WorldWideScience

Sample records for imager casi imagery

  1. Estuarine Landcover Along the Lower Columbia River Estuary Determined from Compact Ariborne Spectrographic Imager (CASI) Imagery, Technical Report 2003.

    Energy Technology Data Exchange (ETDEWEB)

    Garono, Ralph; Robinson, Rob

    2003-10-01

    Developing an understanding of the distribution and changes in estuarine and riparian habitats is critical to the management of biological resources in the lower Columbia River. In a recently completed comprehensive ecosystem protection and enhancement plan for the lower Columbia River Estuary (CRE), Jerrick (1999) identified habitat loss and modification as one of the key threats to the integrity of the CRE ecosystem. This management plan called for an inventory of habitats as key first step in the CRE long-term restoration effort. While previous studies have produced useful data sets depicting habitat cover types along portions of the lower CRE (Thomas, 1980; Thomas, 1983; Graves et al., 1995; NOAA, 1997; Allen, 1999), no single study has produced a description of the habitats for the entire CRE. Moreover, the previous studies differed in data sources and methodologies making it difficult to merge data or to make temporal comparisons. Therefore, the Lower Columbia River Estuary Partnership (Estuary Partnership) initiated a habitat cover mapping project in 2000. The goal of this project was to produce a data set depicting the current habitat cover types along the lower Columbia River, from its mouth to the Bonneville Dam, a distance of {approx}230-km (Fig. 1) using both established and emerging remote sensing techniques. For this project, we acquired two types of imagery, Landsat 7 ETM+ and Compact Airborne Spectrographic Imager (CASI). Landsat and CASI imagery differ in spatial and spectral resolution: the Landsat 7 ETM+ sensor collects reflectance data in seven spectral bands with a spatial resolution of 30-m and the CASI sensor collects reflectance data in 19 bands (in our study) with a spatial resolution of 1.5-m. We classified both sets of imagery and produced a spatially linked, hierarchical habitat data set for the entire CRE and its floodplain. Landsat 7 ETM+ classification results are presented in a separate report (Garono et al., 2003). This report

  2. Invasive species change detection using artificial neural networks and CASI hyperspectral imagery

    Science.gov (United States)

    For monitoring and controlling the extent and intensity of an invasive species, a direct multi-date image classification method was applied in invasive species (saltcedar) change detection in the study area of Lovelock, Nevada. With multi-date Compact Airborne Spectrographic Imager (CASI) hyperspec...

  3. BOREAS RSS-19 1996 CASI At-Sensor Radiance and Reflectance Images

    Data.gov (United States)

    National Aeronautics and Space Administration — CASI images from the Chieftain Navaho aircraft collected in order to observe the seasonal change in the radiometric reflectance properties of the boreal forest...

  4. BOREAS RSS-19 1996 CASI At-Sensor Radiance and Reflectance Images

    Data.gov (United States)

    National Aeronautics and Space Administration — ABSTRACT: CASI images from the Chieftain Navaho aircraft collected in order to observe the seasonal change in the radiometric reflectance properties of the boreal...

  5. BOREAS RSS-19 1994 CASI At-Sensor Radiance and Reflectance Images

    Data.gov (United States)

    National Aeronautics and Space Administration — CASI images from the Chieftain Navaho aircraft taken in order to observe the seasonal change in the radiometric reflectance properties of the boreal forest...

  6. BOREAS RSS-19 1994 CASI At-Sensor Radiance and Reflectance Images

    Data.gov (United States)

    National Aeronautics and Space Administration — ABSTRACT: CASI images from the Chieftain Navaho aircraft taken in order to observe the seasonal change in the radiometric reflectance properties of the boreal forest...

  7. Using Remotely Sensed Data for Climate Change Mitigation and Adaptation: A Collaborative Effort Between the Climate Change Adaptation Science Investigators Workgroup (CASI), NASA Johnson Space Center, and Jacobs Technology

    Science.gov (United States)

    Jagge, Amy

    2016-01-01

    With ever changing landscapes and environmental conditions due to human induced climate change, adaptability is imperative for the long-term success of facilities and Federal agency missions. To mitigate the effects of climate change, indicators such as above-ground biomass change must be identified to establish a comprehensive monitoring effort. Researching the varying effects of climate change on ecosystems can provide a scientific framework that will help produce informative, strategic and tactical policies for environmental adaptation. As a proactive approach to climate change mitigation, NASA tasked the Climate Change Adaptation Science Investigators Workgroup (CASI) to provide climate change expertise and data to Center facility managers and planners in order to ensure sustainability based on predictive models and current research. Generation of historical datasets that will be used in an agency-wide effort to establish strategies for climate change mitigation and adaptation at NASA facilities is part of the CASI strategy. Using time series of historical remotely sensed data is well-established means of measuring change over time. CASI investigators have acquired multispectral and hyperspectral optical and LiDAR remotely sensed datasets from NASA Earth Observation Satellites (including the International Space Station), airborne sensors, and astronaut photography using hand held digital cameras to create a historical dataset for the Johnson Space Center, as well as the Houston and Galveston area. The raster imagery within each dataset has been georectified, and the multispectral and hyperspectral imagery has been atmospherically corrected. Using ArcGIS for Server, the CASI-Regional Remote Sensing data has been published as an image service, and can be visualized through a basic web mapping application. Future work will include a customized web mapping application created using a JavaScript Application Programming Interface (API), and inclusion of the CASI data

  8. Bistatic SAR: Imagery & Image Products.

    Energy Technology Data Exchange (ETDEWEB)

    Yocky, David A.; Wahl, Daniel E.; Jakowatz, Charles V,

    2014-10-01

    While typical SAR imaging employs a co-located (monostatic) RADAR transmitter and receiver, bistatic SAR imaging separates the transmitter and receiver locations. The transmitter and receiver geometry determines if the scattered signal is back scatter, forward scatter, or side scatter. The monostatic SAR image is backscatter. Therefore, depending on the transmitter/receiver collection geometry, the captured imagery may be quite different that that sensed at the monostatic SAR. This document presents imagery and image products formed from captured signals during the validation stage of the bistatic SAR research. Image quality and image characteristics are discussed first. Then image products such as two-color multi-view (2CMV) and coherent change detection (CCD) are presented.

  9. Implementing Audio-CASI on Windows’ Platforms

    Science.gov (United States)

    Cooley, Philip C.; Turner, Charles F.

    2011-01-01

    Audio computer-assisted self interviewing (Audio-CASI) technologies have recently been shown to provide important and sometimes dramatic improvements in the quality of survey measurements. This is particularly true for measurements requiring respondents to divulge highly sensitive information such as their sexual, drug use, or other sensitive behaviors. However, DOS-based Audio-CASI systems that were designed and adopted in the early 1990s have important limitations. Most salient is the poor control they provide for manipulating the video presentation of survey questions. This article reports our experiences adapting Audio-CASI to Microsoft Windows 3.1 and Windows 95 platforms. Overall, our Windows-based system provided the desired control over video presentation and afforded other advantages including compatibility with a much wider array of audio devices than our DOS-based Audio-CASI technologies. These advantages came at the cost of increased system requirements --including the need for both more RAM and larger hard disks. While these costs will be an issue for organizations converting large inventories of PCS to Windows Audio-CASI today, this will not be a serious constraint for organizations and individuals with small inventories of machines to upgrade or those purchasing new machines today. PMID:22081743

  10. Autonomy of imagery and production of original verbal images.

    Science.gov (United States)

    Khatena, J

    1976-08-01

    90 college students (31 men and 59 women) were categorized as moderately autonomous, less autonomous (less highly controlled) and non-autonomous (high controlled) imagers according to the Gordon Test of Visual Imagery Control Moderately autonomous imagers produced significantly more original verbal images than less autonomous and non-autonomous imagers with less autonomous imagers scoring higher than non-autonomous imagers as measured by Onomatopoeia and Images. There were no significant sex main effects of interaction of autonomy of imagery level X sex.

  11. Visual imaging capacity and imagery control in Fine Arts students.

    Science.gov (United States)

    Pérez-Fabello, Maria José; Campos, Alfredo; Gómez-Juncal, Rocío

    2007-06-01

    This study investigated relationships between visual imaging abilities (imaging capacity and imagery control) and academic performance in 146 Fine Arts students (31 men, 115 women). Mean age was 22.3 yr. (SD= 1.9; range 20-26 yr.). All of the participants who volunteered for the experiment regularly attended classes and were first, second, or third year students. For evaluation of imaging abilities, the Spanish versions of the Gordon Test of Visual Imagery Control, the Vividness of Visual Imagery Questionnaire, the Verbalizer-Visualizer Questionnaire, and Betts' Questionnaire Upon Mental Imagery were used. Academic performance was assessed in four areas, Drawing, Painting, Sculpture, and Complementary Subjects, over a three-year period. The results indicate that imagery control was associated with academic performance in Fine Arts. These findings are discussed in the context of previous studies, and new lines of research are proposed.

  12. Structural, electronic, elastic, and thermodynamic properties of CaSi, Ca2Si, and CaSi2 phases from first-principles calculations

    Science.gov (United States)

    Li, X. D.; Li, K.; Wei, C. H.; Han, W. D.; Zhou, N. G.

    2018-06-01

    The structural, electronic, elastic, and thermodynamic properties of CaSi, Ca2Si, and CaSi2 are systematically investigated by using first-principles calculations method based on density functional theory (DFT). The calculated formation enthalpies and cohesive energies show that CaSi2 possesses the greatest structural stability and CaSi has the strongest alloying ability. The structural stability of the three phases is compared according to electronic structures. Further analysis on electronic structures indicates that the bonding of these phases exhibits the combinations of metallic, covalent, and ionic bonds. The elastic constants are calculated, and the bulk modulus, shear modulus, Young's modulus, Poisson's ratio, and anisotropy factor of polycrystalline materials are deduced. Additionally, the thermodynamic properties were theoretically predicted and discussed.

  13. Utility of multispectral imaging for nuclear classification of routine clinical histopathology imagery

    Directory of Open Access Journals (Sweden)

    Harvey Neal R

    2007-07-01

    Full Text Available Abstract Background We present an analysis of the utility of multispectral versus standard RGB imagery for routine H&E stained histopathology images, in particular for pixel-level classification of nuclei. Our multispectral imagery has 29 spectral bands, spaced 10 nm within the visual range of 420–700 nm. It has been hypothesized that the additional spectral bands contain further information useful for classification as compared to the 3 standard bands of RGB imagery. We present analyses of our data designed to test this hypothesis. Results For classification using all available image bands, we find the best performance (equal tradeoff between detection rate and false alarm rate is obtained from either the multispectral or our "ccd" RGB imagery, with an overall increase in performance of 0.79% compared to the next best performing image type. For classification using single image bands, the single best multispectral band (in the red portion of the spectrum gave a performance increase of 0.57%, compared to performance of the single best RGB band (red. Additionally, red bands had the highest coefficients/preference in our classifiers. Principal components analysis of the multispectral imagery indicates only two significant image bands, which is not surprising given the presence of two stains. Conclusion Our results indicate that multispectral imagery for routine H&E stained histopathology provides minimal additional spectral information for a pixel-level nuclear classification task than would standard RGB imagery.

  14. Hydriding and dehydriding properties of CaSi

    International Nuclear Information System (INIS)

    Aoki, Masakazu; Ohba, Nobuko; Noritake, Tatsuo; Towata, Shin-ichi

    2005-01-01

    The hydriding and dehydriding properties of CaSi were investigated both theoretically and experimentally. First-principles calculations suggested that CaSiH n is thermodynamically stable. Experimentally, the p -c isotherms clearly demonstrated plateau pressures in a temperature range of 473-573 K and the maximum hydrogen content was 1.9 weight % (wt.%) under a hydrogen pressure of 9 MPa at 473 K. The structure of CaSiH n is different from those of ZrNi hydrides, although CaSi has the CrB-type structure as well as ZrNi

  15. Monitoring coastal marshes biomass with CASI: a comparison of parametric and non-parametric models

    Science.gov (United States)

    Mo, Y.; Kearney, M.

    2017-12-01

    Coastal marshes are important carbon sinks that face multiple natural and anthropogenic stresses. Optical remote sensing is a powerful tool for closely monitoring the biomass of coastal marshes. However, application of hyperspectral sensors on assessing the biomass of diverse coastal marsh ecosystems is limited. This study samples spectral and biophysical data from coastal freshwater, intermediate, brackish, and saline marshes in Louisiana, and develops parametric and non-parametric models for using the Compact Airborne Spectrographic Imager (CASI) to retrieve the marshes' biomass. Linear models and random forest models are developed from simulated CASI data (48 bands, 380-1050 nm, bandwidth 14 nm). Linear models are also developed using narrowband vegetation indices computed from all possible band combinations from the blue, red, and near infrared wavelengths. It is found that the linear models derived from the optimal narrowband vegetation indices provide strong predictions for the marshes' Leaf Area Index (LAI; R2 > 0.74 for ARVI), but not for their Aboveground Green Biomass (AGB; R2 > 0.25). The linear models derived from the simulated CASI data strongly predict the marshes' LAI (R2 = 0.93) and AGB (R2 = 0.71) and have 27 and 30 bands/variables in the final models through stepwise regression, respectively. The random forest models derived from the simulated CASI data also strongly predict the marshes' LAI and AGB (R2 = 0.91 and 0.84, respectively), where the most important variables for predicting LAI are near infrared bands at 784 and 756 nm and for predicting ABG are red bands at 684 and 670 nm. In sum, the random forest model is preferable for assessing coastal marsh biomass using CASI data as it offers high R2 for both LAI and AGB. The superior performance of the random forest model is likely to due to that it fully utilizes the full-spectrum data and makes no assumption of the approximate normality of the sampling population. This study offers solutions

  16. Automatic registration of fused lidar/digital imagery (texel images) for three-dimensional image creation

    Science.gov (United States)

    Budge, Scott E.; Badamikar, Neeraj S.; Xie, Xuan

    2015-03-01

    Several photogrammetry-based methods have been proposed that the derive three-dimensional (3-D) information from digital images from different perspectives, and lidar-based methods have been proposed that merge lidar point clouds and texture the merged point clouds with digital imagery. Image registration alone has difficulty with smooth regions with low contrast, whereas point cloud merging alone has difficulty with outliers and a lack of proper convergence in the merging process. This paper presents a method to create 3-D images that uses the unique properties of texel images (pixel-fused lidar and digital imagery) to improve the quality and robustness of fused 3-D images. The proposed method uses both image processing and point-cloud merging to combine texel images in an iterative technique. Since the digital image pixels and the lidar 3-D points are fused at the sensor level, more accurate 3-D images are generated because registration of image data automatically improves the merging of the point clouds, and vice versa. Examples illustrate the value of this method over other methods. The proposed method also includes modifications for the situation where an estimate of position and attitude of the sensor is known, when obtained from low-cost global positioning systems and inertial measurement units sensors.

  17. Comparing Broad-Band and Red Edge-Based Spectral Vegetation Indices to Estimate Nitrogen Concentration of Crops Using Casi Data

    Science.gov (United States)

    Wang, Yanjie; Liao, Qinhong; Yang, Guijun; Feng, Haikuan; Yang, Xiaodong; Yue, Jibo

    2016-06-01

    In recent decades, many spectral vegetation indices (SVIs) have been proposed to estimate the leaf nitrogen concentration (LNC) of crops. However, most of these indices were based on the field hyperspectral reflectance. To test whether they can be used in aerial remote platform effectively, in this work a comparison of the sensitivity between several broad-band and red edge-based SVIs to LNC is investigated over different crop types. By using data from experimental LNC values over 4 different crop types and image data acquired using the Compact Airborne Spectrographic Imager (CASI) sensor, the extensive dataset allowed us to evaluate broad-band and red edge-based SVIs. The result indicated that NDVI performed the best among the selected SVIs while red edge-based SVIs didn't show the potential for estimating the LNC based on the CASI data due to the spectral resolution. In order to search for the optimal SVIs, the band combination algorithm has been used in this work. The best linear correlation against the experimental LNC dataset was obtained by combining the 626.20nm and 569.00nm wavebands. These wavelengths correspond to the maximal chlorophyll absorption and reflection position region, respectively, and are known to be sensitive to the physiological status of the plant. Then this linear relationship was applied to the CASI image for generating an LNC map, which can guide farmers in the accurate application of their N fertilization strategies.

  18. Imagery encoding and false recognition errors: Examining the role of imagery process and imagery content on source misattributions.

    Science.gov (United States)

    Foley, Mary Ann; Foy, Jeffrey; Schlemmer, Emily; Belser-Ehrlich, Janna

    2010-11-01

    Imagery encoding effects on source-monitoring errors were explored using the Deese-Roediger-McDermott paradigm in two experiments. While viewing thematically related lists embedded in mixed picture/word presentations, participants were asked to generate images of objects or words (Experiment 1) or to simply name the items (Experiment 2). An encoding task intended to induce spontaneous images served as a control for the explicit imagery instruction conditions (Experiment 1). On the picture/word source-monitoring tests, participants were much more likely to report "seeing" a picture of an item presented as a word than the converse particularly when images were induced spontaneously. However, this picture misattribution error was reversed after generating images of words (Experiment 1) and was eliminated after simply labelling the items (Experiment 2). Thus source misattributions were sensitive to the processes giving rise to imagery experiences (spontaneous vs deliberate), the kinds of images generated (object vs word images), and the ways in which materials were presented (as pictures vs words).

  19. Applicazione delle linee guida nazionali nell'attivitá di notifica di casi di legionellosi

    Directory of Open Access Journals (Sweden)

    E. Corsano

    2003-05-01

    Full Text Available

    Obiettivi: é noto che effettuare diagnosi di Legionellosi risulta difficile a causa della sovrapposizione della sintomatologia con altre forme di polmonite. Questo spiega, in parte, perché i casi di Legionellosi siano sottostimati. I metodi diagnostici disponibili, sebbene richiedano tempi relativamente lunghi, sono necessari per l’esatta stima di prevalenza della Legionellosi e per gli eventuali interventi preventivi.

    Metodi: nell’Azienda Ospedaliera “G. Panico” di Tricase, seguendo i criteri delle Linee Guida della Legionellosi (G.U. 5 maggio 2000 n. 103 durante la degenza dei pazienti che presentavano segni clinici ed obiettivi di polmonite sono state eseguite indagini radiologiche (Rx Torace, TAC, esami di laboratorio (espettorato, sangue, urina ed avviata terapia antibiotica (macrolidi e cefalosporine di III generazione. L’antigene urinario e le IgG anti-Legionella (metodo IFA, sono stati determinati in collaborazione con il Laboratorio di riferimento Regionale.

    Risultati: nel periodo ottobre 2001 gennaio 2003 sono stati notificati nel nostro ospedale 11 casi di Legionellosi accertati da indagini clinico-strumentali e di laboratorio: tutti i casi avevano titoli anticorpali abbastanza elevati, confermati poi da un secondo controllo a distanza di tempo. Solo due hanno presentato una positività per l’antigene urinario. All’atto della dimissione, per il 63.6% dei casi è stato documentato un miglioramento delle condizioni clinico-laboratoristico-strumentali, nel 18.2% si è avuta una effettiva guarigione. La letalità è stata pari al 18.2%. In tutti casi si è provveduto alla sorveglianza ambientale.

    Considerazioni: i nostri dati evidenziano che i casi di Legionellosi registrati sono stati tutti di tipo comunitario. Una corretta applicazione delle Linee Guida nel sistema di notifica permette l’avvio dell’attività di prevenzione oltre

  20. AN EVOLUTIONARY ALGORITHM FOR FAST INTENSITY BASED IMAGE MATCHING BETWEEN OPTICAL AND SAR SATELLITE IMAGERY

    Directory of Open Access Journals (Sweden)

    P. Fischer

    2018-04-01

    Full Text Available This paper presents a hybrid evolutionary algorithm for fast intensity based matching between satellite imagery from SAR and very high-resolution (VHR optical sensor systems. The precise and accurate co-registration of image time series and images of different sensors is a key task in multi-sensor image processing scenarios. The necessary preprocessing step of image matching and tie-point detection is divided into a search problem and a similarity measurement. Within this paper we evaluate the use of an evolutionary search strategy for establishing the spatial correspondence between satellite imagery of optical and radar sensors. The aim of the proposed algorithm is to decrease the computational costs during the search process by formulating the search as an optimization problem. Based upon the canonical evolutionary algorithm, the proposed algorithm is adapted for SAR/optical imagery intensity based matching. Extensions are drawn using techniques like hybridization (e.g. local search and others to lower the number of objective function calls and refine the result. The algorithm significantely decreases the computational costs whilst finding the optimal solution in a reliable way.

  1. Spin-image surface matching based target recognition in laser radar range imagery

    International Nuclear Information System (INIS)

    Li, Wang; Jian-Feng, Sun; Qi, Wang

    2010-01-01

    We explore the problem of in-plane rotation-invariance existing in the vertical detection of laser radar (Ladar) using the algorithm of spin-image surface matching. The method used to recognize the target in the range imagery of Ladar is time-consuming, owing to its complicated procedure, which violates the requirement of real-time target recognition in practical applications. To simplify the troublesome procedures, we improve the spin-image algorithm by introducing a statistical correlated coefficient into target recognition in range imagery of Ladar. The system performance is demonstrated on sixteen simulated noise range images with targets rotated through an arbitrary angle in plane. A high efficiency and an acceptable recognition rate obtained herein testify the validity of the improved algorithm for practical applications. The proposed algorithm not only solves the problem of in-plane rotation-invariance rationally, but also meets the real-time requirement. This paper ends with a comparison of the proposed method and the previous one. (classical areas of phenomenology)

  2. Integration of airborne optical and thermal imagery for archaeological subsurface structures detection: the Arpi case study (Italy)

    Science.gov (United States)

    Bassani, C.; Cavalli, R. M.; Fasulli, L.; Palombo, A.; Pascucci, S.; Santini, F.; Pignatti, S.

    2009-04-01

    The application of Remote Sensing data for detecting subsurface structures is becoming a remarkable tool for the archaeological observations to be combined with the near surface geophysics [1, 2]. As matter of fact, different satellite and airborne sensors have been used for archaeological applications, such as the identification of spectral anomalies (i.e. marks) related to the buried remnants within archaeological sites, and the management and protection of archaeological sites [3, 5]. The dominant factors that affect the spectral detectability of marks related to manmade archaeological structures are: (1) the spectral contrast between the target and background materials, (2) the proportion of the target on the surface (relative to the background), (3) the imaging system characteristics being used (i.e. bands, instrument noise and pixel size), and (4) the conditions under which the surface is being imaged (i.e. illumination and atmospheric conditions) [4]. In this context, just few airborne hyperspectral sensors were applied for cultural heritage studies, among them the AVIRIS (Airborne Visible/Infrared Imaging Spectrometer), the CASI (Compact Airborne Spectrographic Imager), the HyMAP (Hyperspectral MAPping) and the MIVIS (Multispectral Infrared and Visible Imaging Spectrometer). Therefore, the application of high spatial/spectral resolution imagery arise the question on which is the trade off between high spectral and spatial resolution imagery for archaeological applications and which spectral region is optimal for the detection of subsurface structures. This paper points out the most suitable spectral information useful to evaluate the image capability in terms of spectral anomaly detection of subsurface archaeological structures in different land cover contexts. In this study, we assess the capability of MIVIS and CASI reflectances and of ATM and MIVIS emissivities (Table 1) for subsurface archaeological prospection in different sites of the Arpi

  3. Development of a High Resolution BRDF/Albedo Product by Fusing Airborne CASI Reflectance with MODIS Daily Reflectance in the Oasis Area of the Heihe River Basin, China

    Directory of Open Access Journals (Sweden)

    Dongqin You

    2015-05-01

    Full Text Available A land-cover-based linear BRDF (bi-directional reflectance distribution function unmixing (LLBU algorithm based on the kernel-driven model is proposed to combine the compact airborne spectrographic imager (CASI reflectance with the moderate resolution imaging spectroradiometer (MODIS daily reflectance product to derive the BRDF/albedo of the two sensors simultaneously in the foci experimental area (FEA of the Heihe Watershed Allied Telemetry Experimental Research (HiWATER, which was carried out in the Heihe River basin, China. For each land cover type, an archetypal BRDF, which characterizes the shape of its anisotropic reflectance, is extracted by linearly unmixing from the MODIS reflectance with the assistance of a high-resolution classification map. The isotropic coefficients accounting for the differences within a class are derived from the CASI reflectance. The BRDF is finally determined by the archetypal BRDF and the corresponding isotropic coefficients. Direct comparisons of the cropland archetypal BRDF and CASI albedo with in situ measurements show good agreement. An indirect validation which compares retrieved BRDF/albedo with that of the MCD43A1 standard product issued by NASA and aggregated CASI albedo also suggests reasonable reliability. LLBU has potential to retrieve the high spatial resolution BRDF/albedo product for airborne and spaceborne sensors which have inadequate angular samplings. In addition, it can shorten the timescale for coarse spatial resolution product like MODIS.

  4. The Role of Imagery and Experiences in the Construction of a Tourism Destination Image

    Directory of Open Access Journals (Sweden)

    Nelson Matos

    2015-06-01

    Full Text Available This paper addresses the role of imagery and tourism experiences (TEs in the construction of tourism destination image (TDI. It highlights the importance of the construct imagery at all stages of consumption, because of the intangibility that characterizes tourism and services in general. This aspect gains importance since it is impossible for tourists to experience the desired holidays prior to visitation, leading the way for imagery to become an essential element to inspire and to influence them during the decision-making process, and consumption before, during and after the experience. A conceptual model resulting from the literature review and the potential theoretical contribution of the model are discussed.

  5. Visual Imagery and False Memory for Pictures: A Functional Magnetic Resonance Imaging Study in Healthy Participants.

    Science.gov (United States)

    Stephan-Otto, Christian; Siddi, Sara; Senior, Carl; Muñoz-Samons, Daniel; Ochoa, Susana; Sánchez-Laforga, Ana María; Brébion, Gildas

    2017-01-01

    Visual mental imagery might be critical in the ability to discriminate imagined from perceived pictures. Our aim was to investigate the neural bases of this specific type of reality-monitoring process in individuals with high visual imagery abilities. A reality-monitoring task was administered to twenty-six healthy participants using functional magnetic resonance imaging. During the encoding phase, 45 words designating common items, and 45 pictures of other common items, were presented in random order. During the recall phase, participants were required to remember whether a picture of the item had been presented, or only a word. Two subgroups of participants with a propensity for high vs. low visual imagery were contrasted. Activation of the amygdala, left inferior occipital gyrus, insula, and precuneus were observed when high visual imagers encoded words later remembered as pictures. At the recall phase, these same participants activated the middle frontal gyrus and inferior and superior parietal lobes when erroneously remembering pictures. The formation of visual mental images might activate visual brain areas as well as structures involved in emotional processing. High visual imagers demonstrate increased activation of a fronto-parietal source-monitoring network that enables distinction between imagined and perceived pictures.

  6. Visual Imagery and False Memory for Pictures: A Functional Magnetic Resonance Imaging Study in Healthy Participants.

    Directory of Open Access Journals (Sweden)

    Christian Stephan-Otto

    Full Text Available Visual mental imagery might be critical in the ability to discriminate imagined from perceived pictures. Our aim was to investigate the neural bases of this specific type of reality-monitoring process in individuals with high visual imagery abilities.A reality-monitoring task was administered to twenty-six healthy participants using functional magnetic resonance imaging. During the encoding phase, 45 words designating common items, and 45 pictures of other common items, were presented in random order. During the recall phase, participants were required to remember whether a picture of the item had been presented, or only a word. Two subgroups of participants with a propensity for high vs. low visual imagery were contrasted.Activation of the amygdala, left inferior occipital gyrus, insula, and precuneus were observed when high visual imagers encoded words later remembered as pictures. At the recall phase, these same participants activated the middle frontal gyrus and inferior and superior parietal lobes when erroneously remembering pictures.The formation of visual mental images might activate visual brain areas as well as structures involved in emotional processing. High visual imagers demonstrate increased activation of a fronto-parietal source-monitoring network that enables distinction between imagined and perceived pictures.

  7. Visual object imagery and autobiographical memory: Object Imagers are better at remembering their personal past.

    Science.gov (United States)

    Vannucci, Manila; Pelagatti, Claudia; Chiorri, Carlo; Mazzoni, Giuliana

    2016-01-01

    In the present study we examined whether higher levels of object imagery, a stable characteristic that reflects the ability and preference in generating pictorial mental images of objects, facilitate involuntary and voluntary retrieval of autobiographical memories (ABMs). Individuals with high (High-OI) and low (Low-OI) levels of object imagery were asked to perform an involuntary and a voluntary ABM task in the laboratory. Results showed that High-OI participants generated more involuntary and voluntary ABMs than Low-OI, with faster retrieval times. High-OI also reported more detailed memories compared to Low-OI and retrieved memories as visual images. Theoretical implications of these findings for research on voluntary and involuntary ABMs are discussed.

  8. New percepts via mental imagery?

    Directory of Open Access Journals (Sweden)

    Fred Walter Mast

    2012-10-01

    Full Text Available We are able to extract detailed information from mental images that we were not explicitly aware of during encoding. For example, we can discover a new figure when we rotate a previously seen image in our mind. However, such discoveries are not really new but just new interpretations. In two recent publications, we have shown that mental imagery can lead to perceptual learning (Tartaglia et al., 2009, 2012. Observers imagined the central line of a bisection stimulus for thousands of trials. This training enabled observers to perceive bisection offsets that were invisible before training. Hence, it seems that perceptual learning via mental imagery leads to new percepts. We will argue, however, that these new percepts can occur only within known models. In this sense, perceptual learning via mental imagery exceeds new discoveries in mental images. Still, the effects of mental imagery on perceptual learning are limited. Only perception can lead to really new perceptual experience.

  9. Single image super-resolution via regularized extreme learning regression for imagery from microgrid polarimeters

    Science.gov (United States)

    Sargent, Garrett C.; Ratliff, Bradley M.; Asari, Vijayan K.

    2017-08-01

    The advantage of division of focal plane imaging polarimeters is their ability to obtain temporally synchronized intensity measurements across a scene; however, they sacrifice spatial resolution in doing so due to their spatially modulated arrangement of the pixel-to-pixel polarizers and often result in aliased imagery. Here, we propose a super-resolution method based upon two previously trained extreme learning machines (ELM) that attempt to recover missing high frequency and low frequency content beyond the spatial resolution of the sensor. This method yields a computationally fast and simple way of recovering lost high and low frequency content from demosaicing raw microgrid polarimetric imagery. The proposed method outperforms other state-of-the-art single-image super-resolution algorithms in terms of structural similarity and peak signal-to-noise ratio.

  10. A hypnotically mediated guided imagery intervention for intrusive imagery: creating ground for figure.

    Science.gov (United States)

    Appel, P R

    1999-04-01

    Intrusive imagery can be seen as a cognitive dysfunction in the assimilation and accommodation of the psychological material represented by those images. From a gestalt psychological perspective, the intrusive image represents a figure without a ground that can provide meaning and context. Hypnotically mediated guided imagery interventions can be used to create a ground for the rogue image that metaphorically is an unassimilated figure; and thus allow for the creation of a new cognitive scheme. Four case examples are presented as well as a model for the intervention.

  11. Imagery Integration Team

    Science.gov (United States)

    Calhoun, Tracy; Melendrez, Dave

    2014-01-01

    -of-a-kind imagery assets and skill sets, such as ground-based fixed and tracking cameras, crew-in the-loop imaging applications, and the integration of custom or commercial-off-the-shelf sensors onboard spacecraft. For spaceflight applications, the Integration 2 Team leverages modeling, analytical, and scientific resources along with decades of experience and lessons learned to assist the customer in optimizing engineering imagery acquisition and management schemes for any phase of flight - launch, ascent, on-orbit, descent, and landing. The Integration 2 Team guides the customer in using NASA's world-class imagery analysis teams, which specialize in overcoming inherent challenges associated with spaceflight imagery sets. Precision motion tracking, two-dimensional (2D) and three-dimensional (3D) photogrammetry, image stabilization, 3D modeling of imagery data, lighting assessment, and vehicle fiducial marking assessments are available. During a mission or test, the Integration 2 Team provides oversight of imagery operations to verify fulfillment of imagery requirements. The team oversees the collection, screening, and analysis of imagery to build a set of imagery findings. It integrates and corroborates the imagery findings with other mission data sets, generating executive summaries to support time-critical mission decisions.

  12. Vivienda sostenible para un consumo casi nulo

    OpenAIRE

    MENDOZA GÓMEZ, CLAUDIA MARÍA

    2014-01-01

    Este TFG pretende aplicar los conceptos de eficiencia energética y sostenibilidad en la edificación para conseguir una vivienda con un consumo casi nulo. Para ello, es necesario reducir la demanda y los consumos así como las emisiones de CO2, contribuyendo de esa forma a cuidar el medio ambiente, a reducir los gases de efecto invernadero y la huella de carbono de la vivienda. El propósito es conseguir una vivienda sostenible que aproveche todo el potencial de las energías renovables y, ello i...

  13. Live Coral Cover Index Testing and Application with Hyperspectral Airborne Image Data

    Directory of Open Access Journals (Sweden)

    Karen E. Joyce

    2013-11-01

    Full Text Available Coral reefs are complex, heterogeneous environments where it is common for the features of interest to be smaller than the spatial dimensions of imaging sensors. While the coverage of live coral at any point in time is a critical environmental management issue, image pixels may represent mixed proportions of coverage. In order to address this, we describe the development, application, and testing of a spectral index for mapping live coral cover using CASI-2 airborne hyperspectral high spatial resolution imagery of Heron Reef, Australia. Field surveys were conducted in areas of varying depth to quantify live coral cover. Image statistics were extracted from co-registered imagery in the form of reflectance, derivatives, and band ratios. Each of the spectral transforms was assessed for their correlation with live coral cover, determining that the second derivative around 564 nm was the most sensitive to live coral cover variations(r2 = 0.63. Extensive field survey was used to transform relative to absolute coral cover, which was then applied to produce a live coral cover map of Heron Reef. We present the live coral cover index as a simple and viable means to estimate the amount of live coral over potentially thousands of km2 and in clear-water reefs.

  14. User Validation of VIIRS Satellite Imagery

    Directory of Open Access Journals (Sweden)

    Don Hillger

    2015-12-01

    Full Text Available Visible/Infrared Imaging Radiometer Suite (VIIRS Imagery from the Suomi National Polar-orbiting Partnership (S-NPP satellite is the finest spatial resolution (375 m multi-spectral imagery of any operational meteorological satellite to date. The Imagery environmental data record (EDR has been designated as a Key Performance Parameter (KPP for VIIRS, meaning that its performance is vital to the success of a series of Joint Polar Satellite System (JPSS satellites that will carry this instrument. Because VIIRS covers the high-latitude and Polar Regions especially well via overlapping swaths from adjacent orbits, the Alaska theatre in particular benefits from VIIRS more than lower-latitude regions. While there are no requirements that specifically address the quality of the EDR Imagery aside from the VIIRS SDR performance requirements, the value of VIIRS Imagery to operational users is an important consideration in the Cal/Val process. As such, engaging a wide diversity of users constitutes a vital part of the Imagery validation strategy. The best possible image quality is of utmost importance. This paper summarizes the Imagery Cal/Val Team’s quality assessment in this context. Since users are a vital component to the validation of VIIRS Imagery, specific examples of VIIRS imagery applied to operational needs are presented as an integral part of the post-checkout Imagery validation.

  15. Visual Imagery and False Memory for Pictures: A Functional Magnetic Resonance Imaging Study in Healthy Participants

    OpenAIRE

    Stephan-Otto, Christian; Siddi, Sara; Senior, Carl; Mu?oz-Samons, Daniel; Ochoa, Susana; S?nchez-Laforga, Ana Mar?a; Br?bion, Gildas

    2017-01-01

    BACKGROUND: Visual mental imagery might be critical in the ability to discriminate imagined from perceived pictures. Our aim was to investigate the neural bases of this specific type of reality-monitoring process in individuals with high visual imagery abilities. METHODS: A reality-monitoring task was administered to twenty-six healthy participants using functional magnetic resonance imaging. During the encoding phase, 45 words designating common items, and 45 pictures of other common items, ...

  16. Assessment of motor imagery ability and training

    Directory of Open Access Journals (Sweden)

    André Luiz Felix Rodacki

    2010-09-01

    Full Text Available The aim of this study was to evaluate changes in motor imagery ability in response to a specific dart throwing training. Twelve subjects (17-22 years with no previous experience in dart throwing or imagery agreed to participate. Changes in imagery ability were assessed using the Sports Imagery Questionnaire before (pretreatment and after (post-treatment an imagery training program consisting of 10 sessions. Retention (RET was assessed 2 weeks after training. The program included mental exercises designed to develop vivid images, to control one’s own images, and to increase perception about performance. Comparison of the imagery training conditions (training alone, training accompanied, observing a colleague, and during assessment showed no differences between the pretreatment, post-treatment and RET evaluations. Although imagery ability did not respond to training, significant differences between imagery domains (visual, auditory, kinesthetic, and animic were found (p<0.05, except between the visual and animic domains (p=0.58. These differences might be related to subject’s domain preference subject during the imagery process and to the nature of the task in which the skill technique used seems to be a relevant aspect.

  17. Image Segmentation of Hyperspectral Imagery

    National Research Council Canada - National Science Library

    Wellman, Mark

    2003-01-01

    .... Army tactical applications. An important tactical application of infrared (IR) hyperspectral imagery is the detection of low-contrast targets, including those targets that may employ camouflage, concealment, and deception (CCD) techniques 1, 2...

  18. Self-imagery in individuals with high body dissatisfaction: the effect of positive and negative self-imagery on aspects of the self-concept.

    Science.gov (United States)

    Farrar, Stephanie; Stopa, Lusia; Turner, Hannah

    2015-03-01

    Cognitive behavioural models of eating disorders highlight low self-esteem as a maintaining factor. This study explored the impact of positive and negative self-imagery on aspects of the working self (implicit and explicit self-esteem and self-concept clarity) in individuals with high body dissatisfaction (an important aspect of eating disorders). The impact of these images on state body satisfaction and affect was also explored. A group of participants with high body dissatisfaction completed measures of explicit self-esteem, self-concept clarity, state body satisfaction and affect prior to completing a negative (n = 33) or positive (n = 33) self-imagery retrieval task. Following this they completed the baseline measures and a measure of implicit self-esteem. Holding a negative self-image in mind had a negative effect on explicit self-esteem, whilst holding a positive self-image had a beneficial effect. There were no effects of imagery on implicit self-esteem. Holding a negative image in mind led to a significant reduction in self-concept clarity; however, positive self-imagery did not affect self-concept clarity. Holding a negative self-image in mind led to a decrease in body satisfaction and state affect. The opposite was found for the positive self-imagery group. Implicit self-esteem was not measured at baseline. Imagery techniques which promote positive self-images may help improve aspects of the working self, body satisfaction and affect in individuals with high levels of body dissatisfaction. As such, these imagery techniques warrant further investigation in a clinical population. Copyright © 2014 Elsevier Ltd. All rights reserved.

  19. Guided Image Filtering-Based Pan-Sharpening Method: A Case Study of GaoFen-2 Imagery

    Directory of Open Access Journals (Sweden)

    Yalan Zheng

    2017-12-01

    Full Text Available GaoFen-2 (GF-2 is a civilian optical satellite self-developed by China equipped with both multispectral and panchromatic sensors, and is the first satellite in China with a resolution below 1 m. Because the pan-sharpening methods on GF-2 imagery have not been a focus of previous works, we propose a novel pan-sharpening method based on guided image filtering and compare the performance to state-of-the-art methods on GF-2 images. Guided image filtering was introduced to decompose and transfer the details and structures from the original panchromatic and multispectral bands. Thereafter, an adaptive model that considers the local spectral relationship was designed to properly inject spatial information back into the original spectral bands. Four pairs of GF-2 images acquired from urban, water body, cropland, and forest areas were selected for the experiments. Both quantitative and visual inspections were used for the assessment. The experimental results demonstrated that for GF-2 imagery acquired over different scenes, the proposed approach consistently achieves high spectral fidelity and enhances spatial details, thereby benefitting the potential classification procedures.

  20. Motor imagery training: Kinesthetic imagery strategy and inferior parietal fMRI activation.

    Science.gov (United States)

    Lebon, Florent; Horn, Ulrike; Domin, Martin; Lotze, Martin

    2018-04-01

    Motor imagery (MI) is the mental simulation of action frequently used by professionals in different fields. However, with respect to performance, well-controlled functional imaging studies on MI training are sparse. We investigated changes in fMRI representation going along with performance changes of a finger sequence (error and velocity) after MI training in 48 healthy young volunteers. Before training, we tested the vividness of kinesthetic and visual imagery. During tests, participants were instructed to move or to imagine moving the fingers of the right hand in a specific order. During MI training, participants repeatedly imagined the sequence for 15 min. Imaging analysis was performed using a full-factorial design to assess brain changes due to imagery training. We also used regression analyses to identify those who profited from training (performance outcome and gain) with initial imagery scores (vividness) and fMRI activation magnitude during MI at pre-test (MI pre ). After training, error rate decreased and velocity increased. We combined both parameters into a common performance index. FMRI activation in the left inferior parietal lobe (IPL) was associated with MI and increased over time. In addition, fMRI activation in the right IPL during MI pre was associated with high initial kinesthetic vividness. High kinesthetic imagery vividness predicted a high performance after training. In contrast, occipital activation, associated with visual imagery strategies, showed a negative predictive value for performance. Our data echo the importance of high kinesthetic vividness for MI training outcome and consider IPL as a key area during MI and through MI training. © 2018 Wiley Periodicals, Inc.

  1. LAND COVER CHANGE DETECTION BASED ON GENETICALLY FEATURE AELECTION AND IMAGE ALGEBRA USING HYPERION HYPERSPECTRAL IMAGERY

    Directory of Open Access Journals (Sweden)

    S. T. Seydi

    2015-12-01

    Full Text Available The Earth has always been under the influence of population growth and human activities. This process causes the changes in land use. Thus, for optimal management of the use of resources, it is necessary to be aware of these changes. Satellite remote sensing has several advantages for monitoring land use/cover resources, especially for large geographic areas. Change detection and attribution of cultivation area over time present additional challenges for correctly analyzing remote sensing imagery. In this regards, for better identifying change in multi temporal images we use hyperspectral images. Hyperspectral images due to high spectral resolution created special placed in many of field. Nevertheless, selecting suitable and adequate features/bands from this data is crucial for any analysis and especially for the change detection algorithms. This research aims to automatically feature selection for detect land use changes are introduced. In this study, the optimal band images using hyperspectral sensor using Hyperion hyperspectral images by using genetic algorithms and Ratio bands, we select the optimal band. In addition, the results reveal the superiority of the implemented method to extract change map with overall accuracy by a margin of nearly 79% using multi temporal hyperspectral imagery.

  2. NOAA GOES-R Series Advanced Baseline Imager (ABI) Level 2+ Cloud and Moisture Imagery Products (CMIP)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — The Cloud and Moisture Imagery product contains one or more Earth-view images with pixel values identifying brightness values that are scaled to support visual...

  3. Imagery Rescripting for Personality Disorders

    Science.gov (United States)

    Arntz, Arnoud

    2011-01-01

    Imagery rescripting is a powerful technique that can be successfully applied in the treatment of personality disorders. For personality disorders, imagery rescripting is not used to address intrusive images but to change the implicational meaning of schemas and childhood experiences that underlie the patient's problems. Various mechanisms that may…

  4. Assessing mental imagery in clinical psychology: A review of imagery measures and a guiding framework

    Science.gov (United States)

    Pearson, David G.; Deeprose, Catherine; Wallace-Hadrill, Sophie M.A.; Heyes, Stephanie Burnett; Holmes, Emily A.

    2013-01-01

    Mental imagery is an under-explored field in clinical psychology research but presents a topic of potential interest and relevance across many clinical disorders, including social phobia, schizophrenia, depression, and post-traumatic stress disorder. There is currently a lack of a guiding framework from which clinicians may select the domains or associated measures most likely to be of appropriate use in mental imagery research. We adopt an interdisciplinary approach and present a review of studies across experimental psychology and clinical psychology in order to highlight the key domains and measures most likely to be of relevance. This includes a consideration of methods for experimentally assessing the generation, maintenance, inspection and transformation of mental images; as well as subjective measures of characteristics such as image vividness and clarity. We present a guiding framework in which we propose that cognitive, subjective and clinical aspects of imagery should be explored in future research. The guiding framework aims to assist researchers in the selection of measures for assessing those aspects of mental imagery that are of most relevance to clinical psychology. We propose that a greater understanding of the role of mental imagery in clinical disorders will help drive forward advances in both theory and treatment. PMID:23123567

  5. Do the physical and environment PETTLEP elements predict sport imagery ability?

    Science.gov (United States)

    Anuar, Nurwina; Williams, Sarah E; Cumming, Jennifer

    2017-11-01

    The present study aimed to examine whether physical and environment elements of PETTLEP imagery relate to the ability to image five types of sport imagery (i.e. skill, strategy, goal, affect and mastery). Two hundred and ninety participants (152 males, 148 females; M age  = 20.24 years, SD = 4.36) from various sports completed the Sport Imagery Ability Questionnaire (SIAQ), and a set of items designed specifically for the study to assess how frequently participants incorporate physical (e.g. 'I make small movements or gestures during the imagery') and environment (e.g. 'I image in the real training/competition environment') elements of PETTLEP imagery. Structural equation modelling tested a hypothesised model in which imagery priming (i.e. the best fitting physical and environment elements) significantly and positively predicted imagery ability of the different imagery types (skill, β = 0.38; strategy, β = 0.23; goal, β = 0.21; affect, β = 0.25; mastery, β = 0.22). The model was a good fit to the data: χ 2 (174) = 263.87, p environment elements is associated with better skill, strategy, goal, affect and mastery imagery ability. The findings extend models of imagery use by indicating that how athletes images may influence their imagery ability.

  6. An Adaptive Ship Detection Scheme for Spaceborne SAR Imagery

    Directory of Open Access Journals (Sweden)

    Xiangguang Leng

    2016-08-01

    Full Text Available With the rapid development of spaceborne synthetic aperture radar (SAR and the increasing need of ship detection, research on adaptive ship detection in spaceborne SAR imagery is of great importance. Focusing on practical problems of ship detection, this paper presents a highly adaptive ship detection scheme for spaceborne SAR imagery. It is able to process a wide range of sensors, imaging modes and resolutions. Two main stages are identified in this paper, namely: ship candidate detection and ship discrimination. Firstly, this paper proposes an adaptive land masking method using ship size and pixel size. Secondly, taking into account the imaging mode, incidence angle, and polarization channel of SAR imagery, it implements adaptive ship candidate detection in spaceborne SAR imagery by applying different strategies to different resolution SAR images. Finally, aiming at different types of typical false alarms, this paper proposes a comprehensive ship discrimination method in spaceborne SAR imagery based on confidence level and complexity analysis. Experimental results based on RADARSAT-1, RADARSAT-2, TerraSAR-X, RS-1, and RS-3 images demonstrate that the adaptive scheme proposed in this paper is able to detect ship targets in a fast, efficient and robust way.

  7. Mental imagery in emotion and emotional disorders.

    Science.gov (United States)

    Holmes, Emily A; Mathews, Andrew

    2010-04-01

    Mental imagery has been considered relevant to psychopathology due to its supposed special relationship with emotion, although evidence for this assumption has been conspicuously lacking. The present review is divided into four main sections: (1) First, we review evidence that imagery can evoke emotion in at least three ways: a direct influence on emotional systems in the brain that are responsive to sensory signals; overlap between processes involved in mental imagery and perception which can lead to responding "as if" to real emotion-arousing events; and the capacity of images to make contact with memories for emotional episodes in the past. (2) Second, we describe new evidence confirming that imagery does indeed evoke greater emotional responses than verbal representation, although the extent of emotional response depends on the image perspective adopted. (3) Third, a heuristic model is presented that contrasts the generation of language-based representations with imagery and offers an account of their differing effects on emotion, beliefs and behavior. (4) Finally, based on the foregoing review, we discuss the role of imagery in maintaining emotional disorders, and its uses in psychological treatment. Copyright 2010 Elsevier Ltd. All rights reserved.

  8. Satellite imagery in a nuclear age

    International Nuclear Information System (INIS)

    Baines, P.J.

    1998-01-01

    Increasingly, high resolution satellite imaging systems are becoming available from multiple and diverse sources with capabilities useful for answering security questions. With increased supply, data availability and data authenticity may be assured. In a commercial market a supplier can ill afford the loss in market share that would result from any falsification of data. Similarly rising competitors willing to sell imagery of national security sites will decrease the tendency to endure self-imposed restrictions on sales of those sites. International organizations operating in the security interests of all nations might also gain preferential access. Costa for imagery will also fall to the point were individuals can afford purchases of satellite images. International organizations will find utility in exploiting imagery for solving international security problems. Housed within international organizations possessing competent staff, procedures, and 'shared destiny' stakes in resolving compliance discrepancies, the use of satellite imagery may provide a degree of stability in a world in which individuals, non-governmental organizations and governments may choose to exploit the available information for political gain. The use of satellite imagery outside these international organizations might not necessarily be aimed at seeking mutually beneficial solutions for international problems

  9. Integration of aerial oblique imagery and terrestrial imagery for optimized 3D modeling in urban areas

    Science.gov (United States)

    Wu, Bo; Xie, Linfu; Hu, Han; Zhu, Qing; Yau, Eric

    2018-05-01

    Photorealistic three-dimensional (3D) models are fundamental to the spatial data infrastructure of a digital city, and have numerous potential applications in areas such as urban planning, urban management, urban monitoring, and urban environmental studies. Recent developments in aerial oblique photogrammetry based on aircraft or unmanned aerial vehicles (UAVs) offer promising techniques for 3D modeling. However, 3D models generated from aerial oblique imagery in urban areas with densely distributed high-rise buildings may show geometric defects and blurred textures, especially on building façades, due to problems such as occlusion and large camera tilt angles. Meanwhile, mobile mapping systems (MMSs) can capture terrestrial images of close-range objects from a complementary view on the ground at a high level of detail, but do not offer full coverage. The integration of aerial oblique imagery with terrestrial imagery offers promising opportunities to optimize 3D modeling in urban areas. This paper presents a novel method of integrating these two image types through automatic feature matching and combined bundle adjustment between them, and based on the integrated results to optimize the geometry and texture of the 3D models generated from aerial oblique imagery. Experimental analyses were conducted on two datasets of aerial and terrestrial images collected in Dortmund, Germany and in Hong Kong. The results indicate that the proposed approach effectively integrates images from the two platforms and thereby improves 3D modeling in urban areas.

  10. Visualisation, imagery, and the development of geometrical reasoning

    OpenAIRE

    Jones, Keith; Bills, Chris

    1998-01-01

    This report focuses on some aspects of the nature and role of visualisation and imagery in the teaching and learning of mathematics, particularly as a component in the development of geometrical reasoning. Issues briefly addressed include the relationship between imagery and perception, imagery and memory, the nature of dynamic images, and the interaction between imagery and concept development. The report concludes with a series of questions that may provide a suitable programme for research...

  11. 7 CFR 611.22 - Availability of satellite imagery.

    Science.gov (United States)

    2010-01-01

    ... 7 Agriculture 6 2010-01-01 2010-01-01 false Availability of satellite imagery. 611.22 Section 611... § 611.22 Availability of satellite imagery. Cloud-free maps of the United States based on imagery received from a satellite are prepared and released to the pubic by NRCS. The maps offer the first image of...

  12. Emergency Response Imagery Related to Hurricanes Harvey, Irma, and Maria

    Science.gov (United States)

    Worthem, A. V.; Madore, B.; Imahori, G.; Woolard, J.; Sellars, J.; Halbach, A.; Helmricks, D.; Quarrick, J.

    2017-12-01

    NOAA's National Geodetic Survey (NGS) and Remote Sensing Division acquired and rapidly disseminated emergency response imagery related to the three recent hurricanes Harvey, Irma, and Maria. Aerial imagery was collected using a Trimble Digital Sensor System, a high-resolution digital camera, by means of NOAA's King Air 350ER and DeHavilland Twin Otter (DHC-6) Aircraft. The emergency response images are used to assess the before and after effects of the hurricanes' damage. The imagery aids emergency responders, such as FEMA, Coast Guard, and other state and local governments, in developing recovery strategies and efforts by prioritizing areas most affected and distributing appropriate resources. Collected imagery is also used to provide damage assessment for use in long-term recovery and rebuilding efforts. Additionally, the imagery allows for those evacuated persons to see images of their homes and neighborhoods remotely. Each of the individual images are processed through ortho-rectification and merged into a uniform mosaic image. These remotely sensed datasets are publically available, and often used by web-based map servers as well as, federal, state, and local government agencies. This poster will show the imagery collected for these three hurricanes and the processes involved in getting data quickly into the hands of those that need it most.

  13. Kinesthetic imagery of musical performance.

    Science.gov (United States)

    Lotze, Martin

    2013-01-01

    Musicians use different kinds of imagery. This review focuses on kinesthetic imagery, which has been shown to be an effective complement to actively playing an instrument. However, experience in actual movement performance seems to be a requirement for a recruitment of those brain areas representing movement ideation during imagery. An internal model of movement performance might be more differentiated when training has been more intense or simply performed more often. Therefore, with respect to kinesthetic imagery, these strategies are predominantly found in professional musicians. There are a few possible reasons as to why kinesthetic imagery is used in addition to active training; one example is the need for mental rehearsal of the technically most difficult passages. Another reason for mental practice is that mental rehearsal of the piece helps to improve performance if the instrument is not available for actual training as is the case for professional musicians when they are traveling to various appearances. Overall, mental imagery in musicians is not necessarily specific to motor, somatosensory, auditory, or visual aspects of imagery, but integrates them all. In particular, the audiomotor loop is highly important, since auditory aspects are crucial for guiding motor performance. All these aspects result in a distinctive representation map for the mental imagery of musical performance. This review summarizes behavioral data, and findings from functional brain imaging studies of mental imagery of musical performance.

  14. Aerial Photography and Imagery, Ortho-Corrected - FL Bay Ortho Imagery Project Spring 2013

    Data.gov (United States)

    NSGIC Education | GIS Inventory — This file references a single orthogonal imagery tile produced from nadir images captured by Pictometry International during the period of December 30th, 2012 and...

  15. Resolution Enhancement of Multilook Imagery

    Energy Technology Data Exchange (ETDEWEB)

    Galbraith, Amy E. [Univ. of Arizona, Tucson, AZ (United States)

    2004-07-01

    This dissertation studies the feasibility of enhancing the spatial resolution of multi-look remotely-sensed imagery using an iterative resolution enhancement algorithm known as Projection Onto Convex Sets (POCS). A multi-angle satellite image modeling tool is implemented, and simulated multi-look imagery is formed to test the resolution enhancement algorithm. Experiments are done to determine the optimal con guration and number of multi-angle low-resolution images needed for a quantitative improvement in the spatial resolution of the high-resolution estimate. The important topic of aliasing is examined in the context of the POCS resolution enhancement algorithm performance. In addition, the extension of the method to multispectral sensor images is discussed and an example is shown using multispectral confocal fluorescence imaging microscope data. Finally, the remote sensing issues of atmospheric path radiance and directional reflectance variations are explored to determine their effect on the resolution enhancement performance.

  16. Kinesthetic Imagery Provides Additive Benefits to Internal Visual Imagery on Slalom Task Performance.

    Science.gov (United States)

    Callow, Nichola; Jiang, Dan; Roberts, Ross; Edwards, Martin G

    2017-02-01

    Recent brain imaging research demonstrates that the use of internal visual imagery (IVI) or kinesthetic imagery (KIN) activates common and distinct brain areas. In this paper, we argue that combining the imagery modalities (IVI and KIN) will lead to a greater cognitive representation (with more brain areas activated), and this will cause a greater slalom-based motor performance compared with using IVI alone. To examine this assertion, we randomly allocated 56 participants to one of the three groups: IVI, IVI and KIN, or a math control group. Participants performed a slalom-based driving task in a driving simulator, with average lap time used as a measure of performance. Results revealed that the IVI and KIN group achieved significantly quicker lap times than the IVI and the control groups. The discussion includes a theoretical advancement on why the combination of imagery modalities might facilitate performance, with links made to the cognitive neuroscience literature and applied practice.

  17. Measuring Creative Imagery Abilities

    Directory of Open Access Journals (Sweden)

    Dorota M. Jankowska

    2015-10-01

    Full Text Available Over the decades, creativity and imagination research developed in parallel, but they surprisingly rarely intersected. This paper introduces a new theoretical model of creative imagination, which bridges creativity and imagination research, as well as presents a new psychometric instrument, called the Test of Creative Imagery Abilities (TCIA, developed to measure creative imagery abilities understood in accordance with this model. Creative imagination is understood as constituted by three interrelated components: vividness (the ability to create images characterized by a high level of complexity and detail, originality (the ability to produce unique imagery, and transformativeness (the ability to control imagery. TCIA enables valid and reliable measurement of these three groups of abilities, yielding the general score of imagery abilities and at the same time making profile analysis possible. We present the results of eight studies on a total sample of more than 1,700 participants, showing the factor structure of TCIA using confirmatory factor analysis, as well as provide data confirming this instrument’s validity and reliability. The availability of TCIA for interested researchers may result in new insights and possibilities of integrating the fields of creativity and imagination science.

  18. Contrast and strength of visual memory and imagery differentially affect visual perception.

    Science.gov (United States)

    Saad, Elyana; Silvanto, Juha

    2013-01-01

    Visual short-term memory (VSTM) and visual imagery have been shown to modulate visual perception. However, how the subjective experience of VSTM/imagery and its contrast modulate this process has not been investigated. We addressed this issue by asking participants to detect brief masked targets while they were engaged either in VSTM or visual imagery. Subjective experience of memory/imagery (strength scale), and the visual contrast of the memory/mental image (contrast scale) were assessed on a trial-by-trial basis. For both VSTM and imagery, contrast of the memory/mental image was positively associated with reporting target presence. Consequently, at the sensory level, both VSTM and imagery facilitated visual perception. However, subjective strength of VSTM was positively associated with visual detection whereas the opposite pattern was found for imagery. Thus the relationship between subjective strength of memory/imagery and visual detection are qualitatively different for VSTM and visual imagery, although their impact at the sensory level appears similar. Our results furthermore demonstrate that imagery and VSTM are partly dissociable processes.

  19. Contrast and strength of visual memory and imagery differentially affect visual perception.

    Directory of Open Access Journals (Sweden)

    Elyana Saad

    Full Text Available Visual short-term memory (VSTM and visual imagery have been shown to modulate visual perception. However, how the subjective experience of VSTM/imagery and its contrast modulate this process has not been investigated. We addressed this issue by asking participants to detect brief masked targets while they were engaged either in VSTM or visual imagery. Subjective experience of memory/imagery (strength scale, and the visual contrast of the memory/mental image (contrast scale were assessed on a trial-by-trial basis. For both VSTM and imagery, contrast of the memory/mental image was positively associated with reporting target presence. Consequently, at the sensory level, both VSTM and imagery facilitated visual perception. However, subjective strength of VSTM was positively associated with visual detection whereas the opposite pattern was found for imagery. Thus the relationship between subjective strength of memory/imagery and visual detection are qualitatively different for VSTM and visual imagery, although their impact at the sensory level appears similar. Our results furthermore demonstrate that imagery and VSTM are partly dissociable processes.

  20. EEG Topographic Mapping of Visual and Kinesthetic Imagery in Swimmers.

    Science.gov (United States)

    Wilson, V E; Dikman, Z; Bird, E I; Williams, J M; Harmison, R; Shaw-Thornton, L; Schwartz, G E

    2016-03-01

    This study investigated differences in QEEG measures between kinesthetic and visual imagery of a 100-m swim in 36 elite competitive swimmers. Background information and post-trial checks controlled for the modality of imagery, swimming skill level, preferred imagery style, intensity of image and task equality. Measures of EEG relative magnitude in theta, low (7-9 Hz) and high alpha (8-10 Hz), and low and high beta were taken from 19 scalp sites during baseline, visual, and kinesthetic imagery. QEEG magnitudes in the low alpha band during the visual and kinesthetic conditions were attenuated from baseline in low band alpha but no changes were seen in any other bands. Swimmers produced more low alpha EEG magnitude during visual versus kinesthetic imagery. This was interpreted as the swimmers having a greater efficiency at producing visual imagery. Participants who reported a strong intensity versus a weaker feeling of the image (kinesthetic) had less low alpha magnitude, i.e., there was use of more cortical resources, but not for the visual condition. These data suggest that low band (7-9 Hz) alpha distinguishes imagery modalities from baseline, visual imagery requires less cortical resources than kinesthetic imagery, and that intense feelings of swimming requires more brain activity than less intense feelings.

  1. Motor imagery beyond the motor repertoire: Activity in the primary visual cortex during kinesthetic motor imagery of difficult whole body movements.

    Science.gov (United States)

    Mizuguchi, N; Nakata, H; Kanosue, K

    2016-02-19

    To elucidate the neural substrate associated with capabilities for kinesthetic motor imagery of difficult whole-body movements, we measured brain activity during a trial involving both kinesthetic motor imagery and action observation as well as during a trial with action observation alone. Brain activity was assessed with functional magnetic resonance imaging (fMRI). Nineteen participants imagined three types of whole-body movements with the horizontal bar: the giant swing, kip, and chin-up during action observation. No participant had previously tried to perform the giant swing. The vividness of kinesthetic motor imagery as assessed by questionnaire was highest for the chin-up, less for the kip and lowest for the giant swing. Activity in the primary visual cortex (V1) during kinesthetic motor imagery with action observation minus that during action observation alone was significantly greater in the giant swing condition than in the chin-up condition within participants. Across participants, V1 activity of kinesthetic motor imagery of the kip during action observation minus that during action observation alone was negatively correlated with vividness of the kip imagery. These results suggest that activity in V1 is dependent upon the capability of kinesthetic motor imagery for difficult whole-body movements. Since V1 activity is likely related to the creation of a visual image, we speculate that visual motor imagery is recruited unintentionally for the less vivid kinesthetic motor imagery of difficult whole-body movements. Copyright © 2015 The Authors. Published by Elsevier Ltd.. All rights reserved.

  2. The Yosemite Extreme Panoramic Imaging Project: Monitoring Rockfall in Yosemite Valley with High-Resolution, Three-Dimensional Imagery

    Science.gov (United States)

    Stock, G. M.; Hansen, E.; Downing, G.

    2008-12-01

    Yosemite Valley experiences numerous rockfalls each year, with over 600 rockfall events documented since 1850. However, monitoring rockfall activity has proved challenging without high-resolution "basemap" imagery of the Valley walls. The Yosemite Extreme Panoramic Imaging Project, a partnership between the National Park Service and xRez Studio, has created an unprecedented image of Yosemite Valley's walls by utilizing gigapixel panoramic photography, LiDAR-based digital terrain modeling, and three-dimensional computer rendering. Photographic capture was accomplished by 20 separate teams shooting from key overlapping locations throughout Yosemite Valley. The shots were taken simultaneously in order to ensure uniform lighting, with each team taking over 500 overlapping shots from each vantage point. Each team's shots were then assembled into 20 gigapixel panoramas. In addition, all 20 gigapixel panoramas were projected onto a 1 meter resolution digital terrain model in three-dimensional rendering software, unifying Yosemite Valley's walls into a vertical orthographic view. The resulting image reveals the geologic complexity of Yosemite Valley in high resolution and represents one of the world's largest photographic captures of a single area. Several rockfalls have already occurred since image capture, and repeat photography of these areas clearly delineates rockfall source areas and failure dynamics. Thus, the imagery has already proven to be a valuable tool for monitoring and understanding rockfall in Yosemite Valley. It also sets a new benchmark for the quality of information a photographic image, enabled with powerful new imaging technology, can provide for the earth sciences.

  3. Computer-Assisted, Self-Interviewing (CASI Compared to Face-to-Face Interviewing (FTFI with Open-Ended, Non-Sensitive Questions

    Directory of Open Access Journals (Sweden)

    John Fairweather PhD

    2012-07-01

    Full Text Available This article reports results from research on cultural models, and assesses the effects of computers on data quality by comparing open-ended questions asked in two formats—face-to-face interviewing (FTFI and computer-assisted, self-interviewing (CASI. We expected that for our non-sensitive topic, FTFI would generate fuller and richer accounts because the interviewer could facilitate the interview process. Although the interviewer indeed facilitated these interviews, which resulted in more words in less time, the number of underlying themes found within the texts for each interview mode was the same, thus resulting in the same models of national culture and innovation being built for each mode. Our results, although based on an imperfect research design, suggest that CASI can be beneficial when using open-ended questions because CASI is easy to administer, capable of reaching more efficiently a large sample, and able to avoid the need to transcribe the recorded responses.

  4. Automatic Mosaicking of Satellite Imagery Considering the Clouds

    Science.gov (United States)

    Kang, Yifei; Pan, Li; Chen, Qi; Zhang, Tong; Zhang, Shasha; Liu, Zhang

    2016-06-01

    With the rapid development of high resolution remote sensing for earth observation technology, satellite imagery is widely used in the fields of resource investigation, environment protection, and agricultural research. Image mosaicking is an important part of satellite imagery production. However, the existence of clouds leads to lots of disadvantages for automatic image mosaicking, mainly in two aspects: 1) Image blurring may be caused during the process of image dodging, 2) Cloudy areas may be passed through by automatically generated seamlines. To address these problems, an automatic mosaicking method is proposed for cloudy satellite imagery in this paper. Firstly, modified Otsu thresholding and morphological processing are employed to extract cloudy areas and obtain the percentage of cloud cover. Then, cloud detection results are used to optimize the process of dodging and mosaicking. Thus, the mosaic image can be combined with more clear-sky areas instead of cloudy areas. Besides, clear-sky areas will be clear and distortionless. The Chinese GF-1 wide-field-of-view orthoimages are employed as experimental data. The performance of the proposed approach is evaluated in four aspects: the effect of cloud detection, the sharpness of clear-sky areas, the rationality of seamlines and efficiency. The evaluation results demonstrated that the mosaic image obtained by our method has fewer clouds, better internal color consistency and better visual clarity compared with that obtained by traditional method. The time consumed by the proposed method for 17 scenes of GF-1 orthoimages is within 4 hours on a desktop computer. The efficiency can meet the general production requirements for massive satellite imagery.

  5. Visual imagery of famous faces: effects of memory and attention revealed by fMRI.

    Science.gov (United States)

    Ishai, Alumit; Haxby, James V; Ungerleider, Leslie G

    2002-12-01

    Complex pictorial information can be represented and retrieved from memory as mental visual images. Functional brain imaging studies have shown that visual perception and visual imagery share common neural substrates. The type of memory (short- or long-term) that mediates the generation of mental images, however, has not been addressed previously. The purpose of this study was to investigate the neural correlates underlying imagery generated from short- and long-term memory (STM and LTM). We used famous faces to localize the visual response during perception and to compare the responses during visual imagery generated from STM (subjects memorized specific pictures of celebrities before the imagery task) and imagery from LTM (subjects imagined famous faces without seeing specific pictures during the experimental session). We found that visual perception of famous faces activated the inferior occipital gyri, lateral fusiform gyri, the superior temporal sulcus, and the amygdala. Small subsets of these face-selective regions were activated during imagery. Additionally, visual imagery of famous faces activated a network of regions composed of bilateral calcarine, hippocampus, precuneus, intraparietal sulcus (IPS), and the inferior frontal gyrus (IFG). In all these regions, imagery generated from STM evoked more activation than imagery from LTM. Regardless of memory type, focusing attention on features of the imagined faces (e.g., eyes, lips, or nose) resulted in increased activation in the right IPS and right IFG. Our results suggest differential effects of memory and attention during the generation and maintenance of mental images of faces.

  6. Visuospatial imagery and working memory in schizophrenia.

    Science.gov (United States)

    Matthews, Natasha L; Collins, Kathleen P; Thakkar, Katharine N; Park, Sohee

    2014-01-01

    The ability to form mental images that reconstruct former perceptual experiences is closely related to working memory (WM) ability. However, whereas WM deficits are established as a core feature of schizophrenia, an independent body of work suggests that mental imagery ability is enhanced in the disorder. Across two experiments we investigated mental imagery in schizophrenia and its relationship with WM. In Experiment 1, individuals with schizophrenia (SZ: n=15) and matched controls (CO: n=14) completed a mental imagery generation and inspection task and a spatial delayed-response WM task. In Experiment 2, SZ (n=16) and CO (n=16) completed a novel version of the mental imagery task modified to increase WM maintenance demand. In Experiment 1, SZ demonstrated enhanced mental imagery performance, as evidenced by faster response times relative to CO, with preserved accuracy. However, enhanced mental imagery in SZ was accompanied by impaired WM as assessed by the delayed-response task. In Experiment 2, when WM maintenance load was increased, SZ no longer showed superior imagery performance. We found evidence for enhanced imagery manipulation in SZ despite their WM maintenance deficit. However, this imagery enhancement was abolished when WM maintenance demands were increased. This profile of enhanced imagery manipulation but impaired maintenance could be used to implement novel remediation strategies in the disorder.

  7. Solar Imagery - Chromosphere - Calcium

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — This dataset consists of full-disk images of the sun in Calcium (Ca) II K wavelength (393.4 nm). Ca II K imagery reveal magnetic structures of the sun from about 500...

  8. Collection and corrections of oblique multiangle hyperspectral bidirectional reflectance imagery of the water surface

    Science.gov (United States)

    Bostater, Charles R.; Oney, Taylor S.

    2017-10-01

    Hyperspectral images of coastal waters in urbanized regions were collected from fixed platform locations. Surf zone imagery, images of shallow bays, lagoons and coastal waters are processed to produce bidirectional reflectance factor (BRF) signatures corrected for changing viewing angles. Angular changes as a function of pixel location within a scene are used to estimate changes in pixel size and ground sampling areas. Diffuse calibration targets collected simultaneously from within the image scene provides the necessary information for calculating BRF signatures of the water surface and shorelines. Automated scanning using a pushbroom hyperspectral sensor allows imagery to be collected on the order of one minute or less for different regions of interest. Imagery is then rectified and georeferenced using ground control points within nadir viewing multispectral imagery via image to image registration techniques. This paper demonstrates the above as well as presenting how spectra can be extracted along different directions in the imagery. The extraction of BRF spectra along track lines allows the application of derivative reflectance spectroscopy for estimating chlorophyll-a, dissolved organic matter and suspended matter concentrations at or near the water surface. Imagery is presented demonstrating the techniques to identify subsurface features and targets within the littoral and surf zones.

  9. Kinesthetic imagery of musical performance

    Directory of Open Access Journals (Sweden)

    Martin eLotze

    2013-06-01

    Full Text Available Musicians use different kinds of imagery. This review focuses on kinesthetic imagery, which has been shown to be an effective complement to actively playing an instrument. However, experience in actual movement performance seems to be a requirement for a recruitment of those brain areas representing movement ideation during imagery. An internal model of movement performance might be more differentiated when training has been more intense or simply performed more often. Therefore, with respect to kinesthetic imagery, these strategies are predominantly found in professional musicians. There are a few possible reasons as to why kinesthetic imagery is used in addition to active training; one example is the need for mental rehearsal of the technically most difficult passages. Training difficult passages repeatedly has the potential to induce fatigue in tendons and muscles and can ultimately result in the development of dystonia. Another reason for mental practice is that mental rehearsal of the piece helps to improve performance if the instrument is not available for actual training as is the case for professional musicians when they are travelling to various appearances. Overall, mental imagery in musicians is not necessarily specific to motor, somatosensory, auditory or visual aspects of imagery, but integrates them all. In particular, the audiomotor loop is highly important, since auditory aspects are crucial for guiding motor performance. Furthermore, slight co-movement, for instance of the fingers, usually occurs when imagining musical performance, a situation different to the laboratory condition where movement execution is strictly controlled. All these aspects result in a distinctive representation map for the mental imagery of musical performance. This review summarizes behavioral data, and findings from functional brain imaging studies of mental imagery of musical performance.

  10. Information fusion performance evaluation for motion imagery data using mutual information: initial study

    Science.gov (United States)

    Grieggs, Samuel M.; McLaughlin, Michael J.; Ezekiel, Soundararajan; Blasch, Erik

    2015-06-01

    As technology and internet use grows at an exponential rate, video and imagery data is becoming increasingly important. Various techniques such as Wide Area Motion imagery (WAMI), Full Motion Video (FMV), and Hyperspectral Imaging (HSI) are used to collect motion data and extract relevant information. Detecting and identifying a particular object in imagery data is an important step in understanding visual imagery, such as content-based image retrieval (CBIR). Imagery data is segmented and automatically analyzed and stored in dynamic and robust database. In our system, we seek utilize image fusion methods which require quality metrics. Many Image Fusion (IF) algorithms have been proposed based on different, but only a few metrics, used to evaluate the performance of these algorithms. In this paper, we seek a robust, objective metric to evaluate the performance of IF algorithms which compares the outcome of a given algorithm to ground truth and reports several types of errors. Given the ground truth of a motion imagery data, it will compute detection failure, false alarm, precision and recall metrics, background and foreground regions statistics, as well as split and merge of foreground regions. Using the Structural Similarity Index (SSIM), Mutual Information (MI), and entropy metrics; experimental results demonstrate the effectiveness of the proposed methodology for object detection, activity exploitation, and CBIR.

  11. Vehicle classification in WAMI imagery using deep network

    Science.gov (United States)

    Yi, Meng; Yang, Fan; Blasch, Erik; Sheaff, Carolyn; Liu, Kui; Chen, Genshe; Ling, Haibin

    2016-05-01

    Humans have always had a keen interest in understanding activities and the surrounding environment for mobility, communication, and survival. Thanks to recent progress in photography and breakthroughs in aviation, we are now able to capture tens of megapixels of ground imagery, namely Wide Area Motion Imagery (WAMI), at multiple frames per second from unmanned aerial vehicles (UAVs). WAMI serves as a great source for many applications, including security, urban planning and route planning. These applications require fast and accurate image understanding which is time consuming for humans, due to the large data volume and city-scale area coverage. Therefore, automatic processing and understanding of WAMI imagery has been gaining attention in both industry and the research community. This paper focuses on an essential step in WAMI imagery analysis, namely vehicle classification. That is, deciding whether a certain image patch contains a vehicle or not. We collect a set of positive and negative sample image patches, for training and testing the detector. Positive samples are 64 × 64 image patches centered on annotated vehicles. We generate two sets of negative images. The first set is generated from positive images with some location shift. The second set of negative patches is generated from randomly sampled patches. We also discard those patches if a vehicle accidentally locates at the center. Both positive and negative samples are randomly divided into 9000 training images and 3000 testing images. We propose to train a deep convolution network for classifying these patches. The classifier is based on a pre-trained AlexNet Model in the Caffe library, with an adapted loss function for vehicle classification. The performance of our classifier is compared to several traditional image classifier methods using Support Vector Machine (SVM) and Histogram of Oriented Gradient (HOG) features. While the SVM+HOG method achieves an accuracy of 91.2%, the accuracy of our deep

  12. Current Operational Use of and Future Needs for Microwave Imagery at NOAA

    Science.gov (United States)

    Goldberg, M.; McWilliams, G.; Chang, P.

    2017-12-01

    There are many applications of microwave imagery served by NOAA's operational products and services. They include the use of microwave imagery and derived products for monitoring precipitation, tropical cyclones, sea surface temperature under all weather conditions, wind speed, snow and ice cover, and even soil moisture. All of NOAA's line offices including the National Weather Service, National Ocean Service, National Marine Fisheries Service, and Office of Oceanic and Atmospheric Research rely on microwave imagery. Currently microwave imagery products used by NOAA come from a constellation of satellites that includes Air Force's Special Sensor Microwave Imager Sounder (SSMIS), the Japanese Advanced Microwave Scanning Radiometer (AMSR), the Navy's WindSat, and NASA's Global Precipitation Monitoring (GPM) Microwave Imager (GMI). Follow-on missions for SSMIS are very uncertain, JAXA approval for a follow-on to AMSR2 is still pending, and GMI is a research satellite (lacking high-latitude coverage) with no commitment for operational continuity. Operational continuity refers to a series of satellites, so when one satellite reaches its design life a new satellite is launched. EUMETSAT has made a commitment to fly a microwave imager in the mid-morning orbit. China and Russia have demonstrated on-orbit microwave imagers. Of utmost importance to NOAA, however, is the quality, access, and latency of the data This presentation will focus on NOAA's current requirements for microwave imagery data which, for the most part, are being fulfilled by AMSR2, SSMIS, and WindSat. It will include examples of products and applications of microwave imagery at NOAA. We will also discuss future needs, especially for improved temporal resolution which hopefully can be met by an international constellation of microwave imagers. Finally, we will discuss what we are doing to address the potential gap in imagery.

  13. 2015 Southwest Florida RCD30 4-Band 8 Bit Imagery

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — These files contain imagery data collected with an RCD30 camera as 8-bit RGBN TIFF images. Imagery was required 1000m seaward of the land/water interface or to laser...

  14. 2015 Florida Panhandle RCD30 4-Band 8 Bit Imagery

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — These files contain imagery data collected with an RCD30 camera as 8-bit RGBN TIFF images. Imagery was required 1000m seaward of the land/water interface or to laser...

  15. LANDSAT 8 MULTISPECTRAL AND PANSHARPENED IMAGERY PROCESSING ON THE STUDY OF CIVIL ENGINEERING ISSUES

    Directory of Open Access Journals (Sweden)

    M. A. Lazaridou

    2016-06-01

    Full Text Available Scientific and professional interests of civil engineering mainly include structures, hydraulics, geotechnical engineering, environment, and transportation issues. Topics included in the context of the above may concern urban environment issues, urban planning, hydrological modelling, study of hazards and road construction. Land cover information contributes significantly on the study of the above subjects. Land cover information can be acquired effectively by visual image interpretation of satellite imagery or after applying enhancement routines and also by imagery classification. The Landsat Data Continuity Mission (LDCM – Landsat 8 is the latest satellite in Landsat series, launched in February 2013. Landsat 8 medium spatial resolution multispectral imagery presents particular interest in extracting land cover, because of the fine spectral resolution, the radiometric quantization of 12bits, the capability of merging the high resolution panchromatic band of 15 meters with multispectral imagery of 30 meters as well as the policy of free data. In this paper, Landsat 8 multispectral and panchromatic imageries are being used, concerning surroundings of a lake in north-western Greece. Land cover information is extracted, using suitable digital image processing software. The rich spectral context of the multispectral image is combined with the high spatial resolution of the panchromatic image, applying image fusion – pansharpening, facilitating in this way visual image interpretation to delineate land cover. Further processing concerns supervised image classification. The classification of pansharpened image preceded multispectral image classification. Corresponding comparative considerations are also presented.

  16. Landsat 8 Multispectral and Pansharpened Imagery Processing on the Study of Civil Engineering Issues

    Science.gov (United States)

    Lazaridou, M. A.; Karagianni, A. Ch.

    2016-06-01

    Scientific and professional interests of civil engineering mainly include structures, hydraulics, geotechnical engineering, environment, and transportation issues. Topics included in the context of the above may concern urban environment issues, urban planning, hydrological modelling, study of hazards and road construction. Land cover information contributes significantly on the study of the above subjects. Land cover information can be acquired effectively by visual image interpretation of satellite imagery or after applying enhancement routines and also by imagery classification. The Landsat Data Continuity Mission (LDCM - Landsat 8) is the latest satellite in Landsat series, launched in February 2013. Landsat 8 medium spatial resolution multispectral imagery presents particular interest in extracting land cover, because of the fine spectral resolution, the radiometric quantization of 12bits, the capability of merging the high resolution panchromatic band of 15 meters with multispectral imagery of 30 meters as well as the policy of free data. In this paper, Landsat 8 multispectral and panchromatic imageries are being used, concerning surroundings of a lake in north-western Greece. Land cover information is extracted, using suitable digital image processing software. The rich spectral context of the multispectral image is combined with the high spatial resolution of the panchromatic image, applying image fusion - pansharpening, facilitating in this way visual image interpretation to delineate land cover. Further processing concerns supervised image classification. The classification of pansharpened image preceded multispectral image classification. Corresponding comparative considerations are also presented.

  17. Volumetric Forest Change Detection Through Vhr Satellite Imagery

    Science.gov (United States)

    Akca, Devrim; Stylianidis, Efstratios; Smagas, Konstantinos; Hofer, Martin; Poli, Daniela; Gruen, Armin; Sanchez Martin, Victor; Altan, Orhan; Walli, Andreas; Jimeno, Elisa; Garcia, Alejandro

    2016-06-01

    Quick and economical ways of detecting of planimetric and volumetric changes of forest areas are in high demand. A research platform, called FORSAT (A satellite processing platform for high resolution forest assessment), was developed for the extraction of 3D geometric information from VHR (very-high resolution) imagery from satellite optical sensors and automatic change detection. This 3D forest information solution was developed during a Eurostars project. FORSAT includes two main units. The first one is dedicated to the geometric and radiometric processing of satellite optical imagery and 2D/3D information extraction. This includes: image radiometric pre-processing, image and ground point measurement, improvement of geometric sensor orientation, quasiepipolar image generation for stereo measurements, digital surface model (DSM) extraction by using a precise and robust image matching approach specially designed for VHR satellite imagery, generation of orthoimages, and 3D measurements in single images using mono-plotting and in stereo images as well as triplets. FORSAT supports most of the VHR optically imagery commonly used for civil applications: IKONOS, OrbView - 3, SPOT - 5 HRS, SPOT - 5 HRG, QuickBird, GeoEye-1, WorldView-1/2, Pléiades 1A/1B, SPOT 6/7, and sensors of similar type to be expected in the future. The second unit of FORSAT is dedicated to 3D surface comparison for change detection. It allows users to import digital elevation models (DEMs), align them using an advanced 3D surface matching approach and calculate the 3D differences and volume changes between epochs. To this end our 3D surface matching method LS3D is being used. FORSAT is a single source and flexible forest information solution with a very competitive price/quality ratio, allowing expert and non-expert remote sensing users to monitor forests in three and four dimensions from VHR optical imagery for many forest information needs. The capacity and benefits of FORSAT have been tested in

  18. Satellite imagery in safeguards: progress and prospects

    International Nuclear Information System (INIS)

    Niemeyer, I.; Listner, C.

    2013-01-01

    The use of satellite imagery has become very important for the verification of the safeguards implementation under the Nuclear Non-Proliferation Treaty (NPT). The main applications of satellite imagery are to verify the correctness and completeness of the member states' declarations, and to provide preparatory information for inspections, complimentary access and other technical visits. If the area of interest is not accessible, remote sensing sensors provide one of the few opportunities of gathering data for nuclear monitoring, as for example in Iraq between 1998 and 2002 or currently in North Korea. Satellite data of all available sensor types contains a considerable amount of safeguard-relevant information. Very high-resolution optical satellite imagery provides the most detailed spatial information on nuclear sites and activities up to 0.41 m resolution, together with up to 8 spectral bands from the visible light and near infrared. Thermal infrared (TIR) images can indicate the operational status of nuclear facilities and help to identify undeclared activities. Hyper-spectral imagery allows a quantitative estimation of geophysical, geochemical and biochemical characteristics of the earth's surface and is therefore useful for assessing, for example, surface cover changes due to drilling, mining and milling activities. Synthetic Aperture Radar (SAR) image data up to 1 m spatial resolution provides an all-weather, day and night monitoring capability. However, the absence (or existence) of nuclear activities can never be confirmed completely based on satellite imagery. (A.C.)

  19. Testing the distinctiveness of visual imagery and motor imagery in a reach paradigm.

    Science.gov (United States)

    Gabbard, Carl; Ammar, Diala; Cordova, Alberto

    2009-01-01

    We examined the distinctiveness of motor imagery (MI) and visual imagery (VI) in the context of perceived reachability. The aim was to explore the notion that the two visual modes have distinctive processing properties tied to the two-visual-system hypothesis. The experiment included an interference tactic whereby participants completed two tasks at the same time: a visual or motor-interference task combined with a MI or VI-reaching task. We expected increased error would occur when the imaged task and the interference task were matched (e.g., MI with the motor task), suggesting an association based on the assumption that the two tasks were in competition for space on the same processing pathway. Alternatively, if there were no differences, dissociation could be inferred. Significant increases in the number of errors were found when the modalities for the imaged (both MI and VI) task and the interference task were matched. Therefore, it appears that MI and VI in the context of perceived reachability recruit different processing mechanisms.

  20. Extraction of Terraces on the Loess Plateau from High-Resolution DEMs and Imagery Utilizing Object-Based Image Analysis

    Directory of Open Access Journals (Sweden)

    Hanqing Zhao

    2017-05-01

    Full Text Available Abstract: Terraces are typical artificial landforms on the Loess Plateau, with ecological functions in water and soil conservation, agricultural production, and biodiversity. Recording the spatial distribution of terraces is the basis of monitoring their extent and understanding their ecological effects. The current terrace extraction method mainly relies on high-resolution imagery, but its accuracy is limited due to vegetation coverage distorting the features of terraces in imagery. High-resolution topographic data reflecting the morphology of true terrace surfaces are needed. Terraces extraction on the Loess Plateau is challenging because of the complex terrain and diverse vegetation after the implementation of “vegetation recovery”. This study presents an automatic method of extracting terraces based on 1 m resolution digital elevation models (DEMs and 0.3 m resolution Worldview-3 imagery as auxiliary information used for object-based image analysis (OBIA. A multi-resolution segmentation method was used where slope, positive and negative terrain index (PN, accumulative curvature slope (AC, and slope of slope (SOS were determined as input layers for image segmentation by correlation analysis and Sheffield entropy method. The main classification features based on DEMs were chosen from the terrain features derived from terrain factors and texture features by gray-level co-occurrence matrix (GLCM analysis; subsequently, these features were determined by the importance analysis on classification and regression tree (CART analysis. Extraction rules based on DEMs were generated from the classification features with a total classification accuracy of 89.96%. The red band and near-infrared band of images were used to exclude construction land, which is easily confused with small-size terraces. As a result, the total classification accuracy was increased to 94%. The proposed method ensures comprehensive consideration of terrain, texture, shape, and

  1. The sensory strength of voluntary visual imagery predicts visual working memory capacity.

    Science.gov (United States)

    Keogh, Rebecca; Pearson, Joel

    2014-10-09

    How much we can actively hold in mind is severely limited and differs greatly from one person to the next. Why some individuals have greater capacities than others is largely unknown. Here, we investigated why such large variations in visual working memory (VWM) capacity might occur, by examining the relationship between visual working memory and visual mental imagery. To assess visual working memory capacity participants were required to remember the orientation of a number of Gabor patches and make subsequent judgments about relative changes in orientation. The sensory strength of voluntary imagery was measured using a previously documented binocular rivalry paradigm. Participants with greater imagery strength also had greater visual working memory capacity. However, they were no better on a verbal number working memory task. Introducing a uniform luminous background during the retention interval of the visual working memory task reduced memory capacity, but only for those with strong imagery. Likewise, for the good imagers increasing background luminance during imagery generation reduced its effect on subsequent binocular rivalry. Luminance increases did not affect any of the subgroups on the verbal number working memory task. Together, these results suggest that luminance was disrupting sensory mechanisms common to both visual working memory and imagery, and not a general working memory system. The disruptive selectivity of background luminance suggests that good imagers, unlike moderate or poor imagers, may use imagery as a mnemonic strategy to perform the visual working memory task. © 2014 ARVO.

  2. Wedding Imagery and Public Support for Gay Marriage.

    Science.gov (United States)

    Brewer, Paul R; Wilson, David C; Habegger, Michael

    2016-08-01

    This study uses an experiment embedded in a large, nationally representative survey to test whether exposure to imagery of a gay or lesbian couple's wedding influences support for gay marriage. It also tests whether any such effects depend on the nature of the image (gay or lesbian couple, kissing or not) and viewer characteristics (sex, age, race, education, religion, and ideology). Results show that exposure to imagery of a gay couple kissing reduced support for gay marriage relative to the baseline. Other image treatments (gay couple not kissing, lesbian couple kissing, lesbian couple not kissing) did not significantly influence opinion.

  3. Gestures maintain spatial imagery.

    Science.gov (United States)

    Wesp, R; Hesse, J; Keutmann, D; Wheaton, K

    2001-01-01

    Recent theories suggest alternatives to the commonly held belief that the sole role of gestures is to communicate meaning directly to listeners. Evidence suggests that gestures may serve a cognitive function for speakers, possibly acting as lexical primes. We observed that participants gestured more often when describing a picture from memory than when the picture was present and that gestures were not influenced by manipulating eye contact of a listener. We argue that spatial imagery serves a short-term memory function during lexical search and that gestures may help maintain spatial images. When spatial imagery is not necessary, as in conditions of direct visual stimulation, reliance on gestures is reduced or eliminated.

  4. Evaluation of terrestrial photogrammetric point clouds derived from thermal imagery

    Science.gov (United States)

    Metcalf, Jeremy P.; Olsen, Richard C.

    2016-05-01

    Computer vision and photogrammetric techniques have been widely applied to digital imagery producing high density 3D point clouds. Using thermal imagery as input, the same techniques can be applied to infrared data to produce point clouds in 3D space, providing surface temperature information. The work presented here is an evaluation of the accuracy of 3D reconstruction of point clouds produced using thermal imagery. An urban scene was imaged over an area at the Naval Postgraduate School, Monterey, CA, viewing from above as with an airborne system. Terrestrial thermal and RGB imagery were collected from a rooftop overlooking the site using a FLIR SC8200 MWIR camera and a Canon T1i DSLR. In order to spatially align each dataset, ground control points were placed throughout the study area using Trimble R10 GNSS receivers operating in RTK mode. Each image dataset is processed to produce a dense point cloud for 3D evaluation.

  5. Effects of microgravity on cognition: The case of mental imagery.

    Science.gov (United States)

    Grabherr, Luzia; Mast, Fred W

    2010-01-01

    Human cognitive performance is an important factor for the successful and safe outcome of commercial and non-commercial manned space missions. This article aims to provide a systematic review of studies investigating the effects of microgravity on the cognitive abilities of parabolic or space flight participants due to the absence of the gravito-inertial force. We will focus on mental imagery: one of the best studied cognitive functions. Mental imagery is closely connected to perception and motor behavior. It aids important processes such as perceptual anticipation, problem solving and motor simulation, all of which are critical for space travel. Thirteen studies were identified and classified into the following topics: spatial representations, mental image transformations and motor imagery. While research on spatial representation and mental image transformation continues to grow and specific differences in cognitive functioning between 1 g and 0 g have been observed, motor imagery has thus far received little attention.

  6. Mapping urban impervious surface using object-based image analysis with WorldView-3 satellite imagery

    Science.gov (United States)

    Iabchoon, Sanwit; Wongsai, Sangdao; Chankon, Kanoksuk

    2017-10-01

    Land use and land cover (LULC) data are important to monitor and assess environmental change. LULC classification using satellite images is a method widely used on a global and local scale. Especially, urban areas that have various LULC types are important components of the urban landscape and ecosystem. This study aims to classify urban LULC using WorldView-3 (WV-3) very high-spatial resolution satellite imagery and the object-based image analysis method. A decision rules set was applied to classify the WV-3 images in Kathu subdistrict, Phuket province, Thailand. The main steps were as follows: (1) the image was ortho-rectified with ground control points and using the digital elevation model, (2) multiscale image segmentation was applied to divide the image pixel level into image object level, (3) development of the decision ruleset for LULC classification using spectral bands, spectral indices, spatial and contextual information, and (4) accuracy assessment was computed using testing data, which sampled by statistical random sampling. The results show that seven LULC classes (water, vegetation, open space, road, residential, building, and bare soil) were successfully classified with overall classification accuracy of 94.14% and a kappa coefficient of 92.91%.

  7. Association between Social Anxiety and Visual Mental Imagery of Neutral Scenes: The Moderating Role of Effortful Control

    Directory of Open Access Journals (Sweden)

    Jun Moriya

    2018-01-01

    Full Text Available According to cognitive theories, verbal processing attenuates emotional processing, whereas visual imagery enhances emotional processing and contributes to the maintenance of social anxiety. Individuals with social anxiety report negative mental images in social situations. However, the general ability of visual mental imagery of neutral scenes in individuals with social anxiety is still unclear. The present study investigated the general ability of non-emotional mental imagery (vividness, preferences for imagery vs. verbal processing, and object or spatial imagery and the moderating role of effortful control in attenuating social anxiety. The participants (N = 231 completed five questionnaires. The results showed that social anxiety was not necessarily associated with all aspects of mental imagery. As suggested by theories, social anxiety was not associated with a preference for verbal processing. However, social anxiety was positively correlated with the visual imagery scale, especially the object imagery scale, which concerns the ability to construct pictorial images of individual objects. Further, it was negatively correlated with the spatial imagery scale, which concerns the ability to process information about spatial relations between objects. Although object imagery and spatial imagery positively and negatively predicted the degree of social anxiety, respectively, these effects were attenuated when socially anxious individuals had high effortful control. Specifically, in individuals with high effortful control, both object and spatial imagery were not associated with social anxiety. Socially anxious individuals might prefer to construct pictorial images of individual objects in natural scenes through object imagery. However, even in individuals who exhibit these features of mental imagery, effortful control could inhibit the increase in social anxiety.

  8. Association between Social Anxiety and Visual Mental Imagery of Neutral Scenes: The Moderating Role of Effortful Control.

    Science.gov (United States)

    Moriya, Jun

    2017-01-01

    According to cognitive theories, verbal processing attenuates emotional processing, whereas visual imagery enhances emotional processing and contributes to the maintenance of social anxiety. Individuals with social anxiety report negative mental images in social situations. However, the general ability of visual mental imagery of neutral scenes in individuals with social anxiety is still unclear. The present study investigated the general ability of non-emotional mental imagery (vividness, preferences for imagery vs. verbal processing, and object or spatial imagery) and the moderating role of effortful control in attenuating social anxiety. The participants ( N = 231) completed five questionnaires. The results showed that social anxiety was not necessarily associated with all aspects of mental imagery. As suggested by theories, social anxiety was not associated with a preference for verbal processing. However, social anxiety was positively correlated with the visual imagery scale, especially the object imagery scale, which concerns the ability to construct pictorial images of individual objects. Further, it was negatively correlated with the spatial imagery scale, which concerns the ability to process information about spatial relations between objects. Although object imagery and spatial imagery positively and negatively predicted the degree of social anxiety, respectively, these effects were attenuated when socially anxious individuals had high effortful control. Specifically, in individuals with high effortful control, both object and spatial imagery were not associated with social anxiety. Socially anxious individuals might prefer to construct pictorial images of individual objects in natural scenes through object imagery. However, even in individuals who exhibit these features of mental imagery, effortful control could inhibit the increase in social anxiety.

  9. Contrast and Strength of Visual Memory and Imagery Differentially Affect Visual Perception

    OpenAIRE

    Saad, Elyana; Silvanto, Juha

    2013-01-01

    Visual short-term memory (VSTM) and visual imagery have been shown to modulate visual perception. However, how the subjective experience of VSTM/imagery and its contrast modulate this process has not been investigated. We addressed this issue by asking participants to detect brief masked targets while they were engaged either in VSTM or visual imagery. Subjective experience of memory/imagery (strength scale), and the visual contrast of the memory/mental image (contrast scale) were assessed on...

  10. Three-dimensional histological imaging of primate brain and correlation with in vivo medical device images Imagerie histologique tri-dimensionnelle du cerveau de primate et corrélation avec l'imagerie médicale in vivo

    Directory of Open Access Journals (Sweden)

    Julien Dauguet

    2011-02-01

    Full Text Available The 3D reconstruction of series of histological slices is an imaging technique that appeared about 25 years ago but that is only starting now to become recognized as an imaging modality per se. Thanks to this technique, it becomes possible to restore the spatial consistency of the brain and to match accurately histological slices with an in vivo medical device image such as an MRI or a PET scan. This is of high interest since it allows direct comparison between the histology, often considered as the gold standard in terms of information, and the same medical devices used in clinical routine to image human patients. Thanks to the similarity of their brain with humans and the disease models widely developed for them, non-human primates are privileged species to benefit from this possibility of 3D analysis and in vivo - post mortem correlation. We present in this article a state of the art review of the main techniques proposed to achieve this original imaging technique, followed by a set of some particularly promising neuroimaging applications.La reconstruction 3D de séries de coupes histologiques est une technique d'imagerie qui est apparue il y a 25 ans environ mais qui commence seulement à être reconnue comme une modalité d'imagerie à part entière. Grâce à cette technique, la cohérence 3D du cerveau est rétablie et il devient notamment possible de mettre en correspondance précisément des coupes histologiques avec un examen issu d'un imageur médical comme une IRM ou une TEP. C'est d'un intérêt majeur car cela permet une comparaison directe entre l'histologie, souvent considérée comme la référence étalon en termes d'information fournie, et les mêmes imageurs médicaux que ceux utilisés en routine clinique pour suivre les patients humains. Grâce à leur similarité avec les humains et aux nombreux modèles animaux de maladies développés pour eux, les primates non-humains sont une espèce privilégiée pour bénéficier de

  11. IAEA Safeguards: Cost/benefit analysis of commercial satellite imagery

    International Nuclear Information System (INIS)

    Andersson, Christer

    1999-03-01

    A major milestone in the efforts to strengthen the Safeguards System was reached in May 1997 when the Board of Governors approved a 'Model Protocol Additional to Safeguards Agreements'. The Protocol provides the legal basis necessary to enhance the Agency's ability to detect undeclared nuclear material and activities by using information available from open sources to complement the declarations made by Member States. Commercially available high-resolution satellite data has emerged as one potential complementary open information source to support the traditional and extended Safeguard activities of IAEA. This document constitutes a first report from SSC Satellitbild giving the Agency tentative and initial estimates of the potential cost and time-savings possible with the new proposed technology. The initial cost/benefit simulation will be further finalised in the following 'Implementation Blueprint' study. The general foundation and starting point for the cost/benefit calculation is to simulate a new efficient and relatively small 'imagery unit' within the IAEA, capable of performing advanced image processing as a tool for various safeguards tasks. The image processing capacity is suggested to be task- and interpretation-oriented. The study was performed over a period of 1,5 weeks in late 1998, and is based upon interviews of IAEA staff, reviews of existing IAEA documentation as well as from SSC Satellitbild's long-standing experience of satellite imagery and field missions. The cost/benefit analysis is based on a spreadsheet simulation of five potential applications of commercial satellite imagery: Reference information; Confirmation of Agency acquired and Member State supplied data; Change detection and on-going monitoring; Assessing open source information available to the Agency; Detecting undeclared activities and undeclared sites. The study confirms that the proposed concept of a relatively small 'imagery unit' using high-resolution data will be a sound and

  12. [French norms of imagery for pictures, for concrete and abstract words].

    Science.gov (United States)

    Robin, Frédérique

    2006-09-01

    This paper deals with French norms for mental image versus picture agreement for 138 pictures and the imagery value for 138 concrete words and 69 abstract words. The pictures were selected from Snodgrass et Vanderwart's norms (1980). The concrete words correspond to the dominant naming response to the pictorial stimuli. The abstract words were taken from verbal associative norms published by Ferrand (2001). The norms were established according to two variables: 1) mental image vs. picture agreement, and 2) imagery value of words. Three other variables were controlled: 1) picture naming agreement; 2) familiarity of objects referred to in the pictures and the concrete words, and 3) subjective verbal frequency of words. The originality of this work is to provide French imagery norms for the three kinds of stimuli usually compared in research on dual coding. Moreover, these studies focus on figurative and verbal stimuli variations in visual imagery processes.

  13. Automated Verification of Spatial Resolution in Remotely Sensed Imagery

    Science.gov (United States)

    Davis, Bruce; Ryan, Robert; Holekamp, Kara; Vaughn, Ronald

    2011-01-01

    Image spatial resolution characteristics can vary widely among sources. In the case of aerial-based imaging systems, the image spatial resolution characteristics can even vary between acquisitions. In these systems, aircraft altitude, speed, and sensor look angle all affect image spatial resolution. Image spatial resolution needs to be verified with estimators that include the ground sample distance (GSD), the modulation transfer function (MTF), and the relative edge response (RER), all of which are key components of image quality, along with signal-to-noise ratio (SNR) and dynamic range. Knowledge of spatial resolution parameters is important to determine if features of interest are distinguishable in imagery or associated products, and to develop image restoration algorithms. An automated Spatial Resolution Verification Tool (SRVT) was developed to rapidly determine the spatial resolution characteristics of remotely sensed aerial and satellite imagery. Most current methods for assessing spatial resolution characteristics of imagery rely on pre-deployed engineered targets and are performed only at selected times within preselected scenes. The SRVT addresses these insufficiencies by finding uniform, high-contrast edges from urban scenes and then using these edges to determine standard estimators of spatial resolution, such as the MTF and the RER. The SRVT was developed using the MATLAB programming language and environment. This automated software algorithm assesses every image in an acquired data set, using edges found within each image, and in many cases eliminating the need for dedicated edge targets. The SRVT automatically identifies high-contrast, uniform edges and calculates the MTF and RER of each image, and when possible, within sections of an image, so that the variation of spatial resolution characteristics across the image can be analyzed. The automated algorithm is capable of quickly verifying the spatial resolution quality of all images within a data

  14. Image Fusion Applied to Satellite Imagery for the Improved Mapping and Monitoring of Coral Reefs: a Proposal

    Science.gov (United States)

    Gholoum, M.; Bruce, D.; Hazeam, S. Al

    2012-07-01

    A coral reef ecosystem, one of the most complex marine environmental systems on the planet, is defined as biologically diverse and immense. It plays an important role in maintaining a vast biological diversity for future generations and functions as an essential spawning, nursery, breeding and feeding ground for many kinds of marine species. In addition, coral reef ecosystems provide valuable benefits such as fisheries, ecological goods and services and recreational activities to many communities. However, this valuable resource is highly threatened by a number of environmental changes and anthropogenic impacts that can lead to reduced coral growth and production, mass coral mortality and loss of coral diversity. With the growth of these threats on coral reef ecosystems, there is a strong management need for mapping and monitoring of coral reef ecosystems. Remote sensing technology can be a valuable tool for mapping and monitoring of these ecosystems. However, the diversity and complexity of coral reef ecosystems, the resolution capabilities of satellite sensors and the low reflectivity of shallow water increases the difficulties to identify and classify its features. This paper reviews the methods used in mapping and monitoring coral reef ecosystems. In addition, this paper proposes improved methods for mapping and monitoring coral reef ecosystems based on image fusion techniques. This image fusion techniques will be applied to satellite images exhibiting high spatial and low to medium spectral resolution with images exhibiting low spatial and high spectral resolution. Furthermore, a new method will be developed to fuse hyperspectral imagery with multispectral imagery. The fused image will have a large number of spectral bands and it will have all pairs of corresponding spatial objects. This will potentially help to accurately classify the image data. Accuracy assessment use ground truth will be performed for the selected methods to determine the quality of the

  15. IMAGE FUSION APPLIED TO SATELLITE IMAGERY FOR THE IMPROVED MAPPING AND MONITORING OF CORAL REEFS: A PROPOSAL

    Directory of Open Access Journals (Sweden)

    M. Gholoum

    2012-07-01

    Full Text Available A coral reef ecosystem, one of the most complex marine environmental systems on the planet, is defined as biologically diverse and immense. It plays an important role in maintaining a vast biological diversity for future generations and functions as an essential spawning, nursery, breeding and feeding ground for many kinds of marine species. In addition, coral reef ecosystems provide valuable benefits such as fisheries, ecological goods and services and recreational activities to many communities. However, this valuable resource is highly threatened by a number of environmental changes and anthropogenic impacts that can lead to reduced coral growth and production, mass coral mortality and loss of coral diversity. With the growth of these threats on coral reef ecosystems, there is a strong management need for mapping and monitoring of coral reef ecosystems. Remote sensing technology can be a valuable tool for mapping and monitoring of these ecosystems. However, the diversity and complexity of coral reef ecosystems, the resolution capabilities of satellite sensors and the low reflectivity of shallow water increases the difficulties to identify and classify its features. This paper reviews the methods used in mapping and monitoring coral reef ecosystems. In addition, this paper proposes improved methods for mapping and monitoring coral reef ecosystems based on image fusion techniques. This image fusion techniques will be applied to satellite images exhibiting high spatial and low to medium spectral resolution with images exhibiting low spatial and high spectral resolution. Furthermore, a new method will be developed to fuse hyperspectral imagery with multispectral imagery. The fused image will have a large number of spectral bands and it will have all pairs of corresponding spatial objects. This will potentially help to accurately classify the image data. Accuracy assessment use ground truth will be performed for the selected methods to determine

  16. Spectral Difference in the Image Domain for Large Neighborhoods, a GEOBIA Pre-Processing Step for High Resolution Imagery

    Directory of Open Access Journals (Sweden)

    Roeland de Kok

    2012-08-01

    Full Text Available Contrast plays an important role in the visual interpretation of imagery. To mimic visual interpretation and using contrast in a Geographic Object Based Image Analysis (GEOBIA environment, it is useful to consider an analysis for single pixel objects. This should be done before applying homogeneity criteria in the aggregation of pixels for the construction of meaningful image objects. The habit or “best practice” to start GEOBIA with pixel aggregation into homogeneous objects should come with the awareness that feature attributes for single pixels are at risk of becoming less accessible for further analysis. Single pixel contrast with image convolution on close neighborhoods is a standard technique, also applied in edge detection. This study elaborates on the analysis of close as well as much larger neighborhoods inside the GEOBIA domain. The applied calculations are limited to the first segmentation step for single pixel objects in order to produce additional feature attributes for objects of interest to be generated in further aggregation processes. The equation presented functions at a level that is considered an intermediary product in the sequential processing of imagery. The procedure requires intensive processor and memory capacity. The resulting feature attributes highlight not only contrasting pixels (edges but also contrasting areas of local pixel groups. The suggested approach can be extended and becomes useful in classifying artificial areas at national scales using high resolution satellite mosaics.

  17. Dialectical Imagery and Postmodern Research

    Science.gov (United States)

    Davison, Kevin G.

    2006-01-01

    This article suggests utilizing dialectical imagery, as understood by German social philosopher Walter Benjamin, as an additional qualitative data analysis strategy for research into the postmodern condition. The use of images mined from research data may offer epistemological transformative possibilities that will assist in the demystification of…

  18. Phase 2 Final Report. IAEA Safeguards: Implementation blueprint of commercial satellite imagery

    Energy Technology Data Exchange (ETDEWEB)

    Andersson, Christer [SSC Satellitbild AB, Solna (Sweden)

    2000-01-01

    This document - IAEA Safeguards: Implementation Blueprint of Commercial Satellite Imagery - constitutes the second report from SSC Satellitbild giving a structured view and solid guidelines on how to proceed with a conceivable implementation of satellite imagery to support Safeguards activities of the Agency. This Phase 2 report presents a large number of concrete recommendations regarding suggested management issues, work organisation, imagery purchasing and team building. The study has also resulted in several lists of actions and preliminary project plans with GANT schedules concerning training, hardware and software, as well as for the initial pilot studies. In both the Phase 1 and Phase 2 studies it is confirmed that the proposed concept of a relatively small Imagery Unit using high-resolution data will be a sound and feasible undertaking. Such a unit capable of performing advanced image processing as a tool for various safeguard tasks will give the Agency an effective instrument for reference, monitoring, verification, and detection of declared and undeclared activities. The total cost for implementing commercial satellite imagery at the Department for Safeguards, as simulated in these studies, is approximately MUSD 1,5 per year. This cost is founded on an activity scenario with a staff of 4 experts working in an IAEA Imagery Unit with a workload of three dossiers or issues per week. The imagery unit is built around an advanced PC image processing system capable of handling several hundreds of pre-processed images per year. Alternatively a Reduced Scenario with a staff of 3 would need a budget of approximately MUSD 0,9 per year, whereas an Enhanced Imagery Unit including 5 experts and a considerably enlarged capacity would cost MUSD 1,7 per year. The Imagery Unit should be organised so it clearly reflects the objectives and role as set by the Member States and the management of the Agency. We recommend the Imagery Unit to be organised into four main work

  19. Phase 2 Final Report. IAEA Safeguards: Implementation blueprint of commercial satellite imagery

    International Nuclear Information System (INIS)

    Andersson, Christer

    2000-01-01

    This document - IAEA Safeguards: Implementation Blueprint of Commercial Satellite Imagery - constitutes the second report from SSC Satellitbild giving a structured view and solid guidelines on how to proceed with a conceivable implementation of satellite imagery to support Safeguards activities of the Agency. This Phase 2 report presents a large number of concrete recommendations regarding suggested management issues, work organisation, imagery purchasing and team building. The study has also resulted in several lists of actions and preliminary project plans with GANT schedules concerning training, hardware and software, as well as for the initial pilot studies. In both the Phase 1 and Phase 2 studies it is confirmed that the proposed concept of a relatively small Imagery Unit using high-resolution data will be a sound and feasible undertaking. Such a unit capable of performing advanced image processing as a tool for various safeguard tasks will give the Agency an effective instrument for reference, monitoring, verification, and detection of declared and undeclared activities. The total cost for implementing commercial satellite imagery at the Department for Safeguards, as simulated in these studies, is approximately MUSD 1,5 per year. This cost is founded on an activity scenario with a staff of 4 experts working in an IAEA Imagery Unit with a workload of three dossiers or issues per week. The imagery unit is built around an advanced PC image processing system capable of handling several hundreds of pre-processed images per year. Alternatively a Reduced Scenario with a staff of 3 would need a budget of approximately MUSD 0,9 per year, whereas an Enhanced Imagery Unit including 5 experts and a considerably enlarged capacity would cost MUSD 1,7 per year. The Imagery Unit should be organised so it clearly reflects the objectives and role as set by the Member States and the management of the Agency. We recommend the Imagery Unit to be organised into four main work

  20. Neural decoding of visual imagery during sleep.

    Science.gov (United States)

    Horikawa, T; Tamaki, M; Miyawaki, Y; Kamitani, Y

    2013-05-03

    Visual imagery during sleep has long been a topic of persistent speculation, but its private nature has hampered objective analysis. Here we present a neural decoding approach in which machine-learning models predict the contents of visual imagery during the sleep-onset period, given measured brain activity, by discovering links between human functional magnetic resonance imaging patterns and verbal reports with the assistance of lexical and image databases. Decoding models trained on stimulus-induced brain activity in visual cortical areas showed accurate classification, detection, and identification of contents. Our findings demonstrate that specific visual experience during sleep is represented by brain activity patterns shared by stimulus perception, providing a means to uncover subjective contents of dreaming using objective neural measurement.

  1. Spatial and Spectral Hybrid Image Classification for Rice Lodging Assessment through UAV Imagery

    Directory of Open Access Journals (Sweden)

    Ming-Der Yang

    2017-06-01

    Full Text Available Rice lodging identification relies on manual in situ assessment and often leads to a compensation dispute in agricultural disaster assessment. Therefore, this study proposes a comprehensive and efficient classification technique for agricultural lands that entails using unmanned aerial vehicle (UAV imagery. In addition to spectral information, digital surface model (DSM and texture information of the images was obtained through image-based modeling and texture analysis. Moreover, single feature probability (SFP values were computed to evaluate the contribution of spectral and spatial hybrid image information to classification accuracy. The SFP results revealed that texture information was beneficial for the classification of rice and water, DSM information was valuable for lodging and tree classification, and the combination of texture and DSM information was helpful in distinguishing between artificial surface and bare land. Furthermore, a decision tree classification model incorporating SFP values yielded optimal results, with an accuracy of 96.17% and a Kappa value of 0.941, compared with that of a maximum likelihood classification model (90.76%. The rice lodging ratio in paddies at the study site was successfully identified, with three paddies being eligible for disaster relief. The study demonstrated that the proposed spatial and spectral hybrid image classification technology is a promising tool for rice lodging assessment.

  2. CASIS Fact Sheet: Hardware and Facilities

    Science.gov (United States)

    Solomon, Michael R.; Romero, Vergel

    2016-01-01

    Vencore is a proven information solutions, engineering, and analytics company that helps our customers solve their most complex challenges. For more than 40 years, we have designed, developed and delivered mission-critical solutions as our customers' trusted partner. The Engineering Services Contract, or ESC, provides engineering and design services to the NASA organizations engaged in development of new technologies at the Kennedy Space Center. Vencore is the ESC prime contractor, with teammates that include Stinger Ghaffarian Technologies, Sierra Lobo, Nelson Engineering, EASi, and Craig Technologies. The Vencore team designs and develops systems and equipment to be used for the processing of space launch vehicles, spacecraft, and payloads. We perform flight systems engineering for spaceflight hardware and software; develop technologies that serve NASA's mission requirements and operations needs for the future. Our Flight Payload Support (FPS) team at Kennedy Space Center (KSC) provides engineering, development, and certification services as well as payload integration and management services to NASA and commercial customers. Our main objective is to assist principal investigators (PIs) integrate their science experiments into payload hardware for research aboard the International Space Station (ISS), commercial spacecraft, suborbital vehicles, parabolic flight aircrafts, and ground-based studies. Vencore's FPS team is AS9100 certified and a recognized implementation partner for the Center for Advancement of Science in Space (CASIS

  3. Forward looking anomaly detection via fusion of infrared and color imagery

    Science.gov (United States)

    Stone, K.; Keller, J. M.; Popescu, M.; Havens, T. C.; Ho, K. C.

    2010-04-01

    This paper develops algorithms for the detection of interesting and abnormal objects in color and infrared imagery taken from cameras mounted on a moving vehicle, observing a fixed scene. The primary purpose of detection is to cue a human-in-the-loop detection system. Algorithms for direct detection and change detection are investigated, as well as fusion of the two. Both methods use temporal information to reduce the number of false alarms. The direct detection algorithm uses image self-similarity computed between local neighborhoods to determine interesting, or unique, parts of an image. Neighborhood similarity is computed using Euclidean distance in CIELAB color space for the color imagery, and Euclidean distance between grey levels in the infrared imagery. The change detection algorithm uses the affine scale-invariant feature transform (ASIFT) to transform multiple background frames into the current image space. Each transformed image is then compared to the current image, and the multiple outputs are fused to produce a single difference image. Changes in lighting and contrast between the background run and the current run are adjusted for in both color and infrared imagery. Frame-to-frame motion is modeled using a perspective transformation, the parameters of which are computed using scale-invariant feature transform (SIFT) keypoint correspondences. This information is used to perform temporal accumulation of single frame detections for both the direct detection and change detection algorithms. Performance of the proposed algorithms is evaluated on multiple lanes from a data collection at a US Army test site.

  4. Researching on the process of remote sensing video imagery

    Science.gov (United States)

    Wang, He-rao; Zheng, Xin-qi; Sun, Yi-bo; Jia, Zong-ren; Wang, He-zhan

    Unmanned air vehicle remotely-sensed imagery on the low-altitude has the advantages of higher revolution, easy-shooting, real-time accessing, etc. It's been widely used in mapping , target identification, and other fields in recent years. However, because of conditional limitation, the video images are unstable, the targets move fast, and the shooting background is complex, etc., thus it is difficult to process the video images in this situation. In other fields, especially in the field of computer vision, the researches on video images are more extensive., which is very helpful for processing the remotely-sensed imagery on the low-altitude. Based on this, this paper analyzes and summarizes amounts of video image processing achievement in different fields, including research purposes, data sources, and the pros and cons of technology. Meantime, this paper explores the technology methods more suitable for low-altitude video image processing of remote sensing.

  5. Observer perspective imagery with stuttering.

    Science.gov (United States)

    Lowe, Robyn; Menzies, Ross; Packman, Ann; O'Brian, Sue; Onslow, Mark

    2015-01-01

    Adults who stutter are at risk of developing a range of psychological conditions. Social anxiety disorder is the most common anxiety disorder associated with stuttering. Observer perspective imagery is one cognitive process involved in the maintenance of some anxiety disorders. This involves viewing images as if looking at the self from the perspective of another. In contrast, the field perspective involves looking out from the self at the surrounding environment. The purpose of this study was to assess the presence of observer perspective imagery with stuttering. The authors administered the Hackmann, Surawy and Clark (1998) semi-structured interview to 30 adults who stutter and 30 controls. Group images and impressions were compared for frequency, perspective recalled and emotional valence. The stuttering group was significantly more likely than controls to recall images and impressions from an observer rather than a field perspective for anxious situations. It is possible the present results could reflect the same attentional processing bias that occurs with anxiety disorders in the non-stuttering population. These preliminary results provide an explanation for the persistence of conditions such as social anxiety disorder with stuttering. Clinical implications are discussed.

  6. OrthoImagery submittal for Scott County, Indiana

    Data.gov (United States)

    Federal Emergency Management Agency, Department of Homeland Security — Digital orthographic imagery datasets contain georeferenced images of the Earth's surface, collected by a sensor in which object displacement has been removed for...

  7. OrthoImagery submittal for Switzerland County, Indiana

    Data.gov (United States)

    Federal Emergency Management Agency, Department of Homeland Security — Digital orthographic imagery datasets contain georeferenced images of the Earth's surface, collected by a sensor in which object displacement has been removed for...

  8. Landslide detection using very high-resolution satellite imageries

    Science.gov (United States)

    Suga, Yuzo; Konishi, Tomohisa

    2012-10-01

    The heavy rain induced by the 12th typhoon caused landslide disaster at Kii Peninsula in the middle part of Japan. We propose a quick response method for landslide disaster mapping using very high resolution (VHR) satellite imageries. Especially, Synthetic Aperture Radar (SAR) is effective because it has the capability of all weather and day/night observation. In this study, multi-temporal COSMO-SkyMed imageries were used to detect the landslide areas. It was difficult to detect the landslide areas using only backscatter change pattern derived from pre- and post-disaster COSMOSkyMed imageries. Thus, the authors adopted a correlation analysis which the moving window was selected for the correlation coefficient calculation. Low value of the correlation coefficient reflects land cover change between pre- and post-disaster imageries. This analysis is effective for the detection of landslides using SAR data. The detected landslide areas were compared with the area detected by EROS-B high resolution optical image. In addition, we have developed 3D viewing system for geospatial visualizing of the damaged area using these satellite image data with digital elevation model. The 3D viewing system has the performance of geographic measurement with respect to elevation height, area and volume calculation, and cross section drawing including landscape viewing and image layer construction using a mobile personal computer with interactive operation. As the result, it was verified that a quick response for the detection of landslide disaster at the initial stage could be effectively performed using optical and SAR very high resolution satellite data by means of 3D viewing system.

  9. D Surface Generation from Aerial Thermal Imagery

    Science.gov (United States)

    Khodaei, B.; Samadzadegan, F.; Dadras Javan, F.; Hasani, H.

    2015-12-01

    Aerial thermal imagery has been recently applied to quantitative analysis of several scenes. For the mapping purpose based on aerial thermal imagery, high accuracy photogrammetric process is necessary. However, due to low geometric resolution and low contrast of thermal imaging sensors, there are some challenges in precise 3D measurement of objects. In this paper the potential of thermal video in 3D surface generation is evaluated. In the pre-processing step, thermal camera is geometrically calibrated using a calibration grid based on emissivity differences between the background and the targets. Then, Digital Surface Model (DSM) generation from thermal video imagery is performed in four steps. Initially, frames are extracted from video, then tie points are generated by Scale-Invariant Feature Transform (SIFT) algorithm. Bundle adjustment is then applied and the camera position and orientation parameters are determined. Finally, multi-resolution dense image matching algorithm is used to create 3D point cloud of the scene. Potential of the proposed method is evaluated based on thermal imaging cover an industrial area. The thermal camera has 640×480 Uncooled Focal Plane Array (UFPA) sensor, equipped with a 25 mm lens which mounted in the Unmanned Aerial Vehicle (UAV). The obtained results show the comparable accuracy of 3D model generated based on thermal images with respect to DSM generated from visible images, however thermal based DSM is somehow smoother with lower level of texture. Comparing the generated DSM with the 9 measured GCPs in the area shows the Root Mean Square Error (RMSE) value is smaller than 5 decimetres in both X and Y directions and 1.6 meters for the Z direction.

  10. Fast natural color mapping for night-time imagery

    NARCIS (Netherlands)

    Hogervorst, M.A.; Toet, A.

    2010-01-01

    We present a new method to render multi-band night-time imagery (images from sensors whose sensitive range does not necessarily coincide with the visual part of the electromagnetic spectrum, e.g. image intensifiers, thermal camera's) in natural daytime colors. The color mapping is derived from the

  11. OrthoImagery Submission for Colfax County NE

    Data.gov (United States)

    Federal Emergency Management Agency, Department of Homeland Security — Digital orthographic imagery datasets contain georeferenced images of the surface of the Earth, collected by a sensor in which object displacement has been removed...

  12. OrthoImagery submittal for Clinton County, Indiana

    Data.gov (United States)

    Federal Emergency Management Agency, Department of Homeland Security — Digital orthographic imagery datasets contain georeferenced images of the Earth?s surface, collected by a sensor in which object displacement has been removed for...

  13. OrthoImagery submittal for Gibson County, Indiana

    Data.gov (United States)

    Federal Emergency Management Agency, Department of Homeland Security — Digital orthographic imagery datasets contain georeferenced images of the Earth?s surface, collected by a sensor in which object displacement has been removed for...

  14. OrthoImagery submittal for Allen County, Indiana

    Data.gov (United States)

    Federal Emergency Management Agency, Department of Homeland Security — Digital orthographic imagery datasets contain georeferenced images of the Earth?s surface, collected by a sensor in which object displacement has been removed for...

  15. IAEA Safeguards: Cost/benefit analysis of commercial satellite imagery

    Energy Technology Data Exchange (ETDEWEB)

    Andersson, Christer [SSC Satellitbild AB, Kiruna (Sweden)

    1999-03-01

    A major milestone in the efforts to strengthen the Safeguards System was reached in May 1997 when the Board of Governors approved a `Model Protocol Additional to Safeguards Agreements`. The Protocol provides the legal basis necessary to enhance the Agency`s ability to detect undeclared nuclear material and activities by using information available from open sources to complement the declarations made by Member States. Commercially available high-resolution satellite data has emerged as one potential complementary open information source to support the traditional and extended Safeguard activities of IAEA. This document constitutes a first report from SSC Satellitbild giving the Agency tentative and initial estimates of the potential cost and time-savings possible with the new proposed technology. The initial cost/benefit simulation will be further finalised in the following `Implementation Blueprint` study. The general foundation and starting point for the cost/benefit calculation is to simulate a new efficient and relatively small `imagery unit` within the IAEA, capable of performing advanced image processing as a tool for various safeguards tasks. The image processing capacity is suggested to be task- and interpretation-oriented. The study was performed over a period of 1,5 weeks in late 1998, and is based upon interviews of IAEA staff, reviews of existing IAEA documentation as well as from SSC Satellitbild`s long-standing experience of satellite imagery and field missions. The cost/benefit analysis is based on a spreadsheet simulation of five potential applications of commercial satellite imagery: Reference information; Confirmation of Agency acquired and Member State supplied data; Change detection and on-going monitoring; Assessing open source information available to the Agency; Detecting undeclared activities and undeclared sites. The study confirms that the proposed concept of a relatively small `imagery unit` using high-resolution data will be a sound and

  16. Training visual imagery: Improvements of metacognition, but not imagery strength

    Directory of Open Access Journals (Sweden)

    Rosanne Lynn Rademaker

    2012-07-01

    Full Text Available Visual imagery has been closely linked to brain mechanisms involved in perception. Can visual imagery, like visual perception, improve by means of training? Previous research has demonstrated that people can reliably evaluate the vividness of single episodes of sensory imagination – might the metacognition of imagery also improve over the course of training? We had participants imagine colored Gabor patterns for an hour a day, over the course of five consecutive days, and again two weeks after training. Participants rated the subjective vividness and effort of their mental imagery on each trial. The influence of imagery on subsequent binocular rivalry dominance was taken as our measure of imagery strength. We found no overall effect of training on imagery strength. Training did, however, improve participant’s metacognition of imagery. Trial-by-trial ratings of vividness gained predictive power on subsequent rivalry dominance as a function of training. These data suggest that, while imagery strength might be immune to training in the current context, people’s metacognitive understanding of mental imagery can improve with practice.

  17. High resolution satellite imagery : from spies to pipeline management

    Energy Technology Data Exchange (ETDEWEB)

    Adam, S. [Canadian Geomatic Solutions Ltd., Calgary, AB (Canada); Farrell, M. [TransCanada Transmission, Calgary, AB (Canada)

    2000-07-01

    The launch of Space Imaging's IKONOS satellite in September 1999 has opened the door for corridor applications. The technology has been successfully implemented by TransCanada PipeLines in mapping over 1500 km of their mainline. IKONOS is the world's first commercial high resolution satellite which collects data at 1-meter black/white and 4-meter multi-spectral. Its use is regulated by the U.S. government. It is the best source of high resolution satellite image data. Other sources include the Indian Space Agency's IRS-1 C/D satellite and the Russian SPIN-2 which provides less reliable coverage. In addition, two more high resolution satellites may be launched this year to provide imagery every day of the year. IKONOS scenes as narrow as 5 km can be purchased. TransCanada conducted a pilot study to determine if high resolution satellite imagery is as effective as ortho-photos for identifying population structures within a buffer of TransCanada's east line right-of-way. The study examined three unique segments where residential, commercial, industrial and public features were compared. It was determined that IKONOS imagery is as good as digital ortho-photos for updating structures from low to very high density areas. The satellite imagery was also logistically easier than ortho-photos to acquire. This will be even more evident when the IKONOS image archives begins to grow. 4 tabs., 3 figs.

  18. Mental Imagery as Revealed by Eye Movements and Spoken Predicates: A Test of Neurolinguistic Programming.

    Science.gov (United States)

    Elich, Matthew; And Others

    1985-01-01

    Tested Bandler and Grinder's proposal that eye movement direction and spoken predicates are indicative of sensory modality of imagery. Subjects reported images in the three modes, but no relation between imagery and eye movements or predicates was found. Visual images were most vivid and often reported. Most subjects rated themselves as visual,…

  19. "Data Day" and "Data Night" Definitions - Towards Producing Seamless Global Satellite Imagery

    Science.gov (United States)

    Schmaltz, J. E.

    2017-12-01

    For centuries, the art and science of cartography has struggled with the challenge of mapping the round earth on to a flat page, or a flat computer monitor. Earth observing satellites with continuous monitoring of our planet have added the additional complexity of the time dimension to this procedure. The most common current practice is to segment this data by 24-hour Coordinated Universal Time (UTC) day and then split the day into sun side "Data Day" and shadow side "Data Night" global imagery that spans from dateline to dateline. Due to the nature of satellite orbits, simply binning the data by UTC date produces significant discontinuities at the dateline for day images and at Greenwich for night images. Instead, imagery could be generated in a fashion that follows the spatial and temporal progression of the satellite which would produce seamless imagery everywhere on the globe for all times. This presentation will explore approaches to produce such imagery but will also address some of the practical and logistical difficulties in implementing such changes. Topics will include composites versus granule/orbit based imagery, day/night versus ascending/descending definitions, and polar versus global projections.

  20. Remote Sensing of Selected Water-Quality Indicators with the Hyperspectral Imager for the Coastal Ocean (HICO) Sensor

    Science.gov (United States)

    2014-01-01

    the bands needed for atmospheric correction. Spectral definition files for AVIRIS, HYDICE, HYMAP, HYPERION, CASI, and AISA sensors are included as...Satellite Visible Imagery – A Review.” In Lecture Notes on Coastal and Estuarine Studies, edited by R. T. Barber, N. K. Mooers, M. J. Bowman, and B...In Proceedings of SPIE Coastal Ocean Remote Sensing, edited by Robert J. Frouin, ZhongPing Lee, Vol. 6680, 668013-1-668013-9. doi:10.1117/12.736845

  1. Capturing change: the duality of time-lapse imagery to acquire data and depict ecological dynamics

    Science.gov (United States)

    Brinley Buckley, Emma M.; Allen, Craig R.; Forsberg, Michael; Farrell, Michael; Caven, Andrew J.

    2017-01-01

    We investigate the scientific and communicative value of time-lapse imagery by exploring applications for data collection and visualization. Time-lapse imagery has a myriad of possible applications to study and depict ecosystems and can operate at unique temporal and spatial scales to bridge the gap between large-scale satellite imagery projects and observational field research. Time-lapse data sequences, linking time-lapse imagery with data visualization, have the ability to make data come alive for a wider audience by connecting abstract numbers to images that root data in time and place. Utilizing imagery from the Platte Basin Timelapse Project, water inundation and vegetation phenology metrics are quantified via image analysis and then paired with passive monitoring data, including streamflow and water chemistry. Dynamic and interactive time-lapse data sequences elucidate the visible and invisible ecological dynamics of a significantly altered yet internationally important river system in central Nebraska.

  2. OrthoImagery Submission for Christian County, Illinois, USA

    Data.gov (United States)

    Federal Emergency Management Agency, Department of Homeland Security — Digital orthographic imagery datasets contain georeferenced images of the Earth's surface, collected by a sensor in which object displacement has beeen removed for...

  3. OrthoImagery Submission for Moultrie County, Illinois, USA

    Data.gov (United States)

    Federal Emergency Management Agency, Department of Homeland Security — Digital orthographic imagery datasets contain georeferenced images of the Earth's surface, collected by a sensor in which object displacement has beeen removed for...

  4. OrthoImagery Submission for Monmouth County, New Jersey

    Data.gov (United States)

    Federal Emergency Management Agency, Department of Homeland Security — Digital orthographic imagery datasets contain georeferenced images of the Earth's surface, collected by a sensor in which object displacement has been removed for...

  5. OrthoImagery Submission for Douglas County, Illinois, USA

    Data.gov (United States)

    Federal Emergency Management Agency, Department of Homeland Security — Digital orthographic imagery datasets contain georeferenced images of the Earth's surface, collected by a sensor in which object displacement has beeen removed for...

  6. OrthoImagery Submission for Albany County, New York

    Data.gov (United States)

    Federal Emergency Management Agency, Department of Homeland Security — Digital orthographic imagery datasets contain georeferenced images of the Earth's surface, collected by a sensor in which object displacement has been removed for...

  7. OrthoImagery Submission for Putnam County, New York

    Data.gov (United States)

    Federal Emergency Management Agency, Department of Homeland Security — Digital orthographic imagery datasets contain georeferenced images of the Earth's surface, collected by a sensor in which object displacement has been removed for...

  8. Thematic mapping from satellite imagery

    CERN Document Server

    Denègre, J

    2013-01-01

    Thematic Mapping from Satellite Imagery: A Guidebook discusses methods in producing maps using satellite images. The book is comprised of five chapters; each chapter covers one stage of the process. Chapter 1 tackles the satellite remote sensing imaging and its cartographic significance. Chapter 2 discusses the production processes for extracting information from satellite data. The next chapter covers the methods for combining satellite-derived information with that obtained from conventional sources. Chapter 4 deals with design and semiology for cartographic representation, and Chapter 5 pre

  9. Brain networks underlying mental imagery of auditory and visual information.

    Science.gov (United States)

    Zvyagintsev, Mikhail; Clemens, Benjamin; Chechko, Natalya; Mathiak, Krystyna A; Sack, Alexander T; Mathiak, Klaus

    2013-05-01

    Mental imagery is a complex cognitive process that resembles the experience of perceiving an object when this object is not physically present to the senses. It has been shown that, depending on the sensory nature of the object, mental imagery also involves correspondent sensory neural mechanisms. However, it remains unclear which areas of the brain subserve supramodal imagery processes that are independent of the object modality, and which brain areas are involved in modality-specific imagery processes. Here, we conducted a functional magnetic resonance imaging study to reveal supramodal and modality-specific networks of mental imagery for auditory and visual information. A common supramodal brain network independent of imagery modality, two separate modality-specific networks for imagery of auditory and visual information, and a common deactivation network were identified. The supramodal network included brain areas related to attention, memory retrieval, motor preparation and semantic processing, as well as areas considered to be part of the default-mode network and multisensory integration areas. The modality-specific networks comprised brain areas involved in processing of respective modality-specific sensory information. Interestingly, we found that imagery of auditory information led to a relative deactivation within the modality-specific areas for visual imagery, and vice versa. In addition, mental imagery of both auditory and visual information widely suppressed the activity of primary sensory and motor areas, for example deactivation network. These findings have important implications for understanding the mechanisms that are involved in generation of mental imagery. © 2013 Federation of European Neuroscience Societies and John Wiley & Sons Ltd.

  10. Acquisition of airborne imagery in support of Deepwater Horizon oil spill recovery assessments

    Science.gov (United States)

    Bostater, Charles R., Jr.; Muller-Karger, Frank E.

    2012-09-01

    Remote sensing imagery was collected from a low flying aircraft along the near coastal waters of the Florida Panhandle and northern Gulf of Mexico and into Barataria Bay, Louisiana, USA, during March 2011. Imagery was acquired from an aircraft that simultaneously collected traditional photogrammetric film imagery, digital video, digital still images, and digital hyperspectral imagery. The original purpose of the project was to collect airborne imagery to support assessment of weathered oil in littoral areas influenced by the Deepwater Horizon oil and gas spill that occurred during the spring and summer of 2010. This paper describes the data acquired and presents information that demonstrates the utility of small spatial scale imagery to detect the presence of weathered oil along littoral areas in the northern Gulf of Mexico. Flight tracks and examples of imagery collected are presented and methods used to plan and acquire the imagery are described. Results suggest weathered oil in littoral areas after the spill was contained at the source.

  11. Capturing change: the duality of time-lapse imagery to acquire data and depict ecological dynamics

    Directory of Open Access Journals (Sweden)

    Emma M. Brinley Buckley

    2017-09-01

    Full Text Available We investigate the scientific and communicative value of time-lapse imagery by exploring applications for data collection and visualization. Time-lapse imagery has a myriad of possible applications to study and depict ecosystems and can operate at unique temporal and spatial scales to bridge the gap between large-scale satellite imagery projects and observational field research. Time-lapse data sequences, linking time-lapse imagery with data visualization, have the ability to make data come alive for a wider audience by connecting abstract numbers to images that root data in time and place. Utilizing imagery from the Platte Basin Timelapse Project, water inundation and vegetation phenology metrics are quantified via image analysis and then paired with passive monitoring data, including streamflow and water chemistry. Dynamic and interactive time-lapse data sequences elucidate the visible and invisible ecological dynamics of a significantly altered yet internationally important river system in central Nebraska.

  12. ESIAC: A data products system for ERTS imagery (time-lapse viewing and measuring)

    Science.gov (United States)

    Evans, W. E.; Serebreny, S. M.

    1974-01-01

    An Electronic Satellite Image Analysis Console (ESIAC) has been developed for visual analysis and objective measurement of earth resources imagery. The system is being employed to process imagery for use by USGS investigators in several different disciplines studying dynamic hydrologic conditions. The ESIAC provides facilities for storing registered image sequences in a magnetic video disc memory for subsequent recall, enhancement, and animated display in monochrome or color. The unique feature of the system is the capability to time-lapse the ERTS imagery and/or analytic displays of the imagery. Data products have included quantitative measurements of distances and areas, brightness profiles, and movie loops of selected themes. The applications of these data products are identified and include such diverse problem areas as measurement of snowfield extent, sediment plumes from estuary dicharge, playa inventory, phreatophyte and other vegetation changes. A comparative ranking of the electronic system in terms of accuracy, cost effectiveness and data output shows it to be a viable means of data analysis.

  13. Imaging Sciences Workshop, Proceedings, November 15-16, 1995

    Energy Technology Data Exchange (ETDEWEB)

    Candy, J.V.

    1995-11-01

    Welcome to the Imaging Sciences Workshop sponsored by C.A.S.I.S., the Center for Advanced Signal & Image Sciences. Many programs at LLNL use advanced signal and image processing techniques, and the Center was established to encourage the exchange of ideas and to promote collaboration by individuals from these programs. This Workshop is an opportunity for LLNL personnel and invited speakers from other organizations not only to present new work, but, perhaps more importantly, to discuss problems in an informal and friendly setting. This year marks the opening of the CASIS Reference Library in Building 272, and we encourage all attendees to stop by for a look and to make use of it in the future. The Technical Program covers a wide variety of applications at LLNL including physical systems for collecting data and processing techniques for recovering and enhancing images. We hope that you enjoy the presentations, and we encourage you to participate in the discussions. Thanks for attending.

  14. Comparison of different strategies of use of on-board imagery (high energy [MV], low energy [kV], cone beam tomography) in radiotherapy; Comparaison des differentes strategies d'utilisation de l'imagerie embarquee (haute energie [MV], basse energie [kV], tomographie conique) en radiotherapie

    Energy Technology Data Exchange (ETDEWEB)

    Serre, A.A.; Marchesi, V.; Beckendorf, V.; Peiffert, D. [Service de radiotherapie, centre Alexis-Vautrin, Vandoeuvre-les-Nancy (France); Noel, A. [UMR 7039, centre de recherche en automatique de Nancy, Nancy universite, Vandoeuvre-les-Nancy (France); UMR 7039, CNRS, Vandoeuvre-les-Nancy (France)

    2011-10-15

    The authors report the determination of a strategy of use of different available imagery modalities on the Varian 3 On-Board-Imager (OBI): low energy (kV) and high energy (MV) plane imageries, and volume imagery (Kv-CBCT, cone beam computed tomography). The dose delivered by each device has been quantified on a humanoid phantom with thermoluminescent dosimeters. A prospective clinical compared the three modalities in terms of patient positioning accuracy. It appears that low-energy imagery provides a good reproducibility, a negligible additional dose and a better image quality. Short communication

  15. Colors in mind: a novel paradigm to investigate pure color imagery.

    Science.gov (United States)

    Wantz, Andrea L; Borst, Grégoire; Mast, Fred W; Lobmaier, Janek S

    2015-07-01

    Mental color imagery abilities are commonly measured using paradigms that involve naming, judging, or comparing the colors of visual mental images of well-known objects (e.g., "Is a sunflower darker yellow than a lemon"?). Although this approach is widely used in patient studies, differences in the ability to perform such color comparisons might simply reflect participants' general knowledge of object colors rather than their ability to generate accurate visual mental images of the colors of the objects. The aim of the present study was to design a new color imagery paradigm. Participants were asked to visualize a color for 3 s and then to determine a visually presented color by pressing 1 of 6 keys. We reasoned that participants would react faster when the imagined and perceived colors were congruent than when they were incongruent. In Experiment 1, participants were slower in incongruent than congruent trials but only when they were instructed to visualize the colors. The results in Experiment 2 demonstrate that the congruency effect reported in Experiment 1 cannot be attributed to verbalization of the color that had to be visualized. Finally, in Experiment 3, the congruency effect evoked by mental imagery correlated with performance in a perceptual version of the task. We discuss these findings with respect to the mechanisms that underlie mental imagery and patients suffering from color imagery deficits. (c) 2015 APA, all rights reserved.

  16. Strengthening IAEA safeguards using high-resolution commercial satellite imagery

    International Nuclear Information System (INIS)

    Zhang Hui

    2001-01-01

    Full text: In May 1997, the IAEA Board of Governors adopted the Additional Safeguards Protocol to improve its ability to detect the undeclared production of fissile material. This new strengthened safeguards system has opened the door for the IAEA to use of all types of information, including the potential use of commercial satellite imagery. We have therefore been investigating the feasibility of strengthening IAEA safeguards using commercial satellite imagery. Based on our analysis on a number of one-meter resolution IKONOS satellite images of military nuclear production facilities at nuclear states including Russia, China, India, Pakistan and Israel, we found that the new high-resolution commercial satellite imagery would play a new and valuable role in strengthening IAEA safeguards. Since 1999, images with a resolution of one meter have been available commercially from Space Imaging's IKONOS satellite. One-meter images from other companies are expected to enter the market soon. Although still an order of magnitude less capable than military imaging satellites, the capabilities of these new high-resolution commercial satellites are good enough to detect and identify the major visible characteristics of nuclear production facilities and sites. Unlike the classified spy satellite photos limited to few countries, the commercial satellite imagery is commercially available to anyone who wants to purchase it. Therefore, the new commercial satellite open a new chance that each state, international organizations, and non-governmental groups could use the commercial images to play a more proactive role in monitoring the nuclear activities in related countries and verifying the compliance of non-proliferation agreements. This could help galvanize support for intensified efforts to slow the pace of nuclear proliferation. To produce fissile materials (plutonium and highly enriched uranium) for weapons, a country would operate dedicated plutonium-production reactors and the

  17. Information mining in remote sensing imagery

    Science.gov (United States)

    Li, Jiang

    The volume of remotely sensed imagery continues to grow at an enormous rate due to the advances in sensor technology, and our capability for collecting and storing images has greatly outpaced our ability to analyze and retrieve information from the images. This motivates us to develop image information mining techniques, which is very much an interdisciplinary endeavor drawing upon expertise in image processing, databases, information retrieval, machine learning, and software design. This dissertation proposes and implements an extensive remote sensing image information mining (ReSIM) system prototype for mining useful information implicitly stored in remote sensing imagery. The system consists of three modules: image processing subsystem, database subsystem, and visualization and graphical user interface (GUI) subsystem. Land cover and land use (LCLU) information corresponding to spectral characteristics is identified by supervised classification based on support vector machines (SVM) with automatic model selection, while textural features that characterize spatial information are extracted using Gabor wavelet coefficients. Within LCLU categories, textural features are clustered using an optimized k-means clustering approach to acquire search efficient space. The clusters are stored in an object-oriented database (OODB) with associated images indexed in an image database (IDB). A k-nearest neighbor search is performed using a query-by-example (QBE) approach. Furthermore, an automatic parametric contour tracing algorithm and an O(n) time piecewise linear polygonal approximation (PLPA) algorithm are developed for shape information mining of interesting objects within the image. A fuzzy object-oriented database based on the fuzzy object-oriented data (FOOD) model is developed to handle the fuzziness and uncertainty. Three specific applications are presented: integrated land cover and texture pattern mining, shape information mining for change detection of lakes, and

  18. To what extent does motor imagery resemble motor preparation?

    NARCIS (Netherlands)

    van der Lubbe, Rob; Sobierajewicz, Jagna; Jongsma, Marijtje; Przekoracka-Krawczyk, Anna

    2017-01-01

    Motor imagery may be defined as the generation of an image of the acting self that lacks the final execution of a movement. This image is thought to be a simulation of the intended action from a first-person perspective. Recent studies with a Go/NoGo version of the discrete sequence production

  19. The impact of ageing and gender on visual mental imagery processes: A study of performance on tasks from the Complete Visual Mental Imagery Battery (CVMIB).

    Science.gov (United States)

    Palermo, Liana; Piccardi, Laura; Nori, Raffaella; Giusberti, Fiorella; Guariglia, Cecilia

    2016-09-01

    In this study we aim to evaluate the impact of ageing and gender on different visual mental imagery processes. Two hundred and fifty-one participants (130 women and 121 men; age range = 18-77 years) were given an extensive neuropsychological battery including tasks probing the generation, maintenance, inspection, and transformation of visual mental images (Complete Visual Mental Imagery Battery, CVMIB). Our results show that all mental imagery processes with the exception of the maintenance are affected by ageing, suggesting that other deficits, such as working memory deficits, could account for this effect. However, the analysis of the transformation process, investigated in terms of mental rotation and mental folding skills, shows a steeper decline in mental rotation, suggesting that age could affect rigid transformations of objects and spare non-rigid transformations. Our study also adds to previous ones in showing gender differences favoring men across the lifespan in the transformation process, and, interestingly, it shows a steeper decline in men than in women in inspecting mental images, which could partially account for the mixed results about the effect of ageing on this specific process. We also discuss the possibility to introduce the CVMIB in clinical assessment in the context of theoretical models of mental imagery.

  20. Dissecting hemisphere-specific contributions to visual spatial imagery using parametric brain mapping.

    Science.gov (United States)

    Bien, Nina; Sack, Alexander T

    2014-07-01

    In the current study we aimed to empirically test previously proposed accounts of a division of labour between the left and right posterior parietal cortices during visuospatial mental imagery. The representation of mental images in the brain has been a topic of debate for several decades. Although the posterior parietal cortex is involved bilaterally, previous studies have postulated that hemispheric specialisation might result in a division of labour between the left and right parietal cortices. In the current fMRI study, we used an elaborated version of a behaviourally-controlled spatial imagery paradigm, the mental clock task, which involves mental image generation and a subsequent spatial comparison between two angles. By systematically varying the difference between the two angles that are mentally compared, we induced a symbolic distance effect: smaller differences between the two angles result in higher task difficulty. We employed parametrically weighed brain imaging to reveal brain areas showing a graded activation pattern in accordance with the induced distance effect. The parametric difficulty manipulation influenced behavioural data and brain activation patterns in a similar matter. Moreover, since this difficulty manipulation only starts to play a role from the angle comparison phase onwards, it allows for a top-down dissociation between the initial mental image formation, and the subsequent angle comparison phase of the spatial imagery task. Employing parametrically weighed fMRI analysis enabled us to top-down disentangle brain activation related to mental image formation, and activation reflecting spatial angle comparison. The results provide first empirical evidence for the repeatedly proposed division of labour between the left and right posterior parietal cortices during spatial imagery. Copyright © 2014 Elsevier Inc. All rights reserved.

  1. Imagery Rescripting in Posttraumatic Stress Disorder

    Science.gov (United States)

    Hackmann, Anne

    2011-01-01

    This article provides an overview of methods of working with imagery to change meanings and ameliorate posttraumatic stress disorder (PTSD). It opens with a description of phenomenology in this disorder, usually characterized by a small number of recurrent images of the trauma, each representing a moment that warned of a threat to the physical or…

  2. Super-resolution for imagery from integrated microgrid polarimeters.

    Science.gov (United States)

    Hardie, Russell C; LeMaster, Daniel A; Ratliff, Bradley M

    2011-07-04

    Imagery from microgrid polarimeters is obtained by using a mosaic of pixel-wise micropolarizers on a focal plane array (FPA). Each distinct polarization image is obtained by subsampling the full FPA image. Thus, the effective pixel pitch for each polarization channel is increased and the sampling frequency is decreased. As a result, aliasing artifacts from such undersampling can corrupt the true polarization content of the scene. Here we present the first multi-channel multi-frame super-resolution (SR) algorithms designed specifically for the problem of image restoration in microgrid polarization imagers. These SR algorithms can be used to address aliasing and other degradations, without sacrificing field of view or compromising optical resolution with an anti-aliasing filter. The new SR methods are designed to exploit correlation between the polarimetric channels. One of the new SR algorithms uses a form of regularized least squares and has an iterative solution. The other is based on the faster adaptive Wiener filter SR method. We demonstrate that the new multi-channel SR algorithms are capable of providing significant enhancement of polarimetric imagery and that they outperform their independent channel counterparts.

  3. Filtering high resolution hyperspectral imagery and analyzing it for quantification of water quality parameters and aquatic vegetation

    Science.gov (United States)

    Pande-Chhetri, Roshan

    High resolution hyperspectral imagery (airborne or ground-based) is gaining momentum as a useful analytical tool in various fields including agriculture and aquatic systems. These images are often contaminated with stripes and noise resulting in lower signal-to-noise ratio, especially in aquatic regions where signal is naturally low. This research investigates effective methods for filtering high spatial resolution hyperspectral imagery and use of the imagery in water quality parameter estimation and aquatic vegetation classification. The striping pattern of the hyperspectral imagery is non-parametric and difficult to filter. In this research, a de-striping algorithm based on wavelet analysis and adaptive Fourier domain normalization was examined. The result of this algorithm was found superior to other available algorithms and yielded highest Peak Signal to Noise Ratio improvement. The algorithm was implemented on individual image bands and on selected bands of the Maximum Noise Fraction (MNF) transformed images. The results showed that image filtering in the MNF domain was efficient and produced best results. The study investigated methods of analyzing hyperspectral imagery to estimate water quality parameters and to map aquatic vegetation in case-2 waters. Ground-based hyperspectral imagery was analyzed to determine chlorophyll-a (Chl-a) concentrations in aquaculture ponds. Two-band and three-band indices were implemented and the effect of using submerged reflectance targets was evaluated. Laboratory measured values were found to be in strong correlation with two-band and three-band spectral indices computed from the hyperspectral image. Coefficients of determination (R2) values were found to be 0.833 and 0.862 without submerged targets and stronger values of 0.975 and 0.982 were obtained using submerged targets. Airborne hyperspectral images were used to detect and classify aquatic vegetation in a black river estuarine system. Image normalization for water

  4. Automatic digital surface model (DSM) generation from aerial imagery data

    Science.gov (United States)

    Zhou, Nan; Cao, Shixiang; He, Hongyan; Xing, Kun; Yue, Chunyu

    2018-04-01

    Aerial sensors are widely used to acquire imagery for photogrammetric and remote sensing application. In general, the images have large overlapped region, which provide a lot of redundant geometry and radiation information for matching. This paper presents a POS supported dense matching procedure for automatic DSM generation from aerial imagery data. The method uses a coarse-to-fine hierarchical strategy with an effective combination of several image matching algorithms: image radiation pre-processing, image pyramid generation, feature point extraction and grid point generation, multi-image geometrically constraint cross-correlation (MIG3C), global relaxation optimization, multi-image geometrically constrained least squares matching (MIGCLSM), TIN generation and point cloud filtering. The image radiation pre-processing is used in order to reduce the effects of the inherent radiometric problems and optimize the images. The presented approach essentially consists of 3 components: feature point extraction and matching procedure, grid point matching procedure and relational matching procedure. The MIGCLSM method is used to achieve potentially sub-pixel accuracy matches and identify some inaccurate and possibly false matches. The feasibility of the method has been tested on different aerial scale images with different landcover types. The accuracy evaluation is based on the comparison between the automatic extracted DSMs derived from the precise exterior orientation parameters (EOPs) and the POS.

  5. Timbre as an Elusive Component of Imagery for Music

    Directory of Open Access Journals (Sweden)

    Freya Bailes

    2007-01-01

    Full Text Available Evidence of the ability to imagine timbre is either anecdotal, or applies to isolated instrument tones rather than timbre in real music. Experiments were conducted to infer the vividness of timbre in imagery for music. Music students were asked to judge whether the timbre of a sounded target note was the same or different from the original following a heard, imagined, or control musical context. A pilot experiment manipulated instrumentation, while the main experiment manipulated sound filters. The hypothesis that participants are able to internalise timbral aspects of music was supported by an ability to perform the timbre discrimination task, and by facilitated response when imaging the timbre context compared with non-imaging. However, while participants were able to mentally represent timbre, this was not always reported as being a conscious dimension of their musical image. This finding is discussed in relation to previous research suggesting that timbre may be a sound characteristic that is optionally present in imagery for music.

  6. Automated road network extraction from high spatial resolution multi-spectral imagery

    Science.gov (United States)

    Zhang, Qiaoping

    For the last three decades, the Geomatics Engineering and Computer Science communities have considered automated road network extraction from remotely-sensed imagery to be a challenging and important research topic. The main objective of this research is to investigate the theory and methodology of automated feature extraction for image-based road database creation, refinement or updating, and to develop a series of algorithms for road network extraction from high resolution multi-spectral imagery. The proposed framework for road network extraction from multi-spectral imagery begins with an image segmentation using the k-means algorithm. This step mainly concerns the exploitation of the spectral information for feature extraction. The road cluster is automatically identified using a fuzzy classifier based on a set of predefined road surface membership functions. These membership functions are established based on the general spectral signature of road pavement materials and the corresponding normalized digital numbers on each multi-spectral band. Shape descriptors of the Angular Texture Signature are defined and used to reduce the misclassifications between roads and other spectrally similar objects (e.g., crop fields, parking lots, and buildings). An iterative and localized Radon transform is developed for the extraction of road centerlines from the classified images. The purpose of the transform is to accurately and completely detect the road centerlines. It is able to find short, long, and even curvilinear lines. The input image is partitioned into a set of subset images called road component images. An iterative Radon transform is locally applied to each road component image. At each iteration, road centerline segments are detected based on an accurate estimation of the line parameters and line widths. Three localization approaches are implemented and compared using qualitative and quantitative methods. Finally, the road centerline segments are grouped into a

  7. Contextual memory, psychosis-proneness, and the experience of intrusive imagery.

    Science.gov (United States)

    Glazer, Daniel A; Mason, Oliver; King, John A; Brewin, Chris R

    2013-01-01

    This study tested the hypothesis that the presence and characteristics of naturally occurring involuntary imagery would be related to poorer context-dependent spatial memory and higher levels of proneness to psychotic experiences. Poorer contextual memory was also predicted to be associated with a greater sense of "nowness". Participants completed a virtual environment task that assessed contextual memory through responses that required allocentric and egocentric processing of virtual stimuli. Two questionnaires assessing predisposition to psychotic experiences were employed. Finally, participants completed an interview that required details of recent, naturally occurring involuntary images. Reports of involuntary imagery were associated with greater proneness to psychotic experiences but not with memory. In those participants who reported imagery, however, poorer memory performance was associated with more vivid and detailed intrusive imagery. Poorer contextual memory was specifically associated with a greater sense of "nowness". Possible links between contextual memory and proneness to psychosis are discussed.

  8. MEASUREMENT OF WIND SPEED FROM COOLING LAKE THERMAL IMAGERY

    International Nuclear Information System (INIS)

    Garrett, A.; Kurzeja, R.; Villa-Aleman, E.; Tuckfield, C.; Pendergast, M.

    2009-01-01

    The Savannah River National Laboratory (SRNL) collected thermal imagery and ground truth data at two commercial power plant cooling lakes to investigate the applicability of laboratory empirical correlations between surface heat flux and wind speed, and statistics derived from thermal imagery. SRNL demonstrated in a previous paper (1] that a linear relationship exists between the standard deviation of image temperature and surface heat flux. In this paper, SRNL will show that the skewness of the temperature distribution derived from cooling lake thermal images correlates with instantaneous wind speed measured at the same location. SRNL collected thermal imagery, surface meteorology and water temperatures from helicopters and boats at the Comanche Peak and H. B. Robinson nuclear power plant cooling lakes. SRNL found that decreasing skewness correlated with increasing wind speed, as was the case for the laboratory experiments. Simple linear and orthogonal regression models both explained about 50% of the variance in the skewness - wind speed plots. A nonlinear (logistic) regression model produced a better fit to the data, apparently because the thermal convection and resulting skewness are related to wind speed in a highly nonlinear way in nearly calm and in windy conditions

  9. Una narrativa al borde del abismo. Casi todos los cuentos de Horacio Castellanos Moya

    OpenAIRE

    Manzoni, Celina; Universidad de Buenos Aires

    2015-01-01

    El artículo ofrece una lectura de los cuentos de Horacio Castellanos Moya. El análisis se enfoca en los procedimientos de escritura desplegados en la antología organizada por el autor. Con la congoja de la pasada tormenta. Casi todos los cuentos (2009), recoge veintidós relatos publicados a lo largo de veinte años. El eje del análisis articula la relación entre sexualidad y política y las tematizaciones de la conspiración y la traición.

  10. The Use of Guided Imagery as an Intervention in Addressing Nonsuicidal Self-Injury

    Science.gov (United States)

    Kress, Victoria E.; Adamson, Nicole; DeMarco, Carrie; Paylo, Matthew J.; Zoldan, Chelsey A.

    2013-01-01

    This article presents guided imagery as an intervention that can be used to address clients' nonsuicidal self-injurious behaviors. Guided imagery is a behavioral therapy technique that involves the use of positive thoughts or images to regulate negative emotional experiences, and it can be used to prevent and manage impulses to self-injure.…

  11. Hurricane Sandy: Rapid Response Imagery of the Surrounding Regions

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — The imagery posted on this site is of Hurricane Sandy. The aerial photography missions were conducted by the NOAA Remote Sensing Division. The images were acquired...

  12. Real-time changes in corticospinal excitability related to motor imagery of a force control task.

    Science.gov (United States)

    Tatemoto, Tsuyoshi; Tsuchiya, Junko; Numata, Atsuki; Osawa, Ryuji; Yamaguchi, Tomofumi; Tanabe, Shigeo; Kondo, Kunitsugu; Otaka, Yohei; Sugawara, Kenichi

    2017-09-29

    To investigate real-time excitability changes in corticospinal pathways related to motor imagery in a changing force control task, using transcranial magnetic stimulation (TMS). Ten healthy volunteers learnt to control the contractile force of isometric right wrist dorsiflexion in order to track an on-screen sine wave form. Participants performed the trained task 40 times with actual muscle contraction in order to construct the motor image. They were then instructed to execute the task without actual muscle contraction, but by imagining contraction of the right wrist in dorsiflexion. Motor evoked potentials (MEPs), induced by TMS in the right extensor carpi radialis muscle (ECR) and flexor carpi radialis muscle (FCR), were measured during motor imagery. MEPs were induced at five time points: prior to imagery, during the gradual generation of the imaged wrist dorsiflexion (Increasing phase), the peak value of the sine wave, during the gradual reduction (Decreasing phase), and after completion of the task. The MEP ratio, as the ratio of imaged MEPs to resting-state, was compared between pre- and post-training at each time point. In the ECR muscle, the MEP ratio significantly increased during the Increasing phase and at the peak force of dorsiflexion imagery after training. Moreover, the MEP ratio was significantly greater in the Increasing phase than in the Decreasing phase. In the FCR, there were no significant consistent changes. Corticospinal excitability during motor imagery in an isometric contraction task was modulated in relation to the phase of force control after image construction. Copyright © 2017 Elsevier B.V. All rights reserved.

  13. Automated vehicle detection in forward-looking infrared imagery.

    Science.gov (United States)

    Der, Sandor; Chan, Alex; Nasrabadi, Nasser; Kwon, Heesung

    2004-01-10

    We describe an algorithm for the detection and clutter rejection of military vehicles in forward-looking infrared (FLIR) imagery. The detection algorithm is designed to be a prescreener that selects regions for further analysis and uses a spatial anomaly approach that looks for target-sized regions of the image that differ in texture, brightness, edge strength, or other spatial characteristics. The features are linearly combined to form a confidence image that is thresholded to find likely target locations. The clutter rejection portion uses target-specific information extracted from training samples to reduce the false alarms of the detector. The outputs of the clutter rejecter and detector are combined by a higher-level evidence integrator to improve performance over simple concatenation of the detector and clutter rejecter. The algorithm has been applied to a large number of FLIR imagery sets, and some of these results are presented here.

  14. Casi-mercados, segregación escolar y desigualdad educativa: una trilogía con final abierto

    Directory of Open Access Journals (Sweden)

    Miguel Ángel Alegre Canosa

    2010-12-01

    Full Text Available La expansión de las lógicas de casi-mercado en la (reconfiguración de los regímenes educativos ha hecho mella tanto en la articulación de la oferta como en la gestión de la demanda escolar. En lo relativo a la demanda, la potenciación del casi-mercado se ha plasmado, principalmente, en la extensión de políticas de distinta índole dirigidas a ampliar el margen formal de elección escolar por parte de las familias. En el terreno de la oferta, y más allá de las vías abiertas a la privatización de la enseñanza, el mismo proceso ha comportado la devolución a las escuelas de mayores márgenes de autonomía, en diversos campos (curricular, gestión de personal y presupuestos, admisión de alumnos.... En este artículo se repasan, desde una perspectiva europea y crítica, algunos de los principales peligros atribuibles a estos procesos, fundamentalmente relacionados con la segregación escolar, y se señalan algunas claves explicativas para contribuir a comprender su naturaleza e implicaciones.

  15. Imagining Change: An Integrative Approach toward Explaining the Motivational Role of Mental Imagery in Pro-environmental Behavior

    Science.gov (United States)

    Boomsma, Christine; Pahl, Sabine; Andrade, Jackie

    2016-01-01

    Climate change and other long-term environmental issues are often perceived as abstract and difficult to imagine. The images a person associates with environmental change, i.e., a person’s environmental mental images, can be influenced by the visual information they come across in the public domain. This paper reviews the literature on this topic across social, environmental, and cognitive psychology, and the wider social sciences; thereby responding to a call for more critical investigations into people’s responses to visual information. By integrating the literature we come to a better understanding of the lack in vivid and concrete environmental mental imagery reported by the public, the link between environmental mental images and goals, and how affectively charged external images could help in making mental imagery less abstract. Preliminary research reports on the development of a new measure of environmental mental imagery and three tests of the relationship between environmental mental imagery, pro-environmental goals and behavior. Furthermore, the paper provides a program of research, drawing upon approaches from different disciplines, to set out the next steps needed to examine how and why we should encourage the public to imagine environmental change. PMID:27909415

  16. Coded aperture imagery filtered autocorrelation decoding; Imagerie par ouverture de codage decodage par autocorrelation filtree

    Energy Technology Data Exchange (ETDEWEB)

    Rouyer, A. [CEA Bruyeres-le-Chatel, 91 (France)

    2005-10-15

    Coded aperture imagery is particularly suited for imaging objects emitting penetrating radiation (hard X rays, gamma, neutrons), or for particles with rectilinear trajectories (electrons, protons, alpha particles, etc.). It is used when methods based on classical optical principles (reflection, refraction, diffraction), are invalid, or when the source emission is too weak for the well known pinhole method to give a usable image. The optical system consists in an aperture through an absorbing screen, named coding aperture, whose transmission is calculated in such a way that the spatial resolution is similar to that of a simple pinhole device, but with a far superior radiation collecting efficiency. We present a new decoding method,, called filtered autocorrelation, and illustrate its performances on images obtained with various coding apertures. (author)

  17. Mental Imagery Scale: a new measurement tool to assess structural features of mental representations

    International Nuclear Information System (INIS)

    D'Ercole, Martina; Giannini, Anna Maria; Castelli, Paolo; Sbrilli, Antonella

    2010-01-01

    Mental imagery is a quasi-perceptual experience which resembles perceptual experience, but occurring without (appropriate) external stimuli. It is a form of mental representation and is often considered centrally involved in visuo-spatial reasoning and inventive and creative thought. Although imagery ability is assumed to be functionally independent of verbal systems, it is still considered to interact with verbal representations, enabling objects to be named and names to evoke images. In literature, most measurement tools for evaluating imagery capacity are self-report instruments focusing on differences in individuals. In the present work, we applied a Mental Imagery Scale (MIS) to mental images derived from verbal descriptions in order to assess the structural features of such mental representations. This is a key theme for those disciplines which need to turn objects and representations into words and vice versa, such as art or architectural didactics. To this aim, an MIS questionnaire was administered to 262 participants. The questionnaire, originally consisting of a 33-item 5-step Likert scale, was reduced to 28 items covering six areas: (1) Image Formation Speed, (2) Permanence/Stability, (3) Dimensions, (4) Level of Detail/Grain, (5) Distance and (6) Depth of Field or Perspective. Factor analysis confirmed our six-factor hypothesis underlying the 28 items

  18. LSD modulates music-induced imagery via changes in parahippocampal connectivity.

    Science.gov (United States)

    Kaelen, Mendel; Roseman, Leor; Kahan, Joshua; Santos-Ribeiro, Andre; Orban, Csaba; Lorenz, Romy; Barrett, Frederick S; Bolstridge, Mark; Williams, Tim; Williams, Luke; Wall, Matthew B; Feilding, Amanda; Muthukumaraswamy, Suresh; Nutt, David J; Carhart-Harris, Robin

    2016-07-01

    Psychedelic drugs such as lysergic acid diethylamide (LSD) were used extensively in psychiatry in the past and their therapeutic potential is beginning to be re-examined today. Psychedelic psychotherapy typically involves a patient lying with their eyes-closed during peak drug effects, while listening to music and being supervised by trained psychotherapists. In this context, music is considered to be a key element in the therapeutic model; working in synergy with the drug to evoke therapeutically meaningful thoughts, emotions and imagery. The underlying mechanisms involved in this process have, however, never been formally investigated. Here we studied the interaction between LSD and music-listening on eyes-closed imagery by means of a placebo-controlled, functional magnetic resonance imaging (fMRI) study. Twelve healthy volunteers received intravenously administered LSD (75µg) and, on a separate occasion, placebo, before being scanned under eyes-closed resting conditions with and without music-listening. The parahippocampal cortex (PHC) has previously been linked with (1) music-evoked emotion, (2) the action of psychedelics, and (3) mental imagery. Imaging analyses therefore focused on changes in the connectivity profile of this particular structure. Results revealed increased PHC-visual cortex (VC) functional connectivity and PHC to VC information flow in the interaction between music and LSD. This latter result correlated positively with ratings of enhanced eyes-closed visual imagery, including imagery of an autobiographical nature. These findings suggest a plausible mechanism by which LSD works in combination with music listening to enhance certain subjective experiences that may be useful in a therapeutic context. Copyright © 2016 Elsevier B.V. and ECNP. All rights reserved.

  19. Monitoring Areal Snow Cover Using NASA Satellite Imagery

    Science.gov (United States)

    Harshburger, Brian J.; Blandford, Troy; Moore, Brandon

    2011-01-01

    The objective of this project is to develop products and tools to assist in the hydrologic modeling process, including tools to help prepare inputs for hydrologic models and improved methods for the visualization of streamflow forecasts. In addition, this project will facilitate the use of NASA satellite imagery (primarily snow cover imagery) by other federal and state agencies with operational streamflow forecasting responsibilities. A GIS software toolkit for monitoring areal snow cover extent and producing streamflow forecasts is being developed. This toolkit will be packaged as multiple extensions for ArcGIS 9.x and an opensource GIS software package. The toolkit will provide users with a means for ingesting NASA EOS satellite imagery (snow cover analysis), preparing hydrologic model inputs, and visualizing streamflow forecasts. Primary products include a software tool for predicting the presence of snow under clouds in satellite images; a software tool for producing gridded temperature and precipitation forecasts; and a suite of tools for visualizing hydrologic model forecasting results. The toolkit will be an expert system designed for operational users that need to generate accurate streamflow forecasts in a timely manner. The Remote Sensing of Snow Cover Toolbar will ingest snow cover imagery from multiple sources, including the MODIS Operational Snowcover Data and convert them to gridded datasets that can be readily used. Statistical techniques will then be applied to the gridded snow cover data to predict the presence of snow under cloud cover. The toolbar has the ability to ingest both binary and fractional snow cover data. Binary mapping techniques use a set of thresholds to determine whether a pixel contains snow or no snow. Fractional mapping techniques provide information regarding the percentage of each pixel that is covered with snow. After the imagery has been ingested, physiographic data is attached to each cell in the snow cover image. This data

  20. Modelling avian biodiversity using raw, unclassified satellite imagery.

    Science.gov (United States)

    St-Louis, Véronique; Pidgeon, Anna M; Kuemmerle, Tobias; Sonnenschein, Ruth; Radeloff, Volker C; Clayton, Murray K; Locke, Brian A; Bash, Dallas; Hostert, Patrick

    2014-01-01

    Applications of remote sensing for biodiversity conservation typically rely on image classifications that do not capture variability within coarse land cover classes. Here, we compare two measures derived from unclassified remotely sensed data, a measure of habitat heterogeneity and a measure of habitat composition, for explaining bird species richness and the spatial distribution of 10 species in a semi-arid landscape of New Mexico. We surveyed bird abundance from 1996 to 1998 at 42 plots located in the McGregor Range of Fort Bliss Army Reserve. Normalized Difference Vegetation Index values of two May 1997 Landsat scenes were the basis for among-pixel habitat heterogeneity (image texture), and we used the raw imagery to decompose each pixel into different habitat components (spectral mixture analysis). We used model averaging to relate measures of avian biodiversity to measures of image texture and spectral mixture analysis fractions. Measures of habitat heterogeneity, particularly angular second moment and standard deviation, provide higher explanatory power for bird species richness and the abundance of most species than measures of habitat composition. Using image texture, alone or in combination with other classified imagery-based approaches, for monitoring statuses and trends in biological diversity can greatly improve conservation efforts and habitat management.

  1. Enhancing Spatial Resolution of Remotely Sensed Imagery Using Deep Learning

    Science.gov (United States)

    Beck, J. M.; Bridges, S.; Collins, C.; Rushing, J.; Graves, S. J.

    2017-12-01

    Researchers at the Information Technology and Systems Center at the University of Alabama in Huntsville are using Deep Learning with Convolutional Neural Networks (CNNs) to develop a method for enhancing the spatial resolutions of moderate resolution (10-60m) multispectral satellite imagery. This enhancement will effectively match the resolutions of imagery from multiple sensors to provide increased global temporal-spatial coverage for a variety of Earth science products. Our research is centered on using Deep Learning for automatically generating transformations for increasing the spatial resolution of remotely sensed images with different spatial, spectral, and temporal resolutions. One of the most important steps in using images from multiple sensors is to transform the different image layers into the same spatial resolution, preferably the highest spatial resolution, without compromising the spectral information. Recent advances in Deep Learning have shown that CNNs can be used to effectively and efficiently upscale or enhance the spatial resolution of multispectral images with the use of an auxiliary data source such as a high spatial resolution panchromatic image. In contrast, we are using both the spatial and spectral details inherent in low spatial resolution multispectral images for image enhancement without the use of a panchromatic image. This presentation will discuss how this technology will benefit many Earth Science applications that use remotely sensed images with moderate spatial resolutions.

  2. Sequential Coherence in Sentence Pairs Enhances Imagery during Comprehension: An Individual Differences Study.

    Directory of Open Access Journals (Sweden)

    Carol Madden-Lombardi

    Full Text Available The present study investigates how sequential coherence in sentence pairs (events in sequence vs. unrelated events affects the perceived ability to form a mental image of the sentences for both auditory and visual presentations. In addition, we investigated how the ease of event imagery affected online comprehension (word reading times in the case of sequentially coherent and incoherent sentence pairs. Two groups of comprehenders were identified based on their self-reported ability to form vivid mental images of described events. Imageability ratings were higher and faster for pairs of sentences that described events in coherent sequences rather than non-sequential events, especially for high imagers. Furthermore, reading times on individual words suggested different comprehension patterns with respect to sequence coherence for the two groups of imagers, with high imagers activating richer mental images earlier than low imagers. The present results offer a novel link between research on imagery and discourse coherence, with specific contributions to our understanding of comprehension patterns for high and low imagers.

  3. An Improved SIFT Algorithm for Unmanned Aerial Vehicle Imagery

    International Nuclear Information System (INIS)

    Li, J M; Yan, D M; Wang, G; Zhang, L

    2014-01-01

    The Unmanned Aerial Vehicle (UAV) platform has the benefits of low cost and convenience compared with satellites. Recently, UAVs have shown a wide range of applications such as land use change, mineral resources management and local topographic mapping. Because of the instability of the UAV air gesture, an image matching method is necessary to match different images of an object or scene. Scale Invariant Feature Transform (SIFT) features are invariant to image scaling, rotation and translation. However, the main drawback of a SIFT algorithm is its significant memory consumption and low computational speed, particularly in the case of high-resolution imagery. In this study, in order to overcome these drawbacks, we have analysed the construction of the scale-space in the SIFT algorithm and selected new parameters to construct the SIFT scale-space to improve the memory consumption and computational speed for the processing of UAV imagery. Here, we propose a restriction on the number of octaves and levels for Gaussian image pyramids. Our experiment shows that the proposed algorithm effectively reduces memory consumption and significantly improves the operational efficiency of the feature point extraction and matching under the premise of maintaining the precision of the extracted feature points

  4. Landsat imagery: a unique resource

    Science.gov (United States)

    Miller, H.; Sexton, N.; Koontz, L.

    2011-01-01

    Landsat satellites provide high-quality, multi-spectral imagery of the surface of the Earth. These moderate-resolution, remotely sensed images are not just pictures, but contain many layers of data collected at different points along the visible and invisible light spectrum. These data can be manipulated to reveal what the Earth’s surface looks like, including what types of vegetation are present or how a natural disaster has impacted an area (Fig. 1).

  5. Gestalt Imagery: A Critical Factor in Language Comprehension.

    Science.gov (United States)

    Bell, Nanci

    1991-01-01

    Lack of gestalt imagery (the ability to create imaged wholes) can contribute to language comprehension disorder characterized by weak reading comprehension, weak oral language comprehension, weak oral language expression, weak written language expression, difficulty following directions, and a weak sense of humor. Sequential stimulation using an…

  6. Automated oil spill detection with multispectral imagery

    Science.gov (United States)

    Bradford, Brian N.; Sanchez-Reyes, Pedro J.

    2011-06-01

    In this publication we present an automated detection method for ocean surface oil, like that which existed in the Gulf of Mexico as a result of the April 20, 2010 Deepwater Horizon drilling rig explosion. Regions of surface oil in airborne imagery are isolated using red, green, and blue bands from multispectral data sets. The oil shape isolation procedure involves a series of image processing functions to draw out the visual phenomenological features of the surface oil. These functions include selective color band combinations, contrast enhancement and histogram warping. An image segmentation process then separates out contiguous regions of oil to provide a raster mask to an analyst. We automate the detection algorithm to allow large volumes of data to be processed in a short time period, which can provide timely oil coverage statistics to response crews. Geo-referenced and mosaicked data sets enable the largest identified oil regions to be mapped to exact geographic coordinates. In our simulation, multispectral imagery came from multiple sources including first-hand data collected from the Gulf. Results of the simulation show the oil spill coverage area as a raster mask, along with histogram statistics of the oil pixels. A rough square footage estimate of the coverage is reported if the image ground sample distance is available.

  7. CASY: a dynamic simulation of the gas-cooled fast breeder reactor core auxiliary cooling system. Volume II. Example computer run

    Energy Technology Data Exchange (ETDEWEB)

    1979-09-01

    A listing of a CASY computer run is presented. It was initiated from a demand terminal and, therefore, contains the identification ST0952. This run also contains an INDEX listing of the subroutine UPDATE. The run includes a simulated scram transient at 30 seconds.

  8. CASY: a dynamic simulation of the gas-cooled fast breeder reactor core auxiliary cooling system. Volume II. Example computer run

    International Nuclear Information System (INIS)

    1979-09-01

    A listing of a CASY computer run is presented. It was initiated from a demand terminal and, therefore, contains the identification ST0952. This run also contains an INDEX listing of the subroutine UPDATE. The run includes a simulated scram transient at 30 seconds

  9. Imagery Data Base Facility

    Data.gov (United States)

    Federal Laboratory Consortium — The Imagery Data Base Facility supports AFRL and other government organizations by providing imagery interpretation and analysis to users for data selection, imagery...

  10. Vegetation extraction from high-resolution satellite imagery using the Normalized Difference Vegetation Index (NDVI)

    Science.gov (United States)

    AlShamsi, Meera R.

    2016-10-01

    Over the past years, there has been various urban development all over the UAE. Dubai is one of the cities that experienced rapid growth in both development and population. That growth can have a negative effect on the surrounding environment. Hence, there has been a necessity to protect the environment from these fast pace changes. One of the major impacts this growth can have is on vegetation. As technology is evolving day by day, there is a possibility to monitor changes that are happening on different areas in the world using satellite imagery. The data from these imageries can be utilized to identify vegetation in different areas of an image through a process called vegetation detection. Being able to detect and monitor vegetation is very beneficial for municipal planning and management, and environment authorities. Through this, analysts can monitor vegetation growth in various areas and analyze these changes. By utilizing satellite imagery with the necessary data, different types of vegetation can be studied and analyzed, such as parks, farms, and artificial grass in sports fields. In this paper, vegetation features are detected and extracted through SAFIY system (i.e. the Smart Application for Feature extraction and 3D modeling using high resolution satellite ImagerY) by using high-resolution satellite imagery from DubaiSat-2 and DEIMOS-2 satellites, which provide panchromatic images of 1m resolution and spectral bands (red, green, blue and near infrared) of 4m resolution. SAFIY system is a joint collaboration between MBRSC and DEIMOS Space UK. It uses image-processing algorithms to extract different features (roads, water, vegetation, and buildings) to generate vector maps data. The process to extract green areas (vegetation) utilize spectral information (such as, the red and near infrared bands) from the satellite images. These detected vegetation features will be extracted as vector data in SAFIY system and can be updated and edited by end-users, such as

  11. ACCURACY COMPARISON OF VHR SYSTEMATIC-ORTHO SATELLITE IMAGERIES AGAINST VHR ORTHORECTIFIED IMAGERIES USING GCP

    Directory of Open Access Journals (Sweden)

    E. Widyaningrum

    2016-06-01

    Full Text Available The Very High Resolution (VHR satellite imageries such us Pleiades, WorldView-2, GeoEye-1 used for precise mapping purpose must be corrected from any distortion to achieve the expected accuracy. Orthorectification is performed to eliminate geometric errors of the VHR satellite imageries. Orthorectification requires main input data such as Digital Elevation Model (DEM and Ground Control Point (GCP. The VHR systematic-ortho imageries were generated using SRTM 30m DEM without using any GCP data. The accuracy value differences of VHR systematic-ortho imageries and VHR orthorectified imageries using GCP currently is not exactly defined. This study aimed to identified the accuracy comparison of VHR systematic-ortho imageries against orthorectified imageries using GCP. Orthorectified imageries using GCP created by using Rigorous model. Accuracy evaluation is calculated by using several independent check points.

  12. USGS NAIP Imagery Overlay Map Service from The National Map

    Data.gov (United States)

    U.S. Geological Survey, Department of the Interior — The USGS NAIP Imagery service from The National Map (TNM) consists of high resolution images that combine the visual attributes of an aerial photograph with the...

  13. Aerial Photography and Imagery, Ortho-Corrected - 2013 Digital Orthophotos - Okaloosa County

    Data.gov (United States)

    NSGIC Education | GIS Inventory — This file references a single orthogonal imagery tile produced from nadir images captured by Pictometry International during the period of December 21st, 2012 to...

  14. Aerial Photography and Imagery, Ortho-Corrected - 2011 Digital Orthophotos - Lee County

    Data.gov (United States)

    NSGIC Education | GIS Inventory — The dataset consists of tiled orthogonal imagery produced from nadir images captured by Pictometry International January 2nd and March 21st, 2011. Automatic aerial...

  15. Wide area change detection with satellite imagery for locating underground nuclear testing

    International Nuclear Information System (INIS)

    Canty, M.J.; Jasani, B.; Schlittenhardt, J.

    2001-01-01

    With the advent of high resolution optical imagery from commercial earth observation satellites, the use of remote sensing data for verification of nuclear non-proliferation agreements is becoming increasingly attractive. Non-governmental organizations are routinely publishing high-quality imagery of sensitive nuclear installations round the world, and international verification authorities, such as the International Atomic Energy Agency (IAEA) or the Comprehensive Nuclear-Test-Ban Treaty Organization (CTBTO), will also want to make use, directly or indirectly, of this additional open source of information. Exact location of the sites of underground nuclear explosions is a task eminently suited to satellite imagery. Here both moderate resolutions for detecting signals in very large testing ranges as well as high resolution images for exact interpretation play important roles. We describe in our paper a particularly sensitive change detection procedure for bitemporal, multispectral satellite imagery which can be used to locate the spall zone of underground nuclear explosions with commercial satellite imagery. The method is based on the multivariate alteration detection (MAD) technique of Nielsen et al. Linear combinations of the spectral channels in two images of the same scene are chosen so as to minimize their positive correlation. This leads to a series of difference images - the so-called MAD components - which are mutually orthogonal (uncorrelated) and ordered according to decreasing variance in their pixel intensities. Since interesting changes in man-made structures may contribute minimally to the overall variance (as the latter may be dominated for instance by seasonal vegetation differences) it is often the case that such changes turn up in a higher order MAD component. This is because they will be uncorrelated with seasonal vegetation changes, stochastic image noise or other major contributions to the overall change signal. This in fact is one of the

  16. Real-time changes in corticospinal excitability related to motor imagery of a force control task

    DEFF Research Database (Denmark)

    Tatemoto, Tsuyoshi; Tsuchiya, Junko; Numata, Atsuki

    2017-01-01

    Objective To investigate real-time excitability changes in corticospinal pathways related to motor imagery in a changing force control task, using transcranial magnetic stimulation (TMS). Methods Ten healthy volunteers learnt to control the contractile force of isometric right wrist dorsiflexion...... in order to track an on-screen sine wave form. Participants performed the trained task 40 times with actual muscle contraction in order to construct the motor image. They were then instructed to execute the task without actual muscle contraction, but by imagining contraction of the right wrist...... in dorsiflexion. Motor evoked potentials (MEPs), induced by TMS in the right extensor carpi radialis muscle (ECR) and flexor carpi radialis muscle (FCR), were measured during motor imagery. MEPs were induced at five time points: prior to imagery, during the gradual generation of the imaged wrist dorsiflexion...

  17. Processing Satellite Imagery To Detect Waste Tire Piles

    Science.gov (United States)

    Skiles, Joseph; Schmidt, Cynthia; Wuinlan, Becky; Huybrechts, Catherine

    2007-01-01

    A methodology for processing commercially available satellite spectral imagery has been developed to enable identification and mapping of waste tire piles in California. The California Integrated Waste Management Board initiated the project and provided funding for the method s development. The methodology includes the use of a combination of previously commercially available image-processing and georeferencing software used to develop a model that specifically distinguishes between tire piles and other objects. The methodology reduces the time that must be spent to initially survey a region for tire sites, thereby increasing inspectors and managers time available for remediation of the sites. Remediation is needed because millions of used tires are discarded every year, waste tire piles pose fire hazards, and mosquitoes often breed in water trapped in tires. It should be possible to adapt the methodology to regions outside California by modifying some of the algorithms implemented in the software to account for geographic differences in spectral characteristics associated with terrain and climate. The task of identifying tire piles in satellite imagery is uniquely challenging because of their low reflectance levels: Tires tend to be spectrally confused with shadows and deep water, both of which reflect little light to satellite-borne imaging systems. In this methodology, the challenge is met, in part, by use of software that implements the Tire Identification from Reflectance (TIRe) model. The development of the TIRe model included incorporation of lessons learned in previous research on the detection and mapping of tire piles by use of manual/ visual and/or computational analysis of aerial and satellite imagery. The TIRe model is a computational model for identifying tire piles and discriminating between tire piles and other objects. The input to the TIRe model is the georeferenced but otherwise raw satellite spectral images of a geographic region to be surveyed

  18. Information from imagery: ISPRS scientific vision and research agenda

    Science.gov (United States)

    Chen, Jun; Dowman, Ian; Li, Songnian; Li, Zhilin; Madden, Marguerite; Mills, Jon; Paparoditis, Nicolas; Rottensteiner, Franz; Sester, Monika; Toth, Charles; Trinder, John; Heipke, Christian

    2016-05-01

    With the increased availability of very high-resolution satellite imagery, terrain based imaging and participatory sensing, inexpensive platforms, and advanced information and communication technologies, the application of imagery is now ubiquitous, playing an important role in many aspects of life and work today. As a leading organisation in this field, the International Society for Photogrammetry and Remote Sensing (ISPRS) has been devoted to effectively and efficiently obtaining and utilising information from imagery since its foundation in the year 1910. This paper examines the significant challenges currently facing ISPRS and its communities, such as providing high-quality information, enabling advanced geospatial computing, and supporting collaborative problem solving. The state-of-the-art in ISPRS related research and development is reviewed and the trends and topics for future work are identified. By providing an overarching scientific vision and research agenda, we hope to call on and mobilise all ISPRS scientists, practitioners and other stakeholders to continue improving our understanding and capacity on information from imagery and to deliver advanced geospatial knowledge that enables humankind to better deal with the challenges ahead, posed for example by global change, ubiquitous sensing, and a demand for real-time information generation.

  19. European Space Imaging & Skybox Imaging

    International Nuclear Information System (INIS)

    Clark, J.; Schichor, P.

    2015-01-01

    Skybox and European Space Imaging have partnered to bring timely, Very High-Resolution imagery to customers in Europe and North Africa. Leveraging Silicon Valley ingenuity and world-class aerospace expertise, Skybox designs, builds, and operates a fleet of imaging satellites. With two satellites currently on-orbit, Skybox is quickly advancing towards a planned constellation of 24+ satellites with the potential for daily or sub-daily imaging at 70-90 cm resolution. With consistent, high-resolution imagery and video, European customers can monitor the dynamic units of human activity - cars, trucks, shipping containers, ships, aircraft, etc. - and derive valuable insights about the global economy. With multiple imaging opportunities per day, the Skybox constellation provides unprecedented access to imagery and information about critical targets that require rapid analysis. Skybox's unique capability to deliver high-definition video from space enables European customers to monitor a network of globally distributed assets with full-motion snapshots, without the need to deploy an aircraft or field team. The movement captured in these 30-90 second video windows yield unique insights that improve operational decisions. Skybox and EUSI are excited to offer a unique data source that can drive a better understanding of our world through supply chain monitoring, natural resource management, infrastructure monitoring, and crisis response. (author)

  20. USGS Imagery Only Base Map Service from The National Map

    Data.gov (United States)

    U.S. Geological Survey, Department of the Interior — USGS Imagery Only is a tile cache base map of orthoimagery in The National Map visible to the 1:18,000 scale. Orthoimagery data are typically high resolution images...

  1. Multi-disciplinary techniques for understanding time-varying space-based imagery

    Science.gov (United States)

    Casasent, D.; Sanderson, A.; Kanade, T.

    1984-06-01

    A multidisciplinary program for space-based image processing is reported. This project combines optical and digital processing techniques and pattern recognition, image understanding and artificial intelligence methodologies. Time change image processing was recognized as the key issue to be addressed. Three time change scenarios were defined based on the frame rate of the data change. This report details the recent research on: various statistical and deterministic image features, recognition of sub-pixel targets in time varying imagery, and 3-D object modeling and recognition.

  2. Normalization of satellite imagery

    Science.gov (United States)

    Kim, Hongsuk H.; Elman, Gregory C.

    1990-01-01

    Sets of Thematic Mapper (TM) imagery taken over the Washington, DC metropolitan area during the months of November, March and May were converted into a form of ground reflectance imagery. This conversion was accomplished by adjusting the incident sunlight and view angles and by applying a pixel-by-pixel correction for atmospheric effects. Seasonal color changes of the area can be better observed when such normalization is applied to space imagery taken in time series. In normalized imagery, the grey scale depicts variations in surface reflectance and tonal signature of multi-band color imagery can be directly interpreted for quantitative information of the target.

  3. Wavelet-based higher-order neural networks for mine detection in thermal IR imagery

    Science.gov (United States)

    Baertlein, Brian A.; Liao, Wen-Jiao

    2000-08-01

    An image processing technique is described for the detection of miens in RI imagery. The proposed technique is based on a third-order neural network, which processes the output of a wavelet packet transform. The technique is inherently invariant to changes in signature position, rotation and scaling. The well-known memory limitations that arise with higher-order neural networks are addressed by (1) the data compression capabilities of wavelet packets, (2) protections of the image data into a space of similar triangles, and (3) quantization of that 'triangle space'. Using these techniques, image chips of size 28 by 28, which would require 0(109) neural net weights, are processed by a network having 0(102) weights. ROC curves are presented for mine detection in real and simulated imagery.

  4. RIGOROUS GEOREFERENCING OF ALSAT-2A PANCHROMATIC AND MULTISPECTRAL IMAGERY

    Directory of Open Access Journals (Sweden)

    I. Boukerch

    2013-04-01

    Full Text Available The exploitation of the full geometric capabilities of the High-Resolution Satellite Imagery (HRSI, require the development of an appropriate sensor orientation model. Several authors studied this problem; generally we have two categories of geometric models: physical and empirical models. Based on the analysis of the metadata provided with ALSAT-2A, a rigorous pushbroom camera model can be developed. This model has been successfully applied to many very high resolution imagery systems. The relation between the image and ground coordinates by the time dependant collinearity involving many coordinates systems has been tested. The interior orientation parameters must be integrated in the model, the interior parameters can be estimated from the viewing angles corresponding to the pointing directions of any detector, these values are derived from cubic polynomials provided in the metadata. The developed model integrates all the necessary elements with 33 unknown. All the approximate values of the 33 unknowns parameters may be derived from the informations contained in the metadata files provided with the imagery technical specifications or they are simply fixed to zero, so the condition equation is linearized and solved using SVD in a least square sense in order to correct the initial values using a suitable number of well-distributed GCPs. Using Alsat-2A images over the town of Toulouse in the south west of France, three experiments are done. The first is about 2D accuracy analysis using several sets of parameters. The second is about GCPs number and distribution. The third experiment is about georeferencing multispectral image by applying the model calculated from panchromatic image.

  5. Detection and Characterization of Hedgerows Using TerraSAR-X Imagery

    Directory of Open Access Journals (Sweden)

    Julie Betbeder

    2014-04-01

    Full Text Available Whilst most hedgerow functions depend upon hedgerow structure and hedgerow network patterns, in many ecological studies information on the fragmentation of hedgerows network and canopy structure is often retrieved in the field in small areas using accurate ground surveys and estimated over landscapes in a semi-quantitative manner. This paper explores the use of radar SAR imagery to (i detect hedgerow networks; and (ii describe the hedgerow canopy heterogeneity using TerraSAR-X imagery. The extraction of hedgerow networks was achieved using an object-oriented method using two polarimetric parameters: the Single Bounce and the Shannon Entropy derived from one TerraSAR-X image. The hedgerow canopy heterogeneity estimated from field measurements was compared with two backscattering coefficients and three polarimetric parameters derived from the same image. The results show that the hedgerow network and its fragmentation can be identified with a very good accuracy (Kappa index: 0.92. This study also reveals the high correlation between one polarimetric parameter, the Shannon entropy, and the canopy fragmentation measured in the field. Therefore, VHSR radar images can both precisely detect the presence of wooded hedgerow networks and characterize their structure, which cannot be achieved with optical images.

  6. Study of the Nevada Test Site using Landsat satellite imagery

    International Nuclear Information System (INIS)

    Zimmerman, P.D.

    1993-07-01

    In the period covered by the purchase order CSIS has obtained one Landsat image and determined that two images previously supplied to the principal investigator under a subcontract with George Washington University were inherently defective. We have negotiated with EOSAT over the reprocessing of those scenes and anticipate final delivery within the next few weeks. A critical early purchase during the subcontract period was of an EXABYTE tape drive, Adaptec SCSI interface, and the appropriate software with which to read Landsat images at CSIS. This gives us the capability of reading and manipulating imagery in house without reliance on outside services which have not proven satisfactory. In addition to obtaining imagery for the study, we have also performed considerable analytic work on the newly and previously purchased images. A technique developed under an earlier subcontract for identifying underground nuclear tests at Pahute Mesa has been significantly refined, and similar techniques were applied to the summit of Rainier Mesa and to the Yucca Flats area. An entirely new technique for enhancing the spectral signatures of different regions of NTS was recently developed, and appears to have great promise of success

  7. Benchmark Imagery FY11 Technical Report

    Energy Technology Data Exchange (ETDEWEB)

    Roberts, R. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States); Pope, P. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States)

    2011-06-14

    This report details the work performed in FY11 under project LL11-GS-PD06, “Benchmark Imagery for Assessing Geospatial Semantic Extraction Algorithms.” The original LCP for the Benchmark Imagery project called for creating a set of benchmark imagery for verifying and validating algorithms that extract semantic content from imagery. More specifically, the first year was slated to deliver real imagery that had been annotated, the second year to deliver real imagery that had composited features, and the final year was to deliver synthetic imagery modeled after the real imagery.

  8. Multi-Purpose Crew Vehicle Camera Asset Planning: Imagery Previsualization

    Science.gov (United States)

    Beaulieu, K.

    2014-01-01

    Using JSC-developed and other industry-standard off-the-shelf 3D modeling, animation, and rendering software packages, the Image Science Analysis Group (ISAG) supports Orion Project imagery planning efforts through dynamic 3D simulation and realistic previsualization of ground-, vehicle-, and air-based camera output.

  9. Combining Public Domain and Professional Panoramic Imagery for the Accurate and Dense 3d Reconstruction of the Destroyed Bel Temple in Palmyra

    Science.gov (United States)

    Wahbeh, W.; Nebiker, S.; Fangi, G.

    2016-06-01

    This paper exploits the potential of dense multi-image 3d reconstruction of destroyed cultural heritage monuments by either using public domain touristic imagery only or by combining the public domain imagery with professional panoramic imagery. The focus of our work is placed on the reconstruction of the temple of Bel, one of the Syrian heritage monuments, which was destroyed in September 2015 by the so called "Islamic State". The great temple of Bel is considered as one of the most important religious buildings of the 1st century AD in the East with a unique design. The investigations and the reconstruction were carried out using two types of imagery. The first are freely available generic touristic photos collected from the web. The second are panoramic images captured in 2010 for documenting those monuments. In the paper we present a 3d reconstruction workflow for both types of imagery using state-of-the art dense image matching software, addressing the non-trivial challenges of combining uncalibrated public domain imagery with panoramic images with very wide base-lines. We subsequently investigate the aspects of accuracy and completeness obtainable from the public domain touristic images alone and from the combination with spherical panoramas. We furthermore discuss the challenges of co-registering the weakly connected 3d point cloud fragments resulting from the limited coverage of the touristic photos. We then describe an approach using spherical photogrammetry as a virtual topographic survey allowing the co-registration of a detailed and accurate single 3d model of the temple interior and exterior.

  10. Use of artificial neural networks and geographic objects for classifying remote sensing imagery

    Directory of Open Access Journals (Sweden)

    Pedro Resende Silva

    2014-06-01

    Full Text Available The aim of this study was to develop a methodology for mapping land use and land cover in the northern region of Minas Gerais state, where, in addition to agricultural land, the landscape is dominated by native cerrado, deciduous forests, and extensive areas of vereda. Using forest inventory data, as well as RapidEye, Landsat TM and MODIS imagery, three specific objectives were defined: 1 to test use of image segmentation techniques for an object-based classification encompassing spectral, spatial and temporal information, 2 to test use of high spatial resolution RapidEye imagery combined with Landsat TM time series imagery for capturing the effects of seasonality, and 3 to classify data using Artificial Neural Networks. Using MODIS time series and forest inventory data, time signatures were extracted from the dominant vegetation formations, enabling selection of the best periods of the year to be represented in the classification process. Objects created with the segmentation of RapidEye images, along with the Landsat TM time series images, were classified by ten different Multilayer Perceptron network architectures. Results showed that the methodology in question meets both the purposes of this study and the characteristics of the local plant life. With excellent accuracy values for native classes, the study showed the importance of a well-structured database for classification and the importance of suitable image segmentation to meet specific purposes.

  11. Using art to help understand the imagery of irritable bowel syndrome and its response to hypnotherapy.

    Science.gov (United States)

    Carruthers, Helen R; Miller, Vivien; Morris, Julie; Evans, Raymond; Tarrier, Nicholas; Whorwell, Peter J

    2009-04-01

    A medical artist asked 109 patients if they had an image of their IBS pre- and posthypnotherapy, making precise watercolor paintings of any images described. Results were related to treatment outcome, symptoms, anxiety, depression, and absorption (hypnotizability); 49% of patients had an image, and a wide variety were recorded and painted. Imagery was significantly associated with gender (p < .05), anxiety (p < .05), noncolonic symptomatology (p < .05), and absorption (p = .001); 57.8% of responders compared with 35.5% of nonresponders to hypnotherapy had an image of their disease (p < .05) before treatment, and color images were associated with better outcomes (p = .05) than monochrome ones. All images changed in responders, often becoming more nonspecific in nature. Inquiring about IBS imagery helps to identify potential responders and nonresponders to hypnotherapy and may also provide insights into how patients think about their illness.

  12. Autonomy of image and use of single or multiple sense modalities in original verbal image production.

    Science.gov (United States)

    Khatena, J

    1978-06-01

    The use of a single or of multiple sense modalities in the production of original verbal images as related to autonomy of imagery was explored. 72 college adults were administered Onomatopoeia and Images and the Gordon Test of Visual Imagery Control. A modified scoring procedure for the Gordon scale differentiated imagers who were moderate or low in autonomy. The two groups produced original verbal images using multiple sense modalities more frequently than a single modality.

  13. Automatic orientation and 3D modelling from markerless rock art imagery

    Science.gov (United States)

    Lerma, J. L.; Navarro, S.; Cabrelles, M.; Seguí, A. E.; Hernández, D.

    2013-02-01

    This paper investigates the use of two detectors and descriptors on image pyramids for automatic image orientation and generation of 3D models. The detectors and descriptors replace manual measurements and are used to detect, extract and match features across multiple imagery. The Scale-Invariant Feature Transform (SIFT) and the Speeded Up Robust Features (SURF) will be assessed based on speed, number of features, matched features, and precision in image and object space depending on the adopted hierarchical matching scheme. The influence of applying in addition Area Based Matching (ABM) with normalised cross-correlation (NCC) and least squares matching (LSM) is also investigated. The pipeline makes use of photogrammetric and computer vision algorithms aiming minimum interaction and maximum accuracy from a calibrated camera. Both the exterior orientation parameters and the 3D coordinates in object space are sequentially estimated combining relative orientation, single space resection and bundle adjustment. The fully automatic image-based pipeline presented herein to automate the image orientation step of a sequence of terrestrial markerless imagery is compared with manual bundle block adjustment and terrestrial laser scanning (TLS) which serves as ground truth. The benefits of applying ABM after FBM will be assessed both in image and object space for the 3D modelling of a complex rock art shelter.

  14. USING COMBINATION OF PLANAR AND HEIGHT FEATURES FOR DETECTING BUILT-UP AREAS FROM HIGH-RESOLUTION STEREO IMAGERY

    Directory of Open Access Journals (Sweden)

    F. Peng

    2017-09-01

    Full Text Available Within-class spectral variation and between-class spectral confusion in remotely sensed imagery degrades the performance of built-up area detection when using planar texture, shape, and spectral features. Terrain slope and building height are often used to optimize the results, but extracted from auxiliary data (e.g. LIDAR data, DSM. Moreover, the auxiliary data must be acquired around the same time as image acquisition. Otherwise, built-up area detection accuracy is affected. Stereo imagery incorporates both planar and height information unlike single remotely sensed images. Stereo imagery acquired by many satellites (e.g. Worldview-4, Pleiades-HR, ALOS-PRISM, and ZY-3 can be used as data source of identifying built-up areas. A new method of identifying high-accuracy built-up areas from stereo imagery is achieved by using a combination of planar and height features. The digital surface model (DSM and digital orthophoto map (DOM are first generated from stereo images. Then, height values of above-ground objects (e.g. buildings are calculated from the DSM, and used to obtain raw built-up areas. Other raw built-up areas are obtained from the DOM using Pantex and Gabor, respectively. Final high-accuracy built-up area results are achieved from these raw built-up areas using the decision level fusion. Experimental results show that accurate built-up areas can be achieved from stereo imagery. The height information used in the proposed method is derived from stereo imagery itself, with no need to require auxiliary height data (e.g. LIDAR data. The proposed method is suitable for spaceborne and airborne stereo pairs and triplets.

  15. Using Combination of Planar and Height Features for Detecting Built-Up Areas from High-Resolution Stereo Imagery

    Science.gov (United States)

    Peng, F.; Cai, X.; Tan, W.

    2017-09-01

    Within-class spectral variation and between-class spectral confusion in remotely sensed imagery degrades the performance of built-up area detection when using planar texture, shape, and spectral features. Terrain slope and building height are often used to optimize the results, but extracted from auxiliary data (e.g. LIDAR data, DSM). Moreover, the auxiliary data must be acquired around the same time as image acquisition. Otherwise, built-up area detection accuracy is affected. Stereo imagery incorporates both planar and height information unlike single remotely sensed images. Stereo imagery acquired by many satellites (e.g. Worldview-4, Pleiades-HR, ALOS-PRISM, and ZY-3) can be used as data source of identifying built-up areas. A new method of identifying high-accuracy built-up areas from stereo imagery is achieved by using a combination of planar and height features. The digital surface model (DSM) and digital orthophoto map (DOM) are first generated from stereo images. Then, height values of above-ground objects (e.g. buildings) are calculated from the DSM, and used to obtain raw built-up areas. Other raw built-up areas are obtained from the DOM using Pantex and Gabor, respectively. Final high-accuracy built-up area results are achieved from these raw built-up areas using the decision level fusion. Experimental results show that accurate built-up areas can be achieved from stereo imagery. The height information used in the proposed method is derived from stereo imagery itself, with no need to require auxiliary height data (e.g. LIDAR data). The proposed method is suitable for spaceborne and airborne stereo pairs and triplets.

  16. International Space Station Instmments Collect Imagery of Natural Disasters

    Science.gov (United States)

    Evans, C. A.; Stefanov, W. L.

    2013-01-01

    A new focus for utilization of the International Space Station (ISS) is conducting basic and applied research that directly benefits Earth's citizenry. In the Earth Sciences, one such activity is collecting remotely sensed imagery of disaster areas and making those data immediately available through the USGS Hazards Data Distribution System, especially in response to activations of the International Charter for Space and Major Disasters (known informally as the "International Disaster Charter", or IDC). The ISS, together with other NASA orbital sensor assets, responds to IDC activations following notification by the USGS. Most of the activations are due to natural hazard events, including large floods, impacts of tropical systems, major fires, and volcanic eruptions and earthquakes. Through the ISS Program Science Office, we coordinate with ISS instrument teams for image acquisition using several imaging systems. As of 1 August 2013, we have successfully contributed imagery data in support of 14 Disaster Charter Activations, including regions in both Haiti and the east coast of the US impacted by Hurricane Sandy; flooding events in Russia, Mozambique, India, Germany and western Africa; and forest fires in Algeria and Ecuador. ISS-based sensors contributing data include the Hyperspectral Imager for the Coastal Ocean (HICO), the ISERV (ISS SERVIR Environmental Research and Visualization System) Pathfinder camera mounted in the US Window Observational Research Facility (WORF), the ISS Agricultural Camera (ISSAC), formerly operating from the WORF, and high resolution handheld camera photography collected by crew members (Crew Earth Observations). When orbital parameters and operations support data collection, ISS-based imagery adds to the resources available to disaster response teams and contributes to the publicdomain record of these events for later analyses.

  17. Imagery helps in the treatment of epilepsy

    International Nuclear Information System (INIS)

    Mauguiere, F.; Merlet, I.; Ryvlin, P.; Le Bars, D.

    1996-01-01

    The cerebral imagery (NMR imaging, single photon emission computed tomography, positron computed tomography) can be useful in the therapeutic treatment of the epilepsy. Indeed, it allows to delimit the brain part which, in becoming hyper excitable after a cerebral injury is the source of epileptic crises. The surgical ablation is a possible solution to suppress the crises when the anti epileptic drugs are useless. (O.M.)

  18. THE CREATION OF IMAGERY THROUGH POETIC DICTION IN POETRY TRANSLATION: LITERAL OR IDIOMATIC?

    Directory of Open Access Journals (Sweden)

    I Gusti Agung Sri Rwa Jayantini

    2017-12-01

    Full Text Available This paper aims at investigating the creation of imagery in the translation of the Indonesian poem entitled Batas into Borders as found in the poem anthology of the Indonesian poet, M. Aan Mansyur. It is interesting to reveal how the images of ‗borders‘ created by the poet are transferred by the translator considering that poetic diction may influence the whole message intended in both Indonesian and English poems. The question is how the naturalness in poetry translation is made. Is it done through literal or idiomatic translation? Imagery that is understood as the presentation of images through words is the picture that the readers can get by observing line by line expressed through poetic diction in the poem. Having done the analysis, it is found that some images are literally transferred that can be clearly seen from the diction in the translation version. However, some images are also idiomatically transferred through the appropriate lexical choices to maintain the atmosphere established in the poem.

  19. Preparation and luminescence properties of Eu2+-doped CaSi2O2-dN2+2/3d phosphors

    International Nuclear Information System (INIS)

    Gu Yunxin; Zhang Qinghong; Wang Hongzhi; Li Yaogang

    2009-01-01

    Eu 2+ -doped CaSi 2 O 2-d N 2+2/3d phosphors for white LED lamps were prepared by solid-state reaction, and the effects of heat-treatment conditions and the overall composition of host lattice on the optical properties have been discussed. Eu 2+ -doped CaSi 2 O 2-d N 2+2/3d displayed a single broad emission band peak at 540 nm, which could be assigned to the allowed transition of Eu 2+ from the lowest crystal field component of 4f 6 5d to 4f 7 ground-state level. The excitation band of samples, extending from UV to blue, is extremely wide, so the phosphors are suitable for white LED lamps in combination with a UV or blue LED dies. The highest PL intensity is found for the sample sintered at 1400 0 C. Moreover, the emission intensity decreases when N partially replaces O. A red shift of emission wavelength did not occur with increasing of the N content.

  20. Pixel-Wise Classification Method for High Resolution Remote Sensing Imagery Using Deep Neural Networks

    Directory of Open Access Journals (Sweden)

    Rui Guo

    2018-03-01

    Full Text Available Considering the classification of high spatial resolution remote sensing imagery, this paper presents a novel classification method for such imagery using deep neural networks. Deep learning methods, such as a fully convolutional network (FCN model, achieve state-of-the-art performance in natural image semantic segmentation when provided with large-scale datasets and respective labels. To use data efficiently in the training stage, we first pre-segment training images and their labels into small patches as supplements of training data using graph-based segmentation and the selective search method. Subsequently, FCN with atrous convolution is used to perform pixel-wise classification. In the testing stage, post-processing with fully connected conditional random fields (CRFs is used to refine results. Extensive experiments based on the Vaihingen dataset demonstrate that our method performs better than the reference state-of-the-art networks when applied to high-resolution remote sensing imagery classification.

  1. Valuing geospatial information: Using the contingent valuation method to estimate the economic benefits of Landsat satellite imagery

    Science.gov (United States)

    Loomis, John; Koontz, Steve; Miller, Holly M.; Richardson, Leslie A.

    2015-01-01

    While the U.S. government does not charge for downloading Landsat images, the images have value to users. This paper demonstrates a method that can value Landsat and other imagery to users. A survey of downloaders of Landsat images found: (a) established US users have a mean value of $912 USD per scene; (b) new US users and users returning when imagery became free have a mean value of $367 USD per scene. Total US user benefits for the 2.38 million scenes downloaded is $1.8 billion USD. While these benefits indicate a high willingness-to-pay among many Landsat downloaders, it would be economically inefficient for the US government to charge for Landsat imagery. Charging a price of $100 USD a scene would result in an efficiency loss of $37.5 million a year. This economic information should be useful to policy-makers who must decide about the future of this and similar remote sensing programs.

  2. Symbolic Water Imagery in the Drama of J. P. Clark- Bekederemo

    African Journals Online (AJOL)

    Prof

    Key words: Imagery, Symbolism, Water, Drama, J. P. Clark-Bekederemo. Introduction .... the other types (the literal and the figurative) is that a symbolic image has the capacity to extend its ..... A Dictionary of Literary Symbols. Cambridge: ...

  3. The influence of imagery vividness on cognitive and perceptual cues in circular auditorily-induced vection

    Directory of Open Access Journals (Sweden)

    Aleksander eVäljamäe

    2014-12-01

    Full Text Available In the absence of other congruent multisensory motion cues, sound contribution to illusions of self-motion (vection is relatively weak and often attributed to purely cognitive, top-down processes. The present study addressed the influence of cognitive and perceptual factors in the experience of circular, yaw auditorily-induced vection (AIV, focusing on participants’ imagery vividness scores. We used different rotating sound sources (acoustic landmark vs. movable types and their filtered versions that provided different binaural cues (interaural time or level differences, ITD vs. ILD when delivering via loudspeaker array. The significant differences in circular vection intensity showed that 1 AIV was stronger for rotating sound fields containing auditory landmarks as compared to movable sound objects; 2 ITD based acoustic cues were more instrumental than ILD based ones for horizontal AIV; and 3 individual differences in imagery vividness significantly influenced the effects of contextual and perceptual cues. While participants with high scores of kinesthetic and visual imagery were helped by vection ``rich cues, i.e. acoustic landmarks and ITD cues, the participants from the low-vivid imagery group did not benefit from these cues automatically. Only when specifically asked to use their imagination intentionally did these external cues start influencing vection sensation in similar way to high-vivid imagers. These findings are in line with the recent fMRI work which suggested that high-vivid imagers employ automatic, almost unconscious mechanisms in imagery generation, while low-vivid imagers rely on more schematic and conscious framework. Consequently, our results provide an additional insight into the interaction between perceptual and contextual cues when experiencing purely auditorily or multisensorily induced vection.

  4. Fast and true-to-life application of daytime colours to night-time imagery

    NARCIS (Netherlands)

    Hogervorst, M.A.; Toet, A.

    2007-01-01

    We developed a fast and efficient method to derive and apply a natural colour mapping for night-time imagery from multi-band sensors. The colour mapping is derived from the combination of a multi-band image and a corresponding natural colour reference image. The mapping optimizes the match between

  5. Computer-Assisted, Self-Interviewing (CASI) Compared to Face-to-Face Interviewing (FTFI) with Open-Ended, Non-Sensitive Questions

    OpenAIRE

    John Fairweather PhD; Tiffany Rinne PhD; Gary Steel PhD

    2012-01-01

    This article reports results from research on cultural models, and assesses the effects of computers on data quality by comparing open-ended questions asked in two formats—face-to-face interviewing (FTFI) and computer-assisted, self-interviewing (CASI). We expected that for our non-sensitive topic, FTFI would generate fuller and richer accounts because the interviewer could facilitate the interview process. Although the interviewer indeed facilitated these interviews, which resulted in more w...

  6. Toward automated face detection in thermal and polarimetric thermal imagery

    Science.gov (United States)

    Gordon, Christopher; Acosta, Mark; Short, Nathan; Hu, Shuowen; Chan, Alex L.

    2016-05-01

    Visible spectrum face detection algorithms perform pretty reliably under controlled lighting conditions. However, variations in illumination and application of cosmetics can distort the features used by common face detectors, thereby degrade their detection performance. Thermal and polarimetric thermal facial imaging are relatively invariant to illumination and robust to the application of makeup, due to their measurement of emitted radiation instead of reflected light signals. The objective of this work is to evaluate a government off-the-shelf wavelet based naïve-Bayes face detection algorithm and a commercial off-the-shelf Viola-Jones cascade face detection algorithm on face imagery acquired in different spectral bands. New classifiers were trained using the Viola-Jones cascade object detection framework with preprocessed facial imagery. Preprocessing using Difference of Gaussians (DoG) filtering reduces the modality gap between facial signatures across the different spectral bands, thus enabling more correlated histogram of oriented gradients (HOG) features to be extracted from the preprocessed thermal and visible face images. Since the availability of training data is much more limited in the thermal spectrum than in the visible spectrum, it is not feasible to train a robust multi-modal face detector using thermal imagery alone. A large training dataset was constituted with DoG filtered visible and thermal imagery, which was subsequently used to generate a custom trained Viola-Jones detector. A 40% increase in face detection rate was achieved on a testing dataset, as compared to the performance of a pre-trained/baseline face detector. Insights gained in this research are valuable in the development of more robust multi-modal face detectors.

  7. Vividness and Transformation of Mental Images in Karate

    Directory of Open Access Journals (Sweden)

    Maria Guarnera

    2016-07-01

    Full Text Available Background: Systematic reviews have shown that imagery improves performance in motor tasks. Objective: In order to observe the function of imagery in sport, this study investigated modifications in Imagery Ability, in terms of  both controllability (i.e., the accurateness with which an image can be operated mentally and vividness (i.e., the precision richness of an image, in competitive  and recreational karateka. Method: Thirty volunteers karateka  completed the Vividness of Visual Imagery Questionnaire, the Vividness of Movement Imagery Questionnaire-2, and the Subtraction of parts Task. Results: Competitive athletes reported higher scores on imagery ability than recreational athletes. No correlations were found between the variables of Vividness and the Subtraction of parts Task for any of the two groups. All analyses were two-tailed with α at .05. Conclusion: The study has risen the investigation in the particular ambit of imagery ability, providing an additional support for the multidimensional nature of mental imagery and for its usefulness in athletes.  Keywords: imagery, motor tasks, karate, static vividness

  8. Non-Drug Pain Relief: Imagery

    Science.gov (United States)

    PATIENT EDUCATION patienteducation.osumc.edu Non-Drug Pain Relief: Imagery Relaxation helps lessen tension. One way to help decrease pain is to use imagery. Imagery is using your imagination to create a ...

  9. Systèmes d'information en Imagerie médicale : Moyen de diagnostic ...

    African Journals Online (AJOL)

    Information Systems of the Medical Imagery: A Means of diagnosis, of therapy and of economy. The digital medical images got by the different existing modalities, and processed by powerful computers, became a very powerful means of diagnosis. They allow to follow a pathology, compare an image to another having some ...

  10. Imagery Rescripting of Early Traumatic Memories in Social Phobia

    Science.gov (United States)

    Wild, Jennifer; Clark, David M.

    2011-01-01

    Negative self-images appear to play a role in the maintenance of social phobia and research suggests they are often linked to earlier memories of socially traumatic events. Imagery rescripting is a clinical intervention that aims to update such unpleasant or traumatic memories, and is increasingly being incorporated in cognitive behavioral therapy…

  11. Seeing with the eyes shut: neural basis of enhanced imagery following Ayahuasca ingestion.

    Science.gov (United States)

    de Araujo, Draulio B; Ribeiro, Sidarta; Cecchi, Guillermo A; Carvalho, Fabiana M; Sanchez, Tiago A; Pinto, Joel P; de Martinis, Bruno S; Crippa, Jose A; Hallak, Jaime E C; Santos, Antonio C

    2012-11-01

    The hallucinogenic brew Ayahuasca, a rich source of serotonergic agonists and reuptake inhibitors, has been used for ages by Amazonian populations during religious ceremonies. Among all perceptual changes induced by Ayahuasca, the most remarkable are vivid "seeings." During such seeings, users report potent imagery. Using functional magnetic resonance imaging during a closed-eyes imagery task, we found that Ayahuasca produces a robust increase in the activation of several occipital, temporal, and frontal areas. In the primary visual area, the effect was comparable in magnitude to the activation levels of natural image with the eyes open. Importantly, this effect was specifically correlated with the occurrence of individual perceptual changes measured by psychiatric scales. The activity of cortical areas BA30 and BA37, known to be involved with episodic memory and the processing of contextual associations, was also potentiated by Ayahuasca intake during imagery. Finally, we detected a positive modulation by Ayahuasca of BA 10, a frontal area involved with intentional prospective imagination, working memory and the processing of information from internal sources. Therefore, our results indicate that Ayahuasca seeings stem from the activation of an extensive network generally involved with vision, memory, and intention. By boosting the intensity of recalled images to the same level of natural image, Ayahuasca lends a status of reality to inner experiences. It is therefore understandable why Ayahuasca was culturally selected over many centuries by rain forest shamans to facilitate mystical revelations of visual nature. Copyright © 2011 Wiley Periodicals, Inc.

  12. Identification of brome grass infestations in southwest Oklahoma using multi-temporal Landsat imagery

    Science.gov (United States)

    Yan, D.; de Beurs, K.

    2013-12-01

    The extensive infestation of brome grasses (Cheatgrass, Rye brome and Japanese brome) in southwest Oklahoma imposes negative impacts on local economy and ecosystem in terms of decreasing crop and forage production and increasing fire risk. Previously proposed methodologies on brome grass detection are found ill-suitable for southwest Oklahoma as a result of similar responses of background vegetation to inter-annual variability of rainfall. In this study, we aim to identify brome grass infestations by detecting senescent brome grasses using the 2011 Cultivated Land Cover Data Sets and the difference Normalized Difference Infrared Index (NDII) derived from multi-temporal Landsat imagery. Landsat imageries acquired on May 18th and June 10th 2013 by Operational Land Imager and Enhanced Thematic Mapper plus were used. The imagery acquisition dates correspond to the peak growth and senescent time of brome grasses, respectively. The difference NDII was calculated by subtracting the NDII image acquired in May from the June NDII image. Our hypotheses is that senescent brome grasses and crop/pasture fields harvested between the two image acquisition dates can be distinguished from background land cover classes because of their increases in NDII due to decreased water absorption by senescent vegetation in the shortwave infrared region. The Cultivated Land Cover Data Sets were used to further separate senescent brome grass patches from newly harvested crop/pasture fields. Ground truth data collected during field trips in June, July and August of 2013 were used to validate the detection results.

  13. A novel approach for epipolar resampling of cross-track linear pushbroom imagery using orbital parameters model

    Science.gov (United States)

    Jannati, Mojtaba; Valadan Zoej, Mohammad Javad; Mokhtarzade, Mehdi

    2018-03-01

    This paper presents a novel approach to epipolar resampling of cross-track linear pushbroom imagery using orbital parameters model (OPM). The backbone of the proposed method relies on modification of attitude parameters of linear array stereo imagery in such a way to parallelize the approximate conjugate epipolar lines (ACELs) with the instantaneous base line (IBL) of the conjugate image points (CIPs). Afterward, a complementary rotation is applied in order to parallelize all the ACELs throughout the stereo imagery. The new estimated attitude parameters are evaluated based on the direction of the IBL and the ACELs. Due to the spatial and temporal variability of the IBL (respectively changes in column and row numbers of the CIPs) and nonparallel nature of the epipolar lines in the stereo linear images, some polynomials in the both column and row numbers of the CIPs are used to model new attitude parameters. As the instantaneous position of sensors remains fix, the digital elevation model (DEM) of the area of interest is not required in the resampling process. According to the experimental results obtained from two pairs of SPOT and RapidEye stereo imagery with a high elevation relief, the average absolute values of remained vertical parallaxes of CIPs in the normalized images were obtained 0.19 and 0.28 pixels respectively, which confirm the high accuracy and applicability of the proposed method.

  14. Visuo-Spatial Imagery Impairment in Posterior Cortical Atrophy: A Cognitive and SPECT Study

    Directory of Open Access Journals (Sweden)

    Simona Gardini

    2011-01-01

    Full Text Available This study investigated the cognitive profile and the cerebral perfusion pattern in a highly educated 70 year old gentleman with posterior cortical atrophy (PCA. Visuo-perceptual abilities, spatial memory, spatial representation and navigation, visuo-spatial mental imagery, semantic and episodic-autobiographical memory were assessed. Regional cerebral blood flow (rCBF was imaged with SPECT. Cognitive testing showed visual-perceptual impairment, apperceptive visual and landmark agnosia, topographical disorientation with way-finding deficits, impaired map learning and poor mental image generation. Semantic memory was normal, while episodic-autobiographical memory was impaired. Reduced rCBF was found mainly in the right hemisphere, in the precentral gyrus, posterior cingulate and middle temporal gyri, cuneus and precuneus, in the left superior temporal and lingual gyri and in the parahippocampus bilaterally. Hypoperfusion in occipito-parietal regions was associated with visuo-spatial deficits, whereas deficits in visuo-spatial mental imagery might reflect dysfunction related to hypoperfusion in the parahippocampus and precuneus, structures which are responsible for spatial and imagery processing. Dissociating performance between preserved semantic memory and poor episodic-autobiographical recall is consistent with a pattern of normal perfusion in frontal and anterior temporal regions but abnormal rCBF in the parahippocampi. The present findings indicate that PCA involves visuo-spatial imagery deficits and provide further validation to current neuro-cognitive models of spatial representation and topographical disorientation.

  15. Analysis of Coastline Extraction from Landsat-8 OLI Imagery

    Directory of Open Access Journals (Sweden)

    Yaolin Liu

    2017-10-01

    Full Text Available Coastline extraction is a fundamental work for coastal resource management, coastal environmental protection and coastal sustainable development. Due to the free access and long-term record, Landsat series images have the potential to be used for coastline extraction. However, dynamic features of different types of coastlines (e.g., rocky, sandy, artificial, caused by sea level fluctuation from tidal, storm and reclamation, make it difficult to be accurately extracted with coarse spatial resolution, e.g., 30 m, of Landsat images. To access this problem, we analyze the performance of coastline extraction by integrating downscaling, pansharpening and water index approaches in increasing the accuracy of coastline extraction from the latest Landsat-8 Operational Land Imager (OLI imagery. In order to prove the availability of the proposed method, we designed three strategies: (1 Strategy 1 uses the traditional water index method to extract coastline directly from original 30 m Landsat-8 OLI multispectral (MS image; (2 Strategy 2 extracts coastlines from 15 m fused MS images generated by integrating 15 m panchromatic (PAN band and 30 m MS image with ten pansharpening algorithms; (3 Strategy 3 first downscales the PAN band to a finer spatial resolution (e.g., 7.5 m band, and then extracts coastlines from pansharpened MS images generated by integrating downscaled spatial resolution PAN band and 30 m MS image with ten pansharpening algorithms. Using the coastline extracted from ZiYuan-3 (ZY-3 5.8 m MS image as reference, accuracies of coastlines extracted from MS images in three strategies were validated visually and quantitatively. The results show that, compared with coastline extracted directly from 30 m Landsat-8 MS image (strategy 1, strategy 3 achieves the best accuracies with optimal mean net shoreline movement (MNSM of −2.54 m and optimal mean absolute difference (MAD of 11.26 m, followed by coastlines extracted in strategy 2 with optimal MNSM

  16. Mental Imagery, Text Illustrations, and Children's Story Comprehension and Recall.

    Science.gov (United States)

    Gambrell, Linda B.; Jawitz, Paula Brooks

    1993-01-01

    Investigates the effects of instructions to induce mental imagery and attend to text illustrations on fourth graders' reading comprehension and recall of narrative text. Finds that images and illustrations independently enhanced reading performance and that, in combination, these two strategies resulted in impressive increases in children's…

  17. Improved VIIRS and MODIS SST Imagery

    Directory of Open Access Journals (Sweden)

    Irina Gladkova

    2016-01-01

    Full Text Available Moderate Resolution Imaging Spectroradiometers (MODIS and Visible Infrared Imaging Radiometer Suite (VIIRS radiometers, flown onboard Terra/Aqua and Suomi National Polar-orbiting Partnership (S-NPP/Joint Polar Satellite System (JPSS satellites, are capable of providing superior sea surface temperature (SST imagery. However, the swath data of these multi-detector sensors are subject to several artifacts including bow-tie distortions and striping, and require special pre-processing steps. VIIRS additionally does two irreversible data reduction steps onboard: pixel aggregation (to reduce resolution changes across the swath and pixel deletion, which complicate both bow-tie correction and destriping. While destriping was addressed elsewhere, this paper describes an algorithm, adopted in the National Oceanic and Atmospheric Administration (NOAA Advanced Clear-Sky Processor for Oceans (ACSPO SST system, to minimize the bow-tie artifacts in the SST imagery and facilitate application of the pattern recognition algorithms for improved separation of ocean from cloud and mapping fine SST structure, especially in the dynamic, coastal and high-latitude regions of the ocean. The algorithm is based on a computationally fast re-sampling procedure that ensures a continuity of corresponding latitude and longitude arrays. Potentially, Level 1.5 products may be generated to benefit a wide range of MODIS and VIIRS users in land, ocean, cryosphere, and atmosphere remote sensing.

  18. Drive for consumption, craving, and connectivity in the visual cortex during the imagery of desired food.

    Science.gov (United States)

    Bullins, Jessica; Laurienti, Paul J; Morgan, Ashley R; Norris, James; Paolini, Brielle M; Rejeski, W Jack

    2013-01-01

    There is considerable interest in understanding food cravings given the obesogenic environment of Western Society. In this paper we examine how the imagery of palatable foods affects cravings and functional connectivity in the visual cortex for people who differ on the power of food scale (PFS). Fourteen older, overweight/obese adults came to our laboratory on two different occasions. Both times they ate a controlled breakfast meal and then were restricted from eating for 2.5 h prior to scanning. On 1 day they consumed a BOOST(®) liquid meal after the period of food restriction, whereas on the other day they only consumed water (NO BOOST(®) condition). After these manipulations, they had an fMRI scan in which they were asked to image both neutral objects and their favorite snack foods; they also completed visual analog scales for craving, hunger, and the vividness of the imagery experiences. Irrespective of the BOOST(®) manipulation, we observed marked increases in food cravings when older, overweight/obese adults created images of favorite foods in their minds as opposed to creating an image of neutral objects; however, the increase in food craving following the imagery of desired food was more pronounced among those scoring high than low on the PFS. Furthermore, local efficiency within the visual cortex when imaging desired food was higher for those scoring high as compared to low on the PFS. The active imagery of desired foods seemed to have overpowered the BOOST(®) manipulation when evaluating connectivity in the visual cortex.

  19. Drive for Consumption, Craving, and Connectivity in the Visual Cortex during the Imagery of Desired Food

    Directory of Open Access Journals (Sweden)

    Jessica eBullins

    2013-11-01

    Full Text Available There is considerable interest in understanding food cravings given the obesogenic environment of Western Society. In this paper we examine how the imagery of palatable foods affects cravings and functional connectivity in the visual cortex for people who differ on the power of food scale (PFS. Fourteen older, overweight/obese adults came to our laboratory on two different occasions. Both times they ate a controlled breakfast meal and then were restricted from eating for 2.5 hours prior to scanning. On one day they consumed a BOOST® liquid meal after the period of food restriction, whereas on the other day they only consumed water (NO BOOST® condition. After these manipulations, they had an fMRI scan in which they were asked to image both neutral objects and their favorite snack foods; they also completed visual analogue scales for craving, hunger, and the vividness of the imagery experiences. Irrespective of the BOOST® manipulation, we observed marked increases in food cravings when older, overweight/obese adults created images of favorite foods in their minds as opposed to creating an image of neutral objects; however, the increase in food craving following the imagery of desired food was more pronounced among those scoring high than low on the PFS. Furthermore, local efficiency within the visual cortex when imaging desired food was higher for those scoring high as compared to low on the PFS. The active imagery of desired foods seemed to have overpowered the BOOST® manipulation when evaluating connectivity in the visual cortex.

  20. Fully Convolutional Network Based Shadow Extraction from GF-2 Imagery

    Science.gov (United States)

    Li, Z.; Cai, G.; Ren, H.

    2018-04-01

    There are many shadows on the high spatial resolution satellite images, especially in the urban areas. Although shadows on imagery severely affect the information extraction of land cover or land use, they provide auxiliary information for building extraction which is hard to achieve a satisfactory accuracy through image classification itself. This paper focused on the method of building shadow extraction by designing a fully convolutional network and training samples collected from GF-2 satellite imagery in the urban region of Changchun city. By means of spatial filtering and calculation of adjacent relationship along the sunlight direction, the small patches from vegetation or bridges have been eliminated from the preliminary extracted shadows. Finally, the building shadows were separated. The extracted building shadow information from the proposed method in this paper was compared with the results from the traditional object-oriented supervised classification algorihtms. It showed that the deep learning network approach can improve the accuracy to a large extent.

  1. Perception-oriented fusion of multi-sensor imagery: visible, IR, and SAR

    Science.gov (United States)

    Sidorchuk, D.; Volkov, V.; Gladilin, S.

    2018-04-01

    This paper addresses the problem of image fusion of optical (visible and thermal domain) data and radar data for the purpose of visualization. These types of images typically contain a lot of complimentary information, and their joint visualization can be useful and more convenient for human user than a set of individual images. To solve the image fusion problem we propose a novel algorithm that utilizes some peculiarities of human color perception and based on the grey-scale structural visualization. Benefits of presented algorithm are exemplified by satellite imagery.

  2. Using UAS Hyperspatial RGB Imagery for Identifying Beach Zones along the South Texas Coast

    Directory of Open Access Journals (Sweden)

    Lihong Su

    2017-02-01

    Full Text Available Shoreline information is fundamental for understanding coastal dynamics and for implementing environmental policy. The analysis of shoreline variability usually uses a group of shoreline indicators visibly discernible in coastal imagery, such as the seaward vegetation line, wet beach/dry beach line, and instantaneous water line. These indicators partition a beach into four zones: vegetated land, dry sand or debris, wet sand, and water. Unmanned aircraft system (UAS remote sensing that can acquire imagery with sub-decimeter pixel size provides opportunities to map these four beach zones. This paper attempts to delineate four beach zones based on UAS hyperspatial RGB (Red, Green, and Blue imagery, namely imagery of sub-decimeter pixel size, and feature textures. Besides the RGB images, this paper also uses USGS (the United States Geological Survey Munsell HSV (Hue, Saturation, and Value and CIELUV (the CIE 1976 (L*, u*, v* color space images transformed from an RGB image. The four beach zones are identified based on the Gray Level Co-Occurrence Matrix (GLCM and Local Binary Pattern (LBP textures. Experiments were conducted with South Padre Island photos acquired by a Nikon D80 camera mounted on the US-16 UAS during March 2014. The results show that USGS Munsell hue can separate land and water reliably. GLCM and LBP textures can slightly improve classification accuracies by both unsupervised and supervised classification techniques. The experiments also indicate that we could reach acceptable results on different photos while using training data from another photo for site-specific UAS remote sensing. The findings imply that parallel processing of classification is feasible.

  3. Plot - level stem volume estimation and tree species discrimination with CASI remote sensing

    Energy Technology Data Exchange (ETDEWEB)

    Holmgren, Johan; Wallerman, J.; Olsson, Haakan

    1999-10-01

    Spectral data from the Compact Airborne Spectrographic Imager (CASI), with four bands (460-495 nm, 550-580 nm, 660-682 nm, 740-762 nm) acquired from a forest test area (Lat. 60 deg 00` N, Long. 17 deg 18` E), the Kaettboele estate near Uppsala, was analysed together with forest data from a number of field plots. Data from two flight lines, one towards and the other perpendicular to the sun was used. Information about stem volume and species composition from plots with 10-m radius, 138 in the first and 120 in the second flight line, was available. There was a positive correlation (R{sup 2} 0.51-0.53) between stem volume and the inverted radiance for all four bands on plot level. The strong correlation between stem volume and a shadow density measure indicates that shadows explain much of the correlation. For the flight line perpendicular to the sun, the correlation was stronger for the side towards the sun compared to the side away from the sun. In the first flight line, plots with a stem volume > 120 m{sup 3}ha{sup -1} were classified according to the tree species composition (pine, spruce, deciduous trees). Groups were formed based on the classification, and the hypothesis that there was no difference in spectral radiance between these groups was tested. It was possible to separate pine dominated plots from spruce dominated plots. It was also possible to separate spruce dominated plots from spruce dominated plots with a minor portion of pine, but not pine dominated plots from pine dominated plots with a minor portion of spruce. The near-infrared band was the best band for discrimination of tree species 16 refs, 2 figs, 8 tabs

  4. RADARSAT-1 Image Quality Excellence in the Extended Mission

    National Research Council Canada - National Science Library

    Srivastava, S. K; Cote, S; Le Dantec, P; Hawkins, R. K

    2005-01-01

    ... after its launch on November 4, 1995. Both single beams and ScanSAR imagery are still monitored routinely for radiometric calibration performance based on images of the Amazon Rainforest, and for image quality performance using imagery...

  5. Monitoring vegetation change in Abu Dhabi Emirate from 1996 to 2000 and 2004 using Landsat Satellite Imagery

    International Nuclear Information System (INIS)

    Starbuck, M.J.; Tamayo, J.

    2007-01-01

    In the fall of 2001, a study was initiated to investigate vegetation changes in the Abu Dhabi Emirates. The vast majority of vegetation present in the region is irrigated and analysis of vegetation change will support groundwater investigations in the region by indicating areas of increased water use. Satellite-based imaging systems provide a good source of data for such an analysis. The recent analysis was completed between February and November 2002 using Landsat 5 Thematic Mapper satellite imagery acquired in 1996 and Landsat 7 Enhanced Thematic Mapper Plus imagery acquired in 2000. These assessments were augmented in 2004with the study of Landsat 7 imagery acquired in early 2004. The total area of vegetation for each of seven study areas was calculated using the Normalized Difference Vegetation Index (NDVI) technique. Multiband image classification was used to differentiate general vegetation types. Change analysis consisted of simple NDVI image differencing and post-classification change matrices. Measurements of total vegetation are for the Abu Dhabi Emirate indicate an increase from 77,200 hectares in 1996 to 162,700 hectares in 2000 (110% increase). Based on comparison with manual interpretation of satellite imagery, the amount of under-reporting of irrigated land is estimated at about 15% of the actual area. From the assessment of 2004 Landset imagery, it was found that the growth of irrigated vegetation in most areas of Emirate had stabilized and had actually slightly decreased in some cases. The decreases are probably due to variability in the measurement technique and not due to actual decreases in area of vegetation. (author)

  6. Processing Near-Infrared Imagery of the Orion Heatshield During EFT-1 Hypersonic Reentry

    Science.gov (United States)

    Spisz, Thomas S.; Taylor, Jeff C.; Gibson, David M.; Kennerly, Steve; Osei-Wusu, Kwame; Horvath, Thomas J.; Schwartz, Richard J.; Tack, Steven; Bush, Brett C.; Oliver, A. Brandon

    2016-01-01

    The Scientifically Calibrated In-Flight Imagery (SCIFLI) team captured high-resolution, calibrated, near-infrared imagery of the Orion capsule during atmospheric reentry of the EFT-1 mission. A US Navy NP-3D aircraft equipped with a multi-band optical sensor package, referred to as Cast Glance, acquired imagery of the Orion capsule's heatshield during a period when Orion was slowing from approximately Mach 10 to Mach 7. The line-of-sight distance ranged from approximately 65 to 40 nmi. Global surface temperatures of the capsule's thermal heatshield derived from the near-infrared intensity measurements complemented the in-depth (embedded) thermocouple measurements. Moreover, these derived surface temperatures are essential to the assessment of the thermocouples' reliance on inverse heat transfer methods and material response codes to infer the surface temperature from the in-depth measurements. The paper describes the image processing challenges associated with a manually-tracked, high-angular rate air-to-air observation. Issues included management of significant frame-to-frame motions due to both tracking jerk and jitter as well as distortions due to atmospheric effects. Corrections for changing sky backgrounds (including some cirrus clouds), atmospheric attenuation, and target orientations and ranges also had to be made. The image processing goal is to reduce the detrimental effects due to motion (both sensor and capsule), vibration (jitter), and atmospherics for image quality improvement, without compromising the quantitative integrity of the data, especially local intensity (temperature) variations. The paper will detail the approach of selecting and utilizing only the highest quality images, registering several co-temporal image frames to a single image frame to the extent frame-to-frame distortions would allow, and then co-adding the registered frames to improve image quality and reduce noise. Using preflight calibration data, the registered and averaged

  7. PROCESSING OF CRAWLED URBAN IMAGERY FOR BUILDING USE CLASSIFICATION

    Directory of Open Access Journals (Sweden)

    P. Tutzauer

    2017-05-01

    Full Text Available Recent years have shown a shift from pure geometric 3D city models to data with semantics. This is induced by new applications (e.g. Virtual/Augmented Reality and also a requirement for concepts like Smart Cities. However, essential urban semantic data like building use categories is often not available. We present a first step in bridging this gap by proposing a pipeline to use crawled urban imagery and link it with ground truth cadastral data as an input for automatic building use classification. We aim to extract this city-relevant semantic information automatically from Street View (SV imagery. Convolutional Neural Networks (CNNs proved to be extremely successful for image interpretation, however, require a huge amount of training data. Main contribution of the paper is the automatic provision of such training datasets by linking semantic information as already available from databases provided from national mapping agencies or city administrations to the corresponding façade images extracted from SV. Finally, we present first investigations with a CNN and an alternative classifier as a proof of concept.

  8. Classification of High Spatial Resolution, Hyperspectral ...

    Science.gov (United States)

    EPA announced the availability of the final report,Classification of High Spatial Resolution, Hyperspectral Remote Sensing Imagery of the Little Miami River Watershed in Southwest Ohio, USA . This report and associated land use/land cover (LULC) coverage is the result of a collaborative effort among an interdisciplinary team of scientists with the U.S. Environmental Protection Agency's (U.S. EPA's) Office of Research and Development in Cincinnati, Ohio. A primary goal of this project is to enhance the use of geography and spatial analytic tools in risk assessment, and to improve the scientific basis for risk management decisions affecting drinking water and water quality. The land use/land cover classification is derived from 82 flight lines of Compact Airborne Spectrographic Imager (CASI) hyperspectral imagery acquired from July 24 through August 9, 2002 via fixed-wing aircraft.

  9. The Evaluation of High Resolution Aerial Imagery for Monitoring of ...

    African Journals Online (AJOL)

    The Royal Natal National Park and the Rugged Glen Nature Reserve are part of the uKhahlamba Drakensberg Park (UDP) World Heritage Site and have infestations of bracken fern (Pteridium aquilinum [L.] Kuhn). Prior image classification research on bracken fern were constrained by low resolution satellite imagery and ...

  10. Automatic Detection of Sand Ripple Features in Sidescan Sonar Imagery

    Science.gov (United States)

    2014-07-09

    Among the features used in forensic scientific fingerprint analysis are terminations or bifurcations of print ridges. Sidescan sonar imagery of ripple...always be pathological cases. The size of the blocks of pixels used in determining the ripple wavelength is evident in the output images on the right in

  11. Polar bears from space: Assessing satellite imagery as a tool to track Arctic wildlife

    Science.gov (United States)

    Stapleton, Seth P.; LaRue, Michelle A.; Lecomte, Nicolas; Atkinson, Stephen N.; Garshelis, David L.; Porter, Claire; Atwood, Todd C.

    2014-01-01

    Development of efficient techniques for monitoring wildlife is a priority in the Arctic, where the impacts of climate change are acute and remoteness and logistical constraints hinder access. We evaluated high resolution satellite imagery as a tool to track the distribution and abundance of polar bears. We examined satellite images of a small island in Foxe Basin, Canada, occupied by a high density of bears during the summer ice-free season. Bears were distinguished from other light-colored spots by comparing images collected on different dates. A sample of ground-truthed points demonstrated that we accurately classified bears. Independent observers reviewed images and a population estimate was obtained using mark- recapture models. This estimate (N: 94; 95% Confidence Interval: 92-105) was remarkably similar to an abundance estimate derived from a line transect aerial survey conducted a few days earlier (N: 102; 95% CI: 69-152). Our findings suggest that satellite imagery is a promising tool for monitoring polar bears on land, with implications for use with other Arctic wildlife. Large scale applications may require development of automated detection processes to expedite review and analysis. Future research should assess the utility of multi-spectral imagery and examine sites with different environmental characteristics.

  12. Polar bears from space: assessing satellite imagery as a tool to track Arctic wildlife.

    Directory of Open Access Journals (Sweden)

    Seth Stapleton

    Full Text Available Development of efficient techniques for monitoring wildlife is a priority in the Arctic, where the impacts of climate change are acute and remoteness and logistical constraints hinder access. We evaluated high resolution satellite imagery as a tool to track the distribution and abundance of polar bears. We examined satellite images of a small island in Foxe Basin, Canada, occupied by a high density of bears during the summer ice-free season. Bears were distinguished from other light-colored spots by comparing images collected on different dates. A sample of ground-truthed points demonstrated that we accurately classified bears. Independent observers reviewed images and a population estimate was obtained using mark-recapture models. This estimate (N: 94; 95% Confidence Interval: 92-105 was remarkably similar to an abundance estimate derived from a line transect aerial survey conducted a few days earlier (N: 102; 95% CI: 69-152. Our findings suggest that satellite imagery is a promising tool for monitoring polar bears on land, with implications for use with other Arctic wildlife. Large scale applications may require development of automated detection processes to expedite review and analysis. Future research should assess the utility of multi-spectral imagery and examine sites with different environmental characteristics.

  13. Polar bears from space: assessing satellite imagery as a tool to track Arctic wildlife.

    Science.gov (United States)

    Stapleton, Seth; LaRue, Michelle; Lecomte, Nicolas; Atkinson, Stephen; Garshelis, David; Porter, Claire; Atwood, Todd

    2014-01-01

    Development of efficient techniques for monitoring wildlife is a priority in the Arctic, where the impacts of climate change are acute and remoteness and logistical constraints hinder access. We evaluated high resolution satellite imagery as a tool to track the distribution and abundance of polar bears. We examined satellite images of a small island in Foxe Basin, Canada, occupied by a high density of bears during the summer ice-free season. Bears were distinguished from other light-colored spots by comparing images collected on different dates. A sample of ground-truthed points demonstrated that we accurately classified bears. Independent observers reviewed images and a population estimate was obtained using mark-recapture models. This estimate (N: 94; 95% Confidence Interval: 92-105) was remarkably similar to an abundance estimate derived from a line transect aerial survey conducted a few days earlier (N: 102; 95% CI: 69-152). Our findings suggest that satellite imagery is a promising tool for monitoring polar bears on land, with implications for use with other Arctic wildlife. Large scale applications may require development of automated detection processes to expedite review and analysis. Future research should assess the utility of multi-spectral imagery and examine sites with different environmental characteristics.

  14. High resolution radar satellite imagery analysis for safeguards applications

    Energy Technology Data Exchange (ETDEWEB)

    Minet, Christian; Eineder, Michael [German Aerospace Center, Remote Sensing Technology Institute, Department of SAR Signal Processing, Wessling, (Germany); Rezniczek, Arnold [UBA GmbH, Herzogenrath, (Germany); Niemeyer, Irmgard [Forschungszentrum Juelich, Institue of Energy and Climate Research, IEK-6: Nuclear Waste Management and Reactor Safety, Juelich, (Germany)

    2011-12-15

    For monitoring nuclear sites, the use of Synthetic Aperture Radar (SAR) imagery shows essential promises. Unlike optical remote sensing instruments, radar sensors operate under almost all weather conditions and independently of the sunlight, i.e. time of the day. Such technical specifications are required both for continuous and for ad-hoc, timed surveillance tasks. With Cosmo-Skymed, TerraSARX and Radarsat-2, high-resolution SAR imagery with a spatial resolution up to 1m has recently become available. Our work therefore aims to investigate the potential of high-resolution TerraSAR data for nuclear monitoring. This paper focuses on exploiting amplitude of a single acquisition, assessing amplitude changes and phase differences between two acquisitions, and PS-InSAR processing of an image stack.

  15. Application of Object Based Classification and High Resolution Satellite Imagery for Savanna Ecosystem Analysis

    Directory of Open Access Journals (Sweden)

    Jane Southworth

    2010-12-01

    Full Text Available Savanna ecosystems are an important component of dryland regions and yet are exceedingly difficult to study using satellite imagery. Savannas are composed are varying amounts of trees, shrubs and grasses and typically traditional classification schemes or vegetation indices cannot differentiate across class type. This research utilizes object based classification (OBC for a region in Namibia, using IKONOS imagery, to help differentiate tree canopies and therefore woodland savanna, from shrub or grasslands. The methodology involved the identification and isolation of tree canopies within the imagery and the creation of tree polygon layers had an overall accuracy of 84%. In addition, the results were scaled up to a corresponding Landsat image of the same region, and the OBC results compared to corresponding pixel values of NDVI. The results were not compelling, indicating once more the problems of these traditional image analysis techniques for savanna ecosystems. Overall, the use of the OBC holds great promise for this ecosystem and could be utilized more frequently in studies of vegetation structure.

  16. Rethinking Destination Image

    DEFF Research Database (Denmark)

    Josiassen, Alexander; Kock, Florian; Assaf, Albert G.

    A central research question in tourism management concerns tourist’s choice of specific destinations. The present article reviews the extant literature on destination image. From this review we suggest that individuals have a multitude of destination associations – the total imagery which relates....... The article further provides an extensive review of the literature with regard to the definitions, dimensionality, antecedents, and outcomes of the focal concepts as well as geographical scope of destination imagery and image studies and methodologies. This review has led to a novel understanding...

  17. The effects of imagery on problem-solving ability and autobiographical memory.

    Science.gov (United States)

    Dennis, Ashley A; Astell, Arlene; Dritschel, Barbara

    2012-12-01

    Williams et al. (2006) found that increased imageability of cue words during an autobiographical memory task increased specificity of autobiographical memory (ABM) and improved subsequent social problem-solving (SPS). This study explored whether imagery during SPS improved SPS skill, perceived SPS ability, and the specificity of ABMs retrieved in the process of SPS in dysphoric students. Additionally, this study hypothesised that both memory specificity and perceived SPS ability would positively correlate with SPS skill. Dysphoric and non-dysphoric students solved hypothetical social problems on a modified version of the Means-End Problem-Solving task with a verbal or an imagery focus. Participants also completed a questionnaire about ABMs retrieved during SPS and rated their perceived effectiveness of their solutions. Contrary to Williams et al. (2006), the imagery focus did not improve SPS skill or influence perceived effectiveness. Additionally, in contrast to the hypothesis, the imagery group retrieved more overgeneral memories. Finally, ABM specificity did not correlate with SPS skill. However, dysphoric participants perceived specific memories to be significantly less helpful to SPS whereas non-dysphoric participants perceived specific memories to be helpful potentially supporting work on overgeneral ABM and functional avoidance. Copyright © 2011 Elsevier Ltd. All rights reserved.

  18. Part of the functional imagery in the development of new medicines. Press conference 30 september 1999; Role de l'imagerie fonctionnelle dans le developpement de nouveaux medicaments. Conference de presse 30 septembre 1999

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1999-09-01

    today the functional imagery plays an increasing part in the discovery and the development of new medicines. This paper is a presentation of the aims of the colloquium and the subjects proposed. It takes stock on the functional imagery methods: positron emission tomography, monophonic emission tomography, nuclear magnetic resonance (imaging and spectroscopy). The research programs of the CEA in this domain and in particular the activities of the Frederic Joliot hospital center are presented. (A.L.B.)

  19. Pornographic imagery and prevalence of paraphilia.

    Science.gov (United States)

    Dietz, P E; Evans, B

    1982-11-01

    The authors classified 1,760 heterosexual pornographic magazines according to the imagery of the cover photographs. Covers depicting only a woman posed alone predominated in 1970 but constituted only 10.7% of the covers in 1981. Bondage and domination imagery was the most prevalent nonormative imagery and was featured in 17.2% of the magazines. Smaller proportions of material were devoted to group sexual activity (9.8%), tranvestism and transsexualism (4.4%), and other nonnormative imagery. The authors suggest that pornographic imagery is an unobtrusive measure of the relative prevalence of those paraphilias associated with preferences for specific types of visual imagery and for which better data are lacking.

  20. Mental imagery and the third dimension.

    Science.gov (United States)

    Pinker, S

    1980-09-01

    What sort of medium underlies imagery for three-dimensional scenes? In the present investigation, the time subjects took to scan between objects in a mental image was used to infer the sorts of geometric information that images preserve. Subjects studied an open box in which five objects were suspended, and learned to imagine this display with their eyes closed. In the first experiment, subjects scanned by tracking an imaginary point moving in a straight line between the imagined objects. Scanning times increased linearly with increasing distance between objects in three dimensions. Therefore metric 3-D information must be preserved in images, and images cannot simply be 2-D "snapshots." In a second experiment, subjects scanned across the image by "sighting" objects through an imaginary rifle sight. Here scanning times were found to increase linearly with the two-dimensional separations between objects as they appeared from the original viewing angle. Therefore metric 2-D distance information in the original perspective view must be preserved in images, and images cannot simply be 3-D "scale-models" that are assessed from any and all directions at once. In a third experiment, subjects mentally rotated the display 90 degrees and scanned between objects as they appeared in this new perspective view by tracking an imaginary rifle signt, as before. Scanning times increased linearly with the two-dimensional separations between objects as they would appear from the new relative viewing perspective. Therefore images can display metric 2-D distance information in a perspective view never actually experiences, so mental images cannot simply be "snapshot plus scale model" pairs. These results can be explained by a model in which the three-dimensional structure of objects is encoded in long-term memory in 3-D object-centered coordinate systems. When these objects are imagined, this information is then mapped onto a single 2-D "surface display" in which the perspective

  1. Automated Sargassum Detection for Landsat Imagery

    Science.gov (United States)

    McCarthy, S.; Gallegos, S. C.; Armstrong, D.

    2016-02-01

    We implemented a system to automatically detect Sargassum, a floating seaweed, in 30-meter LANDSAT-8 Operational Land Imager (OLI) imagery. Our algorithm for Sargassum detection is an extended form of Hu's approach to derive a floating algae index (FAI) [1]. Hu's algorithm was developed for Moderate Resolution Imaging Spectroradiometer (MODIS) data, but we extended it for use with the OLI bands centered at 655, 865, and 1609 nm, which are comparable to the MODIS bands located at 645, 859, and 1640 nm. We also developed a high resolution true color product to mask cloud pixels in the OLI scene by applying a threshold to top of the atmosphere (TOA) radiances in the red (655 nm), green (561 nm), and blue (443 nm) wavelengths, as well as a method for removing false positive identifications of Sargassum in the imagery. Hu's algorithm derives a FAI for each Sargassum identified pixel. Our algorithm is currently set to only flag the presence of Sargassum in an OLI pixel by classifying any pixel with a FAI > 0.0 as Sargassum. Additionally, our system geo-locates the flagged Sargassum pixels identified in the OLI imagery into the U.S. Navy Global HYCOM model grid. One element of the model grid covers an area 0.125 degrees of latitude by 0.125 degrees of longitude. To resolve the differences in spatial coverage between Landsat and HYCOM, a scheme was developed to calculate the percentage of pixels flagged within the grid element and if above a threshold, it will be flagged as Sargassum. This work is a part of a larger system, sponsored by NASA/Applied Science and Technology Project at J.C. Stennis Space Center, to forecast when and where Sargassum will land on shore. The focus area of this work is currently the Texas coast. Plans call for extending our efforts into the Caribbean. References: [1] Hu, Chuanmin. A novel ocean color index to detect floating algae in the global oceans. Remote Sensing of Environment 113 (2009) 2118-2129.

  2. A cross-modal perspective on the relationships between imagery and working memory

    Directory of Open Access Journals (Sweden)

    Lora T Likova

    2013-01-01

    Full Text Available Mapping the distinctions and interrelationships between imagery and working memory remains challenging. Although each of these major cognitive constructs is defined and treated in various ways across studies, most accept that both imagery and working memory involve a form of internal representation available to our awareness. In working memory, there is a further emphasis on active maintenance and use of this conscious representation to guide voluntary action. Multicomponent working memory models incorporate representational buffers, such as the visuo-spatial sketchpad, plus central executive functions. If there is a visuo-spatial ‘sketchpad’ for working memory, does imagery involve the same representational buffer? Alternatively, does working memory employ an imagery-specific representational mechanism to occupy our awareness? Or do both constructs utilize a more generic ‘projection screen’ of an amodal nature? In a cross-modal fMRI study a novel memory paradigm is introduced based on drawing, which may be conceptualized as a complex behaviour adaptable to learning in the tactile modality. Blindfolded participants were trained to draw complex objects guided purely by the memory of felt tactile images. If this working memory task had been mediated by transfer of the felt spatial configuration to the visual imagery mechanism, the response profile in visual cortex would be predicted to have the ‘top-down’ signature of propagation of the imagery signal downwards through the visual hierarchy. Remarkably, the pattern of cross-modal occipital activation generated by the non-visual memory drawing was essentially the inverse of this typical ‘imagery signature’, with the sole visual hierarchy activation occurring in V1, accompanied by deactivation of the entire extrastriate part of the hierarchy. The implications of these findings for the debate on the interrelationships between the core cognitive constructs of working memory and imagery

  3. Using motor imagery to study the neural substrates of dynamic balance

    NARCIS (Netherlands)

    Ferraye, M.U.; Debû, B.H.G.; Heil, L.; Carpenter, M.; Bloem, B.R.; Toni, I.

    2014-01-01

    This study examines the cerebral structures involved in dynamic balance using a motor imagery (MI) protocol. We recorded cerebral activity with functional magnetic resonance imaging while subjects imagined swaying on a balance board along the sagittal plane to point a laser at target pairs of

  4. Imagery and fear influence height perception.

    Science.gov (United States)

    Clerkin, Elise M; Cody, Meghan W; Stefanucci, Jeanine K; Proffitt, Dennis R; Teachman, Bethany A

    2009-04-01

    The current study tested whether height overestimation is related to height fear and influenced by images of falling. To assess perceptual biases, participants high (n=65) versus low (n=64) in height fear estimated the vertical extents of two balconies using a visual matching task. On one of the balconies, participants engaged in an imagery exercise designed to enhance the subjective sense that they were acting in a dangerous environment by picturing themselves falling. As expected, we found that individuals overestimated the balcony's height more after they imagined themselves falling, particularly if they were already afraid of heights. These findings suggest that height fear may serve as a vulnerability factor that leads to perceptual biases when triggered by a stressor (in this case, images of falling).

  5. Platforms for hyperspectral imaging, in-situ optical and acoustical imaging in urbanized regions

    Science.gov (United States)

    Bostater, Charles R.; Oney, Taylor

    2016-10-01

    Hyperspectral measurements of the water surface of urban coastal waters are presented. Oblique bidirectional reflectance factor imagery was acquired made in a turbid coastal sub estuary of the Indian River Lagoon, Florida and along coastal surf zone waters of the nearby Atlantic Ocean. Imagery was also collected using a pushbroom hyperspectral imager mounted on a fixed platform with a calibrated circular mechatronic rotation stage. Oblique imagery of the shoreline and subsurface features clearly shows subsurface bottom features and rip current features within the surf zone water column. In-situ hyperspectral optical signatures were acquired from a vessel as a function of depth to determine the attenuation spectrum in Palm Bay. A unique stationary platform methodology to acquire subsurface acoustic images showing the presence of moving bottom boundary nephelometric layers passing through the acoustic fan beam. The acoustic fan beam imagery indicated the presence of oscillatory subsurface waves in the urbanized coastal estuary. Hyperspectral imaging using the fixed platform techniques are being used to collect hyperspectral bidirectional reflectance factor (BRF) measurements from locations at buildings and bridges in order to provide new opportunities to advance our scientific understanding of aquatic environments in urbanized regions.

  6. Mental Imagery and Visual Working Memory

    Science.gov (United States)

    Keogh, Rebecca; Pearson, Joel

    2011-01-01

    Visual working memory provides an essential link between past and future events. Despite recent efforts, capacity limits, their genesis and the underlying neural structures of visual working memory remain unclear. Here we show that performance in visual working memory - but not iconic visual memory - can be predicted by the strength of mental imagery as assessed with binocular rivalry in a given individual. In addition, for individuals with strong imagery, modulating the background luminance diminished performance on visual working memory and imagery tasks, but not working memory for number strings. This suggests that luminance signals were disrupting sensory-based imagery mechanisms and not a general working memory system. Individuals with poor imagery still performed above chance in the visual working memory task, but their performance was not affected by the background luminance, suggesting a dichotomy in strategies for visual working memory: individuals with strong mental imagery rely on sensory-based imagery to support mnemonic performance, while those with poor imagery rely on different strategies. These findings could help reconcile current controversy regarding the mechanism and location of visual mnemonic storage. PMID:22195024

  7. Mental imagery and visual working memory.

    Directory of Open Access Journals (Sweden)

    Rebecca Keogh

    Full Text Available Visual working memory provides an essential link between past and future events. Despite recent efforts, capacity limits, their genesis and the underlying neural structures of visual working memory remain unclear. Here we show that performance in visual working memory--but not iconic visual memory--can be predicted by the strength of mental imagery as assessed with binocular rivalry in a given individual. In addition, for individuals with strong imagery, modulating the background luminance diminished performance on visual working memory and imagery tasks, but not working memory for number strings. This suggests that luminance signals were disrupting sensory-based imagery mechanisms and not a general working memory system. Individuals with poor imagery still performed above chance in the visual working memory task, but their performance was not affected by the background luminance, suggesting a dichotomy in strategies for visual working memory: individuals with strong mental imagery rely on sensory-based imagery to support mnemonic performance, while those with poor imagery rely on different strategies. These findings could help reconcile current controversy regarding the mechanism and location of visual mnemonic storage.

  8. Mental imagery and visual working memory.

    Science.gov (United States)

    Keogh, Rebecca; Pearson, Joel

    2011-01-01

    Visual working memory provides an essential link between past and future events. Despite recent efforts, capacity limits, their genesis and the underlying neural structures of visual working memory remain unclear. Here we show that performance in visual working memory--but not iconic visual memory--can be predicted by the strength of mental imagery as assessed with binocular rivalry in a given individual. In addition, for individuals with strong imagery, modulating the background luminance diminished performance on visual working memory and imagery tasks, but not working memory for number strings. This suggests that luminance signals were disrupting sensory-based imagery mechanisms and not a general working memory system. Individuals with poor imagery still performed above chance in the visual working memory task, but their performance was not affected by the background luminance, suggesting a dichotomy in strategies for visual working memory: individuals with strong mental imagery rely on sensory-based imagery to support mnemonic performance, while those with poor imagery rely on different strategies. These findings could help reconcile current controversy regarding the mechanism and location of visual mnemonic storage.

  9. Remote sensing and GIS integration: Towards intelligent imagery within a spatial data infrastructure

    Science.gov (United States)

    Abdelrahim, Mohamed Mahmoud Hosny

    2001-11-01

    In this research, an "Intelligent Imagery System Prototype" (IISP) was developed. IISP is an integration tool that facilitates the environment for active, direct, and on-the-fly usage of high resolution imagery, internally linked to hidden GIS vector layers, to query the real world phenomena and, consequently, to perform exploratory types of spatial analysis based on a clear/undisturbed image scene. The IISP was designed and implemented using the software components approach to verify the hypothesis that a fully rectified, partially rectified, or even unrectified digital image can be internally linked to a variety of different hidden vector databases/layers covering the end user area of interest, and consequently may be reliably used directly as a base for "on-the-fly" querying of real-world phenomena and for performing exploratory types of spatial analysis. Within IISP, differentially rectified, partially rectified (namely, IKONOS GEOCARTERRA(TM)), and unrectified imagery (namely, scanned aerial photographs and captured video frames) were investigated. The system was designed to handle four types of spatial functions, namely, pointing query, polygon/line-based image query, database query, and buffering. The system was developed using ESRI MapObjects 2.0a as the core spatial component within Visual Basic 6.0. When used to perform the pre-defined spatial queries using different combinations of image and vector data, the IISP provided the same results as those obtained by querying pre-processed vector layers even when the image used was not orthorectified and the vector layers had different parameters. In addition, the real-time pixel location orthorectification technique developed and presented within the IKONOS GEOCARTERRA(TM) case provided a horizontal accuracy (RMSE) of +/- 2.75 metres. This accuracy is very close to the accuracy level obtained when purchasing the orthorectified IKONOS PRECISION products (RMSE of +/- 1.9 metre). The latter cost approximately four

  10. Musical Imagery Involves Wernicke's Area in Bilateral and Anti-Correlated Network Interactions in Musicians.

    Science.gov (United States)

    Zhang, Yizhen; Chen, Gang; Wen, Haiguang; Lu, Kun-Han; Liu, Zhongming

    2017-12-06

    Musical imagery is the human experience of imagining music without actually hearing it. The neural basis of this mental ability is unclear, especially for musicians capable of engaging in accurate and vivid musical imagery. Here, we created a visualization of an 8-minute symphony as a silent movie and used it as real-time cue for musicians to continuously imagine the music for repeated and synchronized sessions during functional magnetic resonance imaging (fMRI). The activations and networks evoked by musical imagery were compared with those elicited by the subjects directly listening to the same music. Musical imagery and musical perception resulted in overlapping activations at the anterolateral belt and Wernicke's area, where the responses were correlated with the auditory features of the music. Whereas Wernicke's area interacted within the intrinsic auditory network during musical perception, it was involved in much more complex networks during musical imagery, showing positive correlations with the dorsal attention network and the motor-control network and negative correlations with the default-mode network. Our results highlight the important role of Wernicke's area in forming vivid musical imagery through bilateral and anti-correlated network interactions, challenging the conventional view of segregated and lateralized processing of music versus language.

  11. Tracking Dynamic Northern Surface Water Changes with High-Frequency Planet CubeSat Imagery

    Directory of Open Access Journals (Sweden)

    Sarah W. Cooley

    2017-12-01

    Full Text Available Recent deployments of CubeSat imagers by companies such as Planet may advance hydrological remote sensing by providing an unprecedented combination of high temporal and high spatial resolution imagery at the global scale. With approximately 170 CubeSats orbiting at full operational capacity, the Planet CubeSat constellation currently offers an average revisit time of <1 day for the Arctic and near-daily revisit time globally at 3 m spatial resolution. Such data have numerous potential applications for water resource monitoring, hydrologic modeling and hydrologic research. Here we evaluate Planet CubeSat imaging capabilities and potential scientific utility for surface water studies in the Yukon Flats, a large sub-Arctic wetland in north central Alaska. We find that surface water areas delineated from Planet imagery have a normalized root mean square error (NRMSE of <11% and geolocation accuracy of <10 m as compared with manual delineations from high resolution (0.3–0.5 m WorldView-2/3 panchromatic satellite imagery. For a 625 km2 subarea of the Yukon Flats, our time series analysis reveals that roughly one quarter of 268 lakes analyzed responded to changes in Yukon River discharge over the period 23 June–1 October 2016, one half steadily contracted, and one quarter remained unchanged. The spatial pattern of observed lake changes is heterogeneous. While connections to Yukon River control the hydrologically connected lakes, the behavior of other lakes is complex, likely driven by a combination of intricate flow paths, underlying geology and permafrost. Limitations of Planet CubeSat imagery include a lack of an automated cloud mask, geolocation inaccuracies, and inconsistent radiometric calibration across multiple platforms. Although these challenges must be addressed before Planet CubeSat imagery can achieve its full potential for large-scale hydrologic research, we conclude that CubeSat imagery offers a powerful new tool for the study and

  12. Satellite imagery and the Department of Safeguards

    International Nuclear Information System (INIS)

    Chitumbo, K.; Bunney, J.; Leve, G.; Robb, S.

    2001-01-01

    Full text: The presentation examines some of the challenges the Satellite Imagery and Analysis Laboratory (SIAL) is facing in supporting Strengthened Safeguards. It focuses on the analytical process, starting with specifying initial tasking and continuing through to end products that are a direct result of in-house analysis. In addition it also evaluates the advantages and disadvantages of SIAL's mission and introduces external forces that the agency must consider, but cannot itself, predict or control. Although SIAL's contribution to tasks relating to Article 2a(iii) of the Additional Protocol are known and are presently of great benefit to operations areas, this is only one aspect of its work. SIAL's ability to identify and analyze historical satellite imagery data has the advantage of permitting operations to take a more in depth view of a particular area of interest's (AOI) development, and thus may permit operations to confirm or refute specific assertions relating to the AOI's function or abilities. These assertions may originate in-house or may be open source reports the agency feels it is obligated to explore. SIAL's mission is unique in the world of imagery analysis. Its aim is to support all operations areas equally and in doing so it must maintain global focus. The task is tremendous, but the resultant coverage and concentration of unique expertise will allow SIAL to develop and provide operations with datasets that can be exploited in standalone mode or be incorporated into new cutting edge tools to be developed in SGIT. At present SIAL relies on two remote sensors, IKONOS-2 and EROS-AI, for present high- resolution imagery data and is using numerous sources for historical, pre 1999, data. A multiplicity of sources for high-resolution data is very important to SIAL, but is something that it cannot influence. It is hoped that the planned launch of two new sensors by Summer 2002 will be successful and will offer greater flexibility for image collection

  13. NAIP 2015 Imagery Feedback

    Data.gov (United States)

    Farm Service Agency, Department of Agriculture — The NAIP 2015 Imagery Feedback web application allows users to make comments and observations about the quality of the 2015 National Agriculture Imagery Program...

  14. Evaluation of Available Software for Reconstruction of a Structure from its Imagery

    Science.gov (United States)

    2017-04-01

    scene and signature generation for ladar and imaging sensors, in Proc. SPIE 9071 Infrared Imaging System : Design , Analysis , Modeling, and Testing XXV...UNCLASSIFIED Evaluation of Available Software for Reconstruction of a Structure from its Imagery Leonid K Antanovskii Weapons and Combat Systems ...project. The Computer Vision System toolbox of MATLAB R© and the Visual Structure from Motion (VisualSFM) software are evaluated on three datasets of

  15. Mosaicking Techniques for Deep Submergence Vehicle Video Imagery - Applications to Ridge2000 Science

    Science.gov (United States)

    Mayer, L.; Rzhanov, Y.; Fornari, D. J.; Soule, A.; Shank, T. M.; Beaulieu, S. E.; Schouten, H.; Tivey, M.

    2004-12-01

    Severe attenuation of visible light and limited power capabilities of many submersible vehicles require acquisition of imagery from short ranges, rarely exceeding 8-10 meters. Although modern video- and photo-equipment makes high-resolution video surveying possible, the field of view of each image remains relatively narrow. To compensate for the deficiencies in light and field of view researchers have been developing techniques allowing for combining images into larger composite images i.e., mosaicking. A properly constructed, accurate mosaic has a number of well-known advantages in comparison with the original sequence of images, the most notable being improved situational awareness. We have developed software strategies for PC-based computers that permit conversion of video imagery acquired from any underwater vehicle, operated within both absolute (e.g. LBL or USBL) or relative (e.g. Doppler Velocity Log-DVL) navigation networks, to quickly produce a set of geo-referenced photomosaics which can then be directly incorporated into a Geographic Information System (GIS) data base. The timescale of processing is rapid enough to permit analysis of the resulting mosaics between submersible dives thus enhancing the efficiency of deep-sea research. Commercial imaging processing packages usually handle cases where there is no or little parallax - an unlikely situation for undersea world where terrain has pronounced 3D content and imagery is acquired from moving platforms. The approach we have taken is optimized for situations in which there is significant relief and thus parallax in the imagery (e.g. seafloor fault scarps or constructional volcanic escarpments and flow fronts). The basis of all mosaicking techniques is a pair-wise image registration method that finds a transformation relating pixels of two consecutive image frames. We utilize a "rigid affine model" with four degrees of freedom for image registration that allows for camera translation in all directions and

  16. Transmission of compressed tactical imagery by means of an rf link

    Science.gov (United States)

    Conners, Gary H.; Liou, C. S. J.; Muczynski, Joe

    1995-01-01

    The joint University of Rochester/Rochester Institute of Technology `Center for Electronic Imaging Systems' (CEIS) is designed to focus on research problems of interest to industrial sponsors. A particular feature of the research is that it is organized in the `triplet' mode: each project includes a faculty researcher, an industrial partner, and a doctoral or postdoctoral fellow. Compression of tactical images for transmission over an rf link is an example of this type of research project which is being worked on in collaboration with one of the CEIS sponsors, Harris Corporation/Rf communications. The Harris Digital Video Imagery Transmission System (DVITS) is designed to fulfill the need to transmit secure imagery between unwired locations at real-time rates. DVITS specializes in transmission systems for users who rely on hf equipment operating at the low end of the frequency spectrum. However, the inherently low bandwidth of hf combined with transmission characteristics such as fading and dropout severely restrict the effective throughput. The problem is posed as one of maximizing the probability of reception of the most significant information in an m x n pixel image in the shortest possible time. Various design strategies combining image segmentation, compression, and error correction are evaluated using a realistic model for the communication channel. A recommended strategy is developed and a test method using a variety of test images is described. The methodology established here can be employed for other image transmission designs.

  17. Effector-independent brain activity during motor imagery of the upper and lower limbs: an fMRI study.

    Science.gov (United States)

    Mizuguchi, Nobuaki; Nakata, Hiroki; Kanosue, Kazuyuki

    2014-10-03

    We utilized functional magnetic resonance imaging (fMRI) to evaluate the common brain region of motor imagery for the right and left upper and lower limbs. The subjects were instructed to repeatedly imagined extension and flexion of the right or left hands/ankles. Brain regions, which included the supplemental motor area (SMA), premotor cortex and parietal cortex, were activated during motor imagery. Conjunction analysis revealed that the left SMA and inferior frontal gyrus (IFG)/ventral premotor cortex (vPM) were commonly activated with motor imagery of the right hand, left hand, right foot, and left foot. This result suggests that these brain regions are activated during motor imagery in an effector independent manner. Copyright © 2014 Elsevier Ireland Ltd. All rights reserved.

  18. Current Resource Imagery Projects

    Data.gov (United States)

    Farm Service Agency, Department of Agriculture — Map showing coverage of current Resource imagery projects. High resolution/large scale Resource imagery is typically acquired for the U.S. Forest Service and other...

  19. Part of the functional imagery in the development of new medicines. Press conference 30 september 1999; Role de l'imagerie fonctionnelle dans le developpement de nouveaux medicaments. Conference de presse 30 septembre 1999

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1999-09-01

    today the functional imagery plays an increasing part in the discovery and the development of new medicines. This paper is a presentation of the aims of the colloquium and the subjects proposed. It takes stock on the functional imagery methods: positron emission tomography, monophonic emission tomography, nuclear magnetic resonance (imaging and spectroscopy). The research programs of the CEA in this domain and in particular the activities of the Frederic Joliot hospital center are presented. (A.L.B.)

  20. Transition, Training, and Assessment of Multispectral Composite Imagery in Support of the NWS Aviation Forecast Mission

    Science.gov (United States)

    Fuell, Kevin; Jedlovec, Gary; Leroy, Anita; Schultz, Lori

    2015-01-01

    The NASA/Short-term Prediction, Research, and Transition (SPoRT) Program works closely with NOAA/NWS weather forecasters to transition unique satellite data and capabilities into operations in order to assist with nowcasting and short-term forecasting issues. Several multispectral composite imagery (i.e. RGB) products were introduced to users in the early 2000s to support hydrometeorology and aviation challenges as well as incident support. These activities lead to SPoRT collaboration with the GOES-R Proving Ground efforts where instruments such as MODIS (Aqua, Terra) and S-NPP/VIIRS imagers began to be used as near-realtime proxies to future capabilities of the Advanced Baseline Imager (ABI). One of the composite imagery products introduced to users was the Night-time Microphysics RGB, originally developed by EUMETSAT. SPoRT worked to transition this imagery to NWS users, provide region-specific training, and assess the impact of the imagery to aviation forecast needs. This presentation discusses the method used to interact with users to address specific aviation forecast challenges, including training activities undertaken to prepare for a product assessment. Users who assessed the multispectral imagery ranged from southern U.S. inland and coastal NWS weather forecast offices (WFOs), to those in the Rocky Mountain Front Range region and West Coast, as well as highlatitude forecasters of Alaska. These user-based assessments were documented and shared with the satellite community to support product developers and the broad users of new generation satellite data.

  1. Hypnagogic imagery and EEG activity.

    Science.gov (United States)

    Hayashi, M; Katoh, K; Hori, T

    1999-04-01

    The relationships between hypnagogic imagery and EEG activity were studied. 7 subjects (4 women and 3 men) reported the content of hypnagogic imagery every minute and the hypnagogic EEGs were classified into 5 stages according to Hori's modified criteria. The content of the hypnagogic imagery changed as a function of the hypnagogic EEG stages.

  2. Referential processing: reciprocity and correlates of naming and imaging.

    Science.gov (United States)

    Paivio, A; Clark, J M; Digdon, N; Bons, T

    1989-03-01

    To shed light on the referential processes that underlie mental translation between representations of objects and words, we studied the reciprocity and determinants of naming and imaging reaction times (RT). Ninety-six subjects pressed a key when they had covertly named 248 pictures or imaged to their names. Mean naming and imagery RTs for each item were correlated with one another, and with properties of names, images, and their interconnections suggested by prior research and dual coding theory. Imagery RTs correlated .56 (df = 246) with manual naming RTs and .58 with voicekey naming RTs from prior studies. A factor analysis of the RTs and of 31 item characteristics revealed 7 dimensions. Imagery and naming RTs loaded on a common referential factor that included variables related to both directions of processing (e.g., missing names and missing images). Naming RTs also loaded on a nonverbal-to-verbal factor that included such variables as number of different names, whereas imagery RTs loaded on a verbal-to-nonverbal factor that included such variables as rated consistency of imagery. The other factors were verbal familiarity, verbal complexity, nonverbal familiarity, and nonverbal complexity. The findings confirm the reciprocity of imaging and naming, and their relation to constructs associated with distinct phases of referential processing.

  3. Towards the Automatic Detection of Pre-Existing Termite Mounds through UAS and Hyperspectral Imagery.

    Science.gov (United States)

    Sandino, Juan; Wooler, Adam; Gonzalez, Felipe

    2017-09-24

    The increased technological developments in Unmanned Aerial Vehicles (UAVs) combined with artificial intelligence and Machine Learning (ML) approaches have opened the possibility of remote sensing of extensive areas of arid lands. In this paper, a novel approach towards the detection of termite mounds with the use of a UAV, hyperspectral imagery, ML and digital image processing is intended. A new pipeline process is proposed to detect termite mounds automatically and to reduce, consequently, detection times. For the classification stage, several ML classification algorithms' outcomes were studied, selecting support vector machines as the best approach for their role in image classification of pre-existing termite mounds. Various test conditions were applied to the proposed algorithm, obtaining an overall accuracy of 68%. Images with satisfactory mound detection proved that the method is "resolution-dependent". These mounds were detected regardless of their rotation and position in the aerial image. However, image distortion reduced the number of detected mounds due to the inclusion of a shape analysis method in the object detection phase, and image resolution is still determinant to obtain accurate results. Hyperspectral imagery demonstrated better capabilities to classify a huge set of materials than implementing traditional segmentation methods on RGB images only.

  4. Classification of Maize in Complex Smallholder Farming Systems Using UAV Imagery

    Directory of Open Access Journals (Sweden)

    Ola Hall

    2018-06-01

    Full Text Available Yield estimates and yield gap analysis are important for identifying poor agricultural productivity. Remote sensing holds great promise for measuring yield and thus determining yield gaps. Farming systems in sub-Saharan Africa (SSA are commonly characterized by small field size, intercropping, different crop species with similar phenologies, and sometimes high cloud frequency during the growing season, all of which pose real challenges to remote sensing. Here, an unmanned aerial vehicle (UAV system based on a quadcopter equipped with two consumer-grade cameras was used for the delineation and classification of maize plants on smallholder farms in Ghana. Object-oriented image classification methods were applied to the imagery, combined with measures of image texture and intensity, hue, and saturation (IHS, in order to achieve delineation. It was found that the inclusion of a near-infrared (NIR channel and red–green–blue (RGB spectra, in combination with texture or IHS, increased the classification accuracy for both single and mosaic images to above 94%. Thus, the system proved suitable for delineating and classifying maize using RGB and NIR imagery and calculating the vegetation fraction, an important parameter in producing yield estimates for heterogeneous smallholder farming systems.

  5. Alcohol imagery on New Zealand television

    Directory of Open Access Journals (Sweden)

    Reeder Anthony I

    2007-02-01

    Full Text Available Abstract Background To examine the extent and nature of alcohol imagery on New Zealand (NZ television, a content analysis of 98 hours of prime-time television programs and advertising was carried out over 7 consecutive days' viewing in June/July 2004. The main outcome measures were number of scenes in programs, trailers and advertisements depicting alcohol imagery; the extent of critical versus neutral and promotional imagery; and the mean number of scenes with alcohol per hour, and characteristics of scenes in which alcohol featured. Results There were 648 separate depictions of alcohol imagery across the week, with an average of one scene every nine minutes. Scenes depicting uncritical imagery outnumbered scenes showing possible adverse health consequences of drinking by 12 to 1. Conclusion The evidence points to a large amount of alcohol imagery incidental to storylines in programming on NZ television. Alcohol is also used in many advertisements to market non-alcohol goods and services. More attention needs to be paid to the extent of alcohol imagery on television from the industry, the government and public health practitioners. Health education with young people could raise critical awareness of the way alcohol imagery is presented on television.

  6. SAR Imagery Simulation of Ship Based on Electromagnetic Calculations and Sea Clutter Modelling for Classification Applications

    International Nuclear Information System (INIS)

    Ji, K F; Zhao, Z; Xing, X W; Zou, H X; Zhou, S L

    2014-01-01

    Ship detection and classification with space-borne SAR has many potential applications within the maritime surveillance, fishery activity management, monitoring ship traffic, and military security. While ship detection techniques with SAR imagery are well established, ship classification is still an open issue. One of the main reasons may be ascribed to the difficulties on acquiring the required quantities of real data of vessels under different observation and environmental conditions with precise ground truth. Therefore, simulation of SAR images with high scenario flexibility and reasonable computation costs is compulsory for ship classification algorithms development. However, the simulation of SAR imagery of ship over sea surface is challenging. Though great efforts have been devoted to tackle this difficult problem, it is far from being conquered. This paper proposes a novel scheme for SAR imagery simulation of ship over sea surface. The simulation is implemented based on high frequency electromagnetic calculations methods of PO, MEC, PTD and GO. SAR imagery of sea clutter is modelled by the representative K-distribution clutter model. Then, the simulated SAR imagery of ship can be produced by inserting the simulated SAR imagery chips of ship into the SAR imagery of sea clutter. The proposed scheme has been validated with canonical and complex ship targets over a typical sea scene

  7. SPECTRUM analysis of multispectral imagery in conjunction with wavelet/KLT data compression

    Energy Technology Data Exchange (ETDEWEB)

    Bradley, J.N.; Brislawn, C.M.

    1993-12-01

    The data analysis program, SPECTRUM, is used for fusion, visualization, and classification of multi-spectral imagery. The raw data used in this study is Landsat Thematic Mapper (TM) 7-channel imagery, with 8 bits of dynamic range per channel. To facilitate data transmission and storage, a compression algorithm is proposed based on spatial wavelet transform coding and KLT decomposition of interchannel spectral vectors, followed by adaptive optimal multiband scalar quantization. The performance of SPECTRUM clustering and visualization is evaluated on compressed multispectral data. 8-bit visualizations of 56-bit data show little visible distortion at 50:1 compression and graceful degradation at higher compression ratios. Two TM images were processed in this experiment: a 1024 x 1024-pixel scene of the region surrounding the Chernobyl power plant, taken a few months before the reactor malfunction, and a 2048 x 2048 image of Moscow and surrounding countryside.

  8. Exploitation of multi-temporal Earth Observation imagery for monitoring land cover change in mining sites

    Science.gov (United States)

    Petropoulos, G.; Partsinevelos, P.; Mitraka, Z.

    2012-04-01

    Surface mining has been shown to cause intensive environmental degradation in terms of landscape, vegetation and biological communities. Nowadays, the commercial availability of remote sensing imagery at high spatiotemporal scales, has improved dramatically our ability to monitor surface mining activity and evaluate its impact on the environment and society. In this study we investigate the potential use of Landsat TM imagery combined with diverse classification techniques, namely artificial neural networks and support vector machines for delineating mining exploration and assessing its effect on vegetation in various surface mining sites in the Greek island of Milos. Assessment of the mining impact in the study area is validated through the analysis of available QuickBird imagery acquired nearly concurrently to the TM overpasses. Results indicate the capability of the TM sensor combined with the image analysis applied herein as a potential economically viable solution to provide rapidly and at regular time intervals information on mining activity and its impact to the local environment. KEYWORDS: mining environmental impact, remote sensing, image classification, change detection, land reclamation, support vector machines, neural networks

  9. Characteristics of autobiographical memories and prospective imagery across a spectrum of hypomanic personality traits.

    Science.gov (United States)

    McGill, Brittany; Moulds, Michelle L

    2014-01-01

    Evidence of a strong causal relationship between mental imagery and emotion has informed psychological conceptualisations of disordered positive mood states (i.e., mania). Holmes et al.'s cognitive model of bipolar disorder asserts a prominent role for intrusive and affect-laden positive imagery of the past and the future in the amplification and maintenance of positive mood and associated manic behaviours. The aims of the current study were two-fold: (1) to test aspects of this model in a non-clinical population sampled for hypomanic personality traits and (2) to examine the phenomenological characteristics of positive autobiographical memories and imagery of the future. Undergraduate students (N = 80) completed a battery of self-report questionnaires and rated their positive and negative memories and images of the future on a number of dimensions. We found significant positive correlations between hypomanic tendencies and the (1) everyday experience and use of mental imagery, (2) experience of intrusive mental imagery of future events, (3) emotional intensity and sensory detail of positive but not negative autobiographical memories. Results are discussed in the context of their theoretical and clinical implications, and directions for future research are considered.

  10. Application of EREP imagery to fracture-related mine safety hazards and environmental problems in mining. [Indiana

    Science.gov (United States)

    Wier, C. E.; Wobber, F. J.; Amato, R. V.; Russell, O. R. (Principal Investigator)

    1974-01-01

    The author has identified the following significant results. All Skylab 2 imagery received to date has been analyzed manually and data related to fracture analysis and mined land inventories has been summarized on map-overlays. A comparison of the relative utility of the Skylab image products for fracture detection, soil tone/vegetation contrast mapping, and mined land mapping has been completed. Numerous fracture traces were detected on both color and black and white transparencies. Unique fracture trace data which will contribute to the investigator's mining hazards analysis were noted on the EREP imagery; these data could not be detected on ERTS-1 imagery or high altitude aircraft color infrared photography. Stream segments controlled by fractures or joint systems could be identified in more detail than with ERTS-1 imagery of comparable scale. ERTS-1 mine hazards products will be modified to demonstrate the value of this additional data. Skylab images were used successfully to update a mined land map of Indiana made in 1972. Changes in mined area as small as two acres can be identified. As the Energy Crisis increases the demand for coal, such demonstrations of the application of Skylab data to coal resources will take on new importance.

  11. Using Google Street View for systematic observation of the built environment: analysis of spatio-temporal instability of imagery dates.

    Science.gov (United States)

    Curtis, Jacqueline W; Curtis, Andrew; Mapes, Jennifer; Szell, Andrea B; Cinderich, Adam

    2013-12-03

    Recently, Google Street View (GSV) has been examined as a tool for remotely conducting systematic observation of the built environment. Studies have found it offers benefits over in-person audits, including efficiency, safety, cost, and the potential to expand built environment research to larger areas and more places globally. However, one limitation has been the lack of documentation on the date of imagery collection. In 2011, Google began placing a date stamp on images which now enables investigation of this concern. This study questions the spatio-temporal stability in the GSV date stamp. Specifically, is the imagery collected contemporaneously? If not, how frequently and where is imagery from different time periods woven together to represent environmental conditions in a particular place. Furthermore, how much continuity exists in imagery for a particular time period? Answering these questions will provide guidance on the use of GSV as a tool for built environment audits. GSV was used to virtually "drive" five sites that are a part of the authors' ongoing studies. Each street in the sites was "driven" one mouse-click at a time while observing the date stamp on each image. Every time the date stamp changed, this "disruption" was marked on the map. Every street segment in the site was coded by the date the imagery for that segment was collected. Spatial query and descriptive statistics were applied to understand the spatio-temporal patterns of imagery dates. Spatio-temporal instability is present in the dates of GSV imagery. Of the 353 disruptions, 82.4% occur close to (<25 m) intersections. The remainder occurs inconsistently in other locations. The extent of continuity for a set of images collected with the same date stamp ranged from 3.13 m to 3373.06 m, though the majority of continuous segments were less than 400 m. GSV offers some benefits over traditional built environment audits. However, this investigation empirically identifies a previously

  12. Automated Identification of River Hydromorphological Features Using UAV High Resolution Aerial Imagery

    Directory of Open Access Journals (Sweden)

    Monica Rivas Casado

    2015-11-01

    Full Text Available European legislation is driving the development of methods for river ecosystem protection in light of concerns over water quality and ecology. Key to their success is the accurate and rapid characterisation of physical features (i.e., hydromorphology along the river. Image pattern recognition techniques have been successfully used for this purpose. The reliability of the methodology depends on both the quality of the aerial imagery and the pattern recognition technique used. Recent studies have proved the potential of Unmanned Aerial Vehicles (UAVs to increase the quality of the imagery by capturing high resolution photography. Similarly, Artificial Neural Networks (ANN have been shown to be a high precision tool for automated recognition of environmental patterns. This paper presents a UAV based framework for the identification of hydromorphological features from high resolution RGB aerial imagery using a novel classification technique based on ANNs. The framework is developed for a 1.4 km river reach along the river Dee in Wales, United Kingdom. For this purpose, a Falcon 8 octocopter was used to gather 2.5 cm resolution imagery. The results show that the accuracy of the framework is above 81%, performing particularly well at recognising vegetation. These results leverage the use of UAVs for environmental policy implementation and demonstrate the potential of ANNs and RGB imagery for high precision river monitoring and river management.

  13. Surface Characteristics of Green Island Wakes from Satellite Imagery

    Science.gov (United States)

    Cheng, Kai-Ho; Hsu, Po-Chun; Ho, Chung-Ru

    2017-04-01

    Characteristics of an island wake induced by the Kuroshio Current flows pass by Green Island, a small island 40 km off southeast of Taiwan is investigated by the Moderate Resolution Imaging Spectroradiometer (MODIS) satellite imagery. The MODIS sea surface temperature (SST) and chlorophyll-a (chl-a) imagery is produced at 250-meter resolution from 2014 to 2015 using the SeaDAS software package which is developed by the National Aeronautics and Space Administration. The wake occurrence is 59% observed from SST images during the data span. The average cooling area is 190 km2, but the area is significantly changed with wind directions. The wake area is increased during southerly winds and is reduced during northerly winds. Besides, the average cooling SST was about 2.1 oC between the front and rear island. Comparing the temperature difference between the wake and its left side, the difference is 1.96 oC. In addition, the wakes have 1 3 times higher than normal in chlorophyll concentration. The results indicate the island mass effect makes the surface water of Green island wake colder and chl-a higher.

  14. An automated approach to mapping corn from Landsat imagery

    Science.gov (United States)

    Maxwell, S.K.; Nuckols, J.R.; Ward, M.H.; Hoffer, R.M.

    2004-01-01

    Most land cover maps generated from Landsat imagery involve classification of a wide variety of land cover types, whereas some studies may only need spatial information on a single cover type. For example, we required a map of corn in order to estimate exposure to agricultural chemicals for an environmental epidemiology study. Traditional classification techniques, which require the collection and processing of costly ground reference data, were not feasible for our application because of the large number of images to be analyzed. We present a new method that has the potential to automate the classification of corn from Landsat satellite imagery, resulting in a more timely product for applications covering large geographical regions. Our approach uses readily available agricultural areal estimates to enable automation of the classification process resulting in a map identifying land cover as ‘highly likely corn,’ ‘likely corn’ or ‘unlikely corn.’ To demonstrate the feasibility of this approach, we produced a map consisting of the three corn likelihood classes using a Landsat image in south central Nebraska. Overall classification accuracy of the map was 92.2% when compared to ground reference data.

  15. CHOSEN ASPECTS OF THE PRODUCTION OF THE BASIC MAP USING UAV IMAGERY

    Directory of Open Access Journals (Sweden)

    M. Kedzierski

    2016-06-01

    Full Text Available For several years there has been an increasing interest in the use of unmanned aerial vehicles in acquiring image data from a low altitude. Considering the cost-effectiveness of the flight time of UAVs vs. conventional airplanes, the use of the former is advantageous when generating large scale accurate ortophotos. Through the development of UAV imagery, we can update large-scale basic maps. These maps are cartographic products which are used for registration, economic, and strategic planning. On the basis of these maps other cartographic maps are produced, for example maps used building planning. The article presents an assessesment of the usefulness of orthophotos based on UAV imagery to upgrade the basic map. In the research a compact, non-metric camera, mounted on a fixed wing powered by an electric motor was used. The tested area covered flat, agricultural and woodland terrains. The processing and analysis of orthorectification were carried out with the INPHO UASMaster programme. Due to the effect of UAV instability on low-altitude imagery, the use of non-metric digital cameras and the low-accuracy GPS-INS sensors, the geometry of images is visibly lower were compared to conventional digital aerial photos (large values of phi and kappa angles. Therefore, typically, low-altitude images require large along- and across-track direction overlap – usually above 70 %. As a result of the research orthoimages were obtained with a resolution of 0.06 meters and a horizontal accuracy of 0.10m. Digitized basic maps were used as the reference data. The accuracy of orthoimages vs. basic maps was estimated based on the study and on the available reference sources. As a result, it was found that the geometric accuracy and interpretative advantages of the final orthoimages allow the updating of basic maps. It is estimated that such an update of basic maps based on UAV imagery reduces processing time by approx. 40%.

  16. Advanced Ecosystem Mapping Techniques for Large Arctic Study Domains Using Calibrated High-Resolution Imagery

    Science.gov (United States)

    Macander, M. J.; Frost, G. V., Jr.

    2015-12-01

    Regional-scale mapping of vegetation and other ecosystem properties has traditionally relied on medium-resolution remote sensing such as Landsat (30 m) and MODIS (250 m). Yet, the burgeoning availability of high-resolution (environments has not been previously evaluated. Image segmentation, or object-based image analysis, automatically partitions high-resolution imagery into homogeneous image regions that can then be analyzed based on spectral, textural, and contextual information. We applied eCognition software to delineate waterbodies and vegetation classes, in combination with other techniques. Texture metrics were evaluated to determine the feasibility of using high-resolution imagery to algorithmically characterize periglacial surface forms (e.g., ice-wedge polygons), which are an important physical characteristic of permafrost-dominated regions but which cannot be distinguished by medium-resolution remote sensing. These advanced mapping techniques provide products which can provide essential information supporting a broad range of ecosystem science and land-use planning applications in northern Alaska and elsewhere in the circumpolar Arctic.

  17. Testing methods for using high-resolution satellite imagery to monitor polar bear abundance and distribution

    Science.gov (United States)

    LaRue, Michelle A.; Stapleton, Seth P.; Porter, Claire; Atkinson, Stephen N.; Atwood, Todd C.; Dyck, Markus; Lecomte, Nicolas

    2015-01-01

    High-resolution satellite imagery is a promising tool for providing coarse information about polar species abundance and distribution, but current applications are limited. With polar bears (Ursus maritimus), the technique has only proven effective on landscapes with little topographic relief that are devoid of snow and ice, and time-consuming manual review of imagery is required to identify bears. Here, we evaluated mechanisms to further develop methods for satellite imagery by examining data from Rowley Island, Canada. We attempted to automate and expedite detection via a supervised spectral classification and image differencing to expedite image review. We also assessed what proportion of a region should be sampled to obtain reliable estimates of density and abundance. Although the spectral signature of polar bears differed from nontarget objects, these differences were insufficient to yield useful results via a supervised classification process. Conversely, automated image differencing—or subtracting one image from another—correctly identified nearly 90% of polar bear locations. This technique, however, also yielded false positives, suggesting that manual review will still be required to confirm polar bear locations. On Rowley Island, bear distribution approximated a Poisson distribution across a range of plot sizes, and resampling suggests that sampling >50% of the site facilitates reliable estimation of density (CV large-scale applications remain limited because of the challenges in automation and the limited environments in which the method can be effectively applied. Improvements in resolution may expand opportunities for its future uses.

  18. Testing methods for using high-resolution satellite imagery to monitor polar bear abundance and distribution

    Science.gov (United States)

    LaRue, Michelle A.; Stapleton, Seth P.; Porter, Claire; Atkinson, Stephen N.; Atwood, Todd C.; Dyck, Markus; Lecomte, Nicolas

    2015-01-01

    High-resolution satellite imagery is a promising tool for providing coarse information about polar species abundance and distribution, but current applications are limited. With polar bears (Ursus maritimus), the technique has only proven effective on landscapes with little topographic relief that are devoid of snow and ice, and time-consuming manual review of imagery is required to identify bears. Here, we evaluated mechanisms to further develop methods for satellite imagery by examining data from Rowley Island, Canada. We attempted to automate and expedite detection via a supervised spectral classification and image differencing to expedite image review. We also assessed what proportion of a region should be sampled to obtain reliable estimates of density and abundance. Although the spectral signature of polar bears differed from nontarget objects, these differences were insufficient to yield useful results via a supervised classification process. Conversely, automated image differencing—or subtracting one image from another—correctly identified nearly 90% of polar bear locations. This technique, however, also yielded false positives, suggesting that manual review will still be required to confirm polar bear locations. On Rowley Island, bear distribution approximated a Poisson distribution across a range of plot sizes, and resampling suggests that sampling >50% of the site facilitates reliable estimation of density (CV in certain areas, but large-scale applications remain limited because of the challenges in automation and the limited environments in which the method can be effectively applied. Improvements in resolution may expand opportunities for its future uses.

  19. Flying across Galaxy Clusters with Google Earth: additional imagery from SDSS co-added data

    Energy Technology Data Exchange (ETDEWEB)

    Hao, Jiangang; Annis, James; /Fermilab

    2010-10-01

    Galaxy clusters are spectacular. We provide a Google Earth compatible imagery for the deep co-added images from the Sloan Digital Sky Survey and make it a tool for examing galaxy clusters. Google Earth (in sky mode) provides a highly interactive environment for visualizing the sky. By encoding the galaxy cluster information into a kml/kmz file, one can use Google Earth as a tool for examining galaxy clusters and fly across them freely. However, the resolution of the images provided by Google Earth is not very high. This is partially because the major imagery google earth used is from Sloan Digital Sky Survey (SDSS) (SDSS collaboration 2000) and the resolutions have been reduced to speed up the web transferring. To have higher resolution images, you need to add your own images in a way that Google Earth can understand. The SDSS co-added data are the co-addition of {approx}100 scans of images from SDSS stripe 82 (Annis et al. 2010). It provides the deepest images based on SDSS and reach as deep as about redshift 1.0. Based on the co-added images, we created color images in a way as described by Lupton et al. (2004) and convert the color images to Google Earth compatible images using wcs2kml (Brewer et al. 2007). The images are stored at a public server at Fermi National Accelerator Laboratory and can be accessed by the public. To view those images in Google Earth, you need to download a kmz file, which contains the links to the color images, and then open the kmz file with your Google Earth. To meet different needs for resolutions, we provide three kmz files corresponding to low, medium and high resolution images. We recommend the high resolution one as long as you have a broadband Internet connection, though you should choose to download any of them, depending on your own needs and Internet speed. After you open the downloaded kmz file with Google Earth (in sky mode), it takes about 5 minutes (depending on your Internet connection and the resolution of images you

  20. Flying across Galaxy Clusters with Google Earth: additional imagery from SDSS co-added data

    International Nuclear Information System (INIS)

    Hao, Jiangang; Annis, James

    2010-01-01

    Galaxy clusters are spectacular. We provide a Google Earth compatible imagery for the deep co-added images from the Sloan Digital Sky Survey and make it a tool for examing galaxy clusters. Google Earth (in sky mode) provides a highly interactive environment for visualizing the sky. By encoding the galaxy cluster information into a kml/kmz file, one can use Google Earth as a tool for examining galaxy clusters and fly across them freely. However, the resolution of the images provided by Google Earth is not very high. This is partially because the major imagery google earth used is from Sloan Digital Sky Survey (SDSS) (SDSS collaboration 2000) and the resolutions have been reduced to speed up the web transferring. To have higher resolution images, you need to add your own images in a way that Google Earth can understand. The SDSS co-added data are the co-addition of ∼100 scans of images from SDSS stripe 82 (Annis et al. 2010). It provides the deepest images based on SDSS and reach as deep as about redshift 1.0. Based on the co-added images, we created color images in a way as described by Lupton et al. (2004) and convert the color images to Google Earth compatible images using wcs2kml (Brewer et al. 2007). The images are stored at a public server at Fermi National Accelerator Laboratory and can be accessed by the public. To view those images in Google Earth, you need to download a kmz file, which contains the links to the color images, and then open the kmz file with your Google Earth. To meet different needs for resolutions, we provide three kmz files corresponding to low, medium and high resolution images. We recommend the high resolution one as long as you have a broadband Internet connection, though you should choose to download any of them, depending on your own needs and Internet speed. After you open the downloaded kmz file with Google Earth (in sky mode), it takes about 5 minutes (depending on your Internet connection and the resolution of images you want

  1. Colors in Mind: A Novel Paradigm to Investigate Pure Color Imagery

    OpenAIRE

    Wantz, Andrea Laura; Borst, Grégoire; Mast, Fred; Lobmaier, Janek

    2015-01-01

    Mental color imagery abilities are commonly measured using paradigms that involve naming, judging, or comparing the colors of visual mental images of well-known objects (e.g., “Is a sunflower darker yellow than a lemon”?). Although this approach is widely used in patient studies, differences in the ability to perform such color comparisons might simply reflect participants’ general knowledge of object colors rather than their ability to generate accurate visual mental images of the colors of ...

  2. RADARGRAMMETRIC DIGITAL SURFACE MODELS GENERATION FROM TERRASAR-X IMAGERY: CASE STUDIES, PROBLEMS AND POTENTIALITIES

    Directory of Open Access Journals (Sweden)

    P. Capaldo

    2012-07-01

    Full Text Available The interest for the radargrammetric approach to Digital Surface Models (DSMs generation has been growing in last years thanks to the availability of very high resolution imagery acquired by new SAR (Synthetic Aperture Radar sensors, as COSMO-SkyMed, Radarsat-2 and TerraSAR-X, which are able to supply imagery up to 1 m ground resolution. DSMs radargrammetric generation approach consists of two basic steps, as for the standard photogrammetry applied to optical imagery: the imagery (at least a stereo pair orientation and the image matching for the generation of the points cloud. The steps of the radargrammetric DSMs generation have been implemented into SISAR (Software per Immagini Satellitari ad Alta Risoluzione, a scientific software developed at Geodesy and Geomatics Institute of the University of Rome “La Sapienza”. Moreover, starting from the radargrammetric orientation model, a tool for the Rational Polynomial Coefficients (RPCs for SAR images have been implemented. The possibility to generate RPCs, re-parametrizing a rigorous orientation model through a standardized set of coefficients which can be managed by a Rational Polynomial Coefficients (RPFs model (similarly to optical high resolution imagery sounds of particular interest since, at present, the most part of SAR imagery (except from Radarsat-2 is not supplied with RPCs, although the corresponding RPFs model is available in several commercial software. In particular the RPCs model has been used in the matching process and in the stereo restitution for the DSMs generation, with the advantage of shorter computational time. This paper discusses the application and the results of the implemented algorithm for radargrammetric DSMs generation from TerraSAR-X SpotLight imagery, acquired in Spotlight mode over Trento (Northern Italy. Urban and extra-urban (forested, cultivated areas were considered in two different tiles, and a final overall accuracy ranging from 4.5 to 6 meters was

  3. Advances in the Processing of VHR Optical Imagery in Support of Safeguards Verification

    International Nuclear Information System (INIS)

    Niemeyer, I.; Listner, C.; Canty, M.

    2015-01-01

    Under the Additional Protocol of the Non-Proliferation Treaty (NPT) complementing the safeguards agreements between States and the International Atomic Energy Agency, commercial satellite imagery, preferably acquired by very high-resolution (VHR) satellite sensors, is an important source of safeguards-relevant information. Satellite imagery can assist in the evaluation of site declarations, design information verification, the detection of undeclared nuclear facilities, and the preparation of inspections or other visits. With the IAEA's Geospatial Exploitation System (GES), satellite imagery and other geospatial information such as site plans of nuclear facilities are available for a broad range of inspectors, analysts and country officers. The demand for spatial information and new tools to analyze this data is growing, together with the rising number of nuclear facilities under safeguards worldwide. Automated computer-driven processing of satellite imagery could therefore add a big value in the safeguards verification process. These could be, for example, satellite imagery pre-processing algorithms specially developed for new sensors, tools for pixel or object-based image analysis, or geoprocessing tools that generate additional safeguards-relevant information. In the last decade procedures for automated (pre-) processing of satellite imagery have considerably evolved. This paper aims at testing some pixel-based and object-based procedures for automated change detection and classification in support of safeguards verification. Taking different nuclear sites as examples, these methods will be evaluated and compared with regard to their suitability to (semi-) automatically extract safeguards-relevant information. (author)

  4. Direct and generative retrieval of autobiographical memories: The roles of visual imagery and executive processes.

    Science.gov (United States)

    Anderson, Rachel J; Dewhurst, Stephen A; Dean, Graham M

    2017-03-01

    Two experiments used a dual task methodology to investigate the role of visual imagery and executive resources in the retrieval of specific autobiographical memories. In Experiment 1, dynamic visual noise led to a reduction in the number of specific memories retrieved in response to both high and low imageability cues, but did not affect retrieval times. In Experiment 2, irrelevant pictures reduced the number of specific memories but only in response to low imageability cues. Irrelevant pictures also increased response times to both high and low imageability cues. The findings are in line with previous work suggesting that disrupting executive resources may impair generative, but not direct, retrieval of autobiographical memories. In contrast, visual distractor tasks appear to impair access to specific autobiographical memories via both the direct and generative retrieval routes, thereby highlighting the potential role of visual imagery in both pathways. Copyright © 2017 Elsevier Inc. All rights reserved.

  5. Application of ecological, geological and oceanographic ERTS-1 imagery to Delaware's coastal resources planning

    Science.gov (United States)

    Klemas, V. (Principal Investigator)

    1973-01-01

    The author has identified the following significant results. Communities containing five different coastal vegetation species, developed marshlands, and fresh water impoundments have been identified in ERTS-1 images. Suspended sediment and circulation patterns in imagery from five ERTS-1 passes over Delaware Bay have been enhanced and correlated with predicted current patterns. Conclusions reached are: (1) ERTS-1 is suitable platform for observing suspended sediment patterns and water masses synoptically over large areas. (2) Suspended sediment acts as a natural tracer allowing photointerpreters to deduce gross current circulation patterns from ERTS-1 imagery. (3) Under atmospheric conditions encountered along the East Coast of the United States MSS band 5 seems to give the best representation of sediment load in upper one meter of water column. (4) In the ERTS-1 imagery the sediment patterns are delineated by three to four neighboring shades of grey. (5) Negative transparencies of the ERTS-1 images give better contrast whenever the suspended sediment tones fall within the first few steps of the grey scale. (6) Color density slicing helps delineate the suspended sediment patterns more clearly and differentiate turbidity levels.

  6. Application of Artificial Neural Networks to Ship Detection from X-Band Kompsat-5 Imagery

    Directory of Open Access Journals (Sweden)

    Jeong-In Hwang

    2017-09-01

    Full Text Available For ship detection, X-band synthetic aperture radar (SAR imagery provides very useful data, in that ship targets look much brighter than surrounding sea clutter due to the corner-reflection effect. However, there are many phenomena which bring out false detection in the SAR image, such as noise of background, ghost phenomena, side-lobe effects and so on. Therefore, when ship-detection algorithms are carried out, we should consider these effects and mitigate them to acquire a better result. In this paper, we propose an efficient method to detect ship targets from X-band Kompsat-5 SAR imagery using the artificial neural network (ANN. The method produces the ship-probability map using ANN, and then detects ships from the ship-probability map by using a threshold value. For the purpose of getting an improved ship detection, we strived to produce optimal input layers used for ANN. In order to reduce phenomena related to the false detections, the non-local (NL-means filter and median filter were utilized. The NL-means filter effectively reduced noise on SAR imagery without smoothing edges of the objects, and the median filter was used to remove ship targets in SAR imagery. Through the filtering approaches, we generated two input layers from a Kompsat-5 SAR image, and created a ship-probability map via ANN from the two input layers. When the threshold value of 0.67 was imposed on the ship-probability map, the result of ship detection from the ship-probability map was a 93.9% recall, 98.7% precision and 6.1% false alarm rate. Therefore, the proposed method was successfully applied to the ship detection from the Kompsat-5 SAR image.

  7. THE ACCURACY OF AUTOMATIC PHOTOGRAMMETRIC TECHNIQUES ON ULTRA-LIGHT UAV IMAGERY

    Directory of Open Access Journals (Sweden)

    O. Küng

    2012-09-01

    Full Text Available This paper presents an affordable, fully automated and accurate mapping solutions based on ultra-light UAV imagery. Several datasets are analysed and their accuracy is estimated. We show that the accuracy highly depends on the ground resolution (flying height of the input imagery. When chosen appropriately this mapping solution can compete with traditional mapping solutions that capture fewer high-resolution images from airplanes and that rely on highly accurate orientation and positioning sensors on board. Due to the careful integration with recent computer vision techniques, the post processing is robust and fully automatic and can deal with inaccurate position and orientation information which are typically problematic with traditional techniques.

  8. Aurora Bosna, Scautismo femminile e Guidismo. Esperienze educative in prospettiva di Genere: i casi dell'Italia e della Spagna

    Directory of Open Access Journals (Sweden)

    Lucia Tortora

    2015-03-01

    pp. 291 La recensione presenta il volume Scautismo femminile e Guidismo. Esperienze educative in prospettiva di Genere: i casi dell'Italia e della Spagna di Aurora Bosna, che analizza i fenomeni dello Scautismo femminile e del Guidismo in una prospettiva comparatstica e in un'ottica pedagogica e di genere, evidenziando il valore che tali esperienze hanno avuto nel percorso di emancipazione femminile all'interno dei contesti socio-culturali dell'Italia e della Spagna tra il XIX e il XX secolo.

  9. Space-Derived Imagery and a Commercial Remote Sensing Industry: Impossible Dream or Inevitable Reality?

    Science.gov (United States)

    Murray, Felsher

    Landsat-1 was launched in 1972 as a research satellite. Many of us viewed this satellite as a precursor to remote sensing "commercialization." Indeed since that time, the birth, growth and maturation of a remote sensing "industry" has been an ongoing objective for much of the U.S. private sector engaged in space and ground-segment activities related to the acquisition, analysis, and dissemination of imagery. In September 1999 a U.S. commercial entity, Space Imaging, Inc. launched its 1-meter pan/4-meter multispectral IKONOS sensor. DigitalGlobe, Inc. (nee EarthWatch, Inc.) matched this feat in October 2001. Thus, a full 30 years later, we are finally on the brink of building a true remote sensing information industry based on the global availability of competitively-priced space- derived imagery of the Earth. The upcoming availability of similar imagery from non-U.S. sources as ImageSat and U.S. sources as ORBIMAGE will only strengthen that reality. However, a remote sensing industry can only grow by allowing these entities (in times of peace) unencumbered access to a world market. And that market continues to expand -- up 11% in 2001, with gross revenues of U.S. commercial remote sensing firms alone reaching 2.44 billion, according to a joint NASA/ASPRS industry survey. However, the 30-year gap between the research-labeled Landsat-1 and our current commercial successes was not technology-driven. That lacuna was purely political -- driven by valid concerns related to national security. Although the world's governments have cooperated thoroughly and completely in areas related to satellite telecommunications, cooperation in space-derived image information is still today done cautiously and on a case-by-case basis -- and then only for science- based undertakings. It is still a fact that, except for the United States, all other Earth-imaging satellites/sensors flying today are owned, operated, and their products disseminated, by national governments -- and not private

  10. A workflow for extracting plot-level biophysical indicators from aerially acquired multispectral imagery

    Science.gov (United States)

    Advances in technologies associated with unmanned aerial vehicles (UAVs) has allowed for researchers, farmers and agribusinesses to incorporate UAVs coupled with various imaging systems into data collection activities and aid expert systems for making decisions. Multispectral imageries allow for a q...

  11. Crown-Level Tree Species Classification Using Integrated Airborne Hyperspectral and LIDAR Remote Sensing Data

    Science.gov (United States)

    Wang, Z.; Wu, J.; Wang, Y.; Kong, X.; Bao, H.; Ni, Y.; Ma, L.; Jin, J.

    2018-05-01

    Mapping tree species is essential for sustainable planning as well as to improve our understanding of the role of different trees as different ecological service. However, crown-level tree species automatic classification is a challenging task due to the spectral similarity among diversified tree species, fine-scale spatial variation, shadow, and underlying objects within a crown. Advanced remote sensing data such as airborne Light Detection and Ranging (LiDAR) and hyperspectral imagery offer a great potential opportunity to derive crown spectral, structure and canopy physiological information at the individual crown scale, which can be useful for mapping tree species. In this paper, an innovative approach was developed for tree species classification at the crown level. The method utilized LiDAR data for individual tree crown delineation and morphological structure extraction, and Compact Airborne Spectrographic Imager (CASI) hyperspectral imagery for pure crown-scale spectral extraction. Specifically, four steps were include: 1) A weighted mean filtering method was developed to improve the accuracy of the smoothed Canopy Height Model (CHM) derived from LiDAR data; 2) The marker-controlled watershed segmentation algorithm was, therefore, also employed to delineate the tree-level canopy from the CHM image in this study, and then individual tree height and tree crown were calculated according to the delineated crown; 3) Spectral features within 3 × 3 neighborhood regions centered on the treetops detected by the treetop detection algorithm were derived from the spectrally normalized CASI imagery; 4) The shape characteristics related to their crown diameters and heights were established, and different crown-level tree species were classified using the combination of spectral and shape characteristics. Analysis of results suggests that the developed classification strategy in this paper (OA = 85.12 %, Kc = 0.90) performed better than LiDAR-metrics method (OA = 79

  12. A Direct and Fast Methodology for Ship Recognition in Sentinel-2 Multispectral Imagery

    Directory of Open Access Journals (Sweden)

    Henning Heiselberg

    2016-12-01

    Full Text Available The European Space Agency satellite Sentinel-2 provides multispectral images with pixel sizes down to 10 m. This high resolution allows for ship detection and recognition by determining a number of important ship parameters. We are able to show how a ship position, its heading, length and breadth can be determined down to a subpixel resolution. If the ship is moving, its velocity can also be determined from its Kelvin waves. The 13 spectrally different visual and infrared images taken using multispectral imagery (MSI are “fingerprints” that allow for the recognition and identification of ships. Furthermore, the multispectral image profiles along the ship allow for discrimination between the ship, its turbulent wakes, and the Kelvin waves, such that the ship’s length and breadth can be determined more accurately even when sailing. The ship’s parameters are determined by using satellite imagery taken from several ships, which are then compared to known values from the automatic identification system. The agreement is on the order of the pixel resolution or better.

  13. Imagery spectroscopy application for Super Fund mining waste monitoring

    Science.gov (United States)

    Roper, William E.

    2001-06-01

    Image spectroscopy was used to evaluate iron oxide acid mine drainage contamination at two U.S. Environmental Protection Agency Super Fund sites located in Colorado and New Mexico. The AVIRIS hyper-spectral remote sensing system developed by the Jet Propulsion Laboratory was used to collect the imagery data used in the analysis. The paper presents an overview of mining methods used in the area of the study, the environmental risks of acid mine drainage and the AVIRIS hyper-spectral sensing system. The two sites evaluated are located in Leadville, Colorado and the Ray Mine site in New Mexico. Imagery spectroscopy was evaluated at these two sites for identifying potential mineral pollutants and mapping their location for cleanup planning and monitoring applications. Results indicate the technology can be a very useful tool for this type of application and location.

  14. Kinesthetic motor imagery modulates body sway.

    Science.gov (United States)

    Rodrigues, E C; Lemos, T; Gouvea, B; Volchan, E; Imbiriba, L A; Vargas, C D

    2010-08-25

    The aim of this study was to investigate the effect of imagining an action implicating the body axis in the kinesthetic and visual motor imagery modalities upon the balance control system. Body sway analysis (measurement of center of pressure, CoP) together with electromyography (EMG) recording and verbal evaluation of imagery abilities were obtained from subjects during four tasks, performed in the upright position: to execute bilateral plantar flexions; to imagine themselves executing bilateral plantar flexions (kinesthetic modality); to imagine someone else executing the same movement (visual modality), and to imagine themselves singing a song (as a control imagery task). Body sway analysis revealed that kinesthetic imagery leads to a general increase in CoP oscillation, as reflected by an enhanced area of displacement. This effect was also verified for the CoP standard deviation in the medial-lateral direction. An increase in the trembling displacement (equivalent to center of pressure minus center of gravity) restricted to the anterior-posterior direction was also observed to occur during kinesthetic imagery. The visual imagery task did not differ from the control (sing) task for any of the analyzed parameters. No difference in the subjects' ability to perform the imagery tasks was found. No modulation of EMG data were observed across imagery tasks, indicating that there was no actual execution during motor imagination. These results suggest that motor imagery performed in the kinesthetic modality evokes motor representations involved in balance control. Copyright (c)10 IBRO. Published by Elsevier Ltd. All rights reserved.

  15. Colors in Mind: A Novel Paradigm to Investigate Pure Color Imagery

    Science.gov (United States)

    Wantz, Andrea L.; Borst, Grégoire; Mast, Fred W.; Lobmaier, Janek S.

    2015-01-01

    Mental color imagery abilities are commonly measured using paradigms that involve naming, judging, or comparing the colors of visual mental images of well-known objects (e.g., "Is a sunflower darker yellow than a lemon"?). Although this approach is widely used in patient studies, differences in the ability to perform such color…

  16. Change detection on LOD 2 building models with very high resolution spaceborne stereo imagery

    Science.gov (United States)

    Qin, Rongjun

    2014-10-01

    Due to the fast development of the urban environment, the need for efficient maintenance and updating of 3D building models is ever increasing. Change detection is an essential step to spot the changed area for data (map/3D models) updating and urban monitoring. Traditional methods based on 2D images are no longer suitable for change detection in building scale, owing to the increased spectral variability of the building roofs and larger perspective distortion of the very high resolution (VHR) imagery. Change detection in 3D is increasingly being investigated using airborne laser scanning data or matched Digital Surface Models (DSM), but rare study has been conducted regarding to change detection on 3D city models with VHR images, which is more informative but meanwhile more complicated. This is due to the fact that the 3D models are abstracted geometric representation of the urban reality, while the VHR images record everything. In this paper, a novel method is proposed to detect changes directly on LOD (Level of Detail) 2 building models with VHR spaceborne stereo images from a different date, with particular focus on addressing the special characteristics of the 3D models. In the first step, the 3D building models are projected onto a raster grid, encoded with building object, terrain object, and planar faces. The DSM is extracted from the stereo imagery by hierarchical semi-global matching (SGM). In the second step, a multi-channel change indicator is extracted between the 3D models and stereo images, considering the inherent geometric consistency (IGC), height difference, and texture similarity for each planar face. Each channel of the indicator is then clustered with the Self-organizing Map (SOM), with "change", "non-change" and "uncertain change" status labeled through a voting strategy. The "uncertain changes" are then determined with a Markov Random Field (MRF) analysis considering the geometric relationship between faces. In the third step, buildings are

  17. Desensitizing Addiction: Using Eye Movements to Reduce the Intensity of Substance-Related Mental Imagery and Craving.

    Science.gov (United States)

    Littel, Marianne; van den Hout, Marcel A; Engelhard, Iris M

    2016-01-01

    Eye movement desensitization and reprocessing (EMDR) is an effective treatment for posttraumatic stress disorder. During this treatment, patients recall traumatic memories while making horizontal eye movements (EM). Studies have shown that EM not only desensitize negative memories but also positive memories and imagined events. Substance use behavior and craving are maintained by maladaptive memory associations and visual imagery. Preliminary findings have indicated that these mental images can be desensitized by EMDR techniques. We conducted two proof-of-principle studies to investigate whether EM can reduce the sensory richness of substance-related mental representations and accompanying craving levels. We investigated the effects of EM on (1) vividness of food-related mental imagery and food craving in dieting and non-dieting students and (2) vividness of recent smoking-related memories and cigarette craving in daily smokers. In both experiments, participants recalled the images while making EM or keeping eyes stationary. Image vividness and emotionality, image-specific craving and general craving were measured before and after the intervention. As a behavioral outcome measure, participants in study 1 were offered a snack choice at the end of the experiment. Results of both experiments showed that image vividness and craving increased in the control condition but remained stable or decreased after the EM intervention. EM additionally reduced image emotionality (experiment 2) and affected behavior (experiment 1): participants in the EM condition were more inclined to choose healthy over unhealthy snack options. In conclusion, these data suggest that EM can be used to reduce intensity of substance-related imagery and craving. Although long-term effects are yet to be demonstrated, the current studies suggest that EM might be a useful technique in addiction treatment.

  18. Restoration and Super-Resolution of Diffraction-Limited Imagery Data by Bayesian and Set-Theoretic Approaches

    National Research Council Canada - National Science Library

    Sundareshan, Malur

    2001-01-01

    This project was primarily aimed at the design of novel algorithms for the restoration and super-resolution processing of imagery data to improve the resolution in images acquired from practical sensing operations...

  19. Radar imagery from the 1994 Lock Linnhe ship wake experiment

    Energy Technology Data Exchange (ETDEWEB)

    Mullenhoff, C.J.; Lehman, S.K.; Jones, H. [Lawrence Livermore National Lab., CA (United States)] [and others

    1994-11-15

    The 1994 Loch Linnhe radar ocean imaging trials were held from September 4 through September 17. Two ships were used: the R.V. Colonel Templer, and the RMAS Collie. Thorn EMI, Inc., fielded a dual band, dual polarization radar on a hillside overlooking the loch. A primary purpose of the experiment was to obtain highly visible images of ship generated internal waves. Presented here is imagery for a few of the good ship runs, as well as a study of the environment of the visibility of ship generated internal waves.

  20. Part of the functional imagery in the development of new medicines. Press conference 30 september 1999

    International Nuclear Information System (INIS)

    1999-09-01

    today the functional imagery plays an increasing part in the discovery and the development of new medicines. This paper is a presentation of the aims of the colloquium and the subjects proposed. It takes stock on the functional imagery methods: positron emission tomography, monophonic emission tomography, nuclear magnetic resonance (imaging and spectroscopy). The research programs of the CEA in this domain and in particular the activities of the Frederic Joliot hospital center are presented. (A.L.B.)

  1. NAIP Public Image Services

    Data.gov (United States)

    Farm Service Agency, Department of Agriculture — This map provides a preview and information about the National Agriculture Imagery Program (NAIP) image services available on the APFO public image server. Click on...

  2. Using Online Citizen Science to Assess Giant Kelp Abundances Across the Globe with Satellite Imagery

    Science.gov (United States)

    Byrnes, J.; Cavanaugh, K. C.; Haupt, A. J.; Trouille, L.; Rosenthal, I.; Bell, T. W.; Rassweiler, A.; Pérez-Matus, A.; Assis, J.

    2017-12-01

    Global scale long-term data sets that document the patterns and variability of human impacts on marine ecosystems are rare. This lack is particularly glaring for underwater species - even moreso for ecologically important ones. Here we demonstrate how online Citizen Science combined with Landsat satellite imagery can help build a picture of change in the dynamics of giant kelp, an important coastal foundation species around the globe, from the 1984 to the present. Giant kelp canopy is visible from Landsat images, but these images defy easy machine classification. To get useful data, images must be processed by hand. While academic researchers have applied this method successfully at sub-regional scales, unlocking the value of the full global dataset has not been possible until given the massive effort required. Here we present Floating Forests (http://floatingforests.org), an international collaboration between kelp forest researchers and the citizen science organization Zooniverse. Floating Forests provides an interface that allows citizen scientists to identify canopy cover of giant kelp on Landsat images, enabling us to scale up the dataset to the globe. We discuss lessons learned from the initial version of the project launched in 2014, a prototype of an image processing pipeline to bring Landsat imagery to citizen science platforms, methods of assessing accuracy of citizen scientists, and preliminary data from our relaunch of the project. Through this project we have developed generalizable tools to facilitate citizen science-based analysis of Landsat and other satellite and aerial imagery. We hope that this create a powerful dataset to unlock our understanding of how global change has altered these critically important species in the sea.

  3. Shallow water bathymetry mapping using Support Vector Machine (SVM) technique and multispectral imagery

    NARCIS (Netherlands)

    Misra, Ankita; Vojinovic, Zoran; Ramakrishnan, Balaji; Luijendijk, Arjen; Ranasinghe, Roshanka

    2018-01-01

    Satellite imagery along with image processing techniques prove to be efficient tools for bathymetry retrieval as they provide time and cost-effective alternatives to traditional methods of water depth estimation. In this article, a nonlinear machine learning technique of Support Vector Machine (SVM)

  4. Sources of sport confidence, imagery type and performance among competitive athletes: the mediating role of sports confidence.

    Science.gov (United States)

    Levy, A R; Perry, J; Nicholls, A R; Larkin, D; Davies, J

    2015-01-01

    This study explored the mediating role of sport confidence upon (1) sources of sport confidence-performance relationship and (2) imagery-performance relationship. Participants were 157 competitive athletes who completed state measures of confidence level/sources, imagery type and performance within one hour after competition. Among the current sample, confirmatory factor analysis revealed appropriate support for the nine-factor SSCQ and the five-factor SIQ. Mediational analysis revealed that sport confidence had a mediating influence upon the achievement source of confidence-performance relationship. In addition, both cognitive and motivational imagery types were found to be important sources of confidence, as sport confidence mediated imagery type- performance relationship. Findings indicated that athletes who construed confidence from their own achievements and report multiple images on a more frequent basis are likely to benefit from enhanced levels of state sport confidence and subsequent performance.

  5. Using street view imagery for 3-D survey of rock slope failures

    Directory of Open Access Journals (Sweden)

    J. Voumard

    2017-12-01

    Full Text Available We discuss here different challenges and limitations of surveying rock slope failures using 3-D reconstruction from image sets acquired from street view imagery (SVI. We show how rock slope surveying can be performed using two or more image sets using online imagery with photographs from the same site but acquired at different instances. Three sites in the French alps were selected as pilot study areas: (1 a cliff beside a road where a protective wall collapsed, consisting of two image sets (60 and 50 images in each set captured within a 6-year time frame; (2 a large-scale active landslide located on a slope at 250 m from the road, using seven image sets (50 to 80 images per set from five different time periods with three image sets for one period; (3 a cliff over a tunnel which has collapsed, using two image sets captured in a 4-year time frame. The analysis include the use of different structure from motion (SfM programs and a comparison between the extracted photogrammetric point clouds and a lidar-derived mesh that was used as a ground truth. Results show that both landslide deformation and estimation of fallen volumes were clearly identified in the different point clouds. Results are site- and software-dependent, as a function of the image set and number of images, with model accuracies ranging between 0.2 and 3.8 m in the best and worst scenario, respectively. Although some limitations derived from the generation of 3-D models from SVI were observed, this approach allowed us to obtain preliminary 3-D models of an area without on-field images, allowing extraction of the pre-failure topography that would not be available otherwise.

  6. Cameras and settings for optimal image capture from UAVs

    Science.gov (United States)

    Smith, Mike; O'Connor, James; James, Mike R.

    2017-04-01

    Aerial image capture has become very common within the geosciences due to the increasing affordability of low payload (markets. Their application to surveying has led to many studies being undertaken using UAV imagery captured from consumer grade cameras as primary data sources. However, image quality and the principles of image capture are seldom given rigorous discussion which can lead to experiments being difficult to accurately reproduce. In this contribution we revisit the underpinning concepts behind image capture, from which the requirements for acquiring sharp, well exposed and suitable imagery are derived. This then leads to discussion of how to optimise the platform, camera, lens and imaging settings relevant to image quality planning, presenting some worked examples as a guide. Finally, we challenge the community to make their image data open for review in order to ensure confidence in the outputs/error estimates, allow reproducibility of the results and have these comparable with future studies. We recommend providing open access imagery where possible, a range of example images, and detailed metadata to rigorously describe the image capture process.

  7. Sexual imagery in advertising: issues in consumer motivational processes

    OpenAIRE

    Pagiaslis, Anastasios

    2015-01-01

    Grounded in Self Determination Theory (Deci and Ryan 1985a; 2000), the purpose of this thesis is to investigate the unintentional and pernicious effects of sexual imagery in advertising on life aspirations, situational motivation for consumption, satisfaction with basic needs, state self-esteem and body image (dis)satisfaction while accounting for the mediating effects of the individual differences variables: contingent self-esteem, general causality orientations and sexual liberalism. Result...

  8. NASA's Land, Atmosphere Near real-time Capability for EOS (LANCE): Changing patterns in the use of NRT satellite imagery

    Science.gov (United States)

    Davies, D.; Michael, K.; Schmaltz, J. E.; Harrison, S.; Ding, F.; Durbin, P. B.; Boller, R. A.; Cechini, M. F.; Rinsland, P. L.; Ye, G.; Mauoka, E.

    2015-12-01

    NASA's Land, Atmosphere Near real-time Capability for EOS (Earth Observing System) (LANCE) provides data and imagery approximately 3 hours from satellite observation, to monitor natural events globally and to meet the needs of the near real-time (NRT) applications community. This article describes LANCE, and how the use of NRT data and imagery has evolved. Since 2010 there has been a four-fold increase in both the volume of data and the number of files downloaded. Over the last year there has been a marked shift in the way in which users are accessing NRT imagery; users are gravitating towards Worldview and the Global Imagery Browse Services (GIBS) and away from MODIS Rapid Response, in part due to the increased exposure through social media. In turn this is leading to a broader range of users viewing NASA NRT imagery. This article also describes new, and planned, product enhancements to LANCE. Over the last year, LANCE has expanded to support NRT products from the Advanced Microwave Scanning Radiometer 2 (AMSR2), and the Multi-angle Imaging SpectroRadiometer (MISR). LANCE elements are also planning to ingest and process NRT data from the Visible Infrared Imager Radiometer Suite (VIIRS), and the advanced Ozone Mapping and Profiler Suite (OMPS) instruments onboard the Suomi National Polar-orbiting Partnership (S-NPP) satellite in the near future.

  9. Multisource Remote Sensing Imagery Fusion Scheme Based on Bidimensional Empirical Mode Decomposition (BEMD and Its Application to the Extraction of Bamboo Forest

    Directory of Open Access Journals (Sweden)

    Guang Liu

    2016-12-01

    Full Text Available Most bamboo forests grow in humid climates in low-latitude tropical or subtropical monsoon areas, and they are generally located in hilly areas. Bamboo trunks are very straight and smooth, which means that bamboo forests have low structural diversity. These features are beneficial to synthetic aperture radar (SAR microwave penetration and they provide special information in SAR imagery. However, some factors (e.g., foreshortening can compromise the interpretation of SAR imagery. The fusion of SAR and optical imagery is considered an effective method with which to obtain information on ground objects. However, most relevant research has been based on two types of remote sensing image. This paper proposes a new fusion scheme, which combines three types of image simultaneously, based on two fusion methods: bidimensional empirical mode decomposition (BEMD and the Gram-Schmidt transform. The fusion of panchromatic and multispectral images based on the Gram-Schmidt transform can enhance spatial resolution while retaining multispectral information. BEMD is an adaptive decomposition method that has been applied widely in the analysis of nonlinear signals and to the nonstable signal of SAR. The fusion of SAR imagery with fused panchromatic and multispectral imagery using BEMD is based on the frequency information of the images. It was established that the proposed fusion scheme is an effective remote sensing image interpretation method, and that the value of entropy and the spatial frequency of the fused images were improved in comparison with other techniques such as the discrete wavelet, à-trous, and non-subsampled contourlet transform methods. Compared with the original image, information entropy of the fusion image based on BEMD improves about 0.13–0.38. Compared with the other three methods it improves about 0.06–0.12. The average gradient of BEMD is 4%–6% greater than for other methods. BEMD maintains spatial frequency 3.2–4.0 higher than

  10. Laying the foundation to use Raspberry Pi 3 V2 camera module imagery for scientific and engineering purposes

    Science.gov (United States)

    Pagnutti, Mary; Ryan, Robert E.; Cazenavette, George; Gold, Maxwell; Harlan, Ryan; Leggett, Edward; Pagnutti, James

    2017-01-01

    A comprehensive radiometric characterization of raw-data format imagery acquired with the Raspberry Pi 3 and V2.1 camera module is presented. The Raspberry Pi is a high-performance single-board computer designed to educate and solve real-world problems. This small computer supports a camera module that uses a Sony IMX219 8 megapixel CMOS sensor. This paper shows that scientific and engineering-grade imagery can be produced with the Raspberry Pi 3 and its V2.1 camera module. Raw imagery is shown to be linear with exposure and gain (ISO), which is essential for scientific and engineering applications. Dark frame, noise, and exposure stability assessments along with flat fielding results, spectral response measurements, and absolute radiometric calibration results are described. This low-cost imaging sensor, when calibrated to produce scientific quality data, can be used in computer vision, biophotonics, remote sensing, astronomy, high dynamic range imaging, and security applications, to name a few.

  11. Multispectral image enhancement processing for microsat-borne imager

    Science.gov (United States)

    Sun, Jianying; Tan, Zheng; Lv, Qunbo; Pei, Linlin

    2017-10-01

    With the rapid development of remote sensing imaging technology, the micro satellite, one kind of tiny spacecraft, appears during the past few years. A good many studies contribute to dwarfing satellites for imaging purpose. Generally speaking, micro satellites weigh less than 100 kilograms, even less than 50 kilograms, which are slightly larger or smaller than the common miniature refrigerators. However, the optical system design is hard to be perfect due to the satellite room and weight limitation. In most cases, the unprocessed data captured by the imager on the microsatellite cannot meet the application need. Spatial resolution is the key problem. As for remote sensing applications, the higher spatial resolution of images we gain, the wider fields we can apply them. Consequently, how to utilize super resolution (SR) and image fusion to enhance the quality of imagery deserves studying. Our team, the Key Laboratory of Computational Optical Imaging Technology, Academy Opto-Electronics, is devoted to designing high-performance microsat-borne imagers and high-efficiency image processing algorithms. This paper addresses a multispectral image enhancement framework for space-borne imagery, jointing the pan-sharpening and super resolution techniques to deal with the spatial resolution shortcoming of microsatellites. We test the remote sensing images acquired by CX6-02 satellite and give the SR performance. The experiments illustrate the proposed approach provides high-quality images.

  12. Standardized rendering from IR surveillance motion imagery

    Science.gov (United States)

    Prokoski, F. J.

    2014-06-01

    Government agencies, including defense and law enforcement, increasingly make use of video from surveillance systems and camera phones owned by non-government entities.Making advanced and standardized motion imaging technology available to private and commercial users at cost-effective prices would benefit all parties. In particular, incorporating thermal infrared into commercial surveillance systems offers substantial benefits beyond night vision capability. Face rendering is a process to facilitate exploitation of thermal infrared surveillance imagery from the general area of a crime scene, to assist investigations with and without cooperating eyewitnesses. Face rendering automatically generates greyscale representations similar to police artist sketches for faces in surveillance imagery collected from proximate locations and times to a crime under investigation. Near-realtime generation of face renderings can provide law enforcement with an investigation tool to assess witness memory and credibility, and integrate reports from multiple eyewitnesses, Renderings can be quickly disseminated through social media to warn of a person who may pose an immediate threat, and to solicit the public's help in identifying possible suspects and witnesses. Renderings are pose-standardized so as to not divulge the presence and location of eyewitnesses and surveillance cameras. Incorporation of thermal infrared imaging into commercial surveillance systems will significantly improve system performance, and reduce manual review times, at an incremental cost that will continue to decrease. Benefits to criminal justice would include improved reliability of eyewitness testimony and improved accuracy of distinguishing among minority groups in eyewitness and surveillance identifications.

  13. Robot-Aided Upper-Limb Rehabilitation Based on Motor Imagery EEG

    Directory of Open Access Journals (Sweden)

    Baoguo Xu

    2011-09-01

    Full Text Available Stroke is a leading cause of disability worldwide. In this paper, a novel robot-assisted rehabilitation system based on motor imagery electroencephalography (EEG is developed for regular training of neurological rehabilitation for upper limb stroke patients. Firstly, three-dimensional animation was used to guide the patient image the upper limb movement and EEG signals were acquired by EEG amplifier. Secondly, eigenvectors were extracted by harmonic wavelet transform (HWT and linear discriminant analysis (LDA classifier was utilized to classify the pattern of the left and right upper limb motor imagery EEG signals. Finally, PC triggered the upper limb rehabilitation robot to perform motor therapy and gave the virtual feedback. Using this robot-assisted upper limb rehabilitation system, the patient's EEG of upper limb movement imagination is translated to control rehabilitation robot directly. Consequently, the proposed rehabilitation system can fully explore the patient's motivation and attention and directly facilitate upper limb post-stroke rehabilitation therapy. Experimental results on unimpaired participants were presented to demonstrate the feasibility of the rehabilitation system. Combining robot-assisted training with motor imagery-based BCI will make future rehabilitation therapy more effective. Clinical testing is still required for further proving this assumption.

  14. NAIP 2017 Imagery Feedback Map

    Data.gov (United States)

    Farm Service Agency, Department of Agriculture — The NAIP 2017 Imagery Feedback map allows users to make comments and observations about the quality of the 2017 National Agriculture Imagery Program (NAIP)...

  15. NAIP 2015 Imagery Feedback Map

    Data.gov (United States)

    Farm Service Agency, Department of Agriculture — The NAIP 2015 Imagery Feedback map allows users to make comments and observations about the quality of the 2015 National Agriculture Imagery Program (NAIP)...

  16. USING OF THE MULTITEMPORAL THERMAL INFRARED SATELLITE IMAGERY FOR NATURAL AREAS MAPPING (CASE OF MENDELEEV VOLCANO

    Directory of Open Access Journals (Sweden)

    M. Y. Grishchenko

    2014-01-01

    Full Text Available In the paper authors examine the mountain group of Mendeleev volcano situated on the Kunashir island, Kuril archipelago, Russia. Ground observations were led to examine the vegetation cover of the area as well as its typical landscapes. The other type of used data is Landsat imagery. Images were combined into multitemporal thermal infrared and multispectral pictures, which were classified to reveal the heterogeneity of the study area. Ground observations and comparison of the classification results with landscape map derive that the multitemporal thermal infrared image classification result describes better the vegetation cover structure of the area and particularity of its typical landscapes distribution. It leads to the proposition that miltitemporal thermal infrared imagery can be used to refine landscape and vegetation cover contours. 

  17. The Imagery–Image Duality Model

    DEFF Research Database (Denmark)

    Josiassen, Alexander; Woo, Linda; Kock, Florian

    2016-01-01

    A central research topic in tourism management concerns tourists’ choice of specific destinations. The present article reviews and advances the extant literature on destination image. From this review, we suggest that individuals have a multitude of destination associations, the total imagery...... the literature. The article further provides an extensive review of the literature with regard to the definitions, dimensionality, antecedents, and outcomes of the focal concepts as well as geographical scope of destination imagery and image studies and methodologies. This review has led to a novel understanding...

  18. Intense imagery movements: a common and distinct paediatric subgroup of motor stereotypies.

    Science.gov (United States)

    Robinson, Sally; Woods, Martin; Cardona, Francesco; Baglioni, Valentina; Hedderly, Tammy

    2014-12-01

    The aim of this article is to describe a subgroup of children who presented with stereotyped movements in the context of episodes of intense imagery. This is of relevance to current discussions regarding the clinical usefulness of diagnosing motor stereotypies during development. The sample consisted of 10 children (nine males, one female; mean age 8y 6mo [SD 2y 5mo], range 6-15y). Referrals were from acute paediatricians, neurologists, and tertiary epilepsy services. Children were assessed by multidisciplinary teams with expertise in paediatric movement disorders. Stereotypies presented as paroxysmal complex movements involving upper and lower limbs. Imagery themes typically included computer games (60%), cartoons/films (40%), and fantasy scenes (30%). Comorbid developmental difficulties were reported for 80% of children. Brain imaging and electrophysiological investigations had been conducted for 50% of the children before referral to the clinic. The descriptive term 'intense imagery movements' (IIM) was applied if (after interview) the children reported engaging in acts of imagery while performing stereotyped movements. We believe these children may form a common and discrete stereotypy subgroup, with the concept of IIM being clinically useful to ensure the accurate diagnosis and clinical management of this paediatric movement disorder. © 2014 Mac Keith Press.

  19. Virtually transparent epidermal imagery (VTEI): on new approaches to in vivo wireless high-definition video and image processing.

    Science.gov (United States)

    Anderson, Adam L; Lin, Bingxiong; Sun, Yu

    2013-12-01

    This work first overviews a novel design, and prototype implementation, of a virtually transparent epidermal imagery (VTEI) system for laparo-endoscopic single-site (LESS) surgery. The system uses a network of multiple, micro-cameras and multiview mosaicking to obtain a panoramic view of the surgery area. The prototype VTEI system also projects the generated panoramic view on the abdomen area to create a transparent display effect that mimics equivalent, but higher risk, open-cavity surgeries. The specific research focus of this paper is on two important aspects of a VTEI system: 1) in vivo wireless high-definition (HD) video transmission and 2) multi-image processing-both of which play key roles in next-generation systems. For transmission and reception, this paper proposes a theoretical wireless communication scheme for high-definition video in situations that require extremely small-footprint image sensors and in zero-latency applications. In such situations the typical optimized metrics in communication schemes, such as power and data rate, are far less important than latency and hardware footprint that absolutely preclude their use if not satisfied. This work proposes the use of a novel Frequency-Modulated Voltage-Division Multiplexing (FM-VDM) scheme where sensor data is kept analog and transmitted via "voltage-multiplexed" signals that are also frequency-modulated. Once images are received, a novel Homographic Image Mosaicking and Morphing (HIMM) algorithm is proposed to stitch images from respective cameras, that also compensates for irregular surfaces in real-time, into a single cohesive view of the surgical area. In VTEI, this view is then visible to the surgeon directly on the patient to give an "open cavity" feel to laparoscopic procedures.

  20. AgSat Imagery Collection Footprints

    Data.gov (United States)

    Farm Service Agency, Department of Agriculture — The AgSat Imagery Collection Footprints map shows the imagery footprints which have been collected under the USDA satellite blanket purchase agreement. Click on a...

  1. Fuzzy AutoEncode Based Cloud Detection for Remote Sensing Imagery

    Directory of Open Access Journals (Sweden)

    Zhenfeng Shao

    2017-03-01

    Full Text Available Cloud detection of remote sensing imagery is quite challenging due to the influence of complicated underlying surfaces and the variety of cloud types. Currently, most of the methods mainly rely on prior knowledge to extract features artificially for cloud detection. However, these features may not be able to accurately represent the cloud characteristics under complex environment. In this paper, we adopt an innovative model named Fuzzy Autoencode Model (FAEM to integrate the feature learning ability of stacked autoencode networks and the detection ability of fuzzy function for highly accurate cloud detection on remote sensing imagery. Our proposed method begins by selecting and fusing spectral, texture, and structure information. Thereafter, the proposed technique established a FAEM to learn the deep discriminative features from a great deal of selected information. Finally, the learned features are mapped to the corresponding cloud density map with a fuzzy function. To demonstrate the effectiveness of the proposed method, 172 Landsat ETM+ images and 25 GF-1 images with different spatial resolutions are used in this paper. For the convenience of accuracy assessment, ground truth data are manually outlined. Results show that the average RER (ratio of right rate and error rate on Landsat images is greater than 29, while the average RER of Support Vector Machine (SVM is 21.8 and Random Forest (RF is 23. The results on GF-1 images exhibit similar performance as Landsat images with the average RER of 25.9, which is much higher than the results of SVM and RF. Compared to traditional methods, our technique has attained higher average cloud detection accuracy for either different spatial resolutions or various land surfaces.

  2. OrthoImagery Submission for Isabella county, MI

    Data.gov (United States)

    Federal Emergency Management Agency, Department of Homeland Security — This data set contains 1-meter resolution imagery derived from the 2005 National Agriculture Imagery Program (NAIP) statewide aerial imagery acquisition. Data have...

  3. Physiological Effects of Visual Stimulation with Forest Imagery

    Directory of Open Access Journals (Sweden)

    Chorong Song

    2018-01-01

    Full Text Available This study was aimed to clarify the physiological effects of visual stimulation using forest imagery on activity of the brain and autonomic nervous system. Seventeen female university students (mean age, 21.1 ± 1.0 years participated in the study. As an indicator of brain activity, oxyhemoglobin (oxy-Hb concentrations were measured in the left and right prefrontal cortex using near-infrared time-resolved spectroscopy. Heart rate variability (HRV was used as an indicator of autonomic nervous activity. The high-frequency (HF component of HRV, which reflected parasympathetic nervous activity, and the ratio of low-frequency (LF and high-frequency components (LF/HF, which reflected sympathetic nervous activity, were measured. Forest and city (control images were used as visual stimuli using a large plasma display window. After sitting at rest viewing a gray background for 60 s, participants viewed two images for 90 s. During rest and visual stimulation, HRV and oxy-Hb concentration in the prefrontal cortex were continuously measured. Immediately thereafter, subjective evaluation of feelings was performed using a modified semantic differential (SD method. The results showed that visual stimulation with forest imagery induced (1 a significant decrease in oxy-Hb concentrations in the right prefrontal cortex and (2 a significant increase in perceptions of feeling “comfortable,” “relaxed,” and “natural.”

  4. Satellite Imagery Production and Processing Using Apache Hadoop

    Science.gov (United States)

    Hill, D. V.; Werpy, J.

    2011-12-01

    The United States Geological Survey's (USGS) Earth Resources Observation and Science (EROS) Center Land Science Research and Development (LSRD) project has devised a method to fulfill its processing needs for Essential Climate Variable (ECV) production from the Landsat archive using Apache Hadoop. Apache Hadoop is the distributed processing technology at the heart of many large-scale, processing solutions implemented at well-known companies such as Yahoo, Amazon, and Facebook. It is a proven framework and can be used to process petabytes of data on thousands of processors concurrently. It is a natural fit for producing satellite imagery and requires only a few simple modifications to serve the needs of science data processing. This presentation provides an invaluable learning opportunity and should be heard by anyone doing large scale image processing today. The session will cover a description of the problem space, evaluation of alternatives, feature set overview, configuration of Hadoop for satellite image processing, real-world performance results, tuning recommendations and finally challenges and ongoing activities. It will also present how the LSRD project built a 102 core processing cluster with no financial hardware investment and achieved ten times the initial daily throughput requirements with a full time staff of only one engineer. Satellite Imagery Production and Processing Using Apache Hadoop is presented by David V. Hill, Principal Software Architect for USGS LSRD.

  5. Unconscious Imagination and the Mental Imagery Debate

    Directory of Open Access Journals (Sweden)

    Berit Brogaard

    2017-05-01

    Full Text Available Traditionally, philosophers have appealed to the phenomenological similarity between visual experience and visual imagery to support the hypothesis that there is significant overlap between the perceptual and imaginative domains. The current evidence, however, is inconclusive: while evidence from transcranial brain stimulation seems to support this conclusion, neurophysiological evidence from brain lesion studies (e.g., from patients with brain lesions resulting in a loss of mental imagery but not a corresponding loss of perception and vice versa indicates that there are functional and anatomical dissociations between mental imagery and perception. Assuming that the mental imagery and perception do not overlap, at least, to the extent traditionally assumed, then the question arises as to what exactly mental imagery is and whether it parallels perception by proceeding via several functionally distinct mechanisms. In this review, we argue that even though there may not be a shared mechanism underlying vision for perception and conscious imagery, there is an overlap between the mechanisms underlying vision for action and unconscious visual imagery. On the basis of these findings, we propose a modification of Kosslyn’s model of imagery that accommodates unconscious imagination and explore possible explanations of the quasi-pictorial phenomenology of conscious visual imagery in light of the fact that its underlying neural substrates and mechanisms typically are distinct from those of visual experience.

  6. Effective System for Automatic Bundle Block Adjustment and Ortho Image Generation from Multi Sensor Satellite Imagery

    Science.gov (United States)

    Akilan, A.; Nagasubramanian, V.; Chaudhry, A.; Reddy, D. Rajesh; Sudheer Reddy, D.; Usha Devi, R.; Tirupati, T.; Radhadevi, P. V.; Varadan, G.

    2014-11-01

    Block Adjustment is a technique for large area mapping for images obtained from different remote sensingsatellites.The challenge in this process is to handle huge number of satellite imageries from different sources with different resolution and accuracies at the system level. This paper explains a system with various tools and techniques to effectively handle the end-to-end chain in large area mapping and production with good level of automation and the provisions for intuitive analysis of final results in 3D and 2D environment. In addition, the interface for using open source ortho and DEM references viz., ETM, SRTM etc. and displaying ESRI shapes for the image foot-prints are explained. Rigorous theory, mathematical modelling, workflow automation and sophisticated software engineering tools are included to ensure high photogrammetric accuracy and productivity. Major building blocks like Georeferencing, Geo-capturing and Geo-Modelling tools included in the block adjustment solution are explained in this paper. To provide optimal bundle block adjustment solution with high precision results, the system has been optimized in many stages to exploit the full utilization of hardware resources. The robustness of the system is ensured by handling failure in automatic procedure and saving the process state in every stage for subsequent restoration from the point of interruption. The results obtained from various stages of the system are presented in the paper.

  7. Quantifying sub-pixel urban impervious surface through fusion of optical and inSAR imagery

    Science.gov (United States)

    Yang, L.; Jiang, L.; Lin, H.; Liao, M.

    2009-01-01

    In this study, we explored the potential to improve urban impervious surface modeling and mapping with the synergistic use of optical and Interferometric Synthetic Aperture Radar (InSAR) imagery. We used a Classification and Regression Tree (CART)-based approach to test the feasibility and accuracy of quantifying Impervious Surface Percentage (ISP) using four spectral bands of SPOT 5 high-resolution geometric (HRG) imagery and three parameters derived from the European Remote Sensing (ERS)-2 Single Look Complex (SLC) SAR image pair. Validated by an independent ISP reference dataset derived from the 33 cm-resolution digital aerial photographs, results show that the addition of InSAR data reduced the ISP modeling error rate from 15.5% to 12.9% and increased the correlation coefficient from 0.71 to 0.77. Spatially, the improvement is especially noted in areas of vacant land and bare ground, which were incorrectly mapped as urban impervious surfaces when using the optical remote sensing data. In addition, the accuracy of ISP prediction using InSAR images alone is only marginally less than that obtained by using SPOT imagery. The finding indicates the potential of using InSAR data for frequent monitoring of urban settings located in cloud-prone areas.

  8. Cloud-shadow removal for Unmanned Aerial System multispectral imagery based on tensor decomposition methods

    DEFF Research Database (Denmark)

    Baum, Andreas; Wang, Sheng; Garcia, Monica

    2017-01-01

    that are mosaicked into larger images to produce ortho-photomaps. Frequently, especially in northern latitudes, the images to be mosaicked have been acquired under varying irradiance conditions due to moving clouds that create artifacts in the detected signal unrelated to physical changes in vegetation properties......, this study succeeded to remove the cloud shadow effects and image noise in UAS imagery providing normalized reflectance. The comparison between the corrected and un-corrected images shows a significant improvement for reflectance estimation in the shadow areas. Further, analysis of vegetation indices e...

  9. Earth mapping - aerial or satellite imagery comparative analysis

    Science.gov (United States)

    Fotev, Svetlin; Jordanov, Dimitar; Lukarski, Hristo

    Nowadays, solving the tasks for revision of existing map products and creation of new maps requires making a choice of the land cover image source. The issue of the effectiveness and cost of the usage of aerial mapping systems versus the efficiency and cost of very-high resolution satellite imagery is topical [1, 2, 3, 4]. The price of any remotely sensed image depends on the product (panchromatic or multispectral), resolution, processing level, scale, urgency of task and on whether the needed image is available in the archive or has to be requested. The purpose of the present work is: to make a comparative analysis between the two approaches for mapping the Earth having in mind two parameters: quality and cost. To suggest an approach for selection of the map information sources - airplane-based or spacecraft-based imaging systems with very-high spatial resolution. Two cases are considered: area that equals approximately one satellite scene and area that equals approximately the territory of Bulgaria.

  10. Desensitizing addiction: using eye movements to reduce the intensity of substance-related mental imagery and craving

    Directory of Open Access Journals (Sweden)

    Marianne eLittel

    2016-02-01

    Full Text Available Eye movement desensitization and reprocessing (EMDR is an effective treatment for posttraumatic stress disorder. During this treatment, patients recall a traumatic memory while making horizontal eye movements (EM. Studies have shown that EM not only desensitize negative memories, but also positive memories and imagined events. Substance use behavior and craving are maintained by maladaptive memory associations and visual imagery. Preliminary findings have indicated that these mental images can be desensitized by EMDR techniques. We conducted two proof-of-principle studies to investigate whether EM can reduce the sensory richness of substance-related mental representations and accompanying craving levels. We investigated the effects of EM on 1 vividness of food-related mental imagery and food craving in dieting and non-dieting students, and 2 vividness of recent smoking-related memories and cigarette craving in daily smokers. In both experiments, participants recalled the images while making EM or keeping eyes stationary. Image vividness and emotionality, image-specific craving and general craving were measured before and after the intervention. As a behavioral outcome measure, participants in study 1 were offered a snack choice at the end of the experiment.Results of both experiments showed that image vividness and craving increased in the control condition, but remained stable or decreased after the EM intervention. EM additionally reduced image emotionality (exp 2, and affected behavior (exp 1: participants in the EM condition were more inclined to choose healthy over unhealthy snack options. In conclusion, the data suggest that EM can be used to reduce intensity of substance related imagery and craving. Although long-term effects are yet to be demonstrated, the current studies suggest that EM might be a useful technique in addiction treatment.

  11. Integrating High-Resolution Taskable Imagery into a Sensorweb for Automatic Space-Based Monitoring of Flooding in Thailand

    Science.gov (United States)

    Chien, Steve; Mclaren, David; Doubleday, Joshua; Tran, Daniel; Tanpipat, Veerachai; Chitradon, Royol; Boonya-aroonnet, Surajate; Thanapakpawin, Porranee; Mandl, Daniel

    2012-01-01

    Several space-based assets (Terra, Aqua, Earth Observing One) have been integrated into a sensorweb to monitor flooding in Thailand. In this approach, the Moderate Imaging Spectrometer (MODIS) data from Terra and Aqua is used to perform broad-scale monitoring to track flooding at the regional level (250m/pixel) and EO-1 is autonomously tasked in response to alerts to acquire higher resolution (30m/pixel) Advanced Land Imager (ALI) data. This data is then automatically processed to derive products such as surface water extent and volumetric water estimates. These products are then automatically pushed to organizations in Thailand for use in damage estimation, relief efforts, and damage mitigation. More recently, this sensorweb structure has been used to request imagery, access imagery, and process high-resolution (several m to 30m), targetable asset imagery from commercial assets including Worldview-2, Ikonos, Radarsat-2, Landsat-7, and Geo-Eye-1. We describe the overall sensorweb framework as well as new workflows and products made possible via these extensions.

  12. Imagery rescripting : The impact of conceptual and perceptual changes on aversive autobiographical memories

    NARCIS (Netherlands)

    Slofstra, Christien; Nauta, Maaike H.; Holmes, Emily A.; Bockting, C. L. H.

    2016-01-01

    BACKGROUND: Imagery rescripting (ImRs) is a process by which aversive autobiographical memories are rendered less unpleasant or emotional. ImRs is thought only to be effective if a change in the meaning-relevant (semantic) content of the mental image is produced, according to a cognitive hypothesis

  13. Spread spectrum image steganography.

    Science.gov (United States)

    Marvel, L M; Boncelet, C R; Retter, C T

    1999-01-01

    In this paper, we present a new method of digital steganography, entitled spread spectrum image steganography (SSIS). Steganography, which means "covered writing" in Greek, is the science of communicating in a hidden manner. Following a discussion of steganographic communication theory and review of existing techniques, the new method, SSIS, is introduced. This system hides and recovers a message of substantial length within digital imagery while maintaining the original image size and dynamic range. The hidden message can be recovered using appropriate keys without any knowledge of the original image. Image restoration, error-control coding, and techniques similar to spread spectrum are described, and the performance of the system is illustrated. A message embedded by this method can be in the form of text, imagery, or any other digital signal. Applications for such a data-hiding scheme include in-band captioning, covert communication, image tamperproofing, authentication, embedded control, and revision tracking.

  14. The effect of pleasant olfactory mental imagery on the incidence and extent of atelectasis in patients after open heart surgery.

    Science.gov (United States)

    Rezaei-Nodehi, Masoud; Shorofi, Seyed Afshin; Bagheri-Nesami, Masoumeh; Ghafari, Rahman; Yazdani-Charati, Jamshid; Darbeheshti, Manizheh

    2018-02-01

    Atelectasis is the most common pulmonary complication after open heart surgery. This study was intended to examine the effects of pleasant olfactory mental imagery on postoperative atelectasis in patients undergoing open heart surgery. This is a randomized controlled clinical trial. The sample consisted of 80 patients who were randomly assigned to either practice olfactory mental imagery (test group) or receive routine care (control group). A card with the image of roses was given to patients and they were asked to look at the image, visualize the scent of roses in the mind, and then sniff as much as possible, hold their breath for 2s and eventually exhale slowly through the nose. This procedure was consecutively repeated five times. After a fifteen-minute break, patients proceeded to practice olfactory mental imagery with other fruit images (banana, apple, and lemon). The test group executed the olfactory mental imagery for two hours in the morning and two hours in the afternoon on postoperative days 1 and 2. The control group received the routine ICU care. A questionnaire collected information on sociodemographic characteristics and clinical parameters. Chest radiographs were used to diagnose atelectasis, which were evaluated by the hospital radiologist. No statistically significant differences were observed between the two groups regarding sociodemographic, medical and surgical information. The incidence of atelectasis in the test group (40%, n=16) was significantly lower than in the control group (67.5%, n=27) on postoperative day 2 (p=0.02). Our findings suggest that olfactory mental imagery can improve respiratory function and reduce the risk of atelectasis in patients with cardiac surgery. Copyright © 2017 Elsevier Ltd. All rights reserved.

  15. Mental Imagery in Depression: Phenomenology, Potential Mechanisms, and Treatment Implications.

    Science.gov (United States)

    Holmes, Emily A; Blackwell, Simon E; Burnett Heyes, Stephanie; Renner, Fritz; Raes, Filip

    2016-01-01

    Mental imagery is an experience like perception in the absence of a percept. It is a ubiquitous feature of human cognition, yet it has been relatively neglected in the etiology, maintenance, and treatment of depression. Imagery abnormalities in depression include an excess of intrusive negative mental imagery; impoverished positive imagery; bias for observer perspective imagery; and overgeneral memory, in which specific imagery is lacking. We consider the contribution of imagery dysfunctions to depressive psychopathology and implications for cognitive behavioral interventions. Treatment advances capitalizing on the representational format of imagery (as opposed to its content) are reviewed, including imagery rescripting, positive imagery generation, and memory specificity training. Consideration of mental imagery can contribute to clinical assessment and imagery-focused psychological therapeutic techniques and promote investigation of underlying mechanisms for treatment innovation. Research into mental imagery in depression is at an early stage. Work that bridges clinical psychology and neuroscience in the investigation of imagery-related mechanisms is recommended.

  16. Use of landsat ETM+ SLC-off segment-based gap-filled imagery for crop type mapping

    Science.gov (United States)

    Maxwell, S.K.; Craig, M.E.

    2008-01-01

    Failure of the Scan Line Corrector (SLC) on the Landsat ETM+ sensor has had a major impact on many applications that rely on continuous medium resolution imagery to meet their objectives. The United States Department of Agriculture (USDA) Cropland Data Layer (CDL) program uses Landsat imagery as the primary source of data to produce crop-specific maps for 20 states in the USA. A new method has been developed to fill the image gaps resulting from the SLC failure to support the needs of Landsat users who require coincident spectral data, such as for crop type mapping and monitoring. We tested the new gap-filled method for a CDL crop type mapping project in eastern Nebraska. Scan line gaps were simulated on two Landsat 5 images (spring and late summer 2003) and then gap-filled using landscape boundary models, or segment models, that were derived from 1992 and 2002 Landsat images (used in the gap-fill process). Various date combinations of original and gap-filled images were used to derive crop maps using a supervised classification process. Overall kappa values were slightly higher for crop maps derived from SLC-off gap-filled images compared to crop maps derived from the original imagery (0.3–1.3% higher). Although the age of the segment model used to derive the SLC-off gap-filled product did not negatively impact the overall agreement, differences in individual cover type agreement did increase (−0.8%–1.6% using the 2002 segment model to −5.0–5.1% using the 1992 segment model). Classification agreement also decreased for most of the classes as the size of the segment used in the gap-fill process increased.

  17. Estimated Depth Maps of the Northwestern Hawaiian Islands Derived from High Resolution IKONOS Satellite Imagery (Draft)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — Estimated shallow-water, depth maps were produced using rule-based, semi-automated image analysis of high-resolution satellite imagery for nine locations in the...

  18. Agency Video, Audio and Imagery Library

    Science.gov (United States)

    Grubbs, Rodney

    2015-01-01

    The purpose of this presentation was to inform the ISS International Partners of the new NASA Agency Video, Audio and Imagery Library (AVAIL) website. AVAIL is a new resource for the public to search for and download NASA-related imagery, and is not intended to replace the current process by which the International Partners receive their Space Station imagery products.

  19. Mental imagery affects subsequent automatic defense responses

    Directory of Open Access Journals (Sweden)

    Muriel A Hagenaars

    2015-06-01

    Full Text Available Automatic defense responses promote survival and appropriate action under threat. They have also been associated with the development of threat-related psychiatric syndromes. Targeting such automatic responses during threat may be useful in populations with frequent threat exposure. Here, two experiments explored whether mental imagery as a pre-trauma manipulation could influence fear bradycardia (a core characteristic of freezing during subsequent analogue trauma (affective picture viewing. Image-based interventions have proven successful in the treatment of threat-related disorders, and are easily applicable. In Experiment 1 43 healthy participants were randomly assigned to an imagery script condition. Participants executed a passive viewing task with blocks of neutral, pleasant and unpleasant pictures after listening to an auditory script that was either related (with a positive or a negative outcome or unrelated to the unpleasant pictures from the passive viewing task. Heart rate was assessed during script listening and during passive viewing. Imagining negative related scripts resulted in greater bradycardia (neutral-unpleasant contrast than imagining positive scripts, especially unrelated. This effect was replicated in Experiment 2 (N = 51, again in the neutral-unpleasant contrast. An extra no-script condition showed that bradycardia was not induced by the negative related script, but rather that a positive script attenuated bradycardia. These preliminary results might indicate reduced vigilance after unrelated positive events. Future research should replicate these findings using a larger sample. Either way, the findings show that highly automatic defense behavior can be influenced by relatively simple mental imagery manipulations.

  20. Motion/imagery secure cloud enterprise architecture analysis

    Science.gov (United States)

    DeLay, John L.

    2012-06-01

    Cloud computing with storage virtualization and new service-oriented architectures brings a new perspective to the aspect of a distributed motion imagery and persistent surveillance enterprise. Our existing research is focused mainly on content management, distributed analytics, WAN distributed cloud networking performance issues of cloud based technologies. The potential of leveraging cloud based technologies for hosting motion imagery, imagery and analytics workflows for DOD and security applications is relatively unexplored. This paper will examine technologies for managing, storing, processing and disseminating motion imagery and imagery within a distributed network environment. Finally, we propose areas for future research in the area of distributed cloud content management enterprises.

  1. "Like the palm of my hands": Motor imagery enhances implicit and explicit visual recognition of one's own hands.

    Science.gov (United States)

    Conson, Massimiliano; Volpicella, Francesco; De Bellis, Francesco; Orefice, Agnese; Trojano, Luigi

    2017-10-01

    A key point in motor imagery literature is that judging hands in palm view recruits sensory-motor information to a higher extent than judging hands in back view, due to the greater biomechanical complexity implied in rotating hands depicted from palm than from back. We took advantage from this solid evidence to test the nature of a phenomenon known as self-advantage, i.e. the advantage in implicitly recognizing self vs. others' hand images. The self-advantage has been actually found when implicitly but not explicitly judging self-hands, likely due to dissociation between implicit and explicit body representations. However, such a finding might be related to the extent to which motor imagery is recruited during implicit and explicit processing of hand images. We tested this hypothesis in two behavioural experiments. In Experiment 1, right-handed participants judged laterality of either self or others' hands, whereas in Experiment 2, an explicit recognition of one's own hands was required. Crucially, in both experiments participants were randomly presented with hand images viewed from back or from palm. The main result of both experiments was the self-advantage when participants judged hands from palm view. This novel finding demonstrate that increasing the "motor imagery load" during processing of self vs. others' hands can elicit a self-advantage in explicit recognition tasks as well. Future studies testing the possible dissociation between implicit and explicit visual body representations should take into account the modulatory effect of motor imagery load on self-hand processing. Copyright © 2017. Published by Elsevier B.V.

  2. Main Road Extraction from ZY-3 Grayscale Imagery Based on Directional Mathematical Morphology and VGI Prior Knowledge in Urban Areas.

    Science.gov (United States)

    Liu, Bo; Wu, Huayi; Wang, Yandong; Liu, Wenming

    2015-01-01

    Main road features extracted from remotely sensed imagery play an important role in many civilian and military applications, such as updating Geographic Information System (GIS) databases, urban structure analysis, spatial data matching and road navigation. Current methods for road feature extraction from high-resolution imagery are typically based on threshold value segmentation. It is difficult however, to completely separate road features from the background. We present a new method for extracting main roads from high-resolution grayscale imagery based on directional mathematical morphology and prior knowledge obtained from the Volunteered Geographic Information found in the OpenStreetMap. The two salient steps in this strategy are: (1) using directional mathematical morphology to enhance the contrast between roads and non-roads; (2) using OpenStreetMap roads as prior knowledge to segment the remotely sensed imagery. Experiments were conducted on two ZiYuan-3 images and one QuickBird high-resolution grayscale image to compare our proposed method to other commonly used techniques for road feature extraction. The results demonstrated the validity and better performance of the proposed method for urban main road feature extraction.

  3. Main Road Extraction from ZY-3 Grayscale Imagery Based on Directional Mathematical Morphology and VGI Prior Knowledge in Urban Areas.

    Directory of Open Access Journals (Sweden)

    Bo Liu

    Full Text Available Main road features extracted from remotely sensed imagery play an important role in many civilian and military applications, such as updating Geographic Information System (GIS databases, urban structure analysis, spatial data matching and road navigation. Current methods for road feature extraction from high-resolution imagery are typically based on threshold value segmentation. It is difficult however, to completely separate road features from the background. We present a new method for extracting main roads from high-resolution grayscale imagery based on directional mathematical morphology and prior knowledge obtained from the Volunteered Geographic Information found in the OpenStreetMap. The two salient steps in this strategy are: (1 using directional mathematical morphology to enhance the contrast between roads and non-roads; (2 using OpenStreetMap roads as prior knowledge to segment the remotely sensed imagery. Experiments were conducted on two ZiYuan-3 images and one QuickBird high-resolution grayscale image to compare our proposed method to other commonly used techniques for road feature extraction. The results demonstrated the validity and better performance of the proposed method for urban main road feature extraction.

  4. Main Road Extraction from ZY-3 Grayscale Imagery Based on Directional Mathematical Morphology and VGI Prior Knowledge in Urban Areas

    Science.gov (United States)

    Liu, Bo; Wu, Huayi; Wang, Yandong; Liu, Wenming

    2015-01-01

    Main road features extracted from remotely sensed imagery play an important role in many civilian and military applications, such as updating Geographic Information System (GIS) databases, urban structure analysis, spatial data matching and road navigation. Current methods for road feature extraction from high-resolution imagery are typically based on threshold value segmentation. It is difficult however, to completely separate road features from the background. We present a new method for extracting main roads from high-resolution grayscale imagery based on directional mathematical morphology and prior knowledge obtained from the Volunteered Geographic Information found in the OpenStreetMap. The two salient steps in this strategy are: (1) using directional mathematical morphology to enhance the contrast between roads and non-roads; (2) using OpenStreetMap roads as prior knowledge to segment the remotely sensed imagery. Experiments were conducted on two ZiYuan-3 images and one QuickBird high-resolution grayscale image to compare our proposed method to other commonly used techniques for road feature extraction. The results demonstrated the validity and better performance of the proposed method for urban main road feature extraction. PMID:26397832

  5. Analysis on the Utility of Satellite Imagery for Detection of Agricultural Facility

    Science.gov (United States)

    Kang, J.-M.; Baek, S.-H.; Jung, K.-Y.

    2012-07-01

    Now that the agricultural facilities are being increase owing to development of technology and diversification of agriculture and the ratio of garden crops that are imported a lot and the crops cultivated in facilities are raised in Korea, the number of vinyl greenhouses is tending upward. So, it is important to grasp the distribution of vinyl greenhouses as much as that of rice fields, dry fields and orchards, but it is difficult to collect the information of wide areas economically and correctly. Remote sensing using satellite imagery is able to obtain data of wide area at the same time, quickly and cost-effectively collect, monitor and analyze information from every object on earth. In this study, in order to analyze the utilization of satellite imagery at detection of agricultural facility, image classification was performed about the agricultural facility, vinyl greenhouse using Formosat-2 satellite imagery. The training set of sea, vegetation, building, bare ground and vinyl greenhouse was set to monitor the agricultural facilities of the object area and the training set for the vinyl greenhouses that are main monitoring object was classified and set again into 3 types according the spectral characteristics. The image classification using 4 kinds of supervise classification methods applied by the same training set were carried out to grasp the image classification method which is effective for monitoring agricultural facilities. And, in order to minimize the misclassification appeared in the classification using the spectral information, the accuracy of classification was intended to be raised by adding texture information. The results of classification were analyzed regarding the accuracy comparing with that of naked-eyed detection. As the results of classification, the method of Mahalanobis distance was shown as more efficient than other methods and the accuracy of classification was higher when adding texture information. Hence the more effective

  6. ANALYSIS ON THE UTILITY OF SATELLITE IMAGERY FOR DETECTION OF AGRICULTURAL FACILITY

    Directory of Open Access Journals (Sweden)

    J.-M. Kang

    2012-07-01

    Full Text Available Now that the agricultural facilities are being increase owing to development of technology and diversification of agriculture and the ratio of garden crops that are imported a lot and the crops cultivated in facilities are raised in Korea, the number of vinyl greenhouses is tending upward. So, it is important to grasp the distribution of vinyl greenhouses as much as that of rice fields, dry fields and orchards, but it is difficult to collect the information of wide areas economically and correctly. Remote sensing using satellite imagery is able to obtain data of wide area at the same time, quickly and cost-effectively collect, monitor and analyze information from every object on earth. In this study, in order to analyze the utilization of satellite imagery at detection of agricultural facility, image classification was performed about the agricultural facility, vinyl greenhouse using Formosat-2 satellite imagery. The training set of sea, vegetation, building, bare ground and vinyl greenhouse was set to monitor the agricultural facilities of the object area and the training set for the vinyl greenhouses that are main monitoring object was classified and set again into 3 types according the spectral characteristics. The image classification using 4 kinds of supervise classification methods applied by the same training set were carried out to grasp the image classification method which is effective for monitoring agricultural facilities. And, in order to minimize the misclassification appeared in the classification using the spectral information, the accuracy of classification was intended to be raised by adding texture information. The results of classification were analyzed regarding the accuracy comparing with that of naked-eyed detection. As the results of classification, the method of Mahalanobis distance was shown as more efficient than other methods and the accuracy of classification was higher when adding texture information. Hence the more

  7. Imagery mismatch negativity in musicians.

    Science.gov (United States)

    Herholz, Sibylle C; Lappe, Claudia; Knief, Arne; Pantev, Christo

    2009-07-01

    The present study investigated musical imagery in musicians and nonmusicians by means of magnetoencephalography (MEG). We used a new paradigm in which subjects had to continue familiar melodies in their mind and then judged if a further presented tone was a correct continuation of the melody. Incorrect tones elicited an imagery mismatch negativity (iMMN) in musicians but not in nonmusicians. This finding suggests that the MMN component can be based on an imagined instead of a sensory memory trace and that imagery of music is modulated by musical expertise.

  8. Photogrammetric Processing Using ZY-3 Satellite Imagery

    Science.gov (United States)

    Kornus, W.; Magariños, A.; Pla, M.; Soler, E.; Perez, F.

    2015-03-01

    This paper evaluates the stereoscopic capacities of the Chinese sensor ZiYuan-3 (ZY-3) for the generation of photogrammetric products. The satellite was launched on January 9, 2012 and carries three high-resolution panchromatic cameras viewing in forward (22º), nadir (0º) and backward direction (-22º) and an infrared multi-spectral scanner (IRMSS), which is slightly looking forward (6º). The ground sampling distance (GSD) is 2.1m for the nadir image, 3.5m for the two oblique stereo images and 5.8m for the multispectral image. The evaluated ZY-3 imagery consists of a full set of threefold-stereo and a multi-spectral image covering an area of ca. 50km x 50km north-west of Barcelona, Spain. The complete photogrammetric processing chain was executed including image orientation, the generation of a digital surface model (DSM), radiometric image correction, pansharpening, orthoimage generation and digital stereo plotting. All 4 images are oriented by estimating affine transformation parameters between observed and nominal RPC (rational polynomial coefficients) image positions of 17 ground control points (GCP) and a subsequent calculation of refined RPC. From 10 independent check points RMS errors of 2.2m, 2.0m and 2.7m in X, Y and H are obtained. Subsequently, a DSM of 5m grid spacing is generated fully automatically. A comparison with the Lidar data results in an overall DSM accuracy of approximately 3m. In moderate and flat terrain higher accuracies in the order of 2.5m and better are achieved. In a next step orthoimages from the high resolution nadir image and the multispectral image are generated using the refined RPC geometry and the DSM. After radiometric corrections a fused high resolution colour orthoimage with 2.1m pixel size is created using an adaptive HSL method. The pansharpen process is performed after the individual geocorrection due to the different viewing angles between the two images. In a detailed analysis of the colour orthoimage artifacts are

  9. Sensory Substitution and Multimodal Mental Imagery.

    Science.gov (United States)

    Nanay, Bence

    2017-09-01

    Many philosophers use findings about sensory substitution devices in the grand debate about how we should individuate the senses. The big question is this: Is "vision" assisted by (tactile) sensory substitution really vision? Or is it tactile perception? Or some sui generis novel form of perception? My claim is that sensory substitution assisted "vision" is neither vision nor tactile perception, because it is not perception at all. It is mental imagery: visual mental imagery triggered by tactile sensory stimulation. But it is a special form of mental imagery that is triggered by corresponding sensory stimulation in a different sense modality, which I call "multimodal mental imagery."

  10. USGS Provision of Near Real Time Remotely Sensed Imagery for Emergency Response

    Science.gov (United States)

    Jones, B. K.

    2014-12-01

    The use of remotely sensed imagery in the aftermath of a disaster can have an important impact on the effectiveness of the response for many types of disasters such as floods, earthquakes, volcanic eruptions, landslides, and other natural or human-induced disasters. Ideally, responders in areas that are commonly affected by disasters would have access to archived remote sensing imagery plus the ability to easily obtain the new post event data products. The cost of obtaining and storing the data and the lack of trained professionals who can process the data into a mapping product oftentimes prevent this from happening. USGS Emergency Operations provides remote sensing and geospatial support to emergency managers by providing access to satellite images from numerous domestic and international space agencies including those affiliated with the International Charter Space and Major Disasters and their space-based assets and by hosting and distributing thousands of near real time event related images and map products through the Hazards Data Distribution System (HDDS). These data may include digital elevation models, hydrographic models, base satellite images, vector data layers such as roads, aerial photographs, and other pre and post disaster data. These layers are incorporated into a Web-based browser and data delivery service, the Hazards Data Distribution System (HDDS). The HDDS can be made accessible either to the general public or to specific response agencies. The HDDS concept anticipates customer requirements and provides rapid delivery of data and services. This presentation will provide an overview of remotely sensed imagery that is currently available to support emergency response operations and examples of products that have been created for past events that have provided near real time situational awareness for responding agencies.

  11. Using Google Streetview Panoramic Imagery for Geoscience Education

    Science.gov (United States)

    De Paor, D. G.; Dordevic, M. M.

    2014-12-01

    Google Streetview is a feature of Google Maps and Google Earth that allows viewers to switch from map or satellite view to 360° panoramic imagery recorded close to the ground. Most panoramas are recorded by Google engineers using special cameras mounted on the roofs of cars. Bicycles, snowmobiles, and boats have also been used and sometimes the camera has been mounted on a backpack for off-road use by hikers and skiers or attached to scuba-diving gear for "Underwater Streetview (sic)." Streetview panoramas are linked together so that the viewer can change viewpoint by clicking forward and reverse buttons. They therefore create a 4-D touring effect. As part of the GEODE project ("Google Earth for Onsite and Distance Education"), we are experimenting with the use of Streetview imagery for geoscience education. Our web-based test application allows instructors to select locations for students to study. Students are presented with a set of questions or tasks that they must address by studying the panoramic imagery. Questions include identification of rock types, structures such as faults, and general geological setting. The student view is locked into Streetview mode until they submit their answers, whereupon the map and satellite views become available, allowing students to zoom out and verify their location on Earth. Student learning is scaffolded by automatic computerized feedback. There are lots of existing Streetview panoramas with rich geological content. Additionally, instructors and members of the general public can create panoramas, including 360° Photo Spheres, by stitching images taken with their mobiles devices and submitting them to Google for evaluation and hosting. A multi-thousand-dollar, multi-directional camera and mount can be purchased from DIY-streetview.com. This allows power users to generate their own high-resolution panoramas. A cheaper, 360° video camera is soon to be released according to geonaute.com. Thus there are opportunities for

  12. A question of intention in motor imagery.

    Science.gov (United States)

    Gabbard, Carl; Cordova, Alberto; Lee, Sunghan

    2009-03-01

    We examined the question-is the intention of completing a simulated motor action the same as the intention used in processing overt actions? Participants used motor imagery to estimate distance reachability in two conditions: Imagery-Only (IO) and Imagery-Execution (IE). With IO (red target) only a verbal estimate using imagery was given. With IE (green target) participants knew that they would actually reach after giving a verbal estimate and be judged on accuracy. After measuring actual maximum reach, used for the comparison, imagery targets were randomly presented across peripersonal- (within reach) and extrapersonal (beyond reach) space. Results indicated no difference in overall accuracy by condition, however, there was a significant distinction by space; participants were more accurate in peripersonal space. Although more research is needed, these findings support an increasing body of evidence suggesting that the neurocognitive processes (in this case, intention) driving motor imagery and overt actions are similar.

  13. Automated cloud screening of AVHRR imagery using split-and-merge clustering

    Science.gov (United States)

    Gallaudet, Timothy C.; Simpson, James J.

    1991-01-01

    Previous methods to segment clouds from ocean in AVHRR imagery have shown varying degrees of success, with nighttime approaches being the most limited. An improved method of automatic image segmentation, the principal component transformation split-and-merge clustering (PCTSMC) algorithm, is presented and applied to cloud screening of both nighttime and daytime AVHRR data. The method combines spectral differencing, the principal component transformation, and split-and-merge clustering to sample objectively the natural classes in the data. This segmentation method is then augmented by supervised classification techniques to screen clouds from the imagery. Comparisons with other nighttime methods demonstrate its improved capability in this application. The sensitivity of the method to clustering parameters is presented; the results show that the method is insensitive to the split-and-merge thresholds.

  14. Exploring the Influence of Topographic Correction and SWIR Spectral Information Inclusion on Burnt Scars Detection From High Resolution EO Imagery: A Case Study Using ASTER imagery

    Science.gov (United States)

    Said, Yahia A.; Petropoulos, George; Srivastava, Prashant K.

    2014-05-01

    Information on burned area estimates is of key importance in environmental and ecological studies as well as in fire management including damage assessment and planning of post-fire recovery of affected areas. Earth Observation (EO) provides today the most efficient way in obtaining such information in a rapid, consistent and cost-effective manner. The present study aimed at exploring the effect of topographic correction to the burnt area delineation in conditions characteristic of a Mediterranean environment using ASTER high resolution multispectral remotely sensed imagery. A further objective was to investigate the potential added-value of the inclusion of the shortwave infrared (SWIR) bands in improving the retrievals of burned area cartography from the ASTER data. In particular the capability of the Maximum Likelihood (ML), the Support Vector Machines (SVMs) and Object-based Image Analysis (OBIA) classification techniques has been examined herein for the purposes of our study. As a case study is used a typical Mediterranean site on which a fire event occurred in Greece during the summer of 2007, for which post-fire ASTER imagery has been acquired. Our results indicated that the combination of topographic correction (ortho-rectification) with the inclusion of the SWIR bands returned the most accurate results in terms of burnt area mapping. In terms of image processing methods, OBIA showed the best results and found as the most promising approach for burned area mapping with least absolute difference from the validation polygon followed by SVM and ML. All in all, our study provides an important contribution to the understanding of the capability of high resolution imagery such as that from ASTER sensor and corroborates the usefulness particularly of the topographic correction as an image processing step when in delineating the burnt areas from such data. It also provides further evidence that use of EO technology can offer an effective practical tool for the

  15. The Sport Imagery Questionnaire for Children (SIQ-C)

    Science.gov (United States)

    Hall, C. R.; Munroe-Chandler, K. J.; Fishburne, G. J.; Hall, N. D.

    2009-01-01

    Athletes of all ages report using imagery extensively to enhance their sport performance. The Sport Imagery Questionnaire (Hall, Mack, Paivio, & Hausenblas, 1998) was developed to assess cognitive and motivational imagery used by adult athletes. No such instrument currently exists to measure the use of imagery by young athletes. The aim of the…

  16. Vividness of visual imagery and incidental recall of verbal cues, when phenomenological availability reflects long-term memory accessibility

    Directory of Open Access Journals (Sweden)

    Amedeo eD'Angiulli

    2013-02-01

    Full Text Available The relationship between vivid visual mental images and unexpected recall (incidental recall was replicated, refined and extended. In Experiment 1, participants were asked to generate mental images from imagery-evoking verbal-cues (controlled on several verbal properties and then, on a trial-by-trial basis, rate the vividness of their images; thirty minutes later, participants were surprised with a task requiring free recall of the cues. Higher vividness ratings predicted better incidental recall of the cues than individual differences (whose effect was modest. Distributional analysis of image latencies through ex-Gaussian modeling showed an inverse relation between vividness and latency. However, recall was unrelated to image latency. The follow-up Experiment 2 showed that the processes underlying trial-by-trial vividness ratings are unrelated to the Vividness of Visual Imagery Questionnaire (VVIQ, as further supported by a meta-analysis of a randomly selected sample of relevant literature. The present findings suggest that vividness may act as an index of availability of long-term sensory traces, playing a non-epiphenomenal role in facilitating the access of those memories.

  17. Vividness of visual imagery and incidental recall of verbal cues, when phenomenological availability reflects long-term memory accessibility.

    Science.gov (United States)

    D'Angiulli, Amedeo; Runge, Matthew; Faulkner, Andrew; Zakizadeh, Jila; Chan, Aldrich; Morcos, Selvana

    2013-01-01

    The relationship between vivid visual mental images and unexpected recall (incidental recall) was replicated, refined, and extended. In Experiment 1, participants were asked to generate mental images from imagery-evoking verbal cues (controlled on several verbal properties) and then, on a trial-by-trial basis, rate the vividness of their images; 30 min later, participants were surprised with a task requiring free recall of the cues. Higher vividness ratings predicted better incidental recall of the cues than individual differences (whose effect was modest). Distributional analysis of image latencies through ex-Gaussian modeling showed an inverse relation between vividness and latency. However, recall was unrelated to image latency. The follow-up Experiment 2 showed that the processes underlying trial-by-trial vividness ratings are unrelated to the Vividness of Visual Imagery Questionnaire (VVIQ), as further supported by a meta-analysis of a randomly selected sample of relevant literature. The present findings suggest that vividness may act as an index of availability of long-term sensory traces, playing a non-epiphenomenal role in facilitating the access of those memories.

  18. Negative mental imagery in public speaking anxiety: Forming cognitive resistance by taxing visuospatial working memory.

    Science.gov (United States)

    Homer, Sophie R; Deeprose, Catherine; Andrade, Jackie

    2016-03-01

    This study sought to reconcile two lines of research. Previous studies have identified a prevalent and causal role of negative imagery in social phobia and public speaking anxiety; others have demonstrated that lateral eye movements during visualisation of imagery reduce its vividness, most likely by loading the visuospatial sketchpad of working memory. It was hypothesised that using eye movements to reduce the intensity of negative imagery associated with public speaking may reduce anxiety resulting from imagining a public speaking scenario compared to an auditory control task. Forty undergraduate students scoring high in anxiety on the Personal Report of Confidence as a Speaker scale took part. A semi-structured interview established an image that represented the participant's public speaking anxiety, which was then visualised during an eye movement task or a matched auditory task. Reactions to imagining a hypothetical but realistic public speaking scenario were measured. As hypothesised, representative imagery was established and reduced in vividness more effectively by the eye movement task than the auditory task. The public speaking scenario was then visualised less vividly and generated less anxiety when imagined after performing the eye movement task than after the auditory task. Self-report measures and a hypothetical scenario rather than actual public speaking were used. Replication is required in larger as well as clinical samples. Visuospatial working memory tasks may preferentially reduce anxiety associated with personal images of feared events, and thus provide cognitive resistance which reduces emotional reactions to imagined, and potentially real-life future stressful experiences. Copyright © 2015 Elsevier Ltd. All rights reserved.

  19. Diazo processing of LANDSAT imagery: A low-cost instructional technique

    Science.gov (United States)

    Lusch, D. P.

    1981-01-01

    Diazo processing of LANDSAT imagery is a relatively simple and cost effective method of producing enhanced renditions of the visual LANDSAT products. This technique is capable of producing a variety of image enhancements which have value in a teaching laboratory environment. Additionally, with the appropriate equipment, applications research which relys on accurate and repeatable results is possible. Exposure and development equipment options, diazo materials, and enhancement routines are discussed.

  20. Phenology-based Spartina alterniflora mapping in coastal wetland of the Yangtze Estuary using time series of GaoFen satellite no. 1 wide field of view imagery

    Science.gov (United States)

    Ai, Jinquan; Gao, Wei; Gao, Zhiqiang; Shi, Runhe; Zhang, Chao

    2017-04-01

    Spartina alterniflora is an aggressive invasive plant species that replaces native species, changes the structure and function of the ecosystem across coastal wetlands in China, and is thus a major conservation concern. Mapping the spread of its invasion is a necessary first step for the implementation of effective ecological management strategies. The performance of a phenology-based approach for S. alterniflora mapping is explored in the coastal wetland of the Yangtze Estuary using a time series of GaoFen satellite no. 1 wide field of view camera (GF-1 WFV) imagery. First, a time series of the normalized difference vegetation index (NDVI) was constructed to evaluate the phenology of S. alterniflora. Two phenological stages (the senescence stage from November to mid-December and the green-up stage from late April to May) were determined as important for S. alterniflora detection in the study area based on NDVI temporal profiles, spectral reflectance curves of S. alterniflora and its coexistent species, and field surveys. Three phenology feature sets representing three major phenology-based detection strategies were then compared to map S. alterniflora: (1) the single-date imagery acquired within the optimal phenological window, (2) the multitemporal imagery, including four images from the two important phenological windows, and (3) the monthly NDVI time series imagery. Support vector machines and maximum likelihood classifiers were applied on each phenology feature set at different training sample sizes. For all phenology feature sets, the overall results were produced consistently with high mapping accuracies under sufficient training samples sizes, although significantly improved classification accuracies (10%) were obtained when the monthly NDVI time series imagery was employed. The optimal single-date imagery had the lowest accuracies of all detection strategies. The multitemporal analysis demonstrated little reduction in the overall accuracy compared with the

  1. An Efficient Parallel Multi-Scale Segmentation Method for Remote Sensing Imagery

    Directory of Open Access Journals (Sweden)

    Haiyan Gu

    2018-04-01

    Full Text Available Remote sensing (RS image segmentation is an essential step in geographic object-based image analysis (GEOBIA to ultimately derive “meaningful objects”. While many segmentation methods exist, most of them are not efficient for large data sets. Thus, the goal of this research is to develop an efficient parallel multi-scale segmentation method for RS imagery by combining graph theory and the fractal net evolution approach (FNEA. Specifically, a minimum spanning tree (MST algorithm in graph theory is proposed to be combined with a minimum heterogeneity rule (MHR algorithm that is used in FNEA. The MST algorithm is used for the initial segmentation while the MHR algorithm is used for object merging. An efficient implementation of the segmentation strategy is presented using data partition and the “reverse searching-forward processing” chain based on message passing interface (MPI parallel technology. Segmentation results of the proposed method using images from multiple sensors (airborne, SPECIM AISA EAGLE II, WorldView-2, RADARSAT-2 and different selected landscapes (residential/industrial, residential/agriculture covering four test sites indicated its efficiency in accuracy and speed. We conclude that the proposed method is applicable and efficient for the segmentation of a variety of RS imagery (airborne optical, satellite optical, SAR, high-spectral, while the accuracy is comparable with that of the FNEA method.

  2. Satellite Imagery and In-situ Data Overlay Approach for Fishery Zonation

    Directory of Open Access Journals (Sweden)

    Fardhi Adria

    2010-12-01

    Full Text Available Remote sensing technology can be used to better understand the earth’s characteristics. SeaWiFS (sea-viewing wide field-of-view sensor is one of remote sensors used to observe global ocean phenomena. Previous studies showed that the distribution of chlorophyll-a in the ocean indicates the presence of fish. However, only a few studies tried to directly relate the chlorophyll-a distribution obtained through interpretation of satellite imagery to in-situ data of fish distribution. This paper investigates the relation between chlorophyll-a distribution and fish-capturing points in Aceh Province sea waters using overlay image analysis. The results are then used to identify the potential fishing ground in Aceh. The profile of chlorophyll-a concentration is derived from SeaWIFS satellite imagery. Fish-capturing points data is obtained from the fisherman communities of Banda Aceh, starting from June to November 2008. The results showed that the chlorophyll-a profile derived from satellite imagery has a positive relationship to fish-capturing point data. The most potential fish-capturing zone in Aceh sea waters is identified at 5-8º north latitude (N and 96-99º east longitude (E.

  3. Infrared Sky Imager (IRSI) Instrument Handbook

    Energy Technology Data Exchange (ETDEWEB)

    Morris, Victor R. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States)

    2016-04-01

    The Infrared Sky Imager (IRSI) deployed at the Atmospheric Radiation Measurement (ARM) Climate Research Facility is a Solmirus Corp. All Sky Infrared Visible Analyzer. The IRSI is an automatic, continuously operating, digital imaging and software system designed to capture hemispheric sky images and provide time series retrievals of fractional sky cover during both the day and night. The instrument provides diurnal, radiometrically calibrated sky imagery in the mid-infrared atmospheric window and imagery in the visible wavelengths for cloud retrievals during daylight hours. The software automatically identifies cloudy and clear regions at user-defined intervals and calculates fractional sky cover, providing a real-time display of sky conditions.

  4. Gustatory imagery reveals functional connectivity from the prefrontal to insular cortices traced with magnetoencephalography.

    Directory of Open Access Journals (Sweden)

    Masayuki Kobayashi

    Full Text Available Our experience and prejudice concerning food play an important role in modulating gustatory information processing; gustatory memory stored in the central nervous system influences gustatory information arising from the peripheral nervous system. We have elucidated the mechanism of the "top-down" modulation of taste perception in humans using functional magnetic resonance imaging (fMRI and demonstrated that gustatory imagery is mediated by the prefrontal (PFC and insular cortices (IC. However, the temporal order of activation of these brain regions during gustatory imagery is still an open issue. To explore the source of "top-down" signals during gustatory imagery tasks, we analyzed the temporal activation patterns of activated regions in the cerebral cortex using another non-invasive brain imaging technique, magnetoencephalography (MEG. Gustatory imagery tasks were presented by words (Letter G-V or pictures (Picture G-V of foods/beverages, and participants were requested to recall their taste. In the Letter G-V session, 7/9 (77.8% participants showed activation in the IC with a latency of 401.7±34.7 ms (n = 7 from the onset of word exhibition. In 5/7 (71.4% participants who exhibited IC activation, the PFC was activated prior to the IC at a latency of 315.2±56.5 ms (n = 5, which was significantly shorter than the latency to the IC activation. In the Picture G-V session, the IC was activated in 6/9 (66.7% participants, and only 1/9 (11.1% participants showed activation in the PFC. There was no significant dominance between the right and left IC or PFC during gustatory imagery. These results support those from our previous fMRI study in that the Letter G-V session rather than the Picture G-V session effectively activates the PFC and IC and strengthen the hypothesis that the PFC mediates "top-down" control of retrieving gustatory information from the storage of long-term memories and in turn activates the IC.

  5. Gustatory imagery reveals functional connectivity from the prefrontal to insular cortices traced with magnetoencephalography.

    Science.gov (United States)

    Kobayashi, Masayuki; Sasabe, Tetsuya; Shigihara, Yoshihito; Tanaka, Masaaki; Watanabe, Yasuyoshi

    2011-01-01

    Our experience and prejudice concerning food play an important role in modulating gustatory information processing; gustatory memory stored in the central nervous system influences gustatory information arising from the peripheral nervous system. We have elucidated the mechanism of the "top-down" modulation of taste perception in humans using functional magnetic resonance imaging (fMRI) and demonstrated that gustatory imagery is mediated by the prefrontal (PFC) and insular cortices (IC). However, the temporal order of activation of these brain regions during gustatory imagery is still an open issue. To explore the source of "top-down" signals during gustatory imagery tasks, we analyzed the temporal activation patterns of activated regions in the cerebral cortex using another non-invasive brain imaging technique, magnetoencephalography (MEG). Gustatory imagery tasks were presented by words (Letter G-V) or pictures (Picture G-V) of foods/beverages, and participants were requested to recall their taste. In the Letter G-V session, 7/9 (77.8%) participants showed activation in the IC with a latency of 401.7±34.7 ms (n = 7) from the onset of word exhibition. In 5/7 (71.4%) participants who exhibited IC activation, the PFC was activated prior to the IC at a latency of 315.2±56.5 ms (n = 5), which was significantly shorter than the latency to the IC activation. In the Picture G-V session, the IC was activated in 6/9 (66.7%) participants, and only 1/9 (11.1%) participants showed activation in the PFC. There was no significant dominance between the right and left IC or PFC during gustatory imagery. These results support those from our previous fMRI study in that the Letter G-V session rather than the Picture G-V session effectively activates the PFC and IC and strengthen the hypothesis that the PFC mediates "top-down" control of retrieving gustatory information from the storage of long-term memories and in turn activates the IC.

  6. Building Extraction in Very High Resolution Remote Sensing Imagery Using Deep Learning and Guided Filters

    Directory of Open Access Journals (Sweden)

    Yongyang Xu

    2018-01-01

    Full Text Available Very high resolution (VHR remote sensing imagery has been used for land cover classification, and it tends to a transition from land-use classification to pixel-level semantic segmentation. Inspired by the recent success of deep learning and the filter method in computer vision, this work provides a segmentation model, which designs an image segmentation neural network based on the deep residual networks and uses a guided filter to extract buildings in remote sensing imagery. Our method includes the following steps: first, the VHR remote sensing imagery is preprocessed and some hand-crafted features are calculated. Second, a designed deep network architecture is trained with the urban district remote sensing image to extract buildings at the pixel level. Third, a guided filter is employed to optimize the classification map produced by deep learning; at the same time, some salt-and-pepper noise is removed. Experimental results based on the Vaihingen and Potsdam datasets demonstrate that our method, which benefits from neural networks and guided filtering, achieves a higher overall accuracy when compared with other machine learning and deep learning methods. The method proposed shows outstanding performance in terms of the building extraction from diversified objects in the urban district.

  7. Developing and Evaluating RGB Composite MODIS Imagery for Applications in National Weather Service Forecast Offices

    Science.gov (United States)

    Oswald, Hayden; Molthan, Andrew L.

    2011-01-01

    Satellite remote sensing has gained widespread use in the field of operational meteorology. Although raw satellite imagery is useful, several techniques exist which can convey multiple types of data in a more efficient way. One of these techniques is multispectral compositing. The NASA Short-term Prediction Research and Transition (SPoRT) Center has developed two multispectral satellite imagery products which utilize data from the Moderate Resolution Imaging Spectroradiometer (MODIS) aboard NASA's Terra and Aqua satellites, based upon products currently generated and used by the European Organization for the Exploitation of Meteorological Satellites (EUMETSAT). The nighttime microphysics product allows users to identify clouds occurring at different altitudes, but emphasizes fog and low cloud detection. This product improves upon current spectral difference and single channel infrared techniques. Each of the current products has its own set of advantages for nocturnal fog detection, but each also has limiting drawbacks which can hamper the analysis process. The multispectral product combines each current product with a third channel difference. Since the final image is enhanced with color, it simplifies the fog identification process. Analysis has shown that the nighttime microphysics imagery product represents a substantial improvement to conventional fog detection techniques, as well as provides a preview of future satellite capabilities to forecasters.

  8. An Object-Based Image Analysis Approach for Detecting Penguin Guano in very High Spatial Resolution Satellite Images

    Directory of Open Access Journals (Sweden)

    Chandi Witharana

    2016-04-01

    Full Text Available The logistical challenges of Antarctic field work and the increasing availability of very high resolution commercial imagery have driven an interest in more efficient search and classification of remotely sensed imagery. This exploratory study employed geographic object-based analysis (GEOBIA methods to classify guano stains, indicative of chinstrap and Adélie penguin breeding areas, from very high spatial resolution (VHSR satellite imagery and closely examined the transferability of knowledge-based GEOBIA rules across different study sites focusing on the same semantic class. We systematically gauged the segmentation quality, classification accuracy, and the reproducibility of fuzzy rules. A master ruleset was developed based on one study site and it was re-tasked “without adaptation” and “with adaptation” on candidate image scenes comprising guano stains. Our results suggest that object-based methods incorporating the spectral, textural, spatial, and contextual characteristics of guano are capable of successfully detecting guano stains. Reapplication of the master ruleset on candidate scenes without modifications produced inferior classification results, while adapted rules produced comparable or superior results compared to the reference image. This work provides a road map to an operational “image-to-assessment pipeline” that will enable Antarctic wildlife researchers to seamlessly integrate VHSR imagery into on-demand penguin population census.

  9. On-Board, Real-Time Preprocessing System for Optical Remote-Sensing Imagery.

    Science.gov (United States)

    Qi, Baogui; Shi, Hao; Zhuang, Yin; Chen, He; Chen, Liang

    2018-04-25

    With the development of remote-sensing technology, optical remote-sensing imagery processing has played an important role in many application fields, such as geological exploration and natural disaster prevention. However, relative radiation correction and geometric correction are key steps in preprocessing because raw image data without preprocessing will cause poor performance during application. Traditionally, remote-sensing data are downlinked to the ground station, preprocessed, and distributed to users. This process generates long delays, which is a major bottleneck in real-time applications for remote-sensing data. Therefore, on-board, real-time image preprocessing is greatly desired. In this paper, a real-time processing architecture for on-board imagery preprocessing is proposed. First, a hierarchical optimization and mapping method is proposed to realize the preprocessing algorithm in a hardware structure, which can effectively reduce the computation burden of on-board processing. Second, a co-processing system using a field-programmable gate array (FPGA) and a digital signal processor (DSP; altogether, FPGA-DSP) based on optimization is designed to realize real-time preprocessing. The experimental results demonstrate the potential application of our system to an on-board processor, for which resources and power consumption are limited.

  10. On-Board, Real-Time Preprocessing System for Optical Remote-Sensing Imagery

    Science.gov (United States)

    Qi, Baogui; Zhuang, Yin; Chen, He; Chen, Liang

    2018-01-01

    With the development of remote-sensing technology, optical remote-sensing imagery processing has played an important role in many application fields, such as geological exploration and natural disaster prevention. However, relative radiation correction and geometric correction are key steps in preprocessing because raw image data without preprocessing will cause poor performance during application. Traditionally, remote-sensing data are downlinked to the ground station, preprocessed, and distributed to users. This process generates long delays, which is a major bottleneck in real-time applications for remote-sensing data. Therefore, on-board, real-time image preprocessing is greatly desired. In this paper, a real-time processing architecture for on-board imagery preprocessing is proposed. First, a hierarchical optimization and mapping method is proposed to realize the preprocessing algorithm in a hardware structure, which can effectively reduce the computation burden of on-board processing. Second, a co-processing system using a field-programmable gate array (FPGA) and a digital signal processor (DSP; altogether, FPGA-DSP) based on optimization is designed to realize real-time preprocessing. The experimental results demonstrate the potential application of our system to an on-board processor, for which resources and power consumption are limited. PMID:29693585

  11. Automated Soil Physical Parameter Assessment Using Smartphone and Digital Camera Imagery

    Directory of Open Access Journals (Sweden)

    Matt Aitkenhead

    2016-12-01

    Full Text Available Here we present work on using different types of soil profile imagery (topsoil profiles captured with a smartphone camera and full-profile images captured with a conventional digital camera to estimate the structure, texture and drainage of the soil. The method is adapted from earlier work on developing smartphone apps for estimating topsoil organic matter content in Scotland and uses an existing visual soil structure assessment approach. Colour and image texture information was extracted from the imagery. This information was linked, using geolocation information derived from the smartphone GPS system or from field notes, with existing collections of topography, land cover, soil and climate data for Scotland. A neural network model was developed that was capable of estimating soil structure (on a five-point scale, soil texture (sand, silt, clay, bulk density, pH and drainage category using this information. The model is sufficiently accurate to provide estimates of these parameters from soils in the field. We discuss potential improvements to the approach and plans to integrate the model into a set of smartphone apps for estimating health and fertility indicators for Scottish soils.

  12. Validation of the use of synthetic imagery for camouflage effectiveness assessment

    Science.gov (United States)

    Newman, Sarah; Gilmore, Marilyn A.; Moorhead, Ian R.; Filbee, David R.

    2002-08-01

    CAMEO-SIM was developed as a laboratory method to assess the effectiveness of aircraft camouflage schemes. It is a physically accurate synthetic image generator, rendering in any waveband between 0.4 and 14 microns. Camouflage schemes are assessed by displaying imagery to observers under controlled laboratory conditions or by analyzing the digital image and calculating the contrast statistics between the target and background. Code verification has taken place during development. However, validation of CAMEO-SIM is essential to ensure that the imagery produced is suitable to be used for camouflage effectiveness assessment. Real world characteristics are inherently variable, so exact pixel to pixel correlation is unnecessary. For camouflage effectiveness assessment it is more important to be confident that the comparative effects of different schemes are correct, but prediction of detection ranges is also desirable. Several different tests have been undertaken to validate CAMEO-SIM for the purpose of assessing camouflage effectiveness. Simple scenes have been modeled and measured. Thermal and visual properties of the synthetic and real scenes have been compared. This paper describes the validation tests and discusses the suitability of CAMEO-SIM for camouflage assessment.

  13. Automated analysis of autoradiographic imagery

    International Nuclear Information System (INIS)

    Bisignani, W.T.; Greenhouse, S.C.

    1975-01-01

    A research programme is described which has as its objective the automated characterization of neurological tissue regions from autoradiographs by utilizing hybrid-resolution image processing techniques. An experimental system is discussed which includes raw imagery, scanning an digitizing equipments, feature-extraction algorithms, and regional characterization techniques. The parameters extracted by these algorithms are presented as well as the regional characteristics which are obtained by operating on the parameters with statistical sampling techniques. An approach is presented for validating the techniques and initial experimental results are obtained from an anlysis of an autoradiograph of a region of the hypothalamus. An extension of these automated techniques to other biomedical research areas is discussed as well as the implications of applying automated techniques to biomedical research problems. (author)

  14. Performance improvements from imagery:evidence that internal visual imagery is superior to external visual imagery for slalom performance

    Directory of Open Access Journals (Sweden)

    Nichola eCallow

    2013-10-01

    Full Text Available We report three experiments investigating the hypothesis that use of internal visual imagery (IVI would be superior to external visual imagery (EVI for the performance of different slalom-based motor tasks. In Experiment 1, three groups of participants (IVI, EVI, and a control group performed a driving-simulation slalom task. The IVI group achieved significantly quicker lap times than EVI and the control group. In Experiment 2, participants performed a downhill running slalom task under both IVI and EVI conditions. Performance was again quickest in the IVI compared to EVI condition, with no differences in accuracy. Experiment 3 used the same group design as Experiment 1, but with participants performing a downhill ski-slalom task. Results revealed the IVI group to be significantly more accurate than the control group, with no significant differences in time taken to complete the task. These results support the beneficial effects of IVI for slalom-based tasks, and significantly advances our knowledge related to the differential effects of visual imagery perspectives on motor performance.

  15. Mapping the Distribution of Cloud Forests Using MODIS Imagery

    Science.gov (United States)

    Douglas, M. W.; Mejia, J.; Murillo, J.; Orozco, R.

    2007-05-01

    Tropical cloud forests - those forests that are frequently immersed in clouds or otherwise very humid, are extremely difficult to map from the ground, and are not easily distinguished in satellite imagery from other forest types, but they have a very different flora and fauna than lowland rainforest. Cloud forests, although found in many parts of the tropics, have a very restricted vertical extent and thus are also restricted horizontally. As a result, they are subject to both human disturbance (coffee growing for example) and the effects of possible climate change. Motivated by a desire to seek meteorological explanations for the distribution of cloud forests, we have begun to map cloudiness using MODIS Terra and Aqua visible imagery. This imagery, at ~1030 LT and 1330 LT, is an approximation for mid-day cloudiness. In tropical regions the amount of mid-day cloudiness strongly controls the shortwave radiation and thus the potential for evaporation (and aridity). We have mapped cloudiness using a simple algorithm that distinguishes between the cloud-free background brightness and the generally more reflective clouds to separate clouds from the underlying background. A major advantage of MODIS imagery over many other sources of satellite imagery is its high spatial resolution (~250m). This, coupled with precisely navigated images, means that detailed maps of cloudiness can be produced. The cloudiness maps can then be related to the underlying topography to further refine the location of the cloud forests. An advantage of this technique is that we are mapping the potential cloud forest, based on cloudiness, rather than the actual cloud forest, which are commonly based on forest estimates from satellite and digital elevation data. We do not derive precipitation, only estimates of daytime cloudiness. Although only a few years of MODIS imagery has been used in our studies, we will show that this is sufficient to describe the climatology of cloudiness with acceptable

  16. MatchGUI: A Graphical MATLAB-Based Tool for Automatic Image Co-Registration

    Science.gov (United States)

    Ansar, Adnan I.

    2011-01-01

    MatchGUI software, based on MATLAB, automatically matches two images and displays the match result by superimposing one image on the other. A slider bar allows focus to shift between the two images. There are tools for zoom, auto-crop to overlap region, and basic image markup. Given a pair of ortho-rectified images (focused primarily on Mars orbital imagery for now), this software automatically co-registers the imagery so that corresponding image pixels are aligned. MatchGUI requires minimal user input, and performs a registration over scale and inplane rotation fully automatically

  17. Selective effect of physical fatigue on motor imagery accuracy.

    Directory of Open Access Journals (Sweden)

    Franck Di Rienzo

    Full Text Available While the use of motor imagery (the mental representation of an action without overt execution during actual training sessions is usually recommended, experimental studies examining the effect of physical fatigue on subsequent motor imagery performance are sparse and yielded divergent findings. Here, we investigated whether physical fatigue occurring during an intense sport training session affected motor imagery ability. Twelve swimmers (nine males, mean age 15.5 years conducted a 45 min physically-fatiguing protocol where they swam from 70% to 100% of their maximal aerobic speed. We tested motor imagery ability immediately before and after fatigue state. Participants randomly imagined performing a swim turn using internal and external visual imagery. Self-reports ratings, imagery times and electrodermal responses, an index of alertness from the autonomic nervous system, were the dependent variables. Self-reports ratings indicated that participants did not encounter difficulty when performing motor imagery after fatigue. However, motor imagery times were significantly shortened during posttest compared to both pretest and actual turn times, thus indicating reduced timing accuracy. Looking at the selective effect of physical fatigue on external visual imagery did not reveal any difference before and after fatigue, whereas significantly shorter imagined times and electrodermal responses (respectively 15% and 48% decrease, p<0.001 were observed during the posttest for internal visual imagery. A significant correlation (r=0.64; p<0.05 was observed between motor imagery vividness (estimated through imagery questionnaire and autonomic responses during motor imagery after fatigue. These data support that unlike local muscle fatigue, physical fatigue occurring during intense sport training sessions is likely to affect motor imagery accuracy. These results might be explained by the updating of the internal representation of the motor sequence, due to

  18. Dual-Polarized L-Band SAR Imagery for Temporal Monitoring of Marine Oil Slick Concentration

    Directory of Open Access Journals (Sweden)

    Sébastien Angelliaume

    2018-06-01

    Full Text Available SAR sensors are usually used in the offshore domain to detect marine oil slicks which allows the authorities to guide cleanup operations or prosecute polluters. As radar imagery can be used any time of day or year and in almost any weather conditions, the use and programming of such remote sensing data is usually favored over optical imagery. Nevertheless, images collected in the optical domain provide access to key information not accessible today by SAR instruments, such as the thickness or the amount of pollutant. To address this knowledge gap, a methodology based on the joint use of a scattering model (U-WCA and remote sensing data collected by a low frequency (e.g., L-band imaging radar over controlled release of mineral oil spill is reported in this paper. The proposed method allows estimation of the concentration of pollutant within an oil-in-water mixture as well as the temporal variation of this quantity due to weathering processes.

  19. Imagery rescripting and cognitive dissonance: A randomized controlled trial of two brief online interventions for women at risk of developing an eating disorder.

    Science.gov (United States)

    Pennesi, Jamie-Lee; Wade, Tracey D

    2018-05-01

    This pilot study compared two brief online interventions, imagery rescripting and cognitive dissonance, to an assessment-only control condition in a sample of body-dissatisfied young women at risk of developing an eating disorder. We examined the degree to which each intervention reduced disordered eating and modified risk and protective factors for eating disorders. Female university students (N = 107, 17-28 years of age) completed a screening questionnaire, followed by random allocation to one of the three conditions, followed by a baseline assessment, body dissatisfaction induction, and brief online intervention. Participants in the active conditions then completed online daily home practice and a postintervention questionnaire. Findings provide qualified support for the imagery rescripting intervention, with participants reporting higher body image acceptance (Cohen's d = 0.49) than the cognitive dissonance condition, and higher self-compassion (d = 0.59) and lower levels of disordered eating (d = 0.59) than the control condition, at postintervention. There was no significant impact of cognitive dissonance on any factors. Change in body image acceptance and self-compassion mediated the relationship between allocated condition and change in disordered eating at postintervention. These findings provide preliminary support for the use of online-adapted imagery-based techniques (e.g., imagery rescripting) to reduce risk for the development of an eating disorder by strengthening protective factors (i.e., body image acceptance and self-compassion) and reducing disordered eating. Further exploration of the use of imagery strategies in the prevention of disordered eating is required, including prospective tests of the mechanisms of action. © 2018 Wiley Periodicals, Inc.

  20. Performance of Scattering Matrix Decomposition and Color Spaces for Synthetic Aperture Radar Imagery

    Science.gov (United States)

    2010-03-01

    Color Spaces and Synthetic Aperture Radar (SAR) Multicolor Imaging. 15 2.3.1 Colorimetry . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16 2.3.2...III. Decomposition Techniques on SAR Polarimetry and Colorimetry applied to SAR Imagery...space polarimetric SAR systems. Colorimetry is also introduced in this chapter, presenting the fundamentals of the RGB and CMY color spaces, defined for

  1. Sea Ice Deformation State From Synthetic Aperture Radar Imagery - Part II: Effects of Spatial Resolution and Noise Level

    DEFF Research Database (Denmark)

    Dierking, Wolfgang; Dall, Jørgen

    2008-01-01

    C- and L-band airborne synthetic aperture radar (SAR) imagery acquired at like- and cross-polarization over sea ice under winter conditions is examined with the objective to study the discrimination between level ice and ice deformation features. High-resolution low-noise data were analysed...... in the first paper. In this second paper, the main topics are the effects of spatial resolution and signal-to-noise ratio. Airborne, high-resolution SAR scenes are used to generate a sequence of images with increasingly coarser spatial resolution from 5 m to 25 m, keeping the number of looks constant....... The signal-to-noise ratio is varied between typical noise levels for airborne imagery and satellite data. Areal fraction of deformed ice and average deformation distance are determined for each image product. At L-band, the retrieved values of the areal fraction get larger as the image resolution is degraded...

  2. Aerial Photography and Imagery, Ortho-Corrected, This data set contains imagery from the National Agriculture Imagery Program (NAIP). NAIP acquires digital ortho imagery during the agricultural growing seasons in the continental U.S. NAIP imagery may contain as much as 10% cloud cover per tile. This fil, Published in 2005, 1:63360 (1in=1mile) scale, University of Georgia.

    Data.gov (United States)

    NSGIC Education | GIS Inventory — Aerial Photography and Imagery, Ortho-Corrected dataset current as of 2005. This data set contains imagery from the National Agriculture Imagery Program (NAIP). NAIP...

  3. The Looming Potential Gap in Microwave Imagery - How did we get here and what can we do about it?

    Science.gov (United States)

    Wilson, W. S.; Gallaher, D. W.

    2017-12-01

    The Air Force's Special Sensor Microwave Imager (SSMI), the Japanese Advanced Microwave Scanning Radiometer (AMSR), and the Navy's Windsat have provided a steady and reliable stream of microwave imagery that has served the Earth science community very well. Derived products include sea ice cover, snow cover on land, all-weather sea surface temperature, columnar water vapor, rain rate, and cloud liquid water. Such products are used both in operational weather forecasting, as well as in establishing and maintaining climate data records. When these sources of microwave imagery each reach the end of their life, there is the potential for a gap in coverage to occur prior to the launch of new Air Force, European and Japanese sources. Additionally, the Chinese and Russians have been flying microwave imagers that might be useful in spanning this potential gap, but users in the U.S. have not assessed the reliability and quality of their data. This presentation will set the stage for the session and provide a context for the individual papers. Two papers will address the needs and associated requirements for microwave imagery, as well as how derived products are currently being used - both for maintaining climate records and for operational use. One or two will address the performance of existing systems that are currently contributing imagery. A half-dozen will address the projected performance of future satellite systems that represent potential sources of imagery. One will address the challenges associated with the use of microwave imagery from different satellites in the maintenance of climate data records. Finally, we will plan to have some remaining time available for a general discussion about how we might work together in the future to minimize prospects for such a potential gap in to recur in the future.

  4. Decision Fusion Based on Hyperspectral and Multispectral Satellite Imagery for Accurate Forest Species Mapping

    Directory of Open Access Journals (Sweden)

    Dimitris G. Stavrakoudis

    2014-07-01

    Full Text Available This study investigates the effectiveness of combining multispectral very high resolution (VHR and hyperspectral satellite imagery through a decision fusion approach, for accurate forest species mapping. Initially, two fuzzy classifications are conducted, one for each satellite image, using a fuzzy output support vector machine (SVM. The classification result from the hyperspectral image is then resampled to the multispectral’s spatial resolution and the two sources are combined using a simple yet efficient fusion operator. Thus, the complementary information provided from the two sources is effectively exploited, without having to resort to computationally demanding and time-consuming typical data fusion or vector stacking approaches. The effectiveness of the proposed methodology is validated in a complex Mediterranean forest landscape, comprising spectrally similar and spatially intermingled species. The decision fusion scheme resulted in an accuracy increase of 8% compared to the classification using only the multispectral imagery, whereas the increase was even higher compared to the classification using only the hyperspectral satellite image. Perhaps most importantly, its accuracy was significantly higher than alternative multisource fusion approaches, although the latter are characterized by much higher computation, storage, and time requirements.

  5. Two psychiatrists and their points of view imagery in psychiatry: fact and reverie

    International Nuclear Information System (INIS)

    Brodie, J.

    1996-01-01

    For the point of view of the psychiatrist, new tools of cerebral imagery (NMR imaging, positron computed tomography, single photon emission computed tomography) represents a considerable interest. But the interpretation of the results is still insufficient. The scientific literature is full of articles with questionable or difficult interpretation conclusions. At the present time, an image does not allow to give a diagnosis nor to follow the history of a syndrome. But it will probably come in the future. (O.M.)

  6. Relational Database Extension Oriented, Self-adaptive Imagery Pyramid Model

    Directory of Open Access Journals (Sweden)

    HU Zhenghua

    2015-06-01

    Full Text Available With the development of remote sensing technology, especially the improvement of sensor resolution, the amount of image data is increasing. This puts forward higher requirements to manage huge amount of data efficiently and intelligently. And how to access massive remote sensing data with efficiency and smartness becomes an increasingly popular topic. In this paper, against current development status of Spatial Data Management System, we proposed a self-adaptive strategy for image blocking and a method for LoD(level of detailmodel construction that adapts, with the combination of database storage, network transmission and the hardware of the client. Confirmed by experiments, this imagery management mechanism can achieve intelligent and efficient storage and access in a variety of different conditions of database, network and client. This study provides a feasible idea and method for efficient image data management, contributing to the efficient access and management for remote sensing image data which are based on database technology under network environment of C/S architecture.

  7. Imagery in traditional and modern praise poetry in Zulu

    OpenAIRE

    2012-01-01

    M.A. This is a survey of the use of imagery in both traditional and modern Zulu praise poetry. For the purposes of this corpus, emphasis will be placed on izibongo (praise poems) of the Zulu kings, chiefs, prominent figures, and also minor characters. The following are the main figures of speech which are worth mentioning in this study: metaphor, personification, symbolism, metonymy, simile, and hyperbole. The definitions of the aforementioned images by various critics will be given in thi...

  8. Tobacco imagery on New Zealand television 2002-2004.

    Science.gov (United States)

    McGee, Rob; Ketchel, Juanita

    2006-10-01

    Considerable emphasis has been placed on the importance of tobacco imagery in the movies as one of the "drivers" of smoking among young people. Findings are presented from a content analysis of 98 hours of prime-time programming on New Zealand television 2004, identifying 152 scenes with tobacco imagery, and selected characteristics of those scenes. About one in four programmes contained tobacco imagery, most of which might be regarded as "neutral or positive". This amounted to about two scenes containing such imagery for every hour of programming. A comparison with our earlier content analysis of programming in 2002 indicated little change in the level of tobacco imagery. The effect of this imagery in contributing to young viewers taking up smoking, and sustaining the addiction among those already smoking, deserves more research attention.

  9. Assessing the accuracy of hyperspectral and multispectral satellite imagery for categorical and quantitative mapping of salinity stress in sugarcane fields

    NARCIS (Netherlands)

    Hamzeh, Saied; Naseri, Abd Ali; Alavipanah, Seyed Kazem; Bartholomeus, Harm; Herold, Martin

    2016-01-01

    This study evaluates the feasibility of hyperspectral and multispectral satellite imagery for categorical and quantitative mapping of salinity stress in sugarcane fields located in the southwest of Iran. For this purpose a Hyperion image acquired on September 2, 2010 and a Landsat7 ETM+ image

  10. Body image, visual working memory and visual mental imagery

    Directory of Open Access Journals (Sweden)

    Stephen Darling

    2015-02-01

    Full Text Available Body dissatisfaction (BD is a highly prevalent feature amongst females in society, with the majority of individuals regarding themselves to be overweight compared to their personal ideal, and very few self-describing as underweight. To date, explanations of this dramatic pattern have centred on extrinsic social and media factors, or intrinsic factors connected to individuals’ knowledge and belief structures regarding eating and body shape, with little research examining links between BD and basic cognitive mechanisms. This paper reports a correlational study in which visual and executive cognitive processes that could potentially impact on BD were assessed. Visual memory span and self-rated visual imagery were found to be predictive of BD, alongside a measure of inhibition derived from the Stroop task. In contrast, spatial memory and global precedence were not related to BD. Results are interpreted with reference to the influential multi-component model of working memory.

  11. Kinesthetic perception based on integration of motor imagery and afferent inputs from antagonistic muscles with tendon vibration.

    Science.gov (United States)

    Shibata, E; Kaneko, F

    2013-04-29

    The perceptual integration of afferent inputs from two antagonistic muscles, or the perceptual integration of afferent input and motor imagery are related to the generation of a kinesthetic sensation. However, it has not been clarified how, or indeed whether, a kinesthetic perception would be generated by motor imagery if afferent inputs from two antagonistic muscles were simultaneously induced by tendon vibration. The purpose of this study was to investigate how a kinesthetic perception would be generated by motor imagery during co-vibration of the two antagonistic muscles at the same frequency. Healthy subjects participated in this experiment. Illusory movement was evoked by tendon vibration. Next, the subjects imaged wrist flexion movement simultaneously with tendon vibration. Wrist flexor and extensor muscles were vibrated according to 4 patterns such that the difference between the two vibration frequencies was zero. After each trial, the perceived movement sensations were quantified on the basis of the velocity and direction of the ipsilateral hand-tracking movements. When the difference in frequency applied to the wrist flexor and the extensor was 0Hz, no subjects perceived movements without motor imagery. However, during motor imagery, the flexion velocity of the perceived movement was higher than the flexion velocity without motor imagery. This study clarified that the afferent inputs from the muscle spindle interact with motor imagery, to evoke a kinesthetic perception, even when the difference in frequency applied to the wrist flexor and extensor was 0Hz. Furthermore, the kinesthetic perception resulting from integrations of vibration and motor imagery increased depending on the vibration frequency to the two antagonistic muscles. Copyright © 2013 Elsevier Ireland Ltd. All rights reserved.

  12. Accuracy assessment of high resolution satellite imagery orientation by leave-one-out method

    Science.gov (United States)

    Brovelli, Maria Antonia; Crespi, Mattia; Fratarcangeli, Francesca; Giannone, Francesca; Realini, Eugenio

    Interest in high-resolution satellite imagery (HRSI) is spreading in several application fields, at both scientific and commercial levels. Fundamental and critical goals for the geometric use of this kind of imagery are their orientation and orthorectification, processes able to georeference the imagery and correct the geometric deformations they undergo during acquisition. In order to exploit the actual potentialities of orthorectified imagery in Geomatics applications, the definition of a methodology to assess the spatial accuracy achievable from oriented imagery is a crucial topic. In this paper we want to propose a new method for accuracy assessment based on the Leave-One-Out Cross-Validation (LOOCV), a model validation method already applied in different fields such as machine learning, bioinformatics and generally in any other field requiring an evaluation of the performance of a learning algorithm (e.g. in geostatistics), but never applied to HRSI orientation accuracy assessment. The proposed method exhibits interesting features which are able to overcome the most remarkable drawbacks involved by the commonly used method (Hold-Out Validation — HOV), based on the partitioning of the known ground points in two sets: the first is used in the orientation-orthorectification model (GCPs — Ground Control Points) and the second is used to validate the model itself (CPs — Check Points). In fact the HOV is generally not reliable and it is not applicable when a low number of ground points is available. To test the proposed method we implemented a new routine that performs the LOOCV in the software SISAR, developed by the Geodesy and Geomatics Team at the Sapienza University of Rome to perform the rigorous orientation of HRSI; this routine was tested on some EROS-A and QuickBird images. Moreover, these images were also oriented using the world recognized commercial software OrthoEngine v. 10 (included in the Geomatica suite by PCI), manually performing the LOOCV

  13. Surface blemish detection from passive imagery using learned fuzzy set concepts

    International Nuclear Information System (INIS)

    Gurbuz, S.; Carver, A.; Schalkoff, R.

    1997-12-01

    An image analysis method for real-time surface blemish detection using passive imagery and fuzzy set concepts is described. The method develops an internal knowledge representation for surface blemish characteristics on the basis of experience, thus facilitating autonomous learning based upon positive and negative exemplars. The method incorporates fuzzy set concepts in the learning subsystem and image segmentation algorithms, thereby mimicking human visual perception. This enables a generic solution for color image segmentation. This method has been applied in the development of ARIES (Autonomous Robotic Inspection Experimental System), designed to inspect DOE warehouse waste storage drums for rust. In this project, the ARIES vision system is used to acquire drum surface images under controlled conditions and subsequently perform visual inspection leading to the classification of the drum as acceptable or suspect

  14. Advanced Tie Feature Matching for the Registration of Mobile Mapping Imaging Data and Aerial Imagery

    Science.gov (United States)

    Jende, P.; Peter, M.; Gerke, M.; Vosselman, G.

    2016-06-01

    Mobile Mapping's ability to acquire high-resolution ground data is opposing unreliable localisation capabilities of satellite-based positioning systems in urban areas. Buildings shape canyons impeding a direct line-of-sight to navigation satellites resulting in a deficiency to accurately estimate the mobile platform's position. Consequently, acquired data products' positioning quality is considerably diminished. This issue has been widely addressed in the literature and research projects. However, a consistent compliance of sub-decimetre accuracy as well as a correction of errors in height remain unsolved. We propose a novel approach to enhance Mobile Mapping (MM) image orientation based on the utilisation of highly accurate orientation parameters derived from aerial imagery. In addition to that, the diminished exterior orientation parameters of the MM platform will be utilised as they enable the application of accurate matching techniques needed to derive reliable tie information. This tie information will then be used within an adjustment solution to correct affected MM data. This paper presents an advanced feature matching procedure as a prerequisite to the aforementioned orientation update. MM data is ortho-projected to gain a higher resemblance to aerial nadir data simplifying the images' geometry for matching. By utilising MM exterior orientation parameters, search windows may be used in conjunction with a selective keypoint detection and template matching. Originating from different sensor systems, however, difficulties arise with respect to changes in illumination, radiometry and a different original perspective. To respond to these challenges for feature detection, the procedure relies on detecting keypoints in only one image. Initial tests indicate a considerable improvement in comparison to classic detector/descriptor approaches in this particular matching scenario. This method leads to a significant reduction of outliers due to the limited availability

  15. Detecting blind building façades from highly overlapping wide angle aerial imagery

    Science.gov (United States)

    Burochin, Jean-Pascal; Vallet, Bruno; Brédif, Mathieu; Mallet, Clément; Brosset, Thomas; Paparoditis, Nicolas

    2014-10-01

    This paper deals with the identification of blind building façades, i.e. façades which have no openings, in wide angle aerial images with a decimeter pixel size, acquired by nadir looking cameras. This blindness characterization is in general crucial for real estate estimation and has, at least in France, a particular importance on the evaluation of legal permission of constructing on a parcel due to local urban planning schemes. We assume that we have at our disposal an aerial survey with a relatively high stereo overlap along-track and across-track and a 3D city model of LoD 1, that can have been generated with the input images. The 3D model is textured with the aerial imagery by taking into account the 3D occlusions and by selecting for each façade the best available resolution texture seeing the whole façade. We then parse all 3D façades textures by looking for evidence of openings (windows or doors). This evidence is characterized by a comprehensive set of basic radiometric and geometrical features. The blindness prognostic is then elaborated through an (SVM) supervised classification. Despite the relatively low resolution of the images, we reach a classification accuracy of around 85% on decimeter resolution imagery with 60 × 40 % stereo overlap. On the one hand, we show that the results are very sensitive to the texturing resampling process and to vegetation presence on façade textures. On the other hand, the most relevant features for our classification framework are related to texture uniformity and horizontal aspect and to the maximal contrast of the opening detections. We conclude that standard aerial imagery used to build 3D city models can also be exploited to some extent and at no additional cost for facade blindness characterisation.

  16. Perceptual Image Compression in Telemedicine

    Science.gov (United States)

    Watson, Andrew B.; Ahumada, Albert J., Jr.; Eckstein, Miguel; Null, Cynthia H. (Technical Monitor)

    1996-01-01

    The next era of space exploration, especially the "Mission to Planet Earth" will generate immense quantities of image data. For example, the Earth Observing System (EOS) is expected to generate in excess of one terabyte/day. NASA confronts a major technical challenge in managing this great flow of imagery: in collection, pre-processing, transmission to earth, archiving, and distribution to scientists at remote locations. Expected requirements in most of these areas clearly exceed current technology. Part of the solution to this problem lies in efficient image compression techniques. For much of this imagery, the ultimate consumer is the human eye. In this case image compression should be designed to match the visual capacities of the human observer. We have developed three techniques for optimizing image compression for the human viewer. The first consists of a formula, developed jointly with IBM and based on psychophysical measurements, that computes a DCT quantization matrix for any specified combination of viewing distance, display resolution, and display brightness. This DCT quantization matrix is used in most recent standards for digital image compression (JPEG, MPEG, CCITT H.261). The second technique optimizes the DCT quantization matrix for each individual image, based on the contents of the image. This is accomplished by means of a model of visual sensitivity to compression artifacts. The third technique extends the first two techniques to the realm of wavelet compression. Together these two techniques will allow systematic perceptual optimization of image compression in NASA imaging systems. Many of the image management challenges faced by NASA are mirrored in the field of telemedicine. Here too there are severe demands for transmission and archiving of large image databases, and the imagery is ultimately used primarily by human observers, such as radiologists. In this presentation I will describe some of our preliminary explorations of the applications

  17. Early Adolescents' and Their Parents' Mental Imagery in Relation to Perceived Reading Competence

    Science.gov (United States)

    Mol, Suzanne E.; Jolles, Jelle; Van Batenburg-Eddes, Tamara; Bult, Maureen K.

    2016-01-01

    This cross-sectional survey study examined the relation between mental imagery (i.e., seeing images of a story "in the mind's eye") and perceived self-competence in reading. The study was conducted with a group of seventh-grade to ninth-grade students in the prevocational educational track of secondary schools in the Netherlands and…

  18. Spatial-temporal event detection in climate parameter imagery.

    Energy Technology Data Exchange (ETDEWEB)

    McKenna, Sean Andrew; Gutierrez, Karen A.

    2011-10-01

    Previously developed techniques that comprise statistical parametric mapping, with applications focused on human brain imaging, are examined and tested here for new applications in anomaly detection within remotely-sensed imagery. Two approaches to analysis are developed: online, regression-based anomaly detection and conditional differences. These approaches are applied to two example spatial-temporal data sets: data simulated with a Gaussian field deformation approach and weekly NDVI images derived from global satellite coverage. Results indicate that anomalies can be identified in spatial temporal data with the regression-based approach. Additionally, la Nina and el Nino climatic conditions are used as different stimuli applied to the earth and this comparison shows that el Nino conditions lead to significant decreases in NDVI in both the Amazon Basin and in Southern India.

  19. Object-based methods for individual tree identification and tree species classification from high-spatial resolution imagery

    Science.gov (United States)

    Wang, Le

    2003-10-01

    Modern forest management poses an increasing need for detailed knowledge of forest information at different spatial scales. At the forest level, the information for tree species assemblage is desired whereas at or below the stand level, individual tree related information is preferred. Remote Sensing provides an effective tool to extract the above information at multiple spatial scales in the continuous time domain. To date, the increasing volume and readily availability of high-spatial-resolution data have lead to a much wider application of remotely sensed products. Nevertheless, to make effective use of the improving spatial resolution, conventional pixel-based classification methods are far from satisfactory. Correspondingly, developing object-based methods becomes a central challenge for researchers in the field of Remote Sensing. This thesis focuses on the development of methods for accurate individual tree identification and tree species classification. We develop a method in which individual tree crown boundaries and treetop locations are derived under a unified framework. We apply a two-stage approach with edge detection followed by marker-controlled watershed segmentation. Treetops are modeled from radiometry and geometry aspects. Specifically, treetops are assumed to be represented by local radiation maxima and to be located near the center of the tree-crown. As a result, a marker image was created from the derived treetop to guide a watershed segmentation to further differentiate overlapping trees and to produce a segmented image comprised of individual tree crowns. The image segmentation method developed achieves a promising result for a 256 x 256 CASI image. Then further effort is made to extend our methods to the multiscales which are constructed from a wavelet decomposition. A scale consistency and geometric consistency are designed to examine the gradients along the scale-space for the purpose of separating true crown boundary from unwanted

  20. Aerial Photography and Imagery, Ortho-Corrected, Historic 1958 black and white aerial photography for Wicomico County, Maryland. Imagery was scanned from historic hard copy images and georeferenced to current imagery. This data is available via map service., Published in 2010, 1:12000 (1in=1000ft) scale, Eastern Shore Regional GIS Cooperative.

    Data.gov (United States)

    NSGIC Regional | GIS Inventory — Aerial Photography and Imagery, Ortho-Corrected dataset current as of 2010. Historic 1958 black and white aerial photography for Wicomico County, Maryland. Imagery...

  1. Crop Type Classification Using Vegetation Indices of RapidEye Imagery

    Science.gov (United States)

    Ustuner, M.; Sanli, F. B.; Abdikan, S.; Esetlili, M. T.; Kurucu, Y.

    2014-09-01

    Cutting-edge remote sensing technology has a significant role for managing the natural resources as well as the any other applications about the earth observation. Crop monitoring is the one of these applications since remote sensing provides us accurate, up-to-date and cost-effective information about the crop types at the different temporal and spatial resolution. In this study, the potential use of three different vegetation indices of RapidEye imagery on crop type classification as well as the effect of each indices on classification accuracy were investigated. The Normalized Difference Vegetation Index (NDVI), the Green Normalized Difference Vegetation Index (GNDVI), and the Normalized Difference Red Edge Index (NDRE) are the three vegetation indices used in this study since all of these incorporated the near-infrared (NIR) band. RapidEye imagery is highly demanded and preferred for agricultural and forestry applications since it has red-edge and NIR bands. The study area is located in Aegean region of Turkey. Radial Basis Function (RBF) kernel was used here for the Support Vector Machines (SVMs) classification. Original bands of RapidEye imagery were excluded and classification was performed with only three vegetation indices. The contribution of each indices on image classification accuracy was also tested with single band classification. Highest classification accuracy of 87, 46 % was obtained using three vegetation indices. This obtained classification accuracy is higher than the classification accuracy of any dual-combination of these vegetation indices. Results demonstrate that NDRE has the highest contribution on classification accuracy compared to the other vegetation indices and the RapidEye imagery can get satisfactory results of classification accuracy without original bands.

  2. Application of spectrometer cropscan MSR 16R and Landsat imagery for identification the spectral characteristics of land cover

    Science.gov (United States)

    Tampubolon, Togi; Abdullah, Khiruddin bin; San, Lim Hwee

    2013-09-01

    The spectral characteristics of land cover are basic references in classifying satellite image for geophysics analysis. It can be obtained from the measurements using spectrometer and satellite image processing. The aims of this study to investigate the spectral characteristics of land cover based on the results of measurement using Spectrometer Cropscan MSR 16R and Landsat satellite imagery. The area of study in this research is in Medan, (Deli Serdang, North Sumatera) Indonesia. The scope of this study is the basic survey from the measurements of spectral land cover which is covered several type of land such as a cultivated and managed terrestrial areas, natural and semi-natural, cultivated aquatic or regularly flooded areas, natural and semi-natural aquatic, artificial surfaces and associated areas, bare areas, artificial waterbodies and natural waterbodies. The measurement and verification were conducted using a spectrometer provided their spectral characteristics and Landsat imagery, respectively. The results of the spectral characteristics of land cover shows that each type of land cover have a unique characteristic. The correlation of spectral land cover based on spectrometer Cropscan MSR 16R and Landsat satellite image are above 90 %. However, the land cover of artificial waterbodiese have a correlation under 40 %. That is because the measurement of spectrometer Cropscan MSR 16R and acquisition of Landsat satellite imagery has a time different.

  3. Assessing Field-Specific Risk of Soybean Sudden Death Syndrome Using Satellite Imagery in Iowa.

    Science.gov (United States)

    Yang, S; Li, X; Chen, C; Kyveryga, P; Yang, X B

    2016-08-01

    Moderate resolution imaging spectroradiometer (MODIS) satellite imagery from 2004 to 2013 were used to assess the field-specific risks of soybean sudden death syndrome (SDS) caused by Fusarium virguliforme in Iowa. Fields with a high frequency of significant decrease (>10%) of the normalized difference vegetation index (NDVI) observed in late July to middle August on historical imagery were hypothetically considered as high SDS risk. These high-risk fields had higher slopes and shorter distances to flowlines, e.g., creeks and drainages, particularly in the Des Moines lobe. Field data in 2014 showed a significantly higher SDS level in the high-risk fields than fields selected without considering NDVI information. On average, low-risk fields had 10 times lower F. virguliforme soil density, determined by quantitative polymerase chain reaction, compared with other surveyed fields. Ordinal logistic regression identified positive correlations between SDS and slope, June NDVI, and May maximum temperature, but high June maximum temperature hindered SDS. A modeled SDS risk map showed a clear trend of potential disease occurrences across Iowa. Landsat imagery was analyzed similarly, to discuss the ability to utilize higher spatial resolution data. The results demonstrated the great potential of both MODIS and Landsat imagery for SDS field-specific risk assessment.

  4. 3D high resolution tracking of ice flow using mutli-temporal stereo satellite imagery, Franz Josef Glacier, New Zealand

    Science.gov (United States)

    Leprince, S.; Lin, J.; Ayoub, F.; Herman, F.; Avouac, J.

    2013-12-01

    We present the latest capabilities added to the Co-Registration of Optically Sensed Images and Correlation (COSI-Corr) software, which aim at analyzing time-series of stereoscopic imagery to document 3D variations of the ground surface. We review the processing chain and present the new and improved modules for satellite pushbroom imagery, in particular the N-image bundle block adjustment to jointly optimize the viewing geometry of multiple acquisitions, the improved multi-scale image matching based on Semi-Global Matching (SGM) to extract high resolution topography, and the triangulation of multi-temporal disparity maps to derive 3D ground motion. In particular, processes are optimized to run on a cluster computing environment. This new suite of algorithms is applied to the study of Worldview stereo imagery above the Franz Josef, Fox, and Tasman Glaciers, New Zealand, acquired on 01/30/2013, 02/09/2013, and 02/28/2013. We derive high resolution (1m post-spacing) maps of ice flow in three dimensions, where ice velocities of up to 4 m/day are recorded. Images were collected in early summer during a dry and sunny period, which followed two weeks of unsettled weather with several heavy rainfall events across the Southern Alps. The 3D tracking of ice flow highlights the surface response of the glaciers to changes in effective pressure at the ice-bedrock interface due to heavy rainfall, at an unprecedented spatial resolution.

  5. A study on rational function model generation for TerraSAR-X imagery.

    Science.gov (United States)

    Eftekhari, Akram; Saadatseresht, Mohammad; Motagh, Mahdi

    2013-09-09

    The Rational Function Model (RFM) has been widely used as an alternative to rigorous sensor models of high-resolution optical imagery in photogrammetry and remote sensing geometric processing. However, not much work has been done to evaluate the applicability of the RF model for Synthetic Aperture Radar (SAR) image processing. This paper investigates how to generate a Rational Polynomial Coefficient (RPC) for high-resolution TerraSAR-X imagery using an independent approach. The experimental results demonstrate that the RFM obtained using the independent approach fits the Range-Doppler physical sensor model with an accuracy of greater than 10-3 pixel. Because independent RPCs indicate absolute errors in geolocation, two methods can be used to improve the geometric accuracy of the RFM. In the first method, Ground Control Points (GCPs) are used to update SAR sensor orientation parameters, and the RPCs are calculated using the updated parameters. Our experiment demonstrates that by using three control points in the corners of the image, an accuracy of 0.69 pixels in range and 0.88 pixels in the azimuth direction is achieved. For the second method, we tested the use of an affine model for refining RPCs. In this case, by applying four GCPs in the corners of the image, the accuracy reached 0.75 pixels in range and 0.82 pixels in the azimuth direction.

  6. A Study on Rational Function Model Generation for TerraSAR-X Imagery

    Directory of Open Access Journals (Sweden)

    Mahdi Motagh

    2013-09-01

    Full Text Available The Rational Function Model (RFM has been widely used as an alternative to rigorous sensor models of high-resolution optical imagery in photogrammetry and remote sensing geometric processing. However, not much work has been done to evaluate the applicability of the RF model for Synthetic Aperture Radar (SAR image processing. This paper investigates how to generate a Rational Polynomial Coefficient (RPC for high-resolution TerraSAR-X imagery using an independent approach. The experimental results demonstrate that the RFM obtained using the independent approach fits the Range-Doppler physical sensor model with an accuracy of greater than 10−3 pixel. Because independent RPCs indicate absolute errors in geolocation, two methods can be used to improve the geometric accuracy of the RFM. In the first method, Ground Control Points (GCPs are used to update SAR sensor orientation parameters, and the RPCs are calculated using the updated parameters. Our experiment demonstrates that by using three control points in the corners of the image, an accuracy of 0.69 pixels in range and 0.88 pixels in the azimuth direction is achieved. For the second method, we tested the use of an affine model for refining RPCs. In this case, by applying four GCPs in the corners of the image, the accuracy reached 0.75 pixels in range and 0.82 pixels in the azimuth direction.

  7. The differential contributions of visual imagery constructs on autobiographical thinking.

    Science.gov (United States)

    Aydin, Cagla

    2018-02-01

    There is a growing theoretical and empirical consensus on the central role of visual imagery in autobiographical memory. However, findings from studies that explore how individual differences in visual imagery are reflected on autobiographical thinking do not present a coherent story. One reason for the mixed findings was suggested to be the treatment of visual imagery as an undifferentiated construct while evidence shows that there is more than one type of visual imagery. The present study investigates the relative contributions of different imagery constructs; namely, object and spatial imagery, on autobiographical memory processes. Additionally, it explores whether a similar relation extends to imagining the future. The results indicate that while object imagery was significantly correlated with several phenomenological characteristics, such as the level of sensory and perceptual details for past events - but not for future events - spatial imagery predicted the level of episodic specificity for both past and future events. We interpret these findings as object imagery being recruited in tasks of autobiographical memory that employ reflective processes while spatial imagery is engaged during direct retrieval of event details. Implications for the role of visual imagery in autobiographical thinking processes are discussed.

  8. Short Communication. Using high resolution UAV imagery to estimate tree variables in Pinus pinea plantation in Portugal

    Directory of Open Access Journals (Sweden)

    Juan Guerra Hernandez

    2016-07-01

    Research highlights: The results demonstrate that tree variables can be automatically extracted from high resolution imagery. We highlight the use of UAV systems as a fast, reliable and cost‑effective technique for small scale applications. Keywords: Unmanned aerial systems (UAS; forest inventory; tree crown variables; 3D image modelling; canopy height model (CHM; object‑based image analysis (OBIA, structure‑from‑motion (SfM.

  9. Motor experience with a sport-specific implement affects motor imagery

    Science.gov (United States)

    Zhu, Hua; Shen, Cheng; Zhang, Jian

    2018-01-01

    The present study tested whether sport-specific implements facilitate motor imagery, whereas nonspecific implements disrupt motor imagery. We asked a group of basketball players (experts) and a group of healthy controls (novices) to physically perform (motor execution) and mentally simulate (motor imagery) basketball throws. Subjects produced motor imagery when they were holding a basketball, a volleyball, or nothing. Motor imagery performance was measured by temporal congruence, which is the correspondence between imagery and execution times estimated as (imagery time minus execution time) divided by (imagery time plus execution time), as well as the vividness of motor imagery. Results showed that experts produced greater temporal congruence and vividness of kinesthetic imagery while holding a basketball compared to when they were holding nothing, suggesting a facilitation effect from sport-specific implements. In contrast, experts produced lower temporal congruence and vividness of kinesthetic imagery while holding a volleyball compared to when they were holding nothing, suggesting the interference effect of nonspecific implements. Furthermore, we found a negative correlation between temporal congruence and the vividness of kinesthetic imagery in experts while holding a basketball. On the contrary, the implement manipulation did not modulate the temporal congruence of novices. Our findings suggest that motor representation in experts is built on motor experience associated with specific-implement use and thus was subjected to modulation of the implement held. We conclude that sport-specific implements facilitate motor imagery, whereas nonspecific implements could disrupt motor representation in experts. PMID:29719738

  10. Research of building information extraction and evaluation based on high-resolution remote-sensing imagery

    Science.gov (United States)

    Cao, Qiong; Gu, Lingjia; Ren, Ruizhi; Wang, Lang

    2016-09-01

    Building extraction currently is important in the application of high-resolution remote sensing imagery. At present, quite a few algorithms are available for detecting building information, however, most of them still have some obvious disadvantages, such as the ignorance of spectral information, the contradiction between extraction rate and extraction accuracy. The purpose of this research is to develop an effective method to detect building information for Chinese GF-1 data. Firstly, the image preprocessing technique is used to normalize the image and image enhancement is used to highlight the useful information in the image. Secondly, multi-spectral information is analyzed. Subsequently, an improved morphological building index (IMBI) based on remote sensing imagery is proposed to get the candidate building objects. Furthermore, in order to refine building objects and further remove false objects, the post-processing (e.g., the shape features, the vegetation index and the water index) is employed. To validate the effectiveness of the proposed algorithm, the omission errors (OE), commission errors (CE), the overall accuracy (OA) and Kappa are used at final. The proposed method can not only effectively use spectral information and other basic features, but also avoid extracting excessive interference details from high-resolution remote sensing images. Compared to the original MBI algorithm, the proposed method reduces the OE by 33.14% .At the same time, the Kappa increase by 16.09%. In experiments, IMBI achieved satisfactory results and outperformed other algorithms in terms of both accuracies and visual inspection

  11. Reliability and Validity of Digital Imagery Methodology for Measuring Starting Portions and Plate Waste from School Salad Bars.

    Science.gov (United States)

    Bean, Melanie K; Raynor, Hollie A; Thornton, Laura M; Sova, Alexandra; Dunne Stewart, Mary; Mazzeo, Suzanne E

    2018-04-12

    Scientifically sound methods for investigating dietary consumption patterns from self-serve salad bars are needed to inform school policies and programs. To examine the reliability and validity of digital imagery for determining starting portions and plate waste of self-serve salad bar vegetables (which have variable starting portions) compared with manual weights. In a laboratory setting, 30 mock salads with 73 vegetables were made, and consumption was simulated. Each component (initial and removed portion) was weighed; photographs of weighed reference portions and pre- and post-consumption mock salads were taken. Seven trained independent raters visually assessed images to estimate starting portions to the nearest ¼ cup and percentage consumed in 20% increments. These values were converted to grams for comparison with weighed values. Intraclass correlations between weighed and digital imagery-assessed portions and plate waste were used to assess interrater reliability and validity. Pearson's correlations between weights and digital imagery assessments were also examined. Paired samples t tests were used to evaluate mean differences (in grams) between digital imagery-assessed portions and measured weights. Interrater reliabilities were excellent for starting portions and plate waste with digital imagery. For accuracy, intraclass correlations were moderate, with lower accuracy for determining starting portions of leafy greens compared with other vegetables. However, accuracy of digital imagery-assessed plate waste was excellent. Digital imagery assessments were not significantly different from measured weights for estimating overall vegetable starting portions or waste; however, digital imagery assessments slightly underestimated starting portions (by 3.5 g) and waste (by 2.1 g) of leafy greens. This investigation provides preliminary support for use of digital imagery in estimating starting portions and plate waste from school salad bars. Results might inform

  12. Is the Charcot and Bernard case (1883) of loss of visual imagery really based on neurological impairment?

    Science.gov (United States)

    Zago, Stefano; Allegri, Nicola; Cristoffanini, Marta; Ferrucci, Roberta; Porta, Mauro; Priori, Alberto

    2011-11-01

    INTRODUCTION. The Charcot and Bernard case of visual imagery, Monsieur X, is a classic case in the history of neuropsychology. Published in 1883, it has been considered the first case of visual imagery loss due to brain injury. Also in recent times a neurological valence has been given to it. However, the presence of analogous cases of loss of visual imagery in the psychiatric field have led us to hypothesise functional origins rather than organic. METHODS. In order to assess the validity of such an inference, we have compared the symptomatology of Monsieur X with that found in cases of loss of visual mental images, both psychiatric and neurological, presented in literature. RESULTS. The clinical findings show strong assonances of the Monsieur X case with the symptoms manifested over time by the patients with functionally based loss of visual imagery. CONCLUSION. Although Monsieur X's damage was initially interpreted as neurological, reports of similar symptoms in the psychiatric field lead us to postulate a functional cause for his impairment as well.

  13. Self-generated visual imagery alters the mere exposure effect.

    Science.gov (United States)

    Craver-Lemley, Catherine; Bornstein, Robert F

    2006-12-01

    To determine whether self-generated visual imagery alters liking ratings of merely exposed stimuli, 79 college students were repeatedly exposed to the ambiguous duck-rabbit figure. Half the participants were told to picture the image as a duck and half to picture it as a rabbit. When participants made liking ratings of both disambiguated versions of the figure, they rated the version consistent with earlier encoding more positively than the alternate version. Implications of these findings for theoretical models of the exposure effect are discussed.

  14. Textural features for image classification

    Science.gov (United States)

    Haralick, R. M.; Dinstein, I.; Shanmugam, K.

    1973-01-01

    Description of some easily computable textural features based on gray-tone spatial dependances, and illustration of their application in category-identification tasks of three different kinds of image data - namely, photomicrographs of five kinds of sandstones, 1:20,000 panchromatic aerial photographs of eight land-use categories, and ERTS multispectral imagery containing several land-use categories. Two kinds of decision rules are used - one for which the decision regions are convex polyhedra (a piecewise-linear decision rule), and one for which the decision regions are rectangular parallelpipeds (a min-max decision rule). In each experiment the data set was divided into two parts, a training set and a test set. Test set identification accuracy is 89% for the photomicrographs, 82% for the aerial photographic imagery, and 83% for the satellite imagery. These results indicate that the easily computable textural features probably have a general applicability for a wide variety of image-classification applications.

  15. Classification of Clouds in Satellite Imagery Using Adaptive Fuzzy Sparse Representation

    Directory of Open Access Journals (Sweden)

    Wei Jin

    2016-12-01

    Full Text Available Automatic cloud detection and classification using satellite cloud imagery have various meteorological applications such as weather forecasting and climate monitoring. Cloud pattern analysis is one of the research hotspots recently. Since satellites sense the clouds remotely from space, and different cloud types often overlap and convert into each other, there must be some fuzziness and uncertainty in satellite cloud imagery. Satellite observation is susceptible to noises, while traditional cloud classification methods are sensitive to noises and outliers; it is hard for traditional cloud classification methods to achieve reliable results. To deal with these problems, a satellite cloud classification method using adaptive fuzzy sparse representation-based classification (AFSRC is proposed. Firstly, by defining adaptive parameters related to attenuation rate and critical membership, an improved fuzzy membership is introduced to accommodate the fuzziness and uncertainty of satellite cloud imagery; secondly, by effective combination of the improved fuzzy membership function and sparse representation-based classification (SRC, atoms in training dictionary are optimized; finally, an adaptive fuzzy sparse representation classifier for cloud classification is proposed. Experiment results on FY-2G satellite cloud image show that, the proposed method not only improves the accuracy of cloud classification, but also has strong stability and adaptability with high computational efficiency.

  16. Classification of Clouds in Satellite Imagery Using Adaptive Fuzzy Sparse Representation

    Science.gov (United States)

    Jin, Wei; Gong, Fei; Zeng, Xingbin; Fu, Randi

    2016-01-01

    Automatic cloud detection and classification using satellite cloud imagery have various meteorological applications such as weather forecasting and climate monitoring. Cloud pattern analysis is one of the research hotspots recently. Since satellites sense the clouds remotely from space, and different cloud types often overlap and convert into each other, there must be some fuzziness and uncertainty in satellite cloud imagery. Satellite observation is susceptible to noises, while traditional cloud classification methods are sensitive to noises and outliers; it is hard for traditional cloud classification methods to achieve reliable results. To deal with these problems, a satellite cloud classification method using adaptive fuzzy sparse representation-based classification (AFSRC) is proposed. Firstly, by defining adaptive parameters related to attenuation rate and critical membership, an improved fuzzy membership is introduced to accommodate the fuzziness and uncertainty of satellite cloud imagery; secondly, by effective combination of the improved fuzzy membership function and sparse representation-based classification (SRC), atoms in training dictionary are optimized; finally, an adaptive fuzzy sparse representation classifier for cloud classification is proposed. Experiment results on FY-2G satellite cloud image show that, the proposed method not only improves the accuracy of cloud classification, but also has strong stability and adaptability with high computational efficiency. PMID:27999261

  17. God imagery and affective outcomes in a spiritually integrative inpatient program.

    Science.gov (United States)

    Currier, Joseph M; Foster, Joshua D; Abernethy, Alexis D; Witvliet, Charlotte V O; Root Luna, Lindsey M; Putman, Katharine M; Schnitker, Sarah A; VanHarn, Karl; Carter, Janet

    2017-08-01

    Religion and/or spirituality (R/S) can play a vital, multifaceted role in mental health. While beliefs about God represent the core of many psychiatric patients' meaning systems, research has not examined how internalized images of the divine might contribute to outcomes in treatment programs/settings that emphasize multicultural sensitivity with R/S. Drawing on a combination of qualitative and quantitative information with a religiously heterogeneous sample of 241 adults who completed a spiritually integrative inpatient program over a two-year period, this study tested direct/indirect associations between imagery of how God views oneself, religious comforts and strains, and affective outcomes (positive and negative). When accounting for patients' demographic and religious backgrounds, structural equation modeling results revealed: (1) overall effects for God imagery at pre-treatment on post-treatment levels of both positive and negative affect; and (2) religious comforts and strains fully mediated these links. Secondary analyses also revealed that patients' generally experienced reductions in negative emotion in God imagery over the course of their admission. These findings support attachment models of the R/S-mental health link and suggest that religious comforts and strains represent distinct pathways to positive and negative domains of affect for psychiatric patients with varying experiences of God. Copyright © 2017 Elsevier Ireland Ltd. All rights reserved.

  18. Multi-Temporal Satellite Imagery for Urban Expansion Assessment at Sharjah City /UAE

    International Nuclear Information System (INIS)

    Al-Ruzouq, R; Shanableh, A

    2014-01-01

    Change detection is the process of identifying differences in land cover over time. As human and natural forces continue to alter the landscape, it is important to develop monitoring methods to assess and quantify these changes. Recent advances in satellite imagery, in terms of improved spatial and temporal resolutions, are allowing for efficient identification of change patterns and the prediction of areas of growth. Sharjah is the third largest and most populous city in the United Arab Emirates (UAE). It is located along the northern coast of the Persian Gulf on the Arabian Peninsula. After the discovery of oil and its export in the last four decades at UAE, it has experienced very rapid growth in industry, economy and population. The main purpose of this study is to detect urban development in Sharjah city by detecting and registering linear features in multi-temporal Landsat images. This paper used linear features for image registration that were chosen since they can be reliably extracted from imagery with significantly different geometric and radiometric properties. Derived edges from the registered images are used as the basis for change detection. Image registration and pixel-pixel subtraction has been implement using multi- temporal Landsat images for Sharjah City. Straight-line segments have been used for accurate co-registration as well as main element for a reliable change detection procedure. Results illustrate that highest range of growth that represented by linear features (building and roads) have been accrued during 1976 – 1987 and stand for 36.24% of the total urban features inside Sharjah city. Moreover, result shows that since 1976 to 2010, the cumulative urban expansion inside Sharjah city is 71.9%

  19. Auditory and motor imagery modulate learning in music performance.

    Science.gov (United States)

    Brown, Rachel M; Palmer, Caroline

    2013-01-01

    Skilled performers such as athletes or musicians can improve their performance by imagining the actions or sensory outcomes associated with their skill. Performers vary widely in their auditory and motor imagery abilities, and these individual differences influence sensorimotor learning. It is unknown whether imagery abilities influence both memory encoding and retrieval. We examined how auditory and motor imagery abilities influence musicians' encoding (during Learning, as they practiced novel melodies), and retrieval (during Recall of those melodies). Pianists learned melodies by listening without performing (auditory learning) or performing without sound (motor learning); following Learning, pianists performed the melodies from memory with auditory feedback (Recall). During either Learning (Experiment 1) or Recall (Experiment 2), pianists experienced either auditory interference, motor interference, or no interference. Pitch accuracy (percentage of correct pitches produced) and temporal regularity (variability of quarter-note interonset intervals) were measured at Recall. Independent tests measured auditory and motor imagery skills. Pianists' pitch accuracy was higher following auditory learning than following motor learning and lower in motor interference conditions (Experiments 1 and 2). Both auditory and motor imagery skills improved pitch accuracy overall. Auditory imagery skills modulated pitch accuracy encoding (Experiment 1): Higher auditory imagery skill corresponded to higher pitch accuracy following auditory learning with auditory or motor interference, and following motor learning with motor or no interference. These findings suggest that auditory imagery abilities decrease vulnerability to interference and compensate for missing auditory feedback at encoding. Auditory imagery skills also influenced temporal regularity at retrieval (Experiment 2): Higher auditory imagery skill predicted greater temporal regularity during Recall in the presence of

  20. Auditory and motor imagery modulate learning in music performance

    Science.gov (United States)

    Brown, Rachel M.; Palmer, Caroline

    2013-01-01

    Skilled performers such as athletes or musicians can improve their performance by imagining the actions or sensory outcomes associated with their skill. Performers vary widely in their auditory and motor imagery abilities, and these individual differences influence sensorimotor learning. It is unknown whether imagery abilities influence both memory encoding and retrieval. We examined how auditory and motor imagery abilities influence musicians' encoding (during Learning, as they practiced novel melodies), and retrieval (during Recall of those melodies). Pianists learned melodies by listening without performing (auditory learning) or performing without sound (motor learning); following Learning, pianists performed the melodies from memory with auditory feedback (Recall). During either Learning (Experiment 1) or Recall (Experiment 2), pianists experienced either auditory interference, motor interference, or no interference. Pitch accuracy (percentage of correct pitches produced) and temporal regularity (variability of quarter-note interonset intervals) were measured at Recall. Independent tests measured auditory and motor imagery skills. Pianists' pitch accuracy was higher following auditory learning than following motor learning and lower in motor interference conditions (Experiments 1 and 2). Both auditory and motor imagery skills improved pitch accuracy overall. Auditory imagery skills modulated pitch accuracy encoding (Experiment 1): Higher auditory imagery skill corresponded to higher pitch accuracy following auditory learning with auditory or motor interference, and following motor learning with motor or no interference. These findings suggest that auditory imagery abilities decrease vulnerability to interference and compensate for missing auditory feedback at encoding. Auditory imagery skills also influenced temporal regularity at retrieval (Experiment 2): Higher auditory imagery skill predicted greater temporal regularity during Recall in the presence of

  1. Effect of instructive visual stimuli on neurofeedback training for motor imagery-based brain-computer interface.

    Science.gov (United States)

    Kondo, Toshiyuki; Saeki, Midori; Hayashi, Yoshikatsu; Nakayashiki, Kosei; Takata, Yohei

    2015-10-01

    Event-related desynchronization (ERD) of the electroencephalogram (EEG) from the motor cortex is associated with execution, observation, and mental imagery of motor tasks. Generation of ERD by motor imagery (MI) has been widely used for brain-computer interfaces (BCIs) linked to neuroprosthetics and other motor assistance devices. Control of MI-based BCIs can be acquired by neurofeedback training to reliably induce MI-associated ERD. To develop more effective training conditions, we investigated the effect of static and dynamic visual representations of target movements (a picture of forearms or a video clip of hand grasping movements) during the BCI neurofeedback training. After 4 consecutive training days, the group that performed MI while viewing the video showed significant improvement in generating MI-associated ERD compared with the group that viewed the static image. This result suggests that passively observing the target movement during MI would improve the associated mental imagery and enhance MI-based BCIs skills. Copyright © 2014 Elsevier B.V. All rights reserved.

  2. Radiometric Non-Uniformity Characterization and Correction of Landsat 8 OLI Using Earth Imagery-Based Techniques

    Directory of Open Access Journals (Sweden)

    Frank Pesta

    2014-12-01

    Full Text Available Landsat 8 is the first satellite in the Landsat mission to acquire spectral imagery of the Earth using pushbroom sensor instruments. As a result, there are almost 70,000 unique detectors on the Operational Land Imager (OLI alone to monitor. Due to minute variations in manufacturing and temporal degradation, every detector will exhibit a different behavior when exposed to uniform radiance, causing a noticeable striping artifact in collected imagery. Solar collects using the OLI’s on-board solar diffuser panels are the primary method of characterizing detector level non-uniformity. This paper reports on an approach for using a side-slither maneuver to estimate relative detector gains within each individual focal plane module (FPM in the OLI. A method to characterize cirrus band detector-level non-uniformity using deep convective clouds (DCCs is also presented. These approaches are discussed, and then, correction results are compared with the diffuser-based method. Detector relative gain stability is assessed using the side-slither technique. Side-slither relative gains were found to correct streaking in test imagery with quality comparable to diffuser-based gains (within 0.005% for VNIR/PAN; 0.01% for SWIR and identified a 0.5% temporal drift over a year. The DCC technique provided relative gains that visually decreased striping over the operational calibration in many images.

  3. Cigarette constituent health communications for smokers: impact of chemical, imagery, and source.

    Science.gov (United States)

    Kowitt, Sarah; Sheeran, Paschal; Jarman, Kristen L; Ranney, Leah M; Schmidt, Allison M; Noar, Seth M; Huang, Li-Ling; Goldstein, Adam O

    2017-10-03

    Communication campaigns are incorporating tobacco constituent messaging to reach smokers, yet there is a dearth of research on how such messages should be constructed or will be received by smokers. In a 2x2x2 experiment, we manipulated three cigarette constituent message components: (1) the toxic constituent of tobacco (arsenic vs. lead) with a corresponding health effect, (2) the presence or absence of an evocative image, and (3) the source of the message (FDA vs. no source). We recruited smokers (N = 1,669, 55.4% women) via an online platform and randomized them to 1 of the 8 message conditions. Participants viewed the message and rated its believability and perceived effectiveness, the credibility of the message source, and action expectancies (i.e., likelihood of seeking additional information and help with quitting as a result of seeing the message). We found significant main effects of image, constituent, and source on outcomes. The use of arsenic as the constituent, the presence of an evocative image, and the FDA as the source increased the believability, source credibility, and perceived effectiveness of the tobacco constituent health message. Multiple elements of a constituent message, including type of constituent, imagery, and message source, impact their reception among smokers. Specifically, communication campaigns targeting smokers that utilize arsenic as the tobacco constituent, visual imagery, and the FDA logo may be particularly effective in changing key outcomes that are associated with subsequent attitude and behavioral changes. This paper describes how components of communication campaigns about cigarette constituents are perceived. Multiple elements of a tobacco constituent message, including type of constituent, image, and message source may influence the reception of messages among current smokers. Communication campaigns targeting smokers that utilize arsenic as the tobacco constituent, visual imagery, and the FDA logo may be particularly

  4. Closing the mind's eye: incoming luminance signals disrupt visual imagery.

    Directory of Open Access Journals (Sweden)

    Rachel Sherwood

    Full Text Available Mental imagery has been associated with many cognitive functions, both high and low-level. Despite recent scientific advances, the contextual and environmental conditions that most affect the mechanisms of visual imagery remain unclear. It has been previously shown that the greater the level of background luminance the weaker the effect of imagery on subsequent perception. However, in these experiments it was unclear whether the luminance was affecting imagery generation or storage of a memory trace. Here, we report that background luminance can attenuate both mental imagery generation and imagery storage during an unrelated cognitive task. However, imagery generation was more sensitive to the degree of luminance. In addition, we show that these findings were not due to differential dark adaptation. These results suggest that afferent visual signals can interfere with both the formation and priming-memory effects associated with visual imagery. It follows that background luminance may be a valuable tool for investigating imagery and its role in various cognitive and sensory processes.

  5. Assessment of COTS IR image simulation tools for ATR development

    Science.gov (United States)

    Seidel, Heiko; Stahl, Christoph; Bjerkeli, Frode; Skaaren-Fystro, Paal

    2005-05-01

    Following the tendency of increased use of imaging sensors in military aircraft, future fighter pilots will need onboard artificial intelligence e.g. ATR for aiding them in image interpretation and target designation. The European Aeronautic Defence and Space Company (EADS) in Germany has developed an advanced method for automatic target recognition (ATR) which is based on adaptive neural networks. This ATR method can assist the crew of military aircraft like the Eurofighter in sensor image monitoring and thereby reduce the workload in the cockpit and increase the mission efficiency. The EADS ATR approach can be adapted for imagery of visual, infrared and SAR sensors because of the training-based classifiers of the ATR method. For the optimal adaptation of these classifiers they have to be trained with appropriate and sufficient image data. The training images must show the target objects from different aspect angles, ranges, environmental conditions, etc. Incomplete training sets lead to a degradation of classifier performance. Additionally, ground truth information i.e. scenario conditions like class type and position of targets is necessary for the optimal adaptation of the ATR method. In Summer 2003, EADS started a cooperation with Kongsberg Defence & Aerospace (KDA) from Norway. The EADS/KDA approach is to provide additional image data sets for training-based ATR through IR image simulation. The joint study aims to investigate the benefits of enhancing incomplete training sets for classifier adaptation by simulated synthetic imagery. EADS/KDA identified the requirements of a commercial-off-the-shelf IR simulation tool capable of delivering appropriate synthetic imagery for ATR development. A market study of available IR simulation tools and suppliers was performed. After that the most promising tool was benchmarked according to several criteria e.g. thermal emission model, sensor model, targets model, non-radiometric image features etc., resulting in a

  6. POTENTIAL OF MULTI-TEMPORAL OBLIQUE AIRBORNE IMAGERY FOR STRUCTURAL DAMAGE ASSESSMENT

    Directory of Open Access Journals (Sweden)

    A. Vetrivel

    2016-06-01

    Full Text Available Quick post-disaster actions demand automated, rapid and detailed building damage assessment. Among the available technologies, post-event oblique airborne images have already shown their potential for this task. However, existing methods usually compensate the lack of pre-event information with aprioristic assumptions of building shapes and textures that can lead to uncertainties and misdetections. However, oblique images have been already captured over many cities of the world, and the exploitation of pre- and post-event data as inputs to damage assessment is readily feasible in urban areas. In this paper, we investigate the potential of multi-temporal oblique imagery for detailed damage assessment focusing on two methodologies: the first method aims at detecting severe structural damages related to geometrical deformation by combining the complementary information provided by photogrammetric point clouds and oblique images. The developed method detected 87% of damaged elements. The failed detections are due to varying noise levels within the point cloud which hindered the recognition of some structural elements. We observed, in general that the façade regions are very noisy in point clouds. To address this, we propose our second method which aims to detect damages to building façades using the oriented oblique images. The results show that the proposed methodology can effectively differentiate among the three proposed categories: collapsed/highly damaged, lower levels of damage and undamaged buildings, using a computationally light-weight approach. We describe the implementations of the above mentioned methods in detail and present the promising results achieved using multi-temporal oblique imagery over the city of L’Aquila (Italy.

  7. Generating Daily Synthetic Landsat Imagery by Combining Landsat and MODIS Data.

    Science.gov (United States)

    Wu, Mingquan; Huang, Wenjiang; Niu, Zheng; Wang, Changyao

    2015-09-18

    Owing to low temporal resolution and cloud interference, there is a shortage of high spatial resolution remote sensing data. To address this problem, this study introduces a modified spatial and temporal data fusion approach (MSTDFA) to generate daily synthetic Landsat imagery. This algorithm was designed to avoid the limitations of the conditional spatial temporal data fusion approach (STDFA) including the constant window for disaggregation and the sensor difference. An adaptive window size selection method is proposed in this study to select the best window size and moving steps for the disaggregation of coarse pixels. The linear regression method is used to remove the influence of differences in sensor systems using disaggregated mean coarse reflectance by testing and validation in two study areas located in Xinjiang Province, China. The results show that the MSTDFA algorithm can generate daily synthetic Landsat imagery with a high correlation coefficient (R) ranged from 0.646 to 0.986 between synthetic images and the actual observations. We further show that MSTDFA can be applied to 250 m 16-day MODIS MOD13Q1 products and the Landsat Normalized Different Vegetation Index (NDVI) data by generating a synthetic NDVI image highly similar to actual Landsat NDVI observation with a high R of 0.97.

  8. Guided Imagery and Stress in Pregnant Adolescents.

    Science.gov (United States)

    Flynn, Theresa A; Jones, Brittney A; Ausderau, Karla K

    2016-01-01

    We examined the effects of a guided imagery intervention on perceived stress in pregnant adolescents. Thirty-five pregnant adolescents recruited from a local alternative education program participated in a guided imagery intervention. Participants listened to a pregnancy-specific guided imagery recording on four separate occasions during their pregnancies. Perceived stress was measured immediately before and after each session using the Perceived Stress Measure-9 (PSM-9). Participants' pre- and postsession PSM-9 scores for three of the four sessions demonstrated a significant reduction in stress. Participants' baseline stress levels also decreased significantly across the four listening sessions. The greatest reductions in stress within and between sessions occurred in the early sessions, with effects diminishing over time. Pregnant teens experienced initial short- and long-term stress reduction during a guided imagery intervention, supporting the use of guided imagery to reduce stress in pregnant adolescents. Copyright © 2016 by the American Occupational Therapy Association, Inc.

  9. The role of mental imagery in non-clinical paranoia.

    Science.gov (United States)

    Bullock, Gemma; Newman-Taylor, Katherine; Stopa, Luisa

    2016-03-01

    Cognitive models of paranoia incorporate many of the processes implicated in the maintenance of anxiety disorders. Despite this, the role of mental imagery in paranoia remains under-researched. The current study examined the impact of a self-imagery manipulation in people with high non-clinical paranoia. We used a mixed design with one between-subjects variable (type of self-imagery) and one within-subjects variable (time--pre and post imagery manipulation). Thirty participants with high trait paranoia were allocated alternately to a positive or negative self-imagery condition. Scripts were used to elicit positive and negative self-imagery. All participants completed self-report state measures of paranoia, mood, self-esteem and self-compassion. Group by time interaction effects were found for each of the dependent variables. Positive imagery led to less state paranoia, anxiety and negative affect, and more positive affect, self-esteem and self-compassion, compared with the negative imagery group. This was a non-blind study, limited by allocation method and a brief time-frame which did not allow us to assess longevity of effects. We recruited a relatively small and predominantly female sample of people with high non-clinical paranoia. The study did not include a neutral control condition, a low paranoia comparison group, or a manipulation check following the imagery task. Self-imagery manipulations may affect paranoia, mood and self-beliefs. If the findings are replicated with clinical groups, and maintained over a longer period, this would suggest that imagery-based interventions targeting persecutory delusions might be usefully examined. Crown Copyright © 2015. Published by Elsevier Ltd. All rights reserved.

  10. Evaluation of radar imagery for geological and cartographic applications

    Science.gov (United States)

    Moore, Gerald K.; Sheehan, Cynthia A.

    1981-01-01

    The House/Senate conference report on H.R. 4930 (96th Congress), the Department of the Interior and Related Agencies Appropriations bill, 1980, stated that the U.S. Geological Survey should "begin the use of side-looking airborne radar imagery for topographic and geological mapping, and geological resource surveys in promising areas, particularly Alaska." In response to this mandate, the Survey acquired radar data and began scientific studies to analyze and interpret these data. About 70 percent of the project funding was used to acquire radar imagery and to evaluate Alaskan applications. Results of these studies indicate that radar images have a unique incremental value for certain geologic and cartographic applications but that the images are best suited for use as supplemental information sources or as primary data sources in areas of persistent cloud cover.The value of radar data is greatest for geologic mapping and resource surveys, particularly for mineral and petroleum exploration, where the objective is to locate any single feature or group of features that may control the occurrences of these resources. Radar images are considered by oil and gas companies to be worth the cost of data acquisition within a limited area of active exploration.Radar images also have incremental value for geologic site studies and hazard mapping. The need in these cases is TO inventory all geologic hazards to human life, property, resources, and the environment. For other geologic applications, radar images have a relatively small incremental value over a combination of Landsat images and aerial photographs.The value of radar images for cartographic applications is minimal, except when they are used as a substitute for aerial photographs and topographic maps in persistently cloud-covered areas. If conventional data sources are not available, radar images provide useful information on terrain relief, landforms, drainage patterns, and land cover. Screen less lithography is a low

  11. CROWN-LEVEL TREE SPECIES CLASSIFICATION USING INTEGRATED AIRBORNE HYPERSPECTRAL AND LIDAR REMOTE SENSING DATA

    Directory of Open Access Journals (Sweden)

    Z. Wang

    2018-05-01

    Full Text Available Mapping tree species is essential for sustainable planning as well as to improve our understanding of the role of different trees as different ecological service. However, crown-level tree species automatic classification is a challenging task due to the spectral similarity among diversified tree species, fine-scale spatial variation, shadow, and underlying objects within a crown. Advanced remote sensing data such as airborne Light Detection and Ranging (LiDAR and hyperspectral imagery offer a great potential opportunity to derive crown spectral, structure and canopy physiological information at the individual crown scale, which can be useful for mapping tree species. In this paper, an innovative approach was developed for tree species classification at the crown level. The method utilized LiDAR data for individual tree crown delineation and morphological structure extraction, and Compact Airborne Spectrographic Imager (CASI hyperspectral imagery for pure crown-scale spectral extraction. Specifically, four steps were include: 1 A weighted mean filtering method was developed to improve the accuracy of the smoothed Canopy Height Model (CHM derived from LiDAR data; 2 The marker-controlled watershed segmentation algorithm was, therefore, also employed to delineate the tree-level canopy from the CHM image in this study, and then individual tree height and tree crown were calculated according to the delineated crown; 3 Spectral features within 3 × 3 neighborhood regions centered on the treetops detected by the treetop detection algorithm were derived from the spectrally normalized CASI imagery; 4 The shape characteristics related to their crown diameters and heights were established, and different crown-level tree species were classified using the combination of spectral and shape characteristics. Analysis of results suggests that the developed classification strategy in this paper (OA = 85.12 %, Kc = 0.90 performed better than Li

  12. The applied model of imagery use: Examination of moderation and mediation effects.

    Science.gov (United States)

    Koehn, S; Stavrou, N A M; Young, J A; Morris, T

    2016-08-01

    The applied model of mental imagery use proposed an interaction effect between imagery type and imagery ability. This study had two aims: (a) the examination of imagery ability as a moderating variable between imagery type and dispositional flow, and (b) the testing of alternative mediation models. The sample consisted of 367 athletes from Scotland and Australia, who completed the Sport Imagery Questionnaire, Sport Imagery Ability Questionnaire, and Dispositional Flow Scale-2. Hierarchical regression analysis showed direct effects of imagery use and imagery ability on flow, but no significant interaction. Mediation analysis revealed a significant indirect path, indicating a partially mediated relationship (P = 0.002) between imagery use, imagery ability, and flow. Partial mediation was confirmed when the effect of cognitive imagery use and cognitive imagery ability was tested, and a full mediation model was found between motivational imagery use, motivational imagery ability, and flow. The results are discussed in conjunction with potential future research directions on advancing theory and applications. © 2015 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd.

  13. Mental imagery boosts music compositional creativity

    Science.gov (United States)

    Lim, Stephen Wee Hun

    2017-01-01

    We empirically investigated the effect of mental imagery on young children’s music compositional creativity. Children aged 5 to 8 years participated in two music composition sessions. In the control session, participants based their composition on a motif that they had created using a sequence of letter names. In the mental imagery session, participants were given a picture of an animal and instructed to imagine the animal’s sounds and movements, before incorporating what they had imagined into their composition. Six expert judges independently rated all music compositions on creativity based on subjective criteria (consensual assessment). Reliability analyses indicated that the expert judges demonstrated a high level of agreement in their ratings. The mental imagery compositions received significantly higher creativity ratings by the expert judges than did the control compositions. These results provide evidence for the effectiveness of mental imagery in enhancing young children’s music compositional creativity. PMID:28296965

  14. Mental imagery boosts music compositional creativity.

    Science.gov (United States)

    Wong, Sarah Shi Hui; Lim, Stephen Wee Hun

    2017-01-01

    We empirically investigated the effect of mental imagery on young children's music compositional creativity. Children aged 5 to 8 years participated in two music composition sessions. In the control session, participants based their composition on a motif that they had created using a sequence of letter names. In the mental imagery session, participants were given a picture of an animal and instructed to imagine the animal's sounds and movements, before incorporating what they had imagined into their composition. Six expert judges independently rated all music compositions on creativity based on subjective criteria (consensual assessment). Reliability analyses indicated that the expert judges demonstrated a high level of agreement in their ratings. The mental imagery compositions received significantly higher creativity ratings by the expert judges than did the control compositions. These results provide evidence for the effectiveness of mental imagery in enhancing young children's music compositional creativity.

  15. A wavelet and least square filter based spatial-spectral denoising approach of hyperspectral imagery

    Science.gov (United States)

    Li, Ting; Chen, Xiao-Mei; Chen, Gang; Xue, Bo; Ni, Guo-Qiang

    2009-11-01

    Noise reduction is a crucial step in hyperspectral imagery pre-processing. Based on sensor characteristics, the noise of hyperspectral imagery represents in both spatial and spectral domain. However, most prevailing denosing techniques process the imagery in only one specific domain, which have not utilized multi-domain nature of hyperspectral imagery. In this paper, a new spatial-spectral noise reduction algorithm is proposed, which is based on wavelet analysis and least squares filtering techniques. First, in the spatial domain, a new stationary wavelet shrinking algorithm with improved threshold function is utilized to adjust the noise level band-by-band. This new algorithm uses BayesShrink for threshold estimation, and amends the traditional soft-threshold function by adding shape tuning parameters. Comparing with soft or hard threshold function, the improved one, which is first-order derivable and has a smooth transitional region between noise and signal, could save more details of image edge and weaken Pseudo-Gibbs. Then, in the spectral domain, cubic Savitzky-Golay filter based on least squares method is used to remove spectral noise and artificial noise that may have been introduced in during the spatial denoising. Appropriately selecting the filter window width according to prior knowledge, this algorithm has effective performance in smoothing the spectral curve. The performance of the new algorithm is experimented on a set of Hyperion imageries acquired in 2007. The result shows that the new spatial-spectral denoising algorithm provides more significant signal-to-noise-ratio improvement than traditional spatial or spectral method, while saves the local spectral absorption features better.

  16. Histopathology reconstruction on digital imagery

    Science.gov (United States)

    Li, Wenjing; Lieberman, Rich W.; Nie, Sixiang; Xie, Yihua; Eldred, Michael; Oyama, Jody

    2009-02-01

    Diagnosing cervical cancer in a woman is a multi-step procedure involving examination of the cervix, possible biopsy and follow-up. It is open to subjective interpretation and highly dependent upon the skills of cytologists, colposcopists, and pathologists. In an effort to reduce the subjectiveness of the colposcopist-directed biopsy and to improve the diagnostic accuracy of colposcopy, we have developed new colposcopic imaging systems with accompanying computer aided diagnostic (CAD) techniques to guide a colposcopist in deciding if and where to biopsy. If the biopsy's histopathology, the identification of the disease state at the cellular and near-cellular level, is to be used as the gold standard for CAD, then the location of the histopathologic analysis must match exactly to the location of the biopsy tissue in the digital image. Otherwise, no matter how perfect the histopathology and the quality of the digital imagery, the two data sets cannot be matched and the true sensitivity and specificity of the CAD cannot be ascertained. We report here on new approaches to preserving, continuously, the location and orientation of a biopsy sample with respect to its location in the digital image of the cervix so as to preserve the exact spatial relationship throughout the mechanical aspects of the histopathologic analysis. This new approach will allow CAD to produce a linear diagnosis and pinpoint the location of the tissue under examination.

  17. Vividness of Visual Imagery and Incidental Recall of Verbal Cues, When Phenomenological Availability Reflects Long-Term Memory Accessibility

    OpenAIRE

    D’Angiulli, Amedeo; Runge, Matthew; Faulkner, Andrew; Zakizadeh, Jila; Chan, Aldrich; Morcos, Selvana

    2013-01-01

    The relationship between vivid visual mental images and unexpected recall (incidental recall) was replicated, refined and extended. In Experiment 1, participants were asked to generate mental images from imagery-evoking verbal-cues (controlled on several verbal properties) and then, on a trial-by-trial basis, rate the vividness of their images; thirty minutes later, participants were surprised with a task requiring free recall of the cues. Higher vividness ratings predicted better incidental ...

  18. Psychophysiological Responsivity to Script-Driven Imagery: An Exploratory Study of the Effects of Eye Movements on Public Speaking Flashforwards.

    Science.gov (United States)

    Kearns, Michelle; Engelhard, Iris M

    2015-01-01

    A principle characteristic of public speaking anxiety relates to intrusive mental images of potential future disasters. Previous research has found that the self-reported emotionality of such "flashforwards" can be reduced by a cognitively demanding, dual-task (e.g., making eye movements) performed whilst holding the mental image in-mind. The outcome measure in these earlier studies was participants' self-reported emotional intensity of the mental image. The current study (N = 34) explored whether an objective measure of emotionality would yield similar results in students with public speaking anxiety. A script-driven imagery procedure was used to measure psychophysiological responsivity to an audio script depicting a feared (public speaking) scenario before and after an eye movement intervention. Relative to the control condition (imagery only), those who made eye movements whilst holding a mental image of this scenario in-mind demonstrated a significant decrease in heart rate, which acted as a measure of emotionality. These findings add to a previous body of research demonstrating the beneficial qualities of dual-tasks and their potential for treatment of both past and future-oriented anxieties.

  19. Radar image enhancement and simulation as an aid to interpretation and training

    Science.gov (United States)

    Frost, V. S.; Stiles, J. A.; Holtzman, J. C.; Dellwig, L. F.; Held, D. N.

    1980-01-01

    Greatly increased activity in the field of radar image applications in the coming years demands that techniques of radar image analysis, enhancement, and simulation be developed now. Since the statistical nature of radar imagery differs from that of photographic imagery, one finds that the required digital image processing algorithms (e.g., for improved viewing and feature extraction) differ from those currently existing. This paper addresses these problems and discusses work at the Remote Sensing Laboratory in image simulation and processing, especially for systems comparable to the formerly operational SEASAT synthetic aperture radar.

  20. Estimating pinyon and juniper cover across Utah using NAIP imagery

    Directory of Open Access Journals (Sweden)

    Darrell B. Roundy

    2016-11-01

    Full Text Available Expansion of Pinus L. (pinyon and Juniperus L. (juniper (P-J trees into sagebrush (Artemisia L. steppe communities can lead to negative effects on hydrology, loss of wildlife habitat, and a decrease in desirable understory vegetation. Tree reduction treatments are often implemented to mitigate these negative effects. In order to prioritize and effectively plan these treatments, rapid, accurate, and inexpensive methods are needed to estimate tree canopy cover at the landscape scale. We used object based image analysis (OBIA software (Feature AnalystTM for ArcMap 10.1®, ENVI Feature Extraction®, and Trimble eCognition Developer 8.2® to extract tree canopy cover using NAIP (National Agricultural Imagery Program imagery. We then compared our extractions with ground measured tree canopy cover (crown diameter and line point intercept on 309 plots across 44 sites in Utah. Extraction methods did not consistently over- or under-estimate ground measured P-J canopy cover except where tree cover was >45%. Estimates of tree canopy cover using OBIA techniques were strongly correlated with estimates using the crown diameter method (r = 0.93 for ENVI, 0.91 for Feature AnalystTM, and 0.92 for eCognition. Tree cover estimates using OBIA techniques had lower correlations with tree cover measurements using the line-point intercept method (r = 0.85 for ENVI, 0.83 for Feature AnalystTM, and 0.83 for eCognition. All software packages accurately and inexpensively extracted P-J canopy cover from NAIP imagery when the imagery was not blurred, and when P-J cover was not mixed with Amelanchier alnifolia (Utah serviceberry and Quercus gambelii (Gambel’s oak, which had similar spectral values as P-J.

  1. Parabolic dune reactivation and migration at Napeague, NY, USA: Insights from aerial and GPR imagery

    Science.gov (United States)

    Girardi, James D.; Davis, Dan M.

    2010-02-01

    Observations from mapping since the 19th century and aerial imagery since 1930 have been used to study changes in the aeolian geomorphology of coastal parabolic dunes over the last ~ 170 years in the Walking Dune Field, Napeague, NY. The five large parabolic dunes of the Walking Dune Field have all migrated across, or are presently interacting with, a variably forested area that has affected their migration, stabilization and morphology. This study has concentrated on a dune with a particularly complex history of stabilization, reactivation and migration. We have correlated that dune's surface evolution, as revealed by aerial imagery, with its internal structures imaged using 200 MHz and 500 MHz Ground Penetrating Radar (GPR) surveys. Both 2D (transect) and high-resolution 3D GPR imagery image downwind dipping bedding planes which can be grouped by apparent dip angle into several discrete packages of beds that reflect distinct decadal-scale episodes of dune reactivation and growth. From aerial and high resolution GPR imagery, we document a unique mode of reactivation and migration linked to upwind dune formation and parabolic dune interactions with forest trees. This study documents how dune-dune and dune-vegetation interactions have influenced a unique mode of blowout deposition that has alternated on a decadal scale between opposite sides of a parabolic dune during reactivation and migration. The pattern of recent parabolic dune reactivation and migration in the Walking Dune Field appears to be somewhat more complex, and perhaps more sensitive to subtle environmental pressures, than an idealized growth model with uniform deposition and purely on-axis migration. This pattern, believed to be prevalent among other parabolic dunes in the Walking Dune Field, may occur also in many other places where similar observational constraints are unavailable.

  2. Quantitative evaluation of variations in rule-based classifications of land cover in urban neighbourhoods using WorldView-2 imagery

    Science.gov (United States)

    Belgiu, Mariana; ǎguţ, Lucian, , Dr; Strobl, Josef

    2014-01-01

    The increasing availability of high resolution imagery has triggered the need for automated image analysis techniques, with reduced human intervention and reproducible analysis procedures. The knowledge gained in the past might be of use to achieving this goal, if systematically organized into libraries which would guide the image analysis procedure. In this study we aimed at evaluating the variability of digital classifications carried out by three experts who were all assigned the same interpretation task. Besides the three classifications performed by independent operators, we developed an additional rule-based classification that relied on the image classifications best practices found in the literature, and used it as a surrogate for libraries of object characteristics. The results showed statistically significant differences among all operators who classified the same reference imagery. The classifications carried out by the experts achieved satisfactory results when transferred to another area for extracting the same classes of interest, without modification of the developed rules.

  3. The Study of Object-Oriented Motor Imagery Based on EEG Suppression.

    Directory of Open Access Journals (Sweden)

    Lili Li

    Full Text Available Motor imagery is a conventional method for brain computer interface and motor learning. To avoid the great individual difference of the motor imagery ability, object-oriented motor imagery was applied, and the effects were studied. Kinesthetic motor imagery and visual observation were administered to 15 healthy volunteers. The EEG during cue-based simple imagery (SI, object-oriented motor imagery (OI, non-object-oriented motor imagery (NI and visual observation (VO was recorded. Study results showed that OI and NI presented significant contralateral suppression in mu rhythm (p 0.05. Compared with NI, OI showed significant difference (p < 0.05 in mu rhythm and weak significant difference (p = 0.0612 in beta rhythm over the contralateral hemisphere. The ability of motor imagery can be reflected by the suppression degree of mu and beta frequencies which are the motor related rhythms. Thus, greater enhancement of activation in mirror neuron system is involved in response to object-oriented motor imagery. The object-oriented motor imagery is favorable for improvement of motor imagery ability.

  4. Monitoring Oilfield Operations and GHG Emissions Sources Using Object-based Image Analysis of High Resolution Spatial Imagery

    Science.gov (United States)

    Englander, J. G.; Brodrick, P. G.; Brandt, A. R.

    2015-12-01

    Fugitive emissions from oil and gas extraction have become a greater concern with the recent increases in development of shale hydrocarbon resources. There are significant gaps in the tools and research used to estimate fugitive emissions from oil and gas extraction. Two approaches exist for quantifying these emissions: atmospheric (or 'top down') studies, which measure methane fluxes remotely, or inventory-based ('bottom up') studies, which aggregate leakage rates on an equipment-specific basis. Bottom-up studies require counting or estimating how many devices might be leaking (called an 'activity count'), as well as how much each device might leak on average (an 'emissions factor'). In a real-world inventory, there is uncertainty in both activity counts and emissions factors. Even at the well level there are significant disagreements in data reporting. For example, some prior studies noted a ~5x difference in the number of reported well completions in the United States between EPA and private data sources. The purpose of this work is to address activity count uncertainty by using machine learning algorithms to classify oilfield surface facilities using high-resolution spatial imagery. This method can help estimate venting and fugitive emissions sources from regions where reporting of oilfield equipment is incomplete or non-existent. This work will utilize high resolution satellite imagery to count well pads in the Bakken oil field of North Dakota. This initial study examines an area of ~2,000 km2 with ~1000 well pads. We compare different machine learning classification techniques, and explore the impact of training set size, input variables, and image segmentation settings to develop efficient and robust techniques identifying well pads. We discuss the tradeoffs inherent to different classification algorithms, and determine the optimal algorithms for oilfield feature detection. In the future, the results of this work will be leveraged to be provide activity

  5. Object versus spatial visual mental imagery in patients with schizophrenia

    Science.gov (United States)

    Aleman, André; de Haan, Edward H.F.; Kahn, René S.

    2005-01-01

    Objective Recent research has revealed a larger impairment of object perceptual discrimination than of spatial perceptual discrimination in patients with schizophrenia. It has been suggested that mental imagery may share processing systems with perception. We investigated whether patients with schizophrenia would show greater impairment regarding object imagery than spatial imagery. Methods Forty-four patients with schizophrenia and 20 healthy control subjects were tested on a task of object visual mental imagery and on a task of spatial visual mental imagery. Both tasks included a condition in which no imagery was needed for adequate performance, but which was in other respects identical to the imagery condition. This allowed us to adjust for nonspecific differences in individual performance. Results The results revealed a significant difference between patients and controls on the object imagery task (F1,63 = 11.8, p = 0.001) but not on the spatial imagery task (F1,63 = 0.14, p = 0.71). To test for a differential effect, we conducted a 2 (patients v. controls) х 2 (object task v. spatial task) analysis of variance. The interaction term was statistically significant (F1,62 = 5.2, p = 0.026). Conclusions Our findings suggest a differential dysfunction of systems mediating object and spatial visual mental imagery in schizophrenia. PMID:15644999

  6. PARALLEL AND ADAPTIVE UNIFORM-DISTRIBUTED REGISTRATION METHOD FOR CHANG’E-1 LUNAR REMOTE SENSED IMAGERY

    Directory of Open Access Journals (Sweden)

    X. Ning

    2012-08-01

    To resolve the above-mentioned registration difficulties, a parallel and adaptive uniform-distributed registration method for CE-1 lunar remote sensed imagery is proposed in this paper. Based on 6 pairs of randomly selected images, both the standard SIFT algorithm and the parallel and adaptive uniform-distributed registration method were executed, the versatility and effectiveness were assessed. The experimental results indicate that: by applying the parallel and adaptive uniform-distributed registration method, the efficiency of CE-1 lunar remote sensed imagery registration were increased dramatically. Therefore, the proposed method in the paper could acquire uniform-distributed registration results more effectively, the registration difficulties including difficult to obtain results, time-consuming, non-uniform distribution could be successfully solved.

  7. Dynamic Neuro-Cognitive Imagery Improves Mental Imagery Ability, Disease Severity, and Motor and Cognitive Functions in People with Parkinson’s Disease

    Directory of Open Access Journals (Sweden)

    Amit Abraham

    2018-01-01

    Full Text Available People with Parkinson’s disease (PD experience kinesthetic deficits, which affect motor and nonmotor functions, including mental imagery. Imagery training is a recommended, yet underresearched, approach in PD rehabilitation. Dynamic Neuro-Cognitive Imagery (DNI™ is a codified method for imagery training. Twenty subjects with idiopathic PD (Hoehn and Yahr stages I–III were randomly allocated into DNI training (experimental; n=10 or in-home learning and exercise program (control; n=10. Both groups completed at least 16 hours of training within two weeks. DNI training focused on anatomical embodiment and kinesthetic awareness. Imagery abilities, disease severity, and motor and nonmotor functions were assessed pre- and postintervention. The DNI participants improved (p<.05 in mental imagery abilities, disease severity, and motor and spatial cognitive functions. Participants also reported improvements in balance, walking, mood, and coordination, and they were more physically active. Both groups strongly agreed they enjoyed their program and were more mentally active. DNI training is a promising rehabilitation method for improving imagery ability, disease severity, and motor and nonmotor functions in people with PD. This training might serve as a complementary PD therapeutic approach. Future studies should explore the effect of DNI on motor learning and control strategies.

  8. Imagery Rescripting for Body Dysmorphic Disorder: A Multiple-Baseline Single-Case Experimental Design.

    Science.gov (United States)

    Willson, Rob; Veale, David; Freeston, Mark

    2016-03-01

    Individuals with body dysmorphic disorder (BDD) often experience negative distorted images of their appearance, and research suggests these may be linked to memories of adverse events such as bullying or teasing. This study evaluates imagery rescripting (ImR) as an intervention for BDD. In this article, we present a multiple-baseline single-case experimental design testing imagery rescripting as a brief, stand-alone intervention, with six individuals with BDD that related to aversive memories. The impact of the intervention was assessed by self-reported daily measures of symptom severity (preoccupation with appearance, appearance-related checking behaviors, appearance-related distress, and strength of belief that their main problem is their appearance) and standardized clinician ratings of BDD severity (Yale-Brown Obsessive Compulsive Scale modified for BDD). Four out of six of the participants responded positively to the intervention, with clinically meaningful improvement in symptomatology. Overall response was rapid; improvements began within the first week post-ImR intervention. From a small sample it is cautiously concluded that imagery rescripting may show promise as a module in cognitive-behavioral therapy for BDD, and is worthy of further investigation. Copyright © 2015. Published by Elsevier Ltd.

  9. Induction of food craving experience: the role of mental imagery, dietary restraint, mood and coping strategies.

    Science.gov (United States)

    Jáuregui-Lobera, I; Bolaños-Ríos, P; Valero, E; Ruiz Prieto, I

    2012-01-01

    Food craving consists of a strong motivational state whereby a person is driven to seek and ingest a specifically desired food. To explore the influence of mental imagery on the food craving experience as well as to analyse the role of different psychological variables. Participants consisted of 65 normal weight undergraduate students. An experimental induction of food craving was analysed considering the actual previous craving and the induced one as a state food craving. Measures of trait food craving, imaging ability, dietary restraint, anxiety, depression, and coping strategies were considered. Sweet foods in general and chocolate in particular were the most craved foods. During the induction thoughts and images were the most highly rated triggers, and all the different sensory modalities were involved. Anxiety, depression, and negative coping strategies influenced the results with regards to the food craving. This study confirms the role of mental imagery, the correlation between state and trait food craving, and the influence of different psychological variables on the food craving.

  10. Geospatial Information from Satellite Imagery for Geovisualisation of Smart Cities in India

    Science.gov (United States)

    Mohan, M.

    2016-06-01

    In the recent past, there have been large emphasis on extraction of geospatial information from satellite imagery. The Geospatial information are being processed through geospatial technologies which are playing important roles in developing of smart cities, particularly in developing countries of the world like India. The study is based on the latest geospatial satellite imagery available for the multi-date, multi-stage, multi-sensor, and multi-resolution. In addition to this, the latest geospatial technologies have been used for digital image processing of remote sensing satellite imagery and the latest geographic information systems as 3-D GeoVisualisation, geospatial digital mapping and geospatial analysis for developing of smart cities in India. The Geospatial information obtained from RS and GPS systems have complex structure involving space, time and presentation. Such information helps in 3-Dimensional digital modelling for smart cities which involves of spatial and non-spatial information integration for geographic visualisation of smart cites in context to the real world. In other words, the geospatial database provides platform for the information visualisation which is also known as geovisualisation. So, as a result there have been an increasing research interest which are being directed to geospatial analysis, digital mapping, geovisualisation, monitoring and developing of smart cities using geospatial technologies. However, the present research has made an attempt for development of cities in real world scenario particulary to help local, regional and state level planners and policy makers to better understand and address issues attributed to cities using the geospatial information from satellite imagery for geovisualisation of Smart Cities in emerging and developing country, India.

  11. Mental Imagery in Creative Problem Solving.

    Science.gov (United States)

    Polland, Mark J.

    In order to investigate the relationship between mental imagery and creative problem solving, a study of 44 separate accounts reporting mental imagery experiences associated with creative discoveries were examined. The data included 29 different scientists, among them Albert Einstein and Stephen Hawking, and 9 artists, musicians, and writers,…

  12. Imagery, Music, Cognitive Style and Memory.

    Science.gov (United States)

    Stratton, Valerie N.; Zalanowski, Annette

    Paired associate memory was tested with imagery and repetition instructions, with and without background music. Subjects were 64 students enrolled in an introductory psychology course. Music was found to have no effect with imagery instructions, but significantly improved performance with the repetition instructions. Music had different effects on…

  13. Remote sensing image fusion

    CERN Document Server

    Alparone, Luciano; Baronti, Stefano; Garzelli, Andrea

    2015-01-01

    A synthesis of more than ten years of experience, Remote Sensing Image Fusion covers methods specifically designed for remote sensing imagery. The authors supply a comprehensive classification system and rigorous mathematical description of advanced and state-of-the-art methods for pansharpening of multispectral images, fusion of hyperspectral and panchromatic images, and fusion of data from heterogeneous sensors such as optical and synthetic aperture radar (SAR) images and integration of thermal and visible/near-infrared images. They also explore new trends of signal/image processing, such as

  14. USDA/FSA Imagery Programs - Public Map Gallery

    Data.gov (United States)

    Farm Service Agency, Department of Agriculture — Imagery programs are an important part of maintaining, creating and updating geospatial data at the USDA Farm Service Agency. Imagery acquisition is provided by the...

  15. Auditory and motor imagery modulate learning in music performance

    Directory of Open Access Journals (Sweden)

    Rachel M. Brown

    2013-07-01

    Full Text Available Skilled performers such as athletes or musicians can improve their performance by imagining the actions or sensory outcomes associated with their skill. Performers vary widely in their auditory and motor imagery abilities, and these individual differences influence sensorimotor learning. It is unknown whether imagery abilities influence both memory encoding and retrieval. We examined how auditory and motor imagery abilities influence musicians’ encoding (during Learning, as they practiced novel melodies, and retrieval (during Recall of those melodies. Pianists learned melodies by listening without performing (auditory learning or performing without sound (motor learning; following Learning, pianists performed the melodies from memory with auditory feedback (Recall. During either Learning (Experiment 1 or Recall (Experiment 2, pianists experienced either auditory interference, motor interference, or no interference. Pitch accuracy (percentage of correct pitches produced and temporal regularity (variability of quarter-note interonset intervals were measured at Recall. Independent tests measured auditory and motor imagery skills. Pianists’ pitch accuracy was higher following auditory learning than following motor learning and lower in motor interference conditions (Experiments 1 and 2. Both auditory and motor imagery skills improved pitch accuracy overall. Auditory imagery skills modulated pitch accuracy encoding (Experiment 1: Higher auditory imagery skill corresponded to higher pitch accuracy following auditory learning with auditory or motor interference, and following motor learning with motor or no interference. These findings suggest that auditory imagery abilities decrease vulnerability to interference and compensate for missing auditory feedback at encoding. Auditory imagery skills also influenced temporal regularity at retrieval (Experiment 2: Higher auditory imagery skill predicted greater temporal regularity during Recall in the

  16. Land Cover Classification in a Complex Urban-Rural Landscape with Quickbird Imagery

    OpenAIRE

    Moran, Emilio Federico.

    2010-01-01

    High spatial resolution images have been increasingly used for urban land use/cover classification, but the high spectral variation within the same land cover, the spectral confusion among different land covers, and the shadow problem often lead to poor classification performance based on the traditional per-pixel spectral-based classification methods. This paper explores approaches to improve urban land cover classification with Quickbird imagery. Traditional per-pixel spectral-based supervi...

  17. Compressing interpreted satellite imagery for geographic information systems applications over extensive regions

    Science.gov (United States)

    Miller, Stephan W.

    1981-01-01

    Image processing systems (IPS) and techniques effectively transform satellite imagery into data for input into a spatial database. Geographic information systems (GIS), consisting of graphic input and spatial database management subsystems, are capable of processing digital map and map overlay data to build and manipulate a spatial database. These systems can be successfully integrated to create a successful spatial data handling capability provided certain obstacle are understood and overcome.

  18. New and Emerging Satellite Imaging Capabilities in Support of Safeguards

    International Nuclear Information System (INIS)

    Johnson, M.; Paquette, J.P.; Spyropoulos, N.; Rainville, L.; Schichor, P.; Hong, M.

    2015-01-01

    This abstract is focused on new and emerging commercial satellite imagery (CSI) capabilities. For more than a decade, experienced imagery analysts have been exploiting and analyzing CSI in support of the Department of Safeguards. As the remote sensing industry continues to evolve, additional CSI imagery types are becoming available that could enhance our ability to evaluate and verify States' declarations and to investigate the possible presence of undeclared activities. A newly available and promising CSI capability that may have a Safeguards application is Full Motion Video (FMV) imagery collection from satellites. For quite some time, FMV imagery has been collected from airborne platforms, but now FMV sensors are being deployed into space. Like its airborne counterpart, satellite FMV imagery could provide analysts with a great deal of information, including insight into the operational status of facilities and patterns of activity. From a Safeguards perspective, FMV imagery could help the Agency in the evaluation and verification of States' declared facilities and activities. There are advantages of FMV imaging capabilities that cannot be duplicated with other CSI capabilities, including the ability to loiter over areas of interest and the potential to revisit sites multiple times per day. Additional sensor capabilities applicable to the Safeguards mission include, but are not limited to, the following sensors: · Thermal Infrared imaging sensors will be launched in late 2014 to monitor operational status, e.g., heat from a transformer. · High resolution ShortWave Infrared sensors able to characterize materials that could support verification of Additional Protocol declarations under Article 2.a(v). · Unmanned Aerial Vehicles with individual sensors or specific sensor combinations. The Safeguards Symposium provides a forum to showcase and demonstrate safeguards applications for these emerging satellite imaging capabilities. (author)

  19. Multispectral image analysis for object recognition and classification

    Science.gov (United States)

    Viau, C. R.; Payeur, P.; Cretu, A.-M.

    2016-05-01

    Computer and machine vision applications are used in numerous fields to analyze static and dynamic imagery in order to assist or automate decision-making processes. Advancements in sensor technologies now make it possible to capture and visualize imagery at various wavelengths (or bands) of the electromagnetic spectrum. Multispectral imaging has countless applications in various fields including (but not limited to) security, defense, space, medical, manufacturing and archeology. The development of advanced algorithms to process and extract salient information from the imagery is a critical component of the overall system performance. The fundamental objective of this research project was to investigate the benefits of combining imagery from the visual and thermal bands of the electromagnetic spectrum to improve the recognition rates and accuracy of commonly found objects in an office setting. A multispectral dataset (visual and thermal) was captured and features from the visual and thermal images were extracted and used to train support vector machine (SVM) classifiers. The SVM's class prediction ability was evaluated separately on the visual, thermal and multispectral testing datasets.

  20. Gli effetti socio-economici e spaziali del servizio ferroviario dell’Alta Velocità: due casi a confronto

    Directory of Open Access Journals (Sweden)

    Loredana Consuelo Travascio

    2008-05-01

    Full Text Available L’articolo fornisce una lettura degli effetti socio-economici e spaziali generati dalla messa in esercizio di una rete ferroviaria ad AV sull’organizzazione territoriale. Esso si articola in due parti. Nella prima, sono analizzati gli effetti che in letteratura sono attribuiti alle infrastrutture di trasporto, focalizzandosi sulle ripercussioni che la messa in esercizio dell’AV ha generato sulla crescita demografica e sulla localizzazione delle attività economiche attorno alle stazioni, nonché sulla domanda di trasporto e sulla riconfigurazione dei flussi. Nella seconda parte si passa allo studio di due casi significativi: il Giappone, dove l’introduzione del servizio ha modificato la struttura socio-economica del territorio; la Spagna, dove ha favorito la comparsa di nuove tipologie di utenti e la ridefinizione delle relazioni tra le varie città servite dall’infrastruttura.

  1. Remote detection of physiological depression in crop plants with infrared thermal imagery

    International Nuclear Information System (INIS)

    Inoue, Y.

    1990-01-01

    The infrared thermal imagery was measured concurrently with physiological status in stressed and non-stressed corn and wheat canopies. Thermal images were obtained with an infrared thermography system from a distance of 5 to 20 m. Each thermal image, composed of 512 (H) × 240 (V) pixels with a sensitivity of 0.05°C, was recorded in a video tape every 8 seconds in the field, and analyzed in a laboratory later. A root-reducing treatment was used for simulating environmental stresses, which treatment was carried out by cutting a root system with a thin metal plate at the depth of 20 cm, but brought little apparent change in plant stands. Photosynthesis, transpiration and stomatal conductance in the stressed canopy were depressed, which were accompanied with an inverse change in the canopy surface temperature. The maximum difference in mean surface temperatures of the stressed and non-stressed parts of the canopy was no less than 4.2°C in corn and 3.1°C in wheat. Gaussian distribution of spatial temperature frequency in the stressed part shifted toward higher temperature from that of non-stressed part of the canopy, which was visualized clearly on the pseudo-color thermal image while no visible changes were observed directly from the distance. The infrared imagery was effective, especially, for detecting phisiological depression or for comparing various canopies in their physiological status on a remote and real-time basis

  2. Remote detection of physiological depression in crop plants with infrared thermal imagery

    Energy Technology Data Exchange (ETDEWEB)

    Inoue, Y. [Agricultural Research Center, Tsukuba, Ibaraki (Japan)

    1990-12-15

    The infrared thermal imagery was measured concurrently with physiological status in stressed and non-stressed corn and wheat canopies. Thermal images were obtained with an infrared thermography system from a distance of 5 to 20 m. Each thermal image, composed of 512 (H) × 240 (V) pixels with a sensitivity of 0.05°C, was recorded in a video tape every 8 seconds in the field, and analyzed in a laboratory later. A root-reducing treatment was used for simulating environmental stresses, which treatment was carried out by cutting a root system with a thin metal plate at the depth of 20 cm, but brought little apparent change in plant stands. Photosynthesis, transpiration and stomatal conductance in the stressed canopy were depressed, which were accompanied with an inverse change in the canopy surface temperature. The maximum difference in mean surface temperatures of the stressed and non-stressed parts of the canopy was no less than 4.2°C in corn and 3.1°C in wheat. Gaussian distribution of spatial temperature frequency in the stressed part shifted toward higher temperature from that of non-stressed part of the canopy, which was visualized clearly on the pseudo-color thermal image while no visible changes were observed directly from the distance. The infrared imagery was effective, especially, for detecting phisiological depression or for comparing various canopies in their physiological status on a remote and real-time basis.

  3. Use of Airborne Hyperspectral Imagery to Map Soil Properties in Tilled Agricultural Fields

    International Nuclear Information System (INIS)

    Hively, W.D; McCarty, G.W; Reeves, J.B; Lang, M.W; Oesterling, R.A; Delwiche, S.R

    2011-01-01

    Soil hyperspectral reflectance imagery was obtained for six tilled (soil) agricultural fields using an airborne imaging spectrometer (400-2450 nm, -10 nm resolution, 2.5 m spatial resolution). Surface soil samples (n=315) were analyzed for carbon content, particle size distribution, and 15 agronomically important elements (Mehlich-III extraction). When partial least squares (PLS) regression of imagery-derived reflectance spectra was used to predict analyte concentrations, 13 of the 19 analytes were predicted with R 2 >0.50, including carbon (0.65), aluminum (0.76), iron (0.75), and silt content (0.79). Comparison of 15 spectral math preprocessing treatments showed that a simple first derivative worked well for nearly all analytes. The resulting PLS factors were exported as a vector of coefficients and used to calculate predicted maps of soil properties for each field. Image smoothing with a 3 x 3 low-pass filter prior to spectral data extraction improved prediction accuracy. The resulting raster maps showed variation associated with topographic factors, indicating the effect of soil redistribution and moisture regime on in-field spatial variability. High-resolution maps of soil analyte concentrations can be used to improve precision environmental management of farmlands.

  4. NAIP 2012 Image Dates

    Data.gov (United States)

    Farm Service Agency, Department of Agriculture — This map is produced by the Aerial Phtography Field Office (APFO) to show the image acquisition dates for the 2012 National Agriculture Imagery Program (NAIP)...

  5. NAIP 2014 Image Dates

    Data.gov (United States)

    Farm Service Agency, Department of Agriculture — This map is produced by the Aerial Phtography Field Office (APFO) to show the image acquisition dates for the 2014 National Agriculture Imagery Program (NAIP)...

  6. NAIP 2013 Image Dates

    Data.gov (United States)

    Farm Service Agency, Department of Agriculture — This map is produced by the Aerial Phtography Field Office (APFO) to show the image acquisition dates for the 2013 National Agriculture Imagery Program (NAIP)...

  7. NAIP 2011 Image Dates

    Data.gov (United States)

    Farm Service Agency, Department of Agriculture — This map is produced by the Aerial Phtography Field Office (APFO) to show the image acquisition dates for the 2011 National Agriculture Imagery Program (NAIP)...

  8. Use of space imagery in evaluating oil and gas potential of the West Siberian province

    Energy Technology Data Exchange (ETDEWEB)

    Solovyova, L I; Burlakova, G S; Pososhkova, N S

    1981-01-01

    General issues concerning interpretation and interpretation of geologic aspects of space imagery of various generalization levels and seasons when photographed. The role of structural/geomophologic analysis in the process of geologic interpretation of images is discussed; derived geologic information is evaluated, and recommendations are made with respect to direction of useful mineral exploration.

  9. Vaccine Images on Twitter: Analysis of What Images are Shared

    Science.gov (United States)

    Dredze, Mark

    2018-01-01

    Background Visual imagery plays a key role in health communication; however, there is little understanding of what aspects of vaccine-related images make them effective communication aids. Twitter, a popular venue for discussions related to vaccination, provides numerous images that are shared with tweets. Objective The objectives of this study were to understand how images are used in vaccine-related tweets and provide guidance with respect to the characteristics of vaccine-related images that correlate with the higher likelihood of being retweeted. Methods We collected more than one million vaccine image messages from Twitter and characterized various properties of these images using automated image analytics. We fit a logistic regression model to predict whether or not a vaccine image tweet was retweeted, thus identifying characteristics that correlate with a higher likelihood of being shared. For comparison, we built similar models for the sharing of vaccine news on Facebook and for general image tweets. Results Most vaccine-related images are duplicates (125,916/237,478; 53.02%) or taken from other sources, not necessarily created by the author of the tweet. Almost half of the images contain embedded text, and many include images of people and syringes. The visual content is highly correlated with a tweet’s textual topics. Vaccine image tweets are twice as likely to be shared as nonimage tweets. The sentiment of an image and the objects shown in the image were the predictive factors in determining whether an image was retweeted. Conclusions We are the first to study vaccine images on Twitter. Our findings suggest future directions for the study and use of vaccine imagery and may inform communication strategies around vaccination. Furthermore, our study demonstrates an effective study methodology for image analysis. PMID:29615386

  10. Vaccine Images on Twitter: Analysis of What Images are Shared.

    Science.gov (United States)

    Chen, Tao; Dredze, Mark

    2018-04-03

    Visual imagery plays a key role in health communication; however, there is little understanding of what aspects of vaccine-related images make them effective communication aids. Twitter, a popular venue for discussions related to vaccination, provides numerous images that are shared with tweets. The objectives of this study were to understand how images are used in vaccine-related tweets and provide guidance with respect to the characteristics of vaccine-related images that correlate with the higher likelihood of being retweeted. We collected more than one million vaccine image messages from Twitter and characterized various properties of these images using automated image analytics. We fit a logistic regression model to predict whether or not a vaccine image tweet was retweeted, thus identifying characteristics that correlate with a higher likelihood of being shared. For comparison, we built similar models for the sharing of vaccine news on Facebook and for general image tweets. Most vaccine-related images are duplicates (125,916/237,478; 53.02%) or taken from other sources, not necessarily created by the author of the tweet. Almost half of the images contain embedded text, and many include images of people and syringes. The visual content is highly correlated with a tweet's textual topics. Vaccine image tweets are twice as likely to be shared as nonimage tweets. The sentiment of an image and the objects shown in the image were the predictive factors in determining whether an image was retweeted. We are the first to study vaccine images on Twitter. Our findings suggest future directions for the study and use of vaccine imagery and may inform communication strategies around vaccination. Furthermore, our study demonstrates an effective study methodology for image analysis. ©Tao Chen, Mark Dredze. Originally published in the Journal of Medical Internet Research (http://www.jmir.org), 03.04.2018.

  11. Internal and External Imagery Effects on Tennis Skills Among Novices.

    Science.gov (United States)

    Dana, Amir; Gozalzadeh, Elmira

    2017-10-01

    The purpose of this study was to determine the effects of internal and external visual imagery perspectives on performance accuracy of open and closed tennis skills (i.e., serve, forehand, and backhand) among novices. Thirty-six young male novices, aged 15-18 years, from a summer tennis program participated. Following initial skill acquisition (12 sessions), baseline assessments of imagery ability and imagery perspective preference were used to assign participants to one of three groups: internal imagery ( n = 12), external imagery ( n = 12), or a no-imagery (mental math exercise) control group ( n = 12). The experimental interventions of 15 minutes of mental imagery (internal or external) or mental math exercises followed by 15 minutes of physical practice were held three times a week for six weeks. The performance accuracy of the groups on the serve, forehand, and backhand strokes was measured at pre- and post-test using videotaping. Results showed significant increases in the performance accuracy of all three tennis strokes in all three groups, but serve accuracy in the internal imagery group and forehand accuracy in the external imagery group showed greater improvements, while backhand accuracy was similarly improved in all three groups. These findings highlight differential efficacy of internal and external visual imagery for performance improvement on complex sport skills in early stage motor learning.

  12. The TRICLOBS Dynamic Multi-Band Image Data Set for the Development and Evaluation of Image Fusion Methods.

    Directory of Open Access Journals (Sweden)

    Alexander Toet

    Full Text Available The fusion and enhancement of multiband nighttime imagery for surveillance and navigation has been the subject of extensive research for over two decades. Despite the ongoing efforts in this area there is still only a small number of static multiband test images available for the development and evaluation of new image fusion and enhancement methods. Moreover, dynamic multiband imagery is also currently lacking. To fill this gap we present the TRICLOBS dynamic multi-band image data set containing sixteen registered visual (0.4-0.7μm, near-infrared (NIR, 0.7-1.0μm and long-wave infrared (LWIR, 8-14μm motion sequences. They represent different military and civilian surveillance scenarios registered in three different scenes. Scenes include (military and civilian people that are stationary, walking or running, or carrying various objects. Vehicles, foliage, and buildings or other man-made structures are also included in the scenes. This data set is primarily intended for the development and evaluation of image fusion, enhancement and color mapping algorithms for short-range surveillance applications. The imagery was collected during several field trials with our newly developed TRICLOBS (TRI-band Color Low-light OBServation all-day all-weather surveillance system. This system registers a scene in the Visual, NIR and LWIR part of the electromagnetic spectrum using three optically aligned sensors (two digital image intensifiers and an uncooled long-wave infrared microbolometer. The three sensor signals are mapped to three individual RGB color channels, digitized, and stored as uncompressed RGB (false color frames. The TRICLOBS data set enables the development and evaluation of (both static and dynamic image fusion, enhancement and color mapping algorithms. To allow the development of realistic color remapping procedures, the data set also contains color photographs of each of the three scenes. The color statistics derived from these photographs

  13. Adaptable imaging package for remote vehicles

    Directory of Open Access Journals (Sweden)

    Jean-Luc Liardon

    2017-10-01

    Full Text Available An easy-to-customize, low-cost solution for remote imagery is described. The system, denoted ImPROV (Imaging Package for Remote Vehicles, supports multiple cameras, live streaming, long-range encrypted communication using mobile networks, positioning and time-stamped imagery, etc. The adaptability of the system is demonstrated by its deployment on different remotely operated or autonomous vehicles, which include model aircraft, drones, balloon, kite and a submarine.

  14. Classification of Pansharpened Urban Satellite Images

    DEFF Research Database (Denmark)

    Palsson, Frosti; Sveinsson, Johannes R.; Benediktsson, Jon Atli

    2012-01-01

    The classification of high resolution urban remote sensing imagery is addressed with the focus on classification of imagery that has been pansharpened by a number of different pansharpening methods. The pansharpening process introduces some spectral and spatial distortions in the resulting fused...... multispectral image, the amount of which highly varies depending on which pansharpening technique is used. In the majority of the pansharpening techniques that have been proposed, there is a compromise between the spatial enhancement and the spectral consistency. Here we study the effects of the spectral...... information from the panchromatic data. Random Forests (RF) and Support Vector Machines (SVM) will be used as classifiers. Experiments are done for three different datasets that have been obtained by two different imaging sensors, IKONOS and QuickBird. These sensors deliver multispectral images that have four...

  15. NATO Advanced Research Workshop on Exploiting Mental Imagery with Computers in Mathematics Education

    CERN Document Server

    Mason, John

    1995-01-01

    The advent of fast and sophisticated computer graphics has brought dynamic and interactive images under the control of professional mathematicians and mathematics teachers. This volume in the NATO Special Programme on Advanced Educational Technology takes a comprehensive and critical look at how the computer can support the use of visual images in mathematical problem solving. The contributions are written by researchers and teachers from a variety of disciplines including computer science, mathematics, mathematics education, psychology, and design. Some focus on the use of external visual images and others on the development of individual mental imagery. The book is the first collected volume in a research area that is developing rapidly, and the authors pose some challenging new questions.

  16. A randomized trial of computer-based communications using imagery and text information to alter representations of heart disease risk and motivate protective behaviour.

    Science.gov (United States)

    Lee, Tarryn J; Cameron, Linda D; Wünsche, Burkhard; Stevens, Carey

    2011-02-01

    Advances in web-based animation technologies provide new opportunities to develop graphic health communications for dissemination throughout communities. We developed imagery and text contents of brief, computer-based programmes about heart disease risk, with both imagery and text contents guided by the common-sense model (CSM) of self-regulation. The imagery depicts a three-dimensional, beating heart tailored to user-specific information. A 2 × 2 × 4 factorial design was used to manipulate concrete imagery (imagery vs. no imagery) and conceptual information (text vs. no text) about heart disease risk in prevention-oriented programmes and assess changes in representations and behavioural motivations from baseline to 2 days, 2 weeks, and 4 weeks post-intervention. Sedentary young adults (N= 80) were randomized to view one of four programmes: imagery plus text, imagery only, text only, or control. Participants completed measures of risk representations, worry, and physical activity and healthy diet intentions and behaviours at baseline, 2 days post-intervention (except behaviours), and 2 weeks (intentions and behaviours only) and 4 weeks later. The imagery contents increased representational beliefs and mental imagery relating to heart disease, worry, and intentions at post-intervention. Increases in sense of coherence (understanding of heart disease) and worry were sustained after 1 month. The imagery contents also increased healthy diet efforts after 2 weeks. The text contents increased beliefs about causal factors, mental images of clogged arteries, and worry at post-intervention, and increased physical activity 2 weeks later and sense of coherence 1 month later. The CSM-based programmes induced short-term changes in risk representations and behaviour motivation. The combination of CSM-based text and imagery appears to be most effective in instilling risk representations that motivate protective behaviour. ©2010 The British Psychological Society.

  17. Detailed Maps Depicting the Shallow-Water Benthic Habitats of the Northwestern Hawaiian Islands Derived from High Resolution IKONOS Satellite Imagery

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — Detailed, shallow-water coral reef ecosystem maps were generated by rule-based, semi-automated image analysis of high-resolution satellite imagery for nine locations...

  18. Music to the inner ears: exploring individual differences in musical imagery.

    Science.gov (United States)

    Beaty, Roger E; Burgin, Chris J; Nusbaum, Emily C; Kwapil, Thomas R; Hodges, Donald A; Silvia, Paul J

    2013-12-01

    In two studies, we explored the frequency and phenomenology of musical imagery. Study 1 used retrospective reports of musical imagery to assess the contribution of individual differences to imagery characteristics. Study 2 used an experience sampling design to assess the phenomenology of musical imagery over the course of one week in a sample of musicians and non-musicians. Both studies found episodes of musical imagery to be common and positive: people rarely wanted such experiences to end and often heard music that was personally meaningful. Several variables predicted musical imagery, including personality, musical preferences, and positive mood. Musicians tended to hear musical imagery more often, but they reported less frequent episodes of deliberately-generated imagery. Taken together, the present research provides new insights into individual differences in musical imagery, and it supports the emerging view that such experiences are common, positive, and more voluntary than previously recognized. Copyright © 2013 Elsevier Inc. All rights reserved.

  19. Using Low Resolution Satellite Imagery for Yield Prediction and Yield Anomaly Detection

    Directory of Open Access Journals (Sweden)

    Oscar Rojas

    2013-04-01

    Full Text Available Low resolution satellite imagery has been extensively used for crop monitoring and yield forecasting for over 30 years and plays an important role in a growing number of operational systems. The combination of their high temporal frequency with their extended geographical coverage generally associated with low costs per area unit makes these images a convenient choice at both national and regional scales. Several qualitative and quantitative approaches can be clearly distinguished, going from the use of low resolution satellite imagery as the main predictor of final crop yield to complex crop growth models where remote sensing-derived indicators play different roles, depending on the nature of the model and on the availability of data measured on the ground. Vegetation performance anomaly detection with low resolution images continues to be a fundamental component of early warning and drought monitoring systems at the regional scale. For applications at more detailed scales, the limitations created by the mixed nature of low resolution pixels are being progressively reduced by the higher resolution offered by new sensors, while the continuity of existing systems remains crucial for ensuring the availability of long time series as needed by the majority of the yield prediction methods used today.

  20. Application of satellite imagery to monitoring human rights abuse of vulnerable communities, with minimal risk to relief staff

    International Nuclear Information System (INIS)

    Lavers, C; Bishop, C; Hawkins, O; Grealey, E; Cox, C; Thomas, D; Trimel, S

    2009-01-01

    Space imagery offers remote surveillance of ethnic people groups at risk of human rights abuse. We highlight work in alleged violations in Burma and Sudan, using satellite imagery for verification with Amnesty International. We consider how imaging may effectively support small to medium-sized Non Governmental Organisations and charities, e.g. HART, working in dangerous zones on the ground. Satellite based sensing applications are now at a sufficiently mature stage for moderate Governmental funding levels to help prevent human rights abuse, rather than the greater cost of rebuilding communities and healing sectarian divisions after abuse has taken place.

  1. Application of satellite imagery to monitoring human rights abuse of vulnerable communities, with minimal risk to relief staff

    Energy Technology Data Exchange (ETDEWEB)

    Lavers, C; Bishop, C; Hawkins, O; Grealey, E; Cox, C; Thomas, D; Trimel, S, E-mail: brnc-radarcomms1@nrta.mod.u [Sensors Team, Plymouth University at Britannia Royal Naval College, Dartmouth (United Kingdom); DMC International Imaging, Tycho House, Surrey Research Park, Guildford (United Kingdom); Qinetiq, Cody Technology Park, Cody Building, Ively Road, Farnborough (United Kingdom); Humanitarian Aid Relief Trust (HART), 3 Arnellan House, Kingsbury, London (United Kingdom); Amnesty International USA, 5 Penn Plaza, New York (United States)

    2009-07-01

    Space imagery offers remote surveillance of ethnic people groups at risk of human rights abuse. We highlight work in alleged violations in Burma and Sudan, using satellite imagery for verification with Amnesty International. We consider how imaging may effectively support small to medium-sized Non Governmental Organisations and charities, e.g. HART, working in dangerous zones on the ground. Satellite based sensing applications are now at a sufficiently mature stage for moderate Governmental funding levels to help prevent human rights abuse, rather than the greater cost of rebuilding communities and healing sectarian divisions after abuse has taken place.

  2. Seeing in the Mind's eye: Imagery rescripting for patients with body dysmorphic disorder. A single case series.

    Science.gov (United States)

    Ritter, Viktoria; Stangier, Ulrich

    2016-03-01

    Intrusive images of appearance play an important role in the maintenance of body dysmorphic disorder (BDD) and are often linked to negative autobiographical experiences. However, to date there is no study examining the use and efficacy of imagery rescripting in BDD. This study investigated imagery rescripting in six patients with BDD, using a single case series A-B design. The intervention consisted of two treatment sessions (T1, T2). BDD and depressive symptoms were evaluated prior to (T1), post (T2) and two weeks after intervention (FU), using the Yale -Brown Obsessive Compulsive Scale for BDD (BDD-YBOCS), the Body Dysmorphic Symptoms Inventory, and the Beck Depression Inventory. At post-treatment, significant reductions in negative affect, distress, vividness and encapsulated beliefs associated with images and memories as well as an increased control were observed for five of six patients. These were maintained or decreased at two weeks follow-up. Scores on the BDD-YBOCS indicated a significant 26% improvement in BDD severity at follow-up for the whole group. Considering response as a ≥ 30% reduction in BDD-YBOCS score, four of six patients were classified as treatment responders. At follow-up, significant improvements in BDD and depressive symptoms were observed for the whole group. The small sample size and the lack of a control group limit the generalizability of our results. The findings indicate the potential efficacy of imagery rescripting, and highlight the need for further controlled trials. Imagery rescripting should be considered as a treatment technique within the cognitive framework of BDD. Copyright © 2015 Elsevier Ltd. All rights reserved.

  3. Dizzy people perform no worse at a motor imagery task requiring whole body mental rotation; a case-control comparison

    Directory of Open Access Journals (Sweden)

    Sarah B Wallwork

    2013-06-01

    Full Text Available We wanted to find out whether people who suffer from dizziness take longer than people who do not, to perform a motor imagery task that involves implicit whole body rotation. Our prediction was that people in the ‘dizzy’ group would take longer at a left/right neck rotation judgment task but not a left/right hand judgment task, because actually performing the former, but not the latter, would exacerbate their dizziness. Secondly, we predicted that when dizzy participants responded to neck rotation images, responses would be greatest when images were in the upside-down orientation; an orientation with greatest dizzy-provoking potential. To test this idea, we used a case-control comparison design. One hundred and eighteen participants who suffered from dizziness and 118 age, gender, arm pain and neck pain matched controls took part in the study. Participants undertook two motor imagery tasks; a left/right neck rotation judgment task and a left/right hand judgment task. The tasks were completed using the Recognise program; an on-line reaction time task program. Images of neck rotation were shown in four different orientations; 0°, 90°, 180° and 270°. Participants were asked to respond to each ‘neck’ image identifying it as either ‘right neck rotation’ or a ‘left neck rotation’, or for hands, a right or a left hand. Results showed that participants in the ‘dizzy’ group were slower than controls at both tasks (p= 0.015, but this was not related to task (p= 0.498. Similarly, ‘dizzy’ participants were not proportionally worse at images of different orientations (p= 0.878. Our findings suggest impaired performance in dizzy people, an impairment that may be confined to motor imagery or may extend more generally.

  4. Location of irrigated land classified from satellite imagery - High Plains Area, nominal date 1992

    Science.gov (United States)

    Qi, Sharon L.; Konduris, Alexandria; Litke, David W.; Dupree, Jean

    2002-01-01

    Satellite imagery from the Landsat Thematic Mapper (nominal date 1992) was used to classify and map the location of irrigated land overlying the High Plains aquifer. The High Plains aquifer underlies 174,000 square miles in parts of Colorado, Kansas, Nebraska, New Mexico, Oklahoma, South Dakota, Texas, and Wyoming. The U.S. Geological Survey is conducting a water-quality study of the High Plains aquifer as part of the National Water-Quality Assessment Program. To help interpret data and select sites for the study, it is helpful to know the location of irrigated land within the study area. To date, the only information available for the entire area is 20 years old. To update the data on irrigated land, 40 summer and 40 spring images (nominal date 1992) were acquired from the National Land Cover Data set and processed using a band-ratio method (Landsat Thematic Mapper band 4 divided by band 3) to enhance the vegetation signatures. The study area was divided into nine subregions with similar environmental characteristics, and a band-ratio threshold was selected from imagery in each subregion that differentiated the cutoff between irrigated and nonirrigated land. The classified images for each subregion were mosaicked to produce an irrigated-land map for the study area. The total amount of irrigated land classified from the 1992 imagery was 13.1 million acres, or about 12 percent of the total land in the High Plains. This estimate is approximately 1.5 percent greater than the amount of irrigated land reported in the 1992 Census of Agriculture (12.8 millions acres).

  5. Analisa Spektrum Motor Imagery pada Sinyal Aktivitas Otak

    Directory of Open Access Journals (Sweden)

    Johan Chandra

    2017-01-01

    Full Text Available Otak merupakan organ vital pada tubuh manusia yang berperan sebagai pusat kendali sistem saraf manusia. Sinyal yang dikeluarkan otak (EEG mengandung berbagai informasi yang dapat dimanfaatkan pada teknologi BCI. Salah satu informasi yang dapat digunakan adalah informasi motorik baik mengenai motor execution maupung motor imagery. Pada penderita stroke yang biasanya mengalami kelumpuhan pada anggota gerak tubuhnya, informasi mengenai motor imagery dapat dimanfaatkan untuk aplikasi Brain Computer Interface terutama dalam rehabilitasi kelumpuhan anggota gerak pasien tersebut. Pada penelitian ini dirancang sebuah alat sistem EEG untuk merekam sinyal EEG pada otak untuk menganalisa spektrum motor imagery pada sinyal aktivitas otak. Sistem terdiri dari rangkaian filter pasif, rangkaian proteksi, penguat isntrumentasi, common mode rejection, amplifier, dan filter. Pengujian dilakukan dengan membandingkan sinyal EEG pada tasking motor imagery dan motor execution. Selanjutnya, informasi motorik baik motor execution dan motor imagery dapat diaplikasikan lebih lanjut pada sistem BCI terutama pada rehabilitasi medik.

  6. Mapping the Distribution and Biomass of Emergent Aquatic Plants in the Sacramento-San Joaquin River Delta of California Using Landsat Imagery Analysis

    Science.gov (United States)

    Potter, Christopher

    2015-01-01

    This study evaluated the cost-effective and timely use of Landsat imagery to map and monitor emergent aquatic plant biomass and to filter satellite image products for the most probable locations of water hyacinth coverage in the Delta based on field observations collected immediately after satellite image acquisition.

  7. Extending a prototype knowledge and object based image analysis model to coarser spatial resolution imagery: an example from the Missouri River

    Science.gov (United States)

    Strong, Laurence L.

    2012-01-01

    A prototype knowledge- and object-based image analysis model was developed to inventory and map least tern and piping plover habitat on the Missouri River, USA. The model has been used to inventory the state of sandbars annually for 4 segments of the Missouri River since 2006 using QuickBird imagery. Interpretation of the state of sandbars is difficult when images for the segment are acquired at different river stages and different states of vegetation phenology and canopy cover. Concurrent QuickBird and RapidEye images were classified using the model and the spatial correspondence of classes in the land cover and sandbar maps were analysed for the spatial extent of the images and at nest locations for both bird species. Omission and commission errors were low for unvegetated land cover classes used for nesting by both bird species and for land cover types with continuous vegetation cover and water. Errors were larger for land cover classes characterized by a mixture of sand and vegetation. Sandbar classification decisions are made using information on land cover class proportions and disagreement between sandbar classes was resolved using fuzzy membership possibilities. Regression analysis of area for a paired sample of 47 sandbars indicated an average positive bias, 1.15 ha, for RapidEye that did not vary with sandbar size. RapidEye has potential to reduce temporal uncertainty about least tern and piping plover habitat but would not be suitable for mapping sandbar erosion, and characterization of sandbar shapes or vegetation patches at fine spatial resolution.

  8. Extending a prototype knowledge- and object-based image analysis model to coarser spatial resolution imagery: an example from the Missouri River

    Science.gov (United States)

    Strong, Laurence L.

    2012-01-01

    A prototype knowledge- and object-based image analysis model was developed to inventory and map least tern and piping plover habitat on the Missouri River, USA. The model has been used to inventory the state of sandbars annually for 4 segments of the Missouri River since 2006 using QuickBird imagery. Interpretation of the state of sandbars is difficult when images for the segment are acquired at different river stages and different states of vegetation phenology and canopy cover. Concurrent QuickBird and RapidEye images were classified using the model and the spatial correspondence of classes in the land cover and sandbar maps were analysed for the spatial extent of the images and at nest locations for both bird species. Omission and commission errors were low for unvegetated land cover classes used for nesting by both bird species and for land cover types with continuous vegetation cover and water. Errors were larger for land cover classes characterized by a mixture of sand and vegetation. Sandbar classification decisions are made using information on land cover class proportions and disagreement between sandbar classes was resolved using fuzzy membership possibilities. Regression analysis of area for a paired sample of 47 sandbars indicated an average positive bias, 1.15 ha, for RapidEye that did not vary with sandbar size. RapidEye has potential to reduce temporal uncertainty about least tern and piping plover habitat but would not be suitable for mapping sandbar erosion, and characterization of sandbar shapes or vegetation patches at fine spatial resolution.

  9. Concepts are not represented by conscious imagery

    NARCIS (Netherlands)

    D. Pecher (Diane); S. van Dantzig (Saskia); H.N.J. Schifferstien (Hendrik)

    2009-01-01

    textabstractAccording to theories of grounded cognition, conceptual representation and perception share processing mechanisms. We investigated whether this overlap is due to conscious perceptual imagery. Participants filled out questionnaires to assess the vividness of their imagery (Questionnaire

  10. Mapping forest tree species over large areas with partially cloudy Landsat imagery

    Science.gov (United States)

    Turlej, K.; Radeloff, V.

    2017-12-01

    Forests provide numerous services to natural systems and humankind, but which services forest provide depends greatly on their tree species composition. That makes it important to track not only changes in forest extent, something that remote sensing excels in, but also to map tree species. The main goal of our work was to map tree species with Landsat imagery, and to identify how to maximize mapping accuracy by including partially cloudy imagery. Our study area covered one Landsat footprint (26/28) in Northern Wisconsin, USA, with temperate and boreal forests. We selected this area because it contains numerous tree species and variable forest composition providing an ideal study area to test the limits of Landsat data. We quantified how species-level classification accuracy was affected by a) the number of acquisitions, b) the seasonal distribution of observations, and c) the amount of cloud contamination. We classified a single year stack of Landsat-7, and -8 images data with a decision tree algorithm to generate a map of dominant tree species at the pixel- and stand-level. We obtained three important results. First, we achieved producer's accuracies in the range 70-80% and user's accuracies in range 80-90% for the most abundant tree species in our study area. Second, classification accuracy improved with more acquisitions, when observations were available from all seasons, and is the best when images with up to 40% cloud cover are included. Finally, classifications for pure stands were 10 to 30 percentage points better than those for mixed stands. We conclude that including partially cloudy Landsat imagery allows to map forest tree species with accuracies that were previously only possible for rare years with many cloud-free observations. Our approach thus provides important information for both forest management and science.

  11. Habitat Mapping and Classification of the Grand Bay National Estuarine Research Reserve using AISA Hyperspectral Imagery

    Science.gov (United States)

    Rose, K.

    2012-12-01

    Habitat mapping and classification provides essential information for land use planning and ecosystem research, monitoring and management. At the Grand Bay National Estuarine Research Reserve (GRDNERR), Mississippi, habitat characterization of the Grand Bay watershed will also be used to develop a decision-support tool for the NERR's managers and state and local partners. Grand Bay NERR habitat units were identified using a combination of remotely sensed imagery, aerial photography and elevation data. Airborne Imaging Spectrometer for Applications (AISA) hyperspectral data, acquired 5 and 6 May 2010, was analyzed and classified using ENVI v4.8 and v5.0 software. The AISA system was configured to return 63 bands of digital imagery data with a spectral range of 400 to 970 nm (VNIR), spectral resolution (bandwidth) at 8.76 nm, and 1 m spatial resolution. Minimum Noise Fraction (MNF) and Inverse Minimum Noise Fraction were applied to the data prior to using Spectral Angle Mapper ([SAM] supervised) and ISODATA (unsupervised) classification techniques. The resulting class image was exported to ArcGIS 10.0 and visually inspected and compared with the original imagery as well as auxiliary datasets to assist in the attribution of habitat characteristics to the spectral classes, including: National Agricultural Imagery Program (NAIP) aerial photography, Jackson County, MS, 2010; USFWS National Wetlands Inventory, 2007; an existing GRDNERR habitat map (2004), SAV (2009) and salt panne (2002-2003) GIS produced by GRDNERR; and USACE lidar topo-bathymetry, 2005. A field survey to validate the map's accuracy will take place during the 2012 summer season. ENVI's Random Sample generator was used to generate GIS points for a ground-truth survey. The broad range of coastal estuarine habitats and geomorphological features- many of which are transitional and vulnerable to environmental stressors- that have been identified within the GRDNERR point to the value of the Reserve for

  12. Classification of irrigated land using satellite imagery, the High Plains aquifer, nominal date 1992

    Science.gov (United States)

    Qi, Sharon L.; Konduris, Alexandria; Litke, David W.; Dupree, Jean

    2002-01-01

    Satellite imagery from the Landsat Thematic Mapper (nominal date 1992) was used to classify and map the location of irrigated land across the High Plains aquifer. The High Plains aquifer underlies 174,000 square miles in parts of Colorado, Kansas, Nebraska, New Mexico, Oklahoma, South Dakota, Texas, and Wyoming. The U.S. Geological Survey is conducting a waterquality study of the High Plains aquifer as part of the National Water-Quality Assessment Program. To help interpret data and select sites for the study, it is helpful to know the location of irrigated land within the study area. To date, the only information available for the entire area is 20 years old. To update the data on irrigated land, 40 summer and 40 spring images (nominal date 1992) were acquired from the National Land Cover Data set and processed using a band-ratio method (Landsat Thematic Mapper band 4 divided by band 3) to enhance the vegetation signatures. The study area was divided into nine subregions with similar environmental characteristics, and a band-ratio threshold was selected from imagery in each subregion that differentiated the cutoff between irrigated and nonirrigated land. The classified images for each subregion were mosaicked to produce an irrigated land map for the study area. The total amount of irrigated land classified from the 1992 imagery was 13.1 million acres, or about 12 percent of the total land in the High Plains. This estimate is approximately 1.5 percent greater than the amount of irrigated land reported in the 1992 Census of Agriculture (12.8 millions acres). This information was also compared to a similar data set based on 1980 imagery. The 1980 data classified 13.7 million acres as irrigated. Although the change in the amount of irrigated land between the two times was not substantial, the location of the irrigated land did shift from areas where there were large ground-water-level declines to other areas where ground-water levels were static or rising.

  13. Aerial Photography and Imagery, Ortho-Corrected - 2010 NAIP Imagery - Suwannee County

    Data.gov (United States)

    NSGIC Education | GIS Inventory — This data set contains polygons delineating the seams boundary between acquired imagery used in the creation of DOQQs and compressed county mosaic (CCM). The DOQQ...

  14. Aerial Photography and Imagery, Ortho-Corrected - 2010 NAIP Imagery - Taylor County

    Data.gov (United States)

    NSGIC Education | GIS Inventory — This data set contains polygons delineating the seams boundary between acquired imagery used in the creation of DOQQs and compressed county mosaic (CCM). The DOQQ...

  15. Aerial Photography and Imagery, Ortho-Corrected - 2010 NAIP Imagery - Okeechobee County

    Data.gov (United States)

    NSGIC Education | GIS Inventory — This data set contains polygons delineating the seams boundary between acquired imagery used in the creation of DOQQs and compressed county mosaic (CCM). The DOQQ...

  16. Aerial Photography and Imagery, Ortho-Corrected - 2010 NAIP Imagery - Baker County

    Data.gov (United States)

    NSGIC Education | GIS Inventory — This data set contains polygons delineating the seams boundary between acquired imagery used in the creation of DOQQs and compressed county mosaic (CCM). The DOQQ...

  17. Aerial Photography and Imagery, Ortho-Corrected - 2010 NAIP Imagery - Leon County

    Data.gov (United States)

    NSGIC Education | GIS Inventory — This data set contains polygons delineating the seams boundary between acquired imagery used in the creation of DOQQs and compressed county mosaic (CCM). The DOQQ...

  18. Aerial Photography and Imagery, Ortho-Corrected - 2010 NAIP Imagery - Sumter County

    Data.gov (United States)

    NSGIC Education | GIS Inventory — This data set contains polygons delineating the seams boundary between acquired imagery used in the creation of DOQQs and compressed county mosaic (CCM). The DOQQ...

  19. Aerial Photography and Imagery, Ortho-Corrected - 2010 NAIP Imagery - Alachua County

    Data.gov (United States)

    NSGIC Education | GIS Inventory — This data set contains polygons delineating the seams boundary between acquired imagery used in the creation of DOQQs and compressed county mosaic (CCM). The DOQQ...

  20. Aerial Photography and Imagery, Ortho-Corrected - 2010 NAIP Imagery - Putnam County

    Data.gov (United States)

    NSGIC Education | GIS Inventory — This data set contains polygons delineating the seams boundary between acquired imagery used in the creation of DOQQs and compressed county mosaic (CCM). The DOQQ...