ines; Valenta, Rudolf; van den Hout, Rob; Versteeg, Serge A.; Witten, Marianne; van Ree, Ronald

    2012-01-01

    ABSTRACT: The FAST project (Food Allergy Specific Immunotherapy) aims at the development of safe and effective treatment of food allergies, targeting prevalent, persistent and severe allergy to fish and peach. Classical allergen-specific immunotherapy (SIT), using subcutaneous injections with

  11. Novel Approaches to Pediatric Cancer: Immunotherapy

    Payal A. Shah

    2015-06-01

    Full Text Available From the early 20th century, immunotherapy has been studied as a treatment modality for cancers, including in children. Since then, developments in monoclonal antibodies and vaccine therapies have helped to usher in a new era of cancer immunotherapeutics. However, efficacy of these types of therapies has been limited, mostly in part due to low tumor immunogenicity, cancer escape pathways, and toxicities. As researchers investigate the cellular and molecular components of immunotherapies, mechanisms to improve tumor specificity and overcome immune escape have been identified. The goal of immunotherapy now has been to modulate tumor escape pathways while amplifying the immune response by combining innate and adaptive arms of the immune system. Although several limiting factors have been identified, these recent advances in immunotherapy remain at the forefront of pediatric oncologic therapeutic trials. Immunotherapy is now coming to the forefront of precision treatment for a variety of cancers, with evidence that agents targeting immunosuppressive mechanisms for cancer progression can be effective therapy [1-3]. In this review, we review various types of immunotherapy, including the cellular biology, limitations, recent novel therapeutics, and the application of immunotherapy to pediatric oncology.

  12. Potentiality of immunotherapy against hepatocellular carcinoma

    Tsuchiya, Nobuhiro; Sawada, Yu; Endo, Itaru; Uemura, Yasushi; Nakatsura, Tetsuya

    2015-01-01

    Hepatocellular carcinoma (HCC), the predominant form of primary liver cancer, is the fifth most common cancer worldwide and the second leading cause of cancer-related death. Despite the high incidence, treatment options remain limited for advanced HCC, and as a result prognosis continues to be poor. Current therapeutic options, surgery, chemotherapy and radiotherapy, have only modest efficacy. New treatment modalities to prolong survival and to minimize the risk of adverse response are desperately needed for patients with advanced HCC. Tumor immunotherapy is a promising, novel treatment strategy that may lead to improvements in both treatment-associated toxicity and outcome. The strategies have developed in part through genomic studies that have yielded candidate target molecules and in part through basic biology studies that have defined the pathways and cell types regulating immune response. Here, we summarize the various types of HCC immunotherapy and argue that the newfound field of HCC immunotherapy might provide critical advantages in the effort to improve prognosis of patients with advanced HCC. Already several immunotherapies, such as tumor-associated antigen therapy, immune checkpoint inhibitors and cell transfer immunotherapy, have demonstrated safety and feasibility in HCC patients. Unfortunately, immunotherapy currently has low efficacy in advanced stage HCC patients; overcoming this challenge will place immunotherapy at the forefront of HCC treatment, possibly in the near future. PMID:26420958

  13. Mite allergoids coupled to nonoxidized mannan from Saccharomyces cerevisae efficiently target canine dendritic cells for novel allergy immunotherapy in veterinary medicine.

    Soria, Irene; Alvarez, Javier; Manzano, Ana I; López-Relaño, Juan; Cases, Bárbara; Mas-Fontao, Ana; Cañada, F Javier; Fernández-Caldas, Enrique; Casanovas, Miguel; Jiménez-Barbero, Jesús; Palomares, Oscar; Viñals-Flórez, Luis M; Subiza, José L

    2017-08-01

    We have recently reported that grass pollen allergoids conjugated with nonoxidized mannan of Saccharomyces cerevisae using glutaraldehyde results in a novel hypoallergenic mannan-allergen complex with improved properties for allergen vaccination. Using this approach, human dendritic cells show a better allergen uptake and cytokine profile production (higher IL-10/IL-4 ratio) for therapeutic purposes. Here we aim to address whether a similar approach can be extended to dogs using canine dendritic cells. Six healthy Spanish Greyhound dogs were used as blood donors to obtain canine dendritic cells (DC) derived from peripheral blood monocytes. Allergens from Dermatophagoides farinae mite were polymerized and conjugated with nonoxidized mannan. Nuclear magnetic resonance (NMR), gel electrophoresis (SDS-PAGE), immunoblotting and IgE-ELISA inhibition studies were conducted to evaluate the main characteristics of the allergoid obtained. Mannan-allergen conjugate and controls were assayed in vitro for canine DC uptake and production of IL-4 and IL-10. The results indicate that the conjugation of D. farinae allergens with nonoxidized mannan was feasible using glutaraldehyde. The resulting product was a polymerized structure showing a high molecular weight as detected by NMR and SDS-PAGE analysis. The mannan-allergen conjugate was hypoallergenic with a reduced reactivity with specific dog IgE. An increase in both allergen uptake and IL-10/IL-4 ratio was obtained when canine DCs were incubated with the mannan-allergen conjugate, as compared with the control allergen preparations (unmodified D. farinae allergens and oxidized mannan-allergen conjugate). We conclude that hypoallergenic D. farinae allergens coupled to nonoxidized mannan is a novel allergen preparation suitable for canine allergy immunotherapy targeting dendritic cells. Copyright © 2017 The Authors. Published by Elsevier B.V. All rights reserved.

  14. Proceedings of the 2016 China Cancer Immunotherapy Workshop

    Bin Xue

    2016-10-01

    Full Text Available Table of contents A1 Proceedings of 2016 China Cancer Immunotherapy Workshop, Beijing, China Bin Xue, Jiaqi Xu, Wenru Song, Zhimin Yang, Ke Liu, Zihai Li A2 Set the stage: fundamental immunology in forty minutes Zihai Li A3 What have we learnt from the anti-PD-1/PD-L1 therapy of advanced human cancer? Lieping Chen A4 Immune checkpoint inhibitors in lung cancer Edward B. Garon A5 Mechanisms of response and resistance to checkpoint inhibitors in melanoma Siwen Hu-Lieskovan A6 Checkpoint inhibitor immunotherapy in lymphoid malignancies Wei Ding A7 Translational research to improve the efficacy of immunotherapy in genitourinary malignancies Chong-Xian Pan A8 Immune checkpoint inhibitors in gastrointestinal malignancies Weijing Sun A9 What’s next beyond PD-1/PDL1? Yong-Jun Liu A10 Cancer vaccines: new insights into the oldest immunotherapy strategy Lei Zheng A11 Bispecific antibodies for cancer immunotherapy Delong Liu A12 Updates on CAR-T immunotherapy Michel Sadelain A13 Adoptive T cell therapy: personalizing cancer treatment Cassian Yee A14 Immune targets and neoantigens for cancer immunotherapy Rongfu Wang A15 Phase I/IIa trial of chimeric antigen receptor modified T cells against CD133 in patients with advanced and metastatic solid tumors Meixia Chen, Yao Wang, Zhiqiang Wu, Hanren Dai, Can Luo, Yang Liu, Chuan Tong, Yelei Guo, Qingming Yang, Weidong Han A16 Cancer immunotherapy biomarkers: progress and issues Lisa H. Butterfield A17 Shaping of immunotherapy response by cancer genomes Timothy A. Chan A18 Unique development consideration for cancer immunotherapy Wenru Song A19 Immunotherapy combination Ruirong Yuan A20 Immunotherapy combination with radiotherapy Bo Lu A21 Cancer immunotherapy: past, present and future Ke Liu A22 Breakthrough therapy designation drug development and approval Max Ning A23 Current European regulation of innovative oncology medicines: opportunities for immunotherapy Harald Enzmann, Heinz Zwierzina

  15. Immunotherapy: what lies beyond.

    Casale, Thomas B; Stokes, Jeffrey R

    2014-03-01

    Allergen immunotherapy has been used to treat allergic diseases, such as asthma, allergic rhinitis, and venom allergy, since first described over a century ago. The current standard of care in the United States involves subcutaneous administration of clinically relevant allergens for several months, building up to eventual monthly injections for typically 3 to 5 years. Recent advances have improved the safety and efficacy of immunotherapy. The addition of omalizumab or Toll-like receptor agonists to standard subcutaneous immunotherapy has proved beneficial. Altering the extract itself, either through chemical manipulation producing allergoids or directly producing recombinant proteins or significant peptides, has been evaluated with promising results. The use of different administration techniques, such as sublingual immunotherapy, is common in Europe and is on the immediate horizon in the United States. Other methods of administering allergen immunotherapy have been studied, including epicutaneous, intralymphatic, intranasal, and oral immunotherapy. In this review we focus on new types and routes of immunotherapy, exploring recent human clinical trial data. The promise of better immunotherapies appears closer than ever before, but much work is still needed to develop novel immunotherapies that induce immunologic tolerance and enhanced clinical efficacy and safety over that noted for subcutaneous allergen immunotherapy. Copyright © 2014 American Academy of Allergy, Asthma & Immunology. Published by Mosby, Inc. All rights reserved.

  16. New drugs, new toxicities: severe side effects of modern targeted and immunotherapy of cancer and their management.

    Kroschinsky, Frank; Stölzel, Friedrich; von Bonin, Simone; Beutel, Gernot; Kochanek, Matthias; Kiehl, Michael; Schellongowski, Peter

    2017-04-14

    Pharmacological and cellular treatment of cancer is changing dramatically with benefits for patient outcome and comfort, but also with new toxicity profiles. The majority of adverse events can be classified as mild or moderate, but severe and life-threatening complications requiring ICU admission also occur. This review will focus on pathophysiology, symptoms, and management of these events based on the available literature.While standard antineoplastic therapy is associated with immunosuppression and infections, some of the recent approaches induce overwhelming inflammation and autoimmunity. Cytokine-release syndrome (CRS) describes a complex of symptoms including fever, hypotension, and skin reactions as well as lab abnormalities. CRS may occur after the infusion of monoclonal or bispecific antibodies (MABs, BABs) targeting immune effectors and tumor cells and is a major concern in recipients of chimeric antigen receptor (CAR) modified T lymphocytes as well. BAB and CAR T-cell treatment may also be compromised by central nervous system (CNS) toxicities such as encephalopathy, cerebellar alteration, disturbed consciousness, or seizures. While CRS is known to be induced by exceedingly high levels of inflammatory cytokines, the pathophysiology of CNS events is still unclear. Treatment with antibodies against inhibiting immune checkpoints can lead to immune-related adverse events (IRAEs); colitis, diarrhea, and endocrine disorders are often the cause for ICU admissions.Respiratory distress is the main reason for ICU treatment in cancer patients and is attributable to infectious agents in most cases. In addition, some of the new drugs are reported to cause non-infectious lung complications. While drug-induced interstitial pneumonitis was observed in a substantial number of patients treated with phosphoinositol-3-kinase inhibitors, IRAEs may also affect the lungs.Inhibitors of angiogenetic pathways have increased the antineoplastic portfolio. However, vessel formation

  17. Mechanisms of Intrinsic Tumor Resistance to Immunotherapy

    John Rieth

    2018-05-01

    Full Text Available An increased understanding of the interactions between the immune system and tumors has opened the door to immunotherapy for cancer patients. Despite some success with checkpoint inhibitors including ipilimumab, pembrolizumab, and nivolumab, most cancer patients remain unresponsive to such immunotherapy, likely due to intrinsic tumor resistance. The mechanisms most likely involve reducing the quantity and/or quality of antitumor lymphocytes, which ultimately are driven by any number of developments: tumor mutations and adaptations, reduced neoantigen generation or expression, indoleamine 2,3-dioxygenase (IDO overexpression, loss of phosphatase and tensin homologue (PTEN expression, and overexpression of the Wnt–β-catenin pathway. Current work in immunotherapy continues to identify various tumor resistance mechanisms; future work is needed to develop adjuvant treatments that target those mechanisms, in order to improve the efficacy of immunotherapy and to expand its scope.

  18. Breast Cancer Immunotherapy

    Juhua Zhou; Yin Zhong

    2004-01-01

    Breast cancer is a leading cause of cancer-related deaths in women worldwide. Although tumorectomy,radiotherapy, chemotherapy and hormone replacement therapy have been used for the treatment of breast cancer, there is no effective therapy for patients with invasive and metastatic breast cancer. Immunotherapy may be proved effective in treating patients with advanced breast cancer. Breast cancer immunotherapy includes antibody based immunotherapy, cancer vaccine immunotherapy, adoptive T cell transfer immunotherapy and T cell receptor gene transfer immunotherapy. Antibody based immunotherapy such as the monoclonal antibody against HER-2/neu (trastuzumab) is successfully used in the treatment of breast cancer patients with over-expressed HER-2/neu, however, HER-2/neu is over-expressed only in 25-30% of breast cancer patients. Cancer vaccine immunotherapy is a promising method to treat cancer patients. Cancer vaccines can be used to induce specific anti-tumor immunity in breast cancer patients, but cannot induce objective tumor regression. Adoptive T cell transfer immunotherapy is an effective method in the treatment of melanoma patients. Recent advances in anti-tumor T cell generation ex vivo and limited clinical trial data have made the feasibility of adoptive T cell transfer immunotherapy in the treatment of breast cancer patients. T cell receptor gene transfer can redirect the specificity of T cells. Chimeric receptor, scFv(anti-HER-2/neu)/zeta receptor, was successfully used to redirect cytotoxic T lymphocyte hybridoma cells to obtain anti-HER-2/neu positive tumor cells, suggesting the feasibility of treatment of breast cancer patients with T cell receptor gene transfer immunotherapy. Clinical trials will approve that immunotherapy is an effective method to cure breast cancer disease in the near future.

  19. Breast Cancer Immunotherapy

    JuhuaZhou; YinZhong

    2004-01-01

    Breast cancer is a leading cause of cancer-related deaths in women worldwide. Although tumorectomy, radiotherapy, chemotherapy and hormone replacement therapy have been used for the treatment of breast cancer, there is no effective therapy for patients with invasive and metastatic breast cancer. Immunotherapy may be proved effective in treating patients with advanced breast cancer. Breast cancer immunotherapy includes antibody based immunotherapy, cancer vaccine immunotherapy, adoptive T cell transfer immunotherapy and T cell receptor gene transfer immunotherapy. Antibody based immunotherapy such as the monoclonal antibody against HER-2/neu (trastuzumab) is successfully used in the treatment of breast cancer patients with over-expressed HER-2/neu, however, HER-2/neu is over-expressed only in 25-30% of breast cancer patients. Cancer vaccine immunotherapy is a promising method to treat cancer patients. Cancer vaccines can be used to induce specific anti-tumor immunity in breast cancer patients, but cannot induce objective tumor regression. Adoptive T cell transfer immunotherapy is an effective method in the treatment of melanoma patients. Recent advances in anti-tumor T cell generation ex vivo and limited clinical trial data have made the feasibility of adoptive T cell transfer immunotherapy in the treatment of breast cancer patients. T cell receptor gene transfer can redirect the specificity of T cells. Chimeric receptor, scFv(anti-HER-2/neu)/zeta receptor, was successfully used to redirect cytotoxic T lymphocyte hybridoma cells to obtain anti-HER-2/neu positive tumor cells, suggesting the feasibility of treatment of breast cancer patients with T cell receptor gene transfer immunotherapy. Clinical trials will approve that immunotherapy is an effective method to cure breast cancer disease in the near future. Cellular & Molecular Immunology.

  20. Advances of Immunotherapy in Small Cell Lung Cancer

    Jingjing LIU

    2014-06-01

    Full Text Available Small cell lung cancer (SCLC is complex heterogeneous due to unclear biological characteristics in terms of cell origin, pathogenesis and driver genes etc. Diagnosis and treatment of SCLC has been slowly improved and few breakthroughs have been discovered up to now. Therefore new strategies are urgently needed to improve the efficacy of SCLC treatment. Tumor immunotherapy has potential to restore and trigger the immune system to recognize and eliminate tumor cells, notably it has only minimal adverse impact on normal tissue. Cancer vaccine, adoptive immunotherapy, cytokines and checkpoint inhibitors have now been launched for clinical treatment of SCLC. Ipilimumab is the most promising medicine of immunotherapy. Immunotherapy is expected to bring new vision to the treatment of SCLC. And further researches are needed on such problems affecting efficacy of immunotherapy as the heterogeneity of SCLC, the uncertainty of target for immunotherapy, the immune tolerance, etc.

  1. New Opportunities for Targeted Immunotherapy

    A team of NCI researchers has reported that several types of gastrointestinal cancer have tumor-specific mutations that can be recognized by the immune system, thereby offering a new therapeutic opportunity for patients with these tumors.

  2. Lentiviral vectors in cancer immunotherapy.

    Oldham, Robyn Aa; Berinstein, Elliot M; Medin, Jeffrey A

    2015-01-01

    Basic science advances in cancer immunotherapy have resulted in various treatments that have recently shown success in the clinic. Many of these therapies require the insertion of genes into cells to directly kill them or to redirect the host's cells to induce potent immune responses. Other analogous therapies work by modifying effector cells for improved targeting and enhanced killing of tumor cells. Initial studies done using γ-retroviruses were promising, but safety concerns centered on the potential for insertional mutagenesis have highlighted the desire to develop other options for gene delivery. Lentiviral vectors (LVs) have been identified as potentially more effective and safer alternative delivery vehicles. LVs are now in use in clinical trials for many different types of inherited and acquired disorders, including cancer. This review will discuss current knowledge of LVs and the applications of this viral vector-based delivery vehicle to cancer immunotherapy.

  3. Society for Immunotherapy of Cancer consensus statement on immunotherapy for the treatment of renal cell carcinoma.

    Rini, Brian I; McDermott, David F; Hammers, Hans; Bro, William; Bukowski, Ronald M; Faba, Bernard; Faba, Jo; Figlin, Robert A; Hutson, Thomas; Jonasch, Eric; Joseph, Richard W; Leibovich, Bradley C; Olencki, Thomas; Pantuck, Allan J; Quinn, David I; Seery, Virginia; Voss, Martin H; Wood, Christopher G; Wood, Laura S; Atkins, Michael B

    2016-01-01

    Immunotherapy has produced durable clinical benefit in patients with metastatic renal cell cancer (RCC). In the past, patients treated with interferon-alpha (IFN) and interleukin-2 (IL-2) have achieved complete responses, many of which have lasted for multiple decades. More recently, a large number of new agents have been approved for RCC, several of which attack tumor angiogenesis by inhibiting vascular endothelial growth factors (VEGF) and VEGF receptors (VEGFR), as well as tumor metabolism, inhibiting the mammalian target of rapamycin (mTOR). Additionally, a new class of immunotherapy agents, immune checkpoint inhibitors, is emerging and will play a significant role in the treatment of patients with RCC. Therefore, the Society for Immunotherapy of Cancer (SITC) convened a Task Force, which met to consider the current role of approved immunotherapy agents in RCC, to provide guidance to practicing clinicians by developing consensus recommendations and to set the stage for future immunotherapeutic developments in RCC.

  4. Veterinary Oncology Immunotherapies.

    Bergman, Philip J

    2018-03-01

    The ideal cancer immunotherapy agent should be able to discriminate between cancer and normal cells, be potent enough to kill small or large numbers of tumor cells, and be able to prevent recurrence of the tumor. Tumor immunology and immunotherapy are among the most exciting and rapidly expanding fields; cancer immunotherapy is now recognized as a pillar of treatment alongside traditional modalities. This article highlights approaches that seem to hold particular promise in human clinical trials and many that have been tested in veterinary medicine. Copyright © 2017 Elsevier Inc. All rights reserved.

  5. Sublingual Immunotherapy: Recent Advances

    Enrico Compalati

    2013-01-01

    Full Text Available The practice of administering sublingual immunotherapy for respiratory allergy is gaining more and more diffusion worldwide as a consequence of the robust demonstration of clinical efficacy and safety provided by recent high-powered and well-designed studies, confirming for individual seasonal allergens the results of previous metanalyses in adult and pediatric populations. Preliminary evidence derives from recent rigorous trials on perennial allergens, like house dust mites, and specifically designed studies addressed the benefits on asthma. Emerging research suggests that SLIT may have a future role in other allergic conditions such as atopic dermatitis, food, latex and venom allergy. Efforts to develop a safer and more effective SLIT for inhalant allergens have led to the development of allergoids, recombinant allergens and formulations with adjuvants and substances targeting antigens to dendritic cells that possess a crucial role in initiating immune responses. The high degree of variation in the evaluation of clinical effects and immunological changes requires further studies to identify the candidate patients to SLIT and biomarkers of short and long term efficacy. Appropriate management strategies are urgently needed to overcome the barriers to SLIT compliance.

  6. Immunoscintigraphy and immunotherapy 1988

    Baum, R.P.; Perkins, A.C.

    1988-01-01

    This review reports some of the main presentations from some of the major centres in Europe currently working in the field of immunoscintigraphy and immunotherapy. The meeting was organised into 5 sessions. (orig./TRV)

  7. Immunotherapy for cancer

    ... 2017. Accessed February 15, 2018. Pardoll D. Cancer immunology. In: Niederhuber JE, Armitage JO, Doroshow JH, Kastan ... D.A.M. Editorial team. Related MedlinePlus Health Topics Cancer Immunotherapy Browse the Encyclopedia A.D.A. ...

  8. Cancer immunotherapy in children

    More often than not, cancer immunotherapies that work in adults are used in modified ways in children. Seldom are new therapies developed just for children, primarily because of the small number of pediatric patients relative to the adult cancer patient

  9. Immunotherapy for Cervical Cancer

    In an early phase NCI clinical trial, two patients with metastatic cervical cancer had a complete disappearance of their tumors after receiving treatment with a form of immunotherapy called adoptive cell transfer.

  10. Antigen Presentation Keeps Trending in Immunotherapy Resistance.

    Kalbasi, Anusha; Ribas, Antoni

    2018-04-19

    Through a gain-of-function kinome screen, MEX3B was identified as a mediator of resistance to T-cell immunotherapy not previously identified using CRISPR-based screens. MEX3B is a posttranscriptional regulator of HLA-A, validating the critical role of tumor-intrinsic antigen presentation in T-cell immunotherapy and indicating a new putative molecular target. Clin Cancer Res; 24(14); 1-3. ©2018 AACR. See related article by Huang et al., p. xxxx . ©2018 American Association for Cancer Research.

  11. Immunotherapy in prostate cancer: challenges and opportunities.

    Noguchi, Masanori; Koga, Noriko; Moriya, Fukuko; Itoh, Kyogo

    2016-01-01

    Although treatment options for castration-resistant prostate cancer (CRPC) have increased over the last decade, there remains a need for strategies that can provide durable disease control and long-term benefit. Recently, immunotherapy has emerged as a viable and attractive strategy for the treatment of CRPC. To date, there are multiple strategies to target the immune system, and several approaches including therapeutic cancer vaccines and immune checkpoint inhibitors have been most successful in clinical trials. With regard to this, we report the results of the most recent clinical trials investigating immunotherapy in CRPC and discuss the future development of immunotherapy for CRPC, as well as the potential importance of biomarkers in the future progress of this field.

  12. Immunotherapy of childhood Sarcomas

    Stephen S Roberts

    2015-08-01

    Full Text Available Pediatric sarcomas are a heterogeneous group of malignant tumors of bone and soft tissue origin. Although more than 100 different histologic subtypes have been described, the majority of pediatric cases belong to the Ewing’s family of tumors, rhabdomyosarcoma and osteosarcoma. Most patients that present with localized stage are curable with surgery and/or chemotherapy; however, those with metastatic disease at diagnosis or those who experience a relapse continue to have a very poor prognosis. New therapies for these patients are urgently needed. Immunotherapy is an established treatment modality for both liquid and solid tumors, and in pediatrics, most notably for neuroblastoma and osteosarcoma. In the past, immunomodulatory agents such as interferon, interleukin-2, and Liposomal-muramyl  tripeptide phosphatidyl-ethanolamine (L-MTP have been tried, with some activity seen in subsets of patients; additionally, various cancer vaccines have been studied with possible benefit. Monoclonal antibody therapies against tumor antigens such as disialoganglioside GD2 or immune checkpoint targets such as CTLA4 and PD-1 are being actively explored in pediatric sarcomas. Building on the success of adoptive T cell therapy for EBV-related lymphoma, strategies to redirect T cells using chimeric antigen receptors and bispecific antibodies are rapidly evolving with potential for the treatment of sarcomas. This review will focus on recent preclinical and clinical developments in targeted agents for pediatric sarcomas with emphasis on the immunobiology of immune checkpoints, immunoediting, tumor microenvironment, antibody engineering, cell engineering, and tumor vaccines. The future integration of antibody based and cell based therapies into an overall treatment strategy of sarcoma will be discussed.

  13. HLA-A2–Restricted Cytotoxic T Lymphocyte Epitopes from Human Heparanase as Novel Targets for Broad-Spectrum Tumor Immunotherapy

    Ting Chen

    2008-09-01

    Full Text Available Peptide vaccination for cancer immunotherapy requires identification of peptide epitopes derived from antigenic proteins associated with tumors. Heparanase (Hpa is broadly expressed in various advanced tumors and seems to be an attractive new tumor-associated antigen. The present study was designed to predict and identify HLA-A2– restricted cytotoxic T lymphocyte (CTL epitopes in the protein of human Hpa. For this purpose, HLA-A2–restricted CTL epitopes were identified using the following four-step procedure: 1 a computer-based epitope prediction from the amino acid sequence of human Hpa, 2 a peptide-binding assay to determine the affinity of the predicted protein with the HLA-A2 molecule, 3 stimulation of the primary T-cell response against the predicted peptides in vitro, and 4 testing of the induced CTLs toward different kinds of carcinoma cells expressing Hpa antigens and/or HLA-A2. The results demonstrated that, of the tested peptides, effectors induced by peptides of human Hpa containing residues 525-533 (PAFSYSFFV, Hpa525, 277-285 (KMLKSFLKA, Hpa277, and 405-413 (WLSLLFKKL, Hpa405 could effectively lyse various tumor cell lines that were Hpa-positive and HLA-A2-matched. We also found that these peptide-specific CTLs could not lyse autologous lymphocytes with low Hpa activity. Further study revealed that Hpa525, Hpa277, and Hpa405 peptides increased the frequency of IFN-γ–producing T cells compared to a negative peptide. Our results suggest that Hpa525, Hpa277, and Hpa405 peptides are new HLA-A2–restricted CTL epitopes capable of inducing Hpa-specific CTLs in vitro. Because Hpa is expressed in most advanced malignant tumors, Hpa525, Hpa277, and Hpa405 peptide–based vaccines may be useful for the immunotherapy for patients with advanced tumors.

  14. Can Immunotherapy Succeed in Glioblastoma?

    Researchers are hopeful that, for the deadly brain cancer glioblastoma, immunotherapy might succeed where other therapies have not. As this Cancer Currents post reports, different immunotherapy approaches are being tested in clinical trials.

  15. Monoid sublingual immunotherapy.

    Palma-Carlos, A G; Santos, A S; Branco-Ferreira, M; Pregal, A L; Palma-Carlos, M L

    2006-03-01

    Sublingual monoid immunotherapy with monomeric allergoids has been largely used in Europe in the last few years. An open trial of allergoid in tablets has been done in rhinitic patients allergic to house dust mites, grass pollens and Parietaria with clear improvement in clinics and drug consumption scores. In a second phase a double blind placebo controlled trial of grass pollens allergoids have been done in hay fever patients with significant decrease on the scores of rhinorrea, sneezing and conjunctivitis nasal steroid consumption and clinical score after serial nasal challenges. Monomeric allergoids are an efficace and safe immunotherapy in allergic rhinitis.

  16. Pilot Study on Mass Spectrometry–Based Analysis of the Proteome of CD34+CD123+ Progenitor Cells for the Identification of Potential Targets for Immunotherapy in Acute Myeloid Leukemia

    Johannes R. Schmidt

    2018-02-01

    Full Text Available Targeting of leukemic stem cells with specific immunotherapy would be an ideal approach for the treatment of myeloid malignancies, but suitable epitopes are unknown. The comparative proteome-level characterization of hematopoietic stem and progenitor cells from healthy stem cell donors and patients with acute myeloid leukemia has the potential to reveal differentially expressed proteins which can be used as surface-markers or as proxies for affected molecular pathways. We employed mass spectrometry methods to analyze the proteome of the cytosolic and the membrane fraction of CD34 and CD123 co-expressing FACS-sorted leukemic progenitors from five patients with acute myeloid leukemia. As a reference, CD34+CD123+ normal hematopoietic progenitor cells from five healthy, granulocyte-colony stimulating factor (G-CSF mobilized stem cell donors were analyzed. In this Tandem Mass Tag (TMT 10-plex labelling–based approach, 2070 proteins were identified with 171 proteins differentially abundant in one or both cellular compartments. This proof-of-principle-study demonstrates the potential of mass spectrometry to detect differentially expressed proteins in two compartment fractions of the entire proteome of leukemic stem cells, compared to their non-malignant counterparts. This may contribute to future immunotherapeutic target discoveries and individualized AML patient characterization.

  17. Amyloid beta peptide immunotherapy in Alzheimer disease.

    Delrieu, J; Ousset, P J; Voisin, T; Vellas, B

    2014-12-01

    Recent advances in the understanding of Alzheimer's disease pathogenesis have led to the development of numerous compounds that might modify the disease process. Amyloid β peptide represents an important molecular target for intervention in Alzheimer's disease. The main purpose of this work is to review immunotherapy studies in relation to the Alzheimer's disease. Several types of amyloid β peptide immunotherapy for Alzheimer's disease are under investigation, active immunization and passive administration with monoclonal antibodies directed against amyloid β peptide. Although immunotherapy approaches resulted in clearance of amyloid plaques in patients with Alzheimer's disease, this clearance did not show significant cognitive effect for the moment. Currently, several amyloid β peptide immunotherapy approaches are under investigation but also against tau pathology. Results from amyloid-based immunotherapy studies in clinical trials indicate that intervention appears to be more effective in early stages of amyloid accumulation in particular solanezumab with a potential impact at mild Alzheimer's disease, highlighting the importance of diagnosing Alzheimer's disease as early as possible and undertaking clinical trials at this stage. In both phase III solanezumab and bapineuzumab trials, PET imaging revealed that about a quarter of patients lacked fibrillar amyloid pathology at baseline, suggesting that they did not have Alzheimer's disease in the first place. So a new third phase 3 clinical trial for solanezumab, called Expedition 3, in patients with mild Alzheimer's disease and evidence of amyloid burden has been started. Thus, currently, amyloid intervention is realized at early stage of the Alzheimer's disease in clinical trials, at prodromal Alzheimer's disease, or at asymptomatic subjects or at risk to develop Alzheimer's disease and or at asymptomatic subjects with autosomal dominant mutation. Copyright © 2014 Elsevier Masson SAS. All rights reserved.

  18. Sublingual allergen immunotherapy

    Calderón, M A; Simons, F E R; Malling, Hans-Jørgen

    2012-01-01

    To cite this article: Calderón MA, Simons FER, Malling H-J, Lockey RF, Moingeon P, Demoly P. Sublingual allergen immunotherapy: mode of action and its relationship with the safety profile. Allergy 2012; 67: 302-311. ABSTRACT: Allergen immunotherapy reorients inappropriate immune responses......-presenting cells (mostly Langerhans and myeloid dendritic cells) exhibit a tolerogenic phenotype, despite constant exposure to danger signals from food and microbes. This reduces the induction of pro-inflammatory immune responses leading to systemic allergic reactions. Oral tissues contain relatively few mast...... cells and eosinophils (mostly located in submucosal areas) and, in comparison with subcutaneous tissue, are less likely to give rise to anaphylactic reactions. SLIT-associated immune responses include the induction of circulating, allergen-specific Th1 and regulatory CD4+ T cells, leading to clinical...

  19. Immunotherapy for tularemia

    Skyberg, Jerod A.

    2013-01-01

    Francisella tularensis is a gram-negative bacterium that causes the zoonotic disease tularemia. Francisella is highly infectious via the respiratory route (~10 CFUs) and pulmonary infections due to type A strains of F. tularensis are highly lethal in untreated patients (>30%). In addition, no vaccines are licensed to prevent tularemia in humans. Due to the high infectivity and mortality of pulmonary tularemia, F. tularensis has been weaponized, including via the introduction of antibiotic resistance, by several countries. Because of the lack of efficacious vaccines, and concerns about F. tularensis acquiring resistance to antibiotics via natural or illicit means, augmentation of host immunity, and humoral immunotherapy have been investigated as countermeasures against tularemia. This manuscript will review advances made and challenges in the field of immunotherapy against tularemia. PMID:23959031

  20. Immunotherapy With Magentorheologic Fluids

    2011-08-01

    anti-tumor effects are weakened by removal of the tumor antigen pool (i.e. surgery) or use of cytoreductive and immunosuppressive therapies (i.e...particles were injected as magneto -rheological fluid (MRF) into an orthotopic primary breast cancer and followed by application of a magnetic field to...SUBJECT TERMS MRF: Magneto -rehological fluid iron particles, IT: immunotherapy, necrotic death, DCs: dendritic cells, cytokines, chemokines

  1. Allergen-specific immunotherapy

    Moote William

    2011-11-01

    Full Text Available Abstract Allergen-specific immunotherapy is a potentially disease-modifying therapy that is effective for the treatment of allergic rhinitis/conjunctivitis, allergic asthma and stinging insect hypersensitivity. However, despite its proven efficacy in these conditions, it is frequently underutilized in Canada. The decision to proceed with allergen-specific immunotherapy should be made on a case-by-case basis, taking into account individual patient factors such as the degree to which symptoms can be reduced by avoidance measures and pharmacological therapy, the amount and type of medication required to control symptoms, the adverse effects of pharmacological treatment, and patient preferences. Since this form of therapy carries the risk of anaphylactic reactions, it should only be prescribed by physicians who are adequately trained in the treatment of allergy. Furthermore, injections must be given under medical supervision in clinics that are equipped to manage anaphylaxis. In this article, the authors review the indications and contraindications, patient selection criteria, and the administration, safety and efficacy of allergen-specific immunotherapy.

  2. Current insights in allergen immunotherapy.

    Passalacqua, Giovanni; Bagnasco, Diego; Ferrando, Matteo; Heffler, Enrico; Puggioni, Francesca; Canonica, Giorgio Walter

    2018-02-01

    Allergen-specific immunotherapy (AIT) in its subcutaneous and sublingual forms is currently a well-established and experimentally supported treatment for respiratory allergy and hymenoptera venom allergy. There have been advances in its use linked strictly to the advancement in the knowledge of the molecular mechanisms of allergy, the production of well-characterized extracts, and diagnostic techniques. The use of AIT in asthma and the application of new approaches are expanding. We briefly review the advances and concerns in the use of AIT. PubMed and Scopus. The most recent and clinically relevant literature was selected and reviewed. The introduction of high-quality products supported by large dose-finding trials has yielded better defined indications, contraindications, and modalities of use. Some specific products in tablet form have recently been approved in the United States. Sublingual immunotherapy has been found to be effective in asthma, which until recently had been a matter of debate. Another promising therapy is oral and sublingual desensitization for food allergy, for which encouraging results have recently been reported. In the near future, other options will be available, including new routes of administration (intralymphatic and epicutaneous), allergoids, engineered allergens, and peptides. The use of component-resolved diagnosis techniques will further refine and target AIT prescriptions. This condensed and updated review shows that AIT remains a viable treatment option, especially after the introduction of standardized tablets for some allergens. Food allergy and new administration routes represent a promising expansion. Copyright © 2017 American College of Allergy, Asthma & Immunology. Published by Elsevier Inc. All rights reserved.

  3. Immunotherapy of Human Papilloma Virus Induced Disease

    van der Burg, Sjoerd H

    2012-01-01

    Immunotherapy is the generic name for treatment modalities aiming to reinforce the immune system against diseases in which the immune system plays a role. The design of an optimal immunotherapeutic treatment against chronic viruses and associated diseases requires a detailed understanding of the interactions between the target virus and its host, in order to define the specific strategies that may have the best chance to deliver success at each stage of disease. Recently, a first series of successes was reported for the immunotherapy of Human Papilloma Virus (HPV)-induced premalignant diseases but there is definitely room for improvement. Here I discuss a number of topics that in my opinion require more study as the answers to these questions allows us to better understand the underlying mechanisms of disease and as such to tailor treatment. PMID:23341861

  4. EAACI Guidelines on allergen immunotherapy

    Pajno, G B; Fernandez-Rivas, M; Arasi, S

    2018-01-01

    . This Guideline, prepared by the European Academy of Allergy and Clinical Immunology (EAACI) Task Force on Allergen Immunotherapy for IgE-mediated Food Allergy, aims to provide evidence-based recommendations for active treatment of IgE-mediated food allergy with FA-AIT. Immunotherapy relies on the delivery...

  5. Orphan immunotherapies for allergic diseases.

    Ridolo, Erminia; Montagni, Marcello; Incorvaia, Cristoforo; Senna, Gianenrico; Passalacqua, Giovanni

    2016-03-01

    As confirmed by systematic reviews and meta-analyses, allergen immunotherapy is clinically effective in the treatment of allergic diseases. In particular, subcutaneous immunotherapy is a pivotal treatment in patients with severe reactions to Hymenoptera venom, whereas subcutaneous immunotherapy and sublingual immunotherapy are indicated in the treatment of allergic rhinitis and asthma by inhalant allergens. Other allergies related to animal dander (other than cat, which is the most studied), such as dog, molds, occupational allergens, and insects, have also been recognized. For these allergens, immunotherapy is poorly studied and often unavailable. Thus, use of the term orphan immunotherapies is appropriate. We used MEDLINE to search the medical literature for English-language articles. Randomized, controlled, masked studies for orphan immunotherapies were selected. In the remaining cases, the available reports were described. The literature on food desensitization is abundant, but for other orphan allergens, such as mosquito, Argas reflexus, dog, or occupational allergens, there are only a few studies, and most are small studies or case reports. Orphan immunotherapy is associated with insufficient evidence of efficacy from controlled trials, an erroneous belief of the limited importance of some allergen sources, and the unlikelihood for producers to have a profit in making commercially available extracts (with an expensive process for registration) to be used in few patients. It should be taken into consideration that adequate preparations should be available also for orphan allergens. Copyright © 2016 American College of Allergy, Asthma & Immunology. Published by Elsevier Inc. All rights reserved.

  6. Immunotherapy with GD2 specific monoclonal antibodies

    Cheung, N.K.V.; Medof, E.M.; Munn, D.

    1988-01-01

    Targeted immunotherapy focuses anti-tumor activity of antibodies and effector cells, which are actively developed by the host or adoptively transferred, onto tumor cells and into tumor sites. Such tumor selective therapy can be more specific and efficient. The value of such an approach is evident in the classical interaction of antibodies. This paper reports that the ganglioside G D2 is an ideal antigen for specific tumor targeting because of its relative lack of heterogeneity among human neuroblastoma, its high density on tumor cells, its lack of antigen modulation upon binding to antibody, and its restricted distribution in normal tissues

  7. Melanoma-Targeted Chemothermotherapy and In Situ Peptide Immunotherapy through HSP Production by Using Melanogenesis Substrate, NPrCAP, and Magnetite Nanoparticles

    Kowichi Jimbow

    2013-01-01

    Full Text Available Exploitation of biological properties unique to cancer cells may provide a novel approach to overcome difficult challenges to the treatment of advanced melanoma. In order to develop melanoma-targeted chemothermoimmunotherapy, a melanogenesis substrate, N-propionyl-4-S-cysteaminylphenol (NPrCAP, sulfur-amine analogue of tyrosine, was conjugated with magnetite nanoparticles. NPrCAP was exploited from melanogenesis substrates, which are expected to be selectively incorporated into melanoma cells and produce highly reactive free radicals through reacting with tyrosinase, resulting in chemotherapeutic and immunotherapeutic effects by oxidative stress and apoptotic cell death. Magnetite nanoparticles were conjugated with NPrCAP to introduce thermotherapeutic and immunotherapeutic effects through nonapoptotic cell death and generation of heat shock protein (HSP upon exposure to alternating magnetic field (AMF. During these therapeutic processes, NPrCAP was also expected to provide melanoma-targeted drug delivery system.

  8. CCL21 Cancer Immunotherapy

    Lin, Yuan, E-mail: yuanlin@mednet.ucla.edu [Department of Head and Neck Surgery, David Geffen School of Medicine at UCLA, 10833 Le Conte Avenue, Los Angeles, CA 90095 (United States); Jonsson Comprehensive Cancer Center, David Geffen School of Medicine at UCLA, 10833 Le Conte Avenue, Los Angeles, CA 90095 (United States); UCLA Head and Neck Cancer Program, David Geffen School of Medicine at UCLA, 10833 Le Conte Avenue, Los Angeles, CA 90095 (United States); Clinical and Translational Science Institute, David Geffen School of Medicine at UCLA, 10833 Le Conte Avenue, Los Angeles, CA 90095 (United States); Division of Pulmonary and Critical Care Medicine, Department of Medicine, David Geffen School of Medicine at UCLA, 37-131 CHS, 10833 Le Conte Avenue, Los Angeles, CA 90095 (United States); Sharma, Sherven [Jonsson Comprehensive Cancer Center, David Geffen School of Medicine at UCLA, 10833 Le Conte Avenue, Los Angeles, CA 90095 (United States); Clinical and Translational Science Institute, David Geffen School of Medicine at UCLA, 10833 Le Conte Avenue, Los Angeles, CA 90095 (United States); Division of Pulmonary and Critical Care Medicine, Department of Medicine, David Geffen School of Medicine at UCLA, 37-131 CHS, 10833 Le Conte Avenue, Los Angeles, CA 90095 (United States); Veterans’ Affairs Greater Los Angeles Healthcare System, Los Angeles, CA 90073 (United States); John, Maie St. [Department of Head and Neck Surgery, David Geffen School of Medicine at UCLA, 10833 Le Conte Avenue, Los Angeles, CA 90095 (United States); Jonsson Comprehensive Cancer Center, David Geffen School of Medicine at UCLA, 10833 Le Conte Avenue, Los Angeles, CA 90095 (United States); UCLA Head and Neck Cancer Program, David Geffen School of Medicine at UCLA, 10833 Le Conte Avenue, Los Angeles, CA 90095 (United States); Clinical and Translational Science Institute, David Geffen School of Medicine at UCLA, 10833 Le Conte Avenue, Los Angeles, CA 90095 (United States)

    2014-05-07

    Cancer, a major health problem, affects 12 million people worldwide every year. With surgery and chemo-radiation the long term survival rate for the majority of cancer patients is dismal. Thus novel treatments are urgently needed. Immunotherapy, the harnessing of the immune system to destroy cancer cells is an attractive option with potential for long term anti-tumor benefit. Cytokines are biological response modifiers that stimulate anti-tumor immune responses. In this review, we discuss the anti-tumor efficacy of the chemotactic cytokine CCL21 and its pre-clinical and clinical application in cancer.

  9. Particle platforms for cancer immunotherapy

    Serda RE

    2013-04-01

    Full Text Available Rita Elena Serda Department of Nanomedicine, The Methodist Hospital Research Institute, Houston, TX, USA Abstract: Elevated understanding and respect for the relevance of the immune system in cancer development and therapy has led to increased development of immunotherapeutic regimens that target existing cancer cells and provide long-term immune surveillance and protection from cancer recurrence. This review discusses using particles as immune adjuvants to create vaccines and to augment the anticancer effects of conventional chemotherapeutics. Several particle prototypes are presented, including liposomes, polymer nanoparticles, and porous silicon microparticles, the latter existing as either single- or multiparticle platforms. The benefits of using particles include immune-cell targeting, codelivery of antigens and immunomodulatory agents, and sustained release of the therapeutic payload. Nanotherapeutic-based activation of the immune system is dependent on both intrinsic particle characteristics and on the immunomodulatory cargo, which may include danger signals known as pathogen-associated molecular patterns and cytokines for effector-cell activation. Keywords: adjuvant, particle, immunotherapy, dendritic cell, cancer, vaccine

  10. IMMUNOTHERAPY FOR EPSTEIN-BARR VIRUS-RELATED LYMPHOMAS

    Alana Kennedy-Nasser

    2009-11-01

    Full Text Available Latent EBV infection is associated with several malignancies, including EBV post-transplant lymphoproliferative disorders (LPD, Hodgkin and non-Hodgkin lymphomas, nasopharyngeal carcinoma and Burkitt lymphoma. The range of expression of latent EBV antigens varies in these tumors, which influences how susceptible the tumors are to immunotherapeutic approaches. Tumors expressing type III latency, such as in LPD, express the widest array of EBV antigens making them the most susceptible to immunotherapy. Treatment strategies for EBV-related tumors include restoring normal cellular immunity by adoptive immunotherapy with EBV-specific T cells and targeting the malignant B cells with monoclonal antibodies. We review the current immunotherapies and future studies aimed at targeting EBV antigen expression in these tumors.

  11. Propionibacterium acnes in the pathogenesis and immunotherapy of acne vulgaris.

    Liu, Pei-Feng; Hsieh, Yao-Dung; Lin, Ya-Ching; Two, Aimee; Shu, Chih-Wen; Huang, Chun-Ming

    2015-01-01

    Acne vulgaris, a multi-factorial disease, is one of the most common skin diseases, affecting an estimated 80% of Americans at some point during their lives. The gram-positive and anaerobic Propionibacterium acnes (P. acnes) bacterium has been implicated in acne inflammation and pathogenesis. Therapies for acne vulgaris using antibiotics generally lack bacterial specificity, promote the generation of antibiotic-resistant bacterial strains, and cause adverse effects. Immunotherapy against P. acnes or its antigens (sialidase and CAMP factor) has been demonstrated to be effective in mice, attenuating P. acnes-induced inflammation; thus, this method may be applied to develop a potential vaccine targeting P. acnes for acne vulgaris treatment. This review summarizes reports describing the role of P. acnes in the pathogenesis of acne and various immunotherapy-based approaches targeting P. acnes, suggesting the potential effectiveness of immunotherapy for acne vulgaris as well as P. acnes-associated diseases.

  12. Gene therapy for carcinoma of the breast: Genetic immunotherapy

    Strong, Theresa V

    2000-01-01

    Advances in gene transfer technology have greatly expanded the opportunities for developing immunotherapy strategies for breast carcinoma. Genetic immunotherapy approaches include the transfer of genes encoding cytokines and costimulatory molecules to modulate immune function, as well as genetic immunization strategies which rely on the delivery of cloned tumor antigens. Improved gene transfer vectors, coupled with a better understanding of the processes that are necessary to elicit an immune response and an expanding number of target breast tumor antigens, have led to renewed enthusiasm that effective immunotherapy may be achieved. It is likely that immunotherapeutic interventions will find their greatest clinical application as adjuvants to traditional first-line therapies, targeting micrometastatic disease and thereby reducing the risk of cancer recurrence

  13. IMMUNOTHERAPY FOR EPSTEIN-BARR VIRUS-RELATED LYMPHOMAS

    Helen Heslop

    2009-11-01

    Full Text Available

    Latent EBV infection is associated with several malignancies, including EBV post-transplant lymphoproliferative disorders (LPD, Hodgkin and non-Hodgkin lymphomas, nasopharyngeal carcinoma and Burkitt lymphoma. The range of expression of latent EBV antigens varies in these tumors, which influences how susceptible the tumors are to immunotherapeutic approaches. Tumors expressing type III latency, such as in LPD, express the widest array of EBV antigens making them the most susceptible to immunotherapy. Treatment strategies for EBV-related tumors include restoring normal cellular immunity by adoptive immunotherapy with EBV-specific T cells and targeting the malignant B cells with monoclonal antibodies. We review the current immunotherapies and future studies aimed at targeting EBV antigen expression in these tumors.

  14. Immunotherapy of Cryptococcus infections.

    Antachopoulos, C; Walsh, T J

    2012-02-01

    Despite appropriate antifungal treatment, the management of cryptococcal disease remains challenging, especially in immunocompromised patients, such as human immunodeficiency virus-infected individuals and solid organ transplant recipients. During the past two decades, our knowledge of host immune responses against Cryptococcus spp. has been greatly advanced, and the role of immunomodulation in augmenting the response to infection has been investigated. In particular, the role of 'protective' Th1 (tumour necrosis factor-α, interferon (IFN)-γ, interleukin (IL)-12, and IL-18) and Th17 (IL-23 and IL-17) and 'non-protective' Th2 (IL-4, IL-10, and IL-13) cytokines has been extensively studied in vitro and in animal models of cryptococcal infection. Immunomodulation with monoclonal antibodies against the capsular polysaccharide glucuronoxylomannan, glucosylceramides, melanin and β-glucan and, lately, with radioimmunotherapy has also yielded promising results in animal models. As a balance between sufficiently protective Th1 responses and excessive inflammation is important for optimal outcome, the effect of immunotherapy may range from beneficial to deleterious, depending on factors related to the host, the infecting organism, and the immunomodulatory regimen. Clinical evidence supporting immunomodulation in patients with cryptococcal infection remains too limited to allow firm recommendations. Limited human data suggest a role for IFN-γ. Identification of surrogate markers characterizing patients' immunological status could possibly suggest candidate patients for immunotherapy and the type of immunomodulation to be administered. © 2011 The Authors. Clinical Microbiology and Infection © 2011 European Society of Clinical Microbiology and Infectious Diseases.

  15. Conference Scene: novelties in immunotherapy.

    Mitsias, Dimitris I; Kalogiros, Lampros A; Papadopoulos, Nikolaos G

    2013-10-01

    The only method aiming to permanently cure allergic disorders is allergen immunotherapy. Over the last 20 years there has been great progress in understanding the mechanisms that govern allergen immunotherapy in order to meet three basic prerequisites: safety, effectiveness and compliance. In the present summary report from the European Academy of Allergology and Clinical Immunology-World Allergy Organization Congress held last June in Milan, we review key points concerning the main axes as diagnosis, novel modalities, routes and protocols, as well as two important immunotherapy fields: food and insect venom allergy.

  16. EAACI Guidelines on Allergen Immunotherapy

    Sturm, Gunter J; Varga, Eva-Maria; Roberts, Graham

    2018-01-01

    and adults to prevent further moderate to severe systemic sting reactions. Venom immunotherapy is also recommended in adults with only generalized skin reactions as it results in significant improvements in quality of life compared to carrying an adrenaline auto-injector. This guideline aims to give...... practical advice on performing venom immunotherapy. Key sections cover general considerations before initiating venom immunotherapy, evidence-based clinical recommendations, risk factors for adverse events and for relapse of systemic sting reaction, and a summary of gaps in the evidence. This article...

  17. Immunotherapy: A breakthrough in cancer research

    Editorial Office

    2016-12-01

    a mixed population. The clinical benefit of the fixed dose of pembrolizumab in the first and second line treatment of recurrent/metastatic head and neck cancer is being evaluated head-to-head with standard of care chemotherapy in phase 3 trials around the world, including Asia Pacific.” Meanwhile, another research paper on immunotherapy presented at the ESMO Asia 2016 was by Dr. Herbert Loong, Clinical Assistant Professor at the Department of Clinical Oncology of the Chinese University of Hong Kong, who discussed about the cost-effectiveness of immunotherapy with pembrolizumab for advanced melanoma patients in Hong Kong. Dr. Loong said, “We have determined that whilst pembrolizumab is expensive, the increase in quality adjusted life years (QALYs compared with standard cytotoxic chemotherapy, and even so with ipilimumab, qualifies it as a cost-effective approach.” Commenting on the results of the research by Dr. Loong and his colleagues, Dr. Mark Tang – a senior consultant dermatologist said, “Given the high costs of these new treatment options, cost effectiveness studies such as this one are timely and useful as further evidence for the use of pembrolizumab in the treatment of advanced melanoma. This is particularly important in an Asian context where, although rare, acral melanoma has unfortunately been known to present late advanced disease.” Taking all these exciting discoveries into account, a good number of studies have repeatedly shown that progress in cancer immunotherapy has accelerated and resulted in the development of several effective and promising therapies for multiple forms of cancer. At this critical juncture, oncological organizations such as ESMO provide an important knowledge transfer platform for the sharing of expertise and interaction between regional and international experts in the area of onco-immunology. Moving forward, immunotherapy and targeted medicine are expected to remain in the spotlight and will be an indispensable

  18. The advantages and challenges of using FDG PET/CT for response assessment in melanoma in the era of targeted agents and immunotherapy

    Wong, Annie N.M.; McArthur, Grant A.; Hofman, Michael S.; Hicks, Rodney J.

    2017-01-01

    The treatment of melanoma has been revolutionised in recent years by advances in the understanding of the genomic landscape of this disease, which has led to the development of new targeted therapeutic agents, and the ability to therapeutically manipulate the immune system through inhibition of cancer cell-T-cell interactions that prevent an adaptive immune response. While these therapeutic interventions have dramatically improved the prospects of survival for patients with advanced melanoma, they bring significant complexity to the interpretation of therapeutic response because their mechanisms and temporal profile of response vary considerably. In this review, we discuss the mode of action of these emerging therapies and their toxicities to provide a framework for the use of FDG PET/CT in therapeutic response assessment. We propose that the greatest utility of PET in assessment of response to agents that abrogate signalling related to BRAF mutation is for early assessment of resistance, while in anti-CTLA4 therapy, immunological flare can compromise early assessment of response but can identify potentially life-threatening autoimmune reactions. For anti-PD1/PDL1 therapy, the role of FDG PET/CT is more akin to its use in other solid malignancies undergoing treatment with conventional chemotherapy. However, further research is required to optimise the timing of scans and response criteria in this disease. (orig.)

  19. The advantages and challenges of using FDG PET/CT for response assessment in melanoma in the era of targeted agents and immunotherapy

    Wong, Annie N.M.; McArthur, Grant A. [The Peter MacCallum Cancer Centre, Cancer Medicine, Melbourne (Australia); The University of Melbourne, The Sir Peter MacCallum Department of Oncology, Melbourne (Australia); Hofman, Michael S. [The Peter MacCallum Cancer Centre, Cancer Imaging, Melbourne, VIC (Australia); Hicks, Rodney J. [The University of Melbourne, The Sir Peter MacCallum Department of Oncology, Melbourne (Australia); The Peter MacCallum Cancer Centre, Cancer Imaging, Melbourne, VIC (Australia)

    2017-08-15

    The treatment of melanoma has been revolutionised in recent years by advances in the understanding of the genomic landscape of this disease, which has led to the development of new targeted therapeutic agents, and the ability to therapeutically manipulate the immune system through inhibition of cancer cell-T-cell interactions that prevent an adaptive immune response. While these therapeutic interventions have dramatically improved the prospects of survival for patients with advanced melanoma, they bring significant complexity to the interpretation of therapeutic response because their mechanisms and temporal profile of response vary considerably. In this review, we discuss the mode of action of these emerging therapies and their toxicities to provide a framework for the use of FDG PET/CT in therapeutic response assessment. We propose that the greatest utility of PET in assessment of response to agents that abrogate signalling related to BRAF mutation is for early assessment of resistance, while in anti-CTLA4 therapy, immunological flare can compromise early assessment of response but can identify potentially life-threatening autoimmune reactions. For anti-PD1/PDL1 therapy, the role of FDG PET/CT is more akin to its use in other solid malignancies undergoing treatment with conventional chemotherapy. However, further research is required to optimise the timing of scans and response criteria in this disease. (orig.)

  20. Advances in nanotechnology-based carrier systems for targeted delivery of bioactive drug molecules with special emphasis on immunotherapy in drug resistant tuberculosis - a critical review.

    Singh, Jagdeep; Garg, Tarun; Rath, Goutam; Goyal, Amit K

    2016-06-01

    From the early sixteenth and seventeenth centuries to the present day of life, tuberculosis (TB) still is a global health threat with some new emergence of resistance. This type of emergence poses a vital challenge to control TB cases across the world. Mortality and morbidity rates are high due to this new face of TB. The newer nanotechnology-based drug-delivery approaches involving micro-metric and nano-metric carriers are much needed at this stage. These delivery systems would provide more advantages over conventional systems of treatment by producing enhanced therapeutic efficacy, uniform distribution of drug molecule to the target site, sustained and controlled release of drug molecules and lesser side effects. The main aim to develop these novel drug-delivery systems is to improve the patient compliance and reduce therapy time. This article reviews and elaborates the new concepts and drug-delivery approaches for the treatment of TB involving solid-lipid particulate drug-delivery systems (solid-lipid micro- and nanoparticles, nanostructured lipid carriers), vesicular drug-delivery systems (liposomes, niosomes and liposphere), emulsion-based drug-delivery systems (micro and nanoemulsion) and some other novel drug-delivery systems for the effective treatment of tuberculosis and role of immunomodulators as an adjuvant therapy for management of MDR-TB and XDR-TB.

  1. Immunotherapies in CLL.

    Park, Jae H; Brentjens, Renier J

    2013-01-01

    Chronic lymphocytic leukemia (CLL) is the most frequently diagnosed leukemia in the Western world, yet remains essentially incurable. Although initial chemotherapy response rates are high, patients invariably relapse and subsequently develop resistance to chemotherapy. For the moment, allogeneic hematopoietic stem cell transplant (allo-HSCT) remains the only potentially curative treatment for patients with CLL, but it is associated with high rates of treatment-related mortality. Immune-based treatment strategies to augment the cytotoxic potential of T cells offer exciting new treatment options for patients with CLL, and provide a unique and powerful spectrum of tools distinct from traditional chemotherapy. Among the most novel and promising of these approaches are chimeric antigen receptor (CAR)-based cell therapies that combine advances in genetic engineering and adoptive immunotherapy.

  2. Gut Bacteria Affect Immunotherapy Response

    Three new studies have identified intestinal bacteria that appear to influence the response to checkpoint inhibitors. This Cancer Currents blog post explains how the researchers think their findings could be used to improve patients’ responses to these immunotherapy drugs.

  3. 3D Models of Immunotherapy

    This collaborative grant is developing 3D models of both mouse and human biology to investigate aspects of therapeutic vaccination in order to answer key questions relevant to human cancer immunotherapy.

  4. NCI's Role in Immunotherapy Research

    ... Reporting & Auditing Grant Transfer Grant Closeout Contracts & Small Business Training Cancer Training at NCI (Intramural) Resources for ... promising immunotherapies to the clinic more efficiently and cost effectively. For ... of the checkpoint inhibitor pembrolizumab in patients with ...

  5. Immunotherapy and Immune Evasion in Prostate Cancer

    Thakur, Archana; Vaishampayan, Ulka; Lum, Lawrence G.

    2013-01-01

    Metastatic prostate cancer remains to this day a terminal disease. Prostatectomy and radiotherapy are effective for organ-confined diseases, but treatment for locally advanced and metastatic cancer remains challenging. Although advanced prostate cancers treated with androgen deprivation therapy achieves debulking of disease, responses are transient with subsequent development of castration-resistant and metastatic disease. Since prostate cancer is typically a slowly progressing disease, use of immune-based therapies offers an advantage to target advanced tumors and to induce antitumor immunity. This review will discuss the clinical merits of various vaccines and immunotherapies in castrate resistant prostate cancer and challenges to this evolving field of immune-based therapies

  6. Immunotherapy and Immune Evasion in Prostate Cancer

    Thakur, Archana, E-mail: thakur@karmanos.org; Vaishampayan, Ulka [Department of Oncology, Wayne State University, Detroit, MI 48201 (United States); Lum, Lawrence G., E-mail: thakur@karmanos.org [Department of Oncology, Wayne State University, Detroit, MI 48201 (United States); Department of Medicine, Wayne State University, Detroit, MI 48201 (United States); Department of Immunology and Microbiology, Wayne State University, Detroit, MI 48201 (United States)

    2013-05-24

    Metastatic prostate cancer remains to this day a terminal disease. Prostatectomy and radiotherapy are effective for organ-confined diseases, but treatment for locally advanced and metastatic cancer remains challenging. Although advanced prostate cancers treated with androgen deprivation therapy achieves debulking of disease, responses are transient with subsequent development of castration-resistant and metastatic disease. Since prostate cancer is typically a slowly progressing disease, use of immune-based therapies offers an advantage to target advanced tumors and to induce antitumor immunity. This review will discuss the clinical merits of various vaccines and immunotherapies in castrate resistant prostate cancer and challenges to this evolving field of immune-based therapies.

  7. Natural Killer T Cells in Cancer Immunotherapy

    Nair, Shiny; Dhodapkar, Madhav V.

    2017-01-01

    Natural killer T (NKT) cells are specialized CD1d-restricted T cells that recognize lipid antigens. Following stimulation, NKT cells lead to downstream activation of both innate and adaptive immune cells in the tumor microenvironment. This has impelled the development of NKT cell-targeted immunotherapies for treating cancer. In this review, we provide a brief overview of the stimulatory and regulatory functions of NKT cells in tumor immunity as well as highlight preclinical and clinical studies based on NKT cells. Finally, we discuss future perspectives to better harness the potential of NKT cells for cancer therapy. PMID:29018445

  8. Radio-immunotherapy; La radio-immunotherapie

    Bodet-Milin, C.; Oudoux, A.; Kraeber-Bodere, F. [Hopital Hotel-Dieu, Service de Medecine Nucleaire, 44 - Nantes (France); Kraeber-Bodere, F. [Inserm U892, CRCNA, 44 - Nantes (France); Kraeber-Bodere, F. [Centre Rene-Gauducheau, Service de Medecine Nucleaire, 44 - Saint-Herblain (France)

    2009-02-15

    Radioimmunotherapy (R.I.T.) is a new modality of targeted therapy in which irradiation from radionuclides is delivered to tumor targets using monoclonal antibodies (MAb) directed to tumor-associated antigen. R.I.T. has been developed for more than 20 years. Today, R.I.T. can be used in clinical practice using non-ablative activity of murine anti-CD20 {sup 90}Y-ibritumomab tiuxetan (Zevalin) for treatment of patients with relapsed or refractory follicular lymphomas (F.L.), with overall response rate of 70 to 80% and 20 to 30% of complete response. Different approaches are explored to improve efficacy of R.I.T. in N.H.L.: myelo-ablative R.I.T. or HD treatment, R.I.T. as consolidation after chemotherapy to target M.R.D., R.I.T. in first-line treatment, fractionated R.I.T., R.I.T. using other Ag targets. For solid tumors, interesting results have been obtained using anti-CEA R.I.T. delivered as consolidation treatment or using pre-targeting system. (authors)

  9. Personalized adoptive immunotherapy for patients with EBVassociated tumors and complications

    Bieling, Maren; Tischer, Sabine; Kalinke, Ulrich

    2018-01-01

    -immortalized B cells transduced with soluble HLA-A*03:01, sorted using different epitope prediction tools and eleven candidates were preselected. T2 and Flex-T peptide-binding and dissociation assays confirmed the stability of peptide-MHC complexes. Their immunogenicity and clinical relevance were evaluated......-toxic immunotherapy to effectively prevent or treat these complications. To improve immunotherapy and immunomonitoring this study aimed at identifying and evaluating naturally processed and presented HLA-A*03:01-restricted EBV-CTL epitopes as immunodominant targets. More than 15000 peptides were sequenced from EBV...

  10. Immunotherapy of allergic contact dermatitis.

    Spiewak, Radoslaw

    2011-08-01

    The term 'immunotherapy' refers to treating diseases by inducing, enhancing or suppressing immune responses. As allergy is an excessive, detrimental immune reaction to otherwise harmless environmental substances, immunotherapy of allergic disease is aimed at the induction of tolerance toward sensitizing antigens. This article focuses on the historical developments, present state and future outlook for immunotherapy with haptens as a therapeutic modality for allergic contact dermatitis. Inspired by the effectiveness of immunotherapy in respiratory allergies, attempts were undertaken at curing allergic contact dermatitis by means of controlled administration of the sensitizing haptens. Animal and human experiments confirmed that tolerance to haptens can be induced most effectively when the induction of tolerance precedes attempted sensitization. In real life, however, therapy is sought by people who are already sensitized and an effective reversal of hypersensitivity seems more difficult to achieve. Decades of research on Rhus hypersensitivity led to a conclusion that immunotherapy can suppress Rhus dermatitis, however, only to a limited degree, for a short period of time, and at a high risk of side effects, which makes this method therapeutically unprofitable. Methodological problems with most available studies of immunotherapy of contact allergy to nickel make any definite conclusions impossible at this stage.

  11. Lymphocytic infiltration of bladder after local cellular immunotherapy.

    Ingram, M; Bishai, M B; Techy, G B; Narayan, K S; Saroufeem, R; Yazan, O; Marshall, C E

    2000-01-01

    This is a case report of a patient who received cellular immunotherapy, in the form of local injections of autologous stimulated lymphocytes (ASL) into individual tumors in the urinary bladder. A major consideration in cellular immunotherapy being the ability of immune cells to reach all target areas, we hypothesized that direct delivery of effector cells into individual bladder tumors might assure such access. ASL were generated by exposing the patient's PBL to phytohemagglutinin and culturing them in the presence of IL-2 to expand the population. ASL were injected into the base of individual bladder tumors three times at intervals of 3 weeks. The patient died of a myocardial infarct, unrelated to cell therapy, 20 days after the third injection. An autopsy was performed. Histological sections of the bladder showed extensive lymphocytic infiltration of virtually the entire organ. No conclusions about the therapeutic efficacy of local immunotherapy using ASL are possible. Nevertheless, the observations reported, taken together with reports of therapeutic efficacy of other immunotherapy regimens in the management of bladder cancer, suggest that ready access of stimulated lymphocytes to all regions of the organ may account, in part, for the relatively high rate of therapeutic success reported for various immunotherapy regimens for this malignancy.

  12. A second chance for telomerase reverse transcriptase in anticancer immunotherapy.

    Zanetti, Maurizio

    2017-02-01

    Telomerase reverse transcriptase (TERT) is a self-antigen that is expressed constitutively in many tumours, and is, therefore, an important target for anticancer immunotherapy. In the past 10 years, trials of immunotherapy with TERT-based vaccines have demonstrated only modest benefits. In this Perspectives, I discuss the possible immunological reasons for this limited antitumour efficacy, and propose that advances in our understanding of the genetics and biology of the involvement of TERT in cancer provides the basis for renewed interest in TERT- based immunotherapy. Telomerase and TERT are expressed in cancer cells at every stage of tumour evolution, from the cancer stem cell to circulating tumour cells and tumour metastases. Many cancer types also harbour cells with mutations in the TERT promoter region, which increase transcriptional activation of this gene. These new findings should spur new interest in the development of TERT-based immunotherapies that are redesigned in line with established immunological considerations and working principles, and are tailored to patients stratified on the basis of TERT-promoter mutations and other underlying tumour characteristics. Thus, despite the disappointment of previous clinical trials, TERT offers the potential for personalized immunotherapy, perhaps in combination with immune-checkpoint inhibition.

  13. Combination immunotherapy with prostate GVAX and ipilimumab: safety and toxicity.

    Karan, Dev; Van Veldhuizen, Peter

    2012-06-01

    Evaluation of: van den Eertwegh AJ, Versluis J, van den Berg HP et al. Combined immunotherapy with granulocyte-macrophage colony-stimulating factor-transduced allogeneic prostate cancer cells and ipilimumab in patients with metastatic castration-resistant prostate cancer: a Phase 1 dose-escalation trial. Lancet Oncol. 13(5), 509 – 517 (2012). A significant interest in the development of therapeutic cancer vaccines over the last decade has led to an improvement in overall survival of cancer patients in several clinical trials. As a result, two active immunotherapy agents, sipuleucel-T and ipilimumab, have been approved by the US FDA for the treatment of prostate cancer and melanoma, respectively. GVAX(®) cellular vaccine (Cell Genesysis, Inc., CA, USA) is another active immunotherapy agent targeting prostate cancer and it has been well studied in various clinical trials. The current publication, by van den Eertwegh et al., demonstrated a combination of two active immunotherapy approaches, using GVAX and ipilimumab for the treatment of metastatic castration-resistant prostate cancer. While GVAX is designed to amplify the antitumor response specific to prostate cancer cells, ipilimumab contributes to T-cell activation. Thus, the authors presented the possibility of augmenting antitumor T-cell activity in two different ways. They successfully demonstrated a tolerable dose and safety profile of ipilimumab in combination with GVAX for patients with metastatic castration-resistant prostate cancer. However, further studies of such immunotherapy combinations and detailed analysis of their immunological effects are needed to observe clinical benefit.

  14. Melanoma immunotherapy: historical precedents, recent successes and future prospects.

    Raaijmakers, Marieke I G; Rozati, Sima; Goldinger, Simone M; Widmer, Daniel S; Dummer, Reinhard; Levesque, Mitchell P

    2013-02-01

    The idea of cancer immunotherapy has been around for more than a century; however, the first immunotherapeutic ipilimumab, an anti-CTLA-4 antibody, has only recently been approved by the US FDA for melanoma. With an increasing understanding of the immune response, it is expected that more therapies will follow. This review aims to provide a general overview of immunotherapy in melanoma. We first explain the development of cancer immunotherapy more than a century ago and the general opinions about it over time. This is followed by a general overview of the immune reaction in order to give insight into the possible targets for therapy. Finally, we will discuss the current therapies for melanoma, their shortcomings and why it is important to develop patient stratification criteria. We conclude with an overview of recent discoveries and possible future therapies.

  15. Immunotherapy Approaches for Malignant Glioma From 2007 to 2009

    Sampson, John H.

    2012-01-01

    Malignant glioma is a deadly disease for which there have been few therapeutic advances over the past century. Although previous treatments were largely unsuccessful, glioma may be an ideal target for immune-based therapy. Recently, translational research led to several clinical trials based on tumor immunotherapy to treat patients with malignant glioma. Here we review 17 recent glioma immunotherapy clinical trials, published over the past 3 years. Various approaches were used, including passive transfer of naked and radiolabeled antibodies, tumor antigen-specific peptide immunization, and the use of patient tumor cells with or without dendritic cells as vaccines. We compare and discuss the current state of the art of clinical immunotherapy treatment, as well as its limited successes, pitfalls, and future potential. PMID:20424975

  16. New modalities of cancer treatment for NSCLC: focus on immunotherapy

    Davies, Marianne

    2014-01-01

    Recent advances in the understanding of immunology and antitumor immune responses have led to the development of new immunotherapies, including vaccination approaches and monoclonal antibodies that inhibit immune checkpoint pathways. These strategies have shown activity in melanoma and are now being tested in lung cancer. The antibody drugs targeting cytotoxic T-lymphocyte-associated antigen-4 and programmed cell death protein-1 immune checkpoint pathways work by restoring immune responses against cancer cells, and are associated with unconventional response patterns and immune-related adverse events as a result of their mechanism of action. As these new agents enter the clinic, nurses and other health care providers will require an understanding of the unique efficacy and safety profiles with immunotherapy to optimize potential patient benefits. This paper provides a review of the new immunotherapeutic agents in development for lung cancer, and strategies for managing patients on immunotherapy

  17. Modulation of GITR for cancer immunotherapy

    Schaer, David A; Murphy, Judith T; Wolchok, Jedd D

    2012-01-01

    Modulation of co-inhibitory and co-stimulatory receptors of the immune system has become a promising new approach for immunotherapy of cancer. With the recent FDA approval of CTLA-4 blockade serving as an important proof of principal, many new targets are now being translated into the clinic. Preclinical research has demonstrated that targeting glucocorticoid-induced tumor necrosis factor (TNF) receptor related gene (GITR), a member of TNF receptor superfamily, by agonist antibodies or natural ligand, can serve as an effective anti-tumor therapy. In this review, we will cover this research and the rationale that has led to initiation of two phase 1 clinical trials targeting GITR as a new immunotherapeutic approach for cancer. PMID:22245556

  18. Expression of Tissue factor in Adenocarcinoma and Squamous Cell Carcinoma of the Uterine Cervix: Implications for immunotherapy with hI-con1, a factor VII-IgGFc chimeric protein targeting tissue factor

    Cocco, Emiliano; Azodi, Masoud; Schwartz, Peter E; Rutherford, Thomas J; Pecorelli, Sergio; Lockwood, Charles J; Santin, Alessandro D; Varughese, Joyce; Buza, Natalia; Bellone, Stefania; Glasgow, Michelle; Bellone, Marta; Todeschini, Paola; Carrara, Luisa; Silasi, Dan-Arin

    2011-01-01

    Cervical cancer continues to be an important worldwide health problem for women. Up to 35% of patients who are diagnosed with and appropriately treated for cervical cancer will recur and treatment results are poor for recurrent disease. Given these sobering statistics, development of novel therapies for cervical cancer remains a high priority. We evaluated the expression of Tissue Factor (TF) in cervical cancer and the potential of hI-con1, an antibody-like-molecule targeted against TF, as a novel form of immunotherapy against multiple primary cervical carcinoma cell lines with squamous- and adenocarcinoma histology. Because TF is a transmembrane receptor for coagulation factor VII/VIIa (fVII), in this study we evaluated the in vitro expression of TF in cervical carcinoma cell lines by immunohistochemistry (IHC), real time-PCR (qRT-PCR) and flow cytometry. Sensitivity to hI-con1-dependent cell-mediated-cytotoxicity (IDCC) was evaluated in 5-hrs- 51 chromium-release-assays against cervical cancer cell lines in vitro. Cytoplasmic and/or membrane TF expression was observed in 8 out of 8 (100%) of the tumor tissues tested by IHC and in 100% (11 out of 11) of the cervical carcinoma cell lines tested by real-time-PCR and flow cytometry but not in normal cervical keratinocytes (p = 0.0023 qRT-PCR; p = 0.0042 flow cytometry). All primary cervical cancer cell lines tested overexpressing TF, regardless of their histology, were highly sensitive to IDCC (mean killing ± SD, 56.2% ± 15.9%, range, 32.4%-76.9%, p < 0.001), while negligible cytotoxicity was seen in the absence of hI-con1 or in the presence of rituximab-control-antibody. Low doses of interleukin-2 further increased the cytotoxic effect induced by hI-con1 (p = 0.025) while human serum did not significantly decrease IDCC against cervical cancer cell lines (p = 0.597). TF is highly expressed in squamous and adenocarcinoma of the uterine cervix. hI-con1 induces strong cytotoxicity against primary cervical cancer cell

  19. Development of cancer immunotherapy

    Yun, Yeon Sook; Chung, H. Y.; Yi, S. Y.; Kim, K. W.; Kim, B. K.; Chung, I. S.; Park, J. Y

    1999-04-01

    To increase the curative rate of cancer patients, we developed ideal biological response modifier from medicinal plants: Ginsan, KC68IId-8, KC-8Ala, KG-30. Ginsan activated natural killer cell activity of spleen cells more than 5.4 times than lentinan, 1.4 times than picibanil. Radioprotective activity of Ginsan is stronger than WR2721, glucan, and selenium. The immunogenicity of MOPC tumor cells was augmented by treatment with IL-10 antisense oligonucleotide and by transfection with VEGF sense-, antisense gene. The immunogenicity of MOPC tumor cells was augmented by treatment with IL-10 antisense oligonucleotide and by transfection with VEGF sense-, antisense gene. The immunogenicity of A20 tumor cells was also augmented by transfection with B7.1 gene. The immunosuppression of gamma-irradiation was due to the reduction of Th1 sytokine gene expression through STAT pathway. These research will devote to develop new cancer immunotherapy and to reduce side effect of cancer radiotherapy and chemotherapy.

  20. Modified Allergens for Immunotherapy.

    Satitsuksanoa, Pattraporn; Głobińska, Anna; Jansen, Kirstin; van de Veen, Willem; Akdis, Mübeccel

    2018-02-16

    During the past few decades, modified allergens have been developed for use in allergen-specific immunotherapy (AIT) with the aim to improve efficacy and reduce adverse effects. This review aims to provide an overview of the different types of modified allergens, their mechanism of action and their potential for improving AIT. In-depth research in the field of allergen modifications as well as the advance of recombinant DNA technology have paved the way for improved diagnosis and research on human allergic diseases. A wide range of structurally modified allergens has been generated including allergen peptides, chemically altered allergoids, adjuvant-coupled allergens, and nanoparticle-based allergy vaccines. These modified allergens show promise for the development of AIT regimens with improved safety and long-term efficacy. Certain modifications ensure reduced IgE reactivity and retained T cell reactivity, which facilities induction of immune tolerance to the allergen. To date, multiple clinical trials have been performed using modified allergens. Promising results were obtained for the modified cat, grass and birch pollen, and house dust mite allergens. The use of modified allergens holds promise for improving AIT efficacy and safety. There is however a need for larger clinical studies to reliably assess the added benefit for the patient of using modified allergens for AIT.

  1. Development of cancer immunotherapy

    Yun, Yeon Sook; Chung, H. Y.; Yi, S. Y.; Kim, K. W.; Kim, B. K.; Chung, I. S.; Park, J. Y.

    1999-04-01

    To increase the curative rate of cancer patients, we developed ideal biological response modifier from medicinal plants: Ginsan, KC68IId-8, KC-8Ala, KG-30. Ginsan activated natural killer cell activity of spleen cells more than 5.4 times than lentinan, 1.4 times than picibanil. Radioprotective activity of Ginsan is stronger than WR2721, glucan, and selenium. The immunogenicity of MOPC tumor cells was augmented by treatment with IL-10 antisense oligonucleotide and by transfection with VEGF sense-, antisense gene. The immunogenicity of MOPC tumor cells was augmented by treatment with IL-10 antisense oligonucleotide and by transfection with VEGF sense-, antisense gene. The immunogenicity of A20 tumor cells was also augmented by transfection with B7.1 gene. The immunosuppression of gamma-irradiation was due to the reduction of Th1 sytokine gene expression through STAT pathway. These research will devote to develop new cancer immunotherapy and to reduce side effect of cancer radiotherapy and chemotherapy

  2. Allergen immunotherapy for allergic rhinoconjunctivitis

    Nurmatov, Ulugbek; Dhami, Sangeeta; Arasi, Stefania

    2017-01-01

    Background: The European Academy of Allergy and Clinical Immunology (EAACI) is developing Guidelines on Allergen Immunotherapy (AIT) for Allergic Rhinoconjunctivitis (ARC). To inform the development of recommendations, we sought to critically assess the systematic review evidence on the effective......Background: The European Academy of Allergy and Clinical Immunology (EAACI) is developing Guidelines on Allergen Immunotherapy (AIT) for Allergic Rhinoconjunctivitis (ARC). To inform the development of recommendations, we sought to critically assess the systematic review evidence...... of these were judged to be of high, five moderate and three low quality. These reviews suggested that, in carefully selected patients, subcutaneous (SCIT) and sublingual (SLIT) immunotherapy resulted in significant reductions in symptom scores and medication requirements. Serious adverse outcomes were rare...

  3. Salvage immunotherapy of malignant glioma.

    Ingram, M; Jacques, S; Freshwater, D B; Techy, G B; Shelden, C H; Helsper, J T

    1987-12-01

    We present the preliminary results of a phase I trial of adoptive immunotherapy for recurrent or residual malignant glioma. The protocol is based on surgical debulking followed by implantation into the tumor bed of autologous lymphocytes that have been stimulated with phytohemagglutinin-P and then cultured in vitro in the presence of interleukin 2. Fifty-five patients with a mean Karnofsky rating of 64 were treated between February 1985 and March 1987. No significant toxicity was associated with the immunotherapy. Fifty patients had a positive initial response to therapy, nine patients had early recurrence (two to four months after treatment), and 22 patients died. We comment on major differences between the protocol described and other immunotherapy protocols.

  4. Targeted Cancer Therapies

    ... are sometimes referred to as the product of "rational" drug design.) One approach to identify potential targets ... molecules that stimulate new blood vessel growth. Immunotherapies trigger the immune system to destroy cancer cells. Some ...

  5. Immunotherapy of distant metastatic disease

    Schadendorf, D; Algarra, S M; Bastholt, L

    2009-01-01

    Immunotherapy of metastatic melanoma consists of various approaches leading to specific or non-specific immunomodulation. The use of FDA-approved interleukin (IL)-2 alone, in combination with interferon alpha, and/or with various chemotherapeutic agents (biochemotherapy) is associated with signif......Immunotherapy of metastatic melanoma consists of various approaches leading to specific or non-specific immunomodulation. The use of FDA-approved interleukin (IL)-2 alone, in combination with interferon alpha, and/or with various chemotherapeutic agents (biochemotherapy) is associated...

  6. Hypoallergenic molecules for subcutaneous immunotherapy

    Jongejan, Laurian; van Ree, Ronald; Poulsen, Lars K

    2016-01-01

    Although a large part of the population suffers from allergies, a cure is not yet available. Allergen-specific immunotherapy (AIT) offers promise for these patients. AIT has proven successful in insect and venom allergies; however, for food allergy this is still unclear. In this editorial we focus...... on the recent advances in a proof of concept study in food allergy, FAST (Food allergy specific immunotherapy), which may increase interest within the biomolecular and pharmaceutical industry to embark on similar projects of immunology driven precision medicine within the allergy field....

  7. Hypoallergenic molecules for subcutaneous immunotherapy.

    Jongejan, Laurian; van Ree, Ronald; Poulsen, Lars K

    2016-01-01

    Although a large part of the population suffers from allergies, a cure is not yet available. Allergen-specific immunotherapy (AIT) offers promise for these patients. AIT has proven successful in insect and venom allergies; however, for food allergy this is still unclear. In this editorial we focus on the recent advances in a proof of concept study in food allergy, FAST (Food allergy specific immunotherapy), which may increase interest within the biomolecular and pharmaceutical industry to embark on similar projects of immunology driven precision medicine within the allergy field.

  8. Radio-immunotherapy of solid tumors

    Chatal, J.F.; Faivre Chauvet, A.; Bardies, M.; Kraeber-Bodere, F.; Barbet, J.

    2001-01-01

    A convincing efficacy of radio-immunotherapy of solid tumors has not been documented yet in clinical studies. Consequently, a methodological optimization is needed within the scope in increasing absorbed doses delivered to tumor targets by amplifying cumulative tumor activity and in the same time in reducing absorbed doses delivered normal organs. Multi-step pre-targeting techniques allow to approach these goals. The most developed technique is based on the high affinity for biotin. In a first step an anti-tumor antibody coupled to avidin or biodin is injected. In a second step, 24 hours later, the circulating residual immuno-conjugate is bound to a molecular complex and eliminated through the reticulo endothelial system of the liver ('chase'phase). A third step, a few hours later, consists in injecting biotin coupled to DOTA chelating agent and labeled with yttrium 90. This small molecule rapidly diffuses to tumor targets and binds to pre-localized immuno-conjugate. Another technique, designed and developed in France, is based on antigen-antibody affinity. In a first step an anti-tumor / anti-hapten bi-specific antibody is injected and, in a second step, a few days later, the small hapten molecule is radiolabeled with I-131 and injected. It diffuses rapidly to the tumor targets and binds to the anti-hapten arm of the pre-localized bi-specific antibody. An alternative way to increase radio-immunotherapy efficacy consists in combining this low-dose rate irradiation to radiosensitizing molecules within the scope of an additive or supra additive effect which has previously documented. (author)

  9. Mutanome Engineered RNA Immunotherapy: Towards Patient-Centered Tumor Vaccination

    Mathias Vormehr

    2015-01-01

    Full Text Available Advances in nucleic acid sequencing technologies have revolutionized the field of genomics, allowing the efficient targeting of mutated neoantigens for personalized cancer vaccination. Due to their absence during negative selection of T cells and their lack of expression in healthy tissue, tumor mutations are considered as optimal targets for cancer immunotherapy. Preclinical and early clinical data suggest that synthetic mRNA can serve as potent drug format allowing the cost efficient production of highly efficient vaccines in a timely manner. In this review, we describe a process, which integrates next generation sequencing based cancer mutanome mapping, in silico target selection and prioritization approaches, and mRNA vaccine manufacturing and delivery into a process we refer to as MERIT (mutanome engineered RNA immunotherapy.

  10. NY-ESO-1 Based Immunotherapy of Cancer: Current Perspectives

    Remy Thomas

    2018-05-01

    Full Text Available NY-ESO-1 or New York esophageal squamous cell carcinoma 1 is a well-known cancer-testis antigen (CTAs with re-expression in numerous cancer types. Its ability to elicit spontaneous humoral and cellular immune responses, together with its restricted expression pattern, have rendered it a good candidate target for cancer immunotherapy. In this review, we provide background information on NY-ESO-1 expression and function in normal and cancerous tissues. Furthermore, NY-ESO-1-specific immune responses have been observed in various cancer types; however, their utility as biomarkers are not well determined. Finally, we describe the immune-based therapeutic options targeting NY-ESO-1 that are currently in clinical trial. We will highlight the recent advancements made in NY-ESO-1 cancer vaccines, adoptive T cell therapy, and combinatorial treatment with checkpoint inhibitors and will discuss the current trends for future NY-ESO-1 based immunotherapy. Cancer treatment has been revolutionized over the last few decades with immunotherapy emerging at the forefront. Immune-based interventions have shown promising results, providing a new treatment avenue for durable clinical responses in various cancer types. The majority of successful immunotherapy studies have been reported in liquid cancers, whereas these approaches have met many challenges in solid cancers. Effective immunotherapy in solid cancers is hampered by the complex, dynamic tumor microenvironment that modulates the extent and phenotype of the antitumor immune response. Furthermore, many solid tumor-associated antigens are not private but can be found in normal somatic tissues, resulting in minor to detrimental off-target toxicities. Therefore, there is an ongoing effort to identify tumor-specific antigens to target using various immune-based modalities. CTAs are considered good candidate targets for immunotherapy as they are characterized by a restricted expression in normal somatic tissues

  11. Allergen immunotherapy for allergic rhinoconjunctivitis

    Dhami, Sangeeta; Nurmatov, Ulugbek; Roberts, Graham

    2016-01-01

    BACKGROUND: The European Academy of Allergy and Clinical Immunology (EAACI) is in the process of developing the EAACI Guidelines for Allergen Immunotherapy (AIT) for the Management of Allergic Rhinoconjunctivitis. We seek to critically assess the effectiveness, cost-effectiveness and safety of AIT...

  12. Hypoallergenic molecules for subcutaneous immunotherapy

    Jongejan, Laurian; van Ree, Ronald; Poulsen, Lars K.

    2016-01-01

    Although a large part of the population suffers from allergies, a cure is not yet available. Allergen-specific immunotherapy (AIT) offers promise for these patients. AIT has proven successful in insect and venom allergies; however, for food allergy this is still unclear. In this editorial we focus

  13. Engineering Hematopoietic Cells for Cancer Immunotherapy: Strategies to Address Safety and Toxicity Concerns.

    Resetca, Diana; Neschadim, Anton; Medin, Jeffrey A

    2016-09-01

    Advances in cancer immunotherapies utilizing engineered hematopoietic cells have recently generated significant clinical successes. Of great promise are immunotherapies based on chimeric antigen receptor-engineered T (CAR-T) cells that are targeted toward malignant cells expressing defined tumor-associated antigens. CAR-T cells harness the effector function of the adaptive arm of the immune system and redirect it against cancer cells, overcoming the major challenges of immunotherapy, such as breaking tolerance to self-antigens and beating cancer immune system-evasion mechanisms. In early clinical trials, CAR-T cell-based therapies achieved complete and durable responses in a significant proportion of patients. Despite clinical successes and given the side effect profiles of immunotherapies based on engineered cells, potential concerns with the safety and toxicity of various therapeutic modalities remain. We discuss the concerns associated with the safety and stability of the gene delivery vehicles for cell engineering and with toxicities due to off-target and on-target, off-tumor effector functions of the engineered cells. We then overview the various strategies aimed at improving the safety of and resolving toxicities associated with cell-based immunotherapies. Integrating failsafe switches based on different suicide gene therapy systems into engineered cells engenders promising strategies toward ensuring the safety of cancer immunotherapies in the clinic.

  14. Improving the clinical impact of biomaterials in cancer immunotherapy

    Gammon, Joshua M.; Dold, Neil M.; Jewell, Christopher M.

    2016-01-01

    Immunotherapies for cancer have progressed enormously over the past few decades, and hold great promise for the future. The successes of these therapies, with some patients showing durable and complete remission, demonstrate the power of harnessing the immune system to eradicate tumors. However, the effectiveness of current immunotherapies is limited by hurdles ranging from immunosuppressive strategies employed by tumors, to inadequate specificity of existing therapies, to heterogeneity of disease. Further, the vast majority of approved immunotherapies employ systemic delivery of immunomodulators or cells that make addressing some of these challenges more difficult. Natural and synthetic biomaterials–such as biocompatible polymers, self-assembled lipid particles, and implantable biodegradable devices–offer unique potential to address these hurdles by harnessing the benefits of therapeutic targeting, tissue engineering, co-delivery, controlled release, and sensing. However, despite the enormous investment in new materials and nanotechnology, translation of these ideas to the clinic is still an uncommon outcome. Here we review the major challenges facing immunotherapies and discuss how the newest biomaterials and nanotechnologies could help overcome these challenges to create new clinical options for patients. PMID:26871948

  15. Immunotherapy in Gynecologic Cancers: Are We There Yet?

    Pakish, Janelle B; Jazaeri, Amir A

    2017-08-24

    Immune-targeted therapies have demonstrated durable responses in many tumor types with limited treatment options and poor overall prognosis. This has led to enthusiasm for expanding such therapies to other tumor types including gynecologic malignancies. The use of immunotherapy in gynecologic malignancies is in the early stages and is an active area of ongoing clinical research. Both cancer vaccines and immune checkpoint inhibitor therapy continue to be extensively studied in gynecologic malignancies. Immune checkpoint inhibitors, in particular, hold promising potential in specific subsets of endometrial cancer that express microsatellite instability. The key to successful treatment with immunotherapy involves identification of the subgroup of patients that will derive benefit. The number of ongoing trials in cervical, ovarian, and endometrial cancer will help to recognize these patients and make treatment more directed. Additionally, a number of studies are combining immunotherapy with standard treatment options and will help to determine combinations that will enhance responses to standard therapy. Overall, there is much enthusiasm for immunotherapy approaches in gynecologic malignancies. However, the emerging data shows that with the exception of microsatellite unstable tumors, the use of single-agent immune checkpoint inhibitors is associated with response rates of 10-15%. More effective and likely combinatorial approaches are needed and will be informed by the findings of ongoing trials.

  16. New modalities of cancer treatment for NSCLC: focus on immunotherapy

    Davies M

    2014-02-01

    Full Text Available Marianne Davies Smilow Cancer Hospital at Yale-New Haven Hospital, New Haven, CT, USA Abstract: Recent advances in the understanding of immunology and antitumor immune responses have led to the development of new immunotherapies, including vaccination approaches and monoclonal antibodies that inhibit immune checkpoint pathways. These strategies have shown activity in melanoma and are now being tested in lung cancer. The antibody drugs targeting cytotoxic T-lymphocyte-associated antigen-4 and programmed cell death protein-1 immune checkpoint pathways work by restoring immune responses against cancer cells, and are associated with unconventional response patterns and immune-related adverse events as a result of their mechanism of action. As these new agents enter the clinic, nurses and other health care providers will require an understanding of the unique efficacy and safety profiles with immunotherapy to optimize potential patient benefits. This paper provides a review of the new immunotherapeutic agents in development for lung cancer, and strategies for managing patients on immunotherapy. Keywords: immunotherapy, lung cancer, vaccination, nivolumab, ipilimumab, nursing

  17. [Immunotherapy in epithelial ovarian carcinoma: hope and reality].

    Lavoué, V; Foucher, F; Henno, S; Bauville, E; Catros, V; Cabillic, F; Levêque, J

    2014-03-01

    Epithelial ovarian carcinoma (EOC) has a worst prognosis with little progress in terms of survival for the last two decades. Immunology received little interest in EOC in the past, but now appears very important in the natural history of this cancer. This review is an EOC immunology state of art and focuses on the place of immunotherapy in future. A systematic review of published studies was performed. Medline baseline interrogation was performed with the following keywords: "Ovarian carinoma, immunotherapy, T-lymphocyte, regulator T-lymphocyte, dendritic cells, macrophage, antigen, chemotherapy, surgery, clinical trials". Identified publications (English or French) were assessed for the understanding of EOC immunology and the place of conventional treatment and immunotherapy strategy. Intratumoral infiltration by immune cells is a strong prognotic factor in EOC. Surgery and chemotherapy in EOC decrease imunosuppression in patients. The antitumoral immunity is a part of the therapeutic action of surgery and chemotherapy. Until now, immunotherapy gave some disappointing results, but the new drugs that target the tolerogenic tumoral microenvironnement rise and give a new hope in the treatment of cancer. Immunology controls the EOC natural history. The modulation of immunosuppressive microenvironment associated with the stimulation of antitumoral immunity could be the next revolution in the treatment of cancer. Copyright © 2013 Elsevier Masson SAS. All rights reserved.

  18. Immunotherapy of Head and Neck Cancer: Current and Future Considerations

    Alexander D. Rapidis

    2009-01-01

    Full Text Available Patients with head and neck squamous cell carcinoma (HNSCC are at considerable risk for death, with 5-year relative survival rates of approximately 60%. The profound multifaceted deficiencies in cell-mediated immunity that persist in most patients after treatment may be related to the high rates of treatment failure and second primary malignancies. Radiotherapy and chemoradiotherapy commonly have severe acute and long-term side effects on immune responses. The development of immunotherapies reflects growing awareness that certain immune system deficiencies specific to HNSCC and some other cancers may contribute to the poor long-term outcomes. Systemic cell-mediated immunotherapy is intended to activate the entire immune system and mount a systemic and/or locoregional antitumor response. The delivery of cytokines, either by single cytokines, for example, interleukin-2, interleukin-12, interferon-, interferon-, or by a biologic mix of multiple cytokines, such as IRX-2, may result in tumor rejection and durable immune responses. Targeted immunotherapy makes use of monoclonal antibodies or vaccines. All immunotherapies for HNSCC except cetuximab remain investigational, but a number of agents whose efficacy and tolerability are promising have entered phase 2 or phase 3 development.

  19. Advances of Immune Checkpoint Inhibitors in Tumor Immunotherapy

    Guo, Qiao

    2018-01-01

    Immune checkpoints are cell surface molecules that can fine-tune the immune responses, they are crucial for modulating the duration and amplitude of immune reactions while maintaining self-tolerance in order to minimize autoimmune responses. Numerous studies have demonstrated that tumors cells can directly express immune-checkpoint molecules, or induce many inhibitory molecules expression in the tumor microenvironment to inhibit the anti-tumor immunity. Releasing these brakes has emerged as an exciting strategy to cure cancer. In the past few years, clinical trials with therapeutic antibodies targeting to the checkpoint molecules CTLA-4 and PD-1 have rekindled the hope for cancer immunotherapy. In contrast to the conventional treatment, checkpoint inhibitors induce broad and durable antitumor responses. In the future, treatment may involve combination therapy to target different checkpoint molecules and stages of the adaptive immune responses. In this review, we summarized the recent advances of the study and development of other checkpoint molecules in tumor immunotherapy.

  20. Cancer immunotherapy: avoiding the road to perdition

    Bright Robert K

    2004-07-01

    Full Text Available Abstract The hypothesis that human cancers express antigens that can be specifically targeted by cell mediated immunity has become a scientifically justifiable rationale for the design and clinical testing of novel tumor-associated antigens (TAA. Although a number of TAA have been recognized and it has been suggested that they could be useful in the immunological treatment of cancer, the complexity of human beings leads us to reflect on the need to establish new criteria for validating their real applicability. Herein, we show a system level-based approach that includes morphological and molecular techniques, which is specifically required to improve the capacity to produce desired results and to allow cancer immunotherapy to re-emerge from the mist in which it is currently shrouded.

  1. Intravenous immunoglobulin and Alzheimer's disease immunotherapy.

    Solomon, Beka

    2007-02-01

    Amyloid-beta peptide (Abeta) contributes to the acute progression of Alzheimer's disease (AD) and has become the main target for therapeutics. Active immunization with Abeta in individuals with AD has been efficacious; however, some patients developed side effects, possibly related to an autoimmune response. Evidence that intravenous immunoglobulin (IVIg), an FDA-approved purified immunoglobulin fraction from normal human donor blood, shows promise of passive immunotherapy for AD is reviewed. Investigations into the molecular effects of IVIg on Abeta clearance, using the BV-2 cellular microglia line, demonstrate that IVIg dissolves Abeta fibrils in vitro, increases cellular tolerance to Abeta, enhances microglial migration toward Abeta deposits, and mediates phagocytosis of Abeta. Preliminary clinical results indicate that IVIg, which contains natural antibodies against the Abeta, warrants further study into its potential to deliver a controlled immune attack on the peptide, avoiding the immune toxicities that have had a negative impact on the first clinical trials of vaccine against Abeta.

  2. Targetless T cells in cancer immunotherapy

    thor Straten, Eivind Per; Garrido, Federico

    2016-01-01

    Attention has recently focused on new cancer immunotherapy protocols aiming to activate T cell mediated anti-tumor responses. To this end, administration of antibodies that target inhibitory molecules regulating T-cell cytotoxicity has achieved impressive clinical responses, as has adoptive cell...... infiltrate tumor tissues and destroy HLA class I positive tumor cells expressing the specific antigen. In fact, current progress in the field of cancer immune therapy is based on the capacity of T cells to kill cancer cells that present tumor antigen in the context on an HLA class I molecule. However......, it is also well established that cancer cells are often characterized by loss or down regulation of HLA class I molecules, documented in a variety of human tumors. Consequently, immune therapy building on CD8 T cells will be futile in patients harboring HLA class-I negative or deficient cancer cells...

  3. Workshop on challenges, insights, and future directions for mouse and humanized models in cancer immunology and immunotherapy: a report from the associated programs of the 2016 annual meeting for the Society for Immunotherapy of cancer.

    Zloza, Andrew; Karolina Palucka, A; Coussens, Lisa M; Gotwals, Philip J; Headley, Mark B; Jaffee, Elizabeth M; Lund, Amanda W; Sharpe, Arlene H; Sznol, Mario; Wainwright, Derek A; Wong, Kwok-Kin; Bosenberg, Marcus W

    2017-09-19

    Understanding how murine models can elucidate the mechanisms underlying antitumor immune responses and advance immune-based drug development is essential to advancing the field of cancer immunotherapy. The Society for Immunotherapy of Cancer (SITC) convened a workshop titled, "Challenges, Insights, and Future Directions for Mouse and Humanized Models in Cancer Immunology and Immunotherapy" as part of the SITC 31st Annual Meeting and Associated Programs on November 10, 2016 in National Harbor, MD. The workshop focused on key issues in optimizing models for cancer immunotherapy research, with discussions on the strengths and weaknesses of current models, approaches to improve the predictive value of mouse models, and advances in cancer modeling that are anticipated in the near future. This full-day program provided an introduction to the most common immunocompetent and humanized models used in cancer immunology and immunotherapy research, and addressed the use of models to evaluate immune-targeting therapies. Here, we summarize the workshop presentations and subsequent panel discussion.

  4. [Specific immunotherapy with depigmented allergoids].

    Klimek, L; Thorn, C; Pfaar, O

    2010-01-01

    Specific immunotherapy is the only available causative treatment for IgE-mediated allergic conditions. The state of the art is treatment via the subcutaneous route with crude extracts in a water solution, with physically linked (semidepot) extracts or chemically modified semidepot extracts (allergoids). A relatively new purification method combines depigmentation followed by polymerization with glutaraldehyde. This modification results in increased tolerance with a reduction in both local and systemic adverse effects. As controlled clinical trials have shown, the effectiveness is comparable to that of specific immunotherapy with crude allergen extracts. Recent data suggest that the modified polymerized allergoids allow a safe rush titration in a few days or even in 1 day (ultra-rush titration).

  5. Specific immunotherapy ameliorates ulcerative colitis.

    Cai, Min; Zeng, Lu; Li, Lin-Jing; Mo, Li-Hua; Xie, Rui-Di; Feng, Bai-Sui; Zheng, Peng-Yuan; Liu, Zhi-Gang; Liu, Zhan-Ju; Yang, Ping-Chang

    2016-01-01

    Hypersensitivity reaction to certain allergens plays a role in the pathogenesis of inflammatory bowel disease (IBD). This study aims to observe the effect of specific immunotherapy in a group of IBD patients. Patients with both ulcerative colitis (UC) and food allergy were recruited into this study. Food allergy was diagnosed by skin prick test and serum specific IgE. The patients were treated with specific immunotherapy (SIT) and Clostridium butyricum (CB) capsules. After treating with SIT and CB, the clinical symptoms of UC were markedly suppressed as shown by reduced truncated Mayo scores and medication scores. The serum levels of specific IgE, interleukin (IL)-4 and tumor necrosis factor (TNF)-α were also suppressed. Treating with SIT alone or CB alone did not show appreciable improvement of the clinical symptoms of UC. UC with food allergy can be ameliorated by administration with SIT and butyrate-production probiotics.

  6. Immunotherapy for metastatic colorectal cancer

    Ellebaek, Eva; Andersen, Mads Hald; Svane, Inge Marie

    2012-01-01

    Although no immunotherapeutic treatment is approved for colorectal cancer (CRC) patients, promising results from clinical trials suggest that several immunotherapeutic strategies may prove efficacious and applicable to this group of patients. This review describes the immunogenicity of CRC...... and presents the most interesting strategies investigated so far: cancer vaccination including antigen-defined vaccination and dendritic cell vaccination, chemo-immunotherapy, and adoptive cell transfer. Future treatment options as well as the possibility of combining existing therapies will be discussed along...

  7. EAACI Guidelines on Allergen Immunotherapy

    Halken, Susanne; Larenas-Linnemann, Desiree; Roberts, Graham

    2017-01-01

    Allergic diseases are common and frequently coexist. Allergen immunotherapy (AIT) is a disease-modifying treatment for IgE-mediated allergic disease with effects beyond cessation of AIT that may include important preventive effects. The European Academy of Allergy and Clinical Immunology (EAACI) ...... of allergic co-morbidities in those with other allergic conditions. Evidence for the preventive potential of AIT as disease modifying treatment exists but there is an urgent need for more high-quality clinical trials....

  8. Integrated Immunotherapy for Breast Cancer

    2016-09-01

    TITLE AND SUBTITLE 5a. CONTRACT NUMBER Integrated Immunotherapy for Breast Cancer 5b. GRANT NUMBER W81XWH-12-1-0366 5c. PROGRAM ELEMENT...communications 215, 566 (Oct 13, 1995). 87. S. J. Reshkin, R. A. Cardone , S. Harguindey, Na+-H+ exchanger, pH regulation and cancer. Recent patents on anti-cancer drug discovery 8, 85 (Jan 1, 2013).

  9. Parasites and immunotherapy: with or against?

    Yousofi Darani, Hossein; Yousefi, Morteza; Safari, Marzieh; Jafari, Rasool

    2016-06-01

    Immunotherapy is a sort of therapy in which antibody or antigen administrates to the patient in order to treat or reduce the severity of complications of disease. This kind of treatment practiced in a wide variety of diseases including infectious diseases, autoimmune disorders, cancers and allergy. Successful and unsuccessful immunotherapeutic strategies have been practiced in variety of parasitic infections. On the other hand parasites or parasite antigens have also been considered for immunotherapy against other diseases such as cancer, asthma and multiple sclerosis. In this paper immunotherapy against common parasitic infections, and also immunotherapy of cancer, asthma and multiple sclerosis with parasites or parasite antigens have been reviewed.

  10. Immunotherapy of Neuromyelitis Optica

    2013-01-01

    Neuromyelitis optica (NMO) is a chronic inflammatory disease of the central nervous system that affects the optic nerves and spinal cord resulting in visual impairment and myelopathy. There is a growing body of evidence that immunotherapeutic agents targeting T and B cell functions, as well as active elimination of proinflammatory molecules from the peripheral blood circulation, can attenuate disease progression. In this review, we discuss the immunotherapeutic options and the treatment strategies in NMO. We also analyze the pathogenic mechanisms of the disease in order to provide recommendations regarding treatments. PMID:24455211

  11. Nanoparticle–allergen complexes for allergen immunotherapy

    Di Felice G

    2017-06-01

    Full Text Available Gabriella Di Felice,1 Paolo Colombo2 1National Center for Drug Research and Evaluation, Istituto Superiore di Sanità, Rome, 2Institute of Biomedicine and Molecular Immunology, National Research Council, Palermo, Italy Abstract: Allergen-specific immunotherapy was introduced in clinical settings more than 100 years ago. It remains the only curative approach to treating allergic disorders that ameliorates symptoms, reduces medication costs, and blocks the onset of new sensitizations. Despite this clinical evidence and knowledge of some immunological mechanisms, there remain some open questions regarding the safety and efficacy of this treatment. This suggests the need for novel therapeutic approaches that attempt to reduce the dose and frequency of treatment administration, improving patient compliance, and reducing costs. In this context, the use of novel adjuvants has been proposed and, in recent years, biomedical applications using nanoparticles have been exploited in the attempt to find formulations with improved stability, bioavailability, favorable biodistribution profiles, and the capability of targeting specific cell populations. In this article, we review some of the most relevant regulatory aspects and challenges concerning nanoparticle-based formulations with immunomodulatory potential, their related immunosafety issues, and the nature of the nanoparticles most widely employed in the allergy field. Furthermore, we report in vitro and in vivo data published using allergen/nanoparticle systems, discuss their impact on the immune system in terms of immunomodulatory activity and the reduction of side effects, and show that this strategy is a novel and promising tool for the development of allergy vaccines. Keywords: allergy, nanocarriers, immunotoxicity, immune modulation, immunotherapy, allergens

  12. Basis for molecular diagnostics and immunotherapy for esophageal cancer.

    Abdo, Joe; Agrawal, Devendra K; Mittal, Sumeet K

    2017-01-01

    Esophageal cancer (EC) is an extremely aggressive neoplasm, diagnosed in about 17,000 Americans every year with a mortality rate of more than 80% within five years and a median overall survival of just 13 months. For decades, the go-to regimen for esophageal cancer patients has been the use of taxane and platinum-based chemotherapy regimens, which has yielded the field's most dire survival statistics. Areas covered: Combination immunotherapy and a more robust molecular diagnostic platform for esophageal tumors could improve patient management strategies and potentially extend lives beyond the current survival figures. Analyzing a panel of biomarkers including those affiliated with taxane and platinum resistance (ERCC1 and TUBB3) as well as immunotherapy effectiveness (PD-L1) would provide oncologists more information on how to optimize first-line therapy for EC. Expert commentary: Of the 12 FDA-approved therapies in EC, zero target the genome. A majority of the approved drugs either target or are effected by proteomic expression. Therefore, a broader understanding of diagnostic biomarkers could give more clarity and direction in treating esophageal cancer in concert with a greater use of immunotherapy.

  13. Immunotherapy in Metastatic Renal Cell Carcinoma: A Comprehensive Review

    Rachna Raman

    2015-01-01

    Full Text Available Localized renal cell carcinoma (RCC is often curable by surgery alone. However, metastatic RCC is generally incurable. In the 1990s, immunotherapy in the form of cytokines was the mainstay of treatment for metastatic RCC. However, responses were seen in only a minority of highly selected patients with substantial treatment-related toxicities. The advent of targeted agents such as vascular endothelial growth factor tyrosine kinase inhibitors VEGF-TKIs and mammalian target of rapamycin (mTOR inhibitors led to a change in this paradigm due to improved response rates and progression-free survival, a better safety profile, and the convenience of oral administration. However, most patients ultimately progress with about 12% being alive at 5 years. In contrast, durable responses lasting 10 years or more are noted in a minority of those treated with cytokines. More recently, an improved overall survival with newer forms of immunotherapy in other malignancies (such as melanoma and prostate cancer has led to a resurgence of interest in immune therapies in metastatic RCC. In this review we discuss the rationale for immunotherapy and recent developments in immunotherapeutic strategies for treating metastatic RCC.

  14. Novel Anti-Melanoma Immunotherapies: Disarming Tumor Escape Mechanisms

    Sivan Sapoznik

    2012-01-01

    Full Text Available The immune system fights cancer and sometimes temporarily eliminates it or reaches an equilibrium stage of tumor growth. However, continuous immunological pressure also selects poorly immunogenic tumor variants that eventually escape the immune control system. Here, we focus on metastatic melanoma, a highly immunogenic tumor, and on anti-melanoma immunotherapies, which recently, especially following the FDA approval of Ipilimumab, gained interest from drug development companies. We describe new immunomodulatory approaches currently in the development pipeline, focus on the novel CEACAM1 immune checkpoint, and compare its potential to the extensively described targets, CTLA4 and PD1. This paper combines multi-disciplinary approaches and describes anti-melanoma immunotherapies from molecular, medical, and business angles.

  15. Lymphoma immunotherapy: vaccines, adoptive cell transfer and immunotransplant

    Brody, Joshua; Levy, Ronald

    2017-01-01

    Therapy for non-Hodgkin lymphoma has benefited greatly from basic science and clinical research such that chemotherapy and monoclonal antibody therapy have changed some lymphoma subtypes from uniformly lethal to curable, but the majority of lymphoma patients remain incurable. Novel therapies with less toxicity and more specific targeting of tumor cells are needed and immunotherapy is among the most promising of these. Recently completed randomized trials of idiotype vaccines and earlier-phase trials of other vaccine types have shown the ability to induce antitumor T cells and some clinical responses. More recently, trials of adoptive transfer of antitumor T cells have demonstrated techniques to increase the persistence and antitumor effect of these cells. Herein, we discuss lymphoma immunotherapy clinical trial results and what lessons can be taken to improve their effect, including the combination of vaccination and adoptive transfer in an approach we have dubbed ‘immunotransplant’. PMID:20636025

  16. Advances in immunotherapy for bladder cancer

    Zhao Jiyu; Chen Lijun

    2009-01-01

    The conventional treatments for bladder cancer, including surgery, chemotherapy and radiotherapy, are highly invasive and bring about lots of side effects. Immunotherapy has become a promising strategy for the treatment of malignant tumors. This review presents the research advances in immunotherapy of bladder cancer. (authors)

  17. Polymeric particulate systems for immunotherapy of cancer

    Rahimian, S.

    2015-01-01

    Immunotherapy has been established as a groundbreaking approach to treat cancer. It involves modulation of the host’s immune response to fight cancer. This is achieved by either enhancing tumor-specific T cell responses or inhibition of the tumor-induced immune suppression. Immunotherapy, however

  18. Present and future perspectives on immunotherapy for advanced renal cell carcinoma: Going to the core or beating around the bush?

    Hidenori Kawashima

    2015-03-01

    Full Text Available Metastatic lesions of renal cell carcinoma (RCC occasionally regress spontaneously after surgical removal of the primary tumor. Although this is an exceptionally rare occurrence, RCC has thus been postulated to be immunogenic. Immunotherapies, including cytokine therapy, peptide-based vaccines, and immune checkpoint inhibitors have therefore been used to treat patients with advanced, metastatic RCC. We review the history, trends, and recent progress in immunotherapy for advanced RCC and discuss future perspectives, with consideration of our experimental work on galectin 9 and PINCH as promising specific immunotherapy targets

  19. New Horizons in Allergen Immunotherapy

    Backer, Vibeke

    2016-01-01

    . The authors concluded that among adultswithHDMallergy–related asthma not well controlled by ICS, the addition of HDM SLIT deliveredas a once-daily tablet significantly prolongedthetime to the first asthma exacerbation during ICS reduction. Aswith any clinical trial, the critical question is howmeaningful...... the active therapycomparedwith placebowhendifferent criteriawere used todefine asthma exacerbations, aswell as in immunologic changes consistentwith desensitization.However, therewerenosignificantdifferences inpatients’ responses toquestionnairesregardingeitherasthmacontrolorqualityoflife. The authors...... treatmentwith ICS. The authors’ choice of a primary end point based on exacerbations during ICS reduction is also unique to immunotherapy trials,with previous trials ofHDMimmunotherapy focusing onmedication requirements, symptomsscores, or lung function as primary end points. Furthermore, the inclusion...

  20. Autoimmunity and Immunotherapy in Narcolepsy

    Min Jae Seong

    2017-06-01

    Full Text Available Narcolepsy is a neurological disorder characterized by excessive daytime sleepiness, cataplexy, hypnagogic hallucination, and sleep paralysis. Narcolepsy is caused by damage of hypocretin producing neurons in the lateral hypothalamus. The association of narcolepsy with HLA DQB1*0602 and high incidence following H1N1 pandemic in china, vaccination with pandemrix and an adjuvanted H1N1 vaccine suggests that pathophysiology of narcolepsy is involved in the immune system. This review focused on immunological associations and immunotherapy in narcolepsy.

  1. Novel immunotherapy approaches for metastatic urothelial and renal cell carcinoma

    Zhiying Shao

    2016-10-01

    Full Text Available The treatment of metastatic renal cell carcinoma (RCC and urothelial carcinoma (UC remains a major challenge. Past research has implicated the immune system in tumor surveillance of both malignancies, leading to the application of immunotherapy agents for both cancers. Among them, the most promising agents are the checkpoint blockade drugs, such as antibodies targeting the cytotoxic T-lymphocyte-associated antigen 4 (CTLA-4, programmed death receptor 1 (PD-1, and PD-1 ligand (PD-L1. In normal physiology, these immune checkpoints act as inhibitory signals to fine-tune the duration and strength of immune reactions, which is pivotal for maintaining self-tolerance. However, tumor cells also utilize immune checkpoint pathways to evade anti-tumor immune response, leading to disease progression and metastasis. Thus, there has been intense preclinical and clinical effort focused on the application of checkpoint inhibitors in metastatic RCC and UC. To date, nivolumab (anti-PD-1 and atezolizumab (anti-PD-L1 have been approved for the treatment of metastatic RCC and UC, respectively. Despite these successes, challenges remain in how to further improve response rates to immunotherapy and how to select patients that will benefit from this approach. In this report, we review existing data and research on immunotherapy in metastatic RCC and UC.

  2. Cancer immunotherapy and immunological memory.

    Murata, Kenji; Tsukahara, Tomohide; Torigoe, Toshihiko

    2016-01-01

    Human immunological memory is the key distinguishing hallmark of the adaptive immune system and plays an important role in the prevention of morbidity and the severity of infection. The differentiation system of T cell memory has been clarified using mouse models. However, the human T cell memory system has great diversity induced by natural antigens derived from many pathogens and tumor cells throughout life, and profoundly differs from the mouse memory system constructed using artificial antigens and transgenic T cells. We believe that only human studies can elucidate the human immune system. The importance of immunological memory in cancer immunotherapy has been pointed out, and the trafficking properties and long-lasting anti-tumor capacity of memory T cells play a crucial role in the control of malignant tumors. Adoptive cell transfer of less differentiated T cells has consistently demonstrated superior anti-tumor capacity relative to more differentiated T cells. Therefore, a human T cell population with the characteristics of stem cell memory is thought to be attractive for peptide vaccination and adoptive cell transfer. A novel human memory T cell population that we have identified is closer to the naive state than previous memory T cells in the T cell differentiation lineage, and has the characteristics of stem-like chemoresistance. Here we introduce this novel population and describe the fundamentals of immunological memory in cancer immunotherapy.

  3. The next generation of immunotherapy: keeping lung cancer in check

    Ashwin Somasundaram

    2017-04-01

    Full Text Available Abstract Lung cancer is the deadliest malignancy with more cancer deaths per year than the next three cancers combined. Despite remarkable advances in targeted therapy, advanced lung cancer patients have not experienced a significant improvement in mortality. Lung cancer has been shown to be immunogenic and responsive to checkpoint blockade therapy. Checkpoint signals such as CTLA-4 and PD-1/PD-L1 dampen T cell activation and allow tumors to escape the adaptive immune response. Response rates in patients with pretreated, advanced NSCLC were much higher and more durable with PD-1 blockade therapy compared to standard-of-care, cytotoxic chemotherapy. Therefore, PD-1 inhibitors such as nivolumab and pembrolizumab were rapidly approved for both squamous and nonsquamous lung cancer in the pretreated population. The advent of these new therapies have revolutionized the treatment of lung cancer; however, the majority of NSCLC patients still do not respond to PD-1/PD-L1 inhibition leaving an unmet need for a large and growing population. Immunotherapy combinations with chemotherapy, radiation therapy, or novel immunomodulatory agents are currently being examined with the hope of achieving higher response rates and improving overall survival rate. Chemotherapy and radiation therapy has been theorized to increase the release of tumor antigen leading to increased responses with immunotherapy. However, cytotoxic chemotherapy and radiation therapy may also destroy actively proliferating T cells. The correct combination and order of therapy is under investigation. The majority of patients who do respond to immunotherapy have a durable response attributed to the effect of adaptive immune system’s memory. Unfortunately, some patients’ tumors do progress afterward and investigation of checkpoint blockade resistance is still nascent. This review will summarize the latest efficacy and safety data for early and advanced NSCLC in both the treatment-naïve and

  4. Is immunotherapy an opportunity for effective treatment of drug addiction?

    Zalewska-Kaszubska, Jadwiga

    2015-11-27

    Immunotherapy has a great potential of becoming a new therapeutic strategy in the treatment of addiction to psychoactive drugs. It may be used to treat addiction but also to prevent neurotoxic complications of drug overdose. In preclinical studies two immunological methods have been tested; active immunization, which relies on the administration of vaccines and passive immunization, which relies on the administration of monoclonal antibodies. Until now researchers have succeeded in developing vaccines and/or antibodies against addiction to heroin, cocaine, methamphetamine, nicotine and phencyclidine. Their effectiveness has been confirmed in preclinical studies. At present, clinical studies are being conducted for vaccines against nicotine and cocaine and also anti-methamphetamine monoclonal antibody. These preclinical and clinical studies suggest that immunotherapy may be useful in the treatment of addiction and drug overdose. However, there are a few problems to be solved. One of them is controlling the level of antibodies due to variability between subjects. But even obtaining a suitable antibody titer does not guarantee the effectiveness of the vaccine. Additionally, there is a risk of intentional or unintentional overdose. As vaccines prevent passing of drugs through the blood/brain barrier and thereby prevent their positive reinforcement, some addicted patients may erroneously seek higher doses of psychoactive substances to get "high". Consequently, vaccination should be targeted at persons who have a strong motivation to free themselves from drug dependency. It seems that immunotherapy may be an opportunity for effective treatment of drug addiction if directed to adequate candidates for treatment. For other addicts, immunotherapy may be a very important element supporting psycho- and pharmacotherapy. Copyright © 2015 Elsevier Ltd. All rights reserved.

  5. Tackling Cancer Resistance by Immunotherapy: Updated Clinical Impact and Safety of PD-1/PD-L1 Inhibitors

    Shifaa M. Abdin; Dana M. Zaher; El-Shaimaa A. Arafa; Hany A. Omar

    2018-01-01

    Cancer therapy has been constantly evolving with the hope of finding the most effective agents with the least toxic effects to eradicate tumors. Cancer immunotherapy is currently among the most promising options, fulfilling this hope in a wide range of tumors. Immunotherapy aims to activate immunity to fight cancer in a very specific and targeted manner; however, some abnormal immune reactions known as immune-related adverse events (IRAEs) might occur. Therefore, many researchers are aiming t...

  6. Improved Endpoints for Cancer Immunotherapy Trials

    Eggermont, Alexander M. M.; Janetzki, Sylvia; Hodi, F. Stephen; Ibrahim, Ramy; Anderson, Aparna; Humphrey, Rachel; Blumenstein, Brent; Wolchok, Jedd

    2010-01-01

    Unlike chemotherapy, which acts directly on the tumor, cancer immunotherapies exert their effects on the immune system and demonstrate new kinetics that involve building a cellular immune response, followed by changes in tumor burden or patient survival. Thus, adequate design and evaluation of some immunotherapy clinical trials require a new development paradigm that includes reconsideration of established endpoints. Between 2004 and 2009, several initiatives facilitated by the Cancer Immunotherapy Consortium of the Cancer Research Institute and partner organizations systematically evaluated an immunotherapy-focused clinical development paradigm and created the principles for redefining trial endpoints. On this basis, a body of clinical and laboratory data was generated that supports three novel endpoint recommendations. First, cellular immune response assays generate highly variable results. Assay harmonization in multicenter trials may minimize variability and help to establish cellular immune response as a reproducible biomarker, thus allowing investigation of its relationship with clinical outcomes. Second, immunotherapy may induce novel patterns of antitumor response not captured by Response Evaluation Criteria in Solid Tumors or World Health Organization criteria. New immune-related response criteria were defined to more comprehensively capture all response patterns. Third, delayed separation of Kaplan–Meier curves in randomized immunotherapy trials can affect results. Altered statistical models describing hazard ratios as a function of time and recognizing differences before and after separation of curves may allow improved planning of phase III trials. These recommendations may improve our tools for cancer immunotherapy trials and may offer a more realistic and useful model for clinical investigation. PMID:20826737

  7. Growth Inhibition of Re-Challenge B16 Melanoma Transplant by Conjugates of Melanogenesis Substrate and Magnetite Nanoparticles as the Basis for Developing Melanoma-Targeted Chemo-Thermo-Immunotherapy

    Tomoaki Takada

    2009-01-01

    Full Text Available Melanogenesis substrate, N-propionyl-cysteaminylphenol (NPrCAP, is selectively incorporated into melanoma cells and inhibits their growth by producing cytotoxic free radicals. Magnetite nanoparticles also disintegrate cancer cells and generate heat shock protein (HSP upon exposure to an alternating magnetic field (AMF. This study tested if a chemo-thermo-immunotherapy (CTI therapy strategy can be developed for better management of melanoma by conjugating NPrCAP on the surface of magnetite nanoparticles (NPrCAP/M. We examined the feasibility of this approach in B16 mouse melanoma and evaluated the impact of exposure temperature, frequency, and interval on the inhibition of re-challenged melanoma growth. The therapeutic protocol against the primary transplanted tumor with or without AMF exposure once a day every other day for a total of three treatments not only inhibited the growth of the primary transplant but also prevented the growth of the secondary, re-challenge transplant. The heat-generated therapeutic effect was more significant at a temperature of 43∘C than either 41∘C or 46∘C. NPrCAP/M with AMF exposure, instead of control magnetite alone or without AMF exposure, resulted in the most significant growth inhibition of the re-challenge tumor and increased the life span of the mice. HSP70 production was greatest at 43∘C compared to that with 41∘C or 46∘C. CD+T cells were infiltrated at the site of the re-challenge melanoma transplant.

  8. The Pathophysiology of Thyroid Eye Disease (TED): Implications for Immunotherapy

    Gupta, Shivani; Douglas, Raymond

    2012-01-01

    Purpose of Review Thyroid eye disease (TED) is a poorly understood autoimmune manifestation most commonly associated with Graves’ disease. Current nonspecific treatment paradigms offer symptomatic improvement but fail to target the underlying pathogenic mechanisms and thus, do not significantly alter the long-term disease outcome. The purpose of this review is to provide an update of the current understanding of the immunopathogenesis of TED and explore these implications for targeted immunotherapy. Recent Findings Orbital fibroblasts are integral to the pathogenesis of TED and may modulate immune responses by production of cytokines and hyaluronan in response to activation of shared autoantigens including thyrotropin receptor (TSHR) and insulin-like growth factor-1 receptor (IGF-R1). Fibrocytes share many of these phenotypic and functional features, suggesting a link between systemic and site-specific disease. Use of targeted immunotherapies in TED is limited, though data from the use Rituximab (RTX), a B cell depleting agent, are encouraging. Sustained clinical response has been seen with RTX in several reports, despite return of peripheral B cell levels to pretreatment levels. Additionally, this response appears to be independent to cytokine and antibody production, suggesting possible modulation of antigen presentation as a mechanism of its effect. Summary Progressive advances in the understanding of the immunopathogenesis of TED continue to spur clinical trials utilizing targeted immune therapies. Continued understanding of the molecular mechanisms of disease will expand potential treatments for TED patients and obviate the need for reconstructive surgical therapies. PMID:21730841

  9. The application of natural killer (NK cell immunotherapy for the treatment of cancer

    Rayne H Rouce

    2015-11-01

    Full Text Available Natural killer (NK cells are essential components of the innate immune system and play a critical role in host immunity against cancer. Recent progress in our understanding of NK cell immunobiology has paved the way for novel NK cell-based therapeutic strategies for the treatment of cancer. In this review, we will focus on recent advances in the field of NK cell immunotherapy, including augmentation of antibody-dependent cellular cytotoxicity, manipulation of receptor-mediated activation, and adoptive immunotherapy with ex vivo expanded, chimeric antigen receptor (CAR engineered or engager-modified NK cells. In contrast to T lymphocytes, donor NK cells do not attack non-hematopoietic tissues, suggesting that an NK-mediated anti-tumor effect can be achieved in the absence of graft-versus-host disease. Despite reports of clinical efficacy, a number of factors limit the application of NK cell immunotherapy for the treatment of cancer such as the failure of infused NK cells to expand and persist in vivo. Therefore efforts to enhance the therapeutic benefit of NK cell-based immunotherapy by developing strategies to manipulate the NK cell product, host factors and tumor targets are the subject of intense research. In the preclinical setting, genetic engineering of NK cells to express CARs to redirect their antitumor specificity has shown significant promise. Given the short lifespan and potent cytolytic function of mature NK cells, they are attractive candidate effector cells to express CARs for adoptive immunotherapies. Another innovative approach to redirect NK cytotoxicity towards tumor cells is to create either bispecific or trispecific antibodies, thus augmenting cytotoxicity against tumor-associated antigens. These are exciting times for the study of NK cells; with recent advances in the field of NK cell biology and translational research, it is likely that NK cell immunotherapy will move to the forefront of cancer immunotherapy over the next

  10. IMUNODIAGNOSTIC AND IMMUNOTHERAPY OF AUTISM

    Vladimir TRAJKOVSKI

    2000-06-01

    Full Text Available Infantile autism is one of the most disabling illnesses of neurological, emotional and intellectual development. The cause of autism remains unknown. However, recent investigations suggest that this disorder shares several features of established autoimmune disorders.The aim of this article is to describe the news of imunodiagnostic and immunotherapy in autism. Interpretation of data is made by conceptual and methodological differences between studies. The autoimmune response is most likely directed against the brain myelin, perhaps secondary to a viral infection. The idea that autism is an autoimmune disorder is further strengthened by the fact that autistic patients respond well to treatment with immune modulating drugs. Immune interventions can produce immune modulation-state of suppression or stimulation. Immune therapy should always be done in consultation with physicians.

  11. Sarcoma Immunotherapy: Past Approaches and Future Directions

    D'Angelo, S. P.; Tap, W. D.; Schwartz, G. K.; Carvajal, R. D.

    2014-01-01

    Sarcomas are heterogeneous malignant tumors of mesenchymal origin characterized by more than 100 distinct subtypes. Unfortunately, 25–50% of patients treated with initial curative intent will develop metastatic disease. In the metastatic setting, chemotherapy rarely leads to complete and durable responses; therefore, there is a dire need for more effective therapies. Exploring immunotherapeutic strategies may be warranted. In the past, agents that stimulate the immune system such as interferon and interleukin-2 have been explored and there has been evidence of some clinical activity in selected patients. In addition, many cancer vaccines have been explored with suggestion of benefit in some patients. Building on the advancements made in other solid tumors as well as a better understanding of cancer immunology provides hope for the development of new and exciting therapies in the treatment of sarcoma. There remains promise with immunologic checkpoint blockade antibodies. Further, building on the success of autologous cell transfer in hematologic malignancies, designing chimeric antigen receptors that target antigens that are over-expressed in sarcoma provides a great deal of optimism. Exploring these avenues has the potential to make immunotherapy a real therapeutic option in this orphan disease. PMID:24778572

  12. Mechanisms of allergen-specific immunotherapy

    Fujita Hiroyuki

    2012-01-01

    Full Text Available Abstract Allergen-specific immunotherapy (allergen-SIT is a potentially curative treatment approach in allergic diseases. It has been used for almost 100 years as a desensitizing therapy. The induction of peripheral T cell tolerance and promotion of the formation of regulatory T-cells are key mechanisms in allergen-SIT. Both FOXP3+CD4+CD25+ regulatory T (Treg cells and inducible IL-10- and TGF-β-producing type 1 Treg (Tr1 cells may prevent the development of allergic diseases and play a role in successful allergen-SIT and healthy immune response via several mechanisms. The mechanisms of suppression of different pro-inflammatory cells, such as eosinophils, mast cells and basophils and the development of allergen tolerance also directly or indirectly involves Treg cells. Furthermore, the formation of non-inflammatory antibodies particularly IgG4 is induced by IL-10. Knowledge of these molecular basis is crucial in the understanding the regulation of immune responses and their possible therapeutic targets in allergic diseases.

  13. [Aβ immunotherapy for Alzheimer's disease].

    Sakai, Kenji; Yamada, Masahito

    2013-04-01

    Alzheimer's disease (AD) is one of the neurodegenerative diseases characterized by the deposition of amyloid-β-protein (Aβ) as senile plaques in the brain parenchyma and phosphorylated-tau accumulation as neurofibrillary tangles in the neurons. Although details of the disease pathomechanisms remain unclear, Aβ likely acts as a key protein for AD initiation and progression, followed by abnormal tau phosphorylation and neuronal death (amyloid-cascade hypothesis). According to this hypothesis, Aβ immunization therapies are created to eliminate Aβ from the brain, and to prevent the neurons from damage by these pathogenic proteins. There are two methods for Aβ immunotherapies: active and passive immunization. Previous studies have shown Aβ removal and improved cognitive function in animal models of AD. Clinical trials on various drugs, including AN1792, bapineuzumab, and solanezumab, have been carried out; however, all trials have failed to demonstrate apparent clinical benefits. On the contrary, side effects emerged, such as meningoencephalitis, vasogenic edema, which are currently called amyloid related imaging abnormalities (ARIA)-E and microhemorrhage (ARIA-H). In neuropathological studies of immunized cases, Aβ was removed from the brain parenchyma and phosphorylated-tau was reduced in the neuronal processes. Moreover, deterioration of the cerebral amyloid angiopathy (CAA) and an increase of microhemorrhages and microinfarcts were described. Aβ is cleared from the brain mainly via the lymphatic drainage pathway. ARIA could stem from severe CAA due to dysfunction of the drainage pathway after immunotherapy. Aβ immunization has a potential of cure for AD patients, although the above-described problems must be overcome before applying this therapy in clinical treatment.

  14. Defining the critical hurdles in cancer immunotherapy

    Fox, Bernard A; Schendel, Dolores J; Butterfield, Lisa H

    2011-01-01

    of cancer immunotherapy. With consensus on these hurdles, international working groups could be developed to make recommendations vetted by the participating organizations. These recommendations could then be considered by regulatory bodies, governmental and private funding agencies, pharmaceutical...... immunotherapy organizations representing Europe, Japan, China and North America to discuss collaborations to improve development and delivery of cancer immunotherapy. One of the concepts raised by SITC and defined as critical by all parties was the need to identify hurdles that impede effective translation...... companies and academic institutions to facilitate changes necessary to accelerate clinical translation of novel immune-based cancer therapies. The critical hurdles identified by representatives of the collaborating organizations, now organized as the World Immunotherapy Council, are presented and discussed...

  15. Allergen immunotherapy for allergic respiratory diseases

    Cappella, Antonio; Durham, Stephen R.

    2012-01-01

    Allergen specific immunotherapy involves the repeated administration of allergen products in order to induce clinical and immunologic tolerance to the offending allergen. Immunotherapy is the only etiology-based treatment that has the potential for disease modification, as reflected by longterm remission following its discontinuation and possibly prevention of disease progression and onset of new allergic sensitizations. Whereas subcutaneous immunotherapy is of proven value in allergic rhinitis and asthma there is a risk of untoward side effects including rarely anaphylaxis. Recently the sublingual route has emerged as an effective and safer alternative. Whereas the efficacy of SLIT in seasonal allergy is now well-documented in adults and children, the available data for perennial allergies and asthma is less reliable and particularly lacking in children. This review evaluates the efficacy, safety and longterm benefits of SCIT and SLIT and highlights new findings regarding mechanisms, potential biomarkers and recent novel approaches for allergen immunotherapy. PMID:23095870

  16. Who Will Benefit from Cancer Immunotherapy?

    Researchers have identified a “genetic signature” in the tumors of patients with advanced melanoma who responded to a form of immunotherapy called checkpoint blockade. The results could be the basis for a test that identifies likely responders.

  17. Combining Immunotherapy with Standard Glioblastoma Therapy

    This clinical trial is testing standard therapy (surgery, radiation and temozolomide) plus immunotherapy with pembrolizumab with or without a cancer treatment vaccine for patients with newly diagnosed glioblastoma, a common and deadly type of brain tumor.

  18. Immunotherapy Combination Approved for Advanced Kidney Cancer

    FDA has approved the combination of the immunotherapy drugs nivolumab (Opdivo) and ipilimumab (Yervoy) as an initial treatment for some patients with advanced kidney cancer. The approval is expected to immediately affect patient care, as this Cancer Currents post explains.

  19. Early predictive value of multifunctional skin-infiltrating lymphocytes in anticancer immunotherapy

    Wimmers, Florian; Aarntzen, Erik H. J. G.; Schreibelt, Gerty; Jacobs, Joannes F. M.; Punt, Cornelis J. A.; Figdor, Carl G.; de Vries, I. Jolanda M.

    2014-01-01

    Bioassays that predict clinical outcome are essential to optimize cellular anticancer immunotherapy. We have recently developed a robust and simple skin test to evaluate the capacity of tumor-specific T cells to migrate, recognize their targets and exert effector functions. This bioassay detects T

  20. Antigen-specific immunotherapy in ovarian cancer and p53 as tumor antigen

    Vermeij, Renee; Leffers, Ninke; Melief, Cornelis J.; Daemen, Toos; Nijman, Hans W.

    This review discusses the results of different immunization strategies, identifies possible drawbacks in study design and provides potential solutions for augmentation of clinical efficacy. A potential target for cancer immunotherapy is p53, as approximately 50% of ovarian cancer cells carry p53

  1. Potential for novel MUC1 glycopeptide-specific antibody in passive cancer immunotherapy

    Madsen, Caroline B; Wandall, Hans H; Pedersen, Anders Elm

    2013-01-01

    MUC1 is an important target for antibodies in passive cancer immunotherapy. Antibodies against mucin glycans or mucin peptide backbone alone may give rise to cross reactivity with normal tissues. Therefore, attempts to identify antibodies against cancer-specific MUC1 glycopeptide epitopes havebeen...

  2. Defining the critical hurdles in cancer immunotherapy

    2011-01-01

    Scientific discoveries that provide strong evidence of antitumor effects in preclinical models often encounter significant delays before being tested in patients with cancer. While some of these delays have a scientific basis, others do not. We need to do better. Innovative strategies need to move into early stage clinical trials as quickly as it is safe, and if successful, these therapies should efficiently obtain regulatory approval and widespread clinical application. In late 2009 and 2010 the Society for Immunotherapy of Cancer (SITC), convened an "Immunotherapy Summit" with representatives from immunotherapy organizations representing Europe, Japan, China and North America to discuss collaborations to improve development and delivery of cancer immunotherapy. One of the concepts raised by SITC and defined as critical by all parties was the need to identify hurdles that impede effective translation of cancer immunotherapy. With consensus on these hurdles, international working groups could be developed to make recommendations vetted by the participating organizations. These recommendations could then be considered by regulatory bodies, governmental and private funding agencies, pharmaceutical companies and academic institutions to facilitate changes necessary to accelerate clinical translation of novel immune-based cancer therapies. The critical hurdles identified by representatives of the collaborating organizations, now organized as the World Immunotherapy Council, are presented and discussed in this report. Some of the identified hurdles impede all investigators; others hinder investigators only in certain regions or institutions or are more relevant to specific types of immunotherapy or first-in-humans studies. Each of these hurdles can significantly delay clinical translation of promising advances in immunotherapy yet if overcome, have the potential to improve outcomes of patients with cancer. PMID:22168571

  3. Defining the critical hurdles in cancer immunotherapy

    Fox Bernard A

    2011-12-01

    Full Text Available Abstract Scientific discoveries that provide strong evidence of antitumor effects in preclinical models often encounter significant delays before being tested in patients with cancer. While some of these delays have a scientific basis, others do not. We need to do better. Innovative strategies need to move into early stage clinical trials as quickly as it is safe, and if successful, these therapies should efficiently obtain regulatory approval and widespread clinical application. In late 2009 and 2010 the Society for Immunotherapy of Cancer (SITC, convened an "Immunotherapy Summit" with representatives from immunotherapy organizations representing Europe, Japan, China and North America to discuss collaborations to improve development and delivery of cancer immunotherapy. One of the concepts raised by SITC and defined as critical by all parties was the need to identify hurdles that impede effective translation of cancer immunotherapy. With consensus on these hurdles, international working groups could be developed to make recommendations vetted by the participating organizations. These recommendations could then be considered by regulatory bodies, governmental and private funding agencies, pharmaceutical companies and academic institutions to facilitate changes necessary to accelerate clinical translation of novel immune-based cancer therapies. The critical hurdles identified by representatives of the collaborating organizations, now organized as the World Immunotherapy Council, are presented and discussed in this report. Some of the identified hurdles impede all investigators; others hinder investigators only in certain regions or institutions or are more relevant to specific types of immunotherapy or first-in-humans studies. Each of these hurdles can significantly delay clinical translation of promising advances in immunotherapy yet if overcome, have the potential to improve outcomes of patients with cancer.

  4. Immunological mechanisms of sublingual allergen-specific immunotherapy.

    Novak, Natalija; Bieber, T; Allam, J-P

    2011-06-01

    Within the last 100 years of allergen-specific immunotherapy, many clinical and scientific efforts have been made to establish alternative noninvasive allergen application strategies. Thus, intra-oral allergen delivery to the sublingual mucosa has been proven to be safe and effective. As a consequence, to date, sublingual immunotherapy (SLIT) is widely accepted by most allergists as an alternative to conventional subcutaneous immunotherapy. Although immunological mechanisms remain to be elucidated in detail, several studies in mice and humans within recent years provided deeper insights into local as well as systemic immunological features in response to SLIT. First of all, it was shown that the target organ, the oral mucosa, harbours a sophisticated immunological network as an important prerequisite for SLIT, which contains among other cells, local antigen-presenting cells (APC), such as dendritic cells (DCs), with a constitutive disposition to enforce tolerogenic mechanisms. Further on, basic research on local DCs within the oral mucosa gave rise to possible alternative strategies to deliver the allergens to other mucosal regions than sublingual tissue, such as the vestibulum oris. Moreover, characterization of oral DCs led to the identification of target structures for both allergens as well as adjuvants, which could be applied during SLIT. Altogether, SLIT came a long way since its very beginning in the last century and some, but not all questions about SLIT could be answered so far. However, recent research efforts as well as clinical approaches paved the way for another exciting 100 years of SLIT. © 2011 John Wiley & Sons A/S.

  5. Immunological comparison of allergen immunotherapy tablet treatment and subcutaneous immunotherapy against grass allergy

    Aasbjerg, K; Backer, V; Lund, G

    2014-01-01

    BACKGROUND: IgE-mediated allergic rhinitis to grass pollen can successfully be treated with either allergen immunotherapy tablets (SLIT tablet) or SQ-standardized subcutaneous immunotherapy (SCIT). The efficacy of these two treatment modalities for grass allergy is comparable, but the immunological...

  6. Immunotherapy for Head and Neck Squamous Cell Carcinoma.

    Moskovitz, Jessica; Moy, Jennifer; Ferris, Robert L

    2018-03-03

    Discussion of current strategies targeting the immune system related to solid tumors with emphasis on head and neck squamous cell carcinoma (HNSCC).This review will outline the current challenges with immunotherapy and future goals for treatment using these agents. Agents targeting immune checkpoint receptors (IR) such as program death 1 (PD1) have been used in the clinical realm for melanoma and non-small cell lung cancer (NSCLC), and the use of these agents for these malignancies has provided crucial information about how and why patients respond or not to inhibitory checkpoint receptor blockade therapy (ICR). The anti PD1 agent, nivolumab, was recently approved by the FDA as a standard of care regimen for patients with platinum refractory recurrent/metastatic (R/M) HNSCC. Molecular pathways leading to resistance are starting to be identified, and work is underway to understand the most optimal treatment regimen with incorporation of immunotherapy. ICR has renewed interest in the immunology of cancer, but resistance is not uncommon, and thus understanding of these mechanisms will allow the clinician to appropriately select patients that will benefit from this therapy.

  7. Immunotherapy in pancreatic cancer: Unleash its potential through novel combinations.

    Guo, Songchuan; Contratto, Merly; Miller, George; Leichman, Lawrence; Wu, Jennifer

    2017-06-10

    Pancreatic cancer is the third leading cause of cancer mortality in both men and women in the United States, with poor response to current standard of care, short progression-free and overall survival. Immunotherapies that target cytotoxic T lymphocyte antigen-4, programmed cell death protein-1, and programmed death-ligand 1 checkpoints have shown remarkable activities in several cancers such as melanoma, renal cell carcinoma, and non-small cell lung cancer due to high numbers of somatic mutations, combined with cytotoxic T-cell responses. However, single checkpoint blockade was ineffective in pancreatic cancer, highlighting the challenges including the poor antigenicity, a dense desmoplastic stroma, and a largely immunosuppressive microenvironment. In this review, we will summarize available clinical results and ongoing efforts of combining immune checkpoint therapies with other treatment modalities such as chemotherapy, radiotherapy, and targeted therapy. These combination therapies hold promise in unleashing the potential of immunotherapy in pancreatic cancer to achieve better and more durable clinical responses by enhancing cytotoxic T-cell responses.

  8. Dendritic cell-based immunotherapy.

    Osada, Takuya; Clay, Timothy M; Woo, Christopher Y; Morse, Michael A; Lyerly, H Kim

    2006-01-01

    Dendritic cells (DCs) play a crucial role in the induction of antigen-specific T-cell responses, and therefore their use for the active immunotherapy of malignancies has been studied with considerable interest. More than a decade has passed since the publication of the first clinical data of DC-based vaccines, and through this and subsequent studies, a number of important developmental insights have been gleaned. These include the ideal source and type of DCs, the discovery of novel antigens and methods of loading DCs, the role of DC maturation, and the most efficient route of immunization. The generation of immune responses against tumor antigens after DC immunization has been demonstrated, and favorable clinical responses have been reported in some patients; however, it is difficult to pool the results as a whole, and thus the body of data remains inconclusive, in part because of varying DC preparation and vaccination protocols, the use of different forms of antigens, and, most importantly, a lack of rigorous criteria for defining clinical responses. As such, the standardization of clinical and immunologic criteria utilized, as well as DC preparations employed, will allow for the comparison of results across multiple clinical studies and is required in order for future trials to measure the true value and role of this treatment modality. In addition, issues regarding the optimal dose and clinical setting for the application of DC vaccines remain to be resolved, and recent clinical studies have been designed to begin to address these questions.

  9. [Specific immunotherapy. Hyposensitization with allergens].

    Wedi, B; Kapp, A

    2004-04-01

    Successful allergen-specific immunotherapy (SIT) induces complex immunologic chan-ges resulting in reduced allergic inflammatory reactions. SIT has long-term effects in mild forms of inhalant allergies and is effective even when standard pharmacotherapy fails. Moreover, the risk to develop additional allergic sensitizations and the development of asthma is significantly reduced in children with allergic rhinitis. SIT is the treatment of choice in patients with systemic reactions to hymenoptera venoms. Although the exact effector mechanisms of SIT still have to be clarified, the most probable effect is a modulation of regulatory T cells associated with a switch of allergen-specific B-cells towards IgG4 production. The critical point to insure efficacy and safety is the selection of patients and allergens, task best performed by a specialist trained in allergology. Further details are available in the position papers of the German allergy societies - DGAI(Deutsche Gesellschaft fiir Allergologie und Klinische Immunologie) and ADA (Arzte-verband Deutscher Allergologen) - which can be found at www.dgaki.de.

  10. Development of Artificial Antigen Presenting Cells for Prostate Cancer Immunotherapy

    Schneck, Jonathan P; Oelke, Mathias

    2007-01-01

    While adoptive immunotherapy holds promise as a treatment for cancer, development of adoptive immunotherapy has been impeded by the lack of a reproducible and economically viable method for generating...

  11. Immune mediated neuropathy following checkpoint immunotherapy.

    Gu, Yufan; Menzies, Alexander M; Long, Georgina V; Fernando, S L; Herkes, G

    2017-11-01

    Checkpoint immunotherapy has revolutionised cancer therapy and is now standard treatment for many malignancies including metastatic melanoma. Acute inflammatory neuropathies, often labelled as Guillain-Barre syndrome, are an uncommon but potentially severe complication of checkpoint immunotherapy with individual cases described but never characterised as a group. We describe a case of acute sensorimotor and autonomic neuropathy following a single dose of combination ipilimumab and nivolumab for metastatic melanoma. A literature search was performed, identifying 14 other cases of acute neuropathy following checkpoint immunotherapy, with the clinical, electrophysiological and laboratory features summarised. Most cases described an acute sensorimotor neuropathy (92%) with hyporeflexia (92%) that could occur from induction up till many weeks after the final dose of therapy. In contrast to Guillain-Barre syndrome, the cerebrospinal fluid (CSF) analysis often shows a lymphocytic picture (50%) and the electrophysiology showed an axonal pattern (55%). Treatment was variable and often in combination. 11 cases received steroid therapy with only 1 death within this group, whereas of the 4 patients who did not receive steroid therapy there were 3 deaths. In conclusion checkpoint immunotherapy - induced acute neuropathies are distinct from and progress differently to Guillain-Barre syndrome. As with other immunotherapy related adverse events corticosteroid therapy should be initiated in addition to usual therapy. Copyright © 2017 Elsevier Ltd. All rights reserved.

  12. Chimeric antigen receptor (CAR)-modified natural killer cell-based immunotherapy and immunological synapse formation in cancer and HIV.

    Liu, Dongfang; Tian, Shuo; Zhang, Kai; Xiong, Wei; Lubaki, Ndongala Michel; Chen, Zhiying; Han, Weidong

    2017-12-01

    Cytotoxic T lymphocytes (CTLs) and natural killer (NK) cells contribute to the body's immune defenses. Current chimeric antigen receptor (CAR)-modified T cell immunotherapy shows strong promise for treating various cancers and infectious diseases. Although CAR-modified NK cell immunotherapy is rapidly gaining attention, its clinical applications are mainly focused on preclinical investigations using the NK92 cell line. Despite recent advances in CAR-modified T cell immunotherapy, cost and severe toxicity have hindered its widespread use. To alleviate these disadvantages of CAR-modified T cell immunotherapy, additional cytotoxic cell-mediated immunotherapies are urgently needed. The unique biology of NK cells allows them to serve as a safe, effective, alternative immunotherapeutic strategy to CAR-modified T cells in the clinic. While the fundamental mechanisms underlying the cytotoxicity and side effects of CAR-modified T and NK cell immunotherapies remain poorly understood, the formation of the immunological synapse (IS) between CAR-modified T or NK cells and their susceptible target cells is known to be essential. The role of the IS in CAR T and NK cell immunotherapies will allow scientists to harness the power of CAR-modified T and NK cells to treat cancer and infectious diseases. In this review, we highlight the potential applications of CAR-modified NK cells to treat cancer and human immunodeficiency virus (HIV), and discuss the challenges and possible future directions of CAR-modified NK cell immunotherapy, as well as the importance of understanding the molecular mechanisms of CAR-modified T cell- or NK cell-mediated cytotoxicity and side effects, with a focus on the CAR-modified NK cell IS.

  13. Agonist anti-GITR antibody significantly enhances the therapeutic efficacy of Listeria monocytogenes-based immunotherapy.

    Shrimali, Rajeev; Ahmad, Shamim; Berrong, Zuzana; Okoev, Grigori; Matevosyan, Adelaida; Razavi, Ghazaleh Shoja E; Petit, Robert; Gupta, Seema; Mkrtichyan, Mikayel; Khleif, Samir N

    2017-08-15

    We previously demonstrated that in addition to generating an antigen-specific immune response, Listeria monocytogenes (Lm)-based immunotherapy significantly reduces the ratio of regulatory T cells (Tregs)/CD4 + and myeloid-derived suppressor cells (MDSCs) in the tumor microenvironment. Since Lm-based immunotherapy is able to inhibit the immune suppressive environment, we hypothesized that combining this treatment with agonist antibody to a co-stimulatory receptor that would further boost the effector arm of immunity will result in significant improvement of anti-tumor efficacy of treatment. Here we tested the immune and therapeutic efficacy of Listeria-based immunotherapy combination with agonist antibody to glucocorticoid-induced tumor necrosis factor receptor-related protein (GITR) in TC-1 mouse tumor model. We evaluated the potency of combination on tumor growth and survival of treated animals and profiled tumor microenvironment for effector and suppressor cell populations. We demonstrate that combination of Listeria-based immunotherapy with agonist antibody to GITR synergizes to improve immune and therapeutic efficacy of treatment in a mouse tumor model. We show that this combinational treatment leads to significant inhibition of tumor-growth, prolongs survival and leads to complete regression of established tumors in 60% of treated animals. We determined that this therapeutic benefit of combinational treatment is due to a significant increase in tumor infiltrating effector CD4 + and CD8 + T cells along with a decrease of inhibitory cells. To our knowledge, this is the first study that exploits Lm-based immunotherapy combined with agonist anti-GITR antibody as a potent treatment strategy that simultaneously targets both the effector and suppressor arms of the immune system, leading to significantly improved anti-tumor efficacy. We believe that our findings depicted in this manuscript provide a promising and translatable strategy that can enhance the overall

  14. Genetically Modified T-Cell-Based Adoptive Immunotherapy in Hematological Malignancies

    Baixin Ye

    2017-01-01

    Full Text Available A significant proportion of hematological malignancies remain limited in treatment options. Immune system modulation serves as a promising therapeutic approach to eliminate malignant cells. Cytotoxic T lymphocytes (CTLs play a central role in antitumor immunity; unfortunately, nonspecific approaches for targeted recognition of tumor cells by CTLs to mediate tumor immune evasion in hematological malignancies imply multiple mechanisms, which may or may not be clinically relevant. Recently, genetically modified T-cell-based adoptive immunotherapy approaches, including chimeric antigen receptor (CAR T-cell therapy and engineered T-cell receptor (TCR T-cell therapy, promise to overcome immune evasion by redirecting the specificity of CTLs to tumor cells. In clinic trials, CAR-T-cell- and TCR-T-cell-based adoptive immunotherapy have produced encouraging clinical outcomes, thereby demonstrating their therapeutic potential in mitigating tumor development. The purpose of the present review is to (1 provide a detailed overview of the multiple mechanisms for immune evasion related with T-cell-based therapies; (2 provide a current summary of the applications of CAR-T-cell- as well as neoantigen-specific TCR-T-cell-based adoptive immunotherapy and routes taken to overcome immune evasion; and (3 evaluate alternative approaches targeting immune evasion via optimization of CAR-T and TCR-T-cell immunotherapies.

  15. Development of Novel Immunotherapies for Multiple Myeloma

    Ensaf M. Al-Hujaily

    2016-09-01

    Full Text Available Multiple myeloma (MM is a disorder of terminally differentiated plasma cells characterized by clonal expansion in the bone marrow (BM. It is the second-most common hematologic malignancy. Despite significant advances in therapeutic strategies, MM remains a predominantly incurable disease emphasizing the need for the development of new treatment regimens. Immunotherapy is a promising treatment modality to circumvent challenges in the management of MM. Many novel immunotherapy strategies, such as adoptive cell therapy and monoclonal antibodies, are currently under investigation in clinical trials, with some already demonstrating a positive impact on patient survival. In this review, we will summarize the current standards of care and discuss major new approaches in immunotherapy for MM.

  16. Anti-CD40-mediated cancer immunotherapy

    Hassan, Sufia Butt; Sørensen, Jesper Freddie; Olsen, Barbara Nicola

    2014-01-01

    activation and thus enhancement of immune responses. Treatment with anti-CD40 monoclonal antibodies has been exploited in several cancer immunotherapy studies in mice and led to the development of anti-CD40 antibodies for clinical use. Here, Dacetuzumab and Lucatumumab are in the most advanced stage...... with other cancer immunotherapies, in particular interleukin (IL)-2. An in-depth analysis of this immunotherapy is provided elsewhere. In the present review, we provide an update of the most recent clinical trials with anti-CD40 antibodies. We present and discuss recent and ongoing clinical trials...... in this field, including clinical studies which combine anti-CD40 treatment with other cancer-treatments, such as Rituximab and Tremelimumab....

  17. Immunotherapy in allergy and cellular tests

    Chirumbolo, Salvatore

    2014-01-01

    The basophil activation test (BAT) is an in vitro assay where the activation of basophils upon exposure to various IgE-challenging molecules is measured by flow cytometry. It is a cellular test able to investigate basophil behavior during allergy and allergy immunotherapy. A panoply of critical issues and suggestive advances have rendered this assay a promising yet puzzling tool to endeavor a full comprehension of innate immunity of allergy desensitization and manage allergen or monoclonal anti-IgE therapy. In this review a brief state of art of BAT in immunotherapy is described focusing onto the analytical issue pertaining BAT performance in allergy specific therapy. PMID:24717453

  18. Immunotherapy for advanced melanoma: future directions.

    Valpione, Sara; Campana, Luca G

    2016-02-01

    As calculated by the meta-analysis of Korn et al., the prognosis of metastatic melanoma in the pretarget and immunological therapy era was poor, with a median survival of 6.2 and a 1-year life expectancy of 25.5%. Nowadays, significant advances in melanoma treatment have been gained, and immunotherapy is one of the promising approaches to get to durable responses and survival improvement. The aim of the present review is to highlight the recent innovations in melanoma immunotherapy and to propose a critical perspective of the future directions of this enthralling oncology subspecialty.

  19. Tinnitus after administration of sublingual immunotherapy

    Juel, Jacob

    2017-01-01

    , for example, itching, swelling, irritation, ulceration of the oropharynx and nausea, abdominal pain, diarrhoea, and vomiting. More severe side effects are dominated by systemic and respiratory tract manifestations. RESULTS: In this clinical case, the author reports a right-sided transient tinnitus lasting...... for 48 h after administration of sublingual immunotherapy for house dust mite in allergic rhinitis. CONCLUSIONS: This case provide important insights for clinical practice, as tinnitus has not been previously reported as a side effect of sublingual immunotherapy with house dust mite allergens....

  20. CTLA-4 blockade and the renaissance of cancer immunotherapy.

    Mocellin, Simone; Nitti, Donato

    2013-12-01

    Cytotoxic T-lymphocyte associated antigen 4 (CTLA-4) plays a key role in restraining the adaptive immune response of T-cells towards a variety of antigens including tumor associated antigens (TAAs). The blockade of this immune checkpoint elicits an effective anticancer immune response in a range of preclinical models, suggesting that naturally occurring (or therapeutically induced) TAA specific lymphocytes need to be "unleashed" in order to properly fight against malignant cells. Therefore, investigators have tested this therapeutic hypothesis also in humans: the favorable results obtained with this strategy in patients with advanced cutaneous melanoma are revolutionizing the management of this highly aggressive disease and are fueling new enthusiasm on cancer immunotherapy in general. Here we summarize the biology of CTLA-4, overview the experimental data supporting the rational for targeting CTLA-4 to treat cancer and review the main clinical findings on this novel anticancer approach. Moreover, we critically discuss the current challenges and potential developments of this promising field of cancer immunotherapy. Copyright © 2013 Elsevier B.V. All rights reserved.

  1. Use of lectin-functionalized particles for oral immunotherapy

    Diesner, Susanne C; Wang, Xue-Yan; Jensen-Jarolim, Erika; Untersmayr, Eva; Gabor, Franz

    2013-01-01

    Immunotherapy, in recent times, has found its application in a variety of immunologically mediated diseases. Oral immunotherapy may not only increase patient compliance but may, in particular, also induce both systemic as well as mucosal immune responses, due to mucosal application of active agents. To improve the bioavailability and to trigger strong immunological responses, recent research projects focused on the encapsulation of drugs and antigens into polymer particles. These particles protect the loaded antigen from the harsh conditions in the GI tract. Furthermore, modification of the surface of particles by the use of lectins, such as Aleuria aurantia lectin, wheatgerm agglutinin or Ulex europaeus-I, enhances the binding to epithelial cells, in particular to membranous cells, of the mucosa-associated lymphoid tissue. Membranous cell-specific targeting leads to an improved transepithelial transport of the particle carriers. Thus, enhanced uptake and presentation of the encapsulated antigen by antigen-presenting cells favor strong systemic, but also local, mucosal immune responses. PMID:22834202

  2. Tumor inherent interferons: Impact on immune reactivity and immunotherapy.

    Brockwell, Natasha K; Parker, Belinda S

    2018-04-19

    Immunotherapy has revolutionized cancer treatment, with sustained responses to immune checkpoint inhibitors reported in a number of malignancies. Such therapeutics are now being trialed in aggressive or advanced cancers that are heavily reliant on untargeted therapies, such as triple negative breast cancer. However, responses have been underwhelming to date and are very difficult to predict, leading to an inability to accurately weigh up the benefit-to-risk ratio for their implementation. The tumor immune microenvironment has been closely linked to immunotherapeutic response, with superior responses observed in patients with T cell-inflamed or 'hot' tumors. One class of cytokines, the type I interferons, are a major dictator of tumor immune infiltration and activation. Tumor cell inherent interferon signaling dramatically influences the immune microenvironment and the expression of immune checkpoint proteins, hence regulators and targets of this pathway are candidate biomarkers of immunotherapeutic response. In support of a link between IFN signaling and immunotherapeutic response, the combination of type I interferon inducers with checkpoint immunotherapy has recently been demonstrated critical for a sustained anti-tumor response in aggressive breast cancer models. Here we review evidence that links type I interferons with a hot tumor immune microenvironment, response to checkpoint inhibitors and reduced risk of metastasis that supports their use as biomarkers and therapeutics in oncology. Copyright © 2018. Published by Elsevier Ltd.

  3. DermAll nanomedicine for allergen-specific immunotherapy.

    Garaczi, Edina; Szabó, Kornélia; Francziszti, László; Csiszovszki, Zsolt; Lőrincz, Orsolya; Tőke, Enikő R; Molnár, Levente; Bitai, Tamás; Jánossy, Tamás; Bata-Csörgő, Zsuzsanna; Kemény, Lajos; Lisziewicz, Julianna

    2013-11-01

    Allergen-specific immunotherapy (ASIT) the only disease-modifying treatment for IgE-mediated allergies is characterized with long treatment duration and high risk of side effects. We investigated the safety, immunogenicity and efficacy of a novel ASIT, called DermAll, in an experimental allergic rhinitis model. We designed and characterized DermAll-OVA, a synthetic plasmid pDNA/PEIm nanomedicine expressing ovalbumin (OVA) as model allergen. DermAll-OVA was administered topically with DermaPrep device to target Langerhans cells. To detect the clinical efficacy of DermAll ASIT we quantified the nasal symptoms and characterized the immunomodulatory activity of DermAll ASIT by measuring cytokine secretion after OVA-stimulation of splenocytes and antibodies from the sera. In allergic mice DermAll ASIT was as safe as Placebo, balanced the allergen-induced pathogenic TH2-polarized immune responses, and decreased the clinical symptoms by 52% [32%, 70%] compared to Placebo. These studies suggest that DermAll ASIT is safe and should significantly improve the immunopathology and symptoms of allergic diseases. A novel allergen-specific immunotherapy for IgE-mediated allergies is presented in this paper, using an experimental allergic rhinitis model and a synthetic plasmid pDNA/PEIm nanomedicine expressing ovalbumin as model allergen. Over 50% reduction of symptoms was found as the immune system's balance was favorably altered toward more TH2-polarized immune responses. Copyright © 2013 Elsevier Inc. All rights reserved.

  4. Immunotherapy for glioblastoma: playing chess, not checkers.

    Jackson, Christopher M; Lim, Michael

    2018-04-24

    Patients with glioblastoma (GBM) exhibit a complex state of immune dysfunction involving multiple mechanisms of local, regional, and systemic immune suppression and tolerance. These pathways are now being identified and their relative contributions explored. Delineating how these pathways are interrelated is paramount to effectively implementing immunotherapy for GBM. Copyright ©2018, American Association for Cancer Research.

  5. Biomarkers and correlative endpoints for immunotherapy trials.

    Morse, Michael A; Osada, Takuya; Hobeika, Amy; Patel, Sandip; Lyerly, H Kim

    2013-01-01

    Immunotherapies for lung cancer are reaching phase III clinical trial, but the ultimate success likely will depend on developing biomarkers to guide development and choosing patient populations most likely to benefit. Because the immune response to cancer involves multiple cell types and cytokines, some spatially and temporally separated, it is likely that multiple biomarkers will be required to fully characterize efficacy of the vaccine and predict eventual benefit. Peripheral blood markers of response, such as the ELISPOT assay and cytokine flow cytometry analyses of peripheral blood mononuclear cells following immunotherapy, remain the standard approach, but it is increasingly important to obtain tissue to study the immune response at the site of the tumor. Earlier clinical endpoints such as response rate and progression-free survival do not correlate with overall survival demonstrated for some immunotherapies, suggesting the need to develop other intermediary clinical endpoints. Insofar as all these biomarkers and surrogate endpoints are relevant in multiple malignancies, it may be possible to extrapolate findings to immunotherapy of lung cancer.

  6. Synthetic immune niches for cancer immunotherapy

    Weiden, J.; Tel, J.; Figdor, C.G.

    2018-01-01

    Cancer immunotherapy can successfully promote long-term anticancer immune responses, although there is still only a limited number of patients who benefit from such treatment, and it can sometimes have severe treatment-associated adverse events. Compared with systemic immunomodulation, local

  7. Novel immunotherapy approaches to food allergy

    Hayen, Simone M; Kostadinova, Atanaska I; Garssen, Johan; Otten, Henny G; Willemsen, Linette E M

    2014-01-01

    PURPOSE OF REVIEW: Despite reaching high percentages of desensitization using allergen-specific immunotherapy (SIT) in patients with food allergy, recent studies suggest only a low number of patients to reach persistent clinical tolerance. This review describes current developments in strategies to

  8. Cancer immunotherapy : insights from transgenic animal models

    McLaughlin, PMJ; Kroesen, BJ; Harmsen, MC; de Leij, LFMH

    2001-01-01

    A wide range of strategies in cancer immunotherapy has been developed in the last decade, some of which are currently being used in clinical settings. The development of these immunotherapeutical strategies has been facilitated by the generation of relevant transgenic animal models. Since the

  9. Steroids vs immunotherapy for allergic rhinitis

    Aasbjerg, Kristian; Backer, Vibeke

    2014-01-01

    Treatment for seasonal allergic rhinitis induced by airborne allergens can be divided into two major groups: symptom-dampening drugs, such as antihistamines and corticosteroids, and disease-modifying drugs in the form of immunotherapy. It has been speculated that depot-injection corticosteroids g...

  10. Immunotherapy Added to Antibiotic Treatment Reduces Relapse of Disease in a Mouse Model of Tuberculosis.

    Mourik, Bas C; Leenen, Pieter J M; de Knegt, Gerjo J; Huizinga, Ruth; van der Eerden, Bram C J; Wang, Jinshan; Krois, Charles R; Napoli, Joseph L; Bakker-Woudenberg, Irma A J M; de Steenwinkel, Jurriaan E M

    2017-02-01

    Immune-modulating drugs that target myeloid-derived suppressor cells or stimulate natural killer T cells have been shown to reduce mycobacterial loads in tuberculosis (TB). We aimed to determine if a combination of these drugs as adjunct immunotherapy to conventional antibiotic treatment could also increase therapeutic efficacy against TB. In our model of pulmonary TB in mice, we applied treatment with isoniazid, rifampicin, and pyrazinamide for 13 weeks alone or combined with immunotherapy consisting of all-trans retinoic acid, 1,25(OH) 2 -vitamin D3, and α-galactosylceramide. Outcome parameters were mycobacterial load during treatment (therapeutic activity) and 13 weeks after termination of treatment (therapeutic efficacy). Moreover, cellular changes were analyzed using flow cytometry and cytokine expression was assessed at the mRNA and protein levels. Addition of immunotherapy was associated with lower mycobacterial loads after 5 weeks of treatment and significantly reduced relapse of disease after a shortened 13-week treatment course compared with antibiotic treatment alone. This was accompanied by reduced accumulation of immature myeloid cells in the lungs at the end of treatment and increased TNF-α protein levels throughout the treatment period. We demonstrate, in a mouse model of pulmonary TB, that immunotherapy consisting of three clinically approved drugs can improve the therapeutic efficacy of standard antibiotic treatment.

  11. Impact of Sequencing Targeted Therapies With High-dose Interleukin-2 Immunotherapy: An Analysis of Outcome and Survival of Patients With Metastatic Renal Cell Carcinoma From an On-going Observational IL-2 Clinical Trial: PROCLAIMSM.

    Clark, Joseph I; Wong, Michael K K; Kaufman, Howard L; Daniels, Gregory A; Morse, Michael A; McDermott, David F; Agarwala, Sanjiv S; Lewis, Lionel D; Stewart, John H; Vaishampayan, Ulka; Curti, Brendan; Gonzalez, René; Lutzky, Jose; Rudraptna, Venkatesh; Cranmer, Lee D; Jeter, Joanne M; Hauke, Ralph J; Miletello, Gerald; Milhem, Mohammed M; Amin, Asim; Richart, John M; Fishman, Mayer; Hallmeyer, Sigrun; Patel, Sapna P; Van Veldhuizen, Peter; Agarwal, Neeraj; Taback, Bret; Treisman, Jonathan S; Ernstoff, Marc S; Perritt, Jessica C; Hua, Hong; Rao, Tharak B; Dutcher, Janice P; Aung, Sandra

    2017-02-01

    This analysis describes the outcome for patients who received targeted therapy (TT) prior to or following high-dose interleukin-2 (HD IL-2). Patients with renal cell carcinoma (n = 352) receiving HD IL-2 were enrolled in Proleukin R Observational Study to Evaluate the Treatment Patterns and Clinical Response in Malignancy (PROCLAIM SM ) beginning in 2011. Statistical analyses were performed using datasets as of September 24, 2015. Overall, there were 4% complete response (CR), 13% partial response (PR), 39% stable disease (SD), and 43% progressive disease (PD) with HD IL-2. The median overall survival (mOS) was not reached in patients with CR, PR, or SD, and was 15.5 months in patients with PD (median follow-up, 21 months). Sixty-one patients had prior TT before HD IL-2 with an overall response rate (ORR) to HD IL-2 of 19% (1 CR, 9 PR) and an mOS of 22.1 months. One hundred forty-nine patients received TT only after HD IL-2 with an mOS of 35.5 months. One hundred forty-two patients had no TT before or after HD IL-2, and mOS was not reached. The mOS was 8.5 months in PD patients who received HD IL-2 without follow-on TT and 29.7 months in PD patients who received follow-on TT after HD IL-2. HD IL-2 as sole front-line therapy, in the absence of added TT, shows extended clinical benefit (CR, PR, and SD). Patients with PD after HD IL-2 appear to benefit from follow-on TT. Patients who progressed on TT and received follow-on HD IL-2 experienced major clinical benefit. HD IL-2 therapy should be considered in eligible patients. Copyright © 2016 The Authors. Published by Elsevier Inc. All rights reserved.

  12. Chimeric antigen receptor engineering: a right step in the evolution of adoptive cellular immunotherapy.

    Figueroa, Jose A; Reidy, Adair; Mirandola, Leonardo; Trotter, Kayley; Suvorava, Natallia; Figueroa, Alejandro; Konala, Venu; Aulakh, Amardeep; Littlefield, Lauren; Grizzi, Fabio; Rahman, Rakhshanda Layeequr; Jenkins, Marjorie R; Musgrove, Breeanna; Radhi, Saba; D'Cunha, Nicholas; D'Cunha, Luke N; Hermonat, Paul L; Cobos, Everardo; Chiriva-Internati, Maurizio

    2015-03-01

    Cancer immunotherapy comprises different therapeutic strategies that exploit the use of distinct components of the immune system, with the common goal of specifically targeting and eradicating neoplastic cells. These varied approaches include the use of specific monoclonal antibodies, checkpoint inhibitors, cytokines, therapeutic cancer vaccines and cellular anticancer strategies such as activated dendritic cell (DC) vaccines, tumor-infiltrating lymphocytes (TILs) and, more recently, genetically engineered T cells. Each one of these approaches has demonstrated promise, but their generalized success has been hindered by the paucity of specific tumor targets resulting in suboptimal tumor responses and unpredictable toxicities. This review will concentrate on recent advances on the use of engineered T cells for adoptive cellular immunotherapy (ACI) in cancer.

  13. Exosomes in Cancer Nanomedicine and Immunotherapy: Prospects and Challenges.

    Syn, Nicholas L; Wang, Lingzhi; Chow, Edward Kai-Hua; Lim, Chwee Teck; Goh, Boon-Cher

    2017-07-01

    Exosomes (versatile, cell-derived nanovesicles naturally endowed with exquisite target-homing specificity and the ability to surmount in vivo biological barriers) hold substantial promise for developing exciting approaches in drug delivery and cancer immunotherapy. Specifically, bioengineered exosomes are being successfully deployed to deliver potent tumoricidal drugs (siRNAs and chemotherapeutic compounds) preferentially to cancer cells, while a new generation of exosome-based therapeutic cancer vaccines has produced enticing results in early-phase clinical trials. Here, we review the state-of-the-art technologies and protocols, and discuss the prospects and challenges for the clinical development of this emerging class of therapeutics. Copyright © 2017 Elsevier Ltd. All rights reserved.

  14. Pathogenesis and immunotherapy in cutaneous psoriasis: what can rheumatologists learn?

    Alexander, Helen; Nestle, Frank O

    2017-01-01

    This review presents our current understanding of the pathogenesis and treatment of psoriasis with a particular focus on recent areas of research and emerging concepts. Psoriasis arises in genetically predisposed individuals who have an abnormal innate and adaptive immune response to environmental factors. Recent studies have identified novel genetic, epigenetic and immunological factors that play a role in the disease pathogenesis. There is emerging evidence for the role of the skin microbiome in psoriasis. Studies have shown reduced diversity and altered composition of the skin microbiota in psoriasis. Recent advances in our understanding of the complex immunopathogenesis of psoriasis have led to the identification of crucial cytokines and cell signalling pathways that are targeted by a range of immunotherapies.

  15. Lactococcus lactis As a Versatile Vehicle for Tolerogenic Immunotherapy

    Cook, Dana P.; Gysemans, Conny; Mathieu, Chantal

    2018-01-01

    Genetically modified Lactococcus lactis bacteria have been engineered as a tool to deliver bioactive proteins to mucosal tissues as a means to exert both local and systemic effects. They have an excellent safety profile, the result of years of human consumption in the food industry, as well as a lack of toxicity and immunogenicity. Also, containment strategies have been developed to promote further application as clinical protein-based therapeutics. Here, we review technological advancements made to enhanced the potential of L. lactis as live biofactories and discuss some examples of tolerogenic immunotherapies mediated by mucosal drug delivery via L. lactis. Additionally, we highlight their use to induce mucosal tolerance by targeted autoantigen delivery to the intestine as an approach to reverse autoimmune type 1 diabetes. PMID:29387056

  16. Synthetic biology in cell-based cancer immunotherapy.

    Chakravarti, Deboki; Wong, Wilson W

    2015-08-01

    The adoptive transfer of genetically engineered T cells with cancer-targeting receptors has shown tremendous promise for eradicating tumors in clinical trials. This form of cellular immunotherapy presents a unique opportunity to incorporate advanced systems and synthetic biology approaches to create cancer therapeutics with novel functions. We first review the development of synthetic receptors, switches, and circuits to control the location, duration, and strength of T cell activity against tumors. In addition, we discuss the cellular engineering and genome editing of host cells (or the chassis) to improve the efficacy of cell-based cancer therapeutics, and to reduce the time and cost of manufacturing. Copyright © 2015 Elsevier Ltd. All rights reserved.

  17. Pretargeting immunotherapy: a novel treatment approach for systemic amyloidosis.

    Wall, Jonathan S; Foster, James S; Martin, Emily B; Kennel, Stephen J

    2017-09-01

    The amyloidoses are a complex group of disorders characterized by the deposition of proteinaceous amyloid fibrils in vital organs. The deposits are nonimmunogenic and may be composed of one of more than 35 proteins. We have developed a two-stage immunotherapeutic approach using peptides that recognize most, if not all, amyloid deposits to facilitate amyloid clearance. In the first embodiment, we have developed a bifunctional peptope to enhance and expand the utility of currently available antibodies. In the second, we have generated peptide-reactive antibodies that can be targeted to the amyloid deposits by peptides thereby providing alternative reagents for immunotherapy of amyloidosis. These technologies provide tools for treating the many forms of amyloid disease, restoring organ function and enhancing patient survival.

  18. Immune Checkpoint Inhibitors: An Innovation in Immunotherapy for the Treatment and Management of Patients with Cancer

    Dine, Jennifer; Gordon, RuthAnn; Shames, Yelena; Kasler, Mary Kate; Barton-Burke, Margaret

    2017-01-01

    Cancer survival rates are generally increasing in the United States. These trends have been partially attributed to improvement in therapeutic strategies. Cancer immunotherapy is an example of one of the newer strategies used to fight cancer, which primes or activates the immune system to produce antitumor effects. The first half of this review paper concisely describes the cell mechanisms that control antitumor immunity and the major immunotherapeutic strategies developed to target these mec...

  19. Immunotherapy “Shock” with vitiligo due to nivolumab administration as third line therapy in lung adenocarcinoma

    Paul Zarogoulidis

    2017-01-01

    Full Text Available Non-small cell lung cancer is still diagnosed at late stage due to the lack of early symptoms and methods of diagnostic prevention. In the past ten years several targeted therapies have been introduced or explored. Tyrosine kinase inhibitors and immunotherapy are currently considered the most effective and safe therapies in comparison to the non-specific cytotoxic agents. Regarding tyrosine kinase inhibitors the adverse effects have been fully explored, however; on the other hand for immunotherapy there are still several issues to be clarified. We report a rare case of a patient with lung cancer adenocarcinoma who developed vitiligo throughout his body after nivolumab administration.

  20. Results from the 5-year SQ grass sublingual immunotherapy tablet asthma prevention (GAP) trial in children with grass pollen allergy

    Valovirta, Erkka; Petersen, Thomas H; Piotrowska, Teresa

    2018-01-01

    BACKGROUND: Allergy immunotherapy targets the immunological cause of allergic rhinoconjunctivitis and allergic asthma and has the potential to alter the natural course of allergic disease. OBJECTIVE: The primary objective was to investigate the effect of the SQ grass sublingual immunotherapy tablet...... compared with placebo on the risk of developing asthma. METHODS: A total of 812 children (5-12 years), with a clinically relevant history of grass pollen allergic rhinoconjunctivitis and no medical history or signs of asthma, were included in the randomized, double-blind, placebo-controlled trial......, comprising 3 years of treatment and 2 years of follow-up. RESULTS: There was no difference in time to onset of asthma, defined by prespecified asthma criteria relying on documented reversible impairment of lung function (primary endpoint). Treatment with the SQ grass sublingual immunotherapy tablet...

  1. Enhanced efficacy of sublingual immunotherapy by liposome-mediated delivery of allergen

    Aliu, Have; Rask, Carola; Brimnes, Jens

    2017-01-01

    Immunotherapy by sublingual administration of allergens provides high patient compliance and has emerged as an alternative to subcutaneous immunotherapy for the - treatment of IgE-associated allergic diseases. However, sublingual immunotherapy (SLIT) can cause adverse events. Development...

  2. Next generation immunotherapy for tree pollen allergies.

    Su, Yan; Romeu-Bonilla, Eliezer; Heiland, Teri

    2017-10-03

    Tree pollen induced allergies are one of the major medical and public health burdens in the industrialized world. Allergen-Specific Immunotherapy (AIT) through subcutaneous injection or sublingual delivery is the only approved therapy with curative potential to pollen induced allergies. AIT often is associated with severe side effects and requires long-term treatment. Safer, more effective and convenient allergen specific immunotherapies remain an unmet need. In this review article, we discuss the current progress in applying protein and peptide-based approaches and DNA vaccines to the clinical challenges posed by tree pollen allergies through the lens of preclinical animal models and clinical trials, with an emphasis on the birch and Japanese red cedar pollen induced allergies.

  3. Immunotherapy in the management of sepsis.

    Sikora, Janusz Piotr

    2002-01-01

    This work presents the role of Gram-negative bacteria endotoxins, pro- and anti-inflammatory cytokines and reactive oxygen species (ROS) in the complex and not fully explained pathogenesis of sepsis. The so-called "respiratory burst" of neutrophils and the antioxidant mechanisms of the host are also discussed. The work focuses on possible approaches to the management of sepsis connected with immunotherapy. Neutralization of endotoxin lipopolysaccharide (LPS), anti-tumor necrosis factor alpha (TNF-alpha) therapy with monoclonal antibodies or pentoxifylline (PTXF), as well as soluble recombinant cytokine agonists and antagonists used in clinical trials are taken into consideration. In addition, cytokine manipulation therapy, anti-adhesion techniques, glucocorticoides and antioxidant barrier interference are also described. So far there has been no immunotherapy of sepsis in children of proven clinical efficacy, which prompts an aggressive examination of the immune system aimed at affecting its function.

  4. Should we encourage allergen immunotherapy during pregnancy?

    Lieberman, Jay

    2014-03-01

    Primary prevention of allergy is a laudable goal, but one that has unfortunately proven difficult to achieve. Many different strategies have been reported to date, but unequivocal supporting data for any single strategy does not exist. Any successful strategy must lead to immunomodulation and must be encountered very early on life, likely in utero. Reports of early bacterial and farm animal exposures lend supportive data to the concept of immune regulation via early fetal exposure, howeve attempts at clinical applications of this, such as probiotics has not been completely successful. One practical, clinical method for achieving a similar immune modulation to these exposures would be providing atopic women with allergy immunotherapy while pregnant (or perhaps even preconception). Allergy immunotherapy is associated with favorable immune modulation and some data suggest that these changes if produced in mother can influence the atopic status of offspring.

  5. RNA-Based Vaccines in Cancer Immunotherapy

    Megan A. McNamara

    2015-01-01

    Full Text Available RNA vaccines traditionally consist of messenger RNA synthesized by in vitro transcription using a bacteriophage RNA polymerase and template DNA that encodes the antigen(s of interest. Once administered and internalized by host cells, the mRNA transcripts are translated directly in the cytoplasm and then the resulting antigens are presented to antigen presenting cells to stimulate an immune response. Alternatively, dendritic cells can be loaded with either tumor associated antigen mRNA or total tumor RNA and delivered to the host to elicit a specific immune response. In this review, we will explain why RNA vaccines represent an attractive platform for cancer immunotherapy, discuss modifications to RNA structure that have been developed to optimize mRNA vaccine stability and translational efficiency, and describe strategies for nonviral delivery of mRNA vaccines, highlighting key preclinical and clinical data related to cancer immunotherapy.

  6. Malignant mesothelioma clinical trial combines immunotherapy drugs.

    Chatwal, Monica S; Tanvetyanon, Tawee

    2018-04-01

    Immunotherapy by checkpoint inhibitor is effective for a number of solid tumors including malignant mesothelioma. Studies utilizing single-agent PD-1 or PD-L1 inhibitor for mesothelioma have reported tumor response rates in approximately 10-20% of patients treated. Given the success of combining these agents with CTLA-4 inhibitor in melanoma, there is a strong rationale to study it in mesothelioma. Recently results from clinical trials investigating this approach have been released. Though limited by small sample size, the studies conclusively demonstrated feasibility and suggested a modestly higher tumor response rate than one would expect from treatment with single-agent PD-1 or PD-L1 inhibitor. Nevertheless, toxicity was also increased. Immunotherapy-related deaths due to encephalitis, renal failure and hepatitis were observed. Further studies are warranted.

  7. Splenectomy combined with gastrectomy and immunotherapy for advanced gastric cancer.

    Miwa, H; Orita, K

    1983-06-01

    We studied the effects of a splenectomy in combination with immunotherapy on the survival of patients who had undergone a total gastrectomy. It was found that a splenectomy was not effective against advanced gastric cancer at stage III, and that the spleen should be retained for immunotherapy. Splenectomy for gastric cancer at terminal stage IV, particularly in combination with immunotherapy, produced not only augmentation of cellular immunity, but also increased survival.

  8. CDK5 A Novel Role in Prostate Cancer Immunotherapy

    2016-10-01

    Parallel: No scientific or budgetary overlap 90091646 (PI: Drake) Title: Enhancing Prostate Cancer Immunotherapy through Epigenetic Reprogramming for...Enhancing Prostate Cancer Immunotherapy through Epigenetic Reprogramming for Optimal Activation of Specific Effector T-Cells Time commitment: 1.2 calendar...AWARD NUMBER: W81XWH-15-1-0670 TITLE: CDK5-A Novel Role in Prostate Cancer Immunotherapy PRINCIPAL INVESTIGATOR: Dr. Barry Nelkin

  9. Combination of omalizumab and bee venom immunotherapy: does it work?

    Yılmaz, İnsu; Bahçecioğlu, Sakine Nazik; Türk, Murat

    2018-01-01

    Bee venom immunotherapy (b-VIT) can be combined with omalizumab therapy in order to suppress systemic reactions developing due to b-VIT itself. Omalizumab acts as a premedication and gains time for the immunotherapy to develop its immunomodulatory effects. However, the combination of omalizumab and b-VIT is not always effective enough. Herein we present a patient in whom successful immunotherapy cannot be achieved with combination of omalizumab to b-VIT.

  10. Immunotherapy for the Treatment of Glioblastoma

    Thomas, Alissa A.; Ernstoff, Marc S.; Fadul, Camilo E.

    2012-01-01

    Glioblastoma, the most aggressive primary brain tumor, thrives in a microenvironment of relative immunosuppression within the relatively immune-privileged central nervous system. Despite treatments with surgery, radiation therapy, and chemotherapy, prognosis remains poor. The recent success of immunotherapy in the treatment of other cancers has renewed interest in vaccine therapy for the treatment of gliomas. In this article, we outline various immunotherapeutic strategies, review recent clinical trials data, and discuss the future of vaccine therapy for glioblastoma. PMID:22290259

  11. MBCP - Approach - Immunotherapy | Center for Cancer Research

    Immunotherapy CCR investigators pioneered the use of the tuberculosis vaccine—Bacillus Calmette-Guerin (BCG)—in the treatment of bladder cancer. In cases where the tumor burden is not too high and direct contact can be made with the urothelium surface of the bladder, BCG application appears to elicit an immune response that attacks the tumor as well as the attenuated virus.

  12. ATMPs for Cancer Immunotherapy: A Regulatory Overview.

    Galli, Maria Cristina

    2016-01-01

    This chapter discusses European regulatory requirements for development of advanced therapy medicinal products (ATMP) for cancer immunotherapy approaches, describing the framework for clinical trials and for marketing authorization.Regulatory critical issues and challenges for developing ATMP are also discussed, with focus on potency determination, long-term follow-up, comparability, and insertional mutagenesis issues. Some of the most critical features of GMP application to ATMP are also described.

  13. Managing adverse effects of immunotherapy.

    Gerson, James N; Ramamurthy, Chethan; Borghaei, Hossein

    2018-05-01

    Remarkable efficacy has been achieved in a variety of cancer types by targeting immune checkpoints. The cytotoxic T-lymphocyte-associated antigen 4 inhibitor ipilimumab, the programmed death 1 inhibitors nivolumab and pembrolizumab, and the programmed death ligand 1 inhibitors atezolizumab, avelumab, and durvalumab are the agents currently approved by the US Food and Drug Administration for the treatment of certain advanced malignancies. These agents mark a departure from both standard cytotoxic chemotherapy and targeted therapy. However, they are associated with a unique set of immune-related adverse events (irAEs), which can manifest as a wide range of autoimmune phenomena. The irAEs can affect any system in the body and in rare cases are life-threatening. It is critical for the practicing medical oncologist to recognize and promptly treat any irAEs that may develop.

  14. Immunotherapy with the storage mite lepidoglyphus destructor.

    Armentia-Medina, A; Tapias, J A; Martín, J F; Ventas, P; Fernández, A

    1995-01-01

    We carried out a double-blind clinical trial of immunotherapy on 35 patients sensitized to the storage mite Lepidoglyphus destructor (Ld). Before and after 12 months of specific hyposensitization (Abelló Lab., Spain) we performed in vivo (skin tests with Ld, methacholine and challenge tests), and in vitro tests (specific IgE, IgG, IgG1 and IgG4 to Ld and specific IgE, IgG, IgG1 and IgG4 to their major allergen Lep dI). We also monitored the efficacy and safety of the immunotherapy with clinical and analytical controls (symptoms and medication score, detection of immune complexes). After therapy we found a significant decrease in specific skin reactivity, dose of positive challenge tests, and hyperresponsiveness to methacholine. Sputum eosinophilia decreased. Specific IgE to Ld was increased and we also observed an increase in specific IgG1 and IgG4 to Ld and Lep DI. The placebo group showed no changes in these variables. There were no severe secondary reactions after treatment with the extract. Patients-self-evaluation was favourable and their labour absence decreased. No development of circulating immune complexes was associated with this immunotherapy.

  15. Local immunological mechanisms of sublingual immunotherapy.

    Allam, Jean-Pierre; Novak, Natalija

    2011-12-01

    To summarize novel insights into the immunological mechanisms of sublingual immunotherapy (SLIT). Within the recent decades, several alternative noninvasive allergen application strategies have been investigated in allergen-specific immunotherapy (AIT), of which intra-oral allergen application to sublingual mucosa has been proven to be well tolerated and effective. To date, SLIT is widely accepted by most allergists as an alternative option to conventional subcutaneous immunotherapy (SCIT). Although detailed immunological mechanisms remain to be elucidated, much scientific effort has been made to shed some light on local and systemic immunological responses to SLIT in mice as well as humans. Only a few studies focused on the detailed mechanisms following allergen application to the oral mucosa as part of the sophisticated mucosal immunological network. Within this network, the pro-tolerogenic properties of local antigen-presenting cells (APCs) such as dendritic cells - which are able to enforce tolerogenic mechanisms and to induce T-cell immune responses - play a central role. Further on, basic research focused not only on the immune response in nasal and bronchial mucosa but also on the systemic T-cell immune response. Thus, much exiting data have been published providing a better understanding of immunological features of SLIT but far more investigations are necessary to uncover further exciting details on the key mechanisms of SLIT.

  16. Emerging immunotherapies for rheumatoid arthritis

    Reynolds, Gary; Cooles, Faye AH; Isaacs, John D; Hilkens, Catharien MU

    2014-01-01

    Novel treatments in development for rheumatoid arthritis target 3 broad areas: cytokines, cells, and signaling pathways. Therapies from each domain share common advantages (for example previously demonstrated efficacy, potential long-term immunomodulation, and oral administration respectively) that have stimulated research in each area but also common obstacles to their development. In this review recent progress in each area will be discussed alongside the factors that have impeded their path to clinical use. PMID:24535556

  17. Cytokines and T lymphocytes in transplantation : targets for immunotherapy

    A.C.Th.M. Vossen (Ann)

    1995-01-01

    textabstractOrgan transplantation has become an established therapy in patients suffering from diseases leading to organ failure. Table I shows the number of organ transplants performed in the Eurotransplant area from 1 g90 to 1993. The use of potent immunosuppressive drugs and effective protocols

  18. The Role of IDO in Muc1 Targeted Immunotherapy

    2013-01-01

    Besmer*, Teresa L. Tinder , Lopamudra Das Roy, Joseph Lustgarten, Sandra J. Gendler, Pinku Mukherjee Intratumoral Delivery of CpG-Conjugated Anti...3073-87. Epub 2012 Jan 11. PMID: 22238308 3. Mahnaz Sahraei , Lopamudra Das Roy , Jennifer Curry , Teresa Tinder , Sritama Nath , Dahlia M...10.1038/onc.2011.651 4. Dahlia M. Besmer , Dr. Jennifer M. Curry , Dr. Lopamudra D. Roy , Ms. Teresa L. Tinder , Ms. Mahnaz M. Sahraei , Dr

  19. Novel tools to assist neoepitope targeting in personalized cancer immunotherapy

    Saini, Sunil Kumar; Rekers, Nicolle; Hadrup, Sine Reker

    2017-01-01

    -cell-mediated tumor eradication. Consequently, strategies to further boost neoepitope recognition, through vaccination or adoptive cell transfer, has received substantial interest. Although such strategies have enormous potential, there are also considerable challenges associated with these approaches. In the present...

  20. Combining Radiotherapy and Immunotherapy to Target Survivin in Prostate Cancer

    2009-01-01

    EL4 ). All mice apart from the 20Gy-irradiated...4x 4G y 5G y 10 G y 20 G y control EL4 EG7.OVA IF N γ sp ot s/ 1 x1 05 s pl en oc yt es OVA-specific immune responses IFNγ -ELISPOT 0 0.1 0.2 0.3...300 350 ELISPOT 1-4-09 control EL4 EG7.OVA OVA peptide IF Nγ s po ts / 1x 10 5 sp le no cy te s no treatment 4x4Gy MIS416

  1. EAACI: A European Declaration on Immunotherapy. Designing the future of allergen specific immunotherapy

    Calderon Moises A

    2012-10-01

    Full Text Available Abstract Allergy today is a public health concern of pandemic proportions, affecting more than 150 million people in Europe alone. In view of epidemiological trends, the European Academy of Allergy and Clinical Immunology (EAACI predicts that within the next few decades, more than half of the European population may at some point in their lives experience some type of allergy. Not only do allergic patients suffer from a debilitating disease, with the potential for major impact on their quality of life, career progression, personal development and lifestyle choices, but they also constitute a significant burden on health economics and macroeconomics due to the days of lost productivity and underperformance. Given that allergy triggers, including urbanization, industrialization, pollution and climate change, are not expected to change in the foreseeable future, it is imperative that steps are taken to develop, strengthen and optimize preventive and treatment strategies. Allergen specific immunotherapy is the only currently available medical intervention that has the potential to affect the natural course of the disease. Years of basic science research, clinical trials, and systematic reviews and meta-analyses have convincingly shown that allergen specific immunotherapy can achieve substantial results for patients, improving the allergic individuals’ quality of life, reducing the long-term costs and burden of allergies, and changing the course of the disease. Allergen specific immunotherapy not only effectively alleviates allergy symptoms, but it has a long-term effect after conclusion of the treatment and can prevent the progression of allergic diseases. Unfortunately, allergen specific immunotherapy has not yet received adequate attention from European institutions, including research funding bodies, even though this could be a most rewarding field in terms of return on investments, translational value and European integration and, a field in

  2. Antibody-mediated immunotherapy against chronic hepatitis B virus infection.

    Gao, Ying; Zhang, Tian-Ying; Yuan, Quan; Xia, Ning-Shao

    2017-08-03

    The currently available drugs to treat hepatitis B virus (HBV) infection include interferons and nucleos(t)ide analogs, which can only induce disease remission and are inefficient for the functional cure of patients with chronic HBV infection (CHB). Since high titers of circulating hepatitis B surface antigen (HBsAg) may be essential to exhaust the host anti-HBV immune response and they cannot be significantly reduced by current drugs, new antiviral strategies aiming to suppress serum hepatitis B surface antigen (HBsAg) could help restore virus-specific immune responses and promote the eradication of the virus. As an alternative strategy, immunotherapy with HBsAg-specific antibodies has shown some direct HBsAg suppression effects in several preclinical and clinical trial studies. However, most described previously HBsAg-specific antibodies only had very short-term HBsAg suppression effects in CHB patients and animal models mimicking persistent HBV infection. More-potent antibodies with long-lasting HBsAg clearance effects are required for the development of the clinical application of antibody-mediated immunotherapy for CHB treatment. Our recent study described a novel mAb E6F6 that targets a unique epitope on HBsAg. It could durably suppress the levels of HBsAg and HBV DNA via Fcγ receptor-dependent phagocytosis in vivo. In this commentary, we summarize the current research progress, including the therapeutic roles and mechanisms of antibody-mediated HBV clearance as well as the epitope-determined therapeutic potency of the antibody. These insights may provide some clues and guidance to facilitate the development of therapeutic antibodies against persistent viral infection.

  3. Mouse Models for Studying Oral Cancer: Impact in the Era of Cancer Immunotherapy.

    Luo, J J; Young, C D; Zhou, H M; Wang, X J

    2018-04-01

    Model systems for oral cancer research have progressed from tumor epithelial cell cultures to in vivo systems that mimic oral cancer genetics, pathological characteristics, and tumor-stroma interactions of oral cancer patients. In the era of cancer immunotherapy, it is imperative to use model systems to test oral cancer prevention and therapeutic interventions in the presence of an immune system and to discover mechanisms of stromal contributions to oral cancer carcinogenesis. Here, we review in vivo mouse model systems commonly used for studying oral cancer and discuss the impact these models are having in advancing basic mechanisms, chemoprevention, and therapeutic intervention of oral cancer while highlighting recent discoveries concerning the role of immune cells in oral cancer. Improvements to in vivo model systems that highly recapitulate human oral cancer hold the key to identifying features of oral cancer initiation, progression, and invasion as well as molecular and cellular targets for prevention, therapeutic response, and immunotherapy development.

  4. Immune Checkpoint Inhibitors: An Innovation in Immunotherapy for the Treatment and Management of Patients with Cancer.

    Dine, Jennifer; Gordon, RuthAnn; Shames, Yelena; Kasler, Mary Kate; Barton-Burke, Margaret

    2017-01-01

    Cancer survival rates are generally increasing in the United States. These trends have been partially attributed to improvement in therapeutic strategies. Cancer immunotherapy is an example of one of the newer strategies used to fight cancer, which primes or activates the immune system to produce antitumor effects. The first half of this review paper concisely describes the cell mechanisms that control antitumor immunity and the major immunotherapeutic strategies developed to target these mechanisms. The second half of the review discusses in greater depth immune checkpoint inhibitors that have recently demonstrated tremendous promise for the treatment of diverse solid tumor types, including melanoma, non-small cell lung cancer, and others. More specifically, the mechanisms of action, side effects, and patient and family management and education concerns are discussed to provide oncology nurses up-to-date information relevant to caring for cancer-affected patients treated with immune checkpoint inhibitors. Future directions for cancer immunotherapy are considered.

  5. Boosting Natural Killer Cell-Based Immunotherapy with Anticancer Drugs: a Perspective.

    Cifaldi, Loredana; Locatelli, Franco; Marasco, Emiliano; Moretta, Lorenzo; Pistoia, Vito

    2017-12-01

    Natural killer (NK) cells efficiently recognize and kill tumor cells through several mechanisms including the expression of ligands for NK cell-activating receptors on target cells. Different clinical trials indicate that NK cell-based immunotherapy represents a promising antitumor treatment. However, tumors develop immune-evasion strategies, including downregulation of ligands for NK cell-activating receptors, that can negatively affect antitumor activity of NK cells, which either reside endogenously, or are adoptively transferred. Thus, restoration of the expression of NK cell-activating ligands on tumor cells represents a strategic therapeutic goal. As discussed here, various anticancer drugs can fulfill this task via different mechanisms. We envision that the combination of selected chemotherapeutic agents with NK cell adoptive transfer may represent a novel strategy for cancer immunotherapy. Copyright © 2017 Elsevier Ltd. All rights reserved.

  6. Hurdles of CAR-T cell-based cancer immunotherapy directed against solid tumors.

    Zhang, Bing-Lan; Qin, Di-Yuan; Mo, Ze-Ming; Li, Yi; Wei, Wei; Wang, Yong-Sheng; Wang, Wei; Wei, Yu-Quan

    2016-04-01

    Recent reports on the impressive efficacy of chimeric antigen receptor (CAR)-modified T cells against hematologic malignancies have inspired oncologists to extend these efforts for the treatment of solid tumors. Clinical trials of CAR-T-based cancer immunotherapy for solid tumors showed that the efficacies are not as remarkable as in the case of hematologic malignancies. There are several challenges that researchers must face when treating solid cancers with CAR-T cells, these include choosing an ideal target, promoting efficient trafficking and infiltration, overcoming the immunosuppressive microenvironment, and avoiding associated toxicity. In this review, we discuss the obstacles imposed by solid tumors on CAR-T cell-based immunotherapy and strategies adopted to improve the therapeutic potential of this approach. Continued investigations are necessary to improve therapeutic outcomes and decrease the adverse effects of CAR-T cell therapy in patients with solid malignancies in the future.

  7. Optimizing complement-activating antibody-based cancer immunotherapy: a feasible strategy?

    Maio Michele

    2004-06-01

    Full Text Available Abstract Passive immunotherapy with monoclonal antibodies (mAb targeted to specific tumor-associated antigens is amongst the most rapidly expanding approaches to biological therapy of cancer. However, until now a limited number of therapeutic mAb has demonstrated clinical efficacy in selected neoplasia. Results emerging from basic research point to a deeper characterization of specific biological features of neoplastic cells as crucial to optimize the clinical potential of therapeutic mAb, and to identify cancer patients who represent the best candidates to antibody-based immunotherapy. Focus on the tissue distribution and on the functional role of membrane complement-regulatory proteins such as Protectin (CD59, which under physiologic conditions protects tissues from Complement (C-damage, might help to optimize the efficacy of immunotherapeutic strategies based on C-activating mAb.

  8. Adoptive immunotherapy using PRAME-specific T cells in medulloblastoma.

    Orlando, Domenico; Miele, Evelina; De Angelis, Biagio; Guercio, Marika; Boffa, Iolanda; Sinibaldi, Matilde; Po, Agnese; Caruana, Ignazio; Abballe, Luana; Carai, Andrea; Caruso, Simona; Camera, Antonio; Moseley, Annemarie; Hagedoorn, Renate S; Heemskerk, Mirjam H M; Giangaspero, Felice; Mastronuzzi, Angela; Ferretti, Elisabetta; Locatelli, Franco; Quintarelli, Concetta

    2018-04-03

    Medulloblastoma is the most frequent malignant childhood brain tumor with a high morbidity. Identification of new therapeutic targets would be instrumental in improving patient outcomes. We evaluated the expression of the tumor-associated antigen PRAME in biopsies from 60 medulloblastoma patients. PRAME expression was detectable in 82% of tissues independent of molecular and histopathologic subgroups. High PRAME expression also correlated with worse overall survival. We next investigated the relevance of PRAME as a target for immunotherapy. Medulloblastoma cells were targeted using genetically modified T cells with a PRAME-specific TCR (SLL TCR T cells). SLL TCR T cells efficiently killed medulloblastoma HLA-A*02+ DAOY cells as well as primary HLA-A*02+ medulloblastoma cells. Moreover, SLL TCR T cells controlled tumor growth in an orthotopic mouse model of medulloblastoma. To prevent unexpected T cell-related toxicity,an inducible caspase 9 (iC9) gene was introduced in frame with the SLL TCR; this safety switch triggered prompt elimination of genetically-modified T cells. Altogether, these data indicate that T cells genetically modified with a high-affinity, PRAME-specific TCR and iC9 may represent a promising innovative approach for treating HLA-A*02+ medulloblastoma patients. Copyright ©2018, American Association for Cancer Research.

  9. Society for Immunotherapy of Cancer consensus statement on immunotherapy for the treatment of bladder carcinoma.

    Kamat, Ashish M; Bellmunt, Joaquim; Galsky, Matthew D; Konety, Badrinath R; Lamm, Donald L; Langham, David; Lee, Cheryl T; Milowsky, Matthew I; O'Donnell, Michael A; O'Donnell, Peter H; Petrylak, Daniel P; Sharma, Padmanee; Skinner, Eila C; Sonpavde, Guru; Taylor, John A; Abraham, Prasanth; Rosenberg, Jonathan E

    2017-08-15

    The standard of care for most patients with non-muscle-invasive bladder cancer (NMIBC) is immunotherapy with intravesical Bacillus Calmette-Guérin (BCG), which activates the immune system to recognize and destroy malignant cells and has demonstrated durable clinical benefit. Urologic best-practice guidelines and consensus reports have been developed and strengthened based on data on the timing, dose, and duration of therapy from randomized clinical trials, as well as by critical evaluation of criteria for progression. However, these reports have not penetrated the community, and many patients do not receive appropriate therapy. Additionally, several immune checkpoint inhibitors have recently been approved for treatment of metastatic disease. The approval of immune checkpoint blockade for patients with platinum-resistant or -ineligible metastatic bladder cancer has led to considerations of expanded use for both advanced and, potentially, localized disease. To address these issues and others surrounding the appropriate use of immunotherapy for the treatment of bladder cancer, the Society for Immunotherapy of Cancer (SITC) convened a Task Force of experts, including physicians, patient advocates, and nurses, to address issues related to patient selection, toxicity management, clinical endpoints, as well as the combination and sequencing of therapies. Following the standard approach established by the Society for other cancers, a systematic literature review and analysis of data, combined with consensus voting was used to generate guidelines. Here, we provide a consensus statement for the use of immunotherapy in patients with bladder cancer, with plans to update these recommendations as the field progresses.

  10. Awareness and understanding of cancer immunotherapy in Europe

    Mellstedt, H.; Gaudernack, G.; Gerritsen, W.R.; Huber, C.; Melero, I.; Parmiani, G.; Scholl, S.; Thatcher, N.; Wagstaff, J.; Zielinski, C.

    2014-01-01

    The use of immunotherapy in the management of cancer is growing, and a range of new immunotherapeutic strategies is becoming available. It is important that people involved in the care of cancer understand how cancer immunotherapies differ from conventional chemotherapy and apply this knowledge to

  11. Issues in stinging insect allergy immunotherapy: a review.

    Finegold, Ira

    2008-08-01

    The treatment of insect allergy by desensitization still continues to present with some unanswered questions. This review will focus mainly on articles that have dealt with these issues in the past 2 years. With the publication in 2007 of Allergen Immunotherapy: a practice parameter second update, many of the key issues were reviewed and summarized. Other recent studies deal with omalizumab pretreatment of patients with systemic mastocytosis and very severe allergic reactions to immunotherapy. It would appear that venom immunotherapy is somewhat unique compared to inhalant allergen immunotherapy in that premedication prior to rush protocols may not be necessary and that intervals of therapy may be longer than with allergen immunotherapy. The use of concomitant medications such as beta-blockers may be indicated in special situations. Angiotensin-converting enzyme inhibitors can be stopped temporarily before venom injections to prevent reactions. The issue of when to discontinue immunotherapy remains unsettled and should be individualized to patient requirements. The newest revision of the Immunotherapy Parameters provides much needed information concerning successful treatment with immunotherapy of Hymenoptera-sensitive patients.

  12. Clinical experience of integrative cancer immunotherapy with GcMAF.

    Inui, Toshio; Kuchiike, Daisuke; Kubo, Kentaro; Mette, Martin; Uto, Yoshihiro; Hori, Hitoshi; Sakamoto, Norihiro

    2013-07-01

    Immunotherapy has become an attractive new strategy in the treatment of cancer. The laboratory and clinical study of cancer immunotherapy is rapidly advancing. However, in the clinical setting, the results of cancer immunotherapy are mixed. We therefore contend that cancer immunotherapy should be customized to each patient individually based on their immune status and propose an integrative immunotherapy approach with second-generation group-specific component macrophage activating factor (GcMAF)-containing human serum. The standard protocol of our integrative cancer immunotherapy is as follows: i) 0.5 ml GcMAF-containing human serum is administered intramuscularly or subcutaneously once or twice per week for the duration of cancer therapy until all cancer cells are eradicated; ii) hyper T/natural killer (NK) cell therapy is given once per week for six weeks; iii) high-dose vitamin C is administered intravenously twice per week; iv) alpha lipoic acid (600 mg) is administered orally daily; v) vitamin D3 (5,000-10,000 IU) is administered orally daily. By March 2013, Saisei Mirai have treated over 345 patients with GcMAF. Among them we here present the cases of three patients for whom our integrative immunotherapy was remarkably effective. The results of our integrative immunotherapy seem hopeful. We also plan to conduct a comparative clinical study.>

  13. Immunotherapy in metastatic prostate cancer

    Susan F Slovin

    2016-01-01

    Full Text Available Introduction: Prostate cancer remains a challenge as a target for immunological approaches. The approval of the first cell-based immune therapy, Sipuleucel-T for prostate cancer introduced prostate cancer as a solid tumor with the potential to be influenced by the immune system. Methods: We reviewed articles on immunological management of prostate cancer and challenges that lie ahead for such strategies. Results: Treatments have focused on the identification of novel cell surface antigens thought to be unique to prostate cancer. These include vaccines against carbohydrate and blood group antigens, xenogeneic and naked DNA vaccines, and pox viruses used as prime-boost or checkpoint inhibitors. No single vaccine construct to date has resulted in a dramatic antitumor effect. The checkpoint inhibitor, anti-CTLA-4 has resulted in several long-term remissions, but phase III trials have not demonstrated an antitumor effect or survival benefit. Conclusions: Multiple clinical trials suggest that prostate cancer may not be optimally treated by single agent immune therapies and that combination with biologic agents, chemotherapies, or radiation may offer some enhancement of benefit.

  14. [Immunotherapy for refractory viral infections].

    Morio, Tomohiro; Fujita, Yuriko; Takahashi, Satoshi

    Various antiviral agents have been developed, which are sometimes associated with toxicity, development of virus-resistant strain, and high cost. Virus-specific T-cell (VST) therapy provides an alternative curative therapy that can be effective for a prolonged time without eliciting drug resistance. VSTs can be directly separated using several types of capture devices and can be obtained by stimulating peripheral blood mononuclear cells with viral antigens (virus, protein, or peptide) loaded on antigen-presenting cells (APC). APC can be transduced with virus-antigen coding plasmid or pulsed with overlapping peptides. VST therapy has been studied in drug non-responsive viral infections after hematopoietic cell transplantation (HCT). Several previous studies have demonstrated the efficacy of VST therapy without significant severe GVHD. In addition, VSTs from a third-party donor have been prepared and administered for post-HCT viral infection. Although target viruses of VSTs include herpes virus species and polyomavirus species, a wide variety of pathogens, such as papillomavirus, intracellular bacteria, and fungi, can be treated by pathogen-specific T-cells. Perhaps, these specific T-cells could be used for opportunistic infections in other immunocompromised hosts in the near future.

  15. The current status of immunotherapy in peritoneal carcinomatosis.

    Ströhlein, Michael Alfred; Heiss, Markus Maria; Jauch, Karl-Walter

    2016-10-01

    Peritoneal carcinomatosis (PC) is a cancer disease with an urgent need for effective treatment. Conventional chemotherapy failed to show acceptable results. Cytoreductive surgery and hyperthermic chemoperfusion (HIPEC) are only beneficial in few patients with resectable peritoneal metastasis. Immunotherapy could be attractive against PC, as all requirements for immunotherapy are available in the peritoneal cavity. This review analyzes the present literature for immunotherapy of PC. Advances from immune stimulators, radionucleotide-conjugated- and bispecific antibodies to future developments like adoptive engineered T-cells with chimeric receptors are discussed. The clinical development of catumaxomab, which was the first intraperitoneal immunotherapy to be approved for clinical treatment, is discussed. The requirements for future developments are illustrated. Expert commentary: Immunotherapy of peritoneal carcinomatosis is manageable, showing striking cancer cell killing. Improved profiles of adverse events by therapy-induced cytokine release, enhanced specific killing and optimal treatment schedules within multimodal treatment will be key factors.

  16. Ordinary Differential Equation Models for Adoptive Immunotherapy.

    Talkington, Anne; Dantoin, Claudia; Durrett, Rick

    2018-05-01

    Modified T cells that have been engineered to recognize the CD19 surface marker have recently been shown to be very successful at treating acute lymphocytic leukemias. Here, we explore four previous approaches that have used ordinary differential equations to model this type of therapy, compare their properties, and modify the models to address their deficiencies. Although the four models treat the workings of the immune system in slightly different ways, they all predict that adoptive immunotherapy can be successful to move a patient from the large tumor fixed point to an equilibrium with little or no tumor.

  17. Cellular immunotherapy for soft tissue sarcomas

    Finkelstein, Steven Eric; Fishman, Mayer; Conley, Anthony P.; Gabrilovich, Dmitry; Antonia, Scott; Chiappori, Alberto

    2015-01-01

    SUMMARY Soft tissue sarcomas are rare neoplasms, with approximately 9,000 new cases in the United States every year. Unfortunately, there is little progress in the treatment of metastatic soft tissue sarcomas in the past two decades beyond the standard approaches of surgery, chemotherapy, and radiation. Immunotherapy is a modality complementary to conventional therapy,. It is appealing because functional anti-tumor activity could affect both local-regional and systemic disease and act over a prolonged period of time. In this report, we review immunotherapeutic investigative strategies being developed, including several tumor vaccine, antigen vaccine, and dendritic cell vaccine strategies. PMID:22401634

  18. Allergen immunotherapy for insect venom allergy

    Dhami, S; Zaman, H; Varga, E-M

    2016-01-01

    BACKGROUND: The European Academy of Allergy and Clinical Immunology (EAACI) is in the process of developing the EAACI Guidelines on Allergen Immunotherapy (AIT) for the management of insect venom allergy. To inform this process, we sought to assess the effectiveness, cost-effectiveness and safety...... of AIT in the management of insect venom allergy. METHODS: We undertook a systematic review, which involved searching 15 international biomedical databases for published and unpublished evidence. Studies were independently screened and critically appraised using established instruments. Data were...

  19. Novel recombinant alphaviral and adenoviral vectors for cancer immunotherapy.

    Osada, Takuya; Morse, Michael A; Hobeika, Amy; Lyerly, H Kim

    2012-06-01

    Although cellular immunotherapy based on autolgous dendritic cells (DCs) targeting antigens expressed by metastatic cancer has demonstrated clinical efficacy, the logistical challenges in generating an individualized cell product create an imperative to develop alternatives to DC-based cancer vaccines. Particularly attractive alternatives include in situ delivery of antigen and activation signals to resident antigen-presenting cells (APCs), which can be achieved by novel fusion molecules targeting the mannose receptor and by recombinant viral vectors expressing the antigen of interest and capable of infecting DCs. A particular challenge in the use of viral vectors is the well-appreciated clinical obstacles to their efficacy, specifically vector-specific neutralizing immune responses. Because heterologous prime and boost strategies have been demonstrated to be particularly potent, we developed two novel recombinant vectors based on alphaviral replicon particles and a next-generation adenovirus encoding an antigen commonly overexpressed in many human cancers, carcinoembryonic antigen (CEA). The rationale for developing these vectors, their unique characteristics, the preclinical studies and early clinical experience with each, and opportunities to enhance their effectiveness will be reviewed. The potential of each of these potent recombinant vectors to efficiently generate clinically active anti-tumor immune response alone, or in combination, will be discussed. Copyright © 2012 Elsevier Inc. All rights reserved.

  20. Immunoproteomics of Aspergillus for the development of biomarkers and immunotherapies.

    Kniemeyer, Olaf; Ebel, Frank; Krüger, Thomas; Bacher, Petra; Scheffold, Alexander; Luo, Ting; Strassburger, Maria; Brakhage, Axel A

    2016-10-01

    Filamentous fungi of the genus Aspergillus play significant roles as pathogens causing superficial and invasive infections as well as allergic reactions in humans. Particularly invasive mycoses caused by Aspergillus species are characterized by high mortality rates due to difficult diagnosis and insufficient antifungal therapy. The application of immunoproteomic approaches has a great potential to identify new targets for the diagnosis, therapy, and vaccine development of diseases caused by Aspergillus species. Serological proteome analyses (SERPA) that combine 2D electrophoresis with Western blotting are still one of the most popular techniques for the identification of antigenic proteins. However, recently a growing number of approaches have been developed to identify proteins, which either provoke an antibody response or which represent targets of T-cell immunity in patients with allergy or fungal infections. Here, we review advances in the studies of immune responses against pathogenic Aspergilli as well as the current status of diagnosis and immunotherapy of Aspergillus infections. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  1. Clinical efficacy of sublingual and subcutaneous birch pollen allergen-specific immunotherapy

    Khinchi, M S; Poulsen, Lars K.; Carat, F

    2004-01-01

    Both sublingual allergen-specific immunotherapy (SLIT) and subcutaneous immunotherapy (SCIT) have a documented clinical efficacy, but only few comparative studies have been performed.......Both sublingual allergen-specific immunotherapy (SLIT) and subcutaneous immunotherapy (SCIT) have a documented clinical efficacy, but only few comparative studies have been performed....

  2. Potential of nanoparticles for allergen-specific immunotherapy - use of silica nanoparticles as vaccination platform.

    Scheiblhofer, Sandra; Machado, Yoan; Feinle, Andrea; Thalhamer, Josef; Hüsing, Nicola; Weiss, Richard

    2016-12-01

    Allergen-specific immunotherapy is the only curative approach for the treatment of allergies. There is an urgent need for improved therapies, which increase both, efficacy and patient compliance. Novel routes of immunization and the use of more advanced vaccine platforms have gained heightened interest in this field. Areas covered: The current status of allergen-specific immunotherapy is summarized and novel routes of immunization and their challenges in the clinics are critically discussed. The use of nanoparticles as novel delivery system for allergy vaccines is comprehensively reviewed. Specifically, the advantages of silica nanoparticles as vaccine carriers and adjuvants are summarized. Expert opinion: Future allergen-specific immunotherapy will combine engineered hypoallergenic vaccines with novel routes of administration, such as the skin. Due to their biodegradability, and the easiness to introduce surface modifications, silica nanoparticles are promising candidates for tailor-made vaccines. By covalently linking allergens and polysaccharides to silica nanoparticles, a versatile vaccination platform can be designed to specifically target antigen-presenting cells, render the formulation hypoallergenic, and introduce immunomodulatory functions. Combining potent skin vaccination methods, such as fractional laser ablation, with nanoparticle-based vaccines addresses all the requirements for safe and efficient therapy of allergic diseases.

  3. Vγ9Vδ2 T cells as a promising innovative tool for immunotherapy of hematologic malignancies

    Serena Meraviglia

    2011-12-01

    Full Text Available The potent anti-tumor activities of γδ T cells, their ability to produce pro-inflammatory cytokines, and their strong cytolytic activity have prompted the development of protocols in which γδ agonists or ex vivo-expanded γδ cells are administered to tumor patients. γδ T cells can be selectively activated by either synthetic phosphoantigens or by drugs that enhance their accumulation into stressed cells as aminobisphosphonates, thus offering new avenues for the development of γδ T cell-based immunotherapies. The recent development of small drugs selectively activating Vγ9Vδ2 T lymphocytes, which upregulate the endogenous phosphoantigens, has enabled the investigators to design the experimental approaches of cancer immunotherapies; several ongoing phase I and II clinical trials are focused on the role of the direct bioactivity of drugs and of adoptive cell therapies involving phosphoantigen- or aminobisphosphonate-activated Vγ9Vδ2 T lymphocytes in humans. In this review, we focus on the recent advances in the activation/expansion of γδ T cells in vitro and in vivo that may represent a promising target for the design of novel and highly innovative immunotherapy in patients with hematologic malignancies.

  4. From Famine to Feast: Developing Early-Phase Combination Immunotherapy Trials Wisely.

    Day, Daphne; Monjazeb, Arta M; Sharon, Elad; Ivy, S Percy; Rubin, Eric H; Rosner, Gary L; Butler, Marcus O

    2017-09-01

    Not until the turn of this century has immunotherapy become a fundamental component of cancer treatment. While monotherapy with immune modulators, such as immune checkpoint inhibitors, provides a subset of patients with durable clinical benefit and possible cure, combination therapy offers the potential for antitumor activity in a greater number of patients. The field of immunology has provided us with a plethora of potential molecules and pathways to target. This abundance makes it impractical to empirically test all possible combinations efficiently. We recommend that potential immunotherapy combinations be chosen based on sound rationale and available data to address the mechanisms of primary and acquired immune resistance. Novel trial designs may increase the proportion of patients receiving potentially efficacious treatments and, at the same time, better define the balance of clinical activity and safety. We believe that implementing a strategic approach in the early development of immunotherapy combinations will expedite the delivery of more effective therapies with improved safety and durable outcomes. ©2017 American Association for Cancer Research.

  5. Immunotherapy and immunoescape in colorectal cancer

    Mazzolini, Guillermo; Murillo, Oihana; Atorrasagasti, Catalina; Dubrot, Juan; Tirapu, Iñigo; Rizzo, Miguel; Arina, Ainhoa; Alfaro, Carlos; Azpilicueta, Arantza; Berasain, Carmen; Perez-Gracia, José L; Gonzalez, Alvaro; Melero, Ignacio

    2007-01-01

    Immunotherapy encompasses a variety of interventions and techniques with the common goal of eliciting tumor cell destructive immune responses. Colorectal carcinoma often presents as metastatic disease that impedes curative surgery. Novel strategies such as active immunization with dendritic cells (DCs), gene transfer of cytokines into tumor cells or administration of immunostimulatory monoclonal antibodies (such as anti-CD137 or anti-CTLA-4) have been assessed in preclinical studies and are at an early clinical development stage. Importantly, there is accumulating evidence that chemotherapy and immunotherapy can be combined in the treatment of some cases with colorectal cancer, with synergistic potentiation as a result of antigens cross-presented by dendritic cells and/or elimination of competitor or suppressive T lymphocyte populations (regulatory T-cells). However, genetic and epigenetic unstable carcinoma cells frequently evolve mechanisms of immunoevasion that are the result of either loss of antigen presentation, or an active expression of immunosuppressive substances. Some of these actively immunosuppressive mechanisms are inducible by cytokines that signify the arrival of an effector immune response. For example, induction of 2, 3 indoleamine dioxygenase (IDO) by IFNγ in colorectal carcinoma cells. Combinational and balanced strategies fostering antigen presentation, T-cell costimulation and interference with immune regulatory mechanisms will probably take the stage in translational research in the treatment of colorectal carcinoma. PMID:17990348

  6. Algenpantucel-L immunotherapy in pancreatic adenocarcinoma.

    Coveler, Andrew L; Rossi, Gabriela R; Vahanian, Nicholas N; Link, Charles; Chiorean, E Gabriela

    2016-02-01

    Pancreatic adenocarcinoma is the 4th leading cause of cancer death in the USA and the EU. A minority of patients presents with surgically resectable and potentially curable disease, but among these, 80% are destined to relapse and overall survival rates with adjuvant chemotherapy average 24 months. Immunotherapy is a promising therapeutic option and a potential paradigm shift in the treatment of patients with pancreatic cancer, and may be particularly effective when used early in the disease course to prevent metastatic spread. Algenpantucel-L (HyperAcute Pancreas, NewLink Genetics, Ames, IA, USA) is a whole-cell immunotherapy consisting of irradiated allogeneic pancreatic cancer cells genetically engineered to express the murine enzyme α-GT, which results in hyperacute rejection of the tumor cells with complement- and antibody-dependent cytotoxicity. Phase II clinical trial data has been encouraging, particularly for patients who demonstrated humoral immunologic responses. Here, we report preliminary results and biomarkers correlations with clinical activity of algenpantucel-L in pancreatic cancer.

  7. Modeling Human Leukemia Immunotherapy in Humanized Mice

    Jinxing Xia

    2016-08-01

    Full Text Available The currently available human tumor xenograft models permit modeling of human cancers in vivo, but in immunocompromised hosts. Here we report a humanized mouse (hu-mouse model made by transplantation of human fetal thymic tissue plus hematopoietic stem cells transduced with a leukemia-associated fusion gene MLL-AF9. In addition to normal human lymphohematopoietic reconstitution as seen in non-leukemic hu-mice, these hu-mice showed spontaneous development of B-cell acute lymphoblastic leukemia (B-ALL, which was transplantable to secondary recipients with an autologous human immune system. Using this model, we show that lymphopenia markedly improves the antitumor efficacy of recipient leukocyte infusion (RLI, a GVHD-free immunotherapy that induces antitumor responses in association with rejection of donor chimerism in mixed allogeneic chimeras. Our data demonstrate the potential of this leukemic hu-mouse model in modeling leukemia immunotherapy, and suggest that RLI may offer a safe treatment option for leukemia patients with severe lymphopenia.

  8. Advances in Cancer Immunotherapy in Solid Tumors

    Smitha Menon

    2016-11-01

    Full Text Available Immunotherapy is heralded as one of the most important advances in oncology. Until recently, only limited immunotherapeutic options were available in selected immunogenic cancers like melanoma and renal cell carcinomas. Nowadays, there is an improved understanding that anti-tumor immunity is controlled by a delicate balance in the tumor microenvironment between immune stimulatory and immune inhibitory pathways. Either by blocking the inhibitory pathways or stimulating the activating pathways that regulate cytotoxic lymphocytes, anti-tumor immunity can be enhanced leading to durable anti-tumor responses. Drugs which block the immune regulatory checkpoints namely the PD-1/PDL1 and CTLA 4 pathway have shown tremendous promise in a wide spectrum of solid and hematological malignancies, significantly improving overall survival in newly diagnosed and heavily pretreated patients alike. Hence there is renewed enthusiasm in the field of immune oncology with current research focused on augmenting responses to checkpoint inhibitors by combination therapy as well as studies looking at other immune modulators and adoptive T cell therapy. In this article, we highlight the key clinical advances and concepts in immunotherapy with particular emphasis on checkpoint inhibition as well as the future direction in this field.

  9. Cancer immunotherapy drives implementation science in oncology.

    Speiser, Daniel E; Flatz, Lukas

    2014-01-01

    Cancer immunotherapy has come a long way. The hope that immunological approaches may help cancer patients has sparked many initiatives in research and development (R&D). For many years, progress was modest and disappointments were frequent. Today, the increasing scientific and medical knowledge has established a solid basis for improvements. Considerable clinical success was first achieved for patients with hematological cancers. More recently, immunotherapy has entered center stage in the development of novel therapies against solid cancers. Together with R&D in angiogenesis, the field of immunology has fundamentally extended the scientific scope, which has evolved from a cancer-cell-centered view to a comprehensive and integrated vision of tumor biology. Current R&D is focused on a large array of possible disease mechanisms, driven by cancer cells, and amplified by tumor stroma, inflammatory and immunological actors, blood and lymph vessels, and the “macroenvironment," i.e. systemic mechanisms of the host, particularly of the haematopoietic system. Contrasting to this large spectrum of pathophysiological events promoting tumor growth, only a small number of biological mechanisms, namely of the immune system, have the potential to counteract tumor growth. They are of prime interest because therapeutic enhancement may result in clinical benefit for patients. This special issue is dedicated to immunotherapeutics against cancer, with particular emphasis on vaccination and combination therapies, providing updates and extended insight in this booming field.

  10. Role of regulatory T cells in acute myeloid leukemia patients undergoing relapse-preventive immunotherapy.

    Sander, Frida Ewald; Nilsson, Malin; Rydström, Anna; Aurelius, Johan; Riise, Rebecca E; Movitz, Charlotta; Bernson, Elin; Kiffin, Roberta; Ståhlberg, Anders; Brune, Mats; Foà, Robin; Hellstrand, Kristoffer; Thorén, Fredrik B; Martner, Anna

    2017-11-01

    Regulatory T cells (T regs ) have been proposed to dampen functions of anti-neoplastic immune cells and thus promote cancer progression. In a phase IV trial (Re:Mission Trial, NCT01347996, http://www.clinicaltrials.gov ) 84 patients (age 18-79) with acute myeloid leukemia (AML) in first complete remission (CR) received ten consecutive 3-week cycles of immunotherapy with histamine dihydrochloride (HDC) and low-dose interleukin-2 (IL-2) to prevent relapse of leukemia in the post-consolidation phase. This study aimed at defining the features, function and dynamics of Foxp3 + CD25 high CD4 + T regs during immunotherapy and to determine the potential impact of T regs on relapse risk and survival. We observed a pronounced increase in T reg counts in peripheral blood during initial cycles of HDC/IL-2. The accumulating T regs resembled thymic-derived natural T regs (nT regs ), showed augmented expression of CTLA-4 and suppressed the cell cycle proliferation of conventional T cells ex vivo. Relapse of AML was not prognosticated by T reg counts at onset of treatment or after the first cycle of immunotherapy. However, the magnitude of T reg induction was diminished in subsequent treatment cycles. Exploratory analyses implied that a reduced expansion of T regs in later treatment cycles and a short T reg telomere length were significantly associated with a favorable clinical outcome. Our results suggest that immunotherapy with HDC/IL-2 in AML entails induction of immunosuppressive T regs that may be targeted for improved anti-leukemic efficiency.

  11. Novel Immunotherapy Options for Extranodal NK/T-Cell Lymphoma

    Boyu Hu

    2018-04-01

    patients including five with a complete response (CR. Furthermore, cellular immunotherapy with engineered cytotoxic T lymphocytes targeted against LMP1 and LMP2 have shown encouraging results with durable CRs as either maintenance therapy after initial induction chemotherapy or in the relapsed/refractory setting. In this paper, we review this exciting field of novel immunotherapy options against ENKTCL that hopefully will change the treatment paradigm in this deadly disease.

  12. [Practice patterns in Mexican allergologists about specific immunotherapy with allergens].

    Larenas Linnemann, Désirée; Guidos Fogelbach, Guillermo Arturo; Arias Cruz, Alfredo

    2008-01-01

    Immunotherapy has been practiced since over a hundred years. Since the first applications up today changes have occurred in the preparation, dose and duration of the treatment, as well as in the extracts used. Guidelines have been published in Mexico and other countries to try to unify these practice patterns of immunotherapy. By means of a questionnaire, sent in various occasions to all members of the Colegio Mexicano de Inmunología Clínica y Alergia (CMICA) and of the Colegio Mexicano de Pediatras, Especialistas en Inmunología y Alergia (CoMPedIA) we tried to get a picture of the daily practice patterns of immunotherapy in the allergist's office. Results will be presented in a descriptive manner. A response rate of 61 (17%) was obtained from the College members. For immunotherapy allergists use locally made and imported extracts, generally mixed in their office (20% over 10 allergens in one bottle). Eighty percent adds bacterial vaccine at some point and 60% uses sublingual immunotherapy. Most use Evans without albumin as diluent, don't routinely premedicate, reach maintenance treatment after more than six months and 46% recommends a maximum duration of immunotherapy of two years or less. We present a diagnosis on the current situation of practice patterns concerning allergen immunotherapy among the members of both Mexican colleges of allergists. The methods used by the allergists for indication, preparation and administration are quite diverse.

  13. Sex-driven differences in immunological responses: challenges and opportunities for the immunotherapies of the third millennium.

    Mirandola, Leonardo; Wade, Raymond; Verma, Rashmi; Pena, Camilo; Hosiriluck, Nattamol; Figueroa, Jose A; Cobos, Everardo; Jenkins, Marjorie R; Chiriva-Internati, Maurizio

    2015-03-01

    Male-based studies, both at the biochemical and at the pre-clinical/clinical trial levels, still predominate in the scientific community. Many studies are based on the wrong assumption that both sexes are fundamentally identical in their response to treatments. As a result, findings obtained mainly in males are applied to females, resulting in negative consequences female patients. In cancer immunotherapy, there is still a scarce focus on this topic. Here we review the main differences in immune modulation and immune system biology between males and females with a particular focus on how these differences affect cancer immunotherapy and cancer vaccines. We reviewed articles published on PubMed from 1999 to 2014, using the keywords: sex hormones, immune response, estrogen, immunotherapy, testosterone, cancer vaccines, sex-based medicine. We also present new data wherein the expression of the cancer testis antigen, Ropporin-1, was determined in patients with multiple myeloma, showing that the expression of Ropporin-1 was influenced by sex. Male and female immune systems display radical differences mainly due to the immune regulatory effects of sex hormones. These differences might have a dramatic impact on the immunological treatment of cancer. Moreover, the expression of tumor antigens that can be targeted by anti-cancer vaccines is associated with sex. Future clinical trials focusing on cancer immunotherapy will need to take into account the differences in the immune response and in the frequency of target antigen expression between male and females, in order to optimize these anti-cancer immunotherapies of the third millennium.

  14. Immunological comparison of allergen immunotherapy tablet treatment and subcutaneous immunotherapy against grass allergy

    Aasbjerg, K; Backer, V; Lund, G

    2014-01-01

    BACKGROUND: IgE-mediated allergic rhinitis to grass pollen can successfully be treated with either allergen immunotherapy tablets (SLIT tablet) or SQ-standardized subcutaneous immunotherapy (SCIT). The efficacy of these two treatment modalities for grass allergy is comparable, but the immunological...... mechanisms may differ. ClinicalTrials.gov ID: NCT01889875. OBJECTIVES: To compare the immunological changes induced by SQ-standardized SCIT and SLIT tablet. METHODS: We randomized 40 individuals with grass pollen rhinitis into groups receiving SCIT, SLIT tablet, or neither and followed them for 15 months...... differed significantly in both SCIT and SLIT-tablet treatment groups when compared to the control group. Both SCIT and SLIT-tablet groups were significantly different from the control group after 1–3 months of treatment. In general, the changes induced by SCIT reached twice that of SLIT tablet...

  15. T-lymphocyte homing: an underappreciated yet critical hurdle for successful cancer immunotherapy.

    Sackstein, Robert; Schatton, Tobias; Barthel, Steven R

    2017-06-01

    Advances in cancer immunotherapy have offered new hope for patients with metastatic disease. This unfolding success story has been exemplified by a growing arsenal of novel immunotherapeutics, including blocking antibodies targeting immune checkpoint pathways, cancer vaccines, and adoptive cell therapy (ACT). Nonetheless, clinical benefit remains highly variable and patient-specific, in part, because all immunotherapeutic regimens vitally hinge on the capacity of endogenous and/or adoptively transferred T-effector (T eff ) cells, including chimeric antigen receptor (CAR) T cells, to home efficiently into tumor target tissue. Thus, defects intrinsic to the multi-step T-cell homing cascade have become an obvious, though significantly underappreciated contributor to immunotherapy resistance. Conspicuous have been low intralesional frequencies of tumor-infiltrating T-lymphocytes (TILs) below clinically beneficial threshold levels, and peripheral rather than deep lesional TIL infiltration. Therefore, a T eff cell 'homing deficit' may arguably represent a dominant factor responsible for ineffective immunotherapeutic outcomes, as tumors resistant to immune-targeted killing thrive in such permissive, immune-vacuous microenvironments. Fortunately, emerging data is shedding light into the diverse mechanisms of immune escape by which tumors restrict T eff cell trafficking and lesional penetrance. In this review, we scrutinize evolving knowledge on the molecular determinants of T eff cell navigation into tumors. By integrating recently described, though sporadic information of pivotal adhesive and chemokine homing signatures within the tumor microenvironment with better established paradigms of T-cell trafficking under homeostatic or infectious disease scenarios, we seek to refine currently incomplete models of T eff cell entry into tumor tissue. We further summarize how cancers thwart homing to escape immune-mediated destruction and raise awareness of the potential impact of

  16. Allergen immunotherapy for the prevention of allergy

    Kristiansen, Maria; Dhami, Sangeeta; Netuveli, Gopal

    2017-01-01

    BACKGROUND: There is a need to establish the effectiveness, cost-effectiveness, and safety of allergen immunotherapy (AIT) for the prevention of allergic disease. METHODS: Two reviewers independently screened nine international biomedical databases. Studies were quantitatively synthesized using...... was found in relation to its longer-term effects for this outcome. There was, however, a reduction in the short-term risk of those with allergic rhinitis developing asthma (RR = 0.40; 95% CI: 0.30-0.54), with this finding being robust to a pre-specified sensitivity analysis. We found inconclusive evidence...... random-effects meta-analyses. RESULTS: A total of 32 studies satisfied the inclusion criteria. Overall, meta-analysis found no conclusive evidence that AIT reduced the risk of developing a first allergic disease over the short term (RR = 0.30; 95% CI: 0.04-2.09) and no randomized controlled evidence...

  17. Nanoparticle based-immunotherapy against allergy.

    Gamazo, Carlos; Gastaminza, Gabriel; Ferrer, Marta; Sanz, María L; Irache, Juan M

    2014-01-01

    Allergic diseases are one of the most prevalent diseases, reaching epidemic proportions in developed countries. An allergic reaction occurs after contact with an environmental protein, such as inhalants allergens (pollen, animal dander, house dust mites), or food proteins. This response is known as part of the type 2 immunity that is counterbalanced by Type 1 immunity and Tregs. Widely used allergen-specific immunotherapy (IT) is a long term treatment to induce such switch from Th2 to Th1 response. However, conventional IT requires multiple allergen injections over a long period of time and is not free of risk of producing allergic reactions. As a consequence, new safer and faster immunotherapeutic methods are required. This review deals with allergen IT using nanoparticles as allergen delivery system that will allow a different way of administration, reduce dose and diminish allergen exposure to IgE bound to mast cells or basophils.

  18. The Role of Immunotherapy in Multiple Myeloma

    Mehmet Kocoglu

    2016-01-01

    Full Text Available Multiple myeloma is the second most common hematologic malignancy. The treatment of this disease has changed considerably over the last two decades with the introduction to the clinical practice of novel agents such as proteasome inhibitors and immunomodulatory drugs. Basic research efforts towards better understanding of normal and missing immune surveillence in myeloma have led to development of new strategies and therapies that require the engagement of the immune system. Many of these treatments are under clinical development and have already started providing encouraging results. We, for the second time in the last two decades, are about to witness another shift of the paradigm in the management of this ailment. This review will summarize the major approaches in myeloma immunotherapies.

  19. New visions in specific immunotherapy in children

    Halken, Susanne; Lau, Susanne; Valovirta, Erkka

    2008-01-01

    of the effect, as well as the dose, the treatment regimen and duration has not been sufficiently elaborated. It is demonstrated that SCIT has the potential for preventing the development of asthma in children with allergic rhinoconjunctivitis. Also one randomized study indicates a preventive effect of SLIT...... in children on the development of asthma. At present, there are no studies who clearly demonstrates either a long-term effect or a preventive effect on the development of asthma of SLIT in children. The areas with lack of evidence should be addressed in well performed prospective, randomized long-term studies...... immunotherapy (SLIT) has also been investigated in children. SCIT, especially with grass and birch pollens but also house dust mites, is an effective treatment in children with allergic rhinitis and asthma when a significant part of their symptoms are caused by these allergens. A long-term effect up to 12 yr...

  20. Assays for predicting and monitoring responses to lung cancer immunotherapy

    Teixidó, Cristina; Karachaliou, Niki; González-Cao, Maria; Morales-Espinosa, Daniela; Rosell, Rafael

    2015-01-01

    Immunotherapy has become a key strategy for cancer treatment, and two immune checkpoints, namely, programmed cell death 1 (PD-1) and its ligand (PD-L1), have recently emerged as important targets. The interaction blockade of PD-1 and PD-L1 demonstrated promising activity and antitumor efficacy in early phase clinical trials for advanced solid tumors such as non-small cell lung cancer (NSCLC). Many cell types in multiple tissues express PD-L1 as well as several tumor types, thereby suggesting that the ligand may play important roles in inhibiting immune responses throughout the body. Therefore, PD-L1 is a critical immunomodulating component within the lung microenvironment, but the correlation between PD-L1 expression and prognosis is controversial. More evidence is required to support the use of PD-L1 as a potential predictive biomarker. Clinical trials have measured PD-L1 in tumor tissues by immunohistochemistry (IHC) with different antibodies, but the assessment of PD-L1 is not yet standardized. Some commercial antibodies lack specificity and their reproducibility has not been fully evaluated. Further studies are required to clarify the optimal IHC assay as well as to predict and monitor the immune responses of the PD-1/PD-L1 pathway

  1. Recent developments in immunotherapy of acute myeloid leukemia

    Felix S. Lichtenegger

    2017-07-01

    Full Text Available Abstract The advent of new immunotherapeutic agents in clinical practice has revolutionized cancer treatment in the past decade, both in oncology and hematology. The transfer of the immunotherapeutic concepts to the treatment of acute myeloid leukemia (AML is hampered by various characteristics of the disease, including non-leukemia-restricted target antigen expression profile, low endogenous immune responses, and intrinsic resistance mechanisms of the leukemic blasts against immune responses. However, considerable progress has been made in this field in the past few years. Within this manuscript, we review the recent developments and the current status of the five currently most prominent immunotherapeutic concepts: (1 antibody-drug conjugates, (2 T cell-recruiting antibody constructs, (3 chimeric antigen receptor (CAR T cells, (4 checkpoint inhibitors, and (5 dendritic cell vaccination. We focus on the clinical data that has been published so far, both for newly diagnosed and refractory/relapsed AML, but omitting immunotherapeutic concepts in conjunction with hematopoietic stem cell transplantation. Besides, we have included important clinical trials that are currently running or have recently been completed but are still lacking full publication of their results. While each of the concepts has its particular merits and inherent problems, the field of immunotherapy of AML seems to have taken some significant steps forward. Results of currently running trials will reveal the direction of further development including approaches combining two or more of these concepts.

  2. Tumor-Associated Antigens for Specific Immunotherapy of Prostate Cancer

    Kiessling, Andrea [Biologics Safety and Disposition, Preclinical Safety, Translational Sciences, Novartis Institutes for BioMedical Research, Novartis Pharma AG, Werk Klybeck, Klybeckstraße 141, Basel CH-4057 (Switzerland); Wehner, Rebekka [Institute of Immunology, Medical Faculty, University of Technology Dresden, Fetscherstraße 74, Dresden 01307 (Germany); Füssel, Susanne [Department of Urology, Medical Faculty, University of Technology Dresden, Fetscherstraße 74, Dresden 01307 (Germany); Bachmann, Michael [Institute of Immunology, Medical Faculty, University of Technology Dresden, Fetscherstraße 74, Dresden 01307 (Germany); Wirth, Manfred P. [Department of Urology, Medical Faculty, University of Technology Dresden, Fetscherstraße 74, Dresden 01307 (Germany); Schmitz, Marc, E-mail: marc.schmitz@tu-dresden.de [Institute of Immunology, Medical Faculty, University of Technology Dresden, Fetscherstraße 74, Dresden 01307 (Germany)

    2012-02-22

    Prostate cancer (PCa) is the most common noncutaneous cancer diagnosis and the second leading cause of cancer-related deaths among men in the United States. Effective treatment modalities for advanced metastatic PCa are limited. Immunotherapeutic strategies based on T cells and antibodies represent interesting approaches to prevent progression from localized to advanced PCa and to improve survival outcomes for patients with advanced disease. CD8{sup +} cytotoxic T lymphocytes (CTLs) efficiently recognize and destroy tumor cells. CD4{sup +} T cells augment the antigen-presenting capacity of dendritic cells and promote the expansion of tumor-reactive CTLs. Antibodies mediate their antitumor effects via antibody-dependent cellular cytotoxicity, activation of the complement system, improving the uptake of coated tumor cells by phagocytes, and the functional interference of biological pathways essential for tumor growth. Consequently, several tumor-associated antigens (TAAs) have been identified that represent promising targets for T cell- or antibody-based immunotherapy. These TAAs comprise proteins preferentially expressed in normal and malignant prostate tissues and molecules which are not predominantly restricted to the prostate, but are overexpressed in various tumor entities including PCa. Clinical trials provide evidence that specific immunotherapeutic strategies using such TAAs represent safe and feasible concepts for the induction of immunological and clinical responses in PCa patients. However, further improvement of the current approaches is required which may be achieved by combining T cell- and/or antibody-based strategies with radio-, hormone-, chemo- or antiangiogenic therapy.

  3. Cancer immunotherapy: potential involvement of mediators

    S. Ben-Efraim

    1997-01-01

    Full Text Available The description of a cell-free soluble anti-tumour factor by Carswell et al. in 1975 (Proc Natl Acad Sci USA, 72: 3666–3670 was followed by a long series of experimental and clinical investigations into the role of cell-free mediators in cancer immunotherapy. These investigations included research on the effects of macrophage–derived eicosanoids (cycloxygenase and lipoxygenase derivates of arachidonic acid and of monokines such as tumour necrosis factor-α, interleukin-1 and granulocyte–monocyte–macrophage–colony stimulating factor and of lymphocyte products: interleukins and interferons. The investigations yielded information on the effects of various factors on macrophage and T-cell activation in vitro, determination of direct anti-tumour properties on animal and human tumour cells in vitro and on therapeutic effectiveness in tumour-bearing individuals either alone or in combination with other therapeutic factors and their production by tumour cells. During recent years much effort has been dedicated towards the use of the tumour cells transfected with cytokine genes in the preparation of cancer vaccines. Cycloxygenase products (prostaglandins were usually assumed to inhibit expression of anti-tumour activity by macrophages and an increase in their production in cancer patients was considered as a poor prognostic index. Lipoxygenase (leukotrienes products were assumed to exhibit antitumour activity and to induce production of IL-1 by macrophages. Interleukins 2, 4, 6, 7, 12 and the interferons were extensively tested for their therapeutic effectiveness in experimental tumour models and in cancer clinical trials. The general conclusion on the use of cell-free mediators for cancer immunotherapy is that much still has to be done in order to assure effective and reproducible therapeutic effectiveness for routine use in the treatment of human neoplasia.

  4. Immunotherapy in Melanoma, Gastrointestinal (GI, and Pulmonary Malignancies

    Alexander B. Dillon

    2015-03-01

    Full Text Available Oncologic immunotherapy involves stimulating the immune system to more effectively identify and eradicate tumor cells that have successfully adapted to survive the body's natural immune defenses. Immunotherapy has shown great promise thus far by prolonging the lives of patients with a variety of malignancies, and has added a crucial new set of tools to the oncologists' armamentarium. The aim of this paper is to provide an overview of immunotherapy treatment options that are currently available and under active research for melanoma, gastrointestinal (esophageal, gastric, pancreatic, and colorectal, and pulmonary malignancies. Potential biomarkers that may predict favorable responses to immunotherapies are discussed where applicable, as are future avenues of research in this rapidly evolving field.

  5. Immunotherapy in advanced melanoma: a network meta-analysis.

    Pyo, Jung-Soo; Kang, Guhyun

    2017-05-01

    The aim of this study was to compare the effects of various immunotherapeutic agents and chemotherapy for unresected or metastatic melanomas. We performed a network meta-analysis using a Bayesian statistical model to compare objective response rate (ORR) of various immunotherapies from 12 randomized controlled studies. The estimated ORRs of immunotherapy and chemotherapy were 0.224 and 0.108, respectively. The ORRs of immunotherapy in untreated and pretreated patients were 0.279 and 0.176, respectively. In network meta-analysis, the odds ratios for ORR of nivolumab (1 mg/kg)/ipilmumab (3 mg/kg), pembrolizumab 10 mg/kg and nivolumab 3 mg/kg were 8.54, 5.39 and 4.35, respectively, compared with chemotherapy alone. Our data showed that various immunotherapies had higher ORRs rather than chemotherapy alone.

  6. Tumor-associated fibrosis as a regulator of tumor immunity and response to immunotherapy.

    Jiang, Hong; Hegde, Samarth; DeNardo, David G

    2017-08-01

    Tumor-associated fibrosis is characterized by unchecked pro-fibrotic and pro-inflammatory signaling. The components of fibrosis including significant numbers of cancer-associated fibroblasts, dense collagen deposition, and extracellular matrix stiffness, are well appreciated regulators of tumor progression but may also be critical regulators of immune surveillance. While this suggests that the efficacy of immunotherapy may be limited in highly fibrotic cancers like pancreas, it also suggests a therapeutic opportunity to target fibrosis in these tumor types to reawaken anti-tumor immunity. This review discusses the mechanisms by which fibrosis might subvert tumor immunity and how to overcome these mechanisms.

  7. A Direct Synergistic Effect of Immunotherapy and Chemotherapy as a New Paradigm in Treatment of Breast Cancer

    2010-04-01

    mouse macrophage nucleofector kit (Program-Y-01) was used. For EL4 cells mouse cell transfection kit (Program-C-09) was used. As controls...direct synergy between immunotherapy and chemotherapy in vitro. We found that pre-treatment of tumor target cells with doxorubicin or paclitaxel...significantly increased cytotoxic effect of T-lymphocytes. Importantly, that effect was antigen-specific, since it was observed only in tumor cells loaded

  8. Novel Approaches to Locoregional and Systemic Immunotherapy for Ovarian Cancer

    2017-10-01

    AWARD NUMBER: W81XWH-16-1-0298 TITLE: Novel approaches to locoregional and systemic immunotherapy for ovarian cancer PRINCIPAL INVESTIGATOR...Dmitriy Zamarin CONTRACTING ORGANIZATION: Memorial Sloan Kettering Cancer Center New York, NY 10017 REPORT DATE: October 2017 TYPE OF REPORT...TITLE AND SUBTITLE Novel approaches to locoregional and systemic immunotherapy for ovarian cancer 5a. CONTRACT NUMBER vel ap roaches to l c regional

  9. Adjuvant immunotherapy after surgery and radiotherapy for breast carcinoma

    Papavasiliou, C.; Pappas, J.; Pavlatou, M.; Keramopoulos, A.; Giannakoulis, N.; Koumantakis, E.; Nicolaidis, C.

    1982-04-01

    One hundred patients with operable breast cancer received 'prophylactic' postoperative irradiation after mastectomy. In addition, during irradiation and for four months afterwards, part of the patients received immunotherapy (BCG scarification and oral administration of levamisole), while the rest served as controls. Although survival time in the two groups was about the same, disease-free survival time was significantly longer in the immunotherapy group. Tumor reactivation was preceded by deterioration of the Leucocyte Migration Inhibition Index.

  10. Adjuvant immunotherapy after surgery and radiotherapy for breast carcinoma

    Papavasiliou, C.; Pappas, J.; Pavlatou, M.; Keramopoulos, A.; Giannakoulis, N.; Koumantakis, E.; Nicolaidis, C.

    1982-01-01

    One hundred patients with operable breast cancer received 'prophylactic' postoperative irradiation after mastectomy. In addition, during irradiation and for four months afterwards, part of the patients received immunotherapy (BCG scarification and oral administration of levamisole), while the rest served as controls. Although survival time in the two groups was about the same, disease-free survival time was significantly longer in the immunotherapy group. Tumor reactivation was preceded by deterioration of the Leucocyte Migration Inhibition Index. (orig.) [de

  11. Budget impact analysis of two immunotherapy products for treatment of grass pollen-induced allergic rhinoconjunctivitis

    Rønborg SM

    2012-09-01

    Full Text Available Steen M Rønborg,1 Ulrik G Svendsen,2 Jesper S Micheelsen,3 Lars Ytte,4 Jakob N Andreasen,5 Lars Ehlers61The Pulmonology and Allergy Clinic of Copenhagen, Copenhagen, 2Bispebjerg Hospital, Copenhagen, 3Private ENT practice, Aalborg, 4General Practice Aalborg, 5ALK, Hørsholm, 6Aalborg University, Aalborg, DenmarkBackground: Grass pollen-induced allergic rhinoconjunctivitis constitutes a large burden for society. Up to 20% of European and United States (US populations suffer from respiratory allergies, including grass pollen-induced allergic rhinoconjunctivitis. The majority of patients are treated with symptomatic medications; however, a large proportion remains uncontrolled despite use of such treatments. Specific immunotherapy is the only treatment documented to target the underlying cause of the disease, leading to a sustained effect after completion of treatment. The aim of this study was to compare the economic consequences of treating patients suffering from allergic rhinoconjunctivitis with either a grass allergy immunotherapy tablet (AIT or subcutaneous immunotherapy (SCIT.Methods: A budget impact analysis was applied comparing SQ-standardized grass AIT (Grazax®; Phleum pratense, 75,000 SQ-T/2,800 BAU; ALK, Denmark with SCIT (Alutard®; P. pratense, 100,000 SQ-U/mL; ALK, Denmark. Budget impact analysis included health care utilization measured in physical units based on systematic literature reviews, guidelines, and expert opinions, as well as valuation in unit costs based on drug tariffs, physician fees, and wage statistics. Budget impact analysis was conducted from a Danish health care perspective.Results: Treating patients suffering from allergic rhinoconjunctivitis with grass AIT instead of grass SCIT resulted in a total reduction in treatment costs of €1291 per patient during a treatment course. This cost saving implies that approximately 40% more patients could be treated with grass AIT per year without influencing the cost of

  12. TU-EF-210-01: HIFU, Drug Delivery, and Immunotherapy

    Ferrara, K.

    2015-01-01

    The use of therapeutic ultrasound to provide targeted therapy is an active research area that has a broad application scope. The invited talks in this session will address currently implemented strategies and protocols for both hyperthermia and ablation applications using therapeutic ultrasound. The role of both ultrasound and MRI in the monitoring and assessment of these therapies will be explored in both pre-clinical and clinical applications. Katherine Ferrara: High Intensity Focused Ultrasound, Drug Delivery, and Immunotherapy Rajiv Chopra: Translating Localized Doxorubicin Delivery to Pediatric Oncology using MRI-guided HIFU Elisa Konofagou: Real-time Ablation Monitoring and Lesion Quantification using Harmonic Motion Imaging Keyvan Farahani: AAPM Task Groups in Interventional Ultrasound Imaging and Therapy Learning Objectives: Understand the role of ultrasound in localized drug delivery and the effects of immunotherapy when used in conjunction with ultrasound therapy. Understand potential targeted drug delivery clinical applications including pediatric oncology. Understand the technical requirements for performing targeted drug delivery. Understand how radiation-force approaches can be used to both monitor and assess high intensity focused ultrasound ablation therapy. Understand the role of AAPM task groups in ultrasound imaging and therapies. Chopra: Funding from Cancer Prevention and Research Initiative of Texas (CPRIT), Award R1308 Evelyn and M.R. Hudson Foundation; Research Support from Research Contract with Philips Healthcare; COI are Co-founder of FUS Instruments Inc Ferrara: Supported by NIH, UCDavis and California (CIRM and BHCE) Farahani: In-kind research support from Philips Healthcare

  13. TU-EF-210-01: HIFU, Drug Delivery, and Immunotherapy

    Ferrara, K. [University of California - Davis (United States)

    2015-06-15

    The use of therapeutic ultrasound to provide targeted therapy is an active research area that has a broad application scope. The invited talks in this session will address currently implemented strategies and protocols for both hyperthermia and ablation applications using therapeutic ultrasound. The role of both ultrasound and MRI in the monitoring and assessment of these therapies will be explored in both pre-clinical and clinical applications. Katherine Ferrara: High Intensity Focused Ultrasound, Drug Delivery, and Immunotherapy Rajiv Chopra: Translating Localized Doxorubicin Delivery to Pediatric Oncology using MRI-guided HIFU Elisa Konofagou: Real-time Ablation Monitoring and Lesion Quantification using Harmonic Motion Imaging Keyvan Farahani: AAPM Task Groups in Interventional Ultrasound Imaging and Therapy Learning Objectives: Understand the role of ultrasound in localized drug delivery and the effects of immunotherapy when used in conjunction with ultrasound therapy. Understand potential targeted drug delivery clinical applications including pediatric oncology. Understand the technical requirements for performing targeted drug delivery. Understand how radiation-force approaches can be used to both monitor and assess high intensity focused ultrasound ablation therapy. Understand the role of AAPM task groups in ultrasound imaging and therapies. Chopra: Funding from Cancer Prevention and Research Initiative of Texas (CPRIT), Award R1308 Evelyn and M.R. Hudson Foundation; Research Support from Research Contract with Philips Healthcare; COI are Co-founder of FUS Instruments Inc Ferrara: Supported by NIH, UCDavis and California (CIRM and BHCE) Farahani: In-kind research support from Philips Healthcare.

  14. Impact of immunotherapy among patients with melanoma brain metastases managed with radiotherapy.

    Stokes, William A; Binder, David C; Jones, Bernard L; Oweida, Ayman J; Liu, Arthur K; Rusthoven, Chad G; Karam, Sana D

    2017-12-15

    Patients with melanoma brain metastases (MBM) have been excluded from trials evaluating immunotherapy in melanoma. As such, immunotherapy's role in MBM is poorly understood, particularly in combination with radiotherapy. The National Cancer Database was queried for patients with MBM receiving brain radiotherapy. They were classified according to immunotherapy receipt. Multivariate Cox regression was performed to identify factors associated with survival. Among 1287 patients, 185 received immunotherapy. Factors associated with improved survival included younger age, academic facility, lower extracranial disease burden, stereotactic radiotherapy, chemotherapy, and immunotherapy. Adding immunotherapy to radiotherapy for MBM is associated with improved survival. Copyright © 2017 Elsevier B.V. All rights reserved.

  15. High-throughput screening to enhance oncolytic virus immunotherapy

    Allan KJ

    2016-04-01

    Full Text Available KJ Allan,1,2 David F Stojdl,1–3 SL Swift1 1Children’s Hospital of Eastern Ontario (CHEO Research Institute, 2Department of Biology, Microbiology and Immunology, 3Department of Pediatrics, University of Ottawa, Ottawa, ON, Canada Abstract: High-throughput screens can rapidly scan and capture large amounts of information across multiple biological parameters. Although many screens have been designed to uncover potential new therapeutic targets capable of crippling viruses that cause disease, there have been relatively few directed at improving the efficacy of viruses that are used to treat disease. Oncolytic viruses (OVs are biotherapeutic agents with an inherent specificity for treating malignant disease. Certain OV platforms – including those based on herpes simplex virus, reovirus, and vaccinia virus – have shown success against solid tumors in advanced clinical trials. Yet, many of these OVs have only undergone minimal engineering to solidify tumor specificity, with few extra modifications to manipulate additional factors. Several aspects of the interaction between an OV and a tumor-bearing host have clear value as targets to improve therapeutic outcomes. At the virus level, these include delivery to the tumor, infectivity, productivity, oncolysis, bystander killing, spread, and persistence. At the host level, these include engaging the immune system and manipulating the tumor microenvironment. Here, we review the chemical- and genome-based high-throughput screens that have been performed to manipulate such parameters during OV infection and analyze their impact on therapeutic efficacy. We further explore emerging themes that represent key areas of focus for future research. Keywords: oncolytic, virus, screen, high-throughput, cancer, chemical, genomic, immunotherapy

  16. The role of peptide and DNA vaccines in myeloid leukemia immunotherapy

    Lin Chen

    2013-02-01

    Full Text Available Abstract While chemotherapy and targeted therapy are successful in inducing the remission of myeloid leukemia as acute myeloid leukemia (AML and chronic myeloid leukemia (CML, the disease remains largely incurable. This observation is likely due to the drug resistance of leukemic cells, which are responsible for disease relapse. Myeloid leukemia vaccines may most likely be beneficial for eradicating minimal residual disease after treatment with chemotherapy or targeted therapy. Several targeted immunotherapies using leukemia vaccines have been heavily investigated in clinical and preclinical trials. This review will focus on peptides and DNA vaccines in the context of myeloid leukemias, and optimal strategies for enhancing the efficacy of vaccines based on myeloid leukemia immunization are also summarized.

  17. Sublingual immunotherapy: World Allergy Organization position paper 2013 update

    2014-01-01

    We have prepared this document, “Sublingual Immunotherapy: World Allergy Organization Position Paper 2013 Update”, according to the evidence-based criteria, revising and updating chapters of the originally published paper, “Sublingual Immunotherapy: World Allergy Organization Position Paper 2009”, available at http://www.waojournal.org. Namely, these comprise: “Mechanisms of sublingual immunotherapy;” “Clinical efficacy of sublingual immunotherapy” – reporting all the data of all controlled trials published after 2009; “Safety of sublingual immunotherapy” – with the recently published Grading System for adverse reactions; “Impact of sublingual immunotherapy on the natural history of respiratory allergy” – with the relevant evidences published since 2009; “Efficacy of SLIT in children” – with detailed analysis of all the studies; “Definition of SLIT patient selection” – reporting the criteria for eligibility to sublingual immunotherapy; “The future of immunotherapy in the community care setting”; “Methodology of clinical trials according to the current scientific and regulatory standards”; and “Guideline development: from evidence-based medicine to patients' views” – including the evolution of the methods to make clinical recommendations. Additionally, we have added new chapters to cover a few emerging crucial topics: “Practical aspects of schedules and dosages and counseling for adherence” – which is crucial in clinical practice for all treatments; “Perspectives and new approaches” – including recombinant allergens, adjuvants, modified allergens, and the concept of validity of the single products. Furthermore, “Raising public awareness about sublingual immunotherapy”, as a need for our patients, and strategies to increase awareness of allergen immunotherapy (AIT) among patients, the medical community, all healthcare stakeholders, and public opinion, are also reported in detail. PMID:24679069

  18. Genetic Manipulation of NK Cells for Cancer Immunotherapy: Techniques and Clinical Implications.

    Carlsten, Mattias; Childs, Richard W

    2015-01-01

    Given their rapid and efficient capacity to recognize and kill tumor cells, natural killer (NK) cells represent a unique immune cell to genetically reprogram in an effort to improve the outcome of cell-based cancer immunotherapy. However, technical and biological challenges associated with gene delivery into NK cells have significantly tempered this approach. Recent advances in viral transduction and electroporation have now allowed detailed characterization of genetically modified NK cells and provided a better understanding for how these cells can be utilized in the clinic to optimize their capacity to induce tumor regression in vivo. Improving NK cell persistence in vivo via autocrine IL-2 and IL-15 stimulation, enhancing tumor targeting by silencing inhibitory NK cell receptors such as NKG2A, and redirecting tumor killing via chimeric antigen receptors, all represent approaches that hold promise in preclinical studies. This review focuses on available methods for genetic reprograming of NK cells and the advantages and challenges associated with each method. It also gives an overview of strategies for genetic reprograming of NK cells that have been evaluated to date and an outlook on how these strategies may be best utilized in clinical protocols. With the recent advances in our understanding of the complex biological networks that regulate the ability of NK cells to target and kill tumors in vivo, we foresee genetic engineering as an obligatory pathway required to exploit the full potential of NK-cell based immunotherapy in the clinic.

  19. Combining radiotherapy and immunotherapy: A revived partnership

    Demaria, Sandra; Bhardwaj, Nina; McBride, William H.; Formenti, Silvia C.

    2005-01-01

    Ionizing radiation therapy (RT) is an important local modality for the treatment of cancer. The current rationale for its use is based largely on the ability of RT to kill the cancer cells by a direct cytotoxic effect. Nevertheless, considerable evidence indicates that RT effects extend beyond the mere elimination of the more radiosensitive fraction of cancer cells present within a tumor at the time of radiation exposure. For instance, a large body of evidence is accumulating on the ability of RT to modify the tumor microenvironment and generate inflammation. This might have far-reaching consequences regarding the response of a patient to treatment, especially if radiation-induced tumor cell kill were to translate into the generation of effective antitumor immunity. Although much remains to be learned about how radiation can impact tumor immunogenicity, data from preclinical studies provide the proof of principle that different immunotherapeutic strategies can be combined with RT to enhance antitumor effects. Conversely, RT could be a useful tool to combine with immunotherapy. This article will briefly summarize what is known about the impact of RT on tumor immunity, including tumor-associated antigens, antigen-presenting cells, and effector mechanisms. In addition, the experimental evidence supporting the contention that RT can be used as a tool to induce antitumor immunity is discussed, and a new approach to radioimmunotherapy of cancer is proposed

  20. Temperature control in interstitial laser cancer immunotherapy

    Bandyopadhyay, Pradip K.; Holmes, Kyland; Burnett, Corinthius; Zharov, Vladimir P.

    2003-07-01

    Positive results of Laser-Assisted Cancer Immunotherapy (LACI) have been reported previously in the irradiation of superficial tumors. This paper reports the effect of LACI using laser interstitial therapy approach. We hypothesize that the maximum immuno response depends on laser induced tumor temperature. The measurement of tumor temperature is crucial to ensure necrosis by thermal damage and immuno response. Wister Furth female rats in this study were inoculated with 13762 MAT B III rat mammary adinocarcinoma. LACI started seven to ten days following inoculation. Contrary to surface irradation, we applied laser interstitial irradiation of tumor volume to maximize the energy deposition. A diode laser with a wavelength of 805 nm was used for tumor irradiation. The laser energy was delivered inside the tumor through a quartz fiber. Tumor temperature was measured with a micro thermocouple (interstitial), while the tumor surface temperature was controlled with an IR detector. The temperature feedback demonstrates that it is possible to maintain the average tumor temperature at the same level with reasonable accuracy in the desired range from 65°C-85°C. In some experiments we used microwave thermometry to control average temperature in deep tissue for considerable period of time, to cause maximum thermal damage to the tumor. The experimental set-up and the different temperature measurement techniques are reported in detail, including the advantages and disadvantages for each method.

  1. Novel strategies in immunotherapy for allergic diseases.

    Rajakulendran, Mohana; Tham, Elizabeth Huiwen; Soh, Jian Yi; Van Bever, H P

    2018-04-01

    Conventional immunotherapy (IT) for optimal control of respiratory and food allergies has been fraught with concerns of efficacy, safety, and tolerability. The development of adjuvants to conventional IT has potentially increased the effectiveness and safety of allergen IT, which may translate into improved clinical outcomes and sustained unresponsiveness even after cessation of therapy. Novel strategies incorporating the successful use of adjuvants such as allergoids, immunostimulatory DNA sequences, monoclonal antibodies, carriers, recombinant proteins, and probiotics have now been described in clinical and murine studies. Future approaches may include fungal compounds, parasitic molecules, vitamin D, and traditional Chinese herbs. More robust comparative clinical trials are needed to evaluate the safety, clinical efficacy, and cost effectiveness of various adjuvants in order to determine ideal candidates in disease-specific and allergen-specific models. Other suggested approaches to further optimize outcomes of IT include early introduction of IT during an optimal window period. Alternative routes of administration of IT to optimize delivery and yet minimize potential side effects require further evaluation for safety and efficacy before they can be recommended.

  2. MHC class II molecules and tumour immunotherapy

    Oven, I.

    2005-01-01

    Background. Tumour immunotherapy attempts to use the specificity and capability of the immune system to kill malignant cells with a minimum damage to normal tissue. Increasing knowledge of the identity of tumour antigens should help us design more effective therapeutic vaccines. Increasing evidence has demonstrated that MHC class II molecules and CD4+ T cells play important roles in generating and maintaining antitumour immune responses in animal models. These data suggest that it may be necessary to involve both CD4+ and CD8+ T cells for more effective antitumour therapy. Novel strategies have been developed for enhancing T cell responses against cancer by prolonging antigen presentation of dendritic cells to T cells, by the inclusion of MHC class II-restricted tumour antigens and by genetically modifying tumour cells to present antigen to T lymphocytes directly. Conclusions. Vaccines against cancers aim to induce tumour-specific effector T cells that can reduce tumour mass and induce development of tumour-specific T cell memory, that can control tumour relapse. (author)

  3. Oncolytic viruses: a step into cancer immunotherapy

    Pol JG

    2011-12-01

    Full Text Available Jonathan G Pol, Julien Rességuier, Brian D LichtyMcMaster Immunology Research Centre, Department of Pathology and Molecular Medicine, McMaster University, Hamilton, Ontario, CanadaAbstract: Oncolytic virotherapy is currently under investigation in phase I–III clinical trials for approval as a new cancer treatment. Oncolytic viruses (OVs selectively infect, replicate in, and kill tumor cells. For a long time, the therapeutic efficacy was thought to depend on the direct viral oncolysis (virocentric view. The host immune system was considered as a brake that impaired virus delivery and spread. Attention was paid primarily to approaches enhancing virus tumor selectivity and cytotoxicity and/or that limited antiviral responses. Thinking has changed over the past few years with the discovery that OV therapy was also inducing indirect oncolysis mechanisms. Among them, induction of an antitumor immunity following OV injection appeared to be a key factor for an efficient therapeutic activity (immunocentric view. Indeed, tumor-specific immune cells persist post-therapy and can search and destroy any tumor cells that escape the OVs, and thus immune memory may prevent relapse of the disease. Various strategies, which are summarized in this manuscript, have been developed to enhance the efficacy of OV therapy with a focus on its immunotherapeutic aspects. These include genetic engineering and combination with existing cancer treatments. Several are currently being evaluated in human patients and already display promising efficacy.Keywords: oncolytic virus, cancer immunotherapy, tumor antigen, cancer vaccine, combination strategies

  4. Allergen extracts for immunotherapy in Latin America

    Ricardo Cardona-Villa

    2018-04-01

    Full Text Available Background: The Latin American Society of Allergy, Asthma, and Immunology (SLAAI presents a document about the use of immunotherapy (IT in Latin America, where administration patterns, indications and contraindications, effects on health, adverse events and socioeconomic impact are reviewed. Objective: To review publications analyzing the use of IT in Latin America. Methods: A literature review was carried out in order to identify works addressing IT in Latin America. This review was focused on practical scientific information available on IT in the region, and a parallel comparison was made with practices observed in the United States and European countries. Results: Of the 21 Latin American countries included, only 9 had original articles meeting the selection criteria; a total of 82 articles were selected, most of them from Brazil and Mexico. Most widely used allergenic extracts in Latin America tropical and subtropical regions were those of mites and pollen. Conclusion: Although it is true that there are huge challenges for the future of IT in Latin America, studies on subcutaneous IT and sublingual IT are increasing, but most of them are retrospective and some have design bias, and more prospective studies are therefore required, using internationally validated scales for clinical evaluation.

  5. Immuno-pharmacodynamics for evaluating mechanism of action and developing immunotherapy combinations.

    Parchment, Ralph E; Voth, Andrea Regier; Doroshow, James H; Berzofsky, Jay A

    2016-08-01

    Immunotherapy has become a major modality of cancer treatment, with multiple new classes of immunotherapeutics recently entering the clinic and obtaining market approval from regulatory agencies. While the promise of these therapies is great, so is the number of possible combinations not only with each other but also with small molecule therapeutics. Furthermore, the observation of unusual dose-response relationships suggests a critical dependency of drug effectiveness on the dosage regimen (dose and schedule). Clinical pharmacodynamic (PD) biomarkers will be useful endpoints for confirming drug mechanism of action, evaluating combination therapies for synergy or antagonism, and identifying optimal dosage regimens. In contrast to conventional PD in which drug action occurs entirely within a single target cell (ie, is self-contained within the malignant cell), immunotherapy involves a complex mechanism of action with sequential steps that propagate through multiple cell types, both normal and malignant. Its intercellular pharmacology begins with molecular target engagement either on an immune effector cell or a malignant cell, followed by stimulatory biochemical and biological signals in immune effector cells, and then finally ends with activation of cell death mechanisms in malignant cells lying within a certain distance from the activated effector cells (immune cell-tumor cell proximity). Evaluating such "trans-cellular pharmacology," in which different steps of drug action are distributed across multiple cell types, requires novel microscopy and image analysis tools capable of quantifying PD-biomarker responses, mapping the responses onto the cellular geography of the tumor using phenotypic biomarkers to identify specific cell types, and finally analyzing the spatial relationships between biomarkers in the context of each cell's biological role. We have termed this form of nearest neighbor image analysis of drug action "proximity PD microscopy," to indicate the

  6. Immunotherapy “Shock” a case series of PD-L1 100% and pembrolizumab first-line treatment

    Paul Zarogoulidis

    2017-01-01

    Full Text Available In this decade a “bloom” of novel therapies has been observed for non-small cell lung cancer. We have new tools for the diagnosis of lung cancer and also we can re-biospy easier than before in different lesions and obtain tissue samples in order to investigate whether a patient can receive new targeted therapies. Immunotherapy has been well established previously for other forms of cancer, and nowadays it is also available for lung cancer. There are two immunotherapies for now nivolumab and pembrolizumab which can be administered as second line treatment, the second can also be administered as first-line if there is a programmed death-ligand 1 ≥50% expression.

  7. Durable complete responses off all treatment in patients with metastatic malignant melanoma after sequential immunotherapy followed by a finite course of BRAF inhibitor therapy.

    Wyluda, Edward J; Cheng, Jihua; Schell, Todd D; Haley, Jeremy S; Mallon, Carol; Neves, Rogerio I; Robertson, Gavin; Sivik, Jeffrey; Mackley, Heath; Talamo, Giampaolo; Drabick, Joseph J

    2015-01-01

    We report 3 cases of durable complete response (CR) in patients with BRAF-mutated metastatic melanoma who were initially treated unsuccessfully with sequential immunotherapies (high dose interleukin 2 followed by ipilimumab with or without concurrent radiation therapy). After progression during or post immunotherapy, these patients were given BRAF inhibitor therapy and developed rapid CRs. Based on the concomitant presence of autoimmune manifestations (including vitiligo and hypophysitis), we postulated that there was a synergistic effect between the prior immune therapy and the BRAF targeting agents. Accordingly, the inhibitors were gradually weaned off beginning at 3 months and were stopped completely at 9-12 months. The three patients remain well and in CR off of all therapy at up to 15 months radiographic follow-up. The institution of the BRAF therapy was associated with development of severe rheumatoid-like arthritis in 2 patients which persisted for months after discontinuation of therapy, suggesting it was not merely a known toxicity of BRAF inhibitors (arthralgias). On immunologic analysis, these patients had high levels of non-T-regulatory, CD4 positive effector phenotype T-cells, which persisted after completion of therapy. Of note, we had previously reported a similar phenomenon in patients with metastatic melanoma who failed high dose interleukin-2 and were then placed on a finite course of temozolomide with rapid complete responses that have remained durable for many years after discontinuation of temozolomide. We postulate that a finite course of cytotoxic or targeted therapy specific for melanoma given after apparent failure of prior immunotherapy can result in complete and durable remissions that may persist long after the specific cytotoxic or targeted agents have been discontinued suggesting the existence of sequence specific synergism between immunotherapy and these agents. Here, we discuss these cases in the context of the literature on

  8. Role of Antigen Spread and Distinctive Characteristics of Immunotherapy in Cancer Treatment

    Gulley, J.L.; Madan, R.A.; Pachynski, R.; Mulders, P.; Sheikh, N.A.; Trager, J.; Drake, C.G.

    2017-01-01

    Immunotherapy is an important breakthrough in cancer. US Food and Drug Administration-approved immunotherapies for cancer treatment (including, but not limited to, sipuleucel-T, ipilimumab, nivolumab, pembrolizumab, and atezolizumab) substantially improve overall survival across multiple

  9. Immunological targeting of cytomegalovirus for glioblastoma therapy

    Nair, Smita K; Sampson, John H; Mitchell, Duane A

    2014-01-01

    Human cytomegalovirus (CMV) is purportedly present in glioblastoma (GBM) while absent from the normal brain, making CMV antigens potentially ideal immunological anti-GBM targets. We recently demonstrated that patient-derived CMV pp65-specific T cells are capable of recognizing and killing autologous GBM tumor cells. This data supports CMV antigen-directed immunotherapies against GBM.

  10. Safety considerations in providing allergen immunotherapy in the office.

    Mattos, Jose L; Lee, Stella

    2016-06-01

    This review highlights the risks of allergy immunotherapy, methods to improve the quality and safety of allergy treatment, the current status of allergy quality metrics, and the future of quality measurement. In the current healthcare environment, the emphasis on outcomes measurement is increasing, and providers must be better equipped in the development, measurement, and reporting of safety and quality measures. Immunotherapy offers the only potential cure for allergic disease and asthma. Although well tolerated and effective, immunotherapy can be associated with serious consequence, including anaphylaxis and death. Many predisposing factors and errors that lead to serious systemic reactions are preventable, and the evaluation and implementation of quality measures are crucial to developing a safe immunotherapy practice. Although quality metrics for immunotherapy are in their infancy, they will become increasingly sophisticated, and providers will face increased pressure to deliver safe, high-quality, patient-centered, evidence-based, and efficient allergy care. The establishment of safety in the allergy office involves recognition of potential risk factors for anaphylaxis, the development and measurement of quality metrics, and changing systems-wide practices if needed. Quality improvement is a continuous process, and although national allergy-specific quality metrics do not yet exist, they are in development.

  11. ALLERGEN-SPECIFIC IMMUNOTHERAPY IN CHILDREN WITH POLLINOSIS

    R. M. Torshkhoeva

    2014-01-01

    Full Text Available Aim: to compare clinical efficacy and safety of sublingual and parenteral allergen-specific immunotherapy in children with pollinosis. Patients and methods: 143 patients with pollinosis aged from 5 to 16 years old were included into the study. They were divided into 4 groups and received allergen-specific immunotherapy. Patients of the groups I and III were administered water-salt mixtures of extracts of tree pollen allergens. Patients from the II group received standardized adjuvant mixture of extracts of tree pollen allergens. Patients from the IV group were administered standardized extract of birch pollen allergens. Prophylaxis with water-salt solutions was performed before seasons of increased allergy risk during 3 years in autumns and winters. Prophylaxis with standardized extracts of allergens was performed uninterruptedly for 3 years. Results: allergen-specific immunotherapy prevents increase of sensitization and enlargement of allergen spectrum of elevated organism perceptibility, as well as prevents aggravation of disease course and conversion to more severe forms. It also decreases requirements of anti-allergic drugs and therefore elongates the duration of remission. Conclusions: allergen-specific immunotherapy with the use of standardized allergens is the most effective method of treatment of pollen sensitization in children. In order to increase its efficacy not less than 3 courses of immunotherapy are needed.

  12. Advances in Immunotherapy for Melanoma: A Comprehensive Review

    Carmen Rodríguez-Cerdeira

    2017-01-01

    Full Text Available Melanomas are tumors originating from melanocytes and tend to show early metastasis secondary to the loss of cellular adhesion in the primary tumor, resulting in high mortality rates. Cancer-specific active immunotherapy is an experimental form of treatment that stimulates the immune system to recognize antigens on the surface of cancer cells. Current experimental approaches in immunotherapy include vaccines, biochemotherapy, and the transfer of adoptive T cells and dendritic cells. Several types of vaccines, including peptide, viral, and dendritic cell vaccines, are currently under investigation for the treatment of melanoma. These treatments have the same goal as drugs that are already used to stimulate the proliferation of T lymphocytes in order to destroy tumor cells; however, immunotherapies aim to selectively attack the tumor cells of each patient. In this comprehensive review, we describe recent advancements in the development of immunotherapies for melanoma, with a specific focus on the identification of neoantigens for the prediction of their elicited immune responses. This review is expected to provide important insights into the future of immunotherapy for melanoma.

  13. Experimental study on active specific immunotherapy modified with irradiation

    Imanaka, Kazufumi; Ogawa, Yasuhiro; Gose, Kyuhei; Imajo, Yoshinari; Kumura, Shuji

    1982-01-01

    We have already reported that the effectiveness of active specific immunotherapy using irradiated tumor cells and infiltrating mononuclear cells which were separated from the topical tumor tissue 7 days after irradiation of 2,000 rad in experimental study. The present study was designed to investigate the effect of non-specific immunopotentiator PS-K combined with active specific immunotherapy. Female C3H/He mice aged 12 weeks were inoculated 4 x 10 6 MM 46 tumor cells in the right hind paws and received local electron irradiation with the dose of 3,000 rad on the 5th day after irradiation. Active specific immunotherapy was performed on the 12th day, and daily dose of 200 mg/kg of PS-K was injected intraperitoneally from the 6th day to the 10th day. The inhibition of the tumor growth and the elongation of survival period were noted in the group which received active specific immunotherapy combined with non-specific immunopotentiator, PS-K compared with the active specific immunotherapy alone. (author)

  14. Selection of patients for sublingual versus subcutaneous immunotherapy.

    Larenas Linnemann, Désirée E S; Blaiss, Michael S

    2014-01-01

    Allergen immunotherapy is the sole treatment for IgE-mediated allergic diseases directed at the underlying mechanism. The two widely accepted administration routes are sublingual (SLIT) and subcutaneous (SCIT). We reviewed how patients should best be selected for immunotherapy and how the optimal administration route can be defined. Before deciding SCIT or SLIT, appropriate selection of patients for allergen immunotherapy (AIT) is mandatory. To be eligible for AIT, subjects must have a clear medical history of allergic disease, with exacerbation of symptoms on exposure to one or more allergens and a corresponding positive skin or in vitro test. Then the route of administration should be based on: published evidence of clinical and immunologic efficacy (which varies per allergic disease and per allergen); mono- or multi-allergen immunotherapy, for SLIT multi-allergen immunotherapy was not effective; safety: adverse events with SLIT are more frequent, but less severe; and, costs and patient preferences, closely related to adherence issues. All these are discussed in the article.

  15. Immune-Checkpoint Blockade and Active Immunotherapy for Glioma

    Ahn, Brian J. [Department of Immunology, University of Pittsburgh School of Medicine, Pittsburgh, PA 15213 (United States); Brain Tumor Program, University of Pittsburgh Cancer Institute, Pittsburgh, PA 15213 (United States); Pollack, Ian F. [Brain Tumor Program, University of Pittsburgh Cancer Institute, Pittsburgh, PA 15213 (United States); Department of Neurological Surgery, University of Pittsburgh School of Medicine, Pittsburgh, PA 15213 (United States); Okada, Hideho, E-mail: okadah@upmc.edu [Department of Immunology, University of Pittsburgh School of Medicine, Pittsburgh, PA 15213 (United States); Brain Tumor Program, University of Pittsburgh Cancer Institute, Pittsburgh, PA 15213 (United States); Department of Neurological Surgery, University of Pittsburgh School of Medicine, Pittsburgh, PA 15213 (United States); Department of Surgery, University of Pittsburgh School of Medicine, Pittsburgh, PA 15213 (United States)

    2013-11-01

    Cancer immunotherapy has made tremendous progress, including promising results in patients with malignant gliomas. Nonetheless, the immunological microenvironment of the brain and tumors arising therein is still believed to be suboptimal for sufficient antitumor immune responses for a variety of reasons, including the operation of “immune-checkpoint” mechanisms. While these mechanisms prevent autoimmunity in physiological conditions, malignant tumors, including brain tumors, actively employ these mechanisms to evade from immunological attacks. Development of agents designed to unblock these checkpoint steps is currently one of the most active areas of cancer research. In this review, we summarize recent progresses in the field of brain tumor immunology with particular foci in the area of immune-checkpoint mechanisms and development of active immunotherapy strategies. In the last decade, a number of specific monoclonal antibodies designed to block immune-checkpoint mechanisms have been developed and show efficacy in other cancers, such as melanoma. On the other hand, active immunotherapy approaches, such as vaccines, have shown encouraging outcomes. We believe that development of effective immunotherapy approaches should ultimately integrate those checkpoint-blockade agents to enhance the efficacy of therapeutic approaches. With these agents available, it is going to be quite an exciting time in the field. The eventual success of immunotherapies for brain tumors will be dependent upon not only an in-depth understanding of immunology behind the brain and brain tumors, but also collaboration and teamwork for the development of novel trials that address multiple layers of immunological challenges in gliomas.

  16. Immune-Checkpoint Blockade and Active Immunotherapy for Glioma

    Ahn, Brian J.; Pollack, Ian F.; Okada, Hideho

    2013-01-01

    Cancer immunotherapy has made tremendous progress, including promising results in patients with malignant gliomas. Nonetheless, the immunological microenvironment of the brain and tumors arising therein is still believed to be suboptimal for sufficient antitumor immune responses for a variety of reasons, including the operation of “immune-checkpoint” mechanisms. While these mechanisms prevent autoimmunity in physiological conditions, malignant tumors, including brain tumors, actively employ these mechanisms to evade from immunological attacks. Development of agents designed to unblock these checkpoint steps is currently one of the most active areas of cancer research. In this review, we summarize recent progresses in the field of brain tumor immunology with particular foci in the area of immune-checkpoint mechanisms and development of active immunotherapy strategies. In the last decade, a number of specific monoclonal antibodies designed to block immune-checkpoint mechanisms have been developed and show efficacy in other cancers, such as melanoma. On the other hand, active immunotherapy approaches, such as vaccines, have shown encouraging outcomes. We believe that development of effective immunotherapy approaches should ultimately integrate those checkpoint-blockade agents to enhance the efficacy of therapeutic approaches. With these agents available, it is going to be quite an exciting time in the field. The eventual success of immunotherapies for brain tumors will be dependent upon not only an in-depth understanding of immunology behind the brain and brain tumors, but also collaboration and teamwork for the development of novel trials that address multiple layers of immunological challenges in gliomas

  17. Changes in Peak Flow Value during Immunotherapy Administration

    Saporta, D.

    2012-01-01

    Nasal allergies are prevalent affecting a large percentage of the population. Not only the upper respiratory tract but the whole body is involved. Allergies produce morbidity (and even occasional mortality) as they can lead to asthma development, and increased number of accidents. Immunotherapy results can be evaluated by following symptom scores, medication use, and objective measurements. Using a Peak Flow Meter (Pf) to evaluate immunotherapy results, it became evident that patients with and without asthma exhibited an improvement in the Peak Flow (PF) value, suggesting that lower airway involvement in allergic patients could be more prevalent than assumed. A consecutive chart review was performed including patients of any age with nasal allergies (with or without asthma) treated with immunotherapy for at least 6 months that had at least 2 complete evaluations. When immunotherapy was successful, most patients exhibited an increase in the PF value regardless of asthma status. A very significant finding was that most allergy sufferers may have lower airway inflammation. The use of the PF value to assess immunotherapy results and the potential failure to diagnose asthma in allergy sufferers are discussed. A better diagnosis of lower airway inflammation could be substantial in the management of these patients pulmonary function

  18. TH-C-17A-11: Hyperthermia-Driven Immunotherapy Using Non-Invasive Radiowaves

    Serda, R; Savage, D; Corr, S; Curley, S [Baylor College of Medicine, Houston, TX (United States)

    2014-06-15

    Purpose: The sad truth is that cancer is blamed for the death of nearly one in four people in the US. Immunotherapy offers hope for stimulating cancer immunity leading to targeted killing of cancer cells and a preventative measure for cancer recurrence. Unfortunately, the clinical efficacy of immunotherapy has not yet been established, however novel approaches are being developed, including combining immunotherapy with traditional chemotherapy, radiotherapy or thermal therapy. Therapeutics such as radiofrequency (RF) ablation and select chemotherapeutics induce mild anticancer immune responses. This project seeks to enhance the immune responses stimulated by these agents by co-delivery of nanoparticle-based chemotherapeutics and immune modulators in the presence of RF induced hyperthermia. Methods: A 4T1 mouse model of breast cancer is used to test the ability of RF waves to enhance accumulation of nanoparticles in tumor tissue by increasing blood flow and extravation of nanoparticles from hyperpermeable vessels. Images of particle and cell trafficking in the tumor are captured using an integrated RF and confocal imaging system, and tumor growth is monitored by tumor bioluminescence and caliper measurements. Results: Here we demonstrate enhanced intratumoral blood flow induced by non-invasive RF waves and an increase in nanoparticle accumulation in the tumor. IL-12 is shown to have powerful anti-tumor effects leading to tumor regression and the release of Th1-biased cytokines. Doxorubicin nanoparticles combined with adjuvant nanoparticles exhibited superior antitumor effects to single agent therapy. Conclusion: RF therapy combined with nanotherapeutics is a promising approach to enhance the delivery of therapeutics to the tumor and to stimulate a tumor microenvironment that supports the development of cancer-specific immune responses. This research was supported by the National Institute of Health grant numbers U54 CA143837 and U54 CA151668, and the Kanzius

  19. TH-C-17A-11: Hyperthermia-Driven Immunotherapy Using Non-Invasive Radiowaves

    Serda, R; Savage, D; Corr, S; Curley, S

    2014-01-01

    Purpose: The sad truth is that cancer is blamed for the death of nearly one in four people in the US. Immunotherapy offers hope for stimulating cancer immunity leading to targeted killing of cancer cells and a preventative measure for cancer recurrence. Unfortunately, the clinical efficacy of immunotherapy has not yet been established, however novel approaches are being developed, including combining immunotherapy with traditional chemotherapy, radiotherapy or thermal therapy. Therapeutics such as radiofrequency (RF) ablation and select chemotherapeutics induce mild anticancer immune responses. This project seeks to enhance the immune responses stimulated by these agents by co-delivery of nanoparticle-based chemotherapeutics and immune modulators in the presence of RF induced hyperthermia. Methods: A 4T1 mouse model of breast cancer is used to test the ability of RF waves to enhance accumulation of nanoparticles in tumor tissue by increasing blood flow and extravation of nanoparticles from hyperpermeable vessels. Images of particle and cell trafficking in the tumor are captured using an integrated RF and confocal imaging system, and tumor growth is monitored by tumor bioluminescence and caliper measurements. Results: Here we demonstrate enhanced intratumoral blood flow induced by non-invasive RF waves and an increase in nanoparticle accumulation in the tumor. IL-12 is shown to have powerful anti-tumor effects leading to tumor regression and the release of Th1-biased cytokines. Doxorubicin nanoparticles combined with adjuvant nanoparticles exhibited superior antitumor effects to single agent therapy. Conclusion: RF therapy combined with nanotherapeutics is a promising approach to enhance the delivery of therapeutics to the tumor and to stimulate a tumor microenvironment that supports the development of cancer-specific immune responses. This research was supported by the National Institute of Health grant numbers U54 CA143837 and U54 CA151668, and the Kanzius

  20. More Haste, Less Speed: Could Public-Private Partnerships Advance Cellular Immunotherapies?

    Bubela, Tania; Bonter, Katherine; Lachance, Silvy; Delisle, Jean-Sébastien; Gold, E Richard

    2017-01-01

    Cellular immunotherapies promise to transform cancer care. However, they must overcome serious challenges, including: (1) the need to identify and characterize novel cancer antigens to expand the range of therapeutic targets; (2) the need to develop strategies to minimize serious adverse events, such as cytokine release syndrome and treatment-related toxicities; and (3) the need to develop efficient production/manufacturing processes to reduce costs. Here, we discuss whether these challenges might better be addressed through forms of public-private research collaborations, including public-private partnerships (PPPs), or whether these challenges are best addressed by way of standard market transactions. We reviewed 14 public-private relationships and 25 underlying agreements for the clinical development of cancer cellular immunotherapies in the US. Most were based on bilateral research agreements and pure market transactions in the form of service contracts and technology licenses, which is representative of the commercialization focus of the field. We make the strategic case that multiparty PPPs may better advance cancer antigen discovery and characterization and improved cell processing/manufacturing and related activities. In the rush toward the competitive end of the translational continuum for cancer cellular immunotherapy and the attendant focus on commercialization, many gaps have appeared in our understanding of cellular biology, immunology, and bioengineering. We conclude that the model of bilateral agreements between leading research institutions and the private sector may be inadequate to efficiently harness the interdisciplinary skills and knowledge of the public and private sectors to bring these promising therapies to the clinic for the benefit of cancer patients.

  1. Development of a hypoallergenic recombinant parvalbumin for first-in-man subcutaneous immunotherapy of fish allergy.

    Zuidmeer-Jongejan, Laurian; Huber, Hans; Swoboda, Ines; Rigby, Neil; Versteeg, Serge A; Jensen, Bettina M; Quaak, Suzanne; Akkerdaas, Jaap H; Blom, Lars; Asturias, Juan; Bindslev-Jensen, Carsten; Bernardi, Maria L; Clausen, Michael; Ferrara, Rosa; Hauer, Martina; Heyse, Jet; Kopp, Stephan; Kowalski, Marek L; Lewandowska-Polak, Anna; Linhart, Birgit; Maderegger, Bernhard; Maillere, Bernard; Mari, Adriano; Martinez, Alberto; Mills, E N Clare; Neubauer, Angela; Nicoletti, Claudio; Papadopoulos, Nikolaos G; Portoles, Antonio; Ranta-Panula, Ville; Santos-Magadan, Sara; Schnoor, Heidi J; Sigurdardottir, Sigurveig T; Stahl-Skov, Per; Stavroulakis, George; Stegfellner, Georg; Vázquez-Cortés, Sonia; Witten, Marianne; Stolz, Frank; Poulsen, Lars K; Fernandez-Rivas, Montserrat; Valenta, Rudolf; van Ree, Ronald

    2015-01-01

    The FAST (food allergy-specific immunotherapy) project aims at developing safe and effective subcutaneous immunotherapy for fish allergy, using recombinant hypoallergenic carp parvalbumin, Cyp c 1. Preclinical characterization and good manufacturing practice (GMP) production of mutant Cyp (mCyp) c 1. Escherichia coli-produced mCyp c 1 was purified using standard chromatographic techniques. Physicochemical properties were investigated by gel electrophoresis, size exclusion chromatography, circular dichroism spectroscopy, reverse-phase high-performance liquid chromatography and mass spectrometry. Allergenicity was assessed by ImmunoCAP inhibition and basophil histamine release assay, immunogenicity by immunization of laboratory animals and stimulation of patients' peripheral blood mononuclear cells (PBMCs). Reference molecules were purified wild-type Cyp c 1 (natural and/or recombinant). GMP-compliant alum-adsorbed mCyp c 1 was tested for acute toxicity in mice and rabbits and for repeated-dose toxicity in mice. Accelerated and real-time protocols were used to evaluate stability of mCyp c 1 as drug substance and drug product. Purified mCyp c 1 behaves as a folded and stable molecule. Using sera of 26 double-blind placebo-controlled food-challenge-proven fish-allergic patients, reduction in allergenic activity ranged from 10- to 5,000-fold (1,000-fold on average), but with retained immunogenicity (immunization in mice/rabbits) and potency to stimulate human PBMCs. Toxicity studies revealed no toxic effects and real-time stability studies on the Al(OH)3-adsorbed drug product demonstrated at least 20 months of stability. The GMP drug product developed for treatment of fish allergy has the characteristics targeted for in FAST: i.e. hypoallergenicity with retained immunogenicity. These results have warranted first-in-man immunotherapy studies to evaluate the safety of this innovative vaccine. © 2015 S. Karger AG, Basel.

  2. The evidence for biologic immunotherapy in Sarcoidosis: A systematic review

    Pooja Shah

    2017-09-01

    Full Text Available Background Sarcoidosis is a chronic inflammatory disease with a myriad of clinical manifestations. Treatment involves immunosuppression with corticosteroids or steroid-sparing agents. A proportion of patients does not respond to or are intolerant to therapy. Targeted immunotherapy with biologic agents has emerged as a novel approach with plausible mechanistic reasons to warrant study. Aims The aim of this review was to evaluate the evidence for the efficacy of biological therapy in sarcoidosis. Methods We conducted a systematic literature review and meta-analysis of all published randomised-controlled trials (RCT evaluating biological therapy in sarcoidosis, using MEDLINE and Embase databases, through to September 2017. The search terms included sarcoidosis, infliximab, adalimumab, etanercept, golimumab, certolizumab, rituximab, abatacept, tocilizumab, anakinra, ustekinumab, secukinumab. Only articles reporting RCTs were selected. Improvements in respiratory disease were assessed by changes in forced vital capacity (FVC by weighted mean difference (WMD. There were insufficient data on outcome measures in other organ systems to comparatively assess efficacy. Results The search identified 2,324 studies of which only 5 provided relevant and original data. This comprised a total of 364 patients, evaluating pulmonary, cutaneous and ocular sarcoidosis. One study in pulmonary disease and one study in cutaneous disease demonstrated improvements in the primary outcome. In pulmonary disease, meta-analysis of the treatment effect of anti-TNF therapy versus placebo on FVC revealed a WMD of 1.69 per cent (95 per cent confidence interval, 1.44–1.94. Conclusion There are insufficient data to suggest the long-term efficacy of anti-TNFα inhibitors in the treatment of sarcoidosis. This may be due to heterogeneity, small sample sizes and the lack of consistent reporting of outcome measures.

  3. Immunotherapy Plus Cryotherapy: Potential Augmented Abscopal Effect for Advanced Cancers

    Joe Abdo

    2018-03-01

    Full Text Available Since the 1920s the gold standard for treating cancer has been surgery, which is typically preceded or followed with chemotherapy and/or radiation, a process that perhaps contributes to the destruction of a patient’s immune defense system. Cryosurgery ablation of a solid tumor is mechanistically similar to a vaccination where hundreds of unique antigens from a heterogeneous population of tumor cells derived from the invading cancer are released. However, releasing tumor-derived self-antigens into circulation may not be sufficient enough to overcome the checkpoint escape mechanisms some cancers have evolved to avoid immune responses. The potentiated immune response caused by blocking tumor checkpoints designed to prevent programmed cell death may be the optimal treatment method for the immune system to recognize these new circulating cryoablated self-antigens. Preclinical and clinical evidence exists for the complementary roles for Cytotoxic T-lymphocyte-associated protein (CTLA-4 and PD-1 antagonists in regulating adaptive immunity, demonstrating that combination immunotherapy followed by cryosurgery provides a more targeted immune response to distant lesions, a phenomenon known as the abscopal effect. We propose that when the host’s immune system has been “primed” with combined anti-CTLA-4 and anti-PD-1 adjuvants prior to cryosurgery, the preserved cryoablated tumor antigens will be presented and processed by the host’s immune system resulting in a robust cytotoxic CD8+ T-cell response. Based on recent investigations and well-described biochemical mechanisms presented herein, a polyvalent autoinoculation of many tumor-specific antigens, derived from a heterogeneous population of tumor cancer cells, would present to an unhindered yet pre-sensitized immune system yielding a superior advantage in locating, recognizing, and destroying tumor cells throughout the body.

  4. The research status of immune checkpoint blockade by anti-CTLA4 and anti-PD1/PD-l1 antibodies in tumor immunotherapy in China

    Zhao, Xiaoqin; He, Liangmei; Mao, Kaiyun; Chen, Daming; Jiang, Hongbo; Liu, Zhiping

    2018-01-01

    Abstract Purpose: Using bibliometrics, we analyzed the research status of immune checkpoint blockade (ICB, a popular tumor immunotherapy method represented by antibodies targeted CTLA-4 and PD-1/PD-L1) in tumor immunotherapy in China during the past 2 decades. Methods: Articles in Science Citation Index Expanded (SCI-EXPANDED), patents in Thomson Innovation, and drugs in Cortellis Competitive Intelligence in the field of ICB for tumor immunotherapy from 1996 to 2015 were the subjects of bibliometric analysis. Using database-attached software and Excel, quantitative analyses were performed including examination of the number of documents, citation frequency, h-index, key projects, quantity of publications, public patents, and status of new drug research. Results: The number of publications from 1996 to 2015 in the field of ICB for tumor immunotherapy that came out of China was 380, which was 14.3% of the total publications worldwide and was second only to that of the USA. In the past decade, China has rapidly increased the number of publications and patents in this field. However, indicators of publication influence, such as citation frequency and h-index, were far behind other advanced countries. In addition, the total number of patents in China was much lower than that of the USA. China has introduced 5 drugs for ICB that are being developed for the healthcare market. Conclusion: Tumor immunotherapy research such as ICB in China has developed rapidly with increasing influence in the last 2 decades. However, there is still a relatively large gap compared with the USA. It is expected that China will have greater influence on tumor immunotherapy research in the near future. PMID:29642147

  5. Requirement for Innate Immunity and CD90+ NK1.1− Lymphocytes to Treat Established Melanoma with Chemo-Immunotherapy

    Moskalenko, Marina; Pan, Michael; Fu, Yichun; de Moll, Ellen H.; Hashimoto, Daigo; Mortha, Arthur; Leboeuf, Marylene; Jayaraman, Padmini; Bernardo, Sebastian; Sikora, Andrew G.; Wolchok, Jedd; Bhardwaj, Nina; Merad, Miriam; Saenger, Yvonne

    2015-01-01

    We sought to define cellular immune mechanisms of synergy between tumor-antigen–targeted monoclonal antibodies and chemotherapy. Established B16 melanoma in mice was treated with cytotoxic doses of cyclophosphamide in combination with an antibody targeting tyrosinase-related protein 1 (αTRP1), a native melanoma differentiation antigen. We find that Fcγ receptors are required for efficacy, showing that antitumor activity of combination therapy is immune mediated. Rag1−/− mice deficient in adaptive immunity are able to clear tumors, and thus innate immunity is sufficient for efficacy. Furthermore, previously treated wild-type mice are not significantly protected against tumor reinduction, as compared with mice inoculated with irradiated B16 alone, consistent with a primarily innate immune mechanism of action of chemo-immunotherapy. In contrast, mice deficient in both classical natural killer (NK) lymphocytes and nonclassical innate lymphocytes (ILC) due to deletion of the IL2 receptor common gamma chain IL2γc−/−) are refractory to chemo-immunotherapy. Classical NK lymphocytes are not critical for treatment, as depletion of NK1.1+ cells does not impair antitumor effect. Depletion of CD90+NK1.1− lymphocytes, however, both diminishes therapeutic benefit and decreases accumulation of macrophages within the tumor. Tumor clearance during combination chemo-immunotherapy with monoclonal antibodies against native antigen is mediated by the innate immune system. We highlight a novel potential role for CD90+NK1.1− ILCs in chemo-immunotherapy. PMID:25600438

  6. Spatially selective depleting tumor-associated negative regulatory T-(Treg) cells with near infrared photoimmunotherapy (NIR-PIT): A new cancer immunotherapy (Conference Presentation)

    Kobayashi, Hisataka

    2017-02-01

    Near infrared photoimmunotherapy (NIR-PIT) is a new type of molecularly-targeted photo-therapy based on conjugating a near infrared silica-phthalocyanine dye, IR700, to a monoclonal antibody (MAb) targeting target-specific cell-surface molecules. When exposed to NIR light, the conjugate rapidly induces a highly-selective cell death only in receptor-positive, MAb-IR700-bound cells. Current immunotherapies for cancer seek to modulate the balance among different immune cell populations, thereby promoting anti-tumor immune responses. However, because these are systemic therapies, they often cause treatment-limiting autoimmune adverse effects. It would be ideal to manipulate the balance between suppressor and effector cells within the tumor without disturbing homeostasis elsewhere in the body. CD4+CD25+Foxp3+ regulatory T cells (Tregs) are well-known immune-suppressor cells that play a key role in tumor immuno-evasion and have been the target of systemic immunotherapies. We used CD25-targeted NIR-PIT to selectively deplete Tregs, thus activating CD8+ T and NK cells and restoring local anti-tumor immunity. This not only resulted in regression of the treated tumor but also induced responses in separate untreated tumors of the same cell-line derivation. We conclude that CD25-targeted NIR-PIT causes spatially selective depletion of Tregs, thereby providing an alternative approach to cancer immunotherapy that can treat not only local tumors but also distant metastatic tumors.

  7. MRl of prostate cancer antigen expression for diagnosis and immunotherapy.

    Jing Ren

    Full Text Available BACKGROUND: Tumor antigen (TA-targeted monoclonal antibody (mAb immunotherapy can be effective for the treatment of a broad range of cancer etiologies; however, these approaches have demonstrated variable clinical efficacy for the treatment of patients with prostate cancer (PCa. An obstacle currently impeding translational progress has been the inability to quantify the mAb dose that reaches the tumor site and binds to the targeted TAs. The coupling of mAb to nanoparticle-based magnetic resonance imaging (MRI probes should permit in vivo measurement of patient-specific biodistributions; these measurements could facilitate future development of novel dosimetry paradigms wherein mAb dose is titrated to optimize outcomes for individual patients. METHODS: The prostate stem cell antigen (PSCA is broadly expressed on the surface of prostate cancer (PCa cells. Anti-human PSCA monoclonal antibodies (mAb 7F5 were bound to Au/Fe(3O(4 (GoldMag nanoparticles (mAb 7F5@GoldMag to serve as PSCA-specific theragnostic MRI probe permitting visualization of mAb biodistribution in vivo. First, the antibody immobilization efficiency of the GoldMag particles and the efficacy for PSCA-specific binding was assessed. Next, PC-3 (prostate cancer with PSCA over-expression and SMMC-7721 (hepatoma cells without PSCA expression tumor-bearing mice were injected with mAb 7F5@GoldMag for MRI. MRI probe biodistributions were assessed at increasing time intervals post-infusion; therapy response was evaluated with serial tumor volume measurements. RESULTS: Targeted binding of the mAb 7F5@GoldMag probes to PC-3 cells was verified using optical images and MRI; selective binding was not observed for SMMC-7721 tumors. The immunotherapeutic efficacy of the mAb 7F5@GoldMag in PC-3 tumor-bearing mice was verified with significant inhibition of tumor growth compared to untreated control animals. CONCLUSION: Our promising results suggest the feasibility of using mAb 7F5@GoldMag probes as a

  8. Immunotherapy for Urothelial Carcinoma: Current Status and Perspectives

    Kitamura, Hiroshi, E-mail: hkitamu@sapmed.ac.jp; Tsukamoto, Taiji [Department of Urology, Sapporo Medical University School of Medicine, South 1 West 16, Chuo-ku, Sapporo 060-8543 (Japan)

    2011-07-29

    Intravesical instillation of bacillus Calmette Guérin (BCG) for the treatment of urothelial carcinoma (UC) of the bladder is based on the BCG-induced immune response, which eradicates and prevents bladder cancer. The results of recent studies have suggested that not only major histocompatibility complex (MHC)-nonrestricted immune cells such as natural killer cells, macrophages, neutrophils, etc., but also MHC-restricted CD8{sup +} T cells play an important role and are one of the main effectors in this therapy. Better understanding of the mechanism of BCG immunotherapy supports the idea that active immunotherapy through its augmented T cell response can have great potential for the treatment of advanced UC. In this review, progress in immunotherapy for UC is discussed based on data from basic, translational and clinical studies. We also review the escape mechanism of cancer cells from the immune system, and down-regulation of MHC class I molecules.

  9. Cellular immunotherapy of cancer: an overview and future directions.

    Tao, Ziqi; Li, Shuang; Ichim, Thomas E; Yang, Junbao; Riordan, Neil; Yenugonda, Venkata; Babic, Ivan; Kesari, Santosh

    2017-06-01

    The clinical success of checkpoint inhibitors has led to a renaissance of interest in cancer immunotherapies. In particular, the possibility of ex vivo expanding autologous lymphocytes that specifically recognize tumor cells has attracted much research and clinical trial interest. In this review, we discuss the historical background of tumor immunotherapy using cell-based approaches, and provide some rationale for overcoming current barriers to success of autologous immunotherapy. An overview of adoptive transfer of lymphocytes, tumor infiltrating lymphocytes and dendritic cell therapies is provided. We conclude with discussing the possibility of gene-manipulating immune cells in order to augment therapeutic activity, including silencing of the immune-suppressive zinc finger orphan nuclear receptor, NR2F6, as an attractive means of overcoming tumor-associated immune suppression.

  10. Sublingual immunotherapy for allergic rhinitis: where are we now?

    Incorvaia, Cristoforo; Mauro, Marina; Ridolo, Erminia

    2015-01-01

    Sublingual immunotherapy (SLIT) was introduced in the 1980s as a safer option to subcutaneous immunotherapy and in the latest decade achieved significant advances. Its efficacy in allergic rhinitis is supported by a number of meta-analyses. The development of SLIT preparations in tablets to fulfill the requirements of regulatory agencies for quality of allergen extracts made available optimal products for grass-pollen-induced allergic rhinitis. Preparations of other allergens based on the same production methods are currently in progress. A notable outcome of SLIT, that is shared with subcutaneous immunotherapy, is the evident cost-effectiveness, showing significant cost savings as early as 3 months from starting the treatment, that become as high as 80% compared with drug treatment in the ensuing years.

  11. Immunotherapy for Urothelial Carcinoma: Current Status and Perspectives

    Kitamura, Hiroshi; Tsukamoto, Taiji

    2011-01-01

    Intravesical instillation of bacillus Calmette Guérin (BCG) for the treatment of urothelial carcinoma (UC) of the bladder is based on the BCG-induced immune response, which eradicates and prevents bladder cancer. The results of recent studies have suggested that not only major histocompatibility complex (MHC)-nonrestricted immune cells such as natural killer cells, macrophages, neutrophils, etc., but also MHC-restricted CD8 + T cells play an important role and are one of the main effectors in this therapy. Better understanding of the mechanism of BCG immunotherapy supports the idea that active immunotherapy through its augmented T cell response can have great potential for the treatment of advanced UC. In this review, progress in immunotherapy for UC is discussed based on data from basic, translational and clinical studies. We also review the escape mechanism of cancer cells from the immune system, and down-regulation of MHC class I molecules

  12. Oral immunotherapy for food allergy: mechanisms and role in management.

    Nowak-Węgrzyn, A; Albin, S

    2015-02-01

    With the emergence of food allergy as an important public health problem, it has become clear that there is an unmet need in regard to treatment. In particular, IgE-mediated food allergy that is associated with risk of fatal anaphylaxis has been the subject of multiple studies in the past decade. The growing body of evidence derived from multiple centres and various study designs indicates that for IgE-mediated food allergy, immunomodulation through food immunotherapy is possible; however, the extent of protection afforded by such treatment is highly variable. At this time, the capacity for food immunotherapy to restore permanent tolerance to food has not been demonstrated conclusively. This review will discuss these topics as they apply to the most important studies of food oral immunotherapy. © 2014 John Wiley & Sons Ltd.

  13. Immunotherapy with rituximab in follicular lymphomas.

    Saguna, Carmen; Mut, Ileana Delia; Lupu, Anca Roxana; Tevet, Mihaela; Bumbea, Horia; Dragan, Cornel

    2011-04-01

    Non-Hodgkin Lymphomas (NHL) represent a recent and fascinating domain of hemato-oncology, in which remarkable progress has been made. The conventional treatments of indolent lymphomas do not extend the survival rate, nor do they cure. Recent directions are centered on using several new drugs that are capable of overcoming the mechanisms that are resistant to recovery. The initiation of immunotherapy (Rituximab in 1997) seems to have changed the natural evolution of follicular lymphomas (FL). It is possible that resistance to healing in follicular lymphomas may be neutralized with Rituximab by suppressing STAT-1 positive macrophages that are present in the cellular microenvironment.Thereinafter, the re-evaluation of recent models of prognostic and therapeutic paradigmas that were used in FL became compulsory.The purpose of the paper is to compare the evolution of patients with follicular lymphoma and the period of response, according to the treatments. The study group consisted of the 71 patients diagnosed with follicular lymphoma, out of a total of 767 malignant lymphatic proliferations with B cells, for a period of 7 years (2002-2008), at the Hematology Department, Hospital Coltea, Bucharest and Hematology Department, Universitary Hospital, BucharestResults and conclusions: Combining chemotherapy with Rituximab had better results compared to the same chemotherapy, administered alone, both in induction and in case of relapse. The overall response rate in our study group was 74.7%, out of which 42.3% complete remissions. The overall response rate was 84.61% in the Rituximab group, compared to 68.88% in patients without Rituximab.

  14. T Cell-Tumor Interaction Directs the Development of Immunotherapies in Head and Neck Cancer

    A. E. Albers

    2010-01-01

    Full Text Available The competent immune system controls disease effectively due to induction, function, and regulation of effector lymphocytes. Immunosurveillance is exerted mostly by cytotoxic T-lymphocytes (CTLs while specific immune suppression is associated with tumor malignancy and progression. In squamous cell carcinoma of the head and neck, the presence, activity, but also suppression of tumor-specific CTL have been demonstrated. Functional CTL may exert a selection pressure on the tumor cells that consecutively escape by a combination of molecular and cellular evasion mechanisms. Certain of these mechanisms target antitumor effector cells directly or indirectly by affecting cells that regulate CTL function. This results in the dysfunction or apoptosis of lymphocytes and dysregulated lymphocyte homeostasis. Another important tumor-escape mechanism is to avoid recognition by dysregulation of antigen processing and presentation. Thus, both induction of functional CTL and susceptibility of the tumor and its microenvironment to become T cell targets should be considered in CTL-based immunotherapy.

  15. Applying Precision Medicine and Immunotherapy Advances from Oncology to Host-Directed Therapies for Infectious Diseases.

    Mahon, Robert N; Hafner, Richard

    2017-01-01

    To meet the challenges of increasing antimicrobial resistance, the infectious disease community needs innovative therapeutics. Precision medicine and immunotherapies are transforming cancer therapeutics by targeting the regulatory signaling pathways that are involved not only in malignancies but also in the metabolic and immunologic function of the tumor microenvironment. Infectious diseases target many of the same regulatory pathways as they modulate host metabolic functions for their own nutritional requirements and to impede host immunity. These similarities and the advances made in precision medicine and immuno-oncology that are relevant for the current development of host-directed therapies (HDTs) to treat infectious diseases are discussed. To harness this potential, improvements in drug screening methods and development of assays that utilize the research tools including high throughput multiplexes already developed by oncology are essential. A multidisciplinary approach that brings together immunologists, infectious disease specialists, and oncologists will be necessary to fully develop the potential of HDTs.

  16. RECENT ADVANCES IN STRATEGIES FOR IMMUNOTHERAPY OF HUMAN PAPILLOMAVIRUS-INDUCED LESIONS

    Kanodia, Shreya; Da Silva, Diane M.; Kast, W. Martin

    2016-01-01

    Human papillomavirus (HPV)-induced lesions are distinct in that they have targetable foreign antigens, the expression of which is necessary to maintain the cancerous phenotype. Hence, they pose as a very attractive target for “proof of concept” studies in the development of therapeutic vaccines. This review will focus on the most recent clinical trials for the immunotherapy of mucosal and cutaneous HPV-induced lesions as well as emerging therapeutic strategies that have been tested in pre-clinical models for HPV-induced lesions. Progress in peptide-based vaccines, DNA-based vaccines, viral/bacterial vector-based vaccines, immune response modifiers, photodynamic therapy and T cell receptor based therapy for HPV will be discussed. PMID:17973257

  17. Allergen-specific immunotherapy and risk of autoimmune disease

    Linneberg, Allan; Madsen, Flemming; Skaaby, Tea

    2012-01-01

    After 100 years of experience with allergen-specific immunotherapy (SIT), an issue that is still unresolved is whether SIT can act as a trigger of, or as a risk factor for, autoimmune disease. We searched the literature for evidence on this topic.......After 100 years of experience with allergen-specific immunotherapy (SIT), an issue that is still unresolved is whether SIT can act as a trigger of, or as a risk factor for, autoimmune disease. We searched the literature for evidence on this topic....

  18. Allergen immunotherapy for the prevention of allergic disease

    Dhami, Sangeeta; Nurmatov, Ulugbek; Halken, Susanne

    2016-01-01

    BACKGROUND: The European Academy of Allergy and Clinical Immunology (EAACI) is in the process of developing the EAACI Guidelines for Allergen Immunotherapy (AIT) for the Prevention of Allergic Disease. We seek to critically assess the effectiveness, cost-effectiveness and safety of AIT in the pre......BACKGROUND: The European Academy of Allergy and Clinical Immunology (EAACI) is in the process of developing the EAACI Guidelines for Allergen Immunotherapy (AIT) for the Prevention of Allergic Disease. We seek to critically assess the effectiveness, cost-effectiveness and safety of AIT...

  19. Reconceptualizing cancer immunotherapy based on plant production systems

    Hefferon, Kathleen

    2017-01-01

    Plants can be used as inexpensive and facile production platforms for vaccines and other biopharmaceuticals. More recently, plant-based biologics have expanded to include cancer immunotherapy agents. The following review describes the current state of the art for plant-derived strategies to prevent or reduce cancers. The review discusses avenues taken to prevent infection by oncogenic viruses, solid tumors and lymphomas. Strategies including cancer vaccines, monoclonal antibodies and virus nanoparticles are described, and examples are provided. The review ends with a discussion of the implications of plant-based cancer immunotherapy for developing countries. PMID:28884013

  20. Immunotherapies: Exploiting the Immune System for Cancer Treatment

    Jeffrey Koury

    2018-01-01

    Full Text Available Cancer is a condition that has plagued humanity for thousands of years, with the first depictions dating back to ancient Egyptian times. However, not until recent decades have biological therapeutics been developed and refined enough to safely and effectively combat cancer. Three unique immunotherapies have gained traction in recent decades: adoptive T cell transfer, checkpoint inhibitors, and bivalent antibodies. Each has led to clinically approved therapies, as well as to therapies in preclinical and ongoing clinical trials. In this review, we outline the method by which these 3 immunotherapies function as well as any major immunotherapeutic drugs developed for treating a variety of cancers.

  1. Porous silicon advances in drug delivery and immunotherapy.

    Savage, David J; Liu, Xuewu; Curley, Steven A; Ferrari, Mauro; Serda, Rita E

    2013-10-01

    Biomedical applications of porous silicon include drug delivery, imaging, diagnostics and immunotherapy. This review summarizes new silicon particle fabrication techniques, dynamics of cellular transport, advances in the multistage vector approach to drug delivery, and the use of porous silicon as immune adjuvants. Recent findings support superior therapeutic efficacy of the multistage vector approach over single particle drug delivery systems in mouse models of ovarian and breast cancer. With respect to vaccine development, multivalent presentation of pathogen-associated molecular patterns on the particle surface creates powerful platforms for immunotherapy, with the porous matrix able to carry both antigens and immune modulators. Copyright © 2013 Elsevier Ltd. All rights reserved.

  2. Structure and Cancer Immunotherapy of the B7 Family Member B7x

    Jeon, Hyungjun; Vigdorovich, Vladimir; Garrett-Thomson, Sarah C.; Janakiram, Murali; Ramagopal, Udupi A.; Abadi, Yael M.; Lee, Jun Sik; Scandiuzzi, Lisa; Ohaegbulam, Kim C; Chinai, Jordan M; Zhao, Ruihua; Yao, Yu; Mao, Ying; Sparano, Joseph A.; Almo, Steven C.; Zang, Xingxing

    2014-01-01

    SUMMARY B7x (B7-H4 or B7S1) is a member of the B7 family that can inhibit T cell function. B7x protein is absent in most normal human tissues and immune cells, but is overexpressed in human cancers and often correlates with negative clinical outcome. The expression pattern and function of B7x suggest that it may be a potent immunosuppressive pathway in human cancers. Here we determined the crystal structure of human B7x IgV domain at 1.59Å resolution and mapped the epitopes recognized by monoclonal antibodies. We developed a new in vivo system to screen therapeutic monoclonal antibodies against B7x, and found that the clone 1H3 significantly inhibited growth of B7x-expressing tumor in vivo via multiple mechanisms. Furthermore, the surviving mice given 1H3 treatment were resistant to tumor re-challenge. Our data suggest that targeting B7x on tumors is a promising cancer immunotherapy and humanized 1H3 may be efficacious for immunotherapy of human cancers. PMID:25437562

  3. Structure and Cancer Immunotherapy of the B7 Family Member B7x

    Hyungjun Jeon

    2014-11-01

    Full Text Available B7x (B7-H4 or B7S1 is a member of the B7 family that can inhibit T cell function. B7x protein is absent in most normal human tissues and immune cells, but it is overexpressed in human cancers and often correlates with negative clinical outcome. The expression pattern and function of B7x suggest that it may be a potent immunosuppressive pathway in human cancers. Here, we determined the crystal structure of the human B7x immunoglobulin variable (IgV domain at 1.59 Å resolution and mapped the epitopes recognized by monoclonal antibodies. We developed an in vivo system to screen therapeutic monoclonal antibodies against B7x and found that the clone 1H3 significantly inhibited growth of B7x-expressing tumors in vivo via multiple mechanisms. Furthermore, the surviving mice given 1H3 treatment were resistant to tumor rechallenge. Our data suggest that targeting B7x on tumors is a promising cancer immunotherapy and humanized 1H3 may be efficacious for immunotherapy of human cancers.

  4. FAST: towards safe and effective subcutaneous immunotherapy of persistent life-threatening food allergies

    Zuidmeer-Jongejan Laurian

    2012-03-01

    Full Text Available Abstract The FAST project (Food Allergy Specific Immunotherapy aims at the development of safe and effective treatment of food allergies, targeting prevalent, persistent and severe allergy to fish and peach. Classical allergen-specific immunotherapy (SIT, using subcutaneous injections with aqueous food extracts may be effective but has proven to be accompanied by too many anaphylactic side-effects. FAST aims to develop a safe alternative by replacing food extracts with hypoallergenic recombinant major allergens as the active ingredients of SIT. Both severe fish and peach allergy are caused by a single major allergen, parvalbumin (Cyp c 1 and lipid transfer protein (Pru p 3, respectively. Two approaches are being evaluated for achieving hypoallergenicity, i.e. site-directed mutagenesis and chemical modification. The most promising hypoallergens will be produced under GMP conditions. After pre-clinical testing (toxicology testing and efficacy in mouse models, SCIT with alum-absorbed hypoallergens will be evaluated in phase I/IIa and IIb randomized double-blind placebo-controlled (DBPC clinical trials, with the DBPC food challenge as primary read-out. To understand the underlying immune mechanisms in depth serological and cellular immune analyses will be performed, allowing identification of novel biomarkers for monitoring treatment efficacy. FAST aims at improving the quality of life of food allergic patients by providing a safe and effective treatment that will significantly lower their threshold for fish or peach intake, thereby decreasing their anxiety and dependence on rescue medication.

  5. FAST: towards safe and effective subcutaneous immunotherapy of persistent life-threatening food allergies

    2012-01-01

    The FAST project (Food Allergy Specific Immunotherapy) aims at the development of safe and effective treatment of food allergies, targeting prevalent, persistent and severe allergy to fish and peach. Classical allergen-specific immunotherapy (SIT), using subcutaneous injections with aqueous food extracts may be effective but has proven to be accompanied by too many anaphylactic side-effects. FAST aims to develop a safe alternative by replacing food extracts with hypoallergenic recombinant major allergens as the active ingredients of SIT. Both severe fish and peach allergy are caused by a single major allergen, parvalbumin (Cyp c 1) and lipid transfer protein (Pru p 3), respectively. Two approaches are being evaluated for achieving hypoallergenicity, i.e. site-directed mutagenesis and chemical modification. The most promising hypoallergens will be produced under GMP conditions. After pre-clinical testing (toxicology testing and efficacy in mouse models), SCIT with alum-absorbed hypoallergens will be evaluated in phase I/IIa and IIb randomized double-blind placebo-controlled (DBPC) clinical trials, with the DBPC food challenge as primary read-out. To understand the underlying immune mechanisms in depth serological and cellular immune analyses will be performed, allowing identification of novel biomarkers for monitoring treatment efficacy. FAST aims at improving the quality of life of food allergic patients by providing a safe and effective treatment that will significantly lower their threshold for fish or peach intake, thereby decreasing their anxiety and dependence on rescue medication. PMID:22409908

  6. NK cell-based cancer immunotherapy: from basic biology to clinical application.

    Li, Yang; Yin, Jie; Li, Ting; Huang, Shan; Yan, Han; Leavenworth, JianMei; Wang, Xi

    2015-12-01

    Natural killer (NK) cells, which recognize and kill target cells independent of antigen specificity and major histocompatibility complex (MHC) matching, play pivotal roles in immune defence against tumors. However, tumor cells often acquire the ability to escape NK cell-mediated immune surveillance. Thus, understanding mechanisms underlying regulation of NK cell phenotype and function within the tumor environment is instrumental for designing new approaches to improve the current cell-based immunotherapy. In this review, we elaborate the main biological features and molecular mechanisms of NK cells that pertain to regulation of NK cell-mediated anti-tumor activity. We further overview current clinical approaches regarding NK cell-based cancer therapy, including cytokine infusion, adoptive transfer of autologous or allogeneic NK cells, applications of chimeric antigen receptor (CAR)-expressing NK cells and adoptive transfer of memory-like NK cells. With these promising clinical outcomes and fuller understanding the basic questions raised in this review, we foresee that NK cell-based approaches may hold great potential for future cancer immunotherapy.

  7. Potential use of [gammadelta] T cell-based vaccines in cancer immunotherapy

    Mohd Wajid A. Khan

    2014-10-01

    Full Text Available Immunotherapy is a fast advancing methodology involving one of two approaches: 1 compounds targeting immune checkpoints, and 2 cellular immunomodulators. The latter approach is still largely experimental and features in vitro generated, live immune effector cells or antigen-presenting cells (APC. [gammadelta] T cells are known for their efficient in vitro tumor killing activities. Consequently, many laboratories worldwide are currently testing the tumor killing function of [gammadelta] T cells in clinical trials. Reported benefits are modest; however, these studies have demonstrated that large [gammadelta] T cell infusions were well tolerated. Here, we discuss the potential of using human [gammadelta] T cells not as effector cells but as a novel cellular vaccine for treatment of cancer patients. Antigen-presenting [gammadelta] T cells do not require to home to tumor tissues but, instead, need to interact with endogenous, tumor-specific [alphabeta] T cells in secondary lymphoid tissues. Newly mobilised effector [alphabeta] T cells are then thought to overcome the immune blockade by creating proinflammatory conditions fit for effector T cell homing to and killing of tumor cells. Immunotherapy may include tumor antigen-loaded [gammadelta] T cells alone or in combination with immune checkpoint inhibitors.

  8. PD-1/PD-L blockade in gastrointestinal cancers: lessons learned and the road toward precision immunotherapy

    Junyu Long

    2017-08-01

    Full Text Available Abstract Gastrointestinal (GI malignancies are the most prevalent tumors worldwide, with increasing incidence and mortality. Although surgical resection, chemotherapy, radiotherapy, and molecular targeted therapy have led to significant advances in the treatment of GI cancer patients, overall survival is still low. Therefore, alternative strategies must be identified to improve patient outcomes. In the tumor microenvironment, tumor cells can escape the host immune response through the interaction of PD-1 and PD-L, which inhibits the function of T cells and tumor-infiltrating lymphocytes while increasing the function of immunosuppressive T regulatory cells. The use of an anti-PD-1/PD-L blockade enables reprogramming of the immune system to efficiently identify and kill tumor cells. In recent years, the efficacy of PD-1/PD-L blockade has been demonstrated in many tumors, and this treatment is expected to be a pan-immunotherapy for tumors. Here, we review the signaling pathway underlying the dysregulation of PD-1/PD-L in tumors, summarize the current clinical data for PD-1/PD-L inhibitors in GI malignancies, and discuss road toward precision immunotherapy in relation to PD-1/PD-L blockade. The preliminary data for PD-1/PD-L inhibitors are encouraging, and the precision immunotherapy of PD-1/PD-L inhibitors will be a viable and pivotal clinical strategy for GI cancer therapy.

  9. PD-1/PD-L blockade in gastrointestinal cancers: lessons learned and the road toward precision immunotherapy.

    Long, Junyu; Lin, Jianzhen; Wang, Anqiang; Wu, Liangcai; Zheng, Yongchang; Yang, Xiaobo; Wan, Xueshuai; Xu, Haifeng; Chen, Shuguang; Zhao, Haitao

    2017-08-03

    Gastrointestinal (GI) malignancies are the most prevalent tumors worldwide, with increasing incidence and mortality. Although surgical resection, chemotherapy, radiotherapy, and molecular targeted therapy have led to significant advances in the treatment of GI cancer patients, overall survival is still low. Therefore, alternative strategies must be identified to improve patient outcomes. In the tumor microenvironment, tumor cells can escape the host immune response through the interaction of PD-1 and PD-L, which inhibits the function of T cells and tumor-infiltrating lymphocytes while increasing the function of immunosuppressive T regulatory cells. The use of an anti-PD-1/PD-L blockade enables reprogramming of the immune system to efficiently identify and kill tumor cells. In recent years, the efficacy of PD-1/PD-L blockade has been demonstrated in many tumors, and this treatment is expected to be a pan-immunotherapy for tumors. Here, we review the signaling pathway underlying the dysregulation of PD-1/PD-L in tumors, summarize the current clinical data for PD-1/PD-L inhibitors in GI malignancies, and discuss road toward precision immunotherapy in relation to PD-1/PD-L blockade. The preliminary data for PD-1/PD-L inhibitors are encouraging, and the precision immunotherapy of PD-1/PD-L inhibitors will be a viable and pivotal clinical strategy for GI cancer therapy.

  10. Results from the 5-year SQ grass sublingual immunotherapy tablet asthma prevention (GAP) trial in children with grass pollen allergy.

    Valovirta, Erkka; Petersen, Thomas H; Piotrowska, Teresa; Laursen, Mette K; Andersen, Jens S; Sørensen, Helle F; Klink, Rabih

    2018-02-01

    Allergy immunotherapy targets the immunological cause of allergic rhinoconjunctivitis and allergic asthma and has the potential to alter the natural course of allergic disease. The primary objective was to investigate the effect of the SQ grass sublingual immunotherapy tablet compared with placebo on the risk of developing asthma. A total of 812 children (5-12 years), with a clinically relevant history of grass pollen allergic rhinoconjunctivitis and no medical history or signs of asthma, were included in the randomized, double-blind, placebo-controlled trial, comprising 3 years of treatment and 2 years of follow-up. There was no difference in time to onset of asthma, defined by prespecified asthma criteria relying on documented reversible impairment of lung function (primary endpoint). Treatment with the SQ grass sublingual immunotherapy tablet significantly reduced the risk of experiencing asthma symptoms or using asthma medication at the end of trial (odds ratio = 0.66, P year posttreatment follow-up, and during the entire 5-year trial period. Also, grass allergic rhinoconjunctivitis symptoms were 22% to 30% reduced (P years). At the end of the trial, the use of allergic rhinoconjunctivitis pharmacotherapy was significantly less (27% relative difference to placebo, P < .001). Total IgE, grass pollen-specific IgE, and skin prick test reactivity to grass pollen were all reduced compared to placebo. Treatment with the SQ grass sublingual immunotherapy tablet reduced the risk of experiencing asthma symptoms and using asthma medication, and had a positive, long-term clinical effect on rhinoconjunctivitis symptoms and medication use but did not show an effect on the time to onset of asthma. Copyright © 2017 The Authors. Published by Elsevier Inc. All rights reserved.

  11. Prospects for immunotherapy of MHC class I-deficient tumours

    Bubeník, Jan

    2003-01-01

    Roč. 49, č. 3 (2003), s. 95-99 ISSN 0015-5500 Institutional research plan: CEZ:AV0Z5052915 Keywords : MHC class I * immunotherapy Subject RIV: FD - Oncology ; Hematology Impact factor: 0.527, year: 2003

  12. Allergen immunotherapy in allergic rhinitis: current use and future trends.

    Klimek, Ludger; Pfaar, Oliver; Bousquet, Jean; Senti, Gabriela; Kündig, Thomas

    2017-09-01

    Type-1 allergies are among the most chronic common diseases of humans. Allergen immunotherapy (AIT) is the only causative and disease-modifying treatment option besides allergen avoidance. Severe systemic adverse allergic reactions may be induced by every AIT treatment. Different approaches have been used to provide safer AIT preparations to lower or even totally overcome this risk. Areas covered: A structured literature recherche in Medline and Pubmed under inclusion of national and international guidelines and Cochrane meta-analyses has been performed aiming at reviewing clinical use of such approaches in AIT. New allergen preparations may include allergoids, recombinant allergens (recA) and modified recombinant allergens (recA) in subcutaneous as well as in mucosal immunotherapies (application e.g. using bronchial, nasal, oral and sublingual application) with sublingual being the established mucosal application route and new ways of application like intralymphatic and epicutaneous immunotherapy. Expert commentary: Immune-modifying agents like Virus-like particles and CpG-motifs, adjuvants like MPL and aluminum hydroxide are evaluated and found to increase and direct the immunological response toward immunological tolerance. New forms of allergen extracts can improve safety and efficacy of AIT and may change our way of performing allergen immunotherapy in the future.

  13. Allergen Immunotherapy (AIT): a prototype of Precision Medicine

    Canonica, G. W.; Bachert, C.; Hellings, P.; Ryan, D.; Valovirta, E.; Wickman, M.; de Beaumont, O.; Bousquet, J.

    2015-01-01

    Precision medicine is a medical model aiming to deliver customised healthcare - with medical decisions, practices, and/or products tailored to the individual patient informed but not directed by guidelines. Allergen immunotherapy has unique immunological rationale, since the approach is tailored to

  14. Liposome-based synthetic long peptide vaccines for cancer immunotherapy

    Varypataki, E.M.

    2016-01-01

    Synthetic long peptides (SLP) derived from cancer-associated antigens hold great promise as well-defined antigens for cancer immunotherapy. Clinical studies showed that SLP vaccines have functional potency when applied to pre-malignant stage patients, but need to be improved for use as a therapeutic

  15. Challenges in the implementation of EAACI guidelines on allergen immunotherapy

    Bonertz, A; Roberts, G C; Hoefnagel, M

    2018-01-01

    Regulatory approaches for allergen immunotherapy (AIT) products and the availability of high-quality AIT products are inherently linked to each other. While allergen products are available in many countries across the globe, their regulation is very heterogeneous. First, we describe the regulator...

  16. T-cell apoptosis in asthmatics before and after immunotherapy

    Abd El All, L.M.A

    2008-01-01

    This study aimed to observe some of the mechanisms of allergen specific immunotherapy and to see if the idea of delayed Th 2 lymphocytes apoptosis is a contributing factor in asthma pathogenesis that could be corrected by immunotherapy. The study was conducted on 40 persons 30 asthmatic patients, 10 healthy control groups. After taking full history and clinical examination all subjects was submitted to the following assays: 1- Measuring of the CD 9 5 on T lymphocytes in fresh blood samples using flow cytometric analysis. 2- Measuring level of lgE (nephlometer).3-Measuring level of IL-4 (ELISA).4-Measuring level of IFN-gamma (ELISA). CD 9 5 was significantly increased in asthmatic patients denoting up regulation of the receptor on T-lymphocytes in asthmatics . The percent of CD 9 5 was decreased in treated asthmatic subjects with no statistical significant difference. Total lgE and serum IL-4 were significantly increased in asthmatics denoting allergic nature, these levels were decreased after the immunotherapy confirming a relation ship between the application course duration of the immunotherapy and the relief of the inflammatory symptoms and remolding.

  17. Allergen-specific immunotherapy of Hymenoptera venom allergy

    Schiener, Maximilian; Graessel, Anke; Ollert, Markus

    2017-01-01

    by injecting increasing venom doses over years. This venom-specific immunotherapy is highly effective and well tolerated. However, component-resolved information about the venoms has increased in the last years. This knowledge is not only able to improve diagnostics as basis for an accurate therapy...

  18. The current state of recombinant allergens for immunotherapy

    Pauli, Gabrielle; Malling, H-J

    2010-01-01

    Subcutaneous immunotherapy is a well documented treatment of allergic rhinitis and asthma. The majority of the disadvantages of the treatment are related to the poor quality of the natural allergen extracts which can contain varying amounts of individual allergens including allergens to which...

  19. Mycobacterium bovis endophthalmitis from BCG immunotherapy for bladder cancer

    Gerbrandy, S. J. F.; Schreuders, L. C.; de Smet, M. D.

    2008-01-01

    BACKGROUND: We report a patient who developed BCG endophthalmitis after BCG immunotherapy for bladder cancer. Comparison of this case with 2 other reported cases reveals a similar pattern of elderly, debilitated and immunocompromised patients with poor response to systemic antituberculous therapy in

  20. Perspectives on allergen-specific immunotherapy in childhood

    Calderon, M A; Gerth van Wijk, R; Eichler, I

    2012-01-01

    -specific immunotherapy in childhood. Unmet needs are identified. To fill the gaps and to bridge the different points of view, recommendations are made to researchers, to scientific and patient organizations and to regulators and ethical committees. Working together for the benefit of the community is essential...

  1. Dendritic cell-tumor cell hybrids and immunotherapy

    Cathelin, Dominique; Nicolas, Alexandra; Bouchot, André

    2011-01-01

    Dendritic cells (DC) are professional antigen-presenting cells currently being used as a cellular adjuvant in cancer immunotherapy strategies. Unfortunately, DC-based vaccines have not demonstrated spectacular clinical results. DC loading with tumor antigens and DC differentiation and activation...

  2. Tumor immunotherapy : clinics of cytokines and monoclonal antibodies

    Nieken, Judith

    1999-01-01

    Tumor immunotherapy is defines as treatment that induces anti-tumor responses via the modulation of both cellular and homoral components of the host immune system. Its concept is based on hte assumption that tumor cells express unique protiens, so-calles tumor antigens, that can be identified as

  3. Preliminary clinical trial of immunotherapy for malignant glioma.

    Ingram, M; Shelden, C H; Jacques, S; Skillen, R G; Bradley, W G; Techy, G B; Freshwater, D B; Abts, R M; Rand, R W

    1987-10-01

    An immunotherapy protocol based on intracranial implantation of stimulated, autologous lymphocytes into the tumor bed following surgical debulking of malignant glioma is described. Phase I clinical trials in human patients are now in progress. Preliminary data representing the first 39 patients treated are presented briefly.

  4. Allergen immunotherapy for allergic rhinoconjunctivitis : protocol for a systematic review

    Dhami, Sangeeta; Nurmatov, Ulugbek; Roberts, Graham; Pfaar, Oliver; Muraro, Antonella; Ansotegui, Ignacio J; Calderon, Moises; Cingi, Cemal; Demoly, Pascal; Durham, Stephen; van Wijk, Ronald Gerth; Halken, Susanne; Hamelmann, Eckard; Hellings, Peter; Jacobsen, Lars; Knol, Edward; Linnemann, Desiree Larenas; Lin, Sandra; Maggina, Vivian; Oude-Elberink, Hanneke; Pajno, Giovanni; Panwankar, Ruby; Pastorello, Elideanna; Pitsios, Constantinos; Rotiroti, Giuseppina; Timmermans, Frans; Tsilochristou, Olympia; Varga, Eva-Maria; Wilkinson, Jamie; Williams, Andrew; Worm, Margitta; Zhang, Luo; Sheikh, Aziz

    2016-01-01

    BACKGROUND: The European Academy of Allergy and Clinical Immunology (EAACI) is in the process of developing the EAACI Guidelines for Allergen Immunotherapy (AIT) for the Management of Allergic Rhinoconjunctivitis. We seek to critically assess the effectiveness, cost-effectiveness and safety of AIT

  5. Allergen immunotherapy for allergic asthma: Protocol for a systematic review

    Dhami, S. (Sangeeta); Nurmatov, U. (Ulugbek); I. Agache; S. Lau (Susanne); Muraro, A. (Antonella); M. Jutel (M.); G. Roberts; C.A. Akdis; M. Bonini (Matteo); M. Calderon (Moises); T.B. Casale (Thomas); Cavkaytar, O. (Ozlem); L. Cox (Linda); P. Demoly; Flood, B. (Breda); Hamelmann, E. (Eckard); Izuhara, K. (Kenji); O. Kalayci; J. Kleine-Tebbe (Jörg); A. Nieto (Antonio); N. Papadopoulos; O. Pfaar (Oliver); L. Rosenwasser (Lanny); D. Ryan (Dermot); C.B. Schmidt-Weber; S.J. Szefler; U. Wahn (Ulrich); R. Gerth van Wijk (Roy); Wilkinson, J. (Jamie); A. Sheikh (Aziz)

    2016-01-01

    textabstractBackground: The European Academy of Allergy and Clinical Immunology (EAACI) is in the process of developing the EAACI Guidelines for Allergen Immunotherapy (AIT) for Allergic Asthma. We seek to critically assess the effectiveness, cost-effectiveness and safety of AIT in the management of

  6. Minimally invasive diagnostics and immunotherapy of lung cancer

    Talebian-Yazdi, M.

    2017-01-01

    This thesis deals with aspects of diagnostics and immunotherapy of lung cancer. The first aim of this thesis is to investigate how the implementation of minimally invasive endoscopic ultrasound techniques (EUS and EBUS) in the staging algorithm of NSCLC can be optimized. The second aim of this

  7. Sublingual immunotherapy for the treatment of allergies | Schellack ...

    The treatment of allergies often involves pharmacological therapy and recommendations by healthcare workers that the allergen should be avoided. Allergen-specific immunotherapy has emerged as an alternative to effectively decrease the immunoglobulin (Ig) E:IgG4 ratio. Two routes of administration are described, ...

  8. Immunology and Immunotherapy of high grade cervical lesions and cancer

    Vos van Steenwijk, Peggy Jacqueline de

    2015-01-01

    Cervical cancer is caused by the human papillomavirus (HPV). The immune system plays an important role in the protection against HPV and failure of the immune system can lead to the development of cervical cancer. Immunotherapy aims at the restoration of an effective anti-tumour immunity. This

  9. Immunotherapy for head and neck cancer patients: shifting the balance

    Turksma, A.W.; Braakhuis, B.J.M.; Bloemena, E.; Meijer, C.J.L.M.; Leemans, C.R.; Hooijberg, E.

    2013-01-01

    Head and neck squamous cell carcinoma is the sixth most common cancer in the western world. Over the last few decades little improvement has been made to increase the relatively low 5-year survival rate. This calls for novel and improved therapies. Here, we describe opportunities in immunotherapy

  10. Seasonal versus perennial immunotherapy: evaluation after three years of treatment.

    Muñoz Lejarazu, D; Bernaola, G; Fernández, E; Audícana, M; Ventas, P; Martín, S; Fernández de Corres, L

    1993-01-01

    We have performed a comparative study to evaluate seasonal and perennial schedules after 3 years of immunotherapy. Sixty patients suffering from rhinitis and/or asthma due to grass pollen sensitization were randomly allocated to receive a semi-depot extract of Phleum pratense according to a perennial or seasonal schedule. The last year of the study, 14 patients were recruited as a control group without immunotherapy. The cumulative dose was 602 BU in the perennial group and 372 BU in the seasonal group. The frequency and severity of side-effects were similar and very low in both treated groups. The IgE level was significantly lower after perennial immunotherapy at the end of the first 2 years. A seasonal decrease in specific IgG levels was observed in patients who interrupted immunotherapy, while this was not observed in patients under the perennial schedule. Symptoms and medication scores did not show differences between groups. Nevertheless, we found a significant difference between treated patients and the control group.

  11. Allergen immunotherapy for IgE-mediated food allergy

    Dhami, Sangeeta; Nurmatov, Ulugbek; Pajno, Giovanni Battista

    2016-01-01

    BACKGROUND: The European Academy of Allergy and Clinical Immunology (EAACI) is in the process of developing the EAACI Guidelines for Allergen Immunotherapy (AIT) for IgE-mediated food allergy. We seek to critically assess the effectiveness, cost-effectiveness and safety of AIT in IgE-mediated food...

  12. Specific immunotherapy in renal cancer: a systematic review.

    Hirbod-Mobarakeh, Armin; Gordan, Hesam Addin; Zahiri, Zahra; Mirshahvalad, Mohammad; Hosseinverdi, Sima; Rini, Brian I; Rezaei, Nima

    2017-02-01

    Renal cell cancer (RCC) is the tenth most common malignancy in adults. In recent years, several approaches of active and passive immunotherapy have been studied extensively in clinical trials of patients with RCC. The aim of this systematic review was to assess the clinical efficacy of various approaches of specific immunotherapy in patients with RCC. We searched Medline, Scopus, CENTRAL, TRIP, DART, OpenGrey and ProQuest without any language filter through to 9 October 2015. One author reviewed search results for irrelevant and duplicate studies and two other authors independently extracted data from the studies. We collated study findings and calculated a weighted treatment effect across studies using Review Manager (version 5.3. Copenhagen: The Nordic Cochrane Centre, the Cochrane Collaboration). We identified 14 controlled studies with 4013 RCC patients after excluding irrelevant and duplicate studies from 11,319 references retrieved from a literature search. Overall, five autologous tumor cell vaccines, one peptide-based vaccine, one virus-based vaccine and one dendritic cell (DC)-based vaccine were studied in nine controlled studies of active specific immunotherapies. A total of three passive immunotherapies including autologous cytokine-induced killer (CIK) cells, auto lymphocyte therapy (ALT) and autologous lymphokine-activated killer (LAK) cells were studied in four controlled studies. The clinical efficacy of tumor lysate-pulsed DCs, with CIK cells was studied in one controlled trial concurrently. The overall quality of studies was fair. Meta-analysis of seven studies showed that patients undergoing specific immunotherapy had significantly higher overall survival (OS) than those in the control group [hazard ratio (HR) = 0.72; 95% confidence interval (CI) = 0.58-0.89, p = 0.003]. In addition, a meta-analysis of four studies showed that there was a significant difference in progression-free survival (PFS) between patients undergoing specific immunotherapy

  13. Systemic Immunotherapy for Urothelial Cancer: Current Trends and Future Directions

    Shilpa Gupta

    2017-01-01

    Full Text Available Urothelial cancer of the bladder, renal pelvis, ureter, and other urinary organs is the fifth most common cancer in the United States, and systemic platinum-based chemotherapy remains the standard of care for first-line treatment of advanced/metastatic urothelial carcinoma (UC. Until recently, there were very limited options for patients who are refractory to chemotherapy, or do not tolerate chemotherapy due to toxicities and overall outcomes have remained very poor. While the role of immunotherapy was first established in non-muscle invasive bladder cancer in the 1970s, no systemic immunotherapy was approved for advanced disease until the recent approval of a programmed death ligand-1 (PD-L1 inhibitor, atezolizumab, in patients with advanced/metastatic UC who have progressed on platinum-containing regimens. This represents a significant milestone in this disease after a void of over 30 years. In addition to atezolizumab, a variety of checkpoint inhibitors have shown a significant activity in advanced/metastatic urothelial carcinoma and are expected to gain Food and Drug Administration (FDA approval in the near future. The introduction of novel immunotherapy agents has led to rapid changes in the field of urothelial carcinoma. Numerous checkpoint inhibitors are being tested alone or in combination in the first and subsequent-line therapies of metastatic disease, as well as neoadjuvant and adjuvant settings. They are also being studied in combination with radiation therapy and for non-muscle invasive bladder cancer refractory to BCG. Furthermore, immunotherapy is being utilized for those ineligible for firstline platinum-based chemotherapy. This review outlines the novel immunotherapy agents which have either been approved, or are currently being investigated in clinical trials in UC.

  14. hrHPV E5 oncoprotein: immune evasion and related immunotherapies.

    de Freitas, Antonio Carlos; de Oliveira, Talita Helena Araújo; Barros, Marconi Rego; Venuti, Aldo

    2017-05-25

    The immune response is a key factor in the fight against HPV infection and related cancers, and thus, HPV is able to promote immune evasion through the expression of oncogenes. In particular, the E5 oncogene is responsible for modulation of several immune mechanisms, including antigen presentation and inflammatory pathways. Moreover, E5 was suggested as a promising therapeutic target, since there is still no effective medical therapy for the treatment of HPV-related pre-neoplasia and cancer. Indeed, several studies have shown good prospective for E5 immunotherapy, suggesting that it could be applied for the treatment of pre-cancerous lesions. Thus, insofar as the majority of cervical, oropharyngeal and anal cancers are caused by high-risk HPV (hrHPV), mainly by HPV16, the aim of this review is to discuss the immune pathways interfered by E5 oncoprotein of hrHPV highlighting the various aspects of the potential immunotherapeutic approaches.

  15. Immunotherapy using regulatory T cells in cancer suggests more flavors of hypersensitivity type IV.

    Pakravan, Nafiseh; Hassan, Zuhair Mohammad

    2018-03-01

    Regulatory T cells (Tregs) profoundly affect tumor microenvironment and exert dominant suppression over antitumor immunity in response to self-antigen expressed by tumor. Immunotherapy targeting Tregs lead to a significant improvement in antitumor immunity. Intradermal injection of tumor antigen results in negative delayed-type hypersensitivity (DTH) type IV. However, anti-Tregs treatment/use of adjuvant along with tumor antigens turns DTH to positive. Considering Tregs as the earliest tumor sensor/responders, tumor can be regarded as Treg-mediated type IV hypersensitivity and negative DTH to tumor antigen is due to anti-inflammatory action of Tregs to tumor antigens at the injection site. Such a view would help us in basic and clinical situations to testify a candidate vaccine via dermal administration and evaluation of Treg proportion at injection site.

  16. γδ T cells as a potential tool in colon cancer immunotherapy.

    Ramutton, Thiranut; Buccheri, Simona; Dieli, Francesco; Todaro, Matilde; Stassi, Giorgio; Meraviglia, Serena

    2014-01-01

    γδ T cells are capable of recognizing tumor cells and exert potent cellular cytotoxicity against a large range of tumors, including colon cancer. However, tumors utilize numerous strategies to escape recognition or killing by patrolling γδ T cells, such a downregulation of NKG2D ligands, MICA/B and ULBPs. Therefore, the combined upregulation of T-cell receptorand NKG2D ligands on tumor cells and induction of NKG2D expression on γδ T cells may greatly enhance tumor killing and unlock the functions of γδ T cells. Here, we briefly review current data on the mechanisms of γδ T-cell recognition and killing of colon cancer cells and propose that γδ T cells may represent a promising target for the design of novel and highly innovative immunotherapy in patients with colon cancer.

  17. Screening for sporadic or familial medullary thyroid carcinoma. Scintiscan s and radio-immunotherapy

    Rhmer, V.; Murat, A.

    2000-01-01

    The screening for sporadic medullary thyroid carcinoma relies upon calcitoninemia level, basal or during pentagastrine stimulation test. MEN2 are associated with nearly the third of medullary thyroid carcinoma. In these cases, prognosis of thyroid carcinoma is mainly driven by the tumor status at the time of surgery. Up to date, diagnosis relies upon the genetic screening. Prophylactic thyroidectomy indication may take account of calcitoninemia. Most of the molecules that have been suggested for scintiscan lack of accuracy and large use cannot be recommended. Promising results have been obtained with monoclonal antibodies anti-CEA, particularly with dual targeting antiCEA antiDTPA. This last technique may also be used for radio-guided surgery. Its use for radio-immunotherapy is under investigation. (authors)

  18. New Approaches in CAR-T Cell Immunotherapy for Breast Cancer.

    Wang, Jinghua; Zhou, Penghui

    2017-01-01

    Despite significant advances in surgery, chemotherapy, radiotherapy, endocrine therapy, and molecular-targeted therapy, breast cancer remains the leading cause of death from malignant tumors among women. Immunotherapy has recently become a critical component of breast cancer treatment with encouraging activity and mild safety profiles. CAR-T therapy using genetically modifying T cells with chimeric antigen receptors (CAR) is the most commonly used approach to generate tumor-specific T cells. It has shown good curative effect for a variety of malignant diseases, especially for hematological malignancies. In this review, we briefly introduce the history and the present state of CAR research. Then we discuss the barriers of solid tumors for CARs application and possible strategies to improve therapeutic response with a focus on breast cancer. At last, we outlook the future directions of CAR-T therapy including managing toxicities and developing universal CAR-T cells.

  19. Chimeric Antigen Receptor-Engineered T Cells in Tumor Immunotherapy: From Bench to Beside

    Peng WANG

    2017-06-01

    Full Text Available Chimeric antigen receptor-engineered T cells (CAR-T cells, a classification of cultured T cells after modification of gene engineering technology, can recognize specific tumor antigens in a major histocompatibility complex (MHC-independent manner, consequently leading to the activation of antitumor function. The recent studies have confirmed that a variety of tumor-associated antigens (TAAs can act as target antigens for CAR-T cells. Nowadays, CAR T-cell therapy, one of the most potential tumor immunotherapies, has made great breakthroughs in hematological malignancies and promising outcomes in solid tumors. In this article, the biological characteristics and antitumor mechanism of CAR-T cells, and their application in tumor treatment were mainly reviewed.

  20. Adoptive cancer immunotherapy using DNA-demethylated T helper cells as antigen-presenting cells

    Kirkin, Alexei F.; Dzhandzhugazyan, Karine N.; Guldberg, Per

    2018-01-01

    In cancer cells, cancer/testis (CT) antigens become epigenetically derepressed through DNA demethylation and constitute attractive targets for cancer immunotherapy. Here we report that activated CD4+ T helper cells treated with a DNA-demethylating agent express a broad repertoire of endogenous CT...... antigens and can be used as antigen-presenting cells to generate autologous cytotoxic T lymphocytes (CTLs) and natural killer cells. In vitro, activated CTLs induce HLA-restricted lysis of tumor cells of different histological types, as well as cells expressing single CT antigens. In a phase 1 trial of 25...... patients with recurrent glioblastoma multiforme, cytotoxic lymphocytes homed to the tumor, with tumor regression ongoing in three patients for 14, 22, and 27 months, respectively. No treatment-related adverse effects were observed. This proof-of-principle study shows that tumor-reactive effector cells can...

  1. Unmet needs in squamous cell carcinoma of the lung: potential role for immunotherapy.

    Stinchcombe, Thomas E

    2014-05-01

    Squamous cell carcinoma of the lung accounts for 20-30% of non-small cell lung cancers (NSCLC). Despite the differences in disease characteristics between squamous and non-squamous NSCLC, both have historically been treated similarly in the clinic. Recently approved drugs have revealed differences in activity and safety profiles across histologic subtypes and have applicability in treating non-squamous, but not typically squamous, NSCLC. Exploration of immune checkpoints--co-inhibitory molecules used to regulate immune responses--has resulted in novel immunotherapies designed to interrupt signaling through the cytotoxic T lymphocyte-associated antigen-4 or programmed cell death protein-1 pathways on lymphocytes. Modulation of these pathways can lead to restored antitumor immune responses, and preliminary evidence shows that agents targeting these pathways have activity in lung cancer, including squamous NSCLC.

  2. New immunotherapy approach leads to remission in patients with the most common type of childhood cancer | Center for Cancer Research

    Chimeric antigen receptor (CAR) T-cell immunotherapy has emerged as a promising treatment for pre-B cell acute lymphoblastic leukemia (B-ALL), the most common type of childhood cancer. B-ALL is characterized by an overproduction of immature white blood cells called lymphoblasts. In a trial led by Center for Cancer Research investigators, around 70 to 90 percent of patients whose B-ALL has relapsed or developed resistance to chemotherapy entered remission after CAR T-cell therapy targeting CD19. Read more…

  3. Technical Considerations for the Generation of Adoptively Transferred T Cells in Cancer Immunotherapy

    Anthony Visioni

    2016-09-01

    Full Text Available A significant function of the immune system is the surveillance and elimination of aberrant cells that give rise to cancer. Even when tumors are well established and metastatic, immune-mediated spontaneous regressions have been documented. While there are have been various forms of immunotherapy, one of the most widely studied for almost 40 years is adoptive cellular immunotherapy, but its success has yet to be fully realized. Adoptive cell transfer (ACT is a therapeutic modality that has intrigued physicians and researchers for its many theoretical benefits. Preclinical investigations and human trials have utilized natural killer (NK cells, dendritic cells (DC, macrophages, T-cells or B-cells for ACT with the most intense research focused on T-cell ACT. T-cells are exquisitely specific to the target of its T-cell receptor (TCR, thus potentially reducing the amount of collateral damage and off-target effects from treatment. T-cells also possess a memory subset that may reduce the risk of recurrence of a cancer after the successful treatment of the primary disease. There are several options for the source of T-cells used in the generation of cells for ACT. Perhaps the most widely known source is T-cells generated from tumor-infiltrating lymphocytes (TILs. However, studies have also employed peripheral blood mononuclear cells (PBMCs, lymph nodes, and even induced pluripotent stem cells (IPSCs as a source of T-cells. Several important technical considerations exist regarding benefits and limitations of each source of T-cells. Unique aspects of T-cells factor into their ability to be efficacious in ACT including the total number of cells available for ACT, the anti-tumor efficacy on a per cell basis, the repertoire of TCRs specific to tumor cells, and their ability to traffic to various organs that harbor tumor. Current research is attempting to unlock the full potential of these cells to effectively and safely treat cancer.

  4. Immunotherapy of elderly acute myeloid leukemia: light at the end of a long tunnel?

    Rafelson, William M; Reagan, John L; Fast, Loren D; Lim, Seah H

    2017-11-01

    Although it is possible to induce remission in the majority of the patients with acute myeloid leukemia (AML), many patients still die due to disease relapse. Immunotherapy is an attractive option. It is more specific. The memory T cells induced by immunotherapy may also provide the long-term tumor immunosurveillance to prevent disease relapse. Although immunotherapy of AML started in the early 1970s, its clinical impact has been disappointing. Recent advances in tumor immunology and immunotherapeutic agents have rekindled interest. Here, we provide a review of the history of AML immunotherapy, discuss why AML is well suited for immunotherapeutic approaches and present the biological obstacles that affect the success of immunotherapy. Finally, we put forward a new paradigm of AML immunotherapy that utilizes a combination of immunotherapeutic agents sequentially to enhance the in vivo tumor immunogenicity and effective priming and propagation of tumor-specific cytotoxic T cells.

  5. Safety of allergen immunotherapy: a review of premedication and dose adjustment.

    Morris, A Erika; Marshall, Gailen D

    2012-03-01

    From the first allergen immunotherapy proposed in the early 1900s to the present day, numerous studies have proven the efficacy of allergen immunotherapy for the treatment of allergic rhinitis, allergic conjunctivitis, allergic asthma and stinging insect hypersensitivity. The major risk, however small, with allergen immunotherapy is anaphylaxis. There has been considerable interest and debate regarding risk factors for immunotherapy reactions (local and systemic) and interventions to reduce the occurrence of these reactions. One of these interventions that is especially debated regards dose adjustment for various reasons, but in particular for local reactions. In this review, we discuss the safety of immunotherapy and provide a comprehensive review of the literature regarding immunotherapy schedules and doses.

  6. MRI in Glioma Immunotherapy: Evidence, Pitfalls, and Perspectives

    Domenico Aquino

    2017-01-01

    Full Text Available Pseudophenomena, that is, imaging alterations due to therapy rather than tumor evolution, have an important impact on the management of glioma patients and the results of clinical trials. RANO (response assessment in neurooncology criteria, including conventional MRI (cMRI, addressed the issues of pseudoprogression after radiotherapy and concomitant chemotherapy and pseudoresponse during antiangiogenic therapy of glioblastomas (GBM and other gliomas. The development of cancer immunotherapy forced the identification of further relevant response criteria, summarized by the iRANO working group in 2015. In spite of this, the unequivocal definition of glioma progression by cMRI remains difficult particularly in the setting of immunotherapy approaches provided by checkpoint inhibitors and dendritic cells. Advanced MRI (aMRI may in principle address this unmet clinical need. Here, we discuss the potential contribution of different aMRI techniques and their indications and pitfalls in relation to biological and imaging features of glioma and immune system interactions.

  7. Exosomes as nanocarriers for immunotherapy of cancer and inflammatory diseases.

    Tran, Thanh-Huyen; Mattheolabakis, George; Aldawsari, Hibah; Amiji, Mansoor

    2015-09-01

    Cell secreted exosomes (30-100nm vesicles) play a major role in intercellular communication due to their ability to transfer proteins and nucleic acids from one cell to another. Depending on the originating cell type and the cargo, exosomes can have immunosuppressive or immunostimulatory effects, which have potential application as immunotherapies for cancer and autoimmune diseases. Cellular components shed from tumor cells or antigen presenting cells (APCs), such as dendritic cells, macrophages and B cells, have been shown to be efficiently packaged in exosomes. In this review, we focus on the application of exosomes as nanocarriers and immunological agents for cancer and autoimmune immunotherapy. APC-derived exosomes demonstrate effective therapeutic efficacy for the treatment of cancer and experimental autoimmune diseases such as rheumatoid arthritis, inflammatory bowel disease, and multiple sclerosis. In addition to their intrinsic immunomodulating activity, exosomes have many advantages over conventional nanocarriers for drug and gene delivery. Copyright © 2015 Elsevier Inc. All rights reserved.

  8. DNA-inorganic hybrid nanovaccine for cancer immunotherapy

    Zhu, Guizhi; Liu, Yijing; Yang, Xiangyu; Kim, Young-Hwa; Zhang, Huimin; Jia, Rui; Liao, Hsien-Shun; Jin, Albert; Lin, Jing; Aronova, Maria; Leapman, Richard; Nie, Zhihong; Niu, Gang; Chen, Xiaoyuan

    2016-03-01

    Cancer evolves to evade or compromise the surveillance of the immune system, and cancer immunotherapy aims to harness the immune system in order to inhibit cancer development. Unmethylated CpG dinucleotide-containing oligonucleotides (CpG), a class of potent adjuvants that activate the toll-like receptor 9 (TLR9) located in the endolysosome of many antigen-presenting cells (APCs), are promising for cancer immunotherapy. However, clinical application of synthetic CpG confronts many challenges such as suboptimal delivery into APCs, unfavorable pharmacokinetics caused by limited biostability and short in vivo half-life, and side effects associated with leaking of CpG into the systemic circulation. Here we present DNA-inorganic hybrid nanovaccines (hNVs) for efficient uptake into APCs, prolonged tumor retention, and potent immunostimulation and cancer immunotherapy. hNVs were self-assembled from concatemer CpG analogs and magnesium pyrophosphate (Mg2PPi). Mg2PPi renders hNVs resistant to nuclease degradation and thermal denaturation, both of which are demanding characteristics for effective vaccination and the storage and transportation of vaccines. Fluorophore-labeled hNVs were tracked to be efficiently internalized into the endolysosomes of APCs, where Mg2PPi was dissolved in an acidic environment and thus CpG analogs were exposed to hNVs. Internalized hNVs in APCs led to (1) elevated secretion of proinflammatory factors, and (2) elevated expression of co-stimulatory factors. Compared with molecular CpG, hNVs dramatically prolonged the tissue retention of CpG analogs and reduced splenomegaly, a common side effect of CpG. In a melanoma mouse model, two injections of hNVs significantly inhibited the tumor growth and outperformed the molecular CpG. These results suggest hNVs are promising for cancer immunotherapy.Cancer evolves to evade or compromise the surveillance of the immune system, and cancer immunotherapy aims to harness the immune system in order to inhibit

  9. Current advances in T-cell-based cancer immunotherapy

    Wang, Mingjun; Yin, Bingnan; Wang, Helen Y; Wang, Rong-Fu

    2015-01-01

    Cancer is a leading cause of death worldwide; due to the lack of ideal cancer biomarkers for early detection or diagnosis, most patients present with late-stage disease at the time of diagnosis, thus limiting the potential for successful treatment. Traditional cancer treatments, including surgery, chemotherapy and radiation therapy, have demonstrated very limited efficacy for patients with late-stage disease. Therefore, innovative and effective cancer treatments are urgently needed for cancer patients with late-stage and refractory disease. Cancer immunotherapy, particularly adoptive cell transfer, has shown great promise in the treatment of patients with late-stage disease, including those who are refractory to standard therapies. In this review, we will highlight recent advances and discuss future directions in adoptive cell transfer based cancer immunotherapy. PMID:25524383

  10. Immuno senescence: implications for cancer immunotherapy in elderly patients

    Garcia, Beatriz; Lage, Agustin

    2006-01-01

    The aging process produces functional and developmental changes in the immune system. Those changes may occur at different levels or at different moments, from lymphopoiesis up to the final response of the immune system facing a certain disease. The response of the adaptive immune system is most strongly affected by the aging process, particularly at the level of the effector T-cells. These changes can have a negative impact on the immune response of elderly patients during cancer immunotherapy. The present paper is an updated review of the bibliography on the most important modifications produced in the immune system during aging, as well as on the relevance of these modifications for the design of new strategies for cancer immunotherapy. (Author)

  11. The interplay of immunotherapy and chemotherapy: harnessing potential synergies.

    Emens, Leisha A; Middleton, Gary

    2015-05-01

    Although cancer chemotherapy has historically been considered immune suppressive, it is now accepted that certain chemotherapies can augment tumor immunity. The recent success of immune checkpoint inhibitors has renewed interest in immunotherapies, and in combining them with chemotherapy to achieve additive or synergistic clinical activity. Two major ways that chemotherapy promotes tumor immunity are by inducing immunogenic cell death as part of its intended therapeutic effect and by disrupting strategies that tumors use to evade immune recognition. This second strategy, in particular, is dependent on the drug, its dose, and the schedule of chemotherapy administration in relation to antigen exposure or release. In this Cancer Immunology at the Crossroads article, we focus on cancer vaccines and immune checkpoint blockade as a forum for reviewing preclinical and clinical data demonstrating the interplay between immunotherapy and chemotherapy. ©2015 American Association for Cancer Research.

  12. Immunotherapy in Merkel cell carcinoma: role of Avelumab

    Palla AR

    2018-03-01

    Full Text Available Amruth R Palla, Donald Doll Department of Internal Medicine, Division of Hematology and Oncology, Ellis Fischel Cancer Center, University of Missouri, Columbia, MO, USA Abstract: Merkel cell carcinoma (MCC, a rare skin cancer, is associated with high mortality, especially in a metastatic setting. Though conventional chemotherapy with platinum and etoposide has had high response rates, many of the patients have had early relapse without any effective therapy thereafter. Recently, immune check point inhibitors have shown very good durable responses, leading to the approval of a programmed death-ligand 1 inhibitor Avelumab for these patients. We briefly review the epidemiology and immune basis of the pathogenesis of MCC, which therefore explains the excellent response to check point inhibitors, and throw light on future directions of immunotherapy for this cancer. Keywords: Merkel cell carcinoma, T cell, PD-L1, Avelumab, immunotherapy, check point inhibitors, neuroendocrine tumor

  13. Cancer immunotherapy: Breakthrough or "deja vu, all over again"?

    Sell, Stewart

    2017-06-01

    From the application of Coley's toxin in the early 1900s to the present clinical trials using immune checkpoint regulatory inhibitors, the history of cancer immunotherapy has consisted of extremely high levels of enthusiasm after anecdotal case reports of enormous success, followed by decreasing levels of enthusiasm as the results of controlled clinical trials are available. In this review, this pattern will be documented for the various immunotherapeutic approaches over the years. The sole exception being vaccination against cancer causing viruses, which have already prevented thousands of cancers. We can only hope that the present high level of enthusiasm for the use of immune stimulation by removal of blocks to cancer immunity will be more productive than the incremental improvements using previous immunotherapies.

  14. Research advances in cellular immunotherapy for primary hepatocellular carcinoma

    ZHANG Ye

    2014-09-01

    Full Text Available The present therapy for primary hepatocellular carcinoma (HCC consists of surgery as well as local radiotherapy and chemotherapy. However, the majority of patients are susceptible to recurrence after comprehensive treatment, and the overall treatment outcome is not ideal due to the lack of effective drugs and strategies. Increasing evidence has demonstrated that the immune system is closely related to the development, progression, metastasis, and recurrence of HCC. Thus, immune therapy, especially cellular immunotherapy, could regulate immune function and induce specific antitumor immunity to achieve the goal of controlling HCC and reducing its recurrence and metastasis, which has become an essential part in the comprehensive treatment of HCC. The findings in preclinical and clinical studies on cellular immunotherapy for HCC data are reviewed, and the current problems are discussed.

  15. Immunotherapy with mutated onchocystatin fails to enhance the efficacy of a sub-lethal oxytetracycline regimen against Onchocerca ochengi.

    Bah, Germanus S; Tanya, Vincent N; Makepeace, Benjamin L

    2015-08-15

    Human onchocerciasis (river blindness), caused by the filarial nematode Onchocerca volvulus, has been successfully controlled by a single drug, ivermectin, for over 25 years. Ivermectin prevents the disease symptoms of severe itching and visual impairment by killing the microfilarial stage, but does not eliminate the adult parasites, necessitating repeated annual treatments. Mass drug administration with ivermectin does not always break transmission in forest zones and is contraindicated in individuals heavily co-infected with Loa loa, while reports of reduced drug efficacy in Ghana and Cameroon may signal the development of resistance. An alternative treatment for onchocerciasis involves targeting the essential Wolbachia symbiont with tetracycline or its derivatives, which are adulticidal. However, implementation of antibiotic therapy has not occurred on a wide scale due to the prolonged treatment regimen required (several weeks). In the bovine Onchocerca ochengi system, it has been shown previously that prolonged oxytetracycline therapy increases eosinophil counts in intradermal nodules, which kill the adult worms by degranulating on their surface. Here, in an "immunochemotherapeutic" approach, we sought to enhance the efficacy of a short, sub-lethal antibiotic regimen against O. ochengi by prior immunotherapy targeting onchocystatin, an immunomodulatory protein located in the adult female worm cuticle. A key asparagine residue in onchocystatin was mutated to ablate immunomodulatory activity, which has been demonstrated previously to markedly improve the protective efficacy of this vaccine candidate when used as an immunoprophylactic. The immunochemotherapeutic regimen was compared with sub-lethal oxytetracycline therapy alone; onchocystatin immunotherapy alone; a gold-standard prolonged, intermittent oxytetracycline regimen; and no treatment (negative control) in naturally infected Cameroonian cattle. Readouts were collected over one year and comprised adult

  16. Radio-immunotherapy of non Hodgkin lymphomas: Experience from Lille

    Huglo, D.; Morschhauser, F.; Steinling, M.; Huglo, D.; Prangere, T.; Robu, D.; Malek, E.; Petyt, G.; Steinling, M.; Huglo, D.; Morschhauser, F.; Robu, D.

    2009-01-01

    From an experience of radio-immunotherapy of non Hodgkin lymphomas from March 2002 to December 2008 (near 7 years), corresponding to 160 treatments, an analysis of indications has been done: clinical research trials, authorized indications from A.M.M. or medically justified. Some elements which could be problematic are pointed: coordination between the regional Haematology departments and our Nuclear Medicine department, radio labelling and radioprotection. (authors)

  17. CDK5-A Novel Role in Prostate Cancer Immunotherapy

    2017-10-01

    castration resistant prostate cancer (CRPC) Specific Aims: 1. Effect of dinaciclib on androgen receptor (AR) S81 phosphorylation and function. 2. Effect of...circulating tumor DNA (ctDNA) and T-cell receptor (TCR) repertoire profiling as biomarkers for men with oligometastatic prostate cancer treated with...AWARD NUMBER: W81XWH-15-1-0670 TITLE: CDK5-A Novel Role in Prostate Cancer Immunotherapy PRINCIPAL INVESTIGATOR: Dr. Barry Nelkin

  18. Reconceptualizing cancer immunotherapy based on plant production systems

    Hefferon, Kathleen

    2017-01-01

    Plants can be used as inexpensive and facile production platforms for vaccines and other biopharmaceuticals. More recently, plant-based biologics have expanded to include cancer immunotherapy agents. The following review describes the current state of the art for plant-derived strategies to prevent or reduce cancers. The review discusses avenues taken to prevent infection by oncogenic viruses, solid tumors and lymphomas. Strategies including cancer vaccines, monoclonal antibodies and virus na...

  19. Towards evidence-based medicine in specific grass pollen immunotherapy.

    Calderon, M; Mösges, R; Hellmich, M; Demoly, P

    2010-04-01

    When initiating grass pollen immunotherapy for seasonal allergic rhinoconjunctivitis, specialist physicians in many European countries must choose between modalities of differing pharmaceutical and regulatory status. We applied an evidence-based medicine (EBM) approach to commercially available subcutaneous and sublingual Gramineae grass pollen immunotherapies (SCIT and SLIT) by evaluating study design, populations, pollen seasons, treatment doses and durations, efficacy, quality of life, safety and compliance. After searching MEDLINE, Embase and the Cochrane Library up until January 2009, we identified 33 randomized, double-blind, placebo-controlled trials (including seven paediatric trials) with a total of 440 specific immunotherapy (SIT)-treated subjects in seven trials (0 paediatric) for SCIT with natural pollen extracts, 168 in three trials (0 paediatric) for SCIT with allergoids, 906 in 16 trials (five paediatric) for natural extract SLIT drops, 41 in two trials (one paediatric) for allergoid SLIT tablets and 1605 in five trials (two paediatric) for natural extract SLIT tablets. Trial design and quality varied significantly within and between SIT modalities. The multinational, rigorous trials of natural extract SLIT tablets correspond to a high level of evidence in adult and paediatric populations. The limited amount of published data on allergoids prevented us from judging the level of evidence for this modality.

  20. Immunotherapy with neuraminidase-treated tumor cells after radiotherapy

    Song, C.W.; Levitt, S.H.

    1975-01-01

    The effect of active immunotherapy with Vibrio cholerae neuraminidase-treated syngeneic tumor cells (VCN-cells) following radiotherapy has been studied with 3-methylcholanthrene-induced fibrosarcoma, M-79, transplanted to the thigh of C3H/HeJ mice. When the tumors reached 4 to 8 mm in diameter, various treatments were started. X-irradiation with 2000 rad in a single dose induced a complete regression of 24 out of 103 tumors (23.3 percent). The inoculation of 1 x 10 6 of VCN-cells to the tumor-bearing animals, every other day for a total of three doses, caused a complete regression of 6 out of 57 tumors (10.5 percent). Treatments of animals with the immunotherapy starting 1 day after X-irradiation of tumors with 2000 rad resulted in a complete regression of 22 out of 58 tumors (37.9 percent). The median survival time of animals that received combined radiotherapy and immunotherapy was longer than that observed after either treatment alone

  1. Immune Modulation by Chemotherapy or Immunotherapy to Enhance Cancer Vaccines

    Weir, Genevieve M.; Liwski, Robert S.; Mansour, Marc

    2011-01-01

    Chemotherapy has been a mainstay in cancer treatment for many years. Despite some success, the cure rate with chemotherapy remains unsatisfactory in some types of cancers, and severe side effects from these treatments are a concern. Recently, understanding of the dynamic interplay between the tumor and immune system has led to the development of novel immunotherapies, including cancer vaccines. Cancer vaccines have many advantageous features, but their use has been hampered by poor immunogenicity. Many developments have increased their potency in pre-clinical models, but cancer vaccines continue to have a poor clinical track record. In part, this could be due to an inability to effectively overcome tumor-induced immune suppression. It had been generally assumed that immune-stimulatory cancer vaccines could not be used in combination with immunosuppressive chemotherapies, but recent evidence has challenged this dogma. Chemotherapies could be used to condition the immune system and tumor to create an environment where cancer vaccines have a better chance of success. Other types of immunotherapies could also be used to modulate the immune system. This review will discuss how immune modulation by chemotherapy or immunotherapy could be used to bolster the effects of cancer vaccines and discuss the advantages and disadvantages of these treatments

  2. Patient Susceptibility to Candidiasis—A Potential for Adjunctive Immunotherapy

    Davidson, Linda; Netea, Mihai G.; Kullberg, Bart Jan

    2018-01-01

    Candida spp. are colonizing fungi of human skin and mucosae of the gastrointestinal and genitourinary tract, present in 30–50% of healthy individuals in a population at any given moment. The host defense mechanisms prevent this commensal fungus from invading and causing disease. Loss of skin or mucosal barrier function, microbiome imbalances, or defects of immune defense mechanisms can lead to an increased susceptibility to severe mucocutaneous or invasive candidiasis. A comprehensive understanding of the immune defense against Candida is essential for developing adjunctive immunotherapy. The important role of underlying genetic susceptibility to Candida infections has become apparent over the years. In most patients, the cause of increased susceptibility to fungal infections is complex, based on a combination of immune regulation gene polymorphisms together with other non-genetic predisposing factors. Identification of patients with an underlying genetic predisposition could help determine which patients could benefit from prophylactic antifungal treatment or adjunctive immunotherapy. This review will provide an overview of patient susceptibility to mucocutaneous and invasive candidiasis and the potential for adjunctive immunotherapy. PMID:29371502

  3. Mosquito bite anaphylaxis: immunotherapy with whole body extracts.

    McCormack, D R; Salata, K F; Hershey, J N; Carpenter, G B; Engler, R J

    1995-01-01

    Adverse reactions to mosquito bites have been recognized for some time. These usually consist of large local swellings and redness, generalized urticaria, angioedema and less easily definable responses such as nausea, dizziness, headaches, and lethargy. We report two patients who experienced systemic anaphylaxis from mosquito bites. Both were skin tested and given immunotherapy using whole body mosquito extracts. Skin testing using whole body mosquito extracts was positive to Aedes aegypti at 1/1,000 weight/volume (wt/vol) in one patient and to Aedes aegypti at 1/100,000 wt/vol, and Culex pipiens at 1/10,000 wt/vol in the other. Skin testing of ten volunteers without a history of adverse reactions to mosquito bites was negative. Immunotherapy using these extracts resulted in resolution of adverse reactions to mosquito bites in one patient and a decrease in reactions in the other. Immunotherapy with whole body mosquito extracts is a viable treatment option that can play a role in patients with mosquito bite-induced anaphylaxis. It may also result in severe side effects and one must determine the benefit versus risks for each individual patient.

  4. Immune Modulation by Chemotherapy or Immunotherapy to Enhance Cancer Vaccines

    Weir, Genevieve M. [Suite 411, 1344 Summer St., Immunovaccine Inc., Halifax, NS, B3H 0A8 (Canada); Room 11-L1, Sir Charles Tupper Building, Department of Microbiology & Immunology, Dalhousie University, 5850 College St, Halifax, NS, B3H 1X5 (Canada); Liwski, Robert S. [Room 11-L1, Sir Charles Tupper Building, Department of Microbiology & Immunology, Dalhousie University, 5850 College St, Halifax, NS, B3H 1X5 (Canada); Room 206E, Dr. D. J. Mackenzie Building, Department of Pathology, Dalhousie University, 5788 University Avenue, Halifax, NS, B3H 2Y9 (Canada); Mansour, Marc [Suite 411, 1344 Summer St., Immunovaccine Inc., Halifax, NS, B3H 0A8 (Canada)

    2011-08-05

    Chemotherapy has been a mainstay in cancer treatment for many years. Despite some success, the cure rate with chemotherapy remains unsatisfactory in some types of cancers, and severe side effects from these treatments are a concern. Recently, understanding of the dynamic interplay between the tumor and immune system has led to the development of novel immunotherapies, including cancer vaccines. Cancer vaccines have many advantageous features, but their use has been hampered by poor immunogenicity. Many developments have increased their potency in pre-clinical models, but cancer vaccines continue to have a poor clinical track record. In part, this could be due to an inability to effectively overcome tumor-induced immune suppression. It had been generally assumed that immune-stimulatory cancer vaccines could not be used in combination with immunosuppressive chemotherapies, but recent evidence has challenged this dogma. Chemotherapies could be used to condition the immune system and tumor to create an environment where cancer vaccines have a better chance of success. Other types of immunotherapies could also be used to modulate the immune system. This review will discuss how immune modulation by chemotherapy or immunotherapy could be used to bolster the effects of cancer vaccines and discuss the advantages and disadvantages of these treatments.

  5. Mathematical Model Creation for Cancer Chemo-Immunotherapy

    Lisette de Pillis

    2009-01-01

    Full Text Available One of the most challenging tasks in constructing a mathematical model of cancer treatment is the calculation of biological parameters from empirical data. This task becomes increasingly difficult if a model involves several cell populations and treatment modalities. A sophisticated model constructed by de Pillis et al., Mixed immunotherapy and chemotherapy of tumours: Modelling, applications and biological interpretations, J. Theor. Biol. 238 (2006, pp. 841–862; involves tumour cells, specific and non-specific immune cells (natural killer (NK cells, CD8+T cells and other lymphocytes and employs chemotherapy and two types of immunotherapy (IL-2 supplementation and CD8+T-cell infusion as treatment modalities. Despite the overall success of the aforementioned model, the problem of illustrating the effects of IL-2 on a growing tumour remains open. In this paper, we update the model of de Pillis et al. and then carefully identify appropriate values for the parameters of the new model according to recent empirical data. We determine new NK and tumour antigen-activated CD8+T-cell count equilibrium values; we complete IL-2 dynamics; and we modify the model in de Pillis et al. to allow for endogenous IL-2 production, IL-2-stimulated NK cell proliferation and IL-2-dependent CD8+T-cell self-regulations. Finally, we show that the potential patient-specific efficacy of immunotherapy may be dependent on experimentally determinable parameters.

  6. Patient Susceptibility to Candidiasis—A Potential for Adjunctive Immunotherapy

    Linda Davidson

    2018-01-01

    Full Text Available Candida spp. are colonizing fungi of human skin and mucosae of the gastrointestinal and genitourinary tract, present in 30–50% of healthy individuals in a population at any given moment. The host defense mechanisms prevent this commensal fungus from invading and causing disease. Loss of skin or mucosal barrier function, microbiome imbalances, or defects of immune defense mechanisms can lead to an increased susceptibility to severe mucocutaneous or invasive candidiasis. A comprehensive understanding of the immune defense against Candida is essential for developing adjunctive immunotherapy. The important role of underlying genetic susceptibility to Candida infections has become apparent over the years. In most patients, the cause of increased susceptibility to fungal infections is complex, based on a combination of immune regulation gene polymorphisms together with other non-genetic predisposing factors. Identification of patients with an underlying genetic predisposition could help determine which patients could benefit from prophylactic antifungal treatment or adjunctive immunotherapy. This review will provide an overview of patient susceptibility to mucocutaneous and invasive candidiasis and the potential for adjunctive immunotherapy.

  7. Immunological Changes on Allergic Response after Beevenom Immunotherapy

    Dong-Ha Han

    2004-12-01

    Full Text Available Beevenom immunotherapy(BVIT in allergic patients is a well-established treatment modality for the prevention of systemic anaphylactic reactions caused by insect stings. BVIT is accompanied by increases in allergen-specific IgG, particularly the IgG4 isotype, which blocks not only IgE-dependent histamine release from basophils but also IgE-mediated antigen presentation to T cells. Inhibition of T cells after BVIT also involves decreased induction of the costimulatory molecule ICOS, which, in turn, seems to be dependent on the presence of IL-10, also associated with the inhibited status of T cells after BVIT. Suppression of T cells by IL-10 is an active process, which depends on the expression and participation of CD28. Immune tolerance in specific allergen immunotherapy might be a consequence of decreased Th2 or increased Th1 response of allergen specific T lymphocytes. BVIT shifted cytokine responses to allergen from a TH-2 to a TH-1 dominant pattern, suggesting direct effects on T cells. Many studies showed that severe side effects due to venom immunotherapy are rare. These results suggest that immunological changes after BVIT may be applied to be therapeutic alternative of general allergic diseases including beevenom allergy.

  8. Debut of Gastroesophageal Reflux Concomitant with Administration of Sublingual Immunotherapy

    Jacob Juel

    2017-01-01

    Full Text Available Gastroesophageal reflux disease (GORD is an often debilitating condition characterised by retrograde flow of content from stomach into the oesophagus, where the low pH of the stomach acid irritates the mucosa of the oesophagus. The most dominant symptoms in GORD are pyrosis, regurgitation, and dysphagia. Sublingual immunotherapy (SLIT was first described in 1986. Following this description, the use has greatly increased in the treatment of allergic rhinitis, as an alternative to subcutaneously administered immunotherapy. Side effects are commonly of oropharyngeal and gastrointestinal nature, for example, swelling, itching, irritation, ulceration of the oropharynx and nausea, abdominal pain, vomiting, and diarrhoea. More serious side effects are dominated by respiratory tract and systemic manifestations. A 30-year-old male experienced refractory, relentless, and debilitation GORD subsequent to administration of sublingual immunotherapy for house dust mite in allergic rhinitis. The patient had to stop the SLIT after two weeks of administration due to GORD. The cessation resulted in rapid resolution of symptoms.

  9. Local Side Effects of Sublingual and Oral Immunotherapy.

    Passalacqua, Giovanni; Nowak-Węgrzyn, Anna; Canonica, Giorgio Walter

    Sublingual immunotherapy (SLIT) is increasingly used worldwide, and several products have been recently registered as drugs for respiratory allergy by the European Medicine Agency and the Food and Drug Administration. Concerning inhalant allergens, the safety of SLIT is overall superior to that of subcutaneous immunotherapy in terms of systemic adverse events. No fatality has been ever reported, and episodes of anaphylaxis were described only exceptionally. Looking at the historical and recent trials, most (>90%) adverse events are "local" and confined to the site of administration. For this reason, a specific grading system has been developed by the World Allergy Organization to classify and describe local adverse events. There is an increasing amount of literature concerning oral desensitization for food allergens, referred to as oral immunotherapy. Also, in this case, local side effects are predominant, although systemic adverse events are more frequent than with inhalant allergens. We review herein the description of local side effects due to SLIT, with a special focus on large trials having a declared sample size calculation. The use of the Medical Dictionary for Regulatory Activities nomenclature for adverse events is mentioned in this context, as recommended by regulatory agencies. It is expected that a uniform classification/grading of local adverse events will improve and harmonize the surveillance and reporting on the safety of SLIT. Copyright © 2016 American Academy of Allergy, Asthma & Immunology. Published by Elsevier Inc. All rights reserved.

  10. Effect of Immunotherapy on Seizure Outcome in Patients with Autoimmune Encephalitis: A Prospective Observational Registry Study

    Jung, Keun-Hwa; Sunwoo, Jun-Sang; Moon, Jangsup; Lim, Jung-Ah; Lee, Doo Young; Shin, Yong-Won; Kim, Tae-Joon; Lee, Keon-Joo; Lee, Woo-Jin; Lee, Han-Sang; Jun, Jinsun; Kim, Dong-Yub; Kim, Man-Young; Kim, Hyunjin; Kim, Hyeon Jin; Suh, Hong Il; Lee, Yoojin; Kim, Dong Wook; Jeong, Jin Ho; Choi, Woo Chan; Bae, Dae Woong; Shin, Jung-Won; Jeon, Daejong; Park, Kyung-Il; Jung, Ki-Young; Chu, Kon; Lee, Sang Kun

    2016-01-01

    Objective To evaluate the seizure characteristics and outcome after immunotherapy in adult patients with autoimmune encephalitis (AE) and new-onset seizure. Methods Adult (age ≥18 years) patients with AE and new-onset seizure who underwent immunotherapy and were followed-up for at least 6 months were included. Seizure frequency was evaluated at 2–4 weeks and 6 months after the onset of the initial immunotherapy and was categorized as “seizure remission”, “> 50% seizure reduction”, or “no change” based on the degree of its decrease. Results Forty-one AE patients who presented with new-onset seizure were analysed. At 2–4 weeks after the initial immunotherapy, 51.2% of the patients were seizure free, and 24.4% had significant seizure reduction. At 6 months, seizure remission was observed in 73.2% of the patients, although four patients died during hospitalization. Rituximab was used as a second-line immunotherapy in 12 patients who continued to have seizures despite the initial immunotherapy, and additional seizure remission was achieved in 66.6% of them. In particular, those who exhibited partial response to the initial immunotherapy had a better seizure outcome after rituximab, with low adverse events. Conclusion AE frequently presented as seizure, but only 18.9% of the living patients suffered from seizure at 6 months after immunotherapy. Aggressive immunotherapy can improve seizure outcome in patients with AE. PMID:26771547

  11. Non-infectious cholecystopathy secondary to high-dose IL-2 cancer immunotherapy

    Kuppler, Kevin; Jeong, Daniel; Choi, Jung W

    2015-01-01

    Interleukin-2 (IL-2) associated cholecystopathy is a rare manifestation of IL-2 drug toxicity in the setting of cancer immunotherapy. While the imaging data and clinical presentation can easily mimic acute cholecystitis, the correct diagnosis can be made with the particular clinical history, thus avoiding inappropriate surgical management. As more cancer immunotherapies become standard oncologic treatments, specific immunotherapy-associated side effects are also expected to be encountered more frequently in the future and should be recognized as such. We present a case of IL-2-associated cholecystopathy in the setting of renal cell carcinoma immunotherapy

  12. Dendritic Cell-Based Immunotherapy of Breast Cancer: Modulation by CpG

    Baar, Joseph

    2004-01-01

    ... in the United States in 2004. Thus, patients with MBC who fail conventional therapies are candidates for clinical trials using novel therapeutic approaches, including immunotherapy. Dendritic cells (DC...

  13. Effect of Immunotherapy on Seizure Outcome in Patients with Autoimmune Encephalitis: A Prospective Observational Registry Study.

    Jung-Ick Byun

    Full Text Available To evaluate the seizure characteristics and outcome after immunotherapy in adult patients with autoimmune encephalitis (AE and new-onset seizure.Adult (age ≥18 years patients with AE and new-onset seizure who underwent immunotherapy and were followed-up for at least 6 months were included. Seizure frequency was evaluated at 2-4 weeks and 6 months after the onset of the initial immunotherapy and was categorized as "seizure remission", "> 50% seizure reduction", or "no change" based on the degree of its decrease.Forty-one AE patients who presented with new-onset seizure were analysed. At 2-4 weeks after the initial immunotherapy, 51.2% of the patients were seizure free, and 24.4% had significant seizure reduction. At 6 months, seizure remission was observed in 73.2% of the patients, although four patients died during hospitalization. Rituximab was used as a second-line immunotherapy in 12 patients who continued to have seizures despite the initial immunotherapy, and additional seizure remission was achieved in 66.6% of them. In particular, those who exhibited partial response to the initial immunotherapy had a better seizure outcome after rituximab, with low adverse events.AE frequently presented as seizure, but only 18.9% of the living patients suffered from seizure at 6 months after immunotherapy. Aggressive immunotherapy can improve seizure outcome in patients with AE.

  14. The immunobiology and immunotherapy of ovarian cancer

    Bookman, M.A.; Bast, R.C. Jr.

    1991-01-01

    Small volume residual peritoneal disease in patients undergoing therapy for ovarian carcinoma remains an attractive, but elusive, target for immunobiological therapy. Hypothetical advantages and disadvantages of regional peritoneal therapy are being better defined through increased clinical experience and more sophisticated animal models. Developments in cytokine biology, adoptive cellular therapy, monoclonal antibody conjugation, and molecular biology continue to provide an exciting, and nearly overwhelming, array of reagents for clinical evaluation. Ongoing and anticipated investigational trials should provide intriguing data in years to follow.198 references

  15. Human Cell Line-Derived Monoclonal IgA Antibodies for Cancer Immunotherapy

    Felix Hart

    2017-05-01

    Full Text Available IgA antibodies have great potential to improve the functional diversity of current IgG antibody-based cancer immunotherapy options. However, IgA production and purification is not well established, which can at least in part be attributed to the more complex glycosylation as compared to IgG antibodies. IgA antibodies possess up to five N-glycosylation sites within their constant region of the heavy chain as compared to one site for IgG antibodies. The human GlycoExpress expression system was developed to produce biotherapeutics with optimized glycosylation and used here to generate a panel of IgA isotype antibodies directed against targets for solid (TA-mucin 1, Her2, EGFR, Thomsen–Friedenreich and hematological (CD20 cancer indications. The feasibility of good manufacturing practice was shown by the production of 11 g IgA within 35 days in a one liter perfusion bioreactor, and IgA antibodies in high purity were obtained after purification. The monoclonal IgA antibodies possessed a high sialylation degree, and no non-human glycan structures were detected. Kinetic analysis revealed increased avidity antigen binding for IgA dimers as compared to monomeric antibodies. The IgA antibodies exhibited potent Fab- and Fc-mediated functionalities against cancer cell lines, whereby especially granulocytes are recruited. Therefore, for patients who do not sufficiently benefit from therapeutic IgG antibodies, IgA antibodies may complement current regiment options and represent a promising strategy for cancer immunotherapy. In conclusion, a panel of novel biofunctional IgA antibodies with human glycosylation was successfully generated.

  16. Cost-effectiveness of specific subcutaneous immunotherapy in patients with allergic rhinitis and allergic asthma.

    Brüggenjürgen, Bernd; Reinhold, Thomas; Brehler, Randolf; Laake, Eckard; Wiese, Günther; Machate, Ulrich; Willich, Stefan N

    2008-09-01

    Specific immunotherapy is the only potentially curative treatment in patients with allergic rhinitis and allergic asthma. Health economic evaluations on this treatment, particularly in a German context, are sparse. To evaluate the cost-effectiveness of specific subcutaneous immunotherapy (SCIT) in addition to symptomatic treatment (ST) compared with ST alone in a German health care setting. The analysis was performed as a health economic model calculation based on Markov models. In addition, we performed a concomitant expert board composed of allergy experts in pediatrics, dermatology, pneumology, and otolaryngology. The primary perspective of the study was societal. Additional sensitivity analyses were performed to prove our results for robustness. The SCIT and ST combination was associated with annual cost savings of Euro140 per patient. After 10 years of disease duration, SCIT and ST reach the breakeven point. The overall incremental cost-effectiveness ratio (ICER) was Euro-19,787 per quality-adjusted life-year (QALY), with a range that depended on patient age (adults, Euro-22,196; adolescents, Euro-14,747; children, Euro-12,750). From a third-party payer's perspective, SCIT was associated with slightly additional costs. Thus, the resulting ICER was Euro8,308 per QALY for all patients. Additional SCIT was associated with improved medical outcomes and cost savings compared with symptomatic treatment alone according to a societal perspective. Taking a European accepted ICER threshold of up to Euro50,000 per QALY into account, additional SCIT is considered clearly cost-effective compared with routine care in Germany. The degree of cost-effectiveness is strongly affected by costs related to SCIT and the target population receiving such treatment.

  17. Debates in allergy medicine: specific immunotherapy efficiency in children with atopic dermatitis

    Tatiana A. Slavyanakaya

    2016-04-01

    Full Text Available Abstract Allergen specific immunotherapy (AIT has been the only pathogenetically relevant treatment of IgE-mediated allergic diseases (ADs for many years. The use of AIT for atopic dermatitis (AD treatment is dubious and has both followers and opponents. The improvement of subcutaneous AIT (SCIT and introduction of Sublingual immunotherapy (SLIT gives prospects of their application both for adults and children suffering from AD. This review presents results of scientific research, system and meta-analyses that confirm the clinical efficacy of AIT for children with AD who has the sensitization to allergens of house dust mite, grass and plant pollen suffering from co-occurring respiratory ADs and with moderate and severe course of allergic AD. There have been analyzed the most advanced achievements in AIT studies as well as there have been specified the unmet needs in AD. The preliminary diagnostics of IgE-mediated AD and pathophysiological disorders, including immune ones, will allow a doctor to develop appropriate comprehensive treatment algorithm for children’s AD aimed at its correction. The including of AIT to the children’s comprehensive therapy program is reasonable only if AD has the allergic form. It is necessary better to design the randomized research studies and to acquire extended clinical practice in children with AD. Use of the successes of molecular-based allergy diagnostics will help to optimize and personalize the process of selecting the necessary allergens to determine the most appropriate vaccines for children considering the results of the allergen component diagnostics. The strategy of treatment of children with AD in future will be based on individual target therapy.

  18. An enhanced heterologous virus-like particle for human papillomavirus type 16 tumour immunotherapy.

    Khairunadwa Jemon

    Full Text Available Cervical cancer is caused by high-risk, cancer-causing human papillomaviruses (HPV and is the second highest cause of cancer deaths in women globally. The majority of cervical cancers express well-characterized HPV oncogenes, which are potential targets for immunotherapeutic vaccination. Here we develop a rabbit haemorrhagic disease virus (RHDV virus-like particle (VLP-based vaccine designed for immunotherapy against HPV16 positive tumours. An RHDV-VLP, modified to contain the universal helper T cell epitope PADRE and decorated with an MHC I-restricted peptide (aa 48-57 from the HPV16 E6, was tested for its immunotherapeutic efficacy against the TC-1 HPV16 E6 and E7-expressing tumour in mice. The E6-RHDV-VLP-PADRE was administered therapeutically for the treatment of a pre-existing TC-1 tumour and was delivered with antibodies either to deplete regulatory T cells (anti-CD25 or to block T cell suppression mediated through CTLA-4. As a result, the tumour burden was reduced by around 50% and the median survival time of mice to the humane endpoint was almost doubled the compared to controls. The incorporation of PADRE into the RHDV-VLP was necessary for an E6-specific enhancement of the anti-tumour response and the co-administration of the immune modifying antibodies contributed to the overall efficacy of the immunotherapy. The E6-RHDV-VLP-PADRE shows immunotherapeutic efficacy, prolonging survival for HPV tumour-bearing mice. This was enhanced by the systemic administration of immune-modifying antibodies that are commercially available for use in humans. There is potential to further modify these particles for even greater efficacy in the path to development of an immunotherapeutic treatment for HPV precancerous and cancer stages.

  19. Effect of chemotherapy and immunotherapy on tumor-specific immunity in melanoma.

    Mitchell, M S; Mokyr, M B; Davis, J M

    1977-01-01

    The effects of chemotherapy, with nitrosoureas or dimethyl-triazeno-imidazole-carboxamide (DTIC), or immunotherapy with Bacillus Calmette-Guérin (BCG), on cell-mediated immunity (CMI), and serum blocking factor (BF) to melanoma cells were studied in 23 patients. Studies were performed with autologous or allogenic melanoma target cells obtained from recent biopsy, in 16 mm diameter plastic wells. Assays for lymphocyte-mediated cytotoxicity and BF were performed at weekly intervals over the course of 3-4 mo, with some studies extending beyond 3 yr. The specificity of cytotoxicity was good with these methods. Nine patients given nitrosoureas, predominantly methyl-chloroethyl-cyclohexyl-nitrosourea, showed a transient decline in CMI from 42.2 to 14% 3 wk after administration of a single dose of the agent, with a rapid recovery within 1 week. 10 patients given 5-day courses of DTIC at 3-wk intervals showed no decline in CMI after two courses, and 7 of the 10 had no decline even after three courses. Three of the four patients who achieved a remission lost BF previously present: BF reappeared in both patients studied during a subsequent relapse. BCG intradermally or intralesionally elevated CMI within 2 mo after initiation of therapy, but despite continuation of the injections CMI returned to base line in all but two of the nine patients studied. These results indicate that chemotherapy for melanoma with nitrosoureas or DTIC at these schedules is not profoundly immunosuppressive towards tumor-specific immunity, as measured by our procedures. Putative immunotherapy with BCG at these schedules was likewise only transiently stimulatory. PMID:863999

  20. Metastasis Targeted Therapies in Renal Cell Cancer

    K. Fehmi Narter; Bora Özveren

    2018-01-01

    Metastatic renal cell cancer is a malignant disease and its treatment has been not been described clearly yet. These patients are generally symptomatic and resistant to current treatment modalities. Radiotherapy, chemotherapy, and hormonal therapy are not curative in many of these patients. A multimodal approach consisting of cytoreductive nephrectomy, systemic therapy (immunotherapy or targeted molecules), and metastasectomy has been shown to be hopeful in prolonging the survival and improvi...

  1. Irradiated KHYG-1 retains cytotoxicity: potential for adoptive immunotherapy with a natural killer cell line.

    Suck, G; Branch, D R; Keating, A

    2006-05-01

    To evaluate gamma-irradiation on KHYG-1, a highly cytotoxic natural killer (NK) cell line and potential candidate for cancer immunotherapy. The NK cell line KHYG-1 was irradiated at 1 gray (Gy) to 50 Gy with gamma-irradiation, and evaluated for cell proliferation, cell survival, and cytotoxicity against tumor targets. We showed that a dose of at least 10 Gy was sufficient to inhibit proliferation of KHYG-1 within the first day but not its cytolytic activity. While 50 Gy had an apoptotic effect in the first hours after irradiation, the killing of K562 and HL60 targets was not different from non-irradiated cells but was reduced for the Ph + myeloid leukemia lines, EM-2 and EM-3. gamma-irradiation (at least 10 Gy) of KHYG-1 inhibits cell proliferation but does not diminish its enhanced cytolytic activity against several tumor targets. This study suggests that KHYG-1 may be a feasible immunotherapeutic agent in the treatment of cancers.

  2. Allergen immunotherapy induces a suppressive memory response mediated by IL-10 in a mouse asthma model

    Vissers, Joost L. M.; van Esch, Betty C. A. M.; Hofman, Gerard A.; Kapsenberg, Martien L.; Weller, Frank R.; van Oosterhout, Antoon J. M.

    2004-01-01

    Background: Human studies have demonstrated that allergen immunotherapy induces memory suppressive responses and IL-10 production by allergen-specific T cells. Previously, we established a mouse model in which allergen immunotherapy was effective in the suppression of allergen-induced asthma

  3. Checkpoint inhibitors in advanced melanoma: effect on the field of immunotherapy.

    O'reilly, Aine; Larkin, James

    2017-07-01

    The success of the immune checkpoint inhibitors in melanoma has reinvigorated the field of immunotherapy. Immune checkpoint inhibitors are now the standard of care in multiple cancer types including lung cancer, head and neck cancer, urothelial cancer and renal cell cancer. The field of immunotherapy is currently expanding rapidly and will be a focus of research and development for decades to come. Areas covered: This review covers the early development of immune checkpoint inhibitors and the changes that occurred in the drug development paradigm to facilitate the development of immunotherapy. The review will summarise the areas into which immune checkpoint inhibitors have been adopted and will review the data that supported this. Furthermore, we will discuss future developments in immunotherapy and the current landscape regarding maximising the potential of immunotherapy in clinical practice. Expert commentary: In the author's opinion, the potential of immunotherapy is vast. To date immune checkpoint inhibition has already delivered durable responses in a proportion of patients with cancer types which were previously universally lethal. The future of immunotherapy will rely upon the intelligent application of translational research to clinical practice, such that immunotherapy can be effective for a wider population and maintain its current growth.

  4. Cancer immunotherapy: Opportunities and challenges in the rapidly evolving clinical landscape.

    Emens, Leisha A; Ascierto, Paolo A; Darcy, Phillip K; Demaria, Sandra; Eggermont, Alexander M M; Redmond, William L; Seliger, Barbara; Marincola, Francesco M

    2017-08-01

    Cancer immunotherapy is now established as a powerful way to treat cancer. The recent clinical success of immune checkpoint blockade (antagonists of CTLA-4, PD-1 and PD-L1) highlights both the universal power of treating the immune system across tumour types and the unique features of cancer immunotherapy. Immune-related adverse events, atypical clinical response patterns, durable responses, and clear overall survival benefit distinguish cancer immunotherapy from cytotoxic cancer therapy. Combination immunotherapies that transform non-responders to responders are under rapid development. Current challenges facing the field include incorporating immunotherapy into adjuvant and neoadjuvant cancer therapy, refining dose, schedule and duration of treatment and developing novel surrogate endpoints that accurately capture overall survival benefit early in treatment. As the field rapidly evolves, we must prioritise the development of biomarkers to guide the use of immunotherapies in the most appropriate patients. Immunotherapy is already transforming cancer from a death sentence to a chronic disease for some patients. By making smart, evidence-based decisions in developing next generation immunotherapies, cancer should become an imminently treatable, curable and even preventable disease. Copyright © 2017 Elsevier Ltd. All rights reserved.

  5. Progress in research on combination treatment of cancer with radiation therapy and immunotherapy

    Wang Hao; Jia Rui; Yan Jinqi; Yu Jiyun

    2007-01-01

    Radiation therapy (RT) is an important local treatment for tumors, and immunotherapy is a systematic treatment. Combination of RT with immunotherapy may bring about an obvious synergistic anti-tumor effort. Here the research progress in this aspect is reviewed. (authors)

  6. Immunotherapy in children and adolescents with allergic rhinoconjunctivitis : a systematic review

    Roeder, Esther; Berger, Marjolein Y.; de Groot, Hans; van Wijk, Roy Gerth

    Allergen-specific immunotherapy is one of the cornerstones of allergic rhinoconjunctivitis treatment. Since the development of non-invasive administration forms with better safety profiles, there is an increasing tendency to prescribe immunotherapy in youngsters. However, no overview is available on

  7. Improved survival for patients diagnosed with chronic lymphocytic leukemia in the era of chemo-immunotherapy

    da Cunha-Bang, C; Simonsen, J; Rostgaard, K

    2016-01-01

    The treatment of chronic lymphocytic leukemia (CLL) is in rapid transition, and during recent decades both combination chemotherapy and immunotherapy have been introduced. To evaluate the effects of this development, we identified all CLL patients registered in the nation-wide Danish Cancer...... for patients treated with chemo-immunotherapy demonstrated in clinical studies....

  8. [Immunotherapy for renal cell carcinoma - current status].

    Grimm, Marc-Oliver; Foller, Susan

    2018-04-01

    Systemic treatment of metastatic renal cell carcinoma (mRCC) has substantially changed during the last 2 years due to approval of the immune-checkpoint inhibitor Nivolumab (Opdivo ® ) and new multikinase inhibitors (Cabozantinib, Lenvatinib, Tivozanib). The german kidney tumor guideline strongly recommends Nivolumab and Cabozantinib as 2nd line treatments after prior VEGF targeted therapy. CheckMate 025, the prospective randomized trial which led to approval of Nivolumab demonstrated improved overall survival (26 month vs. 19.7 month; hazard ratio 0.73; p = 0.0006) and response rate (26 % vs. 5 %) as well as a favorable toxicity profile compared with Everolimus. Currently, numerous combinations with PD-1/PD-L1 inhibitors are compared to Sunitinib as first line treatment of mRCC. Out of these CheckMate 214, a randomized phase-3 trial is the first to demonstrate a significant higher objective response rate (42 % vs. 27 %, p < 0.0001) and overall survival (Sunitinib 26.0 month, median for Nivo + Ipi has been not yet reached (28.2 - NR); Hazard ratio 0.63) for the combination of Nivolumab and the CTLA-4 antibody Ipilimumab in IMDC intermediate and high risk patients. Furthermore, CheckMate 214 shows better side effect profile and quality of life in patients receiving Nivolumab and Ipilimumab compared with Sunitinib. However, a considerable increase of immune related adverse events is associated with the immune combination therapy. Another randomized trial demonstrates improved progression-free survival for the combination of the PD-L1 inhibitor Atezolizumab and the VEGF antibody Bevacizumab in patients with PD-L1 positive tumors; this was found in all IMDC risk groups. Further phase-3 trials with "new" VEGFR-TKIs (Axitinib, Cabozantinib, Lenvatinib) and PD-1/PD-L1 inhibitor combinations are ongoing.In conclusion, the PD-1 immune checkpoint inhibitor Nivolumab will remain a standard treatment for patients with metastatic renal cell carcinoma

  9. The research status of immune checkpoint blockade by anti-CTLA4 and anti-PD1/PD-l1 antibodies in tumor immunotherapy in China: A bibliometrics study.

    Zhao, Xiaoqin; He, Liangmei; Mao, Kaiyun; Chen, Daming; Jiang, Hongbo; Liu, Zhiping

    2018-04-01

    Using bibliometrics, we analyzed the research status of immune checkpoint blockade (ICB, a popular tumor immunotherapy method represented by antibodies targeted CTLA-4 and PD-1/PD-L1) in tumor immunotherapy in China during the past 2 decades. Articles in Science Citation Index Expanded (SCI-EXPANDED), patents in Thomson Innovation, and drugs in Cortellis Competitive Intelligence in the field of ICB for tumor immunotherapy from 1996 to 2015 were the subjects of bibliometric analysis. Using database-attached software and Excel, quantitative analyses were performed including examination of the number of documents, citation frequency, h-index, key projects, quantity of publications, public patents, and status of new drug research. The number of publications from 1996 to 2015 in the field of ICB for tumor immunotherapy that came out of China was 380, which was 14.3% of the total publications worldwide and was second only to that of the USA. In the past decade, China has rapidly increased the number of publications and patents in this field. However, indicators of publication influence, such as citation frequency and h-index, were far behind other advanced countries. In addition, the total number of patents in China was much lower than that of the USA. China has introduced 5 drugs for ICB that are being developed for the healthcare market. Tumor immunotherapy research such as ICB in China has developed rapidly with increasing influence in the last 2 decades. However, there is still a relatively large gap compared with the USA. It is expected that China will have greater influence on tumor immunotherapy research in the near future.

  10. Immunotherapy (oral and sublingual) for food allergy to fruits.

    Yepes-Nuñez, Juan Jose; Zhang, Yuan; Roqué i Figuls, Marta; Bartra Tomas, Joan; Reyes, Juan Manuel; Pineda de la Losa, Fernando; Enrique, Ernesto

    2015-11-09

    Food allergy is an abnormal immunological response following exposure (usually ingestion) to a food. Elimination of the allergen is the principle treatment for food allergy, including allergy to fruit. Accidental ingestion of allergenic foods can result in severe anaphylactic reactions. Allergen-specific immunotherapy (SIT) is a specific treatment, when the avoidance of allergenic foods is problematic. Recently, studies have been conducted on different types of immunotherapy for the treatment of food allergy, including oral (OIT) and sublingual immunotherapy (SLIT). To determine the efficacy and safety of oral and sublingual immunotherapy in children and adults with food allergy to fruits, when compared with placebo or an elimination strategy. The Cochrane Central Register of Controlled Trials (CENTRAL), MEDLINE, EMBASE, CINAHL, and AMED were searched for published results along with trial registries and the Journal of Negative Results in BioMedicine for grey literature. The date of the most recent search was July 2015. Randomised controlled trials (RCTs) comparing OIT or SLIT with placebo or an elimination diet were included. Participants were children or adults diagnosed with food allergy who presented immediate fruit reactions. We used standard methodological procedures expected by the Cochrane Collaboration. We assessed treatment effect through risk ratios (RRs) for dichotomous outcomes. We identified two RCTs (N=89) eligible for inclusion. These RCTs addressed oral or sublingual immunotherapy, both in adults, with an allergy to apple or peach respectively. Both studies enrolled a small number of participants and used different methods to provide these differing types of immunotherapy. Both studies were judged to be at high risk of bias in at least one domain. Overall, the quality of evidence was judged to be very low due to the small number of studies and participants and possible bias. The studies were clinically heterogeneous and hence we did not pool the

  11. The synergy between ionizing radiation and immunotherapy in the treatment of prostate cancer.

    Sathianathen, Niranjan J; Krishna, Suprita; Konety, Badrinath R; Griffith, Thomas S

    2017-09-01

    There has been a surge in the use of immunotherapy for genitourinary malignancies. Immunotherapy is an established treatment for metastatic renal cell carcinoma and nonmuscle invasive bladder cancer, but its potential for treating prostate cancer (PCa) remains under investigation. Despite reported survival benefits, no published Phase III PCa trials using immunotherapy only as a treatment has demonstrated direct antitumor effects by reducing prostate-specific antigen levels. Subsequently, the thought of combining immunotherapy with other treatment modalities has gained traction as a way to achieving optimal results. Based on data from other malignancies, it is hypothesized that radiotherapy and immunotherapy can act synergistically to improve outcomes. We will discuss the clinical potential of combining immune-based treatments with radiotherapy as a treatment for advanced PCa.

  12. Combination therapy with radiation and OK-432 immunotherapy of cancer patients

    Hashimoto, Shozo; Miyamoto, Hiroshi

    1978-01-01

    We treated cancer patients with radiotherapy alone and with radiation plus immunotherapy at the Department of Radiology, Keio University Hospital. In all of the cancer patients who had radiationtherapy alone, a general depression in their immune reactivity was seen, but not seen in those who received radiationtherapy plus immunotherapy. Immunotherapy is defined as a stimulator of cancer patient's immune reaction. Usually radiationtherapy caused lymphopenia in which mainly T lymphocytes were decreased in number selectively, but there was no lymphopenia in cases treated with immunotherapy. We have performed nonspecific immunotherapy with OK-432. The result indicated that T lymphocytes were increased by OK-432 in spite of radiationtherapy. From this fact, OK-432 will be useful for suppression of metastasis and regression of tumors. (auth.)

  13. Combined effect of angioinfarction with immunotherapy in patients with stage IV renal cell carcinoma

    Oh, Joo Hyeong; Yoon, Yup; Jeong, Yu Mee; Ko, Young Tae; Chang, Sung Goo

    1994-01-01

    To assess the combined effectiveness of angioinfarction and immunotherapy for improving survival in patients with stage IV renal cell carcinoma. During the past 3 years, 13 patients of stage IV renal cell carcinoma were treated with angioinfarction and immunotherapy. Angioinfarction was performed on these 13 patients using absolute ethanol and occlusive balloon catheter. After angioinfarction, Interferon alpha was used for immunotherapy. For our analysis, 12 control patients of stage IV renal cell carcinoma without treatment were included in the study. Survival has been calculated according to the Kaplan and Meier method. The 1 year survival rate and median survival time in patients treated with angioinfarction and immunotherapy, were 46% and 13 months and in patients without treatment, 16% and 4 months, respectively. The combined treatment of angioinfarction and immunotherapy is of considerable value for improving survival in patients with stage IV renal cell carcinoma

  14. Plasma Onco-Immunotherapy: Novel Approach to Cancer Treatment

    Fridman, Alexander

    2015-09-01

    Presentation is reviewing the newest results obtained by researchers of A.J. Drexel Plasma Institute on direct application of non-thermal plasma for direct treatment of different types of cancer by means of specific stimulation of immune system in the frameworks of the so-called onco-immunotherapy. Especial attention is paid to analysis of depth of penetration of different plasma-medical effects, from ROS, RNS, and ions to special biological signaling and immune system related processes. General aspects of the plasma-stimulation of immune system are discussed, pointing out specific medical applications. Most of experiments have been carried out using nanosecond pulsed DBD at low power and relatively low level of treatment doses, guaranteeing non-damage no-toxicity treatment regime. The nanosecond pulsed DBD physics is discussed mostly regarding its space uniformity and control of plasma parameters relevant to plasma medical treatment, and especially relevant to depth of penetration of different plasma medical effects. Detailed mechanism of the plasma-induced onco-immunotherapy has been suggested based upon preliminary in-vitro experiments with DBD treatment of different cancer cells. Sub-elements of this mechanism related to activation of macrophages and dendritic cells, specific stressing of cancer cells and the immunogenic cell death (ICD) are to be discussed based on results of corresponding in-vitro experiments. In-vivo experiments focused on the plasma-induced onco-immunotherapy were carried out in collaboration with medical doctors from Jefferson University hospital of Philadelphia. Todays achievements and nearest future prospective of clinical test focused on plasma-controlled cancer treatment are discussed in conclusion.

  15. Efficacy and safety of OK-432 immunotherapy of lymphatic malformations.

    Smith, Mark C; Zimmerman, M Bridget; Burke, Diane K; Bauman, Nancy M; Sato, Yutaka; Smith, Richard J H

    2009-01-01

    To determine the efficacy and safety of the immunostimulant OK-432 (Picibanil) as a treatment option in the management of children with cervicofacial lymphatic malformations. A prospective, randomized, multi-institutional phase II clinical trial at 27 U.S. academic medical centers. 182 patients with lymphatic malformations (LM) were enrolled between January 1998 and November 2004. Of the 151 patients with complete case report forms, 117 patients were randomized into immediate or delayed treatment groups; 34 patients were nonrandomized and assigned to the open-label group. Treatment consisted of a four-dose intralesional injection series of OK-432 at eight-week intervals. Patients randomized into the delayed treatment group served as observational controls for spontaneous regression. Response to therapy was measured radiographically by quantitating change in lesion size and graded as complete (90%-100%), substantial (60%-89%), intermediate (20%-59%), or none (<20%). Of 117 patients randomized with intent-to-treat, 68% demonstrated a complete or substantial response to OK-432 immunotherapy. Response data for macrocystic LM were higher, with a complete or substantial response in 94% of patients; 63% of patients with mixed macrocystic-microcystic LM responded to treatment; no patients with microcystic LM responded to treatment. Spontaneous resolution occurred in less than 2% of patients. Median follow-up of 2.9 years demonstrated a 9% recurrence rate. Major adverse effects related to therapy occurred in 11 patients. As compared to historical surgical data on LM, OK-432 immunotherapy is more effective (P < .001) and has a lower morbidity (P < .001). OK-432 immunotherapy is an effective, safe, and simple treatment option for the management of macrocystic cervicofacial LM. ClinicalTrials.gov Identifier: NCT00010452.

  16. Side effects during subcutaneous immunotherapy in children with allergic diseases.

    Tophof, Max A; Hermanns, Anne; Adelt, Thomas; Eberle, Peter; Gronke, Christine; Friedrichs, Frank; Knecht, Roland; Mönter, Ernst; Schöpfer, Helmut; Schwerk, Nicolaus; Steinbach, Jörg; Umpfenbach, Hans-Ulrich; Weißhaar, Christian; Wilmsmeyer, Brigitte; Bufe, Albrecht

    2018-05-01

    Allergen-specific immunotherapy is the only causal form of therapy for IgE-mediated allergic diseases. Subcutaneous immunotherapy (SCIT) is considered safe and well tolerated in adults, yet there is less evidence of safety in the pediatric population. A non-interventional prospective observing longitudinal study was carried out to determine the incidence of local and systemic side effects by SCIT, routinely performed in pediatric patients. A total of 581 pediatric patients were observed in 18 study centers between March 2012 and October 2014, recording 8640 treatments and 10 015 injections. A total of 54.6% of the patients experienced immediate local side effects at least once; delayed local side effects were seen in 56.1%. Immediate systemic adverse reactions occurred in 2.2% of patients; 7.4% experienced delayed systemic side effects. However, severe systemic side effects (grade III in the classification of Ring and Messmer) were seen in 0.03% of all treatments, all appearing within 30 minutes after the injections. No grade IV reactions were observed. In addition, many potential risk factors were investigated, yet only a few were found to be associated with the occurrence of side effects. Subcutaneous immunotherapy is a safe form of therapy in pediatric patients, with similar rates of local side effects compared to adult patients and low rates of severe systemic side effects. However, local and systemic reactions occurring later than 30 minutes after injection were observed more often than expected, which makes it essential to be attentive on behalf of pediatricians, patients, and parents. © 2017 EAACI and John Wiley and Sons A/S. Published by John Wiley and Sons Ltd.

  17. Accelerated subcutaneous immunotherapy in pediatric population – Systematic review

    R.A. Gomes dos Reis Pimentel

    2018-05-01

    Full Text Available Background: Accelerated subcutaneous immunotherapy (SCIT schedules represent an alternative to conventional SCIT, providing immunotherapy benefits in a shorter period of time. The objectives of this systematic review were to assess clinical and immunological efficacy as well as safety of accelerated SCIT build-up schedules for the treatment of respiratory allergy in pediatric patients. Methods: Studies were located by searching PubMed, using “immunotherapy” and “desensitization” as keywords. The selection of studies, published from January 1st, 2006, to December 31th, 2015, was performed in two stages: screening of titles and abstracts, and assessment of the full papers identified as relevant, considering the inclusion criteria. Data were extracted in a standardized way and synthesized qualitatively to assess efficacy and safety of accelerated schedules in respiratory allergy. Results: Eleven trials were included: two evaluated rush SCIT and nine assessed cluster SCIT. This review demonstrated that rush and cluster schedules are clinically and immunological efficacious, with faster effect than conventional schedules. No relevant difference with respect to clinical outcomes was noticed between subgroups (pediatric, adult and mixed populations. Regarding safety, most local adverse reactions were mild and there were neither life-threatening systemic reactions nor fatal events. No relevant differences in the incidence and severity of either local or systemic reactions between the accelerated schedule group and control group were registered. Conclusions: Accelerated SCIT build-up schedules are effective in the treatment of respiratory allergy in pediatric patients, representing a safe alternative to the conventional schedules with the advantage of achieving clinical effectiveness sooner. Keywords: Allergy, Immunotherapy, Pediatrics

  18. REVIEW OF APPROACHES TO IMMUNOTHERAPY IN ONCOLOGY

    I. L. Tsarev

    2017-01-01

    Full Text Available The article discusses modern ideas about the immune therapy of cancer — methods of treatment of oncological diseases based on immunological reactions of the organism to the appearance of malignant cells in it. This area is actively studied in clinical practice in the last decade, and some therapy has already been approved for use by regulators after promising results of clinical trials 3 phase.Immune therapy is based on antitumor immune cycle — the cascade of processes responsible for the immune system’s response to tumor cells. Involved regulatory mechanisms are targets for various therapies, the overall goal is to restore proper functioning of the cycle and to achieve the elimination of cancer cells.Currently, the most studied two types of immune therapy — checkpoint inhibitors and adaptive cell therapy. Checkpoint inhibitors increase the activity of body immune cells, reducing the inhibitory influence of the tumor microenvironment and the tumor cells themselves, which allowed them to get out from under the pressure of the immune system during the development of the disease. Adaptive cell therapy, in turn, allows to compensate the lack of active immune against tumor cells.Mechanisms of action determine the effectiveness of various therapies for different diseases, and for patients inside of one diagnosis. To determine the effectiveness of other treatment prior to a particular patient it is necessary to use the latest achievements in precision medicine, based on the search for new biomarkers and analyzing each patient separately. This approach will significantly reduce costs and save precious time for the patient. 

  19. Component-resolved diagnostics to direct in venom immunotherapy

    Blank, Simon; Bilò, Maria Beatrice; Ollert, Markus

    2018-01-01

    , the increasing knowledge about the molecular structure and relevance of important venom allergens and their availability as recombinant allergens, devoid of cross-reactive carbohydrate determinants, resulted in the development of an advanced component-resolved diagnostics (CRD) approach in venom allergy. Already...... immunotherapeutic intervention. Moreover, the detailed knowledge about sensitization profiles on a molecular level might open new options to identify patients who are at increased risk for side effects or not to respond to immunotherapy. Therefore, increasing potential of CRD becomes evident, to direct therapeutic...

  20. [Psychological aspects of immunotherapies in the treatment of malignant melanoma].

    Kovács, Péter; Pánczél, Gitta; Melegh, Krisztina; Balatoni, Tímea; Pörneczy, Edit; Lõrincz, Lenke; Czirbesz, Kata; Gorka, Eszter; Liszkay, Gabriella

    2016-03-02

    Psychological problems may arise in connection with oncomedical treatments in three ways: 1. acute and/or 2. chronic ways, as well as 3. co-morbid psychiatric diseases that already exist must also be taken into account. Immunotherapies have the most common and also clinically relevant psychological side effects. Fatigue, anhedonia, social isolation, psychomotor slowness is reported during treatment. Anti-CTLA-4 antibody (ipilimumab) immunotherapy can present one of the most modern opportunities for adequate treatment for patients having distant metastasis or unresectable tumour. In relation to immunotherapies, acute psychological side effects (acute stress) emerging during treatments develop in a way that can mostly be linked to environmental factors, e.g. notification of diagnosis, hospitalisation, progression, deterioration in quality of life, imminent dates of control. Crisis is a temporary and threatening condition that endangers psychological balance. In such conditions, enhanced psychological vulnerability must be taken into account and doctors play a key role in the rapid recognition of the condition. Chronic psychological problems, which may arise from the depressogenic effect of the applied treatment or originated from a pre-melanoma psychiatric condition, may exceed the diagnostic and psychotherapeutic competences of a clinical psychologist. Even in case of a well-defined depressogenic biological mechanism such as the activation of the pro-inflammatory cytokine pathway, positive environmental effects can reduce symptoms and thus increase compliance. Side effects can be treated successfully using psychotherapeutic methods and/or psychiatric medicines. The application of routinely used complex psychosocial screening packages can provide the easiest method to identify worsening psychological condition during immunotherapy and give rapid feedback to the oncologist and the patient. Team work is of particular importance in a situation like this as it requires

  1. Immunotherapy in Merkel cell carcinoma: role of Avelumab.

    Palla, Amruth R; Doll, Donald

    2018-01-01

    Merkel cell carcinoma (MCC), a rare skin cancer, is associated with high mortality, especially in a metastatic setting. Though conventional chemotherapy with platinum and etoposide has had high response rates, many of the patients have had early relapse without any effective therapy thereafter. Recently, immune check point inhibitors have shown very good durable responses, leading to the approval of a programmed death-ligand 1 inhibitor Avelumab for these patients. We briefly review the epidemiology and immune basis of the pathogenesis of MCC, which therefore explains the excellent response to check point inhibitors, and throw light on future directions of immunotherapy for this cancer.

  2. High hydrostatic pressure in cancer immunotherapy and biomedicine.

    Adkins, Irena; Hradilova, Nada; Palata, Ondrej; Sadilkova, Lenka; Palova-Jelinkova, Lenka; Spisek, Radek

    High hydrostatic pressure (HHP) has been known to affect biological systems for >100 years. In this review, we describe the technology of HHP and its effect macromolecules and physiology of eukaryotic cells. We discuss the use of HHP in cancer immunotherapy to kill tumor cells for generation of whole cell and dendritic cell-based vaccines. We further summarize the current use and perspectives of HHP application in biomedicine, specifically in orthopedic surgery and for the viral, microbial and protozoan inactivation to develop vaccines against infectious diseases. Copyright © 2018. Published by Elsevier Inc.

  3. Adoptive T cell therapy: Addressing challenges in cancer immunotherapy

    Yee Cassian

    2005-04-01

    Full Text Available Abstract Adoptive T cell therapy involves the ex vivo selection and expansion of effector cells for the treatment of patients with cancer. In this review, the advantages and limitations of using antigen-specific T cells are discussed in counterpoint to vaccine strategies. Although vaccination strategies represent more readily available reagents, adoptive T cell therapy provides highly selected T cells of defined phenotype, specificity and function that may influence their biological behavior in vivo. Adoptive T cell therapy offers not only translational opportunities but also a means to address fundamental issues in the evolving field of cancer immunotherapy.

  4. Functions of NKG2D in CD8+ T cells: an opportunity for immunotherapy.

    Prajapati, Kushal; Perez, Cynthia; Rojas, Lourdes Beatriz Plaza; Burke, Brianna; Guevara-Patino, Jose A

    2018-02-05

    Natural killer group 2 member D (NKG2D) is a type II transmembrane receptor. NKG2D is present on NK cells in both mice and humans, whereas it is constitutively expressed on CD8 + T cells in humans but only expressed upon T-cell activation in mice. NKG2D is a promiscuous receptor that recognizes stress-induced surface ligands. In NK cells, NKG2D signaling is sufficient to unleash the killing response; in CD8 + T cells, this requires concurrent activation of the T-cell receptor (TCR). In this case, the function of NKG2D is to authenticate the recognition of a stressed target and enhance TCR signaling. CD28 has been established as an archetype provider of costimulation during T-cell priming. It has become apparent, however, that signals from other costimulatory receptors, such as NKG2D, are required for optimal T-cell function outside the priming phase. This review will focus on the similarities and differences between NKG2D and CD28; less well-described characteristics of NKG2D, such as the potential role of NKG2D in CD8 + T-cell memory formation, cancer immunity and autoimmunity; and the opportunities for targeting NKG2D in immunotherapy.Cellular and Molecular Immunology advance online publication, 5 February 2018; doi:10.1038/cmi.2017.161.

  5. Which radionuclide, carrier molecule and clinical indication for alpha-immunotherapy?

    Guerard, F.; Barbet, J.; Cherel, M.; Chatal, J.-F.; Haddad, F.; Kraeber-Bodere, F.

    2015-01-01

    Beta-emitting radionuclides are not able to kill isolated tumor cells disseminated in the body, even if a high density of radiolabeled molecules can be targeted at the surface of these cells because the vast majority of emitted electrons deliver their energy outside the targeted cells. Alpha-particle emitting radionuclides may overcome this limitation. It is thus of primary importance to test and validate the radionuclide of choice, the most appropriate carrier molecule and the most promising clinical indication. Four α-particle emitting radionuclides have been or are clinically tested in phase I studies namely 213 Bi, 225 Ac, 212 Pb and 211 At. Clinical safety has been documented and encouraging efficacy has been shown for some of them ( 213 Bi and 211 At). 211 At has been the most studied and could be the most promising radionuclide but 225 Ac and 212 Pb are also of potential great interest. Any carrier molecule that has been labeled with β-emitting radionuclides could be labeled with alpha particle-emitting radionuclide using, for some of them, the same chelating agents. However, the physical half-life of the radionuclide should match the biological half-life of the radioconjugate or its catabolites. Finally everybody agrees, based on the quite short range of alpha particles, on the fact that the clinical indications for alpha-immunotherapy should be limited to the situation of disseminated minimal residual diseases made of small clusters of malignant cells or isolated tumor cells.

  6. Impact of diffusion barriers to small cytotoxic molecules on the efficacy of immunotherapy in breast cancer.

    Hiranmoy Das

    Full Text Available Molecular-focused cancer therapies, e.g., molecularly targeted therapy and immunotherapy, so far demonstrate only limited efficacy in cancer patients. We hypothesize that underestimating the role of biophysical factors that impact the delivery of drugs or cytotoxic cells to the target sites (for associated preferential cytotoxicity or cell signaling modulation may be responsible for the poor clinical outcome. Therefore, instead of focusing exclusively on the investigation of molecular mechanisms in cancer cells, convection-diffusion of cytotoxic molecules and migration of cancer-killing cells within tumor tissue should be taken into account to improve therapeutic effectiveness. To test this hypothesis, we have developed a mathematical model of the interstitial diffusion and uptake of small cytotoxic molecules secreted by T-cells, which is capable of predicting breast cancer growth inhibition as measured both in vitro and in vivo. Our analysis shows that diffusion barriers of cytotoxic molecules conspire with γδ T-cell scarcity in tissue to limit the inhibitory effects of γδ T-cells on cancer cells. This may increase the necessary ratios of γδ T-cells to cancer cells within tissue to unrealistic values for having an intended therapeutic effect, and decrease the effectiveness of the immunotherapeutic treatment.

  7. Adoptive T cell transfer for cancer immunotherapy in the era of synthetic biology.

    Kalos, Michael; June, Carl H

    2013-07-25

    Adoptive T cell transfer for cancer and chronic infection is an emerging field that shows promise in recent trials. Synthetic-biology-based engineering of T lymphocytes to express high-affinity antigen receptors can overcome immune tolerance, which has been a major limitation of immunotherapy-based strategies. Advances in cell engineering and culture approaches to enable efficient gene transfer and ex vivo cell expansion have facilitated broader evaluation of this technology, moving adoptive transfer from a "boutique" application to the cusp of a mainstream technology. The major challenge currently facing the field is to increase the specificity of engineered T cells for tumors, because targeting shared antigens has the potential to lead to on-target off-tumor toxicities, as observed in recent trials. As the field of adoptive transfer technology matures, the major engineering challenge is the development of automated cell culture systems, so that the approach can extend beyond specialized academic centers and become widely available. Copyright © 2013 Elsevier Inc. All rights reserved.

  8. Glycan Markers as Potential Immunological Targets in Circulating Tumor Cells.

    Wang, Denong; Wu, Lisa; Liu, Xiaohe

    2017-01-01

    We present here an experimental approach for exploring a new class of tumor biomarkers that are overexpressed by circulating tumor cells (CTCs) and are likely targetable in immunotherapy against tumor metastasis. Using carbohydrate microarrays, anti-tumor monoclonal antibodies (mAbs) were scanned against a large panel of carbohydrate antigens to identify potential tumor glycan markers. Subsequently, flow cytometry and fiber-optic array scanning technology (FAST) were applied to determine whether the identified targets are tumor-specific cell-surface markers and are, therefore, likely suitable for targeted immunotherapy. Finally, the tumor glycan-specific antibodies identified were validated using cancer patients' blood samples for their performance in CTC-detection and immunotyping analysis. In this article, identifying breast CTC-specific glycan markers and targeting mAbs serve as examples to illustrate this tumor biomarker discovery strategy.

  9. Summary of bi-shRNA/GM-CSF augmented autologous tumor cell immunotherapy (FANG™) in advanced cancer of the liver.

    Nemunaitis, John; Barve, Minal; Orr, Douglas; Kuhn, Joseph; Magee, Mitchell; Lamont, Jeffrey; Bedell, Cynthia; Wallraven, Gladice; Pappen, Beena O; Roth, Alyssa; Horvath, Staci; Nemunaitis, Derek; Kumar, Padmasini; Maples, Phillip B; Senzer, Neil

    2014-01-01

    Therapies for advanced hepatocellular carcinoma (HCC) are limited. We carried out a phase I trial of a novel autologous whole-cell tumor cell immunotherapy (FANG™), which incorporates a dual granulocyte macrophage colony-stimulating factor (GM-CSF) expressive/bifunctional small hairpin RNA interference (bi-shRNAi) vector. The bi-shRNAi DNA targets furin, which is a proconvertase of transforming growth factors beta (TGFβ) 1 and 2. Safety, mechanism, immunoeffectiveness, and suggested benefit were previously shown [Senzer et al.: Mol Ther 2012;20:679-689; Senzer et al.: J Vaccines Vaccin 2013;4:209]. We now provide further follow-up of a subset of 8 HCC patients. FANG manufacturing was successful in 7 of 8 attempts (one failure due to insufficient cell yield). Median GM-CSF expression was 144 pg/10(6) cells, TGFβ1 knockdown was 100%, and TGFβ2 knockdown was 93% of the vector-transported cells. Five patients were vaccinated (1 or 2.5×10(7) cells/intradermal injection, 6-11 vaccinations). No FANG toxicity was observed. Three of these patients demonstrated evidence of an immune response to the autologous tumor cell sample. Long-term follow-up demonstrated survival of 319, 729, 784, 931+, and 1,043+ days of the FANG-treated patients. In conclusion, evidence supports further assessment of the FANG immunotherapy in HCC. © 2014 S. Karger AG, Basel.

  10. Immunotherapy, an evolving approach for the management of triple negative breast cancer: Converting non-responders to responders.

    Tolba, Mai F; Omar, Hany A

    2018-02-01

    Immunotherapy comprises a promising new era in cancer therapy. Immune checkpoint inhibitors targeting either the programmed death (PD)-1 receptor or its ligand PD-L1 were first approved by the Food and Drug Administration (FDA) for the management of metastatic melanoma in 2011. The approval of this class is being extended to include other types of immunogenic tumors. Although breast cancer (BC) was first categorized as non-immunogenic tumor type, there are certain subsets of BC that showed a high level of tumor infiltrating lymphocytes (TILs). Those subsets include the triple negative breast cancer (TNBC) and HER-2 positive breast tumors. Preliminary data from clinical trials presented promising outcomes for patients with advanced stage/metastatic TNBC. While the objective response rate (ORR) was relatively low, it is still promising because of the observation that the patients who respond to the treatment with immune checkpoint blockade have favorable prognosis and often show a significant increase in the overall survival. Therefore, the main challenge is to find ways to enhance the tumor response to such therapy and to convert the non-responders to responders. This will consequently bring new hopes for patients with advanced stage metastatic TNBC and help to decrease death tolls from this devastating disease. In the current review, we are highlighting and discussing the up-to-date strategies adopted at either the preclinical or the clinical settings to enhance tumor responsiveness to immunotherapy. Copyright © 2018 Elsevier B.V. All rights reserved.

  11. Adoptive Immunotherapy for Hematological Malignancies Using T Cells Gene-Modified to Express Tumor Antigen-Specific Receptors

    Hiroshi Fujiwara

    2014-12-01

    Full Text Available Accumulating clinical evidence suggests that adoptive T-cell immunotherapy could be a promising option for control of cancer; evident examples include the graft-vs-leukemia effect mediated by donor lymphocyte infusion (DLI and therapeutic infusion of ex vivo-expanded tumor-infiltrating lymphocytes (TIL for melanoma. Currently, along with advances in synthetic immunology, gene-modified T cells retargeted to defined tumor antigens have been introduced as “cellular drugs”. As the functional properties of the adoptive immune response mediated by T lymphocytes are decisively regulated by their T-cell receptors (TCRs, transfer of genes encoding target antigen-specific receptors should enable polyclonal T cells to be uniformly redirected toward cancer cells. Clinically, anticancer adoptive immunotherapy using genetically engineered T cells has an impressive track record. Notable examples include the dramatic benefit of chimeric antigen receptor (CAR gene-modified T cells redirected towards CD19 in patients with B-cell malignancy, and the encouraging results obtained with TCR gene-modified T cells redirected towards NY-ESO-1, a cancer-testis antigen, in patients with advanced melanoma and synovial cell sarcoma. This article overviews the current status of this treatment option, and discusses challenging issues that still restrain the full effectiveness of this strategy, especially in the context of hematological malignancy.

  12. Stability evaluation of house dust mite vaccines for sublingual immunotherapy

    MARIJA GAVROVIĆ-JANKULOVIĆ

    2010-01-01

    Full Text Available Allergen-specific immunotherapy with house dust mite (HDM allergen extracts can effectively alleviate the symptoms of allergic rhinitis and asthma. The efficacy of the immunotherapeutic treatment is highly dependent on the quality of house dust mite vaccines. This study was performed to assess the stability of house dust mite allergen vaccines prepared for sublingual immunotherapy. Lyophilized Dermatophagoides pteronyssinus (Dpt mite bodies were the starting material for the production of sublingual vaccines in four therapeutic concentrations. The stability of the extract for vaccine production, which was stored below 4 °C for one month, showed consistence in the protein profile in SDS PAGE. ELISA-inhibition showed that the potencies of Dpt vaccines during a 12 month period were to 65–80 % preserved at all analyzed therapeutic concentrations. This study showed that glycerinated Dpt vaccines stored at 4 °C preserved their IgE-binding potential during a 12 month period, implying their suitability for sublingual immunotherapeutic treatment of HDM allergy.

  13. The future of immunotherapy for canine atopic dermatitis: a review.

    DeBoer, Douglas J

    2017-02-01

    Allergen specific immunotherapy (ASIT) is a foundation treatment for canine atopic dermatitis (CAD), though few critical studies have documented its effectiveness as a disease-modifying treatment in dogs. The mechanisms by which ASIT works in dogs have not been elucidated, although they are likely to parallel those known for humans. Current ASIT approaches in CAD focus on either subcutaneous or sublingual administration. Greater knowledge of major allergens in dogs, ideal dosage regimes and details of allergen admixture are likely to lead to better efficacy in CAD. Evaluation of biomarkers for successful therapy may also be of benefit. Potentially important advances in human medicine, that have yet to be explored in dogs, include use of modified allergen preparations such as allergoids, recombinant major allergens or allergen peptides; modification with adjuvants; or packaging of the above in virus-like particles. Co-administration of immunomodulators such as CpG oligodeoxynucleotides or specific monoclonal antibodies might direct the immune response in the desired direction while calming the "cytokine storm" of active disease. Initial trials of alternative routes of administration such as intralymphatic immunotherapy have yielded exciting results in humans, and continuing study in dogs is underway. Progress in ASIT of human food allergy may provide clues that will assist with improved diagnosis and patient management of CAD. Importantly, further study must be undertaken to clarify the conditions under which ASIT is a valuable treatment modality for dogs. © 2017 ESVD and ACVD.

  14. Quality requirements for allergen extracts and allergoids for allergen immunotherapy.

    Zimmer, J; Bonertz, A; Vieths, S

    2017-12-01

    All allergen products for allergen immunotherapy currently marketed in the European Union are pharmaceutical preparations derived from allergen-containing source materials like pollens, mites and moulds. Especially this natural origin results in particular demands for the regulatory requirements governing allergen products. Furthermore, the development of regulatory requirements is complicated by the so far missing universal link between certain quality parameters, in particular biological potency, on the one hand and clinical efficacy on the other hand. As a consequence, each allergen product for specific immunotherapy has to be assessed individually for its quality, safety and efficacy. At the same time, biological potency of allergen products is most commonly determined using IgE inhibition assays based on human sera relative to product-specific in house references, ruling out full comparability of products from different manufacturers. This review article aims to summarize the current quality requirements for allergen products including the special requirements implemented for control of chemically modified allergen extracts (allergoids). Copyright © 2017 SEICAP. Published by Elsevier España, S.L.U. All rights reserved.

  15. New Approaches to Immunotherapy for HPV Associated Cancers

    Deepak Mittal

    2011-09-01

    Full Text Available Cervical cancer is the second most common cancer of women worldwide and is the first cancer shown to be entirely induced by a virus, the human papillomavirus (HPV, major oncogenic genotypes HPV-16 and -18. Two recently developed prophylactic cervical cancer vaccines, using virus-like particles (VLP technology, have the potential to prevent a large proportion of cervical cancer associated with HPV infection and to ensure long-term protection. However, prophylactic HPV vaccines do not have therapeutic effects against pre-existing HPV infections and do not prevent their progression to HPV-associated malignancy. In animal models, therapeutic vaccines for persisting HPV infection can eliminate transplantable tumors expressing HPV antigens, but are of limited efficacy in inducing rejection of skin grafts expressing the same antigens. In humans, clinical trials have reported successful immunotherapy of HPV lesions, providing hope and further interest. This review discusses possible new approaches to immunotherapy for HPV associated cancer, based on recent advances in our knowledge of the immunobiology of HPV infection, of epithelial immunology and of immunoregulation, with a brief overview on previous and current HPV vaccine clinical trials.

  16. Food allergy to apple and specific immunotherapy with birch pollen

    Hansen, K.S.; Khinchi, M.S.; Skov, P.S.

    2004-01-01

    Conflicting results concerning the effect of specific pollen immunotherapy (SIT) on allergy to plant foods have been reported. The aim of this study was to investigate the effect of SIT using a birch pollen extract on food allergy with focus on allergy to apple. Seventy-four birch pollen-allergic......Conflicting results concerning the effect of specific pollen immunotherapy (SIT) on allergy to plant foods have been reported. The aim of this study was to investigate the effect of SIT using a birch pollen extract on food allergy with focus on allergy to apple. Seventy-four birch pollen......-allergic patients were included in a double-blind, double-dummy, and placebo-controlled comparison of sublingual-swallow (SLIT) and subcutaneous (SCIT) administration of a birch pollen extract. Sixty-nine percent of these patients reported allergy to apple. The clinical reactivity to apple was evaluated by open...... oral challenges with fresh apple and a questionnaire. The immunoglobulin E (IgE)-reactivity was assessed by skin prick test (SPT), specific IgE, and leukocyte histamine release (HR). Forty patients were included in the final evaluation of the effect of SIT. The challenges were positive in 9 (SCIT), 6...

  17. Designer exosomes as next-generation cancer immunotherapy.

    Bell, Brandon M; Kirk, Isabel D; Hiltbrunner, Stefanie; Gabrielsson, Susanne; Bultema, Jarred J

    2016-01-01

    Exosomes are small 40-120 nm vesicles secreted by nearly all cells and are an important form of intercellular communication. Exosomes are abundant, stable, and highly bioavailable to tissues in vivo. Increasingly, exosomes are being recognized as potential therapeutics as they have the ability to elicit potent cellular responses in vitro and in vivo. Patient-derived exosomes have been employed as a novel cancer immunotherapy in several clinical trials, but at this point lack sufficient efficacy. Still other researchers have focused on modifying the content and function of exosomes in various ways, toward the end-goal of specialized therapeutic exosomes. Here we highlight major advances in the use of exosomes for cancer immunotherapy and exosome bioengineering followed by a discussion of focus areas for future research to generate potent therapeutic exosomes. From the Clinical Editor: Exosomes are small vesicles used by cells for intercellular communication. In this short article, the authors described the current status and the potential use of exosomes in the clinical setting. Copyright © 2015 Elsevier Inc. All rights reserved.

  18. A STING-activating nanovaccine for cancer immunotherapy

    Luo, Min; Wang, Hua; Wang, Zhaohui; Cai, Haocheng; Lu, Zhigang; Li, Yang; Du, Mingjian; Huang, Gang; Wang, Chensu; Chen, Xiang; Porembka, Matthew R.; Lea, Jayanthi; Frankel, Arthur E.; Fu, Yang-Xin; Chen, Zhijian J.; Gao, Jinming

    2017-07-01

    The generation of tumour-specific T cells is critically important for cancer immunotherapy. A major challenge in achieving a robust T-cell response is the spatiotemporal orchestration of antigen cross-presentation in antigen-presenting cells with innate stimulation. Here, we report a minimalist nanovaccine, comprising a simple physical mixture of an antigen and a synthetic polymeric nanoparticle, PC7A NP, which generates a strong cytotoxic T-cell response with low systemic cytokine expression. Mechanistically, the PC7A NP achieves efficient cytosolic delivery of tumour antigens to antigen-presenting cells in draining lymph nodes, leading to increased surface presentation while simultaneously activating type I interferon-stimulated genes. This effect is dependent on stimulator of interferon genes (STING), but not the Toll-like receptor or the mitochondrial antiviral-signalling protein (MAVS) pathway. The nanovaccine led to potent tumour growth inhibition in melanoma, colon cancer and human papilloma virus-E6/E7 tumour models. The combination of the PC7A nanovaccine and an anti-PD-1 antibody showed great synergy, with 100% survival over 60 days in a TC-1 tumour model. Rechallenging of these tumour-free animals with TC-1 cells led to complete inhibition of tumour growth, suggesting the generation of long-term antitumour memory. The STING-activating nanovaccine offers a simple, safe and robust strategy in boosting anti-tumour immunity for cancer immunotherapy.

  19. Safety and efficacy of venom immunotherapy: a real life study.

    Kołaczek, Agnieszka; Skorupa, Dawid; Antczak-Marczak, Monika; Kuna, Piotr; Kupczyk, Maciej

    2017-04-01

    Venom immunotherapy (VIT) is recommended as the first-line treatment for patients allergic to Hymenoptera venom. To analyze the safety and efficacy of VIT in a real life setting. One hundred and eighty patients undergoing VIT were studied to evaluate the safety, efficacy, incidence and nature of symptoms after field stings and adverse reactions to VIT. Significantly more patients were allergic to wasp than bee venom (146 vs. 34, p bees, and were not associated with angiotensin convertase inhibitors (ACEi) or β-adrenergic antagonists use. Systemic reactions were observed in 4 individuals on wasp VIT (2.7%) and in 6 patients allergic to bees (17.65%). The VIT was efficacious as most patients reported no reactions (50%) or reported only mild local reactions (43.75%) to field stings. The decrease in sIgE at completion of VIT correlated with the dose of vaccine received ( r = 0.53, p = 0.004). Beekeeping (RR = 29.54, p venom allergy. Venom immunotherapy is highly efficacious and safe as most of the adverse events during the induction and maintenance phase are mild and local. Side effects of VIT are more common in subjects on bee VIT. Beekeeping and female sex are associated with a higher risk of allergy to Hymenoptera venom.

  20. Immunotherapy in urothelial cancer: recent data and perspectives

    M. I. Volkova

    2017-01-01

    Full Text Available Immune-checkpoint inhibitors blocking the programmed death 1/programmed death-ligand 1 (PD-1/PD-L1 and cytotoxic T-lymphocyteassociated protein 4 (CTLA-4 have shown a prominent anti-tumor activity with long-term responses and an acceptable toxicity profile  in clinical trials. Pembrolizumab, atezolizumab, nivolumab, avelumab, and durvalumab are anti-PD-1/PD-L1 agents that redefine the standard of care for advanced urothelial carcinoma. CTLA-4 inhibitors are also under investigation in this setting. Phase III trial KEYNOTE-045 has demonstrated significant survival benefit in patients treated with pembrolizumab comparing with the standard second-line chemotherapy. Atezolizumab, nivolumab, avelumab, and durvalumab were also recommended for platinum-pretreated urothelial carcinoma patients based on phase II data. Following investigations of biomarkers such as PD-L1 expression are needed to determine high-responders to immunotherapy. This review article describes the advances in immunotherapy with immune-checkpoint inhibitors.