WorldWideScience

Sample records for imaging-versus computed tomography-based

  1. Imaging of the hip joint. Computed tomography versus magnetic resonance imaging

    Science.gov (United States)

    Lang, P.; Genant, H. K.; Jergesen, H. E.; Murray, W. R.

    1992-01-01

    The authors reviewed the applications and limitations of computed tomography (CT) and magnetic resonance (MR) imaging in the assessment of the most common hip disorders. Magnetic resonance imaging is the most sensitive technique in detecting osteonecrosis of the femoral head. Magnetic resonance reflects the histologic changes associated with osteonecrosis very well, which may ultimately help to improve staging. Computed tomography can more accurately identify subchondral fractures than MR imaging and thus remains important for staging. In congenital dysplasia of the hip, the position of the nonossified femoral head in children less than six months of age can only be inferred by indirect signs on CT. Magnetic resonance imaging demonstrates the cartilaginous femoral head directly without ionizing radiation. Computed tomography remains the imaging modality of choice for evaluating fractures of the hip joint. In some patients, MR imaging demonstrates the fracture even when it is not apparent on radiography. In neoplasm, CT provides better assessment of calcification, ossification, and periosteal reaction than MR imaging. Magnetic resonance imaging, however, represents the most accurate imaging modality for evaluating intramedullary and soft-tissue extent of the tumor and identifying involvement of neurovascular bundles. Magnetic resonance imaging can also be used to monitor response to chemotherapy. In osteoarthrosis and rheumatoid arthritis of the hip, both CT and MR provide more detailed assessment of the severity of disease than conventional radiography because of their tomographic nature. Magnetic resonance imaging is unique in evaluating cartilage degeneration and loss, and in demonstrating soft-tissue alterations such as inflammatory synovial proliferation.

  2. Computed tomography and three-dimensional imaging

    International Nuclear Information System (INIS)

    Harris, L.D.; Ritman, E.L.; Robb, R.A.

    1987-01-01

    Presented here is a brief introduction to two-, three-, and four-dimensional computed tomography. More detailed descriptions of the mathematics of reconstruction and of CT scanner operation are presented elsewhere. The complementary tomographic imaging methods of single-photon-emission tomography (SPECT) positron-emission tomography (PET), nuclear magnetic resonance (NMR) imaging, ulltrasound sector scanning, and ulltrasound computer-assisted tomography [UCAT] are only named here. Each imaging modality ''probes'' the body with a different energy form, yielding unique and useful information about tomographic sections through the body

  3. Ultrasound-guided versus computed tomography-scan guided biopsy of pleural-based lung lesions.

    Science.gov (United States)

    Khosla, Rahul; McLean, Anna W; Smith, Jessica A

    2016-01-01

    Computed tomography (CT) guided biopsies have long been the standard technique to obtain tissue from the thoracic cavity and is traditionally performed by interventional radiologists. Ultrasound (US) guided biopsy of pleural-based lesions, performed by pulmonologists is gaining popularity and has the advantage of multi-planar imaging, real-time technique, and the absence of radiation exposure to patients. In this study, we aim to determine the diagnostic accuracy, the time to diagnosis after the initial consult placement, and the complications rates between the two different modalities. A retrospective study of electronic medical records was done of patients who underwent CT-guided biopsies and US-guided biopsies for pleural-based lesions between 2005 and 2014 and the data collected were analyzed for comparing the two groups. A total of 158 patients underwent 162 procedures during the study period. 86 patients underwent 89 procedures in the US group, and 72 patients underwent 73 procedures in the CT group. The overall yield in the US group was 82/89 (92.1%) versus 67/73 (91.8%) in the CT group (P = 1.0). Average days to the procedure was 7.2 versus 17.5 (P = 0.00001) in the US and CT group, respectively. Complication rate was higher in CT group 17/73 (23.3%) versus 1/89 (1.1%) in the US group (P guided biopsy is similar to that of CT-guided biopsy, with a lower complication rate and a significantly reduced time to the procedure.

  4. Investigation of four-dimensional computed tomography-based pulmonary ventilation imaging in patients with emphysematous lung regions

    Energy Technology Data Exchange (ETDEWEB)

    Yamamoto, Tokihiro; Loo, Billy W Jr; Keall, Paul J [Department of Radiation Oncology, Stanford University School of Medicine, 875 Blake Wilbur Dr, Stanford, CA 94305-5847 (United States); Kabus, Sven; Lorenz, Cristian; Von Berg, Jens; Blaffert, Thomas [Department of Digital Imaging, Philips Research Europe, Roentgenstrasse 24-26, D-22335 Hamburg (Germany); Klinder, Tobias, E-mail: Tokihiro@stanford.edu [Clinical Informatics, Interventional, and Translational Solutions, Philips Research North America, Briarcliff Manor, NY 10510 (United States)

    2011-04-07

    A pulmonary ventilation imaging technique based on four-dimensional (4D) computed tomography (CT) has advantages over existing techniques. However, physiologically accurate 4D-CT ventilation imaging has not been achieved in patients. The purpose of this study was to evaluate 4D-CT ventilation imaging by correlating ventilation with emphysema. Emphysematous lung regions are less ventilated and can be used as surrogates for low ventilation. We tested the hypothesis: 4D-CT ventilation in emphysematous lung regions is significantly lower than in non-emphysematous regions. Four-dimensional CT ventilation images were created for 12 patients with emphysematous lung regions as observed on CT, using a total of four combinations of two deformable image registration (DIR) algorithms: surface-based (DIR{sup sur}) and volumetric (DIR{sup vol}), and two metrics: Hounsfield unit (HU) change (V{sub HU}) and Jacobian determinant of deformation (V{sub Jac}), yielding four ventilation image sets per patient. Emphysematous lung regions were detected by density masking. We tested our hypothesis using the one-tailed t-test. Visually, different DIR algorithms and metrics yielded spatially variant 4D-CT ventilation images. The mean ventilation values in emphysematous lung regions were consistently lower than in non-emphysematous regions for all the combinations of DIR algorithms and metrics. V{sub HU} resulted in statistically significant differences for both DIR{sup sur} (0.14 {+-} 0.14 versus 0.29 {+-} 0.16, p = 0.01) and DIR{sup vol} (0.13 {+-} 0.13 versus 0.27 {+-} 0.15, p < 0.01). However, V{sub Jac} resulted in non-significant differences for both DIR{sup sur} (0.15 {+-} 0.07 versus 0.17 {+-} 0.08, p = 0.20) and DIR{sup vol} (0.17 {+-} 0.08 versus 0.19 {+-} 0.09, p = 0.30). This study demonstrated the strong correlation between the HU-based 4D-CT ventilation and emphysema, which indicates the potential for HU-based 4D-CT ventilation imaging to achieve high physiologic accuracy. A

  5. Computer-based quantitative computed tomography image analysis in idiopathic pulmonary fibrosis: A mini review.

    Science.gov (United States)

    Ohkubo, Hirotsugu; Nakagawa, Hiroaki; Niimi, Akio

    2018-01-01

    Idiopathic pulmonary fibrosis (IPF) is the most common type of progressive idiopathic interstitial pneumonia in adults. Many computer-based image analysis methods of chest computed tomography (CT) used in patients with IPF include the mean CT value of the whole lungs, density histogram analysis, density mask technique, and texture classification methods. Most of these methods offer good assessment of pulmonary functions, disease progression, and mortality. Each method has merits that can be used in clinical practice. One of the texture classification methods is reported to be superior to visual CT scoring by radiologist for correlation with pulmonary function and prediction of mortality. In this mini review, we summarize the current literature on computer-based CT image analysis of IPF and discuss its limitations and several future directions. Copyright © 2017 The Japanese Respiratory Society. Published by Elsevier B.V. All rights reserved.

  6. What is Computed Tomography?

    Science.gov (United States)

    ... Imaging Medical X-ray Imaging What is Computed Tomography? Share Tweet Linkedin Pin it More sharing options ... Chest X ray Image back to top Computed Tomography (CT) Although also based on the variable absorption ...

  7. Variabilities of Magnetic Resonance Imaging-, Computed Tomography-, and Positron Emission Tomography-Computed Tomography-Based Tumor and Lymph Node Delineations for Lung Cancer Radiation Therapy Planning.

    Science.gov (United States)

    Karki, Kishor; Saraiya, Siddharth; Hugo, Geoffrey D; Mukhopadhyay, Nitai; Jan, Nuzhat; Schuster, Jessica; Schutzer, Matthew; Fahrner, Lester; Groves, Robert; Olsen, Kathryn M; Ford, John C; Weiss, Elisabeth

    2017-09-01

    To investigate interobserver delineation variability for gross tumor volumes of primary lung tumors and associated pathologic lymph nodes using magnetic resonance imaging (MRI), and to compare the results with computed tomography (CT) alone- and positron emission tomography (PET)-CT-based delineations. Seven physicians delineated the tumor volumes of 10 patients for the following scenarios: (1) CT only, (2) PET-CT fusion images registered to CT ("clinical standard"), and (3) postcontrast T1-weighted MRI registered with diffusion-weighted MRI. To compute interobserver variability, the median surface was generated from all observers' contours and used as the reference surface. A physician labeled the interface types (tumor to lung, atelectasis (collapsed lung), hilum, mediastinum, or chest wall) on the median surface. Contoured volumes and bidirectional local distances between individual observers' contours and the reference contour were analyzed. Computed tomography- and MRI-based tumor volumes normalized relative to PET-CT-based volumes were 1.62 ± 0.76 (mean ± standard deviation) and 1.38 ± 0.44, respectively. Volume differences between the imaging modalities were not significant. Between observers, the mean normalized volumes per patient averaged over all patients varied significantly by a factor of 1.6 (MRI) and 2.0 (CT and PET-CT) (P=4.10 × 10 -5 to 3.82 × 10 -9 ). The tumor-atelectasis interface had a significantly higher variability than other interfaces for all modalities combined (P=.0006). The interfaces with the smallest uncertainties were tumor-lung (on CT) and tumor-mediastinum (on PET-CT and MRI). Although MRI-based contouring showed overall larger variability than PET-CT, contouring variability depended on the interface type and was not significantly different between modalities, despite the limited observer experience with MRI. Multimodality imaging and combining different imaging characteristics might be the best approach to define

  8. Multi-Detector Computed Tomography Imaging Techniques in Arterial Injuries

    Directory of Open Access Journals (Sweden)

    Cameron Adler

    2018-04-01

    Full Text Available Cross-sectional imaging has become a critical aspect in the evaluation of arterial injuries. In particular, angiography using computed tomography (CT is the imaging of choice. A variety of techniques and options are available when evaluating for arterial injuries. Techniques involve contrast bolus, various phases of contrast enhancement, multiplanar reconstruction, volume rendering, and maximum intensity projection. After the images are rendered, a variety of features may be seen that diagnose the injury. This article provides a general overview of the techniques, important findings, and pitfalls in cross sectional imaging of arterial imaging, particularly in relation to computed tomography. In addition, the future directions of computed tomography, including a few techniques in the process of development, is also discussed.

  9. Simultaneous 68Ga DOTATATE Positron Emission Tomography/Magnetic Resonance Imaging in Meningioma Target Contouring: Feasibility and Impact Upon Interobserver Variability Versus Positron Emission Tomography/Computed Tomography and Computed Tomography/Magnetic Resonance Imaging.

    Science.gov (United States)

    Maclean, J; Fersht, N; Sullivan, K; Kayani, I; Bomanji, J; Dickson, J; O'Meara, C; Short, S

    2017-07-01

    The increasing use of highly conformal radiation techniques to treat meningioma confers a greater need for accurate targeting. Several groups have shown that positron emission tomography/computed tomography (PET/CT) information alters meningioma targets contoured by single observers, but whether this translates into improved accuracy has not been defined. As magnetic resonance imaging (MRI) is the cornerstone of meningioma target contouring, simultaneous PET/MRI may be superior to PET/CT. We assessed whether 68 Ga DOTATATE PET imaging (from PET/CT and PET/MRI) reduced interobserver variability (IOV) in meningioma target volume contouring. Ten patients with meningioma underwent simultaneous 68 Ga DOTATATE PET/MRI followed by PET/CT. They were selected as it was anticipated that target volume definition in their cases would be particularly challenging. Three radiation oncologists contoured target volumes according to an agreed protocol: gross tumour volume (GTV) and clinical target volume (CTV) on CT/MRI alone, CT/MRI+PET(CT) and CT/MRI+PET(MRI). GTV/CTV Kouwenhoven conformity levels (KCL), regions of contour variation and qualitative differences between PET(CT) and PET(MRI) were evaluated. There was substantial IOV in contouring. GTV mean KCL: CT/MRI 0.34, CT/MRI+PET(CT) 0.38, CT/MRI+PET(MRI) 0.39 (P = 0.06). CTV mean KCL: CT/MRI 0.31, CT/MRI+PET(CT) 0.35, CT/MRI+PET(MRI) 0.35 (P = 0.04 for all groups; P > 0.05 for individual pairs). One observer consistently contoured largest and one smallest. Observers rarely decreased volumes in relation to PET. Most IOV occurred in bone followed by dural tail, postoperative bed and venous sinuses. Tumour edges were qualitatively clearer on PET(MRI) versus PET(CT), but this did not affect contouring. IOV in contouring challenging meningioma cases was large and only slightly improved with the addition of 68 Ga DOTATATE PET. Simultaneous PET/MRI for meningioma contouring is feasible, but did not improve IOV versus PET

  10. Optical computed tomography for imaging the breast: first look

    Science.gov (United States)

    Grable, Richard J.; Ponder, Steven L.; Gkanatsios, Nikolaos A.; Dieckmann, William; Olivier, Patrick F.; Wake, Robert H.; Zeng, Yueping

    2000-07-01

    The purpose of the study is to compare computed tomography optical imaging with traditional breast imaging techniques. Images produced by computed tomography laser mammography (CTLMTM) scanner are compared with images obtained from mammography, and in some cases ultrasound and/or magnetic resonance imaging (MRI). During the CTLM procedure, a near infrared laser irradiates the breast and an array of photodiodes detectors records light scattered through the breast tissue. The laser and detectors rotate synchronously around the breast to acquire a series of slice data along the coronal place. The procedure is performed without any breast compression or optical matching fluid. Cross-sectional slices of the breast are produced using a reconstruction algorithm. Reconstruction based on the diffusion theory is used to produce cross-sectional slices of the breast. Multiple slice images are combined to produce a three dimensional volumetric array of the imaged breast. This array is used to derive axial and sagittal images of the breast corresponding to cranio-caudal and medio-lateral images used in mammography. Over 200 women and 3 men have been scanned in clinical trials. The most obvious features seen in images produced by the optical tomography scanner are vascularization and significant lesions. Breast features caused by fibrocystic changes and cysts are less obvious. Breast density does not appear to be a significant factor in the quality of the image. We see correlation of the optical image structure with that seen with traditional breast imaging techniques. Further testing is being conducted to explore the sensitivity and specificity of optical tomography of the breast.

  11. X-ray-based attenuation correction for positron emission tomography/computed tomography scanners.

    Science.gov (United States)

    Kinahan, Paul E; Hasegawa, Bruce H; Beyer, Thomas

    2003-07-01

    A synergy of positron emission tomography (PET)/computed tomography (CT) scanners is the use of the CT data for x-ray-based attenuation correction of the PET emission data. Current methods of measuring transmission use positron sources, gamma-ray sources, or x-ray sources. Each of the types of transmission scans involves different trade-offs of noise versus bias, with positron transmission scans having the highest noise but lowest bias, whereas x-ray scans have negligible noise but the potential for increased quantitative errors. The use of x-ray-based attenuation correction, however, has other advantages, including a lack of bias introduced from post-injection transmission scanning, which is an important practical consideration for clinical scanners, as well as reduced scan times. The sensitivity of x-ray-based attenuation correction to artifacts and quantitative errors depends on the method of translating the CT image from the effective x-ray energy of approximately 70 keV to attenuation coefficients at the PET energy of 511 keV. These translation methods are usually based on segmentation and/or scaling techniques. Errors in the PET emission image arise from positional mismatches caused by patient motion or respiration differences between the PET and CT scans; incorrect calculation of attenuation coefficients for CT contrast agents or metallic implants; or keeping the patient's arms in the field of view, which leads to truncation and/or beam-hardening (or x-ray scatter) artifacts. Proper interpretation of PET emission images corrected for attenuation by using the CT image relies on an understanding of the potential artifacts. In cases where an artifact or bias is suspected, careful inspection of all three available images (CT and PET emission with and without attenuation correction) is recommended. Copyright 2003 Elsevier Inc. All rights reserved.

  12. Utility of the computed tomography indices on cone beam computed tomography images in the diagnosis of osteoporosis in women

    International Nuclear Information System (INIS)

    Koh, Kwang Joon; Kim, Kyung A

    2011-01-01

    This study evaluated the potential use of the computed tomography indices (CTI) on cone beam CT (CBCT) images for an assessment of the bone mineral density (BMD) in postmenopausal osteoporotic women. Twenty-one postmenopausal osteoporotic women and 21 postmenopausal healthy women were enrolled as the subjects. The BMD of the lumbar vertebrae and femur were calculated by dual energy X-ray absorptiometry (DXA) using a DXA scanner. The CBCT images were obtained from the unilateral mental foramen region using a PSR-9000N Dental CT system. The axial, sagittal, and coronal images were reconstructed from the block images using OnDemend3D. The new term 'CTI' on CBCT images was proposed. The relationship between the CT measurements and BMDs were assessed and the intra-observer agreement was determined. There were significant differences between the normal and osteoporotic groups in the computed tomography mandibular index superior (CTI(S)), computed tomography mandibular index inferior (CTI(I)), and computed tomography cortical index (CTCI). On the other hand, there was no difference between the groups in the computed tomography mental index (CTMI: inferior cortical width). CTI(S), CTI(I), and CTCI on the CBCT images can be used to assess the osteoporotic women.

  13. Imaging in hematology. Part 2: Computed tomography, magnetic resonance imaging and nuclear imaging

    International Nuclear Information System (INIS)

    Zhechev, Y.

    2003-01-01

    A dramatic increase of the role of imaging in diagnosis of blood diseases occurred with the development of computed tomography (CT) and magnetic resonance imaging (MRI). At present CT of the chest, abdomen, and pelvis is routinely employed in diagnostic and staging evaluation. The bone marrow may be imaged by one of several methods, including scintigraphy, CT and MRI. Nuclear imaging at diagnosis can clarify findings of uncertain significance on conventional staging and may be very useful in the setting of large masses to follow responses to therapy nad to evaluate the residual tumor in a large mass that has responded to treatment. Recent developments such as helical CT, single proton emission computed tomography (SPECT) and positron-emission tomography (PET) have continued to advance diagnosis and therapy

  14. Comparison of imaging strategies with conditional versus immediate contrast-enhanced computed tomography in patients with clinical suspicion of acute appendicitis

    International Nuclear Information System (INIS)

    Atema, J.J.; Gans, S.L.; Boermeester, M.A.; Randen, A. van; Stoker, J.; Lameris, W.; Es, H.W. van; Heesewijk, J.P.M. van; Ramshorst, B. van; Bouma, W.H.; Hove, W. ten; Keulen, E.M. van; Dijkgraaf, M.G.W.; Bossuyt, P.M.M.

    2015-01-01

    To compare the diagnostic accuracy of conditional computed tomography (CT), i.e. CT when initial ultrasound findings are negative or inconclusive, and immediate CT for patients with suspected appendicitis. Data were collected within a prospective diagnostic accuracy study on imaging in adults with acute abdominal pain. All patients underwent ultrasound and CT, read by different observers who were blinded from the other modality. Only patients with clinical suspicion of appendicitis were included. An expert panel assigned a final diagnosis to each patient after 6 months of follow-up (clinical reference standard). A total of 422 patients were included with final diagnosis appendicitis in 251 (60 %). For 199 patients (47 %), ultrasound findings were inconclusive or negative. Conditional CT imaging correctly identified 241 of 251 (96 %) appendicitis cases (95 %CI, 92 % to 98 %), versus 238 (95 %) with immediate CT (95 %CI, 91 % to 97 %). The specificity of conditional CT imaging was lower: 77 % (95 %CI, 70 % to 83 %) versus 87 % for immediate CT (95 %CI, 81 % to 91 %). A conditional CT strategy correctly identifies as many patients with appendicitis as an immediate CT strategy, and can halve the number of CTs needed. However, conditional CT imaging results in more false positives. (orig.)

  15. Comparison of imaging strategies with conditional versus immediate contrast-enhanced computed tomography in patients with clinical suspicion of acute appendicitis

    Energy Technology Data Exchange (ETDEWEB)

    Atema, J.J.; Gans, S.L.; Boermeester, M.A. [Academic Medical Centre, Department of Surgery (G4-142), Amsterdam (Netherlands); Randen, A. van; Stoker, J. [Academic Medical Centre, Department of Radiology, Amsterdam (Netherlands); Lameris, W. [Academic Medical Centre, Department of Surgery (G4-142), Amsterdam (Netherlands); Spaarne Hospital, Department of Surgery, Hoofddorp (Netherlands); Es, H.W. van; Heesewijk, J.P.M. van [St Antonius Hospital, Department of Radiology, Nieuwegein (Netherlands); Ramshorst, B. van [St Antonius Hospital, Department of Surgery, Nieuwegein (Netherlands); Bouma, W.H. [Gelre Hospital, Department of Surgery, Apeldoorn (Netherlands); Hove, W. ten [Gelre Hospital, Department of Radiology, Apeldoorn (Netherlands); Keulen, E.M. van [Tergooi Hospital, Department of Radiology, Hilversum (Netherlands); Dijkgraaf, M.G.W. [Academic Medical Centre, Clinical Research Unit, Amsterdam (Netherlands); Bossuyt, P.M.M. [Academic Medical Center, Department of Clinical Epidemiology, Biostatistics, and Bioinformatics, Amsterdam (Netherlands)

    2015-08-15

    To compare the diagnostic accuracy of conditional computed tomography (CT), i.e. CT when initial ultrasound findings are negative or inconclusive, and immediate CT for patients with suspected appendicitis. Data were collected within a prospective diagnostic accuracy study on imaging in adults with acute abdominal pain. All patients underwent ultrasound and CT, read by different observers who were blinded from the other modality. Only patients with clinical suspicion of appendicitis were included. An expert panel assigned a final diagnosis to each patient after 6 months of follow-up (clinical reference standard). A total of 422 patients were included with final diagnosis appendicitis in 251 (60 %). For 199 patients (47 %), ultrasound findings were inconclusive or negative. Conditional CT imaging correctly identified 241 of 251 (96 %) appendicitis cases (95 %CI, 92 % to 98 %), versus 238 (95 %) with immediate CT (95 %CI, 91 % to 97 %). The specificity of conditional CT imaging was lower: 77 % (95 %CI, 70 % to 83 %) versus 87 % for immediate CT (95 %CI, 81 % to 91 %). A conditional CT strategy correctly identifies as many patients with appendicitis as an immediate CT strategy, and can halve the number of CTs needed. However, conditional CT imaging results in more false positives. (orig.)

  16. Rib Radiography versus Chest Computed Tomography in the Diagnosis of Rib Fractures.

    Science.gov (United States)

    Sano, Atsushi

    2018-05-01

     The accurate diagnosis of rib fractures is important in chest trauma. Diagnostic images following chest trauma are usually obtained via chest X-ray, chest computed tomography, or rib radiography. This study evaluated the diagnostic characteristics of rib radiography and chest computed tomography.  Seventy-five rib fracture patients who underwent both chest computed tomography and rib radiography between April 2008 and December 2013 were included. Rib radiographs, centered on the site of pain, were taken from two directions. Chest computed tomography was performed using a 16-row multidetector scanner with 5-mm slice-pitch without overlap, and axial images were visualized in a bone window.  In total, 217 rib fractures were diagnosed in 75 patients. Rib radiography missed 43 rib fractures in 24 patients. The causes were overlap with organs in 15 cases, trivial fractures in 21 cases, and injury outside the imaging range in 7 cases. Left lower rib fractures were often missed due to overlap with the heart, while middle and lower rib fractures were frequently not diagnosed due to overlap with abdominal organs. Computed tomography missed 21 rib fractures in 17 patients. The causes were horizontal fractures in 10 cases, trivial fractures in 9 cases, and insufficient breath holding in 1 case.  In rib radiography, overlap with organs and fractures outside the imaging range were characteristic reasons for missed diagnoses. In chest computed tomography, horizontal rib fractures and insufficient breath holding were often responsible. We should take these challenges into account when diagnosing rib fractures. Georg Thieme Verlag KG Stuttgart · New York.

  17. Comparison of Volumes between Four-Dimensional Computed Tomography and Cone-Beam Computed Tomography Images using Dynamic Phantom

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Seong Eun; Won, Hui Su; Hong, Joo Wan; Chang, Nam Jun; Jung, Woo Hyun; Choi, Byeong Don [Dept. of Radiation Oncology, Seoul National University Bundang Hospital, Sungnam (Korea, Republic of)

    2016-12-15

    The aim of this study was to compare the differences between the volumes acquired with four-dimensional computed tomography (4DCT)images with a reconstruction image-filtering algorithm and cone-beam computed tomography (CBCT) images with dynamic phantom. The 4DCT images were obtained from the computerized imaging reference systems (CIRS) phantom using a computed tomography (CT) simulator. We analyzed the volumes for maximum intensity projection (MIP), minimum intensity projection (MinIP) and average intensity projection (AVG) of the images obtained with the 4DCT scanner against those acquired from CBCT images with CT ranger tools. Difference in volume for node of 1, 2 and 3 cm between CBCT and 4DCT was 0.54⁓2.33, 5.16⁓8.06, 9.03⁓20.11 ml in MIP, respectively, 0.00⁓1.48, 0.00⁓8.47, 1.42⁓24.85 ml in MinIP, respectively and 0.00⁓1.17, 0.00⁓2.19, 0.04⁓3.35 ml in AVG, respectively. After a comparative analysis of the volumes for each nodal size, it was apparent that the CBCT images were similar to the AVG images acquired using 4DCT.

  18. Emission computed tomography

    International Nuclear Information System (INIS)

    Ott, R.J.

    1986-01-01

    Emission Computed Tomography is a technique used for producing single or multiple cross-sectional images of the distribution of radionuclide labelled agents in vivo. The techniques of Single Photon Emission Computed Tomography (SPECT) and Positron Emission Tomography (PET) are described with particular regard to the function of the detectors used to produce images and the computer techniques used to build up images. (UK)

  19. Efficacy of navigation in skull base surgery using composite computer graphics of magnetic resonance and computed tomography images

    International Nuclear Information System (INIS)

    Hayashi, Nakamasa; Kurimoto, Masanori; Hirashima, Yutaka; Ikeda, Hiroaki; Shibata, Takashi; Tomita, Takahiro; Endo, Shunro

    2001-01-01

    The efficacy of a neurosurgical navigation system using three-dimensional composite computer graphics (CGs) of magnetic resonance (MR) and computed tomography (CT) images was evaluated in skull base surgery. Three-point transformation was used for integration of MR and CT images. MR and CT image data were obtained with three skin markers placed on the patient's scalp. Volume-rendering manipulations of the data produced three-dimensional CGs of the scalp, brain, and lesions from the MR images, and the scalp and skull from the CT. Composite CGs of the scalp, skull, brain, and lesion were created by registering the three markers on the three-dimensional rendered scalp images obtained from MR imaging and CT in the system. This system was used for 14 patients with skull base lesions. Three-point transformation using three-dimensional CGs was easily performed for multimodal registration. Simulation of surgical procedures on composite CGs aided in comprehension of the skull base anatomy and selection of the optimal approaches. Intraoperative navigation aided in determination of actual spatial position in the skull base and the optimal trajectory to the tumor during surgical procedures. (author)

  20. Computed tomography versus magnetic resonance imaging versus bone scintigraphy for clinically suspected scaphoid fractures in patients with negative plain radiographs

    NARCIS (Netherlands)

    Mallee, Wouter H.; Wang, Junfeng; Poolman, Rudolf W.; Kloen, Peter; Maas, Mario; de Vet, Henrica C. W.; Doornberg, Job N.

    2015-01-01

    In clinically suspected scaphoid fractures, early diagnosis reduces the risk of non-union and minimises loss in productivity resulting from unnecessary cast immobilisation. Since initial radiographs do not exclude the possibility of a fracture, additional imaging is needed. Computed tomography (CT),

  1. Sparse Image Reconstruction in Computed Tomography

    DEFF Research Database (Denmark)

    Jørgensen, Jakob Sauer

    In recent years, increased focus on the potentially harmful effects of x-ray computed tomography (CT) scans, such as radiation-induced cancer, has motivated research on new low-dose imaging techniques. Sparse image reconstruction methods, as studied for instance in the field of compressed sensing...... applications. This thesis takes a systematic approach toward establishing quantitative understanding of conditions for sparse reconstruction to work well in CT. A general framework for analyzing sparse reconstruction methods in CT is introduced and two sets of computational tools are proposed: 1...... contributions to a general set of computational characterization tools. Thus, the thesis contributions help advance sparse reconstruction methods toward routine use in...

  2. Slice image pretreatment for cone-beam computed tomography based on adaptive filter

    International Nuclear Information System (INIS)

    Huang Kuidong; Zhang Dinghua; Jin Yanfang

    2009-01-01

    According to the noise properties and the serial slice image characteristics in Cone-Beam Computed Tomography (CBCT) system, a slice image pretreatment for CBCT based on adaptive filter was proposed. The judging criterion for the noise is established firstly. All pixels are classified into two classes: adaptive center weighted modified trimmed mean (ACWMTM) filter is used for the pixels corrupted by Gauss noise and adaptive median (AM) filter is used for the pixels corrupted by impulse noise. In ACWMTM filtering algorithm, the estimated Gauss noise standard deviation in the current slice image with offset window is replaced by the estimated standard deviation in the adjacent slice image to the current with the corresponding window, so the filtering accuracy of the serial images is improved. The pretreatment experiment on CBCT slice images of wax model of hollow turbine blade shows that the method makes a good performance both on eliminating noises and on protecting details. (authors)

  3. Comparison of analyzer-based imaging computed tomography extraction algorithms and application to bone-cartilage imaging

    International Nuclear Information System (INIS)

    Diemoz, Paul C; Bravin, Alberto; Coan, Paola; Glaser, Christian

    2010-01-01

    In x-ray phase-contrast analyzer-based imaging, the contrast is provided by a combination of absorption, refraction and scattering effects. Several extraction algorithms, which attempt to separate and quantify these different physical contributions, have been proposed and applied. In a previous work, we presented a quantitative comparison of five among the most well-known extraction algorithms based on the geometrical optics approximation applied to planar images: diffraction-enhanced imaging (DEI), extended diffraction-enhanced imaging (E-DEI), generalized diffraction-enhanced imaging (G-DEI), multiple-image radiography (MIR) and Gaussian curve fitting (GCF). In this paper, we compare these algorithms in the case of the computed tomography (CT) modality. The extraction algorithms are applied to analyzer-based CT images of both plastic phantoms and biological samples (cartilage-on-bone cylinders). Absorption, refraction and scattering signals are derived. Results obtained with the different algorithms may vary greatly, especially in the case of large refraction angles. We show that ABI-CT extraction algorithms can provide an excellent tool to enhance the visualization of cartilage internal structures, which may find applications in a clinical context. Besides, by using the refraction images, the refractive index decrements for both the cartilage matrix and the cartilage cells have been estimated.

  4. Prospective, blinded trial of whole-body magnetic resonance imaging versus computed tomography positron emission tomography in staging primary and recurrent cancer of the head and neck.

    LENUS (Irish Health Repository)

    O'Neill, J P

    2012-02-01

    OBJECTIVES: To compare the use of computed tomography - positron emission tomography and whole-body magnetic resonance imaging for the staging of head and neck cancer. PATIENTS AND METHODS: From January to July 2009, 15 consecutive head and neck cancer patients (11 men and four women; mean age 59 years; age range 19 to 81 years) underwent computed tomography - positron emission tomography and whole-body magnetic resonance imaging for pre-therapeutic evaluation. All scans were staged, as per the American Joint Committee on Cancer tumour-node-metastasis classification, by two blinded consultant radiologists, in two sittings. Diagnoses were confirmed by histopathological examination of endoscopic biopsies, and in some cases whole surgical specimens. RESULTS: Tumour staging showed a 74 per cent concordance, node staging an 80 per cent concordance and metastasis staging a 100 per cent concordance, comparing the two imaging modalities. CONCLUSION: This study found radiological staging discordance between the two imaging modalities. Whole-body magnetic resonance imaging is an emerging staging modality with superior visualisation of metastatic disease, which does not require exposure to ionising radiation.

  5. Optimization on the dose versus noise in the image on protocols for computed tomography of pediatric head

    International Nuclear Information System (INIS)

    Saint'Yves, Thalis L.A.; Travassos, Paulo Cesar B.; Goncalves, Elicardo A.S.; Mecca A, Fernando; Silveira, Thiago B.

    2010-01-01

    This article aims to establish protocols optimized for computed tomography of pediatric skull, to the Picker Q2000 tomography of the Instituto Nacional de Cancer, through the analysis of dose x noise on the image with the variation of values of mAs and kVp. We used a water phantom to measure the noise, a pencil type ionization chamber to measure the dose in the air and the Alderson Randon phantom for check the quality of the image. We found values of mAs and kVp that reduce the skin dose of the original protocol used in 35.9%, maintaining the same image quality at a safe diagnosis. (author)

  6. Computed tomography vs. digital radiography assessment for detection of osteolysis in asymptomatic patients with uncemented cups: a proposal for a new classification system based on computer tomography.

    Science.gov (United States)

    Sandgren, Buster; Crafoord, Joakim; Garellick, Göran; Carlsson, Lars; Weidenhielm, Lars; Olivecrona, Henrik

    2013-10-01

    Digital radiographic images in the anterior-posterior and lateral view have been gold standard for evaluation of peri-acetabular osteolysis for patients with an uncemented hip replacement. We compared digital radiographic images and computer tomography in detection of peri-acetabular osteolysis and devised a classification system based on computer tomography. Digital radiographs were compared with computer tomography on 206 hips, with a mean follow up 10 years after surgery. The patients had no clinical signs of osteolysis and none were planned for revision surgery. On digital radiographs, 192 cases had no osteolysis and only 14 cases had osteolysis. When using computer tomography there were 184 cases showing small or large osteolysis and only 22 patients had no osteolysis. A classification system for peri-acetabular osteolysis is proposed based on computer tomography that is easy to use on standard follow up evaluation. Copyright © 2013 Elsevier Inc. All rights reserved.

  7. Comparison of 640-Slice Multidetector Computed Tomography Versus 32-Slice MDCT for Imaging of the Osteo-odonto-keratoprosthesis Lamina.

    Science.gov (United States)

    Norris, Joseph M; Kishikova, Lyudmila; Avadhanam, Venkata S; Koumellis, Panos; Francis, Ian S; Liu, Christopher S C

    2015-08-01

    To investigate the efficacy of 640-slice multidetector computed tomography (MDCT) for detecting osteo-odonto laminar resorption in the osteo-odonto-keratoprosthesis (OOKP) compared with the current standard 32-slice MDCT. Explanted OOKP laminae and bone-dentine fragments were scanned using 640-slice MDCT (Aquilion ONE; Toshiba) and 32-slice MDCT (LightSpeed Pro32; GE Healthcare). Pertinent comparisons including image quality, radiation dose, and scanning parameters were made. Benefits of 640-slice MDCT over 32-slice MDCT were shown. Key comparisons of 640-slice MDCT versus 32-slice MDCT included the following: percentage difference and correlation coefficient between radiological and anatomical measurements, 1.35% versus 3.67% and 0.9961 versus 0.9882, respectively; dose-length product, 63.50 versus 70.26; rotation time, 0.175 seconds versus 1.000 seconds; and detector coverage width, 16 cm versus 2 cm. Resorption of the osteo-odonto lamina after OOKP surgery can result in potentially sight-threatening complications, hence it warrants regular monitoring and timely intervention. MDCT remains the gold standard for radiological assessment of laminar resorption, which facilitates detection of subtle laminar changes earlier than the onset of clinical signs, thus indicating when preemptive measures can be taken. The 640-slice MDCT exhibits several advantages over traditional 32-slice MDCT. However, such benefits may not offset cost implications, except in rare cases, such as in young patients who might undergo years of radiation exposure.

  8. General rigid motion correction for computed tomography imaging based on locally linear embedding

    Science.gov (United States)

    Chen, Mianyi; He, Peng; Feng, Peng; Liu, Baodong; Yang, Qingsong; Wei, Biao; Wang, Ge

    2018-02-01

    The patient motion can damage the quality of computed tomography images, which are typically acquired in cone-beam geometry. The rigid patient motion is characterized by six geometric parameters and are more challenging to correct than in fan-beam geometry. We extend our previous rigid patient motion correction method based on the principle of locally linear embedding (LLE) from fan-beam to cone-beam geometry and accelerate the computational procedure with the graphics processing unit (GPU)-based all scale tomographic reconstruction Antwerp toolbox. The major merit of our method is that we need neither fiducial markers nor motion-tracking devices. The numerical and experimental studies show that the LLE-based patient motion correction is capable of calibrating the six parameters of the patient motion simultaneously, reducing patient motion artifacts significantly.

  9. Computed Tomography (CT) -- Sinuses

    Medline Plus

    Full Text Available ... Physician Resources Professions Site Index A-Z Computed Tomography (CT) - Sinuses Computed tomography (CT) of the sinuses uses special x-ray equipment ... story here Images × Image Gallery Patient undergoing computed tomography (CT) scan. View full size with caption Pediatric Content ...

  10. Computed Tomography (CT) -- Head

    Medline Plus

    Full Text Available ... Physician Resources Professions Site Index A-Z Computed Tomography (CT) - Head Computed tomography (CT) of the head uses special x-ray equipment ... story here Images × Image Gallery Patient undergoing computed tomography (CT) scan. View full size with caption Pediatric Content ...

  11. Proton computed tomography images with algebraic reconstruction

    Energy Technology Data Exchange (ETDEWEB)

    Bruzzi, M. [Physics and Astronomy Department, University of Florence, Florence (Italy); Civinini, C.; Scaringella, M. [INFN - Florence Division, Florence (Italy); Bonanno, D. [INFN - Catania Division, Catania (Italy); Brianzi, M. [INFN - Florence Division, Florence (Italy); Carpinelli, M. [INFN - Laboratori Nazionali del Sud, Catania (Italy); Chemistry and Pharmacy Department, University of Sassari, Sassari (Italy); Cirrone, G.A.P.; Cuttone, G. [INFN - Laboratori Nazionali del Sud, Catania (Italy); Presti, D. Lo [INFN - Catania Division, Catania (Italy); Physics and Astronomy Department, University of Catania, Catania (Italy); Maccioni, G. [INFN – Cagliari Division, Cagliari (Italy); Pallotta, S. [INFN - Florence Division, Florence (Italy); Department of Biomedical, Experimental and Clinical Sciences, University of Florence, Florence (Italy); SOD Fisica Medica, Azienda Ospedaliero-Universitaria Careggi, Firenze (Italy); Randazzo, N. [INFN - Catania Division, Catania (Italy); Romano, F. [INFN - Laboratori Nazionali del Sud, Catania (Italy); Sipala, V. [INFN - Laboratori Nazionali del Sud, Catania (Italy); Chemistry and Pharmacy Department, University of Sassari, Sassari (Italy); Talamonti, C. [INFN - Florence Division, Florence (Italy); Department of Biomedical, Experimental and Clinical Sciences, University of Florence, Florence (Italy); SOD Fisica Medica, Azienda Ospedaliero-Universitaria Careggi, Firenze (Italy); Vanzi, E. [Fisica Sanitaria, Azienda Ospedaliero-Universitaria Senese, Siena (Italy)

    2017-02-11

    A prototype of proton Computed Tomography (pCT) system for hadron-therapy has been manufactured and tested in a 175 MeV proton beam with a non-homogeneous phantom designed to simulate high-contrast material. BI-SART reconstruction algorithms have been implemented with GPU parallelism, taking into account of most likely paths of protons in matter. Reconstructed tomography images with density resolutions r.m.s. down to ~1% and spatial resolutions <1 mm, achieved within processing times of ~15′ for a 512×512 pixels image prove that this technique will be beneficial if used instead of X-CT in hadron-therapy.

  12. Improving limited-projection-angle fluorescence molecular tomography using a co-registered x-ray computed tomography scan.

    Science.gov (United States)

    Radrich, Karin; Ale, Angelique; Ermolayev, Vladimir; Ntziachristos, Vasilis

    2012-12-01

    We examine the improvement in imaging performance, such as axial resolution and signal localization, when employing limited-projection-angle fluorescence molecular tomography (FMT) together with x-ray computed tomography (XCT) measurements versus stand-alone FMT. For this purpose, we employed living mice, bearing a spontaneous lung tumor model, and imaged them with FMT and XCT under identical geometrical conditions using fluorescent probes for cancer targeting. The XCT data was employed, herein, as structural prior information to guide the FMT reconstruction. Gold standard images were provided by fluorescence images of mouse cryoslices, providing the ground truth in fluorescence bio-distribution. Upon comparison of FMT images versus images reconstructed using hybrid FMT and XCT data, we demonstrate marked improvements in image accuracy. This work relates to currently disseminated FMT systems, using limited projection scans, and can be employed to enhance their performance.

  13. Quantitative image analysis of vertebral body architecture - improved diagnosis in osteoporosis based on high-resolution computed tomography

    International Nuclear Information System (INIS)

    Mundinger, A.; Wiesmeier, B.; Dinkel, E.; Helwig, A.; Beck, A.; Schulte Moenting, J.

    1993-01-01

    71 women, 64 post-menopausal, were examined by single-energy quantitative computed tomography (SEQCT) and by high-resolution computed tomography (HRCT) scans through the middle of lumbar vertebral bodies. Computer-assisted image analysis of the high-resolution images assessed trabecular morphometry of the vertebral spongiosa texture. Texture parameters differed in women with and without age-reduced bone density, and in the former group also in patients with and without vertebral fractures. Discriminating parameters were the total number, diameter and variance of trabecular and intertrabecular spaces as well as the trabecular surface (p < 0.05)). A texture index based on these statistically selected morphometric parameters identified a subgroup of patients suffering from fractures due to abnormal spongiosal architecture but with a bone mineral content not indicative for increased fracture risk. The combination of osteodensitometric and trabecular morphometry improves the diagnosis of osteoporosis and may contribute to the prediction of individual fracture risk. (author)

  14. Image quality in coronary computed tomography angiography

    DEFF Research Database (Denmark)

    Precht, Helle; Gerke, Oke; Thygesen, Jesper

    2018-01-01

    Background Computed tomography (CT) technology is rapidly evolving and software solution developed to optimize image quality and/or lower radiation dose. Purpose To investigate the influence of adaptive statistical iterative reconstruction (ASIR) at different radiation doses in coronary CT...

  15. Geometrical differences in target volumes based on 18F-fluorodeoxyglucose positron emission tomography/computed tomography and four-dimensional computed tomography maximum intensity projection images of primary thoracic esophageal cancer.

    Science.gov (United States)

    Guo, Y; Li, J; Wang, W; Zhang, Y; Wang, J; Duan, Y; Shang, D; Fu, Z

    2014-01-01

    The objective of the study was to compare geometrical differences of target volumes based on four-dimensional computed tomography (4DCT) maximum intensity projection (MIP) and 18F-fluorodeoxyglucose positron emission tomography/computed tomography (18F-FDG PET/CT) images of primary thoracic esophageal cancer for radiation treatment. Twenty-one patients with thoracic esophageal cancer sequentially underwent contrast-enhanced three-dimensional computed tomography (3DCT), 4DCT, and 18F-FDG PET/CT thoracic simulation scans during normal free breathing. The internal gross target volume defined as IGTVMIP was obtained by contouring on MIP images. The gross target volumes based on PET/CT images (GTVPET ) were determined with nine different standardized uptake value (SUV) thresholds and manual contouring: SUV≥2.0, 2.5, 3.0, 3.5 (SUVn); ≥20%, 25%, 30%, 35%, 40% of the maximum (percentages of SUVmax, SUVn%). The differences in volume ratio (VR), conformity index (CI), and degree of inclusion (DI) between IGTVMIP and GTVPET were investigated. The mean centroid distance between GTVPET and IGTVMIP ranged from 4.98 mm to 6.53 mm. The VR ranged from 0.37 to 1.34, being significantly (P<0.05) closest to 1 at SUV2.5 (0.94), SUV20% (1.07), or manual contouring (1.10). The mean CI ranged from 0.34 to 0.58, being significantly closest to 1 (P<0.05) at SUV2.0 (0.55), SUV2.5 (0.56), SUV20% (0.56), SUV25% (0.53), or manual contouring (0.58). The mean DI of GTVPET in IGTVMIP ranged from 0.61 to 0.91, and the mean DI of IGTVMIP in GTVPET ranged from 0.34 to 0.86. The SUV threshold setting of SUV2.5, SUV20% or manual contouring yields the best tumor VR and CI with internal-gross target volume contoured on MIP of 4DCT dataset, but 3DPET/CT and 4DCT MIP could not replace each other for motion encompassing target volume delineation for radiation treatment. © 2014 International Society for Diseases of the Esophagus.

  16. Image reconstruction from projections and its application in emission computer tomography

    International Nuclear Information System (INIS)

    Kuba, Attila; Csernay, Laszlo

    1989-01-01

    Computer tomography is an imaging technique for producing cross sectional images by reconstruction from projections. Its two main branches are called transmission and emission computer tomography, TCT and ECT, resp. After an overview of the theory and practice of TCT and ECT, the first Hungarian ECT type MB 9300 SPECT consisting of a gamma camera and Ketronic Medax N computer is described, and its applications to radiological patient observations are discussed briefly. (R.P.) 28 refs.; 4 figs

  17. System Matrix Analysis for Computed Tomography Imaging

    Science.gov (United States)

    Flores, Liubov; Vidal, Vicent; Verdú, Gumersindo

    2015-01-01

    In practical applications of computed tomography imaging (CT), it is often the case that the set of projection data is incomplete owing to the physical conditions of the data acquisition process. On the other hand, the high radiation dose imposed on patients is also undesired. These issues demand that high quality CT images can be reconstructed from limited projection data. For this reason, iterative methods of image reconstruction have become a topic of increased research interest. Several algorithms have been proposed for few-view CT. We consider that the accurate solution of the reconstruction problem also depends on the system matrix that simulates the scanning process. In this work, we analyze the application of the Siddon method to generate elements of the matrix and we present results based on real projection data. PMID:26575482

  18. Identification of a unique cause of ring artifact seen in computed tomography trans-axial images

    International Nuclear Information System (INIS)

    Jha, Ashish Kumar; Purandare, Nilendu C; Shah, Sneha; Agrawal, Archi; Puranik, Ameya D; Rangarajan, Venkatesh

    2013-01-01

    Artifacts present in computed tomography (CT) image often degrade the image quality and ultimately, the diagnostic outcome. Ring artifact in trans-axial image is caused by either miscalibrated or defective detector element of detector row, which is often categorized as scanner based artifact. A ring artifact detected on trans-axial CT image of positron emission tomography/computed tomography (PET/CT), was caused by contamination of CT tube aperture by droplet of injectable contrast medium. This artifact was corrected by removal of contrast droplet from CT tube aperture. The ring artifact is a very common artifact, commonly cited in the literature. Our case puts forward an uncommon cause of this artifact and its method of correction, which also, has no mention in the existing literature

  19. A novel image-domain-based cone-beam computed tomography enhancement algorithm

    Energy Technology Data Exchange (ETDEWEB)

    Li Xiang; Li Tianfang; Yang Yong; Heron, Dwight E; Huq, M Saiful, E-mail: lix@upmc.edu [Department of Radiation Oncology, University of Pittsburgh Cancer Institute, Pittsburgh, PA 15232 (United States)

    2011-05-07

    Kilo-voltage (kV) cone-beam computed tomography (CBCT) plays an important role in image-guided radiotherapy. However, due to a large cone-beam angle, scatter effects significantly degrade the CBCT image quality and limit its clinical application. The goal of this study is to develop an image enhancement algorithm to reduce the low-frequency CBCT image artifacts, which are also called the bias field. The proposed algorithm is based on the hypothesis that image intensities of different types of materials in CBCT images are approximately globally uniform (in other words, a piecewise property). A maximum a posteriori probability framework was developed to estimate the bias field contribution from a given CBCT image. The performance of the proposed CBCT image enhancement method was tested using phantoms and clinical CBCT images. Compared to the original CBCT images, the corrected images using the proposed method achieved a more uniform intensity distribution within each tissue type and significantly reduced cupping and shading artifacts. In a head and a pelvic case, the proposed method reduced the Hounsfield unit (HU) errors within the region of interest from 300 HU to less than 60 HU. In a chest case, the HU errors were reduced from 460 HU to less than 110 HU. The proposed CBCT image enhancement algorithm demonstrated a promising result by the reduction of the scatter-induced low-frequency image artifacts commonly encountered in kV CBCT imaging.

  20. Quantitative cone beam X-ray luminescence tomography/X-ray computed tomography imaging

    International Nuclear Information System (INIS)

    Chen, Dongmei; Zhu, Shouping; Chen, Xueli; Chao, Tiantian; Cao, Xu; Zhao, Fengjun; Huang, Liyu; Liang, Jimin

    2014-01-01

    X-ray luminescence tomography (XLT) is an imaging technology based on X-ray-excitable materials. The main purpose of this paper is to obtain quantitative luminescence concentration using the structural information of the X-ray computed tomography (XCT) in the hybrid cone beam XLT/XCT system. A multi-wavelength luminescence cone beam XLT method with the structural a priori information is presented to relieve the severe ill-posedness problem in the cone beam XLT. The nanophosphors and phantom experiments were undertaken to access the linear relationship of the system response. Then, an in vivo mouse experiment was conducted. The in vivo experimental results show that the recovered concentration error as low as 6.67% with the location error of 0.85 mm can be achieved. The results demonstrate that the proposed method can accurately recover the nanophosphor inclusion and realize the quantitative imaging

  1. Dual-Modality Imaging of the Human Finger Joint Systems by Using Combined Multispectral Photoacoustic Computed Tomography and Ultrasound Computed Tomography

    Directory of Open Access Journals (Sweden)

    Yubin Liu

    2016-01-01

    Full Text Available We developed a homemade dual-modality imaging system that combines multispectral photoacoustic computed tomography and ultrasound computed tomography for reconstructing the structural and functional information of human finger joint systems. The fused multispectral photoacoustic-ultrasound computed tomography (MPAUCT system was examined by the phantom and in vivo experimental tests. The imaging results indicate that the hard tissues such as the bones and the soft tissues including the blood vessels, the tendon, the skins, and the subcutaneous tissues in the finger joints systems can be effectively recovered by using our multimodality MPAUCT system. The developed MPAUCT system is able to provide us with more comprehensive information of the human finger joints, which shows its potential for characterization and diagnosis of bone or joint diseases.

  2. Computed Tomography (CT) -- Head

    Medline Plus

    Full Text Available ... When the image slices are reassembled by computer software, the result is a very detailed multidimensional view ... Safety Images related to Computed Tomography (CT) - Head Videos related to Computed Tomography (CT) - Head Sponsored by ...

  3. The construction and evaluation of a prototype system for an image intensifier-based volume computed tomography imager

    International Nuclear Information System (INIS)

    Ning, R.

    1989-01-01

    A volumetric reconstruction of a three-dimensional (3-D) object has been at the forefront of exploration in medical applications for a long time. To achieve this goal, a prototype system for an image intensifier(II)-based volume computed tomography (CT) imager has been constructed. This research has been concerned with constructing and evaluating such a prototype system by phantom studies. The prototype system consists of a fixed x-ray tube, a specially designed aluminum filter that will reduce the dynamic range of projection data, an antiscatter grid, a conventional image intensifier optically coupled to a charge-coupled device (CCC) camera, a computer controlled turntable on which phantoms are placed, a digital computer including an A/D converter and a graphic station that displays the reconstructed images. In this study, three different phantoms were used: a vascular phantom, a resolution phantom and a Humanoid reg-sign chest phantom. The direct 3-D reconstruction from the projections was performed using a cone beam algorithm and vascular reconstruction algorithms. The image performance of the system for the direct 3-D reconstruction was evaluated. The spatial resolution limits of the system were estimated through observing the reconstructed images of the resolution phantom. By observing the images reconstructed from the projections, it can be determined that the image performance of the prototype system for a direct 3-D reconstruction is reasonably good and that the vascular reconstruction algorithms work very well. The results also indicate that the 3-D reconstructions obtained with the 11-based volume CT imager have nearly equally good resolution in x, y and z directions and are superior to a conventional CT in the resolution of the z direction

  4. Spatial image modulation to improve performance of computed tomography imaging spectrometer

    Science.gov (United States)

    Bearman, Gregory H. (Inventor); Wilson, Daniel W. (Inventor); Johnson, William R. (Inventor)

    2010-01-01

    Computed tomography imaging spectrometers ("CTIS"s) having patterns for imposing spatial structure are provided. The pattern may be imposed either directly on the object scene being imaged or at the field stop aperture. The use of the pattern improves the accuracy of the captured spatial and spectral information.

  5. The accuracy of the imaging reformation of cone beam computed tomography for the assessment of bone defect healing

    International Nuclear Information System (INIS)

    Kang, Ho Duk; Kim, Gyu Tae; Choi, Yong Suk; Hwang, Eui Hwan

    2007-01-01

    To evaluate the accuracy of the imaging reformation of cone beam computed tomography for the assessment of bone defect healing in rat model. Sprague-Dawely strain rats weighing about 350 gms were selected. Then critical size bone defects were done at parietal bone with implantation of collagen sponge. The rats were divided into seven groups of 3 days, 1 week, 2 weeks, 3 weeks, 4 weeks, 6 weeks, and 8 weeks. The healing of surgical defect was assessed by multiplanar reconstruction (MPR) images and three-dimensional (3-D) images of cone beam computed tomography, compared with soft X-ray radiograph and histopathologic examination. MPR images and 3-D images showed similar reformation of the healing amount at 3 days, 1 week, 2 weeks, and 8 weeks, however, lower reformation at 3 weeks, 4 weeks, and 6 weeks. According to imaging-based methodologies, MPR images revealed similar reformation of the healing mount than 3-D images compare with soft X-ray image. Among the four threshold values for 3-D images, 400-500 HU revealed similar reformation of the healing amount. Histopathologic examination confirmed the newly formed trabeculation correspond with imaging-based mythologies. MPR images revealed higher accuracy of the imaging reformation of cone beam computed tomography and cone beam computed tomography is a clinically useful diagnostic tool for the assessment of bone defect healing

  6. Computed Tomography Image Origin Identification Based on Original Sensor Pattern Noise and 3-D Image Reconstruction Algorithm Footprints.

    Science.gov (United States)

    Duan, Yuping; Bouslimi, Dalel; Yang, Guanyu; Shu, Huazhong; Coatrieux, Gouenou

    2017-07-01

    In this paper, we focus on the "blind" identification of the computed tomography (CT) scanner that has produced a CT image. To do so, we propose a set of noise features derived from the image chain acquisition and which can be used as CT-scanner footprint. Basically, we propose two approaches. The first one aims at identifying a CT scanner based on an original sensor pattern noise (OSPN) that is intrinsic to the X-ray detectors. The second one identifies an acquisition system based on the way this noise is modified by its three-dimensional (3-D) image reconstruction algorithm. As these reconstruction algorithms are manufacturer dependent and kept secret, our features are used as input to train a support vector machine (SVM) based classifier to discriminate acquisition systems. Experiments conducted on images issued from 15 different CT-scanner models of 4 distinct manufacturers demonstrate that our system identifies the origin of one CT image with a detection rate of at least 94% and that it achieves better performance than sensor pattern noise (SPN) based strategy proposed for general public camera devices.

  7. Recurrent ovarian endodermal sinus tumor: demonstration by computed tomography, magnetic resonance imaging, and positron emission tomography

    International Nuclear Information System (INIS)

    Romero, J.A.; Kim, E.E.; Tresukosol, D.; Kudelka, A.P.; Edwards, C.L.; Kavanagh, J.J.

    1995-01-01

    We report a case of recurrent endodermal sinus tumor of the ovary that was identified and/or clearly depicted by computed tomography, magnetic resonance imaging, and positron emission tomography. The potential roles of various imaging modalities in the detection of recurrent endodermal sinus tumor are discussed. (orig.)

  8. Comparison of radiation absorbed dose in target organs in maxillofacial imaging with panoramic, conventional linear tomography, cone beam computed tomography and computed tomography

    Directory of Open Access Journals (Sweden)

    Panjnoush M.

    2009-12-01

    Full Text Available "nBackground and Aim: The objective of this study was to measure and compare the tissue absorbed dose in thyroid gland, salivary glands, eye and skin in maxillofacial imaging with panoramic, conventional linear tomography, cone beam computed tomography (CBCT and computed tomography (CT."nMaterials and Methods: Thermoluminescent dosimeters (TLD were implanted in 14 sites of RANDO phantom to measure average tissue absorbed dose in thyroid gland, parotid glands, submandibular glands, sublingual gland, lenses and buccal skin. The Promax (PLANMECA, Helsinki, Finland unit was selected for Panoramic, conventional linear tomography and cone beam computed tomography examinations and spiral Hispeed/Fxi (General Electric,USA was selected for CT examination. The average tissue absorbed doses were used for the calculation of the equivalent and effective doses in each organ."nResults: The average absorbed dose for Panoramic ranged from 0.038 mGY (Buccal skin to 0.308 mGY (submandibular gland, linear tomography ranged from 0.048 mGY (Lens to 0.510 mGY (submandibular gland,CBCT ranged from 0.322 mGY (thyroid glad to 1.144 mGY (Parotid gland and in CT ranged from 2.495 mGY (sublingual gland to 3.424 mGY (submandibular gland. Total effective dose in CBCT is 5 times greater than Panoramic and 4 times greater than linear tomography, and in CT, 30 and 22 times greater than Panoramic and linear tomography, respectively. Total effective dose in CT is 6 times greater than CBCT."nConclusion: For obtaining 3-dimensional (3D information in maxillofacial region, CBCT delivers the lower dose than CT, and should be preferred over a medical CT imaging. Furthermore, during maxillofacial imaging, salivary glands receive the highest dose of radiation.

  9. Ectopic pregnancy: pictorial essay focusing on computed tomography and magnetic resonance imaging findings

    International Nuclear Information System (INIS)

    Febronio, Eduardo Miguel; Rosas, George de Queiroz; D'Ippolito, Giuseppe

    2012-01-01

    The objective of the present study is to describe key computed tomography and magnetic resonance imaging findings in patients with acute abdominal pain caused by ectopic pregnancy. For this purpose, two radiologists consensually selected and analyzed computed tomography and magnetic resonance imaging studies performed in female patients with acute abdominal pain caused by proven ectopic pregnancy in the period between January 2010 and December 2011. The imaging diagnosis of ectopic pregnancy is usually obtained by ultrasonography, however, with the increasing use of computed tomography and magnetic resonance imaging in the assessment of patients with acute abdomen of gynecological origin it is necessary that the radiologist becomes familiar with the main findings observed at these diagnostic methods. (author)

  10. Ectopic pregnancy: pictorial essay focusing on computed tomography and magnetic resonance imaging findings

    Energy Technology Data Exchange (ETDEWEB)

    Febronio, Eduardo Miguel; Rosas, George de Queiroz; D' Ippolito, Giuseppe [Escola Paulista de Medicina - Universidade Federal de Sao Paulo (EPM-Unifesp), Sao Paulo, SP (Brazil). Dept. of Imaging Diagnosis; Cardia, Patricia Prando, E-mail: giuseppe_dr@uol.com.br [Centro Radiologico Campinas, Campinas, SP (Brazil)

    2012-09-15

    The objective of the present study is to describe key computed tomography and magnetic resonance imaging findings in patients with acute abdominal pain caused by ectopic pregnancy. For this purpose, two radiologists consensually selected and analyzed computed tomography and magnetic resonance imaging studies performed in female patients with acute abdominal pain caused by proven ectopic pregnancy in the period between January 2010 and December 2011. The imaging diagnosis of ectopic pregnancy is usually obtained by ultrasonography, however, with the increasing use of computed tomography and magnetic resonance imaging in the assessment of patients with acute abdomen of gynecological origin it is necessary that the radiologist becomes familiar with the main findings observed at these diagnostic methods. (author)

  11. Pictorial review: Electron beam computed tomography and multislice spiral computed tomography for cardiac imaging

    International Nuclear Information System (INIS)

    Lembcke, Alexander; Hein, Patrick A.; Dohmen, Pascal M.; Klessen, Christian; Wiese, Till H.; Hoffmann, Udo; Hamm, Bernd; Enzweiler, Christian N.H.

    2006-01-01

    Electron beam computed tomography (EBCT) revolutionized cardiac imaging by combining a constant high temporal resolution with prospective ECG triggering. For years, EBCT was the primary technique for some non-invasive diagnostic cardiac procedures such as calcium scoring and non-invasive angiography of the coronary arteries. Multislice spiral computed tomography (MSCT) on the other hand significantly advanced cardiac imaging through high volume coverage, improved spatial resolution and retrospective ECG gating. This pictorial review will illustrate the basic differences between both modalities with special emphasis to their image quality. Several experimental and clinical examples demonstrate the strengths and limitations of both imaging modalities in an intraindividual comparison for a broad range of diagnostic applications such as coronary artery calcium scoring, coronary angiography including stent visualization as well as functional assessment of the cardiac ventricles and valves. In general, our examples indicate that EBCT suffers from a number of shortcomings such as limited spatial resolution and a low contrast-to-noise ratio. Thus, EBCT should now only be used in selected cases where a constant high temporal resolution is a crucial issue, such as dynamic (cine) imaging. Due to isotropic submillimeter spatial resolution and retrospective data selection MSCT seems to be the non-invasive method of choice for cardiac imaging in general, and for assessment of the coronary arteries in particular. However, technical developments are still needed to further improve the temporal resolution in MSCT and to reduce the substantial radiation exposure

  12. Comparison of hand and semiautomatic tracing methods for creating maxillofacial artificial organs using sequences of computed tomography (CT) and cone beam computed tomography (CBCT) images.

    Science.gov (United States)

    Szabo, Bence T; Aksoy, Seçil; Repassy, Gabor; Csomo, Krisztian; Dobo-Nagy, Csaba; Orhan, Kaan

    2017-06-09

    The aim of this study was to compare the paranasal sinus volumes obtained by manual and semiautomatic imaging software programs using both CT and CBCT imaging. 121 computed tomography (CT) and 119 cone beam computed tomography (CBCT) examinations were selected from the databases of the authors' institutes. The Digital Imaging and Communications in Medicine (DICOM) images were imported into 3-dimensonal imaging software, in which hand mode and semiautomatic tracing methods were used to measure the volumes of both maxillary sinuses and the sphenoid sinus. The determined volumetric means were compared to previously published averages. Isometric CBCT-based volume determination results were closer to the real volume conditions, whereas the non-isometric CT-based volume measurements defined coherently lower volumes. By comparing the 2 volume measurement modes, the values gained from hand mode were closer to the literature data. Furthermore, CBCT-based image measurement results corresponded to the known averages. Our results suggest that CBCT images provide reliable volumetric information that can be depended on for artificial organ construction, and which may aid the guidance of the operator prior to or during the intervention.

  13. Mesenteric panniculitis: computed tomography aspects

    International Nuclear Information System (INIS)

    Moreira, Luiza Beatriz Melo; Alves, Jose Ricardo Duarte; Marchiori, Edson; Pinheiro, Ricardo Andrade; Melo, Alessandro Severo Alves de; Noro, Fabio

    2001-01-01

    Mesenteric panniculitis is an inflammatory process that represents the second stage of a rare progressive disease involving the adipose tissue of the mesentery. Imaging methods used in the diagnosis of mesenteric panniculitis include barium studies, ultrasonography, computed tomography and magnetic resonance imaging. Computed tomography is important for both, diagnosis and evaluation of the extension of the disease and treatment monitoring. Computed tomography findings may vary according to the stage of the disease and the amount of inflammatory material or fibrosis. There is also good correlation between the computed tomography and anatomical pathology findings. The authors studied 10 patients with mesenteric panniculitis submitted to computed tomography. Magnetic resonance imaging was also performed in one patient. In all patients, computed tomography revealed a heterogeneous mass in the mesentery with density of fat, interspersed with areas of soft tissue density and dilated vessels. (author)

  14. Applications of X-ray Computed Tomography and Emission Computed Tomography

    International Nuclear Information System (INIS)

    Seletchi, Emilia Dana; Sutac, Victor

    2005-01-01

    Computed Tomography is a non-destructive imaging method that allows visualization of internal features within non-transparent objects such as sedimentary rocks. Filtering techniques have been applied to circumvent the artifacts and achieve high-quality images for quantitative analysis. High-resolution X-ray computed tomography (HRXCT) can be used to identify the position of the growth axis in speleothems by detecting subtle changes in calcite density between growth bands. HRXCT imagery reveals the three-dimensional variability of coral banding providing information on coral growth and climate over the past several centuries. The Nuclear Medicine imaging technique uses a radioactive tracer, several radiation detectors, and sophisticated computer technologies to understand the biochemical basis of normal and abnormal functions within the brain. The goal of Emission Computed Tomography (ECT) is to accurately determine the three-dimensional radioactivity distribution resulting from the radiopharmaceutical uptake inside the patient instead of the attenuation coefficient distribution from different tissues as obtained from X-ray Computer Tomography. ECT is a very useful tool for investigating the cognitive functions. Because of the low radiation doses associated with Positron Emission Tomography (PET), this technique has been applied in clinical research, allowing the direct study of human neurological diseases. (authors)

  15. Computed tomography versus intravenous urography in diagnosis of acute flank pain from urolithiasis: a randomized study comparing imaging costs and radiation dose

    International Nuclear Information System (INIS)

    Thomson, J.M.Z.; Maling, T.M.J.; Glocer, J.; Mark, S.; Abbott, C.

    2001-01-01

    The equivalent sensitivity of non-contrast computed tomography (NCCT) and intravenous urography (IVU) in the diagnosis of suspected ureteric colic has been established. Approximately 50% of patients with suspected ureteric colic do not have a nephro-urological cause for pain. Because many such patients require further imaging studies, NCCT may obviate the need for these studies and, in so doing, be more cost effective and involve less overall radiation exposure. The present study compares the total imaging cost and radiation dose of NCCT versus IVU in the diagnosis of acute flank pain. Two hundred and twenty-four patients (157 men; mean age 45 years; age range 19-79 years) with suspected renal colic were randomized either to NCCT or IVU. The number of additional diagnostic imaging studies, cost (IVU A$ 136; CTU A$ 173), radiation exposure and imaging times were compared. Of 119(53%) patients with renal obstruction, 105 had no nephro-urological causes of pain. For 21 (20%) of these patients an alternative diagnosis was made at the initial imaging, 10 of which were significant. Of 118 IVU patients, 28 (24%) required 32 additional imaging tests to reach a diagnosis, whereas seven of 106 (6%) NCCT patients required seven additional imaging studies. The average total diagnostic imaging cost for the NCCT group was A$181.94 and A$175.46 for the IVU group (P< 0.43). Mean radiation dose to diagnosis was 5.00 mSv (NCCT) versus 3.50 mSv (IVU) (P < 0.001). Mean imaging time was 30 min (NCCT) versus 75 min (IVU) (P < 0.001). Diagnostic imaging costs were remarkably similar. Although NCCT involves a higher radiation dose than IVU, its advantages of faster diagnosis, the avoidance of additional diagnostic imaging tests and its ability to diagnose other causes makes it the study of choice for acute flank pain at Christchurch Hospital. Copyright (2001) Blackwell Science Pty Ltd

  16. Correction for polychromatic aberration in computed tomography images

    International Nuclear Information System (INIS)

    Naparstek, A.

    1979-01-01

    A method and apparatus for correcting a computed tomography image for polychromatic aberration caused by the non-linear interaction (i.e. the energy dependent attenuation characteristics) of different body constituents, such as bone and soft tissue, with a polychromatic X-ray beam are described in detail. An initial image is conventionally computed from path measurements made as source and detector assembly scan a body section. In the improvement, each image element of the initial computed image representing attenuation is recorded in a store and is compared with two thresholds, one representing bone and the other soft tissue. Depending on the element value relative to the thresholds, a proportion of the respective constituent is allocated to that element location and corresponding bone and soft tissue projections are determined and stored. An error projection generator calculates projections of polychromatic aberration errors in the raw image data from recalled bone and tissue projections using a multidimensional polynomial function which approximates the non-linear interaction involved. After filtering, these are supplied to an image reconstruction computer to compute image element correction values which are subtracted from raw image element values to provide a corrected reconstructed image for display. (author)

  17. Positron emission tomography/computed tomography imaging and rheumatoid arthritis.

    Science.gov (United States)

    Wang, Shi-Cun; Xie, Qiang; Lv, Wei-Fu

    2014-03-01

    Rheumatoid arthritis (RA) is a phenotypically heterogeneous, chronic, destructive inflammatory disease of the synovial joints. A number of imaging tools are currently available for evaluation of inflammatory conditions. By targeting the upgraded glucose uptake of infiltrating granulocytes and tissue macrophages, positron emission tomography/computed tomography with fluorine-18 fluorodeoxyglucose ((18) F-FDG PET/CT) is available to delineate inflammation with high sensitivity. Recently, several studies have indicated that FDG uptake in affected joints reflects the disease activity of RA. In addition, usage of FDG PET for the sensitive detection and monitoring of the response to treatment has been reported. Combined FDG PET/CT enables the detailed assessment of disease in large joints throughout the whole body. These unique capabilities of FDG PET/CT imaging are also able to detect RA-complicated diseases. Therefore, PET/CT has become an excellent ancillary tool to assess disease activity and prognosis in RA. © 2014 Asia Pacific League of Associations for Rheumatology and Wiley Publishing Asia Pty Ltd.

  18. Development of computed tomography system and image reconstruction algorithm

    International Nuclear Information System (INIS)

    Khairiah Yazid; Mohd Ashhar Khalid; Azaman Ahmad; Khairul Anuar Mohd Salleh; Ab Razak Hamzah

    2006-01-01

    Computed tomography is one of the most advanced and powerful nondestructive inspection techniques, which is currently used in many different industries. In several CT systems, detection has been by combination of an X-ray image intensifier and charge -coupled device (CCD) camera or by using line array detector. The recent development of X-ray flat panel detector has made fast CT imaging feasible and practical. Therefore this paper explained the arrangement of a new detection system which is using the existing high resolution (127 μm pixel size) flat panel detector in MINT and the image reconstruction technique developed. The aim of the project is to develop a prototype flat panel detector based CT imaging system for NDE. The prototype consisted of an X-ray tube, a flat panel detector system, a rotation table and a computer system to control the sample motion and image acquisition. Hence this project is divided to two major tasks, firstly to develop image reconstruction algorithm and secondly to integrate X-ray imaging components into one CT system. The image reconstruction algorithm using filtered back-projection method is developed and compared to other techniques. The MATLAB program is the tools used for the simulations and computations for this project. (Author)

  19. Pathomorphism of spiral tibial fractures in computed tomography imaging.

    Science.gov (United States)

    Guzik, Grzegorz

    2011-01-01

    Spiral fractures of the tibia are virtually homogeneous with regard to their pathomorphism. The differences that are seen concern the level of fracture of the fibula, and, to a lesser extent, the level of fracture of the tibia, the length of fracture cleft, and limb shortening following the trauma. While conventional radiographs provide sufficient information about the pathomorphism of fractures, computed tomography can be useful in demonstrating the spatial arrangement of bone fragments and topography of soft tissues surrounding the fracture site. Multiple cross-sectional computed tomography views of spiral fractures of the tibia show the details of the alignment of bone chips at the fracture site, axis of the tibial fracture cleft, and topography of soft tissues that are not visible on standard radiographs. A model of a spiral tibial fracture reveals periosteal stretching with increasing spiral and longitudinal displacement. The cleft in tibial fractures has a spiral shape and its line is invariable. Every spiral fracture of both crural bones results in extensive damage to the periosteum and may damage bellies of the long flexor muscle of toes, flexor hallucis longus as well as the posterior tibial muscle. Computed tomography images of spiral fractures of the tibia show details of damage that are otherwise invisible on standard radiographs. Moreover, CT images provide useful information about the spatial location of the bone chips as well as possible threats to soft tissues that surround the fracture site. Every spiral fracture of the tibia is associated with disruption of the periosteum. 1. Computed tomography images of spiral fractures of the tibia show details of damage otherwise invisible on standard radiographs, 2. The sharp end of the distal tibial chip can damage the tibialis posterior muscle, long flexor muscles of the toes and the flexor hallucis longus, 3. Every spiral fracture of the tibia is associated with disruption of the periosteum.

  20. X-ray Computed Tomography Image Quality Indicator (IQI) Development

    Data.gov (United States)

    National Aeronautics and Space Administration — Phase one of the program is to identify suitable x-ray Computed Tomography (CT) Image Quality Indicator (IQI) design(s) that can be used to adequately capture CT...

  1. Speeding up image reconstruction in computed tomography

    CERN Multimedia

    CERN. Geneva

    2018-01-01

    Computed tomography (CT) is a technique for imaging cross-sections of an object using X-ray measurements taken from different angles. In last decades a significant progress has happened there: today advanced algorithms allow fast image reconstruction and obtaining high-quality images even with missing or dirty data, modern detectors provide high resolution without increasing radiation dose, and high-performance multi-core computing devices are there to help us solving such tasks even faster. I will start with CT basics, then briefly present existing classes of reconstruction algorithms and their differences. After that I will proceed to employing distinctive architectural features of modern multi-core devices (CPUs and GPUs) and popular program interfaces (OpenMP, MPI, CUDA, OpenCL) for developing effective parallel realizations of image reconstruction algorithms. Decreasing full reconstruction time from long hours up to minutes or even seconds has a revolutionary impact in diagnostic medicine and industria...

  2. Comparative study of cranial anthropometric measurement by traditional calipers to computed tomography and three-dimensional photogrammetry.

    Science.gov (United States)

    Mendonca, Derick A; Naidoo, Sybill D; Skolnick, Gary; Skladman, Rachel; Woo, Albert S

    2013-07-01

    Craniofacial anthropometry by direct caliper measurements is a common method of quantifying the morphology of the cranial vault. New digital imaging modalities including computed tomography and three-dimensional photogrammetry are similarly being used to obtain craniofacial surface measurements. This study sought to compare the accuracy of anthropometric measurements obtained by calipers versus 2 methods of digital imaging.Standard anterior-posterior, biparietal, and cranial index measurements were directly obtained on 19 participants with an age range of 1 to 20 months. Computed tomographic scans and three-dimensional photographs were both obtained on each child within 2 weeks of the clinical examination. Two analysts measured the anterior-posterior and biparietal distances on the digital images. Measures of reliability and bias between the modalities were calculated and compared.Caliper measurements were found to underestimate the anterior-posterior and biparietal distances as compared with those of the computed tomography and the three-dimensional photogrammetry (P photogrammetry (P = 0.002). The coefficients of variation for repeated measures based on the computed tomography and the three-dimensional photogrammetry were 0.008 and 0.007, respectively.In conclusion, measurements based on digital modalities are generally reliable and interchangeable. Caliper measurements lead to underestimation of anterior-posterior and biparietal values compared with digital imaging.

  3. Impact of Computed Tomography Image Quality on Image-Guided Radiation Therapy Based on Soft Tissue Registration

    International Nuclear Information System (INIS)

    Morrow, Natalya V.; Lawton, Colleen A.; Qi, X. Sharon; Li, X. Allen

    2012-01-01

    Purpose: In image-guided radiation therapy (IGRT), different computed tomography (CT) modalities with varying image quality are being used to correct for interfractional variations in patient set-up and anatomy changes, thereby reducing clinical target volume to the planning target volume (CTV-to-PTV) margins. We explore how CT image quality affects patient repositioning and CTV-to-PTV margins in soft tissue registration-based IGRT for prostate cancer patients. Methods and Materials: Four CT-based IGRT modalities used for prostate RT were considered in this study: MV fan beam CT (MVFBCT) (Tomotherapy), MV cone beam CT (MVCBCT) (MVision; Siemens), kV fan beam CT (kVFBCT) (CTVision, Siemens), and kV cone beam CT (kVCBCT) (Synergy; Elekta). Daily shifts were determined by manual registration to achieve the best soft tissue agreement. Effect of image quality on patient repositioning was determined by statistical analysis of daily shifts for 136 patients (34 per modality). Inter- and intraobserver variability of soft tissue registration was evaluated based on the registration of a representative scan for each CT modality with its corresponding planning scan. Results: Superior image quality with the kVFBCT resulted in reduced uncertainty in soft tissue registration during IGRT compared with other image modalities for IGRT. The largest interobserver variations of soft tissue registration were 1.1 mm, 2.5 mm, 2.6 mm, and 3.2 mm for kVFBCT, kVCBCT, MVFBCT, and MVCBCT, respectively. Conclusions: Image quality adversely affects the reproducibility of soft tissue-based registration for IGRT and necessitates a careful consideration of residual uncertainties in determining different CTV-to-PTV margins for IGRT using different image modalities.

  4. Impact of Computed Tomography Image Quality on Image-Guided Radiation Therapy Based on Soft Tissue Registration

    Energy Technology Data Exchange (ETDEWEB)

    Morrow, Natalya V.; Lawton, Colleen A. [Department of Radiation Oncology, Medical College of Wisconsin, Milwaukee, Wisconsin (United States); Qi, X. Sharon [Department of Radiation Oncology, University of Colorado Denver, Denver, Colorado (United States); Li, X. Allen, E-mail: ali@mcw.edu [Department of Radiation Oncology, Medical College of Wisconsin, Milwaukee, Wisconsin (United States)

    2012-04-01

    Purpose: In image-guided radiation therapy (IGRT), different computed tomography (CT) modalities with varying image quality are being used to correct for interfractional variations in patient set-up and anatomy changes, thereby reducing clinical target volume to the planning target volume (CTV-to-PTV) margins. We explore how CT image quality affects patient repositioning and CTV-to-PTV margins in soft tissue registration-based IGRT for prostate cancer patients. Methods and Materials: Four CT-based IGRT modalities used for prostate RT were considered in this study: MV fan beam CT (MVFBCT) (Tomotherapy), MV cone beam CT (MVCBCT) (MVision; Siemens), kV fan beam CT (kVFBCT) (CTVision, Siemens), and kV cone beam CT (kVCBCT) (Synergy; Elekta). Daily shifts were determined by manual registration to achieve the best soft tissue agreement. Effect of image quality on patient repositioning was determined by statistical analysis of daily shifts for 136 patients (34 per modality). Inter- and intraobserver variability of soft tissue registration was evaluated based on the registration of a representative scan for each CT modality with its corresponding planning scan. Results: Superior image quality with the kVFBCT resulted in reduced uncertainty in soft tissue registration during IGRT compared with other image modalities for IGRT. The largest interobserver variations of soft tissue registration were 1.1 mm, 2.5 mm, 2.6 mm, and 3.2 mm for kVFBCT, kVCBCT, MVFBCT, and MVCBCT, respectively. Conclusions: Image quality adversely affects the reproducibility of soft tissue-based registration for IGRT and necessitates a careful consideration of residual uncertainties in determining different CTV-to-PTV margins for IGRT using different image modalities.

  5. Computed tomography versus invasive coronary angiography

    DEFF Research Database (Denmark)

    Napp, Adriane E.; Haase, Robert; Laule, Michael

    2017-01-01

    Objectives: More than 3.5 million invasive coronary angiographies (ICA) are performed in Europe annually. Approximately 2 million of these invasive procedures might be reduced by noninvasive tests because no coronary intervention is performed. Computed tomography (CT) is the most accurate...... angiography (ICA) is the reference standard for detection of CAD.• Noninvasive computed tomography angiography excludes CAD with high sensitivity.• CT may effectively reduce the approximately 2 million negative ICAs in Europe.• DISCHARGE addresses this hypothesis in patients with low-to-intermediate pretest...

  6. Adaptive Statistical Iterative Reconstruction-V Versus Adaptive Statistical Iterative Reconstruction: Impact on Dose Reduction and Image Quality in Body Computed Tomography.

    Science.gov (United States)

    Gatti, Marco; Marchisio, Filippo; Fronda, Marco; Rampado, Osvaldo; Faletti, Riccardo; Bergamasco, Laura; Ropolo, Roberto; Fonio, Paolo

    The aim of this study was to evaluate the impact on dose reduction and image quality of the new iterative reconstruction technique: adaptive statistical iterative reconstruction (ASIR-V). Fifty consecutive oncologic patients acted as case controls undergoing during their follow-up a computed tomography scan both with ASIR and ASIR-V. Each study was analyzed in a double-blinded fashion by 2 radiologists. Both quantitative and qualitative analyses of image quality were conducted. Computed tomography scanner radiation output was 38% (29%-45%) lower (P ASIR-V examinations than for the ASIR ones. The quantitative image noise was significantly lower (P ASIR-V. Adaptive statistical iterative reconstruction-V had a higher performance for the subjective image noise (P = 0.01 for 5 mm and P = 0.009 for 1.25 mm), the other parameters (image sharpness, diagnostic acceptability, and overall image quality) being similar (P > 0.05). Adaptive statistical iterative reconstruction-V is a new iterative reconstruction technique that has the potential to provide image quality equal to or greater than ASIR, with a dose reduction around 40%.

  7. Potentials of high resolution magnetic resonance imaging versus computed tomography for preoperative local staging of colon cancer

    International Nuclear Information System (INIS)

    Rollven, Erik; Blomqvist, Lennart; Holm, Torbjorn; Glimelius, Bengt; Loerinc, Esther

    2013-01-01

    Background: Preoperative identification of locally advanced colon cancer is of importance in order to properly plan treatment. Purpose: To study high resolution T2-weighted magnetic resonance imaging (MRI) versus computed tomography (CT) for preoperative staging of colon cancer with surgery and histopathology as reference standard. Material and Methods: Twenty-eight patients with a total of 29 tumors were included. Patients were examined on a 1.5 T MR unit using a phased array body coil. T2 turbo spin-echo high resolution sequences were obtained in a coronal, transverse, and perpendicular plane to the long axis of the colon at the site of the tumor. Contrast-enhanced CT was performed using a protocol for metastasis staging. The examinations were independently evaluated by two gastrointestinal radiologists using criteria adapted to imaging for prediction of T-stage, N-stage, and extramural venous invasion. Based on the T-stage, tumors were divided in to locally advanced (T3cd-T4) and not locally advanced (T1-T3ab). Surgical and histopathological findings served as reference standard. Results: Using MRI, T-stage, N-stage, and extramural venous invasion were correctly predicted for each observer in 90% and 93%, 72% and 69%, and 82% and 78% of cases, respectively. With CT the corresponding results were 79% and 76%, 72% and 72%, 78% and 67%. For MRI inter-observer agreements (Kappa statistics) were 0.79, 0.10, and 0.76. For CT the corresponding results were 0.64, 0.66, and 0.22. Conclusion: Patients with locally advanced colon cancer, defined as tumor stage T3cd-T4, can be identified by both high resolution MRI and CT, even when CT is performed with a metastasis staging protocol. MRI may have an advantage, due to its high soft tissue discrimination, to identify certain prognostic factors such as T-stage and extramural venous invasion

  8. Potentials of high resolution magnetic resonance imaging versus computed tomography for preoperative local staging of colon cancer

    Energy Technology Data Exchange (ETDEWEB)

    Rollven, Erik; Blomqvist, Lennart [Dept. of Diagnostic Radiology, Karolinska Univ. Hospital Solna, Stockholm (Sweden); Dept. of Molecular Medicine and Surgery, Karolinska Inst., Stockholm (Sweden)], e-mail: erik.rollven@ki.se; Holm, Torbjorn [Dept. of Molecular Medicine and Surgery, Karolinska Inst., Stockholm (Sweden); Dept. of Surgery, Karolinska Univ. Hospital Solna, Stockholm (Sweden); Glimelius, Bengt [Dept. of Radiology, Oncology and Radiation Science, Uppsala Univ., Uppsala (Sweden); Dept. of Oncology and Pathology, Karolinska Inst., Stockholm (Sweden); Loerinc, Esther [Dept. of Oncology and Pathology, Karolinska Inst., Stockholm (Sweden); Dept. of Pathology, Karolinska Univ. Hospital, Solna, Sweden (Sweden)

    2013-09-15

    Background: Preoperative identification of locally advanced colon cancer is of importance in order to properly plan treatment. Purpose: To study high resolution T2-weighted magnetic resonance imaging (MRI) versus computed tomography (CT) for preoperative staging of colon cancer with surgery and histopathology as reference standard. Material and Methods: Twenty-eight patients with a total of 29 tumors were included. Patients were examined on a 1.5 T MR unit using a phased array body coil. T2 turbo spin-echo high resolution sequences were obtained in a coronal, transverse, and perpendicular plane to the long axis of the colon at the site of the tumor. Contrast-enhanced CT was performed using a protocol for metastasis staging. The examinations were independently evaluated by two gastrointestinal radiologists using criteria adapted to imaging for prediction of T-stage, N-stage, and extramural venous invasion. Based on the T-stage, tumors were divided in to locally advanced (T3cd-T4) and not locally advanced (T1-T3ab). Surgical and histopathological findings served as reference standard. Results: Using MRI, T-stage, N-stage, and extramural venous invasion were correctly predicted for each observer in 90% and 93%, 72% and 69%, and 82% and 78% of cases, respectively. With CT the corresponding results were 79% and 76%, 72% and 72%, 78% and 67%. For MRI inter-observer agreements (Kappa statistics) were 0.79, 0.10, and 0.76. For CT the corresponding results were 0.64, 0.66, and 0.22. Conclusion: Patients with locally advanced colon cancer, defined as tumor stage T3cd-T4, can be identified by both high resolution MRI and CT, even when CT is performed with a metastasis staging protocol. MRI may have an advantage, due to its high soft tissue discrimination, to identify certain prognostic factors such as T-stage and extramural venous invasion.

  9. Imaging cellular and subcellular structure of human brain tissue using micro computed tomography

    Science.gov (United States)

    Khimchenko, Anna; Bikis, Christos; Schweighauser, Gabriel; Hench, Jürgen; Joita-Pacureanu, Alexandra-Teodora; Thalmann, Peter; Deyhle, Hans; Osmani, Bekim; Chicherova, Natalia; Hieber, Simone E.; Cloetens, Peter; Müller-Gerbl, Magdalena; Schulz, Georg; Müller, Bert

    2017-09-01

    Brain tissues have been an attractive subject for investigations in neuropathology, neuroscience, and neurobiol- ogy. Nevertheless, existing imaging methodologies have intrinsic limitations in three-dimensional (3D) label-free visualisation of extended tissue samples down to (sub)cellular level. For a long time, these morphological features were visualised by electron or light microscopies. In addition to being time-consuming, microscopic investigation includes specimen fixation, embedding, sectioning, staining, and imaging with the associated artefacts. More- over, optical microscopy remains hampered by a fundamental limit in the spatial resolution that is imposed by the diffraction of visible light wavefront. In contrast, various tomography approaches do not require a complex specimen preparation and can now reach a true (sub)cellular resolution. Even laboratory-based micro computed tomography in the absorption-contrast mode of formalin-fixed paraffin-embedded (FFPE) human cerebellum yields an image contrast comparable to conventional histological sections. Data of a superior image quality was obtained by means of synchrotron radiation-based single-distance X-ray phase-contrast tomography enabling the visualisation of non-stained Purkinje cells down to the subcellular level and automated cell counting. The question arises, whether the data quality of the hard X-ray tomography can be superior to optical microscopy. Herein, we discuss the label-free investigation of the human brain ultramorphology be means of synchrotron radiation-based hard X-ray magnified phase-contrast in-line tomography at the nano-imaging beamline ID16A (ESRF, Grenoble, France). As an example, we present images of FFPE human cerebellum block. Hard X-ray tomography can provide detailed information on human tissues in health and disease with a spatial resolution below the optical limit, improving understanding of the neuro-degenerative diseases.

  10. Computed Tomography (CT) -- Head

    Medline Plus

    Full Text Available ... Stroke Brain Tumors Computer Tomography (CT) Safety During Pregnancy Head and Neck Cancer X-ray, Interventional Radiology and Nuclear Medicine Radiation Safety Images related to Computed Tomography (CT) - ...

  11. Computed tomography

    International Nuclear Information System (INIS)

    Wells, P.; Davis, J.; Morgan, M.

    1994-01-01

    X-ray or gamma-ray transmission computed tomography (CT) is a powerful non-destructive evaluation (NDE) technique that produces two-dimensional cross-sectional images of an object without the need to physically section it. CT is also known by the acronym CAT, for computerised axial tomography. This review article presents a brief historical perspective on CT, its current status and the underlying physics. The mathematical fundamentals of computed tomography are developed for the simplest transmission CT modality. A description of CT scanner instrumentation is provided with an emphasis on radiation sources and systems. Examples of CT images are shown indicating the range of materials that can be scanned and the spatial and contrast resolutions that may be achieved. Attention is also given to the occurrence, interpretation and minimisation of various image artefacts that may arise. A final brief section is devoted to the principles and potential of a range of more recently developed tomographic modalities including diffraction CT, positron emission CT and seismic tomography. 57 refs., 2 tabs., 14 figs

  12. Automatic Delineation of On-Line Head-And-Neck Computed Tomography Images: Toward On-Line Adaptive Radiotherapy

    International Nuclear Information System (INIS)

    Zhang Tiezhi; Chi Yuwei; Meldolesi, Elisa; Yan Di

    2007-01-01

    Purpose: To develop and validate a fully automatic region-of-interest (ROI) delineation method for on-line adaptive radiotherapy. Methods and Materials: On-line adaptive radiotherapy requires a robust and automatic image segmentation method to delineate ROIs in on-line volumetric images. We have implemented an atlas-based image segmentation method to automatically delineate ROIs of head-and-neck helical computed tomography images. A total of 32 daily computed tomography images from 7 head-and-neck patients were delineated using this automatic image segmentation method. Manually drawn contours on the daily images were used as references in the evaluation of automatically delineated ROIs. Two methods were used in quantitative validation: (1) the dice similarity coefficient index, which indicates the overlapping ratio between the manually and automatically delineated ROIs; and (2) the distance transformation, which yields the distances between the manually and automatically delineated ROI surfaces. Results: Automatic segmentation showed agreement with manual contouring. For most ROIs, the dice similarity coefficient indexes were approximately 0.8. Similarly, the distance transformation evaluation results showed that the distances between the manually and automatically delineated ROI surfaces were mostly within 3 mm. The distances between two surfaces had a mean of 1 mm and standard deviation of <2 mm in most ROIs. Conclusion: With atlas-based image segmentation, it is feasible to automatically delineate ROIs on the head-and-neck helical computed tomography images in on-line adaptive treatments

  13. Computed Tomography evaluation of maxillofacial injuries

    Directory of Open Access Journals (Sweden)

    V Natraj Prasad

    2017-01-01

    Full Text Available Background & Objectives: The maxillofacial region, a complex anatomical structure, can be evaluated by conventional (plain films, Tomography, Multidetector Computed Tomography, Three-Dimensional Computed Tomography, Orthopantomogram and Magnetic Resonance Imaging. The study was conducted with objective of describing various forms of maxillofacial injuries, imaging features of different types of maxillofacial fractures and the advantage of using Three- Dimensional Computed Tomography reconstructed image. Materials & Methods: A hospital based cross-sectional study was conducted among 50 patients during April 2014 to September 2016 using Toshiba Aquilion Prime 160 slice Multi Detector Computed Tomography scanner.Results: The maxillofacial fractures were significantly higher in male population (88% than female population (12 %. Road traffic accidents were the most common cause of injury others being physical assault and fall from height. It was most common in 31-40 years (26% and 21-30 (24% years age group. Maxillary sinus was the commonest fracture (36% followed by nasal bone and zygomatic bone (30%, mandible and orbital bones (28%. Soft tissue swelling was the commonest associated finding. Three dimensional images (3 D compared to the axial scans missed some fractures. However, the extension of the complex fracture lines and degree of displacement were more accurately assessed. Complex fractures found were Le fort (6% and naso-orbito-ethmoid (4% fractures.Conclusion: The proper evaluation of complex anatomy of the facial bones requires Multidetector Computed Tomography which offers excellent spatial resolution enabling multiplanar reformations and three dimensional reconstructions for enhanced diagnostic accuracy and surgical planning.

  14. Positron Emission Tomography/Computed Tomography Imaging of Residual Skull Base Chordoma Before Radiotherapy Using Fluoromisonidazole and Fluorodeoxyglucose: Potential Consequences for Dose Painting

    Energy Technology Data Exchange (ETDEWEB)

    Mammar, Hamid, E-mail: hamid.mammar@unice.fr [Radiation Oncology Department, Antoine Lacassagne Center, Nice (France); CNRS-UMR 6543, Institute of Developmental Biology and Cancer, University of Nice Sophia Antipolis, Nice (France); Kerrou, Khaldoun; Nataf, Valerie [Department of Nuclear Medicine and Radiopharmacy, Tenon Hospital, and University Pierre et Marie Curie, Paris (France); Pontvert, Dominique [Proton Therapy Center of Orsay, Curie Institute, Paris (France); Clemenceau, Stephane [Department of Neurosurgery, Pitie-Salpetriere Hospital, Paris (France); Lot, Guillaume [Department of Neurosurgery, Adolph De Rothschild Foundation, Paris (France); George, Bernard [Department of Neurosurgery, Lariboisiere Hospital, Paris (France); Polivka, Marc [Department of Pathology, Lariboisiere Hospital, Paris (France); Mokhtari, Karima [Department of Pathology, Pitie-Salpetriere Hospital, Paris (France); Ferrand, Regis; Feuvret, Loiec; Habrand, Jean-louis [Proton Therapy Center of Orsay, Curie Institute, Paris (France); Pouyssegur, Jacques; Mazure, Nathalie [CNRS-UMR 6543, Institute of Developmental Biology and Cancer, University of Nice Sophia Antipolis, Nice (France); Talbot, Jean-Noeel [Department of Nuclear Medicine and Radiopharmacy, Tenon Hospital, and University Pierre et Marie Curie, Paris (France)

    2012-11-01

    Purpose: To detect the presence of hypoxic tissue, which is known to increase the radioresistant phenotype, by its uptake of fluoromisonidazole (18F) (FMISO) using hybrid positron emission tomography/computed tomography (PET/CT) imaging, and to compare it with the glucose-avid tumor tissue imaged with fluorodeoxyglucose (18F) (FDG), in residual postsurgical skull base chordoma scheduled for radiotherapy. Patients and Methods: Seven patients with incompletely resected skull base chordomas were planned for high-dose radiotherapy (dose {>=}70 Gy). All 7 patients underwent FDG and FMISO PET/CT. Images were analyzed qualitatively by visual examination and semiquantitatively by computing the ratio of the maximal standardized uptake value (SUVmax) of the tumor and cerebellum (T/C R), with delineation of lesions on conventional imaging. Results: Of the eight lesion sites imaged with FDG PET/CT, only one was visible, whereas seven of nine lesions were visible on FMISO PET/CT. The median SUVmax in the tumor area was 2.8 g/mL (minimum 2.1; maximum 3.5) for FDG and 0.83 g/mL (minimum 0.3; maximum 1.2) for FMISO. The T/C R values ranged between 0.30 and 0.63 for FDG (median, 0.41) and between 0.75 and 2.20 for FMISO (median,1.59). FMISO T/C R >1 in six lesions suggested the presence of hypoxic tissue. There was no correlation between FMISO and FDG uptake in individual chordomas (r = 0.18, p = 0.7). Conclusion: FMISO PET/CT enables imaging of the hypoxic component in residual chordomas. In the future, it could help to better define boosted volumes for irradiation and to overcome the radioresistance of these lesions. No relationship was founded between hypoxia and glucose metabolism in these tumors after initial surgery.

  15. Noninvasive coronary angioscopy using electron beam computed tomography and multidetector computed tomography

    NARCIS (Netherlands)

    van Ooijen, PMA; Nieman, K; de Feyter, PJ; Oudkerk, M

    2002-01-01

    With the advent of noninvasive coronary imaging techniques like multidetector computed tomography and electron beam computed tomography, new representation methods such as intracoronary visualization. have been introduced. We explore the possibilities of these novel visualization techniques and

  16. A pseudo-discrete algebraic reconstruction technique (PDART) prior image-based suppression of high density artifacts in computed tomography

    Energy Technology Data Exchange (ETDEWEB)

    Pua, Rizza; Park, Miran; Wi, Sunhee; Cho, Seungryong, E-mail: scho@kaist.ac.kr

    2016-12-21

    We propose a hybrid metal artifact reduction (MAR) approach for computed tomography (CT) that is computationally more efficient than a fully iterative reconstruction method, but at the same time achieves superior image quality to the interpolation-based in-painting techniques. Our proposed MAR method, an image-based artifact subtraction approach, utilizes an intermediate prior image reconstructed via PDART to recover the background information underlying the high density objects. For comparison, prior images generated by total-variation minimization (TVM) algorithm, as a realization of fully iterative approach, were also utilized as intermediate images. From the simulation and real experimental results, it has been shown that PDART drastically accelerates the reconstruction to an acceptable quality of prior images. Incorporating PDART-reconstructed prior images in the proposed MAR scheme achieved higher quality images than those by a conventional in-painting method. Furthermore, the results were comparable to the fully iterative MAR that uses high-quality TVM prior images. - Highlights: • An accelerated reconstruction method, PDART, is proposed for exterior problems. • With a few iterations, soft prior image was reconstructed from the exterior data. • PDART framework has enabled an efficient hybrid metal artifact reduction in CT.

  17. Motion-compensated cone beam computed tomography using a conjugate gradient least-squares algorithm and electrical impedance tomography imaging motion data.

    Science.gov (United States)

    Pengpen, T; Soleimani, M

    2015-06-13

    Cone beam computed tomography (CBCT) is an imaging modality that has been used in image-guided radiation therapy (IGRT). For applications such as lung radiation therapy, CBCT images are greatly affected by the motion artefacts. This is mainly due to low temporal resolution of CBCT. Recently, a dual modality of electrical impedance tomography (EIT) and CBCT has been proposed, in which the high temporal resolution EIT imaging system provides motion data to a motion-compensated algebraic reconstruction technique (ART)-based CBCT reconstruction software. High computational time associated with ART and indeed other variations of ART make it less practical for real applications. This paper develops a motion-compensated conjugate gradient least-squares (CGLS) algorithm for CBCT. A motion-compensated CGLS offers several advantages over ART-based methods, including possibilities for explicit regularization, rapid convergence and parallel computations. This paper for the first time demonstrates motion-compensated CBCT reconstruction using CGLS and reconstruction results are shown in limited data CBCT considering only a quarter of the full dataset. The proposed algorithm is tested using simulated motion data in generic motion-compensated CBCT as well as measured EIT data in dual EIT-CBCT imaging. © 2015 The Author(s) Published by the Royal Society. All rights reserved.

  18. Using high resolution X-ray computed tomography to create an image based model of a lymph node.

    Science.gov (United States)

    Cooper, L J; Zeller-Plumhoff, B; Clough, G F; Ganapathisubramani, B; Roose, T

    2018-07-14

    Lymph nodes are an important part of the immune system. They filter the lymphatic fluid as it is transported from the tissues before being returned to the blood stream. The fluid flow through the nodes influences the behaviour of the immune cells that gather within the nodes and the structure of the node itself. Measuring the fluid flow in lymph nodes experimentally is challenging due to their small size and fragility. In this paper, we present high resolution X-ray computed tomography images of a murine lymph node. The impact of the resulting visualized structures on fluid transport are investigated using an image based model. The high contrast between different structures within the lymph node provided by phase contrast X-ray computed tomography reconstruction results in images that, when related to the permeability of the lymph node tissue, suggest an increased fluid velocity through the interstitial channels in the lymph node tissue. Fluid taking a direct path from the afferent to the efferent lymphatic vessel, through the centre of the node, moved faster than the fluid that flowed around the periphery of the lymph node. This is a possible mechanism for particles being moved into the cortex. Copyright © 2018 Elsevier Ltd. All rights reserved.

  19. Block matching sparsity regularization-based image reconstruction for incomplete projection data in computed tomography

    Science.gov (United States)

    Cai, Ailong; Li, Lei; Zheng, Zhizhong; Zhang, Hanming; Wang, Linyuan; Hu, Guoen; Yan, Bin

    2018-02-01

    In medical imaging many conventional regularization methods, such as total variation or total generalized variation, impose strong prior assumptions which can only account for very limited classes of images. A more reasonable sparse representation frame for images is still badly needed. Visually understandable images contain meaningful patterns, and combinations or collections of these patterns can be utilized to form some sparse and redundant representations which promise to facilitate image reconstructions. In this work, we propose and study block matching sparsity regularization (BMSR) and devise an optimization program using BMSR for computed tomography (CT) image reconstruction for an incomplete projection set. The program is built as a constrained optimization, minimizing the L1-norm of the coefficients of the image in the transformed domain subject to data observation and positivity of the image itself. To solve the program efficiently, a practical method based on the proximal point algorithm is developed and analyzed. In order to accelerate the convergence rate, a practical strategy for tuning the BMSR parameter is proposed and applied. The experimental results for various settings, including real CT scanning, have verified the proposed reconstruction method showing promising capabilities over conventional regularization.

  20. Adaptive tight frame based medical image reconstruction: a proof-of-concept study for computed tomography

    International Nuclear Information System (INIS)

    Zhou, Weifeng; Cai, Jian-Feng; Gao, Hao

    2013-01-01

    A popular approach for medical image reconstruction has been through the sparsity regularization, assuming the targeted image can be well approximated by sparse coefficients under some properly designed system. The wavelet tight frame is such a widely used system due to its capability for sparsely approximating piecewise-smooth functions, such as medical images. However, using a fixed system may not always be optimal for reconstructing a variety of diversified images. Recently, the method based on the adaptive over-complete dictionary that is specific to structures of the targeted images has demonstrated its superiority for image processing. This work is to develop the adaptive wavelet tight frame method image reconstruction. The proposed scheme first constructs the adaptive wavelet tight frame that is task specific, and then reconstructs the image of interest by solving an l 1 -regularized minimization problem using the constructed adaptive tight frame system. The proof-of-concept study is performed for computed tomography (CT), and the simulation results suggest that the adaptive tight frame method improves the reconstructed CT image quality from the traditional tight frame method. (paper)

  1. Value of image fusion using single photon emission computed tomography with integrated low dose computed tomography in comparison with a retrospective voxel-based method in neuroendocrine tumours

    International Nuclear Information System (INIS)

    Amthauer, H.; Denecke, T.; Ruf, J.; Gutberlet, M.; Felix, R.; Lemke, A.J.; Rohlfing, T.; Boehmig, M.; Ploeckinger, U.

    2005-01-01

    The objective was the evaluation of single photon emission computed tomography (SPECT) with integrated low dose computed tomography (CT) in comparison with a retrospective fusion of SPECT and high-resolution CT and a side-by-side analysis for lesion localisation in patients with neuroendocrine tumours. Twenty-seven patients were examined by multidetector CT. Additionally, as part of somatostatin receptor scintigraphy (SRS), an integrated SPECT-CT was performed. SPECT and CT data were fused using software with a registration algorithm based on normalised mutual information. The reliability of the topographic assignment of lesions in SPECT-CT, retrospective fusion and side-by-side analysis was evaluated by two blinded readers. Two patients were not enrolled in the final analysis because of misregistrations in the retrospective fusion. Eighty-seven foci were included in the analysis. For the anatomical assignment of foci, SPECT-CT and retrospective fusion revealed overall accuracies of 91 and 94% (side-by-side analysis 86%). The correct identification of foci as lymph node manifestations (n=25) was more accurate by retrospective fusion (88%) than from SPECT-CT images (76%) or by side-by-side analysis (60%). Both modalities of image fusion appear to be well suited for the localisation of SRS foci and are superior to side-by-side analysis of non-fused images especially concerning lymph node manifestations. (orig.)

  2. ℓ0 Gradient Minimization Based Image Reconstruction for Limited-Angle Computed Tomography.

    Directory of Open Access Journals (Sweden)

    Wei Yu

    Full Text Available In medical and industrial applications of computed tomography (CT imaging, limited by the scanning environment and the risk of excessive X-ray radiation exposure imposed to the patients, reconstructing high quality CT images from limited projection data has become a hot topic. X-ray imaging in limited scanning angular range is an effective imaging modality to reduce the radiation dose to the patients. As the projection data available in this modality are incomplete, limited-angle CT image reconstruction is actually an ill-posed inverse problem. To solve the problem, image reconstructed by conventional filtered back projection (FBP algorithm frequently results in conspicuous streak artifacts and gradual changed artifacts nearby edges. Image reconstruction based on total variation minimization (TVM can significantly reduce streak artifacts in few-view CT, but it suffers from the gradual changed artifacts nearby edges in limited-angle CT. To suppress this kind of artifacts, we develop an image reconstruction algorithm based on ℓ0 gradient minimization for limited-angle CT in this paper. The ℓ0-norm of the image gradient is taken as the regularization function in the framework of developed reconstruction model. We transformed the optimization problem into a few optimization sub-problems and then, solved these sub-problems in the manner of alternating iteration. Numerical experiments are performed to validate the efficiency and the feasibility of the developed algorithm. From the statistical analysis results of the performance evaluations peak signal-to-noise ratio (PSNR and normalized root mean square distance (NRMSD, it shows that there are significant statistical differences between different algorithms from different scanning angular ranges (p<0.0001. From the experimental results, it also indicates that the developed algorithm outperforms classical reconstruction algorithms in suppressing the streak artifacts and the gradual changed

  3. Fluorescent X-ray computed tomography using synchrotron radiation for imaging nonradioactive tracer materials

    Energy Technology Data Exchange (ETDEWEB)

    Akiba, Masahiro; Yuasa, Tetsuya; Uchida, Akira; Akatsuka, Takao [Yamagata Univ., Yonezawa (Japan). Electrical and Information of Engineering; Takeda, Tohoru; Hyodo, Kazuyuki; Itai, Yuji

    1997-09-01

    We describe a system of fluorescent X-ray computed tomography using synchrotron radiation (SR-FXCT) to image nonradioactive contrast materials. The system operates on the basis of computed tomography (CT) scanned by the pencil beam. In the previous experiment, we have imaged an acrylic cylindrical phantom with cross-shaped channel, filled with a diluted iodine-based tracer material of 200 {mu}g/ml. This research is aimed to improve image quality, to select the optimum energy of the incident X-ray, to confirm quantitative evaluation of the image, and to demonstrate FXCT image for living body. First, we simulated output energy profile by the Monte Carlo simulation and confirmed to predetermine the incident X-ray energy at 37 keV, in order to separate the fluorescent photons from background scattering components. Next, the imaging experiment was performed by using conventional CT algorithm under the optimum parameter at the Tristan Accumulation Ring, KEK, Japan. An acrylic phantom containing five paraxial channels of 5 and 4 mm in diameter, could be imaged; where each channel was respectively filled with diluted iodine-based contrast materials of 50, 100, 200 and 500 {mu}g/ml. From the reconstructed image, we confirmed quantitativity in the FXCT image. Finally, a rat`s brain was imaged in vitro by FXCT and monochromatic transmission CT. The comparison between these results showed that the iodine-rich region in the FXCT image corresponded with that in the monochromatic transmission CT image. (author)

  4. Whole-body computed tomography versus conventional skeletal survey in patients with multiple myeloma

    DEFF Research Database (Denmark)

    Hillengass, J; Moulopoulos, L A; Delorme, S

    2017-01-01

    and CSS in patients with smoldering MM (SMM) and MM. Fifty-four of 212 patients (25.5%) had a negative CSS and a positive WBCT for osteolytic lesions (PSMM based on CSS, 12 (22.2%) had osteolytic lesions on WBCT. In comparison, WBCT failed to detect some bone destructions...... in the appendicular skeleton possibly due to limitations of the field of view. Presence of lytic bone lesions in WBCT was of borderline prognostic significance (P=0.051) for SMM patients, with a median time to progression of 38 versus 82 months for those without bone destructions. In conclusion, WBCT identifies...... significantly more sites of bone destruction than CSS. More than 20% of patients with SMM according to CSS have in fact active MM detectable with WBCT. On the basis of this and other studies, WBCT (either computed tomography (CT) alone or as part of a positron emission tomography-CT protocol) should...

  5. Head and neck: normal variations and benign findings in FDG positron emission tomography/computed tomography imaging.

    Science.gov (United States)

    Højgaard, Liselotte; Berthelsen, Anne Kiil; Loft, Annika

    2014-04-01

    Positron emission tomography (PET)/computed tomography with FDG of the head and neck region is mainly used for the diagnosis of head and neck cancer, for staging, treatment evaluation, relapse, and planning of surgery and radio therapy. This article is a practical guide of imaging techniques, including a detailed protocol for FDG PET in head and neck imaging, physiologic findings, and pitfalls in selected case stories. Copyright © 2014 Elsevier Inc. All rights reserved.

  6. Management of Liver Cancer Argon-helium Knife Therapy with Functional Computer Tomography Perfusion Imaging.

    Science.gov (United States)

    Wang, Hongbo; Shu, Shengjie; Li, Jinping; Jiang, Huijie

    2016-02-01

    The objective of this study was to observe the change in blood perfusion of liver cancer following argon-helium knife treatment with functional computer tomography perfusion imaging. Twenty-seven patients with primary liver cancer treated with argon-helium knife and were included in this study. Plain computer tomography (CT) and computer tomography perfusion (CTP) imaging were conducted in all patients before and after treatment. Perfusion parameters including blood flows, blood volume, hepatic artery perfusion fraction, hepatic artery perfusion, and hepatic portal venous perfusion were used for evaluating therapeutic effect. All parameters in liver cancer were significantly decreased after argon-helium knife treatment (p knife therapy. Therefore, CTP imaging would play an important role for liver cancer management followed argon-helium knife therapy. © The Author(s) 2014.

  7. Matrix-based image reconstruction methods for tomography

    International Nuclear Information System (INIS)

    Llacer, J.; Meng, J.D.

    1984-10-01

    Matrix methods of image reconstruction have not been used, in general, because of the large size of practical matrices, ill condition upon inversion and the success of Fourier-based techniques. An exception is the work that has been done at the Lawrence Berkeley Laboratory for imaging with accelerated radioactive ions. An extension of that work into more general imaging problems shows that, with a correct formulation of the problem, positron tomography with ring geometries results in well behaved matrices which can be used for image reconstruction with no distortion of the point response in the field of view and flexibility in the design of the instrument. Maximum Likelihood Estimator methods of reconstruction, which use the system matrices tailored to specific instruments and do not need matrix inversion, are shown to result in good preliminary images. A parallel processing computer structure based on multiple inexpensive microprocessors is proposed as a system to implement the matrix-MLE methods. 14 references, 7 figures

  8. Does the Primary Imaging Modality-Computed Tomography or Magnetic Resonance Imaging-Influence Stroke Physicians' Certainty on Whether or Not to Give Thrombolysis to Randomized Acute Stroke Patients?

    DEFF Research Database (Denmark)

    Hansen, Christine Krarup; Christensen, Anders; Rodgers, Helen

    2018-01-01

    BACKGROUND: Door-to-needle time of 20 minutes to stroke patients with intravenous tissue plasminogen activator (iv-tPA) is feasible when computed tomography (CT) is used as first-line of brain imaging. Magnetic resonance imaging (MRI)-based assessment is more time-consuming but superior in detect......BACKGROUND: Door-to-needle time of 20 minutes to stroke patients with intravenous tissue plasminogen activator (iv-tPA) is feasible when computed tomography (CT) is used as first-line of brain imaging. Magnetic resonance imaging (MRI)-based assessment is more time-consuming but superior...

  9. Occult primary tumors of the head and neck: accuracy of thallium 201 single-photon emission computed tomography and computed tomography and/or magnetic resonance imaging

    NARCIS (Netherlands)

    van Veen, S. A.; Balm, A. J.; Valdés Olmos, R. A.; Hoefnagel, C. A.; Hilgers, F. J.; Tan, I. B.; Pameijer, F. A.

    2001-01-01

    To determine the accuracy of thallium 201 single-photon emission computed tomography (thallium SPECT) and computed tomography and/or magnetic resonance imaging (CT/MRI) in the detection of occult primary tumors of the head and neck. Study of diagnostic tests. National Cancer Institute, Amsterdam,

  10. Fast automatic segmentation of anatomical structures in x-ray computed tomography images to improve fluorescence molecular tomography reconstruction.

    Science.gov (United States)

    Freyer, Marcus; Ale, Angelique; Schulz, Ralf B; Zientkowska, Marta; Ntziachristos, Vasilis; Englmeier, Karl-Hans

    2010-01-01

    The recent development of hybrid imaging scanners that integrate fluorescence molecular tomography (FMT) and x-ray computed tomography (XCT) allows the utilization of x-ray information as image priors for improving optical tomography reconstruction. To fully capitalize on this capacity, we consider a framework for the automatic and fast detection of different anatomic structures in murine XCT images. To accurately differentiate between different structures such as bone, lung, and heart, a combination of image processing steps including thresholding, seed growing, and signal detection are found to offer optimal segmentation performance. The algorithm and its utilization in an inverse FMT scheme that uses priors is demonstrated on mouse images.

  11. Reducing image noise in computed tomography (CT) colonography: effect of an integrated circuit CT detector.

    Science.gov (United States)

    Liu, Yu; Leng, Shuai; Michalak, Gregory J; Vrieze, Thomas J; Duan, Xinhui; Qu, Mingliang; Shiung, Maria M; McCollough, Cynthia H; Fletcher, Joel G

    2014-01-01

    To investigate whether the integrated circuit (IC) detector results in reduced noise in computed tomography (CT) colonography (CTC). Three hundred sixty-six consecutive patients underwent clinically indicated CTC using the same CT scanner system, except for a difference in CT detectors (IC or conventional). Image noise, patient size, and scanner radiation output (volume CT dose index) were quantitatively compared between patient cohorts using each detector system, with separate comparisons for the abdomen and pelvis. For the abdomen and pelvis, despite significantly larger patient sizes in the IC detector cohort (both P 0.18). Based on the observed image noise reduction, radiation dose could alternatively be reduced by approximately 20% to result in similar levels of image noise. Computed tomography colonography images acquired using the IC detector had significantly lower noise than images acquired using the conventional detector. This noise reduction can permit further radiation dose reduction in CTC.

  12. Automated breast segmentation in ultrasound computer tomography SAFT images

    Science.gov (United States)

    Hopp, T.; You, W.; Zapf, M.; Tan, W. Y.; Gemmeke, H.; Ruiter, N. V.

    2017-03-01

    Ultrasound Computer Tomography (USCT) is a promising new imaging system for breast cancer diagnosis. An essential step before further processing is to remove the water background from the reconstructed images. In this paper we present a fully-automated image segmentation method based on three-dimensional active contours. The active contour method is extended by applying gradient vector flow and encoding the USCT aperture characteristics as additional weighting terms. A surface detection algorithm based on a ray model is developed to initialize the active contour, which is iteratively deformed to capture the breast outline in USCT reflection images. The evaluation with synthetic data showed that the method is able to cope with noisy images, and is not influenced by the position of the breast and the presence of scattering objects within the breast. The proposed method was applied to 14 in-vivo images resulting in an average surface deviation from a manual segmentation of 2.7 mm. We conclude that automated segmentation of USCT reflection images is feasible and produces results comparable to a manual segmentation. By applying the proposed method, reproducible segmentation results can be obtained without manual interaction by an expert.

  13. Intranasal dexmedetomidine for sedation for pediatric computed tomography imaging.

    Science.gov (United States)

    Mekitarian Filho, Eduardo; Robinson, Fay; de Carvalho, Werther Brunow; Gilio, Alfredo Elias; Mason, Keira P

    2015-05-01

    This prospective observational pilot study evaluated the aerosolized intranasal route for dexmedetomidine as a safe, effective, and efficient option for infant and pediatric sedation for computed tomography imaging. The mean time to sedation was 13.4 minutes, with excellent image quality, no failed sedations, or significant adverse events. Registered with ClinicalTrials.gov: NCT01900405. Copyright © 2015 Elsevier Inc. All rights reserved.

  14. Multislice computed tomography coronary angiography

    NARCIS (Netherlands)

    F. Cademartiri (Filippo)

    2005-01-01

    markdownabstract__Abstract__ Computed Tomography (CT) imaging is also known as "CAT scanning" (Computed Axial Tomography). Tomography is from the Greek word "tomos" meaning "slice" or "section" and "graphia" meaning "describing". CT was invented in 1972 by British engineer Godfrey Hounsfield

  15. Enhancement of positron emission tomography-computed tomography image quality using the principle of stochastic resonance

    International Nuclear Information System (INIS)

    Pandey, Anil Kumar; Sharma, Sanjay Kumar; Sharma, Punit; Singh, Harmandeep; Patel, Chetan; Sarkar, Kaushik; Kumar, Rakesh; Bal, Chandra Sekhar

    2014-01-01

    Acquisition of higher counts improves visual perception of positron emission tomography-computed tomography (PET-CT) image. Larger radiopharmaceutical doses (implies more radiation dose) are administered to acquire this count in a short time period. However, diagnostic information does not increase after a certain threshold of counts. This study was conducted to develop a post processing method based on principle of “stochastic resonance” to improve visual perception of the PET-CT image having a required threshold counts. PET-CT images (JPEG file format) with low, medium, and high counts in the image were included in this study. The image was corrupted with the addition of Poisson noise. The amplitude of the Poisson noise was adjusted by dividing each pixel by a constant 1, 2, 4, 8, 16, and 32. The best amplitude of the noise that gave best images quality was selected based on high value of entropy of the output image, high value of structural similarity index and feature similarity index. Visual perception of the image was evaluated by two nuclear medicine physicians. The variation in structural and feature similarity of the image was not appreciable visually, but statistically images deteriorated as the noise amplitude increases although maintaining structural (above 70%) and feature (above 80%) similarity of input images in all cases. We obtained the best image quality at noise amplitude “4” in which 88% structural and 95% feature similarity of the input images was retained. This method of stochastic resonance can be used to improve the visual perception of the PET-CT image. This can indirectly lead to reduction of radiation dose

  16. Target localization on standard axial images in computed tomography (CT) stereotaxis for functional neurosurgery - a technical note

    International Nuclear Information System (INIS)

    Patil, A.-A.

    1986-01-01

    A simple technique for marking functional neurosurgery target on computed tomography (CT) axial image is described. This permits the use of standard axial image for computed tomography (CT) stereotaxis in functional neurosurgery. (Author)

  17. DE-BLURRING SINGLE PHOTON EMISSION COMPUTED TOMOGRAPHY IMAGES USING WAVELET DECOMPOSITION

    Directory of Open Access Journals (Sweden)

    Neethu M. Sasi

    2016-02-01

    Full Text Available Single photon emission computed tomography imaging is a popular nuclear medicine imaging technique which generates images by detecting radiations emitted by radioactive isotopes injected in the human body. Scattering of these emitted radiations introduces blur in this type of images. This paper proposes an image processing technique to enhance cardiac single photon emission computed tomography images by reducing the blur in the image. The algorithm works in two main stages. In the first stage a maximum likelihood estimate of the point spread function and the true image is obtained. In the second stage Lucy Richardson algorithm is applied on the selected wavelet coefficients of the true image estimate. The significant contribution of this paper is that processing of images is done in the wavelet domain. Pre-filtering is also done as a sub stage to avoid unwanted ringing effects. Real cardiac images are used for the quantitative and qualitative evaluations of the algorithm. Blur metric, peak signal to noise ratio and Tenengrad criterion are used as quantitative measures. Comparison against other existing de-blurring algorithms is also done. The simulation results indicate that the proposed method effectively reduces blur present in the image.

  18. Acquisition and manipulation of computed tomography images of the maxillofacial region for biomedical prototyping

    International Nuclear Information System (INIS)

    Meurer, Maria Ines; Silva, Jorge Vicente Lopes da; Santa Barbara, Ailton; Nobre, Luiz Felipe; Oliveira, Marilia Gerhardt de; Silva, Daniela Nascimento

    2008-01-01

    Biomedical prototyping has resulted from a merger of rapid prototyping and imaging diagnosis technologies. However, this process is complex, considering the necessity of interaction between biomedical sciences and engineering. Good results are highly dependent on the acquisition of computed tomography images and their subsequent manipulation by means of specific software. The present study describes the experience of a multidisciplinary group of researchers in the acquisition and manipulation of computed tomography images of the maxillofacial region aiming at biomedical prototyping for surgical purposes. (author)

  19. Dosimetry in abdominal imaging by 6-slice computed tomography

    Energy Technology Data Exchange (ETDEWEB)

    Rodrigues, Sonia Isabel [Hospital de Faro, EPE (Portugal); Abrantes, Antonio Fernando; Ribeiro, Luis Pedro; Almeida, Rui Pedro Pereira [University of Algarve (Portugal). School of Health. Dept. of Radiology

    2012-11-15

    Objective: To determine the effective dose in abdominal computed tomography imaging and to study the influence of patients' characteristics on the received dose. Materials and Methods: Dose values measurements were performed with an ionization chamber on phantoms to check the agreement between dose values and those presented by the computed tomography apparatus, besides their compliance with the recommended reference dose levels. Later, values of dose received by physically able patients submitted to abdominal computed tomography (n = 100) were measured and correlated with their anthropometric characteristics. Finally, the dose to organs was simulated with the Monte Carlo method using the CT-Expo V 1.5 software, and the effect of automatic exposure control on such examinations. Results: The main characteristics directly influencing the dose include the patients' body mass, abdominal perimeter and body mass index, whose correlation is linear and positive. Conclusion: The radiation dose received from abdominal CT scans depends on some patient's characteristics, and it is important to adjust the acquisition parameters to their dimensions (author)

  20. Comparison of Combined X-Ray Radiography and Magnetic Resonance (XMR) Imaging-Versus Computed Tomography-Based Dosimetry for the Evaluation of Permanent Prostate Brachytherapy Implants

    International Nuclear Information System (INIS)

    Acher, Peter; Rhode, Kawal; Morris, Stephen; Gaya, Andrew; Miquel, Marc; Popert, Rick; Tham, Ivan; Nichol, Janette; McLeish, Kate; Deehan, Charles; Dasgupta, Prokar; Beaney, Ronald; Keevil, Stephen F.

    2008-01-01

    Purpose: To present a method for the dosimetric analysis of permanent prostate brachytherapy implants using a combination of stereoscopic X-ray radiography and magnetic resonance (MR) imaging (XMR) in an XMR facility, and to compare the clinical results between XMR- and computed tomography (CT)-based dosimetry. Methods and Materials: Patients who had received nonstranded iodine-125 permanent prostate brachytherapy implants underwent XMR and CT imaging 4 weeks later. Four observers outlined the prostate gland on both sets of images. Dose-volume histograms (DVHs) were derived, and agreement was compared among the observers and between the modalities. Results: A total of 30 patients were evaluated. Inherent XMR registration based on prior calibration and optical tracking required a further automatic seed registration step that revealed a median root mean square registration error of 4.2 mm (range, 1.6-11.4). The observers agreed significantly more closely on prostate base and apex positions as well as outlining contours on the MR images than on those from CT. Coefficients of variation were significantly higher for observed prostate volumes, D90, and V100 parameters on CT-based dosimetry as opposed to XMR. The XMR-based dosimetry showed little agreement with that from CT for all observers, with D90 95% limits of agreement ranges of 65, 118, 79, and 73 Gy for Observers 1, 2, 3, and 4, respectively. Conclusions: The study results showed that XMR-based dosimetry offers an alternative to other imaging modalities and registration methods with the advantages of MR-based prostate delineation and confident three-dimensional reconstruction of the implant. The XMR-derived dose-volume histograms differ from the CT-derived values and demonstrate less interobserver variability

  1. Myocardial blood flow quantification for evaluation of coronary artery disease by positron emission tomography, cardiac magnetic resonance imaging, and computed tomography.

    Science.gov (United States)

    Waller, Alfonso H; Blankstein, Ron; Kwong, Raymond Y; Di Carli, Marcelo F

    2014-05-01

    The noninvasive detection of the presence and functional significance of coronary artery stenosis is important in the diagnosis, risk assessment, and management of patients with known or suspected coronary artery disease. Quantitative assessment of myocardial perfusion can provide an objective and reproducible estimate of myocardial ischemia and risk prediction. Positron emission tomography, cardiac magnetic resonance, and cardiac computed tomography perfusion are modalities capable of measuring myocardial blood flow and coronary flow reserve. In this review, we will discuss the technical aspects of quantitative myocardial perfusion imaging with positron emission tomography, cardiac magnetic resonance imaging, and computed tomography, and its emerging clinical applications.

  2. Model-based image reconstruction in X-ray computed tomography

    NARCIS (Netherlands)

    Zbijewski, Wojciech Bartosz

    2006-01-01

    The thesis investigates the applications of iterative, statistical reconstruction (SR) algorithms in X-ray Computed Tomography. Emphasis is put on various aspects of system modeling in statistical reconstruction. Fundamental issues such as effects of object discretization and algorithm

  3. Attenuation Correction Strategies for Positron Emission Tomography/Computed Tomography and 4-Dimensional Positron Emission Tomography/Computed Tomography

    OpenAIRE

    Pan, Tinsu; Zaidi, Habib

    2013-01-01

    This article discusses attenuation correction strategies in positron emission tomography/computed tomography (PET/CT) and 4 dimensional PET/CT imaging. Average CT scan derived from averaging the high temporal resolution CT images is effective in improving the registration of the CT and the PET images and quantification of the PET data. It underscores list mode data acquisition in 4 dimensional PET and introduces 4 dimensional CT popular in thoracic treatment planning to 4 dimensional PET/CT. ...

  4. Color camera computed tomography imaging spectrometer for improved spatial-spectral image accuracy

    Science.gov (United States)

    Wilson, Daniel W. (Inventor); Bearman, Gregory H. (Inventor); Johnson, William R. (Inventor)

    2011-01-01

    Computed tomography imaging spectrometers ("CTIS"s) having color focal plane array detectors are provided. The color FPA detector may comprise a digital color camera including a digital image sensor, such as a Foveon X3.RTM. digital image sensor or a Bayer color filter mosaic. In another embodiment, the CTIS includes a pattern imposed either directly on the object scene being imaged or at the field stop aperture. The use of a color FPA detector and the pattern improves the accuracy of the captured spatial and spectral information.

  5. Global Seismic Imaging Based on Adjoint Tomography

    Science.gov (United States)

    Bozdag, E.; Lefebvre, M.; Lei, W.; Peter, D. B.; Smith, J. A.; Zhu, H.; Komatitsch, D.; Tromp, J.

    2013-12-01

    Our aim is to perform adjoint tomography at the scale of globe to image the entire planet. We have started elastic inversions with a global data set of 253 CMT earthquakes with moment magnitudes in the range 5.8 ≤ Mw ≤ 7 and used GSN stations as well as some local networks such as USArray, European stations, etc. Using an iterative pre-conditioned conjugate gradient scheme, we initially set the aim to obtain a global crustal and mantle model with confined transverse isotropy in the upper mantle. Global adjoint tomography has so far remained a challenge mainly due to computational limitations. Recent improvements in our 3D solvers (e.g., a GPU version) and access to high-performance computational centers (e.g., ORNL's Cray XK7 "Titan" system) now enable us to perform iterations with higher-resolution (T > 9 s) and longer-duration (200 min) simulations to accommodate high-frequency body waves and major-arc surface waves, respectively, which help improve data coverage. The remaining challenge is the heavy I/O traffic caused by the numerous files generated during the forward/adjoint simulations and the pre- and post-processing stages of our workflow. We improve the global adjoint tomography workflow by adopting the ADIOS file format for our seismic data as well as models, kernels, etc., to improve efficiency on high-performance clusters. Our ultimate aim is to use data from all available networks and earthquakes within the magnitude range of our interest (5.5 ≤ Mw ≤ 7) which requires a solid framework to manage big data in our global adjoint tomography workflow. We discuss the current status and future of global adjoint tomography based on our initial results as well as practical issues such as handling big data in inversions and on high-performance computing systems.

  6. Patient Dose From Megavoltage Computed Tomography Imaging

    International Nuclear Information System (INIS)

    Shah, Amish P.; Langen, Katja M.; Ruchala, Kenneth J.; Cox, Andrea; Kupelian, Patrick A.; Meeks, Sanford L.

    2008-01-01

    Purpose: Megavoltage computed tomography (MVCT) can be used daily for imaging with a helical tomotherapy unit for patient alignment before treatment delivery. The purpose of this investigation was to show that the MVCT dose can be computed in phantoms, and further, that the dose can be reported for actual patients from MVCT on a helical tomotherapy unit. Methods and Materials: An MVCT beam model was commissioned and verified through a series of absorbed dose measurements in phantoms. This model was then used to retrospectively calculate the imaging doses to the patients. The MVCT dose was computed for five clinical cases: prostate, breast, head/neck, lung, and craniospinal axis. Results: Validation measurements in phantoms verified that the computed dose can be reported to within 5% of the measured dose delivered at the helical tomotherapy unit. The imaging dose scaled inversely with changes to the CT pitch. Relative to a normal pitch of 2.0, the organ dose can be scaled by 0.67 and 2.0 for scans done with a pitch of 3.0 and 1.0, respectively. Typical doses were in the range of 1.0-2.0 cGy, if imaged with a normal pitch. The maximal organ dose calculated was 3.6 cGy in the neck region of the craniospinal patient, if imaged with a pitch of 1.0. Conclusion: Calculation of the MVCT dose has shown that the typical imaging dose is approximately 1.5 cGy per image. The uniform MVCT dose delivered using helical tomotherapy is greatest when the anatomic thickness is the smallest and the pitch is set to the lowest value

  7. Imaging spectrum and pitfalls of ¹⁸F-fluorodeoxyglucose positron emission tomography/computed tomography in patients with tuberculosis.

    Science.gov (United States)

    Ito, Kimiteru; Morooka, Miyako; Minamimoto, Ryogo; Miyata, Yoko; Okasaki, Momoko; Kubota, Kazuo

    2013-08-01

    Mycobacterium tuberculosis (TB) is one of the most prominant diseases frequently causing false positive lesions in oncologic surveys using (18)F-fluorodeoxyglucose (FDG) positron emission tomography/computed tomography (PET/CT), since TB granulomas are composed of activated macrophages and lymphocytes with high affinity for glucose. These pitfalls of (18)F-FDG PET/CT are important for radiologists. Being familiar with (18)F-FDG images of TB could assist in preventing unfavorable clinical results based on misdiagnoses. In addition, (18)F-FDG PET/CT has the advantage of being able to screen the whole body, and can clearly detect harboring TB lesions as high uptake foci. This article details the spectrum and pitfalls of (18)F-FDG PET/CT imaging in TB.

  8. Terahertz Computed Tomography of NASA Thermal Protection System Materials

    Science.gov (United States)

    Roth, D. J.; Reyes-Rodriguez, S.; Zimdars, D. A.; Rauser, R. W.; Ussery, W. W.

    2011-01-01

    A terahertz axial computed tomography system has been developed that uses time domain measurements in order to form cross-sectional image slices and three-dimensional volume renderings of terahertz-transparent materials. The system can inspect samples as large as 0.0283 cubic meters (1 cubic foot) with no safety concerns as for x-ray computed tomography. In this study, the system is evaluated for its ability to detect and characterize flat bottom holes, drilled holes, and embedded voids in foam materials utilized as thermal protection on the external fuel tanks for the Space Shuttle. X-ray micro-computed tomography was also performed on the samples to compare against the terahertz computed tomography results and better define embedded voids. Limits of detectability based on depth and size for the samples used in this study are loosely defined. Image sharpness and morphology characterization ability for terahertz computed tomography are qualitatively described.

  9. Review methods for image segmentation from computed tomography images

    International Nuclear Information System (INIS)

    Mamat, Nurwahidah; Rahman, Wan Eny Zarina Wan Abdul; Soh, Shaharuddin Cik; Mahmud, Rozi

    2014-01-01

    Image segmentation is a challenging process in order to get the accuracy of segmentation, automation and robustness especially in medical images. There exist many segmentation methods that can be implemented to medical images but not all methods are suitable. For the medical purposes, the aims of image segmentation are to study the anatomical structure, identify the region of interest, measure tissue volume to measure growth of tumor and help in treatment planning prior to radiation therapy. In this paper, we present a review method for segmentation purposes using Computed Tomography (CT) images. CT images has their own characteristics that affect the ability to visualize anatomic structures and pathologic features such as blurring of the image and visual noise. The details about the methods, the goodness and the problem incurred in the methods will be defined and explained. It is necessary to know the suitable segmentation method in order to get accurate segmentation. This paper can be a guide to researcher to choose the suitable segmentation method especially in segmenting the images from CT scan

  10. Correlation of computed tomography, magnetic resonance imaging and clinical outcome in acute carbon monoxide poisoning.

    Science.gov (United States)

    Ozcan, Namik; Ozcam, Giray; Kosar, Pinar; Ozcan, Ayse; Basar, Hulya; Kaymak, Cetin

    2016-01-01

    Carbon monoxide is a toxic gas for humans and is still a silent killer in both developed and developing countries. The aim of this case series was to evaluate early radiological images as a predictor of subsequent neuropsychological sequelae, following carbon monoxide poisoning. After carbon monoxide exposure, early computed tomography scans and magnetic resonance imaging findings of a 52-year-old woman showed bilateral lesions in the globus pallidus. This patient was discharged and followed for 90 days. The patient recovered without any neurological sequela. In a 58-year-old woman exposed to carbon monoxide, computed tomography showed lesions in bilateral globus pallidus and periventricular white matter. Early magnetic resonance imaging revealed changes similar to that like in early tomography images. The patient recovered and was discharged from hospital. On the 27th day of exposure, the patient developed disorientation and memory impairment. Late magnetic resonance imaging showed diffuse hyperintensity in the cerebral white matter. White matter lesions which progress to demyelination and end up in neuropsychological sequelae cannot always be diagnosed by early computed tomography and magnetic resonance imaging in carbon monoxide poisoning. Copyright © 2014 Sociedade Brasileira de Anestesiologia. Published by Elsevier Editora Ltda. All rights reserved.

  11. Quantification of root water uptake in soil using X-ray computed tomography and image-based modelling.

    Science.gov (United States)

    Daly, Keith R; Tracy, Saoirse R; Crout, Neil M J; Mairhofer, Stefan; Pridmore, Tony P; Mooney, Sacha J; Roose, Tiina

    2018-01-01

    Spatially averaged models of root-soil interactions are often used to calculate plant water uptake. Using a combination of X-ray computed tomography (CT) and image-based modelling, we tested the accuracy of this spatial averaging by directly calculating plant water uptake for young wheat plants in two soil types. The root system was imaged using X-ray CT at 2, 4, 6, 8 and 12 d after transplanting. The roots were segmented using semi-automated root tracking for speed and reproducibility. The segmented geometries were converted to a mesh suitable for the numerical solution of Richards' equation. Richards' equation was parameterized using existing pore scale studies of soil hydraulic properties in the rhizosphere of wheat plants. Image-based modelling allows the spatial distribution of water around the root to be visualized and the fluxes into the root to be calculated. By comparing the results obtained through image-based modelling to spatially averaged models, the impact of root architecture and geometry in water uptake was quantified. We observed that the spatially averaged models performed well in comparison to the image-based models with <2% difference in uptake. However, the spatial averaging loses important information regarding the spatial distribution of water near the root system. © 2017 John Wiley & Sons Ltd.

  12. Ground-glass opacity: High-resolution computed tomography and 64-multi-slice computed tomography findings comparison

    International Nuclear Information System (INIS)

    Sergiacomi, Gianluigi; Ciccio, Carmelo; Boi, Luca; Velari, Luca; Crusco, Sonia; Orlacchio, Antonio; Simonetti, Giovanni

    2010-01-01

    Objective: Comparative evaluation of ground-glass opacity using conventional high-resolution computed tomography technique and volumetric computed tomography by 64-row multi-slice scanner, verifying advantage of volumetric acquisition and post-processing technique allowed by 64-row CT scanner. Methods: Thirty-four patients, in which was assessed ground-glass opacity pattern by previous high-resolution computed tomography during a clinical-radiological follow-up for their lung disease, were studied by means of 64-row multi-slice computed tomography. Comparative evaluation of image quality was done by both CT modalities. Results: It was reported good inter-observer agreement (k value 0.78-0.90) in detection of ground-glass opacity with high-resolution computed tomography technique and volumetric Computed Tomography acquisition with moderate increasing of intra-observer agreement (k value 0.46) using volumetric computed tomography than high-resolution computed tomography. Conclusions: In our experience, volumetric computed tomography with 64-row scanner shows good accuracy in detection of ground-glass opacity, providing a better spatial and temporal resolution and advanced post-processing technique than high-resolution computed tomography.

  13. Acute pelvic inflammatory disease: pictorial essay focused on computed tomography and magnetic resonance imaging findings

    Energy Technology Data Exchange (ETDEWEB)

    Febronio, Eduardo Miguel; Rosas, George de Queiroz; D' Ippolito, Giuseppe, E-mail: giuseppe_dr@uol.com.br [Department of Imaging Diagnosis, Escola Paulista de Medicina - Universidade Federal de Sao Paulo (EPMUnifesp), Sao Paulo, SP (Brazil)

    2012-11-15

    The present study was aimed at describing key computed tomography and magnetic resonance imaging findings in patients with acute abdominal pain derived from pelvic inflammatory disease. Two radiologists consensually selected and analyzed computed tomography and magnetic resonance imaging studies performed between January 2010 and December 2011 in patients with proven pelvic inflammatory disease leading to presentation of acute abdomen. Main findings included presence of intracavitary fluid collections, anomalous enhancement of the pelvic excavation and densification of adnexal fat planes. Pelvic inflammatory disease is one of the leading causes of abdominal pain in women of childbearing age and it has been increasingly been diagnosed by means of computed tomography and magnetic resonance imaging supplementing the role of ultrasonography. It is crucial that radiologists become familiar with the main sectional imaging findings in the diagnosis of this common cause of acute abdomen (author)

  14. Pulmonary infections in the late period after allogeneic bone marrow transplantation: chest radiography versus computed tomography

    International Nuclear Information System (INIS)

    Schueller, Gerd; Matzek, Wolfgang; Kalhs, Peter; Schaefer-Prokop, Cornelia

    2005-01-01

    Purpose: To analyze the capabilities of chest roentgenogram (CXR) and computed tomography (CT) in the evaluation of pulmonary infectious disease in the late period (>100 days) after allogeneic bone marrow transplantation (BMT). Methods: Ninety-four matched CXR and CT examinations were performed for clinical suspicion of infectious lung disease. The time gap between CXR and CT was 48 h at maximum. The image pairs were correlated with the patients' clinical course and with the results of diagnostic bronchoalveolar lavage (BAL). An unremarkable clinical course over the subsequent seven days after imaging and/or negative microbiological culture served as the basis for excluding infectious lung disease. Positive microbiological culture and/or improvement of symptoms after antibiotic therapy were considered as evidence of infectious disease. Results: The correlation with the clinical course and/or BAL revealed a significantly higher sensitivity, negative predictive value, and accuracy for CT than for CXR (89% versus 58%, P < 0.0001; 78% versus 47%, P < 0.0001; 90% versus 68%, P < 0.0001, respectively). CT was significantly more diagnostic in BAL verified fungal and bacterial infections (P < 0.05). Conclusion: CT is significantly superior to CXR in the evaluation of infectious pulmonary disease in the late phase after BMT. Therefore, an unremarkable CXR should be followed by a CT scan to reliably detect or to accurately exclude early pulmonary infection in these patients

  15. A compressed sensing based reconstruction algorithm for synchrotron source propagation-based X-ray phase contrast computed tomography

    Energy Technology Data Exchange (ETDEWEB)

    Melli, Seyed Ali, E-mail: sem649@mail.usask.ca [Department of Electrical and Computer Engineering, University of Saskatchewan, Saskatoon, SK (Canada); Wahid, Khan A. [Department of Electrical and Computer Engineering, University of Saskatchewan, Saskatoon, SK (Canada); Babyn, Paul [Department of Medical Imaging, University of Saskatchewan, Saskatoon, SK (Canada); Montgomery, James [College of Medicine, University of Saskatchewan, Saskatoon, SK (Canada); Snead, Elisabeth [Western College of Veterinary Medicine, University of Saskatchewan, Saskatoon, SK (Canada); El-Gayed, Ali [College of Medicine, University of Saskatchewan, Saskatoon, SK (Canada); Pettitt, Murray; Wolkowski, Bailey [College of Agriculture and Bioresources, University of Saskatchewan, Saskatoon, SK (Canada); Wesolowski, Michal [Department of Medical Imaging, University of Saskatchewan, Saskatoon, SK (Canada)

    2016-01-11

    Synchrotron source propagation-based X-ray phase contrast computed tomography is increasingly used in pre-clinical imaging. However, it typically requires a large number of projections, and subsequently a large radiation dose, to produce high quality images. To improve the applicability of this imaging technique, reconstruction algorithms that can reduce the radiation dose and acquisition time without degrading image quality are needed. The proposed research focused on using a novel combination of Douglas–Rachford splitting and randomized Kaczmarz algorithms to solve large-scale total variation based optimization in a compressed sensing framework to reconstruct 2D images from a reduced number of projections. Visual assessment and quantitative performance evaluations of a synthetic abdomen phantom and real reconstructed image of an ex-vivo slice of canine prostate tissue demonstrate that the proposed algorithm is competitive in reconstruction process compared with other well-known algorithms. An additional potential benefit of reducing the number of projections would be reduction of time for motion artifact to occur if the sample moves during image acquisition. Use of this reconstruction algorithm to reduce the required number of projections in synchrotron source propagation-based X-ray phase contrast computed tomography is an effective form of dose reduction that may pave the way for imaging of in-vivo samples.

  16. Limited-angle tomography for analyzer-based phase-contrast x-ray imaging

    International Nuclear Information System (INIS)

    Majidi, Keivan; Wernick, Miles N; Brankov, Jovan G; Li, Jun; Muehleman, Carol

    2014-01-01

    Multiple-image radiography (MIR) is an analyzer-based phase-contrast x-ray imaging method, which is emerging as a potential alternative to conventional radiography. MIR simultaneously generates three planar parametric images containing information about scattering, refraction and attenuation properties of the object. The MIR planar images are linear tomographic projections of the corresponding object properties, which allows reconstruction of volumetric images using computed tomography (CT) methods. However, when acquiring a full range of linear projections around the tissue of interest is not feasible or the scanning time is limited, limited-angle tomography techniques can be used to reconstruct these volumetric images near the central plane, which is the plane that contains the pivot point of the tomographic movement. In this work, we use computer simulations to explore the applicability of limited-angle tomography to MIR. We also investigate the accuracy of reconstructions as a function of number of tomographic angles for a fixed total radiation exposure. We use this function to find an optimal range of angles over which data should be acquired for limited-angle tomography MIR (LAT-MIR). Next, we apply the LAT-MIR technique to experimentally acquired MIR projections obtained in a cadaveric human thumb study. We compare the reconstructed slices near the central plane to the same slices reconstructed by CT-MIR using the full angular view around the object. Finally, we perform a task-based evaluation of LAT-MIR performance for different numbers of angular views, and use template matching to detect cartilage in the refraction image near the central plane. We use the signal-to-noise ratio of this test as the detectability metric to investigate an optimum range of tomographic angles for detecting soft tissues in LAT-MIR. Both results show that there is an optimum range of angular view for data acquisition where LAT-MIR yields the best performance, comparable to CT

  17. Limited-angle tomography for analyzer-based phase-contrast x-ray imaging

    Science.gov (United States)

    Majidi, Keivan; Wernick, Miles N.; Li, Jun; Muehleman, Carol; Brankov, Jovan G.

    2014-07-01

    Multiple-image radiography (MIR) is an analyzer-based phase-contrast x-ray imaging method, which is emerging as a potential alternative to conventional radiography. MIR simultaneously generates three planar parametric images containing information about scattering, refraction and attenuation properties of the object. The MIR planar images are linear tomographic projections of the corresponding object properties, which allows reconstruction of volumetric images using computed tomography (CT) methods. However, when acquiring a full range of linear projections around the tissue of interest is not feasible or the scanning time is limited, limited-angle tomography techniques can be used to reconstruct these volumetric images near the central plane, which is the plane that contains the pivot point of the tomographic movement. In this work, we use computer simulations to explore the applicability of limited-angle tomography to MIR. We also investigate the accuracy of reconstructions as a function of number of tomographic angles for a fixed total radiation exposure. We use this function to find an optimal range of angles over which data should be acquired for limited-angle tomography MIR (LAT-MIR). Next, we apply the LAT-MIR technique to experimentally acquired MIR projections obtained in a cadaveric human thumb study. We compare the reconstructed slices near the central plane to the same slices reconstructed by CT-MIR using the full angular view around the object. Finally, we perform a task-based evaluation of LAT-MIR performance for different numbers of angular views, and use template matching to detect cartilage in the refraction image near the central plane. We use the signal-to-noise ratio of this test as the detectability metric to investigate an optimum range of tomographic angles for detecting soft tissues in LAT-MIR. Both results show that there is an optimum range of angular view for data acquisition where LAT-MIR yields the best performance, comparable to CT

  18. SU-F-207-13: Comparison of Four Dimensional Computed Tomography (4D CT) Versus Breath Hold Images to Determine Pulmonary Nodule Elasticity

    Energy Technology Data Exchange (ETDEWEB)

    Negahdar, M; Loo, B; Maxim, P [Stanford University School of Medicine, Stanford, CA (United States)

    2015-06-15

    Purpose: Elasticity may distinguish malignant from benign pulmonary nodules. To compare determining of malignant pulmonary nodule (MPN) elasticity from four dimensional computed tomography (4D CT) images versus inhale/exhale breath-hold CT images. Methods: We analyzed phase 00 and 50 of 4D CT and deep inhale and natural exhale of breath-hold CT images of 30 MPN treated with stereotactic ablative radiotherapy (SABR). The radius of the smallest MPN was 0.3 cm while the biggest one was 2.1 cm. An intensity based deformable image registration (DIR) workflow was applied to the 4D CT and breath-hold images to determine the volumes of the MPNs and a 1 cm ring of surrounding lung tissue (ring) in each state. Next, an elasticity parameter was derived by calculating the ratio of the volume changes of MPN (exhale:inhale or phase50:phase00) to that of a 1 cm ring of lung tissue surrounding the MPN. The proposed formulation of elasticity enables us to compare volume changes of two different MPN in two different locations of lung. Results: The calculated volume ratio of MPNs from 4D CT (phase50:phase00) and breath-hold images (exhale:inhale) was 1.00±0.23 and 0.95±0.11, respectively. It shows the stiffness of MPN and comparably bigger volume changes of MPN in breath-hold images because of the deeper degree of inhalation. The calculated elasticity of MPNs from 4D CT and breath-hold images was 1.12±0.22 and 1.23±0.26, respectively. For five patients who have had two MPN in their lung, calculated elasticity of tumor A and tumor B follows same trend in both 4D CT and breath-hold images. Conclusion: We showed that 4D CT and breath-hold images are comparable in the ability to calculate the elasticity of MPN. This study has been supported by Department of Defense LCRP 2011 #W81XWH-12-1-0286.

  19. Computed tomography with selectable image resolution

    International Nuclear Information System (INIS)

    Dibianca, F.A.; Dallapiazza, D.G.

    1981-01-01

    A computed tomography system x-ray detector has a central group of half-width detector elements and groups of full-width elements on each side of the central group. To obtain x-ray attenuation data for whole body layers, the half-width elements are switched effectively into paralleled pairs so all elements act like full-width elements and an image of normal resolution is obtained. For narrower head layers, the elements in the central group are used as half-width elements so resolution which is twice as great as normal is obtained. The central group is also used in the half-width mode and the outside groups are used in the full-width mode to obtain a high resolution image of a body zone within a full body layer. In one embodiment data signals from the detector are switched by electronic multiplexing and in another embodiment a processor chooses the signals for the various kinds of images that are to be reconstructed. (author)

  20. Influence of the Pixel Sizes of Reference Computed Tomography on Single-photon Emission Computed Tomography Image Reconstruction Using Conjugate-gradient Algorithm.

    Science.gov (United States)

    Okuda, Kyohei; Sakimoto, Shota; Fujii, Susumu; Ida, Tomonobu; Moriyama, Shigeru

    The frame-of-reference using computed-tomography (CT) coordinate system on single-photon emission computed tomography (SPECT) reconstruction is one of the advanced characteristics of the xSPECT reconstruction system. The aim of this study was to reveal the influence of the high-resolution frame-of-reference on the xSPECT reconstruction. 99m Tc line-source phantom and National Electrical Manufacturers Association (NEMA) image quality phantom were scanned using the SPECT/CT system. xSPECT reconstructions were performed with the reference CT images in different sizes of the display field-of-view (DFOV) and pixel. The pixel sizes of the reconstructed xSPECT images were close to 2.4 mm, which is acquired as originally projection data, even if the reference CT resolution was varied. The full width at half maximum (FWHM) of the line-source, absolute recovery coefficient, and background variability of image quality phantom were independent on the sizes of DFOV in the reference CT images. The results of this study revealed that the image quality of the reconstructed xSPECT images is not influenced by the resolution of frame-of-reference on SPECT reconstruction.

  1. Quality assessment and enhancement for cone-beam computed tomography in dental imaging

    International Nuclear Information System (INIS)

    Jeon, Sung Chae

    2006-02-01

    Cone-beam CT will become increasingly important in diagnostic imaging modality in the dental practice over the next decade. For dental diagnostic imaging, cone-beam computed tomography (CBCT) system based on large area flat panel imager has been designed and developed for three-dimensional volumetric image. The new CBCT system can provide a 3-D volumetric image during only one circular scanning with relatively short times (20-30 seconds) and requires less radiation dose than that of conventional CT. To reconstruct volumetric image from 2-D projection images, FDK algorithm was employed. The prototype of our CBCT system gives the promising results that can be efficiently diagnosed. This dissertation deals with assessment, enhancement, and optimization for dental cone-beam computed tomography with high performance. A new blur estimation method was proposed, namely model based estimation algorithm. Based on the empirical model of the PSF, an image restoration is applied to radiological images. The accuracy of the PSF estimation under Poisson noise and readout electronic noise is significantly better for the R-L estimator than the Wiener estimator. In the image restoration experiment, the result showed much better improvement in the low and middle range of spatial frequency. Our proposed algorithm is more simple and effective method to determine 2-D PSF of the x-ray imaging system than traditional methods. Image based scatter correction scheme to reduce the scatter effects was proposed. This algorithm corrects scatter on projection images based on convolution, scatter fraction, and angular interpolation. The scatter signal was estimated by convolving a projection image with scatter point spread function (SPSF) followed by multiplication with scatter fraction. Scatter fraction was estimated using collimator which is similar to SPECS method. This method does not require extra x-ray dose and any additional phantom. Maximum estimated error for interpolation was less than 7

  2. Metal Artifact Suppression in Dental Cone Beam Computed Tomography Images Using Image Processing Techniques.

    Science.gov (United States)

    Johari, Masoumeh; Abdollahzadeh, Milad; Esmaeili, Farzad; Sakhamanesh, Vahideh

    2018-01-01

    Dental cone beam computed tomography (CBCT) images suffer from severe metal artifacts. These artifacts degrade the quality of acquired image and in some cases make it unsuitable to use. Streaking artifacts and cavities around teeth are the main reason of degradation. In this article, we have proposed a new artifact reduction algorithm which has three parallel components. The first component extracts teeth based on the modeling of image histogram with a Gaussian mixture model. Striking artifact reduction component reduces artifacts using converting image into the polar domain and applying morphological filtering. The third component fills cavities through a simple but effective morphological filtering operation. Finally, results of these three components are combined into a fusion step to create a visually good image which is more compatible to human visual system. Results show that the proposed algorithm reduces artifacts of dental CBCT images and produces clean images.

  3. Children's (Pediatric) CT (Computed Tomography)

    Medline Plus

    Full Text Available ... Physician Resources Professions Site Index A-Z Children's (Pediatric) CT (Computed Tomography) Pediatric computed tomography (CT) is ... a CT scan. View full size with caption Pediatric Content Some imaging tests and treatments have special ...

  4. Reduced iodinated contrast media for abdominal imaging by dual-layer spectral detector computed tomography for patients with kidney disease

    Directory of Open Access Journals (Sweden)

    Hirokazu Saito, MD

    2018-04-01

    Full Text Available Contrast-enhanced computed tomography using iodinated contrast media is useful for diagnosis of gastrointestinal diseases. However, contrast-induced nephropathy remains problematic for kidney diseases patients. Although current guidelines recommended the use of a minimal dose of contrast media necessary to obtain adequate images for diagnosis, obtaining adequate images with sufficient contrast enhancement is difficult with conventional computed tomography using reduced contrast media. Dual-layer spectral detector computed tomography enables the simultaneous acquisition of low- and high-energy data and the reconstruction of virtual monochromatic images ranging from 40 to 200 keV, retrospectively. Low-energy virtual monochromatic images can enhance the contrast of images, thereby facilitating reduced contrast media. In case 1, abdominal computed tomography angiography at 50 keV using 40% of the conventional dose of contrast media revealed the artery that was the source of diverticular bleeding in the ascending colon. In case 2, ischemia of the transverse colon was diagnosed by contrast-enhanced computed tomography and iodine-selective imaging using 40% of the conventional dose of contrast media. In case 3, advanced esophagogastric junctional cancer was staged and preoperative abdominal computed tomography angiography could be obtained with 30% of the conventional dose of contrast media. However, the texture of virtual monochromatic images may be a limitation at low energy. Keywords: Virtual monochromatic images, Contrast-induced nephropathy

  5. Transmission computed tomography data acquisition with a SPECT system

    International Nuclear Information System (INIS)

    Greer, K.L.; Harris, C.C.; Jaszczak, R.J.; Coleman, R.E.; Hedlund, L.W.; Floyd, C.E.; Manglos, S.H.

    1987-01-01

    Phantom and animal transmission computed tomography (TCT) scans were performed with a camera-based single photon emission computed tomography (SPECT) system to determine system linearity as a function of object density, which is important in the accurate determination of attenuation coefficients for SPECT attenuation compensation. Results from phantoms showed promise in providing a linear relationship in measuring density while maintaining good image resolution. Animal images were essentially free of artifacts. Transmission computed tomography scans derived from a SPECT system appear to have the potential to provide data suitable for incorporation in an attenuation compensation algorithm at relatively low (calculated) radiation doses to the subjects

  6. Image-based metal artifact reduction in x-ray computed tomography utilizing local anatomical similarity

    Science.gov (United States)

    Dong, Xue; Yang, Xiaofeng; Rosenfield, Jonathan; Elder, Eric; Dhabaan, Anees

    2017-03-01

    X-ray computed tomography (CT) is widely used in radiation therapy treatment planning in recent years. However, metal implants such as dental fillings and hip prostheses can cause severe bright and dark streaking artifacts in reconstructed CT images. These artifacts decrease image contrast and degrade HU accuracy, leading to inaccuracies in target delineation and dose calculation. In this work, a metal artifact reduction method is proposed based on the intrinsic anatomical similarity between neighboring CT slices. Neighboring CT slices from the same patient exhibit similar anatomical features. Exploiting this anatomical similarity, a gamma map is calculated as a weighted summation of relative HU error and distance error for each pixel in an artifact-corrupted CT image relative to a neighboring, artifactfree image. The minimum value in the gamma map for each pixel is used to identify an appropriate pixel from the artifact-free CT slice to replace the corresponding artifact-corrupted pixel. With the proposed method, the mean CT HU error was reduced from 360 HU and 460 HU to 24 HU and 34 HU on head and pelvis CT images, respectively. Dose calculation accuracy also improved, as the dose difference was reduced from greater than 20% to less than 4%. Using 3%/3mm criteria, the gamma analysis failure rate was reduced from 23.25% to 0.02%. An image-based metal artifact reduction method is proposed that replaces corrupted image pixels with pixels from neighboring CT slices free of metal artifacts. This method is shown to be capable of suppressing streaking artifacts, thereby improving HU and dose calculation accuracy.

  7. Clinical value of whole body fluorine-18 fluorodeoxyglucose positron emission tomography/computed tomography in the detection of metastatic bladder cancer.

    Science.gov (United States)

    Yang, Zhongyi; Pan, Lingling; Cheng, Jingyi; Hu, Silong; Xu, Junyan; Ye, Dingwei; Zhang, Yingjian

    2012-07-01

    To investigate the value of whole-body fluorine-18 2-fluoro-2-deoxy-D-glucose positron emission tomography/computed tomography for the detection of metastatic bladder cancer. From December 2006 to August 2010, 60 bladder cancer patients (median age 60.5 years old, range 32-96) underwent whole body positron emission tomography/computed tomography positron emission tomography/computed tomography. The diagnostic accuracy was assessed by performing both organ-based and patient-based analyses. Identified lesions were further studied by biopsy or clinically followed for at least 6 months. One hundred and thirty-four suspicious lesions were identified. Among them, 4 primary cancers (2 pancreatic cancers, 1 colonic and 1 nasopharyngeal cancer) were incidentally detected, and the patients could be treated on time. For the remaining 130 lesions, positron emission tomography/computed tomography detected 118 true positive lesions (sensitivity = 95.9%). On the patient-based analysis, the overall sensitivity and specificity resulted to be 87.1% and 89.7%, respectively. There was no difference of sensitivity and specificity in patients with or without adjuvant treatment in terms of detection of metastatic sites by positron emission tomography/computed tomography. Compared with conventional imaging modality, positron emission tomography/computed tomography correctly changed the management in 15 patients (25.0%). Positron emission tomography/computed tomography has excellent sensitivity and specificity in the detection of metastatic bladder cancer and it provides additional diagnostic information compared to standard imaging techniques. © 2012 The Japanese Urological Association.

  8. Clinical value of whole body fluorine-18 fluorodeoxyglucose positron emission tomography/computed tomography in the detection of metastatic bladder cancer

    International Nuclear Information System (INIS)

    Yang Zhongyi; Pan Lingling; Cheng Jingyi; Hu Silong; Xu Junyan; Zhang Yingjian; Ye Dingwei

    2012-01-01

    The objective of this study was to investigate the value of whole-body fluorine-18 2-fluoro-2-deoxy-D-glucose positron emission tomography/computed tomography for the detection of metastatic bladder cancer. From December 2006 to August 2010, 60 bladder cancer patients (median age 60.5 years old, range 32-96) underwent whole body positron emission tomography/computed tomography positron emission tomography/computed tomography. The diagnostic accuracy was assessed by performing both organ-based and patient-based analyses. Identified lesions were further studied by biopsy or clinically followed for at least 6 months. One hundred and thirty-four suspicious lesions were identified. Among them, 4 primary cancers (2 pancreatic cancers, 1 colonic and 1 nasopharyngeal cancer) were incidentally detected, and the patients could be treated on time. For the remaining 130 lesions, positron emission tomography/computed tomography detected 118 true positive lesions (sensitivity=95.9%). On the patient-based analysis, the overall sensitivity and specificity resulted to be 87.1% and 89.7%, respectively. There was no difference of sensitivity and specificity in patients with or without adjuvant treatment in terms of detection of metastatic sites by positron emission tomography/computed tomography. Compared with conventional imaging modality, positron emission tomography/computed tomography correctly changed the management in 15 patients (25.0%). Positron emission tomography/computed tomography has excellent sensitivity and specificity in the detection of metastatic bladder cancer and it provides additional diagnostic information compared to standard imaging techniques. (author)

  9. Image correction for computed tomography to remove crosstalk artifacts

    International Nuclear Information System (INIS)

    King, K.F.

    1990-01-01

    A correction method and apparatus for Computed Tomography (CT) which removes ring and streak artifacts from images by correcting for data contamination by crosstalk errors comprises subtracting from the output S o of a detector, a crosstalk factor derived from outputs of adjacent detectors. The crosstalk factors are obtained by scanning an off-centre phantom. (author)

  10. Computed tomography angiography in acute stroke (revisiting the 4Ps of imaging).

    Science.gov (United States)

    Varadharajan, Shriram; Saini, Jitender; Acharya, Ullas V; Gupta, Arun Kumar

    2016-02-01

    Imaging in acute stroke has traditionally focussed on the 4Ps-parenchyma, pipes, perfusion, and penumbra-and has increasingly relied upon advanced techniques including magnetic resonance imaging to evaluate such patients. However, as per European Magnetic Resonance Forum estimates, the availability of magnetic resonance imaging scanners for the general population in India (0.5 per million inhabitants) is quite low as compared to Europe (11 per million) and United States (35 per million), with most of them only present in urban cities. On the other hand, computed tomography (CT) is more widely available and has reduced scanning duration. Computed tomography angiography of cervical and intracranial vessels is relatively simpler to perform with extended coverage and can provide all pertinent information required in such patients. This imaging review will discuss relevant imaging findings on CT angiography in patients with acute ischemic stroke through illustrated cases. Copyright © 2015 Elsevier Inc. All rights reserved.

  11. Multi-scale analysis of lung computed tomography images

    CERN Document Server

    Gori, I; Fantacci, M E; Preite Martinez, A; Retico, A; De Mitri, I; Donadio, S; Fulcheri, C

    2007-01-01

    A computer-aided detection (CAD) system for the identification of lung internal nodules in low-dose multi-detector helical Computed Tomography (CT) images was developed in the framework of the MAGIC-5 project. The three modules of our lung CAD system, a segmentation algorithm for lung internal region identification, a multi-scale dot-enhancement filter for nodule candidate selection and a multi-scale neural technique for false positive finding reduction, are described. The results obtained on a dataset of low-dose and thin-slice CT scans are shown in terms of free response receiver operating characteristic (FROC) curves and discussed.

  12. Computer-aided classification of lung nodules on computed tomography images via deep learning technique

    Directory of Open Access Journals (Sweden)

    Hua KL

    2015-08-01

    Full Text Available Kai-Lung Hua,1 Che-Hao Hsu,1 Shintami Chusnul Hidayati,1 Wen-Huang Cheng,2 Yu-Jen Chen3 1Department of Computer Science and Information Engineering, National Taiwan University of Science and Technology, 2Research Center for Information Technology Innovation, Academia Sinica, 3Department of Radiation Oncology, MacKay Memorial Hospital, Taipei, Taiwan Abstract: Lung cancer has a poor prognosis when not diagnosed early and unresectable lesions are present. The management of small lung nodules noted on computed tomography scan is controversial due to uncertain tumor characteristics. A conventional computer-aided diagnosis (CAD scheme requires several image processing and pattern recognition steps to accomplish a quantitative tumor differentiation result. In such an ad hoc image analysis pipeline, every step depends heavily on the performance of the previous step. Accordingly, tuning of classification performance in a conventional CAD scheme is very complicated and arduous. Deep learning techniques, on the other hand, have the intrinsic advantage of an automatic exploitation feature and tuning of performance in a seamless fashion. In this study, we attempted to simplify the image analysis pipeline of conventional CAD with deep learning techniques. Specifically, we introduced models of a deep belief network and a convolutional neural network in the context of nodule classification in computed tomography images. Two baseline methods with feature computing steps were implemented for comparison. The experimental results suggest that deep learning methods could achieve better discriminative results and hold promise in the CAD application domain. Keywords: nodule classification, deep learning, deep belief network, convolutional neural network

  13. Comparative study of ultrasound imaging, computed tomography and magnetic resonance imaging in gynecology

    International Nuclear Information System (INIS)

    Ishii, Kenji; Kobayashi, Hisaaki; Hoshihara, Takayuki; Kobayashi, Mitsunao; Suda, Yoshio; Takenaka, Eiichi; Sasa, Hidenori.

    1989-01-01

    We studied 18 patients who were operated at the National Defense Medical College Hospital and confirmed by pathological diagnosis. We compared ultrasound imaging, computed tomography (CT) and magnetic resonance imaging (MRI) of the patients. MRI was useful to diagnose enlargement of the uterine cavity and a small amount of ascites and to understand orientation of the pelvic organs. Ultrasound imaging is the most useful examination to diagnose gynecological diseases. But when it is difficult to diagnose by ultrasound imaging alone, we should employ either CT or MRI, or preferably both. (author)

  14. Statistical x-ray computed tomography imaging from photon-starved measurements

    Science.gov (United States)

    Chang, Zhiqian; Zhang, Ruoqiao; Thibault, Jean-Baptiste; Sauer, Ken; Bouman, Charles

    2013-03-01

    Dose reduction in clinical X-ray computed tomography (CT) causes low signal-to-noise ratio (SNR) in photonsparse situations. Statistical iterative reconstruction algorithms have the advantage of retaining image quality while reducing input dosage, but they meet their limits of practicality when significant portions of the sinogram near photon starvation. The corruption of electronic noise leads to measured photon counts taking on negative values, posing a problem for the log() operation in preprocessing of data. In this paper, we propose two categories of projection correction methods: an adaptive denoising filter and Bayesian inference. The denoising filter is easy to implement and preserves local statistics, but it introduces correlation between channels and may affect image resolution. Bayesian inference is a point-wise estimation based on measurements and prior information. Both approaches help improve diagnostic image quality at dramatically reduced dosage.

  15. Development of emission computed tomography in Japan

    International Nuclear Information System (INIS)

    Tanaka, E.

    1984-01-01

    Two positron emission computed tomography (PCT) devices developed in Japan are described. One is for head and the other for wholebody. The devices show fairly quantitative images with slight modifications of the existing algorithms because they were developed based on filtered back-projection. The PCT device seems to be better than the single photon emission computed tomography (SPECT) since it provides adequade compensation for photon attenuation in patients. (M.A.C.) [pt

  16. RELIABILITY OF POSITRON EMISSION TOMOGRAPHY-COMPUTED TOMOGRAPHY IN EVALUATION OF TESTICULAR CARCINOMA PATIENTS.

    Science.gov (United States)

    Nikoletić, Katarina; Mihailović, Jasna; Matovina, Emil; Žeravica, Radmila; Srbovan, Dolores

    2015-01-01

    The study was aimed at assessing the reliability of 18F-fluorodeoxyglucose positron emission tomography-computed tomography scan in evaluation of testicular carcinoma patients. The study sample consisted of 26 scans performed in 23 patients with testicular carcinoma. According to the pathohistological finding, 14 patients had seminomas, 7 had nonseminomas and 2 patients had a mixed histological type. In 17 patients, the initial treatment was orchiectomy+chemotherapy, 2 patients had orchiectomy+chemotherapy+retroperitoneal lymph node dissection, 3 patients had orchiectomy only and one patient was treated with chemotherapy only. Abnormal computed tomography was the main cause for the oncologist to refer the patient to positron emission tomography-computed tomography scan (in 19 scans), magnetic resonance imaging abnormalities in 1 scan, high level oftumor markers in 3 and 3 scans were perforned for follow-up. Positron emission tomography-computed tomography imaging results were compared with histological results, other imaging modalities or the clinical follow-up of the patients. Positron emission tomography-computed tomography scans were positive in 6 and negative in 20 patients. In two patients, positron emission tomography-computed tomography was false positive. There were 20 negative positron emission omography-computed tomography scans perforned in 18 patients, one patient was lost for data analysis. Clinically stable disease was confirmed in 18 follow-up scans performed in 16 patients. The values of sensitivty, specificity, accuracy, and positive- and negative predictive value were 60%, 95%, 75%, 88% and 90.5%, respectively. A hgh negative predictive value obtained in our study (90.5%) suggests that there is a small possibility for a patient to have future relapse after normal positron emission tomography-computed tomography study. However, since the sensitivity and positive predictive value of the study ire rather low, there are limitations of positive

  17. Imaging of pharmacokinetic rates of indocyanine green in mouse liver with a hybrid fluorescence molecular tomography/x-ray computed tomography system.

    Science.gov (United States)

    Zhang, Guanglei; Liu, Fei; Zhang, Bin; He, Yun; Luo, Jianwen; Bai, Jing

    2013-04-01

    Pharmacokinetic rates have the potential to provide quantitative physiological and pathological information for biological studies and drug development. Fluorescence molecular tomography (FMT) is an attractive imaging tool for three-dimensionally resolving fluorophore distribution in small animals. In this letter, pharmacokinetic rates of indocyanine green (ICG) in mouse liver are imaged with a hybrid FMT and x-ray computed tomography (XCT) system. A recently developed FMT method using structural priors from an XCT system is adopted to improve the quality of FMT reconstruction. In the in vivo experiments, images of uptake and excretion rates of ICG in mouse liver are obtained, which can be used to quantitatively evaluate liver function. The accuracy of the results is validated by a fiber-based fluorescence measurement system.

  18. Computed tomography and magnetic resonance imaging of the normal equine carpus

    International Nuclear Information System (INIS)

    Kaser-Hotz, B.; Sartoretti-Schefer, S.; Weiss, R.

    1994-01-01

    A normal equine carpus was used for computed tomography and magnetic resonance imaging. The structures outlined were identified and described. The two techniques were compared. This anatomic description could be helpful as a basis for clinical exams

  19. Aerosolized intranasal midazolam for safe and effective sedation for quality computed tomography imaging in infants and children.

    Science.gov (United States)

    Mekitarian Filho, Eduardo; de Carvalho, Werther Brunow; Gilio, Alfredo Elias; Robinson, Fay; Mason, Keira P

    2013-10-01

    This pilot study introduces the aerosolized route for midazolam as an option for infant and pediatric sedation for computed tomography imaging. This technique produced predictable and effective sedation for quality computed tomography imaging studies with minimal artifact and no significant adverse events. Copyright © 2013 Mosby, Inc. All rights reserved.

  20. Use of 4-Dimensional Computed Tomography-Based Ventilation Imaging to Correlate Lung Dose and Function With Clinical Outcomes

    International Nuclear Information System (INIS)

    Vinogradskiy, Yevgeniy; Castillo, Richard; Castillo, Edward; Tucker, Susan L.; Liao, Zhongxing; Guerrero, Thomas; Martel, Mary K.

    2013-01-01

    Purpose: Four-dimensional computed tomography (4DCT)-based ventilation is an emerging imaging modality that can be used in the thoracic treatment planning process. The clinical benefit of using ventilation images in radiation treatment plans remains to be tested. The purpose of the current work was to test the potential benefit of using ventilation in treatment planning by evaluating whether dose to highly ventilated regions of the lung resulted in increased incidence of clinical toxicity. Methods and Materials: Pretreatment 4DCT data were used to compute pretreatment ventilation images for 96 lung cancer patients. Ventilation images were calculated using 4DCT data, deformable image registration, and a density-change based algorithm. Dose–volume and ventilation-based dose function metrics were computed for each patient. The ability of the dose–volume and ventilation-based dose–function metrics to predict for severe (grade 3+) radiation pneumonitis was assessed using logistic regression analysis, area under the curve (AUC) metrics, and bootstrap methods. Results: A specific patient example is presented that demonstrates how incorporating ventilation-based functional information can help separate patients with and without toxicity. The logistic regression significance values were all lower for the dose–function metrics (range P=.093-.250) than for their dose–volume equivalents (range, P=.331-.580). The AUC values were all greater for the dose–function metrics (range, 0.569-0.620) than for their dose–volume equivalents (range, 0.500-0.544). Bootstrap results revealed an improvement in model fit using dose–function metrics compared to dose–volume metrics that approached significance (range, P=.118-.155). Conclusions: To our knowledge, this is the first study that attempts to correlate lung dose and 4DCT ventilation-based function to thoracic toxicity after radiation therapy. Although the results were not significant at the .05 level, our data suggests

  1. Computed tomography perfusion imaging denoising using Gaussian process regression

    International Nuclear Information System (INIS)

    Zhu Fan; Gonzalez, David Rodriguez; Atkinson, Malcolm; Carpenter, Trevor; Wardlaw, Joanna

    2012-01-01

    Brain perfusion weighted images acquired using dynamic contrast studies have an important clinical role in acute stroke diagnosis and treatment decisions. However, computed tomography (CT) images suffer from low contrast-to-noise ratios (CNR) as a consequence of the limitation of the exposure to radiation of the patient. As a consequence, the developments of methods for improving the CNR are valuable. The majority of existing approaches for denoising CT images are optimized for 3D (spatial) information, including spatial decimation (spatially weighted mean filters) and techniques based on wavelet and curvelet transforms. However, perfusion imaging data is 4D as it also contains temporal information. Our approach using Gaussian process regression (GPR), which takes advantage of the temporal information, to reduce the noise level. Over the entire image, GPR gains a 99% CNR improvement over the raw images and also improves the quality of haemodynamic maps allowing a better identification of edges and detailed information. At the level of individual voxel, GPR provides a stable baseline, helps us to identify key parameters from tissue time-concentration curves and reduces the oscillations in the curve. GPR is superior to the comparable techniques used in this study. (note)

  2. Prior image constrained scatter correction in cone-beam computed tomography image-guided radiation therapy.

    Science.gov (United States)

    Brunner, Stephen; Nett, Brian E; Tolakanahalli, Ranjini; Chen, Guang-Hong

    2011-02-21

    X-ray scatter is a significant problem in cone-beam computed tomography when thicker objects and larger cone angles are used, as scattered radiation can lead to reduced contrast and CT number inaccuracy. Advances have been made in x-ray computed tomography (CT) by incorporating a high quality prior image into the image reconstruction process. In this paper, we extend this idea to correct scatter-induced shading artifacts in cone-beam CT image-guided radiation therapy. Specifically, this paper presents a new scatter correction algorithm which uses a prior image with low scatter artifacts to reduce shading artifacts in cone-beam CT images acquired under conditions of high scatter. The proposed correction algorithm begins with an empirical hypothesis that the target image can be written as a weighted summation of a series of basis images that are generated by raising the raw cone-beam projection data to different powers, and then, reconstructing using the standard filtered backprojection algorithm. The weight for each basis image is calculated by minimizing the difference between the target image and the prior image. The performance of the scatter correction algorithm is qualitatively and quantitatively evaluated through phantom studies using a Varian 2100 EX System with an on-board imager. Results show that the proposed scatter correction algorithm using a prior image with low scatter artifacts can substantially mitigate scatter-induced shading artifacts in both full-fan and half-fan modes.

  3. New solutions and applications of 3D computer tomography image processing

    Science.gov (United States)

    Effenberger, Ira; Kroll, Julia; Verl, Alexander

    2008-02-01

    As nowadays the industry aims at fast and high quality product development and manufacturing processes a modern and efficient quality inspection is essential. Compared to conventional measurement technologies, industrial computer tomography (CT) is a non-destructive technology for 3D-image data acquisition which helps to overcome their disadvantages by offering the possibility to scan complex parts with all outer and inner geometric features. In this paper new and optimized methods for 3D image processing, including innovative ways of surface reconstruction and automatic geometric feature detection of complex components, are presented, especially our work of developing smart online data processing and data handling methods, with an integrated intelligent online mesh reduction. Hereby the processing of huge and high resolution data sets is guaranteed. Besides, new approaches for surface reconstruction and segmentation based on statistical methods are demonstrated. On the extracted 3D point cloud or surface triangulation automated and precise algorithms for geometric inspection are deployed. All algorithms are applied to different real data sets generated by computer tomography in order to demonstrate the capabilities of the new tools. Since CT is an emerging technology for non-destructive testing and inspection more and more industrial application fields will use and profit from this new technology.

  4. 3D chemical imaging in the laboratory by hyperspectral X-ray computed tomography

    Science.gov (United States)

    Egan, C. K.; Jacques, S. D. M.; Wilson, M. D.; Veale, M. C.; Seller, P.; Beale, A. M.; Pattrick, R. A. D.; Withers, P. J.; Cernik, R. J.

    2015-01-01

    We report the development of laboratory based hyperspectral X-ray computed tomography which allows the internal elemental chemistry of an object to be reconstructed and visualised in three dimensions. The method employs a spectroscopic X-ray imaging detector with sufficient energy resolution to distinguish individual elemental absorption edges. Elemental distributions can then be made by K-edge subtraction, or alternatively by voxel-wise spectral fitting to give relative atomic concentrations. We demonstrate its application to two material systems: studying the distribution of catalyst material on porous substrates for industrial scale chemical processing; and mapping of minerals and inclusion phases inside a mineralised ore sample. The method makes use of a standard laboratory X-ray source with measurement times similar to that required for conventional computed tomography. PMID:26514938

  5. Correlative neuroanatomy of computed tomography and magnetic resonance imaging

    International Nuclear Information System (INIS)

    Groot, J.

    1984-01-01

    Since the development of computed tomography (CT) more than a decade ago, still another form of imaging has become available that provides displays of normal and abnormal human structures. Magnetic resonance imaging is given complete coverage in this book. It describes both CT and MR anatomy that explains basic principles and the current status of imaging the brain and spine. The author uses three-dimensional concepts to provide the reader with a simple means to compare the main structures of the brain, skull and spine. Combining normal, gross neuroanatomic illustrations with CT and MR images of normal and abnormal conditions, the book provides diagnostic guidance. Drawings, photographs and radiologic images are used to help

  6. Single photon emission computed tomography/spiral computed tomography fusion imaging for the diagnosis of bone metastasis in patients with known cancer

    International Nuclear Information System (INIS)

    Zhao, Zhen; Li, Lin; Li, Fanglan; Zhao, Lixia

    2010-01-01

    To evaluate single photon emission computed tomography (SPECT)/spiral computed tomography (CT) fusion imaging for the diagnosis of bone metastasis in patients with known cancer and to compare the diagnostic efficacy of SPECT/CT fusion imaging with that of SPECT alone and with SPECT + CT. One hundred forty-one bone lesions of 125 cancer patients (with nonspecific bone findings on bone scintigraphy) were investigated in the study. SPECT, CT, and SPECT/CT fusion images were acquired simultaneously. All images were interpreted independently by two experienced nuclear medicine physicians. In cases of discrepancy, consensus was obtained by a joint reading. The final diagnosis was based on biopsy proof and radiologic follow-up over at least 1 year. The final diagnosis revealed 63 malignant bone lesions and 78 benign lesions. The diagnostic sensitivity of SPECT, SPECT + CT, and SPECT/CT fusion imaging for malignant lesions was 82.5%, 93.7%, and 98.4%, respectively. Specificity was 66.7%, 80.8%, and 93.6%, respectively. Accuracy was 73.8%, 86.5%, and 95.7%, respectively. The specificity and accuracy of SPECT/CT fusion imaging for the diagnosis malignant bone lesions were significantly higher than those of SPECT alone and of SPECT + CT (P 2 = 9.855, P = 0.002). The numbers of equivocal lesions were 37, 18, and 5 for SPECT, SPECT + CT, and SPECT/CT fusion imaging, respectively, and 29.7% (11/37), 27.8% (5/18), and 20.0% (1/5) of lesions were confirmed to be malignant by radiologic follow-up over at least 1 year. SPECT/spiral CT is particularly valuable for the diagnosis of bone metastasis in patients with known cancer by providing precise anatomic localization and detailed morphologic characteristics. (orig.)

  7. Imaging of peripheral arteries by 16-slice computed tomography angiography: a valuable tool

    International Nuclear Information System (INIS)

    Mishra, A.; Ehtuish, Ehtuish F.

    2007-01-01

    To evaluate the efficacy of multidetector (16-row) computed tomography (MDCT) in imaging the upper and lower limb arterial tree in trauma and peripheral vascular disease. Thirty three patients underwent multislice computed tomography angiography (MSCTA) of the upper or the lower limb on multislice (16-slice) CT scanner between November 2004 and July 2005 in the Department of Radiology, National Organ Transplant Center, Tripoli, Libya. The findings were retrospectively compared with the surgical outcome in cases of trauma with suspected arterial injuries; or color Doppler correlation was obtained, for patients of peripheral vascular disease. Multislice computed tomography angiography allows a comprehensive diagnostic work-up in all trauma cases with suspected arterial injuries. In 23 cases of peripheral vascular diseases, MSCTA adequately demonstrated the presence of any stenosis or occlusion, its degree and extent, the presence of collaterals and distal reformation if any; the presence of plaques. Our experience of computed tomography angiography with 16-row MDCT scanner has clearly demonstrated its efficacy as a promising, new, fast, accurate, safe and non-invasive imaging modality of choice in cases of trauma with suspected arterial injuries; and as a useful screening modality in cases of peripheral vascular disease for diagnosis and for grading. (author)

  8. Photons-based medical imaging - Radiology, X-ray tomography, gamma and positrons tomography, optical imaging; Imagerie medicale a base de photons - Radiologie, tomographie X, tomographie gamma et positons, imagerie optique

    Energy Technology Data Exchange (ETDEWEB)

    Fanet, H.; Dinten, J.M.; Moy, J.P.; Rinkel, J. [CEA Leti, Grenoble (France); Buvat, I. [IMNC - CNRS, Orsay (France); Da Silva, A. [Institut Fresnel, Marseille (France); Douek, P.; Peyrin, F. [INSA Lyon, Lyon Univ. (France); Frija, G. [Hopital Europeen George Pompidou, Paris (France); Trebossen, R. [CEA-Service hospitalier Frederic Joliot, Orsay (France)

    2010-07-01

    This book describes the different principles used in medical imaging. The detection aspects, the processing electronics and algorithms are detailed for the different techniques. This first tome analyses the photons-based techniques (X-rays, gamma rays and visible light). Content: 1 - physical background: radiation-matter interaction, consequences on detection and medical imaging; 2 - detectors for medical imaging; 3 - processing of numerical radiography images for quantization; 4 - X-ray tomography; 5 - positrons emission tomography: principles and applications; 6 - mono-photonic imaging; 7 - optical imaging; Index. (J.S.)

  9. Neurocysticercosis: Imaging Findings in Computed Tomography. Review of Literature and Two Case Reports

    International Nuclear Information System (INIS)

    Alejandra Borbon Garzon; Alvaro Jose Perez; Veronica Pinto Schmidt

    2008-01-01

    Neurocysticercosis is a central nervous system parasitic infection caused by Taenia Solium whose clinical manifestations include seizures in 50-70% of patients, headache, intracranial hypertension and focal neurological deficits. Objective: To review the literature and to present imaging studies of two patients with the disease and classify its findings according to the pathologic stage. Methods: Review of literature and imaging of two patients with parenchymal neurocysticercosis using cranial computed tomography which showed cystic lesions at the gray-white junction associated with ring enhancement and some of them with surrounding edema; besides calcified granulomatous lesions. The documented findings represent the imaging spectrum of different parenchymal stages of neurocysticercosis. Conclusions: The cranial computed tomography is very helpful in diagnosis and monitoring neurocysticercosis.

  10. Radiomics-based differentiation of lung disease models generated by polluted air based on X-ray computed tomography data.

    Science.gov (United States)

    Szigeti, Krisztián; Szabó, Tibor; Korom, Csaba; Czibak, Ilona; Horváth, Ildikó; Veres, Dániel S; Gyöngyi, Zoltán; Karlinger, Kinga; Bergmann, Ralf; Pócsik, Márta; Budán, Ferenc; Máthé, Domokos

    2016-02-11

    Lung diseases (resulting from air pollution) require a widely accessible method for risk estimation and early diagnosis to ensure proper and responsive treatment. Radiomics-based fractal dimension analysis of X-ray computed tomography attenuation patterns in chest voxels of mice exposed to different air polluting agents was performed to model early stages of disease and establish differential diagnosis. To model different types of air pollution, BALBc/ByJ mouse groups were exposed to cigarette smoke combined with ozone, sulphur dioxide gas and a control group was established. Two weeks after exposure, the frequency distributions of image voxel attenuation data were evaluated. Specific cut-off ranges were defined to group voxels by attenuation. Cut-off ranges were binarized and their spatial pattern was associated with calculated fractal dimension, then abstracted by the fractal dimension -- cut-off range mathematical function. Nonparametric Kruskal-Wallis (KW) and Mann-Whitney post hoc (MWph) tests were used. Each cut-off range versus fractal dimension function plot was found to contain two distinctive Gaussian curves. The ratios of the Gaussian curve parameters are considerably significant and are statistically distinguishable within the three exposure groups. A new radiomics evaluation method was established based on analysis of the fractal dimension of chest X-ray computed tomography data segments. The specific attenuation patterns calculated utilizing our method may diagnose and monitor certain lung diseases, such as chronic obstructive pulmonary disease (COPD), asthma, tuberculosis or lung carcinomas.

  11. Fractal analyses of osseous healing using Tuned Aperture Computed Tomography images

    International Nuclear Information System (INIS)

    Nair, M.K.; Nair, U.P.; Seyedain, A.; Webber, R.L.; Piesco, N.P.; Agarwal, S.; Mooney, M.P.; Groendahl, H.G.

    2001-01-01

    The aim of this study was to evaluate osseous healing in mandibular defects using fractal analyses on conventional radiographs and tuned aperture computed tomography (TACT; OrthoTACT, Instrumentarium Imaging, Helsinki, Finland) images. Eighty test sites on the inferior margins of rabbit mandibles were subject to lesion induction and treated with one of the following: no treatment (controls); osteoblasts only; polymer matrix only; or osteoblast-polymer matrix (OPM) combination. Images were acquired using conventional radiography and TACT, including unprocessed TACT (TACT-U) and iteratively restored TACT (TACT-IR). Healing was followed up over time and images acquired at 3, 6, 9, and 12 weeks post-surgery. Fractal dimension (FD) was computed within regions of interest in the defects using the TACT workbench. Results were analyzed for effects produced by imaging modality, treatment modality, time after surgery and lesion location. Histomorphometric data were available to assess ground truth. Significant differences (p<0.0001) were noted based on imaging modality with TACT-IR recording the highest mean fractal dimension (MFD), followed by TACT-U and conventional images, in that order. Sites treated with OPM recorded the highest MFDs among all treatment modalities (p<0.0001). The highest MFD based on time was recorded at 3 weeks and differed significantly with 12 weeks (p<0.035). Correlation of FD with results of histomorphometric data was high (r=0.79; p<0.001). The FD computed on TACT-IR showed the highest correlation with histomorphometric data, thus establishing the fact TACT is a more efficient and accurate imaging modality for quantification of osseous changes within healing bony defects. (orig.)

  12. Analysis of iterative region-of-interest image reconstruction for x-ray computed tomography.

    Science.gov (United States)

    Sidky, Emil Y; Kraemer, David N; Roth, Erin G; Ullberg, Christer; Reiser, Ingrid S; Pan, Xiaochuan

    2014-10-03

    One of the challenges for iterative image reconstruction (IIR) is that such algorithms solve an imaging model implicitly, requiring a complete representation of the scanned subject within the viewing domain of the scanner. This requirement can place a prohibitively high computational burden for IIR applied to x-ray computed tomography (CT), especially when high-resolution tomographic volumes are required. In this work, we aim to develop an IIR algorithm for direct region-of-interest (ROI) image reconstruction. The proposed class of IIR algorithms is based on an optimization problem that incorporates a data fidelity term, which compares a derivative of the estimated data with the available projection data. In order to characterize this optimization problem, we apply it to computer-simulated two-dimensional fan-beam CT data, using both ideal noiseless data and realistic data containing a level of noise comparable to that of the breast CT application. The proposed method is demonstrated for both complete field-of-view and ROI imaging. To demonstrate the potential utility of the proposed ROI imaging method, it is applied to actual CT scanner data.

  13. Initial evaluation of image performance of a 3-D x-ray system: phantom-based comparison of 3-D tomography with conventional computed tomography.

    Science.gov (United States)

    Benz, Robyn Melanie; Garcia, Meritxell Alzamora; Amsler, Felix; Voigt, Johannes; Fieselmann, Andreas; Falkowski, Anna Lucja; Stieltjes, Bram; Hirschmann, Anna

    2018-01-01

    Phantom-based initial performance assessment of a prototype three-dimensional (3-D) x-ray system and comparison of 3-D tomography with computed tomography (CT) were proposed. A 3-D image quality phantom was scanned with a prototype version of 3-D cone-beam CT imaging implemented on a twin robotic x-ray system using three trajectories (163 deg = table, 188 deg = upright, and 200 deg = side), six tube voltages (60, 70, 81, 90, 100, and 121 kV), and four detector doses (0.348, 0.696, 1.740, and [Formula: see text]). CT was obtained with a clinical protocol. Spatial resolution (line pairs/cm) and soft-tissue-contrast resolution were assessed by two independent readers. Radiation dose was assessed. Descriptive and analysis of variance (ANOVA) ([Formula: see text]) were performed. With 3-D tomography, a maximum of 16 lp/cm was visible and best soft-tissue-contrast resolution was 2 mm at 30 Hounsfield units (HU) for 160 projections. With CT, 10 lp/cm was visible and soft-tissue-contrast resolution was 4 mm at 20 HU. The upright trajectory yielded significantly better spatial resolution and soft tissue contrast, and the side trajectory yielded significantly higher soft tissue contrast than the table trajectory ([Formula: see text]). Radiation dose was higher in 3-D tomography (45 to 704 mGycm) than CT (44 mGycm). Three-dimensional tomography renders overall equal or higher spatial resolution and comparable soft tissue contrast to CT for medium- and high-dose protocols in the side and upright trajectories, but with higher radiation doses.

  14. Incidental breast masses detected by computed tomography: are any imaging features predictive of malignancy?

    Energy Technology Data Exchange (ETDEWEB)

    Porter, G. [Primrose Breast Care Unit, Derriford Hospital, Plymouth (United Kingdom)], E-mail: Gareth.Porter@phnt.swest.nhs.uk; Steel, J.; Paisley, K.; Watkins, R. [Primrose Breast Care Unit, Derriford Hospital, Plymouth (United Kingdom); Holgate, C. [Department of Histopathology, Derriford Hospital, Plymouth (United Kingdom)

    2009-05-15

    Aim: To review the outcome of further assessment of breast abnormalities detected incidentally by multidetector computed tomography (MDCT) and to determine whether any MDCT imaging features were predictive of malignancy. Material and methods: The outcome of 34 patients referred to the Primrose Breast Care Unit with breast abnormalities detected incidentally using MDCT was prospectively recorded. Women with a known diagnosis of breast cancer were excluded. CT imaging features and histological diagnoses were recorded and the correlation assessed using Fisher's exact test. Results: Of the 34 referred patients a malignant diagnosis was noted in 11 (32%). There were 10 breast malignancies (seven invasive ductal carcinomas, one invasive lobular carcinoma, two metastatic lesions) and one axillary lymphoma. CT features suggestive of breast malignancy were spiculation [6/10 (60%) versus 0/24 (0%) p = 0.0002] and associated axillary lymphadenopathy [3/10 (33%) versus 0/20 (0%) p = 0.030]. Conversely, a well-defined mass was suggestive of benign disease [10/24 (42%) versus 0/10 (0%); p = 0.015]. Associated calcification, ill-definition, heterogeneity, size, and multiplicity of lesions were not useful discriminating CT features. There was a non-significant trend for lesions in involuted breasts to be more frequently malignant than in dense breasts [6/14 (43%) versus 4/20 (20%) p = 0.11]. Conclusion: In the present series there was a significant rate (32%) of malignancy in patients referred to the breast clinic with CT-detected incidental breast lesions. The CT features of spiculation or axillary lymphadenopathy are strongly suggestive of malignancy.

  15. Basilar skull fracture in a Thoroughbred colt: Radiography or computed tomography?

    Directory of Open Access Journals (Sweden)

    Chee Kin Lim

    2013-04-01

    Full Text Available A two-year-old Thoroughbred colt was presented to the Equine Clinic, Onderstepoort Veterinary Academic Hospital for head trauma after rearing and falling backwards, hitting his head on the ground. Following medical therapy for acute onset neurological impairment secondary to a suspected basilar skull fracture, the horse was anaesthetised and computed tomography of the skull was performed. A diagnosis of a comminuted basilar skull fracture was made and skull radiographs were taken for comparison. The horse was subsequently euthanased owing to the poor prognosis; necropsy findings were compatible with imaging findings. The value and limitation of computed tomography versus radiography for the diagnosis of basilar skull fracture are discussed in this report. Introduction

  16. Basilar skull fracture in a Thoroughbred colt: Radiography or computed tomography?

    Directory of Open Access Journals (Sweden)

    Chee Kin Lim

    2013-04-01

    Full Text Available A two-year-old Thoroughbred colt was presented to the Equine Clinic, Onderstepoort Veterinary Academic Hospital for head trauma after rearing and falling backwards, hitting his head on the ground. Following medical therapy for acute onset neurological impairment secondary to a suspected basilar skull fracture, the horse was anaesthetised and computed tomography of the skull was performed. A diagnosis of a comminuted basilar skull fracture was made and skull radiographs were taken for comparison. The horse was subsequently euthanased owing to the poor prognosis; necropsy findings were compatible with imaging findings. The value and limitation of computed tomography versus radiography for the diagnosis of basilar skull fracture are discussed in this report.

  17. Positron emission tomography/computed tomography--imaging protocols, artifacts, and pitfalls.

    Science.gov (United States)

    Bockisch, Andreas; Beyer, Thomas; Antoch, Gerald; Freudenberg, Lutz S; Kühl, Hilmar; Debatin, Jörg F; Müller, Stefan P

    2004-01-01

    There has been a longstanding interest in fused images of anatomical information, such as that provided by computed tomography (CT) or magnetic resonance imaging (MRI) systems, with biological information obtainable by positron emission tomography (PET). The near-simultaneous data acquisition in a fixed combination of a PET and a CT scanner in a combined PET/CT imaging system minimizes spatial and temporal mismatches between the modalities by eliminating the need to move the patient in between exams. In addition, using the fast CT scan for PET attenuation correction, the duration of the examination is significantly reduced compared to standalone PET imaging with standard rod-transmission sources. The main source of artifacts arises from the use of the CT-data for scatter and attenuation correction of the PET images. Today, CT reconstruction algorithms cannot account for the presence of metal implants, such as dental fillings or prostheses, properly, thus resulting in streak artifacts, which are propagated into the PET image by the attenuation correction. The transformation of attenuation coefficients at X-ray energies to those at 511 keV works well for soft tissues, bone, and air, but again is insufficient for dense CT contrast agents, such as iodine or barium. Finally, mismatches, for example, due to uncoordinated respiration result in incorrect attenuation-corrected PET images. These artifacts, however, can be minimized or avoided prospectively by careful acquisition protocol considerations. In doubt, the uncorrected images almost always allow discrimination between true and artificial finding. PET/CT has to be integrated into the diagnostic workflow for harvesting the full potential of the new modality. In particular, the diagnostic power of both, the CT and the PET within the combination must not be underestimated. By combining multiple diagnostic studies within a single examination, significant logistic advantages can be expected if the combined PET

  18. Review of cardiovascular imaging in the journal of nuclear cardiology in 2015. Part 1 of 2: Plaque imaging, positron emission tomography, computed tomography, and magnetic resonance.

    Science.gov (United States)

    AlJaroudi, Wael A; Hage, Fadi G

    2016-02-01

    In 2015, many original articles pertaining to cardiovascular imaging with impressive quality were published in the Journal of Nuclear Cardiology. In a set of 2 articles, we provide an overview of these contributions to facilitate for the interested reader a quick review of the advancements that occurred in the field over this year. In this first article, we focus on arterial plaque imaging, cardiac positron emission tomography, computed tomography, and magnetic resonance imaging.

  19. Noncontrast cardiac computed tomography image-based vertebral bone mineral density: the Multi-Ethnic Study of Atherosclerosis (MESA).

    Science.gov (United States)

    Li, Dong; Mao, Song Shou; Khazai, Bahram; Hyder, Joseph A; Allison, Matthew; McClelland, Robyn; de Boer, Ian; Carr, J Jeffrey; Criqui, Michael H; Gao, Yanlin; Budoff, Matthew J

    2013-05-01

    Cardiac computer tomography (CT) image-based vertebral bone mineral density (BMD) assessment and the influence of cardiovascular disease risk factors on BMD have not been systematically evaluated, especially in a community-based, multiethnic population. A cross-sectional study design is used to determine if cardiac CT image is a reliable source to assess vertebral BMD, and a total of 2028 CT images were obtained from the Multi-Ethnic Study of Atherosclerosis, a large, diverse US cohort of adults 45 to 84 years of age. Cardiac CT image allows the rapid assessment of vertebral BMD and related fractures. The mean BMD was significantly higher in men compared with women for thoracic vertebrae (143.2 ± 41.2 vs 138.7 ± 42.7 mg/cm³, respectively, P = .014), as well as for lumbar vertebrae (125.0 ± 37.9 vs 117.2 ± 39.4 mg/cm³, respectively, P images to garner and assess vertebral BMD is a feasible and reliable method. Cardiac CT has the additional advantages of evaluate vertebral bone health while assessing cardiovascular disease risk with no extra cost or radiation exposure. Copyright © 2013 AUR. Published by Elsevier Inc. All rights reserved.

  20. Breast tumor segmentation in high resolution x-ray phase contrast analyzer based computed tomography.

    Science.gov (United States)

    Brun, E; Grandl, S; Sztrókay-Gaul, A; Barbone, G; Mittone, A; Gasilov, S; Bravin, A; Coan, P

    2014-11-01

    Phase contrast computed tomography has emerged as an imaging method, which is able to outperform present day clinical mammography in breast tumor visualization while maintaining an equivalent average dose. To this day, no segmentation technique takes into account the specificity of the phase contrast signal. In this study, the authors propose a new mathematical framework for human-guided breast tumor segmentation. This method has been applied to high-resolution images of excised human organs, each of several gigabytes. The authors present a segmentation procedure based on the viscous watershed transform and demonstrate the efficacy of this method on analyzer based phase contrast images. The segmentation of tumors inside two full human breasts is then shown as an example of this procedure's possible applications. A correct and precise identification of the tumor boundaries was obtained and confirmed by manual contouring performed independently by four experienced radiologists. The authors demonstrate that applying the watershed viscous transform allows them to perform the segmentation of tumors in high-resolution x-ray analyzer based phase contrast breast computed tomography images. Combining the additional information provided by the segmentation procedure with the already high definition of morphological details and tissue boundaries offered by phase contrast imaging techniques, will represent a valuable multistep procedure to be used in future medical diagnostic applications.

  1. Evaluation of malposition of the branch pulmonary arteries using cardiovascular computed tomography angiography

    International Nuclear Information System (INIS)

    Liu, Hui; Juan, Yu-Hsiang; Wang, Qiushi; Huang, Hongfei; Yang, Lin; Xie, Zhaofeng; Chen, Jimei; Zhang, Xiaoshen; Liang, Changhong; Chung, Taylor; Kwong, Raymond Y.; Saboo, Sachin S.

    2014-01-01

    To analyze 15 cases of malposition of branch pulmonary arteries (MBPA) for the hospital-based prevalence, clinical information, surgical outcome, imaging findings, associated cardiovascular and airway abnormalities on cardiovascular computed tomography angiography (CCTA). We retrospectively searched for patients with MBPA from our database consisting of patients referred for CCTA due to known or suspected congenital heart disease and also from all patients receiving chest computed tomography (CT) during the same time period. We analyzed the hospital-based prevalence, image findings, associated cardiovascular anomalies, airway compression, and recorded the clinical information and surgical outcome. Our study showed 15 patients with MBPA (hospital-based prevalence: 0.33 % among patients with congenital heart disease and 0.06 % in all patients receiving chest CT or CCTA). Classic type was more common than lesser type (67 % versus 33 %). All patients had associated cardiovascular anomalies, including aortic arch abnormalities (80 %) and secondary airway compression (33 %). Surgery was performed in 67 % of cardiovascular anomalies and 60 % of airway stenoses. MBPA has a hospital-based prevalence of 0.33 % among patients with congenital heart disease and 0.06 % in all patients receiving either chest CT or CCTA. CCTA can delineate the anatomy of MBPA, associated cardiovascular and airway abnormalities for preoperative evaluation. (orig.)

  2. Evaluation of malposition of the branch pulmonary arteries using cardiovascular computed tomography angiography

    Energy Technology Data Exchange (ETDEWEB)

    Liu, Hui [Guangdong Academy of Medical Sciences, Department of Radiology, Guangdong General Hospital, GuangZhou, GuangDong (China); Brigham and Women' s Hospital, Harvard Medical School, Cardiovascular Imaging Program, Department of Medicine (Division of Cardiovascular Medicine) and Radiology, Boston, MA (United States); Juan, Yu-Hsiang [Brigham and Women' s Hospital, Harvard Medical School, Cardiovascular Imaging Program, Department of Medicine (Division of Cardiovascular Medicine) and Radiology, Boston, MA (United States); Chang Gung Memorial Hospital, Linkou and Chang Gung University, Department of Medical Imaging and Intervention, Taoyuan (China); Wang, Qiushi; Huang, Hongfei; Yang, Lin [Guangdong Academy of Medical Sciences, Department of Radiology, Guangdong General Hospital, GuangZhou, GuangDong (China); Xie, Zhaofeng [Guangdong Academy of Medical Sciences, Department of Pediatric Cardiology, Guangdong General Hospital, GuangZhou, GuangDong (China); Chen, Jimei; Zhang, Xiaoshen [Guangdong Academy of Medical Sciences, Department of Cardiovascular Surgery, Guangdong General Hospital, GuangZhou, GuangDong (China); Liang, Changhong [Guangdong Academy of Medical Sciences, Department of Radiology, Guangdong General Hospital, GuangZhou, GuangDong (China); Guangdong Academy of Medical Sciences, Department of Radiology, Guangdong General Hospital, Guangzhou (China); Chung, Taylor [Children' s Hospital and Research Center Oakland, Department of Diagnostic Imaging, Oakland, CA (United States); Kwong, Raymond Y.; Saboo, Sachin S. [Brigham and Women' s Hospital, Harvard Medical School, Cardiovascular Imaging Program, Department of Medicine (Division of Cardiovascular Medicine) and Radiology, Boston, MA (United States)

    2014-12-15

    To analyze 15 cases of malposition of branch pulmonary arteries (MBPA) for the hospital-based prevalence, clinical information, surgical outcome, imaging findings, associated cardiovascular and airway abnormalities on cardiovascular computed tomography angiography (CCTA). We retrospectively searched for patients with MBPA from our database consisting of patients referred for CCTA due to known or suspected congenital heart disease and also from all patients receiving chest computed tomography (CT) during the same time period. We analyzed the hospital-based prevalence, image findings, associated cardiovascular anomalies, airway compression, and recorded the clinical information and surgical outcome. Our study showed 15 patients with MBPA (hospital-based prevalence: 0.33 % among patients with congenital heart disease and 0.06 % in all patients receiving chest CT or CCTA). Classic type was more common than lesser type (67 % versus 33 %). All patients had associated cardiovascular anomalies, including aortic arch abnormalities (80 %) and secondary airway compression (33 %). Surgery was performed in 67 % of cardiovascular anomalies and 60 % of airway stenoses. MBPA has a hospital-based prevalence of 0.33 % among patients with congenital heart disease and 0.06 % in all patients receiving either chest CT or CCTA. CCTA can delineate the anatomy of MBPA, associated cardiovascular and airway abnormalities for preoperative evaluation. (orig.)

  3. Advanced proton imaging in computed tomography

    CERN Document Server

    Mattiazzo, S; Giubilato, P; Pantano, D; Pozzobon, N; Snoeys, W; Wyss, J

    2015-01-01

    In recent years the use of hadrons for cancer radiation treatment has grown in importance, and many facilities are currently operational or under construction worldwide. To fully exploit the therapeutic advantages offered by hadron therapy, precise body imaging for accurate beam delivery is decisive. Proton computed tomography (pCT) scanners, currently in their R&D phase, provide the ultimate 3D imaging for hadrons treatment guidance. A key component of a pCT scanner is the detector used to track the protons, which has great impact on the scanner performances and ultimately limits its maximum speed. In this article, a novel proton-tracking detector was presented that would have higher scanning speed, better spatial resolution and lower material budget with respect to present state-of-the-art detectors, leading to enhanced performances. This advancement in performances is achieved by employing the very latest development in monolithic active pixel detectors (to build high granularity, low material budget, ...

  4. Noise propagation in x-ray phase-contrast imaging and computed tomography

    International Nuclear Information System (INIS)

    Nesterets, Yakov I; Gureyev, Timur E

    2014-01-01

    Three phase-retrieval algorithms, based on the transport-of-intensity equation and on the contrast transfer function for propagation-based imaging, and on the linearized geometrical optics approximation for analyser-based imaging, are investigated. The algorithms are compared in terms of their effect on propagation of noise from projection images to the corresponding phase-retrieved images and further to the computed tomography (CT) images/slices of a monomorphous object reconstructed using filtered backprojection algorithm. The comparison is carried out in terms of an integral noise characteristic, the variance, as well as in terms of a simple figure-of-merit, i.e. signal-to-noise ratio per unit dose. A gain factor is introduced that quantitatively characterizes the effect of phase retrieval on the variance of noise in the reconstructed projection images and in the axial slices of the object. Simple analytical expressions are derived for the gain factor and the signal-to-noise ratio, which indicate that the application of phase-retrieval algorithms can increase these parameters by up to two orders of magnitude compared to raw projection images and conventional CT, thus allowing significant improvement in the image quality and/or reduction of the x-ray dose delivered to the patient. (paper)

  5. Radiomic features analysis in computed tomography images of lung nodule classification.

    Directory of Open Access Journals (Sweden)

    Chia-Hung Chen

    Full Text Available Radiomics, which extract large amount of quantification image features from diagnostic medical images had been widely used for prognostication, treatment response prediction and cancer detection. The treatment options for lung nodules depend on their diagnosis, benign or malignant. Conventionally, lung nodule diagnosis is based on invasive biopsy. Recently, radiomics features, a non-invasive method based on clinical images, have shown high potential in lesion classification, treatment outcome prediction.Lung nodule classification using radiomics based on Computed Tomography (CT image data was investigated and a 4-feature signature was introduced for lung nodule classification. Retrospectively, 72 patients with 75 pulmonary nodules were collected. Radiomics feature extraction was performed on non-enhanced CT images with contours which were delineated by an experienced radiation oncologist.Among the 750 image features in each case, 76 features were found to have significant differences between benign and malignant lesions. A radiomics signature was composed of the best 4 features which included Laws_LSL_min, Laws_SLL_energy, Laws_SSL_skewness and Laws_EEL_uniformity. The accuracy using the signature in benign or malignant classification was 84% with the sensitivity of 92.85% and the specificity of 72.73%.The classification signature based on radiomics features demonstrated very good accuracy and high potential in clinical application.

  6. Computed tomography and magnetic resonance imaging aspects of hemorrhagic strokes in dogs

    International Nuclear Information System (INIS)

    Babicsak, Viviam Rocco; Santos, Debora Rodrigues dos; Zardo, Karen Maciel; Machado, Vania Maria de Vasconcelos; Campos, Lidice Araujo; Vulcano, Luiz Carlos

    2012-01-01

    Over the years, veterinary medicine has made great technological advances, allowing, thus, aid in the diagnosis of many diseases that resulted in increased animals life expectancy. As a result of this new situation, there was an increase of older animals clinical care. Thus, illnesses considered unusual in the past, began to be better identified, as is the case of strokes. Recently, computed tomography and magnetic resonance imaging, have been used as aid tools in the diagnosis of many diseases, enabling the identification and evaluation of the central nervous tissue lesions. Information is provided regarding the size, shape and location of the lesion, and the magnitude of tissue compression and its side effects. This review aims to present the main aspects of hemorrhagic strokes in computed tomography and magnetic resonance imaging in dogs. (author)

  7. Statistical-techniques-based computer-aided diagnosis (CAD) using texture feature analysis: application in computed tomography (CT) imaging to fatty liver disease

    Science.gov (United States)

    Chung, Woon-Kwan; Park, Hyong-Hu; Im, In-Chul; Lee, Jae-Seung; Goo, Eun-Hoe; Dong, Kyung-Rae

    2012-09-01

    This paper proposes a computer-aided diagnosis (CAD) system based on texture feature analysis and statistical wavelet transformation technology to diagnose fatty liver disease with computed tomography (CT) imaging. In the target image, a wavelet transformation was performed for each lesion area to set the region of analysis (ROA, window size: 50 × 50 pixels) and define the texture feature of a pixel. Based on the extracted texture feature values, six parameters (average gray level, average contrast, relative smoothness, skewness, uniformity, and entropy) were determined to calculate the recognition rate for a fatty liver. In addition, a multivariate analysis of the variance (MANOVA) method was used to perform a discriminant analysis to verify the significance of the extracted texture feature values and the recognition rate for a fatty liver. According to the results, each texture feature value was significant for a comparison of the recognition rate for a fatty liver ( p fatty liver had the same scale as that for the F-value, showing 100% (average gray level) at the maximum and 80% (average contrast) at the minimum. Therefore, the recognition rate is believed to be a useful clinical value for the automatic detection and computer-aided diagnosis (CAD) using the texture feature value. Nevertheless, further study on various diseases and singular diseases will be needed in the future.

  8. Imaging performance of a hybrid x-ray computed tomography-fluorescence molecular tomography system using priors.

    Science.gov (United States)

    Ale, Angelique; Schulz, Ralf B; Sarantopoulos, Athanasios; Ntziachristos, Vasilis

    2010-05-01

    The performance is studied of two newly introduced and previously suggested methods that incorporate priors into inversion schemes associated with data from a recently developed hybrid x-ray computed tomography and fluorescence molecular tomography system, the latter based on CCD camera photon detection. The unique data set studied attains accurately registered data of high spatially sampled photon fields propagating through tissue along 360 degrees projections. Approaches that incorporate structural prior information were included in the inverse problem by adding a penalty term to the minimization function utilized for image reconstructions. Results were compared as to their performance with simulated and experimental data from a lung inflammation animal model and against the inversions achieved when not using priors. The importance of using priors over stand-alone inversions is also showcased with high spatial sampling simulated and experimental data. The approach of optimal performance in resolving fluorescent biodistribution in small animals is also discussed. Inclusion of prior information from x-ray CT data in the reconstruction of the fluorescence biodistribution leads to improved agreement between the reconstruction and validation images for both simulated and experimental data.

  9. Computed tomography imaging for superior semicircular canal dehiscence syndrome

    International Nuclear Information System (INIS)

    Dobeli, Karen

    2006-01-01

    Superior semicircular canal dehiscence is a newly described syndrome of sound and/or pressure induced vertigo. Computed tomography (CT) imaging plays an important role in confirmation of a defect in the bone overlying the canal. A high resolution CT technique utilising 0.5 mm or thinner slices and multi-planar reconstructions parallel to the superior semicircular canal is required. Placement of a histogram over a suspected defect can assist CT diagnosis

  10. Computed Tomography (CT) -- Sinuses

    Medline Plus

    Full Text Available ... Share your patient story here Images × Image Gallery Patient undergoing computed tomography (CT) scan. View full size with caption Pediatric Content Some imaging tests and treatments have special pediatric considerations. The teddy bear denotes child-specific content. Related ...

  11. Computed Tomography (CT) -- Head

    Medline Plus

    Full Text Available ... Share your patient story here Images × Image Gallery Patient undergoing computed tomography (CT) scan. View full size with caption Pediatric Content Some imaging tests and treatments have special pediatric considerations. The teddy bear denotes child-specific content. Related ...

  12. Accuracy of Linear Measurements in Stitched Versus Non-Stitched Cone Beam Computed Tomography Images

    International Nuclear Information System (INIS)

    Srimawong, P.; Krisanachinda, A.; Chindasombatjaroen, J.

    2012-01-01

    Cone beam computed tomography images are useful in clinical dentistry. Linear measurements are necessary for accurate treatment planning.Therefore, the accuracy of linear measurements on CBCT images is needed to be verified. Current program called stitching program in Kodak 9000C 3D systems automatically combines up to three localized volumes to construct larger images with small voxel size.The purpose of this study was to assess the accuracy of linear measurements from stitched and non-stitched CBCT images in comparison to direct measurements.This study was performed in 10 human dry mandibles. Gutta-percha rods were marked at reference points to obtain 10 vertical and horizontal distances. Direct measurements by digital caliper were served as gold standard. All distances on CBCT images obtained by using and not using stitching program were measured, and compared with direct measurements.The intraclass correlation coefficients (ICC) were calculated.The ICC of direct measurements were 0.998 to 1.000.The ICC of intraobserver of both non-stitched CBCT images and stitched CBCT images were 1.000 indicated strong agreement made by a single observer.The intermethod ICC between direct measurements vs non-stitched CBCT images and direct measurements vs stitched CBCT images ranged from 0.972 to 1.000 and 0.967 to 0.998, respectively. No statistically significant differences between direct measurements and stitched CBCT images or non-stitched CBCT images (P > 0.05). The results showed that linear measurements on non-stitched and stitched CBCT images were highly accurate with no statistical difference compared to direct measurements. The ICC values in non-stitched and stitched CBCT images and direct measurements of vertical distances were slightly higher than those of horizontal distances. This indicated that the measurements in vertical orientation were more accurate than those in horizontal orientation. However, the differences were not statistically significant. Stitching

  13. Cat Swarm Optimization Based Functional Link Artificial Neural Network Filter for Gaussian Noise Removal from Computed Tomography Images

    Directory of Open Access Journals (Sweden)

    M. Kumar

    2016-01-01

    Full Text Available Gaussian noise is one of the dominant noises, which degrades the quality of acquired Computed Tomography (CT image data. It creates difficulties in pathological identification or diagnosis of any disease. Gaussian noise elimination is desirable to improve the clarity of a CT image for clinical, diagnostic, and postprocessing applications. This paper proposes an evolutionary nonlinear adaptive filter approach, using Cat Swarm Functional Link Artificial Neural Network (CS-FLANN to remove the unwanted noise. The structure of the proposed filter is based on the Functional Link Artificial Neural Network (FLANN and the Cat Swarm Optimization (CSO is utilized for the selection of optimum weight of the neural network filter. The applied filter has been compared with the existing linear filters, like the mean filter and the adaptive Wiener filter. The performance indices, such as peak signal to noise ratio (PSNR, have been computed for the quantitative analysis of the proposed filter. The experimental evaluation established the superiority of the proposed filtering technique over existing methods.

  14. Three-Dimensional Imaging and Numerical Reconstruction of Graphite/Epoxy Composite Microstructure Based on Ultra-High Resolution X-Ray Computed Tomography

    Science.gov (United States)

    Czabaj, M. W.; Riccio, M. L.; Whitacre, W. W.

    2014-01-01

    A combined experimental and computational study aimed at high-resolution 3D imaging, visualization, and numerical reconstruction of fiber-reinforced polymer microstructures at the fiber length scale is presented. To this end, a sample of graphite/epoxy composite was imaged at sub-micron resolution using a 3D X-ray computed tomography microscope. Next, a novel segmentation algorithm was developed, based on concepts adopted from computer vision and multi-target tracking, to detect and estimate, with high accuracy, the position of individual fibers in a volume of the imaged composite. In the current implementation, the segmentation algorithm was based on Global Nearest Neighbor data-association architecture, a Kalman filter estimator, and several novel algorithms for virtualfiber stitching, smoothing, and overlap removal. The segmentation algorithm was used on a sub-volume of the imaged composite, detecting 508 individual fibers. The segmentation data were qualitatively compared to the tomographic data, demonstrating high accuracy of the numerical reconstruction. Moreover, the data were used to quantify a) the relative distribution of individual-fiber cross sections within the imaged sub-volume, and b) the local fiber misorientation relative to the global fiber axis. Finally, the segmentation data were converted using commercially available finite element (FE) software to generate a detailed FE mesh of the composite volume. The methodology described herein demonstrates the feasibility of realizing an FE-based, virtual-testing framework for graphite/fiber composites at the constituent level.

  15. Diffuse optical tomography for breast cancer imaging guided by computed tomography: A feasibility study.

    Science.gov (United States)

    Baikejiang, Reheman; Zhang, Wei; Li, Changqing

    2017-01-01

    Diffuse optical tomography (DOT) has attracted attentions in the last two decades due to its intrinsic sensitivity in imaging chromophores of tissues such as hemoglobin, water, and lipid. However, DOT has not been clinically accepted yet due to its low spatial resolution caused by strong optical scattering in tissues. Structural guidance provided by an anatomical imaging modality enhances the DOT imaging substantially. Here, we propose a computed tomography (CT) guided multispectral DOT imaging system for breast cancer imaging. To validate its feasibility, we have built a prototype DOT imaging system which consists of a laser at the wavelength of 650 nm and an electron multiplying charge coupled device (EMCCD) camera. We have validated the CT guided DOT reconstruction algorithms with numerical simulations and phantom experiments, in which different imaging setup parameters, such as projection number of measurements and width of measurement patch, have been investigated. Our results indicate that an air-cooling EMCCD camera is good enough for the transmission mode DOT imaging. We have also found that measurements at six angular projections are sufficient for DOT to reconstruct the optical targets with 2 and 4 times absorption contrast when the CT guidance is applied. Finally, we have described our future research plan on integration of a multispectral DOT imaging system into a breast CT scanner.

  16. Micro-computed tomography newly developed for in vivo small animal imaging

    International Nuclear Information System (INIS)

    Arai, Yoshinori; Ninomiya, Tadashi; Kato, Takafumi; Masuda, Yuji

    2005-01-01

    The aim of this paper is to report a newly developed micro-computed tomography system for in vivo use. The system was composed of a micro-focus X-ray tube and an image intensifier (I.I.), both of which rotated around the object stage. A guinea pig and a rat were examined. The anesthetized animal was set on the secure object stage. Images of the head of the guinea pig and the tibia knee joint of the rat were taken. In addition, an image of the rat's tail was taken. The reconstruction and the image viewing were carried out using I-View software. The voxel matrix was 512 x 512 x 384. The voxel sizes ranged from 10 x 10 x 10 μm to 100 x 100 x 100 μm. The exposure time was 17 s, and the reconstruction time was 150 s. The head of the guinea pig and the tibia/knee joint of the rat were observed clearly under 100-μm and 30μm voxels, respectively. The trabecular bone of the tail was also observed clearly under a 10 μm voxel. The newly developed micro-computed tomography system makes it possible to obtain images of anesthetized animals set on a secure object stage. Clear bone images of the small animals could be obtained within a short time. (author)

  17. Polychromatic Iterative Statistical Material Image Reconstruction for Photon-Counting Computed Tomography

    Directory of Open Access Journals (Sweden)

    Thomas Weidinger

    2016-01-01

    Full Text Available This work proposes a dedicated statistical algorithm to perform a direct reconstruction of material-decomposed images from data acquired with photon-counting detectors (PCDs in computed tomography. It is based on local approximations (surrogates of the negative logarithmic Poisson probability function. Exploiting the convexity of this function allows for parallel updates of all image pixels. Parallel updates can compensate for the rather slow convergence that is intrinsic to statistical algorithms. We investigate the accuracy of the algorithm for ideal photon-counting detectors. Complementarily, we apply the algorithm to simulation data of a realistic PCD with its spectral resolution limited by K-escape, charge sharing, and pulse-pileup. For data from both an ideal and realistic PCD, the proposed algorithm is able to correct beam-hardening artifacts and quantitatively determine the material fractions of the chosen basis materials. Via regularization we were able to achieve a reduction of image noise for the realistic PCD that is up to 90% lower compared to material images form a linear, image-based material decomposition using FBP images. Additionally, we find a dependence of the algorithms convergence speed on the threshold selection within the PCD.

  18. Computed tomography depiction of small pediatric vessels with model-based iterative reconstruction

    Energy Technology Data Exchange (ETDEWEB)

    Koc, Gonca; Courtier, Jesse L.; Phelps, Andrew; Marcovici, Peter A.; MacKenzie, John D. [UCSF Benioff Children' s Hospital, Department of Radiology and Biomedical Imaging, San Francisco, CA (United States)

    2014-07-15

    Computed tomography (CT) is extremely important in characterizing blood vessel anatomy and vascular lesions in children. Recent advances in CT reconstruction technology hold promise for improved image quality and also reductions in radiation dose. This report evaluates potential improvements in image quality for the depiction of small pediatric vessels with model-based iterative reconstruction (Veo trademark), a technique developed to improve image quality and reduce noise. To evaluate Veo trademark as an improved method when compared to adaptive statistical iterative reconstruction (ASIR trademark) for the depiction of small vessels on pediatric CT. Seventeen patients (mean age: 3.4 years, range: 2 days to 10.0 years; 6 girls, 11 boys) underwent contrast-enhanced CT examinations of the chest and abdomen in this HIPAA compliant and institutional review board approved study. Raw data were reconstructed into separate image datasets using Veo trademark and ASIR trademark algorithms (GE Medical Systems, Milwaukee, WI). Four blinded radiologists subjectively evaluated image quality. The pulmonary, hepatic, splenic and renal arteries were evaluated for the length and number of branches depicted. Datasets were compared with parametric and non-parametric statistical tests. Readers stated a preference for Veo trademark over ASIR trademark images when subjectively evaluating image quality criteria for vessel definition, image noise and resolution of small anatomical structures. The mean image noise in the aorta and fat was significantly less for Veo trademark vs. ASIR trademark reconstructed images. Quantitative measurements of mean vessel lengths and number of branches vessels delineated were significantly different for Veo trademark and ASIR trademark images. Veo trademark consistently showed more of the vessel anatomy: longer vessel length and more branching vessels. When compared to the more established adaptive statistical iterative reconstruction algorithm, model-based

  19. Computed tomography depiction of small pediatric vessels with model-based iterative reconstruction

    International Nuclear Information System (INIS)

    Koc, Gonca; Courtier, Jesse L.; Phelps, Andrew; Marcovici, Peter A.; MacKenzie, John D.

    2014-01-01

    Computed tomography (CT) is extremely important in characterizing blood vessel anatomy and vascular lesions in children. Recent advances in CT reconstruction technology hold promise for improved image quality and also reductions in radiation dose. This report evaluates potential improvements in image quality for the depiction of small pediatric vessels with model-based iterative reconstruction (Veo trademark), a technique developed to improve image quality and reduce noise. To evaluate Veo trademark as an improved method when compared to adaptive statistical iterative reconstruction (ASIR trademark) for the depiction of small vessels on pediatric CT. Seventeen patients (mean age: 3.4 years, range: 2 days to 10.0 years; 6 girls, 11 boys) underwent contrast-enhanced CT examinations of the chest and abdomen in this HIPAA compliant and institutional review board approved study. Raw data were reconstructed into separate image datasets using Veo trademark and ASIR trademark algorithms (GE Medical Systems, Milwaukee, WI). Four blinded radiologists subjectively evaluated image quality. The pulmonary, hepatic, splenic and renal arteries were evaluated for the length and number of branches depicted. Datasets were compared with parametric and non-parametric statistical tests. Readers stated a preference for Veo trademark over ASIR trademark images when subjectively evaluating image quality criteria for vessel definition, image noise and resolution of small anatomical structures. The mean image noise in the aorta and fat was significantly less for Veo trademark vs. ASIR trademark reconstructed images. Quantitative measurements of mean vessel lengths and number of branches vessels delineated were significantly different for Veo trademark and ASIR trademark images. Veo trademark consistently showed more of the vessel anatomy: longer vessel length and more branching vessels. When compared to the more established adaptive statistical iterative reconstruction algorithm, model-based

  20. Recent Advances in Cardiac Computed Tomography: Dual Energy, Spectral and Molecular CT Imaging

    Science.gov (United States)

    Danad, Ibrahim; Fayad, Zahi A.; Willemink, Martin J.; Min, James K.

    2015-01-01

    Computed tomography (CT) evolved into a powerful diagnostic tool and it is impossible to imagine current clinical practice without CT imaging. Due to its widespread availability, ease of clinical application, superb sensitivity for detection of CAD, and non-invasive nature, CT has become a valuable tool within the armamentarium of the cardiologist. In the last few years, numerous technological advances in CT have occurred—including dual energy CT (DECT), spectral CT and CT-based molecular imaging. By harnessing the advances in technology, cardiac CT has advanced beyond the mere evaluation of coronary stenosis to an imaging modality tool that permits accurate plaque characterization, assessment of myocardial perfusion and even probing of molecular processes that are involved in coronary atherosclerosis. Novel innovations in CT contrast agents and pre-clinical spectral CT devices have paved the way for CT-based molecular imaging. PMID:26068288

  1. Investigation of the imaging quality of synchrotron-based phase-contrast mammographic tomography

    International Nuclear Information System (INIS)

    Gureyev, T E; Mayo, S C; Nesterets, Ya I; Mohammadi, S; Menk, R H; Arfelli, F; Tromba, G; Lockie, D; Pavlov, K M; Kitchen, M J; Zanconati, F; Dullin, C

    2014-01-01

    We report the results of a systematic study of phase-contrast x-ray computed tomography in the propagation-based and analyser-based modes using specially designed phantoms and excised breast tissue samples. The study is aimed at the quantitative evaluation and subsequent optimization, with respect to detection of small tumours in breast tissue, of the effects of phase contrast and phase retrieval on key imaging parameters, such as spatial resolution, contrast-to-noise ratio, x-ray dose and a recently proposed ‘intrinsic quality’ characteristic which combines the image noise with the spatial resolution. We demonstrate that some of the methods evaluated in this work lead to substantial (more than 20-fold) improvement in the contrast-to-noise and intrinsic quality of the reconstructed tomographic images compared with conventional techniques, with the measured characteristics being in good agreement with the corresponding theoretical estimations. This improvement also corresponds to an approximately 400-fold reduction in the x-ray dose, compared with conventional absorption-based tomography, without a loss in the imaging quality. The results of this study confirm and quantify the significant potential benefits achievable in three-dimensional mammography using x-ray phase-contrast imaging and phase-retrieval techniques. (paper)

  2. Analysis of iterative region-of-interest image reconstruction for x-ray computed tomography

    Science.gov (United States)

    Sidky, Emil Y.; Kraemer, David N.; Roth, Erin G.; Ullberg, Christer; Reiser, Ingrid S.; Pan, Xiaochuan

    2014-01-01

    Abstract. One of the challenges for iterative image reconstruction (IIR) is that such algorithms solve an imaging model implicitly, requiring a complete representation of the scanned subject within the viewing domain of the scanner. This requirement can place a prohibitively high computational burden for IIR applied to x-ray computed tomography (CT), especially when high-resolution tomographic volumes are required. In this work, we aim to develop an IIR algorithm for direct region-of-interest (ROI) image reconstruction. The proposed class of IIR algorithms is based on an optimization problem that incorporates a data fidelity term, which compares a derivative of the estimated data with the available projection data. In order to characterize this optimization problem, we apply it to computer-simulated two-dimensional fan-beam CT data, using both ideal noiseless data and realistic data containing a level of noise comparable to that of the breast CT application. The proposed method is demonstrated for both complete field-of-view and ROI imaging. To demonstrate the potential utility of the proposed ROI imaging method, it is applied to actual CT scanner data. PMID:25685824

  3. Kimura's disease: imaging patterns on computed tomography

    International Nuclear Information System (INIS)

    Gopinathan, Anil; Tan, T.Y.

    2009-01-01

    Aim: To define the role of computed tomography (CT) in identifying and classifying the imaging patterns of diagnostic value in Kimura's disease of the head and neck. Methods: A retrospective study was undertaken comprising 13 patients with histopathological evidence of Kimura's disease. The patients' clinical and pathological records were reviewed against a detailed analysis of their CT images performed from the base of the skull to the arch of the aorta. Results: Both well-defined, nodular masses, as well as ill-defined plaque-like infiltrative masses were seen in the subcutaneous tissue of the head and neck region. All patients had lesions adjacent to the major salivary glands. The parotid gland was affected in 10 of the 13 cases and the submandibular gland was affected in the rest. Contrast enhancement was variable. More than half of the cases had associated lymphadenopathy. Some of them showed atrophy of the skin and subcutaneous fat overlying the subcutaneous masses. Blood eosinophilia was a consistent feature in all the cases. Conclusion: The patterns of distribution, morphology, and enhancement of the lesions in Kimura's disease that can be demonstrated at CT, enables a confident, non-invasive diagnosis of this condition, in an appropriate clinical context.

  4. Breast tumor segmentation in high resolution x-ray phase contrast analyzer based computed tomography

    Energy Technology Data Exchange (ETDEWEB)

    Brun, E., E-mail: emmanuel.brun@esrf.fr [European Synchrotron Radiation Facility (ESRF), Grenoble 380000, France and Department of Physics, Ludwig-Maximilians University, Garching 85748 (Germany); Grandl, S.; Sztrókay-Gaul, A.; Gasilov, S. [Institute for Clinical Radiology, Ludwig-Maximilians-University Hospital Munich, 81377 Munich (Germany); Barbone, G. [Department of Physics, Harvard University, Cambridge, Massachusetts 02138 (United States); Mittone, A.; Coan, P. [Department of Physics, Ludwig-Maximilians University, Garching 85748, Germany and Institute for Clinical Radiology, Ludwig-Maximilians-University Hospital Munich, 81377 Munich (Germany); Bravin, A. [European Synchrotron Radiation Facility (ESRF), Grenoble 380000 (France)

    2014-11-01

    Purpose: Phase contrast computed tomography has emerged as an imaging method, which is able to outperform present day clinical mammography in breast tumor visualization while maintaining an equivalent average dose. To this day, no segmentation technique takes into account the specificity of the phase contrast signal. In this study, the authors propose a new mathematical framework for human-guided breast tumor segmentation. This method has been applied to high-resolution images of excised human organs, each of several gigabytes. Methods: The authors present a segmentation procedure based on the viscous watershed transform and demonstrate the efficacy of this method on analyzer based phase contrast images. The segmentation of tumors inside two full human breasts is then shown as an example of this procedure’s possible applications. Results: A correct and precise identification of the tumor boundaries was obtained and confirmed by manual contouring performed independently by four experienced radiologists. Conclusions: The authors demonstrate that applying the watershed viscous transform allows them to perform the segmentation of tumors in high-resolution x-ray analyzer based phase contrast breast computed tomography images. Combining the additional information provided by the segmentation procedure with the already high definition of morphological details and tissue boundaries offered by phase contrast imaging techniques, will represent a valuable multistep procedure to be used in future medical diagnostic applications.

  5. Performance of cone-beam computed tomography and multidetector computed tomography in diagnostic imaging of the midface: A comparative study on Phantom and cadaver head scans

    Energy Technology Data Exchange (ETDEWEB)

    Veldhoen, Simon [University Medical Center Hamburg, Department of Diagnostic and Interventional Radiology, Hamburg (Germany); University Hospital Wuerzburg, Department of Diagnostic and Interventional Radiology, Wuerzburg (Germany); Schoellchen, Maximilian; Hanken, H.; Precht, C.; Heiland, M. [University Medical Center Hamburg, Department of Oral- and Maxillofacial Surgery, Hamburg (Germany); Henes, F.O.; Adam, G.; Regier, M. [University Medical Center Hamburg, Department of Diagnostic and Interventional Radiology, Hamburg (Germany); Schoen, G. [University Medical Center Hamburg, Department of Medical Biometry and Epidemiology, Hamburg (Germany); Nagel, H.D. [Science and Technology for Radiology, Buchholz (Germany); Schumacher, U. [University Medical Center Hamburg, Institute of Anatomy, Hamburg (Germany)

    2017-02-15

    To compare multidetector computed tomography (MDCT) and cone-beam computed tomography (CBCT) regarding radiation, resolution, image noise, and image quality. CBCT and 256-MDCT were compared based on three scan protocols: Standard-dose (∼24 mGy), reduced-dose (∼9 mGy), and low-dose (∼4 mGy). MDCT images were acquired in standard- and high-resolution mode (HR-MDCT) and reconstructed using filtered back projection (FBP) and iterative reconstruction (IR). Spatial resolution in linepairs (lp) and objective image noise (OIN) were assessed using dedicated phantoms. Image quality was assessed in scans of 25 cadaver heads using a Likert scale. OIN was markedly higher in FBP-MDCT when compared to CBCT. IR lowered the OIN to comparable values in standard-mode MDCT only. CBCT provided a resolution of 13 lp/cm at standard-dose and 11 lp/cm at reduced-dose vs. 11 lp/cm and 10 lp/cm in HR-MDCT. Resolution of 10 lp/cm was observed for both devices using low-dose settings. Quality scores of MDCT and CBCT did not differ at standard-dose (CBCT, 3.4; MDCT, 3.3-3.5; p > 0.05). Using reduced- and low-dose protocols, CBCT was superior (reduced-dose, 3.2 vs. 2.8; low dose, 3.0 vs. 2.3; p < 0.001). Using the low-dose protocol, the assessed CBCT provided better objective and subjective image quality and equality in resolution. Similar image quality, but better resolution using CBCT was observed at higher exposure settings. (orig.)

  6. Free and open-source software application for the evaluation of coronary computed tomography angiography images.

    Science.gov (United States)

    Hadlich, Marcelo Souza; Oliveira, Gláucia Maria Moraes; Feijóo, Raúl A; Azevedo, Clerio F; Tura, Bernardo Rangel; Ziemer, Paulo Gustavo Portela; Blanco, Pablo Javier; Pina, Gustavo; Meira, Márcio; Souza e Silva, Nelson Albuquerque de

    2012-10-01

    The standardization of images used in Medicine in 1993 was performed using the DICOM (Digital Imaging and Communications in Medicine) standard. Several tests use this standard and it is increasingly necessary to design software applications capable of handling this type of image; however, these software applications are not usually free and open-source, and this fact hinders their adjustment to most diverse interests. To develop and validate a free and open-source software application capable of handling DICOM coronary computed tomography angiography images. We developed and tested the ImageLab software in the evaluation of 100 tests randomly selected from a database. We carried out 600 tests divided between two observers using ImageLab and another software sold with Philips Brilliance computed tomography appliances in the evaluation of coronary lesions and plaques around the left main coronary artery (LMCA) and the anterior descending artery (ADA). To evaluate intraobserver, interobserver and intersoftware agreements, we used simple and kappa statistics agreements. The agreements observed between software applications were generally classified as substantial or almost perfect in most comparisons. The ImageLab software agreed with the Philips software in the evaluation of coronary computed tomography angiography tests, especially in patients without lesions, with lesions 70% in the ADA was lower, but this is also observed when the anatomical reference standard is used.

  7. Radiomics-based differentiation of lung disease models generated by polluted air based on X-ray computed tomography data

    International Nuclear Information System (INIS)

    Szigeti, Krisztián; Szabó, Tibor; Korom, Csaba; Czibak, Ilona; Horváth, Ildikó; Veres, Dániel S.; Gyöngyi, Zoltán; Karlinger, Kinga; Bergmann, Ralf; Pócsik, Márta; Budán, Ferenc; Máthé, Domokos

    2016-01-01

    Lung diseases (resulting from air pollution) require a widely accessible method for risk estimation and early diagnosis to ensure proper and responsive treatment. Radiomics-based fractal dimension analysis of X-ray computed tomography attenuation patterns in chest voxels of mice exposed to different air polluting agents was performed to model early stages of disease and establish differential diagnosis. To model different types of air pollution, BALBc/ByJ mouse groups were exposed to cigarette smoke combined with ozone, sulphur dioxide gas and a control group was established. Two weeks after exposure, the frequency distributions of image voxel attenuation data were evaluated. Specific cut-off ranges were defined to group voxels by attenuation. Cut-off ranges were binarized and their spatial pattern was associated with calculated fractal dimension, then abstracted by the fractal dimension -- cut-off range mathematical function. Nonparametric Kruskal-Wallis (KW) and Mann–Whitney post hoc (MWph) tests were used. Each cut-off range versus fractal dimension function plot was found to contain two distinctive Gaussian curves. The ratios of the Gaussian curve parameters are considerably significant and are statistically distinguishable within the three exposure groups. A new radiomics evaluation method was established based on analysis of the fractal dimension of chest X-ray computed tomography data segments. The specific attenuation patterns calculated utilizing our method may diagnose and monitor certain lung diseases, such as chronic obstructive pulmonary disease (COPD), asthma, tuberculosis or lung carcinomas. The online version of this article (doi:10.1186/s12880-016-0118-z) contains supplementary material, which is available to authorized users

  8. Spectrum of fluorodeoxyglucose-positron emission tomography/computed tomography and magnetic resonance imaging findings of ovarian tumors.

    Science.gov (United States)

    Kitajima, Kazuhiro; Ueno, Yoshiko; Maeda, Tetsuo; Murakami, Koji; Kaji, Yasushi; Kita, Masato; Suzuki, Kayo; Sugimura, Kazuro

    2011-11-01

    The purpose of this article is to review fluorodeoxyglucose-positron emission tomography/computed tomography (FDG-PET/CT) and magnetic resonance imaging (MRI) findings in a variety of benign, malignant, and borderline malignant ovarian tumors. It is advantageous to become familiar with the wide variety of FDG-PET/CT findings of this entity. Benign ovarian tumors generally have faint uptake, whereas endometriomas, fibromas, and teratomas show mild to moderate uptake. Malignant ovarian tumors generally have intense uptake, whereas tumors with a small solid component often show minimal uptake.

  9. Magnetic Resonance Imaging versus Computed Tomography and Different Imaging Modalities in Evaluation of Sinonasal Neoplasms Diagnosed by Histopathology

    Directory of Open Access Journals (Sweden)

    Mohammed A. Gomaa

    2013-01-01

    Full Text Available Objective The study purpose was to detect the value of magnetic resonance imaging (MRI compared to computed tomography (CT and different imaging modalities as conventional radiology in evaluation of sinonasal neoplasms diagnosed by Histopathology. Methods Thirty patients (16 males and 14 females were complaining of symptoms related to sinonasal tract. After thorough clinical and local examination, the patients were subjected to the following: conventional radiography, CT, MRI, and histopathological examination. Results The nasal cavity was the most commonly involved site with sinonasal malignancies followed by the maxillary sinuses. The least commonly affected site was the frontal sinuses. Benign sinonasal tumors were present in 14 cases. The most common benign lesion was juvenile nasopharyngeal angiofibroma (6 cases, followed by inverted papilloma (3 cases. While malignant sinonasal tumors were present in 16 cases, squamous cell carcinoma was present in 5 cases, and undifferentiated carcinoma, in 3 cases. Lymphoepithelioma and non-Hodgkin lymphomas were present in 2 cases each, while adenocarcinoma, chondrosarcoma, adenoid cystic carcinoma, and rhabdomyosarcoma were present in 1 case each. Conclusion MRI with its superior soft tissue contrast and multiplanar capability is superior to CT in pretreatment evaluation of primary malignant tumors of sinonasal cavity.

  10. Role of (18)F-fluorodeoxyglucose positron emission tomography/computed tomography in diagnosis and management of pancreatic cancer; comparison with multidetector row computed tomography, magnetic resonance imaging and endoscopic ultrasonography.

    Science.gov (United States)

    Ergul, N; Gundogan, C; Tozlu, M; Toprak, H; Kadıoglu, H; Aydin, M; Cermik, T F

    2014-01-01

    We aimed to analyze the contribution of (18)F-fluorodeoxyglucose positron emission tomography/computed tomography (FDG PET/CT) imaging to the diagnosis and management of pancreatic cancer compared with multidetector row computed tomography (MDCT), magnetic resonance imaging (MRI) and endoscopic ultrasonography (EUS). We retrospectively scanned the data of 52 patients who were referred for FDG PET/CT imaging for evaluation of pancreatic lesions greater than 10mm. The diagnostic performances of 4 imaging methods and the impact of PET/CT on the management of pancreatic cancer were defined. Pancreatic adenocarcinoma was diagnosed in 33 of 52 patients (63%), 15 patients had benign diseases of pancreas (29%), and 4 patients were normal (8%). Sensitivity and NPV of EUS and PET/CT were equal (100%) and higher than MDCT and MRI. Specificity, PPV and NPV of PET/CT were significantly higher than MDCT. However, sensitivities of two imaging methods were not significantly different. There was no significant difference between PET/CT and MRI and EUS for these values. When the cut-off value of SUVmax was 3.2, the most effective sensitivity and specificity values were obtained. PET/CT contributed to the management of pancreatic cancer in 30% of patients. FDG PET/CT is a valuable imaging method for the diagnosis and management of pancreatic cancer, especially when applied along with EUS as first line diagnostic tools. Copyright © 2013 Elsevier España, S.L. and SEMNIM. All rights reserved.

  11. High-resolution ex vivo imaging of coronary artery stents using 64-slice computed tomography - initial experience

    International Nuclear Information System (INIS)

    Rist, Carsten; Nikolaou, Konstantin; Wintersperger, Bernd J.; Reiser, Maximilian F.; Becker, Christoph R.; Flohr, Thomas

    2006-01-01

    The aim of the study was to evaluate the potential of new-generation multi-slice computed tomography (CT) scanner technology for the delineation of coronary artery stents in an ex vivo setting. Nine stents of various diameters (seven stents 3 mm, two stents 2.5 mm) were implanted into the coronary arteries of ex vivo porcine hearts and filled with a mixture of an iodine-containing contrast agent. Specimens were scanned with a 16-slice CT (16SCT) machine; (Somatom Sensation 16, Siemens Medical Solutions), slice thickness 0.75 mm, and a 64-slice CT (64SCT, Somatom Sensation 64), slice-thickness 0.6 mm. Stent diameters as well as contrast densities were measured, on both the 16SCT and 64SCT images. No significant differences of CT densities were observed between the 16SCT and 64SCT images outside the stent lumen: 265±25HU and 254±16HU (P=0.33), respectively. CT densities derived from the 64SCT images and 16SCT images within the stent lumen were 367±36HU versus 402±28HU, P<0.05, respectively. Inner and outer stent diameters as measured from 16SCT and 64SCT images were 2.68±0.08 mm versus 2.81±0.07 mm and 3.29±0.06 mm versus 3.18±0.07 mm (P<0.05), respectively. The new 64SCT scanner proved to be superior in the ex vivo assessment of coronary artery stents to the conventional 16SCT machine. Increased spatial resolution allows for improved assessment of the coronary artery stent lumen. (orig.)

  12. Bag of frequencies: a descriptor of pulmonary nodules in Computed Tomography images

    NARCIS (Netherlands)

    Ciompi, F.; Jacobs, C.; Scholten, E.T.; Wille, M.M.W.; Jong, P.A. de; Prokop, M.; Ginneken, B. van

    2015-01-01

    We present a novel descriptor for the characterization of pulmonary nodules in computed tomography (CT) images. The descriptor encodes information on nodule morphology and has scale-invariant and rotation-invariant properties. Information on nodule morphology is captured by sampling intensity

  13. Development of an X-ray Computed Tomography System for Non-Invasive Imaging of Industrial Materials

    International Nuclear Information System (INIS)

    Abdullah, J.; Sipaun, S. M.; Mustapha, I.; Zain, R. M.; Rahman, M. F. A.; Mustapha, M.; Shaari, M. R.; Hassan, H.; Said, M. K. M.; Mohamad, G. H. P.; Ibrahim, M. M.

    2008-01-01

    X-ray computed tomography is a powerful non-invasive imaging technique for viewing an object's inner structures in two-dimensional cross-section images without the need to physically section it. The invention of CT techniques revolutionised the field of medical diagnostic imaging because it provided more detailed and useful information than any previous non-invasive imaging techniques. The method is increasingly being used in industry, aerospace, geosciences and archaeology. This paper describes the development of an X-ray computed tomography system for imaging of industrial materials. The theoretical aspects of CT scanner, the system configurations and the adopted algorithm for image reconstruction are discussed. The penetrating rays from a 160 kV industrial X-ray machine were used to investigate structures that manifest in a manufactured component or product. Some results were presented in this paper

  14. X-ray Computed Tomography.

    Science.gov (United States)

    Michael, Greg

    2001-01-01

    Describes computed tomography (CT), a medical imaging technique that produces images of transaxial planes through the human body. A CT image is reconstructed mathematically from a large number of one-dimensional projections of a plane. The technique is used in radiological examinations and radiotherapy treatment planning. (Author/MM)

  15. Variation in radiotherapy target volume definition, dose to organs at risk and clinical target volumes using anatomic (computed tomography) versus combined anatomic and molecular imaging (positron emission tomography/computed tomography): intensity-modulated radiotherapy delivered using a tomotherapy Hi Art machine: final results of the VortigERN study.

    Science.gov (United States)

    Chatterjee, S; Frew, J; Mott, J; McCallum, H; Stevenson, P; Maxwell, R; Wilsdon, J; Kelly, C G

    2012-12-01

    Contrast-enhanced computed tomography (CECT) is the current standard for delineating tumours of the head and neck for radiotherapy. Although metabolic imaging with positron emission tomography (PET) has been used in recent years, the studies were non-confirmatory in establishing its routine role in radiotherapy planning in the modern era. This study explored the difference in gross tumour volume and clinical target volume definitions for the primary and nodal volumes when FDG PET/CT was used as compared with CECT in oropharyngeal cancer cases. Twenty patients with oropharyngeal cancers had a PET/CT scan in the treatment position after consent. Target volumes were defined on CECT scans by a consultant clinical oncologist who was blind to the PET scans. After obtaining inputs from a radiologist, another set of target volumes were outlined on the PET/CT data set. The gross and clinical target volumes as defined on the two data sets were then analysed. The hypothesis of more accurate target delineation, preventing geographical miss and comparative overlap volumes between CECT and PET/CT, was explored. The study also analysed the volumes of intersection and analysed whether there was any TNM stage migration when PET/CT was used as compared with CECT for planning. In 17 of 20 patients, the TNM stage was not altered when adding FDG PET information to CT. PET information prevented geographical miss in two patients and identified distant metastases in one case. PET/CT gross tumour volumes were smaller than CECT volumes (mean ± standard deviation: 25.16 cm(3) ± 35.8 versus 36.56 cm(3) ± 44.14; P standard deviation: CECT versus PET/CT 32.48 cm(3) ± 36.63 versus 32.21 cm(3) ± 37.09; P > 0.86) were not statistically different. Similarity and discordance coefficients were calculated and are reported. PET/CT as compared with CECT could provide more clinically relevant information and prevent geographical miss when used for radiotherapy planning for advanced oropharyngeal

  16. Evaluation of gastrointestinal stromal tumors by multislice computed tomography and magnetic resonance imaging

    International Nuclear Information System (INIS)

    Porto, Fabiano Elias; Baroni, Ronaldo Hueb; Rocha, Manoel de Souza; Funari, Marcelo Buarque de Gusmao; Macedo, Antonio Luiz de Vasconcellos; Pelizon, Christina Helena de Toledo

    2005-01-01

    This article presents three cases of gastrointestinal stromal tumors with clinical manifestations and pathological features, along with differential diagnoses, with special emphasis on multislice computed tomography and magnetic resonance imaging findings. (author)

  17. Abdominal alterations in disseminated paracoccidioidomycosis: computed tomography findings

    Energy Technology Data Exchange (ETDEWEB)

    Vermelho, Marli Batista Fernandes; Correia, Ademir Silva; Michailowsky, Tania Cibele de Almeida; Suzart, Elizete Kazumi Kuniyoshi; Ibanes, Aline Santos; Almeida, Lanamar Aparecida; Khoury, Zarifa; Barba, Mario Flores, E-mail: marlivermelho@globo.com [Instituto de Infectologia Emilio Ribas (IIER), Sao Paulo, SP (Brazil)

    2015-03-15

    Objective: to evaluate the incidence and spectrum of abdominal computed tomography imaging findings in patients with paracoccidioidomycosis. Materials and methods: retrospective analysis of abdominal computed tomography images of 26 patients with disseminated paracoccidioidomycosis. Results: abnormal abdominal tomographic findings were observed in 18 patients (69.2%), while no significant finding was observed in the other 8 (30.8%) patients. Conclusion: computed tomography has demonstrated to play a relevant role in the screening and detection of abdominal abnormalities in patients with disseminated paracoccidioidomycosis. (author)

  18. Fluorine-18 Fluorodeoxyglucose Positron Emission Tomography/Computed Tomography Imaging in Patients With Carcinoma of the Nasopharynx: Diagnostic Accuracy and Impact on Clinical Management

    International Nuclear Information System (INIS)

    Gordin, Arie; Golz, Avishay; Daitzchman, Marcello; Keidar, Zohar; Bar-Shalom, Rachel; Kuten, Abraham; Israel, Ora

    2007-01-01

    Purpose: To assess the value of 18 F-fluorodeoxyglucose (FDG) positron emission tomography/computed tomography (PET/CT) in patients with nasopharyngeal carcinoma as compared with PET and conventional imaging (CI) alone, and to assess the impact of PET/CT on further clinical management. Methods and Materials: Thirty-three patients with nasopharyngeal carcinoma had 45 PET/CT examinations. The study was a retrospective analysis. Changes in patient care resulting from the PET/CT studies were recorded. Results: Positron emission tomography/computed tomography had sensitivity, specificity, positive predictive value, negative predictive value, and accuracy of 92%, 90%, 90%, 90%, and 91%, respectively, as compared with 92%, 65%, 76%, 86%, and 80% for PET and 92%, 15%, 60%, 60%, and 60% for CI. Imaging with PET/CT altered further management of 19 patients (57%). Imaging with PET/CT eliminated the need for previously planned diagnostic procedures in 11 patients, induced a change in the planned therapeutic approach in 5 patients, and guided biopsy to a specific metabolically active area inside an edematous region in 3 patients, thus decreasing the chances for tissue sampling errors and avoiding damage to nonmalignant tissue. Conclusions: In cancer of the nasopharynx, the diagnostic performance of PET/CT is better than that of stand-alone PET or CI. Positron emission tomography/computed tomography had a major impact on further clinical management in 57% of patients

  19. Scaling law for noise variance and spatial resolution in differential phase contrast computed tomography

    International Nuclear Information System (INIS)

    Chen Guanghong; Zambelli, Joseph; Li Ke; Bevins, Nicholas; Qi Zhihua

    2011-01-01

    Purpose: The noise variance versus spatial resolution relationship in differential phase contrast (DPC) projection imaging and computed tomography (CT) are derived and compared to conventional absorption-based x-ray projection imaging and CT. Methods: The scaling law for DPC-CT is theoretically derived and subsequently validated with phantom results from an experimental Talbot-Lau interferometer system. Results: For the DPC imaging method, the noise variance in the differential projection images follows the same inverse-square law with spatial resolution as in conventional absorption-based x-ray imaging projections. However, both in theory and experimental results, in DPC-CT the noise variance scales with spatial resolution following an inverse linear relationship with fixed slice thickness. Conclusions: The scaling law in DPC-CT implies a lesser noise, and therefore dose, penalty for moving to higher spatial resolutions when compared to conventional absorption-based CT in order to maintain the same contrast-to-noise ratio.

  20. Phase-contrast x-ray computed tomography for biological imaging

    Science.gov (United States)

    Momose, Atsushi; Takeda, Tohoru; Itai, Yuji

    1997-10-01

    We have shown so far that 3D structures in biological sot tissues such as cancer can be revealed by phase-contrast x- ray computed tomography using an x-ray interferometer. As a next step, we aim at applications of this technique to in vivo observation, including radiographic applications. For this purpose, the size of view field is desired to be more than a few centimeters. Therefore, a larger x-ray interferometer should be used with x-rays of higher energy. We have evaluated the optimal x-ray energy from an aspect of does as a function of sample size. Moreover, desired spatial resolution to an image sensor is discussed as functions of x-ray energy and sample size, basing on a requirement in the analysis of interference fringes.

  1. Grating-based X-ray Dark-field Computed Tomography of Living Mice.

    Science.gov (United States)

    Velroyen, A; Yaroshenko, A; Hahn, D; Fehringer, A; Tapfer, A; Müller, M; Noël, P B; Pauwels, B; Sasov, A; Yildirim, A Ö; Eickelberg, O; Hellbach, K; Auweter, S D; Meinel, F G; Reiser, M F; Bech, M; Pfeiffer, F

    2015-10-01

    Changes in x-ray attenuating tissue caused by lung disorders like emphysema or fibrosis are subtle and thus only resolved by high-resolution computed tomography (CT). The structural reorganization, however, is of strong influence for lung function. Dark-field CT (DFCT), based on small-angle scattering of x-rays, reveals such structural changes even at resolutions coarser than the pulmonary network and thus provides access to their anatomical distribution. In this proof-of-concept study we present x-ray in vivo DFCTs of lungs of a healthy, an emphysematous and a fibrotic mouse. The tomographies show excellent depiction of the distribution of structural - and thus indirectly functional - changes in lung parenchyma, on single-modality slices in dark field as well as on multimodal fusion images. Therefore, we anticipate numerous applications of DFCT in diagnostic lung imaging. We introduce a scatter-based Hounsfield Unit (sHU) scale to facilitate comparability of scans. In this newly defined sHU scale, the pathophysiological changes by emphysema and fibrosis cause a shift towards lower numbers, compared to healthy lung tissue.

  2. A comparison of radiography, computed tomography, and magnetic resonance imaging for the diagnosis of palmar process fractures in foals

    International Nuclear Information System (INIS)

    Kaneps, A.J.; Koblik, P.D.; Freeman, D.M.; Pool, R.R.; O'Brien, T.R.

    1995-01-01

    The relative sensitivity of radiography, computed tomography, and magnetic resonance imaging for detecting palmar process fractures of the distal phalanx in foals was determined and the imaging findings were compared with histomorphologic evaluations of the palmar processes. Compared to radiography, computed tomography and magnetic resonance imaging did not improve the sensitivity for detection of palmar process fractures. Statistical agreement for palmar process fracture diagnosis was excellent among the three imaging modalities. Histomorphologic evaluations were more sensitive for diagnosis of palmar process fracture than any of the imaging modalities. Three-dimensional image reconstructions and volume measurements of distal phalanges and palmar process fracture fragments from computed tomography studies provided more complete anatomical information than radiography. Magnetic resonance imaging confirmed that the deep digital flexor tendon insertion on the distal phalanx is immediately axial to the site where palmar process fractures occur, and differentiated cartilage, bone, and soft tissue structures of the hoof

  3. An introduction to emission computed tomography

    International Nuclear Information System (INIS)

    Williams, E.D.

    1985-01-01

    This report includes salient features of the theory and an examination of practical considerations for someone who is using or introducing tomography, selecting equipment for it or wishing to develop a clinical application. Emphasis is on gamma camera tomography. The subject is dealt with under the following headings: emission computed and gamma camera tomography and the relationship to other medical imaging techniques, the tomographic reconstruction technique theory, rotating gamma camera tomography, attenuation correction and quantitative reconstruction, other single photon tomographic techniques, positron tomography, image display, clinical application of single photon and positron tomography, and commercial systems for SPECT. Substantial bibliography. (U.K.)

  4. History of imaging in orthodontics from Broadbent to cone-beam computed tomography.

    Science.gov (United States)

    Hans, Mark G; Palomo, J Martin; Valiathan, Manish

    2015-12-01

    The history of imaging and orthodontics is a story of technology informing biology. Advances in imaging changed our thinking as our understanding of craniofacial growth and the impact of orthodontic treatment deepened. This article traces the history of imaging in orthodontics from the invention of the cephalometer by B. Holly Broadbent in 1930 to the introduction of low-cost, low-radiation-dose cone-beam computed tomography imaging in 2015. Copyright © 2015 American Association of Orthodontists. Published by Elsevier Inc. All rights reserved.

  5. Malignant tumors of the nasal cavity: computed tomography and magnetic resonance imaging

    International Nuclear Information System (INIS)

    Souza, Ricardo Pires de; Paes Junior, Ademar Jose de Oliveira; Gonzalez, Fabio Mota; Cordeiro, Flamarion de Barros; Yamashiro, Ilka; Lenh, Carlos Neutzling; Rapoport, Abrao

    2004-01-01

    The aim of this study is to evaluate the role of computed tomography and magnetic resonance imaging in the characterization of deep tissue extension of malignant tumors of the nasal cavity. Twelve patients diagnosed with malignant tumors of the nasal cavity were retrospectively evaluated at the Departments of Diagnostic Imaging and Head and Neck Surgery of the 'Complexo Hospitalar Heliopolis', Sao Paulo, Brazil, between 1990 and 2000. All cases were confirmed by histopathologic examination. The results were: extension to the maxillary and ethmoid sinuses was identified in six patients, extension to contralateral nasal cavity, orbit and lamina cribosa in five patients, extension to nasal pharynx and masticator space in two patients, extension to cavernous sinus, anterior/middle cranial fossa, pterygomaxillary fossa, inferior/superior orbital fissure, frontal sinus, contralateral ethmoid sinus, contralateral lamina cribosa, hard palate and pterygopalatine fossa in one patient. Conclusion: It is important to precisely assess the local extension and spread of tumor by computed tomography and magnetic resonance imaging in order to plan the approach to treatment, which will influence the prognosis. (author)

  6. Investigation of biological microstructures by using diffraction-enhanced imaging computed tomography

    International Nuclear Information System (INIS)

    Shu Hang; Liu Bo; Zhu, Peiping; Gao Xin; Yin Hongxia; Yuan Qingxi; Wang Junyue; Huang Wanxia; Gao Xiulai; Luo Shuqian; Wu Ziyu; Fang Shouxian

    2006-01-01

    Diffraction-enhanced imaging computer tomography (DEI-CT) is a new method to provide the object's inner information. Previous reports demonstrated its applicability in soft and hard tissue imaging. Here, we provide further evidence for the improved overall image quality and for the option to distinguish the inner microstructures of the guinea pig's cochlea. Data has shown the details of the cochlea's inner microstructure such as vestibular membrane which only have 6 μm. A better knowledge of these microstructures may be relevant to achieve progress in the otology of clinical anatomization

  7. Computed Tomography Imaging of the Topographical Anatomy of Canine Prostate

    International Nuclear Information System (INIS)

    Dimtrox, R.; Yonkova, P.; Vladova, D.; Kostov, D.

    2010-01-01

    AIM: To investigate the topographical anatomy of canine prostate gland by computed tomography (CT) for diagnostic imaging purposes. ÐœATERIAL AND METHODS: Seven clinically healthy mongrel male dogs at the age of 3−4 years and body weight of 10−15 kg were submitted to transverse computerized axial tomography (CAT) with cross section thickness of 5 mm. RESULTS: The CT image of canine prostate is visualized throughout the scans of the pelvis in the planes through the first sacral vertebra (S1) dorsally; the bodies of iliac bones laterally and cranially to the pelvic brim (ventrally). The body of prostate appears as an oval homogenous relatively hypo dense finding with soft tissue density. The gland is well differentiated from the adjacent soft tissues. CONCLUSION: By means of CT, the cranial part of prostate gland in adult dogs aged 3−4 years exhibited an abdominal localization. (author)

  8. The transesophageal echocardiography simulator based on computed tomography images.

    Science.gov (United States)

    Piórkowski, Adam; Kempny, Aleksander

    2013-02-01

    Simulators are a new tool in education in many fields, including medicine, where they greatly improve familiarity with medical procedures, reduce costs, and, importantly, cause no harm to patients. This is so in the case of transesophageal echocardiography (TEE), in which the use of a simulator facilitates spatial orientation and helps in case studies. The aim of the project described in this paper is to simulate an examination by TEE. This research makes use of available computed tomography data to simulate the corresponding echocardiographic view. This paper describes the essential characteristics that distinguish these two modalities and the key principles of the wave phenomena that should be considered in the simulation process, taking into account the conditions specific to the echocardiography. The construction of the CT2TEE (Web-based TEE simulator) is also presented. The considerations include ray-tracing and ray-casting techniques in the context of ultrasound beam and artifact simulation. An important aspect of the interaction with the user is raised.

  9. Feasibility of Computed Tomography-Guided Methods for Spatial Normalization of Dopamine Transporter Positron Emission Tomography Image.

    Science.gov (United States)

    Kim, Jin Su; Cho, Hanna; Choi, Jae Yong; Lee, Seung Ha; Ryu, Young Hoon; Lyoo, Chul Hyoung; Lee, Myung Sik

    2015-01-01

    Spatial normalization is a prerequisite step for analyzing positron emission tomography (PET) images both by using volume-of-interest (VOI) template and voxel-based analysis. Magnetic resonance (MR) or ligand-specific PET templates are currently used for spatial normalization of PET images. We used computed tomography (CT) images acquired with PET/CT scanner for the spatial normalization for [18F]-N-3-fluoropropyl-2-betacarboxymethoxy-3-beta-(4-iodophenyl) nortropane (FP-CIT) PET images and compared target-to-cerebellar standardized uptake value ratio (SUVR) values with those obtained from MR- or PET-guided spatial normalization method in healthy controls and patients with Parkinson's disease (PD). We included 71 healthy controls and 56 patients with PD who underwent [18F]-FP-CIT PET scans with a PET/CT scanner and T1-weighted MR scans. Spatial normalization of MR images was done with a conventional spatial normalization tool (cvMR) and with DARTEL toolbox (dtMR) in statistical parametric mapping software. The CT images were modified in two ways, skull-stripping (ssCT) and intensity transformation (itCT). We normalized PET images with cvMR-, dtMR-, ssCT-, itCT-, and PET-guided methods by using specific templates for each modality and measured striatal SUVR with a VOI template. The SUVR values measured with FreeSurfer-generated VOIs (FSVOI) overlaid on original PET images were also used as a gold standard for comparison. The SUVR values derived from all four structure-guided spatial normalization methods were highly correlated with those measured with FSVOI (P normalization methods provided reliable striatal SUVR values comparable to those obtained with MR-guided methods. CT-guided methods can be useful for analyzing dopamine transporter PET images when MR images are unavailable.

  10. Atlas-based delineation of lymph node levels in head and neck computed tomography images

    International Nuclear Information System (INIS)

    Commowick, Olivier; Gregoire, Vincent; Malandain, Gregoire

    2008-01-01

    Purpose: Radiotherapy planning requires accurate delineations of the tumor and of the critical structures. Atlas-based segmentation has been shown to be very efficient to automatically delineate brain critical structures. We therefore propose to construct an anatomical atlas of the head and neck region. Methods and materials: Due to the high anatomical variability of this region, an atlas built from a single image as for the brain is not adequate. We address this issue by building a symmetric atlas from a database of manually segmented images. First, we develop an atlas construction method and apply it to a database of 45 Computed Tomography (CT) images from patients with node-negative pharyngo-laryngeal squamous cell carcinoma manually delineated for radiotherapy. Then, we qualitatively and quantitatively evaluate the results generated by the built atlas based on Leave-One-Out framework on the database. Results: We present qualitative and quantitative results using this atlas construction method. The evaluation was performed on a subset of 12 patients among the original CT database of 45 patients. Qualitative results depict visually well delineated structures. The quantitative results are also good, with an error with respect to the best achievable results ranging from 0.196 to 0.404 with a mean of 0.253. Conclusions: These results show the feasibility of using such an atlas for radiotherapy planning. Many perspectives are raised from this work ranging from extensive validation to the construction of several atlases representing sub-populations, to account for large inter-patient variabilities, and populations with node-positive tumors

  11. Visibility of Different Intraorbital Foreign Bodies Using Plain Radiography, Computed Tomography, Magnetic Resonance Imaging, and Cone-Beam Computed Tomography: An In Vitro Study.

    Science.gov (United States)

    Javadrashid, Reza; Golamian, Masoud; Shahrzad, Maryam; Hajalioghli, Parisa; Shahmorady, Zahra; Fouladi, Daniel F; Sadrarhami, Shohreh; Akhoundzadeh, Leila

    2017-05-01

    The study sought to compare the usefulness of 4 imaging modalities in visualizing various intraorbital foreign bodies (IOFBs) in different sizes. Six different materials including metal, wood, plastic, stone, glass. and graphite were cut in cylindrical shapes in 4 sizes (dimensions: 0.5, 1, 2, and 3 mm) and placed intraorbitally in the extraocular space of fresh sheep's head. Four skilled radiologists rated the visibility of the objects individually using plain radiography, spiral computed tomography (CT), magnetic resonance imaging (MRI), and cone-beam computed tomography (CBCT) in accordance with a previously described grading system. Excluding wood, all embedded foreign bodies were best visualized in CT and CBCT images with almost equal accuracies. Wood could only be detected using MRI, and then only when fragments were more than 2 mm in size. There were 3 false-positive MRI reports, suggesting air bubbles as wood IOFBs. Because of lower cost and using less radiation in comparison with conventional CT, CBCT can be used as the initial imaging technique in cases with suspected IOFBs. Optimal imaging technique for wood IOFBs is yet to be defined. Copyright © 2016 Canadian Association of Radiologists. Published by Elsevier Inc. All rights reserved.

  12. Software Method for Computed Tomography Cylinder Data Unwrapping, Re-slicing, and Analysis

    Science.gov (United States)

    Roth, Don J.

    2013-01-01

    A software method has been developed that is applicable for analyzing cylindrical and partially cylindrical objects inspected using computed tomography (CT). This method involves unwrapping and re-slicing data so that the CT data from the cylindrical object can be viewed as a series of 2D sheets (or flattened onion skins ) in addition to a series of top view slices and 3D volume rendering. The advantages of viewing the data in this fashion are as follows: (1) the use of standard and specialized image processing and analysis methods is facilitated having 2D array data versus a volume rendering; (2) accurate lateral dimensional analysis of flaws is possible in the unwrapped sheets versus volume rendering; (3) flaws in the part jump out at the inspector with the proper contrast expansion settings in the unwrapped sheets; and (4) it is much easier for the inspector to locate flaws in the unwrapped sheets versus top view slices for very thin cylinders. The method is fully automated and requires no input from the user except proper voxel dimension from the CT experiment and wall thickness of the part. The software is available in 32-bit and 64-bit versions, and can be used with binary data (8- and 16-bit) and BMP type CT image sets. The software has memory (RAM) and hard-drive based modes. The advantage of the (64-bit) RAM-based mode is speed (and is very practical for users of 64-bit Windows operating systems and computers having 16 GB or more RAM). The advantage of the hard-drive based analysis is one can work with essentially unlimited-sized data sets. Separate windows are spawned for the unwrapped/re-sliced data view and any image processing interactive capability. Individual unwrapped images and un -wrapped image series can be saved in common image formats. More information is available at http://www.grc.nasa.gov/WWW/OptInstr/ NDE_CT_CylinderUnwrapper.html.

  13. Discrete imaging models for three-dimensional optoacoustic tomography using radially symmetric expansion functions.

    Science.gov (United States)

    Wang, Kun; Schoonover, Robert W; Su, Richard; Oraevsky, Alexander; Anastasio, Mark A

    2014-05-01

    Optoacoustic tomography (OAT), also known as photoacoustic tomography, is an emerging computed biomedical imaging modality that exploits optical contrast and ultrasonic detection principles. Iterative image reconstruction algorithms that are based on discrete imaging models are actively being developed for OAT due to their ability to improve image quality by incorporating accurate models of the imaging physics, instrument response, and measurement noise. In this work, we investigate the use of discrete imaging models based on Kaiser-Bessel window functions for iterative image reconstruction in OAT. A closed-form expression for the pressure produced by a Kaiser-Bessel function is calculated, which facilitates accurate computation of the system matrix. Computer-simulation and experimental studies are employed to demonstrate the potential advantages of Kaiser-Bessel function-based iterative image reconstruction in OAT.

  14. Cemento-Osseous Dysplasias: Imaging Features Based on Cone Beam Computed Tomography Scans.

    Science.gov (United States)

    Cavalcanti, Paulo Henrique Pereira; Nascimento, Eduarda Helena Leandro; Pontual, Maria Luiza Dos Anjos; Pontual, Andréa Dos Anjos; Marcelos, Priscylla Gonçalves Correia Leite de; Perez, Danyel Elias da Cruz; Ramos-Perez, Flávia Maria de Moraes

    2018-01-01

    Imaging exams have important role in diagnosis of cemento-osseous dysplasia (COD). Cone beam computed tomography (CBCT) stands out for allowing three-dimensional image evaluation. This study aimed to assess the prevalence of cases diagnosed as COD on CBCT scans, as well identify the main imaging features related to these lesions. An analysis was performed in a database containing 22,400 radiological reports, in which all cases showing some type of COD were initially selected. These CBCT exams were reevaluated to confirm the radiographic diagnosis and determine the prevalence and distribution of the types of COD with regard to gender, age and preferred location, while describing its most common imaging aspects. Data were presented using descriptive analyses. There were 82 cases diagnosed as COD in the CBCT images (prevalence of 0.4%). The distribution of patients was 11 (13.4%) male and 71 (86.6%) female, with a mean age of 49.8 years (age-range 17-85 years). There were 47 (57.3%) cases of periapical COD, 23 (28%) of focal COD and 12 (14.6%) of florid COD. The mandible was more affected than the maxilla. In most cases, the lesions were mixed or hyperdense. All COD had well-defined limits and there were no cases of tooth displacement. In conclusion, periapical COD was the most common type and the most affected bone was the mandible. Imaging evaluation is critical for diagnosis and dentists should bear in mind all possible radiographic presentations of COD in order to prevent misleading diagnoses and consequently, inadequate treatments.

  15. Optimization of the dose versus noise in the image on protocols for computed tomography of pediatric head;Otimizacao da relacao dose versus ruido na imagem em protocolos de tomografia computadorizada de cranio pediatrico

    Energy Technology Data Exchange (ETDEWEB)

    Saint' Yves, T.L.A.; Travassos, P.C.; Goncalves, E.A.S.; Mecca, F.A.; Silveira, T.B. [Instituto Nacional de Cancer (INCA), Rio de Janeiro, RJ (Brazil)

    2009-07-01

    This article aims to establish protocols optimized for computed tomography of pediatric skull, to the Picker Q 2000 tomography of the Instituto Nacional de Cancer, through the analysis of dose x noise on the image with the variation of values of m As and k Vp. We used a water phantom to measure the noise, a pencil type ionization chamber to measure the dose in the air and the Alderson Randon phantom for check the quality of the image. We found values of m As and k Vp that reduce the skin dose of the original protocol used in 35.9%, maintaining the same image quality at a safe diagnosis. (author)

  16. Optimization on the dose versus noise in the image on protocols for computed tomography of pediatric head; Otimizacao da relacao dose versus ruido na imagem em protocolos de tomografia computadorizada de cranio pediatrico

    Energy Technology Data Exchange (ETDEWEB)

    Saint' Yves, Thalis L.A.; Travassos, Paulo Cesar B.; Goncalves, Elicardo A.S.; Mecca A, Fernando; Silveira, Thiago B. [Instituto Nacional do Cancer (INCa), Rio de Janeiro, RJ (Brazil)], e-mail: fmecca@inca.gov.br, e-mail: thalis09@yahoo.com.br

    2010-03-15

    This article aims to establish protocols optimized for computed tomography of pediatric skull, to the Picker Q2000 tomography of the Instituto Nacional de Cancer, through the analysis of dose x noise on the image with the variation of values of mAs and kVp. We used a water phantom to measure the noise, a pencil type ionization chamber to measure the dose in the air and the Alderson Randon phantom for check the quality of the image. We found values of mAs and kVp that reduce the skin dose of the original protocol used in 35.9%, maintaining the same image quality at a safe diagnosis. (author)

  17. Diagnosing acute pulmonary embolism with computed tomography: imaging update.

    Science.gov (United States)

    Devaraj, Anand; Sayer, Charlie; Sheard, Sarah; Grubnic, Sisa; Nair, Arjun; Vlahos, Ioannis

    2015-05-01

    Acute pulmonary embolism is recognized as a difficult diagnosis to make. It is potentially fatal if undiagnosed, yet increasing referral rates for imaging and falling diagnostic yields are topics which have attracted much attention. For patients in the emergency department with suspected pulmonary embolism, computed tomography pulmonary angiography (CTPA) is the test of choice for most physicians, and hence radiology has a key role to play in the patient pathway. This review will outline key aspects of the recent literature regarding the following issues: patient selection for imaging, the optimization of CTPA image quality and dose, preferred pathways for pregnant patients and other subgroups, and the role of CTPA beyond diagnosis. The role of newer techniques such as dual-energy CT and single-photon emission-CT will also be discussed.

  18. Incidental lung cancers and positive computed tomography images in people living with HIV

    DEFF Research Database (Denmark)

    Ronit, Andreas; Kristensen, Thomas; Klitbo, Ditte M.

    2017-01-01

    in 901 patients, including 113 at high risk for lung cancer. A positive image was found in 28 (3.1% of the entire cohort and 9.7% of the high-risk group). Nine patients (all in the high-risk group) had invasive procedures undertaken with no serious adverse events. Lung cancer (stages IA, IIA, and IIIA......Objective: Lung cancer screening with low-dose computed tomography (LDCT) of high-risk groups in the general population is recommended by several authorities. This may not be feasible in people living with HIV (PLWHIV) due to higher prevalence of nodules. We therefore assessed the prevalence...... of positive computed tomography (CT) images and lung cancers in PLWHIV. Design: The Copenhagen comorbidity in HIV infection (COCOMO) study is an observational, longitudinal cohort study. Single-round LDCT was performed with subsequent clinical follow-up (NCT02382822). Method: Outcomes included histology...

  19. Automatic Solitary Lung Nodule Detection in Computed Tomography Images Slices

    Science.gov (United States)

    Sentana, I. W. B.; Jawas, N.; Asri, S. A.

    2018-01-01

    Lung nodule is an early indicator of some lung diseases, including lung cancer. In Computed Tomography (CT) based image, nodule is known as a shape that appears brighter than lung surrounding. This research aim to develop an application that automatically detect lung nodule in CT images. There are some steps in algorithm such as image acquisition and conversion, image binarization, lung segmentation, blob detection, and classification. Data acquisition is a step to taking image slice by slice from the original *.dicom format and then each image slices is converted into *.tif image format. Binarization that tailoring Otsu algorithm, than separated the background and foreground part of each image slices. After removing the background part, the next step is to segment part of the lung only so the nodule can localized easier. Once again Otsu algorithm is use to detect nodule blob in localized lung area. The final step is tailoring Support Vector Machine (SVM) to classify the nodule. The application has succeed detecting near round nodule with a certain threshold of size. Those detecting result shows drawback in part of thresholding size and shape of nodule that need to enhance in the next part of the research. The algorithm also cannot detect nodule that attached to wall and Lung Chanel, since it depend the searching only on colour differences.

  20. Diagnostic performance of combined noninvasive coronary angiography and myocardial perfusion imaging using 320 row detector computed tomography

    DEFF Research Database (Denmark)

    Vavere, Andrea L; Simon, Gregory G; George, Richard T

    2013-01-01

    Multidetector coronary computed tomography angiography (CTA) is a promising modality for widespread clinical application because of its noninvasive nature and high diagnostic accuracy as found in previous studies using 64 to 320 simultaneous detector rows. It is, however, limited in its ability...... to detect myocardial ischemia. In this article, we describe the design of the CORE320 study ("Combined coronary atherosclerosis and myocardial perfusion evaluation using 320 detector row computed tomography"). This prospective, multicenter, multinational study is unique in that it is designed to assess...... the diagnostic performance of combined 320-row CTA and myocardial CT perfusion imaging (CTP) in comparison with the combination of invasive coronary angiography and single-photon emission computed tomography myocardial perfusion imaging (SPECT-MPI). The trial is being performed at 16 medical centers located in 8...

  1. Detection of distant metastases in patients with locally advanced breast cancer: role of {sup 18}F-fluorodeoxyglucose positron emission tomography/computed tomography and conventional imaging with computed tomography scans

    Energy Technology Data Exchange (ETDEWEB)

    Bitencourt, Almir Galvao Vieira; Andrade, Wesley Pereira; Cunha, Rodrigo Rodrigues da; Conrado, Jorge Luis Fonseca de Acioli; Lima, Eduardo Nobrega Pereira; Barbosa, Paula Nicole Vieira Pinto; Chojniak, Rubens, E-mail: rodrigo.rcunha@hotmail.com [A. C. Camargo Cancer Center, Sao Paulo, SP (Brazil); Hospital Beneficincia Portuguesa de Sao Paulo, Sao Paulo, SP (Brazil)

    2017-07-15

    Objective: To evaluate positron emission tomography/computed tomography (PET/CT) and conventional imaging tests for the detection of distant metastases in patients with locally advanced breast cancer. Materials and Methods: We included 81 patients with breast cancer who had undergone {sup 18}-fluorodeoxyglucose (FDG) PET/CT before treatment. Conventional imaging included the following: bone scintigraphy; chest X-ray (in 14.5%) or CT (in 85.5%); and abdominal ultrasound (in 10.8%), CT (in 87.8%), or magnetic resonance imaging (in 1.4%). Histopathology and clinical/imaging follow-up served as reference. Results: Distant metastases were observed in nine patients (11.1%). On patient-based analysis, conventional imaging identified distant metastases in all 9 patients. In one patient, the initial {sup 18}F-FDG PET/CT failed to demonstrate bone metastases that was evident on bone scintigraphy. In two patients, the CT scan failed to show extra-axillary lymph node metastases that were identified on {sup 18}F-FDG PET/CT. There was no significant difference between {sup 18}F-FDG PET/CT and conventional imaging in terms of their sensitivity for the detection of distant metastases in patients with locally advanced breast cancer. Conclusion: This study showed that {sup 18}F-FDG PET/CT and conventional imaging with CT scans had similar sensitivity for the diagnosis of distant metastases in patients with locally advanced breast cancer. {sup 18}F-FDG PET/CT can add information about extra-axillary lymph node involvements. (author)

  2. [The value of multimodal imaging by single photon emission computed tomography associated to X ray computed tomography (SPECT-CT) in the management of differentiated thyroid carcinoma: about 156 cases].

    Science.gov (United States)

    Mhiri, Aida; El Bez, Intidhar; Slim, Ihsen; Meddeb, Imène; Yeddes, Imene; Ghezaiel, Mohamed; Gritli, Saïd; Ben Slimène, Mohamed Faouzi

    2013-10-01

    Single photon emission computed tomography combined with a low dose computed tomography (SPECT-CT), is a hybrid imaging integrating functional and anatomical data. The purpose of our study was to evaluate the contribution of the SPECTCT over traditional planar imaging of patients with differentiated thyroid carcinoma (DTC). Post therapy 131IWhole body scan followed by SPECTCT of the neck and thorax, were performed in 156 patients with DTC. Among these 156 patients followed for a predominantly papillary, the use of fusion imaging SPECT-CT compared to conventional planar imaging allowed us to correct our therapeutic approach in 26.9 % (42/156 patients), according to the protocols of therapeutic management of our institute. SPECT-CT is a multimodal imaging providing better identification and more accurate anatomic localization of the foci of radioiodine uptake with impact on therapeutic management.

  3. Application of cone beam computed tomography in facial imaging science

    Institute of Scientific and Technical Information of China (English)

    Zacharias Fourie; Janalt Damstra; Yijin Ren

    2012-01-01

    The use of three-dimensional (3D) methods for facial imaging has increased significantly over the past years.Traditional 2D imaging has gradually being replaced by 3D images in different disciplines,particularly in the fields of orthodontics,maxillofacial surgery,plastic and reconstructive surgery,neurosurgery and forensic sciences.In most cases,3D facial imaging overcomes the limitations of traditional 2D methods and provides the clinician with more accurate information regarding the soft-tissues and the underlying skeleton.The aim of this study was to review the types of imaging methods used for facial imaging.It is important to realize the difference between the types of 3D imaging methods as application and indications thereof may differ.Since 3D cone beam computed tomography (CBCT) imaging will play an increasingly importanl role in orthodontics and orthognathic surgery,special emphasis should be placed on discussing CBCT applications in facial evaluations.

  4. Line-Enhanced Deformable Registration of Pulmonary Computed Tomography Images Before and After Radiation Therapy With Radiation-Induced Fibrosis

    Science.gov (United States)

    Sensakovic, William F.; Maxim, Peter; Diehn, Maximilian; Loo, Billy W.; Xing, Lei

    2018-01-01

    Purpose: The deformable registration of pulmonary computed tomography images before and after radiation therapy is challenging due to anatomic changes from radiation fibrosis. We hypothesize that a line-enhanced registration algorithm can reduce landmark error over the entire lung, including the irradiated regions, when compared to an intensity-based deformable registration algorithm. Materials: Two intensity-based B-spline deformable registration algorithms of pre-radiation therapy and post-radiation therapy images were compared. The first was a control intensity–based algorithm that utilized computed tomography images without modification. The second was a line enhancement algorithm that incorporated a Hessian-based line enhancement filter prior to deformable image registration. Registrations were evaluated based on the landmark error between user-identified landmark pairs and the overlap ratio. Results: Twenty-one patients with pre-radiation therapy and post-radiation therapy scans were included. The median time interval between scans was 1.2 years (range: 0.3-3.3 years). Median landmark errors for the line enhancement algorithm were significantly lower than those for the control algorithm over the entire lung (1.67 vs 1.83 mm; P 5 Gy (2.25 vs 3.31; P 5 Gy dose interval demonstrated a significant inverse relationship with post-radiation therapy fibrosis enhancement after line enhancement filtration (Pearson correlation coefficient = −0.48; P = .03). Conclusion: The line enhancement registration algorithm is a promising method for registering images before and after radiation therapy. PMID:29343206

  5. Investigation of biological microstructures by using diffraction-enhanced imaging computed tomography

    Energy Technology Data Exchange (ETDEWEB)

    Shu Hang [Beijing Synchrotron Radiation Facility, Institute of High Energy Physics, CAS, Beijing (China); Graudate School of the Chinese Academy of Sciences, 100864 Beijing (China); Liu Bo [Capital University of Medical Sciences (China); Zhu, Peiping [Beijing Synchrotron Radiation Facility, Institute of High Energy Physics, CAS, Beijing (China)]. E-mail: zhupp@ihep.ac.cn; Gao Xin [Capital University of Medical Sciences (China); Yin Hongxia [Capital University of Medical Sciences (China); Yuan Qingxi [Beijing Synchrotron Radiation Facility, Institute of High Energy Physics, CAS, Beijing (China); Wang Junyue [Beijing Synchrotron Radiation Facility, Institute of High Energy Physics, CAS, Beijing (China); Graudate School of the Chinese Academy of Sciences, 100864 Beijing (China); Huang Wanxia [Beijing Synchrotron Radiation Facility, Institute of High Energy Physics, CAS, Beijing (China); Gao Xiulai [Capital University of Medical Sciences (China); Luo Shuqian [Capital University of Medical Sciences (China); Wu Ziyu [Beijing Synchrotron Radiation Facility, Institute of High Energy Physics, CAS, Beijing (China) and National Center for NanoScience and Technology (China)]. E-mail: wuzy@mail.ihep.ac.cn; Fang Shouxian [Beijing Synchrotron Radiation Facility, Institute of High Energy Physics, CAS, Beijing (China)

    2006-11-15

    Diffraction-enhanced imaging computer tomography (DEI-CT) is a new method to provide the object's inner information. Previous reports demonstrated its applicability in soft and hard tissue imaging. Here, we provide further evidence for the improved overall image quality and for the option to distinguish the inner microstructures of the guinea pig's cochlea. Data has shown the details of the cochlea's inner microstructure such as vestibular membrane which only have 6 {mu}m. A better knowledge of these microstructures may be relevant to achieve progress in the otology of clinical anatomization.

  6. Computed tomography system

    International Nuclear Information System (INIS)

    Lambert, T.W.; Blake, J.E.

    1981-01-01

    This invention relates to computed tomography and is particularly concerned with determining the CT numbers of zones of interest in an image displayed on a cathode ray tube which zones lie in the so-called level or center of the gray scale window. (author)

  7. The role of (18)fluoro-deoxyglucose positron emission tomography/computed tomography in resectable pancreatic cancer.

    Science.gov (United States)

    Crippa, Stefano; Salgarello, Matteo; Laiti, Silvia; Partelli, Stefano; Castelli, Paola; Spinelli, Antonello E; Tamburrino, Domenico; Zamboni, Giuseppe; Falconi, Massimo

    2014-08-01

    The role of (18)fluoro-deoxyglucose positron emission tomography/computed tomography in pancreatic ductal adenocarcinoma is debated. We retrospectively assessed the value of (18)fluoro-deoxyglucose positron emission tomography/computed tomography in addition to conventional imaging as a staging modality in pancreatic cancer. (18)Fluoro-deoxyglucose positron emission tomography/computed tomography was performed in 72 patients with resectable pancreatic carcinoma after multi-detector computed tomography positron emission tomography was considered positive for a maximum standardized uptake value >3. Overall, 21% of patients had a maximum standardized uptake value ≤ 3, and 60% of those had undergone neoadjuvant treatment (P=0.0001). Furthermore, 11% of patients were spared unwarranted surgery since positron emission tomography/computed tomography detected metastatic disease. All liver metastases were subsequently identified with contrast-enhanced ultrasound. Sensitivity and specificity of positron emission tomography/computed tomography for distant metastases were 78% and 100%. The median CA19.9 concentration was 48.8 U/mL for the entire cohort and 292 U/mL for metastatic patients (P=0.112). The widespread application of (18)fluoro-deoxyglucose positron emission tomography/computed tomography in patients with resectable pancreatic carcinoma seems not justified. It should be considered in selected patients at higher risk of metastatic disease (i.e. CA19.9>200 U/mL) after undergoing other imaging tests. Neoadjuvant treatment is significantly associated with low metabolic activity, limiting the value of positron emission tomography in this setting. Copyright © 2014 Editrice Gastroenterologica Italiana S.r.l. Published by Elsevier Ltd. All rights reserved.

  8. A PC-based discrete tomography imaging software system for assaying radioactive waste containers

    International Nuclear Information System (INIS)

    Palacios, J.C.; Longoria, L.C.; Santos, J.; Perry, R.T.

    2003-01-01

    A PC-based discrete tomography imaging software system for assaying radioactive waste containers for use in facilities in Mexico has been developed. The software system consists of three modules: (i) for reconstruction transmission tomography, (ii) for reconstruction emission tomography, and (iii) for simulation tomography. The Simulation Module is an interactive computer program that is used to create simulated databases for input to the Reconstruction Modules. These databases may be used in the absence of physical measurements to insure that the tomographic theoretical models are valid and that the coding accurately describes these models. Simulation may also be used to determine the detection limits of the reconstruction methodology. A description of the system, the theory, and a demonstration of the systems capabilities is provided in the paper. The hardware for this system is currently under development

  9. Effect of Novel Amplitude/Phase Binning Algorithm on Commercial Four-Dimensional Computed Tomography Quality

    International Nuclear Information System (INIS)

    Olsen, Jeffrey R.; Lu Wei; Hubenschmidt, James P.; Nystrom, Michelle M.; Klahr, Paul; Bradley, Jeffrey D.; Low, Daniel A.; Parikh, Parag J.

    2008-01-01

    Purpose: Respiratory motion is a significant source of anatomic uncertainty in radiotherapy planning and can result in errors of portal size and the subsequent radiation dose. Although four-dimensional computed tomography allows for more accurate analysis of the respiratory cycle, breathing irregularities during data acquisition can cause considerable image distortions. The aim of this study was to examine the effect of respiratory irregularities on four-dimensional computed tomography, and to evaluate a novel image reconstruction algorithm using percentile-based tagging of the respiratory cycle. Methods and Materials: Respiratory-correlated helical computed tomography scans were acquired for 11 consecutive patients. The inspiration and expiration data sets were reconstructed using the default phase-based method, as well as a novel respiration percentile-based method with patient-specific metrics to define the ranges of the reconstruction. The image output was analyzed in a blinded fashion for the phase- and percentile-based reconstructions to determine the prevalence and severity of the image artifacts. Results: The percentile-based algorithm resulted in a significant reduction in artifact severity compared with the phase-based algorithm, although the overall artifact prevalence did not differ between the two algorithms. The magnitude of differences in respiratory tag placement between the phase- and percentile-based algorithms correlated with the presence of image artifacts. Conclusion: The results of our study have indicated that our novel four-dimensional computed tomography reconstruction method could be useful in detecting clinically relevant image distortions that might otherwise go unnoticed and to reduce the image distortion associated with some respiratory irregularities. Additional work is necessary to assess the clinical impact on areas of possible irregular breathing

  10. Efficacy of 3D-positron emission tomography/computed tomography for upper abdomen.

    Science.gov (United States)

    Murakami, Koji; Nakahara, Tadaki

    2014-04-01

    Recent advancement in computed tomography (CT) enables us to obtain high spatial resolution image and made it possible to construct extensive high-definition three-dimensional (3D) images. But a lack of contrast resolution in CT alone is still remained problem. Meanwhile, as fluorodeoxyglucose-positron emission tomography (PET) can visualize tumors in high contrast, we can create 3D images fusing the accumulation in tumors on PET/CT images. Such images can play the role of a "map of body" which makes it easy to understand the anatomical information before surgery. We also try to evaluate segmental liver function by using PET/CT fusion images. By using (11) C-methionine PET/contrast-enhanced CT, superior image quality compared to single photon emission computed tomography/CT can be obtained. CT, especially with contrast enhancement for obtaining anatomical imaging information plus PET for obtaining functional imaging information is a highly compatible combination, and adding these two types information will further increase clinical usefulness. © 2014 Japanese Society of Hepato-Biliary-Pancreatic Surgery.

  11. Noise and contrast detection in computed tomography images

    International Nuclear Information System (INIS)

    Faulkner, K.; Moores, B.M.

    1984-01-01

    A discrete representation of the reconstruction process is used in an analysis of noise in computed tomography (CT) images. This model is consistent with the method of data collection in actual machines. An expression is derived which predicts the variance on the measured linear attenuation coefficient of a single pixel in an image. The dependence of the variance on various CT scanner design parameters such as pixel size, slice width, scan time, number of detectors, etc., is then described. The variation of noise with sampling area is theoretically explained. These predictions are in good agreement with a set of experimental measurements made on a range of CT scanners. The equivalent sampling aperture of the CT process is determined and the effect of the reconstruction filter on the variance of the linear attenuation coefficient is also noted, in particular, the choice and its consequences for reconstructed images and noise behaviour. The theory has been extended to include contrast detail behaviour, and these predictions compare favourably with experimental measurements. The theory predicts that image smoothing will have little effect on the contrast-detail detectability behaviour of reconstructed images. (author)

  12. Computational adaptive optics for broadband interferometric tomography of tissues and cells

    Science.gov (United States)

    Adie, Steven G.; Mulligan, Jeffrey A.

    2016-03-01

    Adaptive optics (AO) can shape aberrated optical wavefronts to physically restore the constructive interference needed for high-resolution imaging. With access to the complex optical field, however, many functions of optical hardware can be achieved computationally, including focusing and the compensation of optical aberrations to restore the constructive interference required for diffraction-limited imaging performance. Holography, which employs interferometric detection of the complex optical field, was developed based on this connection between hardware and computational image formation, although this link has only recently been exploited for 3D tomographic imaging in scattering biological tissues. This talk will present the underlying imaging science behind computational image formation with optical coherence tomography (OCT) -- a beam-scanned version of broadband digital holography. Analogous to hardware AO (HAO), we demonstrate computational adaptive optics (CAO) and optimization of the computed pupil correction in 'sensorless mode' (Zernike polynomial corrections with feedback from image metrics) or with the use of 'guide-stars' in the sample. We discuss the concept of an 'isotomic volume' as the volumetric extension of the 'isoplanatic patch' introduced in astronomical AO. Recent CAO results and ongoing work is highlighted to point to the potential biomedical impact of computed broadband interferometric tomography. We also discuss the advantages and disadvantages of HAO vs. CAO for the effective shaping of optical wavefronts, and highlight opportunities for hybrid approaches that synergistically combine the unique advantages of hardware and computational methods for rapid volumetric tomography with cellular resolution.

  13. Processing computed tomography images by using personal computer

    International Nuclear Information System (INIS)

    Seto, Kazuhiko; Fujishiro, Kazuo; Seki, Hirofumi; Yamamoto, Tetsuo.

    1994-01-01

    Processing of CT images was attempted by using a popular personal computer. The program for image-processing was made with C compiler. The original images, acquired with CT scanner (TCT-60A, Toshiba), were transferred to the computer by 8-inch flexible diskette. Many fundamental image-processing, such as displaying image to the monitor, calculating CT value and drawing the profile curve. The result showed that a popular personal computer had ability to process CT images. It seemed that 8-inch flexible diskette was still useful medium of transferring image data. (author)

  14. X-ray luminescence computed tomography imaging via multiple intensity weighted narrow beam irradiation

    Science.gov (United States)

    Feng, Bo; Gao, Feng; Zhao, Huijuan; Zhang, Limin; Li, Jiao; Zhou, Zhongxing

    2018-02-01

    The purpose of this work is to introduce and study a novel x-ray beam irradiation pattern for X-ray Luminescence Computed Tomography (XLCT), termed multiple intensity-weighted narrow-beam irradiation. The proposed XLCT imaging method is studied through simulations of x-ray and diffuse lights propagation. The emitted optical photons from X-ray excitable nanophosphors were collected by optical fiber bundles from the right-side surface of the phantom. The implementation of image reconstruction is based on the simulated measurements from 6 or 12 angular projections in terms of 3 or 5 x-ray beams scanning mode. The proposed XLCT imaging method is compared against the constant intensity weighted narrow-beam XLCT. From the reconstructed XLCT images, we found that the Dice similarity and quantitative ratio of targets have a certain degree of improvement. The results demonstrated that the proposed method can offer simultaneously high image quality and fast image acquisition.

  15. Computed Tomography Perfusion, Magnetic Resonance Imaging, and Histopathological Findings After Laparoscopic Renal Cryoablation: An In Vivo Pig Model

    DEFF Research Database (Denmark)

    Nielsen, Tommy Kjærgaard; Østraat, Øyvind; Graumann, Ole

    2017-01-01

    The present study investigates how computed tomography perfusion scans and magnetic resonance imaging correlates with the histopathological alterations in renal tissue after cryoablation. A total of 15 pigs were subjected to laparoscopic-assisted cryoablation on both kidneys. After intervention...... of follow-up, but on microscopic examination, the urothelium was found to be intact in all cases. In conclusion, cryoablation effectively destroyed renal parenchyma, leaving the urothelium intact. Both computed tomography perfusion and magnetic resonance imaging reflect the microscopic findings...

  16. Quality control of a kV cone beam computed tomography imaging system

    International Nuclear Information System (INIS)

    Marguet, M.; Bodez, V.

    2009-01-01

    Purpose: This work presents the introduction of a quality assurance program for the On-Board Imager (O.B.I., Varian) kV cone beam computed tomography (kV C.B.C.T.) system, together with the results of 1 year monthly testing. Materials and methods: Firstly the geometric precision and stability of the equipment and of the associated software were evaluated using the Marker phantom. The coincidence of the accelerator isocenter and the imager isocenter was verified as well as the accuracy of the registration of kV cone beam computed tomography (kV C.B.C.T.) with reference CT images. Then, the kV C.B.C.T. image quality was evaluated using the Catphan 504 phantom and ArtiScan software (Aquilab) for both full-fan (F.F.) and half-fan (H.F.) imaging modes. Results: The kV C.B.C.T. isocenter and image registration with correction of the table position were found to be within a tolerance of 2.0 mm. Concerning the kV C.B.C.T. image quality, image noise and uniformity, the Hounsfield units (HU) stability and linearity, geometric distortion and high contrast resolution were all found to be within the manufacturer's recommendations for both F.F. and H.F. modes. However, the low contrast resolution for the HF mode did not meet the manufacturer's specifications. Conclusion: The quality assurance tests introduced have defined the initial system characteristics and their evolution during a period of 1 year, demonstrating the stability of the O.B.I.. (authors)

  17. High-definition multidetector computed tomography for evaluation of coronary artery stents: comparison to standard-definition 64-detector row computed tomography.

    Science.gov (United States)

    Min, James K; Swaminathan, Rajesh V; Vass, Melissa; Gallagher, Scott; Weinsaft, Jonathan W

    2009-01-01

    The assessment of coronary stents with present-generation 64-detector row computed tomography scanners that use filtered backprojection and operating at standard definition of 0.5-0.75 mm (standard definition, SDCT) is limited by imaging artifacts and noise. We evaluated the performance of a novel, high-definition 64-slice CT scanner (HDCT), with improved spatial resolution (0.23 mm) and applied statistical iterative reconstruction (ASIR) for evaluation of coronary artery stents. HDCT and SDCT stent imaging was performed with the use of an ex vivo phantom. HDCT was compared with SDCT with both smooth and sharp kernels for stent intraluminal diameter, intraluminal area, and image noise. Intrastent visualization was assessed with an ASIR algorithm on HDCT scans, compared with the filtered backprojection algorithms by SDCT. Six coronary stents (2.5, 2.5, 2.75, 3.0, 3.5, 4.0mm) were analyzed by 2 independent readers. Interobserver correlation was high for both HDCT and SDCT. HDCT yielded substantially larger luminal area visualization compared with SDCT, both for smooth (29.4+/-14.5 versus 20.1+/-13.0; P<0.001) and sharp (32.0+/-15.2 versus 25.5+/-12.0; P<0.001) kernels. Stent diameter was higher with HDCT compared with SDCT, for both smooth (1.54+/-0.59 versus1.00+/-0.50; P<0.0001) and detailed (1.47+/-0.65 versus 1.08+/-0.54; P<0.0001) kernels. With detailed kernels, HDCT scans that used algorithms showed a trend toward decreased image noise compared with SDCT-filtered backprojection algorithms. On the basis of this ex vivo study, HDCT provides superior detection of intrastent luminal area and diameter visualization, compared with SDCT. ASIR image reconstruction techniques for HDCT scans enhance the in-stent assessment while decreasing image noise.

  18. A computer-aided system for automatic extraction of femur neck trabecular bone architecture using isotropic volume construction from clinical hip computed tomography images.

    Science.gov (United States)

    Vivekanandhan, Sapthagirivasan; Subramaniam, Janarthanam; Mariamichael, Anburajan

    2016-10-01

    Hip fractures due to osteoporosis are increasing progressively across the globe. It is also difficult for those fractured patients to undergo dual-energy X-ray absorptiometry scans due to its complicated protocol and its associated cost. The utilisation of computed tomography for the fracture treatment has become common in the clinical practice. It would be helpful for orthopaedic clinicians, if they could get some additional information related to bone strength for better treatment planning. The aim of our study was to develop an automated system to segment the femoral neck region, extract the cortical and trabecular bone parameters, and assess the bone strength using an isotropic volume construction from clinical computed tomography images. The right hip computed tomography and right femur dual-energy X-ray absorptiometry measurements were taken from 50 south-Indian females aged 30-80 years. Each computed tomography image volume was re-constructed to form isotropic volumes. An automated system by incorporating active contour models was used to segment the neck region. A minimum distance boundary method was applied to isolate the cortical and trabecular bone components. The trabecular bone was enhanced and segmented using trabecular enrichment approach. The cortical and trabecular bone features were extracted and statistically compared with dual-energy X-ray absorptiometry measured femur neck bone mineral density. The extracted bone measures demonstrated a significant correlation with neck bone mineral density (r > 0.7, p computed tomography images scanned with low dose could eventually be helpful in osteoporosis diagnosis and its treatment planning. © IMechE 2016.

  19. Comparison of Accuracy of Contrast Enhanced Computed Tomography with Accuracy of Non-Contrast Magnetic Resonance Imaging in Evaluation of Local Extension of Base of Tongue Malignancies

    Directory of Open Access Journals (Sweden)

    Ketan Rathod

    2018-01-01

    Full Text Available Diagnosis of base of tongue malignancy can be obtained through clinical examination and biopsy. Magnetic Resonance Imaging (MRI and Computed Tomography (CT are used to detect its local extension, nodal spread and distant metastases. The main aim of study was to compare the accuracy of MRI and contrast enhanced CT in determining the local extent of base of tongue malignancy. Twenty five patients, biopsy proven cases of squamous cell carcinoma of base of tongue were taken. 1.5 Tesla Magnetic Resonance Unit with T2 weighted axial, coronal image; T1 weighted axial, coronal image; and STIR (Short tau inversion recovery axial and coronal images were used. 16 slice Computed Tomography unit with non-contrast and contrast enhanced images were used. Accuracy of CT to detect midline crossing: 50%; accuracy of MRI to detect midline crossing: 100%; accuracy of CT to detect anterior extension: 92%; accuracy of MRI to detect anterior extension: 100%; accuracy of CT to detect tonsillar fossa invasion: 83%; accuracy of MRI to detect tonsillar fossa invasion: 100%; accuracy of CT to detect oro pharyngeal spread: 83%; accuracy of MRI to detect oro pharyngeal spread: 100%; accuracy of CT to detect bone involvement: 20%; accuracy of MRI to detect bone involvement: 100%. MRI proved to be a better investigation than CT, in terms of evaluation of depth of invasion, presence of bony involvement, extension to opposite side, anterior half of tongue, tonsillar fossa, floor of mouth or oropharynx.

  20. Computed tomography by reconstruction. Brain CT scanning. I. Basic physics, equipment, normal aspects, artefacts

    International Nuclear Information System (INIS)

    Chiras, J.; Palmieri, P.; Saudinos, J.; Salamon, G.

    1980-01-01

    The authors describe the physical basis, apparatus, normal images, and artefacts of computed tomography by reconstruction. Radio-anatomical sections enable clear comprehension of the computed tomography images. Other methods using computer reconstruction are outlined: tomography by Compton effect, tomography by positrons, tomography by gamma emission, tomography by protons, tomography by nuclear magnetic resonance [fr

  1. Fuzzy modeling of electrical impedance tomography images of the lungs

    International Nuclear Information System (INIS)

    Tanaka, Harki; Ortega, Neli Regina Siqueira; Galizia, Mauricio Stanzione; Borges, Joao Batista; Amato, Marcelo Britto Passos

    2008-01-01

    Objectives: Aiming to improve the anatomical resolution of electrical impedance tomography images, we developed a fuzzy model based on electrical impedance tomography's high temporal resolution and on the functional pulmonary signals of perfusion and ventilation. Introduction: Electrical impedance tomography images carry information about both ventilation and perfusion. However, these images are difficult to interpret because of insufficient anatomical resolution, such that it becomes almost impossible to distinguish the heart from the lungs. Methods: Electrical impedance tomography data from an experimental animal model were collected during normal ventilation and apnoea while an injection of hypertonic saline was administered. The fuzzy model was elaborated in three parts: a modeling of the heart, the pulmonary ventilation map and the pulmonary perfusion map. Image segmentation was performed using a threshold method, and a ventilation/perfusion map was generated. Results: Electrical impedance tomography images treated by the fuzzy model were compared with the hypertonic saline injection method and computed tomography scan images, presenting good results. The average accuracy index was 0.80 when comparing the fuzzy modeled lung maps and the computed tomography scan lung mask. The average ROC curve area comparing a saline injection image and a fuzzy modeled pulmonary perfusion image was 0.77. Discussion: The innovative aspects of our work are the use of temporal information for the delineation of the heart structure and the use of two pulmonary functions for lung structure delineation. However, robustness of the method should be tested for the imaging of abnormal lung conditions. Conclusions: These results showed the adequacy of the fuzzy approach in treating the anatomical resolution uncertainties in electrical impedance tomography images. (author)

  2. Cone beam computed tomography: A boon for maxillofacial imaging

    Directory of Open Access Journals (Sweden)

    Sreenivas Rao Ghali

    2017-01-01

    Full Text Available In day to day practice, the radiographic techniques used individually or in combination suffer from some inherent limits of all planar two-dimensional (2D projections such as magnification, distortion, superimposition, and misrepresentation of anatomic structures. The introduction of cone-beam computed tomography (CBCT, specifically dedicated to imaging the maxillofacial region, heralds a major shift from 2D to three-dimensional (3D approach. It provides a complete 3D view of the maxilla, mandible, teeth, and supporting structures with relatively high resolution allowing a more accurate diagnosis, treatment planning and monitoring, and analysis of outcomes than conventional 2D images, along with low radiation exposure to the patient. CBCT has opened up new vistas for the use of 3D imaging as a diagnostic and treatment planning tool in dentistry. This paper provides an overview of the imaging principles, underlying technology, dental applications, and in particular focuses on the emerging role of CBCT in dentistry.

  3. A computed tomography-based spatial normalization for the analysis of [18F] fluorodeoxyglucose positron emission tomography of the brain.

    Science.gov (United States)

    Cho, Hanna; Kim, Jin Su; Choi, Jae Yong; Ryu, Young Hoon; Lyoo, Chul Hyoung

    2014-01-01

    We developed a new computed tomography (CT)-based spatial normalization method and CT template to demonstrate its usefulness in spatial normalization of positron emission tomography (PET) images with [(18)F] fluorodeoxyglucose (FDG) PET studies in healthy controls. Seventy healthy controls underwent brain CT scan (120 KeV, 180 mAs, and 3 mm of thickness) and [(18)F] FDG PET scans using a PET/CT scanner. T1-weighted magnetic resonance (MR) images were acquired for all subjects. By averaging skull-stripped and spatially-normalized MR and CT images, we created skull-stripped MR and CT templates for spatial normalization. The skull-stripped MR and CT images were spatially normalized to each structural template. PET images were spatially normalized by applying spatial transformation parameters to normalize skull-stripped MR and CT images. A conventional perfusion PET template was used for PET-based spatial normalization. Regional standardized uptake values (SUV) measured by overlaying the template volume of interest (VOI) were compared to those measured with FreeSurfer-generated VOI (FSVOI). All three spatial normalization methods underestimated regional SUV values by 0.3-20% compared to those measured with FSVOI. The CT-based method showed slightly greater underestimation bias. Regional SUV values derived from all three spatial normalization methods were correlated significantly (p normalization may be an alternative method for structure-based spatial normalization of [(18)F] FDG PET when MR imaging is unavailable. Therefore, it is useful for PET/CT studies with various radiotracers whose uptake is expected to be limited to specific brain regions or highly variable within study population.

  4. Quality Assurance of Onboard Megavoltage Computed Tomography Imaging and Target Localization Systems for On- and Off-Line Image-Guided Radiotherapy

    International Nuclear Information System (INIS)

    Langen, Katja M.; Meeks, Sanford L.; Pouliot, Jean

    2008-01-01

    We reviewed the quality assurance procedures that have been used to test fan- and cone-beam megavoltage-based in-room imaging systems. Phantom-based tests have been used to establish the geometric accuracy and precision of megavoltage-based systems. However, the clinical implementation of any system is accompanied by challenges that are best tested in a clinical setting using clinical images. To objectively judge and monitor image quality, a set of standard tests and phantoms can be used. The image noise and spatial and contrast resolution have been assessed using standard computed tomography phantoms. The dose to the patient resulting from the imaging procedure can be determined using calculations or measurements. The off-line use of patient images is of interest for the evaluation of dosimetric changes throughout the treatment course. The accuracy of the dosimetric calculations based on the megavoltage images has been tested for the fan- and cone-beam systems. Some of the described tests are typically performed before the clinical implementation of the imaging system; others are suited to monitor the system's performances

  5. Illustrated computer tomography

    International Nuclear Information System (INIS)

    Takahashi, S.

    1983-01-01

    This book provides the following information: basic aspects of computed tomography; atlas of computed tomography of the normal adult; clinical application of computed tomography; and radiotherapy planning and computed tomography

  6. Computed Tomography (CT) -- Head

    Medline Plus

    Full Text Available Toggle navigation Test/Treatment Patient Type Screening/Wellness Disease/Condition Safety En Español More Info Images/Videos About Us News Physician Resources Professions Site Index A-Z Computed Tomography (CT) - Head ...

  7. Computed Tomography (CT) -- Sinuses

    Medline Plus

    Full Text Available Toggle navigation Test/Treatment Patient Type Screening/Wellness Disease/Condition Safety En Español More Info Images/Videos About Us News Physician Resources Professions Site Index A-Z Computed Tomography (CT) - Sinuses ...

  8. Diagnostic accuracy of a volume-rendered computed tomography movie and other computed tomography-based imaging methods in assessment of renal vascular anatomy for laparoscopic donor nephrectomy.

    Science.gov (United States)

    Yamamoto, Shingo; Tanooka, Masao; Ando, Kumiko; Yamano, Toshiko; Ishikura, Reiichi; Nojima, Michio; Hirota, Shozo; Shima, Hiroki

    2009-12-01

    To evaluate the diagnostic accuracy of computed tomography (CT)-based imaging methods for assessing renal vascular anatomy, imaging studies, including standard axial CT, three-dimensional volume-rendered CT (3DVR-CT), and a 3DVR-CT movie, were performed on 30 patients who underwent laparoscopic donor nephrectomy (10 right side, 20 left side) for predicting the location of the renal arteries and renal, adrenal, gonadal, and lumbar veins. These findings were compared with videos obtained during the operation. Two of 37 renal arteries observed intraoperatively were missed by standard axial CT and 3DVR-CT, whereas all arteries were identified by the 3DVR-CT movie. Two of 36 renal veins were missed by standard axial CT and 3DVR-CT, whereas 1 was missed by the 3DVR-CT movie. In 20 left renal hilar anatomical structures, 20 adrenal, 20 gonadal, and 22 lumbar veins were observed during the operation. Preoperatively, the standard axial CT, 3DVR-CT, and 3DVR-CT movie detected 11, 19, and 20 adrenal veins; 13, 14, and 19 gonadal veins; and 6, 11, and 15 lumbar veins, respectively. Overall, of 135 renal vascular structures, the standard axial CT, 3DVR-CT, and 3DVR-CT movie accurately detected 99 (73.3%), 113 (83.7%), and 126 (93.3%) vessels, respectively, which indicated that the 3DVR-CT movie demonstrated a significantly higher detection rate than other CT-based imaging methods (P renal vascular anatomy before laparoscopic donor nephrectomy.

  9. Imaging of cellular spread on a three-dimensional scaffold by means of a novel cell-labeling technique for high-resolution computed tomography

    NARCIS (Netherlands)

    Thimm, B.W.; Hofmann, S.; Schneider, P.; Carretta, R.; Müller, R.

    2012-01-01

    Computed tomography (CT) represents a truly three-dimensional (3D) imaging technique that can provide high-resolution images on the cellular level. Thus, one approach to detect single cells is X-ray absorption-based CT, where cells are labeled with a dense, opaque material providing the required

  10. Statistical-techniques-based computer-aided diagnosis (CAD) using texture feature analysis: application in computed tomography (CT) imaging to fatty liver disease

    International Nuclear Information System (INIS)

    Chung, Woon-Kwan; Park, Hyong-Hu; Im, In-Chul; Lee, Jae-Seung; Goo, Eun-Hoe; Dong, Kyung-Rae

    2012-01-01

    This paper proposes a computer-aided diagnosis (CAD) system based on texture feature analysis and statistical wavelet transformation technology to diagnose fatty liver disease with computed tomography (CT) imaging. In the target image, a wavelet transformation was performed for each lesion area to set the region of analysis (ROA, window size: 50 x 50 pixels) and define the texture feature of a pixel. Based on the extracted texture feature values, six parameters (average gray level, average contrast, relative smoothness, skewness, uniformity, and entropy) were determined to calculate the recognition rate for a fatty liver. In addition, a multivariate analysis of the variance (MANOVA) method was used to perform a discriminant analysis to verify the significance of the extracted texture feature values and the recognition rate for a fatty liver. According to the results, each texture feature value was significant for a comparison of the recognition rate for a fatty liver (p < 0.05). Furthermore, the F-value, which was used as a scale for the difference in recognition rates, was highest in the average gray level, relatively high in the skewness and the entropy, and relatively low in the uniformity, the relative smoothness and the average contrast. The recognition rate for a fatty liver had the same scale as that for the F-value, showing 100% (average gray level) at the maximum and 80% (average contrast) at the minimum. Therefore, the recognition rate is believed to be a useful clinical value for the automatic detection and computer-aided diagnosis (CAD) using the texture feature value. Nevertheless, further study on various diseases and singular diseases will be needed in the future.

  11. High resolution propagation-based imaging system for in vivo dynamic computed tomography of lungs in small animals

    Science.gov (United States)

    Preissner, M.; Murrie, R. P.; Pinar, I.; Werdiger, F.; Carnibella, R. P.; Zosky, G. R.; Fouras, A.; Dubsky, S.

    2018-04-01

    We have developed an x-ray imaging system for in vivo four-dimensional computed tomography (4DCT) of small animals for pre-clinical lung investigations. Our customized laboratory facility is capable of high resolution in vivo imaging at high frame rates. Characterization using phantoms demonstrate a spatial resolution of slightly below 50 μm at imaging rates of 30 Hz, and the ability to quantify material density differences of at least 3%. We benchmark our system against existing small animal pre-clinical CT scanners using a quality factor that combines spatial resolution, image noise, dose and scan time. In vivo 4DCT images obtained on our system demonstrate resolution of important features such as blood vessels and small airways, of which the smallest discernible were measured as 55–60 μm in cross section. Quantitative analysis of the images demonstrate regional differences in ventilation between injured and healthy lungs.

  12. Computed Tomography (CT) -- Head

    Medline Plus

    Full Text Available ... other medical conditions and whether you have a history of heart disease, asthma, diabetes, kidney disease or ... Neck Cancer X-ray, Interventional Radiology and Nuclear Medicine Radiation Safety Images related to Computed Tomography (CT) - ...

  13. Computed Tomography (CT) -- Sinuses

    Medline Plus

    Full Text Available ... other medical conditions and whether you have a history of heart disease, asthma, diabetes, kidney disease or ... Neck Cancer X-ray, Interventional Radiology and Nuclear Medicine Radiation Safety Images related to Computed Tomography (CT) - ...

  14. Computed tomography for radiographers

    International Nuclear Information System (INIS)

    Brooker, M.J.

    1986-01-01

    This book is directed towards giving radiographers an introduction to and basic knowledge of computerized tomography. The technical section discusses gantries and x-ray production, computer and disc drive image display, storage, artefacts quality assurance and design of departments. The clinical section includes patient preparation, radiotherapy planning, and interpretation of images from various areas of the anatomy. (U.K.)

  15. Validation of phalanx bone three-dimensional surface segmentation from computed tomography images using laser scanning

    International Nuclear Information System (INIS)

    DeVries, Nicole A.; Gassman, Esther E.; Kallemeyn, Nicole A.; Shivanna, Kiran H.; Magnotta, Vincent A.; Grosland, Nicole M.

    2008-01-01

    To examine the validity of manually defined bony regions of interest from computed tomography (CT) scans. Segmentation measurements were performed on the coronal reformatted CT images of the three phalanx bones of the index finger from five cadaveric specimens. Two smoothing algorithms (image-based and Laplacian surface-based) were evaluated to determine their ability to represent accurately the anatomic surface. The resulting surfaces were compared with laser surface scans of the corresponding cadaveric specimen. The average relative overlap between two tracers was 0.91 for all bones. The overall mean difference between the manual unsmoothed surface and the laser surface scan was 0.20 mm. Both image-based and Laplacian surface-based smoothing were compared; the overall mean difference for image-based smoothing was 0.21 mm and 0.20 mm for Laplacian smoothing. This study showed that manual segmentation of high-contrast, coronal, reformatted, CT datasets can accurately represent the true surface geometry of bones. Additionally, smoothing techniques did not significantly alter the surface representations. This validation technique should be extended to other bones, image segmentation and spatial filtering techniques. (orig.)

  16. Validation of phalanx bone three-dimensional surface segmentation from computed tomography images using laser scanning

    Energy Technology Data Exchange (ETDEWEB)

    DeVries, Nicole A.; Gassman, Esther E.; Kallemeyn, Nicole A. [The University of Iowa, Department of Biomedical Engineering, Center for Computer Aided Design, Iowa City, IA (United States); Shivanna, Kiran H. [The University of Iowa, Center for Computer Aided Design, Iowa City, IA (United States); Magnotta, Vincent A. [The University of Iowa, Department of Biomedical Engineering, Department of Radiology, Center for Computer Aided Design, Iowa City, IA (United States); Grosland, Nicole M. [The University of Iowa, Department of Biomedical Engineering, Department of Orthopaedics and Rehabilitation, Center for Computer Aided Design, Iowa City, IA (United States)

    2008-01-15

    To examine the validity of manually defined bony regions of interest from computed tomography (CT) scans. Segmentation measurements were performed on the coronal reformatted CT images of the three phalanx bones of the index finger from five cadaveric specimens. Two smoothing algorithms (image-based and Laplacian surface-based) were evaluated to determine their ability to represent accurately the anatomic surface. The resulting surfaces were compared with laser surface scans of the corresponding cadaveric specimen. The average relative overlap between two tracers was 0.91 for all bones. The overall mean difference between the manual unsmoothed surface and the laser surface scan was 0.20 mm. Both image-based and Laplacian surface-based smoothing were compared; the overall mean difference for image-based smoothing was 0.21 mm and 0.20 mm for Laplacian smoothing. This study showed that manual segmentation of high-contrast, coronal, reformatted, CT datasets can accurately represent the true surface geometry of bones. Additionally, smoothing techniques did not significantly alter the surface representations. This validation technique should be extended to other bones, image segmentation and spatial filtering techniques. (orig.)

  17. Image processing tensor transform and discrete tomography with Matlab

    CERN Document Server

    Grigoryan, Artyom M

    2012-01-01

    Focusing on mathematical methods in computer tomography, Image Processing: Tensor Transform and Discrete Tomography with MATLAB(R) introduces novel approaches to help in solving the problem of image reconstruction on the Cartesian lattice. Specifically, it discusses methods of image processing along parallel rays to more quickly and accurately reconstruct images from a finite number of projections, thereby avoiding overradiation of the body during a computed tomography (CT) scan. The book presents several new ideas, concepts, and methods, many of which have not been published elsewhere. New co

  18. Three Dimensional Digital Sieving of Asphalt Mixture Based on X-ray Computed Tomography

    OpenAIRE

    Chichun Hu; Jiexian Ma; M. Emin Kutay

    2017-01-01

    In order to perform three-dimensional digital sieving based on X-ray computed tomography images, the definition of digital sieve size (DSS) was proposed, which was defined as the minimum length of the minimum bounding squares of all possible orthographic projections of an aggregate. The corresponding program was developed to reconstruct aggregate structure and to obtain DSS. Laboratory experiments consisting of epoxy-filled aggregate specimens were conducted to investigate the difference betw...

  19. Computerized detection of acute ischemic stroke in brain computed tomography images

    International Nuclear Information System (INIS)

    Nagashima, Hiroyuki; Shiraishi, Akihisa; Harakawa, Tetsumi; Shiraishi, Junji; Doi, Kunio; Sunaga, Shinichi

    2009-01-01

    The interpretation of acute ischemic stroke (AIS) in computed tomography (CT) images is a very difficult challenge for radiologists. To assist radiologists in CT image interpretation, we have developed a computerized method for the detection of AIS using 100 training cases and 60 testing cases. In our computerized method, the inclination of the isotropic brain CT volume data is corrected by rotation and shifting. The subtraction data for the contralateral volume is then derived by subtraction from the mirrored (right-left reversed) volume data. Initial candidates suspected to have experienced AIS were identified using multiple-thresholding and filtering techniques. Twenty-one image features of these candidates were extracted and applied to a rule-based test to identify final candidates for AIS. The detection sensitivity values for the training cases and for the testing cases were 95.0% with 3.1 false positives per case and 85.7% with 3.4 false positives per case, respectively. Our computerized method showed good performance in the detection of AIS by CT and is expected to be useful in decision-making by radiologists. (author)

  20. Cardiac Computed Tomography as an Imaging Modality in Coronary Anomalies.

    Science.gov (United States)

    Karliova, Irem; Fries, Peter; Schmidt, Jörg; Schneider, Ulrich; Shalabi, Ahmad; Schäfers, Hans-Joachim

    2018-01-01

    Coronary artery fistulae and coronary aneurysms are rare anomalies. When they become symptomatic, they require precise anatomic information to allow for planning of the therapeutic procedure. We report a case in which both fistulae and aneurysm were present. The required information could only be obtained by electrocardiogram-gated computed tomography with reformation. This imaging modality should be considered in every case of fistula or coronary aneurysm. Copyright © 2018 The Society of Thoracic Surgeons. Published by Elsevier Inc. All rights reserved.

  1. Diffusible iodine-based contrast-enhanced computed tomography (diceCT): an emerging tool for rapid, high-resolution, 3-D imaging of metazoan soft tissues.

    Science.gov (United States)

    Gignac, Paul M; Kley, Nathan J; Clarke, Julia A; Colbert, Matthew W; Morhardt, Ashley C; Cerio, Donald; Cost, Ian N; Cox, Philip G; Daza, Juan D; Early, Catherine M; Echols, M Scott; Henkelman, R Mark; Herdina, A Nele; Holliday, Casey M; Li, Zhiheng; Mahlow, Kristin; Merchant, Samer; Müller, Johannes; Orsbon, Courtney P; Paluh, Daniel J; Thies, Monte L; Tsai, Henry P; Witmer, Lawrence M

    2016-06-01

    Morphologists have historically had to rely on destructive procedures to visualize the three-dimensional (3-D) anatomy of animals. More recently, however, non-destructive techniques have come to the forefront. These include X-ray computed tomography (CT), which has been used most commonly to examine the mineralized, hard-tissue anatomy of living and fossil metazoans. One relatively new and potentially transformative aspect of current CT-based research is the use of chemical agents to render visible, and differentiate between, soft-tissue structures in X-ray images. Specifically, iodine has emerged as one of the most widely used of these contrast agents among animal morphologists due to its ease of handling, cost effectiveness, and differential affinities for major types of soft tissues. The rapid adoption of iodine-based contrast agents has resulted in a proliferation of distinct specimen preparations and scanning parameter choices, as well as an increasing variety of imaging hardware and software preferences. Here we provide a critical review of the recent contributions to iodine-based, contrast-enhanced CT research to enable researchers just beginning to employ contrast enhancement to make sense of this complex new landscape of methodologies. We provide a detailed summary of recent case studies, assess factors that govern success at each step of the specimen storage, preparation, and imaging processes, and make recommendations for standardizing both techniques and reporting practices. Finally, we discuss potential cutting-edge applications of diffusible iodine-based contrast-enhanced computed tomography (diceCT) and the issues that must still be overcome to facilitate the broader adoption of diceCT going forward. © 2016 The Authors. Journal of Anatomy published by John Wiley & Sons Ltd on behalf of Anatomical Society.

  2. Computed Tomography (CT) -- Head

    Medline Plus

    Full Text Available ... Computed tomography (CT) of the head uses special x-ray equipment to help assess head injuries, severe headaches, ... is a diagnostic medical test that, like traditional x-rays, produces multiple images or pictures of the inside ...

  3. Evaluation of diffuse large B-cell lymphoma patients with 64-slice multidetector computed tomography versus 18FDG positron emission tomography/computed tomography in initial staging and restaging after treatment.

    Science.gov (United States)

    Gómez León, Nieves; Vega, Gema; Rodríguez-Vigil Junco, Beatriz; Suevos Ballesteros, Carlos

    2018-04-25

    To prospectively compare the accuracy in initial staging and end-of-treatment restaging of diffuse large B-cell lymphoma (DLBCL) between 64-slice multidetector computed tomography (64MDCT) and 18FDG positron emission tomography/computed tomography (18FGD PET/CT) with intravenous contrast injection. Randomised and blind controlled clinical multicentric trial that included biopsy-proven DLBCL patients. Seventy-two patients from five different hospitals in the region of Madrid, Spain, were enrolled in the study between January 2012 and June 2015. Thirty-six were randomly allocated to 18FDG PET/TC and the other 36 to 64MDCT for initial staging and end-of-treatment restaging. A nuclear medicine physician and a radiologist independently analysed 18FDG PET/TC images and reached an agreement post-hoc. 64MDCT images were separately evaluated by a different radiologist. Every set of images was compared to the reference standard that included clinical data, complementary tests and follow-up. The study was approved by participating centres' ethics committees and written informed consent was obtained from all the participants. A good agreement was observed between both diagnostic techniques and the reference standard in initial staging [18FDG PET/CT (k=0.5) and 64MDCT (k=0.6)], although only the 18FDG PET/TC showed a good agreement with the reference standard for the end-of-treatment restaging (k=0.7). In DLBCL, both 18FDG PET/TC and 64MDCT have shown good agreement with the reference standard in initial staging. Nevertheless, 18FDG PET/CT has shown to be superior to 64MDCT in end-of-treatment response assessment. Copyright © 2018 Elsevier España, S.L.U. All rights reserved.

  4. Principles of image reconstruction in X-ray computer tomography

    International Nuclear Information System (INIS)

    Schwierz, G.; Haerer, W.; Ruehrnschopf, E.P.

    1978-01-01

    The presented geometrical interpretation elucidates the convergence behavior of the classical iteration technique in X-ray computer tomography. The filter techniques nowadays used in preference are derived from a concept of linear system theory which excels due to its particular clarity. The one-dimensional form of the filtering is of decisive importance for immediate image reproduction as realized by both Siemens systems, the SIRETOM 2000 head scanner and the SOMATOM whole-body machine, as such unique to date for whole-body machines. The equivalence of discrete and continuous filtering when dealing with frequency-band-limited projections is proved. (orig.) [de

  5. Positron emission tomography/computed tomography and radioimmunotherapy of prostate cancer

    DEFF Research Database (Denmark)

    Bouchelouche, Kirsten; Capala, Jacek; Oehr, Peter

    2009-01-01

    of a number of diagnostic and therapeutic strategies. J591, a monoclonal antibody, which targets the extracellular domain of prostate-specific membrane antigen, shows promising results. HER2 receptors may also have a potential as target for PET/CT imaging and RIT of advanced prostate cancer. SUMMARY: PET......PURPOSE OF REVIEW: Traditional morphologically based imaging modalities are now being complemented by positron emission tomography (PET)/computed tomography (CT) in prostate cancer. Metastatic prostate cancer is an attractive target for radioimmunotherapy (RIT) as no effective therapies...... are available. This review highlights the most important achievements within the last year in PET/CT and RIT of prostate cancer. RECENT FINDINGS: Conflicting results exist on the use of choline for detection of malignant disease in the prostate gland. The role of PET/CT in N-staging remains to be elucidated...

  6. Viewing Welds By Computer Tomography

    Science.gov (United States)

    Pascua, Antonio G.; Roy, Jagatjit

    1990-01-01

    Computer tomography system used to inspect welds for root penetration. Source illuminates rotating welded part with fan-shaped beam of x rays or gamma rays. Detectors in circular array on opposite side of part intercept beam and convert it into electrical signals. Computer processes signals into image of cross section of weld. Image displayed on video monitor. System offers only nondestructive way to check penetration from outside when inner surfaces inaccessible.

  7. Incidental head and neck findings on 18F-fluoro-deoxy-glucose positron emission tomography computed tomography.

    Science.gov (United States)

    Williams, S P; Kinshuck, A J; Williams, C; Dwivedi, R; Wieshmann, H; Jones, T M

    2015-09-01

    The overlapping risk factors for lung and head and neck cancer present a definite risk of synchronous malignant pathology. This is the first study to specifically review incidental positron emission tomography computed tomography findings in the head and neck region in lung carcinoma patients. A retrospective review was performed of all lung cancer patients who underwent positron emission tomography computed tomography imaging over a five-year period (January 2008 - December 2012), identified from the Liverpool thoracic multidisciplinary team database. Six hundred and nine patients underwent positron emission tomography computed tomography imaging over this period. In 76 (12.5 per cent) scans, incidental regions of avid 18F-fluoro-deoxy-glucose uptake were reported in the head and neck region. In the 28 patients who were fully investigated, there were 4 incidental findings of malignancy. In lung cancer patients undergoing investigative positron emission tomography computed tomography scanning, a significant number will also present with areas of clinically significant 18F-fluoro-deoxy-glucose uptake in the head and neck region. Of these, at least 5 per cent may have an undiagnosed malignancy.

  8. Computed Tomography (CT) -- Sinuses

    Medline Plus

    Full Text Available ... Computed tomography (CT) of the sinuses uses special x-ray equipment to evaluate the paranasal sinus cavities – hollow, ... is a diagnostic medical test that, like traditional x-rays, produces multiple images or pictures of the inside ...

  9. Multimodal imaging analysis of single-photon emission computed tomography and magnetic resonance tomography for improving diagnosis of Parkinson's disease

    International Nuclear Information System (INIS)

    Barthel, H.; Georgi, P.; Slomka, P.; Dannenberg, C.; Kahn, T.

    2000-01-01

    Parkinson's disease (PD) is characterized by a degeneration of nigrostriated dopaminergic neurons, which can be imaged with 123 I-labeled 2β-carbomethoxy-3β-(4-iodophenyl) tropane ([ 123 I]β-CIT) and single-photon emission computed tomography (SPECT). However, the quality of the region of interest (ROI) technique used for quantitative analysis of SPECT data is compromised by limited anatomical information in the images. We investigated whether the diagnosis of PD can be improved by combining the use of SPECT images with morphological image data from magnetic resonance imaging (MRI)/computed tomography (CT). We examined 27 patients (8 men, 19 women; aged 55±13 years) with PD (Hoehn and Yahr stage 2.1±0.8) by high-resolution [ 123 I]β-CIT SPECT (185-200 MBq, Ceraspect camera). SPECT images were analyzed both by a unimodal technique (ROIs defined directly within the SPECT studies) and a multimodal technique (ROIs defined within individual MRI/CT studies and transferred to the corresponding interactively coregistered SPECT studies). [ 123 I]β-CIT binding ratios (cerebellum as reference), which were obtained for heads of caudate nuclei (CA), putamina (PU), and global striatal structures were compared with clinical parameters. Differences between contra- and ipsilateral (related to symptom dominance) striatal [ 123 I]β-CIT binding ratios proved to be larger in the multimodal ROI technique than in the unimodal approach (e.g., for PU: 1.2*** vs. 0.7**). Binding ratios obtained by the unimodal ROI technique were significantly correlated with those of the multimodal technique (e.g., for CA: y=0.97x+2.8; r=0.70; P com subscore (r=-0.49* vs. -0.32). These results show that the impact of [ 123 I]β-CIT SPECT for diagnosing PD is affected by the method used to analyze the SPECT images. The described multimodal approach, which is based on coregistration of SPECT and morphological imaging data, leads to improved determination of the degree of this dopaminergic disorder

  10. Quantitative Assessment of Optical Coherence Tomography Imaging Performance with Phantom-Based Test Methods And Computational Modeling

    Science.gov (United States)

    Agrawal, Anant

    Optical coherence tomography (OCT) is a powerful medical imaging modality that uniquely produces high-resolution cross-sectional images of tissue using low energy light. Its clinical applications and technological capabilities have grown substantially since its invention about twenty years ago, but efforts have been limited to develop tools to assess performance of OCT devices with respect to the quality and content of acquired images. Such tools are important to ensure information derived from OCT signals and images is accurate and consistent, in order to support further technology development, promote standardization, and benefit public health. The research in this dissertation investigates new physical and computational models which can provide unique insights into specific performance characteristics of OCT devices. Physical models, known as phantoms, are fabricated and evaluated in the interest of establishing standardized test methods to measure several important quantities relevant to image quality. (1) Spatial resolution is measured with a nanoparticle-embedded phantom and model eye which together yield the point spread function under conditions where OCT is commonly used. (2) A multi-layered phantom is constructed to measure the contrast transfer function along the axis of light propagation, relevant for cross-sectional imaging capabilities. (3) Existing and new methods to determine device sensitivity are examined and compared, to better understand the detection limits of OCT. A novel computational model based on the finite-difference time-domain (FDTD) method, which simulates the physics of light behavior at the sub-microscopic level within complex, heterogeneous media, is developed to probe device and tissue characteristics influencing the information content of an OCT image. This model is first tested in simple geometric configurations to understand its accuracy and limitations, then a highly realistic representation of a biological cell, the retinal

  11. Dendrimer-stabilized bismuth sulfide nanoparticles: synthesis, characterization, and potential computed tomography imaging applications.

    Science.gov (United States)

    Fang, Yi; Peng, Chen; Guo, Rui; Zheng, Linfeng; Qin, Jinbao; Zhou, Benqing; Shen, Mingwu; Lu, Xinwu; Zhang, Guixiang; Shi, Xiangyang

    2013-06-07

    We report here a general approach to synthesizing dendrimer-stabilized bismuth sulfide nanoparticles (Bi2S3 DSNPs) for potential computed tomography (CT) imaging applications. In this study, ethylenediamine core glycidol hydroxyl-terminated generation 4 poly(amidoamine) dendrimers (G4.NGlyOH) were used as stabilizers to first complex the Bi(III) ions, followed by reaction with hydrogen sulfide to generate Bi2S3 DSNPs. By varying the molar ratio of Bi atom to dendrimer, stable Bi2S3 DSNPs with an average size range of 5.2-5.7 nm were formed. The formed Bi2S3 DSNPs were characterized via different techniques. X-ray absorption coefficient measurements show that the attenuation of Bi2S3 DSNPs is much higher than that of iodine-based CT contrast agent at the same molar concentration of the active element (Bi versus iodine). 3-(4,5-Dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide (MTT) cell viability assay and hemolysis assay reveal that the formed Bi2S3 DSNPs are noncytotoxic and have a negligible hemolysis effect in the studied concentration range. Furthermore, we show that cells incubated with the Bi2S3 DSNPs are able to be imaged using CT, a prominent enhancement at the point of rabbit injected subcutaneously with the Bi2S3 DSNPs is able to be visualized via CT scanning, and the mouse's pulmonary vein can be visualized via CT after intravenous injection of the Bi2S3 DSNPs. With the good biocompatibility, enhanced X-ray attenuation property, and tunable dendrimer chemistry, the designed Bi2S3 DSNPs should be able to be further functionalized, allowing them to be used as a highly efficient contrast agent for CT imaging of different biological systems.

  12. A Superresolution Image Reconstruction Algorithm Based on Landweber in Electrical Capacitance Tomography

    Directory of Open Access Journals (Sweden)

    Chen Deyun

    2013-01-01

    Full Text Available According to the image reconstruction accuracy influenced by the “soft field” nature and ill-conditioned problems in electrical capacitance tomography, a superresolution image reconstruction algorithm based on Landweber is proposed in the paper, which is based on the working principle of the electrical capacitance tomography system. The method uses the algorithm which is derived by regularization of solutions derived and derives closed solution by fast Fourier transform of the convolution kernel. So, it ensures the certainty of the solution and improves the stability and quality of image reconstruction results. Simulation results show that the imaging precision and real-time imaging of the algorithm are better than Landweber algorithm, and this algorithm proposes a new method for the electrical capacitance tomography image reconstruction algorithm.

  13. [Contribution of X-ray computed tomography in the evaluation of kidney performance].

    Science.gov (United States)

    Lemoine, Sandrine; Rognant, Nicolas; Collet-Benzaquen, Diane; Juillard, Laurent

    2012-07-01

    X-ray computer assisted tomography scanner is an imaging method based on the use of X-ray attenuation in tissue. This attenuation is proportional to the density of the tissue (without or after contrast media injection) in each pixel image of the image. Spiral scanner, the electron beam computed tomography (EBCT) scanner and multidetector computed tomography scanner allow renal anatomical measurements, such as cortical and medullary volume, but also the measurement of renal functional parameters, such as regional renal perfusion, renal blood flow and glomerular filtration rate. These functional parameters are extracted from the modeling of the kinetics of the contrast media concentration in the vascular space and the renal tissue, using two main mathematical models (the gamma variate model and the Patlak model). Renal functional imaging allows measuring quantitative parameters on each kidney separately, in a non-invasive manner, providing significant opportunities in nephrology, both for experimental and clinical studies. However, this method uses contrast media that may alter renal function, thus limiting its use in patients with chronic renal failure. Moreover, the increase irradiation delivered to the patient with multi detector computed tomography (MDCT) should be considered. Copyright © 2011 Association Société de néphrologie. Published by Elsevier SAS. All rights reserved.

  14. Computed tomography of cryogenic cells

    International Nuclear Information System (INIS)

    Schneider, Gerd; Anderson, E.; Vogt, S.; Knochel, C.; Weiss, D.; LeGros, M.; Larabell, C.

    2001-01-01

    Due to the short wavelengths of X-rays and low numerical aperture of the Fresnel zone plates used as X-ray objectives, the depth of field is several microns. Within the focal depth, imaging a thick specimen is to a good approximation equivalent to projecting the specimen absorption. Therefore, computed tomography based on a tilt series of X-ray microscopic images can be used to reconstruct the local linear absorption coefficient and image the three-dimensional specimen structure. To preserve the structural integrity of biological objects during image acquisition, microscopy is performed at cryogenic temperatures. Tomography based on X-ray microscopic images was applied to study the distribution of male specific lethal 1 (MSL-1), a nuclear protein involved in dosage compensation in Drosophila melanogaster, which ensures that males with single X chromosome have the same amount of most X-linked gene products as females with two X chromosomes. Tomographic reconstructions of X-ray microscopic images were used to compute the local three-dimensional linear absorption coefficient revealing the arrangement of internal structures of Drosophila melanogaster cells. Combined with labelling techniques, nanotomography is a new technique to study the 3D distribution of selected proteins inside whole cells. We want to improve this technique with respect to resolution and specimen preparation. The resolution in the reconstruction can be significantly improved by reducing the angular step size to collect more viewing angles, which requires an automated data acquisition. In addition, fast-freezing with liquid ethane instead of cryogenic He gas will be applied to improve the vitrification of the hydrated samples. We also plan to apply cryo X-ray nanotomography in order to study different types of cells and their nuclear protein distributions

  15. Cross-sectional imaging with rotational panoramic X-ray machine for preoperative assessment of dental implant site. Comparisons of imaging properties with conventional film tomography and computed tomography

    International Nuclear Information System (INIS)

    Makihara, Masahiro; Nishikawa, Keiichi; Kuroyanagi, Kinya

    2001-01-01

    To clarify the validity of cross-sectional imaging with rotational panoramic x-ray machine for preoperative assessment of the dental implant site, the imaging properties were compared with those of spiral tomography and multi-planer reconstruction (MPR) manipulation of x-ray computed tomography. Cross-sectional imaging of the maxilla and mandible of an edentulous dry skull was performed by each technique at an image layer thickness of 1 mm. Steel spheres were used to identify cross-sectional planes and measure distance. Six oral radiologists scored the image clarity of structures with 5-grade rating scales and measured the distance between images of 2 steel spheres. Each measured distance was divided by the magnification factor. The actual distance was also measured on the skull. The score and the distance were statistically compared. The Spearman's rank correlation coefficients for the score and the absolute values of the difference in distances measured by different observers were calculated as test units to compare inter-observer agreements statistically. The same observation and measurement were repeated to compare intra-observer agreement. Image clarity of the linear tomography available with a panoramic machine was comparable to spiral tomography and superior to MPR, except for the cortical bone on the lingual side. The inter- and intra-observer agreements were comparable. The accuracy for measurement of distance, the inter- and intra-observer agreements were also comparable to the spiral tomography and superior to those of MPR. Therefore, it is concluded that cross-sectional imaging with a rotational panoramic x-ray machine is useful for preoperative assessment of the dental implant site. (author)

  16. Gd-EOB-DTPA-enhanced magnetic resonance imaging features of hepatic hemangioma compared with enhanced computed tomography

    OpenAIRE

    Tateyama, Akihiro; Fukukura, Yoshihiko; Takumi, Koji; Shindo, Toshikazu; Kumagae, Yuichi; Kamimura, Kiyohisa; Nakajo, Masayuki

    2012-01-01

    AIM: To clarify features of hepatic hemangiomas on gadolinium-ethoxybenzyl-diethylenetriaminpentaacetic acid (Gd-EOB-DTPA)-enhanced magnetic resonance imaging (MRI) compared with enhanced computed tomography (CT).

  17. Radiation dose in cone-beam computed tomography: myth or reality

    International Nuclear Information System (INIS)

    Madi, Medhini

    2013-01-01

    In the growing inventory of clinical computed tomography technologies, cone-beam X-ray computed tomography is a relatively recent instalment. It is an advancement in computed tomography imaging which is designed to provide relatively low-dose high-spatial-resolution visualization of high contrast structures in the head and neck and other anatomic areas. Comparatively low dosing requirements and relatively compact design has led to intense interest in surgical planning and intra-operative cone-beam computed tomography applications, particularly in head and neck, and also in spinal, thoracic, abdominal and orthopaedic procedures. The use of this emerging imaging technology, which has potential applications for imaging of high-contrast structures in the head and neck as well as dentomaxillofacial regions, has been the subject of criticism as well as acclaim. This paper envisages to discuss the state-of-the-art of the technique. (author)

  18. Basic principle of cone beam computed tomography

    International Nuclear Information System (INIS)

    Choi, Yong Suk; Kim, Gyu Tae; Hwang, Eui Hwan

    2006-01-01

    The use of computed tomography for dental procedures has increased recently. Cone beam computed tomography(CBCT) systems have been designed for imaging hard tissues of the dentomaxillofacial region. CBCT is capable of providing high resolution in images of high diagnostic quality. This technology allows for 3-dimensional representation of the dentomaxillofacial skeleton with minimal distortion, but at lower equipment cost, simpler image acquisition and lower patient dose. Because this technology produces images with isotropic sub-millimeter spatial resolution, it is ideally suited for dedicated dentomaxillofacial imaging. In this paper, we provide a brief overview of cone beam scanning technology and compare it with the fan beam scanning used in conventional CT and the basic principles of currently available CBCT systems

  19. FMT-XCT: in vivo animal studies with hybrid fluorescence molecular tomography-X-ray computed tomography.

    Science.gov (United States)

    Ale, Angelique; Ermolayev, Vladimir; Herzog, Eva; Cohrs, Christian; de Angelis, Martin Hrabé; Ntziachristos, Vasilis

    2012-06-01

    The development of hybrid optical tomography methods to improve imaging performance has been suggested over a decade ago and has been experimentally demonstrated in animals and humans. Here we examined in vivo performance of a camera-based hybrid fluorescence molecular tomography (FMT) system for 360° imaging combined with X-ray computed tomography (XCT). Offering an accurately co-registered, information-rich hybrid data set, FMT-XCT has new imaging possibilities compared to stand-alone FMT and XCT. We applied FMT-XCT to a subcutaneous 4T1 tumor mouse model, an Aga2 osteogenesis imperfecta model and a Kras lung cancer mouse model, using XCT information during FMT inversion. We validated in vivo imaging results against post-mortem planar fluorescence images of cryoslices and histology data. Besides offering concurrent anatomical and functional information, FMT-XCT resulted in the most accurate FMT performance to date. These findings indicate that addition of FMT optics into the XCT gantry may be a potent upgrade for small-animal XCT systems.

  20. Consequences of increased use of computed tomography imaging for trauma patients in rural referring hospitals prior to transfer to a regional trauma centre.

    Science.gov (United States)

    Berkseth, Timothy J; Mathiason, Michelle A; Jafari, Mary Ellen; Cogbill, Thomas H; Patel, Nirav Y

    2014-05-01

    Computed tomography (CT) plays an integral role in the evaluation and management of trauma patients. As the number of referring hospital (RH)-based CT scanners increased, so has their utilization in trauma patients before transfer. We hypothesized that this has resulted in increased time at RH, image duplication, and radiation dose. A retrospective chart review was completed for trauma activations transferred to an ACS-verified Level II Trauma Centre (TC) during two time periods: 2002-2004 (Group 1) and 2006-2008 (Group 2). 2005 data were excluded as this marked the transition period for acquisition of hospital-based CT scanners in RH. Statistical analysis included t test and χ(2) analysis. Pgroup 1 and 514 in group 2. Mean age was greater in group 2 compared to group 1 (40.3 versus 37.4, respectively; P=0.028). There were 115 patients in group 1 versus 202 patients in group 2 who underwent CT imaging at RH (Pgroup 1 had CT scans performed at the TC versus 258 patients in group 2 (Ptime at the RH was similar between the groups (117.1 and 112.3min for group 1 and 2, respectively; P=0.561). However, when comparing patients with and without a pretransfer CT at the RH, the median time at RH was 140 versus 67min, respectively (Pgroup 1 and n=42 in group 2) was not significantly different between the two time periods (P=0.392). Head CTs comprised the majority of duplicate CT imaging in both time periods (82.4% in group 1 and 90.5% in group 2). Mean total estimated radiation dose per patient was not significantly different between the two groups (group 1=8.4mSv versus group 2=7.8mSv; P=0.192). A significant increase in CT imaging at the RH prior to transfer to the TC was observed over the study periods. No associated increases in mean time at the RH, image duplication at TC, total estimated radiation dose per patient, and mortality rate were observed. Copyright © 2014 Elsevier Ltd. All rights reserved.

  1. Cone beam computed tomography in endodontic

    Energy Technology Data Exchange (ETDEWEB)

    Durack, Conor; Patel, Shanon [Unit of Endodontology, Department of Conservative Dentistry, King' s College London, London (United Kingdom)

    2012-07-01

    Cone beam computed tomography (CBCT) is a contemporary, radiological imaging system designed specifically for use on the maxillofacial skeleton. The system overcomes many of the limitations of conventional radiography by producing undistorted, three-dimensional images of the area under examination. These properties make this form of imaging particularly suitable for use in endodontic. The clinician can obtain an enhanced appreciation of the anatomy being assessed, leading to an improvement in the detection of endodontic disease and resulting in more effective treatment planning. In addition, CBCT operates with a significantly lower effective radiation dose when compared with conventional computed tomography (CT). The purpose of this paper is to review the current literature relating to the limitations and potential applications of CBCT in endodontic practice. (author)

  2. Cone beam computed tomography in endodontic

    International Nuclear Information System (INIS)

    Durack, Conor; Patel, Shanon

    2012-01-01

    Cone beam computed tomography (CBCT) is a contemporary, radiological imaging system designed specifically for use on the maxillofacial skeleton. The system overcomes many of the limitations of conventional radiography by producing undistorted, three-dimensional images of the area under examination. These properties make this form of imaging particularly suitable for use in endodontic. The clinician can obtain an enhanced appreciation of the anatomy being assessed, leading to an improvement in the detection of endodontic disease and resulting in more effective treatment planning. In addition, CBCT operates with a significantly lower effective radiation dose when compared with conventional computed tomography (CT). The purpose of this paper is to review the current literature relating to the limitations and potential applications of CBCT in endodontic practice. (author)

  3. Cone Beam Computed Tomography-Dawn of A New Imaging Modality in Orthodontics

    Science.gov (United States)

    Mamatha, J; Chaitra, K R; Paul, Renji K; George, Merin; Anitha, J; Khanna, Bharti

    2015-01-01

    Today, we are in a world of innovations, and there are various diagnostics aids that help to take a decision regarding treatment in a well-planned way. Cone beam computed tomography (CBCT) has been a vital tool for imaging diagnostic tool in orthodontics. This article reviews case reports during orthodontic treatment and importance of CBCT during the treatment evaluation. PMID:26225116

  4. Bosniak classification of renal cystic lesions according to multidetector computed tomography findings

    International Nuclear Information System (INIS)

    Miranda, Christiana Maia Nobre Rocha de; Padilha, Igor Gomes; Farias, Lucas de Padua Gomes de; Rocha, Milzi Sarmento da; Maranhao, Carol Pontes de Miranda; Santos, Carla Jotta Justo dos

    2014-01-01

    Renal cystic lesions are usually diagnosed in the radiologists' practice and therefore their characterization is crucial to determine the clinical approach to be adopted and prognosis. The Bosniak classification based on computed tomography findings has allowed for standardization and categorization of lesions in increasing order of malignancy (I, II, IIF, III and IV) in a simple and accurate way. The present iconographic essay developed with multidetector computed tomography images of selected cases from the archives of the authors' institution, is aimed at describing imaging findings that can help in the diagnosis of renal cysts. (author)

  5. Combining Acceleration Techniques for Low-Dose X-Ray Cone Beam Computed Tomography Image Reconstruction.

    Science.gov (United States)

    Huang, Hsuan-Ming; Hsiao, Ing-Tsung

    2017-01-01

    Over the past decade, image quality in low-dose computed tomography has been greatly improved by various compressive sensing- (CS-) based reconstruction methods. However, these methods have some disadvantages including high computational cost and slow convergence rate. Many different speed-up techniques for CS-based reconstruction algorithms have been developed. The purpose of this paper is to propose a fast reconstruction framework that combines a CS-based reconstruction algorithm with several speed-up techniques. First, total difference minimization (TDM) was implemented using the soft-threshold filtering (STF). Second, we combined TDM-STF with the ordered subsets transmission (OSTR) algorithm for accelerating the convergence. To further speed up the convergence of the proposed method, we applied the power factor and the fast iterative shrinkage thresholding algorithm to OSTR and TDM-STF, respectively. Results obtained from simulation and phantom studies showed that many speed-up techniques could be combined to greatly improve the convergence speed of a CS-based reconstruction algorithm. More importantly, the increased computation time (≤10%) was minor as compared to the acceleration provided by the proposed method. In this paper, we have presented a CS-based reconstruction framework that combines several acceleration techniques. Both simulation and phantom studies provide evidence that the proposed method has the potential to satisfy the requirement of fast image reconstruction in practical CT.

  6. An analysis of true- and false-positive results of vocal fold uptake in positron emission tomography-computed tomography imaging.

    Science.gov (United States)

    Seymour, N; Burkill, G; Harries, M

    2018-03-01

    Positron emission tomography-computed tomography with fluorine-18 fluorodeoxy-D-glucose has a major role in the investigation of head and neck cancers. Fluorine-18 fluorodeoxy-D-glucose is not a tumour-specific tracer and can also accumulate in benign pathology. Therefore, positron emission tomography-computed tomography scan interpretation difficulties are common in the head and neck, which can produce false-positive results. This study aimed to investigate patients detected as having abnormal vocal fold uptake on fluorine-18 fluorodeoxy-D-glucose positron emission tomography-computed tomography. Positron emission tomography-computed tomography scans were identified over a 15-month period where reports contained evidence of unilateral vocal fold uptake or vocal fold pathology. Patients' notes and laryngoscopy results were analysed. Forty-six patients were identified as having abnormal vocal fold uptake on positron emission tomography-computed tomography. Twenty-three patients underwent positron emission tomography-computed tomography and flexible laryngoscopy: 61 per cent of patients had true-positive positron emission tomography-computed tomography scans and 39 per cent had false-positive scan results. Most patients referred to ENT for abnormal findings on positron emission tomography-computed tomography scans had true-positive findings. Asymmetrical fluorine-18 fluorodeoxy-D-glucose uptake should raise suspicion of vocal fold pathology, accepting a false-positive rate of approximately 40 per cent.

  7. Software for simulation of a computed tomography imaging spectrometer using optical design software

    Science.gov (United States)

    Spuhler, Peter T.; Willer, Mark R.; Volin, Curtis E.; Descour, Michael R.; Dereniak, Eustace L.

    2000-11-01

    Our Imaging Spectrometer Simulation Software known under the name Eikon should improve and speed up the design of a Computed Tomography Imaging Spectrometer (CTIS). Eikon uses existing raytracing software to simulate a virtual instrument. Eikon enables designers to virtually run through the design, calibration and data acquisition, saving significant cost and time when designing an instrument. We anticipate that Eikon simulations will improve future designs of CTIS by allowing engineers to explore more instrument options.

  8. Evaluation of imaging reformation with cone beam computed tomography for the assessment of bone density and shape in mandible

    International Nuclear Information System (INIS)

    Hong, Sang Woo; Kim, Gyu Tae; Choi, Yong Suk; Hwan, Eui Hwan

    2008-01-01

    Diagnostic estimation of destruction and formation of bone has the typical limit according to capacity of x-ray generator and image detector. So the aim of this study was to find out how much it can reproduce the shape and the density of bone in the case of using recently developed dental type of cone beam computed tomography, and which image is applied by new detector and mathematic calculation. Cone beam computed tomography (PSR 9000N, Asahi Roentgen Ind. Co., Ltd., Japan) and soft x-ray radiography were executed on dry mandible that was already decalcified during 5 hours, 10 hours, 15 hours, 20 hours, and 25 hours. Estimating and comparing of those came to the following results. The change of inferior border of mandible and anterior border of ramous in the region of cortical bone was observed between first 5 and 10 hours of decalcification. The reproduction of shape and density in the region of cortical bone and cancellous bone can be hardly observed at cone beam computed tomography compared with soft x-ray radiography. The difference of decrease of bone density according to hours of decalcification increase was not reproduced at cone beam computed tomography compared with soft x-ray radiography. CBCT images revealed higher spatial resolution. However, contrast resolution in region of low contrast sensitivity is the inferiority of images' property.

  9. Computed tomography, nuclear medicine, ultrasound. Advanced diagnostic imaging for problematic areas in paediatric otolaryngology

    International Nuclear Information System (INIS)

    Noyek, A.M.; Friedberg, J.; Fitz, C.R.; Greyson, N.D.; Gilday, D.; Ash, J.; Miskin, M.; Rothberg, R.

    1982-01-01

    This presentation considers the diagnostic role of three major advanced imaging modalities in paediatric otolaryngology: computed tomography, nuclear medicine and ultrasound. These techniques allow for both more specific diagnosis, and for more precise understanding of the natural history of diagnoses already rendered. (Auth.)

  10. Fluorodeoxyglucose-positron emission tomography/computed tomography imaging features of colloid adenocarcinoma of the lung: a case report.

    Science.gov (United States)

    Wang, ZhenGuang; Yu, MingMing; Chen, YueHua; Kong, Yan

    2017-07-27

    Colloid adenocarcinoma of the lung is a rare subtype of variants of invasive adenocarcinomas. We report the appearance of this unusual entity on 18 F-fluorodeoxyglucose positron emission tomography/computed tomography. A 60-year-old man of Chinese Han nationality coughed with a little white sputum for 1 month. Chest computed tomography showed multiple bilateral subpleural nodules and plaques accompanied by air bronchograms, which were most concentrated in the lower lobe of his right lung. Positron emission tomography indicated increased radioactivity uptake with a maximum standardized uptake value of 3.5. Positron emission tomography/computed tomography showed a soft tissue density lesion in his left adrenal gland with a maximum standardized uptake value of 4.1. The positron emission tomography/computed tomography appearance suggested a primary colloid adenocarcinoma in the lower lobe of his right lung accompanied by intrapulmonary and left adrenal gland metastases. The diagnostic rate of colloid adenocarcinoma can be increased by combining the anatomic and metabolic information of lesions. The advantage of positron emission tomography/computed tomography in the diagnosis of colloid adenocarcinoma, as with other cancers, is the ability to locate extrapulmonary disease, facilitating clinical staging.

  11. Imaging prostate cancer: an update on positron emission tomography and magnetic resonance imaging

    DEFF Research Database (Denmark)

    Bouchelouche, Kirsten; Turkbey, Baris; Choyke, Peter

    2010-01-01

    , and molecular imaging information. Developments in imaging technologies, specifically magnetic resonance imaging (MRI) and positron emission tomography (PET)/computed tomography (CT), have improved the detection rate of prostate cancer. MRI has improved lesion detection and local staging. Furthermore, MRI...

  12. Robust inverse scattering full waveform seismic tomography for imaging complex structure

    International Nuclear Information System (INIS)

    Nurhandoko, Bagus Endar B.; Sukmana, Indriani; Wibowo, Satryo; Deny, Agus; Kurniadi, Rizal; Widowati, Sri; Mubarok, Syahrul; Susilowati; Kaswandhi

    2012-01-01

    Seismic tomography becomes important tool recently for imaging complex subsurface. It is well known that imaging complex rich fault zone is difficult. In this paper, The application of time domain inverse scattering wave tomography to image the complex fault zone would be shown on this paper, especially an efficient time domain inverse scattering tomography and their run in cluster parallel computer which has been developed. This algorithm is purely based on scattering theory through solving Lippmann Schwienger integral by using Born's approximation. In this paper, it is shown the robustness of this algorithm especially in avoiding the inversion trapped in local minimum to reach global minimum. A large data are solved by windowing and blocking technique of memory as well as computation. Parameter of windowing computation is based on shot gather's aperture. This windowing technique reduces memory as well as computation significantly. This parallel algorithm is done by means cluster system of 120 processors from 20 nodes of AMD Phenom II. Benchmarking of this algorithm is done by means Marmoussi model which can be representative of complex rich fault area. It is shown that the proposed method can image clearly the rich fault and complex zone in Marmoussi model even though the initial model is quite far from the true model. Therefore, this method can be as one of solution to image the very complex mode.

  13. Robust inverse scattering full waveform seismic tomography for imaging complex structure

    Energy Technology Data Exchange (ETDEWEB)

    Nurhandoko, Bagus Endar B.; Sukmana, Indriani; Wibowo, Satryo; Deny, Agus; Kurniadi, Rizal; Widowati, Sri; Mubarok, Syahrul; Susilowati; Kaswandhi [Wave Inversion and Subsurface Fluid Imaging Research (WISFIR) Lab., Complex System Research Division, Physics Department, Faculty of Mathematics and Natural Sciences, Institut Teknologi Bandung. and Rock Fluid Imaging Lab., Rock Physics and Cluster C (Indonesia); Rock Fluid Imaging Lab., Rock Physics and Cluster Computing Center, Bandung (Indonesia); Physics Department of Institut Teknologi Bandung (Indonesia); Rock Fluid Imaging Lab., Rock Physics and Cluster Computing Center, Bandung, Indonesia and Institut Teknologi Telkom, Bandung (Indonesia); Rock Fluid Imaging Lab., Rock Physics and Cluster Computing Center, Bandung (Indonesia)

    2012-06-20

    Seismic tomography becomes important tool recently for imaging complex subsurface. It is well known that imaging complex rich fault zone is difficult. In this paper, The application of time domain inverse scattering wave tomography to image the complex fault zone would be shown on this paper, especially an efficient time domain inverse scattering tomography and their run in cluster parallel computer which has been developed. This algorithm is purely based on scattering theory through solving Lippmann Schwienger integral by using Born's approximation. In this paper, it is shown the robustness of this algorithm especially in avoiding the inversion trapped in local minimum to reach global minimum. A large data are solved by windowing and blocking technique of memory as well as computation. Parameter of windowing computation is based on shot gather's aperture. This windowing technique reduces memory as well as computation significantly. This parallel algorithm is done by means cluster system of 120 processors from 20 nodes of AMD Phenom II. Benchmarking of this algorithm is done by means Marmoussi model which can be representative of complex rich fault area. It is shown that the proposed method can image clearly the rich fault and complex zone in Marmoussi model even though the initial model is quite far from the true model. Therefore, this method can be as one of solution to image the very complex mode.

  14. Computer tomography, magnetic resonance imaging, and positron emission tomography or positron emission tomography/computer tomography for detection of metastatic lymph nodes in patients with ovarian cancer: A meta-analysis

    International Nuclear Information System (INIS)

    Yuan Ying; Gu Zhaoxiang; Tao Xiaofeng; Liu Shiyuan

    2012-01-01

    Objectives: To compare the diagnostic performances of computed tomography (CT), magnetic resonance (MR) imaging, and positron emission tomography (PET or PET/CT) for detection of metastatic lymph nodes in patients with ovarian cancer. Methods: Relevant studies were identified with MEDLINE and EMBASE from January 1990 to July 2010. We estimated the weighted summary sensitivities, specificities, OR (odds ratio), and summary receiver operating characteristic (sROC) curves of each imaging technique and conducted pair-wise comparisons using the two-sample Z-test. Meta-regression, subgroup analysis, and funnel plots were also performed to explain the between-study heterogeneity. Results: Eighteen eligible studies were included, with a total of 882 patients. PET or PET/CT was a more accurate modality (sensitivity, 73.2%; specificity, 96.7%; OR [odds ratio], 90.32). No significant difference was detected between CT (sensitivity, 42.6%; specificity, 95.0%; OR, 19.87) and MR imaging (sensitivity, 54.7%; specificity, 88.3%; OR, 12.38). Meta-regression analyses and subgroup analyses revealed no statistical difference. Funnel plots with marked asymmetry suggested a publication bias. Conclusion: FDG-PET or FDG-PET/CT is more accurate than CT and MR imaging in the detection of lymph node metastasis in patients with ovarian cancer.

  15. Computed Tomography Imaging of a Hip Prosthesis Using Iterative Model-Based Reconstruction and Orthopaedic Metal Artefact Reduction: A Quantitative Analysis.

    Science.gov (United States)

    Wellenberg, Ruud H H; Boomsma, Martijn F; van Osch, Jochen A C; Vlassenbroek, Alain; Milles, Julien; Edens, Mireille A; Streekstra, Geert J; Slump, Cornelis H; Maas, Mario

    To quantify the combined use of iterative model-based reconstruction (IMR) and orthopaedic metal artefact reduction (O-MAR) in reducing metal artefacts and improving image quality in a total hip arthroplasty phantom. Scans acquired at several dose levels and kVps were reconstructed with filtered back-projection (FBP), iterative reconstruction (iDose) and IMR, with and without O-MAR. Computed tomography (CT) numbers, noise levels, signal-to-noise-ratios and contrast-to-noise-ratios were analysed. Iterative model-based reconstruction results in overall improved image quality compared to iDose and FBP (P < 0.001). Orthopaedic metal artefact reduction is most effective in reducing severe metal artefacts improving CT number accuracy by 50%, 60%, and 63% (P < 0.05) and reducing noise by 1%, 62%, and 85% (P < 0.001) whereas improving signal-to-noise-ratios by 27%, 47%, and 46% (P < 0.001) and contrast-to-noise-ratios by 16%, 25%, and 19% (P < 0.001) with FBP, iDose, and IMR, respectively. The combined use of IMR and O-MAR strongly improves overall image quality and strongly reduces metal artefacts in the CT imaging of a total hip arthroplasty phantom.

  16. Variation in the human ribs geometrical properties and mechanical response based on X-ray computed tomography images resolution.

    Science.gov (United States)

    Perz, Rafał; Toczyski, Jacek; Subit, Damien

    2015-01-01

    Computational models of the human body are commonly used for injury prediction in automobile safety research. To create these models, the geometry of the human body is typically obtained from segmentation of medical images such as computed tomography (CT) images that have a resolution between 0.2 and 1mm/pixel. While the accuracy of the geometrical and structural information obtained from these images depend greatly on their resolution, the effect of image resolution on the estimation of the ribs geometrical properties has yet to be established. To do so, each of the thirty-four sections of ribs obtained from a Post Mortem Human Surrogate (PMHS) was imaged using three different CT modalities: standard clinical CT (clinCT), high resolution clinical CT (HRclinCT), and microCT. The images were processed to estimate the rib cross-section geometry and mechanical properties, and the results were compared to those obtained from the microCT images by computing the 'deviation factor', a metric that quantifies the relative difference between results obtained from clinCT and HRclinCT to those obtained from microCT. Overall, clinCT images gave a deviation greater than 100%, and were therefore deemed inadequate for the purpose of this study. HRclinCT overestimated the rib cross-sectional area by 7.6%, the moments of inertia by about 50%, and the cortical shell area by 40.2%, while underestimating the trabecular area by 14.7%. Next, a parametric analysis was performed to quantify how the variations in the estimate of the geometrical properties affected the rib predicted mechanical response under antero-posterior loading. A variation of up to 45% for the predicted peak force and up to 50% for the predicted stiffness was observed. These results provide a quantitative estimate of the sensitivity of the response of the FE model to the resolution of the images used to generate it. They also suggest that a correction factor could be derived from the comparison between microCT and

  17. Diagnostic performance of fluorodeoxyglucose positron emission tomography/magnetic resonance imaging fusion images of gynecological malignant tumors. Comparison with positron emission tomography/computed tomography

    International Nuclear Information System (INIS)

    Nakajo, Kazuya; Tatsumi, Mitsuaki; Inoue, Atsuo

    2010-01-01

    We compared the diagnostic accuracy of fluorodeoxyglucose positron emission tomography/computed tomography (FDG PET/CT) and PET/magnetic resonance imaging (MRI) fusion images for gynecological malignancies. A total of 31 patients with gynecological malignancies were enrolled. FDG-PET images were fused to CT, T1- and T2-weighted images (T1WI, T2WI). PET-MRI fusion was performed semiautomatically. We performed three types of evaluation to demonstrate the usefulness of PET/MRI fusion images in comparison with that of inline PET/CT as follows: depiction of the uterus and the ovarian lesions on CT or MRI mapping images (first evaluation); additional information for lesion localization with PET and mapping images (second evaluation); and the image quality of fusion on interpretation (third evaluation). For the first evaluation, the score for T2WI (4.68±0.65) was significantly higher than that for CT (3.54±1.02) or T1WI (3.71±0.97) (P<0.01). For the second evaluation, the scores for the localization of FDG accumulation showing that T2WI (2.74±0.57) provided significantly more additional information for the identification of anatomical sites of FDG accumulation than did CT (2.06±0.68) or T1WI (2.23±0.61) (P<0.01). For the third evaluation, the three-point rating scale for the patient group as a whole demonstrated that PET/T2WI (2.72±0.54) localized the lesion significantly more convincingly than PET/CT (2.23±0.50) or PET/T1WI (2.29±0.53) (P<0.01). PET/T2WI fusion images are superior for the detection and localization of gynecological malignancies. (author)

  18. Accuracy and reproducibility of voxel based superimposition of cone beam computed tomography models on the anterior cranial base and the zygomatic arches

    NARCIS (Netherlands)

    Nada, R.M.; Maal, T.J.J.; Breuning, K.H.; Berge, S.J.; Mostafa, Y.A.; Kuijpers-Jagtman, A.M.

    2011-01-01

    Superimposition of serial Cone Beam Computed Tomography (CBCT) scans has become a valuable tool for three dimensional (3D) assessment of treatment effects and stability. Voxel based image registration is a newly developed semi-automated technique for superimposition and comparison of two CBCT scans.

  19. Complementary contrast media for metal artifact reduction in dual-energy computed tomography.

    Science.gov (United States)

    Lambert, Jack W; Edic, Peter M; FitzGerald, Paul F; Torres, Andrew S; Yeh, Benjamin M

    2015-07-01

    Metal artifacts have been a problem associated with computed tomography (CT) since its introduction. Recent techniques to mitigate this problem have included utilization of high-energy (keV) virtual monochromatic spectral (VMS) images, produced via dual-energy CT (DECT). A problem with these high-keV images is that contrast enhancement provided by all commercially available contrast media is severely reduced. Contrast agents based on higher atomic number elements can maintain contrast at the higher energy levels where artifacts are reduced. This study evaluated three such candidate elements: bismuth, tantalum, and tungsten, as well as two conventional contrast elements: iodine and barium. A water-based phantom with vials containing these five elements in solution, as well as different artifact-producing metal structures, was scanned with a DECT scanner capable of rapid operating voltage switching. In the VMS datasets, substantial reductions in the contrast were observed for iodine and barium, which suffered from contrast reductions of 97% and 91%, respectively, at 140 versus 40 keV. In comparison under the same conditions, the candidate agents demonstrated contrast enhancement reductions of only 20%, 29%, and 32% for tungsten, tantalum, and bismuth, respectively. At 140 versus 40 keV, metal artifact severity was reduced by 57% to 85% depending on the phantom configuration.

  20. Head and neck computed tomography virtual endoscopy: evaluation of a new imaging technique.

    Science.gov (United States)

    Gallivan, R P; Nguyen, T H; Armstrong, W B

    1999-10-01

    To evaluate a new radiographic imaging technique: computed tomography virtual endoscopy (CTVE) for head and neck tumors. Twenty-one patients presenting with head and neck masses who underwent axial computed tomography (CT) scan with contrast were evaluated by CTVE. Comparisons were made with video-recorded images and operative records to evaluate the potential utility of this new imaging technique. Twenty-one patients with aerodigestive head and neck tumors were evaluated by CTVE. One patient had a nasal cylindrical cell papilloma; the remainder, squamous cell carcinomas distributed throughout the upper aerodigestive tract. Patients underwent complete head and neck examination, flexible laryngoscopy, axial CT with contrast, CTVE, and in most cases, operative endoscopy. Available clinical and radiographic evaluations were compared and correlated to CTVE findings. CTVE accurately demonstrated abnormalities caused by intraluminal tumor, but where there was apposition of normal tissue against tumor, inaccurate depictions of surface contour occurred. Contour resolution was limited, and mucosal irregularity could not be defined. There was very good overall correlation between virtual images, flexible laryngoscopic findings, rigid endoscopy, and operative evaluation in cases where oncological resections were performed. CTVE appears to be most accurate in evaluation of subglottic and nasopharyngeal anatomy in our series of patients. CTVE is a new radiographic technique that provides surface-contour details. The technique is undergoing rapid technical evolution, and although the image quality is limited in situations where there is apposition of tissue folds, there are a number of potential applications for this new imaging technique.

  1. Dual-energy imaging method to improve the image quality and the accuracy of dose calculation for cone-beam computed tomography.

    Science.gov (United States)

    Men, Kuo; Dai, Jianrong; Chen, Xinyuan; Li, Minghui; Zhang, Ke; Huang, Peng

    2017-04-01

    To improve the image quality and accuracy of dose calculation for cone-beam computed tomography (CT) images through implementation of a dual-energy cone-beam computed tomography method (DE-CBCT), and evaluate the improvement quantitatively. Two sets of CBCT projections were acquired using the X-ray volumetric imaging (XVI) system on a Synergy (Elekta, Stockholm, Sweden) system with 120kV (high) and 70kV (low) X-rays, respectively. Then, the electron density relative to water (relative electron density (RED)) of each voxel was calculated using a projection-based dual-energy decomposition method. As a comparison, single-energy cone-beam computed tomography (SE-CBCT) was used to calculate RED with the Hounsfield unit-RED calibration curve generated by a CIRS phantom scan with identical imaging parameters. The imaging dose was measured with a dosimetry phantom. The image quality was evaluated quantitatively using a Catphan 503 phantom with the evaluation indices of the reproducibility of the RED values, high-contrast resolution (MTF 50% ), uniformity, and signal-to-noise ratio (SNR). Dose calculation of two simulated volumetric-modulated arc therapy plans using an Eclipse treatment-planning system (Varian Medical Systems, Palo Alto, CA, USA) was performed on an Alderson Rando Head and Neck (H&N) phantom and a Pelvis phantom. Fan-beam planning CT images for the H&N and Pelvis phantom were set as the reference. A global three-dimensional gamma analysis was used to compare dose distributions with the reference. The average gamma values for targets and OAR were analyzed with paired t-tests between DE-CBCT and SE-CBCT. In two scans (H&N scan and body scan), the imaging dose of DE-CBCT increased by 1.0% and decreased by 1.3%. It had a better reproducibility of the RED values (mean bias: 0.03 and 0.07) compared with SE-CBCT (mean bias: 0.13 and 0.16). It also improved the image uniformity (57.5% and 30.1%) and SNR (9.7% and 2.3%), but did not affect the MTF 50% . Gamma

  2. Positron emission tomography/computed tomography surveillance in patients with Hodgkin lymphoma in first remission has a low positive predictive value and high costs.

    Science.gov (United States)

    El-Galaly, Tarec Christoffer; Mylam, Karen Juul; Brown, Peter; Specht, Lena; Christiansen, Ilse; Munksgaard, Lars; Johnsen, Hans Erik; Loft, Annika; Bukh, Anne; Iyer, Victor; Nielsen, Anne Lerberg; Hutchings, Martin

    2012-06-01

    The value of performing post-therapy routine surveillance imaging in patients with Hodgkin lymphoma is controversial. This study evaluates the utility of positron emission tomography/computed tomography using 2-[18F]fluoro-2-deoxyglucose for this purpose and in situations with suspected lymphoma relapse. We conducted a multicenter retrospective study. Patients with newly diagnosed Hodgkin lymphoma achieving at least a partial remission on first-line therapy were eligible if they received positron emission tomography/computed tomography surveillance during follow-up. Two types of imaging surveillance were analyzed: "routine" when patients showed no signs of relapse at referral to positron emission tomography/computed tomography, and "clinically indicated" when recurrence was suspected. A total of 211 routine and 88 clinically indicated positron emission tomography/computed tomography studies were performed in 161 patients. In ten of 22 patients with recurrence of Hodgkin lymphoma, routine imaging surveillance was the primary tool for the diagnosis of the relapse. Extranodal disease, interim positron emission tomography-positive lesions and positron emission tomography activity at response evaluation were all associated with a positron emission tomography/computed tomography-diagnosed preclinical relapse. The true positive rates of routine and clinically indicated imaging were 5% and 13%, respectively (P = 0.02). The overall positive predictive value and negative predictive value of positron emission tomography/computed tomography were 28% and 100%, respectively. The estimated cost per routine imaging diagnosed relapse was US$ 50,778. Negative positron emission tomography/computed tomography reliably rules out a relapse. The high false positive rate is, however, an important limitation and a confirmatory biopsy is mandatory for the diagnosis of a relapse. With no proven survival benefit for patients with a pre-clinically diagnosed relapse, the high costs and low

  3. Positron emission tomography/computed tomographic and magnetic resonance imaging in a murine model of progressive atherosclerosis using (64)Cu-labeled glycoprotein VI-Fc.

    Science.gov (United States)

    Bigalke, Boris; Phinikaridou, Alkystis; Andia, Marcelo E; Cooper, Margaret S; Schuster, Andreas; Schönberger, Tanja; Griessinger, Christoph M; Wurster, Thomas; Onthank, David; Ungerer, Martin; Gawaz, Meinrad; Nagel, Eike; Botnar, Rene M

    2013-11-01

    Plaque erosion leads to exposure of subendothelial collagen, which may be targeted by glycoprotein VI (GPVI). We aimed to detect plaque erosion using (64)Cu-labeled GPVI-Fc (fragment crystallized). Four-week-old male apolipoprotein E-deficient (ApoE(-/-)) mice (n=6) were fed a high-fat diet for 12 weeks. C57BL/6J wild-type (WT) mice served as controls (n=6). Another group of WT mice received a ligation injury of the left carotid artery (n=6) or sham procedure (n=4). All mice received a total activity of ≈12 MBq (64)Cu-GPVI-Fc by tail vein injection followed by delayed (24 hours) positron emission tomography using a NanoPET/computed tomographic scanner (Mediso, Hungary; Bioscan, USA) with an acquisition time of 1800 seconds. Seventy-two hours after positron emission tomography/computed tomography, all mice were scanned 2 hours after intravenous administration of 0.2 mmol/kg body weight of a gadolinium-based elastin-specific MR contrast agent. MRI was performed on a 3-T clinical scanner (Philips Healthcare, Best, The Netherlands). In ApoE(-/-) mice, the (64)Cu-GPVI-Fc uptake in the aortic arch was significantly higher compared with WT mice (ApoE(-/-): 13.2±1.5 Bq/cm(3) versus WT mice: 5.1±0.5 Bq/cm(3); P=0.028). (64)Cu-GPVI-Fc uptake was also higher in the injured left carotid artery wall compared with the intact right carotid artery of WT mice and as a trend compared with sham procedure (injured: 20.7±1.3 Bq/cm(3) versus intact: 2.3±0.5 Bq/cm(3); P=0.028 versus sham: 12.7±1.7 Bq/cm(3); P=0.068). Results were confirmed by ex vivo histology and in vivo MRI with elastin-specific MR contrast agent that measures plaque burden and vessel wall remodeling. Higher R1 relaxation rates were found in the injured carotid wall with a T1 mapping sequence (injured: 1.44±0.08 s(-1) versus intact: 0.91±0.02 s(-1); P=0.028 versus sham: 0.97±0.05 s(-1); P=0.068) and in the aortic arch of ApoE(-/-) mice compared with WT mice (ApoE(-/-): 1.49±0.05 s(-1) versus WT: 0.92±0.04 s

  4. Computed tomography device

    International Nuclear Information System (INIS)

    Ohhashi, A.

    1985-01-01

    A computed tomography device comprising a subtraction unit which obtains differential data strings representing the difference between each time-serial projection data string of a group of projection data strings corresponding to a prospective reconstruction image generated by projection data strings acquired by a data acquisition system, a convolution unit which convolves each time-serial projection data string of the group of projection data strings corresponding to the prospective reconstruction image, and a back-projection unit which back-projects the convolved data strings

  5. Skull base osteomyelitis in otitis externa: The utility of triphasic and single photon emission computed tomography/computed tomography bone scintigraphy

    International Nuclear Information System (INIS)

    Chakraborty, Dhritiman; Bhattacharya, Anish; Gupta, Ashok Kumar; Panda, Naresh Kumar; Das, Ashim; Mittal, Bhagwant Rai

    2013-01-01

    Skull base osteomyelitis (SBO) refers to infection that has spread beyond the external auditory canal to the base of the skull in advanced stages of otitis externa. Clinically, it may be difficult to differentiate SBO from severe otitis externa without bony involvement. This study was performed to determine the role of three phase bone scintigraphy (TPBS) and single photon emission tomography/computed tomography (SPECT/CT) in detecting SBO. We retrospectively analyzed records of 20 patients (14 M, 6 F) with otitis externa and suspected SBO. TPBS and SPECT/CT of the skull were performed. Findings were correlated with clinical, laboratory and diagnostic CT scan findings. All patients were diabetic with elevated erythrocyte sedimentation rate. A total of 18 patients had bilateral and two unilateral symptoms. Cranial nerves were involved in eight patients and microbiological culture of ear discharge fluid positive in seven. Early images showed increased temporal vascularity in nine patients and increased soft-tissue uptake in 10, while delayed images showed increased bone uptake in 19/20 patients. Localized abnormal tracer uptake was shown by SPECT/CT in the mastoid temporal (15), petrous (11), sphenoid (3) and zygomatic (1) and showed destructive changes in five. Thus, TPBS was found positive for SBO in 10/20 patients and changed the management in four. Our study suggests that TPBS with SPECT/CT is a useful non-invasive investigation for detection of SBO in otitis externa

  6. Accurate measurement of surface areas of anatomical structures by computer-assisted triangulation of computed tomography images

    Energy Technology Data Exchange (ETDEWEB)

    Allardice, J.T.; Jacomb-Hood, J.; Abulafi, A.M.; Williams, N.S. (Royal London Hospital (United Kingdom)); Cookson, J.; Dykes, E.; Holman, J. (London Hospital Medical College (United Kingdom))

    1993-05-01

    There is a need for accurate surface area measurement of internal anatomical structures in order to define light dosimetry in adjunctive intraoperative photodynamic therapy (AIOPDT). The authors investigated whether computer-assisted triangulation of serial sections generated by computed tomography (CT) scanning can give an accurate assessment of the surface area of the walls of the true pelvis after anterior resection and before colorectal anastomosis. They show that the technique of paper density tessellation is an acceptable method of measuring the surface areas of phantom objects, with a maximum error of 0.5%, and is used as the gold standard. Computer-assisted triangulation of CT images of standard geometric objects and accurately-constructed pelvic phantoms gives a surface area assessment with a maximum error of 2.5% compared with the gold standard. The CT images of 20 patients' pelves have been analysed by computer-assisted triangulation and this shows the surface area of the walls varies from 143 cm[sup 2] to 392 cm[sup 2]. (Author).

  7. Image covariance and lesion detectability in direct fan-beam x-ray computed tomography.

    Science.gov (United States)

    Wunderlich, Adam; Noo, Frédéric

    2008-05-21

    We consider noise in computed tomography images that are reconstructed using the classical direct fan-beam filtered backprojection algorithm, from both full- and short-scan data. A new, accurate method for computing image covariance is presented. The utility of the new covariance method is demonstrated by its application to the implementation of a channelized Hotelling observer for a lesion detection task. Results from the new covariance method and its application to the channelized Hotelling observer are compared with results from Monte Carlo simulations. In addition, the impact of a bowtie filter and x-ray tube current modulation on reconstruction noise and lesion detectability are explored for full-scan reconstruction.

  8. Image covariance and lesion detectability in direct fan-beam x-ray computed tomography

    International Nuclear Information System (INIS)

    Wunderlich, Adam; Noo, Frederic

    2008-01-01

    We consider noise in computed tomography images that are reconstructed using the classical direct fan-beam filtered backprojection algorithm, from both full- and short-scan data. A new, accurate method for computing image covariance is presented. The utility of the new covariance method is demonstrated by its application to the implementation of a channelized Hotelling observer for a lesion detection task. Results from the new covariance method and its application to the channelized Hotelling observer are compared with results from Monte Carlo simulations. In addition, the impact of a bowtie filter and x-ray tube current modulation on reconstruction noise and lesion detectability are explored for full-scan reconstruction

  9. Prior-based artifact correction (PBAC) in computed tomography

    International Nuclear Information System (INIS)

    Heußer, Thorsten; Brehm, Marcus; Ritschl, Ludwig; Sawall, Stefan; Kachelrieß, Marc

    2014-01-01

    Purpose: Image quality in computed tomography (CT) often suffers from artifacts which may reduce the diagnostic value of the image. In many cases, these artifacts result from missing or corrupt regions in the projection data, e.g., in the case of metal, truncation, and limited angle artifacts. The authors propose a generalized correction method for different kinds of artifacts resulting from missing or corrupt data by making use of available prior knowledge to perform data completion. Methods: The proposed prior-based artifact correction (PBAC) method requires prior knowledge in form of a planning CT of the same patient or in form of a CT scan of a different patient showing the same body region. In both cases, the prior image is registered to the patient image using a deformable transformation. The registered prior is forward projected and data completion of the patient projections is performed using smooth sinogram inpainting. The obtained projection data are used to reconstruct the corrected image. Results: The authors investigate metal and truncation artifacts in patient data sets acquired with a clinical CT and limited angle artifacts in an anthropomorphic head phantom data set acquired with a gantry-based flat detector CT device. In all cases, the corrected images obtained by PBAC are nearly artifact-free. Compared to conventional correction methods, PBAC achieves better artifact suppression while preserving the patient-specific anatomy at the same time. Further, the authors show that prominent anatomical details in the prior image seem to have only minor impact on the correction result. Conclusions: The results show that PBAC has the potential to effectively correct for metal, truncation, and limited angle artifacts if adequate prior data are available. Since the proposed method makes use of a generalized algorithm, PBAC may also be applicable to other artifacts resulting from missing or corrupt data

  10. Computational Methods for Nanoscale X-ray Computed Tomography Image Analysis of Fuel Cell and Battery Materials

    Science.gov (United States)

    Kumar, Arjun S.

    optics. We solve for the artifact-free images through an optimization function that uses novel edge detection and fast image interpolation methods. We use this optics-based segmentation method in two main research problems - 1) the characterization of a failure mechanism in the internal structure of Li-ion battery electrodes and 2) the measurement of Li metal dendrite morphology for different current and temperature parameters of Li-ion battery cell operation. The second problem we address is the development of a space+time (4D) reconstruction method for in-operando imaging of samples undergoing temporal change, particularly for X-ray sources with low throughput and nanoscale spatial resolutions. The challenge in using such systems is achieving a sufficient temporal resolution despite exposure times of a 2D projection on the order of 1 minute. We develop a 4D dynamic X-ray computed tomography (CT) reconstruction method, capable of reconstructing a temporal 3D image every 2 to 8 projections. Its novel properties are its projection angle sequence and the probabilistic detection of experimental change. We show its accuracy on phantom and experimental datasets to show its promise in temporally resolving Li metal dendrite growth and in elucidating mitigation strategies.

  11. The Comparison of Computed Tomography Perfusion, Contrast-Enhanced Computed Tomography and Positron-Emission Tomography/Computed Tomography for the Detection of Primary Esophageal Carcinoma.

    Science.gov (United States)

    Genc, Berhan; Kantarci, Mecit; Sade, Recep; Orsal, Ebru; Ogul, Hayri; Okur, Aylin; Aydin, Yener; Karaca, Leyla; Eroğlu, Atilla

    2016-01-01

    The purpose of this study was to investigate the efficiency of computed tomography perfusion (CTP), contrast-enhanced computed tomography (CECT) and 18F-fluoro-2-deoxy-D-glucose (18F-FDG) positron-emission tomography (PET/CT) in the diagnosis of esophageal cancer. This prospective study consisted of 33 patients with pathologically confirmed esophageal cancer, 2 of whom had an esophageal abscess. All the patients underwent CTP, CECT and PET/CT imaging and the imaging findings were evaluated. Sensitivity, specificity and positive and negative predictive values were calculated for each of the 3 imaging modalities relative to the histological diagnosis. Thirty-three tumors were visualized on CTP, 29 on CECT and 27 on PET/CT. Six tumors were stage 1, and 2 and 4 of these tumors were missed on CECT and PET/CT, respectively. Significant differences between CTP and CECT (p = 0.02), and between CTP and PET/CT (p = 0.04) were found for stage 1 tumors. Values for the sensitivity, specificity and positive and negative predictive values on CTP were 100, 100, 100 and 100%, respectively. Corresponding values on CECT were 93.94, 0, 93.94 and 0%, respectively, and those on PET/CT were 87.88, 0, 93.55 and 0%, respectively. Hence, the sensitivity, specificity and positive and negative predictive values of CTP were better than those of CECT and PET/CT. CTP had an advantage over CECT and PET/CT in detecting small lesions. CTP was valuable, especially in detecting stage 1 tumors. © 2016 S. Karger AG, Basel.

  12. Physics and instrumentation of emission computed tomography

    International Nuclear Information System (INIS)

    Links, J.M.

    1986-01-01

    Transverse emission computed tomography can be divided into two distinct classes: single photon emission computed tomography (SPECT) and positron emission tomography (PET). SPECT is usually accomplished with specially-adapted scintillation cameras, although dedicated SPECT scanners are available. The special SPECT cameras are standard cameras which are mounted on gantries that allow 360 degree rotation around the long axis of the head or body. The camera stops at a number of angles around the body (usually 64-128), acquiring a ''projection'' image at each stop. The data from these projections are used to reconstruct transverse images with a standard ''filtered back-projection'' algorithm, identical to that used in transmission CT. Because the scintillation camera acquires two-dimensional images, a simple 360 degree rotation around the patient results in the acquisition of data for a number of contiguous transverse slices. These slices, once reconstructed, can be ''stacked'' in computer memory, and orthogonal coronal and sagittal slices produced. Additionally, reorienting algorithms allow the generation of slices that are oblique to the long axis of the body

  13. Ranking of radioimmunoscintigraphy compared with computed tomography in diagnosis of present and recurrent colorectal tumours

    International Nuclear Information System (INIS)

    Barzen, G.; Zwicker, C.; Neumann, K.; Richter, W.; Hierholzer, J.; Langer, M.; Felix, R.; Loehde, E.; Raakow, R.; Boese-Landgraf, W.

    1992-01-01

    Radioimmunoscintigraphy (= RIS, scintigraphic 'specific' imaging of benign and malignant diseases by means of radioactively marked monoclonal antibodies) has been performed in Germany in clinical studies since 1985 in patients suffering from colorectal cancer. After having been successfully proven in primary studies, RIS is now being used in the early diagnosis of recurrences and metastases. In the prospective study presented here the clinical usefulness of RIS was assessed in comparison against well-tried diagnostic methods including computed tomography in patients suffering from colorectal cancer. It was shown that RIS in SPECT technique (= single photon emission computed tomography) with 99m Tc-labelled monoclonal CEA antibodies can visualise local recurrences if diagnostic findings are doubtful, with a sensitivity of 78% versus 50% for CT findings. (orig.) [de

  14. The Impact of Computed Tomography on Decision Making in Tibial Plateau Fractures.

    Science.gov (United States)

    Castiglia, Marcello Teixeira; Nogueira-Barbosa, Marcello Henrique; Messias, Andre Marcio Vieira; Salim, Rodrigo; Fogagnolo, Fabricio; Schatzker, Joseph; Kfuri, Mauricio

    2018-02-14

    Schatzker introduced one of the most used classification systems for tibial plateau fractures, based on plain radiographs. Computed tomography brought to attention the importance of coronal plane-oriented fractures. The goal of our study was to determine if the addition of computed tomography would affect the decision making of surgeons who usually use the Schatzker classification to assess tibial plateau fractures. Image studies of 70 patients who sustained tibial plateau fractures were uploaded to a dedicated homepage. Every patient was linked to a folder which contained two radiographic projections (anteroposterior and lateral), three interactive videos of computed tomography (axial, sagittal, and coronal), and eight pictures depicting tridimensional reconstructions of the tibial plateau. Ten attending orthopaedic surgeons, who were blinded to the cases, were granted access to the homepage and assessed each set of images in two different rounds, separated to each other by an interval of 2 weeks. Each case was evaluated in three steps, where surgeons had access, respectively to radiographs, two-dimensional videos of computed tomography, and three-dimensional reconstruction images. After every step, surgeons were asked to present how would they classify the case using the Schatzker system and which surgical approaches would be appropriate. We evaluated the inter- and intraobserver reliability of the Schatzker classification using the Kappa concordance coefficient, as well as the impact of computed tomography in the decision making regarding the surgical approach for each case, by using the chi-square test and likelihood ratio. The interobserver concordance kappa coefficients after each assessment step were, respectively, 0.58, 0.62, and 0.64. For the intraobserver analysis, the coefficients were, respectively, 0.76, 0.75, and 0.78. Computed tomography changed the surgical approach selection for the types II, V, and VI of Schatzker ( p  < 0.01). The addition of

  15. Patient-specific scatter correction in clinical cone beam computed tomography imaging made possible by the combination of Monte Carlo simulations and a ray tracing algorithm

    DEFF Research Database (Denmark)

    Slot Thing, Rune; Bernchou, Uffe; Mainegra-Hing, Ernesto

    2013-01-01

    Abstract Purpose. Cone beam computed tomography (CBCT) image quality is limited by scattered photons. Monte Carlo (MC) simulations provide the ability of predicting the patient-specific scatter contamination in clinical CBCT imaging. Lengthy simulations prevent MC-based scatter correction from...

  16. The digital radiographic and computed tomography imaging of two types of explosive devices

    International Nuclear Information System (INIS)

    Galiano Riveros, Eduardo

    2002-01-01

    Two well-established medical imaging methods, digital radiography (DR) and computed tomography (CT), were employed to obtain images of two types of explosive devices, model rocket engines and shotgun shells. The images were evaluated from an airport security perspective. In terms of geometrical shape, the detection probability of the explosive devices appears to be higher with DR imaging, but in terms of the actual explosive compounds in the devices, CT appears to offer a higher detection probability. DR imaging offers a low detection probability for the explosive powder in the shotgun shells, but a rather significant detection probability for the explosive propellant in the model rocket engines

  17. Attenuation-based automatic kilovolt (kV)-selection in computed tomography of the chest: Effects on radiation exposure and image quality

    Energy Technology Data Exchange (ETDEWEB)

    Eller, Achim; Wuest, Wolfgang; Scharf, Michael; Brand, Michael [Department of Radiology, University Erlangen (Germany); Achenbach, Stephan [Department of Cardiology, University Erlangen (Germany); Uder, Michael [Department of Radiology, University Erlangen (Germany); Imaging Science Institute, Erlangen (Germany); Lell, Michael M., E-mail: Michael.lell@uk-erlangen.de [Department of Radiology, University Erlangen (Germany); Imaging Science Institute, Erlangen (Germany)

    2013-12-01

    Objectives: To evaluate an automated attenuation-based kV-selection in computed tomography of the chest in respect to radiation dose and image quality, compared to a standard 120 kV protocol. Materials and methods: 104 patients were examined using a 128-slice scanner. Fifty examinations (58 ± 15 years, study group) were performed using the automated adaption of tube potential (100–140 kV), based on the attenuation profile of the scout scan, 54 examinations (62 ± 14 years, control group) with fixed 120 kV. Estimated CT dose index (CTDI) of the software-proposed setting was compared with a 120 kV protocol. After the scan CTDI volume (CTDIvol) and dose length product (DLP) were recorded. Image quality was assessed by region of interest (ROI) measurements, subjective image quality by two observers with a 4-point scale (3 – excellent, 0 – not diagnostic). Results: The algorithm selected 100 kV in 78% and 120 kV in 22%. Overall CTDIvol reduction was 26.6% (34% in 100 kV) overall DLP reduction was 22.8% (32.1% in 100 kV) (all p < 0.001). Subjective image quality was excellent in both groups. Conclusion: The attenuation based kV-selection algorithm enables relevant dose reduction (∼27%) in chest-CT while keeping image quality parameters at high levels.

  18. Attenuation-based automatic kilovolt (kV)-selection in computed tomography of the chest: Effects on radiation exposure and image quality

    International Nuclear Information System (INIS)

    Eller, Achim; Wuest, Wolfgang; Scharf, Michael; Brand, Michael; Achenbach, Stephan; Uder, Michael; Lell, Michael M.

    2013-01-01

    Objectives: To evaluate an automated attenuation-based kV-selection in computed tomography of the chest in respect to radiation dose and image quality, compared to a standard 120 kV protocol. Materials and methods: 104 patients were examined using a 128-slice scanner. Fifty examinations (58 ± 15 years, study group) were performed using the automated adaption of tube potential (100–140 kV), based on the attenuation profile of the scout scan, 54 examinations (62 ± 14 years, control group) with fixed 120 kV. Estimated CT dose index (CTDI) of the software-proposed setting was compared with a 120 kV protocol. After the scan CTDI volume (CTDIvol) and dose length product (DLP) were recorded. Image quality was assessed by region of interest (ROI) measurements, subjective image quality by two observers with a 4-point scale (3 – excellent, 0 – not diagnostic). Results: The algorithm selected 100 kV in 78% and 120 kV in 22%. Overall CTDIvol reduction was 26.6% (34% in 100 kV) overall DLP reduction was 22.8% (32.1% in 100 kV) (all p < 0.001). Subjective image quality was excellent in both groups. Conclusion: The attenuation based kV-selection algorithm enables relevant dose reduction (∼27%) in chest-CT while keeping image quality parameters at high levels

  19. An ART iterative reconstruction algorithm for computed tomography of diffraction enhanced imaging

    International Nuclear Information System (INIS)

    Wang Zhentian; Zhang Li; Huang Zhifeng; Kang Kejun; Chen Zhiqiang; Fang Qiaoguang; Zhu Peiping

    2009-01-01

    X-ray diffraction enhanced imaging (DEI) has extremely high sensitivity for weakly absorbing low-Z samples in medical and biological fields. In this paper, we propose an Algebra Reconstruction Technique (ART) iterative reconstruction algorithm for computed tomography of diffraction enhanced imaging (DEI-CT). An Ordered Subsets (OS) technique is used to accelerate the ART reconstruction. Few-view reconstruction is also studied, and a partial differential equation (PDE) type filter which has the ability of edge-preserving and denoising is used to improve the image quality and eliminate the artifacts. The proposed algorithm is validated with both the numerical simulations and the experiment at the Beijing synchrotron radiation facility (BSRF). (authors)

  20. Imaging in rheumatoid arthritis--status and recent advances for magnetic resonance imaging, ultrasonography, computed tomography and conventional radiography

    DEFF Research Database (Denmark)

    Østergaard, Morten; Pedersen, Susanne Juhl; Dohn, U.M.

    2008-01-01

    , and have several documented and potential applications in RA patients. This chapter will review key aspects of the current status and recent important advances in imaging in RA, briefly discussing X-ray and computed tomography, and particularly focusing on MRI and US. Suggestions for use in clinical trials...

  1. Computer-aided diagnosis of liver tumors on computed tomography images.

    Science.gov (United States)

    Chang, Chin-Chen; Chen, Hong-Hao; Chang, Yeun-Chung; Yang, Ming-Yang; Lo, Chung-Ming; Ko, Wei-Chun; Lee, Yee-Fan; Liu, Kao-Lang; Chang, Ruey-Feng

    2017-07-01

    Liver cancer is the tenth most common cancer in the USA, and its incidence has been increasing for several decades. Early detection, diagnosis, and treatment of the disease are very important. Computed tomography (CT) is one of the most common and robust imaging techniques for the detection of liver cancer. CT scanners can provide multiple-phase sequential scans of the whole liver. In this study, we proposed a computer-aided diagnosis (CAD) system to diagnose liver cancer using the features of tumors obtained from multiphase CT images. A total of 71 histologically-proven liver tumors including 49 benign and 22 malignant lesions were evaluated with the proposed CAD system to evaluate its performance. Tumors were identified by the user and then segmented using a region growing algorithm. After tumor segmentation, three kinds of features were obtained for each tumor, including texture, shape, and kinetic curve. The texture was quantified using 3 dimensional (3-D) texture data of the tumor based on the grey level co-occurrence matrix (GLCM). Compactness, margin, and an elliptic model were used to describe the 3-D shape of the tumor. The kinetic curve was established from each phase of tumor and represented as variations in density between each phase. Backward elimination was used to select the best combination of features, and binary logistic regression analysis was used to classify the tumors with leave-one-out cross validation. The accuracy and sensitivity for the texture were 71.82% and 68.18%, respectively, which were better than for the shape and kinetic curve under closed specificity. Combining all of the features achieved the highest accuracy (58/71, 81.69%), sensitivity (18/22, 81.82%), and specificity (40/49, 81.63%). The Az value of combining all features was 0.8713. Combining texture, shape, and kinetic curve features may be able to differentiate benign from malignant tumors in the liver using our proposed CAD system. Copyright © 2017 Elsevier B.V. All

  2. Prediction of sentinel lymph node status using single-photon emission computed tomography (SPECT)/computed tomography (CT) imaging of breast cancer.

    Science.gov (United States)

    Tomiguchi, Mai; Yamamoto-Ibusuki, Mutsuko; Yamamoto, Yutaka; Fujisue, Mamiko; Shiraishi, Shinya; Inao, Touko; Murakami, Kei-ichi; Honda, Yumi; Yamashita, Yasuyuki; Iyama, Ken-ichi; Iwase, Hirotaka

    2016-02-01

    Single-photon emission computed tomography (SPECT)/computed tomography (CT) improves the anatomical identification of sentinel lymph nodes (SNs). We aimed to evaluate the possibility of predicting the SN status using SPECT/CT. SN mapping using a SPECT/CT system was performed in 381 cases of clinically node-negative, operable invasive breast cancer. We evaluated and compared the values of SN mapping on SPECT/CT, the findings of other modalities and clinicopathological factors in predicting the SN status. Patients with SNs located in the Level I area were evaluated. Of the 355 lesions (94.8 %) assessed, six cases (1.6 %) were not detected using any imaging method. According to the final histological diagnosis, 298 lesions (78.2 %) were node negative and 83 lesions (21.7 %) were node positive. The univariate analysis showed that SN status was significantly correlated with the number of SNs detected on SPECT/CT in the Level I area (P = 0.0048), total number of SNs detected on SPECT/CT (P = 0.011), findings of planar lymphoscintigraphy (P = 0.011) and findings of a handheld gamma probe during surgery (P = 0.012). According to the multivariate analysis, the detection of multiple SNs on SPECT/CT imaging helped to predict SN metastasis. The number of SNs located in the Level I area detected using the SPECT/CT system may be a predictive factor for SN metastasis.

  3. Diagnostic accuracy of magnetic resonance imaging versus computed tomography in stress fractures of the lumbar spine

    International Nuclear Information System (INIS)

    Ganiyusufoglu, A.K.; Onat, L.; Karatoprak, O.; Enercan, M.; Hamzaoglu, A.

    2010-01-01

    Aim: To compare the diagnostic accuracy of magnetic resonance imaging (MRI) with computed tomography (CT) in stress fractures of the lumbar spine. Materials and methods: Radiological and clinical data from 57 adolescents and young adults with a diagnosis of stress injury of the lumbar spine were retrospectively reviewed. All cases had undergone both 1.5 T MRI and 16-section CT examinations. All MRI and CT images were retrospectively reviewed and evaluated in separate sessions. The fracture morphology (complete/incomplete, localization) and vertebral levels were noted at both the CT and MRI examinations. Bone marrow/peri-osseous soft-tissue oedema was also determined at MRI. Results: In total, 73 complete and 32 incomplete stress fractures were detected with CT. Sixty-seven complete, 24 incomplete fractures and eight stress reactions were detected using MRI in the same study group. Marrow oedema was also seen in eight of the complete and 20 of the incomplete fractures. The specificity, sensitivity, and accuracy of MRI in detecting fracture lines were 99.6, 86.7, and 97.2%, respectively. MRI was more accurate at the lower lumbar levels in comparison to upper lumbar levels. Conclusion: MRI has a similar diagnostic accuracy to CT in determining complete fractures with or without accompanying marrow oedema and incomplete fractures with accompanying marrow oedema, especially at the lower lumbar levels, which constitutes 94% of all fractures. At upper lumbar levels and in the incomplete fractures of the pars interarticularis with marked surrounding sclerosis, MRI has apparent limitations compared to CT imaging.

  4. Diagnostic accuracy of magnetic resonance imaging versus computed tomography in stress fractures of the lumbar spine

    Energy Technology Data Exchange (ETDEWEB)

    Ganiyusufoglu, A.K., E-mail: kursady33@yahoo.co [Department of Radiology, Florence Nightingale Hospital, Istanbul (Turkey); Onat, L. [Department of Radiology, Florence Nightingale Hospital, Istanbul (Turkey); Karatoprak, O.; Enercan, M.; Hamzaoglu, A. [Department of Orthopedics and Traumatology, Florence Nightingale Hospital, Istanbul (Turkey)

    2010-11-15

    Aim: To compare the diagnostic accuracy of magnetic resonance imaging (MRI) with computed tomography (CT) in stress fractures of the lumbar spine. Materials and methods: Radiological and clinical data from 57 adolescents and young adults with a diagnosis of stress injury of the lumbar spine were retrospectively reviewed. All cases had undergone both 1.5 T MRI and 16-section CT examinations. All MRI and CT images were retrospectively reviewed and evaluated in separate sessions. The fracture morphology (complete/incomplete, localization) and vertebral levels were noted at both the CT and MRI examinations. Bone marrow/peri-osseous soft-tissue oedema was also determined at MRI. Results: In total, 73 complete and 32 incomplete stress fractures were detected with CT. Sixty-seven complete, 24 incomplete fractures and eight stress reactions were detected using MRI in the same study group. Marrow oedema was also seen in eight of the complete and 20 of the incomplete fractures. The specificity, sensitivity, and accuracy of MRI in detecting fracture lines were 99.6, 86.7, and 97.2%, respectively. MRI was more accurate at the lower lumbar levels in comparison to upper lumbar levels. Conclusion: MRI has a similar diagnostic accuracy to CT in determining complete fractures with or without accompanying marrow oedema and incomplete fractures with accompanying marrow oedema, especially at the lower lumbar levels, which constitutes 94% of all fractures. At upper lumbar levels and in the incomplete fractures of the pars interarticularis with marked surrounding sclerosis, MRI has apparent limitations compared to CT imaging.

  5. Intraoperative cone-beam computed tomography and multi-slice computed tomography in temporal bone imaging for surgical treatment.

    Science.gov (United States)

    Erovic, Boban M; Chan, Harley H L; Daly, Michael J; Pothier, David D; Yu, Eugene; Coulson, Chris; Lai, Philip; Irish, Jonathan C

    2014-01-01

    Conventional computed tomography (CT) imaging is the standard imaging technique for temporal bone diseases, whereas cone-beam CT (CBCT) imaging is a very fast imaging tool with a significant less radiation dose compared with conventional CT. We hypothesize that a system for intraoperative cone-beam CT provides comparable image quality to diagnostic CT for identifying temporal bone anatomical landmarks in cadaveric specimens. Cross-sectional study. University tertiary care facility. Twenty cadaveric temporal bones were affixed into a head phantom and scanned with both a prototype cone-beam CT C-arm and multislice helical CT. Imaging performance was evaluated by 3 otologic surgeons and 1 head and neck radiologist. Participants were presented images in a randomized order and completed landmark identification questionnaires covering 21 structures. CBCT and multislice CT have comparable performance in identifying temporal structures. Three otologic surgeons indicated that CBCT provided statistically equivalent performance for 19 of 21 landmarks, with CBCT superior to CT for the chorda tympani and inferior for the crura of the stapes. Subgroup analysis showed that CBCT performed superiorly for temporal bone structures compared with CT. The radiologist rated CBCT and CT as statistically equivalent for 18 of 21 landmarks, with CT superior to CBCT for the crura of stapes, chorda tympani, and sigmoid sinus. CBCT provides comparable image quality to conventional CT for temporal bone anatomical sites in cadaveric specimens. Clinical applications of low-dose CBCT imaging in surgical planning, intraoperative guidance, and postoperative assessment are promising but require further investigation.

  6. Physics of x-ray computed tomography

    International Nuclear Information System (INIS)

    Akutagawa, W.M.; Huth, G.C.

    1976-01-01

    Sections are included on theoretical limits of x-ray computed tomography and the relationship of these limits to human organ imaging and specific disease diagnosis; potential of x-ray computed tomography in detection of small calcified particles in early breast cancer detection; early lung cancer measurement and detection; advanced materials for ionizing radiation detection; positron system with circular ring transaxial tomographic camera; contrast mechanism of transmission scanner and algorithms; and status of design on a 200 keV scanning proton microprobe

  7. Cone Beam X-ray Luminescence Computed Tomography Based on Bayesian Method.

    Science.gov (United States)

    Zhang, Guanglei; Liu, Fei; Liu, Jie; Luo, Jianwen; Xie, Yaoqin; Bai, Jing; Xing, Lei

    2017-01-01

    X-ray luminescence computed tomography (XLCT), which aims to achieve molecular and functional imaging by X-rays, has recently been proposed as a new imaging modality. Combining the principles of X-ray excitation of luminescence-based probes and optical signal detection, XLCT naturally fuses functional and anatomical images and provides complementary information for a wide range of applications in biomedical research. In order to improve the data acquisition efficiency of previously developed narrow-beam XLCT, a cone beam XLCT (CB-XLCT) mode is adopted here to take advantage of the useful geometric features of cone beam excitation. Practically, a major hurdle in using cone beam X-ray for XLCT is that the inverse problem here is seriously ill-conditioned, hindering us to achieve good image quality. In this paper, we propose a novel Bayesian method to tackle the bottleneck in CB-XLCT reconstruction. The method utilizes a local regularization strategy based on Gaussian Markov random field to mitigate the ill-conditioness of CB-XLCT. An alternating optimization scheme is then used to automatically calculate all the unknown hyperparameters while an iterative coordinate descent algorithm is adopted to reconstruct the image with a voxel-based closed-form solution. Results of numerical simulations and mouse experiments show that the self-adaptive Bayesian method significantly improves the CB-XLCT image quality as compared with conventional methods.

  8. Cone-beam x-ray luminescence computed tomography based on x-ray absorption dosage

    Science.gov (United States)

    Liu, Tianshuai; Rong, Junyan; Gao, Peng; Zhang, Wenli; Liu, Wenlei; Zhang, Yuanke; Lu, Hongbing

    2018-02-01

    With the advances of x-ray excitable nanophosphors, x-ray luminescence computed tomography (XLCT) has become a promising hybrid imaging modality. In particular, a cone-beam XLCT (CB-XLCT) system has demonstrated its potential in in vivo imaging with the advantage of fast imaging speed over other XLCT systems. Currently, the imaging models of most XLCT systems assume that nanophosphors emit light based on the intensity distribution of x-ray within the object, not completely reflecting the nature of the x-ray excitation process. To improve the imaging quality of CB-XLCT, an imaging model that adopts an excitation model of nanophosphors based on x-ray absorption dosage is proposed in this study. To solve the ill-posed inverse problem, a reconstruction algorithm that combines the adaptive Tikhonov regularization method with the imaging model is implemented for CB-XLCT reconstruction. Numerical simulations and phantom experiments indicate that compared with the traditional forward model based on x-ray intensity, the proposed dose-based model could improve the image quality of CB-XLCT significantly in terms of target shape, localization accuracy, and image contrast. In addition, the proposed model behaves better in distinguishing closer targets, demonstrating its advantage in improving spatial resolution.

  9. Ultra-High-Resolution Computed Tomography of the Lung: Image Quality of a Prototype Scanner

    OpenAIRE

    Kakinuma, Ryutaro; Moriyama, Noriyuki; Muramatsu, Yukio; Gomi, Shiho; Suzuki, Masahiro; Nagasawa, Hirobumi; Kusumoto, Masahiko; Aso, Tomohiko; Muramatsu, Yoshihisa; Tsuchida, Takaaki; Tsuta, Koji; Maeshima, Akiko Miyagi; Tochigi, Naobumi; Watanabe, Shun-ichi; Sugihara, Naoki

    2015-01-01

    Purpose: The image noise and image quality of a prototype ultra-high-resolution computed tomography (U-HRCT) scanner was evaluated and compared with those of conventional high-resolution CT (C-HRCT) scanners. Materials and Methods: This study was approved by the institutional review board. A U-HRCT scanner prototype with 0.25 mm × 4 rows and operating at 120 mAs was used. The C-HRCT images were obtained using a 0.5 mm × 16 or 0.5 mm × 64 detector-row CT scanner operating at 150 mAs. Images fr...

  10. Prior image constrained image reconstruction in emerging computed tomography applications

    Science.gov (United States)

    Brunner, Stephen T.

    Advances have been made in computed tomography (CT), especially in the past five years, by incorporating prior images into the image reconstruction process. In this dissertation, we investigate prior image constrained image reconstruction in three emerging CT applications: dual-energy CT, multi-energy photon-counting CT, and cone-beam CT in image-guided radiation therapy. First, we investigate the application of Prior Image Constrained Compressed Sensing (PICCS) in dual-energy CT, which has been called "one of the hottest research areas in CT." Phantom and animal studies are conducted using a state-of-the-art 64-slice GE Discovery 750 HD CT scanner to investigate the extent to which PICCS can enable radiation dose reduction in material density and virtual monochromatic imaging. Second, we extend the application of PICCS from dual-energy CT to multi-energy photon-counting CT, which has been called "one of the 12 topics in CT to be critical in the next decade." Numerical simulations are conducted to generate multiple energy bin images for a photon-counting CT acquisition and to investigate the extent to which PICCS can enable radiation dose efficiency improvement. Third, we investigate the performance of a newly proposed prior image constrained scatter correction technique to correct scatter-induced shading artifacts in cone-beam CT, which, when used in image-guided radiation therapy procedures, can assist in patient localization, and potentially, dose verification and adaptive radiation therapy. Phantom studies are conducted using a Varian 2100 EX system with an on-board imager to investigate the extent to which the prior image constrained scatter correction technique can mitigate scatter-induced shading artifacts in cone-beam CT. Results show that these prior image constrained image reconstruction techniques can reduce radiation dose in dual-energy CT by 50% in phantom and animal studies in material density and virtual monochromatic imaging, can lead to radiation

  11. CT or MRI for image-based brachytherapy in cervical cancer

    International Nuclear Information System (INIS)

    Krishnatry, R.; Patel, F.D.; Singh, P.; Sharma, S.C.; Oinam, A.S.; Shukla, A.K.

    2012-01-01

    The objective of this study was to compare volumes and doses of tumour and organs at risk with computed tomography vs. magnetic resonance imaging in cervical cancer brachytherapy. Seventeen previously untreated patients with cervical cancer suitable for radical treatment were included. All patients underwent brachytherapy using a magnetic resonance imaging-compatible applicator followed by both computed tomography and magnetic resonance imaging. The tumour and organs at risk (bladder, rectum, sigmoid and intestines) were contoured on computed tomography using only clinical findings and on magnetic resonance imaging using GEC-ESTRO guidelines. The volume and doses for tumour and organs at risk were evaluated using two-sided t-test. When magnetic resonance imaging information is not included in contouring on computed tomography images, there is significant underestimation of tumour height and overestimation of the width (P 100 , D 90 and D 100 for high- and intermediate-risk clinical target volume in computed tomography and magnetic resonance imaging. The volumes and doses to 0.1, 1 and 2 cc for organs at risk were also similar. Magnetic resonance imaging remains the gold standard for tumour delineation, but computed tomography with clinical information can give comparable results, which need to be studied further. Computed tomography-based contouring can be used comfortably for delineation of organs at risk. (author)

  12. Role of single photon emission computed tomography/computed tomography in diagnostic iodine-131 scintigraphy before initial radioiodine ablation in differentiated thyroid cancer

    International Nuclear Information System (INIS)

    Agrawal, Kanhaiyalal; Bhattacharya, Anish; Mittal, Bhagwant Rai

    2005-01-01

    The study was performed to evaluate the incremental value of single photon emission computed tomography/computed tomography (SPECT/CT) over planar radioiodine imaging before radioiodine ablation in the staging, management and stratification of risk of recurrence (ROR) in differentiated thyroid cancer (DTC) patients. Totally, 83 patients (21 male, 62 female) aged 17–75 (mean 39.9) years with DTC were included consecutively in this prospective study. They underwent postthyroidectomy planar and SPECT/CT scans after oral administration of 37–114 MBq iodine-131 (I-131). The scans were interpreted as positive, negative or suspicious for tracer uptake in the thyroid bed, cervical lymph nodes and sites outside the neck. In each case, the findings on planar images were recorded first, without knowledge of SPECT/CT findings. Operative and pathological findings were used for postsurgical tumor–node–metastasis staging. The tumor staging was reassessed after each of these two scans. Single photon emission computed tomography/computed tomography localized radioiodine uptake in the thyroid bed in 9/83 (10.8%) patients, neck nodes in 24/83 (28.9%) patients and distant metastases in 8/83 (9.6%) patients in addition to the planar study. Staging was changed in 8/83 (9.6%), ROR in 11/83 (13.2%) and management in 26/83 (31.3%) patients by the pretherapy SPECT/CT in comparison to planar imaging. SPECT/CT had incremental value in 32/83 patients (38.5%) over the planar scan. Single photon emission computed tomography/computed tomography is feasible during a diagnostic I-131 scan with a low amount of radiotracer. It improved the interpretation of pretherapy I-131 scintigraphy and changed the staging and subsequent patient management

  13. 18F-FLT Positron Emission Tomography/Computed Tomography Imaging in Pancreatic Cancer: Determination of Tumor Proliferative Activity and Comparison with Glycolytic Activity as Measured by 18F-FDG Positron Emission Tomography/Computed Tomography Imaging

    Directory of Open Access Journals (Sweden)

    Senait Aknaw Debebe

    2016-02-01

    Full Text Available Objective: This phase-I imaging study examined the imaging characteristic of 3’-deoxy-3’-(18F-fluorothymidine (18F-FLT positron emission tomography (PET in patients with pancreatic cancer and comparisons were made with (18F-fluorodeoxyglucose (18F-FDG. The ultimate aim was to develop a molecular imaging tool that could better define the biologic characteristics of pancreas cancer, and to identify the patients who could potentially benefit from surgical resection who were deemed inoperable by conventional means of staging. Methods: Six patients with newly diagnosed pancreatic cancer underwent a combined FLT and FDG computed tomography (CT PET/CT imaging protocol. The FLT PET/CT scan was performed within 1 week of FDG PET/CT imaging. Tumor uptake of a tracer was determined and compared using various techniques; statistical thresholding (z score=2.5, and fixed standardized uptake value (SUV thresholds of 1.4 and 2.5, and applying a threshold of 40% of maximum SUV (SUVmax and mean SUV (SUVmean. The correlation of functional tumor volumes (FTV between 18F-FDG and 18F-FLT was assessed using linear regression analysis. Results: It was found that there is a correlation in FTV due to metabolic and proliferation activity when using a threshold of SUV 2.5 for FDG and 1.4 for FLT (r=0.698, p=ns, but a better correlation was obtained when using SUV of 2.5 for both tracers (r=0.698, p=ns. The z score thresholding (z=2.5 method showed lower correlation between the FTVs (r=0.698, p=ns of FDG and FLT PET. Conclusion: Different tumor segmentation techniques yielded varying degrees of correlation in FTV between FLT and FDGPET images. FLT imaging may have a different meaning in determining tumor biology and prognosis.

  14. Multi-detector computed tomography (MDCT imaging of cardiovascular effects of pulmonary embolism: What the radiologists need to know

    Directory of Open Access Journals (Sweden)

    Mohamed Aboul-fotouh E. Mourad

    2017-09-01

    Full Text Available Background: Patients with pulmonary embolism have high mortality and morbidity rate due to right heart failure and circulatory collapse leading to sudden death. Multi-detector computed tomography MDCT can efficiently evaluate the cardiovascular factors related to pulmonary embolism. Objectives: To evaluate the diagnostic accuracy of multi-detector computed tomography (MDCT in differentiation of between sever and non-severe pulmonary embolism groups depending on the associated cardiovascular parameters and create a simple reporting system. Patients & methods: Prospective study contained 145 patients diagnosed clinically pulmonary embolism. All patients were examined by combined electrocardiographically gated computed tomography pulmonary angiography-computed tomography venography (ECG-CTPA-CTV using certain imaging criteria in a systematic manner. Results: Our study revealed 95 and 55 non-severe and severe pulmonary embolism groups respectively. Many cardiovascular parameters related to pulmonary embolism shows significant p value and can differentiate between sever and non-severe pulmonary embolism patients include pulmonary artery diameter, intraventricular septum flattening, bowing, superior vena cava and Azygos vein diameters, right and left ventricular diameters. Conclusion: Multi-detector computed tomography (MDCT can be valuable to assess the severity of pulmonary embolism using the related cardiovascular parameters and leading the management strategy aim for best outcome. Keywords: Pulmonary embolism, MDCT, Cardiovascular, Computed tomography venography

  15. Multi-institutional Quantitative Evaluation and Clinical Validation of Smart Probabilistic Image Contouring Engine (SPICE) Autosegmentation of Target Structures and Normal Tissues on Computer Tomography Images in the Head and Neck, Thorax, Liver, and Male Pelvis Areas

    DEFF Research Database (Denmark)

    Zhu, Mingyao; Bzdusek, Karl; Brink, Carsten

    2013-01-01

    Clinical validation and quantitative evaluation of computed tomography (CT) image autosegmentation using Smart Probabilistic Image Contouring Engine (SPICE).......Clinical validation and quantitative evaluation of computed tomography (CT) image autosegmentation using Smart Probabilistic Image Contouring Engine (SPICE)....

  16. Three-Dimensional Image Fusion of 18F-Fluorodeoxyglucose-Positron Emission Tomography/Computed Tomography and Contrast-Enhanced Computed Tomography for Computer-Assisted Planning of Maxillectomy of Recurrent Maxillary Squamous Cell Carcinoma and Defect Reconstruction.

    Science.gov (United States)

    Yu, Yao; Zhang, Wen-Bo; Liu, Xiao-Jing; Guo, Chuan-Bin; Yu, Guang-Yan; Peng, Xin

    2017-06-01

    The purpose of this study was to describe new technology assisted by 3-dimensional (3D) image fusion of 18 F-fluorodeoxyglucose (FDG)-positron emission tomography (PET)/computed tomography (CT) and contrast-enhanced CT (CECT) for computer planning of a maxillectomy of recurrent maxillary squamous cell carcinoma and defect reconstruction. Treatment of recurrent maxillary squamous cell carcinoma usually includes tumor resection and free flap reconstruction. FDG-PET/CT provided images of regions of abnormal glucose uptake and thus showed metabolic tumor volume to guide tumor resection. CECT data were used to create 3D reconstructed images of vessels to show the vascular diameters and locations, so that the most suitable vein and artery could be selected during anastomosis of the free flap. The data from preoperative maxillofacial CECT scans and FDG-PET/CT imaging were imported into the navigation system (iPlan 3.0; Brainlab, Feldkirchen, Germany). Three-dimensional image fusion between FDG-PET/CT and CECT was accomplished using Brainlab software according to the position of the 2 skulls simulated in the CECT image and PET/CT image, respectively. After verification of the image fusion accuracy, the 3D reconstruction images of the metabolic tumor, vessels, and other critical structures could be visualized within the same coordinate system. These sagittal, coronal, axial, and 3D reconstruction images were used to determine the virtual osteotomy sites and reconstruction plan, which was provided to the surgeon and used for surgical navigation. The average shift of the 3D image fusion between FDG-PET/CT and CECT was less than 1 mm. This technique, by clearly showing the metabolic tumor volume and the most suitable vessels for anastomosis, facilitated resection and reconstruction of recurrent maxillary squamous cell carcinoma. We used 3D image fusion of FDG-PET/CT and CECT to successfully accomplish resection and reconstruction of recurrent maxillary squamous cell carcinoma

  17. Cone-beam computed tomography imaging: therapeutic staff dose during chemoembolisation procedure

    International Nuclear Information System (INIS)

    Paul, Jijo; Vogl, Thomas J; Chacko, Annamma; Mbalisike, Emmanuel C

    2014-01-01

    Cone-beam computed tomography (CBCT) imaging is an important requirement to perform real-time therapeutic image-guided procedures on patients. The purpose of this study is to estimate the personal-dose-equivalent and annual-personal-dose from CBCT imaging during transarterial chemoembolisation (TACE). Therapeutic staff doses (therapeutic and assistant physician) were collected during 200 patient (65  ±  15 years, range: 40–86) CBCT examinations over six months. Absorbed doses were assessed using thermo-luminescent dosimeters during patient hepatic TACE therapy. We estimated personal-dose-equivalent (PDE) and annual-personal-dose (APD) from absorbed dose based on international atomic energy agency protocol. APD for therapeutic procedure was calculated (therapeutic physician: 5.6 mSv; assistant physician: 5.08 mSv) based on institutional work load. Regarding PDE, the hands of the staff members received a greater dose compared to other anatomical locations (therapeutic physician: 56 mSv, 72 mSv; assistant physician: 12 mSv, 14 mSv). Annual radiation doses to the eyes and hands of the staff members were lower compared to the prescribed limits by the International Commission on Radiological Protection (ICRP). PDE and APD of both therapeutic staff members were within the recommended ICRP-103 annual limit. Dose to the assistant physician was lower than the dose to the therapeutic physician during imaging. Annual radiation doses to eye-lenses and hands of both staff members were lower than prescribed limits. (paper)

  18. Examination of Scanning Electron Microscope and Computed Tomography Images of PICA

    Science.gov (United States)

    Lawson, John W.; Stackpoole, Margaret M.; Shklover, Valery

    2010-01-01

    Micrographs of PICA (Phenolic Impregnated Carbon Ablator) taken using a Scanning Electron Microscope (SEM) and 3D images taken with a Computed Tomography (CT) system are examined. PICA is a carbon fiber based composite (Fiberform ) with a phenolic polymer matrix. The micrographs are taken at different surface depths and at different magnifications in a sample after arc jet testing and show different levels of oxidative removal of the charred matrix (Figs 1 though 13). CT scans, courtesy of Xradia, Inc. of Concord CA, were captured for samples of virgin PICA, charred PICA and raw Fiberform (Fig. 14). We use these images to calculate the thermal conductivity (TC) of these materials using correlation function (CF) methods. CF methods give a mathematical description of how one material is embedded in another and is thus ideally suited for modeling composites like PICA. We will evaluate how the TC of the materials changes as a function of surface depth. This work is in collaboration with ETH-Zurich, which has expertise in high temperature materials and TC modeling (including CF methods).

  19. Computed Tomography Perfusion Imaging for the Diagnosis of Hepatic Alveolar Echinococcosis

    Science.gov (United States)

    Sade, Recep; Kantarci, Mecit; Genc, Berhan; Ogul, Hayri; Gundogdu, Betul; Yilmaz, Omer

    2018-01-01

    Objective: Alveolar echinococcosis (AE) is a rare life-threatening parasitic infection. Computed tomography perfusion (CTP) imaging has the potential to provide both quantitative and qualitative information about the tissue perfusion characteristics. The purpose of this study was the examination of the characteristic features and feasibility of CTP in AE liver lesions. Material and Methods: CTP scanning was performed in 25 patients who had a total of 35 lesions identified as AE of the liver. Blood flow (BF), blood volume (BV), portal venous perfusion (PVP), arterial liver perfusion (ALP), and hepatic perfusion indexes (HPI) were computed for background liver parenchyma and each AE lesion. Results: Significant differences were detected between perfusion values of the AE lesions and background liver tissue. The BV, BF, ALP, and PVP values for all components of the AE liver lesions were significantly lower than the normal liver parenchyma (p<0.01). Conclusions: We suggest that perfusion imaging can be used in AE of the liver. Thus, the quantitative knowledge of perfusion parameters are obtained via CT perfusion imaging. PMID:29531482

  20. Three-Dimensional Cone Beam Computed Tomography Volumetric Outcomes of rhBMP-2/Demineralized Bone Matrix versus Iliac Crest Bone Graft for Alveolar Cleft Reconstruction.

    Science.gov (United States)

    Liang, Fan; Yen, Stephen L-K; Imahiyerobo, Thomas; Sanborn, Luke; Yen, Leia; Yen, Daniel; Nazarian, Sheila; Jedrzejewski, Breanna; Urata, Mark; Hammoudeh, Jeffrey

    2017-10-01

    Recent studies indicate that recombinant human bone morphogenetic protein-2 (rhBMP-2) in a demineralized bone matrix scaffold is a comparable alternative to iliac bone autograft in the setting of secondary alveolar cleft repair. Postreconstruction occlusal radiographs demonstrate improved bone stock when rhBMP-2/demineralized bone matrix (DBM) scaffold is used but lack the capacity to evaluate bone growth in three dimensions. This study uses cone beam computed tomography to provide the first clinical evaluation of volumetric and density comparisons between these two treatment modalities. A prospective study was conducted with 31 patients and 36 repairs of the alveolar cleft over a 2-year period. Twenty-one repairs used rhBMP-2/DBM scaffold and 14 repairs used iliac bone grafting. Postoperatively, occlusal radiographs were obtained at 3 months to evaluate bone fill; cone beam computed tomographic images were obtained at 6 to 9 months to compare volumetric and density data. At 3 months, postoperative occlusal radiographs demonstrated that 67 percent of patients receiving rhBMP-2/DBM scaffold had complete bone fill of the alveolus, versus 56 percent of patients in the autologous group. In contrast, cone beam computed tomographic data showed 31.6 percent (95 percent CI, 24.2 to 38.5 percent) fill in the rhBMP-2 group compared with 32.5 percent (95 percent CI, 22.1 to 42.9 percent) in the autologous population. Density analysis demonstrated identical average values between the groups (1.38 g/cc). These data demonstrate comparable bone regrowth and density values following secondary alveolar cleft repair using rhBMP-2/DBM scaffold versus autologous iliac bone graft. Cone beam computed tomography provides a more nuanced understanding of true bone regeneration within the alveolar cleft that may contribute to the information provided by occlusal radiographs alone. Therapeutic, II.

  1. Use of Computed Tomography Imaging for Qualifying Coarse Roots, Rhizomes, Peat, and Particle Densities in Marsh Soils

    Science.gov (United States)

    Computed tomography (CT) imaging has been used to describe and quantify subtidal, benthic animals such as polychaetes, amphipods, and shrimp. Here, for the first time, CT imaging is used to successfully quantify wet mass of coarse roots, rhizomes, and peat in cores collected from...

  2. Sacrococcygeal chordoma: increased 99mTc methylene diphosphonate uptake on single photon emission computed tomography/computed tomography bone scintigraphy

    International Nuclear Information System (INIS)

    Kamaleshwaran, Koramadai Karuppuswamy; Bhattacharya, Anish; Harisankar, Chidambaram Natarajan Balasubramaniam; Mittal, Bhagwant Rai; Goni, Vijay

    2012-01-01

    Chordoma is a malignant tumor arising from the remnants of the notochord, and is the most frequent primitive tumor of the sacrum. While most sacral tumors show increased concentration of bone-seeking radiopharmaceuticals, chordomas usually exhibit decreased uptake. The authors present an image of a sacrococcygeal chordoma with osteolysis and increased uptake of 99m Tc methylene diphosphonate on planar and single photon emission computed tomography/computed tomography bone scintigraphy. (author)

  3. Multifunctional BSA-Au nanostars for photoacoustic imaging and X-ray computed tomography.

    Science.gov (United States)

    Zu, Lihui; Liu, Lin; Qin, Yeshan; Liu, Hongguang; Yang, Haishan

    2016-10-01

    We report the synthesis and characterization of bovine serum albumin-capped Au nanostars (BSA-AuNSs) for dual-modal computed tomography (CT)/photoacoustic (PA) imaging application. The BSA-AuNSs have an average size of 85nm, and a surface plasmon resonance (SPR) peak at approximately 770nm. They have excellent biocompatibility, good X-ray attenuation, and great PA contrast enhancement properties. When injected intravenously, liver signal markedly increases in both CT and PA modalities. The in vivo biodistribution studies and pathology results showed that the BSA-AuNSs were mainly excreted through the liver and intestines with no obvious biotoxicity. These results indicate that BSA-AuNSs have high potential to be used as dual-modal CT/PA imaging contrast agents or further used to develop targeted probes. This preliminary study suggests that PA tomography may be used to non-invasively trace the kinetics and biodistribution of the nanoparticles. Copyright © 2016 Elsevier Inc. All rights reserved.

  4. Computed tomography of the iliopsoas muscle

    International Nuclear Information System (INIS)

    Nino-Murcia, M.; Wechsler, R.J.; Brennan, R.E.

    1983-01-01

    Computed tomography (CT) is an ideal method for the imaging of the psoas muscle. The authors present 13 cases of patients with psoas abnormalities diagnosed by CT. The CT features of the different pathologic entities and comparison of CT with other imaging modalities are discussed. (orig.)

  5. Computed Tomography (CT) -- Sinuses

    Medline Plus

    Full Text Available ... Physician Resources Professions Site Index A-Z Computed Tomography (CT) - Sinuses Computed tomography (CT) of the sinuses ... CT of the Sinuses? What is CT (Computed Tomography) of the Sinuses? Computed tomography, more commonly known ...

  6. Independent component analysis of dynamic contrast-enhanced computed tomography images

    Energy Technology Data Exchange (ETDEWEB)

    Koh, T S [School of Electrical and Electronic Engineering, Nanyang Technological University, 50 Nanyang Ave, Singapore 639798 (Singapore); Yang, X [School of Electrical and Electronic Engineering, Nanyang Technological University, 50 Nanyang Ave, Singapore 639798 (Singapore); Bisdas, S [Department of Diagnostic and Interventional Radiology, Johann Wolfgang Goethe University Hospital, Theodor-Stern-Kai 7, D-60590 Frankfurt (Germany); Lim, C C T [Department of Neuroradiology, National Neuroscience Institute, 11 Jalan Tan Tock Seng, Singapore 308433 (Singapore)

    2006-10-07

    Independent component analysis (ICA) was applied on dynamic contrast-enhanced computed tomography images of cerebral tumours to extract spatial component maps of the underlying vascular structures, which correspond to different haemodynamic phases as depicted by the passage of the contrast medium. The locations of arteries, veins and tumours can be separately identified on these spatial component maps. As the contrast enhancement behaviour of the cerebral tumour differs from the normal tissues, ICA yields a tumour component map that reveals the location and extent of the tumour. Tumour outlines can be generated using the tumour component maps, with relatively simple segmentation methods. (note)

  7. Motion artifacts in computed tomography

    International Nuclear Information System (INIS)

    Yang, C.K.

    1979-01-01

    In the year 1972, the first Computed Tomography Scanner (or CT) was introduced and caused a revolution in the field of Diagnostic Radiology. A tomogram is a cross-sectional image of a three-dimensional object obtained through non-invasive measurements. The image that is presented is very similar to what would be seen if a thin cross-sectional slice of the patient was examined. In Computed Tomography, x-rays are passed through the body of a patient in many different directions and their attenuation is detected. By using some mathematical theorems, the attenuation information can be converted into the density of the patient along the x-ray path. Combined with modern sophisticated computer signal processing technology, a cross-sectional image can be generated and displayed on a TV monitor. Usually a good CT image relies on the patient not moving during the x-ray scanning. However, for some unconscious or severely ill patients, this is very difficult to achieve. Thus, the motion during the scan causes the so-called motion artifacts which distort the displayed image and sometimes these motion artifacts make diagnosis impossible. Today, to remove or avoid motion artifacts is one of the major efforts in developing new scanner systems. In this thesis, a better understanding of the motion artifacts problem in CT scaning is gained through computer simulations, real scanner experiments and theoretical analyses. The methods by which the distorted image can be improved are simulated also. In particular, it is assumed that perfect knowledge of the patient motion is known since this represents the theoretical limit on how well the distorted image can be improved

  8. An Implementation of Parallel and Networked Computing Schemes for the Real-Time Image Reconstruction Based on Electrical Tomography

    International Nuclear Information System (INIS)

    Park, Sook Hee

    2001-02-01

    This thesis implements and analyzes the parallel and networked computing libraries based on the multiprocessor computer architecture as well as networked computers, aiming at improving the computation speed of ET(Electrical Tomography) system which requires enormous CPU time in reconstructing the unknown internal state of the target object. As an instance of the typical tomography technology, ET partitions the cross-section of the target object into the tiny elements and calculates the resistivity of them with signal values measured at the boundary electrodes surrounding the surface of the object after injecting the predetermined current pattern through the object. The number of elements is determined considering the trade-off between the accuracy of the reconstructed image and the computation time. As the elements become more finer, the number of element increases, and the system can get the better image. However, the reconstruction time increases polynomially with the number of partitioned elements since the procedure consists of a number of time consuming matrix operations such as multiplication, inverse, pseudo inverse, Jacobian and so on. Consequently, the demand for improving computation speed via multiple processor grows indispensably. Moreover, currently released PCs can be stuffed with up to 4 CPUs interconnected to the shared memory while some operating systems enable the application process to benefit from such computer by allocating the threaded job to each CPU, resulting in concurrent processing. In addition, a networked computing or cluster computing environment is commonly available to almost every computer which contains communication protocol and is connected to local or global network. After partitioning the given job(numerical operation), each CPU or computer calculates the partial result independently, and the results are merged via common memory to produce the final result. It is desirable to adopt the commonly used library such as Matlab to

  9. Management algorithm for images of hepatic incidentalomas, renal and adrenal detected by computed tomography

    International Nuclear Information System (INIS)

    Montero Gonzalez, Allan

    2012-01-01

    A literature review has been carried out in the diagnostic and monitoring algorithms for image of incidentalomas of solid abdominal organs (liver, kidney and adrenal glands) detected by computed tomography (CT). The criteria have been unified and updated for a effective diagnosis. Posed algorithms have been made in simplified form. The imaging techniques have been specified for each pathology, showing the advantages and disadvantages of using it and justifying the application in daily practice [es

  10. Quantitative spectral K-edge imaging in preclinical photon-counting x-ray computed tomography.

    Science.gov (United States)

    de Vries, Anke; Roessl, Ewald; Kneepkens, Esther; Thran, Axel; Brendel, Bernhard; Martens, Gerhard; Proska, Roland; Nicolay, Klaas; Grüll, Holger

    2015-04-01

    The objective of this study was to investigate the feasibility and the accuracy of spectral computed tomography (spectral CT) to determine the tissue concentrations and localization of high-attenuation, iodine-based contrast agents in mice. Iodine tissue concentrations determined with spectral CT are compared with concentrations measured with single-photon emission computed tomography (SPECT) and inductively coupled plasma mass spectrometry (ICP-MS). All animal procedures were performed according to the US National Institutes of Health principles of laboratory animal care and were approved by the ethical review committee of Maastricht, The Netherlands. Healthy Swiss mice (n = 4) were injected with an iodinated emulsion radiolabeled with indium as multimodal contrast agent for CT and SPECT. The CT and SPECT scans were acquired using a dedicated small-animal SPECT/CT system. Subsequently, scans were performed with a preclinical spectral CT scanner equipped with a photon-counting detector and 6 energy threshold levels. Quantitative data analysis of SPECT and spectral CT scans were obtained using 3-dimensional volumes-of-interest drawing methods. The ICP-MS on dissected organs was performed to determine iodine uptake per organ and was compared with the amounts determined from spectral CT and SPECT. Iodine concentrations obtained with image-processed spectral CT data correlated well with data obtained either with noninvasive SPECT imaging (slope = 0.96, r = 0.75) or with ICP-MS (slope = 0.99, r = 0.89) in tissue samples. This preclinical proof-of-concept study shows the in vivo quantification of iodine concentrations in tissues using spectral CT. Our multimodal imaging approach with spectral CT and SPECT using radiolabeled iodinated emulsions together with ICP-based quantification allows a direct comparison of all methods. Benchmarked against ICP-MS data, spectral CT in the present implementation shows a slight underestimation of organ iodine concentrations compared

  11. Quantitative analysis of computed tomography images and early detection of cerebral edema for pediatric traumatic brain injury patients: retrospective study

    OpenAIRE

    Kim, Hakseung; Kim, Gwang-dong; Yoon, Byung C; Kim, Keewon; Kim, Byung-Jo; Choi, Young Hun; Czosnyka, Marek; Oh, Byung-Mo; Kim, Dong-Joo

    2014-01-01

    Background The purpose of this study was to identify whether the distribution of Hounsfield Unit (HU) values across the intracranial area in computed tomography (CT) images can be used as an effective diagnostic tool for determining the severity of cerebral edema in pediatric traumatic brain injury (TBI) patients. Methods CT images, medical records and radiology reports on 70 pediatric patients were collected. Based on radiology reports and the Marshall classification, the patients were group...

  12. Computed tomography of intussusception in adult

    International Nuclear Information System (INIS)

    Jeon, Hae Jeong; Ahn, Byeong Yeob; Cha, Soon Joo; Seol, Hae Young; Chung, Kyoo Byung; Suh, Won Hyuck

    1984-01-01

    Intussusception is rare in adult and usually caused by organic lesions, although there is a significant number of so-called idiopathic cases. The diagnosis of intussusception have been made by plain abdomen, barium enema and small bowel series. But recently ultrasound and computed tomography make a contribution to diagnose intussusception. Computed tomography is not the primary means for evaluating a gastrointestinal tract abnormality but also provides valuable information in evaluating disorders affecting the hollow viscera of the alimentary tract. Computed tomography image of intussusception demonstrates a whirl like pattern of bowel loops separated by fatty stripe correlating of the intestinal walls. Abdominal ultrasonogram was used as the initial diagnostic test in 2 cases out of total 4 cases, with abdominal mass of unknown cause. It revealed a typical pattern, composed of a round or oval mass with central dense echoes and peripheral poor echoes. We report 4 all cases of intussusception in adult who were performed by computed tomography and/or ultrasound. All cases were correlated with barium enema examination and/or surgical reports.

  13. Volumetric quantification of bone-implant contact using micro-computed tomography analysis based on region-based segmentation.

    Science.gov (United States)

    Kang, Sung-Won; Lee, Woo-Jin; Choi, Soon-Chul; Lee, Sam-Sun; Heo, Min-Suk; Huh, Kyung-Hoe; Kim, Tae-Il; Yi, Won-Jin

    2015-03-01

    We have developed a new method of segmenting the areas of absorbable implants and bone using region-based segmentation of micro-computed tomography (micro-CT) images, which allowed us to quantify volumetric bone-implant contact (VBIC) and volumetric absorption (VA). The simple threshold technique generally used in micro-CT analysis cannot be used to segment the areas of absorbable implants and bone. Instead, a region-based segmentation method, a region-labeling method, and subsequent morphological operations were successively applied to micro-CT images. The three-dimensional VBIC and VA of the absorbable implant were then calculated over the entire volume of the implant. Two-dimensional (2D) bone-implant contact (BIC) and bone area (BA) were also measured based on the conventional histomorphometric method. VA and VBIC increased significantly with as the healing period increased (pimplants using micro-CT analysis using a region-based segmentation method.

  14. TH-CD-206-12: Image-Based Motion Estimation for Plaque Visualization in Coronary Computed Tomography Angiography

    Energy Technology Data Exchange (ETDEWEB)

    Zhang, X; Sisniega, A; Zbijewski, W; Stayman, J [Johns Hopkins University, Balitmore, MD (United States); Contijoch, F; McVeigh, E [University of California, San Diego, San Diego, CA (United States)

    2016-06-15

    Purpose: Visualization and quantification of coronary artery calcification and atherosclerotic plaque benefits from coronary artery motion (CAM) artifact elimination. This work applies a rigid linear motion model to a Volume of Interest (VoI) for estimating motion estimation and compensation of image degradation in Coronary Computed Tomography Angiography (CCTA). Methods: In both simulation and testbench experiments, translational CAM was generated by displacement of the imaging object (i.e. simulated coronary artery and explanted human heart) by ∼8 mm, approximating the motion of a main coronary branch. Rotation was assumed to be negligible. A motion degraded region containing a calcification was selected as the VoI. Local residual motion was assumed to be rigid and linear over the acquisition window, simulating motion observed during diastasis. The (negative) magnitude of the image gradient of the reconstructed VoI was chosen as the motion estimation objective and was minimized with Covariance Matrix Adaptation Evolution Strategy (CMAES). Results: Reconstruction incorporated the estimated CAM yielded signification recovery of fine calcification structures as well as reduced motion artifacts within the selected local region. The compensated reconstruction was further evaluated using two image similarity metrics, the structural similarity index (SSIM) and Root Mean Square Error (RMSE). At the calcification site, the compensated data achieved a 3% increase in SSIM and a 91.2% decrease in RMSE in comparison with the uncompensated reconstruction. Conclusion: Results demonstrate the feasibility of our image-based motion estimation method exploiting a local rigid linear model for CAM compensation. The method shows promising preliminary results for the application of such estimation in CCTA. Further work will involve motion estimation of complex motion corrupted patient data acquired from clinical CT scanner.

  15. Attenuation-based automatic kilovolt (kV)-selection in computed tomography of the chest: effects on radiation exposure and image quality.

    Science.gov (United States)

    Eller, Achim; Wuest, Wolfgang; Scharf, Michael; Brand, Michael; Achenbach, Stephan; Uder, Michael; Lell, Michael M

    2013-12-01

    To evaluate an automated attenuation-based kV-selection in computed tomography of the chest in respect to radiation dose and image quality, compared to a standard 120 kV protocol. 104 patients were examined using a 128-slice scanner. Fifty examinations (58 ± 15 years, study group) were performed using the automated adaption of tube potential (100-140 kV), based on the attenuation profile of the scout scan, 54 examinations (62 ± 14 years, control group) with fixed 120 kV. Estimated CT dose index (CTDI) of the software-proposed setting was compared with a 120 kV protocol. After the scan CTDI volume (CTDIvol) and dose length product (DLP) were recorded. Image quality was assessed by region of interest (ROI) measurements, subjective image quality by two observers with a 4-point scale (3--excellent, 0--not diagnostic). The algorithm selected 100 kV in 78% and 120 kV in 22%. Overall CTDIvol reduction was 26.6% (34% in 100 kV) overall DLP reduction was 22.8% (32.1% in 100 kV) (all pimage quality was excellent in both groups. The attenuation based kV-selection algorithm enables relevant dose reduction (~27%) in chest-CT while keeping image quality parameters at high levels. Copyright © 2013 Elsevier Ireland Ltd. All rights reserved.

  16. The role of positron emission tomography/computed tomography imaging with radiolabeled choline analogues in prostate cancer.

    Science.gov (United States)

    Navarro-Pelayo Láinez, M M; Rodríguez-Fernández, A; Gómez-Río, M; Vázquez-Alonso, F; Cózar-Olmo, J M; Llamas-Elvira, J M

    2014-11-01

    prostate cancer is the most frequent solid malignant tumor in Western Countries. Positron emission tomography/x-ray computed tomography imaging with radiolabeled choline analogues is a useful tool for restaging prostate cancer in patients with rising prostate-specific antigen after radical treatment (in whom conventional imaging techniques have important limitations) as well as in the initial assessment of a selected group of prostate cancer patients. For this reason a literature review is necessary in order to evaluate the usefulness of this imaging test for the diagnosis and treatment of prostate cancer. a MEDLINE (PubMed way) literature search was performed using the search parameters: «Prostate cancer» and «Choline-PET/CT». Other search terms were «Biochemical failure» and/or «Staging» and/or «PSA kinetics». English and Spanish papers were selected; original articles, reviews, systematic reviews and clinical guidelines were included. according to available data, radiolabeled choline analogues plays an important role in the management of prostate cancer, especially in biochemical relapse because technique accuracy is properly correlated with prostate-specific antigen values and kinetics. Although is an emerging diagnostic technique useful in treatment planning of prostate cancer, final recommendations have not been submitted. Copyright © 2013 AEU. Published by Elsevier Espana. All rights reserved.

  17. Molecular Imaging of Cancer Using X-ray Computed Tomography with Protease Targeted Iodinated Activity-Based Probes.

    Science.gov (United States)

    Gaikwad, Hanmant K; Tsvirkun, Darya; Ben-Nun, Yael; Merquiol, Emmanuelle; Popovtzer, Rachela; Blum, Galia

    2018-03-14

    X-ray computed tomography (CT) is a robust, precise, fast, and reliable imaging method that enables excellent spatial resolution and quantification of contrast agents throughout the body. However, CT is largely inadequate for molecular imaging applications due mainly to its low contrast sensitivity that forces the use of large concentrations of contrast agents for detection. To overcome this limitation, we generated a new class of iodinated nanoscale activity-based probes (IN-ABPs) that sufficiently accumulates at the target site by covalently binding cysteine cathepsins that are exceptionally highly expressed in cancer. The IN-ABPs are comprised of a short targeting peptide selective to specific cathepsins, an electrophilic moiety that allows activity-dependent covalent binding, and tags containing dendrimers with up to 48 iodine atoms. IN-ABPs selectively bind and inhibit activity of recombinant and intracellular cathepsin B, L, and S. We compared the in vivo kinetics, biodistribution, and tumor accumulation of IN-ABPs bearing 18 and 48 iodine atoms each, and their control counterparts lacking the targeting moiety. Here we show that although both IN-ABPs bind specifically to cathepsins within the tumor and produce detectable CT contrast, the 48-iodine bearing IN-ABP was found to be optimal with signals over 2.1-fold higher than its nontargeted counterpart. In conclusion, this study shows the synthetic feasibility and potential utility of IN-ABPs as potent contrast agents that enable molecular imaging of tumors using CT.

  18. Radiation dose reduction using a CdZnTe-based computed tomography system: Comparison to flat-panel detectors

    Energy Technology Data Exchange (ETDEWEB)

    Le, Huy Q.; Ducote, Justin L.; Molloi, Sabee [Department of Radiological Sciences, University of California, Irvine, California 92697 (United States)

    2010-03-15

    Purpose: Although x-ray projection mammography has been very effective in early detection of breast cancer, its utility is reduced in the detection of small lesions that are occult or in dense breasts. One drawback is that the inherent superposition of parenchymal structures makes visualization of small lesions difficult. Breast computed tomography using flat-panel detectors has been developed to address this limitation by producing three-dimensional data while at the same time providing more comfort to the patients by eliminating breast compression. Flat panels are charge integrating detectors and therefore lack energy resolution capability. Recent advances in solid state semiconductor x-ray detector materials and associated electronics allow the investigation of x-ray imaging systems that use a photon counting and energy discriminating detector, which is the subject of this article. Methods: A small field-of-view computed tomography (CT) system that uses CdZnTe (CZT) photon counting detector was compared to one that uses a flat-panel detector for different imaging tasks in breast imaging. The benefits afforded by the CZT detector in the energy weighting modes were investigated. Two types of energy weighting methods were studied: Projection based and image based. Simulation and phantom studies were performed with a 2.5 cm polymethyl methacrylate (PMMA) cylinder filled with iodine and calcium contrast objects. Simulation was also performed on a 10 cm breast specimen. Results: The contrast-to-noise ratio improvements as compared to flat-panel detectors were 1.30 and 1.28 (projection based) and 1.35 and 1.25 (image based) for iodine over PMMA and hydroxylapatite over PMMA, respectively. Corresponding simulation values were 1.81 and 1.48 (projection based) and 1.85 and 1.48 (image based). Dose reductions using the CZT detector were 52.05% and 49.45% for iodine and hydroxyapatite imaging, respectively. Image-based weighting was also found to have the least beam

  19. Radiation dose reduction using a CdZnTe-based computed tomography system: Comparison to flat-panel detectors

    International Nuclear Information System (INIS)

    Le, Huy Q.; Ducote, Justin L.; Molloi, Sabee

    2010-01-01

    Purpose: Although x-ray projection mammography has been very effective in early detection of breast cancer, its utility is reduced in the detection of small lesions that are occult or in dense breasts. One drawback is that the inherent superposition of parenchymal structures makes visualization of small lesions difficult. Breast computed tomography using flat-panel detectors has been developed to address this limitation by producing three-dimensional data while at the same time providing more comfort to the patients by eliminating breast compression. Flat panels are charge integrating detectors and therefore lack energy resolution capability. Recent advances in solid state semiconductor x-ray detector materials and associated electronics allow the investigation of x-ray imaging systems that use a photon counting and energy discriminating detector, which is the subject of this article. Methods: A small field-of-view computed tomography (CT) system that uses CdZnTe (CZT) photon counting detector was compared to one that uses a flat-panel detector for different imaging tasks in breast imaging. The benefits afforded by the CZT detector in the energy weighting modes were investigated. Two types of energy weighting methods were studied: Projection based and image based. Simulation and phantom studies were performed with a 2.5 cm polymethyl methacrylate (PMMA) cylinder filled with iodine and calcium contrast objects. Simulation was also performed on a 10 cm breast specimen. Results: The contrast-to-noise ratio improvements as compared to flat-panel detectors were 1.30 and 1.28 (projection based) and 1.35 and 1.25 (image based) for iodine over PMMA and hydroxylapatite over PMMA, respectively. Corresponding simulation values were 1.81 and 1.48 (projection based) and 1.85 and 1.48 (image based). Dose reductions using the CZT detector were 52.05% and 49.45% for iodine and hydroxyapatite imaging, respectively. Image-based weighting was also found to have the least beam

  20. Hepatocellular adenoma: findings at state-of-the-art magnetic resonance imaging, ultrasound, computed tomography and pathologic analysis

    International Nuclear Information System (INIS)

    Hussain, Shahid M.; Bos, Indra C. van den; Dwarkasing, Roy S.; Kuiper, Jan-Willem; Hollander, Jan den

    2006-01-01

    The purpose of this paper is to describe the most recent concepts and pertinent findings of hepatocellular adenomas, including clinical presentation, gross pathology and histology, pathogenesis and transformation into hepatocellular carcinoma (HCC), and imaging findings at ultrasound (US), computed tomography (CT), and magnetic resonance (MR) imaging. (orig.)

  1. MSCT versus CBCT: evaluation of high-resolution acquisition modes for dento-maxillary and skull-base imaging

    Energy Technology Data Exchange (ETDEWEB)

    Dillenseger, Jean-Philippe; Goetz, Christian [Hopitaux Universitaires de Strasbourg, Imagerie Preclinique-UF6237, Pole d' imagerie, Strasbourg (France); Universite de Strasbourg, Icube, equipe MMB, CNRS, Strasbourg (France); Universite de Strasbourg, Federation de Medecine Translationnelle de Strasbourg, Faculte de Medecine, Strasbourg (France); Matern, Jean-Francois [Hopitaux Universitaires de Strasbourg, Imagerie Preclinique-UF6237, Pole d' imagerie, Strasbourg (France); Universite de Strasbourg, Federation de Medecine Translationnelle de Strasbourg, Faculte de Medecine, Strasbourg (France); Gros, Catherine-Isabelle; Bornert, Fabien [Universite de Strasbourg, Federation de Medecine Translationnelle de Strasbourg, Faculte de Medecine, Strasbourg (France); Universite de Strasbourg, Faculte de Chirurgie Dentaire, Strasbourg (France); Le Minor, Jean-Marie [Universite de Strasbourg, Icube, equipe MMB, CNRS, Strasbourg (France); Universite de Strasbourg, Federation de Medecine Translationnelle de Strasbourg, Faculte de Medecine, Strasbourg (France); Universite de Strasbourg, Institut d' Anatomie Normale, Strasbourg (France); Constantinesco, Andre [Hopitaux Universitaires de Strasbourg, Imagerie Preclinique-UF6237, Pole d' imagerie, Strasbourg (France); Choquet, Philippe [Hopitaux Universitaires de Strasbourg, Imagerie Preclinique-UF6237, Pole d' imagerie, Strasbourg (France); Universite de Strasbourg, Icube, equipe MMB, CNRS, Strasbourg (France); Universite de Strasbourg, Federation de Medecine Translationnelle de Strasbourg, Faculte de Medecine, Strasbourg (France); Hopital de Hautepierre, Imagerie Preclinique, Biophysique et Medecine Nucleaire, Strasbourg Cedex (France)

    2014-09-24

    Our aim was to conduct a quantitative and qualitative evaluation of high-resolution skull-bone imaging for dentistry and otolaryngology using different architectures of recent X-ray computed tomography systems. Three multi-slice computed tomography (MSCT) systems and one Cone-beam computed tomography (CBCT) system were used in this study. All apparatuses were tested with installed acquisition modes and proprietary reconstruction software enabling high-resolution bone imaging. Quantitative analyses were performed with small fields of view with the preclinical vmCT phantom, which permits to measure spatial resolution, geometrical accuracy, linearity and homogeneity. Ten operators performed visual qualitative analyses on the vmCT phantom images, and on dry human skull images. Quantitative analysis showed no significant differences between protocols in terms of linearity and geometric accuracy. All MSCT systems present a better homogeneity than the CBCT. Both quantitative and visual analyses demonstrate that CBCT acquisitions are not better than the collimated helical MSCT mode. Our results demonstrate that current high-resolution MSCT protocols could exceed the performance of a previous generation CBCT system for spatial resolution and image homogeneity. (orig.)

  2. MSCT versus CBCT: evaluation of high-resolution acquisition modes for dento-maxillary and skull-base imaging

    International Nuclear Information System (INIS)

    Dillenseger, Jean-Philippe; Goetz, Christian; Matern, Jean-Francois; Gros, Catherine-Isabelle; Bornert, Fabien; Le Minor, Jean-Marie; Constantinesco, Andre; Choquet, Philippe

    2015-01-01

    Our aim was to conduct a quantitative and qualitative evaluation of high-resolution skull-bone imaging for dentistry and otolaryngology using different architectures of recent X-ray computed tomography systems. Three multi-slice computed tomography (MSCT) systems and one Cone-beam computed tomography (CBCT) system were used in this study. All apparatuses were tested with installed acquisition modes and proprietary reconstruction software enabling high-resolution bone imaging. Quantitative analyses were performed with small fields of view with the preclinical vmCT phantom, which permits to measure spatial resolution, geometrical accuracy, linearity and homogeneity. Ten operators performed visual qualitative analyses on the vmCT phantom images, and on dry human skull images. Quantitative analysis showed no significant differences between protocols in terms of linearity and geometric accuracy. All MSCT systems present a better homogeneity than the CBCT. Both quantitative and visual analyses demonstrate that CBCT acquisitions are not better than the collimated helical MSCT mode. Our results demonstrate that current high-resolution MSCT protocols could exceed the performance of a previous generation CBCT system for spatial resolution and image homogeneity. (orig.)

  3. Dual source and dual detector arrays tetrahedron beam computed tomography for image guided radiotherapy

    Science.gov (United States)

    Kim, Joshua; Lu, Weiguo; Zhang, Tiezhi

    2014-02-01

    Cone-beam computed tomography (CBCT) is an important online imaging modality for image guided radiotherapy. But suboptimal image quality and the lack of a real-time stereoscopic imaging function limit its implementation in advanced treatment techniques, such as online adaptive and 4D radiotherapy. Tetrahedron beam computed tomography (TBCT) is a novel online imaging modality designed to improve on the image quality provided by CBCT. TBCT geometry is flexible, and multiple detector and source arrays can be used for different applications. In this paper, we describe a novel dual source-dual detector TBCT system that is specially designed for LINAC radiation treatment machines. The imaging system is positioned in-line with the MV beam and is composed of two linear array x-ray sources mounted aside the electrical portal imaging device and two linear arrays of x-ray detectors mounted below the machine head. The detector and x-ray source arrays are orthogonal to each other, and each pair of source and detector arrays forms a tetrahedral volume. Four planer images can be obtained from different view angles at each gantry position at a frame rate as high as 20 frames per second. The overlapped regions provide a stereoscopic field of view of approximately 10-15 cm. With a half gantry rotation, a volumetric CT image can be reconstructed having a 45 cm field of view. Due to the scatter rejecting design of the TBCT geometry, the system can potentially produce high quality 2D and 3D images with less radiation exposure. The design of the dual source-dual detector system is described, and preliminary results of studies performed on numerical phantoms and simulated patient data are presented.

  4. Dual-contrast agent photon-counting computed tomography of the heart: initial experience.

    Science.gov (United States)

    Symons, Rolf; Cork, Tyler E; Lakshmanan, Manu N; Evers, Robert; Davies-Venn, Cynthia; Rice, Kelly A; Thomas, Marvin L; Liu, Chia-Ying; Kappler, Steffen; Ulzheimer, Stefan; Sandfort, Veit; Bluemke, David A; Pourmorteza, Amir

    2017-08-01

    To determine the feasibility of dual-contrast agent imaging of the heart using photon-counting detector (PCD) computed tomography (CT) to simultaneously assess both first-pass and late enhancement of the myocardium. An occlusion-reperfusion canine model of myocardial infarction was used. Gadolinium-based contrast was injected 10 min prior to PCD CT. Iodinated contrast was infused immediately prior to PCD CT, thus capturing late gadolinium enhancement as well as first-pass iodine enhancement. Gadolinium and iodine maps were calculated using a linear material decomposition technique and compared to single-energy (conventional) images. PCD images were compared to in vivo and ex vivo magnetic resonance imaging (MRI) and histology. For infarct versus remote myocardium, contrast-to-noise ratio (CNR) was maximal on late enhancement gadolinium maps (CNR 9.0 ± 0.8, 6.6 ± 0.7, and 0.4 ± 0.4, p contrast agent cardiac imaging is feasible with photon-counting detector CT. These initial proof-of-concept results may provide incentives to develop new k-edge contrast agents, to investigate possible interactions between multiple simultaneously administered contrast agents, and to ultimately bring them to clinical practice.

  5. Computed tomography of sacro-iliac joints

    International Nuclear Information System (INIS)

    Miquel, A.; Laredo, J.D.

    1995-01-01

    Actual technologies to explore sacro-iliac joints are conventional radiography, computed tomography , scintigraphy and nuclear magnetic resonance imaging. Standards films are sufficient, except in beginning sacro-iliac septic inflammations where the computed tomography is superior. Two problems are generally posed for the radiologist, to differentiate a septic arthritis from a rheumatic pathology An other problem in diagnosis is to make the difference between a degenerative arthropathy (which does not need a further investigation) and an infectious rheumatic pathology where more exploration is necessary. 28 refs., 3 tabs., 13 figs

  6. Sensitivity of photon-counting based K-edge imaging in X-ray computed tomography.

    Science.gov (United States)

    Roessl, Ewald; Brendel, Bernhard; Engel, Klaus-Jürgen; Schlomka, Jens-Peter; Thran, Axel; Proksa, Roland

    2011-09-01

    The feasibility of K-edge imaging using energy-resolved, photon-counting transmission measurements in X-ray computed tomography (CT) has been demonstrated by simulations and experiments. The method is based on probing the discontinuities of the attenuation coefficient of heavy elements above and below the K-edge energy by using energy-sensitive, photon counting X-ray detectors. In this paper, we investigate the dependence of the sensitivity of K-edge imaging on the atomic number Z of the contrast material, on the object diameter D , on the spectral response of the X-ray detector and on the X-ray tube voltage. We assume a photon-counting detector equipped with six adjustable energy thresholds. Physical effects leading to a degradation of the energy resolution of the detector are taken into account using the concept of a spectral response function R(E,U) for which we assume four different models. As a validation of our analytical considerations and in order to investigate the influence of elliptically shaped phantoms, we provide CT simulations of an anthropomorphic Forbild-Abdomen phantom containing a gold-contrast agent. The dependence on the values of the energy thresholds is taken into account by optimizing the achievable signal-to-noise ratios (SNR) with respect to the threshold values. We find that for a given X-ray spectrum and object size the SNR in the heavy element's basis material image peaks for a certain atomic number Z. The dependence of the SNR in the high- Z basis-material image on the object diameter is the natural, exponential decrease with particularly deteriorating effects in the case where the attenuation from the object itself causes a total signal loss below the K-edge. The influence of the energy-response of the detector is very important. We observed that the optimal SNR values obtained with an ideal detector and with a CdTe pixel detector whose response, showing significant tailing, has been determined at a synchrotron differ by factors of

  7. Comparison between computed tomography with oral oil-based contrast and laparotomy for gastric cancer staging

    International Nuclear Information System (INIS)

    Marco, S. F.; Garcia-Vila, J. H.; Cervera, J.; Gomez, R.; Piqueras, R. M.; Perona, I.; Escrig, J.; Salvador, J. L.

    2000-01-01

    To compare the utility of conventional computed tomography (CT) with oral oil-based contrast with that of laparotomy in the preoperative staging of gastric cancer. We prospectively studied 41 patients diagnosed as having gastric adenocarcinoma according to the results of endoscopy and biopsy. Applying the TNM classification for gastric cancer staging, we compared the findings in CT associated with oral oil-based contrast and intraoperative staging with definitive postoperative pathological staging. Definitive pathological studies demonstrated that there were 7 stage T1-T2 lesions, 26 stage T3 and 8 stage T4. The assessment of lymph node involvement showed that 10 patients presented stage N0 and 31 stage N1-N3. Ten patients had metastases. The diagnostic reliability for tumor staging according to CT was 56% versus 80% for laparotomy. In the determination of nodal involvement CT had a diagnostic yield of 71% versus 6% for laparotomy. Metastatic disease was correctly diagnosed by CT in 83% of cases versus 88% by laparotomy. There were no statistically significant differences between CT with oral oil-based contrast and laparotomy for the staging of nodal involvement and metastases. However, the CT diagnosis was significantly more reliable than laparotomy for the determination of tumor infiltration. (Author) 21 refs

  8. Computed tomography in the imaging of colonic diverticulitis

    International Nuclear Information System (INIS)

    Buckley, O.; Geoghegan, T.; O'Riordain, D.S.; Lyburn, I.D.; Torreggiani, W.C.

    2004-01-01

    Colonic diverticulitis occurs when diverticula within the colon become infected or inflamed. It is becoming an increasingly common cause for hospital admission, particularly in western society, where it is linked to a low fibre diet. Symptoms of diverticulitis include abdominal pain, diarrhoea and pyrexia, however, symptoms are often non-specific and the clinical diagnosis may be difficult. In addition, elderly patients and those taking corticosteroids may have limited findings on physical examination, even in the presence of severe diverticulitis. A high index of suspicion is required in such patients in order to avoid a significant delay in arriving at the correct diagnosis. Imaging plays an important role in establishing an early and correct diagnosis. In the past, contrast enema studies were the principal imaging test used to make the diagnosis. However, such studies lack sensitivity and have limited success in identifying abscesses that may require drainage. Conversely computed tomography (CT) is both sensitive and specific in making a diagnosis of diverticulitis. In addition, it is the imaging technique of choice in depicting complications such as perforation, abscess formation and fistulae. CT-guided drainage of diverticular abscesses helps to reduce sepsis and to permit a one-stage, rather than two-stage, surgical operation. The purpose of this review article is to discuss the role of CT in the imaging of diverticulitis, describe the CT imaging features and complications of this disease, as well as review the impact and rationale of CT imaging and intervention in the overall management of patients with diverticulitis

  9. Diagnostic Imaging of the Lower Respiratory Tract in Neonatal Foals: Radiography and Computed Tomography.

    Science.gov (United States)

    Lascola, Kara M; Joslyn, Stephen

    2015-12-01

    Diagnostic imaging plays an essential role in the diagnosis and monitoring of lower respiratory disease in neonatal foals. Radiography is most widely available to equine practitioners and is the primary modality that has been used for the characterization of respiratory disease in foals. Computed tomography imaging, although still limited in availability to the general practitioner, offers advantages over radiography and has been used diagnostically in neonatal foals with respiratory disease. Recognition of appropriate imaging protocols and patient-associated artifacts is critical for accurate image interpretation regardless of the modality used. Copyright © 2015 Elsevier Inc. All rights reserved.

  10. The study of radiographic technique with low exposure using computed panoramic tomography

    International Nuclear Information System (INIS)

    Saito, Yasuhiro

    1987-01-01

    A new imaging system for the dental field that combines recent advances in both the electronics and computer technologies was developed. This new imaging system is a computed panoramic tomography process based on the newly developed laser-scan system. In this study a quantitative image evaluation was performed comparing anatomical landmark in computed panoramic tomography at a low exposure (LPT) and in conventional panoramic tomography at a routin (CPT), and the following results were obtained: 1. The diagnostic value of the CPT decreased with decreasing exposure, paticularly with regard to the normal anatomical landmarks of such microstructural parts as the periodontal space, lamina dura and the enamel-dentin border. 2. The LPT was highly diagnostic value for all normal anatomical landmark, averaging about twice as valuable diagnostically as CPT. 3. The visually diagnostic value of the periodontal space, lamina dura, enamel-dentin border and the anatomical morphology of the teeth on the LPT beeing slightly dependent on the spatial frequency enhancement rank. 4. The LPT formed images with almost the same range of density as the CPT. 5. Computed panoramic tomographs taken at a low exposure revealed more information of the trabecular bone pattern on the image than conventional panoramic tomographs taken under routine condition in the visual spatial frequency range (0.1 - 5.0 cycle/mm). (author) 67 refs

  11. Comparative evaluation of computed tomography for dental implants on the mandibular edentulous area

    Energy Technology Data Exchange (ETDEWEB)

    Sun, Kyung Hoon; Jeong, Ho Gul; Park, Hyok; Park, Chang Seo; Kim, Kee Deog [Department of Oral and Maxillofacial Radiology, Oral Science Research Center, College of Dentistry, Yonsei University, Seoul (Korea, Republic of)

    2009-03-15

    The purpose of this study was to evaluate the clinical usefulness of the recently developed multi-detector computed tomography and cone beam computed tomography in pre-operative implant evaluation, by comparing them with the single detector computed tomography, already confirmed for accuracy in this area. Five partially edentulous dry human mandibles, with 1 X 1 mm gutta percha cones, placed in 5 mm intervals posterior to the mental foramen on each side of the buccal part of the mandible, were used in this study. They were scanned as follows: 1) Single detector computed tomography: slice thickness 1 mm, 200 mA, 120 kV 2) Multi-detector computed tomography: slice thickness 0.75 mm, 250 mA, 120 kV 3) Cone beam computed tomography: 15 mAs, 120 kV Axial images acquired from three computed tomographs were transferred to personal computer, and then reformatted cross-sectional images were generated using V-Implant 2.0 (CyberMed Inc., Seoul, Korea) software. Among the cross-sectional images of the gutta percha cone, placed in the buccal body of the mandible, the most precise cross section was selected as the measuring point and the distance from the most superior border of the mandibular canal to the alveolar crest was measured and analyzed 10 times by a dentist. There were no significant intraobserver differences in the distance from the most superior border of the mandibular canal to the alveolar crest (p>0.05). There were no significant differences among single detector computed tomography, multi-detector computed tomography and cone beam computed tomography in the distance from the most superior border of the mandibular canal to the alveolar crest (p>0.05). Multi-detector computed tomography and cone beam computed tomography are clinically useful in the evaluation of pre-operative site for mandibular dental implants, with consideration for radiation exposure dose and scanning time.

  12. Comparative evaluation of computed tomography for dental implants on the mandibular edentulous area

    International Nuclear Information System (INIS)

    Sun, Kyung Hoon; Jeong, Ho Gul; Park, Hyok; Park, Chang Seo; Kim, Kee Deog

    2009-01-01

    The purpose of this study was to evaluate the clinical usefulness of the recently developed multi-detector computed tomography and cone beam computed tomography in pre-operative implant evaluation, by comparing them with the single detector computed tomography, already confirmed for accuracy in this area. Five partially edentulous dry human mandibles, with 1 X 1 mm gutta percha cones, placed in 5 mm intervals posterior to the mental foramen on each side of the buccal part of the mandible, were used in this study. They were scanned as follows: 1) Single detector computed tomography: slice thickness 1 mm, 200 mA, 120 kV 2) Multi-detector computed tomography: slice thickness 0.75 mm, 250 mA, 120 kV 3) Cone beam computed tomography: 15 mAs, 120 kV Axial images acquired from three computed tomographs were transferred to personal computer, and then reformatted cross-sectional images were generated using V-Implant 2.0 (CyberMed Inc., Seoul, Korea) software. Among the cross-sectional images of the gutta percha cone, placed in the buccal body of the mandible, the most precise cross section was selected as the measuring point and the distance from the most superior border of the mandibular canal to the alveolar crest was measured and analyzed 10 times by a dentist. There were no significant intraobserver differences in the distance from the most superior border of the mandibular canal to the alveolar crest (p>0.05). There were no significant differences among single detector computed tomography, multi-detector computed tomography and cone beam computed tomography in the distance from the most superior border of the mandibular canal to the alveolar crest (p>0.05). Multi-detector computed tomography and cone beam computed tomography are clinically useful in the evaluation of pre-operative site for mandibular dental implants, with consideration for radiation exposure dose and scanning time.

  13. Computed Tomography. Chapter 11

    Energy Technology Data Exchange (ETDEWEB)

    Geleijns, J. [Leiden University Medical Centre, Leiden (Netherlands)

    2014-09-15

    After its clinical introduction in 1971, computed tomography (CT) developed from an X ray modality that was limited to axial imaging of the brain in neuroradiology into a versatile 3-D whole body imaging modality for a wide range of applications, including oncology, vascular radiology, cardiology, traumatology and interventional radiology. CT is applied for diagnosis and follow-up studies of patients, for planning of radiotherapy, and even for screening of healthy subpopulations with specific risk factors.

  14. Dynamic X-ray computed tomography

    International Nuclear Information System (INIS)

    Grangeat, P.

    2003-01-01

    Paper Dynamic computed tomography (CT) imaging aims at reconstructing image sequences where the dynamic nature of the living human body is of primary interest. Main concerned applications are image-guided interventional procedures, functional studies and cardiac imaging. The introduction of ultra-fast rotating gantries along with multi-row detectors and in near future area detectors allows a huge progress toward the imaging of moving organs with low-contrast resolution. This paper gives an overview of the different concepts used in dynamic CT. A new reconstruction algorithm based on a voxel-specific dynamic evolution compensation is also presented. It provides four-dimensional image sequences with accurate spatio-temporal information, where each frame is reconstructed using a long-scan acquisition mode on several half-turns. In the same time, this technique permits to reduce the dose delivered per rotation while keeping the same signal to noise ratio for every frame using an adaptive motion-compensated temporal averaging. Results are illustrated on simulated data. (authors)

  15. Effect of radiation dose and adaptive statistical iterative reconstruction on image quality of pulmonary computed tomography

    International Nuclear Information System (INIS)

    Sato, Jiro; Akahane, Masaaki; Inano, Sachiko; Terasaki, Mariko; Akai, Hiroyuki; Katsura, Masaki; Matsuda, Izuru; Kunimatsu, Akira; Ohtomo, Kuni

    2012-01-01

    The purpose of this study was to assess the effects of dose and adaptive statistical iterative reconstruction (ASIR) on image quality of pulmonary computed tomography (CT). Inflated and fixed porcine lungs were scanned with a 64-slice CT system at 10, 20, 40 and 400 mAs. Using automatic exposure control, 40 mAs was chosen as standard dose. Scan data were reconstructed with filtered back projection (FBP) and ASIR. Image pairs were obtained by factorial combination of images at a selected level. Using a 21-point scale, three experienced radiologists independently rated differences in quality between adjacently displayed paired images for image noise, image sharpness and conspicuity of tiny nodules. A subjective quality score (SQS) for each image was computed based on Anderson's functional measurement theory. The standard deviation was recorded as a quantitative noise measurement. At all doses examined, SQSs improved with ASIR for all evaluation items. No significant differences were noted between the SQSs for 40%-ASIR images obtained at 20 mAs and those for FBP images at 40 mAs. Compared to the FBP algorithm, ASIR for lung CT can enable an approximately 50% dose reduction from the standard dose while preserving visualization of small structures. (author)

  16. Initial water quantification results using neutron computed tomography

    Science.gov (United States)

    Heller, A. K.; Shi, L.; Brenizer, J. S.; Mench, M. M.

    2009-06-01

    Neutron computed tomography is an important imaging tool in the field of non-destructive testing and in fundamental research for many engineering applications. Contrary to X-rays, neutrons can be attenuated by some light materials, such as hydrogen, but can penetrate many heavy materials. Thus, neutron computed tomography is useful in obtaining important three-dimensional information about a sample's interior structure and material properties that other traditional methods cannot provide. The neutron computed tomography system at the Pennsylvania State University's Radiation Science and Engineering Center is being utilized to develop a water quantification technique for investigation of water distribution in fuel cells under normal conditions. A hollow aluminum cylinder test sample filled with a known volume of water was constructed for purposes of testing the quantification technique. Transmission images of the test sample at different angles were easily acquired through the synthesis of a dedicated image acquisition computer driving a rotary table controller and an in-house developed synchronization software package. After data acquisition, Octopus (version 8.2) and VGStudio Max (version 1.2) were used to perform cross-sectional and three-dimensional reconstructions of the sample, respectively. The initial reconstructions and water quantification results are presented.

  17. Filter-based reconstruction methods for tomography

    NARCIS (Netherlands)

    Pelt, D.M.

    2016-01-01

    In X-ray tomography, a three-dimensional image of the interior of an object is computed from multiple X-ray images, acquired over a range of angles. Two types of methods are commonly used to compute such an image: analytical methods and iterative methods. Analytical methods are computationally

  18. Single-energy computed tomography-based pulmonary perfusion imaging: Proof-of-principle in a canine model

    Energy Technology Data Exchange (ETDEWEB)

    Yamamoto, Tokihiro, E-mail: toyamamoto@ucdavis.edu [Department of Radiation Oncology, University of California Davis School of Medicine, Sacramento, California 95817 (United States); Kent, Michael S.; Wisner, Erik R. [Department of Surgical and Radiological Sciences, University of California Davis School of Veterinary Medicine, Davis, California 95616 (United States); Johnson, Lynelle R.; Stern, Joshua A. [Department of Medicine and Epidemiology, University of California Davis School of Veterinary Medicine, Davis, California 95616 (United States); Qi, Lihong [Department of Public Health Sciences, University of California Davis, Davis, California 95616 (United States); Fujita, Yukio [Department of Radiation Oncology, Tokai University, Isehara, Kanagawa 259-1193 (Japan); Boone, John M. [Department of Radiology, University of California Davis School of Medicine, Sacramento, California 95817 (United States)

    2016-07-15

    Purpose: Radiotherapy (RT) that selectively avoids irradiating highly functional lung regions may reduce pulmonary toxicity, which is substantial in lung cancer RT. Single-energy computed tomography (CT) pulmonary perfusion imaging has several advantages (e.g., higher resolution) over other modalities and has great potential for widespread clinical implementation, particularly in RT. The purpose of this study was to establish proof-of-principle for single-energy CT perfusion imaging. Methods: Single-energy CT perfusion imaging is based on the following: (1) acquisition of end-inspiratory breath-hold CT scans before and after intravenous injection of iodinated contrast agents, (2) deformable image registration (DIR) for spatial mapping of those two CT image data sets, and (3) subtraction of the precontrast image data set from the postcontrast image data set, yielding a map of regional Hounsfield unit (HU) enhancement, a surrogate for regional perfusion. In a protocol approved by the institutional animal care and use committee, the authors acquired CT scans in the prone position for a total of 14 anesthetized canines (seven canines with normal lungs and seven canines with diseased lungs). The elastix algorithm was used for DIR. The accuracy of DIR was evaluated based on the target registration error (TRE) of 50 anatomic pulmonary landmarks per subject for 10 randomly selected subjects as well as on singularities (i.e., regions where the displacement vector field is not bijective). Prior to perfusion computation, HUs of the precontrast end-inspiratory image were corrected for variation in the lung inflation level between the precontrast and postcontrast end-inspiratory CT scans, using a model built from two additional precontrast CT scans at end-expiration and midinspiration. The authors also assessed spatial heterogeneity and gravitationally directed gradients of regional perfusion for normal lung subjects and diseased lung subjects using a two-sample two-tailed t

  19. Single-energy computed tomography-based pulmonary perfusion imaging: Proof-of-principle in a canine model.

    Science.gov (United States)

    Yamamoto, Tokihiro; Kent, Michael S; Wisner, Erik R; Johnson, Lynelle R; Stern, Joshua A; Qi, Lihong; Fujita, Yukio; Boone, John M

    2016-07-01

    Radiotherapy (RT) that selectively avoids irradiating highly functional lung regions may reduce pulmonary toxicity, which is substantial in lung cancer RT. Single-energy computed tomography (CT) pulmonary perfusion imaging has several advantages (e.g., higher resolution) over other modalities and has great potential for widespread clinical implementation, particularly in RT. The purpose of this study was to establish proof-of-principle for single-energy CT perfusion imaging. Single-energy CT perfusion imaging is based on the following: (1) acquisition of end-inspiratory breath-hold CT scans before and after intravenous injection of iodinated contrast agents, (2) deformable image registration (DIR) for spatial mapping of those two CT image data sets, and (3) subtraction of the precontrast image data set from the postcontrast image data set, yielding a map of regional Hounsfield unit (HU) enhancement, a surrogate for regional perfusion. In a protocol approved by the institutional animal care and use committee, the authors acquired CT scans in the prone position for a total of 14 anesthetized canines (seven canines with normal lungs and seven canines with diseased lungs). The elastix algorithm was used for DIR. The accuracy of DIR was evaluated based on the target registration error (TRE) of 50 anatomic pulmonary landmarks per subject for 10 randomly selected subjects as well as on singularities (i.e., regions where the displacement vector field is not bijective). Prior to perfusion computation, HUs of the precontrast end-inspiratory image were corrected for variation in the lung inflation level between the precontrast and postcontrast end-inspiratory CT scans, using a model built from two additional precontrast CT scans at end-expiration and midinspiration. The authors also assessed spatial heterogeneity and gravitationally directed gradients of regional perfusion for normal lung subjects and diseased lung subjects using a two-sample two-tailed t-test. The mean TRE

  20. Single-energy computed tomography-based pulmonary perfusion imaging: Proof-of-principle in a canine model

    International Nuclear Information System (INIS)

    Yamamoto, Tokihiro; Kent, Michael S.; Wisner, Erik R.; Johnson, Lynelle R.; Stern, Joshua A.; Qi, Lihong; Fujita, Yukio; Boone, John M.

    2016-01-01

    Purpose: Radiotherapy (RT) that selectively avoids irradiating highly functional lung regions may reduce pulmonary toxicity, which is substantial in lung cancer RT. Single-energy computed tomography (CT) pulmonary perfusion imaging has several advantages (e.g., higher resolution) over other modalities and has great potential for widespread clinical implementation, particularly in RT. The purpose of this study was to establish proof-of-principle for single-energy CT perfusion imaging. Methods: Single-energy CT perfusion imaging is based on the following: (1) acquisition of end-inspiratory breath-hold CT scans before and after intravenous injection of iodinated contrast agents, (2) deformable image registration (DIR) for spatial mapping of those two CT image data sets, and (3) subtraction of the precontrast image data set from the postcontrast image data set, yielding a map of regional Hounsfield unit (HU) enhancement, a surrogate for regional perfusion. In a protocol approved by the institutional animal care and use committee, the authors acquired CT scans in the prone position for a total of 14 anesthetized canines (seven canines with normal lungs and seven canines with diseased lungs). The elastix algorithm was used for DIR. The accuracy of DIR was evaluated based on the target registration error (TRE) of 50 anatomic pulmonary landmarks per subject for 10 randomly selected subjects as well as on singularities (i.e., regions where the displacement vector field is not bijective). Prior to perfusion computation, HUs of the precontrast end-inspiratory image were corrected for variation in the lung inflation level between the precontrast and postcontrast end-inspiratory CT scans, using a model built from two additional precontrast CT scans at end-expiration and midinspiration. The authors also assessed spatial heterogeneity and gravitationally directed gradients of regional perfusion for normal lung subjects and diseased lung subjects using a two-sample two-tailed t

  1. Computed tomography in the evaluation of acquired stenosis in the neonate

    International Nuclear Information System (INIS)

    Faw, K.; Muntz, H.; Siegel, M.; Spector, G.

    1982-01-01

    We studied the feasibility of computed tomographic evaluation of the neonatal airway. Three neonatal larynges, removed at necroscopy, were examined by computed tomography. Good resolution of soft tissue, cartilage and airway lumen was obtained in these small specimens. On the basis of these findings two neonates with acquired subglottic stenosis were examined by endoscopy, soft tissue airway radiographs, and computed tomography. Measurements of radiation dose revealed that a computed tomographic study delivered 36% of the mean tissue dose of standard image intensifier fluoroscopy. Computed tomography and fluoroscopy both demonstrated the degree and length of this stenosis accurately. An advantage of CT over conventional imaging procedures was better definition of the cross sectional area of the airway

  2. Contemporary imaging: Magnetic resonance imaging, computed tomography, and interventional radiology

    International Nuclear Information System (INIS)

    Goldberg, H.I.; Higgins, C.; Ring, E.J.

    1985-01-01

    In addition to discussing the most recent advances in magnetic resonance imaging (MRI), computerized tomography (CT), and the vast array of interventional procedures, this book explores the appropriate clinical applications of each of these important modalities

  3. Computed tomography in gastrointestinal stromal tumors

    International Nuclear Information System (INIS)

    Ghanem, Nadir; Altehoefer, Carsten; Winterer, Jan; Schaefer, Oliver; Springer, Oliver; Kotter, Elmar; Langer, Mathias; Furtwaengler, Alex

    2003-01-01

    The aim of this study was to define the imaging characteristics of primary and recurrent gastrointestinal stromal tumors (GIST) in computed tomography with respect to the tumor size. Computed tomography was performed in 35 patients with histologically confirmed gastrointestinal stromal tumors and analyzed retrospectively by two experienced and independent radiologist. The following morphologic tumor characteristics of primary (n=20) and (n=16) recurrent tumors were evaluated according to tumor size, shape, homogeneity, density compared with liver, contrast enhancement, presence of calcifications, ulcerations, fistula or distant metastases and the anatomical relationship to the intestinal wall, and the infiltration of adjacent visceral organs. Small GIST ( 5-10 cm) demonstrated an irregular shape, inhomogeneous density on unenhanced and contrast-enhanced images, a combined intra- and extraluminal tumor growth with aggressive findings, and infiltration of adjacent organs in 9 primary diagnosed and 2 recurrent tumors. Large GIST (>10 cm), which were observed in 8 primary tumors and 11 recurrent tumors, showed an irregular margin with inhomogeneous density and aggressive findings, and were characterized by signs of malignancy such as distant and peritoneal metastases. Small recurrent tumors had a similar appearance as compared with large primary tumors. Computed tomography gives additional information with respect to the relationship of gastrointestinal stromal tumor to the gastrointestinal wall and surrounding organs, and it detects distant metastasis. Primary and recurrent GIST demonstrate characteristic CT imaging features which are related to tumor size. Aggressive findings and signs of malignancy are found in larger tumors and in recurrent disease. Computed tomography is useful in detection and characterization of primary and recurrent tumors with regard to tumor growth pattern, tumor size, and varied appearances of gastrointestinal stromal tumors, and indirectly

  4. Texture analysis of computed tomography images of acute ischemic stroke patients

    International Nuclear Information System (INIS)

    Oliveira, M.S.; Castellano, G.; Fernandes, P.T.; Avelar, W.M.; Santos, S.L.M.; Li, L.M.

    2009-01-01

    Computed tomography (CT) images are routinely used to assess ischemic brain stroke in the acute phase. They can provide important clues about whether to treat the patient by thrombolysis with tissue plasminogen activator. However, in the acute phase, the lesions may be difficult to detect in the images using standard visual analysis. The objective of the present study was to determine if texture analysis techniques applied to CT images of stroke patients could differentiate between normal tissue and affected areas that usually go unperceived under visual analysis. We performed a pilot study in which texture analysis, based on the gray level co-occurrence matrix, was applied to the CT brain images of 5 patients and of 5 control subjects and the results were compared by discriminant analysis. Thirteen regions of interest, regarding areas that may be potentially affected by ischemic stroke, were selected for calculation of texture parameters. All regions of interest for all subjects were classified as lesional or non-lesional tissue by an expert neuroradiologist. Visual assessment of the discriminant analysis graphs showed differences in the values of texture parameters between patients and controls, and also between texture parameters for lesional and non-lesional tissue of the patients. This suggests that texture analysis can indeed be a useful tool to help neurologists in the early assessment of ischemic stroke and quantification of the extent of the affected areas. (author)

  5. Simulation of computed tomography dose based on voxel phantom

    Science.gov (United States)

    Liu, Chunyu; Lv, Xiangbo; Li, Zhaojun

    2017-01-01

    Computed Tomography (CT) is one of the preferred and the most valuable imaging tool used in diagnostic radiology, which provides a high-quality cross-sectional image of the body. It still causes higher doses of radiation to patients comparing to the other radiological procedures. The Monte-Carlo method is appropriate for estimation of the radiation dose during the CT examinations. The simulation of the Computed Tomography Dose Index (CTDI) phantom was developed in this paper. Under a similar conditions used in physical measurements, dose profiles were calculated and compared against the measured values that were reported. The results demonstrate a good agreement between the calculated and the measured doses. From different CT exam simulations using the voxel phantom, the highest absorbed dose was recorded for the lung, the brain, the bone surface. A comparison between the different scan type shows that the effective dose for a chest scan is the highest one, whereas the effective dose values during abdomen and pelvis scan are very close, respectively. The lowest effective dose resulted from the head scan. Although, the dose in CT is related to various parameters, such as the tube current, exposure time, beam energy, slice thickness and patient size, this study demonstrates that the MC simulation is a useful tool to accurately estimate the dose delivered to any specific organs for patients undergoing the CT exams and can be also a valuable technique for the design and the optimization of the CT x-ray source.

  6. Image reconstruction using three-dimensional compound Gauss-Markov random field in emission computed tomography

    International Nuclear Information System (INIS)

    Watanabe, Shuichi; Kudo, Hiroyuki; Saito, Tsuneo

    1993-01-01

    In this paper, we propose a new reconstruction algorithm based on MAP (maximum a posteriori probability) estimation principle for emission tomography. To improve noise suppression properties of the conventional ML-EM (maximum likelihood expectation maximization) algorithm, direct three-dimensional reconstruction that utilizes intensity correlations between adjacent transaxial slices is introduced. Moreover, to avoid oversmoothing of edges, a priori knowledge of RI (radioisotope) distribution is represented by using a doubly-stochastic image model called the compound Gauss-Markov random field. The a posteriori probability is maximized by using the iterative GEM (generalized EM) algorithm. Computer simulation results are shown to demonstrate validity of the proposed algorithm. (author)

  7. Molecular Imaging and Precision Medicine: PET/Computed Tomography and Therapy Response Assessment in Oncology.

    Science.gov (United States)

    Sheikhbahaei, Sara; Mena, Esther; Pattanayak, Puskar; Taghipour, Mehdi; Solnes, Lilja B; Subramaniam, Rathan M

    2017-01-01

    A variety of methods have been developed to assess tumor response to therapy. Standardized qualitative criteria based on 18F-fluoro-deoxyglucose PET/computed tomography have been proposed to evaluate the treatment effectiveness in specific cancers and these allow more accurate therapy response assessment and survival prognostication. Multiple studies have addressed the utility of the volumetric PET biomarkers as prognostic indicators but there is no consensus about the preferred segmentation methodology for these metrics. Heterogeneous intratumoral uptake was proposed as a novel PET metric for therapy response assessment. PET imaging techniques will be used to study the biological behavior of cancers during therapy. Copyright © 2016 Elsevier Inc. All rights reserved.

  8. Computed Tomography (CT) Imaging of Injuries from Blunt Abdominal Trauma: A Pictorial Essay.

    Science.gov (United States)

    Hassan, Radhiana; Abd Aziz, Azian

    2010-04-01

    Blunt abdominal trauma can cause multiple internal injuries. However, these injuries are often difficult to accurately evaluate, particularly in the presence of more obvious external injuries. Computed tomography (CT) imaging is currently used to assess clinically stable patients with blunt abdominal trauma. CT can provide a rapid and accurate appraisal of the abdominal viscera, retroperitoneum and abdominal wall, as well as a limited assessment of the lower thoracic region and bony pelvis. This paper presents examples of various injuries in trauma patients depicted in abdominal CT images. We hope these images provide a resource for radiologists, surgeons and medical officers, as well as a learning tool for medical students.

  9. Patient Study of In Vivo Verification of Beam Delivery and Range, Using Positron Emission Tomography and Computed Tomography Imaging After Proton Therapy

    International Nuclear Information System (INIS)

    Parodi, Katia; Paganetti, Harald; Shih, Helen A.; Michaud, Susan; Loeffler, Jay S.; DeLaney, Thomas F.; Liebsch, Norbert J.; Munzenrider, John E.; Fischman, Alan J.; Knopf, Antje; Bortfeld, Thomas

    2007-01-01

    Purpose: To investigate the feasibility and value of positron emission tomography and computed tomography (PET/CT) for treatment verification after proton radiotherapy. Methods and Materials: This study included 9 patients with tumors in the cranial base, spine, orbit, and eye. Total doses of 1.8-3 GyE and 10 GyE (for an ocular melanoma) per fraction were delivered in 1 or 2 fields. Imaging was performed with a commercial PET/CT scanner for 30 min, starting within 20 min after treatment. The same treatment immobilization device was used during imaging for all but 2 patients. Measured PET/CT images were coregistered to the planning CT and compared with the corresponding PET expectation, obtained from CT-based Monte Carlo calculations complemented by functional information. For the ocular case, treatment position was approximately replicated, and spatial correlation was deduced from reference clips visible in both the planning radiographs and imaging CT. Here, the expected PET image was obtained from an analytical model. Results: Good spatial correlation and quantitative agreement within 30% were found between the measured and expected activity. For head-and-neck patients, the beam range could be verified with an accuracy of 1-2 mm in well-coregistered bony structures. Low spine and eye sites indicated the need for better fixation and coregistration methods. An analysis of activity decay revealed as tissue-effective half-lives of 800-1,150 s. Conclusions: This study demonstrates the feasibility of postradiation PET/CT for in vivo treatment verification. It also indicates some technological and methodological improvements needed for optimal clinical application

  10. Progress in analysis of computed tomography (CT) images of hardwood logs for defect detection

    Science.gov (United States)

    Erol Sarigul; A. Lynn Abbott; Daniel L. Schmoldt

    2003-01-01

    This paper addresses the problem of automatically detecting internal defects in logs using computed tomography (CT) images. The overall purpose is to assist in breakdown optimization. Several studies have shown that the commercial value of resulting boards can be increased substantially if defect locations are known in advance, and if this information is used to make...

  11. Aortic endograft surveillance: use of fast-switch kVp dual-energy computed tomography with virtual noncontrast imaging.

    Science.gov (United States)

    Maturen, Katherine E; Kleaveland, Patricia A; Kaza, Ravi K; Liu, Peter S; Quint, Leslie E; Khalatbari, Shokoufeh H; Platt, Joel F

    2011-01-01

    To assess endoleak detection and patients' radiation exposure using fast-switch peak kilovoltage (kVp) dual-energy computed tomography (DECT) with virtual noncontrast (VNC) imaging. Institutional review board approved retrospective review of triphasic CTs for endograft follow-up: single-energy true noncontrast (TNC) and dual-energy arterial- and venous-phase postcontrast scans on GE HD-750 64-detector scanners. Iodine-subtracted VNC images generated from dual-energy data. Two radiologists (VNC readers) independently performed 2 reading sessions without TNC images: (1) arterial and VNC and (2) venous and VNC. Interrater agreement, leak detection sensitivity, and dose estimates were calculated. Original dictations described 24 endoleaks in 78 scans. Virtual noncontrast reader agreement was high (κ = 0.78-0.79). Virtual noncontrast reader ranges for sensitivity and negative predictive value for leak detection were 87.5% to 95.8% and 94.0% to 98.0% in venous phase. Dose reduction estimate was 40% by eliminating one phase and 64% by eliminating 2 phases of imaging. Virtual noncontrast images from fast-switch peak kilovoltage DECT data can substitute for TNC imaging in the postendograft aorta, conferring substantial dose reduction. Eliminating 1 of 2 postcontrast phases further reduces dose, with greater negative predictive value for leak detection in the venous versus the arterial phase. Thus, the use of a monophasic venous-phase DECT with VNC images is suggested for long-term endograft surveillance in stable patients.

  12. Magnetic resonance imaging and computed tomography of the temporomandibular joint: beyond dysfunction

    Energy Technology Data Exchange (ETDEWEB)

    Garcia, Marcelo de Mattos; Machado, Karina Freitas Soares [Clinica Axial Centro de Imagem, Belo Horizonte, MG (Brazil). Radiologia; Mascarenhas, Marcelo Henrique [Associacao Brasileira de Odontologia de Minas Gerais, Belo Horizonte, MG (Brazil). Curso de Especializacao em Disfuncao Temporomandibular e Dor Orofacial

    2008-09-15

    Several diseases should be considered in the differential diagnosis of disorders affecting the temporomandibular joints. Internal derangement is the main condition responsible for pain related to this joint. Clinical signs may, though, be quite non-specific, and many other conditions present with similar and not infrequently indistinguishable signs and symptoms. In the present study, the authors describe several non-dysfunctional conditions affecting the temporomandibular joints through computed tomography and magnetic resonance imaging, emphasizing the importance of these imaging methods in the diagnosis of inflammatory, neoplastic and traumatic diseases of this region. Considering that clinical presentations are frequently non-specific, radiologists play a critical role in the differential diagnosis. (author)

  13. Magnetic resonance imaging and computed tomography of the temporomandibular joint: beyond dysfunction

    International Nuclear Information System (INIS)

    Garcia, Marcelo de Mattos; Machado, Karina Freitas Soares; Mascarenhas, Marcelo Henrique

    2008-01-01

    Several diseases should be considered in the differential diagnosis of disorders affecting the temporomandibular joints. Internal derangement is the main condition responsible for pain related to this joint. Clinical signs may, though, be quite non-specific, and many other conditions present with similar and not infrequently indistinguishable signs and symptoms. In the present study, the authors describe several non-dysfunctional conditions affecting the temporomandibular joints through computed tomography and magnetic resonance imaging, emphasizing the importance of these imaging methods in the diagnosis of inflammatory, neoplastic and traumatic diseases of this region. Considering that clinical presentations are frequently non-specific, radiologists play a critical role in the differential diagnosis. (author)

  14. A comparative study for image quality and radiation dose of a cone beam computed tomography scanner and a multislice computed tomography scanner for paranasal sinus imaging.

    Science.gov (United States)

    De Cock, Jens; Zanca, Federica; Canning, John; Pauwels, Ruben; Hermans, Robert

    2015-07-01

    To evaluate image quality and radiation dose of a state of the art cone beam computed tomography (CBCT) system and a multislice computed tomography (MSCT) system in patients with sinonasal poliposis. In this retrospective study two radiologists evaluated 57 patients with sinonasal poliposis who underwent a CBCT or MSCT sinus examination, along with a control group of 90 patients with normal radiological findings. Tissue doses were measured using a phantom model with thermoluminescent dosimeters (TLD). Overall image quality in CBCT was scored significantly higher than in MSCT in patients with normal radiologic findings (p-value: 0.00001). In patients with sinonasal poliposis, MSCT scored significantly higher than CBCT (p-value: 0.00001). The average effective dose for MSCT was 42% higher compared to CBCT (108 μSv vs 63 μSv). CBCT and MSCT are both suited for the evaluation of sinonasal poliposis. In patients with sinonasal poliposis, clinically important structures of the paranasal sinuses can be better delineated with MSCT, whereas in patients without sinonasal poliposis, CBCT turns out to define the important structures of the sinonasal region better. However, given the lower radiation dose, CBCT can be considered for the evaluation of the sinonasal structures in patients with sinonasal poliposis. • CBCT and MSCT are both suited for evaluation of sinonasal poliposis. • Effective dose for MSCT was 42% higher compared to CBCT. • In patients with sinonasal poliposis, clinically important anatomical structures are better delineated with MSCT. • In patients with normal radiological findings, clinically important anatomical structures are better delineated with CBCT.

  15. Single-photon emission computed tomography/computed tomography in lung cancer and malignant lymphoma.

    Science.gov (United States)

    Schillaci, Orazio

    2006-10-01

    In nuclear oncology, despite the fast-growing diffusion of (18)F-fluorodeoxyglucose positron emission tomography (FDG-PET), single-photon emission computed tomography (SPECT) studies can still play an useful clinical role in several applications. The main limitation of SPECT imaging with tumor-seeking agents is the lack of the structural delineation of the pathologic processes they detect; this drawback sometimes renders SPECT interpretation difficult and can diminish its diagnostic accuracy. Fusion with morphological studies can overcome this limitation by giving an anatomical map to scintigraphic data. In the past, software-based fusion of independently performed SPECT and CT images proved to be time-consuming and impractical for routine use. The recent development of dual-modality integrated imaging systems that provide functional (SPECT) and anatomical (CT) images in the same scanning session, with the acquired images coregistered by means of the hardware, has opened a new era in this field. The first reports indicate that SPECT/CT is very useful in cancer imaging because it is able to provide further information of clinical value in several cases. In SPECT, studies of lung cancer and malignant lymphomas using different radiopharmaceutical, hybrid images are of value in providing the correct localization of tumor sites, with a precise detection of the involved organs, and the definition of their functional status, and in allowing the exclusion of disease in sites of physiologic tracer uptake. Therefore, in lung cancer and lymphomas, hybrid SPECT/CT can play a role in the diagnosis of the primary tumor, in the staging of the disease, in the follow-up, in the monitoring of therapy, in the detection of recurrence, and in dosimetric estimations for target radionuclide therapy.

  16. Computed tomography of projectile injuries

    International Nuclear Information System (INIS)

    Jeffery, A.J.; Rutty, G.N.; Robinson, C.; Morgan, B.

    2008-01-01

    Computed tomography (CT) is a gold standard in clinical imaging but forensic professions have been slow to embrace radiological advances. Forensic applications of CT are now exponentially expanding, replacing other imaging methods. As post-mortem cross-sectional imaging increases, radiologists will fall under increasing pressure to interpret complex forensic cases involving both living and deceased patients. This review presents a wide variety of weapon and projectile types aiding interpretation of projectile injuries both in forensic and clinical practice

  17. Comparison of Positron Emission Tomography Quantification Using Magnetic Resonance- and Computed Tomography-Based Attenuation Correction in Physiological Tissues and Lesions: A Whole-Body Positron Emission Tomography/Magnetic Resonance Study in 66 Patients.

    Science.gov (United States)

    Seith, Ferdinand; Gatidis, Sergios; Schmidt, Holger; Bezrukov, Ilja; la Fougère, Christian; Nikolaou, Konstantin; Pfannenberg, Christina; Schwenzer, Nina

    2016-01-01

    Attenuation correction (AC) in fully integrated positron emission tomography (PET)/magnetic resonance (MR) systems plays a key role for the quantification of tracer uptake. The aim of this prospective study was to assess the accuracy of standardized uptake value (SUV) quantification using MR-based AC in direct comparison with computed tomography (CT)-based AC of the same PET data set on a large patient population. Sixty-six patients (22 female; mean [SD], 61 [11] years) were examined by means of combined PET/CT and PET/MR (11C-choline, 18F-FDG, or 68Ga-DOTATATE) subsequently. Positron emission tomography images from PET/MR examinations were corrected with MR-derived AC based on tissue segmentation (PET(MR)). The same PET data were corrected using CT-based attenuation maps (μ-maps) derived from PET/CT after nonrigid registration of the CT to the MR-based μ-map (PET(MRCT)). Positron emission tomography SUVs were quantified placing regions of interest or volumes of interest in 6 different body regions as well as PET-avid lesions, respectively. The relative differences of quantitative PET values when using MR-based AC versus CT-based AC were varying depending on the organs and body regions assessed. In detail, the mean (SD) relative differences of PET SUVs were as follows: -7.8% (11.5%), blood pool; -3.6% (5.8%), spleen; -4.4% (5.6%)/-4.1% (6.2%), liver; -0.6% (5.0%), muscle; -1.3% (6.3%), fat; -40.0% (18.7%), bone; 1.6% (4.4%), liver lesions; -6.2% (6.8%), bone lesions; and -1.9% (6.2%), soft tissue lesions. In 10 liver lesions, distinct overestimations greater than 5% were found (up to 10%). In addition, overestimations were found in 2 bone lesions and 1 soft tissue lesion adjacent to the lung (up to 28.0%). Results obtained using different PET tracers show that MR-based AC is accurate in most tissue types, with SUV deviations generally of less than 10%. In bone, however, underestimations can be pronounced, potentially leading to inaccurate SUV quantifications. In

  18. Dual source and dual detector arrays tetrahedron beam computed tomography for image guided radiotherapy

    International Nuclear Information System (INIS)

    Kim, Joshua; Zhang, Tiezhi; Lu, Weiguo

    2014-01-01

    Cone-beam computed tomography (CBCT) is an important online imaging modality for image guided radiotherapy. But suboptimal image quality and the lack of a real-time stereoscopic imaging function limit its implementation in advanced treatment techniques, such as online adaptive and 4D radiotherapy. Tetrahedron beam computed tomography (TBCT) is a novel online imaging modality designed to improve on the image quality provided by CBCT. TBCT geometry is flexible, and multiple detector and source arrays can be used for different applications. In this paper, we describe a novel dual source–dual detector TBCT system that is specially designed for LINAC radiation treatment machines. The imaging system is positioned in-line with the MV beam and is composed of two linear array x-ray sources mounted aside the electrical portal imaging device and two linear arrays of x-ray detectors mounted below the machine head. The detector and x-ray source arrays are orthogonal to each other, and each pair of source and detector arrays forms a tetrahedral volume. Four planer images can be obtained from different view angles at each gantry position at a frame rate as high as 20 frames per second. The overlapped regions provide a stereoscopic field of view of approximately 10–15 cm. With a half gantry rotation, a volumetric CT image can be reconstructed having a 45 cm field of view. Due to the scatter rejecting design of the TBCT geometry, the system can potentially produce high quality 2D and 3D images with less radiation exposure. The design of the dual source–dual detector system is described, and preliminary results of studies performed on numerical phantoms and simulated patient data are presented. (paper)

  19. Current role of multidetector computed tomography in imaging of wrist injuries.

    Science.gov (United States)

    Syed, Mohd Arif; Raj, Vimal; Jeyapalan, Kanagaratnam

    2013-01-01

    Imaging of the wrist is challenging to both radiologists and orthopedic surgeons. This is primarily because of the complex anatomy/functionality of the wrist and also the fact that many frequent injuries are sustained to the hands. On going developments in multidetector computed tomography (MDCT) technology with its "state of the art" postprocessing capabilities have revolutionized this field. Apart from routine imaging of wrist trauma, it is now possible to assess intrinsic ligaments with MDCT arthrography, thereby avoiding invasive diagnostic arthroscopies. Postoperative wrist imaging can be a diagnostic challenge, and MDCT can be helpful in assessment of these cases because volume acquisition and excellent postprocessing abilities help to evaluate these wrists in any desired plane and thinner slices. This article pictorially reviews the current clinical role of MDCT imaging of wrist in our practice. It also describes arthrography technique and scanning parameters used at our center. Copyright © 2013 Mosby, Inc. All rights reserved.

  20. Cancer and diverticulitis of the sigmoid colon. Differentiation with computed tomography versus magnetic resonance imaging - Preliminary experiences

    Energy Technology Data Exchange (ETDEWEB)

    Oeistaemoe, Emma; Hjern, Fredrik; Abraham-Nordling, Mirna [Dept. of Clinical Sciences, Div. of Surgery, Danderyd Hospital, Karolinska Institutet, Stockholm (Sweden)], e-mail: mirna.abraham.nordling@ki.se; Blomqvist, Lennart [Dept. of Diagnostic Radiology, Dept. of Molecular Medicine and Surgery Karolinska Univ. Hospital Solna and Karolinska Institutet, Stockholm (Sweden); Von Heijne, Anders [Dept. of Clinical Sciences, Div. of Radiology, Danderyd Hospital, Karolinska Institutet, Stockholm (Sweden)

    2013-04-15

    Background: Both colon cancer and diverticular disease are common in the Western world. A challenge when patients present with clinical findings is that both diseases can present with symptoms that may mimic the other. Purpose: To determine whether magnetic resonance imaging (MRI) could be helpful to differentiate between diverticulitis and cancer of the sigmoid colon compared to the differentiation offered by evaluation of multidetector computed tomography (CT) in a clinical situation. Material and Methods: Thirty patients were consecutively included. Fifteen patients were under work-up for a recently diagnosed sigmoid cancer and 15 patients had recently been treated in hospital due to first-time acute sigmoid diverticulitis. All patients underwent CT, T2- weighted MRI and diffusion-weighted MRI. Anonymized examinations were retrospectively presented in random order to one experienced radiologist. Results: With contrast-enhanced CT, the sensitivity and specificity for diagnosis of cancer and diverticulitis were 66.7% (10/15) and 93.3% (14/15), respectively. Using T2-weighted and diffusion-weighted MR images, the sensitivity and specificity for diagnosis of cancer and diverticulitis were 100% (14/14) and 100% (14/14), respectively. Conclusion: MRI provides information that may contribute to improve the differentiation between sigmoid cancer and diverticulitis that is offered by CT. These encouraging results need to be confirmed in a larger study.

  1. Cancer and diverticulitis of the sigmoid colon. Differentiation with computed tomography versus magnetic resonance imaging - Preliminary experiences

    International Nuclear Information System (INIS)

    Oeistaemoe, Emma; Hjern, Fredrik; Abraham-Nordling, Mirna; Blomqvist, Lennart; Von Heijne, Anders

    2013-01-01

    Background: Both colon cancer and diverticular disease are common in the Western world. A challenge when patients present with clinical findings is that both diseases can present with symptoms that may mimic the other. Purpose: To determine whether magnetic resonance imaging (MRI) could be helpful to differentiate between diverticulitis and cancer of the sigmoid colon compared to the differentiation offered by evaluation of multidetector computed tomography (CT) in a clinical situation. Material and Methods: Thirty patients were consecutively included. Fifteen patients were under work-up for a recently diagnosed sigmoid cancer and 15 patients had recently been treated in hospital due to first-time acute sigmoid diverticulitis. All patients underwent CT, T2- weighted MRI and diffusion-weighted MRI. Anonymized examinations were retrospectively presented in random order to one experienced radiologist. Results: With contrast-enhanced CT, the sensitivity and specificity for diagnosis of cancer and diverticulitis were 66.7% (10/15) and 93.3% (14/15), respectively. Using T2-weighted and diffusion-weighted MR images, the sensitivity and specificity for diagnosis of cancer and diverticulitis were 100% (14/14) and 100% (14/14), respectively. Conclusion: MRI provides information that may contribute to improve the differentiation between sigmoid cancer and diverticulitis that is offered by CT. These encouraging results need to be confirmed in a larger study

  2. Topogram-based tube current modulation of head computed tomography for optimizing image quality while protecting the eye lens with shielding.

    Science.gov (United States)

    Lin, Ming-Fang; Chen, Chia-Yuen; Lee, Yuan-Hao; Li, Chia-Wei; Gerweck, Leo E; Wang, Hao; Chan, Wing P

    2018-01-01

    Background Multiple rounds of head computed tomography (CT) scans increase the risk of radiation-induced lens opacification. Purpose To investigate the effects of CT eye shielding and topogram-based tube current modulation (TCM) on the radiation dose received by the lens and the image quality of nasal and periorbital imaging. Material and Methods An anthropomorphic phantom was CT-scanned using either automatic tube current modulation or a fixed tube current. The lens radiation dose was estimated using cropped Gafchromic films irradiated with or without a shield over the orbit. Image quality, assessed using regions of interest drawn on the bilateral extraorbital areas and the nasal bone with a water-based marker, was evaluated using both a signal-to-noise ratio (SNR) and contrast-noise ratio (CNR). Two CT specialists independently assessed image artifacts using a three-point Likert scale. Results The estimated radiation dose received by the lens was significantly lower when barium sulfate or bismuth-antimony shields were used in conjunction with a fixed tube current (22.0% and 35.6% reduction, respectively). Topogram-based TCM mitigated the beam hardening-associated artifacts of bismuth-antimony and barium sulfate shields. This increased the SNR by 21.6% in the extraorbital region and the CNR by 7.2% between the nasal bones and extraorbital regions. The combination of topogram-based TCM and barium sulfate or bismuth-antimony shields reduced lens doses by 12.2% and 27.2%, respectively. Conclusion Image artifacts induced by the bismuth-antimony shield at a fixed tube current for lenticular radioprotection were significantly reduced by topogram-based TCM, which increased the SNR of the anthropomorphic nasal bones and periorbital tissues.

  3. Multidetector-row computed tomography coronary angiography. Optimization of image reconstruction phase according to the heart rate

    International Nuclear Information System (INIS)

    Nagatani, Yukihiro; Takahashi, Masashi; Takazakura, Ryutaro; Nitta, Norihisa; Murata, Kiyoshi; Ushio, Noritoshi; Matsuo, Shinro; Yamamoto, Takashi; Horie, Minoru

    2007-01-01

    The purpose of this study was to optimize the image reconstruction phase of multidetector-row computed tomography (MDCT) coronary angiography according to the heart rate is crucial. Scan data were reconstructed for 10 different phases in 58 sequential patients who under went 8-row cardiac MDCT. The obtained images were scored and compared in terms of motion artifacts and visibility of the vessels, and moreover, electrocardiogram (ECG) record-based evaluations were added for clarification of the temporal relationships among these 10 phases. In the cases with lower heart rates ( 65 beats/mm), they were obtained in the late systolic period. As the heart rate increased, the optimal image reconstruction phase changed from mid diastole to late systole. However, it is recommended to try to decrease the heart rate of patients before data acquisition. (author)

  4. Reduction of radiation exposure and improvement of image quality with BMI-adapted prospective cardiac computed tomography and iterative reconstruction

    International Nuclear Information System (INIS)

    Hosch, Waldemar; Stiller, Wolfram; Mueller, Dirk; Gitsioudis, Gitsios; Welzel, Johanna; Dadrich, Monika; Buss, Sebastian J.; Giannitsis, Evangelos; Kauczor, Hans U.; Katus, Hugo A.; Korosoglou, Grigorios

    2012-01-01

    Purpose: To assess the impact of body mass index (BMI)-adapted protocols and iterative reconstruction algorithms (iDose) on patient radiation exposure and image quality in patients undergoing prospective ECG-triggered 256-slice coronary computed tomography angiography (CCTA). Methods: Image quality and radiation exposure were systematically analyzed in 100 patients. 60 Patients underwent prospective ECG-triggered CCTA using a non-tailored protocol and served as a ‘control’ group (Group 1: 120 kV, 200 mA s). 40 Consecutive patients with suspected coronary artery disease (CAD) underwent prospective CCTA, using BMI-adapted tube voltage and standard (Group 2: 100/120 kV, 100–200 mA s) versus reduced tube current (Group 3: 100/120 kV, 75–150 mA s). Iterative reconstructions were provided with different iDose levels and were compared to filtered back projection (FBP) reconstructions. Image quality was assessed in consensus of 2 experienced observers and using a 5-grade scale (1 = best to 5 = worse), and signal- and contrast-to-noise ratios (SNR and CNR) were quantified. Results: CCTA was performed without adverse events in all patients (n = 100, heart rate of 47–87 bpm and BMI of 19–38 kg/m 2 ). Patients examined using the non-tailored protocol in Group 1 had the highest radiation exposure (3.2 ± 0.4 mSv), followed by Group 2 (1.7 ± 0.7 mSv) and Group 3 (1.2 ± 0.6 mSv) (radiation savings of 47% and 63%, respectively, p < 0.001). Iterative reconstructions provided increased SNR and CNR, particularly when higher iDose level 5 was applied with Multi-Frequency reconstruction (iDose5 MFR) (14.1 ± 4.6 versus 21.2 ± 7.3 for SNR and 12.0 ± 4.2 versus 18.1 ± 6.6 for CNR, for FBP versus iDose5 MFR, respectively, p < 0.001). The combination of BMI adaptation with iterative reconstruction reduced radiation exposure and simultaneously improved image quality (subjective image quality of 1.4 ± 0.4 versus 1.9 ± 0.5 for Group 2 reconstructed using iDose5 MFR versus

  5. The synthesis of radioiodinated carbohydrates and butyrothenones as potential imaging agents for computed tomography

    International Nuclear Information System (INIS)

    Waterhouse, R.N.

    1993-01-01

    Positron Emission tomography (PET) and Single Photon Emission Computed Tomography (SPECT) are two relatively new imaging techniques which allow for the non-invasive evaluation of biochemical processes in living subjects. Currently, SPECT is more widely accessible than PET, however, only a limited number of radiotracers have been successfully developed for imaging by SPECT. Two classes of radioiodinated compounds were developed as potential imaging agents for SPECT: (1) Radioiodinated carbohydrates for the assessment of glucose metabolism and (2) Radioiodinated butyrothienones for the evaluation of dopamine D 2 receptors in the brain. In both classes of compounds, the radioiodine was attached to an sp 2 hybridized carbon atom to provide radiotracers that were chemically and metabolically stable. Radioiodine incorporation was easily accomplished by radioiododestannylation of vinyl- and aryl-trialkylstannanes in the presence of an oxidizing agent. The incorporation of radioiodine into small molecules can have a significant effect on the biological activity of the resulting radiotracer because of the relatively large size and lipophilicity of the iodine atom. Preliminary evaluations of the effectiveness of the radioiodinated carbohydrates and butyrothienones as imaging agents are presented

  6. Dynamic X-ray computed tomography; Tomographie dynamique a rayons X

    Energy Technology Data Exchange (ETDEWEB)

    Grangeat, P

    2003-07-01

    Paper Dynamic computed tomography (CT) imaging aims at reconstructing image sequences where the dynamic nature of the living human body is of primary interest. Main concerned applications are image-guided interventional procedures, functional studies and cardiac imaging. The introduction of ultra-fast rotating gantries along with multi-row detectors and in near future area detectors allows a huge progress toward the imaging of moving organs with low-contrast resolution. This paper gives an overview of the different concepts used in dynamic CT. A new reconstruction algorithm based on a voxel-specific dynamic evolution compensation is also presented. It provides four-dimensional image sequences with accurate spatio-temporal information, where each frame is reconstructed using a long-scan acquisition mode on several half-turns. In the same time, this technique permits to reduce the dose delivered per rotation while keeping the same signal to noise ratio for every frame using an adaptive motion-compensated temporal averaging. Results are illustrated on simulated data. (authors)

  7. Value of radio density determined by enhanced computed tomography for the differential diagnosis of lung masses

    International Nuclear Information System (INIS)

    Xie, Min

    2011-01-01

    Lung masses are often difficult to differentiate when their clinical symptoms and shapes or densities on computed tomography images are similar. However, with different pathological contents, they may appear differently on plain and enhanced computed tomography. Objectives: To determine the value of enhanced computed tomography for the differential diagnosis of lung masses based on the differences in radio density with and without enhancement. Patients and Methods: Thirty-six patients with lung cancer, 36 with pulmonary tuberculosis and 10 with inflammatory lung pseudo tumors diagnosed by computed tomography and confirmed by pathology in our hospital were selected. The mean ±SD radio densities of lung masses in the three groups of patients were calculated based on the results of plain and enhanced computed tomography. Results: There were no significant differences in the radio densities of the masses detected by plain computed tomography among patients with inflammatory lung pseudo tumors, tuberculosis and lung cancer (P> 0.05). However, there were significant differences (P< 0.01)between all the groups in terms of radio densities of masses detected by enhanced computed tomography. Conclusions: The radio densities of lung masses detected by enhanced computed tomography could potentially be used to differentiate between lung cancer, pulmonary tuberculosis and inflammatory lung pseudo tumors.

  8. Appropriateness of computed tomography and magnetic resonance ...

    African Journals Online (AJOL)

    Introduction. Computed tomography (CT) and magnetic resonance imaging (MRI) are an essential part of modern healthcare. Marked increases in clinical demand for these imaging modalities are straining healthcare expenditure and threatening health system sustainability. The number of CT and MRI scans requested in ...

  9. Computed tomography and magnetic resonance imaging of unusual causes of ankle pain

    International Nuclear Information System (INIS)

    Kaushik, S.

    2006-01-01

    Computed tomography and MRI are frequently utilized to evaluate ankle pain that remains unexplained by radiography. The most common causes of ankle pain are related to trauma and the imaging appearances of these entities are well established in the radiologic and orthopedic literature. A smaller percentage is comprised of non-traumatic disorders. Our goal is to emphasize the value of CT and MRI in recognition of these less common and unusual causes of ankle pain. Copyright (2006) Blackwell Science Pty Ltd

  10. Rapid data processing for ultrafast X-ray computed tomography using scalable and modular CUDA based pipelines

    Science.gov (United States)

    Frust, Tobias; Wagner, Michael; Stephan, Jan; Juckeland, Guido; Bieberle, André

    2017-10-01

    Ultrafast X-ray tomography is an advanced imaging technique for the study of dynamic processes basing on the principles of electron beam scanning. A typical application case for this technique is e.g. the study of multiphase flows, that is, flows of mixtures of substances such as gas-liquidflows in pipelines or chemical reactors. At Helmholtz-Zentrum Dresden-Rossendorf (HZDR) a number of such tomography scanners are operated. Currently, there are two main points limiting their application in some fields. First, after each CT scan sequence the data of the radiation detector must be downloaded from the scanner to a data processing machine. Second, the current data processing is comparably time-consuming compared to the CT scan sequence interval. To enable online observations or use this technique to control actuators in real-time, a modular and scalable data processing tool has been developed, consisting of user-definable stages working independently together in a so called data processing pipeline, that keeps up with the CT scanner's maximal frame rate of up to 8 kHz. The newly developed data processing stages are freely programmable and combinable. In order to achieve the highest processing performance all relevant data processing steps, which are required for a standard slice image reconstruction, were individually implemented in separate stages using Graphics Processing Units (GPUs) and NVIDIA's CUDA programming language. Data processing performance tests on different high-end GPUs (Tesla K20c, GeForce GTX 1080, Tesla P100) showed excellent performance. Program Files doi:http://dx.doi.org/10.17632/65sx747rvm.1 Licensing provisions: LGPLv3 Programming language: C++/CUDA Supplementary material: Test data set, used for the performance analysis. Nature of problem: Ultrafast computed tomography is performed with a scan rate of up to 8 kHz. To obtain cross-sectional images from projection data computer-based image reconstruction algorithms must be applied. The

  11. 3D exemplar-based random walks for tooth segmentation from cone-beam computed tomography images

    Energy Technology Data Exchange (ETDEWEB)

    Pei, Yuru, E-mail: peiyuru@cis.pku.edu.cn; Ai, Xingsheng; Zha, Hongbin [Department of Machine Intelligence, School of EECS, Peking University, Beijing 100871 (China); Xu, Tianmin [School of Stomatology, Stomatology Hospital, Peking University, Beijing 100081 (China); Ma, Gengyu [uSens, Inc., San Jose, California 95110 (United States)

    2016-09-15

    Purpose: Tooth segmentation is an essential step in acquiring patient-specific dental geometries from cone-beam computed tomography (CBCT) images. Tooth segmentation from CBCT images is still a challenging task considering the comparatively low image quality caused by the limited radiation dose, as well as structural ambiguities from intercuspation and nearby alveolar bones. The goal of this paper is to present and discuss the latest accomplishments in semisupervised tooth segmentation with adaptive 3D shape constraints. Methods: The authors propose a 3D exemplar-based random walk method of tooth segmentation from CBCT images. The proposed method integrates semisupervised label propagation and regularization by 3D exemplar registration. To begin with, the pure random walk method is to get an initial segmentation of the teeth, which tends to be erroneous because of the structural ambiguity of CBCT images. And then, as an iterative refinement, the authors conduct a regularization by using 3D exemplar registration, as well as label propagation by random walks with soft constraints, to improve the tooth segmentation. In the first stage of the iteration, 3D exemplars with well-defined topologies are adapted to fit the tooth contours, which are obtained from the random walks based segmentation. The soft constraints on voxel labeling are defined by shape-based foreground dentine probability acquired by the exemplar registration, as well as the appearance-based probability from a support vector machine (SVM) classifier. In the second stage, the labels of the volume-of-interest (VOI) are updated by the random walks with soft constraints. The two stages are optimized iteratively. Instead of the one-shot label propagation in the VOI, an iterative refinement process can achieve a reliable tooth segmentation by virtue of exemplar-based random walks with adaptive soft constraints. Results: The proposed method was applied for tooth segmentation of twenty clinically captured CBCT

  12. A reference sample for investigating the stability of the imaging system of x-ray computed tomography

    International Nuclear Information System (INIS)

    Sun, Wenjuan; Brown, Stephen; Flay, Nadia; McCarthy, Michael; McBride, John

    2016-01-01

    The use of x-ray computed tomography for dimensional measurements associated with engineering applications has flourished in recent years. However, error sources associated with the technology are not well understood. In this paper, a novel two-sphere reference sample has been developed and used to investigate the stability of the imaging system that consists of an x-ray tube and a detector. In contrast with other research work reported, this work considered relative positional variation along the x -, y - and z -axes. This sample is a significant improvement over the one sphere sample proposed previously, which can only be used to observe the stability of the imaging system along x - and y -axes. Temperature variations of different parts of the system have been monitored and the relationship between temperature variations and x-ray image stability has been studied. Other effects that may also influence the stability of the imaging system have been discussed. The proposed reference sample and testing method are transferable to other types of x-ray computed tomography systems, for example, systems with transmission targets and systems with sub-micrometre focal spots. (paper)

  13. 3D and 4D magnetic susceptibility tomography based on complex MR images

    Science.gov (United States)

    Chen, Zikuan; Calhoun, Vince D

    2014-11-11

    Magnetic susceptibility is the physical property for T2*-weighted magnetic resonance imaging (T2*MRI). The invention relates to methods for reconstructing an internal distribution (3D map) of magnetic susceptibility values, .chi. (x,y,z), of an object, from 3D T2*MRI phase images, by using Computed Inverse Magnetic Resonance Imaging (CIMRI) tomography. The CIMRI technique solves the inverse problem of the 3D convolution by executing a 3D Total Variation (TV) regularized iterative convolution scheme, using a split Bregman iteration algorithm. The reconstruction of .chi. (x,y,z) can be designed for low-pass, band-pass, and high-pass features by using a convolution kernel that is modified from the standard dipole kernel. Multiple reconstructions can be implemented in parallel, and averaging the reconstructions can suppress noise. 4D dynamic magnetic susceptibility tomography can be implemented by reconstructing a 3D susceptibility volume from a 3D phase volume by performing 3D CIMRI magnetic susceptibility tomography at each snapshot time.

  14. In vivo rat deep brain imaging using photoacoustic computed tomography (Conference Presentation)

    Science.gov (United States)

    Lin, Li; Li, Lei; Zhu, Liren; Hu, Peng; Wang, Lihong V.

    2017-03-01

    The brain has been likened to a great stretch of unknown territory consisting of a number of unexplored continents. Small animal brain imaging plays an important role charting that territory. By using 1064 nm illumination from the side, we imaged the full coronal depth of rat brains in vivo. The experiment was performed using a real-time full-ring-array photoacoustic computed tomography (PACT) imaging system, which achieved an imaging depth of 11 mm and a 100 μm radial resolution. Because of the fast imaging speed of the full-ring-array PACT system, no animal motion artifact was induced. The frame rate of the system was limited by the laser repetition rate (50 Hz). In addition to anatomical imaging of the blood vessels in the brain, we continuously monitored correlations between the two brain hemispheres in one of the coronal planes. The resting states in the coronal plane were measured before and after stroke ligation surgery at a neck artery.

  15. Initial water quantification results using neutron computed tomography

    Energy Technology Data Exchange (ETDEWEB)

    Heller, A.K. [Department of Mechanical and Nuclear Engineering, Pennsylvania State University (United States)], E-mail: axh174@psu.edu; Shi, L.; Brenizer, J.S.; Mench, M.M. [Department of Mechanical and Nuclear Engineering, Pennsylvania State University (United States)

    2009-06-21

    Neutron computed tomography is an important imaging tool in the field of non-destructive testing and in fundamental research for many engineering applications. Contrary to X-rays, neutrons can be attenuated by some light materials, such as hydrogen, but can penetrate many heavy materials. Thus, neutron computed tomography is useful in obtaining important three-dimensional information about a sample's interior structure and material properties that other traditional methods cannot provide. The neutron computed tomography system at Pennsylvania State University's Radiation Science and Engineering Center is being utilized to develop a water quantification technique for investigation of water distribution in fuel cells under normal conditions. A hollow aluminum cylinder test sample filled with a known volume of water was constructed for purposes of testing the quantification technique. Transmission images of the test sample at different angles were easily acquired through the synthesis of a dedicated image acquisition computer driving a rotary table controller and an in-house developed synchronization software package. After data acquisition, Octopus (version 8.2) and VGStudio Max (version 1.2) were used to perform cross-sectional and three-dimensional reconstructions of the sample, respectively. The initial reconstructions and water quantification results are presented.

  16. Method for computed tomography

    International Nuclear Information System (INIS)

    Wagner, W.

    1980-01-01

    In transversal computer tomography apparatus, in which the positioning zone in which the patient can be positioned is larger than the scanning zone in which a body slice can be scanned, reconstruction errors are liable to occur. These errors are caused by incomplete irradiation of the body during examination. They become manifest not only as an incorrect image of the area not irradiated, but also have an adverse effect on the image of the other, completely irradiated areas. The invention enables reduction of these errors

  17. Comparison of onboard low-field magnetic resonance imaging versus onboard computed tomography for anatomy visualization in radiotherapy.

    Science.gov (United States)

    Noel, Camille E; Parikh, Parag J; Spencer, Christopher R; Green, Olga L; Hu, Yanle; Mutic, Sasa; Olsen, Jeffrey R

    2015-01-01

    Onboard magnetic resonance imaging (OB-MRI) for daily localization and adaptive radiotherapy has been under development by several groups. However, no clinical studies have evaluated whether OB-MRI improves visualization of the target and organs at risk (OARs) compared to standard onboard computed tomography (OB-CT). This study compared visualization of patient anatomy on images acquired on the MRI-(60)Co ViewRay system to those acquired with OB-CT. Fourteen patients enrolled on a protocol approved by the Institutional Review Board (IRB) and undergoing image-guided radiotherapy for cancer in the thorax (n = 2), pelvis (n = 6), abdomen (n = 3) or head and neck (n = 3) were imaged with OB-MRI and OB-CT. For each of the 14 patients, the OB-MRI and OB-CT datasets were displayed side-by-side and independently reviewed by three radiation oncologists. Each physician was asked to evaluate which dataset offered better visualization of the target and OARs. A quantitative contouring study was performed on two abdominal patients to assess if OB-MRI could offer improved inter-observer segmentation agreement for adaptive planning. In total 221 OARs and 10 targets were compared for visualization on OB-MRI and OB-CT by each of the three physicians. The majority of physicians (two or more) evaluated visualization on MRI as better for 71% of structures, worse for 10% of structures, and equivalent for 14% of structures. 5% of structures were not visible on either. Physicians agreed unanimously for 74% and in majority for > 99% of structures. Targets were better visualized on MRI in 4/10 cases, and never on OB-CT. Low-field MR provides better anatomic visualization of many radiotherapy targets and most OARs as compared to OB-CT. Further studies with OB-MRI should be pursued.

  18. X-ray Computed Tomography of Ultralightweight Metals

    National Research Council Canada - National Science Library

    Winter, John

    2001-01-01

    .... To date, the imaging capabilities of x-ray computed tomography have not been generally employed to nondestructively examine the internal structure of the products formed by these various processes...

  19. Influence of Cone-Beam Computed Tomography filters on diagnosis of simulated endodontic complications.

    Science.gov (United States)

    Verner, F S; D'Addazio, P S; Campos, C N; Devito, K L; Almeida, S M; Junqueira, R B

    2017-11-01

    To evaluate the influence of cone-beam computed tomography (CBCT) filters on diagnosis of simulated endodontic complications. Sixteen human teeth, in three mandibles, were submitted to the following simulated endodontic complications: (G1) fractured file, (G2) perforations in the canal walls, (G3) deviated cast post, and (G4) external root resorption. The mandibles were submitted to CBCT examination (I-Cat ® Next Generation). Five oral radiologists evaluated the images independently with and without XoranCat ® software filters. Accuracy, sensitivity and specificity were determined. ROC curves were calculated for each group with the filters, and the areas under the curves were compared using anova (one-way) test. McNemar test was applied for pair-wise agreement between all images versus the gold standard and original images versus images with filters (P originals images (P = 0.00 for all filters) only in G1 group. There were no differences in the other groups. The filters did not improve the diagnosis of the simulated endodontic complications evaluated. Their diagnosis remains a major challenge in clinical practice. © 2016 International Endodontic Journal. Published by John Wiley & Sons Ltd.

  20. Computed tomography and (18)F-fluorodeoxyglucose positron emission tomography/computed tomography findings in adrenal candidiasis and histoplasmosis: two cases.

    Science.gov (United States)

    Altinmakas, Emre; Guo, Ming; Kundu, Uma R; Habra, Mouhammed Amir; Ng, Chaan

    2015-01-01

    We report the contrast-enhanced computed tomography (CT) and (18)F-fluorodeoxyglucose positron emission tomography findings in adrenal histoplasmosis and candidiasis. Both demonstrated bilateral hypermetabolic heterogeneous adrenal masses with limited wash-out on delayed CT. Adrenal candidiasis has not been previously reported, nor have the CT wash-out findings in either infection. The adrenal imaging findings are indistinguishable from malignancy, which is more common; but in this setting, physicians should be alert to the differential diagnosis of fungal infections, since it can be equally deadly. Published by Elsevier Inc.

  1. Italian Chapter of the International Society of Cardiovascular Ultrasound expert consensus document on coronary computed tomography angiography: overview and new insights.

    Science.gov (United States)

    Sozzi, Fabiola B; Maiello, Maria; Pelliccia, Francesco; Parato, Vito Maurizio; Canetta, Ciro; Savino, Ketty; Lombardi, Federico; Palmiero, Pasquale

    2016-09-01

    Coronary computed tomography angiography is a noninvasive heart imaging test currently undergoing rapid development and advancement. The high resolution of the three-dimensional pictures of the moving heart and great vessels is performed during a coronary computed tomography to identify coronary artery disease and classify patient risk for atherosclerotic cardiovascular disease. The technique provides useful information about the coronary tree and atherosclerotic plaques beyond simple luminal narrowing and plaque type defined by calcium content. This application will improve image-guided prevention, medical therapy, and coronary interventions. The ability to interpret coronary computed tomography images is of utmost importance as we develop personalized medical care to enable therapeutic interventions stratified on the bases of plaque characteristics. This overview provides available data and expert's recommendations in the utilization of coronary computed tomography findings. We focus on the use of coronary computed tomography to detect coronary artery disease and stratify patients at risk, illustrating the implications of this test on patient management. We describe its diagnostic power in identifying patients at higher risk to develop acute coronary syndrome and its prognostic significance. Finally, we highlight the features of the vulnerable plaques imaged by coronary computed tomography angiography. © 2016, Wiley Periodicals, Inc.

  2. Comparing staging by positron emission tomography with contrast-enhanced computed tomography and by pathology in head and neck squamous cell carcinoma.

    Science.gov (United States)

    Qualliotine, J R; Mydlarz, W K; Chan, J Y K; Zhou, X; Wang, H; Agrawal, N

    2015-12-01

    This study aimed to evaluate the ability of positron emission tomography with contrast-enhanced computed tomography to correctly stage head and neck squamous cell carcinomas, in comparison with pathological staging. Positron emission tomography computed tomography was used to determine the tumour-node-metastasis classification and overall cancer stage in 85 head and neck squamous cell carcinoma patients who underwent pre-operative imaging using this modality and primary surgery between July 2010 and January 2013. Staging by positron emission tomography computed tomography was retrospectively compared with staging using pathological specimens. Agreement between imaging stage and pathological stage was examined by univariate and multivariate analysis both overall and for each primary tumour site. This imaging modality was 87.5 per cent sensitive and 44.8 per cent specific in identifying regional cervical metastases, and had false positive and false negative rates of 18.8 per cent and 8.2 per cent, respectively. The positive predictive and negative predictive values were 75.4 per cent and 65.0 per cent, respectively. Univariate and multivariate analyses revealed a significant agreement between positron emission tomography computed tomography and pathological node classification in older patients and for the oral cavity primary tumour site. There was significant agreement between both methods in the overall classification only for tumours classified as T3 or greater. Positron emission tomography computed tomography should be used with caution for the pre-operative staging of head and neck cancers because of its high false positive and false negative rates.

  3. Evaluation of artifacts generated by zirconium implants in cone-beam computed tomography images.

    Science.gov (United States)

    Vasconcelos, Taruska Ventorini; Bechara, Boulos B; McMahan, Clyde Alex; Freitas, Deborah Queiroz; Noujeim, Marcel

    2017-02-01

    To evaluate zirconium implant artifact production in cone beam computed tomography images obtained with different protocols. One zirconium implant was inserted in an edentulous mandible. Twenty scans were acquired with a ProMax 3D unit (Planmeca Oy, Helsinki, Finland), with acquisition settings ranging from 70 to 90 peak kilovoltage (kVp) and voxel sizes of 0.32 and 0.16 mm. A metal artifact reduction (MAR) tool was activated in half of the scans. An axial slice through the middle region of the implant was selected for each dataset. Gray values (mean ± standard deviation) were measured in two regions of interest, one close to and the other distant from the implant (control area). The contrast-to-noise ratio was also calculated. Standard deviation decreased with greater kVp and when the MAR tool was used. The contrast-to-noise ratio was significantly higher when the MAR tool was turned off, except for low resolution with kVp values above 80. Selection of the MAR tool and greater kVp resulted in an overall reduction of artifacts in images acquired with low resolution. Although zirconium implants do produce image artifacts in cone-bean computed tomography scans, the setting that best controlled artifact generation by zirconium implants was 90 kVp at low resolution and with the MAR tool turned on. Copyright © 2016 Elsevier Inc. All rights reserved.

  4. New variational image decomposition model for simultaneously denoising and segmenting optical coherence tomography images

    International Nuclear Information System (INIS)

    Duan, Jinming; Bai, Li; Tench, Christopher; Gottlob, Irene; Proudlock, Frank

    2015-01-01

    Optical coherence tomography (OCT) imaging plays an important role in clinical diagnosis and monitoring of diseases of the human retina. Automated analysis of optical coherence tomography images is a challenging task as the images are inherently noisy. In this paper, a novel variational image decomposition model is proposed to decompose an OCT image into three components: the first component is the original image but with the noise completely removed; the second contains the set of edges representing the retinal layer boundaries present in the image; and the third is an image of noise, or in image decomposition terms, the texture, or oscillatory patterns of the original image. In addition, a fast Fourier transform based split Bregman algorithm is developed to improve computational efficiency of solving the proposed model. Extensive experiments are conducted on both synthesised and real OCT images to demonstrate that the proposed model outperforms the state-of-the-art speckle noise reduction methods and leads to accurate retinal layer segmentation. (paper)

  5. Study of dosimetric quantities and image quality in pediatric examinations of chest and abdomen computed tomography

    International Nuclear Information System (INIS)

    Jornada, Tiago da Silva

    2013-01-01

    This work had the objective to achieve the knowledge of the dosimetric quantities related to chest and abdomen computed tomography (CT) examinations of pediatric patients, in Belo Horizonte city. The reason of this work is based on the fact that the probability of health detriment in children, which it may be caused by radiation, is higher than in adults. Besides, although in many countries the knowledge and control of patient doses is a normal procedure, this safety culture does not exist in Brazil. Another objective of this work was to compare the dosimetric quantity values with the Diagnostic Reference Levels (DRLs); when it was needed, an optimization process was applied and the quality of the diagnostic image obtained with the optimized technical parameters was analyzed. This study was carried out in five hospitals, where the weighted air kerma index (Cw), the volumetric air kerma index (Cvol), the air kerma - length product (PKL,CT), the Effective Dose (E) and the Normalized Effective Dose (En) were determined; three methods were adopted for measurements: the ionization chamber inside a chest pediatric phantom, radiochromic films and the CT-EXPO software. The optimization process was applied to a single hospital through variations in the current (mA) and voltage (kV) of the x-ray tube for the protocols used for abdomen CT examinations. The analysis of the quality of the diagnostic image was done by Normal Distribution and ROC analysis; spatial resolution analysis was used through MTF determination and the noise level was judged in terms quantitative and qualitative. Results of the dosimetric quantities showed that they significantly differed between single-slice and multi-slice tomography units, but their values were always below the recommended DRLs. The optimized values of the dosimetric quantities obtained after the optimization process showed that it was possible to reduce the radiation exposure of pediatric patient without losing the image quality

  6. Evolution of Computed Tomography Findings in Secondary Aortoenteric Fistula

    International Nuclear Information System (INIS)

    Bas, Ahmet; Simsek, Osman; Kandemirli, Sedat Giray; Rafiee, Babak; Gulsen, Fatih; Numan, Furuzan

    2015-01-01

    Aortoenteric fistula is a rare but significant clinical entity associated with high morbidity and mortality if remain untreated. Clinical presentation and imaging findings may be subtle and prompt diagnosis can be difficult. Herein, we present a patient who initially presented with abdominal pain and computed tomography showed an aortic aneurysm compressing duodenum without any air bubbles. One month later, the patient presented with gastrointestinal bleeding and computed tomography revealed air bubbles within aneurysm. With a diagnosis of aortoenteric fistula, endovascular aneurysm repair was carried out. This case uniquely presented the computed tomography findings in progression of an aneurysm to an aortoenteric fistula

  7. Computed Tomography and Magnetic Resonance Imaging Features of the Temporomandibular Joint in Two Normal Camels

    Directory of Open Access Journals (Sweden)

    Alberto Arencibia

    2012-01-01

    Full Text Available Computed tomography (CT and magnetic resonance (MR image features of the temporomandibular joint (TMJ and associated structures in two mature dromedary camels were obtained with a third-generation equipment CT and a superconducting magnet RM at 1.5 Tesla. Images were acquired in sagittal and transverse planes. Medical imaging processing with imaging software was applied to obtain postprocessing CT and MR images. Relevant anatomic structures were identified and labelled. The resulting images provided excellent anatomic detail of the TMJ and associated structures. Annotated CT and MR images from this study are intended as an anatomical reference useful in the interpretation for clinical CT and MR imaging studies of the TMJ of the dromedary camels.

  8. Impact of a New Adaptive Statistical Iterative Reconstruction (ASIR)-V Algorithm on Image Quality in Coronary Computed Tomography Angiography.

    Science.gov (United States)

    Pontone, Gianluca; Muscogiuri, Giuseppe; Andreini, Daniele; Guaricci, Andrea I; Guglielmo, Marco; Baggiano, Andrea; Fazzari, Fabio; Mushtaq, Saima; Conte, Edoardo; Annoni, Andrea; Formenti, Alberto; Mancini, Elisabetta; Verdecchia, Massimo; Campari, Alessandro; Martini, Chiara; Gatti, Marco; Fusini, Laura; Bonfanti, Lorenzo; Consiglio, Elisa; Rabbat, Mark G; Bartorelli, Antonio L; Pepi, Mauro

    2018-03-27

    A new postprocessing algorithm named adaptive statistical iterative reconstruction (ASIR)-V has been recently introduced. The aim of this article was to analyze the impact of ASIR-V algorithm on signal, noise, and image quality of coronary computed tomography angiography. Fifty consecutive patients underwent clinically indicated coronary computed tomography angiography (Revolution CT; GE Healthcare, Milwaukee, WI). Images were reconstructed using filtered back projection and ASIR-V 0%, and a combination of filtered back projection and ASIR-V 20%-80% and ASIR-V 100%. Image noise, signal-to-noise ratio (SNR), and contrast-to-noise ratio (CNR) were calculated for left main coronary artery (LM), left anterior descending artery (LAD), left circumflex artery (LCX), and right coronary artery (RCA) and were compared between the different postprocessing algorithms used. Similarly a four-point Likert image quality score of coronary segments was graded for each dataset and compared. A cutoff value of P ASIR-V 0%, ASIR-V 100% demonstrated a significant reduction of image noise in all coronaries (P ASIR-V 0%, SNR was significantly higher with ASIR-V 60% in LM (P ASIR-V 0%, CNR for ASIR-V ≥60% was significantly improved in LM (P ASIR-V ≥80%. ASIR-V 60% had significantly better Likert image quality scores compared to ASIR-V 0% in segment-, vessel-, and patient-based analyses (P ASIR-V 60% provides the optimal balance between image noise, SNR, CNR, and image quality. Copyright © 2018 The Association of University Radiologists. Published by Elsevier Inc. All rights reserved.

  9. Computed Tomography (CT) Imaging of Injuries from Blunt Abdominal Trauma: A Pictorial Essay

    OpenAIRE

    Hassan, Radhiana; Abd. Aziz, Azian

    2010-01-01

    Blunt abdominal trauma can cause multiple internal injuries. However, these injuries are often difficult to accurately evaluate, particularly in the presence of more obvious external injuries. Computed tomography (CT) imaging is currently used to assess clinically stable patients with blunt abdominal trauma. CT can provide a rapid and accurate appraisal of the abdominal viscera, retroperitoneum and abdominal wall, as well as a limited assessment of the lower thoracic region and bony pelvis. T...

  10. Computed tomography angiography and perfusion to assess coronary artery stenosis causing perfusion defects by single photon emission computed tomography

    DEFF Research Database (Denmark)

    Rochitte, Carlos E; George, Richard T; Chen, Marcus Y

    2014-01-01

    AIMS: To evaluate the diagnostic power of integrating the results of computed tomography angiography (CTA) and CT myocardial perfusion (CTP) to identify coronary artery disease (CAD) defined as a flow limiting coronary artery stenosis causing a perfusion defect by single photon emission computed...... emission computed tomography (SPECT/MPI). Sixteen centres enroled 381 patients who underwent combined CTA-CTP and SPECT/MPI prior to conventional coronary angiography. All four image modalities were analysed in blinded independent core laboratories. The prevalence of obstructive CAD defined by combined ICA...... tomography (SPECT). METHODS AND RESULTS: We conducted a multicentre study to evaluate the accuracy of integrated CTA-CTP for the identification of patients with flow-limiting CAD defined by ≥50% stenosis by invasive coronary angiography (ICA) with a corresponding perfusion deficit on stress single photon...

  11. A comparison of methods for demonstrating artificial bone lesions; conventional versus computer tomography

    International Nuclear Information System (INIS)

    Heller, M.; Wenk, M.; Jend, H.H.

    1984-01-01

    Conventional tomography (T) and computer tomography (CT) were used for examining 97 artificial bone lesions at various sites. The purpose of the study was to determine how far CT can replace T in the diagnosis of skeletal abnormalities. The results have shown that modern CT, particularly in its high resolution form, equals T and provides additional information (substrate of a lesion, its relationship to neighbouring tissues, simultaneous demonstration of soft tissue etc.). These cannot be shown successfully by T. It follows that CT is indicated as the primary method of examination for lesions of the facial skeleton, skull base, spine, pelvis and, to some extent, extremities. (orig.) [de

  12. Electro-optical system for the high speed reconstruction of computed tomography images

    International Nuclear Information System (INIS)

    Tresp, V.

    1989-01-01

    An electro-optical system for the high-speed reconstruction of computed tomography (CT) images has been built and studied. The system is capable of reconstructing high-contrast and high-resolution images at video rate (30 images per second), which is more than two orders of magnitude faster than the reconstruction rate achieved by special purpose digital computers used in commercial CT systems. The filtered back-projection algorithm which was implemented in the reconstruction system requires the filtering of all projections with a prescribed filter function. A space-integrating acousto-optical convolver, a surface acoustic wave filter and a digital finite-impulse response filter were used for this purpose and their performances were compared. The second part of the reconstruction, the back projection of the filtered projections, is computationally very expensive. An optical back projector has been built which maps the filtered projections onto the two-dimensional image space using an anamorphic lens system and a prism image rotator. The reconstructed image is viewed by a video camera, routed through a real-time image-enhancement system, and displayed on a TV monitor. The system reconstructs parallel-beam projection data, and in a modified version, is also capable of reconstructing fan-beam projection data. This extension is important since the latter are the kind of projection data actually acquired in high-speed X-ray CT scanners. The reconstruction system was tested by reconstructing precomputed projection data of phantom images. These were stored in a special purpose projection memory and transmitted to the reconstruction system as an electronic signal. In this way, a projection measurement system that acquires projections sequentially was simulated

  13. Pulmonary lobar volumetry using novel volumetric computer-aided diagnosis and computed tomography

    Science.gov (United States)

    Iwano, Shingo; Kitano, Mariko; Matsuo, Keiji; Kawakami, Kenichi; Koike, Wataru; Kishimoto, Mariko; Inoue, Tsutomu; Li, Yuanzhong; Naganawa, Shinji

    2013-01-01

    OBJECTIVES To compare the accuracy of pulmonary lobar volumetry using the conventional number of segments method and novel volumetric computer-aided diagnosis using 3D computed tomography images. METHODS We acquired 50 consecutive preoperative 3D computed tomography examinations for lung tumours reconstructed at 1-mm slice thicknesses. We calculated the lobar volume and the emphysematous lobar volume volumetry computer-aided diagnosis system could more precisely measure lobar volumes than the conventional number of segments method. Because semi-automatic computer-aided diagnosis and automatic computer-aided diagnosis were complementary, in clinical use, it would be more practical to first measure volumes by automatic computer-aided diagnosis, and then use semi-automatic measurements if automatic computer-aided diagnosis failed. PMID:23526418

  14. Patterns of brown fat uptake of 18F-fluorodeoxyglucose in positron emission tomography/computed tomography scan

    International Nuclear Information System (INIS)

    Chakraborty, Dhritiman; Bhattacharya, Anish; Mittal, Bhagwant Rai

    2015-01-01

    Fluorodeoxyglucose (FDG) positron emission tomography (PET) has become the common imaging modality in oncological practice. FDG uptake is seen in brown adipose tissue in a significant number of patients. Recognizing the uptake patterns is important for optimal FDG PET interpretation. The introduction of PET/computed tomography (PET/CT) revolutionized PET imaging, bringing much-needed anatomical information. Careful review and correlation of FDG PET images with anatomical imaging should be performed to characterize accurately any lesion having high FDG uptake

  15. Value of computed tomography and magnetic resonance imaging in diagnosis of central nervous system

    International Nuclear Information System (INIS)

    Walecka, I.; Sicinska, J.; Szymanska, E.; Rudnicka, L.; Furmanek, M.; Walecki, J.; Olszewska, M.; Rudnicka, L.; Walecki, J.

    2006-01-01

    Systemic sclerosis is an autoimmune connective tissue disease characterized by vascular abnormalities and fibrotic changes in skin and internal organs. The aim of the study was to investigate involvement of the central nervous system in systemic sclerosis and the value of computed tomography (CT) and magnetic resonance imaging (MRI) in evaluation of central nervous system involvement in systemic sclerosis. 26 patients with neuropsychiatric symptoms in the course of systemic sclerosis were investigated for central nervous system abnormalities by computed tomography (CT) and magnetic resonance imaging (MRI). Among these 26 symptomatic patients lesions in brain MRI and CT examinations were present in 54% and in 50% patients respectively. Most common findings (in 46% of all patients), were symptoms of cortical and subcortical atrophy, seen in both, MRI and CT. Single and multiple focal lesions, predominantly in the white matter, were detected by MRI significantly more frequently as compared to CT (62% and 15% patients respectively). These data indicate that brain involvement is common in patients with severe systemic sclerosis. MRI shows significantly higher than CT sensitivity in detection focal brain lesions in these patients. (author)

  16. Convex optimization problem prototyping for image reconstruction in computed tomography with the Chambolle–Pock algorithm

    DEFF Research Database (Denmark)

    Sidky, Emil Y.; Jørgensen, Jakob Heide; Pan, Xiaochuan

    2012-01-01

    The primal–dual optimization algorithm developed in Chambolle and Pock (CP) (2011 J. Math. Imag. Vis. 40 1–26) is applied to various convex optimization problems of interest in computed tomography (CT) image reconstruction. This algorithm allows for rapid prototyping of optimization problems...... for the purpose of designing iterative image reconstruction algorithms for CT. The primal–dual algorithm is briefly summarized in this paper, and its potential for prototyping is demonstrated by explicitly deriving CP algorithm instances for many optimization problems relevant to CT. An example application...

  17. Computed Tomography and Magnetic Resonance Imaging of Myoepitheliloma in the Soft Palate: A Case Report

    International Nuclear Information System (INIS)

    Lim, Hun Cheol; Yu, In Kyu; Park, Mi Ja; Jang, Dong Sik

    2011-01-01

    We report the appearance of myoepithelioma arising from minor salivary glands in the soft palate observed on computed tomography (CT) and magnetic resonance imaging (MRI). CT, the tumor was round with a smooth and partial lobulating contour, and slightly marginal contrast enhancement. On T1-weighted images, the mass had heterogeneous iso-signal intensity compared to the pharyngeal muscle. Additionally, the tumor had heterogeneously high T2 signal intensity with heterogeneously strong enhancement on the Gd-enhanced T1-weighted image. Radiologists should consider myoepithelioma in the radiological differential diagnosis of soft palate tumors.

  18. The display of multiple images derived from emission computed assisted tomography (ECAT)

    International Nuclear Information System (INIS)

    Jackson, P.C.; Davies, E.R.; Goddard, P.R.; Wilde, R.P.H.

    1983-01-01

    In emission computed assisted tomography, a technique has been developed to display the multiple sections of an organ within a single image, such that three dimensional appreciation of the organ can be obtained, whilst also preserving functional information. The technique when tested on phantoms showed no obvious deterioration in resolution and when used clinically gave satisfactory visual results. Such a method should allow easier appreciation of the extent of a lesion through an organ and thus allow dimensions to be obtained by direct measurement. (U.K.)

  19. Microprocessor based image processing system

    International Nuclear Information System (INIS)

    Mirza, M.I.; Siddiqui, M.N.; Rangoonwala, A.

    1987-01-01

    Rapid developments in the production of integrated circuits and introduction of sophisticated 8,16 and now 32 bit microprocessor based computers, have set new trends in computer applications. Nowadays the users by investing much less money can make optimal use of smaller systems by getting them custom-tailored according to their requirements. During the past decade there have been great advancements in the field of computer Graphics and consequently, 'Image Processing' has emerged as a separate independent field. Image Processing is being used in a number of disciplines. In the Medical Sciences, it is used to construct pseudo color images from computer aided tomography (CAT) or positron emission tomography (PET) scanners. Art, advertising and publishing people use pseudo colours in pursuit of more effective graphics. Structural engineers use Image Processing to examine weld X-rays to search for imperfections. Photographers use Image Processing for various enhancements which are difficult to achieve in a conventional dark room. (author)

  20. Computed Tomography (CT) -- Head

    Medline Plus

    Full Text Available ... Physician Resources Professions Site Index A-Z Computed Tomography (CT) - Head Computed tomography (CT) of the head uses special x-ray ... What is CT Scanning of the Head? Computed tomography, more commonly known as a CT or CAT ...

  1. Frequent Computed Tomography Scanning Due to Incomplete Three-View X-Ray Imaging of the Cervical Spine

    NARCIS (Netherlands)

    Saltzherr, Teun Peter; Beenen, Ludo F. M.; Reitsma, Johannes B.; Luitse, Jan S. K.; Vandertop, W. Peter; Goslings, J. Carel

    2010-01-01

    Background: Conventional C-spine imaging (3-view series) is still widely used in trauma patients, although the utilization of computed tomography (CT) scanning is increasing. The aim of this study was to analyze the value of conventional radiography and the frequency of subsequent CT scanning due to

  2. Physics Model-Based Scatter Correction in Multi-Source Interior Computed Tomography.

    Science.gov (United States)

    Gong, Hao; Li, Bin; Jia, Xun; Cao, Guohua

    2018-02-01

    Multi-source interior computed tomography (CT) has a great potential to provide ultra-fast and organ-oriented imaging at low radiation dose. However, X-ray cross scattering from multiple simultaneously activated X-ray imaging chains compromises imaging quality. Previously, we published two hardware-based scatter correction methods for multi-source interior CT. Here, we propose a software-based scatter correction method, with the benefit of no need for hardware modifications. The new method is based on a physics model and an iterative framework. The physics model was derived analytically, and was used to calculate X-ray scattering signals in both forward direction and cross directions in multi-source interior CT. The physics model was integrated to an iterative scatter correction framework to reduce scatter artifacts. The method was applied to phantom data from both Monte Carlo simulations and physical experimentation that were designed to emulate the image acquisition in a multi-source interior CT architecture recently proposed by our team. The proposed scatter correction method reduced scatter artifacts significantly, even with only one iteration. Within a few iterations, the reconstructed images fast converged toward the "scatter-free" reference images. After applying the scatter correction method, the maximum CT number error at the region-of-interests (ROIs) was reduced to 46 HU in numerical phantom dataset and 48 HU in physical phantom dataset respectively, and the contrast-noise-ratio at those ROIs increased by up to 44.3% and up to 19.7%, respectively. The proposed physics model-based iterative scatter correction method could be useful for scatter correction in dual-source or multi-source CT.

  3. New possibilities of three-dimensional reconstruction of computed tomography scans

    International Nuclear Information System (INIS)

    Herman, M.; Tarjan, Z.; Pozzi-Mucelli, R.S.

    1996-01-01

    Three-dimensional (3D) computed tomography (CT) scan reconstructions provide impressive and illustrative images of various parts of the human body. Such images are reconstructed from a series of basic CT scans by dedicated software. The state of the art in 3D computed tomography is demonstrated with emphasis on the imaging of soft tissues. Examples are presented of imaging the craniofacial and maxillofacial complex, central nervous system, cardiovascular system, musculoskeletal system, gastrointestinal and urogenital systems, and respiratory system, and their potential in clinical practice is discussed. Although contributing no new essential diagnostic information against conventional CT scans, 3D scans can help in spatial orientation. 11 figs., 25 refs

  4. Gantry for computed tomography

    International Nuclear Information System (INIS)

    Brandt, R.T.; Hein, P.W.

    1981-01-01

    A novel design of gantry for use in computed tomography is described in detail. In the new gantry, curved tracks are mounted to the laterally spaced apart sides of the frame which rotates and carries the detector and X-ray source. This permits the frame to be tilted either side of vertical enabling angular slices of body layers to be viewed and allows simplification of the algorithm which the computer uses for image reconstruction. The tracks are supported on rollers which carry the substantial weight. Explicit engineering details are presented. (U.K.)

  5. Preoperative lymph-node staging of invasive urothelial bladder cancer with 18F-fluorodeoxyglucose positron emission tomography/computed axial tomography and magnetic resonance imaging

    DEFF Research Database (Denmark)

    Jensen, Thor Knak; Holt, Per; Gerke, Oke

    2011-01-01

    OBJECTIVE: The treatment and prognosis of bladder cancer are based on the depth of primary tumour invasion and the presence of metastases. A highly accurate preoperative tumour, node, metastasis (TNM) staging is critical to proper patient management and treatment. This study retrospectively...... investigated the value of ¹⁸F-fluorodeoxyglucose (FDG) positron emission tomography/computed axial tomography (¹⁸F-FDG PET/CT) and magnetic resonance imaging (MRI) for preoperative N staging of bladder cancer. Material and methods. From June 2006 to January 2008, 48 consecutive patients diagnosed with bladder......) for MRI and ¹⁸F-FDG PET/CT, respectively. The differences in specificity and negative predictive values were not statistically significant. Conclusions. No significant statistical difference between ¹⁸F-FDG PET/CT and MRI for preoperative N staging of urothelial bladder cancer was found in the study...

  6. Material decomposition and virtual non-contrast imaging in photon counting computed tomography: an animal study

    Science.gov (United States)

    Gutjahr, R.; Polster, C.; Kappler, S.; Pietsch, H.; Jost, G.; Hahn, K.; Schöck, F.; Sedlmair, M.; Allmendinger, T.; Schmidt, B.; Krauss, B.; Flohr, T. G.

    2016-03-01

    The energy resolving capabilities of Photon Counting Detectors (PCD) in Computed Tomography (CT) facilitate energy-sensitive measurements. The provided image-information can be processed with Dual Energy and Multi Energy algorithms. A research PCD-CT firstly allows acquiring images with a close to clinical configuration of both the X-ray tube and the CT-detector. In this study, two algorithms (Material Decomposition and Virtual Non-Contrast-imaging (VNC)) are applied on a data set acquired from an anesthetized rabbit scanned using the PCD-CT system. Two contrast agents (CA) are applied: A gadolinium (Gd) based CA used to enhance contrasts for vascular imaging, and xenon (Xe) and air as a CA used to evaluate local ventilation of the animal's lung. Four different images are generated: a) A VNC image, suppressing any traces of the injected Gd imitating a native scan, b) a VNC image with a Gd-image as an overlay, where contrast enhancements in the vascular system are highlighted using colored labels, c) another VNC image with a Xe-image as an overlay, and d) a 3D rendered image of the animal's lung, filled with Xe, indicating local ventilation characteristics. All images are generated from two images based on energy bin information. It is shown that a modified version of a commercially available dual energy software framework is capable of providing images with diagnostic value obtained from the research PCD-CT system.

  7. Multi Detector Computed Tomography Fistulography In Patients of Fistula-in-Ano: An Imaging Collage.

    Science.gov (United States)

    Bhatt, Shuchi; Jain, Bhupendra Kumar; Singh, Vikas Kumar

    2017-01-01

    Fistula-in-ano, or perianal fistula, is a challenging clinical condition for both diagnosis and treatment. Imaging modalities such as fistulography, anal endosonography, perineal sonography, magnetic resonance imaging (MRI), and computed tomography (CT) are available for its evaluation. MRI is considered as the modality of choice for an accurate delineation of the tract in relation to the sphincter complex and for the detection of associated complications. However, its availability and affordability is always an issue. Moreover, the requirement to obtain multiple sequences to depict the fistula in detail is cumbersome and confusing for the clinicians to interpret. The inability to show the fistula in relation to normal anatomical structures in a single image is also a limitation. Multi detector computed tomography fistulography ( MDCTF ) is an underutilized technique for defining perianal fistulas. Acquisition of iso-volumetric data sets with instillation of contrast into the fistula delineates the tract and its components. Post-processing with thin sections allows for a generation of good quality images for presentation in various planes (multi-planar reconstructions) and formats (volume rendered technique, maximum intensity projection). MDCTF demonstrates the type of fistula, its extent, whether it is simple or complex, and shows the site of internal opening and associated complications; all in easy to understand images that can be used by the surgeons. Its capability to represent the entire pathology in relation to normal anatomical structures in few images is a definite advantage. MDCTF can be utilized when MRI is contraindicated or not feasible. This pictorial review shares our initial experience with MDCT fistulography in evaluating fistula-in-ano, demonstrates various components of fistulas, and discusses the types of fistulas according to the standard Parks classification.

  8. Optical imaging of oral pathological tissue using optical coherence tomography and synchrotron radiation computed microtomography

    Science.gov (United States)

    Cânjǎu, Silvana; Todea, Carmen; Sinescu, Cosmin; Negrutiu, Meda L.; Duma, Virgil; Mǎnescu, Adrian; Topalǎ, Florin I.; Podoleanu, Adrian Gh.

    2013-06-01

    The efforts aimed at early diagnosis of oral cancer should be prioritized towards developing a new screening instrument, based on optical coherence tomography (OCT), to be used directly intraorally, able to perform a fast, real time, 3D and non-invasive diagnosis of oral malignancies. The first step in this direction would be to optimize the OCT image interpretation of oral tissues. Therefore we propose plastination as a tissue preparation method that better preserves three-dimensional structure for study by new optical imaging techniques. The OCT and the synchrotron radiation computed microtomography (micro-CT) were employed for tissue sample analyze. For validating the OCT results we used the gold standard diagnostic procedure for any suspicious lesion - histopathology. This is a preliminary study of comparing features provided by OCT and Micro-CT. In the conditions of the present study, OCT proves to be a highly promising imaging modality. The use of x-ray based topographic imaging of small biological samples has been limited by the low intrinsic x-ray absorption of non-mineralized tissue and the lack of established contrast agents. Plastination can be used to enhance optical imagies of oral soft tissue samples.

  9. Assessment of phantom dosimetry and image quality of i-CAT FLX cone-beam computed tomography.

    Science.gov (United States)

    Ludlow, John B; Walker, Cameron

    2013-12-01

    The increasing use of cone-beam computed tomography in orthodontics has been coupled with heightened concern about the long-term risks of x-ray exposure in orthodontic populations. An industry response to this has been to offer low-exposure alternative scanning options in newer cone-beam computed tomography models. Effective doses resulting from various combinations of field of view size and field location comparing child and adult anthropomorphic phantoms with the recently introduced i-CAT FLX cone-beam computed tomography unit (Imaging Sciences, Hatfield, Pa) were measured with optical stimulated dosimetry using previously validated protocols. Scan protocols included high resolution (360° rotation, 600 image frames, 120 kV[p], 5 mA, 7.4 seconds), standard (360°, 300 frames, 120 kV[p], 5 mA, 3.7 seconds), QuickScan (180°, 160 frames, 120 kV[p], 5 mA, 2 seconds), and QuickScan+ (180°, 160 frames, 90 kV[p], 3 mA, 2 seconds). Contrast-to-noise ratio was calculated as a quantitative measure of image quality for the various exposure options using the QUART DVT phantom. Child phantom doses were on average 36% greater than adult phantom doses. QuickScan+ protocols resulted in significantly lower doses than standard protocols for the child (P = 0.0167) and adult (P = 0.0055) phantoms. The 13 × 16-cm cephalometric fields of view ranged from 11 to 85 μSv in the adult phantom and 18 to 120 μSv in the child phantom for the QuickScan+ and standard protocols, respectively. The contrast-to-noise ratio was reduced by approximately two thirds when comparing QuickScan+ with standard exposure parameters. QuickScan+ effective doses are comparable with conventional panoramic examinations. Significant dose reductions are accompanied by significant reductions in image quality. However, this trade-off might be acceptable for certain diagnostic tasks such as interim assessment of treatment results. Copyright © 2013 American Association of Orthodontists. Published by Mosby, Inc

  10. Computed tomography versus digital subtraction angiography for the diagnosis of obscure gastrointestinal bleeding

    Energy Technology Data Exchange (ETDEWEB)

    Wildgruber, Moritz, E-mail: moritzwildgruber@ukmuenster.de [Institut für Röntgendiagnostik, Universitätsklinikum Regensburg, D-93053 Regensburg (Germany); Institut für klinische Radiologie, Universitätsklinikum Münster, D-48149 Münster (Germany); Wrede, Christian E. [Notfallzentrum, Helios Klinikum Berlin-Buch, D-13125 Berlin (Germany); Zorger, Niels [Institut für Radiologie, Neuroradiologie und Nuklearmedizin, Krankenhaus Barmherzige Brüder, D-93049 Regensburg (Germany); Müller-Wille, René; Hamer, Okka W. [Institut für Röntgendiagnostik, Universitätsklinikum Regensburg, D-93053 Regensburg (Germany); Zeman, Florian [Zentrum für Klinische Studien, Universitätsklinikum Regensburg, D-93053 Regensburg (Germany); Stroszczynski, Christian; Heiss, Peter [Institut für Röntgendiagnostik, Universitätsklinikum Regensburg, D-93053 Regensburg (Germany)

    2017-03-15

    Purpose: The diagnostic yield of computed tomography angiography (CTA) compared to digital subtraction angiography (DSA) for major obscure gastrointestinal bleeding (OGIB) is not known. Aim of the study was to prospectively evaluate the diagnostic yield of CTA versus DSA for the diagnosis of major OGIB. Material and methods: The institutional review board approved the study and informed consent was obtained from each patient. Patients with major OGIB were prospectively enrolled to undergo both CTA and DSA. Two blinded radiologists each reviewed the CTA and DSA images retrospectively and independently. Contrast material extravasation into the gastrointestinal lumen was considered diagnostic for active bleeding. Primary end point of the study was the diagnostic yield, defined as the frequency a technique identified an active bleeding or a potential bleeding lesion. The diagnostic yield of CTA and DSA were compared by McNemar's test. Results: 24 consecutive patients (11 men; median age 64 years) were included. CTA and DSA identified an active bleeding or a potential bleeding lesion in 92% (22 of 24 patients; 95% CI 72%–99%) and 29% (7 of 24 patients; 95% CI 12%–49%) of patients, respectively (p < 0.001). CTA and DSA identified an active bleeding in 42% (10 of 24; 95% CI 22%–63%) and 21% (5 of 24; 95% CI 7%–42%) of patients, respectively (p = 0.06). Conclusion: Due to the lower invasiveness and higher diagnostic yield CTA should be favored over DSA for the diagnosis of major OGIB.

  11. Computed tomography versus digital subtraction angiography for the diagnosis of obscure gastrointestinal bleeding

    International Nuclear Information System (INIS)

    Wildgruber, Moritz; Wrede, Christian E.; Zorger, Niels; Müller-Wille, René; Hamer, Okka W.; Zeman, Florian; Stroszczynski, Christian; Heiss, Peter

    2017-01-01

    Purpose: The diagnostic yield of computed tomography angiography (CTA) compared to digital subtraction angiography (DSA) for major obscure gastrointestinal bleeding (OGIB) is not known. Aim of the study was to prospectively evaluate the diagnostic yield of CTA versus DSA for the diagnosis of major OGIB. Material and methods: The institutional review board approved the study and informed consent was obtained from each patient. Patients with major OGIB were prospectively enrolled to undergo both CTA and DSA. Two blinded radiologists each reviewed the CTA and DSA images retrospectively and independently. Contrast material extravasation into the gastrointestinal lumen was considered diagnostic for active bleeding. Primary end point of the study was the diagnostic yield, defined as the frequency a technique identified an active bleeding or a potential bleeding lesion. The diagnostic yield of CTA and DSA were compared by McNemar's test. Results: 24 consecutive patients (11 men; median age 64 years) were included. CTA and DSA identified an active bleeding or a potential bleeding lesion in 92% (22 of 24 patients; 95% CI 72%–99%) and 29% (7 of 24 patients; 95% CI 12%–49%) of patients, respectively (p < 0.001). CTA and DSA identified an active bleeding in 42% (10 of 24; 95% CI 22%–63%) and 21% (5 of 24; 95% CI 7%–42%) of patients, respectively (p = 0.06). Conclusion: Due to the lower invasiveness and higher diagnostic yield CTA should be favored over DSA for the diagnosis of major OGIB.

  12. Comprehensive Oncologic Imaging in Infants and Preschool Children With Substantially Reduced Radiation Exposure Using Combined Simultaneous ¹⁸F-Fluorodeoxyglucose Positron Emission Tomography/Magnetic Resonance Imaging: A Direct Comparison to ¹⁸F-Fluorodeoxyglucose Positron Emission Tomography/Computed Tomography.

    Science.gov (United States)

    Gatidis, Sergios; Schmidt, Holger; Gücke, Brigitte; Bezrukov, Ilja; Seitz, Guido; Ebinger, Martin; Reimold, Matthias; Pfannenberg, Christina A; Nikolaou, Konstantin; Schwenzer, Nina F; Schäfer, Jürgen F

    2016-01-01

    The aim of this study was to evaluate the clinical applicability and technical feasibility of fluorodeoxyglucose (FDG) positron emission tomography (PET)/magnetic resonance imaging (MRI) compared with FDG PET/computed tomography (CT) in young children focusing on lesion detection, PET quantification, and potential savings in radiation exposure. Twenty examinations (10 PET/CT and 10 PET/MRI examinations) were performed prospectively in 9 patients with solid tumors (3 female, 6 male; mean age, 4.8 [1-6] years). Fluorodeoxyglucose PET/CT and FDG PET/MRI were performed sequentially after a single tracer injection. Lesion detection and analysis were performed independently in PET/CT and PET/MRI. Potential changes in diagnostic or therapeutic patient management were recorded. Positron emission tomography quantification in PET/MRI was evaluated by comparing standardized uptake values resulting from MRI-based and CT-based attenuation correction. Effective radiation doses of PET and CT were estimated. Twenty-one PET-positive lesions were found congruently in PET/CT and PET/MRI. Magnetic resonance imaging enabled significantly better detection of morphologic PET correlates compared with CT. Eight suspicious PET-negative lesions were identified by MRI, of which one was missed in CT. Sensitivity, specificity, and accuracy for correct lesion classification were not significantly different (90%, 47%, and 62% in PET/CT; 100%, 68%, and 79% in PET/MRI, respectively). In 4 patients, the use of PET/MRI resulted in a potential change in diagnostic management compared with PET/CT, as local and whole-body staging could be performed within 1 single examination. In 1 patient, PET/MRI initiated a change in therapeutic management. Positron emission tomography quantification using MRI-based attenuation correction was accurate compared with CT-based attenuation correction. Higher standardized uptake value deviations of about 18% were observed in the lungs due to misclassification in MRI-based

  13. An X-Ray computed tomography/positron emission tomography system designed specifically for breast imaging.

    Science.gov (United States)

    Boone, John M; Yang, Kai; Burkett, George W; Packard, Nathan J; Huang, Shih-ying; Bowen, Spencer; Badawi, Ramsey D; Lindfors, Karen K

    2010-02-01

    Mammography has served the population of women who are at-risk for breast cancer well over the past 30 years. While mammography has undergone a number of changes as digital detector technology has advanced, other modalities such as computed tomography have experienced technological sophistication over this same time frame as well. The advent of large field of view flat panel detector systems enable the development of breast CT and several other niche CT applications, which rely on cone beam geometry. The breast, it turns out, is well suited to cone beam CT imaging because the lack of bones reduces artifacts, and the natural tapering of the breast anteriorly reduces the x-ray path lengths through the breast at large cone angle, reducing cone beam artifacts as well. We are in the process of designing a third prototype system which will enable the use of breast CT for image guided interventional procedures. This system will have several copies fabricated so that several breast CT scanners can be used in a multi-institutional clinical trial to better understand the role that this technology can bring to breast imaging.

  14. Analysis of airways in computed tomography

    DEFF Research Database (Denmark)

    Petersen, Jens

    Chronic Obstructive Pulmonary Disease (COPD) is major cause of death and disability world-wide. It affects lung function through destruction of lung tissue known as emphysema and inflammation of airways, leading to thickened airway walls and narrowed airway lumen. Computed Tomography (CT) imaging...

  15. Computed Tomography Perfusion Usefulness in Early Imaging Diagnosis of Herpes Simplex Virus Encephalitis

    International Nuclear Information System (INIS)

    Marco de Lucas, E.; Mandly, Gonzalez A.; Gutierrez, A.; Sanchez, E.; Arnaiz, J.; Piedra, T.; Rodriguez, E.; Diez, C.

    2006-01-01

    An early diagnosis is crucial in herpes simplex virus encephalitis patients in order to institute acyclovir therapy and reduce mortality rates. Magnetic resonance imaging (MRI) is considered the gold standard for evaluation of these patients, but is frequently not available in the emergency setting. We report the first case of a computed tomography (CT) perfusion study that helped to establish a prompt diagnosis revealing abnormal increase of blood flow in the affected temporoparietal cortex at an early stage

  16. Computed tomography in the detection of pulmonary metastases. Improvement by application of spiral technology

    International Nuclear Information System (INIS)

    Kauczor, H.U.; Hansen, M.; Schweden, F.; Strunk, H.; Mildenberger, P.; Thelen, M.

    1994-01-01

    Computed tomography is the imaging modality of choice for detection or exclusion of pulmonary metastases. In most cases these are spheric, multiple, bilateral, and located in the peripheral areas of the middle and lower fields of the lungs. Differential diagnosis of solitary pulmonary nodules is difficult. Evaluating whether they are malignant or benign is insufficient despite the application of multiple CT criteria. Spiral computed tomography acquiring an imaging volume in a breathhold has led to significant improvement in the sensitivity of detecting pulmonary nodules. Imaging protocols are presented, and the influence of the different parameters is discussed. Although not all pulmonary metastases may be detected with spiral computed tomography, it is the most important examination when considering pulmonary metastasectomy. Computed tomography is the imaging modality of choice when monitoring pulmonary metastases during systemic therapeutic regimens by measuring all nodules or 'indicator lesions'. (orig.) [de

  17. Volumetric quantification of bone-implant contact using micro-computed tomography analysis based on region-based segmentation

    Energy Technology Data Exchange (ETDEWEB)

    Kang, Sung Won; Lee, Woo Jin; Choi, Soon Chul; Lee, Sam Sun; Heo, Min Suk; Huh, Kyung Hoe; Kim, Tae Il; Yi, Won Ji [Dental Research Institute, School of Dentistry, Seoul National University, Seoul (Korea, Republic of)

    2015-03-15

    We have developed a new method of segmenting the areas of absorbable implants and bone using region-based segmentation of micro-computed tomography (micro-CT) images, which allowed us to quantify volumetric bone-implant contact (VBIC) and volumetric absorption (VA). The simple threshold technique generally used in micro-CT analysis cannot be used to segment the areas of absorbable implants and bone. Instead, a region-based segmentation method, a region-labeling method, and subsequent morphological operations were successively applied to micro-CT images. The three-dimensional VBIC and VA of the absorbable implant were then calculated over the entire volume of the implant. Two-dimensional (2D) bone-implant contact (BIC) and bone area (BA) were also measured based on the conventional histomorphometric method. VA and VBIC increased significantly with as the healing period increased (p<0.05). VBIC values were significantly correlated with VA values (p<0.05) and with 2D BIC values (p<0.05). It is possible to quantify VBIC and VA for absorbable implants using micro-CT analysis using a region-based segmentation method.

  18. Volumetric quantification of bone-implant contact using micro-computed tomography analysis based on region-based segmentation

    International Nuclear Information System (INIS)

    Kang, Sung Won; Lee, Woo Jin; Choi, Soon Chul; Lee, Sam Sun; Heo, Min Suk; Huh, Kyung Hoe; Kim, Tae Il; Yi, Won Ji

    2015-01-01

    We have developed a new method of segmenting the areas of absorbable implants and bone using region-based segmentation of micro-computed tomography (micro-CT) images, which allowed us to quantify volumetric bone-implant contact (VBIC) and volumetric absorption (VA). The simple threshold technique generally used in micro-CT analysis cannot be used to segment the areas of absorbable implants and bone. Instead, a region-based segmentation method, a region-labeling method, and subsequent morphological operations were successively applied to micro-CT images. The three-dimensional VBIC and VA of the absorbable implant were then calculated over the entire volume of the implant. Two-dimensional (2D) bone-implant contact (BIC) and bone area (BA) were also measured based on the conventional histomorphometric method. VA and VBIC increased significantly with as the healing period increased (p<0.05). VBIC values were significantly correlated with VA values (p<0.05) and with 2D BIC values (p<0.05). It is possible to quantify VBIC and VA for absorbable implants using micro-CT analysis using a region-based segmentation method.

  19. Constrained Total Generalized p-Variation Minimization for Few-View X-Ray Computed Tomography Image Reconstruction.

    Science.gov (United States)

    Zhang, Hanming; Wang, Linyuan; Yan, Bin; Li, Lei; Cai, Ailong; Hu, Guoen

    2016-01-01

    Total generalized variation (TGV)-based computed tomography (CT) image reconstruction, which utilizes high-order image derivatives, is superior to total variation-based methods in terms of the preservation of edge information and the suppression of unfavorable staircase effects. However, conventional TGV regularization employs l1-based form, which is not the most direct method for maximizing sparsity prior. In this study, we propose a total generalized p-variation (TGpV) regularization model to improve the sparsity exploitation of TGV and offer efficient solutions to few-view CT image reconstruction problems. To solve the nonconvex optimization problem of the TGpV minimization model, we then present an efficient iterative algorithm based on the alternating minimization of augmented Lagrangian function. All of the resulting subproblems decoupled by variable splitting admit explicit solutions by applying alternating minimization method and generalized p-shrinkage mapping. In addition, approximate solutions that can be easily performed and quickly calculated through fast Fourier transform are derived using the proximal point method to reduce the cost of inner subproblems. The accuracy and efficiency of the simulated and real data are qualitatively and quantitatively evaluated to validate the efficiency and feasibility of the proposed method. Overall, the proposed method exhibits reasonable performance and outperforms the original TGV-based method when applied to few-view problems.

  20. Simulation-Based Planning of Optimal Conditions for Industrial Computed Tomography

    DEFF Research Database (Denmark)

    Reisinger, S.; Kasperl, S.; Franz, M.

    2011-01-01

    We present a method to optimise conditions for industrial computed tomography (CT). This optimisation is based on a deterministic simulation. Our algorithm finds task-specific CT equipment settings to achieve optimal exposure parameters by means of an STL-model of the specimen and a raytracing...

  1. Application of fluence field modulation to proton computed tomography for proton therapy imaging.

    Science.gov (United States)

    Dedes, G; De Angelis, L; Rit, S; Hansen, D; Belka, C; Bashkirov, V; Johnson, R P; Coutrakon, G; Schubert, K E; Schulte, R W; Parodi, K; Landry, G

    2017-07-12

    This simulation study presents the application of fluence field modulated computed tomography, initially developed for x-ray CT, to proton computed tomography (pCT). By using pencil beam (PB) scanning, fluence modulated pCT (FMpCT) may achieve variable image quality in a pCT image and imaging dose reduction. Three virtual phantoms, a uniform cylinder and two patients, were studied using Monte Carlo simulations of an ideal list-mode pCT scanner. Regions of interest (ROI) were selected for high image quality and only PBs intercepting them preserved full fluence (FF). Image quality was investigated in terms of accuracy (mean) and noise (standard deviation) of the reconstructed proton relative stopping power compared to reference values. Dose calculation accuracy on FMpCT images was evaluated in terms of dose volume histograms (DVH), range difference (RD) for beam-eye-view (BEV) dose profiles and gamma evaluation. Pseudo FMpCT scans were created from broad beam experimental data acquired with a list-mode pCT prototype. FMpCT noise in ROIs was equivalent to FF images and accuracy better than  -1.3%(-0.7%) by using 1% of FF for the cylinder (patients). Integral imaging dose reduction of 37% and 56% was achieved for the two patients for that level of modulation. Corresponding DVHs from proton dose calculation on FMpCT images agreed to those from reference images and 96% of BEV profiles had RD below 2 mm, compared to only 1% for uniform 1% of FF. Gamma pass rates (2%, 2 mm) were 98% for FMpCT while for uniform 1% of FF they were as low as 59%. Applying FMpCT to preliminary experimental data showed that low noise levels and accuracy could be preserved in a ROI, down to 30% modulation. We have shown, using both virtual and experimental pCT scans, that FMpCT is potentially feasible and may allow a means of imaging dose reduction for a pCT scanner operating in PB scanning mode. This may be of particular importance to proton therapy given the low integral dose found

  2. Characterization of a computed tomography iterative reconstruction algorithm by image quality evaluations with an anthropomorphic phantom

    International Nuclear Information System (INIS)

    Rampado, O.; Bossi, L.; Garabello, D.; Davini, O.; Ropolo, R.

    2012-01-01

    Objective: This study aims to investigate the consequences on dose and image quality of the choices of different combinations of NI and adaptive statistical iterative reconstruction (ASIR) percentage, the image quality parameters of GE CT equipment. Methods: An anthropomorphic phantom was used to simulate the chest and upper abdomen of a standard weight patient. Images were acquired with tube current modulation and different values of noise index, in the range 10–22 for a slice thickness of 5 mm and a tube voltage of 120 kV. For each selected noise index, several image series were reconstructed using different percentages of ASIR (0, 40, 50, 60, 70, 100). Quantitative noise was assessed at different phantom locations. Computed tomography dose index (CTDI) and dose length products (DLP) were recorded. Three radiologists reviewed the images in a blinded and randomized manner and assessed the subjective image quality by comparing the image series with the one acquired with the reference protocol (noise index 14, ASIR 40%). The perceived noise, contrast, edge sharpness and overall quality were graded on a scale from −2 (much worse) to +2 (much better). Results: A repeatable trend of noise reduction versus the percentage of ASIR was observed for different noise levels and phantom locations. The different combinations of noise index and percentage of ASIR to obtain a desired dose reduction were assessed. The subjective image quality evaluation evidenced a possible dose reduction between 24 and 40% as a consequence of an increment of ASIR percentage to 50 or 70%, respectively. Conclusion: These results highlighted that the same patient dose reduction can be obtained with several combinations of noise index and percentages of ASIR, providing a model with which to choose these acquisition parameters in future optimization studies, with the aim of reducing patient dose by maintaining image quality in diagnostic levels.

  3. Characterization of a computed tomography iterative reconstruction algorithm by image quality evaluations with an anthropomorphic phantom

    Energy Technology Data Exchange (ETDEWEB)

    Rampado, O., E-mail: orampado@molinette.piemonte.it [S.C. Fisica Sanitaria, San Giovanni Battista Hospital of Turin, Corso Bramante 88, Torino 10126 (Italy); Bossi, L., E-mail: laura-bossi@hotmail.it [S.C. Fisica Sanitaria, San Giovanni Battista Hospital of Turin, Corso Bramante 88, Torino 10126 (Italy); Garabello, D., E-mail: dgarabello@molinette.piemonte.it [S.C. Radiodiagnostica DEA, San Giovanni Battista Hospital of Turin, Corso Bramante 88, Torino 10126 (Italy); Davini, O., E-mail: odavini@molinette.piemonte.it [S.C. Radiodiagnostica DEA, San Giovanni Battista Hospital of Turin, Corso Bramante 88, Torino 10126 (Italy); Ropolo, R., E-mail: rropolo@molinette.piemonte.it [S.C. Fisica Sanitaria, San Giovanni Battista Hospital of Turin, Corso Bramante 88, Torino 10126 (Italy)

    2012-11-15

    Objective: This study aims to investigate the consequences on dose and image quality of the choices of different combinations of NI and adaptive statistical iterative reconstruction (ASIR) percentage, the image quality parameters of GE CT equipment. Methods: An anthropomorphic phantom was used to simulate the chest and upper abdomen of a standard weight patient. Images were acquired with tube current modulation and different values of noise index, in the range 10-22 for a slice thickness of 5 mm and a tube voltage of 120 kV. For each selected noise index, several image series were reconstructed using different percentages of ASIR (0, 40, 50, 60, 70, 100). Quantitative noise was assessed at different phantom locations. Computed tomography dose index (CTDI) and dose length products (DLP) were recorded. Three radiologists reviewed the images in a blinded and randomized manner and assessed the subjective image quality by comparing the image series with the one acquired with the reference protocol (noise index 14, ASIR 40%). The perceived noise, contrast, edge sharpness and overall quality were graded on a scale from -2 (much worse) to +2 (much better). Results: A repeatable trend of noise reduction versus the percentage of ASIR was observed for different noise levels and phantom locations. The different combinations of noise index and percentage of ASIR to obtain a desired dose reduction were assessed. The subjective image quality evaluation evidenced a possible dose reduction between 24 and 40% as a consequence of an increment of ASIR percentage to 50 or 70%, respectively. Conclusion: These results highlighted that the same patient dose reduction can be obtained with several combinations of noise index and percentages of ASIR, providing a model with which to choose these acquisition parameters in future optimization studies, with the aim of reducing patient dose by maintaining image quality in diagnostic levels.

  4. Spiral computed tomography assessment of the efficacy of different rotary versus hand retreatment system.

    Science.gov (United States)

    Mittal, Neelam; Jain, Jyoti

    2014-01-01

    The purpose of this study was to evaluate the efficacy of nickel-titanium rotary retreatment systems versus stainless steel hand retreatment system with or without solvent for gutta-percha removal during retreatment. Sixty extracted human mandibular molar teeth with single canal in a distal root was prepared with ProTaper rotary nickel-titanium files and obturated with gutta-percha and sealer. The teeth were randomly divided into six groups of 10 specimens in each groups. The volume of filling material before and after retreatment were evaluated in cm(3) using the computed tomography (CT) scanner proprietary software. Maximum amount of filling material removed during retreatment with ProTaper retreatment system with solvent and minimum with hand retreatment system with solvent. None of the technique was 100% effective in removing the filling materials, but the ProTaper retreatment system with solvent was better.

  5. A true minimally invasive approach for cochlear implantation: high accuracy in cranial base navigation through flat-panel-based volume computed tomography.

    Science.gov (United States)

    Majdani, Omid; Bartling, Soenke H; Leinung, Martin; Stöver, Timo; Lenarz, Minoo; Dullin, Christian; Lenarz, Thomas

    2008-02-01

    High-precision intraoperative navigation using high-resolution flat-panel volume computed tomography makes feasible the possibility of minimally invasive cochlear implant surgery, including cochleostomy. Conventional cochlear implant surgery is typically performed via mastoidectomy with facial recess to identify and avoid damage to vital anatomic landmarks. To accomplish this procedure via a minimally invasive approach--without performing mastoidectomy--in a precise fashion, image-guided technology is necessary. With such an approach, surgical time and expertise may be reduced, and hearing preservation may be improved. Flat-panel volume computed tomography was used to scan 4 human temporal bones. A drilling channel was planned preoperatively from the mastoid surface to the round window niche, providing a margin of safety to all functional important structures (e.g., facial nerve, chorda tympani, incus). Postoperatively, computed tomographic imaging and conventional surgical exploration of the drilled route to the cochlea were performed. All 4 specimens showed a cochleostomy located at the scala tympani anterior inferior to the round window. The chorda tympani was damaged in 1 specimen--this was preoperatively planned as a narrow facial recess was encountered. Using flat-panel volume computed tomography for image-guided surgical navigation, we were able to perform minimally invasive cochlear implant surgery defined as a narrow, single-channel mastoidotomy with cochleostomy. Although this finding is preliminary, it is technologically achievable.

  6. Use of cone beam computed tomography in implant dentistry: current concepts, indications and limitations for clinical practice and research.

    Science.gov (United States)

    Bornstein, Michael M; Horner, Keith; Jacobs, Reinhilde

    2017-02-01

    Diagnostic radiology is an essential component of treatment planning in the field of implant dentistry. This narrative review will present current concepts for the use of cone beam computed tomography imaging, before and after implant placement, in daily clinical practice and research. Guidelines for the selection of three-dimensional imaging will be discussed, and limitations will be highlighted. Current concepts of radiation dose optimization, including novel imaging modalities using low-dose protocols, will be presented. For preoperative cross-sectional imaging, data are still not available which demonstrate that cone beam computed tomography results in fewer intraoperative complications such as nerve damage or bleeding incidents, or that implants inserted using preoperative cone beam computed tomography data sets for planning purposes will exhibit higher survival or success rates. The use of cone beam computed tomography following the insertion of dental implants should be restricted to specific postoperative complications, such as damage of neurovascular structures or postoperative infections in relation to the maxillary sinus. Regarding peri-implantitis, the diagnosis and severity of the disease should be evaluated primarily based on clinical parameters and on radiological findings based on periapical radiographs (two dimensional). The use of cone beam computed tomography scans in clinical research might not yield any evident beneficial effect for the patient included. As many of the cone beam computed tomography scans performed for research have no direct therapeutic consequence, dose optimization measures should be implemented by using appropriate exposure parameters and by reducing the field of view to the actual region of interest. © 2016 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd.

  7. Micro-computed tomography imaging and analysis in developmental biology and toxicology.

    Science.gov (United States)

    Wise, L David; Winkelmann, Christopher T; Dogdas, Belma; Bagchi, Ansuman

    2013-06-01

    Micro-computed tomography (micro-CT) is a high resolution imaging technique that has expanded and strengthened in use since it was last reviewed in this journal in 2004. The technology has expanded to include more detailed analysis of bone, as well as soft tissues, by use of various contrast agents. It is increasingly applied to questions in developmental biology and developmental toxicology. Relatively high-throughput protocols now provide a powerful and efficient means to evaluate embryos and fetuses subjected to genetic manipulations or chemical exposures. This review provides an overview of the technology, including scanning, reconstruction, visualization, segmentation, and analysis of micro-CT generated images. This is followed by a review of more recent applications of the technology in some common laboratory species that highlight the diverse issues that can be addressed. Copyright © 2013 Wiley Periodicals, Inc.

  8. Relationship of brain imaging with radionuclides and with x-ray computed tomography

    International Nuclear Information System (INIS)

    Kuhl, D.E.

    1981-01-01

    Because of high sensitivity and specificity for altered local cerebral structure, x-ray computed tomography (CT) is the preferred initial diagnostic imaging study under most circumstances when cerebral disease is suspected. CT has no competitor for detecting fresh intracerebral hemorrhage. Radionuclide imaging (RN) scan is preferred when relative perfusion is to be assessed, in patients allergic to contrast media, and when an adequate CT study is not technically possible. (RN) plays an important complementary role to CT, especially for patients suspected of subacute or chronic subdura hematoma, cerebral infarction, arteriovenous malformations, meningitis, encephalitis, normal pressure hydrocephalus, or when CT findings are inconclusive. When CT is not available, RN serves as a good screening study for suspected cerebral tumor, infection, recent infarction, arteriovenous malformation, and chronic subdural hematoma

  9. Phase-contrast x-ray computed tomography for observing biological specimens and organic materials

    Science.gov (United States)

    Momose, Atsushi; Takeda, Tohoru; Itai, Yuji

    1995-02-01

    A novel three-dimensional x-ray imaging method has been developed by combining a phase-contrast x-ray imaging technique with x-ray computed tomography. This phase-contrast x-ray computed tomography (PCX-CT) provides sectional images of organic specimens that would produce absorption-contrast x-ray CT images with little contrast. Comparing PCX-CT images of rat cerebellum and cancerous rabbit liver specimens with corresponding absorption-contrast CT images shows that PCX-CT is much more sensitive to the internal structure of organic specimens.

  10. Cardiac magnetic resonance imaging and computed tomography in ischemic cardiomyopathy: an update

    Directory of Open Access Journals (Sweden)

    Fernanda Boldrini Assunção

    2016-02-01

    Full Text Available Abstract Ischemic cardiomyopathy is one of the major health problems worldwide, representing a significant part of mortality in the general population nowadays. Cardiac magnetic resonance imaging (CMRI and cardiac computed tomography (CCT are noninvasive imaging methods that serve as useful tools in the diagnosis of coronary artery disease and may also help in screening individuals with risk factors for developing this illness. Technological developments of CMRI and CCT have contributed to the rise of several clinical indications of these imaging methods complementarily to other investigation methods, particularly in cases where they are inconclusive. In terms of accuracy, CMRI and CCT are similar to the other imaging methods, with few absolute contraindications and minimal risks of adverse side-effects. This fact strengthens these methods as powerful and safe tools in the management of patients. The present study is aimed at describing the role played by CMRI and CCT in the diagnosis of ischemic cardiomyopathies.

  11. Cardiac magnetic resonance imaging and computed tomography in ischemic cardiomyopathy: an update

    Energy Technology Data Exchange (ETDEWEB)

    Assuncao, Fernanda Boldrini; Oliveira, Diogo Costa Leandro de; Nacif, Marcelo Souto, E-mail: msnacif@gmail.com [Universidade Federal Fluminense (UFF), Niteroi, RJ (Brazil). Escola de Medicina; Souza, Vitor Frauches [Complexo Hospitalar de Niteroi (CHN), Niteroi, RJ (Brazil)

    2016-01-15

    Ischemic cardiomyopathy is one of the major health problems worldwide, representing a significant part of mortality in the general population nowadays. Cardiac magnetic resonance imaging (CMRI) and cardiac computed tomography (CCT) are noninvasive imaging methods that serve as useful tools in the diagnosis of coronary artery disease and may also help in screening individuals with risk factors for developing this illness. Technological developments of CMRI and CCT have contributed to the rise of several clinical indications of these imaging methods complimentarily to other investigation methods, particularly in cases where they are inconclusive. In terms of accuracy, CMRI and CCT are similar to the other imaging methods, with few absolute contraindications and minimal risks of adverse side-effects. This fact strengthens these methods as powerful and safe tools in the management of patients. The present study is aimed at describing the role played by CMRI and CCT in the diagnosis of ischemic cardiomyopathies. (author)

  12. Computed Tomography and Computed Radiography of late Bronze Age Cremation Urns from Denmark

    DEFF Research Database (Denmark)

    Harvig, Lise Lock; Lynnerup, Niels; Amsgaard Ebsen, Jannie

    2012-01-01

    To improve methods used to study prehistoric cremation rituals, cremation urns from the Danish late Bronze Age were examined using Computed Tomography and Computed Radiography (Digital X-ray). During microexcavation, the digital images were used as registration tool. Our results suggest...

  13. Patient study of in vivo verification of beam delivery and range, using positron emission tomography and computed tomography imaging after proton therapy

    NARCIS (Netherlands)

    Parodi, Katia; Paganetti, Harald; Shih, Helen A; Michaud, Susan; Loeffler, Jay S; DeLaney, Thomas F; Liebsch, Norbert J; Munzenrider, John E; Fischman, Alan J; Knopf, Antje; Bortfeld, Thomas

    2007-01-01

    PURPOSE: To investigate the feasibility and value of positron emission tomography and computed tomography (PET/CT) for treatment verification after proton radiotherapy. METHODS AND MATERIALS: This study included 9 patients with tumors in the cranial base, spine, orbit, and eye. Total doses of 1.8-3

  14. (18)F-fluoride positron emission tomography/computed tomography and bone scintigraphy for diagnosis of bone metastases in newly diagnosed, high-risk prostate cancer patients: study protocol for a multicentre, diagnostic test accuracy study.

    Science.gov (United States)

    Fonager, Randi F; Zacho, Helle D; Langkilde, Niels C; Petersen, Lars J

    2016-01-11

    For decades, planar bone scintigraphy has been the standard practice for detection of bone metastases in prostate cancer and has been endorsed by recent oncology/urology guidelines. It is a sensitive method with modest specificity. (18)F-fluoride positron emission tomography/computed tomography has shown improved sensitivity and specificity over bone scintigraphy, but because of methodological issues such as retrospective design and verification bias, the existing level of evidence with (18)F-fluoride positron emission tomography/computed tomography is limited. The primary objective is to compare the diagnostic properties of (18)F-fluoride positron emission tomography/computed tomography versus bone scintigraphy on an individual patient basis. One hundred forty consecutive, high-risk prostate cancer patients will be recruited from several hospitals in Denmark. Sample size was calculated using Hayen's method for diagnostic comparative studies. This study will be conducted in accordance with recommendations of standards for reporting diagnostic accuracy studies. Eligibility criteria comprise the following: 1) biopsy-proven prostate cancer, 2) PSA ≥ 50 ng/ml (equals a prevalence of bone metastasis of ≈ 50% in the study population on bone scintigraphy), 3) patients must be eligible for androgen deprivation therapy, 4) no current or prior cancer (within the past 5 years), 5) ability to comply with imaging procedures, and 6) patients must not receive any investigational drugs. Planar bone scintigraphy and (18)F-fluoride positron emission tomography/computed tomography will be performed within a window of 14 days at baseline. All scans will be repeated after 26 weeks of androgen deprivation therapy, and response of individual lesions will be used for diagnostic classification of the lesions on baseline imaging among responding patients. A response is defined as PSA normalisation or ≥ 80% reduction compared with baseline levels, testosterone below castration levels

  15. Development of computational small animal models and their applications in preclinical imaging and therapy research.

    Science.gov (United States)

    Xie, Tianwu; Zaidi, Habib

    2016-01-01

    The development of multimodality preclinical imaging techniques and the rapid growth of realistic computer simulation tools have promoted the construction and application of computational laboratory animal models in preclinical research. Since the early 1990s, over 120 realistic computational animal models have been reported in the literature and used as surrogates to characterize the anatomy of actual animals for the simulation of preclinical studies involving the use of bioluminescence tomography, fluorescence molecular tomography, positron emission tomography, single-photon emission computed tomography, microcomputed tomography, magnetic resonance imaging, and optical imaging. Other applications include electromagnetic field simulation, ionizing and nonionizing radiation dosimetry, and the development and evaluation of new methodologies for multimodality image coregistration, segmentation, and reconstruction of small animal images. This paper provides a comprehensive review of the history and fundamental technologies used for the development of computational small animal models with a particular focus on their application in preclinical imaging as well as nonionizing and ionizing radiation dosimetry calculations. An overview of the overall process involved in the design of these models, including the fundamental elements used for the construction of different types of computational models, the identification of original anatomical data, the simulation tools used for solving various computational problems, and the applications of computational animal models in preclinical research. The authors also analyze the characteristics of categories of computational models (stylized, voxel-based, and boundary representation) and discuss the technical challenges faced at the present time as well as research needs in the future.

  16. Development of computational small animal models and their applications in preclinical imaging and therapy research

    Energy Technology Data Exchange (ETDEWEB)

    Xie, Tianwu [Division of Nuclear Medicine and Molecular Imaging, Geneva University Hospital, Geneva 4 CH-1211 (Switzerland); Zaidi, Habib, E-mail: habib.zaidi@hcuge.ch [Division of Nuclear Medicine and Molecular Imaging, Geneva University Hospital, Geneva 4 CH-1211 (Switzerland); Geneva Neuroscience Center, Geneva University, Geneva CH-1205 (Switzerland); Department of Nuclear Medicine and Molecular Imaging, University of Groningen, University Medical Center Groningen, Groningen 9700 RB (Netherlands)

    2016-01-15

    The development of multimodality preclinical imaging techniques and the rapid growth of realistic computer simulation tools have promoted the construction and application of computational laboratory animal models in preclinical research. Since the early 1990s, over 120 realistic computational animal models have been reported in the literature and used as surrogates to characterize the anatomy of actual animals for the simulation of preclinical studies involving the use of bioluminescence tomography, fluorescence molecular tomography, positron emission tomography, single-photon emission computed tomography, microcomputed tomography, magnetic resonance imaging, and optical imaging. Other applications include electromagnetic field simulation, ionizing and nonionizing radiation dosimetry, and the development and evaluation of new methodologies for multimodality image coregistration, segmentation, and reconstruction of small animal images. This paper provides a comprehensive review of the history and fundamental technologies used for the development of computational small animal models with a particular focus on their application in preclinical imaging as well as nonionizing and ionizing radiation dosimetry calculations. An overview of the overall process involved in the design of these models, including the fundamental elements used for the construction of different types of computational models, the identification of original anatomical data, the simulation tools used for solving various computational problems, and the applications of computational animal models in preclinical research. The authors also analyze the characteristics of categories of computational models (stylized, voxel-based, and boundary representation) and discuss the technical challenges faced at the present time as well as research needs in the future.

  17. Development of computational small animal models and their applications in preclinical imaging and therapy research

    International Nuclear Information System (INIS)

    Xie, Tianwu; Zaidi, Habib

    2016-01-01

    The development of multimodality preclinical imaging techniques and the rapid growth of realistic computer simulation tools have promoted the construction and application of computational laboratory animal models in preclinical research. Since the early 1990s, over 120 realistic computational animal models have been reported in the literature and used as surrogates to characterize the anatomy of actual animals for the simulation of preclinical studies involving the use of bioluminescence tomography, fluorescence molecular tomography, positron emission tomography, single-photon emission computed tomography, microcomputed tomography, magnetic resonance imaging, and optical imaging. Other applications include electromagnetic field simulation, ionizing and nonionizing radiation dosimetry, and the development and evaluation of new methodologies for multimodality image coregistration, segmentation, and reconstruction of small animal images. This paper provides a comprehensive review of the history and fundamental technologies used for the development of computational small animal models with a particular focus on their application in preclinical imaging as well as nonionizing and ionizing radiation dosimetry calculations. An overview of the overall process involved in the design of these models, including the fundamental elements used for the construction of different types of computational models, the identification of original anatomical data, the simulation tools used for solving various computational problems, and the applications of computational animal models in preclinical research. The authors also analyze the characteristics of categories of computational models (stylized, voxel-based, and boundary representation) and discuss the technical challenges faced at the present time as well as research needs in the future

  18. X-Ray Computed Tomography of Tranquility Base Moon Rock

    Science.gov (United States)

    Jones, Justin S.; Garvin, Jim; Viens, Mike; Kent, Ryan; Munoz, Bruno

    2016-01-01

    X-ray Computed Tomography (CT) was used for the first time on the Apollo 11 Lunar Sample number 10057.30, which had been previously maintained by the White House, then transferred back to NASA under the care of Goddard Space Flight Center. Results from this analysis show detailed images of the internal structure of the moon rock, including vesicles (pores), crystal needles, and crystal bundles. These crystals, possibly the common mineral ilmenite, are found in abundance and with random orientation. Future work, in particular a greater understanding of these crystals and their formation, may lead to a more in-depth understanding of the lunar surface evolution and mineral content.

  19. Migrational disorders: a review of 13 cases. Computed tomography and Magnetic resonance imaging

    International Nuclear Information System (INIS)

    Machado Junior, M.A.; Barbosa, V.A.; Puglio, N.; Bastos, C.A.

    1994-01-01

    The authors reviewed 13 cases of migrational disorders using Computed Tomography (CT) and Magnetic Resonance Imaging (MRI). They found a large advantage of MRI in relation to CT, mainly, to study Schizencephaly, because MRI is more efficient way to demonstrate that the margins of the clefts are lined by cortical and make reliable differentiation with Porencephalic cysts. The relationship of the pathological anatomy to theories of pathogenesis is emphasized. No abnormal findings was detected in the process of Myelinization. (author)

  20. Fournier gangrene: report of three cases, computed tomography imaging findings and literature review

    International Nuclear Information System (INIS)

    Judici, Paola Lima Pasini; Christofoli, Maria Olivia Jacques de Medeiros; Oliveira, Paulo Cesar Rocha; Teles, Ilailson de Goes; Najjar, Yana Senna Jeronimo

    2010-01-01

    The authors report three cases of patients with Fournier gangrene. This is a polymicrobial infectious disease that affects the perineum and genitalia, especially in males, whose source is most commonly genitourinary, colorectal or cutaneous and may also not have a clearly defined focus. Potentially lethal, requires immediate clinical and surgical treatment. The purpose of this report is to describe the main findings of imaging on computed tomography in this disease and to briefly review the literature on the subject. (author)

  1. Quantitative x-ray dark-field computed tomography

    International Nuclear Information System (INIS)

    Bech, M; Pfeiffer, F; Bunk, O; Donath, T; David, C; Feidenhans'l, R

    2010-01-01

    The basic principles of x-ray image formation in radiology have remained essentially unchanged since Roentgen first discovered x-rays over a hundred years ago. The conventional approach relies on x-ray attenuation as the sole source of contrast and draws exclusively on ray or geometrical optics to describe and interpret image formation. Phase-contrast or coherent scatter imaging techniques, which can be understood using wave optics rather than ray optics, offer ways to augment or complement the conventional approach by incorporating the wave-optical interaction of x-rays with the specimen. With a recently developed approach based on x-ray optical gratings, advanced phase-contrast and dark-field scatter imaging modalities are now in reach for routine medical imaging and non-destructive testing applications. To quantitatively assess the new potential of particularly the grating-based dark-field imaging modality, we here introduce a mathematical formalism together with a material-dependent parameter, the so-called linear diffusion coefficient and show that this description can yield quantitative dark-field computed tomography (QDFCT) images of experimental test phantoms.

  2. Computed tomography of chest wall abscess

    International Nuclear Information System (INIS)

    Ikezoe, Junpei; Morimoto, Shizuo; Akira, Masanori

    1986-01-01

    Inflammatory lesions of the chest wall become less common because of the improvement of antibiotics and chemotherapeutic agents. Over a 5-year period, 7 patients with chest wall inflammatory diseases underwent chest computed tomography. These were 2 tuberculous pericostal abscesses, 2 empyema necessitatis, 1 spinal caries, and 2 bacterial chest wall abscesses (unknown organisms). Computed tomography (CT) helped in demonstrating the density, border, site, and extent of the lesions. CT images also demonstrated the accompaning abnormalities which included bone changes, pleural calcification, or old tuberculous changes of the lung. CT was very effective to demonstrate the communicating portions from the inside of the bony thorax to the outside of the bony thorax in 2 empyema necessitatis. (author)

  3. Nuclide imaging and computed tomography in cerebral vascular disease

    International Nuclear Information System (INIS)

    Chiu, L.C.; Christie, J.H.; Schapiro, R.L.

    1977-01-01

    This report presents our experience with computed tomographic and radionuclide scans in 224 patients with ischemic or hemorrhagic infarcts or intracerebral hematomas secondary to cerebral occlusive vascular diseases. The results vary according to the site of vascular occlusion. The radionuclide angiograms and static scintigrams show four distinct patterns in cases of occlusion of the middle cerebral artery. Computed tomographic scans exhibit less variation in appearance and have a higher sensitivity in cases of recent ischemic infarction. The ''tentorial confluence sign'' is an important finding on static scintigrams in patients with occipital infarction; if this sign is not present, this diagnosis should be suspect. Earlier reports have established the value of computed tomography and radionuclide scans in the evaluation of cerebral infarction. In individual cases, however, each of these modalities may render nondiagnostic or false negative findings; combining both types of examinations and comparing results yield a greater likelihood of an accurate diagnosis of cerebrovascular disease. Computed tomography is clearly more valuable than radionuclide scans in the diagnosis and follow-up of hemorrhagic infarcts or parenchymal hematomas

  4. Imaging suspected cervical spine injury: Plain radiography or computed tomography? Systematic review

    Energy Technology Data Exchange (ETDEWEB)

    Cain, Gavin [Diagnostic Radiographer, Colchester Hospital University NHS Foundation Trust, Colchester General Hospital, Turner Road, Colchester, CO4 5JL Essex (United Kingdom)], E-mail: gavincain8@hotmail.com; Shepherdson, Jane; Elliott, Vicki; Svensson, Jon [Faculty of Health and Social Care, Anglia Ruskin University, East Road, Cambridge, CB1 9PT Cambridgeshire (United Kingdom); Brennan, Patrick [UCD School of Medicine and Medical Sciences, Health Science Building, Belfield, Dublin 4 (Ireland)

    2010-02-15

    Aim: (1) to establish which modality offers the greatest accuracy in the detection of cervical spine injury (CSI) Following trauma: plain radiography or computed tomography (CT), and (2) make an evidence-based recommendation for the initial imaging modality of choice. Method: A systematic literature review was performed to identify primary research studies which compare the diagnostic accuracy of plain radiography and CT with the results of a reference standard in the detection of CSI. A search of MEDLINE, EMBASE, CINAHL, Science Direct and Pubmed Central databases was conducted. Results: Ten studies were identified. Critical appraisal identified limitations among all studies. There was heterogeneity in the sensitivity estimates for plain radiography, whereas estimates for CT were consistently high. Examination of the reported sensitivities shows that CT outperforms plain radiography in the detection of CSI. Conclusion: CT is superior to plain radiography in the detection of CSI. However, the optimal imaging strategy depends on the patients' relative risk of injury. If at high-risk cervical CT is indicated. If at low-risk the increased cost and radiation exposure mean that screening CT may not be warranted, good-quality plain radiographs are sufficient.

  5. Utility of single photon emission computed tomography/computed tomography imaging in evaluation of chronic low back pain

    International Nuclear Information System (INIS)

    Harisankar, Chidambaram Natrajan Balasubramanian; Mittal, Bhagwant Rai; Bhattacharya, Anish; Singh, Paramjeet; Sen, Ramesh

    2012-01-01

    Abnormal morphologic findings in imaging were thought to explain the etiology of low back pain (LBP). However, it is now known that variety of morphologic abnormalities is noted even in asymptomatic individuals. Single photon emission computed tomography/computed tomography (SPECT/CT) could be used to differentiate incidental findings from clinically significant findings. This study was performed to define the SPECT/CT patterns in patients with LBP and to correlate these with clinical and magnetic resonance imaging (MRI) findings. Thirty adult patients with LBP of duration 3 months or more were prospectively evaluated in this study. Patients with known or suspected malignancy, trauma or infectious processes were excluded. A detailed history of sensory and motor symptoms and neurologic examination was performed. All the patients were subjected to MRI and bone scintigraphy with hybrid SPECT/CT of the lumbo-sacral spine within 1 month of each other. The patients were classified into those with and without neurologic symptoms, activity limitation. The findings of clinical examination and imaging were compared. MRI and SPECT/CT findings were also compared. Thirty patients (18 men and 12 women; mean age 38 years; range 17-64 years) were eligible for the study. Clinically, 14 of 30 (46%) had neurologic signs and or symptoms. Six of the 30 patients (20%) had positive straight leg raising test (SLRT). Twenty-two of the 30 patients (73%) had SPECT abnormality. Most frequent SPECT/CT abnormality was tracer uptake in the anterior part of vertebral body with osteophytes/sclerotic changes. Significant positive agreement was noted between this finding and MRI evidence of degenerative disc disease. Only 13% of patients had more than one abnormality in SPECT. All 30 patients had MRI abnormalities. The most frequent abnormality was degenerative disc disease and facet joint arthropathy. MRI showed single intervertebral disc abnormality in 36% of the patients and more than one

  6. Gantry for computed tomography

    International Nuclear Information System (INIS)

    Kelman, A.L.; Peterson, T.E.

    1981-01-01

    A novel design of gantry for use in computed tomography is described in detail. In the new gantry, curved tracks are mounted to the laterally spaced apart sides of the frame which rotates and carries the detector and X-ray source. This permits the frame to be tilted either side of vertical enabling angular slices of body layers to be viewed and allows simplification of the algorithm which the computer uses for image reconstruction. The tracks are supported on rollers which carry the substantial weight. Explicit engineering details are presented especially of the ball bearing races used in the rotation. (U.K.)

  7. Morphometric analysis - Cone beam computed tomography to predict bone quality and quantity.

    Science.gov (United States)

    Hohlweg-Majert, B; Metzger, M C; Kummer, T; Schulze, D

    2011-07-01

    Modified quantitative computed tomography is a method used to predict bone quality and quantify the bone mass of the jaw. The aim of this study was to determine whether bone quantity or quality was detected by cone beam computed tomography (CBCT) combined with image analysis. MATERIALS AND PROCEDURES: Different measurements recorded on two phantoms (Siemens phantom, Comac phantom) were evaluated on images taken with the Somatom VolumeZoom (Siemens Medical Solutions, Erlangen, Germany) and the NewTom 9000 (NIM s.r.l., Verona, Italy) in order to calculate a calibration curve. The spatial relationships of six sample cylinders and the repositioning from four pig skull halves relative to adjacent defined anatomical structures were assessed by means of three-dimensional visualization software. The calibration curves for computer tomography (CT) and cone beam computer tomography (CBCT) using the Siemens phantom showed linear correlation in both modalities between the Hounsfield Units (HU) and bone morphology. A correction factor for CBCT was calculated. Exact information about the micromorphology of the bone cylinders was only available using of micro computer tomography. Cone-beam computer tomography is a suitable choice for analysing bone mass, but, it does not give any information about bone quality. 2010 European Association for Cranio-Maxillo-Facial Surgery. Published by Elsevier Ltd. All rights reserved.

  8. Computational adaptive optics for broadband optical interferometric tomography of biological tissue.

    Science.gov (United States)

    Adie, Steven G; Graf, Benedikt W; Ahmad, Adeel; Carney, P Scott; Boppart, Stephen A

    2012-05-08

    Aberrations in optical microscopy reduce image resolution and contrast, and can limit imaging depth when focusing into biological samples. Static correction of aberrations may be achieved through appropriate lens design, but this approach does not offer the flexibility of simultaneously correcting aberrations for all imaging depths, nor the adaptability to correct for sample-specific aberrations for high-quality tomographic optical imaging. Incorporation of adaptive optics (AO) methods have demonstrated considerable improvement in optical image contrast and resolution in noninterferometric microscopy techniques, as well as in optical coherence tomography. Here we present a method to correct aberrations in a tomogram rather than the beam of a broadband optical interferometry system. Based on Fourier optics principles, we correct aberrations of a virtual pupil using Zernike polynomials. When used in conjunction with the computed imaging method interferometric synthetic aperture microscopy, this computational AO enables object reconstruction (within the single scattering limit) with ideal focal-plane resolution at all depths. Tomographic reconstructions of tissue phantoms containing subresolution titanium-dioxide particles and of ex vivo rat lung tissue demonstrate aberration correction in datasets acquired with a highly astigmatic illumination beam. These results also demonstrate that imaging with an aberrated astigmatic beam provides the advantage of a more uniform depth-dependent signal compared to imaging with a standard gaussian beam. With further work, computational AO could enable the replacement of complicated and expensive optical hardware components with algorithms implemented on a standard desktop computer, making high-resolution 3D interferometric tomography accessible to a wider group of users and nonspecialists.

  9. Registration-based Reconstruction of Four-dimensional Cone Beam Computed Tomography

    DEFF Research Database (Denmark)

    Christoffersen, Christian; Hansen, David Christoffer; Poulsen, Per Rugaard

    2013-01-01

    We present a new method for reconstruction of four-dimensional (4D) cone beam computed tomography from an undersampled set of X-ray projections. The novelty of the proposed method lies in utilizing optical flow based registration to facilitate that each temporal phase is reconstructed from the full...

  10. A Novel Imaging Technique (X-Map) to Identify Acute Ischemic Lesions Using Noncontrast Dual-Energy Computed Tomography.

    Science.gov (United States)

    Noguchi, Kyo; Itoh, Toshihide; Naruto, Norihito; Takashima, Shutaro; Tanaka, Kortaro; Kuroda, Satoshi

    2017-01-01

    We evaluated whether X-map, a novel imaging technique, can visualize ischemic lesions within 20 hours after the onset in patients with acute ischemic stroke, using noncontrast dual-energy computed tomography (DECT). Six patients with acute ischemic stroke were included in this study. Noncontrast head DECT scans were acquired with 2 X-ray tubes operated at 80 kV and Sn150 kV between 32 minutes and 20 hours after the onset. Using these DECT scans, the X-map was reconstructed based on 3-material decomposition and compared with a simulated standard (120 kV) computed tomography (CT) and diffusion-weighted imaging (DWI). The X-map showed more sensitivity to identify the lesions as an area of lower attenuation value than a simulated standard CT in all 6 patients. The lesions on the X-map correlated well with those on DWI. In 3 of 6 patients, the X-map detected a transient decrease in the attenuation value in the peri-infarct area within 1 day after the onset. The X-map is a powerful tool to supplement a simulated standard CT and characterize acute ischemic lesions. However, the X-map cannot replace a simulated standard CT to diagnose acute cerebral infarction. Copyright © 2017 The Authors. Published by Elsevier Inc. All rights reserved.

  11. Soft-tissue perineurioma of the retroperitoneum in a 63-year-old man, computed tomography and magnetic resonance imaging findings: a case report

    Directory of Open Access Journals (Sweden)

    Yasumoto Mayumi

    2010-08-01

    Full Text Available Abstract Introduction Soft-tissue perineuriomas are rare benign peripheral nerve sheath tumors in the subcutis of the extremities and the trunks of young patients. To our knowledge, this the first presentation of the computed tomography and magnetic resonance imaging of a soft-tissue perineurioma in the retroperitoneum with pathologic correlation. Case presentation A 63-year-old Japanese man was referred for assessment of high blood pressure. Abdominal computed tomography and magnetic resonance imaging showed a well-defined, gradually enhancing tumor without focal degeneration or hemorrhage adjacent to the pancreatic body. Tumor excision with distal pancreatectomy and splenectomy was performed, as a malignant tumor of pancreatic origin could not be ruled out. No recurrence has been noted in the 16 months since the operation. Pathologic examination of the tumor revealed a soft-tissue perineurioma of the retroperitoneum. Conclusion Although the definitive diagnosis of soft-tissue perineurioma requires biopsy and immunohistochemical reactivity evaluation, the computed tomography and magnetic resonance imaging findings described in this report suggest inclusion of this rare tumor in the differential diagnosis when such findings occur in the retroperitoneum.

  12. 18F-Fluorodeoxyglucose-Positron Emission Tomography/Computed Tomography in Tuberculosis: Spectrum of Manifestations.

    Science.gov (United States)

    Agarwal, Krishan Kant; Behera, Abhishek; Kumar, Rakesh; Bal, Chandrasekhar

    2017-01-01

    The objective of this article is to provide an illustrative tutorial highlighting the utility of 18 F-fluorodeoxyglucose-positron emission tomography/computed tomography ( 18 F-FDG-PET/CT) imaging to detect spectrum of manifestations in patients with tuberculosis (TB). FDG-PET/CT is a powerful tool for early diagnosis, measuring the extent of disease (staging), and consequently for evaluation of response to therapy in patients with TB.

  13. Computed tomography of the llama head: technique and normal anatomy

    International Nuclear Information System (INIS)

    Hathcock, J.T.; Pugh, D.G.; Cartee, R.E.; Hammond, L.

    1996-01-01

    Computed tomography was performed on the head of 6 normal adult llamas. The animals were under general anesthesia and positioned in dorsal recumbency on the scanning table. The area scanned was from the external occipital protuberance to the rostral portion of the nasal passage, and the images are presented in both a bone window and a soft tissue window to allow evaluation and identification of the anatomy of the head. Computed tomography of the llama head can be accomplished by most computed tomography scanners utilizing a technique similar to that used in small animals with minor modification of the scanning table

  14. Differences between postmortem computed tomography and conventional autopsy in a stabbing murder case

    Directory of Open Access Journals (Sweden)

    Talita Zerbini

    2014-12-01

    Full Text Available Objective: The aim of the present work is to analyze the differences and similarities between the elements of a conventional autopsy and images obtained from postmortem computed tomography in a case of a homicide stab wound. Method: Comparison between the findings of different methods: autopsy and postmortem computed tomography. Results: In some aspects, autopsy is still superior to imaging, especially in relation to external examination and the description of lesion vitality. However, the findings of gas embolism, pneumothorax and pulmonary emphysema and the relationship between the internal path of the instrument of aggression and the entry wound are better demonstrated by postmortem computed tomography. Conclusions: Although multislice computed tomography has greater accuracy than autopsy, we believe that the conventional autopsy method is fundamental for providing evidence in criminal investigations.

  15. Quantification in single photon emission computed tomography (SPECT)

    International Nuclear Information System (INIS)

    Buvat, Irene

    2005-01-01

    The objective of this lecture is to understand the possibilities and limitations of the quantitative analysis of single photon emission computed tomography (SPECT) images. It is also to identify the conditions to be fulfilled to obtain reliable quantitative measurements from images. Content: 1 - Introduction: Quantification in emission tomography - definition and challenges; quantification biasing phenomena; 2 - quantification in SPECT, problems and correction methods: Attenuation, scattering, un-stationary spatial resolution, partial volume effect, movement, tomographic reconstruction, calibration; 3 - Synthesis: actual quantification accuracy; 4 - Beyond the activity concentration measurement

  16. Image quality assessment of three limited field-of-view cone-beam computed tomography devices in endodontics

    International Nuclear Information System (INIS)

    Tran, Michel

    2015-01-01

    Since the beginning of Cone Beam Computed Tomography (CBCT) in dento-maxillo-facial radiology, many CBCT devices with different technical aspects and characteristics were produced. Technical variations between CBCT and acquisition settings could involve image quality differences. In order to compare the performance of three limited field-of-view CBCT devices, an objective and subjective evaluation of image quality was carried out using an ex-vivo phantom, which combines both diagnostic and technical features. A significant difference in image quality was found between the five acquisition protocols of the study. (author) [fr

  17. Computed tomography for radiographers

    International Nuclear Information System (INIS)

    Brooker, M.

    1986-01-01

    Computed tomography is regarded by many as a complicated union of sophisticated x-ray equipment and computer technology. This book overcomes these complexities. The rigid technicalities of the machinery and the clinical aspects of computed tomography are discussed including the preparation of patients, both physically and mentally, for scanning. Furthermore, the author also explains how to set up and run a computed tomography department, including advice on how the room should be designed

  18. Computer tomography in otolaryngology

    International Nuclear Information System (INIS)

    Gradzki, J.

    1981-01-01

    The principles of design and the action of computer tomography which was applied also for the diagnosis of nose, ear and throat diseases are discussed. Computer tomography makes possible visualization of the structures of the nose, nasal sinuses and facial skeleton in transverse and eoronal planes. The method enables an accurate evaluation of the position and size of neoplasms in these regions and differentiation of inflammatory exudates against malignant masses. In otology computer tomography is used particularly in the diagnosis of pontocerebellar angle tumours and otogenic brain abscesses. Computer tomography of the larynx and pharynx provides new diagnostic data owing to the possibility of obtaining transverse sections and visualization of cartilage. Computer tomograms of some cases are presented. (author)

  19. Fast iterative segmentation of high resolution medical images

    International Nuclear Information System (INIS)

    Hebert, T.J.

    1996-01-01

    Various applications in positron emission tomography (PET), single photon emission computed tomography (SPECT) and magnetic resonance imaging (MRI) require segmentation of 20 to 60 high resolution images of size 256x256 pixels in 3-9 seconds per image. This places particular constraints on the design of image segmentation algorithms. This paper examines the trade-offs in segmenting images based on fitting a density function to the pixel intensities using curve-fitting versus the maximum likelihood method. A quantized data representation is proposed and the EM algorithm for fitting a finite mixture density function to the quantized representation for an image is derived. A Monte Carlo evaluation of mean estimation error and classification error showed that the resulting quantized EM algorithm dramatically reduces the required computation time without loss of accuracy

  20. Applications of cone beam computed tomography for a prosthodontist.

    Science.gov (United States)

    John, George Puthenpurayil; Joy, Tatu Elenjickal; Mathew, Justin; Kumar, Vinod R B

    2016-01-01

    Cone beam computed tomography (CBCT) is a medical imaging technique of X-ray computed tomography where the X-rays are divergent, forming a cone. CBCT systems have been designed for imaging hard tissues of the maxillofacial region. The increasing availability of this technology provides the dental clinician with an imaging modality capable of providing a three-dimensional representation of the maxillofacial skeleton with minimal distortion. This article is intended to elaborate and enunciate on the various applications and benefits of CBCT, in the realm of maxillofacial prosthodontics, over and beyond its obvious benefits in the rehabilitation of patients with implants. With the onus of meticulous reconstruction of near ideal occlusion resting on the prosthodontist, CBCT provides a unique imaging option, which can be a boon in various aspects of prosthodontic practice - from imaging of the temporomandibular joint for accurate movement simulation, to template assisted maxillofacial reconstruction or even over denture therapy. CBCT could play a crucial role in lessening the burden of a hectic prosthodontic routine for the clinician and critically contribute to accurate and effective treatment for the patient. Apart from the authors' clinical experiences shared here, a web-based search for relevant articles in this specific area of interest was also conducted. The selected articles were critically reviewed and the data acquired were systematically compiled.