WorldWideScience

Sample records for il-5 transgenic mice

  1. Defective IL-17- and IL-22-dependent mucosal host response to Candida albicans determines susceptibility to oral candidiasis in mice expressing the HIV-1 transgene.

    Science.gov (United States)

    Goupil, Mathieu; Cousineau-Côté, Vincent; Aumont, Francine; Sénéchal, Serge; Gaboury, Louis; Hanna, Zaher; Jolicoeur, Paul; de Repentigny, Louis

    2014-10-26

    The tissue-signaling cytokines IL-17 and IL-22 are critical to host defense against oral Candida albicans infection, by their induction of oral antimicrobial peptide expression and recruitment of neutrophils. Mucosal Th17 cells which produce these cytokines are preferentially depleted in HIV-infected patients. Here, we tested the hypothesis that defective IL-17- and IL-22-dependent host responses to C. albicans determine the phenotype of susceptibility to oropharyngeal candidiasis (OPC) in transgenic (Tg) mice expressing HIV-1. Naïve CD4+ T-cells and the differentiated Th1, Th2, Th17, Th1Th17 and Treg lineages were all profoundly depleted in cervical lymph nodes (CLNs) of these Tg mice. However, naive CD4+ cells from Tg mice maintained the capacity to differentiate into these lineages in response to polarizing cytokines in vitro. Expression of Il17, Il22, S100a8 and Ccl20 was enhanced in oral mucosal tissue of non-Tg, but not of Tg mice, after oral infection with C. albicans. Treatment of infected Tg mice with the combination of IL-17 and IL-22, but not IL-17 or Il-22 alone, significantly reduced oral burdens of C. albicans and abundance of Candida hyphae in the epithelium of tongues of infected Tg mice, and restored the ability of the Tg mice to up-regulate expression of S100a8 and Ccl20 in response to C. albicans infection. These findings demonstrate that defective IL-17- and IL-22-dependent induction of innate mucosal immunity to C. albicans is central to the phenotype of susceptibility to OPC in these HIV transgenic mice.

  2. The role of interleukin-5 (IL-5 in vivo: studies with IL-5 deficient mice

    Directory of Open Access Journals (Sweden)

    Klaus I Matthaei

    1997-12-01

    Full Text Available Eosinophil recruitment is a characteristic feature of a number of pathological conditions and was the topic of the recent International Symposium on allergic inflammation, asthma, parasitic and infectious diseases (Rio de Janeiro, June 3-5, 1996. Since interleukin5 (IL5 is believed to regulate the growth, differentiation and activation of eosinophils (Coffman et al. 1989, Sanderson 1992, the role of eosinophils and IL5 are closely linked. Although IL5 specifically regulates eosinophilia in vivo and this is its most well established activity, it is becoming clear that IL5 also has other biological effects. The recent derivation of an IL5 deficient mouse (Kopf et al. 1996, provides a model for exploring not only the role of IL5 and eosinophils but also other novel activities of IL5. Of note is that although the IL5 deficient mice cannot elicit a pronounced eosinophilia in response to inflammatory stimulation following aeroallergen challenge or parasite infection they still produce basal levels of eosinophils that appear to be morphologically and functionally normal. However, the basal levels of eosinophils appear insufficient for normal host defence as IL5 deficiency has now been shown to compromise defence against several helminth infections. In addition, IL5 deficient mice appear to have functional deficiencies in B-1 B lymphocytes and in IgA production.

  3. Functional imaging of interleukin 1 beta expression in inflammatory process using bioluminescence imaging in transgenic mice

    Directory of Open Access Journals (Sweden)

    Liu Zhihui

    2008-08-01

    Full Text Available Abstract Background Interleukin 1 beta (IL-1β plays an important role in a number of chronic and acute inflammatory diseases. To understand the role of IL-1β in disease processes and develop an in vivo screening system for anti-inflammatory drugs, a transgenic mouse line was generated which incorporated the transgene firefly luciferase gene driven by a 4.5-kb fragment of the human IL-1β gene promoter. Luciferase gene expression was monitored in live mice under anesthesia using bioluminescence imaging in a number of inflammatory disease models. Results In a LPS-induced sepsis model, dramatic increase in luciferase activity was observed in the mice. This transgene induction was time dependent and correlated with an increase of endogenous IL-1β mRNA and pro-IL-1β protein levels in the mice. In a zymosan-induced arthritis model and an oxazolone-induced skin hypersensitivity reaction model, luciferase expression was locally induced in the zymosan injected knee joint and in the ear with oxazolone application, respectively. Dexamethasone suppressed the expression of luciferase gene both in the acute sepsis model and in the acute arthritis model. Conclusion Our data suggest that the transgenic mice model could be used to study transcriptional regulation of the IL-1β gene expression in the inflammatory process and evaluation the effect of anti-inflammatory drug in vivo.

  4. Beneficial effects of IL-37 after spinal cord injury in mice

    NARCIS (Netherlands)

    Coll-Miro, M.; Francos-Quijorna, I.; Santos-Nogueira, E.; Torres-Espin, A.; Bufler, P.; Dinarello, C.A.; Lopez-Vales, R.

    2016-01-01

    IL-37, a member of the IL-1 family, broadly reduces innate inflammation as well as acquired immunity. Whether the antiinflammatory properties of IL-37 extend to the central nervous system remains unknown, however. In the present study, we subjected mice transgenic for human IL-37 (hIL-37tg) and

  5. Persistent Coxiella burnetii infection in mice overexpressing IL-10: an efficient model for chronic Q fever pathogenesis.

    Directory of Open Access Journals (Sweden)

    Soraya Meghari

    2008-02-01

    Full Text Available Interleukin (IL-10 increases host susceptibility to microorganisms and is involved in intracellular persistence of bacterial pathogens. IL-10 is associated with chronic Q fever, an infectious disease due to the intracellular bacterium Coxiella burnetii. Nevertheless, accurate animal models of chronic C. burnetii infection are lacking. Transgenic mice constitutively expressing IL-10 in macrophages were infected with C. burnetti by intraperitoneal and intratracheal routes and infection was analyzed through real-time PCR and antibody production. Transgenic mice exhibited sustained tissue infection and strong antibody response in contrast to wild-type mice; thus, bacterial persistence was IL-10-dependent as in chronic Q fever. The number of granulomas was low in spleen and liver of transgenic mice infected through the intraperitoneal route, as in patients with chronic Q fever. Macrophages from transgenic mice were unable to kill C. burnetii. C. burnetii-stimulated macrophages were characterized by non-microbicidal transcriptional program consisting of increased expression of arginase-1, mannose receptor, and Ym1/2, in contrast to wild-type macrophages in which expression of inducible NO synthase and inflammatory cytokines was increased. In vivo results emphasized macrophage data. In spleen and liver of transgenic mice infected with C. burnetii by the intraperitoneal route, the expression of arginase-1 was increased while microbicidal pathway consisting of IL-12p40, IL-23p19, and inducible NO synthase was depressed. The overexpression of IL-10 in macrophages prevents anti-infectious competence of host, including the ability to mount granulomatous response and microbicidal pathway in tissues. To our knowledge, this is the first efficient model for chronic Q fever pathogenesis.

  6. Epithelial-derived IL-33 promotes intestinal tumorigenesis in Apc Min/+ mice.

    Science.gov (United States)

    He, Zhengxiang; Chen, Lili; Souto, Fabricio O; Canasto-Chibuque, Claudia; Bongers, Gerold; Deshpande, Madhura; Harpaz, Noam; Ko, Huaibin M; Kelley, Kevin; Furtado, Glaucia C; Lira, Sergio A

    2017-07-14

    Increased expression of Interleukin (IL)-33 has been detected in intestinal samples of patients with ulcerative colitis, a condition associated with increased risk for colon cancer, but its role in the development of colorectal cancer has yet to be fully examined. Here, we investigated the role of epithelial expressed IL-33 during development of intestinal tumors. IL-33 expression was detected in epithelial cells in colorectal cancer specimens and in the Apc Min/+ mice. To better understand the role of epithelial-derived IL-33 in the intestinal tumorigenesis, we generated transgenic mice expressing IL-33 in intestinal epithelial cells (V33 mice). V33 Apc Min/+ mice, resulting from the cross of V33 with Apc Min/+ mice, had increased intestinal tumor burden compared with littermate Apc Min/+ mice. Consistently, Apc Min/+ mice deficient for IL-33 receptor (ST2), had reduced polyp burden. Mechanistically, overexpression of IL-33 promoted expansion of ST2 + regulatory T cells, increased Th2 cytokine milieu, and induced alternatively activated macrophages in the gut. IL-33 promoted marked changes in the expression of antimicrobial peptides, and antibiotic treatment of V33 Apc Min/+ mice abrogated the tumor promoting-effects of IL-33 in the colon. In conclusion, elevated IL-33 signaling increases tumor development in the Apc Min/+ mice.

  7. Generation of Human Immunosuppressive Myeloid Cell Populations in Human Interleukin-6 Transgenic NOG Mice

    Directory of Open Access Journals (Sweden)

    Asami Hanazawa

    2018-02-01

    Full Text Available The tumor microenvironment contains unique immune cells, termed myeloid-derived suppressor cells (MDSCs, and tumor-associated macrophages (TAMs that suppress host anti-tumor immunity and promote tumor angiogenesis and metastasis. Although these cells are considered a key target of cancer immune therapy, in vivo animal models allowing differentiation of human immunosuppressive myeloid cells have yet to be established, hampering the development of novel cancer therapies. In this study, we established a novel humanized transgenic (Tg mouse strain, human interleukin (hIL-6-expressing NOG mice (NOG-hIL-6 transgenic mice. After transplantation of human hematopoietic stem cells (HSCs, the HSC-transplanted NOG-hIL-6 Tg mice (HSC-NOG-hIL-6 Tg mice showed enhanced human monocyte/macrophage differentiation. A significant number of human monocytes were negative for HLA-DR expression and resembled immature myeloid cells in the spleen and peripheral blood from HSC-NOG-hIL-6 Tg mice, but not from HSC-NOG non-Tg mice. Engraftment of HSC4 cells, a human head and neck squamous cell carcinoma-derived cell line producing various factors including IL-6, IL-1β, macrophage colony-stimulating factor (M-CSF, and vascular endothelial growth factor (VEGF, into HSC-NOG-hIL-6 Tg mice induced a significant number of TAM-like cells, but few were induced in HSC-NOG non-Tg mice. The tumor-infiltrating macrophages in HSC-NOG-hIL-6 Tg mice expressed a high level of CD163, a marker of immunoregulatory myeloid cells, and produced immunosuppressive molecules such as arginase-1 (Arg-1, IL-10, and VEGF. Such cells from HSC-NOG-hIL-6 Tg mice, but not HSC-NOG non-Tg mice, suppressed human T cell proliferation in response to antigen stimulation in in vitro cultures. These results suggest that functional human TAMs can be developed in NOG-hIL-6 Tg mice. This mouse model will contribute to the development of novel cancer immune therapies targeting immunoregulatory

  8. Metallothionein-I overexpression decreases brain pathology in transgenic mice with astrocyte-targeted expression of interleukin-6

    DEFF Research Database (Denmark)

    Molinero, Amalia; Penkowa, Milena; Hernández, Joaquín

    2003-01-01

    in this report support the idea that the upregulation of MT-I observed in GFAP-IL6 mice is an important mechanism for coping with brain damage. Thus, GFAP-IL6 mice that were crossed with TgMTI transgenic mice (GFAP-IL6xTgMTI) and overexpressed MT-I in the brain showed a decreased upregulation of cytokines...... such as IL-6 and a diminished recruitment and activation of macrophages and T cells throughout the CNS but mainly in the cerebellum. The GFAP-IL6 mice showed clear evidence of increased oxidative stress, which was significantly decreased by MT-I overexpression. Interestingly, MT-I overexpression increased...

  9. Transgenic mice expressing constitutive active MAPKAPK5 display gender-dependent differences in exploration and activity

    Directory of Open Access Journals (Sweden)

    Moens Ugo

    2007-11-01

    Full Text Available Abstract Background The mitogen-activated protein kinases, MAPKs for short, constitute cascades of signalling pathways involved in the regulation of several cellular processes that include cell proliferation, differentiation and motility. They also intervene in neurological processes like fear conditioning and memory. Since little remains known about the MAPK-Activated Protein Kinase, MAPKAPK5, we constructed the first MAPKAPK knockin mouse model, using a constitutive active variant of MAPKAPK5 and analyzed the resulting mice for changes in anxiety-related behaviour. Methods We performed primary SHIRPA observations during background breeding into the C57BL/6 background and assessed the behaviour of the background-bred animals on the elevated plus maze and in the light-dark test. Our results were analyzed using Chi-square tests and homo- and heteroscedatic T-tests. Results Female transgenic mice displayed increased amounts of head dips and open arm time on the maze, compared to littermate controls. In addition, they also explored further into the open arm on the elevated plus maze and were less active in the closed arm compared to littermate controls. Male transgenic mice displayed no differences in anxiety, but their locomotor activity increased compared to non-transgenic littermates. Conclusion Our results revealed anxiety-related traits and locomotor differences between transgenic mice expressing constitutive active MAPKAPK5 and control littermates.

  10. Age-related response of IL-4/Luc/CNS-1 transgenic miceto phthalic anhydrideexposure

    Directory of Open Access Journals (Sweden)

    Sung Ji Eun

    2016-01-01

    Full Text Available Age-related changes are associated with susceptibility to infection, malignancy, autoimmunity, response to vaccination and wound healing. To investigate the relationship of several pathological phenotypes of allergic inflammationto age, alterations in theIL-4 derived luciferase signal and general phenotype biomarkers were measured in young (2-month-old and old (12-month-old IL-4/Luc/CNS-1 transgenic (Tg mice with phthalic anhydride (PA-induced allergic inflammationfor 2 weeks. There was no difference in the ear phenotypes and thickness between young and old mice, although these levels were higher in the PA-treated group thantheacetone-olive oil (AOO-treated group. The luciferase signal was detected in the mesenteric lymph node (ML, thymus and pancreas of both young and old PA-treated mice, but showed a greater increasein old Tg mice (exceptin thethymus. Agreaterincrease inthe epidermal thickness and dermal thickness was measured in old PA-treated mice than young PA-treated mice, while total mast cell number remainedconstant in both groups. Furthermore, the concentration of IgE was greater in young PA-treated mice than in old PA-treated mice,as wasthe expression of VEGF and IL-6. Taken together, theresults of this study showed that an animal’s age is an important factor that must be considered when PA-induced allergic inflammation in IL-4/Luc/CNS-1 Tg mice areinvestigated to screen for allergens and therapeutic compounds.

  11. AbetaPP induces cdk5-dependent tau hyperphosphorylation in transgenic mice Tg2576.

    Science.gov (United States)

    Otth, Carola; Concha, Ilona I; Arendt, Thomas; Stieler, Jens; Schliebs, Reinhard; González-Billault, Christian; Maccioni, Ricardo B

    2002-10-01

    Previous studies of Abeta-induced neuronal damage of hippocampal cells in culture have provided strong evidence that deregulation of the Cdk5/p35 kinase system is involved in the neurodegeneration pathway. Cdk5 inhibitors and antisense probes neuroprotected hippocampal cells against the neurotoxic action of Abeta. To further investigate the mechanisms underlying the participation of Cdk5 in neuronal degeneration, the transgenic mouse containing the Swedish mutations, Tg2576, was used as an animal model. Immunocytochemical studies using anti-Abeta(1-17) antibody evidenced the presence of labeled small-clustered core plaques in the hippocampus and cortex of 18-month-old transgenic mice brains. The loss of granular cells without a compressed appearance was detected in the vicinity of the cores in the dentate gyrus of the hippocampus. Immunostaining of Tg2576 brain sections with antibodies AT8, PHF1 and GFAP labeled punctuate dystrophic neurites in and around the amyloid core. Reactive astrogliosis around the plaques in the hippocampus was also observed. Studies at the molecular level showed differences in the expression of the truncated Cdk5 activator p25 in the transgenic animal, as compared with wild type controls. However no differences in Cdk5 levels were detected, thus corroborating previous cellular findings. Interestingly, hyperphosphorylated tau epitopes were substantially increased as assessed with the AT8 and PHF1 antibodies, in agreement with the observation of a p25 increase in the transgenic animal. These observations strongly suggest that the increased exposure of Alzheimer's type tau phosphoepitopes in the transgenic mice correlated with deregulation of Cdk5 leading to an increase in p25 levels. These studies also provide further evidence on the links between extraneuronal amyloid deposition and tau pathology.

  12. Intestine-specific overexpression of IL-10 improves survival in polymicrobial sepsis.

    Science.gov (United States)

    Rajan, Saju; Vyas, Dinesh; Clark, Andrew T; Woolsey, Cheryl A; Clark, Jessica A; Hotchkiss, Richard S; Buchman, Timothy G; Coopersmith, Craig M

    2008-04-01

    Targeted IL-10 therapy improves survival in preclinical models of critical illness, and intestine-specific IL-10 decreases inflammation in models of chronic Inflammatory disease. We therefore sought to determine whether intestine-specific overexpression of IL-10 would improve survival in sepsis. Transgenic mice that overexpress IL-10 in their gut epithelium (Fabpi-IL-10 mice) and wild-type (WT) littermates (n = 127) were subjected to cecal ligation and puncture with a 27-gauge needle. The 7-day survival rate was 45% in transgenic animals and 30% in WT animals (P < or = 0.05). Systemic levels of IL-10 were undetectable in both groups of animals under basal conditions and were elevated to a similar degree in septic animals regardless of whether they expressed the transgene. Local parameter of injury, including gut epithelial apoptosis, intestinal permeability, peritoneal lavage cytokines, and stimulated cytokines from intraepithelial lymphocytes, were similar between transgenic and WT mice. However, in stimulated splenocytes, proinflammatory cytokines monocyte chemoattractant protein 1 (189 +/- 43 vs. 40 +/- 8 pg/mL) and IL-6 (116 +/- 28 vs. 34 +/- 9 pg/mL) were lower in Fabpi-IL-10 mice than WT littermates despite the intestine-specific nature of the transgene (P < 0.05). Cytokine levels were similar in blood and bronchoalveolar lavage fluid between the 2 groups, as were circulating LPS levels. Transgenic mice also had lower white blood cell counts associated with lower absolute neutrophil counts (0.5 +/- 0.1 vs. 1.0 +/- 0.2 10(3)/mm3; P < 0.05). These results indicate that gut-specific overexpression of IL-10 improves survival in a murine model of sepsis, and interactions between the intestinal epithelium and the systemic immune system may play a role in conferring this survival advantage.

  13. Transgene IL-6 Enhances DC-Stimulated CTL Responses by Counteracting CD4+25+Foxp3+ Regulatory T Cell Suppression via IL-6-Induced Foxp3 Downregulation

    Directory of Open Access Journals (Sweden)

    Kalpana Kalyanasundaram Bhanumathy

    2014-03-01

    Full Text Available Dendritic cells (DCs, the most potent antigen-presenting cells have been extensively applied in clinical trials for evaluation of antitumor immunity. However, the efficacy of DC-mediated cancer vaccines is still limited as they are unable to sufficiently break the immune tolerance. In this study, we constructed a recombinant adenoviral vector (AdVIL-6 expressing IL-6, and generated IL-6 transgene-engineered DC vaccine (DCOVA/IL-6 by transfection of murine bone marrow-derived ovalbumin (OVA-pulsed DCs (DCOVA with AdVIL-6. We then assessed DCOVA/IL-6-stimulated cytotoxic T-lymphocyte (CTL responses and antitumor immunity in OVA-specific animal tumor model. We demonstrate that DCOVA/IL-6 vaccine up-regulates expression of DC maturation markers, secretes transgene-encoded IL-6, and more efficiently stimulates OVA-specific CTL responses and therapeutic immunity against OVA-expressing B16 melanoma BL6-10OVA in vivo than the control DCOVA/Null vaccine. Moreover, DCOVA/IL-6-stimulated CTL responses were relatively maintained in mice with transfer of CD4+25+Foxp3+ Tr-cells, but significantly reduced when treated with anti-IL-6 antibody. In addition, we demonstrate that IL-6 down-regulates Foxp3-expression of CD4+25+Foxp3+ Tr-cells in vitro. Taken together, our results demonstrate that AdV-mediated IL-6 transgene-engineered DC vaccine stimulates potent CTL responses and antitumor immunity by counteracting CD4+25+ Tr immunosuppression via IL-6-induced Foxp3 down-regulation. Thus, IL-6 may be a good candidate for engineering DCs for cancer immunotherapy.

  14. Abnormal differentiation, hyperplasia and embryonic/perinatal lethality in BK5-T/t transgenic mice

    Science.gov (United States)

    Chen, Xin; Schneider-Broussard, Robin; Hollowell, Debra; McArthur, Mark; Jeter, Collene R.; Benavides, Fernando; DiGiovanni, John; Tang, Dean G.

    2009-01-01

    The cell-of-origin has a great impact on the types of tumors that develop and the stem/progenitor cells have long been considered main targets of malignant transformation. The SV40 large T and small t antigens (T/t), have been targeted to multiple differentiated cellular compartments in transgenic mice. In most of these studies, transgenic animals develop tumors without apparent defects in animal development. In this study, we used the bovine keratin 5 (BK5) promoter to target the T/t antigens to stem/progenitor cell-containing cytokeratin 5 (CK5) cellular compartment. A transgene construct, BK5-T/t, was made and microinjected into the male pronucleus of FVB/N mouse oocytes. After implanting ∼1700 embryos, only 7 transgenics were obtained, including 4 embryos (E9.5, E13, E15, and E20) and 3 postnatal animals, which died at P1, P2, and P18, respectively. Immunohistological analysis revealed aberrant differentiation and prominent hyperplasia in several transgenic CK5 tissues, especially the upper digestive organs (tongue, oral mucosa, esophagus, and forestomach) and epidermis, the latter of which also showed focal dysplasia. Altogether, these results indicate that constitutive expression of the T/t antigens in CK5 cellular compartment results in abnormal epithelial differentiation and leads to embryonic/perinatal animal lethality. PMID:19272531

  15. IL-12 Inhibits Lipopolysaccharide Stimulated Osteoclastogenesis in Mice

    Directory of Open Access Journals (Sweden)

    Masako Yoshimatsu

    2015-01-01

    Full Text Available Lipopolysaccharide (LPS is related to osteoclastogenesis in osteolytic diseases. Interleukin- (IL- 12 is an inflammatory cytokine that plays a critical role in host defense. In this study, we investigated the effects of IL-12 on LPS-induced osteoclastogenesis. LPS was administered with or without IL-12 into the supracalvariae of mice, and alterations in the calvarial suture were evaluated histochemically. The number of osteoclasts in the calvarial suture and the mRNA level of tartrate-resistant acid phosphatase (TRAP, an osteoclast marker, were lower in mice administered LPS with IL-12 than in mice administered LPS alone. The serum level of tartrate-resistant acid phosphatase 5b (TRACP 5b, a bone resorption marker, was also lower in mice administered LPS with IL-12 than in mice administered LPS alone. These results revealed that IL-12 might inhibit LPS-induced osteoclastogenesis and bone resorption. In TdT-mediated dUTP-biotin nick end-labeling (TUNEL assays, apoptotic changes in cells were recognized in the calvarial suture in mice administered LPS with IL-12. Furthermore, the mRNA levels of both Fas and FasL were increased in mice administered LPS with IL-12. Taken together, the findings demonstrate that LPS-induced osteoclastogenesis is inhibited by IL-12 and that this might arise through apoptotic changes in osteoclastogenesis-related cells induced by Fas/FasL interactions.

  16. IL-1 receptor-antagonist (IL-1Ra) knockout mice show anxiety-like behavior by aging.

    Science.gov (United States)

    Wakabayashi, Chisato; Numakawa, Tadahiro; Odaka, Haruki; Ooshima, Yoshiko; Kiyama, Yuji; Manabe, Toshiya; Kunugi, Hiroshi; Iwakura, Yoichiro

    2015-07-10

    Interleukin 1 (IL-1) plays a critical role in stress responses, and its mRNA is induced in the brain by restraint stress. Previously, we reported that IL-1 receptor antagonist (IL-1Ra) knockout (KO) mice, which lacked IL-1Ra molecules that antagonize the IL-1 receptor, showed anti-depression-like behavior via adrenergic modulation at the age of 8 weeks. Here, we report that IL-1Ra KO mice display an anxiety-like phenotype that is induced spontaneously by aging in the elevated plus-maze (EPM) test. This anxiety-like phenotype was improved by the administration of diazepam. The expression of the anxiety-related molecule glucocorticoid receptor (GR) was significantly reduced in 20-week-old but not in 11-week-old IL-1Ra KO mice compared to wild-type (WT) littermates. The expression of the mineralocorticoid receptor (MR) was not altered between IL-1Ra KO mice and WT littermates at either 11 or 20 weeks old. Analysis of monoamine concentration in the hippocampus revealed that tryptophan, the serotonin metabolite 5-hydroxyindole acetic acid (5-HIAA), and the dopamine metabolite homovanillic acid (HVA) were significantly increased in 20-week-old IL-1Ra KO mice compared to littermate WT mice. These findings strongly suggest that the anxiety-like behavior observed in older mice was caused by the complicated alteration of monoamine metabolism and/or GR expression in the hippocampus. Copyright © 2015 Elsevier Ireland Ltd. All rights reserved.

  17. Oropharyngeal Candidiasis in HIV Infection: Analysis of Impaired Mucosal Immune Response to Candida albicans in Mice Expressing the HIV-1 Transgene

    Directory of Open Access Journals (Sweden)

    Louis de Repentigny

    2015-06-01

    Full Text Available IL-17-producing Th17 cells are of critical importance in host defense against oropharyngeal candidiasis (OPC. Speculation about defective Th17 responses to oral C. albicans infection in the context of HIV infection prompted an investigation of innate and adaptive immune responses to Candida albicans in transgenic mice expressing the genome of HIV-1 in immune cells and displaying an AIDS-like disease. Defective IL-17 and IL-22-dependent mucosal responses to C. albicans were found to determine susceptibility to OPC in these transgenic mice. Innate phagocytes were quantitatively and functionally intact, and individually dispensable for control of OPC and to prevent systemic dissemination of Candida to deep organs. CD8+ T-cells recruited to the oral mucosa of the transgenic mice limited the proliferation of C. albicans in these conditions of CD4+ T-cell deficiency. Therefore, the immunopathogenesis of OPC in the context of HIV infection involves defective T-cell-mediated immunity, failure of crosstalk with innate mucosal immune effector mechanisms, and compensatory cell responses, which limit Candida infection to the oral mucosa and prevent systemic dissemination.

  18. Somatostatin receptor 1 and 5 double knockout mice mimic neurochemical changes of Huntington's disease transgenic mice.

    Directory of Open Access Journals (Sweden)

    Padmesh S Rajput

    Full Text Available Selective degeneration of medium spiny neurons and preservation of medium sized aspiny interneurons in striatum has been implicated in excitotoxicity and pathophysiology of Huntington's disease (HD. However, the molecular mechanism for the selective sparing of medium sized aspiny neurons and vulnerability of projection neurons is still elusive. The pathological characteristic of HD is an extensive reduction of the striatal mass, affecting caudate putamen. Somatostatin (SST positive neurons are selectively spared in HD and Quinolinic acid/N-methyl-D-aspartic acid induced excitotoxicity, mimic the model of HD. SST plays neuroprotective role in excitotoxicity and the biological effects of SST are mediated by five somatostatin receptor subtypes (SSTR1-5.To delineate subtype selective biological responses we have here investigated changes in SSTR1 and 5 double knockout mice brain and compared with HD transgenic mouse model (R6/2. Our study revealed significant loss of dopamine and cAMP regulated phosphoprotein of 32 kDa (DARPP-32 and comparable changes in SST, N-methyl-D-aspartic acid receptors subtypes, calbindin and brain nitric oxide synthase expression as well as in key signaling proteins including calpain, phospho-extracellular-signal-regulated kinases1/2, synapsin-IIa, protein kinase C-α and calcineurin in SSTR1/5(-/- and R6/2 mice. Conversely, the expression of somatostatin receptor subtypes, enkephalin and phosphatidylinositol 3-kinases were strain specific. SSTR1/5 appears to be important in regulating NMDARs, DARPP-32 and signaling molecules in similar fashion as seen in HD transgenic mice.This is the first comprehensive description of disease related changes upon ablation of G- protein coupled receptor gene. Our results indicate that SST and SSTRs might play an important role in regulation of neurodegeneration and targeting this pathway can provide a novel insight in understanding the pathophysiology of Huntington's disease.

  19. CD205-TLR9-IL-12 axis contributes to CpG-induced oversensitive liver injury in HBsAg transgenic mice by promoting the interaction of NKT cells with Kupffer cells.

    Science.gov (United States)

    Hou, Xin; Hao, Xiaolei; Zheng, Meijuan; Xu, Congfei; Wang, Jun; Zhou, Rongbin; Tian, Zhigang

    2017-08-01

    Gut-derived bacterial products contribute to liver inflammation and injury during chronic hepatitis B virus infection; however, the underlying mechanisms remain obscure. In this study, hepatitis B surface antigen transgenic (HBs-Tg) mice and their wild-type (WT) control C57BL/6 mice were injected with CpG-oligodeoxynucleotides (ODNs) to mimic the translocation of gut microbial products into the systemic circulation. We found that, compared with the WT mice, the HBs-Tg mice were oversensitive to CpG-ODN-induced liver injury, which was dependent on natural killer T (NKT) cells. CpG-ODN injection enhanced the expression of Fas ligand (FasL) on NKT cells. In addition, hepatocytes from the HBs-Tg mice expressed higher levels of Fas than did those from the WT mice, which was further augmented by CpG-ODN. Interaction of Fas and FasL was involved in the cytotoxicity of NKT cells against hepatocytes in the HBs-Tg mice. Moreover, Kupffer cells in the HBs-Tg mice expressed higher levels of CD205 and produced greater amounts of interleukin (IL)-12 than did those in the WT mice. Finally, the depletion of Kupffer cells, neutralization of IL-12 or specific silencing of CD205 on Kupffer cells significantly inhibited CpG-ODN-induced liver injury and NKT activation in the HBs-Tg mice. Our data suggest that CD205-expressing Kupffer cells respond to CpG-ODNs and subsequently release IL-12 to promote NKT cell activation. Activated NKT cells induce liver damage through the Fas signaling pathway in HBs-Tg mice.

  20. IL-25 inhibits atherosclerosis development in apolipoprotein E deficient mice.

    Directory of Open Access Journals (Sweden)

    Polyxeni T Mantani

    Full Text Available IL-25 has been implicated in the initiation of type 2 immunity and in the protection against autoimmune inflammatory diseases. Recent studies have identified the novel innate lymphoid type 2 cells (ILC2s as an IL-25 target cell population. The purpose of this study was to evaluate if IL-25 has any influence on atherosclerosis development in mice.Administration of 1 μg IL-25 per day for one week to atherosclerosis-prone apolipoprotein (apoE deficient mice, had limited effect on the frequency of T cell populations, but resulted in a large expansion of ILC2s in the spleen. The expansion was accompanied by increased levels of anti-phosphorylcholine (PC natural IgM antibodies in plasma and elevated levels of IL-5 in plasma and spleen. Transfer of ILC2s to apoE deficient mice elevated the natural antibody-producing B1a cell population in the spleen. Treatment of apoE/Rag-1 deficient mice with IL-25 was also associated with extensive expansion of splenic ILC2s and increased plasma IL-5, suggesting ILC2s to be the source of IL-5. Administration of IL-25 in IL-5 deficient mice resulted in an expanded ILC2 population, but did not stimulate generation of anti-PC IgM, indicating that IL-5 is not required for ILC2 expansion but for the downstream production of natural antibodies. Additionally, administration of 1 μg IL-25 per day for 4 weeks in apoE deficient mice reduced atherosclerosis in the aorta both during initiation and progression of the disease.The present findings demonstrate that IL-25 has a protective role in atherosclerosis mediated by innate responses, including ILC2 expansion, increased IL-5 secretion, B1a expansion and natural anti-PC IgM generation, rather than adaptive Th2 responses.

  1. Over-expression of Stat5b confers protection against diabetes in the non-obese diabetic (NOD) mice via up-regulation of CD4+CD25+ regulatory T cells

    International Nuclear Information System (INIS)

    Jin, Yulan; Purohit, Sharad; Chen, Xueqin; Yi, Bing; She, Jin-Xiong

    2012-01-01

    Highlights: ► This is the first study to provide direct evidence of the role of Stat5b in NOD mice. ► Over-expression of wild type Stat5b transgene protects NOD mice against diabetes. ► This protection may be mediated by the up-regulation of CD4 + CD25 + Tregs. -- Abstract: The signal transducers and activators of transcription (STAT) family of proteins play a critical role in cytokine signaling required for fine tuning of immune regulation. Previous reports showed that a mutation (L327M) in the Stat5b protein leads to aberrant cytokine signaling in the NOD mice. To further elaborate the role of Stat5b in diabetes, we established a NOD transgenic mouse that over-expresses the wild type Stat5b gene. The incidences of spontaneous diabetes as well as cyclophosphamide-induced diabetes were significantly reduced and delayed in the Stat5b transgenic NOD mice compared to their littermate controls. The total cell numbers of CD4 + T cells and especially CD8 + T cells in the spleen and pancreatic lymph node were increased in the Stat5b transgenic NOD mice. Consistent with these findings, CD4 + and CD8 + T cells from the Stat5b transgenic NOD mice showed a higher proliferation capacity and up-regulation of multiple cytokines including IL-2, IFN-γ, TNF-α and IL-10 as well as anti-apoptotic gene Bcl-xl. Furthermore, the number and proportion of CD4 + CD25 + regulatory T cells were significantly increased in transgenic mice although in vitro suppression ability of the regulatory T-cells was not affected by the transgene. Our results suggest that Stat5b confers protection against diabetes in the NOD mice by regulating the numbers and function of multiple immune cell types, especially by up-regulating CD4 + CD25 + regulatory T cells.

  2. Overexpression of Interleukin-4 in the Thyroid of Transgenic Mice Upregulates the Expression of Duox1 and the Anion Transporter Pendrin

    Science.gov (United States)

    Achouri, Younes; Hahn, Stephan; Many, Marie-Christine; Craps, Julie; Refetoff, Samuel; Liao, Xiao-Hui; Dumont, Jacques E.; Van Sande, Jacqueline; Corvilain, Bernard; Miot, Françoise; De Deken, Xavier

    2016-01-01

    Background: The dual oxidases (Duox) are involved in hydrogen peroxide generation, which is essential for thyroid hormone synthesis, and therefore they are markers of thyroid function. During inflammation, cytokines upregulate DUOX gene expression in the airway and the intestine, suggesting a role for these proteins in innate immunity. It was previously demonstrated that interleukin-4 (IL-4) upregulates DUOX gene expression in thyrocytes. Although the role of IL-4 in autoimmune thyroid diseases has been studied extensively, the effects of IL-4 on thyroid physiology remain largely unknown. Therefore, a new animal model was generated to study the impact of IL-4 on thyroid function. Methods: Transgenic (Thyr-IL-4) mice with thyroid-targeted expression of murine IL-4 were generated. Transgene expression was verified at the mRNA and protein level in thyroid tissues and primary cultures. The phenotype of the Thyr-IL-4 animals was characterized by measuring serum thyroxine (T4) and thyrotropin levels and performing thyroid morphometric analysis, immunohistochemistry, whole transcriptome sequencing, quantitative reverse transcription polymerase chain reaction, and ex vivo thyroid function assays. Results: Thyrocytes from two Thyr-IL-4 mouse lines (#30 and #52) expressed IL-4, which was secreted into the extracellular space. Although 10-month-old transgenic animals had T4 and thyrotropin serum levels in the normal range, they had altered thyroid follicular structure with enlarged follicles composed of elongated thyrocytes containing numerous endocytic vesicles. These follicles were positive for T4 staining the colloid, indicating their capacity to produce thyroid hormones. RNA profiling of Thyr-IL-4 thyroid samples revealed modulation of multiple genes involved in inflammation, while no major leukocyte infiltration could be detected. Upregulated expression of Duox1, Duoxa1, and the pendrin anion exchanger gene (Slc26a4) was detected. In contrast, the iodide symporter gene

  3. Polycythemia in transgenic mice expressing the human erythropoietin gene

    International Nuclear Information System (INIS)

    Semenza, G.L.; Traystman, M.D.; Gearhart, J.D.; Antonarakis, S.E.

    1989-01-01

    Erythropoietin is a glycoprotein hormone that regulates mammalian erythropoiesis. To study the expression of the human erythropoietin gene, EPO, 4 kilobases of DNA encompassing the gene with 0.4 kilobase of 5' flanking sequence and 0.7 kilobase of 3' flanking sequence was microinjected into fertilized mouse eggs. Transgenic mice were generated that are polycythemic, with increased erythrocytic indices in peripheral blood, increased numbers of erythroid precursors in hematopoietic tissue, and increased serum erythropoietin levels. Transgenic homozygotes show a greater degree of polycythemia than do heterozygotes as well as striking extramedullary erythropoiesis. Human erythropoietin RNA was found not only in fetal liver, adult liver, and kidney but also in all other transgenic tissues analyzed. Anemia induced increased human erythropoietin RNA levels in liver but not kidney. These transgenic mice represent a unique model of polycythemia due to increased erythropoietin levels

  4. Over-expression of Stat5b confers protection against diabetes in the non-obese diabetic (NOD) mice via up-regulation of CD4{sup +}CD25{sup +} regulatory T cells

    Energy Technology Data Exchange (ETDEWEB)

    Jin, Yulan; Purohit, Sharad [Center for Biotechnology and Genomic Medicine, Georgia Health Sciences University, GA (United States); Department of Pathology, Medical College of Georgia, Georgia Health Sciences University, GA (United States); Chen, Xueqin; Yi, Bing [Center for Biotechnology and Genomic Medicine, Georgia Health Sciences University, GA (United States); She, Jin-Xiong, E-mail: jshe@georgiahealth.edu [Center for Biotechnology and Genomic Medicine, Georgia Health Sciences University, GA (United States); Department of Pathology, Medical College of Georgia, Georgia Health Sciences University, GA (United States)

    2012-08-10

    Highlights: Black-Right-Pointing-Pointer This is the first study to provide direct evidence of the role of Stat5b in NOD mice. Black-Right-Pointing-Pointer Over-expression of wild type Stat5b transgene protects NOD mice against diabetes. Black-Right-Pointing-Pointer This protection may be mediated by the up-regulation of CD4{sup +}CD25{sup +} Tregs. -- Abstract: The signal transducers and activators of transcription (STAT) family of proteins play a critical role in cytokine signaling required for fine tuning of immune regulation. Previous reports showed that a mutation (L327M) in the Stat5b protein leads to aberrant cytokine signaling in the NOD mice. To further elaborate the role of Stat5b in diabetes, we established a NOD transgenic mouse that over-expresses the wild type Stat5b gene. The incidences of spontaneous diabetes as well as cyclophosphamide-induced diabetes were significantly reduced and delayed in the Stat5b transgenic NOD mice compared to their littermate controls. The total cell numbers of CD4{sup +} T cells and especially CD8{sup +} T cells in the spleen and pancreatic lymph node were increased in the Stat5b transgenic NOD mice. Consistent with these findings, CD4{sup +} and CD8{sup +} T cells from the Stat5b transgenic NOD mice showed a higher proliferation capacity and up-regulation of multiple cytokines including IL-2, IFN-{gamma}, TNF-{alpha} and IL-10 as well as anti-apoptotic gene Bcl-xl. Furthermore, the number and proportion of CD4{sup +}CD25{sup +} regulatory T cells were significantly increased in transgenic mice although in vitro suppression ability of the regulatory T-cells was not affected by the transgene. Our results suggest that Stat5b confers protection against diabetes in the NOD mice by regulating the numbers and function of multiple immune cell types, especially by up-regulating CD4{sup +}CD25{sup +} regulatory T cells.

  5. Transgenic mice with astrocyte-targeted production of interleukin-6 are resistant to high-fat diet-induced increases in body weight and body fat

    DEFF Research Database (Denmark)

    Hidalgo, Juan; Florit, Sergi; Giralt, Mercedes

    2010-01-01

    Interleukin-6 (IL-6) is a major cytokine involved in both normal physiological brain functions and underlying significant neuropathology. IL-6 has been suggested to play a role in the control of body weight but the results are somewhat controversial. In this study we have challenged transgenic mice...... with astrocyte-targeted IL-6 expression (GFAP-IL6 mice) with a high-fat diet (55% kcal from fat) versus a control diet (10%). The results demonstrate that the GFAP-IL6 mice are resistant to high-fat diet-induced increases in body weight and body fat, apparently without altering food intake and with no evidences...... of increased sympathetic tone. The high-fat diet-induced impaired responses to an insulin tolerance test (ITT), and to an oral glucose tolerance test (OGTT) in both genotypes. The GFAP-IL6 mice did not differ from littermate wild-type (WT) mice in ITT, but they were more glucose intolerant following the high...

  6. Development of an in vivo model of Chlamydia abortus chronic infection in mice overexpressing IL-10.

    Science.gov (United States)

    Del Río, Laura; Murcia, Antonio; Buendía, Antonio J; Álvarez, Daniel; Ortega, Nieves; Navarro, José A; Salinas, Jesús; Caro, María Rosa

    2018-01-01

    Chlamydia abortus, like other members of the family Chlamydiaceae, have a unique intracellular developmental cycle that is characterized by its chronic nature. Infection of a flock can remain undetected for months, until abortion occurs the following reproductive season but, to date, neither the location nor the mechanisms that maintain this latent phase are fully understood. Studies have shown that IL-10 produced as a response to certain micro-organisms sustains the intracellular survival of pathogens and increases host susceptibility to chlamydial infections. In order to induce a sustained infection C. abortus, transgenic mice that constitutively express IL-10 were infected and the immunological mechanisms that maintain infection in these mice were compared with the mechanisms of a resistant wild-type mouse strain. Viable bacteria could be detected in different tissues of transgenic mice up to 28 days after infection, as analysed by bacterial isolation and immunohistochemistry. Chronic infection in these mice was associated with an impaired recruitment of macrophages, decreased iNOS activity at the site of infection and a more diffuse distribution of inflammatory cells in the liver. This murine model can be of great help for understanding the immunological and bacterial mechanisms that lead to chronic chlamydial infections. Copyright © 2017 Elsevier B.V. All rights reserved.

  7. Human β-globin locus control region: Analysis of the 5' DNase I hypersensitive site HS 2 in transgenic mice

    International Nuclear Information System (INIS)

    Caterina, J.J.; Ryan, T.M.; Pawlik, K.M.; Townes, T.M.; Brinster, R.L.; Behringer, R.R.; Palmiter, R.D.

    1991-01-01

    The human β-globin locus control region (LCR) is essential for high-level expression of human var-epsilon-, γ-, and β-globin genes. Developmentally stable DNase I hypersensitive sites (designated HS) mark sequences within this region that are important for LCR activity. A 1.9-kilobase (kb) fragment containing the 5' HS 2 site enhances human β-globin gene expression 100-fold in transgenic mice and also confers position-independent expression. To further define important sequences within this region, deletion mutations of the 1.9-kb fragment were introduced upstream of the human β-globin gene, and the constructs were tested for activity in transgenic mice. Although enhancer activity was gradually lost with deletion of both 5' and 3' sequences, a 373-base-pair (BP) fragment retained the ability to confer relative position-independent expression. Three prominent DNase I footprints were observed in this region with extracts from the human erythroleukemia cell line K-562, one of which contained duplicated binding sites for transcription factor AP-1 (activator protein 1). When the 1.9-kb fragment containing an 19-bp deletion of the AP-1 binding sites was tested in transgenic mice, enhancer activity decreased 20-fold but position-independent expression was retained

  8. Regulation of an Autoimmune Model for Multiple Sclerosis in Th2-Biased GATA3 Transgenic Mice

    Directory of Open Access Journals (Sweden)

    Viromi Fernando

    2014-01-01

    Full Text Available T helper (Th2 cells have been proposed to play a neuroprotective role in multiple sclerosis (MS. This is mainly based on “loss-of-function” studies in an animal model for MS, experimental autoimmune encephalomyelitis (EAE, using blocking antibodies against Th2 related cytokines, and knockout mice lacking Th2-related molecules. We tested whether an increase of Th2 responses (“gain-of-function” approach could alter EAE, the approach of novel GATA binding protein 3 (GATA3-transgenic (tg mice that overexpress GATA3, a transcription factor required for Th2 differentiation. In EAE induced with myelin oligodendrocyte glycoprotein (MOG35−55 peptide, GATA3-tg mice had a significantly delayed onset of disease and a less severe maximum clinical score, compared with wild-type C57BL/6 mice. Histologically, GATA3-tg mice had decreased levels of meningitis and demyelination in the spinal cord, and anti-inflammatory cytokine profiles immunologically, however both groups developed similar levels of MOG-specific lymphoproliferative responses. During the early stage, we detected higher levels of interleukin (IL-4 and IL-10, with MOG and mitogen stimulation of regional lymph node cells in GATA3-tg mice. During the late stage, only mitogen stimulation induced higher IL-4 and lower interferon-γ and IL-17 production in GATA3-tg mice. These results suggest that a preexisting bias toward a Th2 immune response may reduce the severity of inflammatory demyelinating diseases, including MS.

  9. Dynamics of oligodendrocyte responses to anterograde axonal (Wallerian) and terminal degeneration in normal and TNF-transgenic mice

    DEFF Research Database (Denmark)

    Drøjdahl, Nina; Fenger, Christina; Nielsen, Helle H

    2004-01-01

    degeneration and lesion-induced axonal sprouting in the hippocampal dentate gyrus in TNF-transgenic mice with the response in genetically normal mice. Transectioning of the entorhino-dentate perforant path axonal projection increased hippocampal TNF mRNA expression in both types of mice, but to significantly...... larger levels in the TNF-transgenics. At 5 days after axonal transection, numbers of oligodendrocytes and myelin basic protein (MBP) mRNA expression in the denervated dentate gyrus in TNF-transgenic mice had increased to the same extent as in nontransgenic littermates. At this time, transgenics showed...

  10. Quantitative Comparison of Dense-Core Amyloid Plaque Accumulation in Amyloid-β Precursor Protein Transgenic Mice

    Science.gov (United States)

    Liu, Peng; Reichl, John H.; Rao, Eshaan R.; McNellis, Brittany M.; Huang, Eric S.; Hemmy, Laura S.; Forster, Colleen L.; Kuskowski, Michael A.; Borchelt, David R.; Vassar, Robert; Ashe, Karen H.; Zahs, Kathleen R.

    2016-01-01

    There exist several dozen lines of transgenic mice that express human amyloid-β precursor protein (AβPP) with Alzheimer’s disease (AD)-linked mutations. AβPP transgenic mouse lines differ in the types and amounts of Aβ that they generate and in their spatiotemporal patterns of expression of Aβ assemblies, providing a toolkit to study Aβ amyloidosis and the influence of Aβ aggregation on brain function. More complete quantitative descriptions of the types of Aβ assemblies present in transgenic mice and in humans during disease progression should add to our understanding of how Aβ toxicity in mice relates to the pathogenesis of AD. Here, we provide a direct quantitative comparison of amyloid plaque burdens and plaque sizes in four lines of AβPP transgenic mice. We measured the fraction of cortex and hippocampus occupied by dense-core plaques, visualized by staining with Thioflavin S, in mice from young adulthood through advanced age. We found that the plaque burdens among the transgenic lines varied by an order of magnitude: at 15 months of age, the oldest age studied, the median cortical plaque burden in 5XFAD mice was already ~4.5 times that of 21-month Tg2576 mice and ~15 times that of 21–24-month rTg9191 mice. Plaque-size distributions changed across the lifespan in a line- and region-dependent manner. We also compared the dense-core plaque burdens in the mice to those measured in a set of pathologically-confirmed AD cases from the Nun Study. Cortical plaque burdens in Tg2576, APPSwePS1ΔE9, and 5XFAD mice eventually far exceeded those measured in the human cohort. PMID:28059792

  11. Quantitative Comparison of Dense-Core Amyloid Plaque Accumulation in Amyloid-β Protein Precursor Transgenic Mice.

    Science.gov (United States)

    Liu, Peng; Reichl, John H; Rao, Eshaan R; McNellis, Brittany M; Huang, Eric S; Hemmy, Laura S; Forster, Colleen L; Kuskowski, Michael A; Borchelt, David R; Vassar, Robert; Ashe, Karen H; Zahs, Kathleen R

    2017-01-01

    There exist several dozen lines of transgenic mice that express human amyloid-β protein precursor (AβPP) with Alzheimer's disease (AD)-linked mutations. AβPP transgenic mouse lines differ in the types and amounts of Aβ that they generate and in their spatiotemporal patterns of expression of Aβ assemblies, providing a toolkit to study Aβ amyloidosis and the influence of Aβ aggregation on brain function. More complete quantitative descriptions of the types of Aβ assemblies present in transgenic mice and in humans during disease progression should add to our understanding of how Aβ toxicity in mice relates to the pathogenesis of AD. Here, we provide a direct quantitative comparison of amyloid plaque burdens and plaque sizes in four lines of AβPP transgenic mice. We measured the fraction of cortex and hippocampus occupied by dense-core plaques, visualized by staining with Thioflavin S, in mice from young adulthood through advanced age. We found that the plaque burdens among the transgenic lines varied by an order of magnitude: at 15 months of age, the oldest age studied, the median cortical plaque burden in 5XFAD mice was already ∼4.5 times that of 21-month-old Tg2576 mice and ∼15 times that of 21-24-month-old rTg9191 mice. Plaque-size distributions changed across the lifespan in a line- and region-dependent manner. We also compared the dense-core plaque burdens in the mice to those measured in a set of pathologically-confirmed AD cases from the Nun Study. Cortical plaque burdens in Tg2576, APPSwePS1ΔE9, and 5XFAD mice eventually far exceeded those measured in the human cohort.

  12. Generation of transgenic mice producing fungal xylanase in the ...

    African Journals Online (AJOL)

    DR TONUKARI NYEROVWO

    express exogenous digestive enzymes, since a single- stomached animal, such as a pig, can secret .... transgenic founder mice; 1 to15 are fifteen wild-type founder mice; M, marke; β-actin, endogenous control. (C) Identification of transgenic mice by ... 61.48±0.34%), gross energy digestibility (WT vs. TG = 68.79±0.51% vs.

  13. Cognitive abilities of Alzheimer's disease transgenic mice are modulated by social context and circadian rhythm.

    Science.gov (United States)

    Kiryk, Anna; Mochol, Gabriela; Filipkowski, Robert K; Wawrzyniak, Marcin; Lioudyno, Victoria; Knapska, Ewelina; Gorkiewicz, Tomasz; Balcerzyk, Marcin; Leski, Szymon; Leuven, Fred Van; Lipp, Hans-Peter; Wojcik, Daniel K; Kaczmarek, Leszek

    2011-12-01

    In the present study, we used a new training paradigm in the intelliCage automatic behavioral assessment system to investigate cognitive functions of the transgenic mice harboring London mutation of the human amyloid precursor protein (APP.V717I). Three groups of animals: 5-, 12- and 18-24-month old were subjected to both Water Maze training and the IntelliCage-based appetitive conditioning. The spatial memory deficit was observed in all three groups of transgenic mice in both behavioral paradigms. However, the APP mice were capable to learn normally when co-housed with the wild-type (WT) littermates, in contrast to clearly impaired learning observed when the transgenic mice were housed alone. Furthermore, in the transgenic mice kept in the Intellicage alone, the cognitive deficit of the young animals was modulated by the circadian rhythm, namely was prominent only during the active phase of the day. The novel approach to study the transgenic mice cognitive abilities presented in this paper offers new insight into cognitive dysfunctions of the Alzheimer's disease mouse model.

  14. Hyperactive hypothalamus, motivated and non-distractible chronic overeating in ADAR2 transgenic mice.

    Science.gov (United States)

    Akubuiro, A; Bridget Zimmerman, M; Boles Ponto, L L; Walsh, S A; Sunderland, J; McCormick, L; Singh, M

    2013-04-01

    ADAR2 transgenic mice misexpressing the RNA editing enzyme ADAR2 (Adenosine Deaminase that act on RNA) show characteristics of overeating and experience adult onset obesity. Behavioral patterns and brain changes related to a possible addictive overeating in these transgenic mice were explored as transgenic mice display chronic hyperphagia. ADAR2 transgenic mice were assessed in their food preference and motivation to overeat in a competing reward environment with ad lib access to a running wheel and food. Metabolic activity of brain and peripheral tissue were assessed with [(18) F] fluorodeoxyglucose positron emission tomography (FDG-PET) and RNA expression of feeding related genes, ADAR2, dopamine and opiate receptors from the hypothalamus and striatum were examined. The results indicate that ADAR2 transgenic mice exhibit, (1) a food preference for diets with higher fat content, (2) significantly increased food intake that is non-distractible in a competing reward environment, (3) significantly increased messenger RNA (mRNA) expressions of ADAR2, serotonin 2C receptor (5HT2C R), D1, D2 and mu opioid receptors and no change in corticotropin-releasing hormone mRNAs and significantly reduced ADAR2 protein expression in the hypothalamus, (4) significantly increased D1 receptor and altered bioamines with no change in ADAR2, mu opioid and D2 receptor mRNA expression in the striatum and (5) significantly greater glucose metabolism in the hypothalamus, brain stem, right hippocampus, left and right mid brain regions and suprascapular peripheral tissue than controls. These results suggest that highly motivated and goal-oriented overeating behaviors of ADAR2 transgenic mice are associated with altered feeding, reward-related mRNAs and hyperactive brain mesolimbic region. Genes, Brain and Behavior © 2013 Blackwell Publishing Ltd and International Behavioural and Neural Genetics Society.

  15. M2 Macrophages Play Critical Roles in Progression of Inflammatory Liver Disease in Hepatitis C Virus Transgenic Mice.

    Science.gov (United States)

    Ohtsuki, Takahiro; Kimura, Kiminori; Tokunaga, Yuko; Tsukiyama-Kohara, Kyoko; Tateno, Chise; Hayashi, Yukiko; Hishima, Tsunekazu; Kohara, Michinori

    2016-01-01

    Macrophages in liver tissue are widely defined as important inflammatory cells in chronic viral hepatitis due to their proinflammatory activity. We reported previously that interleukin-6 (IL-6) and tumor necrosis factor alpha (TNF-α) play significant roles in causing chronic hepatitis in hepatitis C virus (HCV) transgenic mice (S. Sekiguchi et al., PLoS One 7:e51656, 2012, http://dx.doi.org/10.1371/journal.pone.0051656). In addition, we showed that recombinant vaccinia viruses expressing an HCV nonstructural protein (rVV-N25) could protect against the progression of chronic hepatitis by suppression of macrophage activation. Here, we focus on the role of macrophages in liver disease progression in HCV transgenic mice and examine characteristic features of macrophages following rVV-N25 treatment. The number of CD11b(+) F4/80(+) CD11c(-) CD206(+) (M2) macrophages in the liver of HCV transgenic mice was notably increased compared to that of age-matched control mice. These M2 macrophages in the liver produced elevated levels of IL-6 and TNF-α. rVV-N25 infection suppressed the number and activation of M2 macrophages in liver tissue. These results suggested that inflammatory cytokines produced by M2-like macrophages contribute to the induction of chronic liver inflammation in HCV transgenic mice. Moreover, the therapeutic effect of rVV-N25 might be induced by the suppression of the number and activation of hepatic macrophages. HCV causes persistent infections that can lead to chronic liver diseases, liver fibrosis, and hepatocellular carcinoma; the search for an HCV curative is the focus of ongoing research. Recently, effective anti-HCV drugs have been developed; however, vaccine development still is required for the prevention and therapy of infection by this virus. We demonstrate here that M2 macrophages are important for the pathogenesis of HCV-caused liver diseases and additionally show that M2 macrophages contribute to the therapeutic mechanism observed following r

  16. T cell subsets related with a sex difference in IL-5 production.

    Science.gov (United States)

    Okuyama, Kaori; Hamanaka, Yuka; Kawano, Tasuku; Ohkawara, Yuichi; Takayanagi, Motoaki; Kikuchi, Toshiaki; Ohno, Isao

    2011-01-01

    Before puberty, the prevalence and severity of asthma are higher in boys than in girls, but this pattern is reversed after puberty. The underlying mechanisms of these gender differences in asthma are not fully understood. Using murine models of allergic asthma, a sex difference in Th2 cytokine production has been suggested to contribute to the gender differences in asthma. Therefore, we determined which subsets of T cells are involved in the sex difference in Th2 cytokine production. Splenocytes from wild-type mice and CD4+ T cell-, CD8+ T cell-, and iNKT cell-deficient mice were stimulated with anti-CD3/CD28 antibodies for 3 days, and the concentrations of IL-4, IL-5, IL-13, and IFN-γ in the cultures were measured by ELISA. IL-5, but not IL-4 and IL-13, concentrations in culture derived from female wild-type mice were significantly higher than those in male wild-type mice. The sex difference in IL-5 concentrations was not observed in the cultures of splenocytes from CD4+ and CD8+ T cell-deficient mice. The disappearance of the sex differences in CD4+ and CD8+ T cell-deficient mice was attributable to a decrease in IL-5 concentration in female mice and an increase in IL-5 concentration in male mice. In iNKT cell-deficient mice, the sex difference was still observed. There was no significant difference between the sexes in any type of mice with respect to IFN-γ production. There was a sex difference in IL-5 production by splenocytes stimulated by TCR activation. The difference might be attributable to sex differences in CD4+ and CD8+ T cell functions. Copyright © 2011 S. Karger AG, Basel.

  17. Overexpression of BID in thyroids of transgenic mice increases sensitivity to iodine-induced autoimmune thyroiditis

    Science.gov (United States)

    2014-01-01

    Background BID functions as a bridge molecule between death-receptor and mitochondrial related apoptotic pathways to amplify apoptotic signaling. Our previous studies have demonstrated a substantial increase in BID expression in primary normal thyroid epithelia cells treated with inflammatory cytokines, including the combination of IFNγ and IL-1β or IFNγ and TNFα. The aim of this study was to determine whether an increase in BID expression in thyroid can induce autoimmune thyroiditis. Methods A transgenic mouse line that expresses human BID in thyroid cells was established by fusing a mouse thyroglobulin (Tg) promoter upstream of human BID (Tg-BID). We tested whether the increased expression of pro-apoptotic BID in thyroid would induce autoimmune thyroiditis, both in the presence and absence of 0.3% iodine water. Results Our data show that Tg-BID mice in a CBA/J (H-2 k) background do not spontaneously develop autoimmune thyroiditis for over a year. However, upon ingestion of iodine in the drinking water, autoimmune thyroiditis does develop in Tg-BID transgenic mice, as shown by a significant increase in anti-Tg antibody and mononuclear cell infiltration in the thyroid glands in 30% of mice tested. Serum T4 levels, however, were similar between iodine-treated Tg-BID transgenic mice and the wild type mice. Conclusions Our data demonstrate that increased thyroid expression of BID facilitates the development of autoimmune thyroiditis induced by iodine uptake. However, the overexpression of BID itself is not sufficient to initiate thyroiditis in CBA/J (H-2 k) mice. PMID:24957380

  18. Hepatic steatosis in transgenic mice overexpressing human histone deacetylase 1

    International Nuclear Information System (INIS)

    Wang, Ai-Guo; Seo, Sang-Beom; Moon, Hyung-Bae; Shin, Hye-Jun; Kim, Dong Hoon; Kim, Jin-Man; Lee, Tae-Hoon; Kwon, Ho Jeong; Yu, Dae-Yeul; Lee, Dong-Seok

    2005-01-01

    It is generally thought that histone deacetylases (HDACs) play important roles in the transcriptional regulation of genes. However, little information is available concerning the specific functions of individual HDACs in disease states. In this study, two transgenic mice lines were established which harbored the human HDAC1 gene. Overexpressed HDAC1 was detected in the nuclei of transgenic liver cells, and HDAC1 enzymatic activity was significantly higher in the transgenic mice than in control littermates. The HDAC1 transgenic mice exhibited a high incidence of hepatic steatosis and nuclear pleomorphism. Molecular studies showed that HDAC1 may contribute to nuclear pleomorphism through the p53/p21 signaling pathway

  19. Endogenous IL-1 in cognitive function and anxiety: a study in IL-1RI-/- mice.

    Directory of Open Access Journals (Sweden)

    Carol L Murray

    Full Text Available Interleukin-1 (IL-1 is a key pro-inflammatory cytokine, produced predominantly by peripheral immune cells but also by glia and some neuronal populations within the brain. Its signalling is mediated via the binding of IL-1α or IL-1β to the interleukin-1 type one receptor (IL-1RI. IL-1 plays a key role in inflammation-induced sickness behaviour, resulting in depressed locomotor activity, decreased exploration, reduced food and water intake and acute cognitive deficits. Conversely, IL-1 has also been suggested to facilitate hippocampal-dependent learning and memory: IL-1RI(-/- mice have been reported to show deficits on tasks of visuospatial learning and memory. We sought to investigate whether there is a generalised hippocampal deficit in IL-1RI(-/- animals. Therefore, in the current study we compared wildtype (WT mice to IL-1RI(-/- mice using a variety of hippocampal-dependent learning and memory tasks, as well as tests of anxiety and locomotor activity. We found no difference in performance of the IL-1RI(-/- mice compared to WT mice in a T-maze working memory task. In addition, the IL-1RI(-/- mice showed normal learning in various spatial reference memory tasks including the Y-maze and Morris mater maze, although there was a subtle deficit in choice behaviour in a spatial discrimination, beacon watermaze task. IL-1RI(-/- mice also showed normal memory for visuospatial context in the contextual fear conditioning paradigm. In the open field, IL-1RI(-/- mice showed a significant increase in distance travelled and rearing behaviour compared to the WT mice and in the elevated plus-maze spent more time in the open arms than did the WT animals. The data suggest that, contrary to prior studies, IL-1RI(-/- mice are not robustly impaired on hippocampal-dependent memory and learning but do display open field hyperactivity and decreased anxiety compared to WT mice. The results argue for a careful evaluation of the roles of endogenous IL-1 in hippocampal

  20. APP transgenic mice for modelling behavioral and psychological symptoms of dementia (BPSD)

    Science.gov (United States)

    Lalonde, R.; Fukuchi, K.; Strazielle, C.

    2012-01-01

    The discovery of gene mutations responsible for autosomal dominant Alzheimer's disease has enabled researchers to reproduce in transgenic mice several hallmarks of this disorder, notably Aβ accumulation, though in most cases without neurofibrillary tangles. Mice expressing mutated and wild-type APP as well as C-terminal fragments of APP exhibit variations in exploratory activity reminiscent of behavioral and psychological symptoms of Alzeimer dementia (BPSD). In particular, open-field, spontaneous alternation, and elevated plus-maze tasks as well as aggression are modified in several APP transgenic mice relative to non-transgenic controls. However, depending on the precise murine models, changes in open-field and elevated plus-maze exploration occur in either direction, either increased or decreased relative to controls. It remains to be determined which neurotransmitter changes are responsible for this variability, in particular with respect to GABA, 5HT, and dopamine. PMID:22373961

  1. Skeletal Muscle Response to Endurance Training in IL-6-/- Mice.

    Science.gov (United States)

    Wojewoda, M; Kmiecik, K; Majerczak, J; Ventura-Clapier, R; Fortin, D; Onopiuk, M; Rog, J; Kaminski, K; Chlopicki, S; Zoladz, J A

    2015-12-01

    We examined effects of moderate-intensity endurance training on muscle COX/CS activities and V'O2max in control WT and IL-6(-/-) mice. Animals were exercised for 10 weeks on treadmill for 1 h, 5 days a week at velocity of 6 m·min(-1) which was increased by 0.5 m·min(-1) every 2 weeks up to 8 m·min(-1) . Training triggered an increase of enzyme activities in soleus muscle of WT mice (COX: 480.3±8.9 U·g(-1) in sedentary group vs. 773.3±62.6 U·g(-1) in trained group, P<0.05 and CS: 374.0±6.0 U·g(-1) in sedentary group vs. 534.2±20.5 U·g(-1) in trained group, P<0.01, respectively) whereas no changes were observed in soleus of IL6(-/-) mice. Moreover, in mixed gastrocnemius muscle of trained IL-6(-/-) mice enzyme activities tended to be lower (COX: 410.7±48.4 U·g(-1) for sedentary vs. 277.0±36.5 U·g(-1) for trained group and CS: 343.8±24.6 U·g(-1) for sedentary vs. 251.7±27.1 U·g(-1) for trained group). No changes in V'O2max were observed in WT and IL-6(-/-) mice after training. Concluding, moderate-velocity endurance training-induced increase in COX and CS activities in muscles of WT mice only which suggests that IL-6 regulates training-induced skeletal muscle responses to exercise. © Georg Thieme Verlag KG Stuttgart · New York.

  2. IL-4 deficiency is associated with mechanical hypersensitivity in mice.

    Directory of Open Access Journals (Sweden)

    Nurcan Üçeyler

    Full Text Available Interleukin-4 (IL-4 is an anti-inflammatory and analgesic cytokine that induces opioid receptor transcription. We investigated IL-4 knockout (ko mice to characterize their pain behavior before and after chronic constriction injury (CCI of the sciatic nerve as a model for neuropathic pain. We investigated opioid responsivity and measured cytokine and opioid receptor gene expression in the peripheral and central nervous system (PNS, CNS of IL-4 ko mice in comparison with wildtype (wt mice. Naïve IL-4 ko mice displayed tactile allodynia (wt: 0.45 g; ko: 0.18 g; p<0.001, while responses to heat and cold stimuli and to muscle pressure were not different. No compensatory changes in the gene expression of tumor necrosis factor-alpha (TNF, IL-1β, IL-10, and IL-13 were found in the PNS and CNS of naïve IL-4 ko mice. However, IL-1β gene expression was stronger in the sciatic nerve of IL-4 ko mice (p<0.001 28 days after CCI and only IL-4 ko mice had elevated IL-10 gene expression (p = 0.014. Remarkably, CCI induced TNF (p<0.01, IL-1β (p<0.05, IL-10 (p<0.05, and IL-13 (p<0.001 gene expression exclusively in the ipsilateral spinal cord of IL-4 ko mice. The compensatory overexpression of the anti-inflammatory and analgesic cytokines IL-10 and IL-13 in the spinal cord of IL-4 ko mice may explain the lack of genotype differences for pain behavior after CCI. Additionally, CCI induced gene expression of μ, κ, and δ opioid receptors in the contralateral cortex and thalamus of IL-4 ko mice, paralleled by fast onset of morphine analgesia, but not in wt mice. We conclude that a lack of IL-4 leads to mechanical sensitivity; the compensatory hyperexpression of analgesic cytokines and opioid receptors after CCI, in turn, protects IL-4 ko mice from enhanced pain behavior after nerve lesion.

  3. Astrocyte-targeted expression of IL-6 protects the CNS against a focal brain injury

    DEFF Research Database (Denmark)

    Penkowa, Milena; Giralt, Mercedes; Lago, Natalia

    2003-01-01

    significantly increased up to but not including 20 dpl in the GFAP-IL6 mice. Oxidative stress as well as apoptotic cell death was significantly decreased throughout the time period studied in the GFAP-IL6 mice compared to controls. This could be linked to the altered inflammatory response as well......The effect of CNS-targeted IL-6 gene expression has been thoroughly investigated in the otherwise nonperturbed brain but not following brain injury. Here we examined the impact of astrocyte-targeted IL-6 production in a traumatic brain injury (cryolesion) model using GFAP-IL6 transgenic mice...... as to the transgenic IL-6-induced increase of the antioxidant, neuroprotective proteins metallothionein-I + II. These results indicate that although in the brain the chronic astrocyte-targeted expression of IL-6 spontaneously induces an inflammatory response causing significant damage, during an acute...

  4. IL-10 and IL-27 producing dendritic cells capable of enhancing IL-10 production of T cells are induced in oral tolerance.

    Science.gov (United States)

    Shiokawa, Aya; Tanabe, Kosuke; Tsuji, Noriko M; Sato, Ryuichiro; Hachimura, Satoshi

    2009-06-30

    Oral tolerance is a key feature of intestinal immunity, generating systemic tolerance to ingested antigens (Ag). Dendritic cells (DC) have been revealed as important immune regulators, however, the precise role of DC in oral tolerance induction remains unclear. We investigated the characteristics of DC in spleen, mesenteric lymph node (MLN), and Peyer's patch (PP) after oral Ag administration in a TCR-transgenic mouse model. DC from PP and MLN of tolerized mice induced IL-10 production but not Foxp3 expression in cocultured T cells. IL-10 production was markedly increased after 5-7-day Ag administration especially in PP DC. On the other hand, IL-27 production was increased after 2-5-day Ag administration. CD11b(+) DC, which increased after ingestion of Ag, prominently expressed IL-10 and IL-27 compared with CD11b(-) DC. These results suggest that IL-10 and IL-27 producing DC are increased by interaction with antigen specific T cells in PP, and these DC act as an inducer of IL-10 producing T cells in oral tolerance.

  5. Contraction and AICAR stimulate IL-6 vesicle depletion from skeletal muscle fibers in vivo.

    Science.gov (United States)

    Lauritzen, Hans P M M; Brandauer, Josef; Schjerling, Peter; Koh, Ho-Jin; Treebak, Jonas T; Hirshman, Michael F; Galbo, Henrik; Goodyear, Laurie J

    2013-09-01

    Recent studies suggest that interleukin 6 (IL-6) is released from contracting skeletal muscles; however, the cellular origin, secretion kinetics, and signaling mechanisms regulating IL-6 secretion are unknown. To address these questions, we developed imaging methodology to study IL-6 in fixed mouse muscle fibers and in live animals in vivo. Using confocal imaging to visualize endogenous IL-6 protein in fixed muscle fibers, we found IL-6 in small vesicle structures distributed throughout the fibers under basal (resting) conditions. To determine the kinetics of IL-6 secretion, intact quadriceps muscles were transfected with enhanced green fluorescent protein (EGFP)-tagged IL-6 (IL-6-EGFP), and 5 days later anesthetized mice were imaged before and after muscle contractions in situ. Contractions decreased IL-6-EGFP-containing vesicles and protein by 62% (P contraction. However, contraction-mediated IL-6-EGFP reduction was normal in muscle-specific AMP-activated protein kinase (AMPK) α2-inactive transgenic mice. In contrast, the AMPK activator AICAR decreased IL-6-EGFP vesicles, an effect that was inhibited in the transgenic mice. In conclusion, resting skeletal muscles contain IL-6-positive vesicles that are expressed throughout myofibers. Contractions stimulate the rapid reduction of IL-6 in myofibers, occurring through an AMPKα2-independent mechanism. This novel imaging methodology clearly establishes IL-6 as a contraction-stimulated myokine and can be used to characterize the secretion kinetics of other putative myokines.

  6. Lymphoma induction by heterocyclic amines in Eu-pim-1 transgenic mice

    DEFF Research Database (Denmark)

    Sørensen, Ilona Kryspin; Kristiansen, E.; Mortensen, Alicja

    1997-01-01

    The usefulness of transgenic E mu-pim-1 mice bearing in their genome the pim-1 oncogene supplemented with an upstream immunoglobulin enhancer and a downstream murine leukaemia virus long terminal repeat, as sensitive test organisms was studied in two short-term carcinogenicity studies. The mice...... to bacteria and cultured mammalian cells. PhIP is a potent mouse lymphomagen, while IQ is a liver, lung and forestomach carcinogen in mice. We found that transgenic E mu-pim-1 mice are highly susceptible to PhIP induced lymphomagenesis but do not respond to IQ treatment. PhIP feeding of E mu-pim-1 mice...... not only increased the total number of T-cell lymphomas but also decreased the latency time compared to either transgenic or wild-type controls. The effect was most pronounced in the treated female E mu-pim-1 mice, which showed a higher incidence of PhIP induced T-cell lymphomas than transgenic males...

  7. Endogenous IL-1 in Cognitive Function and Anxiety: A Study in IL-1RI−/− Mice

    Science.gov (United States)

    Murray, Carol L.; Obiang, Pauline; Bannerman, David; Cunningham, Colm

    2013-01-01

    Interleukin-1 (IL-1) is a key pro-inflammatory cytokine, produced predominantly by peripheral immune cells but also by glia and some neuronal populations within the brain. Its signalling is mediated via the binding of IL-1α or IL-1β to the interleukin-1 type one receptor (IL-1RI). IL-1 plays a key role in inflammation-induced sickness behaviour, resulting in depressed locomotor activity, decreased exploration, reduced food and water intake and acute cognitive deficits. Conversely, IL-1 has also been suggested to facilitate hippocampal-dependent learning and memory: IL-1RI−/− mice have been reported to show deficits on tasks of visuospatial learning and memory. We sought to investigate whether there is a generalised hippocampal deficit in IL-1RI−/− animals. Therefore, in the current study we compared wildtype (WT) mice to IL-1RI−/− mice using a variety of hippocampal-dependent learning and memory tasks, as well as tests of anxiety and locomotor activity. We found no difference in performance of the IL-1RI−/− mice compared to WT mice in a T-maze working memory task. In addition, the IL-1RI−/− mice showed normal learning in various spatial reference memory tasks including the Y-maze and Morris mater maze, although there was a subtle deficit in choice behaviour in a spatial discrimination, beacon watermaze task. IL-1RI−/− mice also showed normal memory for visuospatial context in the contextual fear conditioning paradigm. In the open field, IL-1RI−/− mice showed a significant increase in distance travelled and rearing behaviour compared to the WT mice and in the elevated plus-maze spent more time in the open arms than did the WT animals. The data suggest that, contrary to prior studies, IL-1RI−/− mice are not robustly impaired on hippocampal-dependent memory and learning but do display open field hyperactivity and decreased anxiety compared to WT mice. The results argue for a careful evaluation of the roles of endogenous IL-1 in

  8. Bacterial magnetic particles improve testes-mediated transgene efficiency in mice.

    Science.gov (United States)

    Wang, Chao; Sun, Guanghong; Wang, Ye; Kong, Nana; Chi, Yafei; Yang, Leilei; Xin, Qiliang; Teng, Zhen; Wang, Xu; Wen, Yujun; Li, Ying; Xia, Guoliang

    2017-11-01

    Nano-scaled materials have been proved to be ideal DNA carriers for transgene. Bacterial magnetic particles (BMPs) help to reduce the toxicity of polyethylenimine (PEI), an efficient gene-transferring agent, and assist tissue transgene ex vivo. Here, the effectiveness of the BMP-PEI complex-conjugated foreign DNAs (BPDs) in promoting testes-mediated gene transfer (TMGT) in mouse was compared with that of liposome-conjugated foreign DNAs. The results proved that through testes injection, the clusters of BPDs successfully reached the cytoplasm and the nuclear of spermatogenesis cell, and expressed in testes of transgene founder mice. Additionally, the ratio of founder mice obtained from BPDs (88%) is about 3 times higher than the control (25%) (p mice from BPD group were significantly improved, as compared with the control (p mice within the first filial was significantly higher in BPDs compared with the control (73.8% versus 11.6%, p mice in vivo.

  9. Transgenic Expression of IL15 Improves Antiglioma Activity of IL13Rα2-CAR T Cells but Results in Antigen Loss Variants.

    Science.gov (United States)

    Krenciute, Giedre; Prinzing, Brooke L; Yi, Zhongzhen; Wu, Meng-Fen; Liu, Hao; Dotti, Gianpietro; Balyasnikova, Irina V; Gottschalk, Stephen

    2017-07-01

    Glioblastoma (GBM) is the most aggressive primary brain tumor in adults and is virtually incurable with conventional therapies. Immunotherapy with T cells expressing GBM-specific chimeric antigen receptors (CAR) is an attractive approach to improve outcomes. Although CAR T cells targeting GBM antigens, such as IL13 receptor subunit α2 (IL13Rα2), HER2, and EGFR variant III (EGFRvIII), have had antitumor activity in preclinical models, early-phase clinical testing has demonstrated limited antiglioma activity. Transgenic expression of IL15 is an appealing strategy to enhance CAR T-cell effector function. We tested this approach in our IL13Rα2-positive glioma model in which limited IL13Rα2-CAR T-cell persistence results in recurrence of antigen-positive gliomas. T cells were genetically modified with retroviral vectors encoding IL13Rα2-CARs or IL15 (IL13Rα2-CAR.IL15 T cells). IL13Rα2-CAR.IL15 T cells recognized glioma cells in an antigen-dependent fashion, had greater proliferative capacity, and produced more cytokines after repeated stimulations in comparison with IL13Rα2-CAR T cells. No autonomous IL13Rα2-CAR.IL15 T-cell proliferation was observed; however, IL15 expression increased IL13Rα2-CAR T-cell viability in the absence of exogenous cytokines or antigen. In vivo , IL13Rα2-CAR.IL15 T cells persisted longer and had greater antiglioma activity than IL13Rα2-CAR T cells, resulting in a survival advantage. Gliomas recurring after 40 days after T-cell injection had downregulated IL13Rα2 expression, indicating that antigen loss variants occur in the setting of improved T-cell persistence. Thus, CAR T cells for GBM should not only be genetically modified to improve their proliferation and persistence, but also to target multiple antigens. Summary: Glioblastoma responds imperfectly to immunotherapy. Transgenic expression of IL15 in T cells expressing CARs improved their proliferative capacity, persistence, and cytokine production. The emergence of antigen

  10. Non-motor and motor features in LRRK2 transgenic mice.

    Directory of Open Access Journals (Sweden)

    Zoë Bichler

    Full Text Available Non-motor symptoms are increasingly recognized as important features of Parkinson's disease (PD. LRRK2 mutations are common causes of familial and sporadic PD. Non-motor features have not been yet comprehensively evaluated in LRRK2 transgenic mouse models.Using a transgenic mouse model overexpressing the R1441G mutation of the human LRRK2 gene, we have investigated the longitudinal correlation between motor and non-motor symptoms and determined if specific non-motor phenotypes precede motor symptoms.We investigated the onset of motor and non-motor phenotypes on the LRRK2(R1441G BAC transgenic mice and their littermate controls from 4 to 21 month-old using a battery of behavioral tests. The transgenic mutant mice displayed mild hypokinesia in the open field from 16 months old, with gastrointestinal dysfunctions beginning at 6 months old. Non-motor features such as depression and anxiety-like behaviors, sensorial functions (pain sensitivity and olfaction, and learning and memory abilities in the passive avoidance test were similar in the transgenic animals compared to littermate controls.LRRK2(R1441G BAC transgenic mice displayed gastrointestinal dysfunction at an early stage but did not have abnormalities in fine behaviors, olfaction, pain sensitivity, mood disorders and learning and memory compared to non-transgenic littermate controls. The observations on olfaction and gastrointestinal dysfunction in this model validate findings in human carriers. These mice did recapitulate mild Parkinsonian motor features at late stages but compensatory mechanisms modulating the progression of PD in these models should be further evaluated.

  11. Global inhibition of DC priming capacity in the spleen of self-antigen vaccinated mice requires IL-10

    Directory of Open Access Journals (Sweden)

    Douglas Matthew Marvel

    2014-02-01

    Full Text Available DC in the spleen are highly activated following intravenous vaccination with a foreign antigen, promoting expansion of effector T cells, but remain phenotypically and functionally immature after vaccination with a self-antigen. Up-regulation or suppression of expression of a cohort of pancreatic enzymes 24-72 hours post-vaccination can be used as a biomarker of stimulatory versus toleragenic DC, respectively. Here we show, using MUC1 transgenic mice (MUC1.Tg and a vaccine based on the MUC1 peptide which these mice perceive as a self-antigen, that the difference in enzyme expression that predicts whether DC will promote immune response or immune tolerance, is seen as early as 4-8 hours following vaccination. We also identify early production of IL-10 as a predominant factor that both correlates with this early time point and controls DC function. Pre-treating mice with an antibody against the IL-10 receptor (IL-10R prior to vaccination results in DC that up-regulate CD40, CD80, and CD86 and promote stronger IFNγ+ T cell responses. This study suggests that transient inhibition of IL-10 prior to vaccination could improve responses to cancer vaccines that utilize self-tumor antigens.

  12. [Chromosomal localization of foreign genes in transgenic mice using dual-color fluorescence in situ hybridization].

    Science.gov (United States)

    Lin, Dan; Gong, Xiu-li; Li, Wei; Guo, Xin-bing; Zhu, Yi-wen; Huang, Ying

    2008-02-01

    To establish a highly sensitive and specific dual-color fluorescence in situ hybridization (D-FISH) method used for chromosomal localization of foreign genes in double transgenic mice. Two strains of double transgenic mice were used in this experiment, one was integrated with the herpes simplex virus thymidine kinase (HSV-tk) and the enhanced green fluorescence protein (eGFP), the other was with the short hairpin RNA interference(RNAi) and beta(654). Splenic cells cultured in vitro were arrested in metaphase by colchicine and hybridized with digoxigenin-labeled and biotinylated DNA probes, then detected by rhodamine-conjugated avidin and FITC-conjugated anti-digoxigenin. Dual-color fluorescence signals were detected on the same metaphase in both transgenic mice strains. In HSV-tk/eGFP double transgenic mice, strong green fluorescence for HSV-tk and red for eGFP were observed and localized at 2E5-G3 and 8A2-A4 respectively. In beta(654)/RNAi mice, beta(654) was detected as red fluorescence on chromosome 7D3-E2, and RNAi showed random integration on chromosomes. It was detected as green fluorescence on chromosome 12B1 in one mouse, while on 1E2.3-1F and 3A3 in the other. Highly sensitive and specific D-FISH method was established using the self-prepared DNA probes, and chromosomal localization of the foreign genes was also performed in combination with G-banding in double transgenic mice. This technology will facilitate the researches in transgenic animals and gene therapy models.

  13. IL-22R Ligands IL-20, IL-22, and IL-24 Promote Wound Healing in Diabetic db/db Mice.

    Science.gov (United States)

    Kolumam, Ganesh; Wu, Xiumin; Lee, Wyne P; Hackney, Jason A; Zavala-Solorio, Jose; Gandham, Vineela; Danilenko, Dimitry M; Arora, Puneet; Wang, Xiaoting; Ouyang, Wenjun

    2017-01-01

    Diabetic foot ulcers (DFU) are one of the major complications in type II diabetes patients and can result in amputation and morbidity. Although multiple approaches are used clinically to help wound closure, many patients still lack adequate treatment. Here we show that IL-20 subfamily cytokines are upregulated during normal wound healing. While there is a redundant role for each individual cytokine in this subfamily in wound healing, mice deficient in IL-22R, the common receptor chain for IL-20, IL-22, and IL-24, display a significant delay in wound healing. Furthermore, IL-20, IL-22 and IL-24 are all able to promote wound healing in type II diabetic db/db mice. Mechanistically, when compared to other growth factors such as VEGF and PDGF that accelerate wound healing in this model, IL-22 uniquely induced genes involved in reepithelialization, tissue remodeling and innate host defense mechanisms from wounded skin. Interestingly, IL-22 treatment showed superior efficacy compared to PDGF or VEGF in an infectious diabetic wound model. Taken together, our data suggest that IL-20 subfamily cytokines, particularly IL-20, IL-22, and IL-24, might provide therapeutic benefit for patients with DFU.

  14. Hyperlipidemia and cutaneous abnormalities in transgenic mice overexpressing human apolipoprotein C1

    NARCIS (Netherlands)

    Jong, M. C.; Gijbels, M. J.; Dahlmans, V. E.; Gorp, P. J.; Koopman, S. J.; Ponec, M.; Hofker, M. H.; Havekes, L. M.

    1998-01-01

    Transgenic mice were generated with different levels of human apolipoprotein C1 (APOC1) expression in liver and skin. At 2 mo of age, serum levels of cholesterol, triglycerides (TG), and FFA were strongly elevated in APOC1 transgenic mice compared with wild-type mice. These elevated levels of serum

  15. Short-term carcinogenicity testing of 2-amino-1-methyl-6-phenylimidazo[4,5-b]pyridine (PhIP) and 2-amino-3-methylimidazo[4,5-f] quinoline (IQ) in E mu-pim-1 transgenic mice

    DEFF Research Database (Denmark)

    Sørensen, Ilona Kryspin; Mortensen, Alicja; Kristiansen, E.

    1996-01-01

    The usefulness of transgenic E mu-pim-1 mice over-expressing the pim-1 oncogene in lymphoid tissues, as sensitive test organisms was studied in a short-term carcinogenicity study. The mice were fed standard diet Altromin 1314 supplemented either with 0.03% 2-amino-1-methyl-6-phenylimidazo[4,5-b......]pyridine (PhIP) for 7 months or with 0.03% 2-amino-3-methylimidazo[4,5-f]quinoline (IQ) for 6 months, PhIP and IQ are heterocyclic amines formed during cooking of meat and fish and are mutagenic to bacteria and cultured mammalian cells, PhIP is a potent mouse lymphomagen, while IQ is a liver carcinogen...... to non-transgenic mice. Our results suggest that the transgenic E mu-pim-1 mouse may be a useful model for short-term carcinogenicity screening of potential genotoxic carcinogens having the lymphoid system as target tissue, The carcinogen IQ which does not have the lymphoid system as a target...

  16. High blood pressure in transgenic mice carrying the rat angiotensinogen gene.

    Science.gov (United States)

    Kimura, S; Mullins, J J; Bunnemann, B; Metzger, R; Hilgenfeldt, U; Zimmermann, F; Jacob, H; Fuxe, K; Ganten, D; Kaling, M

    1992-01-01

    Transgenic mice were generated by injecting the entire rat angiotensinogen gene into the germline of NMRI mice. The resulting transgenic animals were characterized with respect to hemodynamics, parameters of the renin angiotension system, and expression of the transgene. The transgenic line TGM(rAOGEN)123 developed hypertension with a mean arterial blood pressure of 158 mmHg in males and 132 mmHg in females. In contrast, the transgenic line TGM(rAOGEN)92 was not hypertensive. Rat angiotensinogen was detectable only in plasma of animals of line 123. Total plasma angiotensinogen and plasma angiotensin II concentrations were about three times as high as those of negative control mice. In TGM(rAOGEN)123 the transgene was highly expressed in liver and brain. Transcripts were also detected in heart, kidney and testis. In TGM(rAOGEN)92 the brain was the main expressing organ. In situ hybridization revealed an mRNA distribution in the brain of TGM(rAOGEN)123 similar to the one in rat. In TGM(rAOGEN)92 the expression pattern in the brain was aberrant. These data indicate that overexpression of the angiotensinogen gene in liver and brain leads to the development of hypertension in transgenic mice. The TGM(rAOGEN)123 constitutes a high angiotensin II type of hypertension and may provide a new experimental animal model to study the kinetics and function of the renin angiotensin system. Images PMID:1547785

  17. Anxiety-like behavior in transgenic mice with brain expression of neuropeptide Y.

    Science.gov (United States)

    Inui, A; Okita, M; Nakajima, M; Momose, K; Ueno, N; Teranishi, A; Miura, M; Hirosue, Y; Sano, K; Sato, M; Watanabe, M; Sakai, T; Watanabe, T; Ishida, K; Silver, J; Baba, S; Kasuga, M

    1998-01-01

    Neuropeptide Y (NPY), one of the most abundant peptide transmitters in the mammalian brain, is assumed to play an important role in behavior and its disorders. To understand the long-term modulation of neuronal functions by NPY, we raised transgenic mice created with a novel central nervous system (CNS) neuron-specific expression vector of human Thy- gene fragment linked to mouse NPY cDNA. In situ hybridization analysis demonstrated transgene-derived NPY expression in neurons (e.g., in the hippocampus, cerebral cortex, and the arcuate nucleus of the hypothalamus) in the transgenic mice. The modest increase of NPY protein in the brain was demonstrated by semiquantitative immunohistochemical analysis and by radioreceptor assay (115% in transgenic mice compared to control littermates). Double-staining experiments indicated colocalization of the transgene-derived NPY message and NPY protein in the same neurons, such as in the arcuate nucleus. The transgenic mice displayed behavioral signs of anxiety and hypertrophy of adrenal zona fasciculata cells, but no change in food intake was observed. The anxiety-like behavior of transgenic mice was reversed, at least in part, by administration of corticotropin-releasing factor (CRF) antagonists, alpha-helical CRF9-41, into the third cerebral ventricle. These results suggest that NPY has a role in anxiety and behavioral responses to stress partly via the CRF neuronal system. This genetic model may provide a unique opportunity to study human anxiety and emotional disorders.

  18. The cytomegalovirus-encoded chemokine receptor US28 promotes intestinal neoplasia in transgenic mice

    NARCIS (Netherlands)

    Bongers, Gerold; Maussang, David; Muniz, Luciana R; Noriega, Vanessa M; Fraile-Ramos, Alberto; Barker, Nick; Marchesi, Federica; Thirunarayanan, Nanthakumar; Vischer, Henry F; Qin, Lihui; Mayer, Lloyd; Harpaz, Noam; Leurs, Rob; Furtado, Glaucia C; Clevers, Hans; Tortorella, Domenico; Smit, Martine J; Lira, Sergio A

    2010-01-01

    US28 is a constitutively active chemokine receptor encoded by CMV (also referred to as human herpesvirus 5), a highly prevalent human virus that infects a broad spectrum of cells, including intestinal epithelial cells (IECs). To study the role of US28 in vivo, we created transgenic mice (VS28 mice)

  19. Rutin improves spatial memory in Alzheimer's disease transgenic mice by reducing Aβ oligomer level and attenuating oxidative stress and neuroinflammation.

    Science.gov (United States)

    Xu, Peng-Xin; Wang, Shao-Wei; Yu, Xiao-Lin; Su, Ya-Jing; Wang, Teng; Zhou, Wei-Wei; Zhang, He; Wang, Yu-Jiong; Liu, Rui-Tian

    2014-05-01

    Alzheimer's disease (AD) is a progressive, neurodegenerative disease characterized by extracellular β-amyloid (Aβ) plaques and intracellular neurofibrillary tangles in the brain. Aβ aggregation is closely associated with neurotoxicity, oxidative stress, and neuronal inflammation. The soluble Aβ oligomers are believed to be the most neurotoxic form among all forms of Aβ aggregates. We have previously reported a polyphenol compound rutin that could inhibit Aβ aggregation and cytotoxicity, attenuate oxidative stress, and decrease the production of nitric oxide and proinflammatory cytokines in vitro. In the current study, we investigated the effect of rutin on APPswe/PS1dE9 transgenic mice. Results demonstrated that orally administered rutin significantly attenuated memory deficits in AD transgenic mice, decreased oligomeric Aβ level, increased super oxide dismutase (SOD) activity and glutathione (GSH)/glutathione disulfide (GSSG) ratio, reduced GSSG and malondialdehyde (MDA) levels, downregulated microgliosis and astrocytosis, and decreased interleukin (IL)-1β and IL-6 levels in the brain. These results indicated that rutin is a promising agent for AD treatment because of its antioxidant, anti-inflammatory, and reducing Aβ oligomer activities. Copyright © 2014 Elsevier B.V. All rights reserved.

  20. Mechanism of lipid lowering in mice expressing human apolipoprotein A5

    Energy Technology Data Exchange (ETDEWEB)

    Fruchart-Najib, Jamila; Bauge, Eric; Niculescu, Loredan-Stefan; Pham, Tatiana; Thomas, Benoit; Rommens, Corinne; Majd, Zouher; Brewer, Bryan; Rubin, Edward M.; Pennacchio, Len A.; Fruchart, Jean-Charles

    2004-01-15

    Recently, we reported that apoAV plays key role in triglycerides lowering. Here, we attempted to determine the mechanism underlying this hypotriglyceridemic effect. We showed that triglyceride turnover is faster in hAPOA5 transgenic compared to wild type mice. Moreover, both apoB and apoCIII are decreased and LPL activity is increased in postheparin plasma of hAPOA5 transgenic mice. These data suggest a decrease in size and number of VLDL. To further investigate the mechanism of hAPOA5 in hyperlipidemic background, we intercrossed hAPOA5 and hAPOC3 transgenic mice. The effect resulted in a marked decreased of VLDL triglyceride, cholesterol, apolipoproteins B and CIII. In postprandial state, the triglyceride response is abolished in hAPOA5 transgenic mice. We demonstrated that in response to the fat load in hAPOA5XhAPOC3 mice, apoAV shifted from HDL to VLDL, probably to limit the elevation of triglycerides. In vitro, apoAV activates lipoprotein lipase. However, apoAV does not interact with LPL but interacts physically with apoCIII. This interaction does not seem to displace apoCIII from VLDL but may induce conformational change in apoCIII and consequently change in its function leading the activation of lipoprotein lipase.

  1. Redox regulation of mast cell histamine release in thioredoxin-1 (TRX) transgenic mice.

    Science.gov (United States)

    Son, Aoi; Nakamura, Hajime; Kondo, Norihiko; Matsuo, Yoshiyuki; Liu, Wenrui; Oka, Shin-ichi; Ishii, Yasuyuki; Yodoi, Junji

    2006-02-01

    Thioredoxin-1 (TRX) is a stress-inducible redox-regulatory protein with antioxidative and anti-inflammatory effects. Here we show that the release of histamine from mast cells elicited by cross-linking of high-affinity receptor for IgE (FcepsilonRI) was significantly suppressed in TRX transgenic (TRX-tg) mice compared to wild type (WT) mice. Intracellular reactive oxygen species (ROS) of mast cells stimulated by IgE and antigen was also reduced in TRX-tg mice compared to WT mice. Whereas there was no difference in the production of cytokines (IL-6 and TNF-alpha) from mast cells in response to 2,4-dinitrophenylated bovine serum albumin (DNP-BSA) stimulation in TRX-tg and WT mice. Immunological status of TRX-tg mice inclined to T helper (Th) 2 dominant in primary immune response, although there was no difference in the population of dendritic cells (DCs) and regulatory T cells. We conclude that the histamine release from mast cells in TRX-tg mice is suppressed by inhibition of ROS generation. As ROS are involved in mast cell activation and facilitate mediator release, TRX may be a key signaling molecule regulating the early events in the IgE signaling in mast cells and the allergic inflammation.

  2. In the absence of endogenous mouse apolipoprotein E, apolipoprotein E*2(Arg-158 → Cys) transgenic mice develop more severe hyperlipoproteinemia than apolipoprotein E*3-Leiden transgenic mice

    NARCIS (Netherlands)

    Vlijmen, B.J.M. van; Dijk, K.W. van; Hof, H.B. van 't; Gorp, P.J.J. van; Zee, A. van der; Boom, H. van der; Breuer, M.L.; Hofker, M.H.; Havekesf, L.M.

    1996-01-01

    Apolipoprotein E*2(Arg-155 → Cys) (APOE*2) transgenic mice were generated and compared to the previously generated apolipoprotein E*3- Leiden (APOE*3-Leiden) transgenic mice to study the variable expression of hyperlipoproteinemia associated with these two APOE variants. In the presence of the

  3. Application of Echocardiography on Transgenic Mice with Cardiomyopathies

    Directory of Open Access Journals (Sweden)

    G. Chen

    2012-01-01

    Full Text Available Cardiomyopathies are common cardiac disorders that primarily affect cardiac muscle resulting in cardiac dysfunction and heart failure. Transgenic mouse disease models have been developed to investigate the cellular mechanisms underlying heart failure and sudden cardiac death observed in cardiomyopathy cases and to explore the therapeutic outcomes in experimental animals in vivo. Echocardiography is an essential diagnostic tool for accurate and noninvasive assessment of cardiac structure and function in experimental animals. Our laboratory has been among the first to apply high-frequency research echocardiography on transgenic mice with cardiomyopathies. In this work, we have summarized our and other studies on assessment of systolic and diastolic dysfunction using conventional echocardiography, pulsed Doppler, and tissue Doppler imaging in transgenic mice with various cardiomyopathies. Estimation of embryonic mouse hearts has been performed as well using this high-resolution echocardiography. Some technical considerations in mouse echocardiography have also been discussed.

  4. Both core and F proteins of hepatitis C virus could enhance cell proliferation in transgenic mice

    Energy Technology Data Exchange (ETDEWEB)

    Hu, Wen-Ta [Graduate Institute of Medical Biotechnology, Tzu Chi University, Hualien, Taiwan (China); Li, Hui-Chun [Department of Biochemistry, Tzu Chi University, Hualien, Taiwan (China); Lee, Shen-Kao; Ma, Hsin-Chieh; Yang, Chee-Hing; Chen, Hung-Ling [Graduate Institute of Medical Biotechnology, Tzu Chi University, Hualien, Taiwan (China); Lo, Shih-Yen, E-mail: losylo@mail.tcu.edu.tw [Graduate Institute of Medical Biotechnology, Tzu Chi University, Hualien, Taiwan (China); Department of Laboratory Medicine, Buddhist Tzu Chi General Hospital, Hualien, Taiwan (China)

    2013-05-24

    Highlights: •HCV core and F proteins could induce hepatocyte proliferation in the transgenic mice. •β-Catenin signaling pathway was activated by core protein in the transgenic mice. •β-Catenin signaling pathway was activated by myc-F protein in the transgenic mice. •Expression of SMA protein was enhanced by core but not myc-F protein. -- Abstract: The role of the protein encoded by the alternative open reading frame (ARF/F/core+1) of the Hepatitis C virus (HCV) genome in viral pathogenesis remains unknown. The different forms of ARF/F/core+1 protein were labile in cultured cells, a myc-tag fused at the N-terminus of the F protein made it more stable. To determine the role of core and F proteins in HCV pathogenesis, transgenic mice with either protein expression under the control of Albumin promoter were generated. Expression of core protein and F protein with myc tag (myc-F) could be detected by Western blotting analysis in the livers of these mice. The ratio of liver to body weight is increased for both core and myc-F transgenic mice compared to that of wild type mice. Indeed, the proliferating cell nuclear antigen protein, a proliferation marker, was up-regulated in the transgenic mice with core or myc-F protein. Further analyses by microarray and Western blotting suggested that β-catenin signaling pathway was activated by either core or myc-F protein in the transgenic mice. These transgenic mice were further treated with either Diethynitrosamine (a tumor initiator) or Phenobarbital (a tumor promoter). Phenobarbital but not Diethynitrosamine treatment could increase the liver/body weight ratio of these mice. However, no tumor formation was observed in these mice. In conclusion, HCV core and myc-F proteins could induce hepatocyte proliferation in the transgenic mice possibly through β-catenin signaling pathway.

  5. Both core and F proteins of hepatitis C virus could enhance cell proliferation in transgenic mice

    International Nuclear Information System (INIS)

    Hu, Wen-Ta; Li, Hui-Chun; Lee, Shen-Kao; Ma, Hsin-Chieh; Yang, Chee-Hing; Chen, Hung-Ling; Lo, Shih-Yen

    2013-01-01

    Highlights: •HCV core and F proteins could induce hepatocyte proliferation in the transgenic mice. •β-Catenin signaling pathway was activated by core protein in the transgenic mice. •β-Catenin signaling pathway was activated by myc-F protein in the transgenic mice. •Expression of SMA protein was enhanced by core but not myc-F protein. -- Abstract: The role of the protein encoded by the alternative open reading frame (ARF/F/core+1) of the Hepatitis C virus (HCV) genome in viral pathogenesis remains unknown. The different forms of ARF/F/core+1 protein were labile in cultured cells, a myc-tag fused at the N-terminus of the F protein made it more stable. To determine the role of core and F proteins in HCV pathogenesis, transgenic mice with either protein expression under the control of Albumin promoter were generated. Expression of core protein and F protein with myc tag (myc-F) could be detected by Western blotting analysis in the livers of these mice. The ratio of liver to body weight is increased for both core and myc-F transgenic mice compared to that of wild type mice. Indeed, the proliferating cell nuclear antigen protein, a proliferation marker, was up-regulated in the transgenic mice with core or myc-F protein. Further analyses by microarray and Western blotting suggested that β-catenin signaling pathway was activated by either core or myc-F protein in the transgenic mice. These transgenic mice were further treated with either Diethynitrosamine (a tumor initiator) or Phenobarbital (a tumor promoter). Phenobarbital but not Diethynitrosamine treatment could increase the liver/body weight ratio of these mice. However, no tumor formation was observed in these mice. In conclusion, HCV core and myc-F proteins could induce hepatocyte proliferation in the transgenic mice possibly through β-catenin signaling pathway

  6. Immunoglobulin gene expression and regulation of rearrangement in kappa transgenic mice

    International Nuclear Information System (INIS)

    Ritchie, K.A.

    1986-01-01

    Transgenic mice were produced by microinjection of the functionally rearranged immunoglobulin kappa gene from the myeloma MOPC-21 into the male pronucleus of fertilized mouse eggs, and implantation of the microinjected embryos into foster mothers. Mice that integrated the injected gene were detected by hybridizing tail DNA dots with radioactively labelled pBR322 plasmid DNA, which detects pBR322 sequences left as a tag on the microinjected DNA. Mice that integrated the injected gene (six males) were mated and the DNA, RNA and serum kappa chains of their offspring were analyzed. A rabbit anti-mouse kappa chain antiserum was also produced for use in detection of mouse kappa chains on protein blots. Hybridomas were produced from the spleen cells of these kappa transgenic mice to immortalize representative B cells and to investigate expression of the transgenic kappa gene, its effect on allelic exclusion, and its effect on the control of light chain gene rearrangement and expression. The results show that the microinjected DNA is integrated as concatamers in unique single or, rarely, two separate sites in the genome. The concatamers are composed of several copies (16 to 64) of injected DNA arranged in a head to tail fashion. The transgene is expressed into protein normally and in a tissue specific fashion. For the first time in these transgenic mice, all tissues contain a functionally rearranged and potentially expressible immunoglobulin gene. The transgene is expressed only in B cells and not in hepatocytes, for example. This indicates that rearrangement of immunoglobulin genes is necessary but not sufficient for the tissue specific expression of these genes by B cells

  7. Podocyte changes upon induction of albuminuria in Thy-1.1 transgenic mice.

    NARCIS (Netherlands)

    Smeets, B.; Dijkman, H.B.P.M.; Loeke, N. te; Son, J.P.H.F. van; Steenbergen, E.; Assmann, K.J.M.; Wetzels, J.F.M.; Groenen, P.J.T.A.

    2003-01-01

    BACKGROUND: Thy-1.1 transgenic mice, characterized by ectopic expression of the Thy-1.1 protein on podocytes, spontaneously develop proteinuria and focal glomerulosclerosis (FGS). Injection of a monoclonal antibody (mAb) directed against the Thy-1.1 protein in young transgenic mice induces a massive

  8. Expression of cartilage developmental genes in Hoxc8- and Hoxd4-transgenic mice.

    Directory of Open Access Journals (Sweden)

    Claudia Kruger

    2010-02-01

    Full Text Available Hox genes encode transcription factors, which regulate skeletal patterning and chondrocyte differentiation during the development of cartilage, the precursor to mature bone. Overexpression of the homeobox transcription factors Hoxc8 and Hoxd4 causes severe cartilage defects due to delay in cartilage maturation. Matrix metalloproteinases (MMPs, bone morphogenetic proteins (BMPs and fibroblastic growth factors (FGFs are known to play important roles in skeletal development and endochondral bone formation and remodeling. In order to investigate whether these molecules are aberrantly expressed in Hoxc8- and/or Hoxd4-transgenic cartilage, we performed quantitative RT-PCR on chondrocytes from Hox-transgenic mice. Gene expression levels of Bmp4, Fgf8, Fgf10, Mmp9, Mmp13, Nos3, Timp3, Wnt3a and Wnt5a were altered in Hoxc8-transgenic chondrocytes, and Fgfr3, Ihh, Mmp8, and Wnt3a expression levels were altered in Hoxd4-transgenic chondrocytes, respectively. Notably, Wnt3a expression was elevated in Hoxc8- and reduced in Hoxd4-transgenic cartilage. These results suggest that both transcription factors affect cartilage maturation through different molecular mechanisms, and provide the basis for future studies into the role of these genes and possible interactions in pathogenesis of cartilage defects in Hoxc8- and Hoxd4-transgenic mice.

  9. Immune selection of tumor cells in TCR β-chain transgenic mice.

    Science.gov (United States)

    Silaeva, Yulia Yu; Grinenko, Tatyana S; Vagida, Murad S; Kalinina, Anastasia A; Khromykh, Ludmila M; Kazansky, Dmitry B

    2014-10-01

    The concept of immunological surveillance implies that immunogenic variants of tumor cells arising in the organism can be recognized by the immune system. Tumor progression is provided by somatic evolution of tumor cells under the pressure of the immune system. The loss of MHC Class I molecules on the surface of tumor cells is one of the most known outcomes of immune selection. This study developed a model of immune selection based on the immune response of TCR 1d1 single β-chain transgenic B10.D2(R101) (K(d)I(d)D(b)) mice to allogeneic EL4 (H-2(b)) thymoma cells. In wild-type B10.D2(R101) mice, immunization with EL4 cells induced a vigorous CTL response targeted to the H-2K(b) molecule and results in full rejection of the tumor cells. In contrast, transgenic mice developed a compromised proliferative response in mixed-lymphocyte response assays and were unable to reject transplanted allogeneic EL4 cells. During the immune response to EL4 cells, CD8(+) T-lymphocytes with endogenous β-chains accumulated predominantly in the spleen of transgenic mice and only a small part of the T-lymphocytes expressing transgenic β-chains became CD8(+)CD44(+)CD62L(-) effectors. Then, instead of a full elimination of tumor cells as in wild-type mice, a reproducible prolonged equilibrium phase and subsequent escape was observed in transgenic mice that resulted in death of 90% of the mice in 40-60 days after grafting. Prolonged exposure of tumor cells to the pressure of the immune system in transgenic mice in vivo resulted in a stable loss of H-2K(b) molecules on the EL4 cell surface. Genetic manipulation of the T-lymphocyte repertoire was sufficient to reproduce the classic pattern of interactions between tumor cells and the immune system, usually observed in reliable syngeneic models of anti-tumor immunity. This newly-developed model could be used in further studies of immunoregulatory circuits common for transplantational and anti-tumor immune responses.

  10. Transgenic mice for a tamoxifen-induced, conditional expression of the Cre recombinase in osteoclasts.

    Directory of Open Access Journals (Sweden)

    Maria Arantzazu Sanchez-Fernandez

    Full Text Available BACKGROUND: Studies on osteoclasts, the bone resorbing cells, have remained limited due to the lack of transgenic mice allowing the conditional knockout of genes in osteoclasts at any time during development or adulthood. METHODOLOGY/PRINCIPAL FINDING: We report here on the generation of transgenic mice which specifically express a tamoxifen-inducible Cre recombinase in osteoclasts. These mice, generated on C57BL/6 and FVB background, express a fusion Cre recombinase-ERT2 protein whose expression is driven by the promoter of cathepsin K (CtsK, a gene highly expressed in osteoclasts. We tested the cellular specificity of Cre activity in CtsKCreERT2 strains by breeding with Rosa26LacZ reporter mice. PCR and histological analyses of the CtsKCreERT2LacZ positive adult mice and E17.5 embryos show that Cre activity is restricted largely to bone tissue. In vitro, primary osteoclasts derived from the bone marrow of CtsKCreERT2+/-LacZ+/- adult mice show a Cre-dependent β-galactosidase activity after tamoxifen stimulation. CONCLUSIONS/SIGNIFICANCE: We have generated transgenic lines that enable the tamoxifen-induced, conditional deletion of loxP-flanked genes in osteoclasts, thus circumventing embryonic and postnatal gene lethality and avoiding gene deletion in other cell types. Such CtsKCreERT2 mice provide a convenient tool to study in vivo the different facets of osteoclast function in bone physiology during different developmental stages and adulthood of mice.

  11. Transcervical Inoculation with Chlamydia trachomatis Induces Infertility in HLA-DR4 Transgenic and Wild-Type Mice.

    Science.gov (United States)

    Pal, Sukumar; Tifrea, Delia F; Zhong, Guangming; de la Maza, Luis M

    2018-01-01

    Chlamydia trachomatis is the leading cause of infection-induced infertility in women. Attempts to control this epidemic with screening programs and antibiotic therapy have failed. Currently, a vaccine to prevent C. trachomatis infections is not available. In order to develop an animal model for evaluating vaccine antigens that can be applied to humans, we used C. trachomatis serovar D (strain UW-3/Cx) to induce infertility in mice whose major histocompatibility complex class II antigen was replaced with the human leukocyte antigen DR4 (HLA-DR4). Transcervical inoculation of medroxyprogesterone-treated HLA-DR4 transgenic mice with 5 × 10 5 C. trachomatis D inclusion forming units (IFU) induced a significant reduction in fertility, with a mean number of embryos/mouse of 4.4 ± 1.3 compared to 7.8 ± 0.5 for the uninfected control mice ( P < 0.05). A similar fertility reduction was elicited in the wild-type (WT) C57BL/6 mice (4.3 ± 1.4 embryos/mouse) compared to the levels of the WT controls (9.1 ± 0.4 embryos/mouse) ( P < 0.05). Following infection, WT mice mounted more robust humoral and cellular immune responses than HLA-DR4 mice. As determined by vaginal shedding, HLA-DR4 mice were more susceptible to a transcervical C. trachomatis D infection than WT mice. To assess if HLA-DR4 transgenic and WT mice could be protected by vaccination, 10 4 IFU of C. trachomatis D was delivered intranasally, and mice were challenged transcervically 6 weeks later with 5 × 10 5 IFU of C. trachomatis D. As determined by severity and length of vaginal shedding, WT C57BL/6 and HLA-DR4 mice were significantly protected by vaccination. The advantages and limitations of the HLA-DR4 transgenic mouse model for evaluating human C. trachomatis vaccine antigens are discussed. Copyright © 2017 American Society for Microbiology.

  12. Anti-IL-39 (IL-23p19/Ebi3) polyclonal antibodies ameliorate autoimmune symptoms in lupus-like mice

    Science.gov (United States)

    Wang, Xiaoqian; Zhang, Yu; Wang, Zhiding; Liu, Xiaoling; Zhu, Gaizhi; Han, Gencheng; Chen, Guojiang; Hou, Chunmei; Wang, Tianxiao; Shen, Beifen; Li, Yan; Xiao, He; Ma, Ning; Wang, Renxi

    2018-01-01

    The interleukin (IL)-12 family cytokines have been examined as therapeutic targets in the treatment of several autoimmune diseases. Our previous study showed that a novel IL-12 family cytokine, IL-39 (IL-23p19/Ebi3) mediates inflammation in lupus-like mice. In the present study, the effect of anti-mouse IL-39 polyclonal antibodies on autoimmune symptoms in lupus-like mice was investigated. Rabbit anti-mouse IL-39 polyclonal antibodies were produced by immunization with recombinant mouse IL-39, and purified using protein A chromatography. These antibodies were subsequently used to treat lupus-like mice. Flow cytometry, captured images, ELISA and H&E staining were used to determine the effect of anti-IL-39 polyclonal antibodies on inflammatory cells, autoantibody titers, proteinuria, infiltrating inflammatory cells and the structure of the glomerular region. The anti-IL-39 polyclonal antibodies effectively reduced the numbers of inflammatory cells, splenomegaly, autoantibody titers, proteinuria, infiltrating inflammatory cells, and restored the structure of the glomerular region in MRL/lpr mice. Taken together, these results suggested that anti-IL-39 polyclonal antibodies ameliorated autoimmune symptoms in lupus-like mice. Therefore, IL-39 may be used as a possible target for the treatment of systemic lupus erythematosus. PMID:29138852

  13. IL-5 and IL-5 receptor in asthma

    Directory of Open Access Journals (Sweden)

    ATC Kotsimbos

    1997-12-01

    Full Text Available Eosinophils, along with mast cells are key cells involved in the innate immune response against parasitic infection whereas the adaptive immune response is largely dependent on lymphocytes. In chronic parasitic disease and in chronic allergic disease, IL-5 is predominantly a T cell derived cytokine which is particularly important for the terminal differentiation, activation and survival of committed eosinophil precursors. The human IL-5 gene is located on chromosome 5 in a gene cluster that contains the evolutionary related IL-4 family of cytokine genes. The human IL-5 receptor complex is a heterodimer consisting of a unique a subunit (predominantly expressed on eosinophils and a beta subunit which is shared between the receptors for IL-3 & GM-CSF (more widely expressed. The a subunit is required for ligand-specific binding whereas association with the beta subunit results in increased binding affinity. The alternative splicing of the alphaIL-5R gene which contains 14 exons can yield several alphaIL-5R isoforms including a membrane-anchored isoform (alphaIL-5Rm and a soluble isoform (alphaIL-5Rs. Cytokines such as IL-5 produce specific and non-specific cellular responses through specific cell membrane receptor mediated activation of intracellular signal transduction pathways which, to a large part, regulate gene expression. The major intracellular signal transduction mechanism is activation of non-receptor associated tyrosine kinases including JAK and MAP kinases which can then transduce signals via a novel family of transcriptional factors named signal transducers and activators of transcription (STATS. JAK2, STAT1 and STAT 5 appear to be particularly important in IL-5 mediated eosinophil responses. Asthma is characterized by episodic airways obstruction, increased bronchial responsiveness, and airway inflammation. Several studies have shown an association between the number of activated T cells and eosinophils in the airways and abnormalities

  14. Focal glomerulosclerosis in proviral and c-fms transgenic mice links Vpr expression to HIV-associated nephropathy

    International Nuclear Information System (INIS)

    Dickie, Peter; Roberts, Amanda; Uwiera, Richard; Witmer, Jennifer; Sharma, Kirti; Kopp, Jeffrey B.

    2004-01-01

    Clinical and morphologic features of human immunodeficiency virus (HIV)-associated nephropathy (HIVAN), such as proteinuria, sclerosing glomerulopathy, tubular degeneration, and interstitial disease, have been modeled in mice bearing an HIV proviral transgene rendered noninfectious through a deletion in gag/pol. Exploring the genetic basis of HIVAN, HIV transgenic mice bearing mutations in either or both of the accessory genes nef and vpr were created. Proteinuria and focal glomerulosclerosis (FGS) only developed in mice with an intact vpr gene. Transgenic mice bearing a simplified proviral DNA (encoding only Tat and Vpr) developed renal disease characterized by FGS in which Vpr protein was localized to glomerular and tubular epithelia by immunohistochemistry. The dual transgenic progeny of HIV[Tat/Vpr] mice bred to HIV[ΔVpr] proviral transgenic mice displayed a more severe nephropathy with no apparent increase in Vpr expression, implying that multiple viral genes contribute to HIVAN. However, the unique contribution of macrophage-specific Vpr expression in the development of glomerular disease was underscored by the induction of FGS in multiple murine lines bearing a c-fms/vpr transgene

  15. α-Lipoic acid prevents lipotoxic cardiomyopathy in acyl CoA-synthase transgenic mice

    International Nuclear Information System (INIS)

    Lee, Young; Naseem, R. Haris; Park, Byung-Hyun; Garry, Daniel J.; Richardson, James A.; Schaffer, Jean E.; Unger, Roger H.

    2006-01-01

    α-Lipoic acid (α-LA) mimics the hypothalamic actions of leptin on food intake, energy expenditure, and activation of AMP-activated protein kinase (AMPK). To determine if, like leptin, α-LA protects against cardiac lipotoxicity, α-LA was fed to transgenic mice with cardiomyocyte-specific overexpression of the acyl CoA synthase (ACS) gene. Untreated ACS-transgenic mice died prematurely with increased triacylglycerol content and dilated cardiomyopathy, impaired systolic function and myofiber disorganization, apoptosis, and interstitial fibrosis on microscopy. In α-LA-treated ACS-transgenic mice heart size, echocardiogram and TG content were normal. Plasma TG fell 50%, hepatic-activated phospho-AMPK rose 6-fold, sterol regulatory element-binding protein-1c declined 50%, and peroxisome proliferator-activated receptor-γ cofactor-1α mRNA rose 4-fold. Since food restriction did not prevent lipotoxicity, we conclude that α-LA treatment, like hyperleptinemia, protects the heart of ACS-transgenic mice from lipotoxicity

  16. Characterization of gastric adenocarcinoma cell lines established from CEA424/SV40 T antigen-transgenic mice with or without a human CEA transgene

    International Nuclear Information System (INIS)

    Nöckel, Jessica; Engel, Natasja K van den; Winter, Hauke; Hatz, Rudolf A; Zimmermann, Wolfgang; Kammerer, Robert

    2006-01-01

    Gastric carcinoma is one of the most frequent cancers worldwide. Patients with gastric cancer at an advanced disease stage have a poor prognosis, due to the limited efficacy of available therapies. Therefore, the development of new therapies, like immunotherapy for the treatment of gastric cancer is of utmost importance. Since the usability of existing preclinical models for the evaluation of immunotherapies for gastric adenocarcinomas is limited, the goal of the present study was to establish murine in vivo models which allow the stepwise improvement of immunotherapies for gastric cancer. Since no murine gastric adenocarcinoma cell lines are available we established four cell lines (424GC, mGC3, mGC5, mGC8) from spontaneously developing tumors of CEA424/SV40 T antigen (CEA424/Tag) mice and three cell lines derived from double-transgenic offsprings of CEA424/Tag mice mated with human carcinoembryonic antigen (CEA)-transgenic (CEA424/Tag-CEA) mice (mGC2 CEA , mGC4 CEA , mGC11 CEA ). CEA424/Tag is a transgenic C57BL/6 mouse strain harboring the Tag under the control of a -424/-8 bp CEA gene promoter which leads to the development of invasive adenocarcinoma in the glandular stomach. Tumor cell lines established from CEA424/Tag-CEA mice express the well defined tumor antigen CEA under the control of its natural regulatory elements. The epithelial origin of the tumor cells was proven by morphological criteria including the presence of mucin within the cells and the expression of the cell adhesion molecules EpCAM and CEACAM1. All cell lines consistently express the transgenes CEA and/or Tag and MHC class I molecules leading to their susceptibility to lysis by Tag-specific CTL in vitro. Despite the presentation of CTL-epitopes derived from the transgene products the tumor cell lines were tumorigenic when grafted into C57BL/6, CEA424/Tag or CEA424/Tag-CEA-transgenic hosts and no significant differences in tumor take and tumor growth were observed in the different hosts

  17. Pituitary adenomas in mice transgenic for growth hormone-releasing hormone

    DEFF Research Database (Denmark)

    Asa, S L; Kovacs, K; Stefaneanu, L

    1992-01-01

    It has been shown that mice transgenic for human GH-releasing hormone (GRH) develop hyperplasia of pituitary somatotrophs, lactotrophs, and mammosomatotrophs, cells capable of producing both GH and PRL, by 8 months of age. We now report that GRH transgenic mice 10-24 months of age develop pituitary...... adenomas, which we characterized by histology, immunohistochemistry, in situ hybridization, and electron microscopy. Of 13 animals examined, all developed GH-immunoreactive neoplasms that had diffuse positivity for GH mRNA by in situ hybridization. Eleven also contained PRL immunoreactivity; in situ...

  18. Attenuation of 6-hydroxydopamine-induced dopaminergic nigrostriatal lesions in superoxide dismutase transgenic mice

    International Nuclear Information System (INIS)

    Cadet, J.L.; Hirata, H.; Asanuma, M.

    1998-01-01

    6-Hydroxydopamine is a neurotoxin that produces degeneration of the nigrostriatal dopaminergic pathway in rodents. Its toxicity is thought to involve the generation of superoxide anion secondary to its autoxidation. To examine the effects of the overexpression of Cu,Zn-superoxide dismutase activity on 6-hydroxydopamine-induced dopaminergic neuronal damage, we have measured the effects of 6-hydroxydopamine on striatal and nigral dopamine transporters and nigral tyrosine hydroxylase-immunoreactive neurons in Cu,Zn-superoxide dismutase transgenic mice. Intracerebroventricular injection of 6-hydroxydopamine (50 μg) in non-transgenic mice produced reductions in the size of striatal area and an enlargement of the cerebral ventricle on both sides of the brains of mice killed two weeks after the injection. In addition, 6-hydroxydopamine caused marked decreases in striatal and nigral [ 125 I]RTI-121-labelled dopamine transporters not only on the injected side but also on the non-injected side of non-transgenic mice; this was associated with decreased cell number and size of tyrosine hydroxylase-immunoreactive dopamine neurons in the substantia nigra pars compacta on both sides in these mice. In contrast, superoxide dismutase transgenic mice were protected against these neurotoxic effects of 6-hydroxydopamine, with the homozygous transgenic mice showing almost complete protection.These results provide further support for a role of superoxide anion in the toxic effects of 6-hydroxydopamine. They also provide further evidence that reactive oxygen species may be the main determining factors in the neurodegenerative effects of catecholamines. (Copyright (c) 1998 Elsevier Science B.V., Amsterdam. All rights reserved.)

  19. Neural differentiation of adipose-derived stem cells isolated from GFP transgenic mice

    International Nuclear Information System (INIS)

    Fujimura, Juri; Ogawa, Rei; Mizuno, Hiroshi; Fukunaga, Yoshitaka; Suzuki, Hidenori

    2005-01-01

    Taking advantage of homogeneously marked cells from green fluorescent protein (GFP) transgenic mice, we have recently reported that adipose-derived stromal cells (ASCs) could differentiate into mesenchymal lineages in vitro. In this study, we performed neural induction using ASCs from GFP transgenic mice and were able to induce these ASCs into neuronal and glial cell lineages. Most of the neurally induced cells showed bipolar or multipolar appearance morphologically and expressed neuronal markers. Electron microscopy revealed their neuronal morphology. Some cells also showed glial phenotypes, as shown immunocytochemically. The present study clearly shows that ASCs derived from GFP transgenic mice differentiate into neural lineages in vitro, suggesting that these cells might provide an ideal source for further neural stem cell research with possible therapeutic application for neurological disorders

  20. Eosinophils subvert host resistance to an intracellular pathogen by instigating non-protective IL-4 in CCR2-/- mice.

    Science.gov (United States)

    Verma, A H; Bueter, C L; Rothenberg, M E; Deepe, G S

    2017-01-01

    Eosinophils contribute to type II immune responses in helminth infections and allergic diseases; however, their influence on intracellular pathogens is less clear. We previously reported that CCR2 -/- mice exposed to the intracellular fungal pathogen Histoplasma capsulatum exhibit dampened immunity caused by an early exaggerated interleukin (IL)-4 response. We sought to identify the cellular source promulgating IL-4 in infected mutant animals. Eosinophils were the principal instigators of non-protective IL-4 and depleting this granulocyte population improved fungal clearance in CCR2 -/- animals. The deleterious impact of eosinophilia on mycosis was also recapitulated in transgenic animals overexpressing eosinophils. Mechanistic examination of IL-4 induction revealed that phagocytosis of H. capsulatum via the pattern recognition receptor complement receptor (CR) 3 triggered the heightened IL-4 response in murine eosinophils. This phenomenon was conserved in human eosinophils; exposure of cells to the fungal pathogen elicited a robust IL-4 response. Thus, our findings elucidate a detrimental attribute of eosinophil biology in fungal infections that could potentially trigger a collapse in host defenses by instigating type II immunity.

  1. Impaired IL-13-mediated functions of macrophages in STAT6-deficient mice.

    Science.gov (United States)

    Takeda, K; Kamanaka, M; Tanaka, T; Kishimoto, T; Akira, S

    1996-10-15

    IL-13 shares many biologic responses with IL-4. In contrast to well-characterized IL-4 signaling pathways, which utilize STAT6 and 4PS/IRS2, IL-13 signaling pathways are poorly understood. Recent studies performed with STAT6-deficient mice have demonstrated that STAT6 plays an essential role in IL-4 signaling. In this study, the functions of peritoneal macrophages of STAT6-deficient mice in response to IL-13 were analyzed. In STAT6-deficient mice, neither morphologic changes nor augmentation of MHC class II expression in response to IL-13 was observed. In addition, IL-13 did not decrease the nitric oxide production by activated macrophages. Taken together, these results suggest that the macrophage functions in response to IL-13 were impaired in STAT6-deficient mice, indicating that IL-13 and IL-4 share the signaling pathway via STAT6.

  2. Overexpression of TIMP-1 under the MMP-9 promoter interferes with wound healing in transgenic mice

    OpenAIRE

    Salonurmi, T.; Parikka, M.; Kontusaari, S.; Pirila, E.; Munaut, Carine; Salo, T.; Tryggvason, K.

    2004-01-01

    We have generated transgenic mice harboring the murine matrix metalloproteinase 9 (MMP-9) promoter cloned in front of human TIMP-1 cDNA. The transgenic mice were viable and fertile and exhibited normal growth and general development. During wound healing the mice were shown to express human TIMP-1 in keratinocytes that normally express MMP-9. However, the healing of skin wounds was significantly retarded with slow migration of keratinocytes over the wound in transgenic mice. In situ zymograph...

  3. Progression and regression of atherosclerosis in APOE3-Leiden transgenic mice : An immunohistochemical study

    NARCIS (Netherlands)

    Gijbels, M.J.J.; Cammen, M. van der; Laan, L.J.W. van der; Emeis, J.J.; Havekes, L.M.; Hofker, M.H.; Kraal, G.

    1999-01-01

    Apolipoprotein E3-Leiden (APOE3-Leiden) transgenic mice develop hyperlipidemia and are highly susceptible to diet-induced atherosclerosis. We have studied the progression and regression of atherosclerosis using immunohistochemistry. Female transgenic mice were fed a moderate fat diet to study

  4. Intravitreal injection of anti-Interleukin (IL)-6 antibody attenuates experimental autoimmune uveitis in mice.

    Science.gov (United States)

    Tode, Jan; Richert, Elisabeth; Koinzer, Stefan; Klettner, Alexa; Pickhinke, Ute; Garbers, Christoph; Rose-John, Stefan; Nölle, Bernhard; Roider, Johann

    2017-08-01

    To evaluate the effect of an intravitreally applied anti-IL-6 antibody for the treatment of experimental autoimmune uveitis (EAU). EAU was induced in female B10.RIII mice by Inter-Photoreceptor-Binding-Protein (IRBP) in complete Freund's adjuvant, boosted by Pertussis toxin. Single blinded intravitreal injections of anti-IL-6 antibody were applied 5-7days as well as 8-10days (3day interval) after EAU induction into the randomized treatment eye and phosphate buffered saline (PBS) into the fellow control eye. Clinical and fluorescein angiography scoring (6 EAU grades) was done at each injection day and at enucleation day 14. Enucleated eyes were either scored histologically (6 EAU grades) or examined by ELISA for levels of IL-6, IL-17 and IL-6 soluble Receptor (sIL-6R). Uveitis developed in all 12 mice. Clinical uveitis score was significantly reduced (p=0.035) in treated eyes (median 2.0, range 0-4.0, n=12) compared to the fellow control eyes (median 3.0, range 1.0-4.0, n=12). Angiography scores were reduced in 9/12 treated eyes and histological scores in 3/4 treated eyes compared to the fellow control eyes. Cytokine levels were determined in 8 mice, of which 4 responded to anti-IL-6 treatment and 4 did not respond. All mice responding to treatment had a significant reduction of IL-6 (ptreatment significantly attenuates experimental autoimmune uveitis in mice. EAU activity correlates with ocular IL-6 and IL-17 levels. Copyright © 2017 Elsevier Ltd. All rights reserved.

  5. Spontaneous retinopathy in HLA-A29 transgenic mice

    Science.gov (United States)

    Szpak, Yann; Vieville, Jean-Claude; Tabary, Thierry; Naud, Marie-Christine; Chopin, Martine; Edelson, Catherine; Cohen, Jacques H. M.; Dausset, Jean; de Kozak, Yvonne; Pla, Marika

    2001-01-01

    Humans who have inherited the class I major histocompatibility allele HLA-A29 have a markedly increased relative risk of developing the eye disease termed birdshot chorioretinopathy. This disease affecting adults is characterized by symmetrically scattered, small, cream-colored spots in the fundus associated with retinal vasculopathy and inflammatory signs causing damage to the ocular structures, leading regularly to visual loss. To investigate the role of HLA-A29 in this disease, we introduced the HLA-A29 gene into mice. Aging HLA-A29 transgenic mice spontaneously developed retinopathy, showing a striking resemblance to the HLA-A29-associated chorioretinopathy. These results strongly suggest that HLA-A29 is involved in the pathogenesis of this disease. Elucidation of the role of HLA-A29 should be assisted by this transgenic model. PMID:11226280

  6. Recombinant Mycobacterium bovis BCG producing IL-18 reduces IL-5 production and bronchoalveolar eosinophilia induced by an allergic reaction.

    Science.gov (United States)

    Biet, F; Duez, C; Kremer, L; Marquillies, P; Amniai, L; Tonnel, A-B; Locht, C; Pestel, J

    2005-08-01

    Allergic reactions occur through the exacerbated induction of a Th2 cell type expression profile and can be prevented by agents favoring a Th1 profile. Bacillus Calmette-Guérin (BCG) is able to induce high IFN-gamma levels and has been shown to decrease experimentally induced allergy. The induction of IFN-gamma is mediated by interleukin (IL)-12 known to be secreted upon mycobacterial infections and can be enhanced by IL-18 acting in synergy with IL-12. We evaluated the ability of a recombinant BCG strain producing IL-18 (rBCG) to modify the Th2 type responses in a murine model of ovalbumin (OVA)-dependent allergic reaction. Mice were injected intraperitoneally or intranasally with OVA at days 0 and 15 and exposed to an OVA aerosol challenge at days 29, 30, 31 and 34. At days 0 and 15, two additional groups of mice received OVA together with 5 x 10(6) colony forming units of either rBCG or nonrecombinant BCG. A time-course analysis of OVA-specific immunoglobulin (Ig)E, IgG1 and IgG2a levels indicated no significant difference between the three groups of mice. However, following in vitro stimulation with OVA, lymph node cells from rBCG-treated mice produced less IL-5 and more IFN-gamma than those of mice injected with nonrecombinant BCG. In addition, 48 h after the last OVA challenge, a strong reduction of bronchoalveolar eosinophilia was found in the rBCG-injected mice compared to the nontreated or nonrecombinant BCG-treated groups. These results indicate that the production of IL-18 by rBCG may enhance the immunomodulatory properties of BCG that suppress pulmonary Th2 responses and, in particular, decrease airway eosinophilia.

  7. Increased liver pathology in hepatitis C virus transgenic mice expressing the hepatitis B virus X protein

    International Nuclear Information System (INIS)

    Keasler, Victor V.; Lerat, Herve; Madden, Charles R.; Finegold, Milton J.; McGarvey, Michael J.; Mohammed, Essam M.A.; Forbes, Stuart J.; Lemon, Stanley M.; Hadsell, Darryl L.; Grona, Shala J.; Hollinger, F. Blaine; Slagle, Betty L.

    2006-01-01

    Transgenic mice expressing the full-length HCV coding sequence were crossed with mice that express the HBV X gene-encoded regulatory protein HBx (ATX mice) to test the hypothesis that HBx expression accelerates HCV-induced liver pathogenesis. At 16 months (mo) of age, hepatocellular carcinoma was identified in 21% of HCV/ATX mice, but in none of the single transgenic animals. Analysis of 8-mo animals revealed that, relative to HCV/WT mice, HCV/ATX mice had more severe steatosis, greater liver-to-body weight ratios, and a significant increase in the percentage of hepatocytes staining for proliferating cell nuclear antigen. Furthermore, primary hepatocytes from HCV, ATX, and HCV/ATX transgenic mice were more resistant to fas-mediated apoptosis than hepatocytes from nontransgenic littermates. These results indicate that HBx expression contributes to increased liver pathogenesis in HCV transgenic mice by a mechanism that involves an imbalance in hepatocyte death and regeneration within the context of severe steatosis

  8. Age-related changes in body composition of bovine growth hormone transgenic mice.

    Science.gov (United States)

    Palmer, Amanda J; Chung, Min-Yu; List, Edward O; Walker, Jennifer; Okada, Shigeru; Kopchick, John J; Berryman, Darlene E

    2009-03-01

    GH has a significant impact on body composition due to distinct anabolic and catabolic effects on lean and fat mass, respectively. Several studies have assessed body composition in mice expressing a GH transgene. Whereas all studies report enhanced growth of transgenic mice as compared with littermate controls, there are inconsistencies in terms of the relative proportion of lean mass to fat mass in these animals. The purpose of this study was to characterize the accumulation of adipose and lean mass with age and according to gender in a bovine (b) GH transgenic mouse line. Weight and body composition measurements were assessed in male and female bGH mice with corresponding littermate controls in the C57BL/6J genetic background. Body composition measurements began at 6 wk and continued through 1 yr of age. At the conclusion of the study, tissue weights were determined and triglyceride content was quantified in liver and kidney. Although body weights for bGH mice were significantly greater than their corresponding littermate controls at all time points, body composition measurements revealed an unexpected transition midway through analyses. That is, younger bGH mice had relatively more fat mass than nontransgenic littermates, whereas bGH mice became significantly leaner than controls by 4 months in males and 6 months in females. These results reveal the importance in timing and gender when conducting studies related to body composition or lean and fat tissue in GH transgenic mice or in other genetically manipulated mouse strains in which body composition may be impacted.

  9. Resistance to organophosphorus agent toxicity in transgenic mice expressing the G117H mutant of human butyrylcholinesterase

    International Nuclear Information System (INIS)

    Wang Yuxia; Ticu Boeck, Andreea; Duysen, Ellen G.; Van Keuren, Margaret; Saunders, Thomas L.; Lockridge, Oksana

    2004-01-01

    Organophosphorus toxicants (OP) include chemical nerve agents and pesticides. The goal of this work was to find out whether an animal could be made resistant to OP toxicity by genetic engineering. The human butyrylcholinesterase (BChE) mutant G117H was chosen for study because it has the unusual ability to hydrolyze OP as well as acetylcholine, and it is resistant to inhibition by OP. Human G117H BChE, under the control of the ROSA26 promoter, was expressed in all tissues of transgenic mice. A stable transgenic mouse line expressed 0.5 μg/ml of human G117H BChE in plasma as well as 2 μg/ml of wild-type mouse BChE. Intestine, kidneys, stomach, lungs, heart, spleen, liver, brain, and muscle expressed 0.6-0.15 μg/g of G117H BChE. Transgenic mice were normal in behavior and fertility. The LD50 dose of echothiophate for wild-type mice was 0.1 mg/kg sc. This dose caused severe cholinergic signs of toxicity and lethality in wild-type mice, but caused no deaths and only mild toxicity in transgenic animals. The mechanism of protection was investigated by measuring acetylcholinesterase (AChE) and BChE activity. It was found that AChE and endogenous BChE were inhibited to the same extent in echothiophate-treated wild type and transgenic mice. This led to the hypothesis that protection against echothiophate toxicity was not explained by hydrolysis of echothiophate. In conclusion, the transgenic G117H BChE mouse demonstrates the factors required to achieve protection from OP toxicity in a vertebrate animal

  10. Reduced metastasis of transgenic mammary cancer in urokinase-deficient mice

    DEFF Research Database (Denmark)

    Almholt, Kasper; Lund, L.R.; Rygaard, Jørgen

    2005-01-01

    A prominent phenotype of plasmin deficiency in mice is reduced metastasis in the MMTV-PymT transgenic breast cancer model. Proteolytically active plasmin is generated from inactive plasminogen by one of 2 activators, uPA or tPA. We now find that uPA deficiency alone significantly reduces metastasis...... >7-fold in the MMTV-PymT model. We studied a cohort of 55 MMTV-PymT transgenic mice, either uPA-deficient or wild-type controls. Tumor incidence, latency, growth rate and final primary tumor burden were not significantly affected by uPA deficiency. In contrast, average lung metastasis volume...

  11. Intratracheal injection of adenovirus containing the human MNSOD transgene protects athymic nude mice from irradiation-induced organizing alveolitis

    International Nuclear Information System (INIS)

    Epperly, Michael W.; Bray, Jenifer A.; Krager, Stephen; Berry, Luann M.; Gooding, William; Engelhardt, John F.; Zwacka, Ralf; Travis, Elizabeth L.; Greenberger, Joel S.

    1999-01-01

    Purpose: A dose and volume limiting factor in radiation treatment of thoracic cancer is the development of fibrosis in normal lung. The goal of the present study was to determine whether expression prior to irradiation of a transgene for human manganese superoxide dismutase (MnSOD) or human copper/zinc superoxide dismutase (Cu/ZnSOD) protects against irradiation-induced lung damage in mice. Methods and Materials: Athymic Nude (Nu/J) mice were intratracheally injected with 10 9 plaque-forming units (PFU) of a replication-incompetent mutant adenovirus construct containing the gene for either human MnSOD, human copper/zinc superoxide dismutase (Cu/ZnSOD) or LacZ. Four days later the mice were irradiated to the pulmonary cavity to doses of 850, 900, or 950 cGy. To demonstrate adenoviral infection, nested reverse transcriptase-polymerase chain reaction (RT-PCR) was carried out with primers specific for either human MnSOD or Cu/ZnSOD transgene on freshly explanted lung, trachea, or alveolar type II cells, and immunohistochemistry was used to measure LacZ expression. RNA was extracted on day 0, 1, 4, or 7 after 850 cGy of irradiation from lungs of mice that had previously received adenovirus or had no treatment. Slot blot analysis was performed to quantitate RNA expression for IL-1, tumor necrosis factor (TNF)-α, TGF-β, MnSOD, or Cu/ZnSOD. Lung tissue was explanted and tested for biochemical activity of MnSOD or Cu/ZnSOD after adenovirus injection. Other mice were sacrificed 132 days after irradiation, lungs excised, frozen in OCT, (polyvinyl alcohol, polyethylene glycol mixture) sectioned, H and E stained, and evaluated for percent of the lung demonstrating organizing alveolitis. Results: Mice injected intratracheally with adenovirus containing the gene for human MnSOD had significantly reduced chronic lung irradiation damage following 950 cGy, compared to control mice or mice injected with adenovirus containing the gene for human Cu/ZnSOD or LacZ. Immunohistochemistry

  12. Podocyte changes upon induction of albuminuria in Thy-1.1 transgenic mice.

    Science.gov (United States)

    Smeets, Bart; Dijkman, Henry B P M; te Loeke, Nathalie A J M; van Son, Jacco P H F; Steenbergen, Eric J; Assmann, Karel J M; Wetzels, Jack F M; Groenen, Patricia J T A

    2003-12-01

    Thy-1.1 transgenic mice, characterized by ectopic expression of the Thy-1.1 protein on podocytes, spontaneously develop proteinuria and focal glomerulosclerosis (FGS). Injection of a monoclonal antibody (mAb) directed against the Thy-1.1 protein in young transgenic mice induces a massive albuminuria that is followed by an accelerated FGS within 3 weeks. This albuminuria is complement and leukocyte independent. The time course of proteinuria, the pathogenesis of the acute proteinuria and the dose dependency of FGS are unknown. Albuminuria was measured in Thy-1.1 transgenic mice after injection of different doses of anti-Thy-1.1 mAb and at different time points within the first 24 h after injection. Podocytic foot processes and slit pore diameter were quantitated by electron microscopy. Changes in expression of slit pore constituents (podocin, CD2AP, nephrin and ZO-1), cytoskeleton-associated proteins (actin, alpha-actinin, ezrin and synaptopodin), the GDH-podocyte adhesion molecules alpha(3)-integrin, and heparan sulfate were studied by immunofluorescence. FGS was scored by light microscopy at 3 weeks after induction of albuminuria. Albuminuria in Thy-1.1 transgenic mice was observed within 10 min after anti-Thy-1.1 mAb injection. This rapid development of albuminuria was accompanied by a reduction in number of podocytic foot processes from 20.0 +/- 0.7/10 microm glomerular basement membrane (GBM) in saline-treated transgenic mice to 8.0 +/- 0.5 and 2.2 +/- 0.2 in anti-Thy-1.1-treated mice, at 10 min and 8 h after treatment, respectively. In addition, we observed a significant decrease in width of remaining slit pores, from 32.7 +/- 1.1 to 26.8 +/- 1.4 nm at 10 min after mAb injection. By immunofluorescence, we did not observe major changes in the expression pattern of any of the proteins studied. There was no correlation between the injected dose of the anti-Thy-1.1 mAb and the acute albuminuria. In contrast, the percentage of FGS at 3 weeks correlated with the

  13. An extensive phenotypic characterization of the hTNFα transgenic mice

    Directory of Open Access Journals (Sweden)

    Tugusheva Marina

    2007-12-01

    Full Text Available Abstract Background Tumor necrosis factor alpha (TNFα is implicated in a wide variety of pathological and physiological processes, including chronic inflammatory conditions, coronary artery disease, diabetes, obesity, and cachexia. Transgenic mice expressing human TNFα (hTNFα have previously been described as a model for progressive rheumatoid arthritis. In this report, we describe extensive characterization of an hTNFα transgenic mouse line. Results In addition to arthritis, these hTNFα transgenic mice demonstrated major alterations in body composition, metabolic rate, leptin levels, response to a high-fat diet, bone mineral density and content, impaired fertility and male sexual function. Many phenotypes displayed an earlier onset and a higher degree of severity in males, pointing towards a significant degree of sexual dimorphism in response to deregulated expression of TNFα. Conclusion These results highlight the potential usefulness of this transgenic model as a resource for studying the progressive effects of constitutively expressed low levels of circulating TNFα, a condition mimicking that observed in a number of human pathological conditions.

  14. Ginger Extract Reduces the Expression of IL-17 and IL-23 in the Sera and Central Nervous System of EAE Mice.

    Science.gov (United States)

    Jafarzadeh, Abdollah; Azizi, Sayyed-Vahab; Nemati, Maryam; Khoramdel-Azad, Hossain; Shamsizadeh, Ali; Ayoobi, Fatemeh; Taghipour, Zahra; Hassan, Zuhair Mohammad

    2015-12-01

    IL-17/IL-23 axis plays an important role in the pathogenesis of several autoimmune diseases such as experimental autoimmune encephalomyelitis (EAE) and multiple sclerosis (MS). The immunomodulatory properties of ginger are reported in previous studies. To evaluate the effects of ginger extract on the expression of IL-17 and IL-23 in a model of EAE. EAE was induced in C57BL/6 mice by immunization with myelin oligodendroglial glycoprotein and then treated with PBS or ginger extracts, from day +3 to +30. At day 31, mice were scarificed and the expression of IL-17 and IL-23 mRNA in spinal cord were determined by using real time-PCR. The serum levels of cytokines were measured by ELISA. The mRNA expression of IL-17, IL-23 P19 and IL-23 P40 in CNS and serum levels of IL-17 and IL-23 were significantly higher in PBS-treated EAE mice than non-EAE group (pginger-treated EAE mice the mRNA expression of IL-17, P19 and P40 in CNS and serum IL-23 levels were significantly decreased as compared to PBS-treated EAE mice (pginger-treated EAE group had significantly lower expression of IL-17, P19 and P40 in CNS and lower serum IL-17 and IL-23 levels than PBS-treated EAE group (pGinger extract reduces the expression of IL-17 and IL-23 in EAE mice. The therapeutic potential of ginger for treatment of MS could be considered in further studies.

  15. Genetic biomarkers for ALS disease in transgenic SOD1(G93A mice.

    Directory of Open Access Journals (Sweden)

    Ana C Calvo

    Full Text Available The pathophysiological mechanisms of both familial and sporadic Amyotrophic Lateral Sclerosis (ALS are unknown, although growing evidence suggests that skeletal muscle tissue is a primary target of ALS toxicity. Skeletal muscle biopsies were performed on transgenic SOD1(G93A mice, a mouse model of ALS, to determine genetic biomarkers of disease longevity. Mice were anesthetized with isoflurane, and three biopsy samples were obtained per animal at the three main stages of the disease. Transcriptional expression levels of seventeen genes, Ankrd1, Calm1, Col19a1, Fbxo32, Gsr, Impa1, Mef2c, Mt2, Myf5, Myod1, Myog, Nnt, Nogo A, Pax7, Rrad, Sln and Snx10, were tested in each muscle biopsy sample. Total RNA was extracted using TRIzol Reagent according to the manufacturer's protocol, and variations in gene expression were assayed by real-time PCR for all of the samples. The Pearson correlation coefficient was used to determine the linear correlation between transcriptional expression levels throughout disease progression and longevity. Consistent with the results obtained from total skeletal muscle of transgenic SOD1(G93A mice and 74-day-old denervated mice, five genes (Mef2c, Gsr, Col19a1, Calm1 and Snx10 could be considered potential genetic biomarkers of longevity in transgenic SOD1(G93A mice. These results are important because they may lead to the exploration of previously unexamined tissues in the search for new disease biomarkers and even to the application of these findings in human studies.

  16. Use of the viral 2A peptide for bicistronic expression in transgenic mice

    Directory of Open Access Journals (Sweden)

    Trichas Georgios

    2008-09-01

    Full Text Available Abstract Background Transgenic animals are widely used in biomedical research and biotechnology. Multicistronic constructs, in which several proteins are encoded by a single messenger RNA, are commonly used in genetically engineered animals. This is currently done by using an internal ribosomal entry site to separate the different coding regions. 2A peptides result in the co-translational 'cleavage' of proteins and are an attractive alternative to the internal ribosomal entry site. They are more reliable than the internal ribosomal entry site and lead to expression of multiple cistrons at equimolar levels. They work in a wide variety of eukaryotic cells, but to date have not been demonstrated to function in transgenic mice in an inheritable manner. Results To test 2A function in transgenic mice and uncover any possible toxicity of widespread expression of the 2A peptide, we made a bicistronic reporter construct containing the coding sequence for a membrane localised red fluorescent protein (Myr-TdTomato and a nuclear localised green fluorescent protein (H2B-GFP, separated by a 2A sequence. When this reporter is transfected into HeLa cells, the two fluorescent proteins correctly localise to mutually exclusive cellular compartments, demonstrating that the bicistronic construct is a reliable readout of 2A function. The two fluorescent proteins also correctly localise when the reporter is electroporated into chick neural tube cells. We made two independent transgenic mouse lines that express the bicistronic reporter ubiquitously. For both lines, transgenic mice are born in Mendelian frequencies and are found to be healthy and fertile. Myr-TdTomato and H2B-GFP segregate to mutually exclusive cellular compartments in all tissues examined from a broad range of developmental stages, ranging from embryo to adult. One transgenic line shows X-linked inheritance of the transgene and mosaic expression in females but uniform expression in males, indicating

  17. Learning strategy preference of 5XFAD transgenic mice depends on the sequence of place/spatial and cued training in the water maze task.

    Science.gov (United States)

    Cho, Woo-Hyun; Park, Jung-Cheol; Chung, ChiHye; Jeon, Won Kyung; Han, Jung-Soo

    2014-10-15

    Learning strategy preference was assessed in 5XFAD mice, which carry 5 familial Alzheimer's disease (AD) mutations. Mice were sequentially trained in cued and place/spatial versions of the water maze task. After training, a strategy preference test was conducted in which mice were required to choose between the spatial location where the platform had previously been during the place/spatial training, and a visible platform in a new location. 5XFAD and non-transgenic control mice showed equivalent escape performance in both training tasks. However, in the strategy preference test, 5XFAD mice preferred a cued strategy relative to control mice. When the training sequence was presented in the reverse order (i.e., place/spatial training before cued training), 5XFAD mice showed impairments in place/spatial training, but no differences in cued training or in the strategy preference test comparing to control. Analysis of regional Aβ42 deposition in brains of 5XFAD mice showed that the hippocampus, which is involved in the place/spatial learning strategy, had the highest levels of Aβ42 and the dorsal striatum, which is involved in cued learning strategy, showed a small increase in Aβ42 levels. The effect of training protocol order on performance, and regional differences in Aβ42 deposition observed in 5XFAD mice, suggest differential functional recruitment of brain structures related to learning in healthy and AD individuals. Copyright © 2014 Elsevier B.V. All rights reserved.

  18. Creating Transgenic shRNA Mice by Recombinase-Mediated Cassette Exchange

    Science.gov (United States)

    Premsrirut, Prem K.; Dow, Lukas E.; Park, Youngkyu; Hannon, Gregory J.; Lowe, Scott W.

    2014-01-01

    RNA interference (RNAi) enables sequence-specific, experimentally induced silencing of virtually any gene by tapping into innate regulatory mechanisms that are conserved among most eukaryotes. The principles that enable transgenic RNAi in cell lines can also be used to create transgenic animals, which express short-hairpin RNAs (shRNAs) in a regulated or tissue-specific fashion. However, RNAi in transgenic animals is somewhat more challenging than RNAi in cultured cells. The activities of promoters that are commonly used for shRNA expression in cell culture can vary enormously in different tissues, and founder lines also typically vary in transgene expression due to the effects of their single integration sites. There are many ways to produce mice carrying shRNA transgenes and the method described here uses recombinase-mediated cassette exchange (RMCE). RMCE permits insertion of the shRNA transgene into a well-characterized locus that gives reproducible and predictable expression in each founder and enhances the probability of potent expression in many cell types. This procedure is more involved and complex than simple pronuclear injection, but if even a few shRNA mice are envisioned, for example, to probe the functions of several genes, the effort of setting up the processes outlined below are well worthwhile. Note that when creating a transgenic mouse, one should take care to use the most potent shRNA possible. As a rule of thumb, the sequence chosen should provide >90% knockdown when introduced into cultured cells at single copy (e.g., on retroviral infection at a multiplicity of ≤0.3). PMID:24003198

  19. Use of transgenic mice in lipoprotein metabolism and atherosclerosis research

    NARCIS (Netherlands)

    Havekes, L.M.; Vlijmen, B.J.M. van; Jong, M.C.; Dijk, K.W. van; Hofker, M.H.

    1997-01-01

    In APOE*3-Leiden transgenic mice the atherosclerotic lesion size is correlated with plasma cholesterol. In these mice the plasma lipid levels are positively correlated with the relative amount of APOE 3-Leiden protein on the VLDL particle. The plasma cholesterol levels are influenced by diet, age

  20. Anti-tau antibody administration increases plasma tau in transgenic mice and patients with tauopathy

    Science.gov (United States)

    Yanamandra, Kiran; Patel, Tirth K.; Jiang, Hong; Schindler, Suzanne; Ulrich, Jason D.; Boxer, Adam L.; Miller, Bruce L.; Kerwin, Diana R.; Gallardo, Gilbert; Stewart, Floy; Finn, Mary Beth; Cairns, Nigel J.; Verghese, Philip B.; Fogelman, Ilana; West, Tim; Braunstein, Joel; Robinson, Grace; Keyser, Jennifer; Roh, Joseph; Knapik, Stephanie S.; Hu, Yan; Holtzman, David M.

    2017-01-01

    Tauopathies are a group of disorders in which the cytosolic protein tau aggregates and accumulates in cells within the brain, resulting in neurodegeneration. A promising treatment being explored for tauopathies is passive immunization with anti-tau antibodies. We previously found that administration of an anti-tau antibody to human tau transgenic mice increased the concentration of plasma tau. We further explored the effects of administering an anti-tau antibody on plasma tau. After peripheral administration of an anti-tau antibody to human patients with tauopathy and to mice expressing human tau in the central nervous system, there was a dose-dependent increase in plasma tau. In mouse plasma, we found that tau had a short half-life of 8 min that increased to more than 3 hours after administration of anti-tau antibody. As tau transgenic mice accumulated insoluble tau in the brain, brain soluble and interstitial fluid tau decreased. Administration of anti-tau antibody to tau transgenic mice that had decreased brain soluble tau and interstitial fluid tau resulted in an increase in plasma tau, but this increase was less than that observed in tau transgenic mice without these brain changes. Tau transgenic mice subjected to acute neuronal injury using 3-nitropropionic acid showed increased interstitial fluid tau and plasma tau. These data suggest that peripheral administration of an anti-tau antibody results in increased plasma tau, which correlates with the concentration of extracellular and soluble tau in the brain. PMID:28424326

  1. GABAB Receptor Constituents Revealed by Tandem Affinity Purification from Transgenic Mice

    DEFF Research Database (Denmark)

    Bartoi, Tudor; Rigbolt, Kristoffer T G; Du, Dan

    2010-01-01

    lines that allow a straightforward biochemical isolation of GABA(B) receptors. The transgenic mice express GABA(B1) isoforms that contain sequences for a two-step affinity purification, in addition to their endogenous subunit repertoire. Comparative analyses of purified samples from the transgenic mice...... and wild-type control animals revealed two novel components of the GABA(B1) complex. One of the identified proteins, potassium channel tetramerization domain-containing protein 12, associates with heterodimeric GABA(B) receptors via the GABA(B2) subunit. In transfected hippocampal neurons, potassium...

  2. Magnetic biomineralisation in Huntington's disease transgenic mice

    International Nuclear Information System (INIS)

    Beyhum, W; Hautot, D; Dobson, J; Pankhurst, Q A

    2005-01-01

    The concentration levels of biogenic magnetite nanoparticles in transgenic R6/2 Huntington's disease (HD) mice have been investigated, using seven control and seven HD mice each from an 8 week-old litter and from a 12 week-old litter. Hysteresis and isothermal remnant magnetisation data were collected on a SQUID magnetometer, and analysed using a model comprising dia/paramagnetic, ferrimagnetic and superparamagnetic contributions, to extract the magnetite and ferritin concentrations present. It was found that magnetite was present in both superparamagnetic and blocked states. A larger spread and higher concentration of magnetite levels was found in the diseased mice for both the 8 week-old and 12 week-old batches, compared to the controls

  3. Role of IL-4 in aversion induced by food allergy in mice.

    Science.gov (United States)

    Dourado, Luana Pereira Antunes; Saldanha, Janaína Cláudia da Silva; Gargiulo, Daniela Longo; Noviello, Maria de Lourdes Meirelles; Brant, Cláudia Caldeira; Reis, Maria Letícia Costa; Souza, Raphaela Mendes Fernandes de; Faria, Ana Maria Caetano; Souza, Danielle da Glória de; Cara, Denise Carmona

    2010-01-01

    To ascertain the role of IL-4 in aversion to antigen induced by food allergy, wild type and IL-4 deficient BALB/c mice were sensitized with ovalbumin and challenged orally with egg white. Sensitized wild type mice had increased production of IL-4 by spleen and mesenteric lymph node cells in vitro, higher levels of serum anti-ovalbumin IgE and IgG1, aversion to ingestion of the antigen and loss of body weight after continuous oral challenge. Intestinal changes in wild type sensitized mice included eosinophil infiltration and increased mucus production. The IL-4 deficiency impaired the development of food allergy and the aversion to antigen, suggesting the involvement of the antigen specific antibodies. When IL-4 deficient mice received serum from sensitized wild type donors, the aversion was restored. These results indicate that production of IL-4 and specific IgE/IgG1 antibodies correlate with aversion to antigen induced by food allergy in mice. Copyright 2009 Elsevier Inc. All rights reserved.

  4. DNA damage preceding dopamine neuron degeneration in A53T human α-synuclein transgenic mice

    International Nuclear Information System (INIS)

    Wang, Degui; Yu, Tianyu; Liu, Yongqiang; Yan, Jun; Guo, Yingli; Jing, Yuhong; Yang, Xuguang; Song, Yanfeng; Tian, Yingxia

    2016-01-01

    Defective DNA repair has been linked with age-associated neurodegenerative disorders. Parkinson's disease (PD) is a progressive neurodegenerative disorder caused by genetic and environmental factors. Whether damages to nuclear DNA contribute to neurodegeneration of PD still remain obscure. in this study we aim to explore whether nuclear DNA damage induce dopamine neuron degeneration in A53T human α-Synuclein over expressed mouse model. We investigated the effects of X-ray irradiation on A53T-α-Syn MEFs and A53T-α-Syn transgene mice. Our results indicate that A53T-α-Syn MEFs show a prolonged DNA damage repair process and senescense phenotype. DNA damage preceded onset of motor phenotype in A53T-α-Syn transgenic mice and decrease the number of nigrostriatal dopaminergic neurons. Neurons of A53T-α-Syn transgenic mice are more fragile to DNA damages. - Highlights: • This study explore contribution of DNA damage to neurodegeneration in Parkinson's disease mice. • A53T-α-Syn MEF cells show a prolonged DNA damage repair process and senescense phenotype. • DNA damage preceded onset of motor phenotype in A53T-α-Syn transgenic mice. • DNA damage decrease the number of nigrostriatal dopaminergic neurons. • Neurons of A53T-α-Syn transgenic mice are more fragile to DNA damages.

  5. Canolol inhibits gastric tumors initiation and progression through COX-2/PGE2 pathway in K19-C2mE transgenic mice.

    Directory of Open Access Journals (Sweden)

    Donghui Cao

    Full Text Available 4-Vinyl-2, 6-dimethoxyphenol (canolol is an antioxidant phenolic compound extracted from crude canola oil. In current research, K19-C2mE transgenic mice, developing hyperplastic tumors spontaneously in the glandular stomach, were used to study the mechanisms involved in the anti-inflammation and anti-tumor effects of canolol. Tg mice receiving canolol diet had a reduced tumor incidence, to 41.2%, compared with Non-treatment Tg mice, 77.8% of which had gastric tumor (P=0.002. Besides that, the mean tumor diameter was decreased from 6.5 mm to 4.5 mm (P<0.001 after canolol administration. COX-2/PGE2 pathway is known to play pivotal role in inflammation-induced gastric tumorigenesis. The neutrophils and lymphocytes infiltration was suppressed significantly, and the mRNA levels of the proinflammatory cytokines COX-2, IL-1β and IL-12b were also downregulated in gastric mucosa. Additionally, immunohistochemical analysis showed that COX-2, EP2, Gαs and β-catenin, key factors involving in PGE2 signal transduction, were positive staining with higher H scores in Non-treatment Tg mice, while the expressions were suppressed significantly by 0.1% canolol (P<0.001. In addition, tumor-suppressor miR-7 was reactivated after canolol administration, and COX-2 was showed to be a functional target of miR-7 to suppress the tumor progression. In conclusion, canolol could inhibit the gastritis-related tumor initiation and progression, and the suppression effect was correlated with the blocking up of canonical COX-2/PGE2 signaling pathway and might be regulated by miR-7.

  6. Eosinophils Subvert Host Resistance to an Intracellular Pathogen by Instigating Non-Protective IL-4 in CCR2−/− Mice

    Science.gov (United States)

    Verma, Akash H.; Bueter, Chelsea L.; Rothenberg, Marc E.; Deepe, George S.

    2016-01-01

    Eosinophils contribute to type II immune responses in helminth infections and allergic diseases, however, their influence on intracellular pathogens is less clear. We previously reported that CCR2−/− mice exposed to the intracellular fungal pathogen Histoplasma capsulatum exhibit dampened immunity caused by an early exaggerated IL-4 response. We sought to identify the cellular source promulgating interleukin (IL)-4 in infected mutant animals. Eosinophils were the principal instigators of non-protective IL-4 and depleting this granulocyte population improved fungal clearance in CCR2−/− animals. The deleterious impact of eosinophilia on mycosis was also recapitulated in transgenic animals overexpressing eosinophils. Mechanistic examination of IL-4 induction revealed that phagocytosis of H. capsulatum via the pattern recognition receptor complement receptor (CR) 3 triggered the heightened IL-4 response in murine eosinophils. This phenomenon was conserved in human eosinophils; exposure of cells to the fungal pathogen elicited a robust IL-4 response. Thus, our findings elucidate a detrimental attribute of eosinophil biology in fungal infections that could potentially trigger a collapse in host defenses by instigating type II immunity. PMID:27049063

  7. Differential gene expression in ADAM10 and mutant ADAM10 transgenic mice

    Directory of Open Access Journals (Sweden)

    Postina Rolf

    2009-02-01

    Full Text Available Abstract Background In a transgenic mouse model of Alzheimer disease (AD, cleavage of the amyloid precursor protein (APP by the α-secretase ADAM10 prevented amyloid plaque formation, and alleviated cognitive deficits. Furthermore, ADAM10 overexpression increased the cortical synaptogenesis. These results suggest that upregulation of ADAM10 in the brain has beneficial effects on AD pathology. Results To assess the influence of ADAM10 on the gene expression profile in the brain, we performed a microarray analysis using RNA isolated from brains of five months old mice overexpressing either the α-secretase ADAM10, or a dominant-negative mutant (dn of this enzyme. As compared to non-transgenic wild-type mice, in ADAM10 transgenic mice 355 genes, and in dnADAM10 mice 143 genes were found to be differentially expressed. A higher number of genes was differentially regulated in double-transgenic mouse strains additionally expressing the human APP[V717I] mutant. Overexpression of proteolytically active ADAM10 affected several physiological pathways, such as cell communication, nervous system development, neuron projection as well as synaptic transmission. Although ADAM10 has been implicated in Notch and β-catenin signaling, no significant changes in the respective target genes were observed in adult ADAM10 transgenic mice. Real-time RT-PCR confirmed a downregulation of genes coding for the inflammation-associated proteins S100a8 and S100a9 induced by moderate ADAM10 overexpression. Overexpression of the dominant-negative form dnADAM10 led to a significant increase in the expression of the fatty acid-binding protein Fabp7, which also has been found in higher amounts in brains of Down syndrome patients. Conclusion In general, there was only a moderate alteration of gene expression in ADAM10 overexpressing mice. Genes coding for pro-inflammatory or pro-apoptotic proteins were not over-represented among differentially regulated genes. Even a decrease of

  8. Long-term cannabidiol treatment prevents the development of social recognition memory deficits in Alzheimer's disease transgenic mice.

    Science.gov (United States)

    Cheng, David; Spiro, Adena S; Jenner, Andrew M; Garner, Brett; Karl, Tim

    2014-01-01

    Impairments in cognitive ability and widespread pathophysiological changes caused by neurotoxicity, neuroinflammation, oxidative damage, and altered cholesterol homeostasis are associated with Alzheimer's disease (AD). Cannabidiol (CBD) has been shown to reverse cognitive deficits of AD transgenic mice and to exert neuroprotective, anti-oxidative, and anti-inflammatory properties in vitro and in vivo. Here we evaluate the preventative properties of long-term CBD treatment in male AβPPSwe/PS1ΔE9 (AβPP × PS1) mice, a transgenic model of AD. Control and AD transgenic mice were treated orally from 2.5 months of age with CBD (20 mg/kg) daily for 8 months. Mice were then assessed in the social preference test, elevated plus maze, and fear conditioning paradigms, before cortical and hippocampal tissues were analyzed for amyloid load, oxidative damage, cholesterol, phytosterols, and inflammation. We found that AβPP × PS1 mice developed a social recognition deficit, which was prevented by CBD treatment. CBD had no impact on anxiety or associative learning. The prevention of the social recognition deficit was not associated with any changes in amyloid load or oxidative damage. However, the study revealed a subtle impact of CBD on neuroinflammation, cholesterol, and dietary phytosterol retention, which deserves further investigation. This study is the first to demonstrate CBD's ability to prevent the development of a social recognition deficit in AD transgenic mice. Our findings provide the first evidence that CBD may have potential as a preventative treatment for AD with a particular relevance for symptoms of social withdrawal and facial recognition.

  9. Some characteristics of neoplastic cell transformation in transgenic mice.

    Science.gov (United States)

    Shvemberger, I N; Ermilov, A N

    1996-01-01

    The role of the expression of different cellular genes and viral oncogenes in malignant cell transformation is discussed. We pay special attention to the role of the genes for growth factors and their receptors and homeobox genes in oncogenesis. Based on both the literature and our own data, specific features of tumors developed in transgenic mice are discussed. All of these data are used to analyze current theories of multistep oncogenesis and the stochastic component in this process. We suggest that all known evidence about the mechanisms of oncogenesis be used in studying the problem at various structural and functional levels in an organism. The chapter shows that transgenic mice are a most suitable model for studying various aspects of malignant transformation from the molecular to the organismal and populational levels.

  10. Impaired growth of pancreatic exocrine cells in transgenic mice expressing human activin βE subunit

    International Nuclear Information System (INIS)

    Hashimoto, Osamu; Ushiro, Yuuki; Sekiyama, Kazunari; Yamaguchi, Osamu; Yoshioka, Kazuki; Mutoh, Ken-Ichiro; Hasegawa, Yoshihisa

    2006-01-01

    Activins, TGF-β superfamily members, have multiple functions in a variety of cells and tissues. Recently, additional activin β subunit genes, βC and βE, have been identified. To explore the role of activin E, we created transgenic mice overexpressing human activin βE subunit. There were pronounced differences in the pancreata of the transgenic animals as compared with their wild-type counterparts. Pancreatic weight, expressed relative to total body weight, was significantly reduced. Histologically, adipose replacement of acini in the exocrine pancreas was observed. There was a significant decrease in the number of PCNA-positive cells in the acinar cells, indicating reduced proliferation in the exocrine pancreas of the transgenic mice. However, quantitative pancreatic morphometry showed that the total number and mass of the islets of the transgenic mice were comparable with those of the nontransgenic control mice. Our findings suggest a role for activin E in regulating the proliferation of pancreatic exocrine cells

  11. Aberrant Wound Healing in an Epidermal Interleukin-4 Transgenic Mouse Model of Atopic Dermatitis

    Science.gov (United States)

    Zhao, Yan; Bao, Lei; Chan, Lawrence S.; DiPietro, Luisa A.; Chen, Lin

    2016-01-01

    Wound healing in a pre-existing Th2-dominated skin milieu was assessed by using an epidermal specific interleukin-4 (IL-4) transgenic (Tg) mouse model, which develops a pruritic inflammatory skin condition resembling human atopic dermatitis. Our results demonstrated that IL-4 Tg mice had delayed wound closure and re-epithelialization even though these mice exhibited higher degrees of epithelial cell proliferation. Wounds in IL-4 Tg mice also showed a marked enhancement in expression of inflammatory cytokines/chemokines, elevated infiltration of inflammatory cells including neutrophils, macrophages, CD3+ lymphocytes, and epidermal dendritic T lymphocytes. In addition, these mice exhibited a significantly higher level of angiogenesis as compared to wild type mice. Furthermore, wounds in IL-4 Tg mice presented with larger amounts of granulation tissue, but had less expression and deposition of collagen. Taken together, an inflamed skin condition induced by IL-4 has a pronounced negative influence on the healing process. Understanding more about the pathogenesis of wound healing in a Th2- dominated environment may help investigators explore new potential therapeutic strategies. PMID:26752054

  12. Transgenic mice display hair loss and regrowth overexpressing mutant Hr gene.

    Science.gov (United States)

    Zhu, Kuicheng; Xu, Cunshuan; Zhang, Jintao; Chen, Yingying; Liu, Mengduan

    2017-10-30

    Mutations in the hairless (Hr) gene in both mice and humans have been implicated in the development of congenital atrichia, but the role of Hr in skin and hair follicle (HF) biology remains unknown. Here, we established transgenic mice (TG) overexpressing mutant Hr to investigate its specific role in the development of HF. Three transgenic lines were successfully constructed, and two of them (TG3 and TG8) displayed a pattern of hair loss and regrowth with alternation in the expression of HR protein. The mutant Hr gene inhibited the expression of the endogenous gene in transgenic individuals, which led to the development of alopecia. Interestingly, the hair regrew with the increase in the endogenous expression levels resulting from decreased mutant Hr expression. The findings of our study indicate that the changes in the expression of Hr result in hair loss or regrowth.

  13. [Premature immunosenescence in triple-transgenic mice for Alzheimer's disease].

    Science.gov (United States)

    Mate, Ianire; Cruces, Julia; Vida, Carmen; Sanfeliu, Coral; Manassra, Rashed; Giménez-Llort, Lydia; De la Fuente, Mónica

    2014-01-01

    A deterioration of the neuroimmunoendocrine network has been observed in Alzheimer's disease (AD). However, the peripheral immune response has hardly been investigated in this pathology. Since some immune function parameters have been established as good markers of the rate of ageing, and can predict longevity, the aim of the present work was to study some of these functions in splenic leucocytes in transgenic mice for AD of different ages. Young female (4 ± 1 months), adult (9 ± 1 months), and mature (12 ± 1 months) triple-transgenic mice for AD (3 xTgAD) and non-transgenic (NTg) control mice of the same ages were used. The chemotaxis, the anti-tumour activity of « natural killer » (NK) cells and the lymphoproliferative response in the presence of the mitogens concanavalin A and lipopolysaccharide, functions that decrease with age, were determined in splenic leucocytes. In addition, the differences in lifespan between 3 xTgAD and NTg were studied in parallel using other animals, until their death through natural causes. In 3 xTgAD, with respect to NTg, chemotaxis decreased at all ages studied, whereas in lymphoproliferative response this reduction was shown at 4 months and 9 months. NK activity was diminished only in young 3 xTgAD with respect to NTg. The 3 xTgAD showed a shorter lifespan than the NTg control group. The 3 xTgAD mice show a premature immunosenescence, which could explain their early mortality. The determination of these immune functions at peripheral level could serve as a marker of the progression of the Alzheimer's disease. Copyright © 2013 SEGG. Published by Elsevier Espana. All rights reserved.

  14. Ontogeny and localization of the cells produce IL-2 in healthy animals.

    Science.gov (United States)

    Yamamoto, Mutsumi; Seki, Yoichi; Iwai, Kazuyuki; Ko, Iei; Martin, Alicia; Tsuji, Noriko; Miyagawa, Shuji; Love, Robert B; Iwashima, Makio

    2013-03-01

    IL-2 is a growth factor for activated T cells and is required for maintenance of naturally arising regulatory T cells (nTregs). Mice defective in IL-2/IL-2 receptor signaling pathways have impaired nTregs and suffer from lymphoproliferative disorders, suggesting that IL-2 is present and functional in healthy animals. However, the cellular source of IL-2 is currently unknown. To determine which cells produce IL-2 in healthy animals, we established mice carrying cre gene knock in at the il-2 locus (termed IL-2(cre)). When IL-2(cre) mice were crossed with EGFP reporter mice, EGFP was exclusively expressed by a fraction of CD4 T cells present in both lymphoid and non-lymphoid tissues. Live imaging of IL-2(cre) mice that carry the luciferase reporter showed concentrated localization of luciferase(+) cells in Peyer's patches. These cells were not observed in new born mice but appeared within 3days after birth. Reduction of antigen receptor repertoire by transgene expression reduced their number, indicating that recognition of environmental antigens is necessary for generation of these IL-2 producers in healthy animals. A substantial fraction of EGFP(+) cells also produce IL-10 and IFN-γ, a characteristic profile of type 1 regulatory T cells (Tr1). The data suggest that a group of Tr1 cells have addition roles in immune homeostasis by producing IL-2 along with other cytokines and help maintaining Tregs. Copyright © 2012 Elsevier Ltd. All rights reserved.

  15. Activation of Akt1 accelerates carcinogen-induced tumorigenesis in mammary gland of virgin and post-lactating transgenic mice

    International Nuclear Information System (INIS)

    Wu, Yanyuan; Kim, Juri; Elshimali, Yayha; Sarkissyan, Marianna; Vadgama, Jaydutt V

    2014-01-01

    Data from in vivo and in vitro studies suggest that activation of Akt regulates cell survival signaling and plays a key role in tumorigenesis. Hence, transgenic mice were created to explore the oncogenic role of Akt1 in the development of mammary tumors. The transgenic mice were generated by expressing myristoylated-Akt1 (myr-Akt1) under the control of the MMTV-LTR promoter. The carcinogen 7, 12 dimethyl-1,2-benzanthracene (DMBA) was used to induce tumor formation. The MMTV driven myr-Akt1 transgene expression was detected primarily in the mammary glands, uterus, and ovaries. The expression level increased significantly in lactating mice, suggesting that the response was hormone dependent. The total Akt expression level in the mammary gland was also higher in the lactating mice. Interestingly, the expression of MMTVmyr-Akt1 in the ovaries of the transgenic mice caused significant increase in circulating estrogen levels, even at the post-lactation stage. Expression of myr-Akt1 in mammary glands alone did not increase the frequency of tumor formation. However, there was an increased susceptibility of forming mammary tumors induced by DMBA in the transgenic mice, especially in mice post-lactation. Within 34 weeks, DMBA induced mammary tumors in 42.9% of transgenic mice post-lactation, but not in wild-type mice post-lactation. The myr-Akt1 mammary tumors induced by DMBA had increased phosphorylated-Akt1 and showed strong expression of estrogen receptor (ERα) and epidermal growth factor receptor (EGFR). In addition, Cyclin D1 was more frequently up-regulated in mammary tumors from transgenic mice compared to tumors from wild-type mice. Overexpression of Cyclin D1, however, was not completely dependent on activated Akt1. Interestingly, mammary tumors that had metastasized to secondary sites had increased expression of Twist and Slug, but low expression of Cyclin D1. In summary, the MMTVmyr-Akt1 transgenic mouse model could be useful to study mechanisms of ER

  16. Enhanced motivation to alcohol in transgenic mice expressing human α-synuclein.

    Science.gov (United States)

    Rotermund, Carola; Reolon, Gustavo K; Leixner, Sarah; Boden, Cindy; Bilbao, Ainhoa; Kahle, Philipp J

    2017-11-01

    α-Synuclein (αSYN) is the neuropathological hallmark protein of Parkinson's disease (PD) and related neurodegenerative disorders. Moreover, the gene encoding αSYN (SNCA) is a major genetic contributor to PD. Interestingly, independent genome-wide association studies also identified SNCA as the most important candidate gene for alcoholism. Furthermore, single-nucleotide-polymorphisms have been associated with alcohol-craving behavior and alcohol-craving patients showed augmented αSYN expression in blood. To investigate the effect of αSYN on the addictive properties of chronic alcohol use, we examined consumption, motivation, and seeking responses induced by environmental stimuli and relapse behavior in transgenic mice expressing the human mutant [A30P]αSYN throughout the brain. The primary reinforcing effects of alcohol under operant self-administration conditions were increased, while consumption and the alcohol deprivation effect were not altered in the transgenic mice. The same mice were subjected to immunohistochemical measurements of immediate-early gene inductions in brain regions involved in addiction-related behaviors. Acute ethanol injection enhanced immunostaining for the phosphorylated form of cAMP response element binding protein in both amygdala and nucleus accumbens of αSYN transgenic mice, while in wild-type mice no effect was visible. However, at the same time, levels of cFos remain unchanged in both genotypes. These results provide experimental confirmation of SNCA as a candidate gene for alcoholism in addition to its known link to PD. © 2017 International Society for Neurochemistry.

  17. IL-2 regulates SEB induced toxic shock syndrome in BALB/c mice.

    Directory of Open Access Journals (Sweden)

    Aslam Ali Khan

    2009-12-01

    Full Text Available Toxic Shock Syndrome (TSS is characterized by fever, rash, hypotension, constitutional symptoms, and multi-organ involvement and is caused by Staphylococcus aureus enterotoxins such as Staphylococcal Enterotoxin B (SEB. SEB binds to the MHC-IIalpha chain and is recognized by the TCRbeta chain of the Vbeta8 TCR(+ T cells. The binding of SEB to Vbeta chain results in rapid activation of T cells and production of inflammatory cytokines, such as Interleukin-2 (IL-2, Interferon-gamma and Tumor Necrosis Factor-alpha which mediate TSS. Although IL2 was originally identified as the T cell growth factor and was proposed to contribute to T cell differentiation, its role in TSS remains unexplored.Mice were injected with D-Gal (25 mg/mouse. One hour after D-Galactosamine (D-Gal injection each mouse was injected with SEB (20 microg/mouse. Mice were then observed for 72 hrs and death was recorded at different times. We tested Interleukin-12, IFNgamma, and IL-2 deficient mice (IL-2(-/-, but only the IL-2 deficient mice were resistant to SEB induced toxic shock syndrome. More importantly reconstitution of IL-2 in IL-2 deficient mice restored the shock. Interestingly, SEB induced IL-2 production from T cells was dependent on p38MAPK activation in macrophages as inhibition of it in macrophages significantly inhibited IL-2 production from T cells.This study shows the importance of IL -2 in TSS which has not been previously explored and it also shows that regulating macrophages function can regulate T cells and TSS.

  18. Trichostatin A suppresses lung adenocarcinoma development in Grg1 overexpressing transgenic mice

    International Nuclear Information System (INIS)

    Liu, Ju; Li, Yan; Dong, Fengyun; Li, Liqun; Masuda, Takahiro; Allen, Thaddeus D.; Lobe, Corrinne G.

    2015-01-01

    Trichostatin A (TSA) is a histone deacetylase inhibitor and a potential therapeutic for various malignancies. The in vivo effect of TSA, however, has not been investigated in a transgenic lung cancer model. Previously, we generated transgenic mice with overexpression of Groucho-related-gene 1 (Grg1) and these mice all developed mucinous lung adenocarcinoma. Grg1 is a transcriptional co-repressor protein, the function of which is thought to depend on HDAC activity. However, functions outside the nucleus have also been proposed. We tested the supposition that Grg1-induced tumorigenesis is HDAC-dependent by assaying the therapeutic effect of TSA in the Grg1 transgenic mouse model. We found that TSA significantly inhibited lung tumorigenesis in Grg1 transgenic mice (p < 0.01). TSA did not affect overall Grg1 protein levels, but instead reduced ErbB1 and ErbB2 expression, which are upregulated by Grg1 in the absence of TSA. We confirmed this effect in A549 cells. Furthermore, lapatinib, an inhibitor of both ErbB1 and ErbB2, effectively masked the effect of TSA on the inhibition of A549 cell proliferation and migration, suggesting TSA does work, at least in part, by downregulating ErbB receptors. We additionally found that TSA reduced the expression of VEGF and VEGFR2, but not basic FGF and FGFR1. Our findings indicate that TSA effectively inhibits Grg1-induced lung tumorigenesis through the down-regulation of ErbB1 and ErbB2, as well as reduced VEGF signaling. This suggests TSA and other HDAC inhibitors could have therapeutic value in the treatment of lung cancers with Grg1 overexpression. - Highlights: • TSA suppresses lung tumorigenesis in Grg1 overexpressing transgenic mice. • TSA does not affect overall Grg1 protein levels in the mice and in A549 cells. • TSA reduces ErbB1 and ErbB2 expression in the mice and in A549 cells. • Lapatinib masks TSA-induced inhibition of A549 cell proliferation and migration. • TSA inhibits VEGF signaling, but not basic FGF

  19. Trichostatin A suppresses lung adenocarcinoma development in Grg1 overexpressing transgenic mice

    Energy Technology Data Exchange (ETDEWEB)

    Liu, Ju, E-mail: ju.liu@sdu.edu.cn [Medical Research Center, Shandong Provincial Qianfoshan Hospital, Shandong University, 16766 Jingshi Road, Jinan (China); Molecular and Cellular Biology Division, Sunnybrook Health Science Centre, University of Toronto, 2075 Bayview Avenue, Toronto, Ontario M4N 3M5 (Canada); Li, Yan [Children' s Health Care Center, Shandong Provincial Qianfoshan Hospital, Shandong University, 16766 Jingshi Road, Jinan, Shandong 250014 (China); Dong, Fengyun; Li, Liqun [Medical Research Center, Shandong Provincial Qianfoshan Hospital, Shandong University, 16766 Jingshi Road, Jinan (China); Masuda, Takahiro; Allen, Thaddeus D. [Molecular and Cellular Biology Division, Sunnybrook Health Science Centre, University of Toronto, 2075 Bayview Avenue, Toronto, Ontario M4N 3M5 (Canada); Lobe, Corrinne G. [Molecular and Cellular Biology Division, Sunnybrook Health Science Centre, University of Toronto, 2075 Bayview Avenue, Toronto, Ontario M4N 3M5 (Canada); Miami Mice Research Corp., MaRS Centre, Heritage Bldg., 101 College Street, Toronto, Ontario M5G 1L7 (Canada)

    2015-08-07

    Trichostatin A (TSA) is a histone deacetylase inhibitor and a potential therapeutic for various malignancies. The in vivo effect of TSA, however, has not been investigated in a transgenic lung cancer model. Previously, we generated transgenic mice with overexpression of Groucho-related-gene 1 (Grg1) and these mice all developed mucinous lung adenocarcinoma. Grg1 is a transcriptional co-repressor protein, the function of which is thought to depend on HDAC activity. However, functions outside the nucleus have also been proposed. We tested the supposition that Grg1-induced tumorigenesis is HDAC-dependent by assaying the therapeutic effect of TSA in the Grg1 transgenic mouse model. We found that TSA significantly inhibited lung tumorigenesis in Grg1 transgenic mice (p < 0.01). TSA did not affect overall Grg1 protein levels, but instead reduced ErbB1 and ErbB2 expression, which are upregulated by Grg1 in the absence of TSA. We confirmed this effect in A549 cells. Furthermore, lapatinib, an inhibitor of both ErbB1 and ErbB2, effectively masked the effect of TSA on the inhibition of A549 cell proliferation and migration, suggesting TSA does work, at least in part, by downregulating ErbB receptors. We additionally found that TSA reduced the expression of VEGF and VEGFR2, but not basic FGF and FGFR1. Our findings indicate that TSA effectively inhibits Grg1-induced lung tumorigenesis through the down-regulation of ErbB1 and ErbB2, as well as reduced VEGF signaling. This suggests TSA and other HDAC inhibitors could have therapeutic value in the treatment of lung cancers with Grg1 overexpression. - Highlights: • TSA suppresses lung tumorigenesis in Grg1 overexpressing transgenic mice. • TSA does not affect overall Grg1 protein levels in the mice and in A549 cells. • TSA reduces ErbB1 and ErbB2 expression in the mice and in A549 cells. • Lapatinib masks TSA-induced inhibition of A549 cell proliferation and migration. • TSA inhibits VEGF signaling, but not basic FGF

  20. Organotypic brain slice cultures of adult transgenic P301S mice--a model for tauopathy studies.

    Directory of Open Access Journals (Sweden)

    Agneta Mewes

    Full Text Available BACKGROUND: Organotypic brain slice cultures represent an excellent compromise between single cell cultures and complete animal studies, in this way replacing and reducing the number of animal experiments. Organotypic brain slices are widely applied to model neuronal development and regeneration as well as neuronal pathology concerning stroke, epilepsy and Alzheimer's disease (AD. AD is characterized by two protein alterations, namely tau hyperphosphorylation and excessive amyloid β deposition, both causing microglia and astrocyte activation. Deposits of hyperphosphorylated tau, called neurofibrillary tangles (NFTs, surrounded by activated glia are modeled in transgenic mice, e.g. the tauopathy model P301S. METHODOLOGY/PRINCIPAL FINDINGS: In this study we explore the benefits and limitations of organotypic brain slice cultures made of mature adult transgenic mice as a potential model system for the multifactorial phenotype of AD. First, neonatal (P1 and adult organotypic brain slice cultures from 7- to 10-month-old transgenic P301S mice have been compared with regard to vitality, which was monitored with the lactate dehydrogenase (LDH- and the MTT (3-(4,5-Dimethylthiazol-2-yl-2,5-diphenyltetrazolium bromide assays over 15 days. Neonatal slices displayed a constant high vitality level, while the vitality of adult slice cultures decreased significantly upon cultivation. Various preparation and cultivation conditions were tested to augment the vitality of adult slices and improvements were achieved with a reduced slice thickness, a mild hypothermic cultivation temperature and a cultivation CO(2 concentration of 5%. Furthermore, we present a substantial immunohistochemical characterization analyzing the morphology of neurons, astrocytes and microglia in comparison to neonatal tissue. CONCLUSION/SIGNIFICANCE: Until now only adolescent animals with a maximum age of two months have been used to prepare organotypic brain slices. The current study

  1. IL-10 Production Is Critical for Sustaining the Expansion of CD5+ B and NKT Cells and Restraining Autoantibody Production in Congenic Lupus-Prone Mice.

    Directory of Open Access Journals (Sweden)

    Yuriy Baglaenko

    Full Text Available The development and progression of systemic lupus erythematosus is mediated by the complex interaction of genetic and environmental factors. To decipher the genetics that contribute to pathogenesis and the production of pathogenic autoantibodies, our lab has focused on the generation of congenic lupus-prone mice derived from the New Zealand Black (NZB strain. Previous work has shown that an NZB-derived chromosome 4 interval spanning 32 to 151 Mb led to expansion of CD5+ B and Natural Killer T (NKT cells, and could suppress autoimmunity when crossed with a lupus-prone mouse strain. Subsequently, it was shown that CD5+ B cells but not NKT cells derived from these mice could suppress the development of pro-inflammatory T cells. In this paper, we aimed to further resolve the genetics that leads to expansion of these two innate-like populations through the creation of additional sub-congenic mice and to characterize the role of IL-10 in the suppression of autoimmunity through the generation of IL-10 knockout mice. We show that expansion of CD5+ B cells and NKT cells localizes to a chromosome 4 interval spanning 91 to 123 Mb, which is distinct from the region that mediates the majority of the suppressive phenotype. We also demonstrate that IL-10 is critical to restraining autoantibody production and surprisingly plays a vital role in supporting the expansion of innate-like populations.

  2. IL-10 Production Is Critical for Sustaining the Expansion of CD5+ B and NKT Cells and Restraining Autoantibody Production in Congenic Lupus-Prone Mice.

    Science.gov (United States)

    Baglaenko, Yuriy; Manion, Kieran P; Chang, Nan-Hua; Gracey, Eric; Loh, Christina; Wither, Joan E

    2016-01-01

    The development and progression of systemic lupus erythematosus is mediated by the complex interaction of genetic and environmental factors. To decipher the genetics that contribute to pathogenesis and the production of pathogenic autoantibodies, our lab has focused on the generation of congenic lupus-prone mice derived from the New Zealand Black (NZB) strain. Previous work has shown that an NZB-derived chromosome 4 interval spanning 32 to 151 Mb led to expansion of CD5+ B and Natural Killer T (NKT) cells, and could suppress autoimmunity when crossed with a lupus-prone mouse strain. Subsequently, it was shown that CD5+ B cells but not NKT cells derived from these mice could suppress the development of pro-inflammatory T cells. In this paper, we aimed to further resolve the genetics that leads to expansion of these two innate-like populations through the creation of additional sub-congenic mice and to characterize the role of IL-10 in the suppression of autoimmunity through the generation of IL-10 knockout mice. We show that expansion of CD5+ B cells and NKT cells localizes to a chromosome 4 interval spanning 91 to 123 Mb, which is distinct from the region that mediates the majority of the suppressive phenotype. We also demonstrate that IL-10 is critical to restraining autoantibody production and surprisingly plays a vital role in supporting the expansion of innate-like populations.

  3. Overexpression of IGF-I in skeletal muscle of transgenic mice does not prevent unloading-induced atrophy

    Science.gov (United States)

    Criswell, D. S.; Booth, F. W.; DeMayo, F.; Schwartz, R. J.; Gordon, S. E.; Fiorotto, M. L.

    1998-01-01

    This study examined the association between local insulin-like growth factor I (IGF-I) overexpression and atrophy in skeletal muscle. We hypothesized that endogenous skeletal muscle IGF-I mRNA expression would decrease with hindlimb unloading (HU) in mice, and that transgenic mice overexpressing human IGF-I (hIGF-I) specifically in skeletal muscle would exhibit less atrophy after HU. Male transgenic mice and nontransgenic mice from the parent strain (FVB) were divided into four groups (n = 10/group): 1) transgenic, weight-bearing (IGF-I/WB); 2) transgenic, hindlimb unloaded (IGF-I/HU); 3) nontransgenic, weight-bearing (FVB/WB); and 4) nontransgenic, hindlimb unloaded (FVB/HU). HU groups were hindlimb unloaded for 14 days. Body mass was reduced (P < 0.05) after HU in both IGF-I (-9%) and FVB mice (-13%). Contrary to our hypothesis, we found that the relative abundance of mRNA for the endogenous rodent IGF-I (rIGF-I) was unaltered by HU in the gastrocnemius (GAST) muscle of wild-type FVB mice. High-level expression of hIGF-I peptide and mRNA was confirmed in the GAST and tibialis anterior (TA) muscles of the transgenic mice. Nevertheless, masses of the GAST and TA muscles were reduced (P < 0.05) in both FVB/HU and IGF-I/HU groups compared with FVB/WB and IGF-I/WB groups, respectively, and the percent atrophy in mass of these muscles did not differ between FVB and IGF-I mice. Therefore, skeletal muscle atrophy may not be associated with a reduction of endogenous rIGF-I mRNA level in 14-day HU mice. We conclude that high local expression of hIGF-I mRNA and peptide in skeletal muscle alone cannot attenuate unloading-induced atrophy of fast-twitch muscle in mice.

  4. IL-25 or IL-17E protects against high-fat diet-induced hepatic steatosis in mice dependent upon IL-13 activation of STAT6

    Science.gov (United States)

    IL-25 is a member of IL-17 cytokine family and has immune-modulating activities. The role of IL-25 in maintaining lipid metabolic homeostasis remains unknown. Here, we investigated the effects of exogenous IL-25 or deficiency of IL-25 on lipid accumulation in the liver. Mice were injected with IL-25...

  5. Hyperactivity and learning deficits in transgenic mice bearing a human mutant thyroid hormone beta1 receptor gene.

    Science.gov (United States)

    McDonald, M P; Wong, R; Goldstein, G; Weintraub, B; Cheng, S Y; Crawley, J N

    1998-01-01

    Resistance to thyroid hormone (RTH) is a human syndrome mapped to the thyroid receptor beta (TRbeta) gene on chromosome 3, representing a mutation of the ligand-binding domain of the TRbeta gene. The syndrome is characterized by reduced tissue responsiveness to thyroid hormone and elevated serum levels of thyroid hormones. A common behavioral phenotype associated with RTH is attention deficit hyperactivity disorder (ADHD). To test the hypothesis that RTH produces attention deficits and/or hyperactivity, transgenic mice expressing a mutant TRbeta gene were generated. The present experiment tested RTH transgenic mice from the PV kindred on behavioral tasks relevant to the primary features of ADHD: hyperactivity, sustained attention (vigilance), learning, and impulsivity. Male transgenic mice showed elevated locomotor activity in an open field compared to male wild-type littermate controls. Both male and female transgenic mice exhibited impaired learning of an autoshaping task, compared to wild-type controls. On a vigilance task in an operant chamber, there were no differences between transgenics and controls on the proportion of hits, response latency, or duration of stimulus tolerated. On an operant go/no-go task measuring sustained attention and impulsivity, there were no differences between controls and transgenics. These results indicate that transgenic mice bearing a mutant human TRbeta gene demonstrate several behavioral characteristics of ADHD and may serve a valuable heuristic role in elucidating possible candidate genes in converging pathways for other causes of ADHD.

  6. Hyperactivity and Learning Deficits in Transgenic Mice Bearing a Human Mutant Thyroid Hormone β1 Receptor Gene

    Science.gov (United States)

    McDonald, Michael P.; Wong, Rosemary; Goldstein, Gregory; Weintraub, Bruce; Cheng, Sheue-yann; Crawley, Jacqueline N.

    1998-01-01

    Resistance to thyroid hormone (RTH) is a human syndrome mapped to the thyroid receptor β (TRβ) gene on chromosome 3, representing a mutation of the ligandbinding domain of the TRβ gene. The syndrome is characterized by reduced tissue responsiveness to thyroid hormone and elevated serum levels of thyroid hormones. A common behavioral phenotype associated with RTH is attention deficit hyperactivity disorder (ADHD). To test the hypothesis that RTH produces attention deficits and/or hyperactivity, transgenic mice expressing a mutant TRβ gene were generated. The present experiment tested RTH transgenic mice from the PV kindred on behavioral tasks relevant to the primary features of ADHD: hyperactivity, sustained attention (vigilance), learning, and impulsivity. Male transgenic mice showed elevated locomotor activity in an open field compared to male wild-type littermate controls. Both male and female transgenic mice exhibited impaired learning of an autoshaping task, compared to wild-type controls. On a vigilance task in an operant chamber, there were no differences between transgenics and controls on the proportion of hits, response latency, or duration of stimulus tolerated. On an operant go/no-go task measuring sustained attention and impulsivity, there were no differences between controls and transgenics. These results indicate that transgenic mice bearing a mutant human TRβ gene demonstrate several behavioral characteristics of ADHD and may serve a valuable heuristic role in elucidating possible candidate genes in converging pathways for other causes of ADHD. PMID:10454355

  7. Calcium-dependent arrhythmias in transgenic mice with heart failure.

    Science.gov (United States)

    London, Barry; Baker, Linda C; Lee, Joon S; Shusterman, Vladimir; Choi, Bum-Rak; Kubota, Toru; McTiernan, Charles F; Feldman, Arthur M; Salama, Guy

    2003-02-01

    Transgenic mice overexpressing the inflammatory cytokine tumor necrosis factor (TNF)-alpha (TNF-alpha mice) in the heart develop a progressive heart failure syndrome characterized by biventricular dilatation, decreased ejection fraction, atrial and ventricular arrhythmias on ambulatory telemetry monitoring, and decreased survival compared with nontransgenic littermates. Programmed stimulation in vitro with single extra beats elicits reentrant ventricular arrhythmias in TNF-alpha (n = 12 of 13 hearts) but not in control hearts. We performed optical mapping of voltage and Ca(2+) in isolated perfused ventricles of TNF-alpha mice to study the mechanisms that lead to the initiation and maintenance of the arrhythmias. When compared with controls, hearts from TNF-alpha mice have prolonged of action potential durations (action potential duration at 90% repolarization: 23 +/- 2 ms, n = 7, vs. 18 +/- 1 ms, n = 5; P < 0.05), no increased dispersion of refractoriness between apex and base, elevated diastolic and depressed systolic [Ca(2+)], and prolonged Ca(2+) transients (72 +/- 6 ms, n = 10, vs. 54 +/- 5 ms, n = 8; P < 0.01). Premature beats have diminished action potential amplitudes and conduct in a slow, heterogeneous manner. Lowering extracellular [Ca(2+)] normalizes conduction and prevents inducible arrhythmias. Thus both action potential prolongation and abnormal Ca(2+) handling may contribute to the initiation of reentrant arrhythmias in this heart failure model by mechanisms distinct from enhanced dispersion of refractoriness or triggered activity.

  8. Wnt Signaling Alteration in the Spinal Cord of Amyotrophic Lateral Sclerosis Transgenic Mice: Special Focus on Frizzled-5 Cellular Expression Pattern.

    Directory of Open Access Journals (Sweden)

    Carlos González-Fernández

    Full Text Available Amyotrophic lateral sclerosis is a chronic neurodegenerative disease characterized by progressive paralysis due to degeneration of motor neurons by unknown causes. Recent evidence shows that Wnt signaling is involved in neurodegenerative processes, including Amyotrophic Lateral Sclerosis. However, to date, little is known regarding the expression of Wnt signaling components in this fatal condition. In the present study we used transgenic SOD1G93A mice to evaluate the expression of several Wnt signaling components, with special focus on Frizzled-5 cellular expression alteration along disease progression.Based on previous studies demonstrating the expression of Wnts and their transcriptional regulation during Amyotrophic lateral sclerosis development, we have analyzed the mRNA expression of several Wnt signaling components in the spinal cord of SOD1G93A transgenic mice at different stages of the disease by using real time quantitative PCR analysis. Strikingly, one of the molecules that seemed not to be altered at mRNA level, Frizzled-5, showed a clear up-regulation at late stages in neurons, as evidenced by immunofluorescence assays. Moreover, increased Frizzled-5 appears to correlate with a decrease in NeuN signal in these cells, suggesting a correlation between neuronal affectation and the increased expression of this receptor.Our data suggest the involvement of Wnt signaling pathways in the pathophysiology of Amyotrophic Lateral Sclerosis and, more specifically, the implication of Frizzled-5 receptor in the response of neuronal cells against neurodegeneration. Nevertheless, further experimental studies are needed to shed light on the specific role of Frizzled-5 and the emerging but increasing Wnt family of proteins research field as a potential target for this neuropathology.

  9. Ectopic expression of the agouti gene in transgenic mice causes obesity, features of type II diabetes, and yellow fur

    Energy Technology Data Exchange (ETDEWEB)

    Klebig, M.L.; Woychik, R.P. [Oak Ridge National Laboratory, Oak Ridge, TN (United States); Wilkinson, J.E. [Univ. of Tennessee, Knoxville, TN (United States); Geisler, J.G. [Oak Ridge National Laboratory, Oak Ridge, TN (United States)]|[Univ. of Tennessee, Knoxville, TN (United States)

    1995-05-23

    Mice that carry the lethal yellow (A{sup y}) or viable yellow (A{sup vy}) mutation, two dominant mutations of the agouti (a) gene in mouse chromosome 2, exhibit a phenotype that includes yellow fur, marked obesity, a form of type II diabetes associated with insulin resistance, and an increased susceptibility to tumor development. Molecular analyses of these and several other dominant {open_quotes}obese yellow{close_quotes} a-locus mutations suggested that ectopic expression of the normal agouti protein gives rise to this complex pleiotropic phenotype. We have now tested this hypothesis directly by generating transgenic mice that ectopically express an agouti cDNA clone encoding the normal agouti protein in all tissues examined. Transgenic mice of both sexes have yellow fur, become obese, and develop hyperinsulinemia. In addition, male transgenic mice develop hyperglycemia by 12-20 weeks of age. These results demonstrate conclusively that the ectopic agouti expression is responsible for most, if not all, of the phenotypic traits of the dominant, obese yellow mutants. 42 refs., 5 figs.

  10. Generation of a new bioluminescent model for visualisation of mammary tumour development in transgenic mice

    Directory of Open Access Journals (Sweden)

    Zagozdzon Agnieszka M

    2012-05-01

    Full Text Available Abstract Background Numerous transgenic models have been generated to study breast cancer. However, despite many advantages, traditional transgenic models for breast cancer are also burdened with difficulties in early detection and longitudinal observation of transgene-induced tumours, which in most cases are randomly located and occur at various time points. Methods such as palpation followed by mechanical measurement of the tumours are of limited value in transgenic models. There is a crucial need for making these previously generated models suitable for modern methods of tumour visualisation and monitoring, e.g. by bioluminescence-based techniques. This approach was successfully used in the current study. Results A new mouse strain (MMTV-Luc2 mice expressing Luc2 luciferase primarily in mammary tissue in females, with low-level background expression in internal organs, was generated and bred to homozygosity. After these mice were intercrossed with MMTV-PyVT mice, all double transgenic females developed mammary tumours by the age of 10 weeks, the localisation and progression of which could be effectively monitored using the luminescence-based in vivo imaging. Luminescence-based readout allowed for early visualisation of the locally overgrown mammary tissue and for longitudinal evaluation of local progression of the tumours. When sampled ex vivo at the age of 10 weeks, all tumours derived from MMTV-Luc2PyVT females displayed robust bioluminescent signal. Conclusions We have created a novel transgenic strain for visualisation and longitudinal monitoring of mammary tumour development in transgenic mice as an addition and/or a new and more advanced alternative to manual methods. Generation of this mouse strain is vital for making many of the existing mammary tumour transgenic models applicable for in vivo imaging techniques.

  11. Generation of a new bioluminescent model for visualisation of mammary tumour development in transgenic mice

    LENUS (Irish Health Repository)

    Zagozdzon, Agnieszka M

    2012-05-30

    AbstractBackgroundNumerous transgenic models have been generated to study breast cancer. However, despite many advantages, traditional transgenic models for breast cancer are also burdened with difficulties in early detection and longitudinal observation of transgene-induced tumours, which in most cases are randomly located and occur at various time points. Methods such as palpation followed by mechanical measurement of the tumours are of limited value in transgenic models. There is a crucial need for making these previously generated models suitable for modern methods of tumour visualisation and monitoring, e.g. by bioluminescence-based techniques. This approach was successfully used in the current study.ResultsA new mouse strain (MMTV-Luc2 mice) expressing Luc2 luciferase primarily in mammary tissue in females, with low-level background expression in internal organs, was generated and bred to homozygosity. After these mice were intercrossed with MMTV-PyVT mice, all double transgenic females developed mammary tumours by the age of 10 weeks, the localisation and progression of which could be effectively monitored using the luminescence-based in vivo imaging. Luminescence-based readout allowed for early visualisation of the locally overgrown mammary tissue and for longitudinal evaluation of local progression of the tumours. When sampled ex vivo at the age of 10 weeks, all tumours derived from MMTV-Luc2PyVT females displayed robust bioluminescent signal.ConclusionsWe have created a novel transgenic strain for visualisation and longitudinal monitoring of mammary tumour development in transgenic mice as an addition and\\/or a new and more advanced alternative to manual methods. Generation of this mouse strain is vital for making many of the existing mammary tumour transgenic models applicable for in vivo imaging techniques.

  12. Tetracycline-inducible system for regulation of skeletal muscle-specific gene expression in transgenic mice

    Science.gov (United States)

    Grill, Mischala A.; Bales, Mark A.; Fought, Amber N.; Rosburg, Kristopher C.; Munger, Stephanie J.; Antin, Parker B.

    2003-01-01

    Tightly regulated control of over-expression is often necessary to study one aspect or time point of gene function and, in transgenesis, may help to avoid lethal effects and complications caused by ubiquitous over-expression. We have utilized the benefits of an optimized tet-on system and a modified muscle creatine kinase (MCK) promoter to generate a skeletal muscle-specific, doxycycline (Dox) controlled over-expression system in transgenic mice. A DNA construct was generated in which the codon optimized reverse tetracycline transactivator (rtTA) was placed under control of a skeletal muscle-specific version of the mouse MCK promoter. Transgenic mice containing this construct expressed rtTA almost exclusively in skeletal muscles. These mice were crossed to a second transgenic line containing a bi-directional promoter centered on a tet responder element driving both a luciferase reporter gene and a tagged gene of interest; in this case the calpain inhibitor calpastatin. Compound hemizygous mice showed high level, Dox dependent muscle-specific luciferase activity often exceeding 10,000-fold over non-muscle tissues of the same mouse. Western and immunocytochemical analysis demonstrated similar Dox dependent muscle-specific induction of the tagged calpastatin protein. These findings demonstrate the effectiveness and flexibility of the tet-on system to provide a tightly regulated over-expression system in adult skeletal muscle. The MCKrtTA transgenic lines can be combined with other transgenic responder lines for skeletal muscle-specific over-expression of any target gene of interest.

  13. Ocular myasthenia gravis induced by human acetylcholine receptor ϵ subunit immunization in HLA DR3 transgenic mice.

    Science.gov (United States)

    Wu, Xiaorong; Tuzun, Erdem; Saini, Shamsher S; Wang, Jun; Li, Jing; Aguilera-Aguirre, Leopoldo; Huda, Ruksana; Christadoss, Premkumar

    2015-12-01

    Extraocular muscles (EOM) are preferentially involved in myasthenia gravis (MG) and acetylcholine receptor (AChR) antibody positive MG patients may occasionally present with isolated ocular symptoms. Although experimental autoimmune myasthenia gravis (EAMG) induced by whole AChR immunization closely mimics clinical and immunopathological aspects of MG, EOM are usually not affected. We have previously developed an EAMG model, which imitates EOM symptoms of MG by immunization of human leukocyte antigen (HLA) transgenic mice with α or γ-subunits of human AChR (H-AChR). To investigate the significance of the ϵ-subunit in ocular MG, we immunized HLA-DR3 and HLA-DQ8 transgenic mice with recombinant H-AChR ϵ-subunit expressed in Escherichia coli. HLA-DR3 transgenic mice showed significantly higher clinical ocular and generalized MG severity scores and lower grip strength values than HLA-DQ8 mice. H-AChR ϵ-subunit-immunized HLA-DR3 transgenic mice had higher serum anti-AChR antibody (IgG, IgG1, IgG2b, IgG2c and IgM) levels, neuromuscular junction IgG and complement deposit percentages than ϵ-subunit-immunized HLA-DQ8 transgenic mice. Control mice immunized with E. coli extract or complete Freund adjuvant (CFA) did not show clinical and immunopathological features of ocular and generalized EAMG. Lymph node cells of ϵ-subunit-immunized HLA-DR3 mice showed significantly higher proliferative responses than those of ϵ-subunit-immunized HLA-DQ8 mice, crude E. coli extract-immunized and CFA-immunized transgenic mice. Our results indicate that the human AChR ϵ-subunit is capable of inducing myasthenic muscle weakness. Diversity of the autoimmune responses displayed by mice expressing different HLA class II molecules suggests that the interplay between HLA class II alleles and AChR subunits might have a profound impact on the clinical course of MG. Copyright © 2015 European Federation of Immunological Societies. Published by Elsevier B.V. All rights reserved.

  14. Effect of 5'-flanking sequence deletions on expression of the human insulin gene in transgenic mice

    DEFF Research Database (Denmark)

    Fromont-Racine, M; Bucchini, D; Madsen, O

    1990-01-01

    Expression of the human insulin gene was examined in transgenic mouse lines carrying the gene with various lengths of DNA sequences 5' to the transcription start site (+1). Expression of the transgene was demonstrated by 1) the presence of human C-peptide in urine, 2) the presence of specific...... of the transgene was observed in cell types other than beta-islet cells....

  15. Conditional Macrophage Depletion Increases Inflammation and Does Not Inhibit the Development of Osteoarthritis in Obese Macrophage Fas-Induced Apoptosis-Transgenic Mice.

    Science.gov (United States)

    Wu, Chia-Lung; McNeill, Jenna; Goon, Kelsey; Little, Dianne; Kimmerling, Kelly; Huebner, Janet; Kraus, Virginia; Guilak, Farshid

    2017-09-01

    To investigate whether short-term, systemic depletion of macrophages can mitigate osteoarthritis (OA) following injury in the setting of obesity. CSF-1R-GFP+ macrophage Fas-induced apoptosis (MaFIA)-transgenic mice that allow conditional depletion of macrophages were placed on a high-fat diet and underwent surgery to induce knee OA. A small molecule (AP20187) was administrated to deplete macrophages in MaFIA mice. The effects of macrophage depletion on acute joint inflammation, OA severity, and arthritic bone changes were evaluated using histology and micro-computed tomography. Immunohistochemical analysis was performed to identify various immune cells. The levels of serum and synovial fluid cytokines were also measured. Macrophage-depleted mice had significantly fewer M1 and M2 macrophages in the surgically operated joints relative to controls and exhibited decreased osteophyte formation immediately following depletion. Surprisingly, macrophage depletion did not attenuate the severity of OA in obese mice; instead, it induced systemic inflammation and led to a massive infiltration of CD3+ T cells and particularly neutrophils, but not B cells, into the injured joints. Macrophage-depleted mice also demonstrated a markedly increased number of proinflammatory cytokines including granulocyte colony-stimulating factor, interleukin-1β (IL-1β), IL-6, IL-8, and tumor necrosis factor in both serum and joint synovial fluid, although the mice showed a trend toward decreased levels of insulin and leptin in serum after macrophage depletion. Our findings indicate that macrophages are vital for modulating homeostasis of immune cells in the setting of obesity and suggest that more targeted approaches of depleting specific macrophage subtypes may be necessary to mitigate inflammation and OA in the setting of obesity. © 2017, American College of Rheumatology.

  16. Dispersion of repolarization and refractoriness are determinants of arrhythmia phenotype in transgenic mice with long QT.

    Science.gov (United States)

    London, Barry; Baker, Linda C; Petkova-Kirova, Polina; Nerbonne, Jeanne M; Choi, Bum-Rak; Salama, Guy

    2007-01-01

    Enhanced dispersion of repolarization (DR) and refractoriness may be a unifying mechanism central to arrhythmia genesis in the long QT (LQT) syndrome. The role of DR in promoting arrhythmias was investigated in several strains of molecularly engineered mice: (a) Kv4.2 dominant negative transgenic (Kv4.2DN) that lacks the fast component of the transient outward current, I(to,f), have action potential (AP) and QT prolongation, but no spontaneous arrhythmias, (b) Kv1.4 targeted mice (Kv1.4-/-) that lack the slow component of I(to) (I(to,s)), have no QT prolongation and no spontaneous arrhythmias, and (c) double transgenic (Kv4.2DN x Kv1.4-/-) mice that lack both I(to,f) and I(to,s), have AP and QT prolongation, and spontaneous ventricular tachyarrhythmias. Hearts were perfused, stained with di-4-ANEPPS and optically mapped. Activation patterns and conduction velocities were similar between the strains but AP duration at 75% recovery (APD75) was longer in Kv4.2DN (28.0 +/- 2.5 ms, P mice than controls (20.3 +/- 1.0 ms, n = 5). Dispersion of refractoriness between apex and base was markedly reduced in Kv4.2DN (0.3 +/- 0.5 ms, n = 6, P mice compared with controls (10 +/- 2 ms, n = 5). A premature pulse elicited ventricular tachycardia (VT) in Kv1.4-/- (n = 4/5) and Kv4.2DN x Kv1.4-/- hearts (n = 5/5) but not Kv4.2DN hearts (n = 0/6). Voltage-clamp recordings showed that I(to,f) was 30% greater in myocytes from the apex than base which may account for the absence of DR in Kv4.2DN mice. Thus, dispersion of repolarization (DR) appears to be an important determinant of arrhythmia vulnerability.

  17. Long-term dietary supplementation of pomegranates, figs and dates alleviate neuroinflammation in a transgenic mouse model of Alzheimer's disease.

    Directory of Open Access Journals (Sweden)

    Musthafa Mohamed Essa

    Full Text Available Alzheimer's disease (AD is a devastating age-related neurodegenerative disease with no specific treatment at present. The APPsw/Tg2576 mice exhibit age-related deterioration in memory and learning as well as amyloid-beta (Aβ accumulation, and this mouse strain is considered an effective model for studying the mechanism of accelerated brain aging and senescence. The present study was aimed to investigate the beneficial effects of dietary supplements pomegranate, figs, or the dates on suppressing inflammatory cytokines in APPsw/Tg2576 mice. Changes in the plasma cytokines and Aβ, ATP, and inflammatory cytokines were investigated in the brain of transgenic mice. Significantly enhanced levels of inflammatory cytokines IL-1β, IL-2, IL-3, IL-4, IL-5, IL-6, IL-9, IL-10, TNF-α and Eotaxin activity were decreased by administration of the diet supplements containing pomegranates, figs, or dates. In addition, putative delays in the formation of senile plaques, as indicated by a decreasing tendency of brain Aβ1-40 and Aβ1-42 contents, were observed. Thus, novel results mediated by reducing inflammatory cytokines during aging may represent one mechanism by which these supplements exert their beneficial effects against neurodegenerative diseases such as AD.

  18. [Effects of canine IL-2 and IL-7 genes on enhancing immunogenicity of canine parvovirus VP2 gene vaccine in mice].

    Science.gov (United States)

    Chen, Huihui; Zhong, Fei; Li, Xiujin; Wang, Lu; Sun, Yan; Neng, Changai; Zhang, Kao; Li, Wenyan; Wen, Jiexia

    2012-11-04

    To investigate the effects of canine interleukin-2 (cIL-2) and cIL-7 genes on enhancing the immunogenicity of canine parvovirus (CPV) VP2 DNA vaccine. The bicistronic vectors of cIL-2 and cIL-7 genes were constructed using the eukaryotic expression vector containing internal ribosome entry site (IRES). The cIL-2/ cIL-7 dicistronic vector plus previously constructed vectors, including CPV VP2 DNA vaccine vector, cIL-2 vector and cIL-7 vector, were used to co-immunize mice with different combinations, consisting of VP2 alone, VP2 + cIL-2, VP2 + cIL-7 and VP2 + cIL-2/cIL-7. The VP2-specific antibody levels in immunized mice were measured by ELISA at different time post-immunization. The proliferation indices and interferon-gamma expression were measured by lymphocyte proliferation assay and ELISA, respectively. The cIL-2/cIL-7 bicistronic vector was correct and could mediate cIL-2 and cIL-7 gene expression in eukaryotic cells. Immunization results revealed that the antibody titers and the neutralizing antibody levels of the mice co-immunized with VP2 + cIL-7/cIL-2 vectors were significantly higher than that with either VP2 + cIL-2 vectors or VP2 + cIL-7 vectors (P vaccine.

  19. Genetic deletion of IL-25 (IL-17E) confers resistance to dextran sulfate sodium-induced colitis in mice

    Science.gov (United States)

    IL-25 is emerging as a key regulator of inflammation in the intestinal mucosa because of its ability to promote Th2 while suppressing Th1 and Th17 cytokine responses. We investigated the contribution of endogenous IL-25 to DSS-induced colitis in mice. Mice were exposed to DSS in drinking water ad li...

  20. The Effects of Post-Mating Administration of Anti-IL-10 and Anti-TGFß on Conception Rates in Mice

    Directory of Open Access Journals (Sweden)

    Ali Risvanli

    2015-04-01

    Full Text Available Background: In fertility studies, it has been shown that transforming growth factor β (TGFβ and interlukin 10 (IL-10 play very important roles in implantation, maternal immune tolerance, placentation and fetal development, and the release beginning of release for fetal and postnatal death. The present study aims to determine the effects of the postmating administration of neutralizing antibodies against IL-10 and TGFβ, which significantly impact pregnancy in females and the conception rates in mice via assessments of blood serum and uterine fluid concentrations of IL-2, IL-4, IL-6, IL-10, IL-17, interferon γ (IFNγ, Tumor necrosis factor α (TNFα, and TGFβ. Materials and Methods: In this experimental study, 21 BALB/c strain female mice were mated and randomly divided into three groups. The mice in the first group were selected as the control group. The second group of animals was injected with 0.5 mg of anti-IL-10 after mating, while those in the third group were intraperitoneally injected with 0.5 mg of anti-TGFβ. The animals in all groups were decapitated on the 13th day after mating and their blood samples were taken. The uteri were removed to determine pregnancy. The mice’s uterine irrigation fluids were also obtained. We used the multiplex immunoassay technique to determine the cytokine concentrations in uterine fluid and blood serum of the mice. Results: We observed no intergroup difference with respect to conception rates. A comparison of the cytokine concentrations in the uterine fluids of pregnant mice revealed higher TGFβ concentrations (p<0.01 in the second group injected with the anti-IL-10 antibody compared with the other groups. There was no difference detected in pregnant animals with regards to both uterine fluid and blood serum concentrations of the other cytokines. Conclusion: Post-mating administration of anti-IL-10 and anti-TGFβ antibodies in mice may not have any effect on conception rates.

  1. Increased Expression of the Na,K-ATPase alpha4 Isoform Enhances Sperm Motility in Transgenic Mice1

    Science.gov (United States)

    Jimenez, Tamara; Sanchez, Gladis; McDermott, Jeffrey P.; Nguyen, Anh-Nguyet; Kumar, T. Rajendra; Blanco, Gustavo

    2010-01-01

    The Na,K-ATPase alpha4 (ATP1A4) isoform is specifically expressed in male germ cells and is highly prevalent in spermatozoa. Although selective inhibition of alpha4 activity with ouabain has been shown to affect sperm motility, a more direct analysis of the role of this isoform in sperm movement has not yet been demonstrated. To establish this, we engineered transgenic mice that express the rat alpha4 isoform fused to green fluorescent protein in male germ cells, under the control of the mouse protamine 1 promoter. We showed that the rat Atp1a4 transgene is expressed in mouse spermatozoa and that it is localized to the sperm flagellum. In agreement with increased expression of the alpha4 isoform, sperm from transgenic mice displayed higher alpha4-specific Na,K-ATPase activity and binding of fluorescently labeled ouabain than wild-type mice. In contrast, expression and activity of ATP1A1 (alpha1), the other Na,K-ATPase alpha isoform present in sperm, remained unchanged. Similar to wild-type mice, mice expressing the alpha4 transgene exhibited normal testis and sperm morphology and no differences in fertility. However, compared to wild-type mice, sperm from transgenic mice displayed plasma membrane hyperpolarization and higher total and progressive motility. Other parameters of motility also increased, including straight-line, curvilinear, and average path velocities and amplitude of lateral head displacement. In addition, sperm from the transgenic mice showed enhanced sperm hyperactive motility, but no changes in progesterone-induced acrosome reaction. Altogether, these results provide new genetic evidence for the role of the ATP1A4 isoform in sperm motility, under both noncapacitating and capacitating conditions. PMID:20826726

  2. Early antibiotic administration but not antibody therapy directed against IL-6 improves survival in septic mice predicted to die on basis of high IL-6 levels.

    Science.gov (United States)

    Vyas, Dinesh; Javadi, Pardis; Dipasco, Peter J; Buchman, Timothy G; Hotchkiss, Richard S; Coopersmith, Craig M

    2005-10-01

    Elevated interleukin (IL)-6 levels correlate with increased mortality following sepsis. IL-6 levels >14,000 pg/ml drawn 6 h after cecal ligation and puncture (CLP) are associated with 100% mortality in ND4 mice, even if antibiotic therapy is initiated 12 h after septic insult. Our first aim was to see whether earlier institution of antibiotic therapy could improve overall survival in septic mice and rescue the subset of animals predicted to die on the basis of high IL-6 levels. Mice (n = 184) were subjected to CLP, had IL-6 levels drawn 6 h later, and then were randomized to receive imipenem, a broad spectrum antimicrobial agent, beginning 6 or 12 h postoperatively. Overall 1-wk survival improved from 25.5 to 35.9% with earlier administration of antibiotics (P 14,000 pg/ml, 25% survived if imipenem was started at 6 h, whereas none survived if antibiotics were started later (P 14,000 pg/ml. These results demonstrate that earlier systemic therapy can improve outcome in a subset of mice predicted to die in sepsis, but we are unable to demonstrate any benefit in similar animals using targeted therapy directed at IL-6.

  3. Transgenic expression of soluble human CD5 enhances experimentally-induced autoimmune and anti-tumoral immune responses.

    Directory of Open Access Journals (Sweden)

    Rafael Fenutría

    Full Text Available CD5 is a lymphoid-specific transmembrane glycoprotein constitutively expressed on thymocytes and mature T and B1a lymphocytes. Current data support the view that CD5 is a negative regulator of antigen-specific receptor-mediated signaling in these cells, and that this would likely be achieved through interaction with CD5 ligand/s (CD5L of still undefined nature expressed on immune or accessory cells. To determine the functional consequence of loss of CD5/CD5L interaction in vivo, a new transgenic mouse line was generated (shCD5EμTg, expressing a circulating soluble form of human CD5 (shCD5 as a decoy to impair membrane-bound CD5 function. These shCD5EμTg mice showed an enhanced response to autologous antigens, as deduced from the presentation of more severe forms of experimentally inducible autoimmune disease (collagen-induced arthritis, CIA; and experimental autoimmune encephalitis, EAE, as well as an increased anti-tumoral response in non-orthotopic cancer models (B16 melanoma. This enhancement of the immune response was in agreement with the finding of significantly reduced proportions of spleen and lymph node Treg cells (CD4+CD25+FoxP3+, and of peritoneal IL-10-producing and CD5+ B cells, as well as an increased proportion of spleen NKT cells in shCD5EμTg mice. Similar changes in lymphocyte subpopulations were observed in wild-type mice following repeated administration of exogenous recombinant shCD5 protein. These data reveal the relevant role played by CD5/CD5L interactions on the homeostasis of some functionally relevant lymphocyte subpopulations and the modulation of immune responses to autologous antigens.

  4. Genome scan identifies a locus affecting gamma-globin expression in human beta-cluster YAC transgenic mice

    Energy Technology Data Exchange (ETDEWEB)

    Lin, S.D.; Cooper, P.; Fung, J.; Weier, H.U.G.; Rubin, E.M.

    2000-03-01

    Genetic factors affecting post-natal g-globin expression - a major modifier of the severity of both b-thalassemia and sickle cell anemia, have been difficult to study. This is especially so in mice, an organism lacking a globin gene with an expression pattern equivalent to that of human g-globin. To model the human b-cluster in mice, with the goal of screening for loci affecting human g-globin expression in vivo, we introduced a human b-globin cluster YAC transgene into the genome of FVB mice . The b-cluster contained a Greek hereditary persistence of fetal hemoglobin (HPFH) g allele resulting in postnatal expression of human g-globin in transgenic mice. The level of human g-globin for various F1 hybrids derived from crosses between the FVB transgenics and other inbred mouse strains was assessed. The g-globin level of the C3HeB/FVB transgenic mice was noted to be significantly elevated. To map genes affecting postnatal g-globin expression, a 20 centiMorgan (cM) genome scan of a C3HeB/F VB transgenics [prime] FVB backcross was performed, followed by high-resolution marker analysis of promising loci. From this analysis we mapped a locus within a 2.2 cM interval of mouse chromosome 1 at a LOD score of 4.2 that contributes 10.4% of variation in g-globin expression level. Combining transgenic modeling of the human b-globin gene cluster with quantitative trait analysis, we have identified and mapped a murine locus that impacts on human g-globin expression in vivo.

  5. Pituitary mammosomatotroph adenomas develop in old mice transgenic for growth hormone-releasing hormone

    DEFF Research Database (Denmark)

    Asa, S L; Kovacs, K; Stefaneanu, L

    1990-01-01

    It has been shown that mice transgenic for human growth hormone-releasing hormone (GRH) develop hyperplasia of pituitary somatotrophs and mammosomatotrophs, cells capable of producing both growth hormone and prolactin, by 8 months of age. We now report for the first time that old GRH-transgenic...

  6. Level of Interleukins IL-6 and IL-15 in Blood Plasma of Mice after Forced Swimming Test.

    Science.gov (United States)

    Kapilevich, L V; Kironenko, T A; Zakharova, A N; Kabachkova, A V; Orlov, S N

    2017-05-01

    We measured the concentrations of IL-6 and IL-15 in blood plasma of mice at different terms after forced swimming, taking into account exercise intensity and preliminary training. It was shown that training was an important factor affecting blood plasma level of IL both at rest and after single forced swimming: in trained animals, the concentration of both myokines increased immediately after swimming, while in untrained animals, this increase was observed only after 5 h. Changes in cytokine production against the background of training can be associated with various factors, including neuroendocrine mechanisms, stress, modification of intracellular signaling, as well as reorganization of transcriptional mechanisms in muscle fibers. The most important factor is shift in the ratio of monovalent cations (sodium and potassium) in the cytoplasm.

  7. Chronic administration of recombinant IL-6 upregulates lipogenic enzyme expression and aggravates high-fat-diet-induced steatosis in IL-6-deficient mice

    Directory of Open Access Journals (Sweden)

    Margarita Vida

    2015-07-01

    Full Text Available Interleukin-6 (IL-6 has emerged as an important mediator of fatty acid metabolism with paradoxical effects in the liver. Administration of IL-6 has been reported to confer protection against steatosis, but plasma and tissue IL-6 concentrations are elevated in chronic liver diseases, including fatty liver diseases associated with obesity and alcoholic ingestion. In this study, we further investigated the role of IL-6 on steatosis induced through a high-fat diet (HFD in wild-type (WT and IL-6-deficient (IL-6−/− mice. Additionally, HFD-fed IL-6−/− mice were also chronically treated with recombinant IL-6 (rIL-6. Obesity in WT mice fed a HFD associated with elevated serum IL-6 levels, fatty liver, upregulation of carnitine palmitoyltransferase 1 (CPT1 and signal transducer and activator of transcription-3 (STAT3, increased AMP kinase phosphorylation (p-AMPK, and downregulation of the hepatic lipogenic enzymes fatty acid synthase (FAS and stearoyl-CoA desaturase 1 (SCD1. The HFD-fed IL-6−/− mice showed severe steatosis, no changes in CPT1 levels or AMPK activity, no increase in STAT3 amounts, inactivated STAT3, and marked downregulation of the expression of acetyl-CoA carboxylase (ACCα/β, FAS and SCD1. The IL-6 chronic replacement in HFD-fed IL-6−/− mice restored hepatic STAT3 and AMPK activation but also increased the expression of the lipogenic enzymes ACCα/β, FAS and SCD1. Furthermore, rIL-6 administration was associated with aggravated steatosis and elevated fat content in the liver. We conclude that, in the context of HFD-induced obesity, the administration of rIL-6 might contribute to the aggravation of fatty liver disease through increasing lipogenesis.

  8. Early antibiotic administration but not antibody therapy directed against IL-6 improves survival in septic mice predicted to die based upon high IL-6 levels

    Science.gov (United States)

    Vyas, Dinesh; Javadi, Pardis; DiPasco, Peter J; Buchman, Timothy G; Hotchkiss, Richard S; Coopersmith, Craig M

    2005-01-01

    Elevated interleukin (IL)-6 levels correlate with increased mortality following sepsis. IL-6 levels >14,000 pg/ml drawn 6 hours following cecal ligation and puncture (CLP) are associated with 100% mortality in ND4 mice, even if antibiotic therapy is initiated 12 hours after the septic insult. The first aim of this study was to see if earlier institution of antibiotic therapy could improve overall survival in septic mice and rescue the subset of animals predicted to die based upon high IL-6 levels. Mice (n=184) were subjected to CLP, had IL-6 levels drawn six hours later and then were randomized to receive imipenem, a broad spectrum antimicrobial agent, beginning six or twelve hours post-operatively. Overall one-week survival improved from 25.5% to 35.9% with earlier administration of antibiotics (p14,000 pg/ml, 25% survived if imipenem was started at 6 hours, while none survived if antibiotics were started later (p14,000 pg/ml. These results demonstrate that earlier systemic therapy can improve outcome in a subset of mice predicted to die in sepsis, but we are unable to demonstrate any benefit in similar animals using targeted therapy directed at IL-6. PMID:15947070

  9. Transgenic mice expressing human glucocerebrosidase variants: utility for the study of Gaucher disease.

    Science.gov (United States)

    Sanders, Angela; Hemmelgarn, Harmony; Melrose, Heather L; Hein, Leanne; Fuller, Maria; Clarke, Lorne A

    2013-08-01

    Gaucher disease is an autosomal recessively inherited storage disorder caused by deficiency of the lysosomal hydrolase, acid β-glucosidase. The disease manifestations seen in Gaucher patients are highly heterogeneous as is the responsiveness to therapy. The elucidation of the precise factors responsible for this heterogeneity has been challenging as the development of clinically relevant animal models of Gaucher disease has been problematic. Although numerous murine models for Gaucher disease have been described each has limitations in their specific utility. We describe here, transgenic murine models of Gaucher disease that will be particularly useful for the study of pharmacological chaperones. We have produced stable transgenic mouse strains that individually express wild type, N370S and L444P containing human acid β-glucosidase and show that each of these transgenic lines rescues the lethal phenotype characteristic of acid β-glucosidase null mice. Both the N370S and L444P transgenic models show early and progressive elevations of tissue sphingolipids with L444P mice developing progressive splenic Gaucher cell infiltration. We demonstrate the potential utility of these new transgenic models for the study of Gaucher disease pathogenesis. In addition, since these mice produce only human enzyme, they are particularly relevant for the study of pharmacological chaperones that are specifically targeted to human acid β-glucosidase and the common mutations underlying Gaucher disease. Copyright © 2013 Elsevier Inc. All rights reserved.

  10. Selenoprotein-deficient transgenic mice exhibit enhanced exercise-induced muscle growth.

    Science.gov (United States)

    Hornberger, Troy A; McLoughlin, Thomas J; Leszczynski, Jori K; Armstrong, Dustin D; Jameson, Ruth R; Bowen, Phyllis E; Hwang, Eun-Sun; Hou, Honglin; Moustafa, Mohamed E; Carlson, Bradley A; Hatfield, Dolph L; Diamond, Alan M; Esser, Karyn A

    2003-10-01

    Dietary intake of selenium has been implicated in a wide range of health issues, including aging, heart disease and cancer. Selenium deficiency, which can reduce selenoprotein levels, has been associated with several striated muscle pathologies. To investigate the role of selenoproteins in skeletal muscle biology, we used a transgenic mouse (referred to as i6A-) that has reduced levels of selenoproteins due to the introduction and expression of a dominantly acting mutant form of selenocysteine transfer RNA (tRNA[Ser]Sec). As a consequence, each organ contains reduced levels of most selenoproteins, yet these mice are normal with regard to fertility, overall health, behavior and blood chemistries. In the present study, although skeletal muscles from i6A- mice were phenotypically indistinguishable from those of wild-type mice, plantaris muscles were approximately 50% heavier after synergist ablation, a model of exercise overload. Like muscle in wild-type mice, the enhanced growth in the i6A- mice was completely blocked by inhibition of the mammalian target of rapamycin (mTOR) pathway. Muscles of transgenic mice exhibited increased site-specific phosphorylation on both Akt and p70 ribosomal S6 kinase (p70S6k) (P accounting for the enhanced response to synergist ablation. Thus, a single genetic alteration resulted in enhanced skeletal muscle adaptation after exercise, and this is likely through subtle changes in the resting phosphorylation state of growth-related kinases.

  11. Ambroxol effects in glucocerebrosidase and α‐synuclein transgenic mice

    Science.gov (United States)

    Migdalska‐Richards, Anna; Daly, Liam; Bezard, Erwan

    2016-01-01

    Objective Gaucher disease is caused by mutations in the glucocerebrosidase 1 gene that result in deficiency of the lysosomal enzyme glucocerebrosidase. Both homozygous and heterozygous glucocerebrosidase 1 mutations confer an increased risk for developing Parkinson disease. Current estimates indicate that 10 to 25% of Parkinson patients carry glucocerebrosidase 1 mutations. Ambroxol is a small molecule chaperone that has been shown to increase glucocerebrosidase activity in vitro. This study investigated the effect of ambroxol treatment on glucocerebrosidase activity and on α‐synuclein and phosphorylated α‐synuclein protein levels in mice. Methods Mice were treated with ambroxol for 12 days. After the treatment, glucocerebrosidase activity was measured in the mouse brain lysates. The brain lysates were also analyzed for α‐synuclein and phosphorylated α‐synuclein protein levels. Results Ambroxol treatment resulted in increased brain glucocerebrosidase activity in (1) wild‐type mice, (2) transgenic mice expressing the heterozygous L444P mutation in the murine glucocerebrosidase 1 gene, and (3) transgenic mice overexpressing human α‐synuclein. Furthermore, in the mice overexpressing human α‐synuclein, ambroxol treatment decreased both α‐synuclein and phosphorylated α‐synuclein protein levels. Interpretation Our work supports the proposition that ambroxol should be further investigated as a potential novel disease‐modifying therapy for treatment of Parkinson disease and neuronopathic Gaucher disease to increase glucocerebrosidase activity and decrease α‐synuclein and phosphorylated α‐synuclein protein levels. Ann Neurol 2016;80:766–775 PMID:27859541

  12. Estrogen and progesterone receptors have distinct roles in the establishment of the hyperplastic phenotype in PR-A transgenic mice

    Energy Technology Data Exchange (ETDEWEB)

    Simian, Marina; Bissell, Mina J.; Barcellos-Hoff, Mary Helen; Shyamala, Gopalan

    2009-05-11

    Expression of the A and B forms of progesterone receptor (PR) in an appropriate ratio is critical for mammary development. Mammary glands of PR-A transgenic mice, carrying an additional A form of PR as a transgene, exhibit morphological features associated with the development of mammary tumors. Our objective was to determine the roles of estrogen (E) and progesterone (P) in the genesis of mammary hyperplasias/preneoplasias in PR-A transgenics. We subjected PR-A mice to hormonal treatments and analyzed mammary glands for the presence of hyperplasias and used BrdU incorporation to measure proliferation. Quantitative image analysis was carried out to compare levels of latency-associated peptide and transforming growth factor beta 1 (TGF{beta}1) between PR-A and PR-B transgenics. Basement membrane disruption was examined by immunofluorescence and proteolytic activity by zymography. The hyperplastic phenotype of PR-A transgenics is inhibited by ovariectomy, and is reversed by treatment with E + P. Studies using the antiestrogen ICI 182,780 or antiprogestins RU486 or ZK 98,299 show that the increase in proliferation requires signaling through E/estrogen receptor alpha but is not sufficient to give rise to hyperplasias, whereas signaling through P/PR has little impact on proliferation but is essential for the manifestation of hyperplasias. Increased proliferation is correlated with decreased TGF{beta}1 activation in the PR-A transgenics. Analysis of basement membrane integrity showed loss of laminin-5, collagen III and collagen IV in mammary glands of PR-A mice, which is restored by ovariectomy. Examination of matrix metalloproteases (MMPs) showed that total levels of MMP-2 correlate with the steady-state levels of PR, and that areas of laminin-5 loss coincide with those of activation of MMP-2 in PR-A transgenics. Activation of MMP-2 is dependent on treatment with E and P in ovariectomized wild-type mice, but is achieved only by treatment with P in PR-A mice. These data

  13. Characterisation of the nociceptive phenotype of suppressible galanin overexpressing transgenic mice

    Directory of Open Access Journals (Sweden)

    Wynick David

    2010-10-01

    Full Text Available Abstract The neuropeptide galanin is widely expressed in both the central and peripheral nervous systems and is involved in many diverse biological functions. There is a substantial data set that demonstrates galanin is upregulated after injury in the DRG, spinal cord and in many brain regions where it plays a predominantly antinociceptive role in addition to being neuroprotective and pro-regenerative. To further characterise the role of galanin following nerve injury, a novel transgenic line was created using the binary transgenic tet-off system, to overexpress galanin in galaninergic tissue in a suppressible manner. The double transgenic mice express significantly more galanin in the DRG one week after sciatic nerve section (axotomy compared to WT mice and this overexpression is suppressible upon administration of doxycycline. Phenotypic analysis revealed markedly attenuated allodynia when galanin is overexpressed and an increase in allodynia following galanin suppression. This novel transgenic line demonstrates that whether galanin expression is increased at the time of nerve injury or only after allodynia is established, the neuropeptide is able to reduce neuropathic pain behaviour. These new findings imply that administration of a galanin agonist to patients with established allodynia would be an effective treatment for neuropathic pain.

  14. Lack of skeletal muscle IL-6 influences hepatic glucose metabolism in mice during prolonged exercise

    DEFF Research Database (Denmark)

    Bertholdt, Lærke; Gudiksen, Anders; Schwartz, Camilla Lindgren

    2017-01-01

    The liver is essential in maintaining and regulating glucose homeostasis during prolonged exercise. IL-6 has been shown to be secreted from skeletal muscle during exercise and has been suggested to signal to the liver. Therefore, the aim of this study was to investigate the role of skeletal muscle...... IL-6 on hepatic glucose regulation and substrate choice during prolonged exercise. Skeletal muscle-specific IL-6 knockout (IL-6 MKO) mice (age, 12-14 wk) and littermate lox/lox (Control) mice were either rested (Rest) or completed a single bout of exercise for 10, 60, or 120 min, and the liver....... Furthermore, IL-6 MKO mice had higher hepatic pyruvate dehydrogenase (PDH)Ser232 and PDHSer300 phosphorylation than control mice at rest. In conclusion, hepatic gluconeogenic capacity in mice is increased during prolonged exercise independent of muscle IL-6. Furthermore, Skeletal muscle IL-6 influences...

  15. E2F-1-Induced p53-independent apoptosis in transgenic mice

    DEFF Research Database (Denmark)

    Holmberg, Christian Henrik; Helin, K.; Sehested, M.

    1998-01-01

    The E2F transcription factors are key targets for the retinoblastoma protein, pRB. By inactivation of E2Fs, pRB prevents progression to the S phase. To test proliferative functions of E2F, we generated transgenic mice expressing human E2F-1 and/or human DP-1. When the hydroxymethyl glutaryl...... involving increased apoptosis in the germinal epithelium. This effect was potentiated by simultaneous overexpression of DP-1. Testicular atrophy as a result of overexpression of E2F-1 and DP-1 is independent of functional p53, since p53-nullizygous transgenic mice overexpressing E2F-1 and DP-1 also suffered...

  16. Substitutions of PrP N-terminal histidine residues modulate scrapie disease pathogenesis and incubation time in transgenic mice.

    Science.gov (United States)

    Eigenbrod, Sabina; Frick, Petra; Bertsch, Uwe; Mitteregger-Kretzschmar, Gerda; Mielke, Janina; Maringer, Marko; Piening, Niklas; Hepp, Alexander; Daude, Nathalie; Windl, Otto; Levin, Johannes; Giese, Armin; Sakthivelu, Vignesh; Tatzelt, Jörg; Kretzschmar, Hans; Westaway, David

    2017-01-01

    Prion diseases have been linked to impaired copper homeostasis and copper induced-oxidative damage to the brain. Divalent metal ions, such as Cu2+ and Zn2+, bind to cellular prion protein (PrPC) at octapeptide repeat (OR) and non-OR sites within the N-terminal half of the protein but information on the impact of such binding on conversion to the misfolded isoform often derives from studies using either OR and non-OR peptides or bacterially-expressed recombinant PrP. Here we created new transgenic mouse lines expressing PrP with disrupted copper binding sites within all four histidine-containing OR's (sites 1-4, H60G, H68G, H76G, H84G, "TetraH>G" allele) or at site 5 (composed of residues His-95 and His-110; "H95G" allele) and monitored the formation of misfolded PrP in vivo. Novel transgenic mice expressing PrP(TetraH>G) at levels comparable to wild-type (wt) controls were susceptible to mouse-adapted scrapie strain RML but showed significantly prolonged incubation times. In contrast, amino acid replacement at residue 95 accelerated disease progression in corresponding PrP(H95G) mice. Neuropathological lesions in terminally ill transgenic mice were similar to scrapie-infected wt controls, but less severe. The pattern of PrPSc deposition, however, was not synaptic as seen in wt animals, but instead dense globular plaque-like accumulations of PrPSc in TgPrP(TetraH>G) mice and diffuse PrPSc deposition in (TgPrP(H95G) mice), were observed throughout all brain sections. We conclude that OR and site 5 histidine substitutions have divergent phenotypic impacts and that cis interactions between the OR region and the site 5 region modulate pathogenic outcomes by affecting the PrP globular domain.

  17. Failure of pulmonary clearance of Rhodococcus equi infection in CD4+ T-lymphocyte-deficient transgenic mice.

    OpenAIRE

    Kanaly, S T; Hines, S A; Palmer, G H

    1993-01-01

    Pulmonary clearance of Rhodococcus equi requires functional T lymphocytes. In this study, CD8+ T-lymphocyte-deficient transgenic mice cleared virulent R. equi from the lungs while infection in CD4+ T-lymphocyte-deficient transgenic mice persisted. Although both CD4+ and CD8+ T cells function early in pulmonary defense against R. equi, clearance is dependent on CD4+ T lymphocytes.

  18. Aberrant phenotypes of transgenic mice expressing dimeric human erythropoietin

    Directory of Open Access Journals (Sweden)

    Yun Seong-Jo

    2012-01-01

    Full Text Available Abstract Background Dimeric human erythropoietin (dHuEPO peptides are reported to exhibit significantly higher biological activity than the monomeric form of recombinant EPO. The objective of this study was to produce transgenic (tg mice expressing dHuEPO and to investigate the characteristics of these mice. Methods A dHuEPO-expressing vector under the control of the goat beta-casein promoter, which produced a dimer of human EPO molecules linked by a 2-amino acid peptide linker (Asp-Ile, was constructed and injected into 1-cell fertilized embryos by microinjection. Mice were screened using genomic DNA samples obtained from tail biopsies. Blood samples were obtained by heart puncture using heparinized tubes, and hematologic parameters were assessed. Using the microarray analysis tool, we analyzed differences in gene expression in the spleens of tg and control mice. Results A high rate of spontaneous abortion or death of the offspring was observed in the recipients of dHuEPO embryos. We obtained 3 founder lines (#4, #11, and #47 of tg mice expressing the dHuEPO gene. However, only one founder line showed stable germline integration and transmission, subsequently establishing the only transgenic line (#11. We obtained 2 F1 mice and 3 F2 mice from line #11. The dHuEPO protein could not be obtained because of repeated spontaneous abortions in the tg mice. Tg mice exhibited symptoms such as short lifespan and abnormal blood composition. The red blood cell count, white blood cell count, and hematocrit levels in the tg mice were remarkably higher than those in the control mice. The spleens of the tg mice (F1 and F2 females were 11- and -21-fold larger than those of the control mice. Microarray analysis revealed 2,672 spleen-derived candidate genes; more genes were downregulated than upregulated (849/764. Reverse transcriptase-polymerase chain reaction (RT-PCR and quantitative real-time PCR (qRT-PCR were used for validating the results of the microarray

  19. Role of Human Na,K-ATPase alpha 4 in Sperm Function, Derived from Studies in Transgenic Mice

    Science.gov (United States)

    McDermott, Jeffrey; Sánchez, Gladis; Nangia, Ajay K.; Blanco, Gustavo

    2014-01-01

    SUMMARY Most of our knowledge on the biological role of the testis-specific Na,K-ATPase alpha 4 isoform derives from studies performed in non-human species. Here, we studied the function of human Na,K-ATPase alpha 4 after its expression in transgenic mice. Using a bacterial artificial chromosome (BAC) construct, containing the human ATP1A4 gene locus, we obtained expression of the human α4 transgene specifically in mouse sperm, enriched in the sperm flagellum. The expressed, human alpha 4 was active, and compared to wild-type sperm, those from transgenic mice displayed higher Na,K-ATPase alpha 4 activity and greater binding of fluorescently labeled ouabain, which is typical of the alpha 4 isoform. The expression and activity of endogenous alpha 4 and the other Na,K-ATPase alpha isoform present in sperm, alpha 1, remained unchanged. Male mice expressing the human ATP1A4 transgene exhibited similar testis size and morphology, normal sperm number and shape, and no changes in overall fertility compared to wild-type mice. Sperm carrying the human transgene exhibited enhanced total motility and an increase in multiple parameters of sperm movement, including higher sperm hyperactive motility. In contrast, no statistically significant changes in sperm membrane potential, protein tyrosine phosphorylation, or spontaneous acrosome reaction were found between wild-type and transgenic mice. Altogether, these results provide new genetic evidence for an important role of human Na,K-ATPase alpha 4 in sperm motility and hyperactivation, and establishes a new animal model for future studies of this isoform. PMID:25640246

  20. The influence of chronic stress on anxiety-like behavior and cognitive function in different human GFAP-ApoE transgenic adult male mice.

    Science.gov (United States)

    Meng, Fan-Tao; Zhao, Jun; Fang, Hui; Liu, Ya-Jing

    2015-01-01

    The apolipoprotein E (ApoE) ɛ4 allele (ApoE4) is an important genetic risk factor for the pathogenesis of Alzheimer's disease (AD). In addition to genetic factors, environmental factors such as stress may play a critical role in AD pathogenesis. This study was designed to investigate the anxiety-like behavioral and cognitive changes in different human glial fibrillary acidic protein (GFAP)-ApoE transgenic adult male mice under chronic stress conditions. On the open field test, anxiety-like behavior was increased in the non-stressed GFAP-ApoE4 transgenic mice relative to the corresponding GFAP-ApoE3 (ApoE ɛ3 allele) mice. Anxiety-like behavior was increased in the stressed GFAP-ApoE3 mice relative to non-stressed GFAP-ApoE3 mice, but was unexpectedly decreased in the stressed GFAP-ApoE4 mice relative to non-stressed GFAP-ApoE4 mice. On the novel object recognition task, both GFAP-ApoE4 and GFAP-ApoE3 mice exhibited long-term non-spatial memory impairment after chronic stress. Interestingly, short-term non-spatial memory impairment (based on the novel object recognition task) was observed only in the stressed GFAP-ApoE4 male mice relative to non-stressed GFAP-ApoE4 transgenic mice. In addition, short-term spatial memory impairment was observed in the stressed GFAP-ApoE3 transgenic male mice relative to non-stressed GFAP-ApoE3 transgenic male mice; however, short-term spatial memory performance of GFAP-ApoE4 transgenic male mice was not reduced compared to non-stressed control mice based on the Y-maze task. In conclusion, our findings suggested that chronic stress affects anxiety-like behavior and spatial and non-spatial memory in GFAP-ApoE transgenic mice in an ApoE isoform-dependent manner.

  1. Decreased nuclear β-catenin, tau hyperphosphorylation and neurodegeneration in GSK-3β conditional transgenic mice

    OpenAIRE

    Lucas, José J.; Hernández, Félix; Gómez-Ramos, Pilar; Morán, María A.; Hen, René; Avila, Jesús

    2001-01-01

    Glycogen synthase kinase-3β (GSK-3β) has been postulated to mediate Alzheimer’s disease tau hyperphosphorylation, β-amyloid-induced neurotoxicity and presenilin-1 mutation pathogenic effects. By using the tet-regulated system we have produced conditional transgenic mice overexpressing GSK-3β in the brain during adulthood while avoiding perinatal lethality due to embryonic transgene expression. These mice show decreased levels of nuclear β-catenin and hyperphosphorylation of tau in hippocampal...

  2. Effective generation of transgenic pigs and mice by linker based sperm-mediated gene transfer.

    Directory of Open Access Journals (Sweden)

    Shih Ping Yao

    2002-04-01

    Full Text Available Abstract Background Transgenic animals have become valuable tools for both research and applied purposes. The current method of gene transfer, microinjection, which is widely used in transgenic mouse production, has only had limited success in producing transgenic animals of larger or higher species. Here, we report a linker based sperm-mediated gene transfer method (LB-SMGT that greatly improves the production efficiency of large transgenic animals. Results The linker protein, a monoclonal antibody (mAb C, is reactive to a surface antigen on sperm of all tested species including pig, mouse, chicken, cow, goat, sheep, and human. mAb C is a basic protein that binds to DNA through ionic interaction allowing exogenous DNA to be linked specifically to sperm. After fertilization of the egg, the DNA is shown to be successfully integrated into the genome of viable pig and mouse offspring with germ-line transfer to the F1 generation at a highly efficient rate: 37.5% of pigs and 33% of mice. The integration is demonstrated again by FISH analysis and F2 transmission in pigs. Furthermore, expression of the transgene is demonstrated in 61% (35/57 of transgenic pigs (F0 generation. Conclusions Our data suggests that LB-SMGT could be used to generate transgenic animals efficiently in many different species.

  3. Cosmetics-triggered percutaneous remote control of transgene expression in mice.

    Science.gov (United States)

    Wang, Hui; Ye, Haifeng; Xie, Mingqi; Daoud El-Baba, Marie; Fussenegger, Martin

    2015-08-18

    Synthetic biology has significantly advanced the rational design of trigger-inducible gene switches that program cellular behavior in a reliable and predictable manner. Capitalizing on genetic componentry, including the repressor PmeR and its cognate operator OPmeR, that has evolved in Pseudomonas syringae pathovar tomato DC3000 to sense and resist plant-defence metabolites of the paraben class, we have designed a set of inducible and repressible mammalian transcription-control devices that could dose-dependently fine-tune transgene expression in mammalian cells and mice in response to paraben derivatives. With an over 60-years track record as licensed preservatives in the cosmetics industry, paraben derivatives have become a commonplace ingredient of most skin-care products including shower gels, cleansing toners and hand creams. As parabens can rapidly reach the bloodstream of mice following topical application, we used this feature to percutaneously program transgene expression of subcutaneous designer cell implants using off-the-shelf commercial paraben-containing skin-care cosmetics. The combination of non-invasive, transdermal and orthogonal trigger-inducible remote control of transgene expression may provide novel opportunities for dynamic interventions in future gene and cell-based therapies. © The Author(s) 2015. Published by Oxford University Press on behalf of Nucleic Acids Research.

  4. The effects of enhanced zinc on spatial memory and plaque formation in transgenic mice

    Science.gov (United States)

    Linkous, D.H.; Adlard, P.A.; Wanschura, P.B.; Conko, K.M.; Flinn, J.M.

    2009-01-01

    There is considerable evidence suggesting that metals play a central role in the pathogenesis of Alzheimer's disease. Reports suggest that elevated dietary metals may both precipitate and potentiate an Alzheimer's disease phenotype. Despite this, there remain few studies that have examined the behavioral consequences of elevated dietary metals in wild type and Alzheimer's disease animals. To further investigate this in the current study, two separate transgenic models of AD (Tg2576 and TgCRND8), together with wild type littermates were administered 10 ppm (0.153 mM) Zn. Tg2576 animals were maintained on a zinc-enriched diet both pre- and postnatally until 11 months of age, while TgCRND8 animals were treated for five months following weaning. Behavioral testing, consisting of "Atlantis" and "moving" platform versions of the Morris water maze, were conducted at the end of the study, and tissues were collected for immunohistochemical analysis of amyloid-β burden. Our data demonstrate that the provision of a zinc-enriched diet potentiated Alzheimer-like spatial memory impairments in the transgenic animals and was associated with reduced hippocampal amyloid-β plaque deposits. Zinc-related behavioral deficits were also demonstrated in wild type mice, which were sometimes as great as those present in the transgenic animals. However, zinc-related cognitive impairments in transgenic mice were greater than the summation of zinc effects in the wild type mice and the transgene effects.

  5. Low CD4/CD8 T-cell ratio associated with inflammatory arthropathy in human T-cell leukemia virus type I Tax transgenic mice.

    Directory of Open Access Journals (Sweden)

    Takeo Ohsugi

    Full Text Available BACKGROUND: Human T-cell leukemia virus type I (HTLV-1 can cause an aggressive malignancy known as adult T-cell leukemia/lymphoma (ATL as well as inflammatory diseases such as HTLV-1-associated myelopathy/tropical spastic paraparesis (HAM/TSP. A transgenic mouse that expresses HTLV-1 Tax also develops T-cell leukemia/lymphoma and an inflammatory arthropathy that resembles rheumatoid arthritis. The aim of this study was to identify the primary T-cell subsets involved in the development of arthropathy in Tax transgenic mice. PRINCIPAL FINDINGS: By 24 months of age, Tax transgenic mice developed severe arthropathy with a cumulative incidence of 22.8%. The pathological findings of arthropathy in Tax transgenic mice were similar to those seen in human rheumatoid arthritis or mouse models of rheumatoid arthritis, with synovial proliferation and a positive rheumatoid factor. Before the onset of spontaneous arthropathy, young and old Tax transgenic mice were not sensitive to collagen and did not develop arthritis after immunization with type II collagen. The arthropathic Tax transgenic mice showed a significantly decreased proportion of splenic CD4(+ T cells, whereas the proportion of splenic CD8(+ T cells was increased. Regulatory T cells (CD4(+CD25(+Foxp3(+ were significantly decreased and CD8(+ T cells that expressed the chemokine receptor CCR4 (CD8(+CCR4(+ were significantly increased in arthropathic Tax transgenic mice. The expression of tax mRNA was strong in the spleen and joints of arthropathic mice, with a 40-fold increase compared with healthy transgenic mice. CONCLUSIONS: Our findings reveal that Tax transgenic mice develop rheumatoid-like arthritis with proliferating synovial cells in the joints; however, the proportion of different splenic T-cell subsets in these mice was completely different from other commonly used animal models of rheumatoid arthritis. The crucial T-cell subsets in arthropathic Tax transgenic mice appear to resemble

  6. Skeletal muscle mass recovery from atrophy in IL-6 knockout mice.

    Science.gov (United States)

    Washington, T A; White, J P; Davis, J M; Wilson, L B; Lowe, L L; Sato, S; Carson, J A

    2011-08-01

    Skeletal muscle interleukin-6 (IL-6) expression is induced by continuous contraction, overload-induced hypertrophy and during muscle regeneration. The loss of IL-6 can alter skeletal muscle's growth and extracellular matrix remodelling response to overload-induced hypertrophy. Insulin-like growth factor-1 (IGF-1) gene expression and related signalling through Akt/mTOR is a critical regulator of muscle mass. The significance of IL-6 expression during the recovery from muscle atrophy is unclear. This study's purpose was to determine the effect of IL-6 loss on mouse gastrocnemius (GAS) muscle mass during recovery from hindlimb suspension (HS)-induced atrophy. Female C57BL/6 [wild type (WT)] and IL-6 knockout (IL-6 KO) mice at 10 weeks of age were assigned to control, HS or HS followed by normal cage ambulation groups. GAS muscle atrophy was induced by 10 days of HS. HS induced a 20% loss of GAS mass in both WT and IL-6 KO mice. HS+7 days of recovery restored WT GAS mass to cage-control values. GAS mass from IL-6 KO mice did not return to cage-control values until HS+14 days of recovery. Both IGF-1 mRNA expression and Akt/mTOR signalling were increased in WT muscle after 1 day of recovery. In IL-6 KO muscle, IGF-1 mRNA expression was decreased and Akt/mTOR signalling was not induced after 1 day of recovery. MyoD and myogenin mRNA expression were both induced in WT muscle after 1 day of recovery, but not in IL-6 KO muscle.   Muscle IL-6 expression appears important for the initial growth response during the recovery from disuse. © 2011 The Authors. Acta Physiologica © 2011 Scandinavian Physiological Society.

  7. The Acute Phase of Trypanosoma cruzi Infection Is Attenuated in 5-Lipoxygenase-Deficient Mice

    Directory of Open Access Journals (Sweden)

    Adriana M. C. Canavaci

    2014-01-01

    Full Text Available In the present work we examine the contribution of 5-lipoxygenase- (5-LO- derived lipid mediators to immune responses during the acute phase of Trypanosoma cruzi infection in 5-LO gene knockout (5-LO−/− mice and wild-type (WT mice. Compared with WT mice, the 5-LO−/− mice developed less parasitemia/tissue parasitism, less inflammatory cell infiltrates, and a lower mortality. This resistance of 5-LO−/− mice correlated with several differences in the immune response to infection, including reduced PGE2 synthesis; sustained capacity of splenocytes to produce high levels of interleukin (IL-12 early in the infection; enhanced splenocyte production of IL-1β, IL-6, and IFN-γ; rapid T-cell polarization to secrete high quantities of IFN-γ and low quantities of IL-10; and greater numbers of CD8+CD44highCD62Llow memory effector T cells at the end of the acute phase of infection. The high mortality in WT mice was associated with increased production of LTB4/LTC4, T cell bias to produce IFN-γ, high levels of serum nitrite, and marked protein extravasation into the peritoneal cavity, although survival was improved by treatment with a cys-LT receptor 1 antagonist. These data also provide evidence that 5-LO-derived mediators negatively affect host survival during the acute phase of T. cruzi infection.

  8. IFN-γ-producing NKT cells exacerbate sepsis by enhancing C5a generation via IL-10-mediated inhibition of CD55 expression on neutrophils.

    Science.gov (United States)

    Kim, Ji Hyung; Oh, Sae Jin; Ahn, Sehee; Chung, Doo Hyun

    2014-07-01

    A role for NKT cells has been implicated in sepsis, but the mechanism by which NKT cells contribute to sepsis remains unclear. Here, we examined WT and NKT-cell-deficient mice of C57BL/6 background during cecal ligation and puncture-induced sepsis. The levels of C5a, IFN-γ, and IL-10 were higher in the serum and peritoneal fluid of WT mice than in those of CD1d(-/-) mice, while the mortality rate was lower in CD1d(-/-) mice than in WT mice. C5a blockade decreased mortality of WT mice during sepsis, whereas it did not alter that of CD1d(-/-) mice. As assessed by intracellular staining, NKT cells expressed IFN-γ, while neutrophils expressed IL-10. Upon coculture, IL-10-deficient NKT cells enhanced IL-10 production by WT, but not IFN-γR-deficient, neutrophils. Meanwhile, CD1d(-/-) mice exhibited high CD55 expression on neutrophils during sepsis, whereas those cells from WT mice expressed minimal levels of CD55. Recombinant IL-10 administration into CD1d(-/-) mice reduced CD55 expression on neutrophils. Furthermore, adoptive transfer of sorted WT, but not IFN-γ-deficient, NKT cells into CD1d(-/-) mice suppressed CD55 expression on neutrophils, but increased IL-10 and C5a levels. Taken together, IFN-γ-producing NKT cells enhance C5a generation via IL-10-mediated inhibition of CD55 expression on neutrophils, thereby exacerbating sepsis. © 2014 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  9. Pervasive and stochastic changes in the TCR repertoire of regulatory T-cell-deficient mice.

    Science.gov (United States)

    Zheng, Lingjie; Sharma, Rahul; Kung, John T; Deshmukh, Umesh S; Jarjour, Wael N; Fu, Shu Man; Ju, Shyr-Te

    2008-04-01

    We hypothesize that regulatory T-cell (Treg)-deficient strains have an altered TCR repertoire in part due to the expansion of autoimmune repertoire by self-antigen. We compared the Vbeta family expression profile between B6 and Treg-lacking B6.Cg-Foxp3(sf)(/Y) (B6.sf) mice using fluorescent anti-Vbeta mAbs and observed no changes. However, while the spectratypes of 20 Vbeta families among B6 mice were highly similar, the Vbeta family spectratypes of B6.sf mice were remarkably different from B6 mice and from each other. Significant spectratype changes in many Vbeta families were also observed in Treg-deficient IL-2 knockout (KO) and IL-2Ralpha KO mice. Such changes were not observed with anti-CD3 mAb-treated B6 mice or B6 CD4+CD25- T cells. TCR transgenic (OT-II.sf) mice displayed dramatic reduction of clonotypic TCR with concomitant increase in T cells bearing non-transgenic Vbeta and Valpha families, including T cells with dual receptors expressing reduced levels of transgenic Valpha and endogenous Valpha. Collectively, the data demonstrate that Treg deficiency allows polyclonal expansion of T cells in a stochastic manner, resulting in widespread changes in the TCR repertoire.

  10. IL-22 Upregulates Epithelial Claudin-2 to Drive Diarrhea and Enteric Pathogen Clearance.

    Science.gov (United States)

    Tsai, Pei-Yun; Zhang, Bingkun; He, Wei-Qi; Zha, Juan-Min; Odenwald, Matthew A; Singh, Gurminder; Tamura, Atsushi; Shen, Le; Sailer, Anne; Yeruva, Sunil; Kuo, Wei-Ting; Fu, Yang-Xin; Tsukita, Sachiko; Turner, Jerrold R

    2017-06-14

    Diarrhea is a host response to enteric pathogens, but its impact on pathogenesis remains poorly defined. By infecting mice with the attaching and effacing bacteria Citrobacter rodentium, we defined the mechanisms and contributions of diarrhea and intestinal barrier loss to host defense. Increased permeability occurred within 2 days of infection and coincided with IL-22-dependent upregulation of the epithelial tight junction protein claudin-2. Permeability increases were limited to small molecules, as expected for the paracellular water and Na + channel formed by claudin-2. Relative to wild-type, claudin-2-deficient mice experienced severe disease, including increased mucosal colonization by C. rodentium, prolonged pathogen shedding, exaggerated cytokine responses, and greater tissue injury. Conversely, transgenic claudin-2 overexpression reduced disease severity. Chemically induced osmotic diarrhea reduced colitis severity and C. rodentium burden in claudin-2-deficient, but not transgenic, mice, demonstrating that claudin-2-mediated protection is the result of enhanced water efflux. Thus, IL-22-induced claudin-2 upregulation drives diarrhea and pathogen clearance. Copyright © 2017 Elsevier Inc. All rights reserved.

  11. DNA damage preceding dopamine neuron degeneration in A53T human α-synuclein transgenic mice.

    Science.gov (United States)

    Wang, Degui; Yu, Tianyu; Liu, Yongqiang; Yan, Jun; Guo, Yingli; Jing, Yuhong; Yang, Xuguang; Song, Yanfeng; Tian, Yingxia

    2016-12-02

    Defective DNA repair has been linked with age-associated neurodegenerative disorders. Parkinson's disease (PD) is a progressive neurodegenerative disorder caused by genetic and environmental factors. Whether damages to nuclear DNA contribute to neurodegeneration of PD still remain obscure. in this study we aim to explore whether nuclear DNA damage induce dopamine neuron degeneration in A53T human α-Synuclein over expressed mouse model. We investigated the effects of X-ray irradiation on A53T-α-Syn MEFs and A53T-α-Syn transgene mice. Our results indicate that A53T-α-Syn MEFs show a prolonged DNA damage repair process and senescense phenotype. DNA damage preceded onset of motor phenotype in A53T-α-Syn transgenic mice and decrease the number of nigrostriatal dopaminergic neurons. Neurons of A53T-α-Syn transgenic mice are more fragile to DNA damages. Copyright © 2016 Elsevier Inc. All rights reserved.

  12. Regulation of IL-17 family members by adrenal hormones during experimental sepsis in mice.

    Science.gov (United States)

    Bosmann, Markus; Meta, Fabien; Ruemmler, Robert; Haggadone, Mikel D; Sarma, J Vidya; Zetoune, Firas S; Ward, Peter A

    2013-04-01

    Severe sepsis is a life-threatening disease that causes major morbidity and mortality. Catecholamines and glucocorticoids often have been used for the treatment of sepsis. Several recent studies have suggested a potential role of IL-17 during the development and progression of sepsis in small animal models. In this study, the cross-talk of catecholamines and glucocorticoids with members of the IL-17 family was investigated during sepsis in C57BL/6 mice. The concentrations in plasma of IL-17A, IL-17F, and the IL-17AF heterodimer all were increased greatly in mice after endotoxemia or cecal ligation and puncture as compared with sham mice. Surprisingly, when compared with IL-17A (487 pg/mL), the concentrations of IL-17F (2361 pg/mL) and the heterodimer, IL-17AF (5116 pg/mL), were much higher 12 hours after endotoxemia. After surgical removal of the adrenal glands, mice had much higher mortality after endotoxemia or cecal ligation and puncture. The absence of endogenous adrenal gland hormones (cortical and medullary) was associated with 3- to 10-fold higher concentrations of IL-17A, IL-17F, IL-17AF, and IL-23. The addition of adrenaline, noradrenaline, hydrocortisone, or dexamethasone to lipopolysaccharide-activated peritoneal macrophages dose-dependently suppressed the expression and release of IL-17s. The production of IL-17s required activation of c-Jun-N-terminal kinase, which was antagonized by both catecholamines and glucocorticoids. These data provide novel insights into the molecular mechanisms of immune modulation by catecholamines and glucocorticoids during acute inflammation. Copyright © 2013 American Society for Investigative Pathology. Published by Elsevier Inc. All rights reserved.

  13. Liver-specific expression of the agouti gene in transgenic mice promotes liver carcinogenesis in the absence of obesity and diabetes

    Energy Technology Data Exchange (ETDEWEB)

    Kuklin, Alexander [ORNL; Mynatt, Randall [ORNL; Klebig, Mitch [ORNL; Kiefer, Laura [Glaxo Wellcome, Research Triangle Park, NC; Wilkison, William O [Glaxo Wellcome, Research Triangle Park, NC; Woychik, Richard P [Jackson Laboratory, The, Bar Harbor, ME; Michaud III, Edward J [ORNL

    2004-01-01

    Background: The agouti protein is a paracrine factor that is normally present in the skin of many species of mammals. Agouti regulates the switch between black and yellow hair pigmentation by signalling through the melanocortin 1 receptor (Mc1r) on melanocytes. Lethal yellow (Ay) and viable yellow (Avy) are dominant regulatory mutations in the mouse agouti gene that cause the wild- ype protein to be produced at abnormally high levels throughout the body. Mice harboring these mutations exhibit a pleiotropic syndrome characterized by yellow coat color, obesity, hyperglycemia, hyperinsulinemia, and increased susceptibility to hyperplasia and carcinogenesis in numerous tissues, including the liver. The goal of this research was to determine if ectopic expression of the agouti gene in the liver alone is sufficient to recapitulate any aspect of this syndrome. For this purpose, we generated lines of transgenic mice expressing high levels of agouti in the liver under the regulatory control of the albumin promoter. Expression levels of the agouti transgene in the liver were quantified by Northern blot analysis. Functional agouti protein in the liver of transgenic mice was assayed by its ability to inhibit binding of the -melanocyte stimulating hormone ( MSH) to the Mc1r. Body weight, plasma insulin and blood glucose levels were analyzed in control and transgenic mice. Control and transgenic male mice were given a single intraperitoneal injection (10 mg/kg) of the hepatocellular carcinogen, diethylnitrosamine (DEN), at 15 days of age. Mice were euthanized at 36 or 40 weeks after DEN injection and the number of tumors per liver and total liver weights were recorded. Results: The albumin-agouti transgene was expressed at high levels in the livers of mice and produced a functional agouti protein. Albumin-agouti transgenic mice had normal body weights and normal levels of blood glucose and plasma insulin, but responded to chemical initiation of the liver with an increased number

  14. SAP Suppresses the Development of Experimental Autoimmune Encephalomyelitis in C57BL6 Mice

    Science.gov (United States)

    Ji, Zhe; Ke, Zun-Ji; Geng, Jian-Guo

    2012-01-01

    Experimental autoimmune encephalomyelitis (EAE) is a CD4+ T cell-mediated disease of the CNS. Serum amyloid P component (SAP) is a highly conserved plasma protein named for its universal presence in amyloid deposits. Here we report SAP transgenic mice had unexpectedly attenuated EAE due to impaired encephalitogenic responses. Following induction with myelin oligodendroglial glycoprotein (MOG) peptide 35–55 in CFA, SAP transgenic mice showed reduced spinal cord inflammation with lower severity of EAE attacks as compared with control C57BL/6 mice. However in SAP-KO mice, the severity of EAE is enhanced. Adoptive transfer of Ag-restimulated T cells from wild-type to SAP transgenic mice or transfer of SAP transgenic Ag-restimulated T cells to control mice induced milder EAE. T cells from MOG-primed SAP transgenic mice showed weak proliferative responses. Furthermore, in SAP transgenic mice, there is little infiltration of CD45-positive cells in the spinal cord. In vitro, SAP suppressed the secretion of IL-2 stimulated by P-selectin, and blocked P-selectin binding to T cells. Moreover, SAP could change the affinity between α4-integrin and T cells. These data suggested that SAP could antagonize the development of the acute phase of inflammation accompanying EAE by modulating the function of P-selectin. PMID:21647172

  15. A non-specific effect associated with conditional transgene expression based on Cre-loxP strategy in mice.

    Directory of Open Access Journals (Sweden)

    Linghua Qiu

    Full Text Available Transgenes flanked by loxP sites have been widely used to generate transgenic mice where the transgene expression can be controlled spatially and temporally by Cre recombinase. Data from this approach has led to important conclusions in cancer, neurodevelopment and neurodegeneration. Using this approach to conditionally express micro RNAs (miRNAs in mice, we found that Cre-mediated recombination in neural progenitor cells caused microcephaly in five of our ten independent transgenic lines. This effect was not associated with the types or the quantity of miRNAs being expressed, nor was it associated with specific target knockdown. Rather, it was correlated with the presence of multiple tandem transgene copies and inverted (head-to-head or tail-to-tail transgene repeats. The presence of these inverted repeats caused a high level of cell death in the ventricular zone of the embryonic brain, where Cre was expressed. Therefore, results from this Cre-loxP approach to generate inducible transgenic alleles must be interpreted with caution and conclusions drawn in previous reports may need reexamination.

  16. Over-Expression of Porcine Myostatin Missense Mutant Leads to A Gender Difference in Skeletal Muscle Growth between Transgenic Male and Female Mice.

    Science.gov (United States)

    Ma, Dezun; Gao, Pengfei; Qian, Lili; Wang, Qingqing; Cai, Chunbo; Jiang, Shengwang; Xiao, Gaojun; Cui, Wentao

    2015-08-24

    Myostatin, a transforming growth factor-β family member, is a negative regulator of skeletal muscle development and growth. Piedmontese cattle breeds have a missense mutation, which results in a cysteine to tyrosine substitution in the mature myostatin protein (C313Y). This loss-of-function mutation in myostatin results in a double-muscled phenotype in cattle. Myostatin propeptide is an inhibitor of myostatin activity and is considered a potential agent to stimulate muscle growth in livestock. In this study, we generated transgenic mice overexpressing porcine myostatin missense mutant (pmMS), C313Y, and wild-type porcine myostatin propeptide (ppMS), respectively, to examine their effects on muscle growth in mice. Enhanced muscle growth was observed in both pmMS and ppMS transgenic female mice and also in ppMS transgenic male mice. However, there was no enhanced muscle growth observed in pmMS transgenic male mice. To explore why there is such a big difference in muscle growth between pmMS and ppMS transgenic male mice, the expression level of androgen receptor (AR) mutant AR45 was measured by Western blot. Results indicated that AR45 expression significantly increased in pmMS transgenic male mice while it decreased dramatically in ppMS transgenic male mice. Our data demonstrate that both pmMS and ppMS act as myostatin inhibitors in the regulation of muscle growth, but the effect of pmMS in male mice is reversed by an increased AR45 expression. These results provide useful insight and basic theory to future studies on improving pork quality by genetically manipulating myostatin expression or by regulating myostatin activity.

  17. Experimental transmission of AA amyloidosis by injecting the AA amyloid protein into interleukin-1 receptor antagonist knockout (IL-1raKO) mice.

    Science.gov (United States)

    Watanabe, K; Uchida, K; Chambers, J K; Tei, M; Shoji, A; Ushio, N; Nakayama, H

    2015-05-01

    The incidence of AA amyloidosis is high in humans with rheumatoid arthritis and several animal species, including cats and cattle with prolonged inflammation. AA amyloidosis can be experimentally induced in mice using severe inflammatory stimuli and a coinjection of AA amyloid; however, difficulties have been associated with transmitting AA amyloidosis to a different animal species, and this has been attributed to the "species barrier." The interleukin-1 receptor antagonist knockout (IL-1raKO) mouse, a rodent model of human rheumatoid arthritis, has been used in the transmission of AA amyloid. When IL-1raKO and BALB/c mice were intraperitoneally injected with mouse AA amyloid together with a subcutaneous pretreatment of 2% AgNO3, all mice from both strains that were injected with crude or purified murine AA amyloid developed AA amyloidosis. However, the amyloid index, which was determined by the intensity of AA amyloid deposition, was significantly higher in IL-1raKO mice than in BALB/c mice. When IL-1raKO and BALB/c mice were injected with crude or purified bovine AA amyloid together with the pretreatment, 83% (5/6 cases) and 38% (3/8 cases) of IL-1raKO mice and 17% (1/6 cases) and 0% (0/6 cases) of BALB/c mice, respectively, developed AA amyloidosis. Similarly, when IL-1raKO and BALB/c mice were injected with crude or purified feline AA amyloid, 33% (2/6 cases) and 88% (7/8 cases) of IL-1raKO mice and 0% (0/6 cases) and 29% (2/6 cases) of BALB/c mice, respectively, developed AA amyloidosis. These results indicated that IL-1raKO mice are a useful animal model for investigating AA amyloidogenesis. © The Author(s) 2014.

  18. Astrocytic IL-6 mediates locomotor activity, exploration, anxiety, learning and social behavior.

    Science.gov (United States)

    Erta, Maria; Giralt, Mercedes; Esposito, Flavia Lorena; Fernandez-Gayol, Olaya; Hidalgo, Juan

    2015-07-01

    Interleukin-6 (IL-6) is a major cytokine in the central nervous system, secreted by different brain cells and with roles in a number of physiological functions. We herewith confirm and expand the importance of astrocytic production of and response to IL-6 by using transgenic mice deficient in astrocytic IL-6 (Ast-IL-6 KO) or in its receptor (Ast-IL-6R KO) in full C57Bl/6 genetic background. A major prosurvival effect of astrocytic IL-6 at early ages was clearly demonstrated. Robust effects were also evident in the control of activity and anxiety in the hole-board and elevated plus-maze, and in spatial learning in the Morris water-maze. The results also suggest an inhibitory role of IL-6 in the mechanism controlling the consolidation of hippocampus-dependent spatial learning. Less robust effects of astrocytic IL-6 system were also observed in despair behavior in the tail suspension test, and social behavior in the dominance and resident-intruder tests. The behavioral phenotype was highly dependent on age and/or sex in some cases. The phenotype of Ast-IL-6R KO mice mimicked only partially that of Ast-IL-6KO mice, which indicates both a role of astrocytes in behavior and the participation of other cells besides astrocytes. No evidences of altered function of the hypothalamic-pituitary-adrenal axis were observed. These results demonstrate that astrocytic IL-6 (acting at least partially in astrocytes) regulates normal behavior in mice. Copyright © 2015 Elsevier Inc. All rights reserved.

  19. Suppression of IL-12p70 formation by IL-2 or following macrophage depletion causes T-cell autoreactivity leading to CNS demyelination in HSV-1-infected mice.

    Directory of Open Access Journals (Sweden)

    Dhong Hyun Lee

    2017-05-01

    Full Text Available We have established two mouse models of central nervous system (CNS demyelination that differ from most other available models of multiple sclerosis (MS in that they represent a mixture of viral and immune triggers. In the first model, ocular infection of different strains of mice with a recombinant HSV-1 that expresses murine IL-2 constitutively (HSV-IL-2 causes CNS demyelination. In the second model, depletion of macrophages causes CNS demyelination in mice that are ocularly infected with wild-type (WT HSV-1. In the present study, we found that the demyelination in macrophage-intact mice infected with HSV-IL-2 was blocked by depletion of FoxP3-expressing cells, while concurrent depletion of macrophages restored demyelination. In contrast, demyelination was blocked in the macrophage-depleted mice infected with wild-type HSV-1 following depletion of FoxP3-expressing cells. In macrophage-depleted HSV-IL-2-infected mice, demyelination was associated with the activity of both CD4+ and CD8+ T cells, whereas in macrophage-depleted mice infected with WT HSV-1, demyelination was associated with CD4+ T cells. Macrophage depletion or infection with HSV-IL-2 caused an imbalance of T cells and TH1 responses as well as alterations in IL-12p35 and IL-12p40 but not other members of the IL-12 family or their receptors. Demyelination was blocked by adoptive transfer of macrophages that were infected with HSV-IL-12p70 or HSV-IL-12p40 but not by HSV-IL-12p35. These results indicate that suppression of IL-12p70 formation by IL-2 or following macrophage depletion causes T-cell autoreactivity leading to CNS demyelination in HSV-1-infected mice.

  20. Synergy of mIL-21 and mIL-15 in enhancing DNA vaccine efficacy against acute and chronic Toxoplasma gondii infection in mice.

    Science.gov (United States)

    Li, Zhong-Yuan; Chen, Jia; Petersen, Eskild; Zhou, Dong-Hui; Huang, Si-Yang; Song, Hui-Qun; Zhu, Xing-Quan

    2014-05-23

    The synergistic protective efficacy of murine interleukin 21 (mIL-21) and mIL-15 administrated with DNA vaccine against acute and chronic Toxoplasma gondii infection in mice was investigated using T. gondii MIC8 (TgMIC8) as a model. We cloned mIL-21 and mIL-15 from splenic tissues of Kunming mice, and constructed eukaryotic plasmid pVAX/mIL-15, pVAX/mIL-21, and pVAX/mIL-21/mIL-15, respectively. After immunizing with pVAX/TgMIC8 in the presence or absence of these cytokines, immune responses were analyzed using lymphoproliferative assay, cytokine and serum antibody measurements, flow cytometric surface markers on lymphocytes and protection against acute and chronic T. gondii infection. Mice receiving pVAX/TgMIC8 alone developed a strong humoral responses and Th1 type cellular immune responses, and showed an increase of CD4+ and CD8+ T cells compared with all the controls. Adding pVAX/mIL-21 to pVAX/TgMIC8 compared to pVAX/TgMIC8 resulted in only a slight increase in humoral and cellular immune responses, and this immune response was lower than that induced by the pVAX/mIL-15 combined with pVAX/TgMIC8. Co-administration of pVAX/mIL-21/mIL-15 combined with pVAX/TgMIC8 elicited the strongest humoral and cellular immune responses among all the groups, leading to significantly increased survival time against acute infection and the significant reduction of tissue cysts, compared to all the controls. Synergy of mIL-21 and mIL-15 can facilitate specific humoral as well as cellular immune responses elicited by DNA vaccine against acute and chronic T. gondii infection in mice. Copyright © 2014 Elsevier Ltd. All rights reserved.

  1. Cultured cells of the blood-brain barrier from apolipoprotein B-100 transgenic mice: effects of oxidized low-density lipoprotein treatment.

    Science.gov (United States)

    Lénárt, Nikolett; Walter, Fruzsina R; Bocsik, Alexandra; Sántha, Petra; Tóth, Melinda E; Harazin, András; Tóth, Andrea E; Vizler, Csaba; Török, Zsolt; Pilbat, Ana-Maria; Vígh, László; Puskás, László G; Sántha, Miklós; Deli, Mária A

    2015-07-17

    The apolipoprotein B-100 (ApoB-100) transgenic mouse line is a model of human atherosclerosis. Latest findings suggest the importance of ApoB-100 in the development of neurodegenerative diseases and microvascular/perivascular localization of ApoB-100 protein was demonstrated in the cerebral cortex of ApoB-100 transgenic mice. The aim of the study was to characterize cultured brain endothelial cells, pericytes and glial cells from wild-type and ApoB-100 transgenic mice and to study the effect of oxidized low-density lipoprotein (oxLDL) on these cells. Morphology of cells isolated from brains of wild type and ApoB-100 transgenic mice was characterized by immunohistochemistry and the intensity of immunolabeling was quantified by image analysis. Toxicity of oxLDL treatment was monitored by real-time impedance measurement and lactate dehydrogenase release. Reactive oxygen species and nitric oxide production, barrier permeability in triple co-culture blood-brain barrier model and membrane fluidity were also determined after low-density lipoprotein (LDL) or oxLDL treatment. The presence of ApoB-100 was confirmed in brain endothelial cells, while no morphological change was observed between wild type and transgenic cells. Oxidized but not native LDL exerted dose-dependent toxicity in all three cell types, induced barrier dysfunction and increased reactive oxygen species (ROS) production in both genotypes. A partial protection from oxLDL toxicity was seen in brain endothelial and glial cells from ApoB-100 transgenic mice. Increased membrane rigidity was measured in brain endothelial cells from ApoB-100 transgenic mice and in LDL or oxLDL treated wild type cells. The morphological and functional properties of cultured brain endothelial cells, pericytes and glial cells from ApoB-100 transgenic mice were characterized and compared to wild type cells for the first time. The membrane fluidity changes in ApoB-100 transgenic cells related to brain microvasculature indicate

  2. Mice orally immunized with a transgenic plant expressing the glycoprotein of Crimean-Congo hemorrhagic fever virus

    DEFF Research Database (Denmark)

    Ghiasi, Seyed Mojtaba; Salmanian, A H; Chinikar, S

    2011-01-01

    in their serum and feces, respectively. The mice in the fed/boosted group showed a significant rise in specific IgG antibodies after a single boost. Our results imply that oral immunization of animals with edible materials from transgenic plants is feasible, and further assessments are under way. In addition......While Crimean-Congo hemorrhagic fever (CCHF) has a high mortality rate in humans, the associated virus (CCHFV) does not induce clinical symptoms in animals, but animals play an important role in disease transmission to humans. Our aim in this study was to examine the immunogenicity of the CCHFV...... glycoprotein when expressed in the root and leaf of transgenic plants via hairy roots and stable transformation of tobacco plants, respectively. After confirmatory analyses of transgenic plant lines and quantification of the expressed glycoprotein, mice were either fed with the transgenic leaves or roots, fed...

  3. The balance between IL-17 and IL-22 produced by liver-infiltrating T-helper cells critically controls NASH development in mice.

    Science.gov (United States)

    Rolla, Simona; Alchera, Elisa; Imarisio, Chiara; Bardina, Valentina; Valente, Guido; Cappello, Paola; Mombello, Cristina; Follenzi, Antonia; Novelli, Francesco; Carini, Rita

    2016-02-01

    The mechanisms responsible for the evolution of steatosis towards NASH (non-alcoholic steatohepatitis) and fibrosis are not completely defined. In the present study we evaluated the role of CD4(+) T-helper (Th) cells in this process. We analysed the infiltration of different subsets of CD4(+) Th cells in C57BL/6 mice fed on a MCD (methionine choline-deficient) diet, which is a model reproducing all phases of human NASH progression. There was an increase in Th17 cells at the beginning of NASH development and at the NASH-fibrosis transition, whereas levels of Th22 cells peaked between the first and the second expansion of Th17 cells. An increase in the production of IL (interleukin)-6, TNFα (tumour necrosis factor α), TGFβ (transforming growth factor β) and CCL20 (CC chemokine ligand 20) accompanied the changes in Th17/Th22 cells. Livers of IL-17(-/-) mice were protected from NASH development and characterized by an extensive infiltration of Th22 cells. In vitro, IL-17 exacerbated the JNK (c-Jun N-terminal kinase)-dependent mouse hepatocyte lipotoxicity induced by palmitate. IL-22 prevented lipotoxicity through PI3K (phosphoinositide 3-kinase)-mediated inhibition of JNK, but did not play a protective role in the presence of IL-17, which up-regulated the PI3K/Akt inhibitor PTEN (phosphatase and tensin homologue deleted on chromosome 10). Consistently, livers of IL-17(-/-) mice fed on the MCD diet displayed decreased activation of JNK, reduced expression of PTEN and increased phosphorylation of Akt compared with livers of wild-type mice. Hepatic infiltration of Th17 cells is critical for NASH initiation and development of fibrosis in mice, and reflects an infiltration of Th22 cells. Th22 cells are protective in NASH, but only in the absence of IL-17. These data strongly support the potentiality of clinical applications of IL-17 inhibitors that can prevent NASH by both abolishing the lipotoxic action of IL-17 and allowing IL-22-mediated protection. © 2016 Authors

  4. Methamphetamine-induced neurotoxicity is attenuated in transgenic mice with a null mutation for interleukin-6.

    Science.gov (United States)

    Ladenheim, B; Krasnova, I N; Deng, X; Oyler, J M; Polettini, A; Moran, T H; Huestis, M A; Cadet, J L

    2000-12-01

    Increasing evidence implicates apoptosis as a major mechanism of cell death in methamphetamine (METH) neurotoxicity. The involvement of a neuroimmune component in apoptotic cell death after injury or chemical damage suggests that cytokines may play a role in METH effects. In the present study, we examined if the absence of IL-6 in knockout (IL-6-/-) mice could provide protection against METH-induced neurotoxicity. Administration of METH resulted in a significant reduction of [(125)I]RTI-121-labeled dopamine transporters in the caudate-putamen (CPu) and cortex as well as depletion of dopamine in the CPu and frontal cortex of wild-type mice. However, these METH-induced effects were significantly attenuated in IL-6-/- animals. METH also caused a decrease in serotonin levels in the CPu and hippocampus of wild-type mice, but no reduction was observed in IL-6-/- animals. Moreover, METH induced decreases in [(125)I]RTI-55-labeled serotonin transporters in the hippocampal CA3 region and in the substantia nigra-reticulata but increases in serotonin transporters in the CPu and cingulate cortex in wild-type animals, all of which were attenuated in IL-6-/- mice. Additionally, METH caused increased gliosis in the CPu and cortices of wild-type mice as measured by [(3)H]PK-11195 binding; this gliotic response was almost completely inhibited in IL-6-/- animals. There was also significant protection against METH-induced DNA fragmentation, measured by the number of terminal deoxynucleotidyl transferase-mediated dUTP nick-end-labeled (TUNEL) cells in the cortices. The protective effects against METH toxicity observed in the IL-6-/- mice were not caused by differences in temperature elevation or in METH accumulation in wild-type and mutant animals. Therefore, these observations support the proposition that IL-6 may play an important role in the neurotoxicity of METH.

  5. Deletion of IL-4Ralpha on CD4 T cells renders BALB/c mice resistant to Leishmania major infection.

    Directory of Open Access Journals (Sweden)

    Magdalena Radwanska

    2007-05-01

    Full Text Available Effector responses induced by polarized CD4+ T helper 2 (Th2 cells drive nonhealing responses in BALB/c mice infected with Leishmania major. Th2 cytokines IL-4 and IL-13 are known susceptibility factors for L. major infection in BALB/c mice and induce their biological functions through a common receptor, the IL-4 receptor alpha chain (IL-4Ralpha. IL-4Ralpha-deficient BALB/c mice, however, remain susceptible to L. major infection, indicating that IL-4/IL-13 may induce protective responses. Therefore, the roles of polarized Th2 CD4+ T cells and IL-4/IL-13 responsiveness of non-CD4+ T cells in inducing non-healer or healer responses have yet to be elucidated. CD4+ T cell-specific IL-4Ralpha (Lck(creIL-4Ralpha(-/lox deficient BALB/c mice were generated and characterized to elucidate the importance of IL-4Ralpha signaling during cutaneous leishmaniasis in the absence of IL-4-responsive CD4+ T cells. Efficient deletion was confirmed by loss of IL-4Ralpha expression on CD4+ T cells and impaired IL-4-induced CD4+ T cell proliferation and Th2 differentiation. CD8+, gammadelta+, and NK-T cells expressed residual IL-4Ralpha, and representative non-T cell populations maintained IL-4/IL-13 responsiveness. In contrast to IL-4Ralpha(-/lox BALB/c mice, which developed ulcerating lesions following infection with L. major, Lck(creIL-4Ralpha(-/lox mice were resistant and showed protection to rechallenge, similar to healer C57BL/6 mice. Resistance to L. major in Lck(creIL-4Ralpha(-/lox mice correlated with reduced numbers of IL-10-secreting cells and early IL-12p35 mRNA induction, leading to increased delayed type hypersensitivity responses, interferon-gamma production, and elevated ratios of inducible nitric oxide synthase mRNA/parasite, similar to C57BL/6 mice. These data demonstrate that abrogation of IL-4 signaling in CD4+ T cells is required to transform non-healer BALB/c mice to a healer phenotype. Furthermore, a beneficial role for IL-4Ralpha signaling in L

  6. Transgenic Expression of Dspp Partially Rescued the Long Bone Defects of Dmp1-null Mice

    Science.gov (United States)

    Jani, Priyam H.; Gibson, Monica P.; Liu, Chao; Zhang, Hua; Wang, Xiaofang; Lu, Yongbo; Qin, Chunlin

    2016-01-01

    Dentin matrix protein 1 (DMP1) and dentin sialophosphoprotein (DSPP) belong to the Small Integrin-Binding Ligand N-linked Glycoprotein (SIBLING) family. In addition to the features common to all SIBLING members, DMP1 and DSPP share several unique similarities in chemical structure, proteolytic activation and tissue localization. Mutations in, or deletion of DMP1, cause autosomal recessive hypophosphatemic rickets along with dental defects; DSPP mutations or its ablation are associated with dentinogenesis imperfecta. While the roles and functional mechanisms of DMP1 in osteogenesis have been extensively studied, those of DSPP in long bones have been studied only to a limited extent. Previous studies by our group revealed that transgenic expression of Dspp completely rescued the dentin defects of Dmp1-null (Dmp1−/−) mice. In this investigation, we assessed the effects of transgenic Dspp on osteogenesis by analyzing the formation and mineralization of the long bones in Dmp1−/− mice that expresses a transgene encoding full-length DSPP driven by a 3.6-kb rat Col1a1 promoter (referred as “Dmp1−/−;Dspp-Tg mice”). We characterized the long bones of the Dmp1−/−;Dspp-Tg mice at different ages and compared them with those from Dmp1−/− and Dmp1+/− (normal control) mice. Our analyses showed that the long bones of Dmp1−/−;Dspp-Tg mice had a significant increase in cortical bone thickness, bone volume and mineral density along with a remarkable restoration of trabecular thickness compared to those of the Dmp1−/− mice. The long bones of Dmp1−/−;Dspp-Tg mice underwent a dramatic reduction in the amount of osteoid, significant improvement of the collagen fibrillar network, and better organization of the lacunocanalicular system, compared to the Dmp1−/− mice. The elevated levels of biglycan, bone sialoprotein and osteopontin in Dmp1−/− mice were also noticeably corrected by the transgenic expression of Dspp. These findings suggest that

  7. Impaired c-Fos and polo-like kinase 2 induction in the limbic system of fear-conditioned α-synuclein transgenic mice.

    Directory of Open Access Journals (Sweden)

    Heinrich Schell

    Full Text Available α-Synuclein (αSYN is genetically and neuropathologically linked to a spectrum of neurodegenerative diseases including Parkinson's disease, dementia with Lewy bodies, and related disorders. Cognitive impairment is recapitulated in several αSYN transgenic mouse lines. However, the mechanisms of dysfunction in affected neurons are largely unknown. Here we measured neuronal activity induced gene products in the limbic system of αSYN transgenic mice upon fear conditioning (FC. Induction of the synaptic plasticity marker c-Fos was significantly reduced in the amygdala and hippocampus of (Thy1-h[A30P]αSYN transgenic mice in an age-dependent manner. Similarly, the neuronal activity inducible polo-like kinase 2 (Plk2 that can phosphorylate αSYN at the pathological site serine-129 was up-regulated in both brain regions upon FC. Plk2 inductions were also significantly impaired in aged (Thy1-h[A30P]αSYN transgenic mice, both in the amygdala and hippocampus. Plk2 inductions in the amygdala after FC were paralleled by a small but significant increase in the number of neuronal cell bodies immunopositive for serine-129 phosphorylated αSYN in young but not aged (Thy1-h[A30P]αSYN transgenic mice. In addition, we observed in the aged hippocampus a distinct type of apparently unmodified transgenic αSYN profiles resembling synaptic accumulations of αSYN. Thus, the cognitive decline observed in aged αSYN transgenic mice might be due to impairment of neurotransmission and synaptic plasticity in the limbic system by distinct αSYN species.

  8. Loss of Dok-1 and Dok-2 in mice causes severe experimental colitis accompanied by reduced expression of IL-17A and IL-22

    International Nuclear Information System (INIS)

    Waseda, Masazumi; Arimura, Sumimasa; Shimura, Eri; Nakae, Susumu; Yamanashi, Yuji

    2016-01-01

    Appropriate immune responses and mucosal barrier functions are required for the maintenance of intestinal homeostasis. Defects in this defense system may lead to inflammatory disorders such as inflammatory bowel disease. Downstream of tyrosine kinases 1 (Dok-1) and its closest homolog, Dok-2, are preferentially expressed in immune cells, and play essential roles in the negative regulation of multiple signaling pathways in both innate and adaptive immunity. However, the function of these proteins in intestinal homeostasis remained unclear. Here we show that Dok-1/-2 double knockout (DKO) mice were highly susceptible to dextran sodium sulfate (DSS)-induced colitis compared with Dok-1 or Dok-2 single KO and wild type (WT) mice. Furthermore, DSS-treated Dok-1/-2 DKO mice exhibited increased colonic tissue damage accompanied by reduced proliferation of the epithelial cells relative to WT controls, suggesting that Dok-1/-2 DKO mice have defects in the repair of intestinal epithelial lesions. In addition, the levels of the Th17 cytokines IL-17A and IL-22, which have protective roles in DSS-induced colitis, were reduced in DSS-treated Dok-1/-2 DKO mice compared with WT mice. Taken together, our results demonstrate that Dok-1 and Dok-2 negatively regulate intestinal inflammation, apparently through the induction of IL-17A and IL-22 expression. - Highlights: • Dok-1 and Dok-2 play a cooperative role in protection against DSS-induced colitis. • Dok-1/-2 double KO (DKO) mice show extensive ulceration of the colon after DSS treatment. • Proliferation of colonic epithelium is inhibited in DSS-treated Dok-1/-2 DKO mice. • Expression of IL-17A and IL-22 is reduced in the colon of DSS-treated Dok-1/-2 DKO mice.

  9. Loss of Dok-1 and Dok-2 in mice causes severe experimental colitis accompanied by reduced expression of IL-17A and IL-22

    Energy Technology Data Exchange (ETDEWEB)

    Waseda, Masazumi; Arimura, Sumimasa [Division of Genetics, Department of Cancer Biology, The Institute of Medical Science, The University of Tokyo, Shirokanedai, Minato-ku, Tokyo, 108-8639 (Japan); Shimura, Eri [Laboratory of Systems Biology, Center for Experimental Medicine and Systems Biology, The Institute of Medical Science, The University of Tokyo, Shirokanedai, Minato-ku, Tokyo, 108-8639 (Japan); Nakae, Susumu [Laboratory of Systems Biology, Center for Experimental Medicine and Systems Biology, The Institute of Medical Science, The University of Tokyo, Shirokanedai, Minato-ku, Tokyo, 108-8639 (Japan); Precursory Research for Embryonic Science and Technology (PRESTO), Japan Science and Technology Agency, Saitama, 332-0012 (Japan); Yamanashi, Yuji, E-mail: yyamanas@ims.u-tokyo.ac.jp [Division of Genetics, Department of Cancer Biology, The Institute of Medical Science, The University of Tokyo, Shirokanedai, Minato-ku, Tokyo, 108-8639 (Japan)

    2016-09-09

    Appropriate immune responses and mucosal barrier functions are required for the maintenance of intestinal homeostasis. Defects in this defense system may lead to inflammatory disorders such as inflammatory bowel disease. Downstream of tyrosine kinases 1 (Dok-1) and its closest homolog, Dok-2, are preferentially expressed in immune cells, and play essential roles in the negative regulation of multiple signaling pathways in both innate and adaptive immunity. However, the function of these proteins in intestinal homeostasis remained unclear. Here we show that Dok-1/-2 double knockout (DKO) mice were highly susceptible to dextran sodium sulfate (DSS)-induced colitis compared with Dok-1 or Dok-2 single KO and wild type (WT) mice. Furthermore, DSS-treated Dok-1/-2 DKO mice exhibited increased colonic tissue damage accompanied by reduced proliferation of the epithelial cells relative to WT controls, suggesting that Dok-1/-2 DKO mice have defects in the repair of intestinal epithelial lesions. In addition, the levels of the Th17 cytokines IL-17A and IL-22, which have protective roles in DSS-induced colitis, were reduced in DSS-treated Dok-1/-2 DKO mice compared with WT mice. Taken together, our results demonstrate that Dok-1 and Dok-2 negatively regulate intestinal inflammation, apparently through the induction of IL-17A and IL-22 expression. - Highlights: • Dok-1 and Dok-2 play a cooperative role in protection against DSS-induced colitis. • Dok-1/-2 double KO (DKO) mice show extensive ulceration of the colon after DSS treatment. • Proliferation of colonic epithelium is inhibited in DSS-treated Dok-1/-2 DKO mice. • Expression of IL-17A and IL-22 is reduced in the colon of DSS-treated Dok-1/-2 DKO mice.

  10. STAT3/5-dependent IL9 overexpression contributes to neoplastic cell survival in mycosis fungoides

    DEFF Research Database (Denmark)

    Vieyra-Garcia, Pablo A.; Wei, Tianling; Naym, David Gram

    2016-01-01

    preparations. To explore the mechanism of IL9 secretion, we knocked down STAT3/5 and IRF4 by siRNA transfection in CTCL cell lines receiving psoralen+UVA (PUVA) ± anti-IL9 antibody. To further examine the role of IL9 in tumor development, the EL-4 T-cell lymphoma model was used in C57BL/6 mice.  Results...

  11. Diabetic kidney lesions of GIPRdn transgenic mice: podocyte hypertrophy and thickening of the GBM precede glomerular hypertrophy and glomerulosclerosis.

    Science.gov (United States)

    Herbach, Nadja; Schairer, Irene; Blutke, Andreas; Kautz, Sabine; Siebert, Angela; Göke, Burkhard; Wolf, Eckhard; Wanke, Ruediger

    2009-04-01

    Diabetic nephropathy is the leading cause of end-stage renal disease and the largest contributor to the total cost of diabetes care. Rodent models are excellent tools to gain more insight into the pathogenesis of diabetic nephropathy. In the present study, we characterize the age-related sequence of diabetes-associated kidney lesions in GIPR(dn) transgenic mice, a novel mouse model of early-onset diabetes mellitus. Clinical-chemical analyses as well as qualitative and quantitative morphological analyses of the kidneys of GIPR(dn) transgenic animals and nontransgenic littermate controls were performed at 3, 8, 20, and 28 wk of age. Early renal changes of transgenic mice consisted of podocyte hypertrophy, reduced numerical volume density of podocytes in glomeruli, and homogenous thickening of the glomerular basement membrane, followed by renal and glomerular hypertrophy as well as mesangial expansion and matrix accumulation. At 28 wk of age, glomerular damage was most prominent, including advanced glomerulosclerosis, tubulointerstitial lesions, and proteinuria. Real-time PCR demonstrated increased glomerular expression of Col4a1, Fn1, and Tgfb1. Immunohistochemistry revealed increased mesangial deposition of collagen type IV, fibronectin, and laminin. The present study shows that GIPR(dn) transgenic mice exhibit renal changes that closely resemble diabetes-associated kidney alterations in humans. Data particularly from male transgenic mice indicate that podocyte hypertrophy is directly linked to hyperglycemia, without the influence of mechanical stress. GIPR(dn) transgenic mice are considered an excellent new tool to study the mechanisms involved in onset and progression of diabetic nephropathy.

  12. Treatment with anti-IL-6 receptor antibody prevented increase in serum hepcidin levels and improved anemia in mice inoculated with IL-6–producing lung carcinoma cells

    International Nuclear Information System (INIS)

    Noguchi-Sasaki, Mariko; Sasaki, Yusuke; Shimonaka, Yasushi; Mori, Kazushige; Fujimoto-Ouchi, Kaori

    2016-01-01

    Hepcidin, a key regulator of iron metabolism, is produced mainly by interleukin-6 (IL-6) during inflammation. A mechanism linking cancer-related anemia and IL-6 through hepcidin production is suggested. To clarify the hypothesis that overproduction of IL-6 elevates hepcidin levels and contributes to the development of cancer-related anemia, we evaluated anti-IL-6 receptor antibody treatment of cancer-related anemia in an IL-6–producing human lung cancer xenograft model. Nude mice were subcutaneously inoculated with cells of the IL-6–producing human lung cancer cell line LC-06-JCK and assessed as a model of cancer-related anemia. Mice bearing LC-06-JCK were administered rat anti-mouse IL-6 receptor antibody MR16-1 and their serum hepcidin levels and hematological parameters were determined. LC-06-JCK–bearing mice developed anemia according to the production of human IL-6 from xenografts, with decreased values of hemoglobin, hematocrit, and mean corpuscular volume (MCV) compared to non–tumor-bearing (NTB) mice. LC-06-JCK–bearing mice showed decreased body weight and serum albumin with increased serum amyloid A. MR16-1 treatment showed significant inhibition of decreased body weight and serum albumin levels, and suppressed serum amyloid A level. There was no difference in tumor volume between MR16-1-treated mice and immunoglobulin G (IgG)-treated control mice. Decreased hemoglobin, hematocrit, and MCV in LC-06-JCK–bearing mice was significantly relieved by MR16-1 treatment. LC-06-JCK–bearing mice showed high red blood cell counts and erythropoietin levels as compared to NTB mice, whereas MR16-1 treatment did not affect their levels. Serum hepcidin and ferritin levels were statistically elevated in mice bearing LC-06-JCK. LC-06-JCK–bearing mice showed lower values of MCV, mean corpuscular hemoglobin (MCH), and serum iron as compared to NTB mice. Administration of MR16-1 to mice bearing LC-06-JCK significantly suppressed levels of both serum hepcidin and

  13. A soluble form of Siglec-9 provides an antitumor benefit against mammary tumor cells expressing MUC1 in transgenic mice

    International Nuclear Information System (INIS)

    Tomioka, Yukiko; Morimatsu, Masami; Nishijima, Ken-ichi; Usui, Tatsufumi; Yamamoto, Sayo; Suyama, Haruka; Ozaki, Kinuyo; Ito, Toshihiro

    2014-01-01

    Highlights: • Tumor-associated antigen MUC1 binds to Siglec-9. • Soluble Siglec-9 reduced proliferation of MUC1-positive tumor in transgenic mice. • Soluble Siglec-9 and MUC1 on tumor cells were colocalized in transgenic mice. • MUC1 expression on tumor cells were reduced in soluble Siglec-9 transgenic mice. - Abstract: Tumor-associated MUC1 binds to Siglec-9, which is expected to mediate tumor cell growth and negative immunomodulation. We hypothesized that a soluble form of Siglec-9 (sSiglec-9) competitively inhibits a binding of MUC1 to its receptor molecules like human Siglec-9, leading to provide antitumor benefit against MUC1-expressing tumor, and generated transgenic mouse lines expressing sSiglec-9 (sSiglec-9 Tg). When mammary tumor cells expressing MUC1 were intraperitoneally transplanted into sSiglec-9 Tg, tumor proliferation was slower with the lower histological malignancy as compared with non-transgenic mice. The sSiglec-9 was detected in the ascites caused by the tumor in the sSiglec-9 Tg, and sSiglec-9 and MUC1 were often colocalized on surfaces of the tumor cells. PCNA immunohistochemistry also revealed the reduced proliferation of the tumor cells in sSiglec-9 Tg. In sSiglec-9 Tg with remarkable suppression of tumor proliferation, MUC1 expressions were tend to be reduced. In the ascites of sSiglec-9 Tg bearing the tumor, T cells were uniformly infiltrated, whereas aggregations of degenerative T cells were often observed in the non-transgenic mice. These results suggest that sSiglec-9 has an antitumor benefit against MUC1-expressing tumor in the transgenic mice, which may avoid the negative immunomodulation and/or suppress tumor-associated MUC1 downstream signal transduction, and subsequent tumor proliferation

  14. A soluble form of Siglec-9 provides an antitumor benefit against mammary tumor cells expressing MUC1 in transgenic mice

    Energy Technology Data Exchange (ETDEWEB)

    Tomioka, Yukiko, E-mail: ytomi@muses.tottori-u.ac.jp [Division of Disease Model Innovation, Institute for Genetic Medicine, Hokkaido University, Sapporo 060-0815 (Japan); Avian Zoonosis Research Center, Faculty of Agriculture, Tottori University, Tottori 680-8553 (Japan); Morimatsu, Masami, E-mail: mmorimat@vetmed.hokudai.ac.jp [Division of Disease Model Innovation, Institute for Genetic Medicine, Hokkaido University, Sapporo 060-0815 (Japan); Laboratory of Laboratory Animal Science and Medicine, Department of Disease Control, Graduate School of Veterinary Medicine, Hokkaido University, Sapporo 060-0818 (Japan); Nishijima, Ken-ichi, E-mail: nishijma@nubio.nagoya-u.ac.jp [Department of Biotechnology, Graduate School of Engineering, Nagoya University, Nagoya 464-8603 (Japan); Usui, Tatsufumi, E-mail: usutatsu@muses.tottori-u.ac.jp [Avian Zoonosis Research Center, Faculty of Agriculture, Tottori University, Tottori 680-8553 (Japan); Yamamoto, Sayo, E-mail: ysayo@anim.med.kyushu-u.ac.jp [Center of Biomedical Research, Research Center for Human Disease Modeling, Graduate School of Medical Sciences, Kyushu University, Fukuoka 812-8582 (Japan); Suyama, Haruka, E-mail: sharuka@anim.med.kyushu-u.ac.jp [Center of Biomedical Research, Research Center for Human Disease Modeling, Graduate School of Medical Sciences, Kyushu University, Fukuoka 812-8582 (Japan); Ozaki, Kinuyo, E-mail: k-ozaki@anim.med.kyushu-u.ac.jp [Center of Biomedical Research, Research Center for Human Disease Modeling, Graduate School of Medical Sciences, Kyushu University, Fukuoka 812-8582 (Japan); Ito, Toshihiro, E-mail: toshiito@muses.tottori-u.ac.jp [Avian Zoonosis Research Center, Faculty of Agriculture, Tottori University, Tottori 680-8553 (Japan); and others

    2014-07-18

    Highlights: • Tumor-associated antigen MUC1 binds to Siglec-9. • Soluble Siglec-9 reduced proliferation of MUC1-positive tumor in transgenic mice. • Soluble Siglec-9 and MUC1 on tumor cells were colocalized in transgenic mice. • MUC1 expression on tumor cells were reduced in soluble Siglec-9 transgenic mice. - Abstract: Tumor-associated MUC1 binds to Siglec-9, which is expected to mediate tumor cell growth and negative immunomodulation. We hypothesized that a soluble form of Siglec-9 (sSiglec-9) competitively inhibits a binding of MUC1 to its receptor molecules like human Siglec-9, leading to provide antitumor benefit against MUC1-expressing tumor, and generated transgenic mouse lines expressing sSiglec-9 (sSiglec-9 Tg). When mammary tumor cells expressing MUC1 were intraperitoneally transplanted into sSiglec-9 Tg, tumor proliferation was slower with the lower histological malignancy as compared with non-transgenic mice. The sSiglec-9 was detected in the ascites caused by the tumor in the sSiglec-9 Tg, and sSiglec-9 and MUC1 were often colocalized on surfaces of the tumor cells. PCNA immunohistochemistry also revealed the reduced proliferation of the tumor cells in sSiglec-9 Tg. In sSiglec-9 Tg with remarkable suppression of tumor proliferation, MUC1 expressions were tend to be reduced. In the ascites of sSiglec-9 Tg bearing the tumor, T cells were uniformly infiltrated, whereas aggregations of degenerative T cells were often observed in the non-transgenic mice. These results suggest that sSiglec-9 has an antitumor benefit against MUC1-expressing tumor in the transgenic mice, which may avoid the negative immunomodulation and/or suppress tumor-associated MUC1 downstream signal transduction, and subsequent tumor proliferation.

  15. The role of recombinant IL-12 in enhancing immune responses induced by hepatitis B vaccine in mice

    International Nuclear Information System (INIS)

    Lu Qun; Zhou Lixia; Zhao Yanrong; Miao Xiaoguang; Jin Jie; Ke Jinshan; Qin Xuliang; He Zheng

    2007-01-01

    Objective: To study the role played by recombinant IL-12 in enhancing the intensity and quality of the immune response to hepatitis B vaccine in mice, and investigate the possibility of adding recombinant IL-12 as adjuvants to hepatitis B therapeutic vaccine. Methods: Recombinant IL-12 was injected together with hepatitis B vaccine into mice and special anti-HBsAb in the mice and the cellular immune responses were examined. Results: Recombinant IL-12 can obviously enhance T lymphocyte multiplication activity, accelerate excretion of cytokines IFN-γ and IL-2, and increase the IgG2a antibody in mice. Conclusion: Recombinant IL-12 can remarkably strengthen the cellular immune responses induced by the hepatitis B vaccine, and modulate the immune responses toward Thl. (authors)

  16. Linking surfactant protein SP-D and IL-13

    DEFF Research Database (Denmark)

    Qaseem, Asif S; Sonar, Sanchaita; Mahajan, Lakshna

    2012-01-01

    of allergen-IgE interaction, histamine release by sensitised mast cells, downregulation of specific IgE production, suppression of pulmonary and peripheral eosinophilia, inhibition of mechanisms that cause airway remodelling, and induction of apoptosis in sensitised eosinophils. SP-D can also shift helper T......Surfactant protein D (SP-D) is an innate immune molecule that plays a protective role against lung infection, allergy, asthma and inflammation. In vivo experiments with murine models have shown that SP-D can protect against allergic challenge via a range of mechanisms including inhibition...... cell polarisation following in vivo allergenic challenge, from pathogenic Th2 to a protective Th1 cytokine response. Interestingly, SP-D gene deficient (-/-) mice show an IL-13 over-expressing phenotype. IL-13 has been shown to be involved in the development of asthma. Transgenic mice over...

  17. Immunological Prevention of Spontaneous Mammary Carcinoma in Transgenic Mice

    Science.gov (United States)

    2001-08-01

    developed more slowly by transgenic FVB Anatomia Patologica, Ospedale S.S. Annunziata, Via Valignani, 66100 female mice carrying the wild-type proto...coopted (Pezzella et al., 1997). Anatomia Patologica. Ospedale SS. Annunziata, Via Valignani, 66100 Chieti, Italy. Fax: 39 0871 330471. E-mail: musiani...lo Studio e la Cura dei Tumori, Milan, Italy; and Reprints: Piero Musiani, G. d’ Annunzio University of Chieti, Anatomia Department of Experimental

  18. The temporal expression pattern of alpha-synuclein modulates olfactory neurogenesis in transgenic mice.

    Directory of Open Access Journals (Sweden)

    Sebastian R Schreglmann

    Full Text Available Adult neurogenesis mirrors the brain´s endogenous capacity to generate new neurons throughout life. In the subventricular zone/ olfactory bulb system adult neurogenesis is linked to physiological olfactory function and has been shown to be impaired in murine models of neuronal alpha-Synuclein overexpression. We analyzed the degree and temporo-spatial dynamics of adult olfactory bulb neurogenesis in transgenic mice expressing human wild-type alpha-Synuclein (WTS under the murine Thy1 (mThy1 promoter, a model known to have a particularly high tg expression associated with impaired olfaction.Survival of newly generated neurons (NeuN-positive in the olfactory bulb was unchanged in mThy1 transgenic animals. Due to decreased dopaminergic differentiation a reduction in new dopaminergic neurons within the olfactory bulb glomerular layer was present. This is in contrast to our previously published data on transgenic animals that express WTS under the control of the human platelet-derived growth factor β (PDGF promoter, that display a widespread decrease in survival of newly generated neurons in regions of adult neurogenesis, resulting in a much more pronounced neurogenesis deficit. Temporal and quantitative expression analysis using immunofluorescence co-localization analysis and Western blots revealed that in comparison to PDGF transgenic animals, in mThy1 transgenic animals WTS is expressed from later stages of neuronal maturation only but at significantly higher levels both in the olfactory bulb and cortex.The dissociation between higher absolute expression levels of alpha-Synuclein but less severe impact on adult olfactory neurogenesis in mThy1 transgenic mice highlights the importance of temporal expression characteristics of alpha-Synuclein on the maturation of newborn neurons.

  19. Transgenic neuronal expression of proopiomelanocortin attenuates hyperphagic response to fasting and reverses metabolic impairments in leptin-deficient obese mice.

    Science.gov (United States)

    Mizuno, Tooru M; Kelley, Kevin A; Pasinetti, Giulio M; Roberts, James L; Mobbs, Charles V

    2003-11-01

    Hypothalamic proopiomelanocortin (POMC) gene expression is reduced in many forms of obesity and diabetes, particularly in those attributable to deficiencies in leptin or its receptor. To assess the functional significance of POMC in mediating metabolic phenotypes associated with leptin deficiency, leptin-deficient mice bearing a transgene expressing the POMC gene under control of the neuron-specific enolase promoter were produced. The POMC transgene attenuated fasting-induced hyperphagia in wild-type mice. Furthermore, the POMC transgene partially reversed obesity, hyperphagia, and hypothermia and effectively normalized hyperglycemia, glucosuria, glucose intolerance, and insulin resistance in leptin-deficient mice. Effects of the POMC transgene on glucose homeostasis were independent of the partial correction of hyperphagia and obesity. Furthermore, the POMC transgene normalized the profile of hepatic and adipose gene expression associated with gluconeogenesis, glucose output, and insulin sensitivity. These results indicate that central POMC is a key modulator of glucose homeostasis and that agonists of POMC products may provide effective therapy in treating impairments in glucose homeostasis when hypothalamic POMC expression is reduced, as occurs with leptin deficiency, hypothalamic damage, and aging.

  20. Muscle-directed gene therapy for phenylketonuria (PKU): Development of transgenic mice with muscle-specific phenylalanine hydroxylase expression

    Energy Technology Data Exchange (ETDEWEB)

    Harding, C.O.; Messing, A.; Wolff, J.A. [Univ. of Wisconsin, Madison, WI (United States)

    1994-09-01

    Phenylketonuria (PKU) is an attractive target for gene therapy because of shortcomings in current therapy including lifelong commitment to a difficult and expensive diet, persistent mild cognitive deficits in some children despite adequate dietary therapy, and maternal PKU syndrome. Phenylalanine hydroxylase (PAH) is normally expressed only in liver, but we propose to treat PKU by introducing the gene for PAH into muscle. In order to evaluate both the safety and efficacy of this approach, we have a developed a trangenic mouse which expresses PAH in both cardiac and skeletal muscle. The transgene includes promoter and enhancer sequences from the mouse muscle creatine kinase (MCK) gene fused to the mouse liver PAH cDNA. Mice which have inherited the transgene are healthy, active, and do not exhibit any signs of muscle weakness or wasting. Ectopic PAH expression in muscle is not detrimental to the health, neurologic function, or reproduction of the mice. Pah{sup enu2} hyperphenylalaninemic mice, a model of human PAH deficiency, bred to carry the transgene have substantial PAH expression in cardiac and skeletal muscle but none in liver. Muscle PAH expression alone does not complement the hyperphenylalaninemic phenotype of Pah{sup enu2} mice. However, administration of reduced tetrahydrobiopterin to transgenic Pah{sup enu2} mice is associated with a 25% mean decrease in serum phenylalanine levels. We predict that ectopic expression of PAH in muscle along with adequate muscle supplies of reduced biopterin cofactor will decrease hyperphenylalaninemia in PKU.

  1. Mammary gland tumor formation in transgenic mice overexpressing stromelysin-1

    Energy Technology Data Exchange (ETDEWEB)

    Sympson, Carolyn J; Bissell, Mina J; Werb, Zena

    1995-06-01

    An intact basement membrane (BM) is essential for the proper function, differentiation and morphology of many epithelial cells. The disruption or loss of this BM occurs during normal development as well as in the disease state. To examine the importance of BM during mammary gland development in vivo, we generated transgenic mice that inappropriately express autoactivating isoforms of the matrix metalloproteinase stromelysin-1. The mammary glands from these mice are both functionally and morphologically altered throughout development. We have now documented a dramatic incidence of breast tumors in several independent lines of these mice. These data suggest that overexpression of stromelysin-1 and disruption of the BM may be a key step in the multi-step process of breast cancer.

  2. Global Overexpression of ET-1 Decreases Blood Pressure - A Systematic Review and Meta-Analysis of ET-1 Transgenic Mice.

    Science.gov (United States)

    Lu, Yong Ping; Tsuprykov, Oleg; Vignon-Zellweger, Nicolas; Heiden, Susi; Hocher, Berthold

    2016-01-01

    ET-1 has independent effects on blood pressure regulation in vivo, it is involved in tubular water and salt excretion, promotes constriction of smooth muscle cells, modulates sympathetic nerve activity, and activates the liberation of nitric oxide. To determine the net effect of these partially counteracting mechanisms on blood pressure, a systematic meta-analysis was performed. Based on the principles of Cochrane systematic reviews, we searched in major literature databases - MEDLINE (PubMed), Embase, Google Scholar, and the China Biological Medicine Database (CBM-disc) - for articles relevant to the topic of the blood pressure phenotype of endothelin-1 transgenic (ET-1+/+) mice from January 1, 1988 to March 31, 2016. Review Manager Version 5.0 (Rev-Man 5.0) software was applied for statistical analysis. In total thirteen studies reported blood pressure data. The meta-analysis of blood pressure data showed that homozygous ET-1 transgenic mice (ET-1+/+ mice) had a significantly lower blood pressure as compared to WT mice (mean difference: -2.57 mmHg, 95% CI: -4.98∼ -0.16, P = 0.04), with minimal heterogeneity (P = 0.86). A subgroup analysis of mice older than 6 months revealed that the blood pressure difference between ET-1+/+ mice and WT mice was even more pronounced (mean difference: -6.19 mmHg, 95% CI: -10.76∼ -1.62, P = 0.008), with minimal heterogeneity (P = 0.91). This meta-analysis provides robust evidence that global ET-1 overexpression in mice lowers blood pressure in an age-dependent manner. Older ET-1+/+ mice have a somewhat more pronounced reduction of blood pressure. © 2016 The Author(s) Published by S. Karger AG, Basel.

  3. Brain phenotype of transgenic mice overexpressing cystathionine β-synthase.

    Directory of Open Access Journals (Sweden)

    Vinciane Régnier

    Full Text Available The cystathionine β-synthase (CBS gene, located on human chromosome 21q22.3, is a good candidate for playing a role in the Down Syndrome (DS cognitive profile: it is overexpressed in the brain of individuals with DS, and it encodes a key enzyme of sulfur-containing amino acid (SAA metabolism, a pathway important for several brain physiological processes.Here, we have studied the neural consequences of CBS overexpression in a transgenic mouse line (60.4P102D1 expressing the human CBS gene under the control of its endogenous regulatory regions. These mice displayed a ∼2-fold increase in total CBS proteins in different brain areas and a ∼1.3-fold increase in CBS activity in the cerebellum and the hippocampus. No major disturbance of SAA metabolism was observed, and the transgenic mice showed normal behavior in the rotarod and passive avoidance tests. However, we found that hippocampal synaptic plasticity is facilitated in the 60.4P102D1 line.We demonstrate that CBS overexpression has functional consequences on hippocampal neuronal networks. These results shed new light on the function of the CBS gene, and raise the interesting possibility that CBS overexpression might have an advantageous effect on some cognitive functions in DS.

  4. Brain phenotype of transgenic mice overexpressing cystathionine β-synthase.

    Science.gov (United States)

    Régnier, Vinciane; Billard, Jean-Marie; Gupta, Sapna; Potier, Brigitte; Woerner, Stéphanie; Paly, Evelyne; Ledru, Aurélie; David, Sabrina; Luilier, Sabrina; Bizot, Jean-Charles; Vacano, Guido; Kraus, Jan P; Patterson, David; Kruger, Warren D; Delabar, Jean M; London, Jaqueline

    2012-01-01

    The cystathionine β-synthase (CBS) gene, located on human chromosome 21q22.3, is a good candidate for playing a role in the Down Syndrome (DS) cognitive profile: it is overexpressed in the brain of individuals with DS, and it encodes a key enzyme of sulfur-containing amino acid (SAA) metabolism, a pathway important for several brain physiological processes. Here, we have studied the neural consequences of CBS overexpression in a transgenic mouse line (60.4P102D1) expressing the human CBS gene under the control of its endogenous regulatory regions. These mice displayed a ∼2-fold increase in total CBS proteins in different brain areas and a ∼1.3-fold increase in CBS activity in the cerebellum and the hippocampus. No major disturbance of SAA metabolism was observed, and the transgenic mice showed normal behavior in the rotarod and passive avoidance tests. However, we found that hippocampal synaptic plasticity is facilitated in the 60.4P102D1 line. We demonstrate that CBS overexpression has functional consequences on hippocampal neuronal networks. These results shed new light on the function of the CBS gene, and raise the interesting possibility that CBS overexpression might have an advantageous effect on some cognitive functions in DS.

  5. IL-4/5 signalling plays an important role during Litomosoides sigmodontis infection, influencing both immune system regulation and tissue pathology in the thoracic cavity.

    Science.gov (United States)

    Ritter, Manuel; Tamadaho, Ruth S; Feid, Judith; Vogel, Wenzel; Wiszniewsky, Katharina; Perner, Sven; Hoerauf, Achim; Layland, Laura E

    2017-12-01

    Approximately 100 million people suffer from filarial diseases including lymphatic filariasis (elephantiasis), onchocerciasis (river blindness) and loiasis. These diseases are amongst the most devastating of the neglected tropical diseases in terms of social and economic impact. Moreover, many infection-induced immune mechanisms in the host, their relationship to disease-related symptoms and the development of pathology within the site of infection remain unclear. To improve on current drug therapies or vaccines, further studies are necessary to decipher the mechanisms behind filaria-driven immune responses and pathology development, and thus the rodent model of Litomosoides sigmodontis can be used to unravel host-filaria interactions. Interestingly, BALB/c mice develop a patent state (release of microfilariae, the transmission life-stage, into the periphery) when exposed to L. sigmodontis. Thus, using this model, we determined levels of host inflammation and pathology development during a L. sigmodontis infection in vivo for the first known time. Our study reveals that after 30days p.i., inflammation and pathology began to develop in infected wild type BALB/c mice between the lung and diaphragm, close to the site of infection - the thoracic cavity. Interestingly, infected IL-4Rα/IL-5 -/- BALB/c mice had accentuated inflammation of the pleural lung and pleural diaphragm, and higher parasite burdens. Corresponding to the pleural inflammation, levels of IP-10, MIP-1α, MIP-1β, MIP-2 and RANTES were significantly elevated in the thoracic cavity fluid of infected IL-4Rα/IL-5 -/- mice compared with wild type controls. Moreover, upon L. sigmodontis antigen stimulation, IFN-γ and IL-17A secretions by cells isolated from draining lymph nodes of IL-4Rα/IL-5 -/- mice were significantly elevated, whereas secretion of IL-5, IL-13 and IL-10 was reduced. Elevated filaria-specific IFN-γ secretion was also observed in spleen-derived CD4 + T cell co-cultures from IL-4Rα/IL-5

  6. Human Islet Amyloid Polypeptide Transgenic Mice: In Vivo and Ex Vivo Models for the Role of hIAPP in Type 2 Diabetes Mellitus

    Directory of Open Access Journals (Sweden)

    J. W. M. Höppener

    2008-01-01

    Full Text Available Human islet amyloid polypeptide (hIAPP, a pancreatic islet protein of 37 amino acids, is the main component of islet amyloid, seen at autopsy in patients with type 2 diabetes mellitus (DM2. To investigate the roles of hIAPP and islet amyloid in DM2, we generated transgenic mice expressing hIAPP in their islet beta cells. In this study, we found that after a long-term, high-fat diet challenge islet amyloid was observed in only 4 of 19 hIAPP transgenic mice. hIAPP transgenic females exhibited severe glucose intolerance, which was associated with a downregulation of GLUT-2 mRNA expression. In isolated islets from hIAPP males cultured for 3 weeks on high-glucose medium, the percentage of amyloid containing islets increased from 5.5% to 70%. This ex vivo system will allow a more rapid, convenient, and specific study of factors influencing islet amyloidosis as well as of therapeutic strategies to interfere with this pathological process.

  7. Elevated mRNA-levels of gonadotropin-releasing hormone and its receptor in plaque-bearing Alzheimer's disease transgenic mice.

    Directory of Open Access Journals (Sweden)

    Syed Nuruddin

    Full Text Available Research on Alzheimer's disease (AD has indicated an association between hormones of the hypothalamic-pituitary-gonadal (HPG axis and cognitive senescence, indicating that post meno-/andropausal changes in HPG axis hormones are implicated in the neuropathology of AD. Studies of transgenic mice with AD pathologies have led to improved understanding of the pathophysiological processes underlying AD. The aims of this study were to explore whether mRNA-levels of gonadotropin-releasing hormone (Gnrh and its receptor (Gnrhr were changed in plaque-bearing Alzheimer's disease transgenic mice and to investigate whether these levels and amyloid plaque deposition were downregulated by treatment with a gonadotropin-releasing hormone analog (Gnrh-a; Leuprorelin acetate. The study was performed on mice carrying the Arctic and Swedish amyloid-β precursor protein (AβPP mutations (tgArcSwe. At 12 months of age, female tgArcSwe mice showed a twofold higher level of Gnrh mRNA and more than 1.5 higher level of Gnrhr mRNA than age matched controls. Male tgArcSwe mice showed the same pattern of changes, albeit more pronounced. In both sexes, Gnrh-a treatment caused significant down-regulation of Gnrh and Gnrhr mRNA expression. Immunohistochemistry combined with quantitative image analysis revealed no significant changes in the plaque load after Gnrh-a treatment in hippocampus and thalamus. However, plaque load in the cerebral cortex of treated females tended to be lower than in female vehicle-treated mice. The present study points to the involvement of hormonal changes in AD mice models and demonstrates that these changes can be effectively counteracted by pharmacological treatment. Although known to increase in normal aging, our study shows that Gnrh/Gnrhr mRNA expression increases much more dramatically in tgArcSwe mice. Treatment with Leuprorelin acetate successfully abolished the transgene specific effects on Gnrh/Gnrhr mRNA expression. The present experimental

  8. Transgenic expression of cyclooxygenase-2 (COX2) causes premature aging phenotypes in mice.

    Science.gov (United States)

    Kim, Joohwee; Vaish, Vivek; Feng, Mingxiao; Field, Kevin; Chatzistamou, Ioulia; Shim, Minsub

    2016-10-07

    Cyclooxygenase (COX) is a key enzyme in the biosynthesis of prostanoids, lipid signaling molecules that regulate various physiological processes. COX2, one of the isoforms of COX, is highly inducible in response to a wide variety of cellular and environmental stresses. Increased COX2 expression is thought to play a role in the pathogenesis of many age-related diseases. COX2 expression is also reported to be increased in the tissues of aged humans and mice, which suggests the involvement of COX2 in the aging process. However, it is not clear whether the increased COX2 expression is causal to or a result of aging. We have now addressed this question by creating an inducible COX2 transgenic mouse model. Here we show that post-natal expression of COX2 led to a panel of aging-related phenotypes. The expression of p16, p53, and phospho-H2AX was increased in the tissues of COX2 transgenic mice. Additionally, adult mouse lung fibroblasts from COX2 transgenic mice exhibited increased expression of the senescence-associated β-galactosidase. Our study reveals that the increased COX2 expression has an impact on the aging process and suggests that modulation of COX2 and its downstream signaling may be an approach for intervention of age-related disorders.

  9. Hypoxic preconditioning induces neuroprotective stanniocalcin-1 in brain via IL-6 signaling

    DEFF Research Database (Denmark)

    Westberg, Johan A; Serlachius, Martina; Lankila, Petri

    2007-01-01

    BACKGROUND AND PURPOSE: Exposure of animals for a few hours to moderate hypoxia confers relative protection against subsequent ischemic brain damage. This phenomenon, known as hypoxic preconditioning, depends on new RNA and protein synthesis, but its molecular mechanisms are poorly understood...... originally reported expression of mammalian STC-1 in brain neurons and showed that STC-1 guards neurons against hypercalcemic and hypoxic damage. METHODS: We treated neural Paju cells with IL-6 and measured the induction of STC-1 mRNA. In addition, we quantified the effect of hypoxic preconditioning on Stc-1...... mRNA levels in brains of wild-type and IL-6 deficient mice. Furthermore, we monitored the Stc-1 response in brains of wild-type and transgenic mice, overexpressing IL-6 in the astroglia, before and after induced brain injury. RESULTS: Hypoxic preconditioning induced an upregulated expression of Stc...

  10. Utrophin up-regulation by an artificial transcription factor in transgenic mice.

    Directory of Open Access Journals (Sweden)

    Elisabetta Mattei

    2007-08-01

    Full Text Available Duchenne Muscular Dystrophy (DMD is a severe muscle degenerative disease, due to absence of dystrophin. There is currently no effective treatment for DMD. Our aim is to up-regulate the expression level of the dystrophin related gene utrophin in DMD, complementing in this way the lack of dystrophin functions. To this end we designed and engineered several synthetic zinc finger based transcription factors. In particular, we have previously shown that the artificial three zinc finger protein named Jazz, fused with the appropriate effector domain, is able to drive the transcription of a test gene from the utrophin promoter "A". Here we report on the characterization of Vp16-Jazz-transgenic mice that specifically over-express the utrophin gene at the muscular level. A Chromatin Immunoprecipitation assay (ChIP demonstrated the effective access/binding of the Jazz protein to active chromatin in mouse muscle and Vp16-Jazz was shown to be able to up-regulate endogenous utrophin gene expression by immunohistochemistry, western blot analyses and real-time PCR. To our knowledge, this is the first example of a transgenic mouse expressing an artificial gene coding for a zinc finger based transcription factor. The achievement of Vp16-Jazz transgenic mice validates the strategy of transcriptional targeting of endogenous genes and could represent an exclusive animal model for use in drug discovery and therapeutics.

  11. Gnotobiotic IL-10; NF-kappaB mice develop rapid and severe colitis following Campylobacter jejuni infection.

    Directory of Open Access Journals (Sweden)

    Elisabeth Lippert

    2009-10-01

    Full Text Available Limited information is available on the molecular mechanisms associated with Campylobacter jejuni (C. jejuni induced food-borne diarrheal illnesses. In this study, we investigated the function of TLR/NF-kappaB signaling in C. jejuni induced pathogenesis using gnotobiotic IL-10(-/-; NF-kappaB(EGFP mice. In vitro analysis showed that C. jejuni induced IkappaB phosphorylation, followed by enhanced NF-kappaB transcriptional activity and increased IL-6, MIP-2alpha and NOD2 mRNA accumulation in infected-mouse colonic epithelial cells CMT93. Importantly, these events were blocked by molecular delivery of an IkappaB inhibitor (Ad5IkappaBAA. NF-kappaB signalling was also important for C.jejuni-induced cytokine gene expression in bone marrow-derived dendritic cells. Importantly, C. jejuni associated IL-10(-/-; NF-kappaB(EGFP mice developed mild (day 5 and severe (day 14 ulcerating colonic inflammation and bloody diarrhea as assessed by colonoscopy and histological analysis. Macroscopic analysis showed elevated EGFP expression indicating NF-kappaB activation throughout the colon of C. jejuni associated IL-10(-/-; NF-kappaB(EGFP mice, while fluorescence microscopy revealed EGFP positive cells to be exclusively located in lamina propria mononuclear cells. Pharmacological NF-kappaB inhibition using Bay 11-7085 did not ameliorate C. jejuni induced colonic inflammation. Our findings indicate that C. jejuni induces rapid and severe intestinal inflammation in a susceptible host that correlates with enhanced NF-kappaB activity from lamina propria immune cells.

  12. Overexpression of eIF-5A2 in mice causes accelerated organismal aging by increasing chromosome instability

    Directory of Open Access Journals (Sweden)

    Chen Leilei

    2011-05-01

    Full Text Available Abstract Background Amplification of 3q26 is one of the most frequent genetic alterations in many human malignancies. Recently, we isolated a novel oncogene eIF-5A2 within the 3q26 region. Functional study has demonstrated the oncogenic role of eIF-5A2 in the initiation and progression of human cancers. In the present study, we aim to investigate the physiological and pathological effect of eIF-5A2 in an eIF-5A2 transgenic mouse model. Methods An eIF-5A2 transgenic mouse model was generated using human eIF-5A2 cDNA. The eIF-5A2 transgenic mice were characterized by histological and immunohistochemistry analyses. The aging phenotypes were further characterized by wound healing, bone X-ray imaging and calcification analysis. Mouse embryo fibroblasts (MEF were isolated to further investigate molecular mechanism of eIF-5A2 in aging. Results Instead of resulting in spontaneous tumor formation, overexpression of eIF-5A2 accelerated the aging process in adult transgenic mice. This included decreased growth rate and body weight, shortened life span, kyphosis, osteoporosis, delay of wound healing and ossification. Investigation of the correlation between cellular senescence and aging showed that cellular senescence is not required for the aging phenotypes in eIF-5A2 mice. Interestingly, we found that activation of eIF-5A2 repressed p19 level and therefore destabilized p53 in transgenic mouse embryo fibroblast (MEF cells. This subsequently allowed for the accumulation of chromosomal instability, such as errors in cell dividing during metaphase and anaphase. Additionally, a significantly increase in number of aneuploidy cells (p Conclusion These observations suggest that eIF-5A2 mouse models could accelerate organismal aging by increasing chromosome instability.

  13. Case Study: Polycystic Livers in a Transgenic Mouse Line

    Energy Technology Data Exchange (ETDEWEB)

    Lovaglio, Jamie A.; Artwohl, James E.; Ward, Christopher J.; Diekwisch, Thomas G. H.; Ito, Yoshihiro; Fortman, Jeffrey D.

    2014-04-01

    Three mice (2 male, 1 female; age, 5 to 16 mo) from a mouse line transgenic for keratin 14 (K14)-driven LacZ expression and on an outbred Crl:CD1(ICR) background, were identified as having distended abdomens and livers that were diffusely enlarged by numerous cysts (diameter, 0.1 to 2.0 cm). Histopathology revealed hepatic cysts lined by biliary type epithelium and mild chronic inflammation, and confirmed the absence of parasites. Among 21 related mice, 5 additional affected mice were identified via laparotomy. Breeding of these 5 mice (after 5 mo of age) did not result in any offspring; the K14 mice with olycystic livers failed to reproduce. Affected male mice had degenerative testicular lesions, and their sperm was immotile. Nonpolycystic K14 control male mice bred well, had no testicular lesions, and had appropriate sperm motility. Genetic analysis did not identify an association of this phenotype with the transgene or insertion site.

  14. Reversal of experimental colitis disease activity in mice following administration of an adenoviral IL-10 vector.

    Science.gov (United States)

    Sasaki, Makoto; Mathis, J Michael; Jennings, Merilyn H; Jordan, Paul; Wang, Yuping; Ando, Tomoaki; Joh, Takashi; Alexander, J Steven

    2005-10-31

    Genetic deficiency in the expression of interleukin-10 (IL-10) is associated with the onset and progression of experimental inflammatory bowel disease (IBD). The clinical significance of IL-10 expression is supported by studies showing that immune-augmentation of IL-10 prevents inflammation and mucosal damage in animal models of colitis and in human colitis. Interleukin-10 (IL-10), an endogenous anti-inflammatory and immunomodulating cytokine, has been shown to prevent some inflammation and injury in animal and clinical studies, but the efficacy of IL-10 treatment remains unsatisfactory. We found that intra-peritoneal administration of adenoviral IL-10 to mice significantly reversed colitis induced by administration of 3% DSS (dextran sulfate), a common model of colitis. Adenoviral IL-10 (Ad-IL10) transfected mice developed high levels of IL-10 (394 +/- 136 pg/ml) within the peritoneal cavity where the adenovirus was expressed. Importantly, when given on day 4 (after the induction of colitis w/DSS), Ad-IL10 significantly reduced disease activity and weight loss and completely prevented histopathologic injury to the colon at day 10. Mechanistically, compared to Ad-null and DSS treated mice, Ad-IL10 and DSS-treated mice were able to suppress the expression of MAdCAM-1, an endothelial adhesion molecule associated with IBD. Our results suggest that Ad-IL10 (adenoviral IL-10) gene therapy of the intestine or peritoneum may be useful in the clinical treatment of IBD, since we demonstrated that this vector can reverse the course of an existing gut inflammation and markers of inflammation.

  15. Reversal of experimental colitis disease activity in mice following administration of an adenoviral IL-10 vector

    Directory of Open Access Journals (Sweden)

    Ando Tomoaki

    2005-10-01

    Full Text Available Abstract Genetic deficiency in the expression of interleukin-10 (IL-10 is associated with the onset and progression of experimental inflammatory bowel disease (IBD. The clinical significance of IL-10 expression is supported by studies showing that immune-augmentation of IL-10 prevents inflammation and mucosal damage in animal models of colitis and in human colitis. Interleukin-10 (IL-10, an endogenous anti-inflammatory and immunomodulating cytokine, has been shown to prevent some inflammation and injury in animal and clinical studies, but the efficacy of IL-10 treatment remains unsatisfactory. We found that intra-peritoneal administration of adenoviral IL-10 to mice significantly reversed colitis induced by administration of 3% DSS (dextran sulfate, a common model of colitis. Adenoviral IL-10 (Ad-IL10 transfected mice developed high levels of IL-10 (394 +/- 136 pg/ml within the peritoneal cavity where the adenovirus was expressed. Importantly, when given on day 4 (after the induction of colitis w/DSS, Ad-IL10 significantly reduced disease activity and weight loss and completely prevented histopathologic injury to the colon at day 10. Mechanistically, compared to Ad-null and DSS treated mice, Ad-IL10 and DSS-treated mice were able to suppress the expression of MAdCAM-1, an endothelial adhesion molecule associated with IBD. Our results suggest that Ad-IL10 (adenoviral IL-10 gene therapy of the intestine or peritoneum may be useful in the clinical treatment of IBD, since we demonstrated that this vector can reverse the course of an existing gut inflammation and markers of inflammation.

  16. Adenohypophysial changes in mice transgenic for human growth hormone-releasing factor

    DEFF Research Database (Denmark)

    Stefaneanu, L; Kovacs, K; Horvath, E

    1989-01-01

    The effect of protracted GH-releasing factor (GRF) stimulation on adenohypophysial morphology was investigated in six mice transgenic for human GRF (hGRF). All animals had significantly higher plasma levels of GH and GRF and greater body weights than controls. Eight-month-old mice were killed...... of their ultrastructural features, contained secretory granules heavily labeled for GH by immunogold technique; PRL labeling varied from cell to cell, with the predominance of a weak immunostaining and was colocalized with GH in secretory granules. These results indicate that chronic exposure to GRF excess leads...

  17. DNA adducts, mutant frequencies and mutation spectra in λlacZ transgenic mice treated with N-nitrosodimethylamine

    NARCIS (Netherlands)

    Souliotis, V.L.; Delft, J.H.M. van; Steenwinkel, M.-J.S.T.; Baan, R.A.; Kyrtopoulos, S.A.

    1998-01-01

    Groups of λlacZ transgenic mice were treated i.p. with N-nitrosodimethylamine (NDMA) as single doses of 5 mg/kg or 10 mg/kg or as 10 daily doses of 1 mg/kg and changes in DNA N7- or O6-methylguanine or the repair enzyme O6-alkylguanine-DNA alkyltransferase (AGT) were followed for up to 14 days in

  18. ADAM12-S stimulates bone growth in transgenic mice by modulating chondrocyte proliferation and maturation

    DEFF Research Database (Denmark)

    Kveiborg, Marie; Albrechtsen, Reidar; Rudkjaer, Lise

    2006-01-01

    ADAM12-S transgenic mice exhibit a pronounced increase in the length of bones, such as femur, tibia, and vertebrae. The effect of ADAM12-S on longitudinal bone growth involves the modulation of chondrocyte proliferation and maturation, likely through proteolytic activities and altered cell......: Transgenic mice expressing the secreted form of human ADAM12, ADAM12-S, or a truncated metalloprotease-deficient form of ADAM12-S in the circulation were used to study the effects of ADAM12 on the skeleton. In addition, murine chondrocyte cultures were used to study the effect of ADAM12-S on cell...... studies showed that ADAM12-S inhibits chondrocyte adhesion to fibronectin and collagen type II. CONCLUSIONS: ADAM12-S stimulates bone growth in mice by modulating chondrocyte proliferation and maturation through mechanisms probably involving both metalloprotease and adhesion activities....

  19. Growth hormone (GH) binding and effects of GH analogs in transgenic mice

    Energy Technology Data Exchange (ETDEWEB)

    Bartke, A.; Steger, R.W. [Southern Illinois Univ., Carbondale, IL (United States); Turyn, D. [UBA-CONICET, Buenos Aires (Argentina)] [and others

    1994-12-31

    Overexpression of human (h) or bovine (b) growth hormone (GH) in transgenic mice is associated with marked (2- to 12-fold) and significant increase in hepatic binding of GH and prolactin (PRL). This is due to an increase in the number of GH and PRL receptors (GHR, PRLR) per mg of microsomal protein without changes in binding affinity. Comparison of results obtained in transgenic animals expressing bGH with a mouse metallothionein (MT) or a rat phosphoenolpyruvate carboxykinase (PEPCK) promoter suggests that effects of bGH on hepatic GHR and PRLR do not require GH overexpression during fetal life and, within the dose range tested, the effects on PRLR are not dose dependent. The increase in hepatic GHR was accompanied by significant increases in plasma GH-binding protein (GHBP) and in mean residence time of injected GH. Thus life-long elevation of peripheral GH levels alters the availability of both free GH and GHR. Site-directed in vitro mutagenesis was used to produce hGH and bGH analogs mutated within one of the sites involved in binding to GHR and PRLR. Mutating hGH to produce amino acid identity with bGH at Position 11, 18 (within Helix 1), 57, or 60 (within the loop between Helix 1 and 2) did not affect binding to GHR in vitro, or somatotropic activity in transgenic mice in vivo but reduced lactogenic activity in Nb{sub 2} cells by 22%-45%. Mutations of bGH designed to produce amino acid identity with hGH at one to four of the corresponding positions in the bGH molecule did not interfere with binding to GHR or somatotropic activity in vivo, and failed to produce significant binding to PRLR but resulted in alterations in the effects on the hypothalamic and anterior pituitary function in transgenic mice. Apparently region(s) outside the domains examined are essential for lactogenic activity of hGH, and different portions of the GH molecule are responsible for its diverse actions in vivo. 35 refs.

  20. Expression of the human growth hormone variant gene in cultured fibroblasts and transgenic mice

    International Nuclear Information System (INIS)

    Selden, R.F.; Wagner, T.E.; Blethen, S.; Yun, J.S.; Rowe, M.E.; Goodman, H.M.

    1988-01-01

    The nucleotide sequence of the human growth hormone variant gene, one of the five members of the growth hormone gene family, predicts that it encodes a growth hormone-like protein. As a first step in determining whether this gene is functional in humans, the authors have expressed a mouse methallothionein I/human growth hormone variant fusion gene in mouse L cells and in transgenic mice. The growth hormone variant protein expressed in transiently transfected L cells is distinct from growth hormone itself with respect to reactivity with anti-growth hormone monoclonal antibodies, behavior during column chromatography, and isoelectric point. Transgenic mice expressing the growth hormone variant protein are 1.4- to 1.9-fold larger than nontransgenic controls, suggesting that the protein has growth-promoting properties

  1. Epidermal dysplasia and abnormal hair follicles in transgenic mice overexpressing homeobox gene MSX-2.

    Science.gov (United States)

    Jiang, T X; Liu, Y H; Widelitz, R B; Kundu, R K; Maxson, R E; Chuong, C M

    1999-08-01

    The homeobox gene Msx-2 is expressed specifically in sites of skin appendage formation. To explore its part in skin morphogenesis, we produced transgenic mice expressing Msx-2 under the control of the cytomegalovirus promoter. The skin of these transgenic mice was flaky, exhibiting desquamation and shorter hairs. Histologic analysis showed thickened epidermis with hyperproliferation, which was restricted to the basal layer. Hyperkeratosis was also evident. A wide zone of suprabasal cells were misaligned and coexpressed keratins 14 and 10. There was reduced expression of integrin beta 1 and DCC in the basal layer. Hair follicles were misaligned with a shrunken matrix region. The dermis showed increased cellularity and empty vacuoles. We suggest that Msx-2 is involved in the growth control of skin and skin appendages.

  2. IL-23 p19 knockout mice exhibit minimal defects in responses to primary and secondary infection with Francisella tularensis LVS.

    Directory of Open Access Journals (Sweden)

    Sherry L Kurtz

    Full Text Available Our laboratory's investigations into mechanisms of protective immunity against Francisella tularensis Live Vaccine Strain (LVS have uncovered mediators important in host defense against primary infection, as well as those correlated with successful vaccination. One such potential correlate was IL-12p40, a pleiotropic cytokine that promotes Th1 T cell function as part of IL-12p70. LVS-infected IL-12p40 deficient knockout (KO mice maintain a chronic infection, but IL-12p35 KO mice clear LVS infection; thus the role that IL-12p40 plays in immunity to LVS is independent of the IL-12p70 heterodimer. IL-12p40 can also partner with IL-23p19 to create the heterodimeric cytokine IL-23. Here, we directly tested the role of IL-23 in LVS resistance, and found IL-23 to be largely dispensable for immunity to LVS following intradermal or intranasal infection. IL-23p19 KO splenocytes were fully competent in controlling intramacrophage LVS replication in an in vitro overlay assay. Further, antibody responses in IL-23p19 KO mice were similar to those of normal wild type mice after LVS infection. IL-23p19 KO mice or normal wild type mice that survived primary LVS infection survived maximal doses of LVS secondary challenge. Thus p40 has a novel role in clearance of LVS infection that is unrelated to either IL-12 or IL-23.

  3. Extraneural manifestations of prion infection in GPI-anchorless transgenic mice

    International Nuclear Information System (INIS)

    Lee, Andrew M.; Paulsson, Johan F.; Cruite, Justin; Andaya, Abegail A.; Trifilo, Matthew J.; Oldstone, Michael B.A.

    2011-01-01

    Earlier studies indicated that transgenic (tg) mice engineered to express prion protein (PrP) lacking the glycophosphatidylinositol (GPI -/- ) membrane anchor formed abnormal proteinase-resistant prion (PrPsc) amyloid deposits in their brains and hearts when infected with the RML strain of murine scrapie. In contrast, RML scrapie infection of normal mice with a GPI-anchored PrP did not deposit amyloid with PrPsc in the brain or the heart. Here we report that scrapie-infected GPI -/- PrP tg mice also deposit PrP and transmissible infectious material in the gut, kidneys, and islets of Langerhans. Similar to previously reported amyloid deposits in the brain and heart, amyloid deposits were found in the gut; however, no amyloid deposited in the islets. By high-resolution electron microscopy, we show PrP is located primarily in α cells and also β cells. Islets contain abundant insulin and there is no abnormality in glucose metabolism in infected GPI -/- PrP tg mice.

  4. Transgenic overexpression of p23 induces spontaneous hydronephrosis in mice

    Science.gov (United States)

    Lee, Jaehoon; Kim, Hye Jin; Moon, Jung Ah; Sung, Young Hoon; Baek, In-Jeoung; Roh, Jae-il; Ha, Na Young; Kim, Seung-Yeon; Bahk, Young Yil; Lee, Jong Eun; Yoo, Tae Hyun; Lee, Han-Woong

    2011-01-01

    p23 is a cochaperone of heat shock protein 90 and also interacts functionally with numerous steroid receptors and kinases. However, the in vivo roles of p23 remain unclear. To explore its in vivo function, we generated the transgenic (TG) mice ubiquitously overexpressing p23. The p23 TG mice spontaneously developed kidney abnormalities closely resembling human hydronephrosis. Consistently, kidney functions deteriorate significantly in the p23 TG mice compared to their wild-type (WT) littermates. Furthermore, the expression of target genes for aryl hydrocarbon receptor (AhR), such as cytochrome P450, family 1, subfamily A, polypeptide 1 (Cyp1A1) and cytochrome P450, family 1, subfamily B, polypeptide 1 (Cyp1B1), were induced in the kidneys of the p23 TG mice. These results indicate that the overexpression of p23 contributes to the development of hydronephrosis through the upregulation of the AhR pathway in vivo. PMID:21323770

  5. Thy1.2 driven expression of transgenic His₆-SUMO2 in the brain of mice alters a restricted set of genes.

    Science.gov (United States)

    Rossner, Moritz J; Tirard, Marilyn

    2014-08-05

    Protein SUMOylation is a post-translational protein modification with a key regulatory role in nerve cell development and function, but its function in mammals in vivo has only been studied cursorily. We generated two new transgenic mouse lines that express His6-tagged SUMO1 and SUMO2 driven by the Thy1.2 promoter. The brains of mice of the two lines express transgenic His6-SUMO peptides and conjugate them to substrates in vivo but cytoarchitecture and synaptic organization of adult transgenic mouse brains are indistinguishable from the wild-type situation. We investigated the impact of transgenic SUMO expression on gene transcription in the hippocampus by performing genome wide analyses using microarrays. Surprisingly, no changes were observed in Thy1.2::His6-SUMO1 transgenic mice and only a restricted set of genes were upregulated in Thy1.2::His6-SUMO2 mice. Among these, Penk1 (Preproenkephalin 1), which encodes Met-enkephalin neuropeptides, showed the highest degree of alteration. Accordingly, a significant increase in Met-enkephalin peptide levels in the hippocampus of Thy1.2::His6-SUMO2 was detected, but the expression levels and cellular localization of Met-enkephalin receptors were not changed. Thus, transgenic neuronal expression of His6-SUMO1 or His6-SUMO2 only induces very minor phenotypical changes in mice. Copyright © 2014 Elsevier B.V. All rights reserved.

  6. FHL1 reduces dystrophy in transgenic mice overexpressing FSHD muscular dystrophy region gene 1 (FRG1.

    Directory of Open Access Journals (Sweden)

    Sandra J Feeney

    Full Text Available Facioscapulohumeral muscular dystrophy (FSHD is an autosomal-dominant disease with no effective treatment. The genetic cause of FSHD is complex and the primary pathogenic insult underlying the muscle disease is unknown. Several disease candidate genes have been proposed including DUX4 and FRG1. Expression analysis studies of FSHD report the deregulation of genes which mediate myoblast differentiation and fusion. Transgenic mice overexpressing FRG1 recapitulate the FSHD muscular dystrophy phenotype. Our current study selectively examines how increased expression of FRG1 may contribute to myoblast differentiation defects. We generated stable C2C12 cell lines overexpressing FRG1, which exhibited a myoblast fusion defect upon differentiation. To determine if myoblast fusion defects contribute to the FRG1 mouse dystrophic phenotype, this strain was crossed with skeletal muscle specific FHL1-transgenic mice. We previously reported that FHL1 promotes myoblast fusion in vitro and FHL1-transgenic mice develop skeletal muscle hypertrophy. In the current study, FRG1 mice overexpressing FHL1 showed an improvement in the dystrophic phenotype, including a reduced spinal kyphosis, increased muscle mass and myofiber size, and decreased muscle fibrosis. FHL1 expression in FRG1 mice, did not alter satellite cell number or activation, but enhanced myoblast fusion. Primary myoblasts isolated from FRG1 mice showed a myoblast fusion defect that was rescued by FHL1 expression. Therefore, increased FRG1 expression may contribute to a muscular dystrophy phenotype resembling FSHD by impairing myoblast fusion, a defect that can be rescued by enhanced myoblast fusion via expression of FHL1.

  7. Excessive growth hormone expression in male GH transgenic mice adversely alters bone architecture and mechanical strength.

    Science.gov (United States)

    Lim, S V; Marenzana, M; Hopkinson, M; List, E O; Kopchick, J J; Pereira, M; Javaheri, B; Roux, J P; Chavassieux, P; Korbonits, M; Chenu, C

    2015-04-01

    Patients with acromegaly have a higher prevalence of vertebral fractures despite normal bone mineral density (BMD), suggesting that GH overexpression has adverse effects on skeletal architecture and strength. We used giant bovine GH (bGH) transgenic mice to analyze the effects of high serum GH levels on BMD, architecture, and mechanical strength. Five-month-old hemizygous male bGH mice were compared with age- and sex-matched nontransgenic littermates controls (NT; n=16/group). Bone architecture and BMD were analyzed in tibia and lumbar vertebrae using microcomputed tomography. Femora were tested to failure using three-point bending and bone cellular activity determined by bone histomorphometry. bGH transgenic mice displayed significant increases in body weight and bone lengths. bGH tibia showed decreases in trabecular bone volume fraction, thickness, and number compared with NT ones, whereas trabecular pattern factor and structure model index were significantly increased, indicating deterioration in bone structure. Although cortical tissue perimeter was increased in transgenic mice, cortical thickness was reduced. bGH mice showed similar trabecular BMD but reduced trabecular thickness in lumbar vertebra relative to controls. Cortical BMD and thickness were significantly reduced in bGH lumbar vertebra. Mechanical testing of femora confirmed that bGH femora have decreased intrinsic mechanical properties compared with NT ones. Bone turnover is increased in favor of bone resorption in bGH tibia and vertebra compared with controls, and serum PTH levels is also enhanced in bGH mice. These data collectively suggest that high serum GH levels negatively affect bone architecture and quality at multiple skeletal sites.

  8. Compensation of the AKT signaling by ERK signaling in transgenic mice hearts overexpressing TRIM72

    Energy Technology Data Exchange (ETDEWEB)

    Ham, Young-Mi, E-mail: youngmi_ham@hms.harvard.edu [College of Life Science and Biotechnology, Korea University, Seoul (Korea, Republic of); Department of Cell Biology, Harvard Medical School, Boston, MA 02115 (United States); Mahoney, Sarah Jane [Department of Cell Biology, Harvard Medical School, Boston, MA 02115 (United States)

    2013-06-10

    The AKT and ERK signaling pathways are known to be involved in cell hypertrophy, proliferation, survival and differentiation. Although there is evidence for crosstalk between these two signaling pathways in cellulo, there is less evidence for cross talk in vivo. Here, we show that crosstalk between AKT and ERK signaling in the hearts of TRIM72-overexpressing transgenic mice (TRIM72-Tg) with alpha-MHC promoter regulates and maintains their heart size. TRIM72, a heart- and skeletal muscle-specific protein, downregulates AKT-mTOR signaling via IRS-1 degradation and reduces the size of rat cardiomyocytes and the size of postnatal TRIM72-Tg hearts. TRIM72 expression was upregulated by hypertrophic inducers in cardiomyocytes, while IRS-1 was downregulated by IGF-1. TRIM72 specifically regulated IGF-1-dependent AKT-mTOR signaling, resulting in a reduction of the size of cardiomyocytes. Postnatal TRIM72-Tg hearts were smaller than control-treated hearts with inhibition of AKT-mTOR signaling. However, adult TRIM72-Tg hearts were larger than of control despite the suppression of AKT-mTOR signaling. Activation of ERK, PKC-α, and JNK were observed to be elevated in adult TRIM72-Tg, and these signals were mediated by ET-1 via the ET receptors A and B. Altogether, these results suggest that AKT signaling regulates cardiac hypertrophy in physiological conditions, and ERK signaling compensates for the absence of AKT signaling during TRIM72 overexpression, leading to pathological hypertrophy. -- Highlights: • TRIM72 inhibits AKT signaling through ubiquitination of IRS-1 in cardiac cells. • TRIM72 regulates the size of cardiac cells. • TRIM72 regulates size of postnatal TRIM72-overexpressing transgenic mice hearts. • Adult TRIM72-overexpressing transgenic mice hearts showed cardiac dysfunction. • Adult TRIM72 transgenic mice hearts showed higher expression of endothelin receptors.

  9. Compensation of the AKT signaling by ERK signaling in transgenic mice hearts overexpressing TRIM72

    International Nuclear Information System (INIS)

    Ham, Young-Mi; Mahoney, Sarah Jane

    2013-01-01

    The AKT and ERK signaling pathways are known to be involved in cell hypertrophy, proliferation, survival and differentiation. Although there is evidence for crosstalk between these two signaling pathways in cellulo, there is less evidence for cross talk in vivo. Here, we show that crosstalk between AKT and ERK signaling in the hearts of TRIM72-overexpressing transgenic mice (TRIM72-Tg) with alpha-MHC promoter regulates and maintains their heart size. TRIM72, a heart- and skeletal muscle-specific protein, downregulates AKT-mTOR signaling via IRS-1 degradation and reduces the size of rat cardiomyocytes and the size of postnatal TRIM72-Tg hearts. TRIM72 expression was upregulated by hypertrophic inducers in cardiomyocytes, while IRS-1 was downregulated by IGF-1. TRIM72 specifically regulated IGF-1-dependent AKT-mTOR signaling, resulting in a reduction of the size of cardiomyocytes. Postnatal TRIM72-Tg hearts were smaller than control-treated hearts with inhibition of AKT-mTOR signaling. However, adult TRIM72-Tg hearts were larger than of control despite the suppression of AKT-mTOR signaling. Activation of ERK, PKC-α, and JNK were observed to be elevated in adult TRIM72-Tg, and these signals were mediated by ET-1 via the ET receptors A and B. Altogether, these results suggest that AKT signaling regulates cardiac hypertrophy in physiological conditions, and ERK signaling compensates for the absence of AKT signaling during TRIM72 overexpression, leading to pathological hypertrophy. -- Highlights: • TRIM72 inhibits AKT signaling through ubiquitination of IRS-1 in cardiac cells. • TRIM72 regulates the size of cardiac cells. • TRIM72 regulates size of postnatal TRIM72-overexpressing transgenic mice hearts. • Adult TRIM72-overexpressing transgenic mice hearts showed cardiac dysfunction. • Adult TRIM72 transgenic mice hearts showed higher expression of endothelin receptors

  10. Nuclear Expression of a Mitochondrial DNA Gene: Mitochondrial Targeting of Allotopically Expressed Mutant ATP6 in Transgenic Mice

    Directory of Open Access Journals (Sweden)

    David A. Dunn

    2012-01-01

    Full Text Available Nuclear encoding of mitochondrial DNA transgenes followed by mitochondrial targeting of the expressed proteins (allotopic expression; AE represents a potentially powerful strategy for creating animal models of mtDNA disease. Mice were created that allotopically express either a mutant (A6M or wildtype (A6W mt-Atp6 transgene. Compared to non-transgenic controls, A6M mice displayed neuromuscular and motor deficiencies (wire hang, pole, and balance beam analyses; P0.05. This study illustrates a mouse model capable of circumventing in vivo mitochondrial mutations. Moreover, it provides evidence supporting AE as a tool for mtDNA disease research with implications in development of DNA-based therapeutics.

  11. γδ T cells are required for pulmonary IL-17A expression after ozone exposure in mice: role of TNFα.

    Directory of Open Access Journals (Sweden)

    Joel A Mathews

    Full Text Available Ozone is an air pollutant that causes pulmonary symptoms. In mice, ozone exposure causes pulmonary injury and increases bronchoalveolar lavage macrophages and neutrophils. We have shown that IL-17A is important in the recruitment of neutrophils after subacute ozone exposure (0.3 ppm for 24-72 h. We hypothesized that γδ T cells are the main producers of IL-17A after subacute ozone. To explore this hypothesis we exposed wildtype mice and mice deficient in γδ T cells (TCRδ-/- to ozone or room air. Ozone-induced increases in BAL macrophages and neutrophils were attenuated in TCRδ-/- mice. Ozone increased the number of γδ T cells in the lungs and increased pulmonary Il17a mRNA expression and the number of IL-17A+ CD45+ cells in the lungs and these effects were abolished in TCRδ-/- mice. Ozone-induced increases in factors downstream of IL-17A signaling, including G-CSF, IL-6, IP-10 and KC were also decreased in TCRδ-/- versus wildtype mice. Neutralization of IL-17A during ozone exposure in wildtype mice mimicked the effects of γδ T cell deficiency. TNFR2 deficiency and etanercept, a TNFα antagonist, also reduced ozone-induced increases in Il17a mRNA, IL-17A+ CD45+ cells and BAL G-CSF as well as BAL neutrophils. TNFR2 deficient mice also had decreased ozone-induced increases in Ccl20, a chemoattractant for IL-17A+ γδ T cells. Il17a mRNA and IL-17A+ γδ T cells were also lower in obese Cpefat versus lean WT mice exposed to subacute ozone, consistent with the reduced neutrophil recruitment observed in the obese mice. Taken together, our data indicate that pulmonary inflammation induced by subacute ozone requires γδ T cells and TNFα-dependent recruitment of IL-17A+ γδ T cells to the lung.

  12. IGF-II transgenic mice display increased aberrant colon crypt multiplicity and tumor volume after 1,2-dimethylhydrazine treatment

    Directory of Open Access Journals (Sweden)

    Oesterle Doris

    2006-01-01

    Full Text Available Abstract In colorectal cancer insulin-like growth factor II (IGF-II is frequently overexpressed. To evaluate, whether IGF-II affects different stages of tumorigenesis, we induced neoplastic alterations in the colon of wild-type and IGF-II transgenic mice using 1,2-dimethylhydrazine (DMH. Aberrant crypt foci (ACF served as markers of early lesions in the colonic mucosa, whereas adenomas and carcinomas characterized the endpoints of tumor development. DMH-treatment led initially to significantly more ACF in IGF-II transgenic than in wild-type mice. This increase in ACF was especially prominent for those consisting of ≥three aberrant crypts (AC. Nevertheless, adenomas and adenocarcinomas of the colon, present after 34 weeks in both genetic groups, were not found at different frequency. Tumor volumes, however, were significantly higher in IGF-II transgenic mice and correlated with serum IGF-II levels. Immunohistochemical staining for markers of proliferation and apoptosis revealed increased cell proliferation rates in tumors of IGF-II transgenic mice without significant affection of apoptosis. Increased proliferation was accompanied by elevated localization of β-catenin in the cytosol and cell nuclei and reduced appearance at the inner plasma membrane. In conclusion, we provide evidence that IGF-II, via activation of the β-catenin signaling cascade, promotes growth of ACF and tumors without affecting tumor numbers.

  13. Development of ghrelin transgenic mice for elucidation of clinical implication of ghrelin.

    Science.gov (United States)

    Aotani, Daisuke; Ariyasu, Hiroyuki; Shimazu-Kuwahara, Satoko; Shimizu, Yoshiyuki; Nomura, Hidenari; Murofushi, Yoshiteru; Kaneko, Kentaro; Izumi, Ryota; Matsubara, Masaki; Kanda, Hajime; Noguchi, Michio; Tanaka, Tomohiro; Kusakabe, Toru; Miyazawa, Takashi; Nakao, Kazuwa

    2017-01-01

    To elucidate the clinical implication of ghrelin, we have been trying to generate variable models of transgenic (Tg) mice overexpressing ghrelin. We generated Tg mice overexpressing des-acyl ghrelin in a wide variety of tissues under the control of β-actin promoter. While plasma des-acyl ghrelin level in the Tg mice was 44-fold greater than that of control mice, there was no differences in the plasma ghrelin level between des-acyl ghrelin Tg and the control mice. The des-acyl ghrelin Tg mice exhibited the lower body weight and the shorter body length due to modulation of GH-IGF-1 axis. We tried to generate Tg mice expressing a ghrelin analog, which possessed ghrelin-like activity (Trp 3 -ghrelin Tg mice). The plasma Trp 3 -ghrelin concentration in Trp 3 -ghrelin Tg mice was approximately 85-fold higher than plasma ghrelin (acylated ghrelin) concentration seen in the control mice. Because Trp 3 -ghrelin is approximately 24-fold less potent than ghrelin, the plasma Trp 3 -ghrelin concentration in Trp 3 -ghrelin Tg mice was calculated to have approximately 3.5-fold biological activity greater than that of ghrelin (acylated ghrelin) in the control mice. Trp 3 -ghrelin Tg mice did not show any phenotypes except for reduced insulin sensitivity in 1-year old. After the identification of ghrelin O-acyltransferase (GOAT), we generated doubly Tg mice overexpressing both mouse des-acyl ghrelin and mouse GOAT in the liver by cross-mating the two kinds of Tg mice. The plasma ghrelin concentration of doubly Tg mice was approximately 2-fold higher than that of the control mice. No apparent phenotypic changes in body weight and food intake were observed in doubly Tg mice. Further studies are ongoing in our laboratory to generate Tg mice with the increased plasma ghrelin level to a greater extent. The better understanding of physiological and pathophysiological significance of ghrelin from experiments using an excellent animal model may provide a new therapeutic approach for human

  14. Effects of (-)Epicatechin on the Pathology of APP/PS1 Transgenic Mice.

    Science.gov (United States)

    Zeng, Yue-Qin; Wang, Yan-Jiang; Zhou, Xin-Fu

    2014-01-01

    Alzheimer's disease (AD) is a multifactorial disorder characterized by the progressive deterioration of neuronal networks. The clearance of Aβ from the brain and anti-inflammation are potential important strategies to prevent and treat disease. In a previous study, we demonstrated the grape seed extract (GSE) could reduce brain Aβ burden and microglia activation, but which polyphenol plays a major role in these events is not known. Here, we tested pharmacological effects of (-)epicatechin, one principle polyphenol compound in GSE, on transgenic AD mice. APP/PS1 transgenic mice were fed with (-)epicatechin diet (40 mg/kg/day) and curcumin diet (47 mg/kg/day) at 3 months of age for 9 months, the function of liver, Aβ levels in the brain and serum, AD-type neuropathology, plasma levels of inflammatory cytokines were measured. Toward the end of the experiment, we found long-term feeding of (-)epicatechin diet was well tolerated without fatality, changes in food consumption, body weight, or liver function. (-)Epicatechin significantly reduced total Aβ in brain and serum by 39 and 40%, respectively, compared with control diet. Microgliosis and astrocytosis in the brain of Alzheimer's mice were also reduced by 38 and 35%, respectively. The (-)epicatechin diet did not alter learning and memory behaviors in AD mice. This study has provided evidence on the beneficial role of (-)epicatechin in ameliorating amyloid-induced AD-like pathology in AD mice, but the impact of (-)epicatechin on tau pathology is not clear, also the mechanism needs further research.

  15. Effects of (-epicatechin on the pathology of APP/PS1 transgenic mice

    Directory of Open Access Journals (Sweden)

    Yueqin eZeng

    2014-05-01

    Full Text Available Background: Alzheimer’s disease is a multifactorial disorder characterized by the progressive deterioration of neuronal networks. The clearance of Aβ from the brain and anti-inflammation are potential important strategies to prevent and treat disease. In a previous study, we demonstrated the grape seed extract (GSE could reduce brain Aβ burden and microglia activation,but which polyphenol plays a major role in these events is not known. Here we tested pharmacological effects of (-epicatechin, one principle polyphenol compound in GSE, on transgenic AD mice.Methods: APP/PS1 transgenic mice were fed with (-epicatechin diet(40mg/kg/d and curcumin diet (47mg/kg/d at 3 months of age for 9 months, the function of liver, Aβ levels in the brain and serum, AD-type neuropathology, plasma levels of inflammatory cytokines were measured.Results: Towards the end of the experiment we found long-term feeding of (- epicatechin diet was well tolerated without fatality, changes in food consumption, body weight or liver function. (-Epicatechin significantly reduced total Aβ in brain and serum by 39% and 40%, respectively, compared with control diet. Microgliosis and astrocytosis in the brain of Alzheimer’s mice were also reduced by 38% and 35%, respectively. The (-epicatechin diet did not alter learning and memory behaviors in AD mice.Conclusions: This study has provided evidence on the beneficial role of (-epicatechin in ameliorating amyloid-induced AD-like pathology in AD mice, but the impact of (-epicatechin on tau pathology is not clear, also the mechanism needs further research.

  16. In vivo changes of hemopoietic progenitors and the expression of the interleukin 5 gene in eosinophilic mice infected with Toxocara canis.

    Science.gov (United States)

    Yamaguchi, Y; Matsui, T; Kasahara, T; Etoh, S; Tominaga, A; Takatsu, K; Miura, Y; Suda, T

    1990-12-01

    It has been demonstrated that purified recombinant interleukin 5 (rIL-5) supports the terminal differentiation and proliferation of eosinophilic precursors in vitro and plays an important role in increasing the functional activities of eosinophils. In this study, we examined the hemopoietic changes and analyzed murine (m) IL-5 mRNA expression in eosinophilic mice infected with the helminth Toxocara canis. In eosinophilic mice, eosinophils increased in number in both bone marrow and spleen. However, the number of eosinophilic precursors increased markedly in spleen cells of eosinophilic mice but remained relatively constant in the bone marrow. In the presence of granulocyte colony-stimulating factor (G-CSF), the number of granulocytic precursors increased in the spleen cells of eosinophilic mice. From these findings, the condition of eosinophilopoiesis in eosinophilic mice is accompanied by an increase in granulocyte-macrophage progenitors as well as eosinophil progenitors. Using Northern blot analysis, a weak but definite band corresponding to mIL-5 mRNA was detected in spleen cells of mice 4 and 5 days after helminthic infection. In addition, these data were confirmed by in vitro polymerase chain reaction (PCR) amplification of mRNA obtained from these spleen cells. Finally, injections of a monoclonal antibody against mIL-5 completely suppressed the blood eosinophilia in mice infected with T. canis. In conclusion, IL-5 is suggested to play a major role in eosinophilopoiesis in vivo.

  17. Acetaminophen-induced acute liver injury in HCV transgenic mice

    International Nuclear Information System (INIS)

    Uehara, Takeki; Kosyk, Oksana; Jeannot, Emmanuelle; Bradford, Blair U.; Tech, Katherine; Macdonald, Jeffrey M.; Boorman, Gary A.; Chatterjee, Saurabh; Mason, Ronald P.; Melnyk, Stepan B.; Tryndyak, Volodymyr P.; Pogribny, Igor P.; Rusyn, Ivan

    2013-01-01

    The exact etiology of clinical cases of acute liver failure is difficult to ascertain and it is likely that various co-morbidity factors play a role. For example, epidemiological evidence suggests that coexistent hepatitis C virus (HCV) infection increased the risk of acetaminophen-induced acute liver injury, and was associated with an increased risk of progression to acute liver failure. However, little is known about possible mechanisms of enhanced acetaminophen hepatotoxicity in HCV-infected subjects. In this study, we tested a hypothesis that HCV-Tg mice may be more susceptible to acetaminophen hepatotoxicity, and also evaluated the mechanisms of acetaminophen-induced liver damage in wild type and HCV-Tg mice expressing core, E1 and E2 proteins. Male mice were treated with a single dose of acetaminophen (300 or 500 mg/kg in fed animals; or 200 mg/kg in fasted animals; i.g.) and liver and serum endpoints were evaluated at 4 and 24 h after dosing. Our results suggest that in fed mice, liver toxicity in HCV-Tg mice is not markedly exaggerated as compared to the wild-type mice. In fasted mice, greater liver injury was observed in HCV-Tg mice. In fed mice dosed with 300 mg/kg acetaminophen, we observed that liver mitochondria in HCV-Tg mice exhibited signs of dysfunction showing the potential mechanism for increased susceptibility. -- Highlights: ► Acetaminophen-induced liver injury is a significant clinical challenge. ► HCV-infected subjects may be at higher risk for acetaminophen-induced liver injury. ► We used HCV transgenics to test if liver injury due to acetaminophen is exacerbated.

  18. Acetaminophen-induced acute liver injury in HCV transgenic mice

    Energy Technology Data Exchange (ETDEWEB)

    Uehara, Takeki; Kosyk, Oksana; Jeannot, Emmanuelle; Bradford, Blair U. [Department of Environmental Sciences and Engineering, University of North Carolina, Chapel Hill, NC 27599 (United States); Tech, Katherine; Macdonald, Jeffrey M. [Department of Biomedical Engineering, University of North Carolina, Chapel Hill, NC 27599 (United States); Boorman, Gary A. [Covance, Chantilly, VA 20151 (United States); Chatterjee, Saurabh; Mason, Ronald P. [Laboratory of Toxicology and Pharmacology, National Institute of Environmental Health Sciences, RTP, NC 27713 (United States); Melnyk, Stepan B. [Department of Pediatrics, University of Arkansas for Medical Sciences, Little Rock, AR 72201 (United States); Tryndyak, Volodymyr P.; Pogribny, Igor P. [Division of Biochemical Toxicology, National Center for Toxicological Research, Jefferson, AR 72079 (United States); Rusyn, Ivan, E-mail: iir@unc.edu [Department of Environmental Sciences and Engineering, University of North Carolina, Chapel Hill, NC 27599 (United States)

    2013-01-15

    The exact etiology of clinical cases of acute liver failure is difficult to ascertain and it is likely that various co-morbidity factors play a role. For example, epidemiological evidence suggests that coexistent hepatitis C virus (HCV) infection increased the risk of acetaminophen-induced acute liver injury, and was associated with an increased risk of progression to acute liver failure. However, little is known about possible mechanisms of enhanced acetaminophen hepatotoxicity in HCV-infected subjects. In this study, we tested a hypothesis that HCV-Tg mice may be more susceptible to acetaminophen hepatotoxicity, and also evaluated the mechanisms of acetaminophen-induced liver damage in wild type and HCV-Tg mice expressing core, E1 and E2 proteins. Male mice were treated with a single dose of acetaminophen (300 or 500 mg/kg in fed animals; or 200 mg/kg in fasted animals; i.g.) and liver and serum endpoints were evaluated at 4 and 24 h after dosing. Our results suggest that in fed mice, liver toxicity in HCV-Tg mice is not markedly exaggerated as compared to the wild-type mice. In fasted mice, greater liver injury was observed in HCV-Tg mice. In fed mice dosed with 300 mg/kg acetaminophen, we observed that liver mitochondria in HCV-Tg mice exhibited signs of dysfunction showing the potential mechanism for increased susceptibility. -- Highlights: ► Acetaminophen-induced liver injury is a significant clinical challenge. ► HCV-infected subjects may be at higher risk for acetaminophen-induced liver injury. ► We used HCV transgenics to test if liver injury due to acetaminophen is exacerbated.

  19. Twenty six-week exposure to 2 amino-3 methylimidazo [4,5-f]quinoline (IQ) does not significantly increase the incidence of tumours in HMGCR/mts1 tg579 transgenic mice

    DEFF Research Database (Denmark)

    Mortensen, Alicja; Lukanidin, E.; Ambartsumian, N.S.

    2004-01-01

    HMGCR/mtsl t9579 transgenic mice were designed to direct the expression of metastasis-promoting mts 1 (S100A4) gene to all the tissues. In order to test the usefulness of this mouse model for carcinogenicity tests shorter than that recommended by OECD guideline mr. 451, HMGCR/mtsl tg579 transgenic...

  20. The food additive vanillic acid controls transgene expression in mammalian cells and mice.

    Science.gov (United States)

    Gitzinger, Marc; Kemmer, Christian; Fluri, David A; El-Baba, Marie Daoud; Weber, Wilfried; Fussenegger, Martin

    2012-03-01

    Trigger-inducible transcription-control devices that reversibly fine-tune transgene expression in response to molecular cues have significantly advanced the rational reprogramming of mammalian cells. When designed for use in future gene- and cell-based therapies the trigger molecules have to be carefully chosen in order to provide maximum specificity, minimal side-effects and optimal pharmacokinetics in a mammalian organism. Capitalizing on control components that enable Caulobacter crescentus to metabolize vanillic acid originating from lignin degradation that occurs in its oligotrophic freshwater habitat, we have designed synthetic devices that specifically adjust transgene expression in mammalian cells when exposed to vanillic acid. Even in mice transgene expression was robust, precise and tunable in response to vanillic acid. As a licensed food additive that is regularly consumed by humans via flavoured convenience food and specific fresh vegetable and fruits, vanillic acid can be considered as a safe trigger molecule that could be used for diet-controlled transgene expression in future gene- and cell-based therapies.

  1. Erionite induces production of autoantibodies and IL-17 in C57BL/6 mice

    Energy Technology Data Exchange (ETDEWEB)

    Zebedeo, Christian Nash; Davis, Chad [Department of Biological Sciences, Idaho State University, Pocatello, ID (United States); Peña, Cecelia [Northwest Nazarene University, Nampa, ID (United States); Ng, Kok Wei [Department of Biological Sciences, Idaho State University, Pocatello, ID (United States); Pfau, Jean C., E-mail: pfaujean@isu.edu [Department of Biological Sciences, Idaho State University, Pocatello, ID (United States)

    2014-03-15

    Background: Erionite has similar chemical and physical properties to amphibole asbestos, which induces autoantibodies in mice. Current exposures are occurring in North Dakota due to the use of erionite-contaminated gravel. While erionite is known to cause mesothelioma and other diseases associated with asbestos, there is little known about its effects on the immune system. Objectives: We performed this study to determine whether erionite evokes autoimmune reactions in mice. Methods: Bone marrow derived macrophages (BMDM) were used to measure toxicity induced by erionite. Cytokine production by BMDM and splenocytes of C57BL/6 mice was examined by bead arrays and ELISA following exposure to erionite, amphiboles and chrysotile. Wild type C57BL/6 mice were exposed to saline, erionite, amphibole asbestos (Libby 6-Mix) or chrysotile through intratracheal instillations at equal mass (60 μg/mouse). Seven months after exposure, sera were examined for anti-nuclear antibodies (ANA) and IL-17. Immunohistochemistry was used to detect immune complex deposition in the kidneys. Results: Erionite and tremolite caused increased cytokine production belonging to the T{sub H}17 profile including IL-17, IL-6, TGF-β, and TNF-α. The frequency of ANA was increased in mice treated with erionite or amphibole compared to saline-treated mice. IL-17 and TNF-α were elevated in the sera of mice treated with erionite. The frequency of immune complex deposition in the kidneys increased from 33% in saline-treated mice to 90% with erionite. Conclusions: These data demonstrate that both erionite and amphibole asbestos induce autoimmune responses in mice, suggesting a potential for adverse effects in exposed communities. - Highlights: • Erionite, a fibrous mineral, is a current public health concern in the western USA. • Erionite exposure induces antinuclear autoantibodies in exposed mice. • Erionite induces a clear Th17 cytokine response in vitro and in vivo. • These responses were

  2. Erionite induces production of autoantibodies and IL-17 in C57BL/6 mice

    International Nuclear Information System (INIS)

    Zebedeo, Christian Nash; Davis, Chad; Peña, Cecelia; Ng, Kok Wei; Pfau, Jean C.

    2014-01-01

    Background: Erionite has similar chemical and physical properties to amphibole asbestos, which induces autoantibodies in mice. Current exposures are occurring in North Dakota due to the use of erionite-contaminated gravel. While erionite is known to cause mesothelioma and other diseases associated with asbestos, there is little known about its effects on the immune system. Objectives: We performed this study to determine whether erionite evokes autoimmune reactions in mice. Methods: Bone marrow derived macrophages (BMDM) were used to measure toxicity induced by erionite. Cytokine production by BMDM and splenocytes of C57BL/6 mice was examined by bead arrays and ELISA following exposure to erionite, amphiboles and chrysotile. Wild type C57BL/6 mice were exposed to saline, erionite, amphibole asbestos (Libby 6-Mix) or chrysotile through intratracheal instillations at equal mass (60 μg/mouse). Seven months after exposure, sera were examined for anti-nuclear antibodies (ANA) and IL-17. Immunohistochemistry was used to detect immune complex deposition in the kidneys. Results: Erionite and tremolite caused increased cytokine production belonging to the T H 17 profile including IL-17, IL-6, TGF-β, and TNF-α. The frequency of ANA was increased in mice treated with erionite or amphibole compared to saline-treated mice. IL-17 and TNF-α were elevated in the sera of mice treated with erionite. The frequency of immune complex deposition in the kidneys increased from 33% in saline-treated mice to 90% with erionite. Conclusions: These data demonstrate that both erionite and amphibole asbestos induce autoimmune responses in mice, suggesting a potential for adverse effects in exposed communities. - Highlights: • Erionite, a fibrous mineral, is a current public health concern in the western USA. • Erionite exposure induces antinuclear autoantibodies in exposed mice. • Erionite induces a clear Th17 cytokine response in vitro and in vivo. • These responses were distinct

  3. A Genome-wide Gene-Expression Analysis and Database in Transgenic Mice during Development of Amyloid or Tau Pathology

    Directory of Open Access Journals (Sweden)

    Mar Matarin

    2015-02-01

    Full Text Available We provide microarray data comparing genome-wide differential expression and pathology throughout life in four lines of “amyloid” transgenic mice (mutant human APP, PSEN1, or APP/PSEN1 and “TAU” transgenic mice (mutant human MAPT gene. Microarray data were validated by qPCR and by comparison to human studies, including genome-wide association study (GWAS hits. Immune gene expression correlated tightly with plaques whereas synaptic genes correlated negatively with neurofibrillary tangles. Network analysis of immune gene modules revealed six hub genes in hippocampus of amyloid mice, four in common with cortex. The hippocampal network in TAU mice was similar except that Trem2 had hub status only in amyloid mice. The cortical network of TAU mice was entirely different with more hub genes and few in common with the other networks, suggesting reasons for specificity of cortical dysfunction in FTDP17. This Resource opens up many areas for investigation. All data are available and searchable at http://www.mouseac.org.

  4. Transmissibility of H-Type Bovine Spongiform Encephalopathy to Hamster PrP Transgenic Mice.

    Directory of Open Access Journals (Sweden)

    Hiroyuki Okada

    Full Text Available Two distinct forms of atypical bovine spongiform encephalopathies (H-BSE and L-BSE can be distinguished from classical (C- BSE found in cattle based on biochemical signatures of disease-associated prion protein (PrPSc. H-BSE is transmissible to wild-type mice-with infected mice showing a long survival period that is close to their normal lifespan-but not to hamsters. Therefore, rodent-adapted H-BSE with a short survival period would be useful for analyzing H-BSE characteristics. In this study, we investigated the transmissibility of H-BSE to hamster prion protein transgenic (TgHaNSE mice with long survival periods. Although none of the TgHaNSE mice manifested the disease during their lifespan, PrPSc accumulation was observed in some areas of the brain after the first passage. With subsequent passages, TgHaNSE mice developed the disease with a mean survival period of 220 days. The molecular characteristics of proteinase K-resistant PrPSc (PrPres in the brain were identical to those observed in first-passage mice. The distribution of immunolabeled PrPSc in the brains of TgHaNSE mice differed between those infected with H-BSE as compared to C-BSE or L-BSE, and the molecular properties of PrPres in TgHaNSE mice infected with H-BSE differed from those of the original isolate. The strain-specific electromobility, glycoform profiles, and proteolytic cleavage sites of H-BSE in TgHaNSE mice were indistinguishable from those of C-BSE, in which the diglycosylated form was predominant. These findings indicate that strain-specific pathogenic characteristics and molecular features of PrPres in the brain are altered during cross-species transmission. Typical H-BSE features were restored after back passage from TgHaNSE to bovinized transgenic mice, indicating that the H-BSE strain was propagated in TgHaNSE mice. This could result from the overexpression of the hamster prion protein.

  5. Single administration of recombinant IL-6 restores the gene expression of lipogenic enzymes in liver of fasting IL-6-deficient mice

    DEFF Research Database (Denmark)

    Gavito, A L; Cabello, R; Suarez, J

    2016-01-01

    BACKGROUND AND PURPOSE: Lipogenesis is intimately controlled by hormones and cytokines as well as nutritional conditions. IL-6 participates in the regulation of fatty acid metabolism in the liver. We investigated the role of IL-6 in mediating fasting/re-feeding changes in the expression of hepatic...... lipogenic enzymes. EXPERIMENTAL APPROACH: Gene and protein expression of lipogenic enzymes were examined in livers of wild-type (WT) and IL-6-deficient (IL-6(-/-) ) mice during fasting and re-feeding conditions. Effects of exogenous IL-6 administration on gene expression of these enzymes were evaluated...

  6. Dopaminergic neuronal loss, reduced neurite complexity and autophagic abnormalities in transgenic mice expressing G2019S mutant LRRK2.

    Directory of Open Access Journals (Sweden)

    David Ramonet

    2011-04-01

    Full Text Available Mutations in the leucine-rich repeat kinase 2 (LRRK2 gene cause late-onset, autosomal dominant familial Parkinson's disease (PD and also contribute to idiopathic PD. LRRK2 mutations represent the most common cause of PD with clinical and neurochemical features that are largely indistinguishable from idiopathic disease. Currently, transgenic mice expressing wild-type or disease-causing mutants of LRRK2 have failed to produce overt neurodegeneration, although abnormalities in nigrostriatal dopaminergic neurotransmission have been observed. Here, we describe the development and characterization of transgenic mice expressing human LRRK2 bearing the familial PD mutations, R1441C and G2019S. Our study demonstrates that expression of G2019S mutant LRRK2 induces the degeneration of nigrostriatal pathway dopaminergic neurons in an age-dependent manner. In addition, we observe autophagic and mitochondrial abnormalities in the brains of aged G2019S LRRK2 mice and markedly reduced neurite complexity of cultured dopaminergic neurons. These new LRRK2 transgenic mice will provide important tools for understanding the mechanism(s through which familial mutations precipitate neuronal degeneration and PD.

  7. CD44 and Bak expression in IL-6 or TNF-alpha gene knockout mice after whole lung irradiation

    International Nuclear Information System (INIS)

    Sakai, Minako; Iwakawa, Mayumi; Ohta, Toshie; Tsujii, Hirohiko; Imai, Takashi; Iwakura, Yoichiro

    2008-01-01

    To understand the molecular mechanisms that underlie radiation pneumonitis, we examined whether knockout of the tumor necrosis factor (TNF) or the interleukin (IL)-6 gene could give mice an inherent resistance to radiation in the acute phase of alveolar damage after thoracic irradiation. The temporal expression of inflammation (CD44) and apoptosis (Bak) markers in lung after thoracic irradiation was measured to determine the degree of alveolar damage. At 4 weeks post-irradiation (10 Gy), small inflammatory foci were observed in all mice, but there were no obvious histological differences between control (C57BL/6JSlc), TNF-alpha knockout (TNF KO), and IL-6 knockout (IL-6 KO) mice. However, immunohistochemical analysis of CD44 and Bak expression over a time course of 2 weeks highlighted significant differences between the three groups. C57BL/6JSlc and TNF KO mice had increased numbers of both CD44-positive and Bak-positive cells after irradiation, while the IL-6 KO mice showed stable levels of CD44 and Bak. In conclusion, the radioresistant status of IL-6 KO mice in the acute phase of alveolar damage after irradiation suggested an important role for IL-6 in radiation pneumonitis. (author)

  8. Expression Analysis of CB2-GFP BAC Transgenic Mice.

    Science.gov (United States)

    Schmöle, Anne-Caroline; Lundt, Ramona; Gennequin, Benjamin; Schrage, Hanna; Beins, Eva; Krämer, Alexandra; Zimmer, Till; Limmer, Andreas; Zimmer, Andreas; Otte, David-Marian

    2015-01-01

    The endocannabinoid system (ECS) is a retrograde messenger system, consisting of lipid signaling molecules that bind to at least two G-protein-coupled receptors, Cannabinoid receptor 1 and 2 (CB1 and 2). As CB2 is primarily expressed on immune cells such as B cells, T cells, macrophages, dendritic cells, and microglia, it is of great interest how CB2 contributes to immune cell development and function in health and disease. Here, understanding the mechanisms of CB2 involvement in immune-cell function as well as the trafficking and regulation of CB2 expressing cells are crucial issues. Up to now, CB2 antibodies produce unclear results, especially those targeting the murine protein. Therefore, we have generated BAC transgenic GFP reporter mice (CB2-GFPTg) to trace CB2 expression in vitro and in situ. Those mice express GFP under the CB2 promoter and display GFP expression paralleling CB2 expression on the transcript level in spleen, thymus and brain tissue. Furthermore, by using fluorescence techniques we show that the major sources for GFP-CB2 expression are B cells in spleen and blood and microglia in the brain. This novel CB2-GFP transgenic reporter mouse line represents a powerful resource to study CB2 expression in different cell types. Furthermore, it could be used for analyzing CB2-mediated mobilization and trafficking of immune cells as well as studying the fate of recruited immune cells in models of acute and chronic inflammation.

  9. Role of adenosine 5'-monophosphate-activated protein kinase in interleukin-6 release from isolated mouse skeletal muscle

    DEFF Research Database (Denmark)

    Glund, Stephan; Treebak, Jonas Thue; Long, Yun Chau

    2009-01-01

    IL-6 is released from skeletal muscle during exercise and has consequently been implicated to mediate beneficial effects on whole-body metabolism. Using 5-aminoimidazole-4-carboxamide-1-beta-4-ribofuranoside (AICAR), a pharmacological activator of 5'-AMP-activated protein kinase (AMPK), we tested......-type mice was also incubated with the AMPK activator A-769662. Incubation of mouse glycolytic extensor digitorum longus and oxidative soleus muscle for 2 h was associated with profound IL-6 mRNA production and protein release, which was suppressed by AICAR (P ... the hypothesis that AMPK modulates IL-6 release from isolated muscle. Skeletal muscle from AMPKalpha2 kinase-dead transgenic, AMPKalpha1 knockout (KO) and AMPKgamma3 KO mice and respective wild-type littermates was incubated in vitro, in the absence or presence of 2 mmol/liter AICAR. Skeletal muscle from wild...

  10. IL-18 Does not Increase Allergic Airway Disease in Mice When Produced by BCG

    Science.gov (United States)

    Amniai, L.; Biet, F.; Marquillies, P.; Locht, C.; Pestel, J.; Tonnel, A.-B.; Duez, C.

    2007-01-01

    Whilst BCG inhibits allergic airway responses in murine models, IL-18 has adversary effects depending on its environment. We therefore constructed a BCG strain producing murine IL-18 (BCG-IL-18) and evaluated its efficiency to prevent an asthma-like reaction in mice. BALB/cByJ mice were sensitized (day (D) 1 and D10) by intraperitoneal injection of ovalbumin (OVA)-alum and primary (D20–22) and secondary (D62, 63) challenged with OVA aerosols. BCG or BCG-IL-18 were intraperitonealy administered 1 hour before each immunization (D1 and D10). BCG-IL-18 and BCG were shown to similarly inhibit the development of AHR, mucus production, eosinophil influx, and local Th2 cytokine production in BAL, both after the primary and secondary challenge. These data show that IL-18 did not increase allergic airway responses in the context of the mycobacterial infection, and suggest that BCG-IL-18 and BCG are able to prevent the development of local Th2 responses and therefore inhibit allergen-induced airway responses even after restimulation. PMID:18299704

  11. Combined riluzole and sodium phenylbutyrate therapy in transgenic amyotrophic lateral sclerosis mice.

    Science.gov (United States)

    Del Signore, Steven J; Amante, Daniel J; Kim, Jinho; Stack, Edward C; Goodrich, Sarah; Cormier, Kerry; Smith, Karen; Cudkowicz, Merit E; Ferrante, Robert J

    2009-04-01

    Recent evidence suggests that transcriptional dysregulation may play a role in the pathogenesis of amyotrophic lateral sclerosis (ALS). The histone deacetylase inhibitor, sodium phenylbutyrate (NaPB), is neuroprotective and corrects aberrant gene transcription in ALS mice and has recently been shown to be safe and tolerable in ALS patients while improving hypoacetylation. Since many patients are already on riluzole, it is important to ensure that any proposed therapy does not result in negative synergy with riluzole. The combined treatment of riluzole and NaPB significantly extended survival and improved both the clinical and neuropathological phenotypes in G93A transgenic ALS mice beyond either agent alone. Combination therapy increased survival by 21.5%, compared to the separate administration of riluzole (7.5%) and NaPB (12.8%), while improving both body weight loss and grip strength. The data show that the combined treatment was synergistic. In addition, riluzole/NaPB treatment ameliorated gross lumbar and ventral horn atrophy, attenuated lumbar ventral horn neuronal cell death, and decreased reactive astrogliosis. Riluzole/NaPB administration increased acetylation at H4 and increased NF-kappaB p50 translocation to the nucleus in G93A mice, consistent with a therapeutic effect. These data suggest that NaPB may not interfere with the pharmacologic action of riluzole in ALS patients.

  12. Traumatic brain injury precipitates cognitive impairment and extracellular Aβ aggregation in Alzheimer's disease transgenic mice.

    Directory of Open Access Journals (Sweden)

    Naoki Tajiri

    Full Text Available Traumatic brain injury (TBI has become a signature wound of the wars in Iraq and Afghanistan. Many American soldiers, even those undiagnosed but likely suffering from mild TBI, display Alzheimer's disease (AD-like cognitive impairments, suggesting a pathological overlap between TBI and AD. This study examined the cognitive and neurohistological effects of TBI in presymptomatic APP/PS1 AD-transgenic mice. AD mice and non-transgenic (NT mice received an experimental TBI on the right parietal cortex using the controlled cortical impact model. Animals were trained in a water maze task for spatial memory before TBI, and then reevaluated in the same task at two and six weeks post-TBI. The results showed that AD mice with TBI made significantly more errors in the task than AD mice without TBI and NT mice regardless of TBI. A separate group of AD mice and NT mice were evaluated neurohistologically at six weeks after TBI. The number of extracellular beta-amyloid (Aβ-deposits significantly increased by at least one fold in the cortex of AD mice that received TBI compared to the NT mice that received TBI or the AD and NT mice that underwent sham surgery. A significant decrease in MAP2 positive cells, indicating neuronal loss, was observed in the cortex of both the AD and NT mice that received TBI compared to the AD and NT mice subjected to sham surgery. Similar changes in extracellular Aβ deposits and MAP2 positive cells were also seen in the hippocampus. These results demonstrate for the first time that TBI precipitates cognitive impairment in presymptomatic AD mice, while also confirming extracellular Aβ deposits following TBI. The recognition of this pathological link between TBI and AD should aid in developing novel treatments directed at abrogating cellular injury and extracellular Aβ deposition in the brain.

  13. PD-L2 Regulates B-1 Cell Antibody Production against Phosphorylcholine through an IL-5-Dependent Mechanism.

    Science.gov (United States)

    McKay, Jerome T; Haro, Marcela A; Daly, Christina A; Yammani, Rama D; Pang, Bing; Swords, W Edward; Haas, Karen M

    2017-09-15

    B-1 cells produce natural Abs which provide an integral first line of defense against pathogens while also performing important homeostatic housekeeping functions. In this study, we demonstrate that programmed cell death 1 ligand 2 (PD-L2) regulates the production of natural Abs against phosphorylcholine (PC). Naive PD-L2-deficient (PD-L2 -/- ) mice produced significantly more PC-reactive IgM and IgA. This afforded PD-L2 -/- mice with selectively enhanced protection against PC-expressing nontypeable Haemophilus influenzae , but not PC-negative nontypeable Haemophilus influenzae , relative to wild-type mice. PD-L2 -/- mice had significantly increased PC-specific CD138 + splenic plasmablasts bearing a B-1a phenotype, and produced PC-reactive Abs largely of the T15 Id. Importantly, PC-reactive B-1 cells expressed PD-L2 and irradiated chimeras demonstrated that B cell-intrinsic PD-L2 expression regulated PC-specific Ab production. In addition to increased PC-specific IgM, naive PD-L2 -/- mice and irradiated chimeras reconstituted with PD-L2 -/- B cells had significantly higher levels of IL-5, a potent stimulator of B-1 cell Ab production. PD-L2 mAb blockade of wild-type B-1 cells in culture significantly increased CD138 and Blimp1 expression and PC-specific IgM, but did not affect proliferation. PD-L2 mAb blockade significantly increased IL-5 + T cells in culture. Both IL-5 neutralization and STAT5 inhibition blunted the effects of PD-L2 mAb blockade on B-1 cells. Thus, B-1 cell-intrinsic PD-L2 expression inhibits IL-5 production by T cells and thereby limits natural Ab production by B-1 cells. These findings have broad implications for the development of therapeutic strategies aimed at altering natural Ab levels critical for protection against infectious disease, autoimmunity, allergy, cancer, and atherosclerosis. Copyright © 2017 by The American Association of Immunologists, Inc.

  14. Adipogenic differentiation by adipose-derived stem cells harvested from GFP transgenic mice - including relationship of sex differences

    International Nuclear Information System (INIS)

    Ogawa, Rei; Mizuno, Hiroshi; Watanabe, Atsushi; Migita, Makoto; Hyakusoku, Hiko; Shimada, Takashi

    2004-01-01

    We have previously demonstrated that adipose-derived stromal cells (ASCs) as well as bone marrow-derived stromal cells (BSCs) differentiate into a variety of cell lineages both in vitro and in vivo. Both types are considered to include mesenchymal stem cells. Taking advantage of homogeneously marked cells from green fluorescent protein (GFP) transgenic mice, we have also previously reported the plasticity of BSCs and ASCs. In this study, we focused on adipogenic differentiation in vitro by ASCs harvested from GFP transgenic mice. Moreover, preadipocytes and mature adipocytes were harvested at the same time, and the cells were cultured to compare them with ASCs. Inguinal fat pads from GFP transgenic mice were used for the isolation of ASCs, preadipocytes, and mature adipocytes. After expansion to three passages of ASCs, the cells were incubated in an adipogenic medium for two weeks. Adipogenic differentiation of ASCs was assessed by Oil Red O staining and the expression of the adipocyte specific peroxisome proliferative activated receptor γ2 (PPAR-γ2) gene. These ASCs stained positively, and expression of PPAR-γ2 was detected. Moreover, we also tried to characterize the influence of sex differences on the adipogenic differentiation of ASCs harvested from both male and female mice. This was assessed by the expression levels of the PPAR-γ2 gene using real-time PCR. The results showed that the expression levels of ASCs harvested from female mice were a maximum of 2.89 times greater than those harvested from male mice. This suggests that the adipogenic differentiation of ASCs is closely related to sex differences

  15. Exploration, anxiety, and spatial memory in transgenic anophthalmic mice.

    Science.gov (United States)

    Buhot, M C; Dubayle, D; Malleret, G; Javerzat, S; Segu, L

    2001-04-01

    Contradictory results are found in the literature concerning the role of vision in the perception of space or in spatial navigation, in part because of the lack of murine models of total blindness used so far. The authors evaluated the spatial abilities of anophthalmic transgenic mice. These mice did not differ qualitatively from their wild-type littermates in general locomotor activity, spontaneous alternation, object exploration, or anxiety, but their level of exploratory activity was generally lower. In the spatial version of the water maze, they displayed persistent thigmotaxic behavior and showed severe spatial learning impairments. However, their performances improved with training, suggesting that they may have acquired a rough representation of the platform position. These results suggest that modalities other than vision enable some degree of spatial processing in proximal and structured spaces but that vision is critical for accurate spatial navigation.

  16. Metastasis of transgenic breast cancer in plasminogen activator inhibitor-1 gene-deficient mice

    DEFF Research Database (Denmark)

    Almholt, Kasper; Nielsen, Boye Schnack; Frandsen, Thomas Leth

    2003-01-01

    , high levels of PAI-1 as well as uPA are equally associated with poor prognosis in cancer patients. PAI-1 is thought to play a vital role for the controlled extracellular proteolysis during tumor neovascularization. We have studied the effect of PAI-1 deficiency in a transgenic mouse model...... of metastasizing breast cancer. In these tumors, the expression pattern of uPA and PAI-1 resembles that of human ductal breast cancer and plasminogen is required for efficient metastasis. In a cohort of 63 transgenic mice that were either PAI-1-deficient or wild-type sibling controls, primary tumor growth...

  17. Point mutation in D8C domain of Tamm-Horsfall protein/uromodulin in transgenic mice causes progressive renal damage and hyperuricemia.

    Directory of Open Access Journals (Sweden)

    Lijie Ma

    Full Text Available Hereditary mutations in Tamm-Horsfall protein (THP/uromodulin gene cause autosomal dominant kidney diseases characterized by juvenile-onset hyperuricemia, gout and progressive kidney failure, although the disease pathogenesis remains unclear. Here we show that targeted expression in transgenic mice of a mutation within the domain of 8 cysteines of THP in kidneys' thick ascending limb (TAL caused unfolded protein response in younger (1-month old mice and apoptosis in older (12-month old mice. While the young mice had urine concentration defects and polyuria, such defects progressively reversed in the older mice to marked oliguria, highly concentrated urine, fibrotic kidneys and reduced creatinine clearance. Both the young and the old transgenic mice had significantly higher serum uric acid and its catabolic product, allantoin, than age-matched wild-type mice. This THP mutation apparently caused primary defects in TAL by compromising the luminal translocation and reabsorptive functions of NKCC2 and ROMK and secondary responses in proximal tubules by upregulating NHE3 and URAT1. Our results strongly suggest that the progressive worsening of kidney functions reflects the accumulation of the deleterious effects of the misfolded mutant THP and the compensatory responses. Transgenic mice recapitulating human THP/uromodulin-associated kidney diseases could be used to elucidate their pathogenesis and test novel therapeutic strategies.

  18. Point mutation in D8C domain of Tamm-Horsfall protein/uromodulin in transgenic mice causes progressive renal damage and hyperuricemia

    Science.gov (United States)

    Landry, Nichole K.; El-Achkar, Tarek M.; Lieske, John C.

    2017-01-01

    Hereditary mutations in Tamm-Horsfall protein (THP/uromodulin) gene cause autosomal dominant kidney diseases characterized by juvenile-onset hyperuricemia, gout and progressive kidney failure, although the disease pathogenesis remains unclear. Here we show that targeted expression in transgenic mice of a mutation within the domain of 8 cysteines of THP in kidneys’ thick ascending limb (TAL) caused unfolded protein response in younger (1-month old) mice and apoptosis in older (12-month old) mice. While the young mice had urine concentration defects and polyuria, such defects progressively reversed in the older mice to marked oliguria, highly concentrated urine, fibrotic kidneys and reduced creatinine clearance. Both the young and the old transgenic mice had significantly higher serum uric acid and its catabolic product, allantoin, than age-matched wild-type mice. This THP mutation apparently caused primary defects in TAL by compromising the luminal translocation and reabsorptive functions of NKCC2 and ROMK and secondary responses in proximal tubules by upregulating NHE3 and URAT1. Our results strongly suggest that the progressive worsening of kidney functions reflects the accumulation of the deleterious effects of the misfolded mutant THP and the compensatory responses. Transgenic mice recapitulating human THP/uromodulin-associated kidney diseases could be used to elucidate their pathogenesis and test novel therapeutic strategies. PMID:29145399

  19. Usefulness of high-resolution sonography for assessement of hepatocellular carcinoma in the transgenic mice expressing hepatitis B virus X-protein; A preliminary study

    Energy Technology Data Exchange (ETDEWEB)

    Yoon, Kwon-Ha; Park, Sung Hoon; Kim, Chang Guhn; Won, Jong Jin; Moon, Hyung Bae [Wonkwang Univ. School of Medicine, Iksan (Korea, Republic of); Yu, Dae Yeul [Korea Advanced Institute of Science and Technology, Taejon (Korea, Republic of)

    2000-11-01

    To determine the value of high resolution ultrasonography (US) for the detection of hepatocellular carcinoma in the HBx transgenic mice. Forty-two HBx transgenic mice aged 8-20 (mean, 14) months underwent high-resolution ultrasound using a 10-12 MHz linear transducer. US findings indication the presence or absence, number, size and echogenicity of each hepatic tumor were analyzed, and in addition, color or power Doppler US was used to analyse tumoral vascularity. In each animal, sacrificed less than five hours after US examination, sonographic and pathologic findings were correlated. On gross pathologic examination, 20 hepatocellular carcinomas measuring 1.5-15 (mean, 4.7) mm in diameter were found in 16 mice; US revealed that 17 of the tumors were homogeneous hypoechoic nodules. With regard to tumor detection, sensitivity was 85%, specificity 96%, positive predictive value 0.944, negative predictive value 0.897, and overall accuracy 90%. Doppler US revealed that in three nodules, intratumoral vessels were present. In the other 26 mice, gross examination showed that no mass was present; microscopically, however, four nodules measuring 0.3-1.2 mm were found in four of these animals. Tumoral vascularity detected by color Doppler US corresponded to the intratumoral vessel within the nodules. One peritoneal nodule, confirmed as a metastatic tumor, was found at the greater omentum. In HBx transgenic mice, high-resolution US is valuable for the detection of hepatocellular carcinoma.

  20. The XX sex chromosome complement in mice is associated with increased spontaneous lupus compared with XY.

    Science.gov (United States)

    Sasidhar, Manda V; Itoh, Noriko; Gold, Stefan M; Lawson, Gregory W; Voskuhl, Rhonda R

    2012-08-01

    Many autoimmune diseases are characterised by a female predominance. This may be caused by sex hormones, sex chromosomes or both. This report uses a transgenic mouse model to investigate how sex chromosome complement, not confounded by differences in gonadal type, might contribute to lupus pathogenesis. Transgenic NZM2328 mice were created by deletion of the Sry gene from the Y chromosome, thereby separating genetic from gonadal sex. Survival, renal histopathology and markers of immune activation were compared in mice carrying the XX versus the XY(-) sex chromosome complement, with each genotype being ovary bearing. Mice with XX sex chromosome complement compared with XY(-) exhibited poorer survival rates and increased kidney pathology. Splenic T lymphocytes from XX mice demonstrated upregulated X-linked CD40 ligand expression and higher levels of activation markers ex vivo. Increased MMP, TGF and IL-13 production was found, while IL-2 was lower in XX mice. An accumulation of splenic follicular B cells and peritoneal marginal zone B cells was observed, coupled with upregulated costimulatory marker expression on B cells in XX mice. These data show that the XX sex chromosome complement, compared with XY(-), is associated with accelerated spontaneous lupus.

  1. Characterization of pancreatic lesions from MT-tgf alpha, Ela-myc and MT-tgf alpha/Ela-myc single and double transgenic mice.

    Science.gov (United States)

    Liao, Dezhong Joshua; Wang, Yong; Wu, Jiusheng; Adsay, Nazmi Volkan; Grignon, David; Khanani, Fayyaz; Sarkar, Fazlul H

    2006-07-05

    In order to identify good animal models for investigating therapeutic and preventive strategies for pancreatic cancer, we analyzed pancreatic lesions from several transgenic models and made a series of novel findings. Female MT-tgf alpha mice of the MT100 line developed pancreatic proliferation, acinar-ductal metaplasia, multilocular cystic neoplasms, ductal adenocarcinomas and prominent fibrosis, while the lesions in males were less severe. MT-tgf alpha-ES transgenic lines of both sexes developed slowly progressing lesions that were similar to what was seen in MT100 males. In both MT100 and MT-tgf alpha-ES lines, TGF alpha transgene was expressed mainly in proliferating ductal cells. Ela-myc transgenic mice with a mixed C57BL/6, SJL and FVB genetic background developed pancreatic tumors at 2-7 months of age, and half of the tumors were ductal adenocarcinomas, similar to what was reported originally by Sandgren et al 1. However, in 20% of the mice, the tumors metastasized to the liver. MT100/Ela-myc and MT-tgf alpha-ES/Ela-myc double transgenic mice developed not only acinar carcinomas and mixed carcinomas as previously reported but also various ductal-originated lesions, including multilocular cystic neoplasms and ductal adenocarcinomas. The double transgenic tumors were more malignant and metastasized to the liver at a higher frequency (33%) compared with the Ela-myc tumors. Sequencing of the coding region of p16ink4, k-ras and Rb cDNA in small numbers of pancreatic tumors did not identify mutations. The short latency for tumor development, the variety of tumor morphology and the liver metastases seen in Ela-myc and MT-tgf alpha/Ela-myc mice make these animals good models for investigating new therapeutic and preventive strategies for pancreatic cancer.

  2. Handling of human short-chain acyl-CoA dehydrogenase (SCAD) variant proteins in transgenic mice

    DEFF Research Database (Denmark)

    Kragh, Peter M; Pedersen, Christina B; Schmidt, Stine P

    2007-01-01

    Abstract To investigate the in vivo handling of human short-chain acyl-CoA dehydrogenase (SCAD) variant proteins, three transgenic mouse lines were produced by pronuclear injection of cDNA encoding the wild-type, hSCAD-wt, and two disease causing folding variants hSCAD-319C > T and hSCAD-625G > A....... The transgenic mice were mated with an SCAD-deficient mouse strain (BALB/cByJ) and, in the second generation, three mouse lines were obtained without endogenous SCAD expression but harboring hSCAD-wt, hSCAD-319C > T, and hSCAD-625G > A transgenes, respectively. All three lines had expression of the transgene...... developed for any of the lines transgenic for the hSCAD folding variants. The indicated remarkable efficiency of the mouse protein quality control system in the degradation of SCAD folding variants should be further substantiated and investigated, since it might indicate ways to prevent disease...

  3. Effects of recombinant human interleukin-8 (rhIL-8) on the bone marrow cells of normal BALB/c mice

    International Nuclear Information System (INIS)

    Liu Yulong; Zhou Jianying; Wang Guoquan; Dai Hong; Duan Yingying; Guo Xiaokui

    2001-01-01

    Objective: To observe the colony formation ability of recombinant human interleukin-8 (rhIL-8) on bone marrow cells (BMCs) of normal mice in vivo. Methods: By means of cells culture and flow cytometry (FCM), the colony-stimulating activity of rhIL-8 on BMCs of normal mice was studied. Results: The experimental studies in vivo demonstrated that rhIL-8 could not changed the counts of CFU-GM and distribution of cell cycle in BMCs. Conclusion: rhIL-8 has no colony-stimulating activity to BMCs of normal mice

  4. Effect of CD34+ cord blood stem cell transfected by plasmid vector pIRES2-FL-IL-3 on the mice after irradiation

    International Nuclear Information System (INIS)

    Zhang Yong; Zhang Linsheng; Zhang Hongbing; Guo Chaohua; Tong Shiwu

    2008-01-01

    Objective: To observe the effect of CD34 cord blood stem cell transfected by plasmid vector plRES2-FL-IL-3 on the mouse after irradiation and to investigate its mechanisms. Methods: In the co-expressed group (12 mice), CD 34 + cord blood stem cells were transfected by plasmid vector pIRES2-FL-IL-3.5 x lO 5 cells were injected intravenously in the mouse. The hemogram changes in mice were detected 2, 4 and 6 weeks after radiation. At 6 weeks after irradiation, the expression of the CD 34 in spleen was detected by immumofluorescence method. The mRNA level and the activity of IL-3 and FL were detected by RT-PCR and Western blot. Other 3 groups were CD 34 + cell group (CD 34 group), pIRES2-IL-3 group(IL 3 group) and pIRES2-FL group(FL group), and there were 12 mice in each group. Results: The survival rate of CD 34 group, IL3 group and FL group at the 6th week were 25.0% (3/12), 50.0% (6/12) and 50.0% (6/12), respectively. It was 91.7% (11/12) in the co-expressed group, which was higher than those in the other groups. The expression of the CD 34 of spleen in the co-expressed group was higher than those of the other groups. The mRNA level and the activity of IL-3 and FL of spleen in the co-expressed group were higher than those in the other groups too. Conclusions: The CD 34 '+ cord blood stem cells transfected by plasmid vector pIRES2-FL-IL-3 have hemogenesis promotion effect on the mice after irradiation, which was related with the aggregation, proliferation of stem cells and the high expression of the interest proteins.. (authors)

  5. Progressive paralysis associated with diffuse astrocyte anaplasia in delta 202 mice homozygous for a transgene encoding the SV40 T antigen.

    Science.gov (United States)

    López-Revilla, Rubén; Soto-Zárate, Carlos; Ridaura, Cecilia; Chávez-Dueñas, Lucía; Paul, Dieter

    2004-03-01

    A convenient transgenic astrocytoma model in delta202 mice, homozygous for a construct encoding the early region of the SV40 virus genome, is described. In the offspring of crosses between delta202 mice heterozygous for the transgene nearly 60% were transgenic; one third of these developed progressive paralysis starting in the hindlimbs at approximately 35 days of age and died at 90 +/- 30 days of age. In affected mice proliferating-non-neuronal cells immunostained with antibodies to the GFAP, an astrocyte marker, whose number increased with age were found in the white matter of the brain, cerebellum and spinal cord, and progressive degeneration and necrosis of spinal motoneurons was observed that-may explain the paralysis. The early onset and reproducible time course of the neurological disease suggest that homozygous delta202 mice, whose proliferating astrocytes appear to damage spinal motoneurons, are a useful model to study astrocyte differentiation, function and tumorigenesis.

  6. Early thymic T cell development in young transgenic mice overexpressing human Cu/Zn superoxide dismutase, a model of Down syndrome.

    Science.gov (United States)

    Laurent, Julien; Paly, Evelyne; Marche, Patrice N; London, Jacqueline

    2006-06-01

    Previous studies have shown that transgenic mice overexpressing Cu/Zn superoxide dismutase, a model of Down syndrome, exhibit premature thymic involution. We have performed a flow cytometry analysis of the developing thymus in these homozygous transgenic mice (hSOD1/hSOD1: Tg-SOD). Longitudinal follow-up analysis from day 3 to day 280 showed an early thymic development in Tg-SOD mice compared with controls. This early thymic development was associated with an increased migration of mature T cells to peripheral lymphoid organs. BrdU labeling showed no difference between Tg-SOD and control mice, confirming that the greater number of peripheral T cells in Tg-SOD mice was not due to extensive proliferation of these cells but rather to a greater pool of emigrant T cells in Tg-SOD.

  7. Knockout and transgenic mice of Trp53: what have we learned about p53 in breast cancer?

    International Nuclear Information System (INIS)

    Blackburn, Anneke C; Jerry, D Joseph

    2002-01-01

    The human p53 tumor suppressor gene TP53 is mutated at a high frequency in sporadic breast cancer, and Li-Fraumeni syndrome patients who carry germline mutations in one TP53 allele have a high incidence of breast cancer. In the 10 years since the first knockout of the mouse p53 tumor suppressor gene (designated Trp53) was published, much has been learned about the contribution of p53 to biology and tumor suppression in the breast through the use of p53 transgenic and knockout mice. The original mice deficient in p53 showed no mammary gland phenotype. However, studies using BALB/c-Trp53-deficient mice have demonstrated a delayed involution phenotype and a mammary tumor phenotype. Together with other studies of mutant p53 transgenes and p53 bitransgenics, a greater understanding has been gained of the role of p53 in involution, of the regulation of p53 activity by hormones, of the effect of mouse strain and modifier genes on tumor phenotype, and of the cooperation between p53 and other oncogenic pathways, chemical carcinogens and hormonal stimulation in mammary tumorigenesis. Both p53 transgenic and knockout mice are important in vivo tools for understanding breast cancer, and are yet to be exploited for developing therapeutic strategies in breast cancer

  8. Induction of IL-6 by Cytotoxic Chemotherapy Is Associated With Loss of Lean Body and Fat Mass in Tumor-free Female Mice.

    Science.gov (United States)

    Elsea, Collin R; Kneiss, Janet A; Wood, Lisa J

    2015-10-01

    Cancer patients treated with cytotoxic chemotherapy experience fatigue and changes in body composition that can impact physical functioning and quality of life during and after treatment. Interleukin-6 (IL-6) is associated with fatigue in cancer survivors and plays an important role in the regulation of body composition. The purpose of the present study was to determine the specific role of IL-6 in cyclophosphamide-doxorubicin-5-fluorouracil (CAF)-induced changes in fatigue, food intake, and body composition using mice lacking IL-6. Female wild-type (WT) and IL-6 (-/-) mice were injected with four cycles of CAF or normal saline (NS) administered at 21-day intervals. Daily voluntary wheel-running activity (VWRA), used as a proxy for fatigue, and food intake were monitored daily up to 21 days after the fourth dose. Dual-energy X-ray absorptiometry (DEXA) was used to assess treatment-related changes in lean body mass (LBM), fat mass (FM), and bone mineral content (BMC). Patterns of change in fatigue and food intake did not differ between CAF-treated WT and IL-6 (-/-) mice. However, a Genotype × Drug interaction was observed for LBM (p = 0.047) and FM (p = 0.035) but not BMC (p = .569). Whereas WT mice lost LBM and FM during CAF treatment, IL-6-deficient mice did not. Treatment-related decreases in levels of the anabolic hormone insulin-like growth factor-1 (IGF-1) may contribute to LBM and FM loss since CAF decreased IGF-1 levels in an IL-6-dependent manner. These findings implicate IL-6 and possibly IGF-1 in the regulation of body composition in breast cancer patients exposed to cytotoxic chemotherapy. © The Author(s) 2014.

  9. AβPP/PS1 Transgenic Mice Show Sex Differences in the Cerebellum Associated with Aging.

    Science.gov (United States)

    Ordoñez-Gutierrez, Lara; Fernandez-Perez, Ivan; Herrera, Jose Luis; Anton, Marta; Benito-Cuesta, Irene; Wandosell, Francisco

    2016-09-06

    Cerebellar pathology has been related to presenilin 1 mutations in certain pedigrees of familial Alzheimer's disease. However, cerebellum tissue has not been intensively analyzed in transgenic models of mutant presenilins. Furthermore, the effect of the sex of the mice was not systematically analyzed, despite the fact that important gender differences in the evolution of the disease in the human population have been described. We analyzed whether the progression of amyloidosis in a double transgenic mouse, AβPP/PS1, is susceptible to aging and differentially affects males and females. The accumulation of amyloid in the cerebellum differentially affects males and females of the AβPP/PS1 transgenic line, which was found to be ten-fold higher in 15-month-old females. Amyloid-β accumulation was more evident in the molecular layer of the cerebellum, but glia reaction was only observed in the granular layer of the older mice. The sex divergence was also observed in other neuronal, survival, and autophagic markers. The cerebellum plays an important role in the evolution of the pathology in this transgenic mouse model. Sex differences could be crucial for a complete understanding of this disease. We propose that the human population could be studied in this way. Sex-specific treatment strategies in human populations could show a differential response to the therapeutic approach.

  10. Huperzine A alleviates synaptic deficits and modulates amyloidogenic and nonamyloidogenic pathways in APPswe/PS1dE9 transgenic mice.

    Science.gov (United States)

    Wang, Ying; Tang, Xi Can; Zhang, Hai Yan

    2012-02-01

    Huperzine A (HupA) is a potent acetylcholinesterase inhibitor (AChEI) used in the treatment of Alzheimer's disease (AD). Recently, HupA was shown to be active in modulating the nonamyloidogenic metabolism of β-amyloid precursor protein (APP) in APP-transfected human embryonic kidney cell line (HEK293swe). However, in vivo research concerning the mechanism of HupA in APP transgenic mice has not yet been fully elucidated. The present study indicates that the loss of dendritic spine density and synaptotagmin levels in the brain of APPswe/presenilin-1 (PS1) transgenic mice was significantly ameliorated by chronic HupA treatment and provides evidence that this neuroprotection was associated with reduced amyloid plaque burden and oligomeric β-amyloid (Aβ) levels in the cortex and hippocampus of APPswe/PS1dE9 transgenic mice. Our findings further demonstrate that the amelioration effect of HupA on Aβ deposits may be mediated, at least in part, by regulation of the compromised expression of a disintegrin and metalloprotease 10 (ADAM10) and excessive membrane trafficking of β-site APP cleavage enzyme 1 (BACE1) in these transgenic mice. In addition, extracellular signal-regulated kinases 1/2 (Erk1/2) phosphorylation may also be partially involved in the effect of HupA on APP processing. In conclusion, our work for the first time demonstrates the neuroprotective effect of HupA on synaptic deficits in APPswe/PS1dE9 transgenic mice and further clarifies the potential pharmacological targets for this protective effect, in which modulation of nonamyloidogenic and amyloidogenic APP processing pathways may be both involved. These findings may provide adequate evidence for the clinical and experimental benefits gained from HupA treatment. Copyright © 2011 Wiley Periodicals, Inc.

  11. Quantitative analysis of lentiviral transgene expression in mice over seven generations.

    Science.gov (United States)

    Wang, Yong; Song, Yong-tao; Liu, Qin; Liu, Cang'e; Wang, Lu-lu; Liu, Yu; Zhou, Xiao-yang; Wu, Jun; Wei, Hong

    2010-10-01

    Lentiviral transgenesis is now recognized as an extremely efficient and cost-effective method to produce transgenic animals. Transgenes delivered by lentiviral vectors exhibited inheritable expression in many species including those which are refractory to genetic modification such as non-human primates. However, epigenetic modification was frequently observed in lentiviral integrants, and transgene expression found to be inversely correlated with methylation density. Recent data showed that about one-third lentiviral integrants exhibited hypermethylation and low expression, but did not demonstrate whether those integrants with high expression could remain constant expression and hypomethylated during long term germline transmission. In this study, using lentiviral eGFP transgenic mice as the experimental animals, lentiviral eGFP expression levels and its integrant numbers in genome were quantitatively analyzed by fluorescent quantitative polymerase-chain reaction (FQ-PCR), using the house-keeping gene ribosomal protein S18 (Rps18) and the single copy gene fatty acid binding protein of the intestine (Fabpi) as the internal controls respectively. The methylation densities of the integrants were quantitatively analyzed by bisulfite sequencing. We found that the lentiviral integrants with high expression exhibited a relative constant expression level per integrant over at least seven generations. Besides, the individuals containing these integrants exhibited eGFP expression levels which were positively and almost linearly correlated with the integrant numbers in their genomes, suggesting that no remarkable position effect on transgene expression of the integrants analyzed was observed. In addition, over seven generations the methylation density of these integrants did not increase, but rather decreased remarkably, indicating that these high expressing integrants were not subjected to de novo methylation during at least seven generations of germline transmission. Taken

  12. Expression Analysis of CB2-GFP BAC Transgenic Mice.

    Directory of Open Access Journals (Sweden)

    Anne-Caroline Schmöle

    Full Text Available The endocannabinoid system (ECS is a retrograde messenger system, consisting of lipid signaling molecules that bind to at least two G-protein-coupled receptors, Cannabinoid receptor 1 and 2 (CB1 and 2. As CB2 is primarily expressed on immune cells such as B cells, T cells, macrophages, dendritic cells, and microglia, it is of great interest how CB2 contributes to immune cell development and function in health and disease. Here, understanding the mechanisms of CB2 involvement in immune-cell function as well as the trafficking and regulation of CB2 expressing cells are crucial issues. Up to now, CB2 antibodies produce unclear results, especially those targeting the murine protein. Therefore, we have generated BAC transgenic GFP reporter mice (CB2-GFPTg to trace CB2 expression in vitro and in situ. Those mice express GFP under the CB2 promoter and display GFP expression paralleling CB2 expression on the transcript level in spleen, thymus and brain tissue. Furthermore, by using fluorescence techniques we show that the major sources for GFP-CB2 expression are B cells in spleen and blood and microglia in the brain. This novel CB2-GFP transgenic reporter mouse line represents a powerful resource to study CB2 expression in different cell types. Furthermore, it could be used for analyzing CB2-mediated mobilization and trafficking of immune cells as well as studying the fate of recruited immune cells in models of acute and chronic inflammation.

  13. Ultrasound Backscatter Microscopy Image-Guided Intraventricular Gene Delivery at Murine Embryonic Age 9.5 and 10.5 Produces Distinct Transgene Expression Patterns at the Adult Stage

    Directory of Open Access Journals (Sweden)

    Jiwon Jang

    2013-11-01

    Full Text Available In utero injection of a retroviral vector into the embryonic telencephalon aided by ultrasound backscatter microscopy permits introduction of a gene of interest at an early stage of development. In this study, we compared the tissue distribution of gene expression in adult mice injected with retroviral vectors at different embryonic ages in utero. Following ultrasound image-guided gene delivery (UIGD into the embryonic telencephalon, adult mice were subjected to whole-body luciferase imaging and immunohistochemical analysis at 6 weeks and 1 year postinjection. Luciferase activity was observed in a wide range of tissues in animals injected at embryonic age 9.5 (E9.5, whereas animals injected at E10.5 showed brain-localized reporter gene expression. These results suggest that mouse embryonic brain creates a closed and impermeable structure around E10. Therefore, by injecting a transgene before or after E10, transgene expression can be manipulated to be local or systemic. Our results also provide information that widens the applicability of UIGD beyond neuroscience studies.

  14. Anxiolytic effect of music exposure on BDNFMet/Met transgenic mice.

    Science.gov (United States)

    Li, Wen-Jing; Yu, Hui; Yang, Jian-Min; Gao, Jing; Jiang, Hong; Feng, Min; Zhao, Yu-Xia; Chen, Zhe-Yu

    2010-08-06

    Brain-derived neurotrophic factor (BDNF) has been reported to play important roles in the modulation of anxiety, mood stabilizers, and pathophysiology of affective disorders. Recently, a single nucleotide polymorphism (SNP) in the BDNF gene (Val66Met) has been found to be associated with depression and anxiety disorders. The humanized BDNF(Met/Met) knock-in transgenic mice exhibited increased anxiety-related behaviors that were unresponsive to serotonin reuptake inhibitors, fluoxetine. Music is known to be able to elicit emotional changes, including anxiolytic effects. In this study, we found that music treatment could significantly decrease anxiety state in BDNF(Met/Met) mice, but not in BDNF(+/)(-), mice compared with white noise exposure in open field and elevated plus maze test. Moreover, in contrast to white noise exposure, BDNF expression levels in the prefrontal cortex (PFC), amygdala and hippocampus were significantly increased in music-exposed adult BDNF(Met/Met) mice. However, music treatment could not upregulate BDNF levels in the PFC, amygdala, and hippocampus in BDNF(+/)(-) mice, which suggests the essential role of BDNF in the anxiolytic effect of music. Together, our results imply that music may provide an effective therapeutic intervention for anxiety disorders in humans with this genetic BDNF(Met) variant. Copyright 2010 Elsevier B.V. All rights reserved.

  15. Robust Central Nervous System Pathology in Transgenic Mice following Peripheral Injection of α-Synuclein Fibrils.

    Science.gov (United States)

    Ayers, Jacob I; Brooks, Mieu M; Rutherford, Nicola J; Howard, Jasie K; Sorrentino, Zachary A; Riffe, Cara J; Giasson, Benoit I

    2017-01-15

    Misfolded α-synuclein (αS) is hypothesized to spread throughout the central nervous system (CNS) by neuronal connectivity leading to widespread pathology. Increasing evidence indicates that it also has the potential to invade the CNS via peripheral nerves in a prion-like manner. On the basis of the effectiveness following peripheral routes of prion administration, we extend our previous studies of CNS neuroinvasion in M83 αS transgenic mice following hind limb muscle (intramuscular [i.m.]) injection of αS fibrils by comparing various peripheral sites of inoculations with different αS protein preparations. Following intravenous injection in the tail veins of homozygous M83 transgenic (M83 +/+ ) mice, robust αS pathology was observed in the CNS without the development of motor impairments within the time frame examined. Intraperitoneal (i.p.) injections of αS fibrils in hemizygous M83 transgenic (M83 +/- ) mice resulted in CNS αS pathology associated with paralysis. Interestingly, injection with soluble, nonaggregated αS resulted in paralysis and pathology in only a subset of mice, whereas soluble Δ71-82 αS, human βS, and keyhole limpet hemocyanin (KLH) control proteins induced no symptoms or pathology. Intraperitoneal injection of αS fibrils also induced CNS αS pathology in another αS transgenic mouse line (M20), albeit less robustly in these mice. In comparison, i.m. injection of αS fibrils was more efficient in inducing CNS αS pathology in M83 mice than i.p. or tail vein injections. Furthermore, i.m. injection of soluble, nonaggregated αS in M83 +/- mice also induced paralysis and CNS αS pathology, although less efficiently. These results further demonstrate the prion-like characteristics of αS and reveal its efficiency to invade the CNS via multiple routes of peripheral administration. The misfolding and accumulation of α-synuclein (αS) inclusions are found in a number of neurodegenerative disorders and is a hallmark feature of Parkinson

  16. Multi-Organ Damage in Human Dipeptidyl Peptidase 4 Transgenic Mice Infected with Middle East Respiratory Syndrome-Coronavirus.

    Directory of Open Access Journals (Sweden)

    Guangyu Zhao

    Full Text Available The Middle East Respiratory Syndrome Coronavirus (MERS-CoV causes severe acute respiratory failure and considerable extrapumonary organ dysfuction with substantial high mortality. For the limited number of autopsy reports, small animal models are urgently needed to study the mechanisms of MERS-CoV infection and pathogenesis of the disease and to evaluate the efficacy of therapeutics against MERS-CoV infection. In this study, we developed a transgenic mouse model globally expressing codon-optimized human dipeptidyl peptidase 4 (hDPP4, the receptor for MERS-CoV. After intranasal inoculation with MERS-CoV, the mice rapidly developed severe pneumonia and multi-organ damage, with viral replication being detected in the lungs on day 5 and in the lungs, kidneys and brains on day 9 post-infection. In addition, the mice exhibited systemic inflammation with mild to severe pneumonia accompanied by the injury of liver, kidney and spleen with neutrophil and macrophage infiltration. Importantly, the mice exhibited symptoms of paralysis with high viral burden and viral positive neurons on day 9. Taken together, this study characterizes the tropism of MERS-CoV upon infection. Importantly, this hDPP4-expressing transgenic mouse model will be applicable for studying the pathogenesis of MERS-CoV infection and investigating the efficacy of vaccines and antiviral agents designed to combat MERS-CoV infection.

  17. A BCR/ABL-hIL-2 DNA Vaccine Enhances the Immune Responses in BALB/c Mice

    Directory of Open Access Journals (Sweden)

    Yanan Qin

    2013-01-01

    Full Text Available The use of a DNA vaccine encoding the BCR/ABL fusion gene is thought to be a promising approach for patients with chronic myeloid leukemia (CML to eradicate minimal residual disease after treatment with chemotherapy or targeted therapy. In this study, our strategy employs genetic technology to create a DNA vaccine encoding the BCR/ABL fusion and human interleukin-2 (hIL-2 genes. The successfully constructed plasmids BCR/ABL-pIRES-hIL-2, BCR/ABL-pIRES, and pIRES-hIL-2 were delivered intramuscularly to BALB/c mice at 14-day intervals for three cycles. The transcription and expression of the BCR/ABL and hIL-2 genes were found in the injected muscle tissues. The interferon-γ (IFN-γ serum levels were increased, and the splenic CD4+/CD8+ T cell ratio was significantly decreased in the BCR/ABL-pIRES-hIL-2-injected mice. Furthermore, specific antibodies against K562 cells could be detected by indirect immunofluorescence. These results indicate that a DNA vaccine containing BCR/ABL and hIL-2 together may elicit increased in vivo humoral and cellular immune responses in BALB/c mice.

  18. IL-9 antibody injection suppresses the inflammation in colitis mice

    Energy Technology Data Exchange (ETDEWEB)

    Yuan, Aping [Laboratory of Molecular Cell Biology, Department of Chemistry, Biotechnology and Food Science, Norwegian University of Life Sciences, Ås (Norway); Research Group of Gastrointestinal Diseases, The Second Affiliated Hospital of Zhengzhou University, Henan (China); Yang, Hang; Qi, Haili; Cui, Jing; Hua, Wei; Li, Can; Pang, Zhigang; Zheng, Wei [Research Group of Gastrointestinal Diseases, The Second Affiliated Hospital of Zhengzhou University, Henan (China); Cui, Guanglin, E-mail: guanglin.cui@yahoo.com [Research Group of Gastrointestinal Diseases, The Second Affiliated Hospital of Zhengzhou University, Henan (China); Faculty of Health, Nord University at Levanger (Norway)

    2015-12-25

    Diverse T help (Th) cells play a crucial role in the processing and maintaining of chronic inflammation as seen in ulcerative colitis (UC). Th9, a novel subset of Th cells that primarily produces interleukin (IL)-9, has recently been associated with the development of inflammatory diseases. In this study, we evaluated the presentation of Th9 cells in inflamed tissues of human and experimental mouse UC, and examined the therapeutic efficiency of anti Th9 cytokine IL-9 in the experimental mouse UC. Using immunohistochemistry (IHC), we evaluated the presentation of Th9 cells labelled by transcriptional factor PU.1 in both human and dextran sulfate sodium (DSS) induced mouse colitis biopsies. The results showed that increased PU.1 positive Th9 cells were mainly located in the lamina propria in relative with the controls, intraepithelial Th9 cells can also be observed but at low density. Double IHCs revealed that most of PU.1 positive cells were CD3 positive lymphocytes in human UC specimens. Anti-IL-9 antibody injection for 2 weeks reduced the severity of inflammation in DSS induced colitis mice. Our results suggest that The Th9/IL-9 is involved in the pathogenesis of UC. - Highlights: • The density of novel PU.1 positive Th9 cells is significantly increased in both human and mouse colitis tissues. • PU.1 positive Th9 cells are predominately located in the inflamed lamina propria in both human and mouse colitis tissues. • Blocking of Th9 cytokine IL-9 by antibody injection suppresses the severity of inflammation in the bowel in colitis mice. • Novel Th9 cells contribute to the pathogenesis of UC.

  19. IL-9 antibody injection suppresses the inflammation in colitis mice

    International Nuclear Information System (INIS)

    Yuan, Aping; Yang, Hang; Qi, Haili; Cui, Jing; Hua, Wei; Li, Can; Pang, Zhigang; Zheng, Wei; Cui, Guanglin

    2015-01-01

    Diverse T help (Th) cells play a crucial role in the processing and maintaining of chronic inflammation as seen in ulcerative colitis (UC). Th9, a novel subset of Th cells that primarily produces interleukin (IL)-9, has recently been associated with the development of inflammatory diseases. In this study, we evaluated the presentation of Th9 cells in inflamed tissues of human and experimental mouse UC, and examined the therapeutic efficiency of anti Th9 cytokine IL-9 in the experimental mouse UC. Using immunohistochemistry (IHC), we evaluated the presentation of Th9 cells labelled by transcriptional factor PU.1 in both human and dextran sulfate sodium (DSS) induced mouse colitis biopsies. The results showed that increased PU.1 positive Th9 cells were mainly located in the lamina propria in relative with the controls, intraepithelial Th9 cells can also be observed but at low density. Double IHCs revealed that most of PU.1 positive cells were CD3 positive lymphocytes in human UC specimens. Anti-IL-9 antibody injection for 2 weeks reduced the severity of inflammation in DSS induced colitis mice. Our results suggest that The Th9/IL-9 is involved in the pathogenesis of UC. - Highlights: • The density of novel PU.1 positive Th9 cells is significantly increased in both human and mouse colitis tissues. • PU.1 positive Th9 cells are predominately located in the inflamed lamina propria in both human and mouse colitis tissues. • Blocking of Th9 cytokine IL-9 by antibody injection suppresses the severity of inflammation in the bowel in colitis mice. • Novel Th9 cells contribute to the pathogenesis of UC.

  20. Critical role for thymic CD19+CD5+CD1dhiIL-10+ regulatory B cells in immune homeostasis.

    Science.gov (United States)

    Xing, Chen; Ma, Ning; Xiao, He; Wang, Xiaoqian; Zheng, Mingke; Han, Gencheng; Chen, Guojiang; Hou, Chunmei; Shen, Beifen; Li, Yan; Wang, Renxi

    2015-03-01

    This study tested the hypothesis that besides the spleen, LNs, peripheral blood, and thymus contain a regulatory IL-10-producing CD19(+)CD5(+)CD1d(high) B cell subset that may play a critical role in the maintenance of immune homeostasis. Indeed, this population was identified in the murine thymus, and furthermore, when cocultured with CD4(+) T cells, this population of B cells supported the maintenance of CD4(+)Foxp3(+) Tregs in vitro, in part, via the CD5-CD72 interaction. Mice homozygous for Cd19(Cre) (CD19(-/-)) express B cells with impaired signaling and humoral responses. Strikingly, CD19(-/-) mice produce fewer CD4(+)Foxp3(+) Tregs and a greater percentage of CD4(+)CD8(-) and CD4(-)CD8(+) T cells. Consistent with these results, transfer of thymic CD19(+)CD5(+)CD1d(hi) B cells into CD19(-/-) mice resulted in significantly up-regulated numbers of CD4(+)Foxp3(+) Tregs with a concomitant reduction in CD4(+)CD8(-) and CD4(-)CD8(+) T cell populations in the thymus, spleen, and LNs but not in the BM of recipient mice. In addition, thymic CD19(+)CD5(+)CD1d(hi) B cells significantly suppressed autoimmune responses in lupus-like mice via up-regulation of CD4(+)Foxp3(+) Tregs and IL-10-producing Bregs. This study suggests that thymic CD19(+)CD5(+)CD1d(hi)IL-10(+) Bregs play a critical role in the maintenance of immune homeostasis. © Society for Leukocyte Biology.

  1. Intestinal colonization of IL-2 deficient mice with non-colitogenic B. vulgatus prevents DC maturation and T-cell polarization.

    Directory of Open Access Journals (Sweden)

    Martina Müller

    Full Text Available BACKGROUND: IL-2 deficient (IL-2(-/- mice mono-colonized with E. coli mpk develop colitis whereas IL-2(-/--mice mono-colonized with B. vulgatus mpk do not and are even protected from E. coli mpk induced colitis. METHODOLOGY/PRINCIPAL FINDINGS: We investigated if mono-colonization with E. coli mpk or B. vulgatus mpk differentially modulates distribution, activation and maturation of intestinal lamina propria (LP dendritic cells (DC. LP DC in mice mono-colonized with protective B. vulgatus mpk or co-colonized with E. coli mpk/B. vulgatus mpk featured a semi-mature LP DC phenotype (CD40(loCD80(loMHC-II(hi whereas mono-colonization with colitogenic E. coli mpk induced LP DC activation and maturation prior to onset of colitis. Accordingly, chemokine receptor (CCR 7 surface expression was more strikingly enhanced in mesenteric lymph node DC from E. coli mpk than B. vulgatus mpk mono- or co-colonized mice. Mature but not semi-mature LP DC promoted Th1 polarization. As B. vulgatus mpk promotes differentiation of semi-mature DC presumably by IL-6, mRNA and protein expression of IL-6 was investigated in LP DC. The data demonstrated that IL-6 mRNA and protein was increased in LP DC of B. vulgatus mpk as compared to E. coli mpk mono-colonized IL-2(-/--mice. The B. vulgatus mpk mediated suppression of CCR7 expression and DC migration was abolished in IL-6(-/--DC in vitro. CONCLUSIONS/SIGNIFICANCE: From this data we conclude that the B. vulgatus triggered IL-6 secretion by LP DC in absence of proinflammatory cytokines such as IL-12 or TNF-alpha induces a semi-mature LP DC phenotype, which might prevent T-cell activation and thereby the induction of colitis in IL-2(-/--mice. The data provide new evidence that IL-6 might act as an immune regulatory cytokine in the mucosa by targeting intestinal DC.

  2. MR Microimaging of amyloid plaques in Alzheimer's disease transgenic mice

    International Nuclear Information System (INIS)

    Wengenack, Thomas M.; Poduslo, Joseph F.; Jack, Clifford R.; Garwood, Michael

    2008-01-01

    Alzheimer's disease (AD) is the most prevalent neurological condition affecting industrialized nations and will rapidly become a healthcare crisis as the population ages. Currently, the post-mortem histological observation of amyloid plaques and neurofibrillary tangles is the only definitive diagnosis available for AD. A pre-mortem biological or physiological marker specific for AD used in conjunction with current neurological and memory testing could add a great deal of confidence to the diagnosis of AD and potentially allow therapeutic intervention much earlier in the disease process. Our group has developed MRI techniques to detect individual amyloid plaques in AD transgenic mouse brain in vivo. We are also developing contrast-enhancing agents to increase the specificity of detection of amyloid plaques. Such in vivo imaging of amyloid plaques will also allow the evaluation of anti-amyloid therapies being developed by the pharmaceutical industry in pre-clinical trials of AD transgenic mice. This short review briefly discusses our progress in these areas. (orig.)

  3. Sepsis reveals compartment-specific responses in intestinal proliferation and apoptosis in transgenic mice whose enterocytes re-enter the cell cycle.

    Science.gov (United States)

    Lyons, John D; Klingensmith, Nathan J; Otani, Shunsuke; Mittal, Rohit; Liang, Zhe; Ford, Mandy L; Coopersmith, Craig M

    2017-12-01

    Cell production and death are tightly regulated in the rapidly renewing gut epithelium, with proliferation confined to crypts and apoptosis occurring in villi and crypts. This study sought to determine how stress alters these compartmentalized processes. Wild-type mice made septic via cecal ligation and puncture had decreased crypt proliferation and increased crypt and villus apoptosis. Fabpi -TAg mice expressing large T-antigen solely in villi had ectopic enterocyte proliferation with increased villus apoptosis in unmanipulated animals. Septic fabpi -TAg mice had an unexpected increase in villus proliferation compared with unmanipulated littermates, whereas crypt proliferation was decreased. Cell cycle regulators cyclin D1 and cyclin D2 were decreased in jejunal tissue in septic transgenic mice. In contrast, villus and crypt apoptosis were increased in septic fabpi -TAg mice. To examine the relationship between apoptosis and proliferation in a compartment-specific manner, fabpi -TAg mice were crossed with fabpl -Bcl-2 mice, resulting in expression of both genes in the villus but Bcl-2 alone in the crypt. Septic bi-transgenic animals had decreased crypt apoptosis but had a paradoxical increase in villus apoptosis compared with septic fabpi -TAg mice, associated with decreased proliferation in both compartments. Thus, sepsis unmasks compartment-specific proliferative and apoptotic regulation that is not present under homeostatic conditions.-Lyons, J. D., Klingensmith, N. J., Otani, S., Mittal, R., Liang, Z., Ford, M. L., Coopersmith, C. M. Sepsis reveals compartment-specific responses in intestinal proliferation and apoptosis in transgenic mice whose enterocytes re-enter the cell cycle. © FASEB.

  4. Fasting induces IL-1 resistance and free fatty acid-mediated up-regulation of IL-1R2 and IL-1RA

    Directory of Open Access Journals (Sweden)

    jenifer j joesting

    2014-07-01

    Full Text Available Objective: Weight loss is a near societal obsession and many diet programs use significant calorie restriction (CR including fasting/short term starvation to generate rapid effects. Fasting is also a well-recognized cause of immunosuppression especially within the innate immune system. In this study, we sought to determine if the IL-1 arm of the neuroimmune system was down-regulated by a 24 hr fast and how fasting might generate this effect. Design: Mice were allowed ad libitum access to food or had food withheld for 24 hrs. Expression of the endogenous IL-1 antagonists IL-1 receptor type 2 (IL-1R2 and IL-1 receptor antagonist (IL-1RA were determined as were sickness behaviors before and after IL-1 administration.Results: Fasting markedly increased gene expression of IL-1R2 (83-fold in adipose tissue, 9.5-fold in liver and IL-1RA (68-fold in liver. Fasted mice were protected from IL-1-induced weight loss, hypoglycemia, loss of locomotor and social anxiety. These protections were coupled to a large positive interaction of fasting and IL-1 on IL-1R2 gene expression in adipose tissue and liver (2.6-fold and 1.6-fold, respectively. Fasting not only increased IL-1RA and IL-1R2 protein 2.5-fold and 3.2-fold, respectively, in liver; but also increased IL-1R2 1.8-fold in adipose tissue. Fasting, in turn, triggered a 2.4-fold increase in plasma free-fatty acids (FFAs and a 2.1-fold increase in plasma corticosterone. Inhibition, of glucocorticoid action with mifepristone did not impact fasting-dependent IL-1R2 or IL-1RA gene expression. Administration of the FFA, palmitate, to mice increased liver IL-1R2 and IL-1RA gene expression by 14-fold and 11-fold, respectively. Conclusion: These findings indicate that fasting augments expression of endogenous IL-1 antagonists inducing IL-1 resistance. Fasting-induced increases in plasma FFAs appears to be a signal that drives immunosuppression during fasting/short term starvation.

  5. Altered depression-related behavior and neurochemical changes in serotonergic neurons in mutant R406W human tau transgenic mice.

    Science.gov (United States)

    Egashira, Nobuaki; Iwasaki, Katsunori; Takashima, Akihiko; Watanabe, Takuya; Kawabe, Hideyuki; Matsuda, Tomomi; Mishima, Kenichi; Chidori, Shozo; Nishimura, Ryoji; Fujiwara, Michihiro

    2005-10-12

    Mutant R406W human tau was originally identified in frontotemporal dementia and parkinsonism linked to chromosome 17 (FTDP-17) and causes a hereditary tauopathy that clinically resembles Alzheimer's disease (AD). In the current study, we examined the performance of R406W transgenic (Tg) mice in the forced swimming test, a test with high predictivity of antidepressant efficacy in human depression, and found an enhancement of the immobility time. In contrast, the motor function and anxiety-related emotional response of R406W Tg mice were normal. Furthermore, a selective serotonin reuptake inhibitor (SSRI), fluvoxamine (100 mg/kg, p.o.), significantly reduced this enhancement of the immobility time, whereas a noradrenaline reuptake inhibitor, desipramine, had no effect. In an in vivo microdialysis study, R406W Tg mice exhibited a significantly decreased extracellular 5-hydroxyindoleacetic acid (5-HIAA) level in the frontal cortex and also exhibited a tendency toward a decreased extracellular 5-hydroxytryptamine (5-HT) level. Moreover, fluvoxamine, which reduced the enhancement of the immobility time, significantly increased the extracellular 5-HT level in R406W Tg mice. These results suggest that R406W Tg mice exhibit changes in depression-related behavior involving serotonergic neurons and provide an animal model for investigating AD with depression.

  6. Chitosan nanoparticle-based delivery of fused NKG2D–IL-21 gene suppresses colon cancer growth in mice

    Directory of Open Access Journals (Sweden)

    Tan L

    2017-04-01

    Full Text Available Lunmei Tan,1 Sen Han,2 Shizhen Ding,2 Weiming Xiao,3,4 Yanbing Ding,3 Li Qian,2,4 Chenming Wang,1,5 Weijuan Gong1–5 1Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, 2Department of Immunology, School of Medicine, 3Department of Gastroenterology, The Second Clinical Medical College, 4Department of Integrated Chinese and Western Medicine, School of Medicine, 5Jiangsu Key Laboratory of Zoonosis, Yangzhou University, Yangzhou, People’s Republic of China Abstract: Nanoparticles can be loaded with exogenous DNA for the potential expression of cytokines with immune-stimulatory function. NKG2D identifies major histocompatibility complex class I chain-related protein in human and retinoic acid early induced transcript-1 in mouse, which acts as tumor-associated antigens. Biologic agents based on interleukin 21 (IL-21 have displayed antitumor activities through lymphocyte activation. The NKG2D–IL-21 fusion protein theoretically identifies tumor cells through NKG2D moiety and activates T cells through IL-21 moiety. In this study, double-gene fragments that encode the extracellular domains of NKG2D and IL-21 genes were connected and then inserted into the pcDNA3.1(– plasmid. PcDNA3.1–dsNKG2D–IL-21 plasmid nanoparticles based on chitosan were generated. Tumor cells pretransfected with dsNKG2D–IL-21 gene nanoparticles can activate natural killer (NK and CD8+ T cells in vitro. Serum IL-21 levels were enhanced in mice intramuscularly injected with the gene nanoparticles. DsNKG2D–IL-21 gene nanoparticles accumulated in tumor tissues after being intravenously injected for ~4–24 h. Treatment of dsNKG2D–IL-21 gene nanoparticles also retarded tumor growth and elongated the life span of tumor-bearing mice by activating NK and T cells in vivo. Thus, the dsNKG2D–IL-21 gene nanoparticles exerted efficient antitumor activities and would be potentially used for tumor therapy. Keywords: NKG2

  7. Metallothionein-I overexpression alters brain inflammation and stimulates brain repair in transgenic mice with astrocyte-targeted interleukin-6 expression

    DEFF Research Database (Denmark)

    Penkowa, Milena; Camats, Jordi; Giralt, Mercedes

    2003-01-01

    injury, such as a cryolesion, demonstrate a neuroprotective role of IL-6. Thus, the GFAP-IL-6 mice showed faster tissue repair and decreased oxidative stress and apoptosis compared with control litter-mate mice. The neuroprotective factors metallothionein-I+II (MT-I+II) were upregulated by the cryolesion...... the inflammatory response, decreased oxidative stress and apoptosis significantly, and increased brain tissue repair in comparison with either GFAP-IL-6 or control litter-mate mice. Overall, the results demonstrate that brain MT-I+II proteins are fundamental neuroprotective factors....

  8. Expression of cholera toxin B-proinsulin fusion protein in lettuce and tobacco chloroplasts--oral administration protects against development of insulitis in non-obese diabetic mice.

    Science.gov (United States)

    Ruhlman, Tracey; Ahangari, Raheleh; Devine, Andrew; Samsam, Mohtahsem; Daniell, Henry

    2007-07-01

    Lettuce and tobacco chloroplast transgenic lines expressing the cholera toxin B subunit-human proinsulin (CTB-Pins) fusion protein were generated. CTB-Pins accumulated up to ~16% of total soluble protein (TSP) in tobacco and up to ~2.5% of TSP in lettuce. Eight milligrams of powdered tobacco leaf material expressing CTB-Pins or, as negative controls, CTB-green fluorescent protein (CTB-GFP) or interferon-GFP (IFN-GFP), or untransformed leaf, were administered orally, each week for 7 weeks, to 5-week-old female non-obese diabetic (NOD) mice. The pancreas of CTB-Pins-treated mice showed decreased infiltration of cells characteristic of lymphocytes (insulitis); insulin-producing beta-cells in the pancreatic islets of CTB-Pins-treated mice were significantly preserved, with lower blood or urine glucose levels, by contrast with the few beta-cells remaining in the pancreatic islets of the negative controls. Increased expression of immunosuppressive cytokines, such as interleukin-4 and interleukin-10 (IL-4 and IL-10), was observed in the pancreas of CTB-Pins-treated NOD mice. Serum levels of immunoglobulin G1 (IgG1), but not IgG2a, were elevated in CTB-Pins-treated mice. Taken together, T-helper 2 (Th2) lymphocyte-mediated oral tolerance is a likely mechanism for the prevention of pancreatic insulitis and the preservation of insulin-producing beta-cells. This is the first report of expression of a therapeutic protein in transgenic chloroplasts of an edible crop. Transplastomic lettuce plants expressing CTB-Pins grew normally and transgenes were maternally inherited in T(1) progeny. This opens up the possibility for the low-cost production and delivery of human therapeutic proteins, and a strategy for the treatment of various other autoimmune diseases.

  9. Human plasma phospholipid transfer protein increases the antiatherogenic potential of high density lipoproteins in transgenic mice

    NARCIS (Netherlands)

    M.J. van Haperen (Rien); A. van Tol (Arie); P. Vermeulen; M. Jauhiainen; T. van Gent (Teus); P.M. van den Berg (Paul); S. Ehnholm (Sonja); A.W.M. van der Kamp (Arthur); M.P.G. de Crom (Rini); F.G. Grosveld (Frank)

    2000-01-01

    textabstractPlasma phospholipid transfer protein (PLTP) transfers phospholipids between lipoprotein particles and alters high density lipoprotein (HDL) subfraction patterns in vitro, but its physiological function is poorly understood. Transgenic mice that overexpress

  10. Transgenic mice with increased Cu/Zn-superoxide dismutase activity: animal model of dosage effects in Down syndrome

    International Nuclear Information System (INIS)

    Epstein, C.J.; Avraham, K.B.; Lovett, M.; Smith, S.; Elroy-Stein, O.; Rotman, G.; Bry, C.; Groner, Y.

    1987-01-01

    Down syndrome, the phenotypic expression of human trisomy 21, is presumed to result from a 1.5-fold increase in the expression of the genes on human chromosome 21. As an approach to the development of an animal model for Down syndrome, several strains of transgenic mice that carry the human Cu/Zn-superoxide dismutase gene have been prepared. The animals express the transgene in a manner similar to that of humans, with 0.9- and 0.7-kilobase transcripts in a 1:4 ratio, and synthesize the human enzyme in an active form capable of forming human-mouse enzyme heterodimers. Cu/Zn-superoxide dismutase activity is increased from 1.6- to 6.0-fold in the brains of four transgenic strains and to an equal or lesser extent in several other tissues. These animals provide a unique system for studying the consequences of increased dosage of the Cu/Zn-superoxide dismutase gene in Down syndrome and the role of this enzyme in a variety of other pathological processes

  11. Transgenic Mice Expressing Yeast CUP1 Exhibit Increased Copper Utilization from Feeds

    Science.gov (United States)

    Chen, Zhenliang; Liao, Rongrong; Zhang, Xiangzhe; Wang, Qishan; Pan, Yuchun

    2014-01-01

    Copper is required for structural and catalytic properties of a variety of enzymes participating in many vital biological processes for growth and development. Feeds provide most of the copper as an essential micronutrient consumed by animals, but inorganic copper could not be utilized effectively. In the present study, we aimed to develop transgenic mouse models to test if copper utilization will be increased by providing the animals with an exogenous gene for generation of copper chelatin in saliva. Considering that the S. cerevisiae CUP1 gene encodes a Cys-rich protein that can bind copper as specifically as copper chelatin in yeast, we therefore constructed a transgene plasmid containing the CUP1 gene regulated for specific expression in the salivary glands by a promoter of gene coding pig parotid secretory protein. Transgenic CUP1 was highly expressed in the parotid and submandibular salivary glands and secreted in saliva as a 9-kDa copper-chelating protein. Expression of salivary copper-chelating proteins reduced fecal copper contents by 21.61% and increased body-weight by 12.97%, suggesting that chelating proteins improve the utilization and absorbed efficacy of copper. No negative effects on the health of the transgenic mice were found by blood biochemistry and histology analysis. These results demonstrate that the introduction of the salivary CUP1 transgene into animals offers a possible approach to increase the utilization efficiency of copper and decrease the fecal copper contents. PMID:25265503

  12. Chimeric analysis of EGFP and DsRed2 transgenic mice demonstrates polyclonal maintenance of pancreatic acini.

    Science.gov (United States)

    Ryu, Je-Young; Siswanto, Antoni; Harimoto, Kenichi; Tagawa, Yoh-ichi

    2013-06-01

    The pancreatic islet is an assembly of specific endocrine cells. There are many conflicting reports regarding whether the acinus develops from single or multiple progenitor cells. This study investigated the development and maintenance clonality of the pancreatic acinus and duct using a chimeric analysis with EGFP and DsRed2 transgenic mice. Chimeric mice (G-R mice) were obtained by the aggregation method, using 8-cell stage embryos from EGFP and DsRed2 transgenic mice. The islets from the G-R mice were chimeric and mosaic, consisting of either EGFP- or DsRed2-positive populations, as in previous reports. On the other hand, most acini developed from either EGFP or DsRed2 origin, but some were chimeric. Interestingly, these chimeric acini were clearly separated into two-color regions and were not mosaic. Some large intralobular pancreatic ducts consisting of more than 10 cells were found to be chimeric, but no small ducts made up of less than 9 cells were chimeric. Our histological observations suggest that the pancreatic acinus polyclonally and directionally is maintained by multiple progenitor cells. Pancreatic large ducts also seem to develop polyclonally and might result from the assembly of small ducts that develop from a single origin. These findings provide useful information for further understanding pancreatic maintenance.

  13. Changes in IL12A methylation pattern in livers from mice fed DDC.

    Science.gov (United States)

    Oliva, J; French, S W

    2012-04-01

    Mallory-Denk body (MDB) formation is a component of alcoholic and non alcoholic hepatitis. Proteins of the TLR pathway were shown to be involved in the formation of MDBs, in mice fed DDC. TLR genes are upregulated and SAMe supplementation prevents this up regulation and prevented the formation of MDBs. DNA of livers from control mice, from mice fed DDC 10weeks, refed 1week with DDC and with DDC+SAMe were extracted and used to study the methylation pattern of genes involves in the TLR pathway. A PCR array was used to analyze it. Using PCR arrays for the mouse TLR pathway,24 genes were found whose expression of IL12A was regulated by the methylation of its gene. DDC fed for 10weeks reduced the methylation of the IL12A gene expression. This expression was also reduced when DDC was refed. However, when SAMe was fed, the intermediate level methylation of IL12A was up regulated to the intermediate level and the methylation of the promoter decreased compared to DDC refeeding or DDC 10weeks. IL12A is known to induce the production of IFNg by NK and L(T). We showed in a previous publication that IFNg is one of the major cytokines involved in the induction of MDB formation. The low expression of IL12A associated with the intermediate methylation of its promoter could explain one step in the mechanism which leads to the formation of MDBs. Copyright © 2012 Elsevier Inc. All rights reserved.

  14. Balanced Diet-Fed Fat-1 Transgenic Mice Exhibit Lower Hindlimb Suspension-Induced Soleus Muscle Atrophy.

    Science.gov (United States)

    Marzuca-Nassr, Gabriel Nasri; Murata, Gilson Masahiro; Martins, Amanda Roque; Vitzel, Kaio Fernando; Crisma, Amanda Rabello; Torres, Rosângela Pavan; Mancini-Filho, Jorge; Kang, Jing Xuan; Curi, Rui

    2017-10-06

    The consequences of two-week hindlimb suspension (HS) on skeletal muscle atrophy were investigated in balanced diet-fed Fat-1 transgenic and C57BL/6 wild-type mice. Body composition and gastrocnemius fatty acid composition were measured. Skeletal muscle force, cross-sectional area (CSA), and signaling pathways associated with protein synthesis (protein kinase B, Akt; ribosomal protein S6, S6, eukaryotic translation initiation factor 4E-binding protein 1, 4EBP1; glycogen synthase kinase3-beta, GSK3-beta; and extracellular-signal-regulated kinases 1/2, ERK 1/2) and protein degradation (atrophy gene-1/muscle atrophy F-box, atrogin-1/MAFbx and muscle RING finger 1, MuRF1) were evaluated in the soleus muscle. HS decreased soleus muscle wet and dry weights (by 43% and 26%, respectively), muscle isotonic and tetanic force (by 29% and 18%, respectively), CSA of the soleus muscle (by 36%), and soleus muscle fibers (by 45%). Fat-1 transgenic mice had a decrease in the ω-6/ω-3 polyunsaturated fatty acids (PUFAs) ratio as compared with C57BL/6 wild-type mice (56%, p Balanced diet-fed Fat-1 mice are able to preserve in part the soleus muscle mass, absolute isotonic force and CSA of the soleus muscle in a disuse condition.

  15. ß-cell specific overexpression of suppressor of cytokine signalling-3 does not protect against multiple low dose streptozotocin induced type 1 diabetes in mice

    DEFF Research Database (Denmark)

    Börjesson, A; Rønn, S G; Karlsen, A E

    2011-01-01

    We investigated the impact of ß-cell specific overexpression of suppressor of cytokine signalling-3 (SOCS-3) on the development of multiple low dose streptozotocin (MLDSTZ) induced Type 1 diabetes and the possible mechanisms involved. MLDSTZ treatment was administered to RIP-SOCS-3 transgenic......RNA in islet cells and secretion of IL-1Ra into culture medium. MLDSTZ treatment caused gradual hyperglycemia both in the wt mice and in the transgenic mice with the latter tending to be more sensitive. In vitro experiments on wt and transgenic islets did not reveal any differences in sensitivity to damaging...

  16. Bee Venom Acupuncture Augments Anti-Inflammation in the Peripheral Organs of hSOD1G93A Transgenic Mice.

    Science.gov (United States)

    Lee, Sun-Hwa; Choi, Sun-Mi; Yang, Eun Jin

    2015-07-29

    Amyotrophic lateral sclerosis (ALS) includes progressively degenerated motor neurons in the brainstem, motor cortex, and spinal cord. Recent reports demonstrate the dysfunction of multiple organs, including the lungs, spleen, and liver, in ALS animals and patients. Bee venom acupuncture (BVA) has been used for treating inflammatory diseases in Oriental Medicine. In a previous study, we demonstrated that BV prevented motor neuron death and increased anti-inflammation in the spinal cord of symptomatic hSOD1G93A transgenic mice. In this study, we examined whether BVA's effects depend on acupuncture point (ST36) in the organs, including the liver, spleen and kidney, of hSOD1G93A transgenic mice. We found that BV treatment at ST36 reduces inflammation in the liver, spleen, and kidney compared with saline-treatment at ST36 and BV injected intraperitoneally in symptomatic hSOD1G93A transgenic mice. Those findings suggest that BV treatment combined with acupuncture stimulation is more effective at reducing inflammation and increasing immune responses compared with only BV treatment, at least in an ALS animal model.

  17. Ligand activation of peroxisome proliferator-activated receptor-β/δ suppresses liver tumorigenesis in hepatitis B transgenic mice

    International Nuclear Information System (INIS)

    Balandaram, Gayathri; Kramer, Lance R.; Kang, Boo-Hyon; Murray, Iain A.; Perdew, Gary H.; Gonzalez, Frank J.; Peters, Jeffrey M.

    2016-01-01

    Highlights: • The role of PPARβ/δ in HBV-induced liver cancer was examined. • PPARβ/δ inhibits steatosis, inflammation, tumor multiplicity and promotes apoptosis. • Kupffer cell PPARβ/δ mediates these effects independent of DNA binding. - Abstract: Peroxisome proliferator-activated receptor-β/δ (PPARβ/δ) inhibits steatosis and inflammation, known risk factors for liver cancer. In this study, the effect of ligand activation of PPARβ/δ in modulating liver tumorigenesis in transgenic hepatitis B virus (HBV) mice was examined. Activation of PPARβ/δ in HBV mice reduced steatosis, the average number of liver foci, and tumor multiplicity. Reduced expression of hepatic CYCLIN D1 and c-MYC, tumor necrosis factor alpha (Tnfa) mRNA, serum levels of alanine aminotransaminase, and an increase in apoptotic signaling was also observed following ligand activation of PPARβ/δ in HBV mice compared to controls. Inhibition of Tnfa mRNA expression was not observed in wild-type hepatocytes. Ligand activation of PPARβ/δ inhibited lipopolysaccharide (LPS)-induced mRNA expression of Tnfa in wild-type, but not in Pparβ/δ-null Kupffer cells. Interestingly, LPS-induced expression of Tnfa mRNA was also inhibited in Kupffer cells from a transgenic mouse line that expressed a DNA binding mutant form of PPARβ/δ compared to controls. Combined, these results suggest that ligand activation of PPARβ/δ attenuates hepatic tumorigenesis in HBV transgenic mice by inhibiting steatosis and cell proliferation, enhancing hepatocyte apoptosis, and modulating anti-inflammatory activity in Kupffer cells.

  18. An Lck-cre transgene accelerates autoantibody production and lupus development in (NZB × NZW)F1 mice

    Science.gov (United States)

    Nelson, Richard K.; Gould, Karen A.

    2015-01-01

    Lupus is an autoimmune disease characterized by the development of antinuclear autoantibodies and immune complex-mediated tissue damage. T cells in lupus patients appear to undergo apoptosis at an increased rate, and this enhanced T cell apoptosis has been postulated to contribute to lupus pathogenesis by increasing autoantigen load. However, there is no direct evidence to support this hypothesis. In this study, we show that an Lck-cre transgene, which increases T cell apoptosis as a result of T cell specific expression of cre recombinase, accelerates the development of autoantibodies and nephritis in lupus-prone (NZB×NZW)F1 mice. Although the enhanced T cell apoptosis in Lck-cre transgenic mice resulted in an overall decrease in the relative abundance of splenic CD4+ and CD8+ T cells, the proportion of activated CD4+ T cells was increased and no significant change was observed in the relative abundance of suppressive T cells. We postulate that the Lck-cre transgene promoted lupus by enhancing T cells apoptosis, which, in conjunction with the impaired clearance of apoptotic cells in lupus-prone mice, increased the nuclear antigen load and accelerated the development of anti-nuclear autoantibodies. Furthermore, our results also underscore the importance of including cre-only controls in studies using the cre-lox system. PMID:26385218

  19. Expression of cholera toxin B–proinsulin fusion protein in lettuce and tobacco chloroplasts – oral administration protects against development of insulitis in non-obese diabetic mice

    Science.gov (United States)

    Ruhlman, Tracey; Ahangari, Raheleh; Devine, Andrew; Samsam, Mohtahsem; Daniell, Henry

    2008-01-01

    Summary Lettuce and tobacco chloroplast transgenic lines expressing the cholera toxin B subunit–human proinsulin (CTB-Pins) fusion protein were generated. CTB-Pins accumulated up to ~16% of total soluble protein (TSP) in tobacco and up to ~2.5% of TSP in lettuce. Eight milligrams of powdered tobacco leaf material expressing CTB-Pins or, as negative controls, CTB–green fluorescent protein (CTB-GFP) or interferon–GFP (IFN-GFP), or untransformed leaf, were administered orally, each week for 7 weeks, to 5-week-old female non-obese diabetic (NOD) mice. The pancreas of CTB-Pins-treated mice showed decreased infiltration of cells characteristic of lymphocytes (insulitis); insulin-producing β-cells in the pancreatic islets of CTB-Pins-treated mice were significantly preserved, with lower blood or urine glucose levels, by contrast with the few β-cells remaining in the pancreatic islets of the negative controls. Increased expression of immunosuppressive cytokines, such as interleukin-4 and interleukin-10 (IL-4 and IL-10), was observed in the pancreas of CTB-Pins-treated NOD mice. Serum levels of immunoglobulin G1 (IgG1), but not IgG2a, were elevated in CTB-Pins-treated mice. Taken together, T-helper 2 (Th2) lymphocyte-mediated oral tolerance is a likely mechanism for the prevention of pancreatic insulitis and the preservation of insulin-producing β-cells. This is the first report of expression of a therapeutic protein in transgenic chloroplasts of an edible crop. Transplastomic lettuce plants expressing CTB-Pins grew normally and transgenes were maternally inherited in T1 progeny. This opens up the possibility for the low-cost production and delivery of human therapeutic proteins, and a strategy for the treatment of various other autoimmune diseases. PMID:17490448

  20. Resistance to the Beneficial Metabolic Effects and Hepatic Antioxidant Defense Actions of Fibroblast Growth Factor 21 Treatment in Growth Hormone-Overexpressing Transgenic Mice

    Directory of Open Access Journals (Sweden)

    Ravneet K. Boparai

    2015-01-01

    Full Text Available Fibroblast growth factor 21 (FGF21 modulates a diverse range of biological functions, including glucose and lipid metabolism, adaptive starvation response, and energy homeostasis, but with limited mechanistic insight. FGF21 treatment has been shown to inhibit hepatic growth hormone (GH intracellular signaling. To evaluate GH axis involvement in FGF21 actions, transgenic mice overexpressing bovine GH were used. Expectedly, in response to FGF21 treatment control littermates showed metabolic improvements whereas GH transgenic mice resisted most of the beneficial effects of FGF21, except an attenuation of the innate hyperinsulinemia. Since FGF21 is believed to exert its effects mostly at the transcriptional level, we analyzed and observed significant upregulation in expression of various genes involved in carbohydrate and lipid metabolism, energy homeostasis, and antioxidant defense in FGF21-treated controls, but not in GH transgenics. The resistance of GH transgenic mice to FGF21-induced changes underlines the necessity of normal GH signaling for the beneficial effects of FGF21.

  1. IL-1 and IL-23 mediate early IL-17A production in pulmonary inflammation leading to late fibrosis.

    Directory of Open Access Journals (Sweden)

    Paméla Gasse

    Full Text Available BACKGROUND: Idiopathic pulmonary fibrosis is a devastating as yet untreatable disease. We demonstrated recently the predominant role of the NLRP3 inflammasome activation and IL-1β expression in the establishment of pulmonary inflammation and fibrosis in mice. METHODS: The contribution of IL-23 or IL-17 in pulmonary inflammation and fibrosis was assessed using the bleomycin model in deficient mice. RESULTS: We show that bleomycin or IL-1β-induced lung injury leads to increased expression of early IL-23p19, and IL-17A or IL-17F expression. Early IL-23p19 and IL-17A, but not IL-17F, and IL-17RA signaling are required for inflammatory response to BLM as shown with gene deficient mice or mice treated with neutralizing antibodies. Using FACS analysis, we show a very early IL-17A and IL-17F expression by RORγt(+ γδ T cells and to a lesser extent by CD4αβ(+ T cells, but not by iNKT cells, 24 hrs after BLM administration. Moreover, IL-23p19 and IL-17A expressions or IL-17RA signaling are necessary to pulmonary TGF-β1 production, collagen deposition and evolution to fibrosis. CONCLUSIONS: Our findings demonstrate the existence of an early IL-1β-IL-23-IL-17A axis leading to pulmonary inflammation and fibrosis and identify innate IL-23 and IL-17A as interesting drug targets for IL-1β driven lung pathology.

  2. Attenuated lung fibrosis in interleukin 6 knock-out mice after C-ion irradiation to lung

    International Nuclear Information System (INIS)

    Saito-Fujita, Tomoko; Iwakawa, Mayumi; Nakamura, Etsuko; Nakawatari, Miyako; Fujita, Hidetoshi; Moritake, Takashi; Imai, Takashi

    2011-01-01

    There is a great deal of evidence that a cyclic cascade of inflammatory cytokines, together with the activation of macrophages, is initiated very early after irradiation to develop lung fibrosis in a late phase. To understand the persistent effects of cytokines, the cytokine gene of knock out or transgenic mouse is one of the useful tools. In this study, we evaluated a role of a key molecule, interleukin-6 (IL-6), in the late-phase inflammatory response and subsequent fibrotic changes after irradiation using wild-type (WT) and IL-6 knock out (IL-6 KO) mice. The mice underwent thoracic irradiation with 10 Gy of C-ion beam or sham-irradiation and were examined by histology. Immunoreactivity for IL-6 was induced at the site of bronchiolar epithelium, in pneumocytes and in monocytes by C-ion irradiation. At 24 weeks after irradiation, the infiltration of macrophages, detected by positive immunohistological staining with Mac3 antibody, was observed in alveolar spaces both in WT and IL-6 KO mice. The thickening of bronchiolar and alveolar walls exhibited in WT mice, but not KO mice, and fibrotic changes detected by Masson-Trichrome staining, were observed only in the lungs of WT mice, while it was attenuated in IL-6 KO mice. These results indicated that IL-6 might not be essential for activating macrophages in the late phase, but plays an important role for fibrotic changes of the alveolar wall after irradiation. (author)

  3. Vascular dysfunctions in the isolated aorta of double-transgenic hypertensive mice developing aortic aneurysm

    DEFF Research Database (Denmark)

    Waeckel, L.; Badier-Commander, C.; Damery, T.

    2015-01-01

    Angiotensin-II and oxidative stress are involved in the genesis of aortic aneurysms, a phenomenon exacerbated by endothelial nitric oxide synthase (eNOS) deletion or uncoupling. The purpose of this work was to study the endothelial function in wild-type C57BL/6 (BL) and transgenic mice expressing...

  4. Blood-brain barrier disruption in CCL2 transgenic mice during pertussis toxin-induced brain inflammation

    DEFF Research Database (Denmark)

    Schellenberg, Angela E; Buist, Richard; Del Bigio, Marc R

    2012-01-01

    infiltrate into the brain parenchyma following the administration of pertussis toxin (PTx). METHODS: This study uses contrast-enhanced magnetic resonance imaging (MRI) to quantify the extent of blood-brain barrier (BBB) disruption in this model pre- and post-PTx administration compared to wild type mice....... Contrast-enhanced MR images were obtained before and 1, 3, and 5 days after PTx injection in each animal. After the final imaging session fluorescent dextran tracers were administered intravenously to each mouse and brains were examined histologically for cellular infiltrates, BBB leakage and tight...... junction protein. RESULTS: BBB breakdown, defined as a disruption of both the endothelium and glia limitans, was found only in CCL2 transgenic mice following PTx administration seen on MR images as focal areas of contrast enhancement and histologically as dextrans leaking from blood vessels. No evidence...

  5. Enhanced IL-1beta production in response to the activation of hippocampal glial cells impairs neurogenesis in aged mice.

    Science.gov (United States)

    Kuzumaki, Naoko; Ikegami, Daigo; Imai, Satoshi; Narita, Michiko; Tamura, Rie; Yajima, Marie; Suzuki, Atsuo; Miyashita, Kazuhiko; Niikura, Keiichi; Takeshima, Hideyuki; Ando, Takayuki; Ushijima, Toshikazu; Suzuki, Tsutomu; Narita, Minoru

    2010-09-01

    A variety of mechanisms that contribute to the accumulation of age-related damage and the resulting brain dysfunction have been identified. Recently, decreased neurogenesis in the hippocampus has been recognized as one of the mechanisms of age-related brain dysfunction. However, the molecular mechanism of decreased neurogenesis with aging is still unclear. In the present study, we investigated whether aging decreases neurogenesis accompanied by the activation of microglia and astrocytes, which increases the expression of IL-1beta in the hippocampus, and whether in vitro treatment with IL-1beta in neural stem cells directly impairs neurogenesis. Ionized calcium-binding adaptor molecule 1 (Iba1)-positive microglia and glial fibrillary acidic protein (GFAP)-positive astrocytes were increased in the dentate gyrus of the hippocampus of 28-month-old mice. Furthermore, the mRNA level of IL-1beta was significantly increased without related histone modifications. Moreover, a significant increase in lysine 9 on histone H3 (H3K9) trimethylation at the promoter of NeuroD (a neural progenitor cell marker) was observed in the hippocampus of aged mice. In vitro treatment with IL-1beta in neural stem cells prepared from whole brain of E14.5 mice significantly increased H3K9 trimethylation at the NeuroD promoter. These findings suggest that aging may decrease hippocampal neurogenesis via epigenetic modifications accompanied by the activation of microglia and astrocytes with the increased expression of IL-1beta in the hippocampus.

  6. Studies of UCP2 transgenic and knockout mice reveal that liver UCP2 is not essential for the antiobesity effects of fish oil.

    Science.gov (United States)

    Tsuboyama-Kasaoka, Nobuyo; Sano, Kayo; Shozawa, Chikako; Osaka, Toshimasa; Ezaki, Osamu

    2008-03-01

    Uncoupling protein 2 (UCP2) is a possible target molecule for energy dissipation. Many dietary fats, including safflower oil and lard, induce obesity in C57BL/6 mice, whereas fish oil does not. Fish oil increases UCP2 expression in hepatocytes and may enhance UCP2 activity by activating the UCP2 molecule or altering the lipid bilayer environment. To examine the role of liver UCP2 in obesity, we created transgenic mice that overexpressed human UCP2 in hepatocytes and examined whether UCP2 transgenic mice showed less obesity when fed a high-fat diet (safflower oil or lard). In addition, we examined whether fish oil had antiobesity effects in UCP2 knockout mice. UCP2 transgenic and wild-type mice fed a high-fat diet (safflower oil or lard) developed obesity to a similar degree. UCP2 knockout and wild-type mice fed fish oil had lower rates of obesity than mice fed safflower oil. Remarkably, safflower oil did not induce obesity in female UCP2 knockout mice, an unexpected phenotype for which we presently have no explanation. However, this unexpected effect was not observed in male UCP2 knockout mice or in UCP2 knockout mice fed a high-lard diet. These data indicate that liver UCP2 is not essential for fish oil-induced decreases in body fat.

  7. Formulation of the bivalent prostate cancer vaccine with surgifoam elicits antigen-specific effector T cells in PSA-transgenic mice.

    Science.gov (United States)

    Karan, Dev

    2017-10-13

    We previously developed and characterized an adenoviral-based prostate cancer vaccine for simultaneous targeting of prostate-specific antigen (PSA) and prostate stem cell antigen (PSCA). We also demonstrated that immunization of mice with the bivalent vaccine (Ad 5 -PSA+PSCA) inhibited the growth of established prostate tumors. However, there are multiple challenges hindering the success of immunological therapies in the clinic. One of the prime concerns has been to overcome the immunological tolerance and maintenance of long-term effector T cells. In this study, we further characterized the use of the bivalent vaccine (Ad 5 -PSA+PSCA) in a transgenic mouse model expressing human PSA in the mouse prostate. We demonstrated the expression of PSA analyzed at the mRNA level (by RT-PCR) and protein level (by immunohistochemistry) in the prostate lobes harvested from the PSA-transgenic (PSA-Tg) mice. We established that the administration of the bivalent vaccine in surgifoam to the PSA-Tg mice induces strong PSA-specific effector CD8 + T cells as measured by IFN-γ secretion and in vitro cytotoxic T-cell assay. Furthermore, the use of surgifoam with Ad 5 -PSA+PSCA vaccine allows multiple boosting vaccinations with a significant increase in antigen-specific CD8 + T cells. These observations suggest that the formulation of the bivalent prostate cancer vaccine (Ad 5 -PSA+PSCA) with surgifoam bypasses the neutralizing antibody response, thus allowing multiple boosting. This formulation is also helpful for inducing an antigen-specific immune response in the presence of self-antigen, and maintains long-term effector CD8 + T cells. Copyright © 2017 The Author(s). Published by Elsevier Ltd.. All rights reserved.

  8. Expressions of TNF-α, IL-1α and IL-6 in bronchiolar epithelium after thoracic irradiation

    International Nuclear Information System (INIS)

    Yang Kunyu; Hu Yu; Ruebe Claudia; Ruebe Christian

    2006-01-01

    Objective: To investigate temporal and spatial releases of proinflam matory cytokines TNF-α, IL-1α and IL-6 in the lung tissue after thoracic irradiation in C57BL/6J mice. Methods: Mice were irradiated with 12 Gy to whole lungs, and control mice were sham-irradiated. Mice were sacrificed at hours 0.5, 1, 3, 6, 12, 24, 48 and 72 and weeks 1, 2, 4, 8, 16 and 24 after thoracic irradiation or sham-irradiation. Expressions of TNF-a and IL-1α, IL-6 proteins were detected with immuno-histochemistry. Results: At hour 6 after thoracic irradiation, the expression of TNF-α protein increased significantly, and at hour 12 after thoracic irradiation, the expressions of IL-1α and IL-6 proteins increased significantly, too. The bronchiolar epithelium was the most prominent source of these inflammatory cytokines in the first hours. During the stage of acute pneumonitis, the bronchiolar epithelium, as well as inflammatory cells in the lung interstitium, produced high amounts of TNF-α, IL-1α and IL-6. Conclusions: It was demonstrated that immediate expressions of TNF-α, IL-1α and IL-6 occurred in the bronchiolar epithelium after lung irradiation, and a long-lasting release by the bronchiolar and alveolar epithelium, and inflammatory cells during acute pneumonitis. Therefore, the bronchiolar epithelium is a significant source of proinflammatory cytokines capable of promoting inflammation through recruitment and activation of inflammatory cells after lung irradiation. (authors)

  9. [Neuroprotective effect of curcumin to Aβ of double transgenic mice with Alzheimer's disease].

    Science.gov (United States)

    Feng, Hui-Li; Fan, Hui; Dang, Hui-Zi; Chen, Xiao-Pei; Ren, Ying; Yang, Jin-Duo; Wang, Peng-Wen

    2014-10-01

    To observe the changes in Aβ40, Aβ42 and ADDLs in brains of 3 month-old APPswe/PS1dE9 double transgenic mice after six-month intervention with curcumin, in order to discuss the neuroprotective effect of curcumin. APPswe/PS1dE9dtg mice were randomly divided into the model group, the Rosiglitazone group (10 mg x kg(-1) x d(-1)) and curcumin high (400 mg x kg9-1) x d(-1)), medium (200 mg x kg(-1) x d(-1)) and low (100 mg x kg(-1) x d(-1)) dosage groups, with C57/BL6J mice of the same age and the same background in the normal control group. After 6 months, the immunohistochemical staining (IHC) and the Western blot method were used to observe the changes in positive cell of Aβ40, Aβ42 and ADDLs in hippocampal CA1 area, their distribution and protein expressions. Both of the immunohistochemical staining and the Western blot method showed more positive cell of Aβ40, Aβ42 and ADDLs in hippocampal CA1 area and higher protein expressions in the model group than the normal group (P curcumin high group, the medium group showed a significant decrease (P curcumin can significantly reduce the expressions of hippocampal Aβ40, Aβ42 and ADDLs in brains of APPswe/PS1dE9 double transgenic mice. Whether curcumin can impact Aβ cascade reaction by down-regulating expressions of Aβ40, Aβ42 and ADDLs and show the neuroprotective effect needs further studies.

  10. Scavenger receptor deficiency leads to more complex atherosclerotic lesions in APOE3Leiden transgenic mice

    NARCIS (Netherlands)

    Winther, M.P.J. de; Gijbels, M.J.J.; Dijk, K.W. van; Gorp, P.J.J. van; Suzuki, H.; Kodama, T.; Frants, R.R.; Havekes, L.M.; Hofker, M.H.

    1999-01-01

    Apolipoprotein (apo) E3Leiden is a dysfunctional apo E variant associated with familial dysbetalipoproteinemia in humans. Transgenic mice carrying the APOE3Leiden gene develop hyperlipidemia and are highly susceptible to diet-induced atherosclerosis. An early step in atherosclerosis is foam cell

  11. Carrageenan-Induced Colonic Inflammation Is Reduced in Bcl10 Null Mice and Increased in IL-10-Deficient Mice

    Directory of Open Access Journals (Sweden)

    Sumit Bhattacharyya

    2013-01-01

    Full Text Available The common food additive carrageenan is a known activator of inflammation in mammalian tissues and stimulates both the canonical and noncanonical pathways of NF-κB activation. Exposure to low concentrations of carrageenan (10 μg/mL in the water supply has produced glucose intolerance, insulin resistance, and impaired insulin signaling in C57BL/6 mice. B-cell leukemia/lymphoma 10 (Bcl10 is a mediator of inflammatory signals from Toll-like receptor (TLR 4 in myeloid and epithelial cells. Since the TLR4 signaling pathway is activated in diabetes and by carrageenan, we addressed systemic and intestinal inflammatory responses following carrageenan exposure in Bcl10 wild type, heterozygous, and null mice. Fecal calprotectin and circulating keratinocyte chemokine (KC, nuclear RelA and RelB, phospho(Thr559-NF-κB-inducing kinase (NIK, and phospho(Ser36-IκBα in the colonic epithelial cells were significantly less (P<0.001 in the carrageenan-treated Bcl10 null mice than in controls. IL-10-deficient mice exposed to carrageenan in a germ-free environment showed an increase in activation of the canonical pathway of NF-κB (RelA activation, but without increase in RelB or phospho-Bcl10, and exogenous IL-10 inhibited only the canonical pathway of NF-κB activation in cultured colonic cells. These findings demonstrate a Bcl10 requirement for maximum development of carrageenan-induced inflammation and lack of complete suppression by IL-10 of carrageenan-induced inflammation.

  12. Cis-acting sequences from a human surfactant protein gene confer pulmonary-specific gene expression in transgenic mice

    Energy Technology Data Exchange (ETDEWEB)

    Korfhagen, T.R.; Glasser, S.W.; Wert, S.E.; Bruno, M.D.; Daugherty, C.C.; McNeish, J.D.; Stock, J.L.; Potter, S.S.; Whitsett, J.A. (Cincinnati College of Medicine, OH (USA))

    1990-08-01

    Pulmonary surfactant is produced in late gestation by developing type II epithelial cells lining the alveolar epithelium of the lung. Lack of surfactant at birth is associated with respiratory distress syndrome in premature infants. Surfactant protein C (SP-C) is a highly hydrophobic peptide isolated from pulmonary tissue that enhances the biophysical activity of surfactant phospholipids. Like surfactant phospholipid, SP-C is produced by epithelial cells in the distal respiratory epithelium, and its expression increases during the latter part of gestation. A chimeric gene containing 3.6 kilobases of the promoter and 5{prime}-flanking sequences of the human SP-C gene was used to express diphtheria toxin A. The SP-C-diphtheria toxin A fusion gene was injected into fertilized mouse eggs to produce transgenic mice. Affected mice developed respiratory failure in the immediate postnatal period. Morphologic analysis of lungs from affected pups showed variable but severe cellular injury confined to pulmonary tissues. Ultrastructural changes consistent with cell death and injury were prominent in the distal respiratory epithelium. Proximal components of the tracheobronchial tree were not severely affected. Transgenic animals were of normal size at birth, and structural abnormalities were not detected in nonpulmonary tissues. Lung-specific diphtheria toxin A expression controlled by the human SP-C gene injured type II epithelial cells and caused extensive necrosis of the distal respiratory epithelium. The absence of type I epithelial cells in the most severely affected transgenic animals supports the concept that developing type II cells serve as precursors to type I epithelial cells.

  13. Chronic wasting disease prions are not transmissible to transgenic mice overexpressing human prion protein.

    Science.gov (United States)

    Sandberg, Malin K; Al-Doujaily, Huda; Sigurdson, Christina J; Glatzel, Markus; O'Malley, Catherine; Powell, Caroline; Asante, Emmanuel A; Linehan, Jacqueline M; Brandner, Sebastian; Wadsworth, Jonathan D F; Collinge, John

    2010-10-01

    Chronic wasting disease (CWD) is a prion disease that affects free-ranging and captive cervids, including mule deer, white-tailed deer, Rocky Mountain elk and moose. CWD-infected cervids have been reported in 14 USA states, two Canadian provinces and in South Korea. The possibility of a zoonotic transmission of CWD prions via diet is of particular concern in North America where hunting of cervids is a popular sport. To investigate the potential public health risks posed by CWD prions, we have investigated whether intracerebral inoculation of brain and spinal cord from CWD-infected mule deer transmits prion infection to transgenic mice overexpressing human prion protein with methionine or valine at polymorphic residue 129. These transgenic mice have been utilized in extensive transmission studies of human and animal prion disease and are susceptible to BSE and vCJD prions, allowing comparison with CWD. Here, we show that these mice proved entirely resistant to infection with mule deer CWD prions arguing that the transmission barrier associated with this prion strain/host combination is greater than that observed with classical BSE prions. However, it is possible that CWD may be caused by multiple prion strains. Further studies will be required to evaluate the transmission properties of distinct cervid prion strains as they are characterized.

  14. Macrophages as IL-25/IL-33-responsive cells play an important role in the induction of type 2 immunity.

    Directory of Open Access Journals (Sweden)

    Zhonghan Yang

    Full Text Available Type 2 immunity is essential for host protection against nematode infection but is detrimental in allergic inflammation or asthma. There is a major research focus on the effector molecules and specific cell types involved in the initiation of type 2 immunity. Recent work has implicated an important role of epithelial-derived cytokines, IL-25 and IL-33, acting on innate immune cells that are believed to be the initial sources of type 2 cytokines IL-4/IL-5/IL-13. The identities of the cell types that mediate the effects of IL-25/IL-33, however, remain to be fully elucidated. In the present study, we demonstrate that macrophages as IL-25/IL-33-responsive cells play an important role in inducing type 2 immunity using both in vitro and in vivo approaches. Macrophages produced type 2 cytokines IL-5 and IL-13 in response to the stimulation of IL-25/IL-33 in vitro, or were the IL-13-producing cells in mice administrated with exogenous IL-33 or infected with Heligmosomoides bakeri. In addition, IL-33 induced alternative activation of macrophages primarily through autocrine IL-13 activating the IL-4Rα-STAT6 pathway. Moreover, depletion of macrophages attenuated the IL-25/IL-33-induced type 2 immunity in mice, while adoptive transfer of IL-33-activated macrophages into mice with a chronic Heligmosomoides bakeri infection induced worm expulsion accompanied by a potent type 2 protective immune response. Thus, macrophages represent a unique population of the innate immune cells pivotal to type 2 immunity and a potential therapeutic target in controlling type 2 immunity-mediated inflammatory pathologies.

  15. Hemizygous Le-Cre Transgenic Mice Have Severe Eye Abnormalities on Some Genetic Backgrounds in the Absence of LoxP Sites

    Science.gov (United States)

    Dorà, Natalie J.; Collinson, J. Martin; Hill, Robert E.; West, John D.

    2014-01-01

    Eye phenotypes were investigated in Le-CreTg/−; Pax6fl/+ mice, which were expected to show tissue-specific reduction of Pax6 in surface ectoderm derivatives. To provide a better comparison with our previous studies of Pax6+/− eye phenotypes, hemizygous Le-CreTg/− and heterozygous Pax6fl/+mice were crossed onto the CBA/Ca genetic background. After the Le-Cre transgene had been backcrossed to CBA/Ca for seven generations, significant eye abnormalities occurred in some hemizygous Le-CreTg/−; Pax6+/+ controls (without a floxed Pax6fl allele) as well as experimental Le-CreTg/−; Pax6fl/+ mice. However, no abnormalities were seen in Le-Cre−/−; Pax6fl/+ or Le-Cre−/−; Pax6+/+ controls (without the Le-Cre transgene). The severity and frequency of the eye abnormalities in Le-CreTg/−; Pax6+/+ control mice diminished after backcrossing Le-CreTg/− mice to the original FVB/N strain for two generations, showing that the effect was reversible. This genetic background effect suggests that the eye abnormalities are a consequence of an interaction between the Le-Cre transgene and alleles of unknown modifier genes present in certain genetic backgrounds. The abnormalities were also ameliorated by introducing additional Pax6 gene copies on a CBA/Ca background, suggesting involvement of Pax6 depletion in Le-CreTg/−; Pax6+/+ mice rather than direct action of Cre recombinase on cryptic pseudo-loxP sites. One possibility is that expression of Cre recombinase from the Pax6-Le regulatory sequences in the Le-Cre transgene depletes cofactors required for endogenous Pax6 gene expression. Our observation that eye abnormalities can occur in hemizygous Le-CreTg/−; Pax6+/+ mice, in the absence of a floxed allele, demonstrates the importance of including all the relevant genetic controls in Cre-loxP experiments. PMID:25272013

  16. Neuron and neuroblast numbers and cytogenesis in the dentate gyrus of aged APP(swe)/PS1(dE9) transgenic mice

    DEFF Research Database (Denmark)

    Olesen, Louise Orum; Sivasaravanaparan, Mithula; Severino, Maurizio

    2017-01-01

    Altered neurogenesis may influence hippocampal functions such as learning and memory in Alzheimer's disease. Selective serotonin reuptake inhibitors enhance neurogenesis and have been reported to reduce cerebral amyloidosis in both humans and transgenic mice. We have used stereology to assess the...... working memory, independent of changes in total granular neurons. Furthermore, while long-term paroxetine treatment may be able to reduce hippocampal amyloidosis, it appears to have no effect on total number of granular neurons or spatial working memory....... the longitudinal changes in the number of doublecortin-expressing neuroblasts and number of granular neurons in the dentate gyrus of APPswe/PS1dE9 transgenic mice. Furthermore, we investigated the effect of long-term paroxetine treatment on the number of neuroblasts and granular neurons, hippocampal amyloidosis......Altered neurogenesis may influence hippocampal functions such as learning and memory in Alzheimer's disease. Selective serotonin reuptake inhibitors enhance neurogenesis and have been reported to reduce cerebral amyloidosis in both humans and transgenic mice. We have used stereology to assess...

  17. Over-expressing the soluble gp130-Fc does not ameliorate methionine and choline deficient diet-induced non alcoholic steatohepatitis in mice.

    Directory of Open Access Journals (Sweden)

    Helene L Kammoun

    Full Text Available Non-alcoholic steatohepatitis (NASH is a liver disease with the potential to lead to cirrhosis and hepatocellular carcinoma. Interleukin-6 (IL-6 has been implicated in the pathogenesis of NASH, with the so-called IL-6 'trans-signaling' cascade being responsible for the pro-inflammatory actions of this cytokine. We aimed to block IL-6 'trans-signaling', using a transgenic mouse that overexpresses human soluble glycoprotein130 (sgp130Fc Tg mice fed a commonly used dietary model of inducing NASH (methionine and choline deficient-diet; MCD diet and hypothesized that markers of NASH would be ameliorated in such mice. Sgp130Fc Tg and littermate control mice were fed a MCD or control diet for 4 weeks. The MCD diet induced many hallmarks of NASH including hepatomegaly, steatosis, and liver inflammation. However, in contrast with other mouse models and, indeed, human NASH, the MCD diet model did not increase the mRNA or protein expression of IL-6. Not surprisingly, therefore, markers of MCD diet-induced NASH were unaffected by sgp130Fc transgenic expression. While the MCD diet model induces many pathophysiological markers of NASH, it does not induce increased IL-6 expression in the liver, a key hallmark of human NASH. We, therefore, caution the use of the MCD diet as a viable mouse model of NASH.

  18. IL-6 Improves Energy and Glucose Homeostasis in Obesity via Enhanced Central IL-6 trans-Signaling.

    Science.gov (United States)

    Timper, Katharina; Denson, Jesse Lee; Steculorum, Sophie Marie; Heilinger, Christian; Engström-Ruud, Linda; Wunderlich, Claudia Maria; Rose-John, Stefan; Wunderlich, F Thomas; Brüning, Jens Claus

    2017-04-11

    Interleukin (IL)-6 engages similar signaling mechanisms to leptin. Here, we find that central application of IL-6 in mice suppresses feeding and improves glucose tolerance. In contrast to leptin, whose action is attenuated in obesity, the ability of IL-6 to suppress feeding is enhanced in obese mice. IL-6 suppresses feeding in the absence of neuronal IL-6-receptor (IL-6R) expression in hypothalamic or all forebrain neurons of mice. Conversely, obese mice exhibit increased soluble IL-6R levels in the cerebrospinal fluid. Blocking IL-6 trans-signaling in the CNS abrogates the ability of IL-6 to suppress feeding. Furthermore, gp130 expression is enhanced in the paraventricular nucleus of the hypothalamus (PVH) of obese mice, and deletion of gp130 in the PVH attenuates the beneficial central IL-6 effects on metabolism. Collectively, these experiments indicate that IL-6 trans-signaling is enhanced in the CNS of obese mice, allowing IL-6 to exert its beneficial metabolic effects even under conditions of leptin resistance. Copyright © 2017 The Authors. Published by Elsevier Inc. All rights reserved.

  19. IL-6 Improves Energy and Glucose Homeostasis in Obesity via Enhanced Central IL-6 trans-Signaling

    Directory of Open Access Journals (Sweden)

    Katharina Timper

    2017-04-01

    Full Text Available Interleukin (IL-6 engages similar signaling mechanisms to leptin. Here, we find that central application of IL-6 in mice suppresses feeding and improves glucose tolerance. In contrast to leptin, whose action is attenuated in obesity, the ability of IL-6 to suppress feeding is enhanced in obese mice. IL-6 suppresses feeding in the absence of neuronal IL-6-receptor (IL-6R expression in hypothalamic or all forebrain neurons of mice. Conversely, obese mice exhibit increased soluble IL-6R levels in the cerebrospinal fluid. Blocking IL-6 trans-signaling in the CNS abrogates the ability of IL-6 to suppress feeding. Furthermore, gp130 expression is enhanced in the paraventricular nucleus of the hypothalamus (PVH of obese mice, and deletion of gp130 in the PVH attenuates the beneficial central IL-6 effects on metabolism. Collectively, these experiments indicate that IL-6 trans-signaling is enhanced in the CNS of obese mice, allowing IL-6 to exert its beneficial metabolic effects even under conditions of leptin resistance.

  20. Data on IL-10R neutralization-induced chronic colitis in Lipocalin 2 deficient mice on BALB/c background

    Directory of Open Access Journals (Sweden)

    Vishal Singh

    2017-04-01

    Full Text Available The data herein is related to the research article entitled “Microbiota-inducible Innate Immune, Siderophore Binding Protein Lipocalin 2 is Critical for Intestinal Homeostasis” (Singh et al., 2016 [1] where we have demonstrated that C57BL/6 Lipocalin 2 deficient mice (Lcn2KO developed chronic colitis upon anti-interleukin-10 receptor (αIL-10R monoclonal antibody administration. In the present article, we evaluated the susceptibility of BALB/c Lcn2KO mice and their WT littermates to the αIL-10R neutralization-induced chronic colitis. Our data showed that αIL-10R mAb-treated BALB/c Lcn2KO mice exhibited severe chronic colitis (i.e., splenomegaly, colomegaly, colonic pathology, and incidence of rectal prolapse when compared to WT mice.

  1. Neuron and neuroblast numbers and cytogenesis in the dentate gyrus of aged APPswe/PS1dE9 transgenic mice: Effect of long-term treatment with paroxetine.

    Science.gov (United States)

    Olesen, Louise Ørum; Sivasaravanaparan, Mithula; Severino, Maurizio; Babcock, Alicia A; Bouzinova, Elena V; West, Mark J; Wiborg, Ove; Finsen, Bente

    2017-08-01

    Altered neurogenesis may influence hippocampal functions such as learning and memory in Alzheimer's disease. Selective serotonin reuptake inhibitors enhance neurogenesis and have been reported to reduce cerebral amyloidosis in both humans and transgenic mice. We have used stereology to assess the longitudinal changes in the number of doublecortin-expressing neuroblasts and number of granular neurons in the dentate gyrus of APP swe /PS1 dE9 transgenic mice. Furthermore, we investigated the effect of long-term paroxetine treatment on the number of neuroblasts and granular neurons, hippocampal amyloidosis, and spontaneous alternation behaviour, a measure of spatial working memory, in transgenic mice. We observed no difference in granular neurons between transgenic and wild type mice up till 18months of age, and no differences with age in wild type mice. The number of neuroblasts and the performance in the spontaneous alternation task was reduced in aged transgenic mice. Paroxetine treatment from 9 to 18months of age reduced hippocampal amyloidosis without affecting the number of neuroblasts or granular neurons. These findings suggest that the amyloidosis affects the differentiation of neuroblasts and spatial working memory, independent of changes in total granular neurons. Furthermore, while long-term paroxetine treatment may be able to reduce hippocampal amyloidosis, it appears to have no effect on total number of granular neurons or spatial working memory. Copyright © 2017 Elsevier Inc. All rights reserved.

  2. Evaluating Human T-Cell Therapy of Cytomegalovirus Organ Disease in HLA-Transgenic Mice.

    Directory of Open Access Journals (Sweden)

    Simone Thomas

    2015-07-01

    Full Text Available Reactivation of human cytomegalovirus (HCMV can cause severe disease in recipients of hematopoietic stem cell transplantation. Although preclinical research in murine models as well as clinical trials have provided 'proof of concept' for infection control by pre-emptive CD8 T-cell immunotherapy, there exists no predictive model to experimentally evaluate parameters that determine antiviral efficacy of human T cells in terms of virus control in functional organs, prevention of organ disease, and host survival benefit. We here introduce a novel mouse model for testing HCMV epitope-specific human T cells. The HCMV UL83/pp65-derived NLV-peptide was presented by transgenic HLA-A2.1 in the context of a lethal infection of NOD/SCID/IL-2rg-/- mice with a chimeric murine CMV, mCMV-NLV. Scenarios of HCMV-seropositive and -seronegative human T-cell donors were modeled by testing peptide-restimulated and T-cell receptor-transduced human T cells, respectively. Upon transfer, the T cells infiltrated host tissues in an epitope-specific manner, confining the infection to nodular inflammatory foci. This resulted in a significant reduction of viral load, diminished organ pathology, and prolonged survival. The model has thus proven its potential for a preclinical testing of the protective antiviral efficacy of HCMV epitope-specific human T cells in the evaluation of new approaches to an immunotherapy of CMV disease.

  3. The study on the preparation of rhIL-6 and its effects on recovery of mice from radiation-induced hematopoietic aplasia

    International Nuclear Information System (INIS)

    Yang Jicheng; Zhang Yun; Sheng Weihua

    1997-08-01

    The E coil highly expressing rhIL-6 constructed by our department was fermented and rhIL-6 products were extracted and purified. The specific activity of the purified rhIL-6 products reached 4.83 x 10 8 IU/mg. The rhIL-6 products were used to treat BALB/c mice injured by 60 Co irradiation for six days (2 μg/big/each). The results showed that the bleeding time, coagulation time and prothrombin time of the rhIL-6 treatment group were significantly shorter than those of the control group (P<0.01), the platelet count and WBC increased by 130% and 165% in the treatment group as compared with the control, the numbers of CFU-Mix cultured in vitro and CFU-s in spleen were significantly higher than those in the control group (P<0.01). These results suggest that rhIL-6 exerts beneficial effects on the recovery of mice from radiation-induced injuries of hematopoietic stem/progenitor cells, and thus helps recovery from radiation injury of bone marrow and hematopoietic function. (17 refs., 4 figs., 5 tabs.)

  4. EVIDENCE THAT INTESTINAL IGA PLASMA-CELLS IN MU,CHI TRANSGENIC MICE ARE DERIVED FROM B-1 (LY-1 B) CELLS

    NARCIS (Netherlands)

    KROESE, FGM; AMMERLAAN, WAM; KANTOR, AB

    1993-01-01

    B6-Sp6 transgenic mice carry fully rearranged (BALB/c-derived. Igh-C(a) allotype) mu heavy chain and kappa light chain transgenes, specific for trinitrophenyl, on a C57BL background (Igh-C(b) allotype). FACS analyses show that the majority of B cells in peripheral lymphoid organs and bone marrow

  5. Reduction of β-amyloid accumulation by reticulon 3 in transgenic mice.

    Science.gov (United States)

    Araki, Wataru; Oda, Akiko; Motoki, Kazumi; Hattori, Kotaro; Itoh, Masayuki; Yuasa, Shigeki; Konishi, Yoshihiro; Shin, Ryong-Woon; Tamaoka, Akira; Ogino, Koichi

    2013-02-01

    Inhibition of the β-secretase, BACE1, which cleaves amyloid precursor protein (APP) to produce β-amyloid protein (Aβ), is thought to be a feasible therapeutic strategy for Alzheimer's disease. Reticulon (RTN) proteins such as RTN3 have been identified as membrane proteins that interact with BACE1 and inhibit its Aβ-generating activity. In this study, we investigated whether RTN3 can regulate Aβ production in vivo, using transgenic (Tg) mice expressing APP with Swedish and London mutations (APP Tg mice) and those expressing RTN3; the latter mice showed ~1.4-fold higher expression levels of RTN3 protein in the cerebral cortex than non-Tg controls. We analyzed the brains of single APP Tg and double APP/RTN3 Tg mice at the age of approximately 15 months. The levels of secreted APP-β, a direct BACE1 cleavage product of APP, in Tris-soluble fraction were considerably reduced in the hippocampus and cerebral cortex of APP/RTN3 Tg mice relative to those in APP Tg mice. Immunohistochemical analyses demonstrated that Aβ burden and plaques were significantly (by approximately 50%) decreased in both the hippocampus and cerebral cortex of double Tg mice compared to APP Tg mice. Furthermore, the levels of guanidine-soluble Aβ40 and Aβ42 in these brain regions of APP/RTN3 Tg mice were relatively lower than those in APP Tg mice. These findings indicate that even a small increase in RTN3 expression exerts suppressive effects on amyloidogenic processing of APP and Aβ accumulation through modulation of BACE1 activity in vivo, and suggest that induction of RTN3 might be an effective therapeutic strategy against Alzheimer's disease.

  6. Enhanced Antibody Responses in a Novel NOG Transgenic Mouse with Restored Lymph Node Organogenesis

    Directory of Open Access Journals (Sweden)

    Takeshi Takahashi

    2018-01-01

    Full Text Available Lymph nodes (LNs are at the center of adaptive immune responses. Various exogenous substances are transported into LNs and a series of immune responses ensue after recognition by antigen–specific lymphocytes. Although humanized mice have been used to reconstitute the human immune system, most lack LNs due to deficiency of the interleukin (IL-2Rγ gene (cytokine common γ chain, γc. In this study, we established a transgenic strain, NOG-pRORγt-γc, in the NOD/shi-scid-IL-2Rγnull (NOG background, in which the γc gene was expressed in a lymph-tissue inducer (LTi lineage by the endogenous promoter of RORγt. In this strain, LN organogenesis was normalized and the number of human T cells substantially increased in the periphery after reconstitution of the human immune system by human hematopoietic stem cell transplantation. The distribution of human T cells differed between NOG-pRORγt-γc Tg and NOG-non Tg mice. About 40% of human T cells resided in LNs, primarily the mesenteric LNs. The LN-complemented humanized mice exhibited antigen-specific immunoglobulin G responses together and an increased number of IL-21+–producing CD4+ T cells in LNs. This novel mouse strain will facilitate recapitulation of human immune responses.

  7. Breaking tolerance in transgenic mice expressing the human TSH receptor A-subunit: thyroiditis, epitope spreading and adjuvant as a 'double edged sword'.

    Science.gov (United States)

    McLachlan, Sandra M; Aliesky, Holly A; Chen, Chun-Rong; Chong, Gao; Rapoport, Basil

    2012-01-01

    Transgenic mice with the human thyrotropin-receptor (TSHR) A-subunit targeted to the thyroid are tolerant of the transgene. In transgenics that express low A-subunit levels (Lo-expressors), regulatory T cell (Treg) depletion using anti-CD25 before immunization with adenovirus encoding the A-subunit (A-sub-Ad) breaks tolerance, inducing extensive thyroid lymphocytic infiltration, thyroid damage and antibody spreading to other thyroid proteins. In contrast, no thyroiditis develops in Hi-expressor transgenics or wild-type mice. Our present goal was to determine if thyroiditis could be induced in Hi-expressor transgenics using a more potent immunization protocol: Treg depletion, priming with Complete Freund's Adjuvant (CFA) + A-subunit protein and further Treg depletions before two boosts with A-sub-Ad. As controls, anti-CD25 treated Hi- and Lo-expressors and wild-type mice were primed with CFA+ mouse thyroglobulin (Tg) or CFA alone before A-sub-Ad boosting. Thyroiditis developed after CFA+A-subunit protein or Tg and A-sub-Ad boosting in Lo-expressor transgenics but Hi- expressors (and wild-type mice) were resistant to thyroiditis induction. Importantly, in Lo-expressors, thyroiditis was associated with the development of antibodies to the mouse TSHR downstream of the A-subunit. Unexpectedly, we observed that the effect of bacterial products on the immune system is a "double-edged sword". On the one hand, priming with CFA (mycobacteria emulsified in oil) plus A-subunit protein broke tolerance to the A-subunit in Hi-expressor transgenics leading to high TSHR antibody levels. On the other hand, prior treatment with CFA in the absence of A-subunit protein inhibited responses to subsequent immunization with A-sub-Ad. Consequently, adjuvant activity arising in vivo after bacterial infections combined with a protein autoantigen can break self-tolerance but in the absence of the autoantigen, adjuvant activity can inhibit the induction of immunity to autoantigens (like the

  8. Enhanced human papillomavirus type 8 oncogene expression levels are crucial for skin tumorigenesis in transgenic mice

    International Nuclear Information System (INIS)

    Hufbauer, M.; Lazic, D.; Akguel, B.; Brandsma, J.L.; Pfister, H.; Weissenborn, S.J.

    2010-01-01

    Human papillomavirus 8 (HPV8) is involved in skin cancer development in epidermodysplasia verruciformis patients. Transgenic mice expressing HPV8 early genes (HPV8-CER) developed papillomas, dysplasias and squamous cell carcinomas. UVA/B-irradiation and mechanical wounding of HPV8-CER mouse skin led to prompt papilloma induction in about 3 weeks. The aim of this study was to analyze the kinetics and level of transgene expression in response to skin irritations. Transgene expression was already enhanced 1 to 2 days after UVA/B-irradiation or tape-stripping and maintained during papilloma development. The enhanced transgene expression could be assigned to UVB and not to UVA. Papilloma development was thus always paralleled by an increased transgene expression irrespective of the type of skin irritation. A knock-down of E6 mRNA by tattooing HPV8-E6-specific siRNA led to a delay and a lower incidence of papilloma development. This indicates that the early increase of viral oncogene expression is crucial for induction of papillomatosis.

  9. Running performance at high running velocities is impaired but V'O(₂max and peripheral endothelial function are preserved in IL-6⁻/⁻ mice.

    Directory of Open Access Journals (Sweden)

    Marta Wojewoda

    Full Text Available It has been reported that IL-6 knockout mice (IL-6⁻/⁻ possess lower endurance capacity than wild type mice (WT, however the underlying mechanism is poorly understood. The aim of the present work was to examine whether reduced endurance running capacity in IL-6⁻/⁻ mice is linked to impaired maximal oxygen uptake (V'O(₂max, decreased glucose tolerance, endothelial dysfunction or other mechanisms. Maximal running velocity during incremental running to exhaustion was significantly lower in IL-6⁻/⁻ mice than in WT mice (13.00±0.97 m·min⁻¹ vs. 16.89±1.15 m·min⁻¹, P<0.02, respectively. Moreover, the time to exhaustion during running at 12 m·min⁻¹ in IL-6⁻/⁻ mice was significantly shorter (P<0.05 than in WT mice. V'O(₂max in IL-6⁻/⁻ (n = 20 amounting to 108.3±2.8 ml·kg⁻¹·min⁻¹ was similar as in WT mice (n = 22 amounting to 113.0±1.8 ml·kg⁻¹·min⁻¹, (P = 0.16. No difference in maximal COX activity between the IL-6⁻/⁻ and WT mice in m. soleus and m. gastrocnemius was found. Moreover, no impairment of peripheral endothelial function or glucose tolerance was found in IL-6⁻/⁻ mice. Surprisingly, plasma lactate concentration during running at 8 m·min⁻¹ as well at maximal running velocity in IL-6⁻/⁻ mice was significantly lower (P<0.01 than in WT mice. Interestingly, IL-6⁻/⁻ mice displayed important adaptive mechanisms including significantly lower oxygen cost of running at a given speed accompanied by lower expression of sarcoplasmic reticulum Ca²⁺-ATPase and lower plasma lactate concentrations during running at submaximal and maximal running velocities. In conclusion, impaired endurance running capacity in IL-6⁻/⁻ mice could not be explained by reduced V'O(₂max, endothelial dysfunction or impaired muscle oxidative capacity. Therefore, our results indicate that IL-6 cannot be regarded as a major regulator of exercise capacity but rather as a modulator of endurance

  10. Running performance at high running velocities is impaired but V'O(₂max) and peripheral endothelial function are preserved in IL-6⁻/⁻ mice.

    Science.gov (United States)

    Wojewoda, Marta; Kmiecik, Katarzyna; Ventura-Clapier, Renée; Fortin, Dominique; Onopiuk, Marta; Jakubczyk, Justyna; Sitek, Barbara; Fedorowicz, Andrzej; Majerczak, Joanna; Kaminski, Karol; Chlopicki, Stefan; Zoladz, Jerzy Andrzej

    2014-01-01

    It has been reported that IL-6 knockout mice (IL-6⁻/⁻) possess lower endurance capacity than wild type mice (WT), however the underlying mechanism is poorly understood. The aim of the present work was to examine whether reduced endurance running capacity in IL-6⁻/⁻ mice is linked to impaired maximal oxygen uptake (V'O(₂max)), decreased glucose tolerance, endothelial dysfunction or other mechanisms. Maximal running velocity during incremental running to exhaustion was significantly lower in IL-6⁻/⁻ mice than in WT mice (13.00±0.97 m·min⁻¹ vs. 16.89±1.15 m·min⁻¹, P<0.02, respectively). Moreover, the time to exhaustion during running at 12 m·min⁻¹ in IL-6⁻/⁻ mice was significantly shorter (P<0.05) than in WT mice. V'O(₂max) in IL-6⁻/⁻ (n = 20) amounting to 108.3±2.8 ml·kg⁻¹·min⁻¹ was similar as in WT mice (n = 22) amounting to 113.0±1.8 ml·kg⁻¹·min⁻¹, (P = 0.16). No difference in maximal COX activity between the IL-6⁻/⁻ and WT mice in m. soleus and m. gastrocnemius was found. Moreover, no impairment of peripheral endothelial function or glucose tolerance was found in IL-6⁻/⁻ mice. Surprisingly, plasma lactate concentration during running at 8 m·min⁻¹ as well at maximal running velocity in IL-6⁻/⁻ mice was significantly lower (P<0.01) than in WT mice. Interestingly, IL-6⁻/⁻ mice displayed important adaptive mechanisms including significantly lower oxygen cost of running at a given speed accompanied by lower expression of sarcoplasmic reticulum Ca²⁺-ATPase and lower plasma lactate concentrations during running at submaximal and maximal running velocities. In conclusion, impaired endurance running capacity in IL-6⁻/⁻ mice could not be explained by reduced V'O(₂max), endothelial dysfunction or impaired muscle oxidative capacity. Therefore, our results indicate that IL-6 cannot be regarded as a major regulator of exercise capacity but rather as a modulator of endurance

  11. Running Performance at High Running Velocities Is Impaired but V′O2max and Peripheral Endothelial Function Are Preserved in IL-6−/− Mice

    Science.gov (United States)

    Wojewoda, Marta; Kmiecik, Katarzyna; Ventura-Clapier, Renée; Fortin, Dominique; Onopiuk, Marta; Jakubczyk, Justyna; Sitek, Barbara; Fedorowicz, Andrzej; Majerczak, Joanna; Kaminski, Karol; Chlopicki, Stefan; Zoladz, Jerzy Andrzej

    2014-01-01

    It has been reported that IL-6 knockout mice (IL-6−/−) possess lower endurance capacity than wild type mice (WT), however the underlying mechanism is poorly understood. The aim of the present work was to examine whether reduced endurance running capacity in IL-6−/− mice is linked to impaired maximal oxygen uptake (V′O2max), decreased glucose tolerance, endothelial dysfunction or other mechanisms. Maximal running velocity during incremental running to exhaustion was significantly lower in IL-6−/− mice than in WT mice (13.00±0.97 m.min−1 vs. 16.89±1.15 m.min−1, P<0.02, respectively). Moreover, the time to exhaustion during running at 12 m.min−1 in IL-6−/− mice was significantly shorter (P<0.05) than in WT mice. V′O2max in IL-6−/− (n = 20) amounting to 108.3±2.8 ml.kg−1.min−1 was similar as in WT mice (n = 22) amounting to 113.0±1.8 ml.kg−1.min−1, (P = 0.16). No difference in maximal COX activity between the IL-6−/− and WT mice in m. soleus and m. gastrocnemius was found. Moreover, no impairment of peripheral endothelial function or glucose tolerance was found in IL-6−/− mice. Surprisingly, plasma lactate concentration during running at 8 m.min−1 as well at maximal running velocity in IL-6−/− mice was significantly lower (P<0.01) than in WT mice. Interestingly, IL-6−/− mice displayed important adaptive mechanisms including significantly lower oxygen cost of running at a given speed accompanied by lower expression of sarcoplasmic reticulum Ca2+-ATPase and lower plasma lactate concentrations during running at submaximal and maximal running velocities. In conclusion, impaired endurance running capacity in IL-6−/− mice could not be explained by reduced V′O2max, endothelial dysfunction or impaired muscle oxidative capacity. Therefore, our results indicate that IL-6 cannot be regarded as a major regulator of exercise capacity but rather as a modulator of endurance performance. Furthermore, we

  12. Transfer of in vivo primed transgenic T cells supports allergic lung inflammation and FIZZ1 and Ym1 production in an IL-4Rα and STAT6 dependent manner

    Directory of Open Access Journals (Sweden)

    Keegan Achsah D

    2011-10-01

    Full Text Available Abstract Background CD4+ T helper type 2 (TH2 cells, their cytokines IL-4, IL-5 and IL-13 and the transcription factor STAT6 are known to regulate various features of asthma including lung inflammation, mucus production and airway hyperreactivity and also drive alternative activation of macrophages (AAM. However, the precise roles played by the IL-4/IL-13 receptors and STAT6 in inducing AAM protein expression and modulating specific features of airway inflammation are still unclear. Since TH2 differentiation and activation plays a pivotal role in this disease, we explored the possibility of developing an asthma model in mice using T cells that were differentiated in vivo. Results In this study, we monitored the activation and proliferation status of adoptively transferred allergen-specific naïve or in vivo primed CD4+ T cells. We found that both the naïve and in vivo primed T cells expressed similar levels of CD44 and IL-4. However, in vivo primed T cells underwent reduced proliferation in a lymphopenic environment when compared to naïve T cells. We then used these in vivo generated effector T cells in an asthma model. Although there was reduced inflammation in mice lacking IL-4Rα or STAT6, significant amounts of eosinophils were still present in the BAL and lung tissue. Moreover, specific AAM proteins YM1 and FIZZ1 were expressed by epithelial cells, while macrophages expressed only YM1 in RAG2-/- mice. We further show that FIZZ1 and YM1 protein expression in the lung was completely dependent on signaling through the IL-4Rα and STAT6. Consistent with the enhanced inflammation and AAM protein expression, there was a significant increase in collagen deposition and smooth muscle thickening in RAG2-/- mice compared to mice deficient in IL-4Rα or STAT6. Conclusions These results establish that transfer of in vivo primed CD4+ T cells can induce allergic lung inflammation. Furthermore, while IL-4/IL-13 signaling through IL-4Rα and STAT6 is

  13. Balanced Diet-Fed Fat-1 Transgenic Mice Exhibit Lower Hindlimb Suspension-Induced Soleus Muscle Atrophy

    Directory of Open Access Journals (Sweden)

    Gabriel Nasri Marzuca-Nassr

    2017-10-01

    Full Text Available The consequences of two-week hindlimb suspension (HS on skeletal muscle atrophy were investigated in balanced diet-fed Fat-1 transgenic and C57BL/6 wild-type mice. Body composition and gastrocnemius fatty acid composition were measured. Skeletal muscle force, cross-sectional area (CSA, and signaling pathways associated with protein synthesis (protein kinase B, Akt; ribosomal protein S6, S6, eukaryotic translation initiation factor 4E-binding protein 1, 4EBP1; glycogen synthase kinase3-beta, GSK3-beta; and extracellular-signal-regulated kinases 1/2, ERK 1/2 and protein degradation (atrophy gene-1/muscle atrophy F-box, atrogin-1/MAFbx and muscle RING finger 1, MuRF1 were evaluated in the soleus muscle. HS decreased soleus muscle wet and dry weights (by 43% and 26%, respectively, muscle isotonic and tetanic force (by 29% and 18%, respectively, CSA of the soleus muscle (by 36%, and soleus muscle fibers (by 45%. Fat-1 transgenic mice had a decrease in the ω-6/ω-3 polyunsaturated fatty acids (PUFAs ratio as compared with C57BL/6 wild-type mice (56%, p < 0.001. Fat-1 mice had lower soleus muscle dry mass loss (by 10% and preserved absolute isotonic force (by 17% and CSA of the soleus muscle (by 28% after HS as compared with C57BL/6 wild-type mice. p-GSK3B/GSK3B ratio was increased (by 70% and MuRF-1 content decreased (by 50% in the soleus muscle of Fat-1 mice after HS. Balanced diet-fed Fat-1 mice are able to preserve in part the soleus muscle mass, absolute isotonic force and CSA of the soleus muscle in a disuse condition.

  14. Reduced striatal dopamine DA D2 receptor function in dominant-negative GSK-3 transgenic mice.

    Science.gov (United States)

    Gomez-Sintes, Raquel; Bortolozzi, Analia; Artigas, Francesc; Lucas, José J

    2014-09-01

    Glycogen synthase kinase-3 (GSK-3) is a serine/threonine kinase with constitutive activity involved in cellular architecture, gene expression, cell proliferation, fate decision and apoptosis, among others. GSK-3 expression is particularly high in brain where it may be involved in neurological and psychiatric disorders such as Alzheimer׳s disease, bipolar disorder and major depression. A link with schizophrenia is suggested by the antipsychotic drug-induced GSK-3 regulation and by the involvement of the Akt/GSK-3 pathway in dopaminergic neurotransmission. Taking advantage of the previous development of dominant negative GSK-3 transgenic mice (Tg) showing a selective reduction of GSK-3 activity in forebrain neurons but not in dopaminergic neurons, we explored the relationship between GSK-3 and dopaminergic neurotransmission in vivo. In microdialysis experiments, local quinpirole (DA D2-R agonist) in dorsal striatum reduced dopamine (DA) release significantly less in Tg mice than in wild-type (WT) mice. However, local SKF-81297 (selective DA D1-R agonist) in dorsal striatum reduced DA release equally in both control and Tg mice indicating a comparable function of DA D1-R in the direct striato-nigral pathway. Likewise, systemic quinpirole administration - acting preferentially on presynaptic DA D2- autoreceptors to modulate DA release-reduced striatal DA release similarly in both control and Tg mice. Quinpirole reduced locomotor activity and induced c-fos expression in globus pallidus (both striatal DA D2-R-mediated effects) significantly more in WT than in Tg mice. Taking together, the present results show that dominant negative GSK-3 transgenic mice show reduced DA D2-R-mediated function in striatum and further support a link between dopaminergic neurotransmission and GSK-3 activity. Copyright © 2014 Elsevier B.V. and ECNP. All rights reserved.

  15. Dose-Dependent Rescue of KO Amelogenin Enamel by Transgenes in Vivo.

    Science.gov (United States)

    Bidlack, Felicitas B; Xia, Yan; Pugach, Megan K

    2017-01-01

    Mice lacking amelogenin (KO) have hypoplastic enamel. Overexpression of the most abundant amelogenin splice variant M180 and LRAP transgenes can substantially improve KO enamel, but only ~40% of the incisor thickness is recovered and the prisms are not as tightly woven as in WT enamel. This implies that the compositional complexity of the enamel matrix is required for different aspects of enamel formation, such as organizational structure and thickness. The question arises, therefore, how important the ratio of different matrix components, and in particular amelogenin splice products, is in enamel formation. Can optimal expression levels of amelogenin transgenes representing both the most abundant splice variants and cleavage product at protein levels similar to that of WT improve the enamel phenotype of KO mice? Addressing this question, our objective was here to understand dosage effects of amelogenin transgenes ( Tg ) representing the major splice variants M180 and LRAP and cleavage product CTRNC on enamel properties. Amelogenin KO mice were mated with M180 Tg , CTRNC Tg and LRAP Tg mice to generate M180 Tg and CTRNC Tg double transgene and M180 Tg , CTRNC Tg , LRAP Tg triple transgene mice with transgene hemizygosity (on one allelle) or homozygosity (on both alleles). Transgene homo- vs. hemizygosity was determined by qPCR and relative transgene expression confirmed by Western blot. Enamel volume and mineral density were analyzed by microCT, thickness and structure by SEM, and mechanical properties by Vickers microhardness testing. There were no differences in incisor enamel thickness between amelogenin KO mice with three or two different transgenes, but mice homozygous for a given transgene had significantly thinner enamel than mice hemizygous for the transgene ( p structure, but only up to a maximum of ~80% that of molar and ~40% that of incisor wild-type enamel.

  16. p53-stabilizing Agent CP-31398 Prevents Growth and Invasion of Urothelial Cancer of the Bladder in Transgenic UPII-SV40T Mice

    Directory of Open Access Journals (Sweden)

    Venkateshwar Madka

    2013-08-01

    Full Text Available The high prevalence of bladder cancer and its recurrence make it an important target for chemoprevention. About half of invasive urothelial tumors have mutations in p53. We determined the chemopreventive efficacy of a p53-stabilizing agent, CP-31398, in a transgenic UPII-SV40T mouse model of bladder transitional cell carcinoma (TCC that strongly resembles human TCC. After genotyping, six-week-old UPII-SV40T mice (n = 30/group were fed control (AIN-76A or experimental diets containing 150 or 300 ppm of CP-31398 for 34 weeks. Progression of bladder cancer growth was monitored by magnetic resonance imaging. At 40 weeks of age, all mice were killed; urinary bladders were collected to determine weights, tumor incidence, and histopathology. There was a significant increase in bladder weights of transgenic versus wild-type mice (male: 140.2 mg vs 27.3 mg, P < .0001; female: 34.2 mg vs 14.8 mg, P < .0001. A significant decrease in the bladder tumor weights (by 68.6–80.2%, P < .0001 in males and by 36.9–55.3%, P < .0001 in females was observed in CP-31398-treated mice. Invasive papillary TCC incidence was 100% in transgenic mice fed control diet. Both male and female mice exposed to CP-31398 showed inhibition of invasive TCC. CP-31398 (300 ppm completely blocked invasion in female mice. Molecular analysis of the bladder tumors showed an increase in apoptosis markers (p53, p21, Bax, and Annexin V with a decrease in vascular endothelial growth factor in transgenic mice fed CP-31398. These results suggest that p53-modulating agents can serve as potential chemopreventive agents for bladder TCC.

  17. Beta-cell lines derived from transgenic mice expressing a hybrid insulin gene-oncogene

    DEFF Research Database (Denmark)

    Efrat, S; Linde, S; Kofod, Hans

    1988-01-01

    Three pancreatic beta-cell lines have been established from insulinomas derived from transgenic mice carrying a hybrid insulin-promoted simian virus 40 tumor antigen gene. The beta tumor cell (beta TC) lines maintain the features of differentiated beta cells for about 50 passages in culture. The ...... both to immortalize a rare cell type and to provide a selection for the maintenance of its differentiated phenotype....

  18. Administration of NaHS attenuates footshock-induced pathologies and emotional and cognitive dysfunction in triple transgenic Alzheimer’s mice

    Directory of Open Access Journals (Sweden)

    Hei-Jen eHuang

    2015-11-01

    Full Text Available Alzheimer's disease (AD is characterized by progressive cognitive decline and neuropsychiatric symptoms. Increasing evidence indicates that environmental risk factors in young adults may accelerate cognitive loss in AD and that hydrogen sulfide (H2S may represent an innovative treatment to slow the progression of AD. Therefore, the aim of this study was to evaluate the effects of NaHS, an H2S donor, in a triple transgenic AD mouse model (3×Tg-AD under footshock with situational reminders (SRs. Inescapable footshock with SRs induced anxiety and cognitive dysfunction as well as a decrease in the levels of plasma H2S and GSH and an increase in IL-6 levels in 3×Tg-AD mice. Under footshock with SR stimulus, amyloid deposition, tau protein hyperphosphorylation, and microgliosis were highly increased in the stress-responsive brain structures, including the hippocampus and amygdala, of the AD mice. Oxidative stress, inflammatory response, and β-site APP cleaving enzyme 1 (BACE1 levels were also increased, and the level of inactivated glycogen synthase kinase-3β (GSK3β (pSer9 was decreased in the hippocampi of AD mice subjected to footshock with SRs. Furthermore, the numbers of cholinergic neurons in the medial septum/diagonal band of Broca (MS/DB and noradrenergic neurons in the locus coeruleus (LC were also decreased in the 3×Tg-AD mice under footshock with SRs. These biochemical hallmarks and pathological presentations were all alleviated by the semi-acute administration of NaHS in the AD mice. Together, these findings suggest that footshock with SRs induces the impairment of spatial cognition and emotion, which involve pathological changes in the peripheral and central systems, including the hippocampus, MS/DB, LC, and BLA, and that the administration of NaHS may be a candidate strategy to ameliorate the progression of neurodegeneration.

  19. TRPV1 inhibition attenuates IL-13 mediated asthma features in mice by reducing airway epithelial injury.

    Science.gov (United States)

    Rehman, Rakhshinda; Bhat, Younus Ahmad; Panda, Lipsa; Mabalirajan, Ulaganathan

    2013-03-01

    Even though neurogenic axis is well known in asthma pathogenesis much attention had not been given on this aspect. Recent studies have reported the importance of TRP channels, calcium-permeable ion channels and key molecules in neurogenic axis, in asthma therapeutics. The role of TRPV1 channels has been underestimated in chronic respiratory diseases as TRPV1 knockout mice of C57BL/6 strains did not attenuate the features of these diseases. However, this could be due to strain differences in the distribution of airway capsaicin receptors. Here, we show that TRPV1 inhibition attenuates IL-13 induced asthma features by reducing airway epithelial injury in BALB/c mice. We found that IL-13 increased not only the lung TRPV1 levels but also TRPV1 expression in bronchial epithelia in BALB/c rather than in C57BL/6 mice. TRPV1 knockdown attenuated airway hyperresponsiveness, airway inflammation, goblet cell metaplasia and subepithelial fibrosis induced by IL-13 in BALB/c mice. Further, TRPV1 siRNA treatment reduced not only the cytosolic calpain and mitochondrial calpain 10 activities in the lung but also bronchial epithelial apoptosis indicating that TRPV1 siRNA might have corrected the intracellular and intramitochondrial calcium overload and its consequent apoptosis. Knockdown of IL-13 in allergen induced asthmatic mice reduced TRPV1, cytochrome c, and activities of calpain and caspase 3 in lung cytosol. Thus, these findings suggest that induction of TRPV1 with IL-13 in bronchial epithelia could lead to epithelial injury in in vivo condition. Since TRPV1 expression is correlated with human asthma severity, TRPV1 inhibition could be beneficial in attenuating airway epithelial injury and asthma features. Copyright © 2013 Elsevier B.V. All rights reserved.

  20. β-cell-specific IL-2 therapy increases islet Foxp3+Treg and suppresses type 1 diabetes in NOD mice.

    Science.gov (United States)

    Johnson, Mark C; Garland, Alaina L; Nicolson, Sarah C; Li, Chengwen; Samulski, R Jude; Wang, Bo; Tisch, Roland

    2013-11-01

    Interleukin-2 (IL-2) is a critical cytokine for the homeostasis and function of forkhead box p3-expressing regulatory T cells (Foxp3(+)Tregs). Dysregulation of the IL-2-IL-2 receptor axis is associated with aberrant Foxp3(+)Tregs and T cell-mediated autoimmune diseases such as type 1 diabetes. Treatment with recombinant IL-2 has been reported to enhance Foxp3(+)Tregs and suppress different models of autoimmunity. However, efficacy of IL-2 therapy is dependent on achieving sufficient levels of IL-2 to boost tissue-resident Foxp3(+)Tregs while avoiding the potential toxic effects of systemic IL-2. With this in mind, adeno-associated virus (AAV) vector gene delivery was used to localize IL-2 expression to the islets of NOD mice. Injection of a double-stranded AAV vector encoding IL-2 driven by a mouse insulin promoter (dsAAVmIP-IL2) increased Foxp3(+)Tregs in the islets but not the draining pancreatic lymph nodes. Islet Foxp3(+)Tregs in dsAAVmIP-IL2-treated NOD mice exhibited enhanced fitness marked by increased expression of Bcl-2, proliferation, and suppressor function. In contrast, ectopic IL-2 had no significant effect on conventional islet-infiltrating effector T cells. Notably, β-cell-specific IL-2 expression suppressed late preclinical type 1 diabetes in NOD mice. Collectively, these findings demonstrate that β-cell-specific IL-2 expands an islet-resident Foxp3(+)Tregs pool that effectively suppresses ongoing type 1 diabetes long term.

  1. Differential effects of amlodipine and atorvastatin treatment and their combination on atherosclerosis in ApoE*3-Leiden transgenic mice

    NARCIS (Netherlands)

    Delsing, D.J.; Jukema, J.W.; van de Wiel, M.A.; Emeis, J.; van der Laarse, A.; Havekes, L.M.; Princen, H.M.G.

    2003-01-01

    This study was designed to investigate the potential antiatherosclerotic effects of the calcium antagonist amlodipine as compared with the HMG-CoA reductase inhibitor atorvastatin and the combination of both in ApoE*3-Leiden transgenic mice. Four groups of 15 ApoE*3-Leiden mice were put on a

  2. A novel therapeutic hepatitis B vaccine induces cellular and humoral immune responses and breaks tolerance in hepatitis B virus (HBV) transgenic mice.

    Science.gov (United States)

    Buchmann, Pascale; Dembek, Claudia; Kuklick, Larissa; Jäger, Clemens; Tedjokusumo, Raindy; von Freyend, Miriam John; Drebber, Uta; Janowicz, Zbigniew; Melber, Karl; Protzer, Ulrike

    2013-02-06

    Therapeutic vaccines are currently being developed for chronic hepatitis B and C. As an alternative to long-term antiviral treatment or to support only partially effective therapy, they should activate the patient's immune system effectively to fight and finally control the virus. A paradigm of therapeutic vaccination is the potent induction of T-cell responses against key viral antigens - besides activation of a humoral immune response. We have evaluated the potential of a novel vaccine formulation comprising particulate hepatitis B surface (HBsAg) and core antigen (HBcAg), and the saponin-based ISCOMATRIX™ adjuvant for its ability to stimulate T and B cell responses in C57BL/6 mice and its ability to break tolerance in syngeneic HBV transgenic (HBVtg) mice. In C57BL/6 mice, the vaccine induced multifunctional HBsAg- and HBcAg-specific CD8+ T cells detected by staining for IFNγ, TNFα and IL-2, as well as high antibody titers against both antigens. Vaccination of HBVtg animals induced potent HBsAg- and HBcAg-specific CD8+ T-cell responses in spleens and HBcAg-specific CD8+ T-cell responses in livers as well as anti-HBs seroconversion two weeks post injection. Vaccination further reduced HBcAg expression in livers of HBVtg mice without causing liver damage. In summary, this study demonstrates therapeutic efficacy of a novel vaccine formulation in a mouse model of immunotolerant, chronic HBV infection. Copyright © 2013 Elsevier Ltd. All rights reserved.

  3. The utrophin A 5'-UTR drives cap-independent translation exclusively in skeletal muscles of transgenic mice and interacts with eEF1A2.

    Science.gov (United States)

    Miura, P; Coriati, A; Bélanger, G; De Repentigny, Y; Lee, J; Kothary, R; Holcik, M; Jasmin, B J

    2010-04-01

    The molecular mechanisms regulating expression of utrophin A are of therapeutic interest since upregulating its expression at the sarcolemma can compensate for the lack of dystrophin in animal models of Duchenne Muscular Dystrophy (DMD). The 5'-UTR of utrophin A has been previously shown to drive cap-independent internal ribosome entry site (IRES)-mediated translation in response to muscle regeneration and glucocorticoid treatment. To determine whether the utrophin A IRES displays tissue specific activity, we generated transgenic mice harboring control (CMV/betaGAL/CAT) or utrophin A 5'-UTR (CMV/betaGAL/UtrA/CAT) bicistronic reporter transgenes. Examination of multiple tissues from two CMV/betaGAL/UtrA/CAT lines revealed that the utrophin A 5'-UTR drives cap-independent translation of the reporter gene exclusively in skeletal muscles and no other examined tissues. This expression pattern suggested that skeletal muscle-specific factors are involved in IRES-mediated translation of utrophin A. We performed RNA-affinity chromatography experiments combined with mass spectrometry to identify trans-factors that bind the utrophin A 5'-UTR and identified eukaryotic elongation factor 1A2 (eEF1A2). UV-crosslinking experiments confirmed the specificity of this interaction. Regions of the utrophin A 5'-UTR that bound eEF1A2 also mediated cap-independent translation in C2C12 muscle cells. Cultured cells lacking eEF1A2 had reduced IRES activity compared with cells overexpressing eEF1A2. Together, these results suggest an important role for eEF1A2 in driving cap-independent translation of utrophin A in skeletal muscle. The trans-factors and signaling pathways driving skeletal-muscle specific IRES-mediated translation of utrophin A could provide unique targets for developing pharmacological-based DMD therapies.

  4. Inhibition of elastase-pulmonary emphysema in dominant-negative MafB transgenic mice.

    Science.gov (United States)

    Aida, Yasuko; Shibata, Yoko; Abe, Shuichi; Inoue, Sumito; Kimura, Tomomi; Igarashi, Akira; Yamauchi, Keiko; Nunomiya, Keiko; Kishi, Hiroyuki; Nemoto, Takako; Sato, Masamichi; Sato-Nishiwaki, Michiko; Nakano, Hiroshi; Sato, Kento; Kubota, Isao

    2014-01-01

    Alveolar macrophages (AMs) play important roles in the pathogenesis of chronic obstructive pulmonary disease (COPD). We previously demonstrated upregulation of the transcription factor MafB in AMs of mice exposed to cigarette smoke. The aim of this study was to elucidate the roles of MafB in the development of pulmonary emphysema. Porcine pancreatic elastase was administered to wild-type (WT) and dominant-negative (DN)-MafB transgenic (Tg) mice in which MafB activity was suppressed only in macrophages. We measured the mean linear intercept and conducted cell differential analysis of bronchoalveolar lavage (BAL) cells, surface marker analysis using flow cytometry, and immunohistochemical staining using antibodies to matrix metalloproteinase (MMP)-9 and MMP-12. Airspace enlargement of the lungs was suppressed significantly in elastase-treated DN-MafB Tg mice compared with treated WT mice. AMs with projected pseudopods were decreased in DN-MafB Tg mice. The number of cells intermediately positive for F4/80 and weakly or intermediately positive for CD11b, which are considered cell subsets of matured AMs, decreased in the BAL of DN-MafB Tg mice. Furthermore, MMP-9 and -12 were significantly downregulated in BAL cells of DN-MafB Tg mice. Because MMPs exacerbate emphysema, MafB may be involved in pulmonary emphysema development through altered maturation of macrophages and MMP expression.

  5. Sex bias in experimental immune-mediated, drug-induced liver injury in BALB/c mice: suggested roles for Tregs, estrogen, and IL-6.

    Directory of Open Access Journals (Sweden)

    Joonhee Cho

    Full Text Available Immune-mediated, drug-induced liver injury (DILI triggered by drug haptens is more prevalent in women than in men. However, mechanisms responsible for this sex bias are not clear. Immune regulation by CD4+CD25+FoxP3+ regulatory T-cells (Tregs and 17β-estradiol is crucial in the pathogenesis of sex bias in cancer and autoimmunity. Therefore, we investigated their role in a mouse model of immune-mediated DILI.To model DILI, we immunized BALB/c, BALB/cBy, IL-6-deficient, and castrated BALB/c mice with trifluoroacetyl chloride-haptenated liver proteins. We then measured degree of hepatitis, cytokines, antibodies, and Treg and splenocyte function.BALB/c females developed more severe hepatitis (p<0.01 and produced more pro-inflammatory hepatic cytokines and antibodies (p<0.05 than did males. Castrated males developed more severe hepatitis than did intact males (p<0.001 and females (p<0.05. Splenocytes cultured from female mice exhibited fewer Tregs (p<0.01 and higher IL-1β (p<0.01 and IL-6 (p<0.05 than did those from males. However, Treg function did not differ by sex, as evidenced by absence of sex bias in programmed death receptor-1 and responses to IL-6, anti-IL-10, anti-CD3, and anti-CD28. Diminished hepatitis in IL-6-deficient, anti-IL-6 receptor α-treated, ovariectomized, or male mice; undetectable IL-6 levels in splenocyte supernatants from ovariectomized and male mice; elevated splenic IL-6 and serum estrogen levels in castrated male mice, and IL-6 induction by 17β-estradiol in splenocytes from naïve female mice (p<0.05 suggested that 17β-estradiol may enhance sex bias through IL-6 induction, which subsequently discourages Treg survival. Treg transfer from naïve female mice to those with DILI reduced hepatitis severity and hepatic IL-6.17β-estradiol and IL-6 may act synergistically to promote sex bias in experimental DILI by reducing Tregs. Modulating Treg numbers may provide a therapeutic approach to DILI.

  6. Hippocampal changes produced by overexpression of the human CHRNA5/A3/B4 gene cluster may underlie cognitive deficits rescued by nicotine in transgenic mice.

    Science.gov (United States)

    Molas, Susanna; Gener, Thomas; Güell, Jofre; Martín, Mairena; Ballesteros-Yáñez, Inmaculada; Sanchez-Vives, Maria V; Dierssen, Mara

    2014-11-11

    Addiction involves long-lasting maladaptive changes including development of disruptive drug-stimuli associations. Nicotine-induced neuroplasticity underlies the development of tobacco addiction but also, in regions such as the hippocampus, the ability of this drug to enhance cognitive capabilities. Here, we propose that the genetic locus of susceptibility to nicotine addiction, the CHRNA5/A3/B4 gene cluster, encoding the α5, α3 and β4 subunits of the nicotinic acetylcholine receptors (nAChRs), may influence nicotine-induced neuroadaptations. We have used transgenic mice overexpressing the human cluster (TgCHRNA5/A3/B4) to investigate hippocampal structure and function in genetically susceptible individuals. TgCHRNA5/A3/B4 mice presented a marked reduction in the dendrite complexity of CA1 hippocampal pyramidal neurons along with an increased dendritic spine density. In addition, TgCHRNA5/A3/B4 exhibited increased VGLUT1/VGAT ratio in the CA1 region, suggesting an excitatory/inhibitory imbalance. These hippocampal alterations were accompanied by a significant impairment in short-term novelty recognition memory. Interestingly, chronic infusion of nicotine (3.25 mg/kg/d for 7 d) was able to rescue the reduced dendritic complexity, the excitatory/inhibitory imbalance and the cognitive impairment in TgCHRNA5/A3/B4. Our results suggest that chronic nicotine treatment may represent a compensatory strategy in individuals with altered expression of the CHRNA5/A3/B4 region.

  7. Dose-Dependent Rescue of KO Amelogenin Enamel by Transgenes in Vivo

    Directory of Open Access Journals (Sweden)

    Felicitas B. Bidlack

    2017-11-01

    Full Text Available Mice lacking amelogenin (KO have hypoplastic enamel. Overexpression of the most abundant amelogenin splice variant M180 and LRAP transgenes can substantially improve KO enamel, but only ~40% of the incisor thickness is recovered and the prisms are not as tightly woven as in WT enamel. This implies that the compositional complexity of the enamel matrix is required for different aspects of enamel formation, such as organizational structure and thickness. The question arises, therefore, how important the ratio of different matrix components, and in particular amelogenin splice products, is in enamel formation. Can optimal expression levels of amelogenin transgenes representing both the most abundant splice variants and cleavage product at protein levels similar to that of WT improve the enamel phenotype of KO mice? Addressing this question, our objective was here to understand dosage effects of amelogenin transgenes (Tg representing the major splice variants M180 and LRAP and cleavage product CTRNC on enamel properties. Amelogenin KO mice were mated with M180Tg, CTRNCTg and LRAPTg mice to generate M180Tg and CTRNCTg double transgene and M180Tg, CTRNCTg, LRAPTg triple transgene mice with transgene hemizygosity (on one allelle or homozygosity (on both alleles. Transgene homo- vs. hemizygosity was determined by qPCR and relative transgene expression confirmed by Western blot. Enamel volume and mineral density were analyzed by microCT, thickness and structure by SEM, and mechanical properties by Vickers microhardness testing. There were no differences in incisor enamel thickness between amelogenin KO mice with three or two different transgenes, but mice homozygous for a given transgene had significantly thinner enamel than mice hemizygous for the transgene (p < 0.05. The presence of the LRAPTg did not improve the phenotype of M180Tg/CTRNCTg/KO enamel. In the absence of endogenous amelogenin, the addition of amelogenin transgenes representing the most

  8. IL-7 treatment augments and prolongs sepsis-induced expansion of IL-10-producing B lymphocytes and myeloid-derived suppressor cells.

    Science.gov (United States)

    Kulkarni, Upasana; Herrmenau, Christoph; Win, Stephanie J; Bauer, Michael; Kamradt, Thomas

    2018-01-01

    Immunological dysregulation in sepsis is associated with often lethal secondary infections. Loss of effector cells and an expansion of immunoregulatory cell populations both contribute to sepsis-induced immunosuppression. The extent and duration of this immunosuppression are unknown. Interleukin 7 (IL-7) is important for the maintenance of lymphocytes and can accelerate the reconstitution of effector lymphocytes in sepsis. How IL-7 influences immunosuppressive cell populations is unknown. We have used the mouse model of peritoneal contamination and infection (PCI) to investigate the expansion of immunoregulatory cells as long-term sequelae of sepsis with or without IL-7 treatment. We analysed the frequencies and numbers of regulatory T cells (Tregs), double negative T cells, IL-10 producing B cells and myeloid-derived suppressor cells (MDSCs) for 3.5 months after sepsis induction. Sepsis induced an increase in IL-10+ B cells, which was enhanced and prolonged by IL-7 treatment. An increased frequency of MDSCs in the spleen was still detectable 3.5 months after sepsis induction and this was more pronounced in IL-7-treated mice. MDSCs from septic mice were more potent at suppressing T cell proliferation than MDSCs from control mice. Our data reveal that sepsis induces a long lasting increase in IL-10+ B cells and MDSCs. Late-onset IL-7 treatment augments this increase, which should be relevant for clinical interventions.

  9. Transmission and adaptation of chronic wasting disease to hamsters and transgenic mice: evidence for strains.

    Science.gov (United States)

    Raymond, Gregory J; Raymond, Lynne D; Meade-White, Kimberly D; Hughson, Andrew G; Favara, Cynthia; Gardner, Donald; Williams, Elizabeth S; Miller, Michael W; Race, Richard E; Caughey, Byron

    2007-04-01

    In vitro screening using the cell-free prion protein conversion system indicated that certain rodents may be susceptible to chronic wasting disease (CWD). Therefore, CWD isolates from mule deer, white-tailed deer, and elk were inoculated intracerebrally into various rodent species to assess the rodents' susceptibility and to develop new rodent models of CWD. The species inoculated were Syrian golden, Djungarian, Chinese, Siberian, and Armenian hamsters, transgenic mice expressing the Syrian golden hamster prion protein, and RML Swiss and C57BL10 wild-type mice. The transgenic mice and the Syrian golden, Chinese, Siberian, and Armenian hamsters had limited susceptibility to certain of the CWD inocula, as evidenced by incomplete attack rates and long incubation periods. For serial passages of CWD isolates in Syrian golden hamsters, incubation periods rapidly stabilized, with isolates having either short (85 to 89 days) or long (408 to 544 days) mean incubation periods and distinct neuropathological patterns. In contrast, wild-type mouse strains and Djungarian hamsters were not susceptible to CWD. These results show that CWD can be transmitted and adapted to some species of rodents and suggest that the cervid-derived CWD inocula may have contained or diverged into at least two distinct transmissible spongiform encephalopathy strains.

  10. IL-8 signaling is up-regulated in alcoholic hepatitis and DDC fed mice with Mallory Denk Bodies (MDBs) present.

    Science.gov (United States)

    Liu, Hui; French, Barbara A; Nelson, Tyler J; Li, Jun; Tillman, Brittany; French, Samuel W

    2015-10-01

    Chemokines and their receptors are involved in oncogenesis and in tumor progression, invasion, and metastasis. Various chemokines also promote cell proliferation and resistance to apoptosis of stressed cells. The chemokine CXCL8, also known as interleukin-8 (IL-8), is a proinflammatory molecule that has functions within the tumor microenvironment. Deregulation of IL-8 signaling is shown to play pivotal roles in tumorigenesis and progression. Mallory-Denk Bodies (MDBs) are prevalent in various liver diseases including alcoholic hepatitis (AH) and are formed in mice livers by feeding DDC. By comparing AH livers where MDBs had formed with normal livers, there were significant changes of IL-8 signaling by RNA sequencing (RNA-Seq) analyses. Real-time PCR analysis of CXCR2 further shows a 6-fold up-regulation in AH livers and a 26-fold up-regulation in the livers of DDC re-fed mice. IL-8 mRNA was also significantly up-regulated in AH livers and DDC re-fed mice livers. This indicates that CXCR2 and IL-8 may be crucial for liver MDB formation. MDB containing balloon hepatocytes in AH livers had increased intensity of staining of the cytoplasm for both CXCR2 and IL-8. Overexpression of IL-8 leads to an increase of the mitogen activated protein kinase (MAPK) cascade and exacerbates the inflammatory cycle. These observations constitute a demonstration of the altered regulation of IL-8 signaling in the livers of AH and mice fed DDC where MDBs formed, providing further insight into the mechanism of MDB formation mediated by IL-8 signaling in AH. Copyright © 2015 Elsevier Inc. All rights reserved.

  11. Localization and expression of substance P in transgenic mice overexpressing human APP751 with the London (V717I) and Swedish (K670M/N671L) mutations.

    Science.gov (United States)

    Willis, Michael; Hutter-Paier, Birgit; Wietzorrek, Georg; Windisch, Manfred; Humpel, Christian; Knaus, Hans Günther; Marksteiner, Josef

    2007-04-27

    Substance P-like immunoreactivity (-LI) is found in neuritic plaques, and is reduced in patients suffering from Alzheimer disease (AD). In this study, we examined the distribution and expression of substance P in transgenic mice overexpressing human amyloid precursor protein (hAPP) APP751 with the London (V717I) and Swedish (K670M/N671L) mutations. Immunohistochemistry was performed to localize substance P- and glial fibrillary acidic protein-LI by confocal microscopy. In hAPP transgenic mice, the number of beta-amyloid plaques significantly increased from 6 to 12 months. About 5% of beta-amyloid plaques were substance P-immunoreactive. In transgenic mice, the morphology of substance P-immunoreactive structures changed by consisting of swollen and dystrophic neurites mostly associated with beta-amyloid plaques. The overall localization and the relative substance P densities were not different between wild type and transgenic mice at 6 and 12 months. At month 12, a dramatic change in the distribution pattern of substance P-LI was observed as it was now expressed in a high number of reactive astrocytes. This expression of substance P in astrocytes was mainly found in the hippocampal formation and thalamic nuclei with a preferential association with beta-amyloid plaques, whereas in cortical regions only faintly substance P-immunoreactive astrocytes were observed. This study indicates that substance P undergoes complex changes in this animal Alzheimer disease model. Future experiments including substance P antagonists are necessary to further explore the interaction between beta-amyloid deposits and substance P.

  12. Adjuvant effects of recombinant giant panda (Ailuropoda melanoleuca) IL-18 on the canine distemper disease vaccine in mice.

    Science.gov (United States)

    Yan, Yue; Niu, Lili; Deng, Jiabo; Wang, Qiang; Yu, Jianqiu; Zhang, Yizheng; Wang, Jianxi; Chen, Jiao; Wei, Changhe; Tan, Xuemei

    2015-02-01

    Canine distemper virus (CDV) is a morbillivirus known to cause morbidity and mortality in a broad range of animals. Giant pandas (Ailuropoda melanoleuca), especially captive ones, are susceptible to natural infection with CDV. Interleukin-18 (IL-18) is a powerful adjuvant molecule that can enhance the development of antigen-specific immunity and vaccine efficacy. In this study, a giant panda IL-18 gene eukaryotic expression plasmid (pcAmIL-18) was constructed. Female BALB/c mice were muscularly inoculated with the plasmids pcAmIL-18, pcDNA3.1 and PBS, respectively. They were subsequently injected with an attenuated CDV vaccine for dogs, and the induced humoral and cellular responses were evaluated. The results showed that pcAmIL-18 remarkably improved the level of specific antibody, IFN-γ and IL-2 in mice sera, the T lymphocyte proliferation index and the percentage of CD4(+) and CD8(+) cells. These data indicated that pcAmIL-18 is a potential adjuvant that promotes specific immunity.

  13. Breaking Tolerance in Transgenic Mice Expressing the Human TSH Receptor A-Subunit: Thyroiditis, Epitope Spreading and Adjuvant as a ‘Double Edged Sword’

    Science.gov (United States)

    McLachlan, Sandra M.; Aliesky, Holly A.; Chen, Chun-Rong; Chong, Gao; Rapoport, Basil

    2012-01-01

    Transgenic mice with the human thyrotropin-receptor (TSHR) A-subunit targeted to the thyroid are tolerant of the transgene. In transgenics that express low A-subunit levels (Lo-expressors), regulatory T cell (Treg) depletion using anti-CD25 before immunization with adenovirus encoding the A-subunit (A-sub-Ad) breaks tolerance, inducing extensive thyroid lymphocytic infiltration, thyroid damage and antibody spreading to other thyroid proteins. In contrast, no thyroiditis develops in Hi-expressor transgenics or wild-type mice. Our present goal was to determine if thyroiditis could be induced in Hi-expressor transgenics using a more potent immunization protocol: Treg depletion, priming with Complete Freund's Adjuvant (CFA) + A-subunit protein and further Treg depletions before two boosts with A-sub-Ad. As controls, anti-CD25 treated Hi- and Lo-expressors and wild-type mice were primed with CFA+ mouse thyroglobulin (Tg) or CFA alone before A-sub-Ad boosting. Thyroiditis developed after CFA+A-subunit protein or Tg and A-sub-Ad boosting in Lo-expressor transgenics but Hi- expressors (and wild-type mice) were resistant to thyroiditis induction. Importantly, in Lo-expressors, thyroiditis was associated with the development of antibodies to the mouse TSHR downstream of the A-subunit. Unexpectedly, we observed that the effect of bacterial products on the immune system is a “double-edged sword”. On the one hand, priming with CFA (mycobacteria emulsified in oil) plus A-subunit protein broke tolerance to the A-subunit in Hi-expressor transgenics leading to high TSHR antibody levels. On the other hand, prior treatment with CFA in the absence of A-subunit protein inhibited responses to subsequent immunization with A-sub-Ad. Consequently, adjuvant activity arising in vivo after bacterial infections combined with a protein autoantigen can break self-tolerance but in the absence of the autoantigen, adjuvant activity can inhibit the induction of immunity to autoantigens (like the

  14. Augmentation of Antitumor Immunity by Human and Mouse CAR T Cells Secreting IL-18

    Directory of Open Access Journals (Sweden)

    Biliang Hu

    2017-09-01

    Full Text Available The effects of transgenically encoded human and mouse IL-18 on T cell proliferation and its application in boosting chimeric antigen receptor (CAR T cells are presented. Robust enhancement of proliferation of IL-18-secreting human T cells occurred in a xenograft model, and this was dependent on TCR and IL-18R signaling. IL-18 augmented IFN-γ secretion and proliferation of T cells activated by the endogenous TCR. TCR-deficient, human IL-18-expressing CD19 CAR T cells exhibited enhanced proliferation and antitumor activity in the xenograft model. Antigen-propelled activation of cytokine helper ensemble (APACHE CAR T cells displayed inducible expression of IL-18 and enhanced antitumor immunity. In an intact mouse tumor model, CD19-IL-18 CAR T cells induced deeper B cell aplasia, significantly enhanced CAR T cell proliferation, and effectively augmented antitumor effects in mice with B16F10 melanoma. These findings point to a strategy to develop universal CAR T cells for patients with solid tumors.

  15. An Lck-cre transgene accelerates autoantibody production and lupus development in (NZB × NZW)F1 mice.

    Science.gov (United States)

    Nelson, R K; Gould, K A

    2016-02-01

    Lupus is an autoimmune disease characterized by the development of antinuclear autoantibodies and immune complex-mediated tissue damage. T cells in lupus patients appear to undergo apoptosis at an increased rate, and this enhanced T cell apoptosis has been postulated to contribute to lupus pathogenesis by increasing autoantigen load. However, there is no direct evidence to support this hypothesis. In this study, we show that an Lck-cre transgene, which increases T cell apoptosis as a result of T cell-specific expression of cre recombinase, accelerates the development of autoantibodies and nephritis in lupus-prone (NZB × NZW)F1 mice. Although the enhanced T cell apoptosis in Lck-cre transgenic mice resulted in an overall decrease in the relative abundance of splenic CD4(+) and CD8(+) T cells, the proportion of activated CD4(+) T cells was increased and no significant change was observed in the relative abundance of suppressive T cells. We postulate that the Lck-cre transgene promoted lupus by enhancing T cell apoptosis, which, in conjunction with the impaired clearance of apoptotic cells in lupus-prone mice, increased the nuclear antigen load and accelerated the development of anti-nuclear autoantibodies. Furthermore, our results also underscore the importance of including cre-only controls in studies using the cre-lox system. © The Author(s) 2015.

  16. ADAM 12 protease induces adipogenesis in transgenic mice

    DEFF Research Database (Denmark)

    Kawaguchi, Nobuko; Xu, Xiufeng; Tajima, Rie

    2002-01-01

    ADAM 12 (meltrin-alpha) is a member of the ADAM (a disintegrin and metalloprotease) family. ADAM 12 functions as an active metalloprotease, supports cell adhesion, and has been implicated in myoblast differentiation and fusion. Human ADAM 12 exists in two forms: the prototype membrane-anchored pr......ADAM 12 (meltrin-alpha) is a member of the ADAM (a disintegrin and metalloprotease) family. ADAM 12 functions as an active metalloprotease, supports cell adhesion, and has been implicated in myoblast differentiation and fusion. Human ADAM 12 exists in two forms: the prototype membrane......-anchored protein, ADAM 12-L, and a shorter secreted form, ADAM 12-S. Here we report the occurrence of adipocytes in the skeletal muscle of transgenic mice in which overexpression of either form is driven by the muscle creatine kinase promoter. Cells expressing a marker of early adipogenesis were apparent...

  17. Treatment with the anti-IL-6 receptor antibody attenuates muscular dystrophy via promoting skeletal muscle regeneration in dystrophin-/utrophin-deficient mice.

    Science.gov (United States)

    Wada, Eiji; Tanihata, Jun; Iwamura, Akira; Takeda, Shin'ichi; Hayashi, Yukiko K; Matsuda, Ryoichi

    2017-10-27

    Chronic increases in the levels of the inflammatory cytokine interleukin-6 (IL-6) in serum and skeletal muscle are thought to contribute to the progression of muscular dystrophy. Dystrophin/utrophin double-knockout (dKO) mice develop a more severe and progressive muscular dystrophy than the mdx mice, the most common murine model of Duchenne muscular dystrophy (DMD). In particular, dKO mice have smaller body sizes and muscle diameters, and develop progressive kyphosis and fibrosis in skeletal and cardiac muscles. As mdx mice and DMD patients, we found that IL-6 levels in the skeletal muscle were significantly increased in dKO mice. Thus, in this study, we aimed to analyze the effects of IL-6 receptor (IL-6R) blockade on the muscle pathology of dKO mice. Male dKO mice were administered an initial injection (200 mg/kg intraperitoneally (i.p.)) of either the anti-IL-6R antibody MR16-1 or an isotype-matched control rat IgG at the age of 14 days, and were then given weekly injections (25 mg/kg i.p.) until 90 days of age. Treatment of dKO mice with the MR16-1 antibody successfully inhibited the IL-6 pathway in the skeletal muscle and resulted in a significant reduction in the expression levels of phosphorylated signal transducer and activator of transcription 3 in the skeletal muscle. Pathologically, a significant increase in the area of embryonic myosin heavy chain-positive myofibers and muscle diameter, and reduced fibrosis in the quadriceps muscle were observed. These results demonstrated the therapeutic effects of IL-6R blockade on promoting muscle regeneration. Consistently, serum creatine kinase levels were decreased. Despite these improvements observed in the limb muscles, degeneration of the diaphragm and cardiac muscles was not ameliorated by the treatment of mice with the MR16-1 antibody. As no adverse effects of treatment with the MR16-1 antibody were observed, our results indicate that the anti-IL-6R antibody is a potential therapy for muscular dystrophy

  18. Cerebral 5-HT2A receptor binding, but not mGluR2, is increased in tryptophan hydroxylase 2 decrease-of-function mice

    DEFF Research Database (Denmark)

    Jørgensen, Christinna Vangsgaard; Jacobsen, Jacob P; Caron, Marc G

    2013-01-01

    Transgenic mice with a knock-in (KI) of a tryptophan hydroxylase 2 (Tph2) R439H mutation, analogous to the Tph2 R441H single-nucleotide polymorphism originally identified in a late life depression cohort, have markedly reduced levels of 5-hydroxytryptamine (5-HT). These Tph2KI mice are therefore...

  19. Overcoming antigen masking of anti-amyloidbeta antibodies reveals breaking of B cell tolerance by virus-like particles in amyloidbeta immunized amyloid precursor protein transgenic mice

    Directory of Open Access Journals (Sweden)

    Ugen Kenneth E

    2004-06-01

    Full Text Available Abstract Background In prior work we detected reduced anti-Aβ antibody titers in Aβ-vaccinated transgenic mice expressing the human amyloid precursor protein (APP compared to nontransgenic littermates. We investigated this observation further by vaccinating APP and nontransgenic mice with either the wild-type human Aβ peptide, an Aβ peptide containing the "Dutch Mutation", E22Q, or a wild-type Aβ peptide conjugated to papillomavirus virus-like particles (VLPs. Results Anti-Aβ antibody titers were lower in vaccinated APP than nontransgenic mice even when vaccinated with the highly immunogenic Aβ E22Q. One concern was that human Aβ derived from the APP transgene might mask anti-Aβ antibodies in APP mice. To test this possibility, we dissociated antigen-antibody complexes by incubation at low pH. The low pH incubation increased the anti-Aβ antibody titers 20–40 fold in APP mice but had no effect in sera from nontransgenic mice. However, even after dissociation, the anti-Aβ titers were still lower in transgenic mice vaccinated with wild-type Aβ or E22Q Aβ relative to non-transgenic mice. Importantly, the dissociated anti-Aβ titers were equivalent in nontransgenic and APP mice after VLP-based vaccination. Control experiments demonstrated that after acid-dissociation, the increased antibody titer did not cross react with bovine serum albumin nor alpha-synuclein, and addition of Aβ back to the dissociated serum blocked the increase in antibody titers. Conclusions Circulating human Aβ can interfere with ELISA assay measurements of anti-Aβ titers. The E22Q Aβ peptide vaccine is more immunogenic than the wild-type peptide. Unlike peptide vaccines, VLP-based vaccines against Aβ abrogate the effects of Aβ self-tolerance.

  20. Upregulation of TREM2 Ameliorates Neuroinflammatory Responses and Improves Cognitive Deficits Triggered by Surgical Trauma in Appswe/PS1dE9 Mice

    Directory of Open Access Journals (Sweden)

    Yanhua Jiang

    2018-04-01

    Full Text Available Background/Aims: TREM2 plays a crucial role in modulating microglial function through interaction with DAP12, the adapter for TREM2. Emerging evidence has demonstrated that TREM2 could suppress neuroinflammatory responses by repression of microglia-mediated cytokine production. This study investigated the potential role of TREM2 in surgery-induced cognitive deficits and neuroinflammatory responses in wild-type (WT and APPswe/PS1dE9 mice. Methods: Adult APPswe/PS1dE9 transgenic male mice (a classic transgenic model of Alzheimer’s disease, 3 months old and their age-matched WT mice received intracerebral lentiviral particles encoding the mouse TREM2 gene and then were subjected to partial hepatectomy at 1 month after the lentiviral particle injection. The behavioral changes were evaluated with an open-field test and Morris water maze test on postoperative days 3, 7, and 14. Hippocampal TREM2, DAP12, and interleukin (IL-1β were measured at each time point. Ionized calcium-binding adapter molecule 1 (Iba-1, microglial M2 phenotype marker Arg1, synaptophysin, tau hyperphosphorylation (T396, and glycogen synthase kinase-3β (GSK-3β were also examined in the hippocampus. Results: Surgical trauma induced an exacerbated cognitive impairment and enhanced hippocampal IL-1β expression in the transgenic mice on postoperative days 3 and 7. A corresponding decline in the levels of TREM2 was also found on postoperative days 3, 7, and 14. Overexpression of TREM2 downregulated the levels of IL-1β, ameliorated T396 expression, inhibited the activity of GSK-3β, and improved sickness behavior. Increased Arg1 expression and a high level of synaptophysin were also observed in the transgenic mice following TREM2 overexpression. Conclusion: The downregulation of TREM2 exacerbated surgery-induced cognitive deficits and exaggerated neuroinflammatory responses in this rodent model. Overexpression of TREM2 potentially attenuated these effects by decreasing the

  1. Chemokine CXCL13 mediates orofacial neuropathic pain via CXCR5/ERK pathway in the trigeminal ganglion of mice.

    Science.gov (United States)

    Zhang, Qian; Cao, De-Li; Zhang, Zhi-Jun; Jiang, Bao-Chun; Gao, Yong-Jing

    2016-07-11

    Trigeminal nerve damage-induced neuropathic pain is a severely debilitating chronic orofacial pain syndrome. Spinal chemokine CXCL13 and its receptor CXCR5 were recently demonstrated to play a pivotal role in the pathogenesis of spinal nerve ligation-induced neuropathic pain. Whether and how CXCL13/CXCR5 in the trigeminal ganglion (TG) mediates orofacial pain are unknown. The partial infraorbital nerve ligation (pIONL) was used to induce trigeminal neuropathic pain in mice. The expression of ATF3, CXCL13, CXCR5, and phosphorylated extracellular signal-regulated kinase (pERK) in the TG was detected by immunofluorescence staining and western blot. The effect of shRNA targeting on CXCL13 or CXCR5 on pain hypersensitivity was checked by behavioral testing. pIONL induced persistent mechanical allodynia and increased the expression of ATF3, CXCL13, and CXCR5 in the TG. Inhibition of CXCL13 or CXCR5 by shRNA lentivirus attenuated pIONL-induced mechanical allodynia. Additionally, pIONL-induced neuropathic pain and the activation of ERK in the TG were reduced in Cxcr5 (-/-) mice. Furthermore, MEK inhibitor (PD98059) attenuated mechanical allodynia and reduced TNF-α and IL-1β upregulation induced by pIONL. TNF-α inhibitor (Etanercept) and IL-1β inhibitor (Diacerein) attenuated pIONL-induced orofacial pain. Finally, intra-TG injection of CXCL13 induced mechanical allodynia, increased the activation of ERK and the production of TNF-α and IL-1β in the TG of WT mice, but not in Cxcr5 (-/-) mice. Pretreatment with PD98059, Etanercept, or Diacerein partially blocked CXCL13-induced mechanical allodynia, and PD98059 also reduced CXCL13-induced TNF-α and IL-1β upregulation. CXCL13 and CXCR5 contribute to orofacial pain via ERK-mediated proinflammatory cytokines production. Targeting CXCL13/CXCR5/ERK/TNF-α and IL-1β pathway in the trigeminal ganglion may offer effective treatment for orofacial neuropathic pain.

  2. Beta-catenin accelerates human papilloma virus type-16 mediated cervical carcinogenesis in transgenic mice.

    Directory of Open Access Journals (Sweden)

    Gülay Bulut

    Full Text Available Human papilloma virus (HPV is the principal etiological agent of cervical cancer in women, and its DNA is present in virtually all of these tumors. However, exposure to the high-risk HPV types alone is insufficient for tumor development. Identifying specific collaborating factors that will lead to cervical cancer remains an unanswered question, especially because millions of women are exposed to HPV. Our earlier work using an in vitro model indicated that activation of the canonical Wnt pathway in HPV-positive epithelial cells was sufficient to induce anchorage independent growth. We therefore hypothesized that constitutive activation of this pathway might function as the "second hit." To address this possibility, we developed two double-transgenic (DT mouse models, K14-E7/ΔN87βcat and K14-HPV16/ΔN87βcat that express either the proteins encoded by the E7 oncogene or the HPV16 early region along with constitutively active β-catenin, which was expressed by linking it to the keratin-14 (K14 promoter. We initiated tumor formation by treating all groups with estrogen for six months. Invasive cervical cancer was observed in 11% of the K14-ΔN87βcat mice, expressing activated β-catenin and in 50% of the animals expressing the HPV16 E7 oncogene. In double-transgenic mice, coexpression of β-catenin and HPV16 E7 induced invasive cervical cancer at about 7 months in 94% of the cases. We did not observe cervical cancer in any group unless the mice were treated with estrogen. In the second model, K14-HPV16 mice suffered cervical dysplasias, but this phenotype was not augmented in HPV16/ΔN87βcat mice. In summary, the phenotypes of the K14-E7/ΔN87βcat mice support the hypothesis that activation of the Wnt/β-catenin pathway in HPV-associated premalignant lesions plays a functional role in accelerating cervical carcinogenesis.

  3. Long-term high-level expression of human beta-globin occurs following transplantation of transgenic marrow into irradiated mice.

    Science.gov (United States)

    Himelstein, A; Ward, M; Podda, S; de la Flor Weiss, E; Costantini, F; Bank, A

    1993-03-01

    When the human beta-globin gene is transferred into the bone marrow cells of live mice, its expression is very low. To investigate the reason for this, we transferred the bone marrow of transgenic mice containing and expressing the human beta-globin into irradiated recipients. We demonstrate that long-term high level expression of the human beta-globin gene can be maintained in the marrow and blood of irradiated recipients following transplantation. Although expression decreased over time in most animals because of host marrow reconstitution, the ratio of human beta-globin transgene expression to endogenous mouse beta-globin gene expression in donor-derived erythroid cells remained constant over time. We conclude that there is no inherent limitation to efficient expression of an exogenous human beta-globin gene in mouse bone marrow cells following marrow transplantation.

  4. Expression profile of microRNA-146a along HPV-induced multistep carcinogenesis: a study in HPV16 transgenic mice.

    Science.gov (United States)

    Araújo, Rita; Santos, Joana M O; Fernandes, Mara; Dias, Francisca; Sousa, Hugo; Ribeiro, Joana; Bastos, Margarida M S M; Oliveira, Paula A; Carmo, Diogo; Casaca, Fátima; Silva, Sandra; Medeiros, Rui; Gil da Costa, Rui M

    2018-02-01

    Persistent human papillomavirus (HPV) infection is associated with the development of certain types of cancer and the dysregulation of microRNAs has been implicated in HPV-associated carcinogenesis. This is the case of microRNA-146a (miR-146a), which is thought to regulate tumor-associated inflammation. We sought to investigate the expression levels of miR-146a during HPV16-mediated carcinogenesis using skin samples from K14-HPV16 transgenic mice which develop the consecutive phases of the carcinogenesis process. Female transgenic (HPV +/- ) and wild-type (HPV -/- ) mice were sacrificed at 24-26 weeks-old or 28-30 weeks-old. Chest and ear skin samples from HPV +/- and HPV -/- mice were histologically classified and used for microRNA extraction and quantification by qPCR. Chest skin samples from 24 to 26 weeks-old HPV +/- mice presented diffuse epidermal hyperplasia and only 22.5% showed multifocal dysplasia, while at 28-30 weeks-old all (100.0%) HPV +/- animals showed epidermal dysplasia. All HPV +/- ear skin samples showed carcinoma in situ (CIS). MiR-146a expression levels were higher in HPV +/- compared to HPV -/- mice (p = 0.006). There was also an increase in miR-146a expression in dysplastic skin lesions compared with hyperplasic lesions (p = 0.011). Samples showing CIS had a significant decrease in miR-146a expression when compared to samples showing epidermal hyperplasia (p = 0.018) and epidermal dysplasia (p = 0.009). These results suggest that HPV16 induces the overexpression of miR-146a in the initial stages of carcinogenesis (hyperplasia and dysplasia), whereas decreases its expression at later stages (CIS). Taken together, these data implicate and suggest different roles of miR-146a in HPV-mediated carcinogenesis.

  5. Erinacine A-enriched Hericium erinaceus mycelium ameliorates Alzheimer's disease-related pathologies in APPswe/PS1dE9 transgenic mice.

    Science.gov (United States)

    Tsai-Teng, Tzeng; Chin-Chu, Chen; Li-Ya, Lee; Wan-Ping, Chen; Chung-Kuang, Lu; Chien-Chang, Shen; Chi-Ying, Huang F; Chien-Chih, Chen; Shiao, Young-Ji

    2016-06-27

    The fruiting body of Hericium erinaceus has been demonstrated to possess anti-dementia activity in mouse model of Alzheimer's disease and people with mild cognitive impairment. However, the therapeutic potential of Hericium erinaceus mycelia on Alzheimer's disease remains unclear. In this study, the effects of erinacine A-enriched Hericium erinaceus mycelia (HE-My) on the pathological changes in APPswe/PS1dE9 transgenic mouse model of Alzheimer's disease are studied. After a 30 day oral administration to 5 month-old female APPswe/PS1dE9 transgenic mice, we found that HE-My and its ethanol extracts (HE-Et) attenuated cerebral Aβ plaque burden. It's worth noting that the attenuated portion of a plaque is the non-compact structure. The level of insulin-degrading enzyme was elevated by both HE-My and HE-Et in cerebral cortex. On the other hand, the number of plaque-activated microglia and astrocytes in cerebral cortex and hippocampus were diminished, the ratio of nerve growth factor (NGF) to NGF precursor (proNGF) was increased and hippocampal neurogenesis was promoted after these administrations. All the mentioned benefits of these administrations may therefore improve the declined activity of daily living skill in APPswe/PS1dE9 transgenic mice. These results highlight the therapeutic potential of HE-My and HE-Et on Alzheimer's disease. Therefore, the effective components of HE-My and HE-Et are worth to be developed to become a therapeutic drug for Alzheimer's disease.

  6. Impaired social behavior in 5-HT3A receptor knockout mice

    Directory of Open Access Journals (Sweden)

    Laura A Smit-Rigter

    2010-11-01

    Full Text Available The 5-HT3 receptor is a ligand-gated ion channel expressed on interneurons throughout the brain. So far, analysis of the 5-HT3A knockout mouse revealed changes in nociceptive processing and a reduction in anxiety related behavior. Recently, it was shown that the 5-HT3 receptor is also expressed on Cajal-Retzius cells which play a key role in cortical development and that knockout mice lacking this receptor showed aberrant growth of the dendritic tree of cortical layer II/III pyramidal neurons. Other mouse models in which serotonergic signaling was disrupted during development showed similar morphological changes in the cortex, and in addition, also deficits in social behavior. Here, we subjected male and female 5-HT3A knockout mice and their non-transgenic littermates to several tests of social behavior. We found that 5-HT3A knockout mice display impaired social communication in the social transmission of food preference task. Interestingly, we showed that in the social interaction test only female 5-HT3A knockout mice spent less time in reciprocal social interaction starting after 5 minutes of testing. Moreover, we observed differences in preference for social novelty for male and female 5-HT3A knockout mice during the social approach test. However, no changes in olfaction, exploratory activity and anxiety were detected. These results indicate that the 5-HT3A knockout mouse displays impaired social behavior with specific changes in males and females, reminiscent to other mouse models in which serotonergic signaling is disturbed in the developing brain.

  7. Higher susceptibility of NOD/LtSz-scid Il2rg−/− NSG mice to xenotransplanted lung cancer cell lines

    International Nuclear Information System (INIS)

    Kanaji, Nobuhiro; Tadokoro, Akira; Susaki, Kentaro; Yokokura, Saki; Ohmichi, Kiyomi; Haba, Reiji; Watanabe, Naoki; Bandoh, Shuji; Ishii, Tomoya; Dobashi, Hiroaki; Matsunaga, Takuya

    2014-01-01

    No lung cancer xenograft model using non-obese diabetic (NOD)-scid Il2rg −/− mice has been reported. The purpose of this study is to select a suitable mouse strain as a xenogenic host for testing tumorigenicity of lung cancer. We directly compared the susceptibility of four immunodeficient mouse strains, c-nu, C.B-17 scid, NOD-scid, and NOD/LtSz-scid Il2rg −/− (NSG) mice, for tumor formation from xenotransplanted lung cancer cell lines. Various numbers (10 1 –10 5 cells/head) of two lung cancer cell lines, A549 and EBC1, were subcutaneously inoculated and tumor sizes were measured every week up to 12 weeks. When 10 4 EBC1 cells were inoculated, no tumor formation was observed in BALB/c-nu or C.B-17 scid mice. Tumors developed in two of the five NOD-scid mice (40%) and in all the five NSG mice (100%). When 10 3 EBC1 cells were injected, no tumors developed in any strain other than NSG mice, while tumorigenesis was achieved in all the five NSG mice (100%, P=0.0079) within 9 weeks. NSG mice similarly showed higher susceptibility to xenotransplantation of A549 cells. Tumor formation was observed only in NSG mice after inoculation of 10 3 or fewer A549 cells (40% vs 0% in 15 NSG mice compared with others, respectively, P=0.0169). We confirmed that the engrafted tumors originated from inoculated human lung cancer cells by immunohistochemical staining with human cytokeratin and vimentin. NSG mice may be the most suitable strain for testing tumorigenicity of lung cancer, especially if only a few cells are available

  8. Gene-mutation assays in lambda-lacZ transgenic mice : comparison of lacZ with endogenous genes in splenocytes and small intestinal epithelium

    NARCIS (Netherlands)

    Delft, J.H.M. van; Bergmans, A.; Dam, F.J. van; Tates, A.D.; Howard, L.; Winton, D.J.; Baan, R.A.

    1998-01-01

    Comparison of results derived from transgenic animal gene-mutation assays with those from mutation analyses in endogenous genes is an important step in the validation of the former. We have used λlacZ transgenic mice to study alkylation-induced mutagenesis in vivo in (a) lacZ and hprt in spleen

  9. MR Microimaging of amyloid plaques in Alzheimer's disease transgenic mice

    Energy Technology Data Exchange (ETDEWEB)

    Wengenack, Thomas M.; Poduslo, Joseph F. [Mayo Clinic, Molecular Neurobiology Laboratory, Departments of Neurology, Neuroscience, and Biochemistry/Molecular Biology, Rochester, MN (United States); Jack, Clifford R. [Mayo Clinic, Department of Radiology, Rochester, MN (United States); Garwood, Michael [University of Minnesota Medical School, Center for Magnetic Resonance Research, Minneapolis, MN (United States); University of Minnesota Medical School, Department of Radiology, Minneapolis, MN (United States)

    2008-03-15

    Alzheimer's disease (AD) is the most prevalent neurological condition affecting industrialized nations and will rapidly become a healthcare crisis as the population ages. Currently, the post-mortem histological observation of amyloid plaques and neurofibrillary tangles is the only definitive diagnosis available for AD. A pre-mortem biological or physiological marker specific for AD used in conjunction with current neurological and memory testing could add a great deal of confidence to the diagnosis of AD and potentially allow therapeutic intervention much earlier in the disease process. Our group has developed MRI techniques to detect individual amyloid plaques in AD transgenic mouse brain in vivo. We are also developing contrast-enhancing agents to increase the specificity of detection of amyloid plaques. Such in vivo imaging of amyloid plaques will also allow the evaluation of anti-amyloid therapies being developed by the pharmaceutical industry in pre-clinical trials of AD transgenic mice. This short review briefly discusses our progress in these areas. (orig.)

  10. IL-33 Enhanced the Proliferation and Constitutive Production of IL-13 and IL-5 by Fibrocytes

    Directory of Open Access Journals (Sweden)

    Hisako Hayashi

    2014-01-01

    Full Text Available Interleukin-33 appears to play important roles in the induction of allergic airway inflammation. However, whether IL-33 is involved in airway remodeling remains unclear. Because fibrocytes contribute to tissue remodeling in the setting of chronic inflammation, we examined the effects of IL-33 on fibrocyte functions. Fibrocytes were generated in vitro from peripheral blood mononuclear cells by culturing in the presence of platelet derived growth factors and the cells were stimulated with IL-33. IL-33 enhanced cell proliferation, α-SMA expression, and pro-MMP-9 activity by the fibrocytes without increasing endogenous transforming growth factor-β1 production. Fibrocytes constitutively expressed IL-13 and IL-5, and their production was augmented by stimulation with IL-33. Dexamethasone inhibited the functions of fibrocytes, but IL-33 made fibrocytes slightly refractory to the inhibitory effect of dexamethasone in terms of IL-13 production. Montelukast suppressed IL-13 production by nonstimulated fibrocytes but not those stimulated by IL-33. These findings suggest that IL-33 is involved in the airway remodeling process through its modulation of fibrocyte function independent of antigen stimulation. IL-33 might partially reduce the therapeutic effects of glucocorticoid and cysteinyl leukotriene receptor antagonist on fibrocyte-mediated Th2 responses.

  11. A milk protein gene promoter directs the expression of human tissue plasminogen activator cDNA to the mammary gland in transgenic mice

    International Nuclear Information System (INIS)

    Pittius, C.W.; Hennighausen, L.; Lee, E.; Westphal, H.; Nicols, E.; Vitale, J.; Gordon, K.

    1988-01-01

    Whey acidic protein (WAP) is a major whey protein in mouse milk. Its gene is expressed in the lactating mammary gland and is inducible by steroid and peptide hormones. A series of transgenic mice containing a hybrid gene in which human tissue plasminogen activator (tPA) cDNA is under the control of the murine WAP gene promoter had previously been generated. In this study, 21 tissues from lactating and virgin transgenic female mice containing the WAP-tPA hybrid gene were screened for the distribution of murine WAP and human tPA transcripts. Like the endogenous WAP RNA, WAP-tPA RNA was expressed predominantly in mammary gland tissue and appeared to be inducible by lactation. Whereas WAP transcripts were not detected in 22 tissues of virgin mice, low levels of WAP-tPA RNA, which were not modulated during lactation, were found in tongue, kidney, and sublingual gland. These studies demonstrate that the WAP gene promoter can target the expression of a transgene to the mammary gland and that this expression is inducible during lactation

  12. Ly108 expression distinguishes subsets of invariant NKT cells that help autoantibody production and secrete IL-21 from those that secrete IL-17 in lupus prone NZB/W mice.

    Science.gov (United States)

    Tang, Xiaobin; Zhang, Bo; Jarrell, Justin A; Price, Jordan V; Dai, Hongjie; Utz, Paul J; Strober, Samuel

    2014-05-01

    Lupus is a systemic autoimmune disease characterized by anti-nuclear antibodies in humans and genetically susceptible NZB/W mice that can cause immune complex glomerulonephritis. T cells contribute to lupus pathogenesis by secreting pro-inflammatory cytokines such as IL-17, and by interacting with B cells and secreting helper factors such as IL-21 that promote production of IgG autoantibodies. In the current study, we determined whether purified NKT cells or far more numerous conventional non-NKT cells in the spleen of NZB/W female mice secrete IL-17 and/or IL-21 after TCR activation in vitro, and provide help for spontaneous IgG autoantibody production by purified splenic CD19(+) B cells. Whereas invariant NKT cells secreted large amounts of IL-17 and IL-21, and helped B cells, non-NKT cells did not. The subset of IL-17 secreting NZB/W NKT cells expressed the Ly108(lo)CD4(-)NK1.1(-) phenotype, whereas the IL-21 secreting subset expressed the Ly108(hi)CD4(+)NK1.1(-) phenotype and helped B cells secrete a variety of IgG anti-nuclear antibodies. α-galactocylceramide enhanced the helper activity of NZB/W and B6.Sle1b NKT cells for IgG autoantibody secretion by syngeneic B cells. In conclusion, different subsets of iNKT cells from mice with genetic susceptibility to lupus can contribute to pathogenesis by secreting pro-inflammatory cytokines and helping autoantibody production. Copyright © 2014 Elsevier Ltd. All rights reserved.

  13. A negative search of acute canine distemper virus infection in DogSLAM transgenic C57BL/6 mice

    Directory of Open Access Journals (Sweden)

    Somporn Techangamsuwan

    2010-12-01

    Full Text Available Canine distemper is a highly contagious and immunosuppressive viral disease caused by canine distemper virus(CDV, an enveloped RNA virus of the family Paramyxoviridae. The susceptible host spectrum of CDV is broad andincludes all families of the order Carnivora. To accomplish the infection, CDV requires an expression of signaling lymphocyteactivation molecule (SLAM functioning as a cellular receptor which generally presents in a variety of different lymphoid cellsubpopulations, including immature thymocytes, primary B cells, activated T cells, memory T cells, macrophages and maturedendritic cells. The distribution of SLAM-presenting cells is in accordance with the lymphotropism and immunosuppressionfollowing morbillivirus infection. In the present study, the C57BL/6 mice engrafted with dog-specific SLAM sequence(DogSLAM were used. The weanling (3-week-old transgenic offspring C57BL/6 mice were infected with CDV Snyder Hill(CDV-SH strain via the intranasal (n=6, intracerebral (n=6 and intraperitoneal (n=5 routes. Clinical signs, hematology,histopathology, immunohistochemistry, virus isolation and RT-PCR were observed for two weeks post infection. Resultsshowed that CDV-SH-inoculated transgenic mice displayed mild-to-moderate congestion of various organs (brain, lung,spleen, kidney, lymph node, and adrenal gland. By means of immunohistochemistry, virus isolation and RT-PCR, CDV couldnot be detected. The evidence of CDV infection in this study could not be demonstrated in acute phase. Even though thetransgenic mouse is not a suitable animal model for CDV, or a longer incubation period is prerequisite, it needs to be clarifiedin a future study.

  14. Nonirradiated NOD,B6.SCID Il2rγ−/− KitW41/W41 (NBSGW Mice Support Multilineage Engraftment of Human Hematopoietic Cells

    Directory of Open Access Journals (Sweden)

    Brian E. McIntosh

    2015-02-01

    Full Text Available In this study, we demonstrate a newly derived mouse model that supports engraftment of human hematopoietic stem cells (HSCs in the absence of irradiation. We cross the NOD.Cg-PrkdcscidIl2rgtm1Wjl/SzJ (NSG strain with the C57BL/6J-KitW-41J/J (C57BL/6.KitW41 strain and engraft, without irradiation, the resulting NBSGW strain with human cord blood CD34+ cells. At 12-weeks postengraftment in NBSGW mice, we observe human cell chimerism in marrow (97% ± 0.4%, peripheral blood (61% ± 2%, and spleen (94% ± 2% at levels observed with irradiation in NSG mice. We also detected a significant number of glycophorin-A-positive expressing cells in the developing NBSGW marrow. Further, the observed levels of human hematopoietic chimerism mimic those reported for both irradiated NSG and NSG-transgenic strains. This mouse model permits HSC engraftment while avoiding the complicating hematopoietic, gastrointestinal, and neurological side effects associated with irradiation and allows investigators without access to radiation to pursue engraftment studies with human HSCs.

  15. Motor coordination and balance measurements reveal differential pathogenicity of currently spreading enterovirus 71 strains in human SCARB2 transgenic mice.

    Science.gov (United States)

    Chen, Mei-Feng; Shih, Shin-Ru

    2016-12-01

    Enterovirus 71 (EV71) has caused large-scale epidemics with neurological complications in the Asia-Pacific region. The C4a and B5 strains are the two major genotypes circulating in many countries recently. This study used a new protocol, a motor coordination task, to assess the differential pathogenicity of C4a and B5 strains in human SCARB2 transgenic mice. We found that the pathogenicity of C4a viruses was more severe than that of B5 viruses. Moreover, we discovered that an increased level of monocyte chemoattractant protein-1 was positively correlated with severely deficient motor function. This study provides a new method for evaluating EV71 infection in mice and distinguishing the severity of the symptoms caused by different clinical strains, which would contribute to studies of pathogenesis and development of vaccines and antivirals in EV71 infections.

  16. Stable Skin-specific Overexpression of Human CTLA4-Ig in Transgenic Mice through Seven Generations

    Institute of Scientific and Technical Information of China (English)

    Yong WANG; Yong NI; Hong WEI; Feng-Chao WANG; Liang-Peng GE; Xiang GAO

    2006-01-01

    Skin graft rejection is a typical cellular immune response, mainly mediated by T cells. Cytotoxic T lymphocyte associated antigen 4-immunoglobin (CTLA4-Ig) extends graft survival by blocking the T cell co-stimulation pathway and inhibiting T cell activation. To investigate the efficacy of CTLA4-Ig in prolonging skin graft survival, human CTLA4-Ig (hCTLA4-Ig) was engineered to overexpress in mouse skin by transgenesis using the K14 promoter. Reverse transcription-polymerase chain reaction (RT-PCR) and Western blot assay indicated that the expression of CTLA4-Ig remained skin-specific and relatively constant compared to the internal control protein, AKT, through seven generations. The presence and concentration of the hCTLA4-Ig protein in transgenic mouse sera was determined by enzyme-linked immunosorbent assay (ELISA), and the results indicated that the serum CTLA4-Ig concentration also remained constant through generations. Survival of transgenic mouse skins grafted onto rat wounds was remarkably prolonged compared to that of wild-type skins from the same mouse strain, and remained comparable among all seven generations. This suggested that the bioactive hCTLA4-Ig protein was stably expressed in transgenical mice through at least seven generations, which was consistent with the stable skin-specific CTLA4-Ig expression.The results demonstrated that the transgenic expression of hCTLA4-Ig in skin driven by the K14 promoter remained constant through generations, and a transgenic line can be established to provide transgenic skin with extended survival reproducibly.

  17. Restoration of spermatogenesis and male fertility using an androgen receptor transgene.

    Directory of Open Access Journals (Sweden)

    William H Walker

    Full Text Available Androgens signal through the androgen receptor (AR to regulate male secondary sexual characteristics, reproductive tract development, prostate function, sperm production, bone and muscle mass as well as body hair growth among other functions. We developed a transgenic mouse model in which endogenous AR expression was replaced by a functionally modified AR transgene. A bacterial artificial chromosome (BAC was constructed containing all AR exons and introns plus 40 kb each of 5' and 3' regulatory sequence. Insertion of an internal ribosome entry site and the EGFP gene 3' to AR allowed co-expression of AR and EGFP. Pronuclear injection of the BAC resulted in six founder mice that displayed EGFP production in appropriate AR expressing tissues. The six founder mice were mated into a Sertoli cell specific AR knockout (SCARKO background in which spermatogenesis is blocked at the meiosis stage of germ cell development. The AR-EGFP transgene was expressed in a cyclical manner similar to that of endogenous AR in Sertoli cells and fertility was restored as offspring were produced in the absence of Sertoli cell AR. Thus, the AR-EGFP transgene under the control of AR regulatory elements is capable of rescuing AR function in a cell selective, AR-null background. These initial studies provide proof of principle that a strategy employing the AR-EGFP transgene can be used to understand AR functions. Transgenic mice expressing selective modifications of the AR-EGFP transgene may provide crucial information needed to elicit the molecular mechanisms by which AR acts in the testis and other androgen responsive tissues.

  18. Akv murine leukemia virus enhances bone tumorigenesis in hMT-c-fos-LTR transgenic mice

    DEFF Research Database (Denmark)

    Schmidt, Jörg; Krump-Konvalinkova, Vera; Luz, Arne

    1995-01-01

    hMt-c-fos-LTR transgenic mice (U. Rüther, D. Komitowski, F. R. Schubert, and E. F. Wagner. Oncogene 4, 861–865, 1989) developed bone sarcomas in 20% (3/15) of females at 448 ± 25 days and in 8% (1/12) of males at 523 days. After infection of newborns with Akv, an infectious retrovirus derived from...

  19. Tie-1-directed expression of Cre recombinase in endothelial cells of embryoid bodies and transgenic mice

    DEFF Research Database (Denmark)

    Gustafsson, E; Brakebusch, C; Hietanen, K

    2001-01-01

    Tissue-specific gene inactivation using the Cre-loxP system has become an important tool to unravel functions of genes when the conventional null mutation is lethal. We report here the generation of a transgenic mouse line expressing Cre recombinase in endothelial cells. In order to avoid...... the production and screening of multiple transgenic lines we used embryonic stem cell and embryoid body technology to identify recombinant embryonic stem cell clones with high, endothelial-specific Cre activity. One embryonic stem cell clone that showed high Cre activity in endothelial cells was used to generate...... germline chimeras. The in vivo efficiency and specificity of the transgenic Cre was analysed by intercrossing the tie-1-Cre line with the ROSA26R reporter mice. At initial stages of vascular formation (E8-9), LacZ staining was detected in almost all cells of the forming vasculature. Between E10 and birth...

  20. Radioprotective effects of Sipunculus nudus L. polysaccharide combined with WR-2721, rhIL-11 and rhG-CSF on radiation-injured mice

    International Nuclear Information System (INIS)

    Jiang Shuqi; Shen Xianrong; Liu Yuming; He Ying; Jiang Dingwen; Chen Wei

    2015-01-01

    This study investigated the radioprotective effect of Sipunculus nudus L. polysaccharide (SNP) in combination with WR-2721, rhIL-11 and rhG-CSF on irradiated mice. A total of 70 Imprinting Control Region (ICR) mice were divided into seven groups: the control group, the model group and five administration groups. All groups, except the control group, were exposed to a 5 Gy 60 Co γ-ray beam. Blood parameters [including white blood cell (WBC), red blood cell (RBC) and platelet counts and hemoglobin level] were assessed three days before irradiation, and the on the 3rd, 7th and 14th days after irradiation. Spleen, thymus and testicular indices, DNA contents of bone marrow cells, bone marrow nucleated cells, sperm counts, superoxide dismutase (SOD), malondialdehyde (MDA), testosterone and estradiol levels in the serum were assessed on the 14th day after irradiation. The combined administration of SNP, WR-2721, rhIL-11 and rhG-CSF exerted synergistic recovery effects on peripheral blood WBC, RBC and platelet counts and hemoglobin levels in irradiated mice, and synergistic promotion effects on spleen, thymus, testicle, bone marrow nucleated cells and sperm counts in irradiated mice. The synergistic administration increased the serum SOD activities and serum testosterone content of irradiated mice, but synergy decreased the content of serum MDA and estradiol in irradiated mice. These results suggest that the combined administration of SNP, WR-2721, rhIL-11 and rhG-CSF should increase the efficacy of these drugs for acute radiation sickness, protect immunity, hematopoiesis and the reproductive organs of irradiated-damaged mice, and improve oxidation resistance in the body. (author)

  1. Effects of Shugan Jieyuling self-made on behavior and levels of serum IL-2, IL-6 and cortisol in depression models

    International Nuclear Information System (INIS)

    Li Qiubo; Yao Di; Zhang Ping; Li Youtian; Xu Dan; Jiang Sailin; Xu Caiyun

    2005-01-01

    Objective: To study the effects of Shugan Jieyuling self-made (SJSM) on behavior, levels of serum IL-2, IL-6 and cortisol in depression model mice. Methods: The adult mice separately raised and treated with chronic unpredictable middle stress stimulus were used to establish depression models. The curative effect of SJSM was observed in depression model mice. The changes of weight and behavior were detected in a period. Radioimmunoassay (RIA) was used to examine the contents of serum IL-2, IL-6 and cortisol levels. Results: The increased weights of the depression model mice were declined compared with the normal mice before administration. The mental state and behavior of the depression mice were changed. The mice were starling, dreadful, helpless and immobile. At the same time the contents of serum IL-2, IL-6 and cortisol were obviously lower than those of the normal mice. SJSM (large and low doses) and Baiyoujie changed the increased weights and behaviors of the depression after administration for 21 d. The mental state was meliorated simultaneously, and the serum IL-2, IL-6 and cortisol levels in the depression model mice were decreased significantly compared with normal mice. Conclusion: The levels of serum IL-2, IL-6 and cortisol may be the guideline for the diagnosis of depression disease. SJSM can obviously improve both the symptoms of the depression models and the levels of serum IL-2, IL-6 and cortisol. (authors)

  2. Increased infectivity of anchorless mouse scrapie prions in transgenic mice overexpressing human prion protein.

    Science.gov (United States)

    Race, Brent; Phillips, Katie; Meade-White, Kimberly; Striebel, James; Chesebro, Bruce

    2015-06-01

    Prion protein (PrP) is found in all mammals, mostly as a glycoprotein anchored to the plasma membrane by a C-terminal glycosylphosphatidylinositol (GPI) linkage. Following prion infection, host protease-sensitive prion protein (PrPsen or PrPC) is converted into an abnormal, disease-associated, protease-resistant form (PrPres). Biochemical characteristics, such as the PrP amino acid sequence, and posttranslational modifications, such as glycosylation and GPI anchoring, can affect the transmissibility of prions as well as the biochemical properties of the PrPres generated. Previous in vivo studies on the effects of GPI anchoring on prion infectivity have not examined cross-species transmission. In this study, we tested the effect of lack of GPI anchoring on a species barrier model using mice expressing human PrP. In this model, anchorless 22L prions derived from tg44 mice were more infectious than 22L prions derived from C57BL/10 mice when tested in tg66 transgenic mice, which expressed wild-type anchored human PrP at 8- to 16-fold above normal. Thus, the lack of the GPI anchor on the PrPres from tg44 mice appeared to reduce the effect of the mouse-human PrP species barrier. In contrast, neither source of prions induced disease in tgRM transgenic mice, which expressed human PrP at 2- to 4-fold above normal. Prion protein (PrP) is found in all mammals, usually attached to cells by an anchor molecule called GPI. Following prion infection, PrP is converted into a disease-associated form (PrPres). While most prion diseases are species specific, this finding is not consistent, and species barriers differ in strength. The amino acid sequence of PrP varies among species, and this variability affects prion species barriers. However, other PrP modifications, including glycosylation and GPI anchoring, may also influence cross-species infectivity. We studied the effect of PrP GPI anchoring using a mouse-to-human species barrier model. Experiments showed that prions produced by

  3. A Novel mouse model of enhanced proteostasis: Full-length human heat shock factor 1 transgenic mice

    International Nuclear Information System (INIS)

    Pierce, Anson; Wei, Rochelle; Halade, Dipti; Yoo, Si-Eun; Ran, Qitao; Richardson, Arlan

    2010-01-01

    Research highlights: → Development of mouse overexpressing native human HSF1 in all tissues including CNS. → HSF1 overexpression enhances heat shock response at whole-animal and cellular level. → HSF1 overexpression protects from polyglutamine toxicity and favors aggresomes. → HSF1 overexpression enhances proteostasis at the whole-animal and cellular level. -- Abstract: The heat shock response (HSR) is controlled by the master transcriptional regulator heat shock factor 1 (HSF1). HSF1 maintains proteostasis and resistance to stress through production of heat shock proteins (HSPs). No transgenic model exists that overexpresses HSF1 in tissues of the central nervous system (CNS). We generated a transgenic mouse overexpressing full-length non-mutant HSF1 and observed a 2-4-fold increase in HSF1 mRNA and protein expression in all tissues studied of HSF1 transgenic (HSF1 +/0 ) mice compared to wild type (WT) littermates, including several regions of the CNS. Basal expression of HSP70 and 90 showed only mild tissue-specific changes; however, in response to forced exercise, the skeletal muscle HSR was more elevated in HSF1 +/0 mice compared to WT littermates and in fibroblasts following heat shock, as indicated by levels of inducible HSP70 mRNA and protein. HSF1 +/0 cells elicited a significantly more robust HSR in response to expression of the 82 repeat polyglutamine-YFP fusion construct (Q82YFP) and maintained proteasome-dependent processing of Q82YFP compared to WT fibroblasts. Overexpression of HSF1 was associated with fewer, but larger Q82YFP aggregates resembling aggresomes in HSF1 +/0 cells, and increased viability. Therefore, our data demonstrate that tissues and cells from mice overexpressing full-length non-mutant HSF1 exhibit enhanced proteostasis.

  4. Behavioral phenotype and BDNF differences related to apoE isoforms and sex in young transgenic mice

    DEFF Research Database (Denmark)

    Reverte, Ingrid; Klein, Anders Bue; Ratner, Cecilia

    2012-01-01

    , very little information is available on apoE2 genotype. In the present study, we have characterized behavioral and learning phenotypes in young transgenic mice apoE2, apoE3 and apoE4 of both sexes. We have also determined the levels of brain-derived neurotrophic factor (BDNF) and its receptor Trk...

  5. The Dmp1-SOST Transgene Interacts With and Downregulates the Dmp1-Cre Transgene and the Rosa(Notch) Allele.

    Science.gov (United States)

    Zanotti, Stefano; Canalis, Ernesto

    2016-05-01

    Activation of Notch1 in osteocytes of Rosa(Notch) mice, where a loxP-flanked STOP cassette and the Nicd coding sequence were targeted to the reverse orientation splice acceptor (Rosa)26 locus, causes osteopetrosis associated with suppressed Sost expression and enhanced Wnt signaling. To determine whether Sost downregulation mediates the effects of Notch activation in osteocytes, Rosa(Notch) mice were crossed with transgenics expressing Cre recombinase or SOST under the control of the dentin matrix protein (Dmp)1 promoter. Dmp1-SOST transgenics displayed vertebral osteopenia and a modest femoral cancellous and cortical bone phenotype, whereas hemizygous Dmp1-Cre transgenics heterozygous for the Rosa(Notch) allele (Dmp1-Cre;Rosa(Notch)) exhibited osteopetrosis. The phenotype of Notch activation in osteocytes was prevented in Dmp1-Cre;Rosa(Notch) mice hemizygous for the Dmp1-SOST transgene. The effect was associated with downregulated Notch signaling and suppressed Dmp1 and Rosa26 expression. To test whether SOST regulates Notch expression in osteocytes, cortical bone cultures from Dmp1-Cre;Rosa(Notch) mice or from Rosa(Notch) control littermates were exposed to recombinant human SOST. The addition of SOST had only modest effects on Notch target gene mRNA levels and suppressed Dmp1, but not Cre or Rosa26, expression. These findings suggest that prevention of the Dmp1-Cre;Rosa(Notch) skeletal phenotype by Dmp1-SOST is not secondary to SOST expression but to interactions among the Dmp1-SOST and Dmp1-Cre transgenes and the Rosa26 locus. In conclusion, the Dmp1-SOST transgene suppresses the expression of the Dmp1-Cre transgene and of Rosa26. © 2015 Wiley Periodicals, Inc.

  6. Hepatic oxidative stress in ovariectomized transgenic mice expressing the hepatitis C virus polyprotein is augmented through suppression of adenosine monophosphate-activated protein kinase/proliferator-activated receptor gamma co-activator 1 alpha signaling.

    Science.gov (United States)

    Tomiyama, Yasuyuki; Nishina, Sohji; Hara, Yuichi; Kawase, Tomoya; Hino, Keisuke

    2014-10-01

    Oxidative stress plays an important role in hepatocarcinogenesis of hepatitis C virus (HCV)-related chronic liver diseases. Despite the evidence of an increased proportion of females among elderly patients with HCV-related hepatocellular carcinoma (HCC), it remains unknown whether HCV augments hepatic oxidative stress in postmenopausal women. The aim of this study was to determine whether oxidative stress was augmented in ovariectomized (OVX) transgenic mice expressing the HCV polyprotein and to investigate its underlying mechanisms. OVX and sham-operated female transgenic mice expressing the HCV polyprotein and non-transgenic littermates were assessed for the production of reactive oxygen species (ROS), expression of inflammatory cytokines and antioxidant potential in the liver. Compared with OVX non-transgenic mice, OVX transgenic mice showed marked hepatic steatosis and ROS production without increased induction of inflammatory cytokines, but there was no increase in ROS-detoxifying enzymes such as superoxide dismutase 2 and glutathione peroxidase 1. In accordance with these results, OVX transgenic mice showed less activation of peroxisome proliferator-activated receptor-γ co-activator-1α (PGC-1α), which is required for the induction of ROS-detoxifying enzymes, and no activation of adenosine monophosphate-activated protein kinase-α (AMPKα), which regulates the activity of PGC-1α. Our study demonstrated that hepatic oxidative stress was augmented in OVX transgenic mice expressing the HCV polyprotein by attenuation of antioxidant potential through inhibition of AMPK/PGC-1α signaling. These results may account in part for the mechanisms by which HCV-infected women are at high risk for HCC development when some period has passed after menopause. © 2013 The Japan Society of Hepatology.

  7. Effects of anabolic steroids and high-intensity aerobic exercise on skeletal muscle of transgenic mice.

    Directory of Open Access Journals (Sweden)

    Karina Fontana

    Full Text Available In an attempt to shorten recovery time and improve performance, strength and endurance athletes occasionally turn to the illicit use of anabolic-androgenic steroids (AAS. This study evaluated the effects of AAS treatment on the muscle mass and phenotypic characteristics of transgenic mice subjected to a high-intensity, aerobic training program (5d/wk for 6 weeks. The transgenic mice (CETP(+/-LDLr(-/+ were engineered to exhibit a lipid profile closer to humans. Animals were divided into groups of sedentary (Sed and/or training (Ex mice (each treated orally with AAS or gum arabic/vehicle: Sed-C, Sed-M, ex-C, ex-M. The effects of AAS (mesterolone: M on specific phenotypic adaptations (muscle wet weight, cross-sectional area, and fiber type composition in three hindlimb muscles (soleus:SOL, tibialis anterior:TA and gastrocnemius:GAS were assessed. In order to detect subtle changes in fiber type profile, the entire range of fiber types (I, IC, IIAC, IIA, IIAD, IID, IIDB, IIB was delineated using mATPase histochemistry. Body weight gain occurred throughout the study for all groups. However, the body weight gain was significantly minimized with exercise. This effect was blunted with mesterolone treatment. Both AAS treatment (Sed-M and high-intensity, aerobic training (ex-C increased the wet weights of all three muscles and induced differential hypertrophy of pure and hybrid fibers. Combination of AAS and training (ex-M resulted in enhanced hypertrophy. In the SOL, mesterolone treatment (Sed-M and ex-M caused dramatic increases in the percentages of fiber types IC, IIAC, IIAD, IID, with concomitant decrease in IIA, but had minimal impact on fiber type percentages in the predominantly fast muscles. Overall, the AAS-induced differential adaptive changes amounted to significant fiber type transformations in the fast-to-slow direction in SOL. AAS treatment had a significant effect on muscle weights and fiber type composition in SOL, TA and GAS which was

  8. Photoacoustic imaging of vascular networks in transgenic mice

    Science.gov (United States)

    Laufer, J. G.; Cleary, J. O.; Zhang, E. Z.; Lythgoe, M. F.; Beard, P. C.

    2010-02-01

    The preferential absorption of near infrared light by blood makes photoacoustic imaging well suited to visualising vascular structures in soft tissue. In addition, the spectroscopic specificity of tissue chromophores can be exploited by acquiring images at multiple excitation wavelengths. This allows the quantification of endogenous chromophores, such as oxy- and deoxyhaemoglobin, and hence blood oxygenation, and the detection of exogenous chromophores, such as functionalised contrast agents. More importantly, this approach has the potential to visualise the spatial distribution of low concentrations of functionalised contrast agents against the strong background absorption of the endogenous chromophores. This has a large number of applications in the life sciences. One example is the structural and functional phenotyping of transgenic mice for the study of the genetic origins of vascular malformations, such as heart defects. In this study, photoacoustic images of mouse embryos have been acquired to study the development of the vasculature following specific genetic knockouts.

  9. Role of macrophage migration inhibitory factor (MIF in pollen-induced allergic conjunctivitis and pollen dermatitis in mice.

    Directory of Open Access Journals (Sweden)

    Yuka Nagata

    Full Text Available Pollen is a clinically important airborne allergen and one of the major causes of allergic conjunctivitis. A subpopulation of patients with atopic dermatitis (AD are also known to have exacerbated skin eruptions on the face, especially around the eyelids, after contact with pollen. This pollen-induced skin reaction is now known as pollen dermatitis. Macrophage migration inhibitory factor (MIF is a pluripotent cytokine that plays an essential role in allergic inflammation. Recent findings suggest that MIF is involved in several allergic disorders, including AD. In this study, MIF knockout (KO, MIF transgenic (Tg and WT littermate mice were immunized with ragweed (RW pollen or Japanese cedar (JC pollen and challenged via eye drops. We observed that the numbers of conjunctiva- and eyelid-infiltrating eosinophils were significantly increased in RW and JC pollen-sensitized MIF Tg compared with WT mice or MIF KO mice. The mRNA expression levels of eotaxin, interleukin (IL-5 and IL-13 were increased in pollen-sensitized eyelid skin sites of MIF Tg mice. An in vitro analysis revealed that high eotaxin expression was induced in dermal fibroblasts by MIF combined with stimulation of IL-4 or IL-13. This eotaxin expression was inhibited by the treatment with CD74 siRNA in fibroblasts. These findings indicate that MIF can induce eosinophil accumulation in the conjunctiva and eyelid dermis exposed to pollen. Therefore, targeted inhibition of MIF might result as a new option to control pollen-induced allergic conjunctivitis and pollen dermatitis.

  10. A distinct dendritic cell population arises in the thymus of IL-13Rα1-sufficient but not IL-13Rα1-deficient mice.

    Science.gov (United States)

    Barik, Subhasis; Miller, Mindy; Cattin-Roy, Alexis; Ukah, Tobechukwu; Zaghouani, Habib

    2018-06-18

    IL-13 receptor alpha 1 (IL-13Rα1) associates with IL-4Rα to form a functional IL-4Rα/IL-13Rα1 heteroreceptor (HR) through which both IL-4 and IL-13 signal. Recently, HR expression was associated with the development of M2 type macrophages which function as antigen presenting cells (APCs). Herein, we show that a subset of thymic resident dendritic cells (DCs) expressing high CD11b (CD11b hi ) and intermediate CD11c (CD11c int ) arise in HR-sufficient but not HR-deficient mice. These DCs, which originate from the bone marrow are able to take up Ag from the peritoneum, traffic through the spleen and the lymph nodes and carry it to the thymus. In addition, since the DCs are able to present Ag to T cells, express high levels of the costimulatory molecule CD24, and comprise a CD8α + subset, it is likely that the cells contribute to T cell development and perhaps negative selection of self-reactive lymphocytes. Copyright © 2018 Elsevier Inc. All rights reserved.

  11. Morphogenetic roles of perlecan in the tooth enamel organ: an analysis of overexpression using transgenic mice.

    Science.gov (United States)

    Ida-Yonemochi, Hiroko; Satokata, Ichiro; Ohshima, Hayato; Sato, Toshiya; Yokoyama, Minesuke; Yamada, Yoshihiko; Saku, Takashi

    2011-09-01

    Perlecan, a heparan sulfate proteoglycan, is enriched in the intercellular space of the enamel organ. To understand the role of perlecan in tooth morphogenesis, we used a keratin 5 promoter to generate transgenic (Tg) mice that over-express perlecan in epithelial cells, and examined their tooth germs at tissue and cellular levels. Immunohistochemistry showed that perlecan was more strongly expressed in the enamel organ cells of Tg mice than in wild-type mice. Histopathology showed wider intercellular spaces in the stellate reticulum of the Tg molars and loss of cellular polarity in the enamel organ, especially in its cervical region. Hertwig's epithelial root sheath (HERS) cells in Tg mice were irregularly aligned due to excessive deposits of perlecan along the inner, as well as on the outer sides of the HERS. Tg molars had dull-ended crowns and outward-curved tooth roots and their enamel was poorly crystallized, resulting in pronounced attrition of molar cusp areas. In Tg mice, expression of integrin β1 mRNA was remarkably higher at E18, while expression of bFGF, TGF-β1, DSPP and Shh was more elevated at P1. The overexpression of perlecan in the enamel organ resulted in irregular morphology of teeth, suggesting that the expression of perlecan regulates growth factor signaling in a stage-dependent manner during each step of the interaction between ameloblast-lineage cells and mesenchymal cells. Copyright © 2011 International Society of Matrix Biology. All rights reserved.

  12. [Effects of grain-sized moxibustion on learning and memory ability and amyloid deposition of transgenic Alzheimer's disease mice].

    Science.gov (United States)

    Yu, Jing; Chu, Jia-Mei; Gao, Ling-Ai; Zhang, Yong-Sheng; Bao, Ye-Hua

    2014-02-01

    To observe the effect of grain-sized moxibustion at "Xinshu" (BL 15) and "Shenshu" (BL 23) on memory-learning ability and amyloid deposition in transgenic Alzheimer's disease (AD) mice. seventeen amyloid precursor protein (APP)/presenilin (PS)1 (APP+/PS 1+) double transgenic 6799 mice aged 3-4 weeks were randomly divided into model group (n = 9) and moxibustion group (n = 8). Nine wide-type (C 57 BL/6 J) female mice were used as the normal control group. Moxibustion (ignited grain-sized moxa cone) was applied to bilateral "Xinshu" (BL 15) and "Shenshu" (BL 23) for about 30 s, once a day for 9 courses (10 days constitute a therapeutic course, with 2 days' break between every two courses). Morris water maze tests were performed to detect the mice's learning-memory ability. The alterations of beta-amyloid deposition (number of the positive plaques) in the cerebral cortex and hippocampus were detected by using an imaging analysis system following Congo red staining of the cerebral tissue sections. Compared with the normal group, the average escape latency of place navigation tests was significantly increased (P memory ability after moxibustion. Results of Congo red staining of the cerebral tissue showed that there were many irregular, uneven staining positive plaques in the cerebral cortex and hippocampus of AD mice in the model group. Compared with the model group, the positive plaque numbers in both cerebral cortex and hippocampus were considerably reduced in the moxibustion group (P memory ability and restrain the formation of amyloid deposition in AD mice.

  13. Expression of Autoactivated Stromelysin-1 in Mammary Glands of Transgenic Mice Leads to a Reactive Stroma During Early Development

    Energy Technology Data Exchange (ETDEWEB)

    Thomasset, N.; Lochter, A.; Sympson, C.J.; Lund, L.R.; Williams, D.R.; Behrendtsen, O.; Werb, Z.; Bissell, M.J.

    1998-04-24

    Extracellular matrix and extracellular matrix-degrading matrix metalloproteinases play a key role in interactions between the epithelium and the mesenchyme during mammary gland development and disease. In patients with breast cancer, the mammary mesenchyme undergoes a stromal reaction, the etiology of which is unknown. We previously showed that targeting of an autoactivating mutant of the matrix metalloproteinase stromelysin-1 to mammary epithelia of transgenic mice resulted in reduced mammary function during pregnancy and development of preneoplastic and neoplastic lesions. Here we examine the cascade of alterations before breast tumor formation in the mammary gland stroma once the expression of the stromelysin-1 transgene commences. Beginning in postpubertal virgin animals, low levels of transgene expression in mammary epithelia led to increased expression of endogenous stromelysin-1 in stromal fibroblasts and up-regulation of other matrix metalloproteinases, without basement membrane disruption. These changes were accompanied by the progressive development of a compensatory reactive stroma, characterized by increased collagen content and vascularization in glands from virgin mice. This remodeling of the gland affected epithelial-mesenchymal communication as indicated by inappropriate expression of tenascin-C starting by day 6 of pregnancy. This, together with increased transgene expression, led to basement membrane disruption starting by day 15 of pregnancy. We propose that the highly reactive stroma provides a prelude to breast epithelial tumors observed in these animals. Epithelial development depends on an exquisite series of inductive and instructive interactions between the differentiating epithelium and the mesenchymal (stromal) compartment. The epithelium, which consists of luminal and myoepithelial cells, is separated from the stroma by a basement membrane (BM), which plays a central role in mammary gland homeostasis and gene expression. In vivo, stromal

  14. Combined effect of aerobic interval training and selenium nanoparticles on expression of IL-15 and IL-10/TNF-α ratio in skeletal muscle of 4T1 breast cancer mice with cachexia.

    Science.gov (United States)

    Molanouri Shamsi, M; Chekachak, S; Soudi, S; Quinn, L S; Ranjbar, K; Chenari, J; Yazdi, M H; Mahdavi, M

    2017-02-01

    Cancer cachexia is characterized by inflammation, loss of skeletal muscle and adipose tissue mass, and functional impairment. Oxidative stress and inflammation are believed to regulate pathways controlling skeletal muscle wasting. The aim of this study was to determine the effects of aerobic interval training and the purported antioxidant treatment, selenium nanoparticle supplementation, on expression of IL-15 and inflammatory cytokines in 4T1 breast cancer-bearing mice with cachexia. Selenium nanoparticle supplementation accelerated cachexia symptoms in tumor-bearing mice, while exercise training prevented muscle wasting in tumor-bearing mice. Also, aerobic interval training enhanced the anti-inflammatory indices IL-10/TNF-α ratio and IL-15 expression in skeletal muscle in tumor-bearing mice. However, combining exercise training and antioxidant supplementation prevented cachexia and muscle wasting and additionally decreased tumor volume in 4T1 breast cancer mice. These finding suggested that combining exercise training and antioxidant supplementation could be a strategy for managing tumor volume and preventing cachexia in breast cancer. Copyright © 2016 Elsevier Ltd. All rights reserved.

  15. Tumorigenic potential of pituitary tumor transforming gene (PTTG in vivo investigated using a transgenic mouse model, and effects of cross breeding with p53 (+/− transgenic mice

    Directory of Open Access Journals (Sweden)

    Fong Miranda Y

    2012-11-01

    Full Text Available Abstract Background Pituitary tumor-transforming gene (PTTG is an oncogene that is overexpressed in variety of tumors and exhibits characteristics of a transforming gene. Previous transgenic mouse models to access the tumorigenic potential in the pituitary and ovary have resulted in dysplasia without formation of visible tumors, possibly due to the insufficient expression of PTTG. PTTG expression level is critical for ovarian tumorigenesis in a xenograft model. Therefore, the tumorigenic function of PTTG in vivo remains unclear. We generated a transgenic mouse that overexpresses PTTG driven by the CMV promoter to determine whether PTTG functions as a transforming oncogene that is capable of initiating tumorigenesis. Methods Transgenic animals were generated by microinjection of PTTG transgene into the male pronucleus of FVB 0.5 day old embryos. Expression levels of PTTG in tissues of transgenic animals were analyzed using an immunohistochemical analysis. H&E staining and immunohistostaining were performed to examine the type of tumor in transgenic and PTTG transgenic/p53+/- animals. Results PTTG transgenic offspring (TgPTTG were monitored for tumor development at various ages. H&E analysis was performed to identify the presence of cancer and hyperplastic conditions verified with the proliferation marker PCNA and the microvessel marker CD31. Immunohistochemistry was performed to determine transgene expression, revealing localization to the epithelium of the fallopian tube, with more generalized expression in the liver, lung, kidney, and spleen. At eight months of age, 2 out of 15 TgPTTG developed ovarian cancer, 2 out of 15 developed benign tumors, 2 out of 15 developed cervical dysplasia, and 3 out of 15 developed adenomyosis of the uterus. At ten months of age, 2 out of 10 TgPTTG developed adenocarcinoma of the ovary, 1 out of 10 developed a papillary serous adenocarcinoma, and 2 out of 10 presented with atypia of ovarian epithelial cells

  16. Chromosomal localisation of the CD4cre transgene in B6·Cg-Tg(Cd4-cre)1Cwi mice.

    Science.gov (United States)

    Westendorf, Kerstin; Durek, Pawel; Ayew, Samia; Mashreghi, Mir-Farzin; Radbruch, Andreas

    2016-09-01

    The B6·Cg-Tg(Cd4-cre)1Cwi line expresses CRE recombinase under the control of the promoter and regulatory elements of the Cd4 gene. Here we show that CRE recombinase expression reduces the number and frequencies of CD4 positive subsets in a dose-dependent manner and localize the integration site of the transgenic construct to position 60335693-60341285 (qD) of chromosome 3. The insert contains at least 15 complete sequential copies of the transgenic construct. Based on this information we describe a novel PCR assay for genetic typing of transgenic mice. Copyright © 2016 Elsevier B.V. All rights reserved.

  17. TRANSGENIC STRATEGY FOR IDENTIFYING SYNAPTIC CONNECTIONS IN MICE BY FLUORESCENCE COMPLEMENTATION (GRASP

    Directory of Open Access Journals (Sweden)

    Masahito eYamagata

    2012-02-01

    Full Text Available In the "GFP reconstitution across synaptic partners" (GRASP method, non-fluorescent fragments of GFP are expressed in two different neurons; the fragments self-assemble at synapses between the two to form a fluorophore. GRASP has proven useful for light microscopic identification of synapses in two invertebrate species, Caenorhabditis elegans and Drosophila melanogaster, but has not yet been applied to vertebrates. Here, we describe GRASP constructs that function in mammalian cells and implement a transgenic strategy in which a Cre-dependent gene switch leads to expression of the two fragments in mutually exclusive neuronal subsets in mice. Using a transgenic line that expresses Cre selectively in rod photoreceptors, we demonstrate labeling of synapses in the outer plexiform layer of the retina. Labeling is specific, in that synapses made by rods remain labeled for at least 6 months whereas nearby synapses made by intercalated cone photoreceptors on many of the same interneurons remain unlabeled. We also generated antisera that label reconstituted GFP but neither fragment in order to amplify the GRASP signal and thereby increase the sensitivity of the method.

  18. Curcumin ameliorates insulin signalling pathway in brain of Alzheimer's disease transgenic mice.

    Science.gov (United States)

    Feng, Hui-Li; Dang, Hui-Zi; Fan, Hui; Chen, Xiao-Pei; Rao, Ying-Xue; Ren, Ying; Yang, Jin-Duo; Shi, Jing; Wang, Peng-Wen; Tian, Jin-Zhou

    2016-12-01

    Deficits in glucose, impaired insulin signalling and brain insulin resistance are common in the pathogenesis of Alzheimer's disease (AD); therefore, some scholars even called AD type 3 diabetes mellitus. Curcumin can reduce the amyloid pathology in AD. Moreover, it is a well-known fact that curcumin has anti-oxidant and anti-inflammatory properties. However, whether or not curcumin could regulate the insulin signal transduction pathway in AD remains unclear. In this study, we used APPswe/PS1dE9 double transgenic mice as the AD model to investigate the mechanisms and the effects of curcumin on AD. Immunohistochemical (IHC) staining and a western blot analysis were used to test the major proteins in the insulin signal transduction pathway. After the administration of curcumin for 6 months, the results showed that the expression of an insulin receptor (InR) and insulin receptor substrate (IRS)-1 decreased in the hippocampal CA1 area of the APPswe/PS1dE9 double transgenic mice, while the expression of phosphatidylinositol-3 kinase (PI3K), phosphorylated PI3K (p-PI3K), serine-threonine kinase (AKT) and phosphorylated AKT (p-AKT) increased. Among the curcumin groups, the medium-dose group was the most effective one. Thus, we believe that curcumin may be a potential therapeutic agent that can regulate the critical molecules in brain insulin signalling pathways. Furthermore, curcumin could be adopted as one of the AD treatments to improve a patient's learning and memory ability. © The Author(s) 2016.

  19. Inducible targeting of CNS astrocytes in Aldh1l1-CreERT2 BAC transgenic mice.

    Science.gov (United States)

    Winchenbach, Jan; Düking, Tim; Berghoff, Stefan A; Stumpf, Sina K; Hülsmann, Swen; Nave, Klaus-Armin; Saher, Gesine

    2016-01-01

    Background: Studying astrocytes in higher brain functions has been hampered by the lack of genetic tools for the efficient expression of inducible Cre recombinase throughout the CNS, including the neocortex. Methods: Therefore, we generated BAC transgenic mice, in which CreERT2 is expressed under control of the Aldh1l1 regulatory region. Results: When crossbred to Cre reporter mice, adult Aldh1l1-CreERT2 mice show efficient gene targeting in astrocytes. No such Cre-mediated recombination was detectable in CNS neurons, oligodendrocytes, and microglia. As expected, Aldh1l1-CreERT2 expression was evident in several peripheral organs, including liver and kidney. Conclusions: Taken together, Aldh1l1-CreERT2 mice are a useful tool for studying astrocytes in neurovascular coupling, brain metabolism, synaptic plasticity and other aspects of neuron-glia interactions.

  20. Differential activation of airway eosinophils induces IL-13-mediated allergic Th2 pulmonary responses in mice.

    Science.gov (United States)

    Jacobsen, E A; Doyle, A D; Colbert, D C; Zellner, K R; Protheroe, C A; LeSuer, W E; Lee, N A; Lee, J J

    2015-09-01

    Eosinophils are hallmark cells of allergic Th2 respiratory inflammation. However, the relative importance of eosinophil activation and the induction of effector functions such as the expression of IL-13 to allergic Th2 pulmonary disease remain to be defined. Wild-type or cytokine-deficient (IL-13(-/-) or IL-4(-/-) ) eosinophils treated with cytokines (GM-CSF, IL-4, IL-33) were adoptively transferred into eosinophil-deficient recipient mice subjected to allergen provocation using established models of respiratory inflammation. Allergen-induced pulmonary changes were assessed. In contrast to the transfer of untreated blood eosinophils to the lungs of recipient eosinophil deficient mice, which induced no immune/inflammatory changes either in the lung or in the lung draining lymph nodes (LDLN), pretreatment of blood eosinophils with GM-CSF prior to transfer elicited trafficking of these eosinophils to LDLN. In turn, these LDLN eosinophils elicited the accumulation of dendritic cells and CD4(+) T cells to these same LDLNs without inducing pulmonary inflammation. However, exposure of eosinophils to GM-CSF, IL-4, and IL-33 prior to transfer induced not only immune events in the LDLN, but also allergen-mediated increases in airway Th2 cytokine/chemokine levels, the subsequent accumulation of CD4(+) T cells as well as alternatively activated (M2) macrophages, and the induction of pulmonary histopathologies. Significantly, this allergic respiratory inflammation was dependent on eosinophil-derived IL-13, whereas IL-4 expression by eosinophils had no significant role. The data demonstrate the differential activation of eosinophils as a function of cytokine exposure and suggest that eosinophil-specific IL-13 expression by activated cells is a necessary component of the subsequent allergic Th2 pulmonary pathologies. © 2015 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd.

  1. Differential Activation of Airway Eosinophils Induces IL-13 Mediated Allergic Th2 Pulmonary Responses in Mice

    Science.gov (United States)

    Jacobsen, EA; Doyle, AD; Colbert, DC; Zellner, KR; Protheroe, CA; LeSuer, WE; Lee, NA.; Lee, JJ

    2015-01-01

    Background Eosinophils are hallmark cells of allergic Th2 respiratory inflammation. However, the relative importance of eosinophil activation and the induction of effector functions such as the expression of IL-13 to allergic Th2 pulmonary disease remain to be defined. Methods Wild type or cytokine deficient (IL-13−/− or IL-4−/−) eosinophils treated with cytokines (GM-CSF, IL-4, IL-33) were adoptively transferred into eosinophil-deficient recipient mice subjected to allergen provocation using established models of respiratory inflammation. Allergen-induced pulmonary changes were assessed. Results In contrast to the transfer of untreated blood eosinophils to the lungs of recipient eosinophildeficient mice, which induced no immune/inflammatory changes either in the lung or lung draining lymph nodes (LDLNs), pretreatment of blood eosinophils with GM-CSF prior to transfer elicited trafficking of these eosinophils to LDLNs. In turn, these LDLN eosinophils elicited the accumulation of dendritic cells and CD4+ T cells to these same LDLNs without inducing pulmonary inflammation. However, exposure of eosinophils to GM-CSF, IL-4 and IL-33 prior to transfer induced not only immune events in the LDLN, but also allergen-mediated increases in airway Th2 cytokine/chemokine levels, the subsequent accumulation of CD4+ T cells as well as alternatively activated (M2) macrophages, and the induction of pulmonary histopathologies. Significantly, this allergic respiratory inflammation was dependent on eosinophil-derived IL-13 whereas IL-4 expression by eosinophils had no significant role. Conclusion The data demonstrate the differential activation of eosinophils as a function of cytokine exposure and suggest that eosinophil-specific IL-13 expression by activated cells is a necessary component of the subsequent allergic Th2 pulmonary pathologies. PMID:26009788

  2. Resistance to chronic wasting disease in transgenic mice expressing a naturally occurring allelic variant of deer prion protein

    NARCIS (Netherlands)

    Meade-White, K.; Race, B.; Trifilo, M.; Bossers, A.; Favara, C.; Lacasse, R.; Miller, M.; Williams, E.; Oldstone, M.; Race, R.; Chesebro, B.

    2007-01-01

    Prion protein (PrP) is a required factor for susceptibility to transmissible spongiform encephalopathy or prion diseases. In transgenic mice, expression of prion protein (PrP) from another species often confers susceptibility to prion disease from that donor species. For example, expression of deer

  3. Bypass of lethality with mosaic mice generated by Cre-loxP-mediated recombination.

    Science.gov (United States)

    Betz, U A; Vosshenrich, C A; Rajewsky, K; Müller, W

    1996-10-01

    The analysis of gene function based on the generation of mutant mice by homologous recombination in embryonic stem cells is limited if gene disruption results in embryonic lethality. Mosaic mice, which contain a certain proportion of mutant cells in all organs, allow lethality to be circumvented and the potential of mutant cells to contribute to different cell lineages to be analyzed. To generate mosaic animals, we used the bacteriophage P1-derived Cre-loxP recombination system, which allows gene alteration by Cre-mediated deletion of loxP-flanked gene segments. We generated nestin-cre transgenic mouse lines, which expressed the Cre recombinase under the control of the rat nestin promoter and its second intron enhancer. In crosses to animals carrying a loxP-flanked target gene, partial deletion of the loxP-flanked allele occurred before day 10.5 post coitum and was detectable in all adult organs examined, including germ-line cells. Using this approach, we generated mosaic mice containing cells deficient in the gamma-chain of the interleukin-2 receptor (IL-2R gamma); in these animals, the IL-2R gamma-deficient cells were underrepresented in the thymus and spleen. Because mice deficient in DNA polymerase beta die perinatally, we studied the effects of DNA polymerase beta deficiency in mosaic animals. We found that some of the mosaic polymerase beta-deficient animals were viable, but were often reduced in size and weight. The fraction of DNA polymerase beta-deficient cells in mosaic embryos decreased during embryonic development, presumably because wild-type cells had a competitive advantage. The nestin-cre transgenic mice can be used to generate mosaic animals in which target genes are mutated by Cre-mediated recombination of loxP-flanked target genes. By using mosaic animals, embryonic lethality can be bypassed and cell lineages for whose development a given target gene is critical can be identified. In the case of DNA polymerase beta, deficient cells are already

  4. Striatal Distribution and Cytoarchitecture of Dopamine Receptor Subtype 1 and 2: Evidence from Double-Labeling Transgenic Mice

    Directory of Open Access Journals (Sweden)

    Keke Ren

    2017-08-01

    Full Text Available As the main input nucleus of the basal ganglion, the striatum executes different functions, including motivation, reward and attention. The functions of the striatum highly rely on its subregions that receive projections from various cortical areas and the distribution of striatonigral neurons that express D1 dopamine (DA receptors (or D1 medium-sized spiny neurons, D1 MSNs and striatopallidal neurons that express D2 DA receptors (or D2 MSNs. Using bacterial artificial chromosome (BAC transgenic mice, several studies have recently been performed on the spatial distribution of D1 and D2 MSNs. However, these studies mainly focused on enumeration of either D1-enhanced fluorescent protein (eGFP or D2-eGFP in mice. In the present work, we used Drd1a-tdTamato and Drd2-eGFP double BAC transgenic mice to evaluate the spatial pattern of D1 MSNs (red fluorescence and D2 MSNs (green fluorescence along the rostro-caudal axis of the dorsal striatum. The dorsal striatum was divided into three subregions: rostral caudoputamen (CPr, intermediate CP (CPi, and caudal CP (CPc across the rostral–caudal extent of the striatum. The results demonstrate that D1 and D2 MSNs were intermingled with each other in most of these regions. The cell density of D1 MSNs was slightly higher than D2 MSNs through CPr, CPi, and CPc, though it did not reach significance. However, in CPi, the ratio of D1/D2 in the ventromedial CPi group was significantly higher than those in dorsolateral, dorsomedial, and ventrolateral CPi. There was similar proportion of cells that co-expressed D1 and D2 receptors. Moreover, we demonstrated a pathway-specific activation pattern of D1 MSNs and D2 MSNs in a manic like mouse model induced by D-Amphetamine by utilizing this double transgenic mice and c-fos immunoreactivity. Our results may provide a morphological basis for the function or pathophysiology of striatonigral and striatopallidal neurons with diverse cortical inputs to the dorsal striatum.

  5. Adenovirus-mediated interleukin-12 gene transfer combined with cytosine deaminase followed by 5-fluorocytosine treatment exerts potent antitumor activity in Renca tumor-bearing mice

    International Nuclear Information System (INIS)

    Hwang, Kyung-Sun; Cho, Won-Kyung; Yoo, Jinsang; Yun, Hwan-Jung; Kim, Samyong; Im, Dong-Soo

    2005-01-01

    Therapeutic gene transfer affords a clinically feasible and safe approach to cancer treatment but a more effective modality is needed to improve clinical outcomes. Combined transfer of therapeutic genes with different modes of actions may be a means to this end. Interleukin-12 (IL-12), a heterodimeric immunoregulatory cytokine composed of covalently linked p35 and p40 subunits, has antitumor activity in animal models. The enzyme/prodrug strategy using cytosine deaminase (CD) and 5-fluorocytosine (5-FC) has been used for cancer gene therapy. We have evaluated the antitumor effect of combining IL-12 with CD gene transfer in mice bearing renal cell carcinoma (Renca) tumors. Adenoviral vectors were constructed encoding one or both subunits of murine IL-12 (Ad.p35, Ad.p40 and Ad.IL-12) or cytosine deaminase (Ad.CD). The functionality of the IL-12 or CD gene products expressed from these vectors was validated by splenic interferon (IFN)-γ production or viability assays in cultured cells. Ad.p35 plus Ad.p40, or Ad.IL-12, with or without Ad.CD, were administered (single-dose) intratumorally to Renca tumor-bearing mice. The animals injected with Ad.CD also received 5-FC intraperitoneally. The antitumor effects were then evaluated by measuring tumor regression, mean animal survival time, splenic natural killer (NK) cell activity and IFN-γ production. The inhibition of tumor growth in mice treated with Ad.p35 plus Ad.p40 and Ad.CD, followed by injection of 5-FC, was significantly greater than that in mice treated with Ad.CD/5-FC, a mixture of Ad.p35 plus Ad.p40, or Ad.GFP (control). The combined gene transfer increased splenic NK cell activity and IFN-γ production by splenocytes. Ad.CD/5-FC treatment significantly increased the antitumor effect of Ad.IL-12 in terms of tumor growth inhibition and mean animal survival time. The results suggest that adenovirus-mediated IL-12 gene transfer combined with Ad.CD followed by 5-FC treatment may be useful for treating cancers

  6. Anticytokine treatment of established type II collagen-induced arthritis in DBA/1 mice: a comparative study using anti-TNFalpha, anti-IL-1alpha/beta and IL-1Ra.

    NARCIS (Netherlands)

    Joosten, L.A.B.; Helsen, M.M.A.; Loo, F.A.J. van de; Berg, W.B. van den

    2008-01-01

    OBJECTIVE: To examine the role of tumor necrosis factor alpha (TNF alpha), interleukin-1 alpha (IL-1 alpha), and IL-1 beta in collagen-induced arthritis (CIA), immediately after onset and during the phase of established arthritis. METHODS: Male DBA/1 mice with collagen-induced arthritis were treated

  7. Longitudinal micro-CT as an outcome measure of interstitial lung disease in TNF-transgenic mice.

    Directory of Open Access Journals (Sweden)

    Richard D Bell

    Full Text Available Rheumatoid arthritis associated interstitial lung disease (RA-ILD is a debilitating condition with poor survival prognosis. High resolution computed tomography (CT is a common clinical tool to diagnose RA-ILD, and is increasingly being adopted in pre-clinical studies. However, murine models recapitulating RA-ILD are lacking, and CT outcomes for inflammatory lung disease have yet to be formally validated. To address this, we validate μCT outcomes for ILD in the tumor necrosis factor transgenic (TNF-Tg mouse model of RA.Cross sectional μCT was performed on cohorts of male TNF-Tg mice and their WT littermates at 3, 4, 5.5 and 12 months of age (n = 4-6. Lung μCT outcomes measures were determined by segmentation of the μCT datasets to generate Aerated and Tissue volumes. After each scan, lungs were obtained for histopathology and 3 sections stained with hematoxylin and eosin. Automated histomorphometry was performed to quantify the tissue area (nuclei, cytoplasm, and extracellular matrix and aerated area (white space within the tissue sections. Spearman's correlation coefficients were used to evaluate the extent of association between μCT imaging and histopathology endpoints.TNF-Tg mice had significantly greater tissue volume, total lung volume and mean intensity at all timepoints compared to age matched WT littermates. Histomorphometry also demonstrated a significant increase in tissue area at 3, 4, and 5.5 months of age in TNF-Tg mice. Lung tissue volume was correlated with lung tissue area (ρ = 0.81, p<0.0001, and normalize lung aerated volume was correlated with normalized lung air area (ρ = 0.73, p<0.0001.We have validated in vivo μCT as a quantitative biomarker of ILD in mice. Further, development of longitudinal measures is critical for dissecting pathologic progression of ILD, and μCT is a useful non-invasive method to study lung inflammation in the TNF-Tg mouse model.

  8. Interleukin-6 Deficiency Does Not Affect Motor Neuron Disease Caused by Superoxide Dismutase 1 Mutation.

    Science.gov (United States)

    Han, Yongmei; Ripley, Barry; Serada, Satoshi; Naka, Tetsuji; Fujimoto, Minoru

    2016-01-01

    Amyotrophic Lateral Sclerosis (ALS) is an adult-onset, progressive, motor neuron degenerative disease. Recent evidence indicates that inflammation is associated with many neurodegenerative diseases including ALS. Previously, abnormal levels of inflammatory cytokines including IL-1β, IL-6 and TNF-α were described in ALS patients and/or in mouse ALS models. In addition, one study showed that blocking IL-1β could slow down progression of ALS-like symptoms in mice. In this study, we examined a role for IL-6 in ALS, using an animal model for familial ALS. Mice with mutant SOD1 (G93A) transgene, a model for familial ALS, were used in this study. The expression of the major inflammatory cytokines, IL-6, IL-1β and TNF-α, in spinal cords of these SOD1 transgenic (TG) mice were assessed by real time PCR. Mice were then crossed with IL-6(-/-) mice to generate SOD1TG/IL-6(-/-) mice. SOD1 TG/IL-6(-/-) mice (n = 17) were compared with SOD1 TG/IL-6(+/-) mice (n = 18), SOD1 TG/IL-6(+/+) mice (n = 11), WT mice (n = 15), IL-6(+/-) mice (n = 5) and IL-6(-/-) mice (n = 8), with respect to neurological disease severity score, body weight and the survival. We also histologically compared the motor neuron loss in lumber spinal cords and the atrophy of hamstring muscles between these mouse groups. Levels of IL-6, IL-1β and TNF-α in spinal cords of SOD1 TG mice was increased compared to WT mice. However, SOD1 TG/IL-6(-/-) mice exhibited weight loss, deterioration in motor function and shortened lifespan (167.55 ± 11.52 days), similarly to SOD1 TG /IL-6(+/+) mice (164.31±12.16 days). Motor neuron numbers and IL-1β and TNF-α levels in spinal cords were not significantly different in SOD1 TG /IL-6(-/-) mice and SOD1 TG /IL-6 (+/+) mice. These results provide compelling preclinical evidence indicating that IL-6 does not directly contribute to motor neuron disease caused by SOD1 mutations.

  9. Interleukin-6 Deficiency Does Not Affect Motor Neuron Disease Caused by Superoxide Dismutase 1 Mutation.

    Directory of Open Access Journals (Sweden)

    Yongmei Han

    Full Text Available Amyotrophic Lateral Sclerosis (ALS is an adult-onset, progressive, motor neuron degenerative disease. Recent evidence indicates that inflammation is associated with many neurodegenerative diseases including ALS. Previously, abnormal levels of inflammatory cytokines including IL-1β, IL-6 and TNF-α were described in ALS patients and/or in mouse ALS models. In addition, one study showed that blocking IL-1β could slow down progression of ALS-like symptoms in mice. In this study, we examined a role for IL-6 in ALS, using an animal model for familial ALS.Mice with mutant SOD1 (G93A transgene, a model for familial ALS, were used in this study. The expression of the major inflammatory cytokines, IL-6, IL-1β and TNF-α, in spinal cords of these SOD1 transgenic (TG mice were assessed by real time PCR. Mice were then crossed with IL-6(-/- mice to generate SOD1TG/IL-6(-/- mice. SOD1 TG/IL-6(-/- mice (n = 17 were compared with SOD1 TG/IL-6(+/- mice (n = 18, SOD1 TG/IL-6(+/+ mice (n = 11, WT mice (n = 15, IL-6(+/- mice (n = 5 and IL-6(-/- mice (n = 8, with respect to neurological disease severity score, body weight and the survival. We also histologically compared the motor neuron loss in lumber spinal cords and the atrophy of hamstring muscles between these mouse groups.Levels of IL-6, IL-1β and TNF-α in spinal cords of SOD1 TG mice was increased compared to WT mice. However, SOD1 TG/IL-6(-/- mice exhibited weight loss, deterioration in motor function and shortened lifespan (167.55 ± 11.52 days, similarly to SOD1 TG /IL-6(+/+ mice (164.31±12.16 days. Motor neuron numbers and IL-1β and TNF-α levels in spinal cords were not significantly different in SOD1 TG /IL-6(-/- mice and SOD1 TG /IL-6 (+/+ mice.These results provide compelling preclinical evidence indicating that IL-6 does not directly contribute to motor neuron disease caused by SOD1 mutations.

  10. Pharmacologic blockade of 12/15-lipoxygenase ameliorates memory deficits, Aβ and tau neuropathology in the triple-transgenic mice.

    Science.gov (United States)

    Chu, J; Li, J-G; Giannopoulos, P F; Blass, B E; Childers, W; Abou-Gharbia, M; Praticò, D

    2015-11-01

    The 12/15-lipoxygenase (12/15LO) enzyme is widely distributed within the central nervous system. Previous work showed that this protein is upregulated in Alzheimer's disease (AD), and plays an active role in the development of brain amyloidosis in amyloid beta (Aβ)-precursor protein transgenic mice (Tg2576). In the present paper, we studied the effect of its pharmacologic inhibition on the AD-like phenotype of a mouse model with plaques and tangles, the triple-transgenic mice. Compared with mice receiving placebo, the group treated with PD146176, a specific 12/15LO inhibitor, manifested a significant improvement of their memory deficits. The same animals had a significant reduction in Aβ levels and deposition, which was secondary to a decrease in the β-secretase pathway. In addition, while total tau-soluble levels were unchanged for both groups, PD146176-treated mice had a significant reduction in its phosphorylation state and insoluble fraction, which specifically associated with decrease in stress-activated protein kinase/c-Jun N-terminal kinase activity. In vitro study showed that the effect on tau and Aβ were independent from each other. These data establish a functional role for 12/15LO in the pathogenesis of the full spectrum of the AD-like phenotype and represent the successful completion of the initial step for the preclinical development of 12/15LO inhibitors as novel therapeutic agents for AD.

  11. Regulatable Transgene Expression for Prevention of Chemotherapy-Induced Peripheral Neuropathy

    Directory of Open Access Journals (Sweden)

    Daisuke Kawata

    2017-09-01

    Full Text Available Chemotherapy-induced peripheral neuropathy (CIPN is a debilitating complication associated with drug treatment of cancer for which there are no effective strategies of prevention or treatment. In this study, we examined the effect of intermittent expression of neurotophin-3 (NT-3 or interleukin-10 (IL-10 from replication-defective herpes simplex virus (HSV-based regulatable vectors delivered by subcutaneous inoculation to the dorsal root ganglion (DRG on the development of paclitaxel-induced peripheral neuropathy. We constructed two different tetracycline (tet-on-based regulatable HSV vectors, one expressing NT-3 and the other expressing IL-10, in which the transactivator expression in the tet-on system was under the control of HSV latency-associated promoter 2 (LAP-2, and expression of the transgene was controlled by doxycycline (DOX. We examined the therapeutic effect of intermittent expression of the transgene in animals with paclitaxel-induced peripheral neuropathy modeled by intraperitoneal injection of paclitaxel (16 mg/kg once a week for 5 weeks. Intermittent expression of either NT-3 or IL-10 3 days before and 1 day after paclitaxel administration protected animals against paclitaxel-induced peripheral neuropathy over the course of 5 weeks. These results suggest the potential of regulatable vectors for prevention of chemotherapy-induced peripheral neuropathy.

  12. Regulatable Transgene Expression for Prevention of Chemotherapy-Induced Peripheral Neuropathy.

    Science.gov (United States)

    Kawata, Daisuke; Wu, Zetang

    2017-09-15

    Chemotherapy-induced peripheral neuropathy (CIPN) is a debilitating complication associated with drug treatment of cancer for which there are no effective strategies of prevention or treatment. In this study, we examined the effect of intermittent expression of neurotophin-3 (NT-3) or interleukin-10 (IL-10) from replication-defective herpes simplex virus (HSV)-based regulatable vectors delivered by subcutaneous inoculation to the dorsal root ganglion (DRG) on the development of paclitaxel-induced peripheral neuropathy. We constructed two different tetracycline (tet)-on-based regulatable HSV vectors, one expressing NT-3 and the other expressing IL-10, in which the transactivator expression in the tet-on system was under the control of HSV latency-associated promoter 2 (LAP-2), and expression of the transgene was controlled by doxycycline (DOX). We examined the therapeutic effect of intermittent expression of the transgene in animals with paclitaxel-induced peripheral neuropathy modeled by intraperitoneal injection of paclitaxel (16 mg/kg) once a week for 5 weeks. Intermittent expression of either NT-3 or IL-10 3 days before and 1 day after paclitaxel administration protected animals against paclitaxel-induced peripheral neuropathy over the course of 5 weeks. These results suggest the potential of regulatable vectors for prevention of chemotherapy-induced peripheral neuropathy.

  13. Circumsporozoite Protein-Specific Kd-Restricted CD8+ T Cells Mediate Protective Antimalaria Immunity in Sporozoite-Immunized MHC-I-Kd Transgenic Mice

    Directory of Open Access Journals (Sweden)

    Jing Huang

    2014-01-01

    Full Text Available Although the roles of CD8+ T cells and a major preerythrocytic antigen, the circumsporozoite (CS protein, in contributing protective antimalaria immunity induced by radiation-attenuated sporozoites, have been shown by a number of studies, the extent to which these players contribute to antimalaria immunity is still unknown. To address this question, we have generated C57BL/6 (B6 transgenic (Tg mice, expressing Kd molecules under the MHC-I promoter, called MHC-I-Kd-Tg mice. In this study, we first determined that a single immunizing dose of IrPySpz induced a significant level of antimalaria protective immunity in MHC-I-Kd-Tg mice but not in B6 mice. Then, by depleting various T-cell subsets in vivo, we determined that CD8+ T cells are the main mediator of the protective immunity induced by IrPySpz. Furthermore, when we immunized (MHC-I-Kd-Tg × CS-Tg F1 mice with IrPySpz after crossing MHC-I-Kd-Tg mice with PyCS-transgenic mice (CS-Tg, which are unable to mount PyCS-specific immunity, we found that IrPySpz immunization failed to induce protective antimalaria immunity in (MHC-I-Kd-Tg × CS-Tg F1 mice, thus indicating the absence of PyCS antigen-dependent immunity in these mice. These results indicate that protective antimalaria immunity induced by IrPySpz in MHC-I-Kd-Tg mice is mediated by CS protein-specific, Kd-restricted CD8+ T cells.

  14. Cerebellar nuclei neurons show only small excitatory responses to optogenetic olivary stimulation in transgenic mice: in vivo and in vitro studies

    Directory of Open Access Journals (Sweden)

    Huo eLu

    2016-03-01

    Full Text Available To study the olivary input to the cerebellar nuclei (CN we used optogenetic stimulation in transgenic mice expressing channelrhodopsin-2 (ChR2 in olivary neurons. We obtained in vivo extracellular Purkinje cell (PC and CN recordings in anesthetized mice while stimulating the contralateral inferior olive (IO with a blue laser (single pulse, 10 - 50 ms duration. Peri-stimulus histograms were constructed to show the spike rate changes after optical stimulation. Among 29 CN neurons recorded, 15 showed a decrease in spike rate of variable strength and duration, and only 1 showed a transient spiking response. These results suggest that direct olivary input to CN neurons is usually overridden by stronger Purkinje cell inhibition triggered by climbing fiber responses. To further investigate the direct input from the climbing fiber collaterals we also conducted whole cell recordings in brain slices, where we used local stimulation with blue light. Due to the expression of ChR2 in Purkinje cell axons as well as the IO in our transgenic line, strong inhibitory responses could be readily triggered with optical stimulation (13 of 15 neurons. After blocking this inhibition with GABAzine, only in 5 of 13 CN neurons weak excitatory responses were revealed. Therefore our in vitro results support the in vivo findings that the excitatory input to CN neurons from climbing fiber collaterals in adult mice is masked by the inhibition under normal conditions.

  15. Establishment and characterization of murine small cell lung carcinoma cell lines derived from HPV-16 E6/E7 transgenic mice.

    Science.gov (United States)

    Carraresi, Laura; Martinelli, Rosanna; Vannoni, Alessandro; Riccio, Massimo; Dembic, Maja; Tripodi, Sergio; Cintorino, Marcella; Santi, Spartaco; Bigliardi, Elisa; Carmellini, Mario; Rossini, Mara

    2006-01-08

    We have established two murine cell lines derived from Small Cell Lung Carcinomas (SCLCs) developed by HPV-E6/E7 transgenic mice. These cells named PPAP-9 and PPAP-10 were isolated from mice bearing tumors, 9 and 10 months old, respectively. The cells, 5 microm in diameter, express HPV oncoproteins and sustain tumor formation after subcutaneous injection in syngenic mice. A detailed analysis indicated the epithelial origin and the neuroendocrine differentiation of these cells. We showed by confocal immunofluorescence the expression of the epithelial marker cytokeratin 5, whose gene promoter was used to direct the expression of HPV E6/E. Cells express several neuroendocrine markers such as CGRP, MAP-2, Ash1, CgrA, Scg2. The neuroendocrine differentiation of these cells was further confirmed by electron microscopy demonstrating neuropeptides secreting granules in their cytoplasm. Furthermore, in agreement with the altered expression observed in the majority of human SCLC we showed in these cells the absence of both p53 and pRB and a dramatic reduction in the expression of Caveolin-1.

  16. Conditional E2F1 activation in transgenic mice causes testicular atrophy and dysplasia mimicking human CIS

    DEFF Research Database (Denmark)

    Agger, Karl; Santoni-Rugiu, Eric; Holmberg, Christian

    2005-01-01

    E2F1 is a crucial downstream effector of the retinoblastoma protein (pRB) pathway. To address the consequences of short-term increase in E2F1 activity in adult tissues, we generated transgenic mice expressing the human E2F1 protein fused to the oestrogen receptor (ER) ligand-binding domain...

  17. T(2)-weighted microMRI and evoked potential of the visual system measurements during the development of hypomyelinated transgenic mice.

    Science.gov (United States)

    Martin, Melanie; Reyes, Samuel D; Hiltner, Timothy D; Givogri, M Irene; Tyszka, J Michael; Fisher, Robin; Campagnoni, Anthony T; Fraser, Scott E; Jacobs, Russell E; Readhead, Carol

    2007-02-01

    Our objective was to follow the course of a dysmyelinating disease followed by partial recovery in transgenic mice using non-invasive high-resolution (117 x 117 x 70 microm) magnetic resonance (microMRI) and evoked potential of the visual system (VEP) techniques. We used JOE (for J37 golli overexpressing) transgenic mice engineered to overexpress golli J37, a product of the Golli-mbp gene complex, specifically in oligodendrocytes. Individual JOE transgenics and their unaffected siblings were followed from 21 until 75-days-old using non-invasive in vivo VEPs and 3D T2-weighted microMRI on an 11.7 T scanner, performing what we believe is the first longitudinal study of its kind. The microMRI data indicated clear, global hypomyelination during the period of peak myelination (21-42 days), which was partially corrected at later ages (>60 days) in the JOE mice compared to controls. These microMRI data correlated well with [Campagnoni AT (1995) "Molecular biology of myelination". In: Ransom B, Kettenmann H (eds) Neuroglia--a Treatise. Oxford University Press, London, pp 555-570] myelin staining, [Campagnoni AT, Macklin WB (1988) Cellular and molecular aspects of myelin protein gene-expression. Mol Neurobiol 2:41-89] a transient intention tremor during the peak period of myelination, which abated at later ages, and [Lees MB, Brostoff SW (1984) Proteins in myelin. In: Morell (ed) Myelin. Plenum Press, New York and London, pp 197-224] VEPs which all indicated a significant delay of CNS myelin development and persistent hypomyelination in JOE mice. Overall these non-invasive techniques are capable of spatially resolving the increase in myelination in the normally developing and developmentally delayed mouse brain.

  18. T-Cell Mediated Immune Responses Induced in ret Transgenic Mouse Model of Malignant Melanoma

    Energy Technology Data Exchange (ETDEWEB)

    Abschuetz, Oliver [Skin Cancer Unit, German Cancer Research Center (DKFZ), Heidelberg and Department of Dermatology, Venereology and Allergology, University Medical Center Mannheim, Ruprecht-Karl University of Heidelberg, Mannheim , Heidelberg 69120 (Germany); Osen, Wolfram [Division of Translational Immunology, German Cancer Center, Heidelberg 69120 (Germany); Frank, Kathrin [Skin Cancer Unit, German Cancer Research Center (DKFZ), Heidelberg and Department of Dermatology, Venereology and Allergology, University Medical Center Mannheim, Ruprecht-Karl University of Heidelberg, Mannheim , Heidelberg 69120 (Germany); Kato, Masashi [Unit of Environmental Health Sciences, Department of Biomedical Sciences, College of Life and Health Sciences, Chubu University, Aichi 487-8501 (Japan); Schadendorf, Dirk [Department of Dermatology, University Hospital Essen, Essen 45122 (Germany); Umansky, Viktor, E-mail: v.umansky@dkfz.de [Skin Cancer Unit, German Cancer Research Center (DKFZ), Heidelberg and Department of Dermatology, Venereology and Allergology, University Medical Center Mannheim, Ruprecht-Karl University of Heidelberg, Mannheim , Heidelberg 69120 (Germany)

    2012-04-26

    Poor response of human malignant melanoma to currently available treatments requires a development of innovative therapeutic strategies. Their evaluation should be based on animal models that resemble human melanoma with respect to genetics, histopathology and clinical features. Here we used a transgenic mouse model of spontaneous skin melanoma, in which the ret transgene is expressed in melanocytes under the control of metallothionein-I promoter. After a short latency, around 25% mice develop macroscopic skin melanoma metastasizing to lymph nodes, bone marrow, lungs and brain, whereas other transgenic mice showed only metastatic lesions without visible skin tumors. We found that tumor lesions expressed melanoma associated antigens (MAA) tyrosinase, tyrosinase related protein (TRP)-1, TRP-2 and gp100, which could be applied as targets for the immunotherapy. Upon peptide vaccination, ret transgenic mice without macroscopic melanomas were able to generate T cell responses not only against a strong model antigen ovalbumin but also against typical MAA TRP-2. Although mice bearing macroscopic primary tumors could also display an antigen-specific T cell reactivity, it was significantly down-regulated as compared to tumor-free transgenic mice or non-transgenic littermates. We suggest that ret transgenic mice could be used as a pre-clinical model for the evaluation of novel strategies of melanoma immunotherapy.

  19. Combination therapy with gefitinib and doxorubicin inhibits tumor growth in transgenic mice with adrenal neuroblastoma

    International Nuclear Information System (INIS)

    Kawano, Kumi; Hattori, Yoshiyuki; Iwakura, Hiroshi; Akamizu, Takashi; Maitani, Yoshie

    2013-01-01

    Highly relevant mouse models of human neuroblastoma (NB) are needed to evaluate new therapeutic strategies against NB. In this study, we characterized transgenic mice with bilateral adrenal tumors. On the basis of information from the tumoral gene expression profiles, we examined the antitumor effects of unencapsulated and liposomal doxorubicin (DXR), alone and in combination with gefitinib, on adrenal NB. We showed that intravenous injection of unencapsulated or liposomal DXR alone inhibited tumor growth in a dose-dependent manner, as assessed by magnetic resonance imaging (MRI). However, liposomal DXR did not exhibit greater antitumor effect than unencapsulated DXR. Immunohistochemical analysis revealed that the adrenal tumor vasculature with abundant pericyte coverage was a less leaky structure for liposomes. Combination therapy with unencapsulated or liposomal DXR plus gefitinib strongly suppressed tumor growth and delayed tumor regrowth than treatment with unencapsulated or liposomal DXR alone, even at a lower dose of DXR. Dynamic contrast-enhanced MRI analysis revealed that gefitinib treatment increased blood flow in the tumor, indicating that gefitinib treatment changes the tumor vascular environment in a manner that may increase the antitumor effect of DXR. In conclusion, the combination of gefitinib and DXR induces growth inhibition of adrenal NBs in transgenic mice. These findings will provide helpful insights into new treatments for NB

  20. Amyotrophic lateral sclerosis mutant vesicle-associated membrane protein-associated protein-B transgenic mice develop TAR-DNA-binding protein-43 pathology.

    LENUS (Irish Health Repository)

    Tudor, E L

    2010-05-19

    Cytoplasmic ubiquitin-positive inclusions containing TAR-DNA-binding protein-43 (TDP-43) within motor neurons are the hallmark pathology of sporadic amyotrophic lateral sclerosis (ALS). TDP-43 is a nuclear protein and the mechanisms by which it becomes mislocalized and aggregated in ALS are not properly understood. A mutation in the vesicle-associated membrane protein-associated protein-B (VAPB) involving a proline to serine substitution at position 56 (VAPBP56S) is the cause of familial ALS type-8. To gain insight into the molecular mechanisms by which VAPBP56S induces disease, we created transgenic mice that express either wild-type VAPB (VAPBwt) or VAPBP56S in the nervous system. Analyses of both sets of mice revealed no overt motor phenotype nor alterations in survival. However, VAPBP56S but not VAPBwt transgenic mice develop cytoplasmic TDP-43 accumulations within spinal cord motor neurons that were first detected at 18 months of age. Our results suggest a link between abnormal VAPBP56S function and TDP-43 mislocalization.

  1. Spontaneous generation of rapidly transmissible prions in transgenic mice expressing wild-type bank vole prion protein.

    Science.gov (United States)

    Watts, Joel C; Giles, Kurt; Stöhr, Jan; Oehler, Abby; Bhardwaj, Sumita; Grillo, Sunny K; Patel, Smita; DeArmond, Stephen J; Prusiner, Stanley B

    2012-02-28

    Currently, there are no animal models of the most common human prion disorder, sporadic Creutzfeldt-Jakob disease (CJD), in which prions are formed spontaneously from wild-type (WT) prion protein (PrP). Interestingly, bank voles (BV) exhibit an unprecedented promiscuity for diverse prion isolates, arguing that bank vole PrP (BVPrP) may be inherently prone to adopting misfolded conformations. Therefore, we constructed transgenic (Tg) mice expressing WT BVPrP. Tg(BVPrP) mice developed spontaneous CNS dysfunction between 108 and 340 d of age and recapitulated the hallmarks of prion disease, including spongiform degeneration, pronounced astrogliosis, and deposition of alternatively folded PrP in the brain. Brain homogenates of ill Tg(BVPrP) mice transmitted disease to Tg(BVPrP) mice in ∼35 d, to Tg mice overexpressing mouse PrP in under 100 d, and to WT mice in ∼185 d. Our studies demonstrate experimentally that WT PrP can spontaneously form infectious prions in vivo. Thus, Tg(BVPrP) mice may be useful for studying the spontaneous formation of prions, and thus may provide insight into the etiology of sporadic CJD.

  2. Growth Hormone Receptor Antagonist Transgenic Mice Have Increased Subcutaneous Adipose Tissue Mass, Altered Glucose Homeostasis and No Change in White Adipose Tissue Cellular Senescence.

    Science.gov (United States)

    Comisford, Ross; Lubbers, Ellen R; Householder, Lara A; Suer, Ozan; Tchkonia, Tamara; Kirkland, James L; List, Edward O; Kopchick, John J; Berryman, Darlene E

    2016-01-01

    Growth hormone (GH)-resistant/deficient mice experience improved glucose homeostasis and substantially increased lifespan. Recent evidence suggests that long-lived GH-resistant/deficient mice are protected from white adipose tissue (WAT) dysfunction, including WAT cellular senescence, impaired adipogenesis and loss of subcutaneous WAT in old age. This preservation of WAT function has been suggested to be a potential mechanism for the extended lifespan of these mice. The objective of this study was to examine WAT senescence, WAT distribution and glucose homeostasis in dwarf GH receptor antagonist (GHA) transgenic mice, a unique mouse strain having decreased GH action but normal longevity. 18-month-old female GHA mice and wild-type (WT) littermate controls were used. Prior to dissection, body composition, fasting blood glucose as well as glucose and insulin tolerance tests were performed. WAT distribution was determined by weighing four distinct WAT depots at the time of dissection. Cellular senescence in four WAT depots was assessed using senescence-associated β-galactosidase staining to quantify the senescent cell burden, and real-time qPCR to quantify gene expression of senescence markers p16 and IL-6. GHA mice had a 22% reduction in total body weight, a 33% reduction in lean mass and a 10% increase in body fat percentage compared to WT controls. GHA mice had normal fasting blood glucose and improved insulin sensitivity; however, they exhibited impaired glucose tolerance. Moreover, GHA mice displayed enhanced lipid storage in the inguinal subcutaneous WAT depot (p < 0.05) and a 1.7-fold increase in extra-/intraperitoneal WAT ratio compared to controls (p < 0.05). Measurements of WAT cellular senescence showed no difference between GHA mice and WT controls. Similar to other mice with decreased GH action, female GHA mice display reduced age-related lipid redistribution and improved insulin sensitivity, but no change in cellular senescence. The similar abundance of

  3. Expression of IL-1β mRNA in mice after whole body X-irradiation

    International Nuclear Information System (INIS)

    Nemoto, Kumie; Ishihara, Hiroshi; Tanaka, Izumi; Suzuki, Gen; Tsuneoka, Kazuko; Yoshida, Kazuko; Ohtsu, Hiroshi

    1995-01-01

    IL-1β is a stimulator of hematopoietic and inflammatory systems, and also acts as a radioprotector. After whole-body exposure to sublethal doses of ionizing radiation, the IL-1β mRNA level in spleen cells increases for a short time prior to regeneration of the spleen. We analyzed spleen cells of C3H/He mice after whole-body irradiation with 3 Gy x-rays to determine the cause of this short-term increase in the transcription level. An increase in the level of the message in spleen cells, found by Northern blot hybridization, reached its peak 5 to 7 days after irradiation. There was a low correlation between the curves of the mRNA level and the ratio of monocyte/macrophage lineage cells; a typical source of the message. Spleen macrophages that produce a large amount of the message were found 7 days after irradiation in an in situ hybridization experiment in which heterogeneous spleen cell populations were used. In contrast, spleen cells had no detectable levels of macrophages rich in IL-1β mRNA before and 17 days after irradiation. Additionally, the population of message-rich cells was 9.4% of the total number of monocytes/macrophages in the spleen. These results suggest that the short-term increase in IL-1β mRNA is a result of the heterogeneous differentiation of a subpopulation of spleen macrophages before regeneration of the spleen. (author)

  4. Transmission and Adaptation of Chronic Wasting Disease to Hamsters and Transgenic Mice: Evidence for Strains▿

    OpenAIRE

    Raymond, Gregory J.; Raymond, Lynne D.; Meade-White, Kimberly D.; Hughson, Andrew G.; Favara, Cynthia; Gardner, Donald; Williams, Elizabeth S.; Miller, Michael W.; Race, Richard E.; Caughey, Byron

    2007-01-01

    In vitro screening using the cell-free prion protein conversion system indicated that certain rodents may be susceptible to chronic wasting disease (CWD). Therefore, CWD isolates from mule deer, white-tailed deer, and elk were inoculated intracerebrally into various rodent species to assess the rodents' susceptibility and to develop new rodent models of CWD. The species inoculated were Syrian golden, Djungarian, Chinese, Siberian, and Armenian hamsters, transgenic mice expressing the Syrian g...

  5. Lactation Defect in a Widely Used MMTV-Cre Transgenic Line of Mice

    Science.gov (United States)

    Yuan, Taichang; Wang, Yongping; Pao, Lily; Anderson, Steve M.; Gu, Haihua

    2011-01-01

    Background MMTV-Cre mouse lines have played important roles in our understanding about the functions of numerous genes in mouse mammary epithelial cells during mammary gland development and tumorigenesis. However, numerous studies have not included MMTV-Cre mice as controls, and many investigators have not indicated which of the different MMTV-Cre founder lines were used in their studies. Here, we describe a lactation defect that severely limits the use of one of the most commonly used MMTV-Cre founder lines. Methodology/Principal Findings To explore the role of protein tyrosine phosphatase Shp1 in mammary gland development, mice bearing the floxed Shp1 gene were crossed with MMTV-Cre mice and mammary gland development was examined by histological and biochemical techniques, while lactation competency was assessed by monitoring pup growth. Surprisingly, both the Shp1fl/+;MMTV-Cre and MMTV-Cre female mice displayed a severe lactation defect when compared to the Shp1 fl/+ control mice. Histological and biochemical analyses reveal that female mice expressing the MMTV-Cre transgene, either alone or in combination with floxed genes, exhibit defects in lobuloalveolar expansion, presence of large cytoplasmic lipid droplets in luminal alveolar epithelial cells postpartum, and precocious induction of involution. Using a PCR-based genotyping method, the three different founder lines can be distinguished, and we determined that the MMTV-Cre line A, the most widely used MMTV-Cre founder line, exhibits a profound lactation defect that limits its use in studies on mammary gland development. Conclusions/Significance The identification of a lactation defect in the MMTV-Cre line A mice indicates that investigators must use MMTV-Cre alone mice as control in studies that utilize Cre recombinase to excise genes of interest from mammary epithelial cells. Our results also suggest that previous results obtained in studies using the MMTV-Cre line A line should be re-evaluated if the

  6. Foxp3+ Regulatory T Cells Delay Expulsion of Intestinal Nematodes by Suppression of IL-9-Driven Mast Cell Activation in BALB/c but Not in C57BL/6 Mice

    Science.gov (United States)

    Brenz, Yannick; Eschbach, Marie-Luise; Hartmann, Wiebke; Haben, Irma; Sparwasser, Tim; Huehn, Jochen; Kühl, Anja; Feyerabend, Thorsten B.; Rodewald, Hans-Reimer; Breloer, Minka

    2014-01-01

    Accumulating evidence suggests that IL-9-mediated immunity plays a fundamental role in control of intestinal nematode infection. Here we report a different impact of Foxp3+ regulatory T cells (Treg) in nematode-induced evasion of IL-9-mediated immunity in BALB/c and C57BL/6 mice. Infection with Strongyloides ratti induced Treg expansion with similar kinetics and phenotype in both strains. Strikingly, Treg depletion reduced parasite burden selectively in BALB/c but not in C57BL/6 mice. Treg function was apparent in both strains as Treg depletion increased nematode-specific humoral and cellular Th2 response in BALB/c and C57BL/6 mice to the same extent. Improved resistance in Treg-depleted BALB/c mice was accompanied by increased production of IL-9 and accelerated degranulation of mast cells. In contrast, IL-9 production was not significantly elevated and kinetics of mast cell degranulation were unaffected by Treg depletion in C57BL/6 mice. By in vivo neutralization, we demonstrate that increased IL-9 production during the first days of infection caused accelerated mast cell degranulation and rapid expulsion of S. ratti adults from the small intestine of Treg-depleted BALB/c mice. In genetically mast cell-deficient (Cpa3-Cre) BALB/c mice, Treg depletion still resulted in increased IL-9 production but resistance to S. ratti infection was lost, suggesting that IL-9-driven mast cell activation mediated accelerated expulsion of S. ratti in Treg-depleted BALB/c mice. This IL-9-driven mast cell degranulation is a central mechanism of S. ratti expulsion in both, BALB/c and C57BL/6 mice, because IL-9 injection reduced and IL-9 neutralization increased parasite burden in the presence of Treg in both strains. Therefore our results suggest that Foxp3+ Treg suppress sufficient IL-9 production for subsequent mast cell degranulation during S. ratti infection in a non-redundant manner in BALB/c mice, whereas additional regulatory pathways are functional in Treg-depleted C57BL/6

  7. The secreted form of the p40 subunit of interleukin (IL)-12 inhibits IL-23 functions and abrogates IL-23-mediated antitumour effects

    Science.gov (United States)

    Shimozato, Osamu; Ugai, Shin-ichi; Chiyo, Masako; Takenobu, Hisanori; Nagakawa, Hiroyasu; Wada, Akihiko; Kawamura, Kiyoko; Yamamoto, Hiroshi; Tagawa, Masatoshi

    2006-01-01

    Interleukin (IL)-23 is a heterodimeric cytokine consisting of a novel p19 molecule and the p40 subunit of IL-12. Since secreted p40 can act as an antagonist for IL-12, we investigated whether p40 also inhibited IL-23-mediated immunological functions. p40 did not induce interferon (IFN)-γ or IL-17 production from splenocytes but impaired IL-23-induced cytokine production by competitive binding to the IL-23 receptors. Furthermore, a mixed population of murine colon carcinoma Colon 26 cells transduced with the p40 gene and those transduced with the IL-23 gene developed tumours in syngenic mice, whereas the IL-23-expressing Colon 26 cells were completely rejected. p40 also suppressed IFN-γ production of antigen-stimulated splenocytes and IL-23-mediated cytotoxic T-lymphocyte activities in the mice that rejected Colon 26 cells expressing IL-23. p40 can thereby antagonize IL-23 and is a possible therapeutic agent for suppression of IL-23 functions. PMID:16423037

  8. Requirement of TPO/c-mpl for IL-17A-induced granulopoiesis and megakaryopoiesis.

    Science.gov (United States)

    Tan, Weihong; Liu, Bainan; Barsoum, Adel; Huang, Weitao; Kolls, Jay K; Schwarzenberger, Paul

    2013-12-01

    IL-17A is a critical, proinflammatory cytokine essential to host defense and is induced in response to microbial invasion. It stimulates granulopoiesis, leading to neutrophilia, neutrophil activation, and mobilization. TPO synergizes with other cytokines in stimulating and expanding hematopoietic progenitors, also leading to granulopoiesis and megakaryopoiesis, and is required for thrombocytopoiesis. We investigated the effects of in vivo expression of IL-17A on granulopoiesis and megakaryopoiesis in TPO receptor c-mpl-/- mice. IL-17A expression expanded megakaryocytes by 2.5-fold in normal mice but had no such effect in c-mpl-/- mice. The megakaryocyte expansion did not result in increased peripheral platelet counts. IL-17A expression did not impact bone marrow precursors in c-mpl-/- mice; however, it expanded splenic precursors, although to a lesser extent compared with normal controls (CFU-HPP). No peripheral neutrophil expansion was observed in c-mpl-/- mice. Moreover, in c-mpl-/- mice, release of IL-17A downstream cytokines was reduced significantly (KC, MIP-2, GM-CSF). The data suggest that IL-17A requires the presence of functional TPO/c-mpl to exert its effects on granulopoiesis and megakaryopoiesis. Furthermore, IL-17A and its downstream cytokines are important regulators and synergistic factors for the physiologic function of TPO/c-mpl on hematopoiesis.

  9. Comparison of the antiviral potential among soluble forms of herpes simplex virus type-2 glycoprotein D receptors, herpes virus entry mediator A, nectin-1 and nectin-2, in transgenic mice.

    Science.gov (United States)

    Fujimoto, Yoshikazu; Tomioka, Yukiko; Ozaki, Kinuyo; Takeda, Keiko; Suyama, Haruka; Yamamoto, Sayo; Takakuwa, Hiroki; Morimatsu, Masami; Uede, Toshimitsu; Ono, Etsuro

    2017-07-01

    Herpesvirus entry mediator A (HVEM), nectin-1 and nectin-2 are cellular receptors of glycoprotein D (gD) of herpes simplex virus type-2 (HSV-2). It has been shown that soluble forms of HSV gD receptors have the antiviral potential in cultured cells and transgenic mice. Here, to compare antiviral potential of soluble forms of HVEM, nectin-1 and nectin-2 against HSV-2 infections in vivo, transgenic mice expressing fusion proteins consisting of the entire ectodomain of HVEM, nectin-1 or nectin-2 and the Fc portion of human IgG (HVEMIg, nectin-1Ig and nectin-2Ig, respectively) were intraperitoneally infected with HSV-2. In the infection with 3 MLD50 (50 % mouse lethal dose), effective resistance was not observed in transgenic mice expressing nectin-2Ig. In a transgenic mouse line with high expression of nectin-1Ig, significant protection from the infection with 30 and 300 MLD50 was observed (survival rate of 100 and 71 %, respectively). On the other hand, transgenic mice expressing HVEMIg showed a complete resistance to the lethal infection even with 300 MLD50 (survival rate of 100 %). These results demonstrated that HVEMIg could exert effective antiviral activities against HSV-2 infections in vivo as compared with other soluble forms of HSV gD receptors.

  10. L-type calcium channel CaV 1.2 in transgenic mice overexpressing human AbetaPP751 with the London (V717I) and Swedish (K670M/N671L) mutations.

    Science.gov (United States)

    Willis, Michael; Kaufmann, Walter A; Wietzorrek, Georg; Hutter-Paier, Birgit; Moosmang, Sven; Humpel, Christian; Hofmann, Franz; Windisch, Manfred; Knaus, Hans-Günther; Marksteiner, Josef

    2010-01-01

    Cumulative evidence indicates that amyloid-beta peptides exert some of their neurodegenerative effects through modulation of L-type voltage gated calcium channels, which play key roles in a diverse range of CNS functions. In this study we examined the expression of CaV1.2 L-type voltage gated calcium channels in transgenic mice overexpressing human AbetaPP751 with the London (V717I) and Swedish (K670M/N671L) mutations by immunohistochemistry in light and electron microscopy. In hippocampal layers of wild type and transgenic mice, CaV1.2 channels were predominantly localized to somato-dendritic domains of neurons, and to astrocytic profiles with an age-dependent increase in labeling density. In transgenic animals, CaV1.2-like immunoreactive clusters were found in neuronal profiles in association with amyloid-beta plaques. Both the number and density of these clusters depended upon age of animals and number of plaques. The most striking difference between wild type and transgenic mice was the age-dependent expression of CaV1.2 channels in reactive astrocytes. At the age of 6 month, CaV1.2 channels were rarely detected in reactive astrocytes of transgenic mice, but an incremental number of CaV1.2 expressing reactive astrocytes was found with increasing age of animals and number of amyloid-beta plaques. This study demonstrates that CaV1.2 channels are highly expressed in reactive astrocytes of 12-months of age transgenic mice, which might be a consequence of the increasing amyloid burden. Further studies should clarify which functional implications are associated with the higher availability of CaV1.2 channels in late stage Alzheimer's disease.

  11. The G-protein coupled receptor, GPR84 regulates IL-4 production by T lymphocytes in response to CD3 crosslinking.

    Science.gov (United States)

    Venkataraman, Chandrasekar; Kuo, Frederick

    2005-11-15

    The orphan G-protein coupled receptor, GPR84 is highly expressed in the bone marrow, and in splenic T cells and B cells. In this study, GPR84-deficient mice were generated to understand the biological function of this orphan receptor. The proliferation of T and B cells in response to various mitogens was normal in GPR84-deficient mice. Interestingly, primary stimulation of T cells with anti-CD3 resulted in increased IL-4 but not IL-2 or IFN-gamma production in GPR84(-/-) mice compared to wild-type mice. Augmented IL-4 production in GPR84-deficient T cells was not related to increased frequency of IL-4-secreting cells in response to anti-CD3 stimulation. In fact, stimulation with anti-CD3 and anti-CD28 resulted in increased levels of IL-4 but not IFN-gamma steady-state mRNA in GPR84(-/-) T cells. In addition, Th2 effector cells generated in vitro from GPR84(-/-) mice produced higher levels of IL-4, IL-5 and IL-13 compared to wild-type mice. However, there was no detectable difference in the extent of IL-4 and IL-5 production between the two groups of mice in response to antigen stimulation of spleen cells, isolated from mice previously immunized with OVA in alum. These studies reveal a novel role for GPR84 in regulating early IL-4 gene expression in activated T cells.

  12. Dendritic cell mediated delivery of plasmid DNA encoding LAMP/HIV-1 Gag fusion immunogen enhances T cell epitope responses in HLA DR4 transgenic mice.

    Directory of Open Access Journals (Sweden)

    Gregory G Simon

    2010-01-01

    Full Text Available This report describes the identification and bioinformatics analysis of HLA-DR4-restricted HIV-1 Gag epitope peptides, and the application of dendritic cell mediated immunization of DNA plasmid constructs. BALB/c (H-2d and HLA-DR4 (DRA1*0101, DRB1*0401 transgenic mice were immunized with immature dendritic cells transfected by a recombinant DNA plasmid encoding the lysosome-associated membrane protein-1/HIV-1 Gag (pLAMP/gag chimera antigen. Three immunization protocols were compared: 1 primary subcutaneous immunization with 1x10(5 immature dendritic cells transfected by electroporation with the pLAMP/gag DNA plasmid, and a second subcutaneous immunization with the naked pLAMP/gag DNA plasmid; 2 primary immunization as above, and a second subcutaneous immunization with a pool of overlapping peptides spanning the HIV-1 Gag sequence; and 3 immunization twice by subcutaneous injection of the pLAMP/gag DNA plasmid. Primary immunization with pLAMP/gag-transfected dendritic cells elicited the greatest number of peptide specific T-cell responses, as measured by ex vivo IFN-gamma ELISpot assay, both in BALB/c and HLA-DR4 transgenic mice. The pLAMP/gag-transfected dendritic cells prime and naked DNA boost immunization protocol also resulted in an increased apparent avidity of peptide in the ELISpot assay. Strikingly, 20 of 25 peptide-specific T-cell responses in the HLA-DR4 transgenic mice contained sequences that corresponded, entirely or partially to 18 of the 19 human HLA-DR4 epitopes listed in the HIV molecular immunology database. Selection of the most conserved epitope peptides as vaccine targets was facilitated by analysis of their representation and variability in all reported sequences. These data provide a model system that demonstrates a the superiority of immunization with dendritic cells transfected with LAMP/gag plasmid DNA, as compared to naked DNA, b the value of HLA transgenic mice as a model system for the identification and evaluation

  13. Interleukin (IL)-23 mediates Toxoplasma gondii-induced immunopathology in the gut via matrixmetalloproteinase-2 and IL-22 but independent of IL-17

    DEFF Research Database (Denmark)

    Muñoz, Melba; Heimesaat, Markus M; Danker, Kerstin

    2009-01-01

    Peroral infection with Toxoplasma gondii leads to the development of small intestinal inflammation dependent on Th1 cytokines. The role of Th17 cells in ileitis is unknown. We report interleukin (IL)-23-mediated gelatinase A (matrixmetalloproteinase [MMP]-2) up-regulation in the ileum of infected...... mice. MMP-2 deficiency as well as therapeutic or prophylactic selective gelatinase blockage protected mice from the development of T. gondii-induced immunopathology. Moreover, IL-23-dependent up-regulation of IL-22 was essential for the development of ileitis, whereas IL-17 was down...

  14. A transgenic rat expressing human APP with the Swedish Alzheimer's disease mutation

    DEFF Research Database (Denmark)

    Folkesson, Ronnie; Malkiewicz, Katarzyna; Kloskowska, Ewa

    2007-01-01

    In recent years, transgenic mice have become valuable tools for studying mechanisms of Alzheimer's disease (AD). With the aim of developing an animal model better for memory and neurobehavioural testing, we have generated a transgenic rat model of AD. These animals express human amyloid precursor...... in cerebrovascular blood vessels with very rare diffuse plaques. We believe that crossing these animals with mutant PS1 transgenic rats will result in accelerated plaque formation similar to that seen in transgenic mice....

  15. Cardioprotective effects of 70-kDa heat shock protein in transgenic mice.

    Science.gov (United States)

    Radford, N B; Fina, M; Benjamin, I J; Moreadith, R W; Graves, K H; Zhao, P; Gavva, S; Wiethoff, A; Sherry, A D; Malloy, C R; Williams, R S

    1996-03-19

    Heat shock proteins are proposed to limit injury resulting from diverse environmental stresses, but direct metabolic evidence for such a cytoprotective function in vertebrates has been largely limited to studies of cultured cells. We generated lines of transgenic mice to express human 70-kDa heat shock protein constitutively in the myocardium. Hearts isolated from these animals demonstrated enhanced recovery of high energy phosphate stores and correction of metabolic acidosis following brief periods of global ischemia sufficient to induce sustained abnormalities of these variables in hearts from nontransgenic littermates. These data demonstrate a direct cardioprotective effect of 70-kDa heat shock protein to enhance postischemic recovery of the intact heart.

  16. Transgenic Mice Overexpressing Vitamin D Receptor (VDR) Show Anti-Inflammatory Effects in Lung Tissues.

    Science.gov (United States)

    Ishii, Masaki; Yamaguchi, Yasuhiro; Isumi, Kyoko; Ogawa, Sumito; Akishita, Masahiro

    2017-12-01

    Vitamin D insufficiency is increasingly recognized as a prevalent problem worldwide, especially in patients with a chronic lung disease. Chronic obstructive pulmonary disease (COPD) is a type of chronic inflammatory lung disease. Previous clinical studies have shown that COPD leads to low vitamin D levels, which further increase the severity of COPD. Vitamin D homeostasis represents one of the most important factors that potentially determine the severity of COPD. Nonetheless, the mechanisms underlying the anti-inflammatory effects of vitamin D receptor (VDR) in lung tissues are still unclear. To investigate the anti-inflammatory effects of VDR, we generated transgenic mice that show lung-specific VDR overexpression under the control of the surfactant protein C promoter (TG mice). The TG mice were used to study the expression patterns of proinflammatory cytokines using real-time polymerase chain reaction and immunohistochemistry. The TG mice had lower levels of T helper 1 (Th1)-related cytokines than wild-type (WT) mice did. No significant differences in the expression of Th2 cytokines were observed between TG and WT mice. This study is the first to achieve lung-specific overexpression of VDR in TG mice: an interesting animal model useful for studying the relation between airway cell inflammation and vitamin D signaling. VDR expression is an important factor that influences anti-inflammatory responses in lung tissues. Our results show the crucial role of VDR in anti-inflammatory effects in lungs; these data are potentially useful for the treatment or prevention of COPD.

  17. Surface-Associated Lipoproteins Link Enterococcus faecalis Virulence to Colitogenic Activity in IL-10-Deficient Mice Independent of Their Expression Levels.

    Directory of Open Access Journals (Sweden)

    Soeren Ocvirk

    2015-06-01

    Full Text Available The commensal Enterococcus faecalis is among the most common causes of nosocomial infections. Recent findings regarding increased abundance of enterococci in the intestinal microbiota of patients with inflammatory bowel diseases and induction of colitis in IL-10-deficient (IL-10-/- mice put a new perspective on the contribution of E. faecalis to chronic intestinal inflammation. Based on the expression of virulence-related genes in the inflammatory milieu of IL-10-/- mice using RNA-sequencing analysis, we characterized the colitogenic role of two bacterial structures that substantially impact on E. faecalis virulence by different mechanisms: the enterococcal polysaccharide antigen and cell surface-associated lipoproteins. Germ-free wild type and IL-10-/- mice were monoassociated with E. faecalis wild type OG1RF or the respective isogenic mutants for 16 weeks. Intestinal tissue and mesenteric lymph nodes (MLN were collected to characterize tissue pathology, loss of intestinal barrier function, bacterial adhesion to intestinal epithelium and immune cell activation. Bone marrow-derived dendritic cells (BMDC were stimulated with bacterial lysates and E. faecalis virulence was additionally investigated in three invertebrate models. Colitogenic activity of wild type E. faecalis (OG1RF score: 7.2±1.2 in monoassociated IL-10-/- mice was partially impaired in E. faecalis lacking enterococcal polysaccharide antigen (ΔepaB score: 4.7±2.3; p<0.05 and was almost completely abrogated in E. faecalis deficient for lipoproteins (Δlgt score: 2.3±2.3; p<0.0001. Consistently both E. faecalis mutants showed significantly impaired virulence in Galleria mellonella and Caenorhabditis elegans. Loss of E-cadherin in the epithelium was shown for all bacterial strains in inflamed IL-10-/- but not wild type mice. Inactivation of epaB in E. faecalis reduced microcolony and biofilm formation in vitro, altered bacterial adhesion to intestinal epithelium of germ

  18. Imaging colon cancer development in mice: IL-6 deficiency prevents adenoma in azoxymethane-treated Smad3 knockouts

    Science.gov (United States)

    Harpel, Kaitlin; Leung, Sarah; Faith Rice, Photini; Jones, Mykella; Barton, Jennifer K.; Bommireddy, Ramireddy

    2016-02-01

    The development of colorectal cancer in the azoxymethane-induced mouse model can be observed by using a miniaturized optical coherence tomography (OCT) imaging system. This system is uniquely capable of tracking disease development over time, allowing for the monitoring of morphological changes in the distal colon due to tumor development and the presence of lymphoid aggregates. By using genetically engineered mouse models deficient in Interleukin 6 (IL-6) and Smad family member 3 (Smad3), the role of inflammation on tumor development and the immune system can be elucidated. Smad3 knockout mice develop inflammatory response, wasting, and colitis associated cancer while deficiency of proinflammatory cytokine IL-6 confers resistance to tumorigenesis. We present pilot data showing that the Smad3 knockout group had the highest tumor burden, highest spleen weight, and lowest thymus weight. The IL-6 deficiency in Smad3 knockout mice prevented tumor development, splenomegaly, and thymic atrophy. This finding suggests that agents that inhibit IL-6 (e.g. anti-IL-6 antibody, non-steroidal anti-inflammatory drugs [NSAIDs], etc.) could be used as novel therapeutic agents to prevent disease progression and increase the efficacy of anti-cancer agents. OCT can also be useful for initiating early therapy and assessing the benefit of combination therapy targeting inflammation.

  19. Effect of catalpol on senile plaques and spatial learning and memory ability in amyloid-β protein precursor/presenilin 1 double transgenic mice

    Institute of Scientific and Technical Information of China (English)

    宋冲

    2013-01-01

    Objective To investigate whether catalpol affects senile plaque formation and spatial learning and memory ability in the amyloid-βprotein precursor/presenilin 1(APP/PS1)double transgenic mice.Methods

  20. Exercise-Induced Neuroprotection of Hippocampus in APP/PS1 Transgenic Mice via Upregulation of Mitochondrial 8-Oxoguanine DNA Glycosylase

    Directory of Open Access Journals (Sweden)

    Hai Bo

    2014-01-01

    Full Text Available Improving mitochondrial function has been proposed as a reasonable therapeutic strategy to reduce amyloid-β (Aβ load and to modify the progression of Alzheimer’s disease (AD. However, the relationship between mitochondrial adaptation and brain neuroprotection caused by physical exercise in AD is poorly understood. This study was undertaken to investigate the effects of long-term treadmill exercise on mitochondrial 8-oxoguanine DNA glycosylase-1 (OGG1 level, mtDNA oxidative damage, and mitochondrial function in the hippocampus of APP/PS1 transgenic mouse model of AD. In the present study, twenty weeks of treadmill training significantly improved the cognitive function and reduced the expression of Aβ-42 in APP/PS1 transgenic (Tg mice. Training also ameliorated mitochondrial respiratory function by increasing the complexes I, and IV and ATP synthase activities, whereas it attenuated ROS generation and mtDNA oxidative damage in Tg mice. Furthermore, the impaired mitochondrial antioxidant enzymes and mitochondrial OGG1 activities seen in Tg mice were restored with training. Acetylation level of mitochondrial OGG1 and MnSOD was markedly suppressed in Tg mice after exercise training, in parallel with increased level of SIRT3. These findings suggest that exercise training could increase mtDNA repair capacity in the mouse hippocampus, which in turn would result in protection against AD-related mitochondrial dysfunction and phenotypic deterioration.

  1. Analysis of the capacity to produce IL-3 in murine AIDS

    DEFF Research Database (Denmark)

    Neuenschwander, A U; Marker, O; Thomsen, Allan Randrup

    1994-01-01

    Adult C57BL/6 mice infected with LP-BM5 murine leukaemia virus represent a model of murine AIDS (MAIDS). In this study we have analysed the capacity of CD4+ T cells from infected mice to produce IL-3 following stimulation with ConA for 24-72 h. In contrast to the position with IL-2, the production...

  2. Age-related changes in core body temperature and activity in triple-transgenic Alzheimer's disease (3xTgAD) mice.

    Science.gov (United States)

    Knight, Elysse M; Brown, Timothy M; Gümüsgöz, Sarah; Smith, Jennifer C M; Waters, Elizabeth J; Allan, Stuart M; Lawrence, Catherine B

    2013-01-01

    Alzheimer's disease (AD) is characterised, not only by cognitive deficits and neuropathological changes, but also by several non-cognitive behavioural symptoms that can lead to a poorer quality of life. Circadian disturbances in core body temperature and physical activity are reported in AD patients, although the cause and consequences of these changes are unknown. We therefore characterised circadian patterns of body temperature and activity in male triple transgenic AD mice (3xTgAD) and non-transgenic (Non-Tg) control mice by remote radiotelemetry. At 4 months of age, daily temperature rhythms were phase advanced and by 6 months of age an increase in mean core body temperature and amplitude of temperature rhythms were observed in 3xTgAD mice. No differences in daily activity rhythms were seen in 4- to 9-month-old 3xTgAD mice, but by 10 months of age an increase in mean daily activity and the amplitude of activity profiles for 3xTgAD mice were detected. At all ages (4-10 months), 3xTgAD mice exhibited greater food intake compared with Non-Tg mice. The changes in temperature did not appear to be solely due to increased food intake and were not cyclooxygenase dependent because the temperature rise was not abolished by chronic ibuprofen treatment. No β-amyloid (Aβ) plaques or neurofibrillary tangles were noted in the hypothalamus of 3xTgAD mice, a key area involved in temperature regulation, although these pathological features were observed in the hippocampus and amygdala of 3xTgAD mice from 10 months of age. These data demonstrate age-dependent changes in core body temperature and activity in 3xTgAD mice that are present before significant AD-related neuropathology and are analogous to those observed in AD patients. The 3xTgAD mouse might therefore be an appropriate model for studying the underlying mechanisms involved in non-cognitive behavioural changes in AD.

  3. In humans IL-6 is released from the brain during and after exercise and paralleled by enhanced IL-6 mRNA expression in the hippocampus of mice

    DEFF Research Database (Denmark)

    Rasmussen, Per; Vedel, J-C; Olesen, J

    2011-01-01

    Aim: Plasma interleukin-6 (IL-6) increases during exercise by release from active muscles and during prolonged exercise also from the brain. The IL-6 release from muscles continues into recovery and we tested whether the brain also releases IL-6 in recovery from prolonged exercise in humans....... Additionally, it was evaluated in mice whether brain release of IL-6 reflected enhanced IL-6 mRNA expression in the brain as modulated by brain glycogen levels. Methods: Nine healthy male subjects completed 4 h of ergometer rowing while the arterio-jugular venous difference (a-v diff) for IL-6 was determined....... The IL-6 mRNA and the glycogen content were determined in mouse hippocampus, cerebellum and cortex before and after 2 h treadmill running (N = 8). Results: At rest, the IL-6 a-v diff was negligible but decreased to -2.2 ± 1.9 pg ml(-1) at the end of exercise and remained low (-2.1 ± 2.1 pg ml(-1) ) 1 h...

  4. Fisetin inhibits IL-1β-induced inflammatory response in human osteoarthritis chondrocytes through activating SIRT1 and attenuates the progression of osteoarthritis in mice.

    Science.gov (United States)

    Zheng, Wenhao; Feng, Zhenhua; You, Shengban; Zhang, Hui; Tao, Zhenyu; Wang, Quan; Chen, Hua; Wu, Yaosen

    2017-04-01

    Osteoarthritis (OA) is a degenerative joint disease characterized by cartilage degradation and inflammation. Fisetin, a polyphenol extracted from fruits and vegetables, has been reported to have anti-inflammatory effects. Our study aimed to investigate the effect of fisetin on OA both in vitro and in vivo. In vitro, chondrocytes were pretreated with fisetin alone or fisetin combined with sirtinol (an inhibitor of SIRT1) for 2h before IL-1β stimulation. Production of NO, PGE2, TNF-α and IL-6 were evaluated by the Griess reaction and ELISAs. The mRNA (COX-2, iNOS, MMP-3, MMP-13, ADAMTS-5, Sox-9, aggrecan and collagen-II) and protein expression (COX-2, iNOS, MMP-3, MMP-13, ADAMTS-5 and SIRT1) were measured by qRT-PCR and Western blot respectively. Immunofluorescence was used to assess the expression of collagen-II and SIRT1. SIRT1 activity was quantified with SIRT1 fluorometric assay kit. The in vivo effect of fisetin was evaluated by gavage in mice OA models induced by destabilization of the medial meniscus (DMM). We found that fisetin inhibited IL-1β-induced expression of NO, PGE2, TNF-α, IL-6, COX-2, iNOS, MMP-3, MMP-13, ADAMTS-5. Besides, fisetin remarkably decreased IL-1β-induced degradation of Sox-9, aggrecan and collagen-II. Furthermore, fisetin significantly inhibited IL-1β-induced SIRT1 decrease and inactivation. However, the inhibitory effect of fisetin was obvious abolished by sirtinol, suggesting that fisetin exerts anti-inflammatory effects through activating SIRT1. In vivo, fisetin-treated mice exhibited less cartilage destruction and lower OARSI scores. Moreover, fisetin reduced subchondral bone plate thickness and alleviated synovitis. Taken together, these findings indicate that fisetin may be a potential agent in the treatment of OA. Copyright © 2017 Elsevier B.V. All rights reserved.

  5. Three-Dimensional Conformal Radiotherapy in Prostate Cancer Patients: Rise in Interleukin 6 (IL-6) but not IL-2, IL-4, IL-5, Tumor Necrosis Factor-{alpha}, MIP-1-{alpha}, and LIF Levels

    Energy Technology Data Exchange (ETDEWEB)

    Oliveira Lopes, Carlos [Universidade do Vale do Paraiba, Centro de Oncologia Radioterapica do Vale do Paraiba, Universidade do Vale do Paraiba Instituto de Pesquisa e Desenvolvimento, Universidade do Vale do Paraiba, Sao Jose dos Campos, Sao Paulo (Brazil); Callera, Fernando, E-mail: fcallera@gmail.com [Centro de Hematologia Onco-hematologia e Transplantes de Medula Ossea do Vale do Paraiba, Sao Paulo (Brazil)

    2012-03-15

    Purpose: To investigate the effect of radiotherapy (RT) on serum levels of interleukin-2 (IL-2), IL-4, IL-5, IL-6, tumor necrosis factor alpha (TNF-{alpha}), macrophage inflammatory protein-1-alpha (MIP-1-{alpha}) and leukemia inhibitory factor (LIF) in patients with prostate cancer. Methods and Materials: Forty eight patients with prostate cancer received three-dimensional conformal blocking radiation therapy with a linear accelerator. IL-2, IL-4, IL-5, IL-6, TNF-{alpha}, MIP-1-{alpha}, and LIF levels were measured by the related immunoassay kit 1 day before the beginning of RT and during RT at days 15 and 30. Results: The mean IL-2 values were elevated before and during the RT in contrast with those of IL-4, IL-5, IL-6, TNF-{alpha}, MIP-1-{alpha}, and LIF, which were within the normal range under the same conditions. Regarding markers IL-2, IL-4, IL-5, TNF-{alpha}, MIP-1-{alpha}, and LIF, comparisons among the three groups (before treatment and 15 and 30 days during RT) did not show significant differences. Although values were within the normal range, there was a significant rise in IL-6 levels at day 15 of RT (p = 0.0049) and a decline at day 30 to levels that were similar to those observed before RT. Conclusions: IL-6 appeared to peak after 15 days of RT before returning to pre-RT levels. In contrast, IL-2, IL-4, IL-5, TNF-{alpha}, MIP-1-{alpha}, and LIF levels were not sensitive to irradiation. The increased levels of IL-6 following RT without the concurrent elevation of other cytokines involved in the acute phase reaction did not suggest a classical inflammatory response to radiation exposure. Further studies should be designed to elucidate the role of IL-6 levels in patients with prostate cancer treated with RT.

  6. IL-2 absorption affects IFN-gamma and IL-5, but not IL-4 producing memory T cells in double color cytokine ELISPOT assays.

    Science.gov (United States)

    Quast, Stefan; Zhang, Wenji; Shive, Carey; Kovalovski, Damian; Ott, Patrick A; Herzog, Bernhard A; Boehm, Bernhard O; Tary-Lehmann, Magdalena; Karulin, Alexey Y; Lehmann, Paul V

    2005-09-01

    Cytokine assays are gaining increasing importance for human immune monitoring because they reliably detect antigen-specific T cells in primary PBMC, even at low clonal sizes. Double color ELISPOT assays permit the simultaneous visualization of cells producing two different cytokines. Permitting the simultaneous assessment of type 1 and 2 immunity and due to the limited numbers of PBMC available from human study subjects, double color assays should be particularly attractive for clinical trials. Since the performance of double color assays has not yet been validated, we set out to compare them to single color measurements. Testing the recall antigen-induced cytokine response of PBMC, we found that double color assays regularly provided lower numbers of IFN-gamma and IL-5 spots than single color measurements when IL-2 detection was part of the double color assay. We showed that the inhibitory effect resulted from IL-2 absorption and could be overcome by either antibody free preactivation cultures or by inclusion of anti-CD28 antibody. In contrast, the simultaneous detection of IL-2 did not affect the numbers of IL-4 spots. Therefore, unlike IL-2/IL-4 and IFN-gamma/IL-5 assays, IL-2/IFN-gamma, and IL-2/IL-5 assays require compensation for the IL-2 capture to provide accurate numbers for the frequencies of cytokine producing memory T cells.

  7. Spaceflight influences both mucosal and peripheral cytokine production in PTN-Tg and wild type mice.

    Directory of Open Access Journals (Sweden)

    Justin L McCarville

    Full Text Available Spaceflight is associated with several health issues including diminished immune efficiency. Effects of long-term spaceflight on selected immune parameters of wild type (Wt and transgenic mice over-expressing pleiotrophin under the human bone-specific osteocalcin promoter (PTN-Tg were examined using the novel Mouse Drawer System (MDS aboard the International Space Station (ISS over a 91 day period. Effects of this long duration flight on PTN-Tg and Wt mice were determined in comparison to ground controls and vivarium-housed PTN-Tg and Wt mice. Levels of interleukin-2 (IL-2 and transforming growth factor-beta1 (TGF-β1 were measured in mucosal and systemic tissues of Wt and PTN-Tg mice. Colonic contents were also analyzed to assess potential effects on the gut microbiota, although no firm conclusions could be made due to constraints imposed by the MDS payload and the time of sampling. Spaceflight-associated differences were observed in colonic tissue and systemic lymph node levels of IL-2 and TGF-β1 relative to ground controls. Total colonic TGF-β1 levels were lower in Wt and PTN-Tg flight mice in comparison to ground controls. The Wt flight mouse had lower levels of IL-2 and TGF-β1 compared to the Wt ground control in both the inguinal and brachial lymph nodes, however this pattern was not consistently observed in PTN-Tg mice. Vivarium-housed Wt controls had higher levels of active TGF-β1 and IL-2 in inguinal lymph nodes relative to PTN-Tg mice. The results of this study suggest compartmentalized effects of spaceflight and on immune parameters in mice.

  8. Acrolein stimulates the synthesis of IL-6 and C-reactive protein (CRP) in thrombosis model mice and cultured cells.

    Science.gov (United States)

    Saiki, Ryotaro; Hayashi, Daisuke; Ikuo, Yukiko; Nishimura, Kazuhiro; Ishii, Itsuko; Kobayashi, Kaoru; Chiba, Kan; Toida, Toshihiko; Kashiwagi, Keiko; Igarashi, Kazuei

    2013-12-01

    Measurements of protein-conjugated acrolein (PC-Acro), IL-6, and C-reactive protein (CRP) in plasma were useful for identifying silent brain infarction with high sensitivity and specificity. The aim of this study was to determine whether acrolein causes increased production of IL-6 and CRP in thrombosis model mice and cultured cells. In mice with photochemically induced thrombosis, acrolein produced at the locus of infarction increased the level of IL-6 and then CRP in plasma. This was confirmed in cell culture systems - acrolein stimulated the production of IL-6 in mouse neuroblastoma Neuro-2a cells, mouse macrophage-like J774.1 cells, and human umbilical vein endothelial cells (HUVEC), and IL-6 in turn stimulated the production of CRP in human hepatocarcinoma cells. The level of IL-6 mRNA was increased by acrolein through an increase in phosphorylation of the transcription factors, c-Jun, and NF-κB p65. Furthermore, CRP stimulated IL-6 production in mouse macrophage-like J774.1 cells and HUVEC. IL-6 functioned as a protective factor against acrolein toxicity in Neuro-2a cells and HUVEC. These results show that acrolein stimulates the synthesis of IL-6 and CRP, which function as protecting factors against acrolein toxicity, and that the combined measurement of PC-Acro, IL-6, and CRP is effective for identification of silent brain infarction. The combined measurements of protein-conjugated acrolein (PC-Acro), IL-6, and C-reactive protein (CRP) in plasma were useful for identifying silent brain infarction. The aim of this study was to determine whether acrolein causes increased production of IL-6 and CRP, and indeed acrolein increased IL-6 synthesis and IL-6 in turn increased CRP synthesis. Furthermore, IL-6 decreased acrolein toxicity in several cell lines. © 2013 International Society for Neurochemistry.

  9. Protective and therapeutic efficacy of Mycobacterium smegmatis expressing HBHA-hIL12 fusion protein against Mycobacterium tuberculosis in mice.

    Directory of Open Access Journals (Sweden)

    Shanmin Zhao

    Full Text Available Tuberculosis (TB remains a major worldwide health problem. The only vaccine against TB, Mycobacterium bovis Bacille Calmette-Guerin (BCG, has demonstrated relatively low efficacy and does not provide satisfactory protection against the disease. More efficient vaccines and improved therapies are urgently needed to decrease the worldwide spread and burden of TB, and use of a viable, metabolizing mycobacteria vaccine may be a promising strategy against the disease. Here, we constructed a recombinant Mycobacterium smegmatis (rMS strain expressing a fusion protein of heparin-binding hemagglutinin (HBHA and human interleukin 12 (hIL-12. Immune responses induced by the rMS in mice and protection against Mycobacterium tuberculosis (MTB were investigated. Administration of this novel rMS enhanced Th1-type cellular responses (IFN-γ and IL-2 in mice and reduced bacterial burden in lungs as well as that achieved by BCG vaccination. Meanwhile, the bacteria load in M. tuberculosis infected mice treated with the rMS vaccine also was significantly reduced. In conclusion, the rMS strain expressing the HBHA and human IL-12 fusion protein enhanced immunogencity by improving the Th1-type response against TB, and the protective effect was equivalent to that of the conventional BCG vaccine in mice. Furthermore, it could decrease bacterial load and alleviate histopathological damage in lungs of M. tuberculosis infected mice.

  10. Constitutive ω-3 fatty acid production in fat-1 transgenic mice and docosahexaenoic acid administration to wild type mice protect against 2,4,6-trinitrobenzene sulfonic acid-induced colitis.

    Science.gov (United States)

    Yum, Hye-Won; Kang, Jing X; Hahm, Ki Baik; Surh, Young-Joon

    2017-06-10

    Omega-3 (ω-3) polyunsaturated fatty acids (PUFAs) are known to have strong anti-inflammatory effects. In the present study, we investigated the protective effects of ω-3 PUFAs on experimentally induced murine colitis. Intrarectal administration of 2.5% 2,4,6-trinitrobenzene sulfonic acid (TNBS) caused inflammation in the colon of wild type mice, but this was less severe in fat-1 transgenic mice that constitutively produce ω-3 PUFAs from ω-6 PUFAs. The intraperitoneal administration of docosahexaenoic acid (DHA), a representative ω-3 PUFA, was also protective against TNBS-induced murine colitis. In addition, endogenously formed and exogenously introduced ω-3 PUFAs attenuated the production of malondialdehyde and 4-hydroxynonenal in the colon of TNBS-treated mice. The effective protection against inflammatory and oxidative colonic tissue damages in fat-1 and DHA-treated mice was associated with suppression of NF-κB activation and cyclooxygenase-2 expression and with elevated activation of Nrf2 and upregulation of its target gene, heme oxygenase-1. Taken together, these results provide mechanistic basis of protective action of ω-3 fatty PUFAs against experimental colitis. Copyright © 2017. Published by Elsevier Inc.

  11. Peripheral blood MDSCs, IL-10 and IL-12 in children with asthma and their importance in asthma development.

    Science.gov (United States)

    Zhang, Yan-Li; Luan, Bin; Wang, Xiu-Fang; Qiao, Jun-Ying; Song, Li; Lei, Rui-Rui; Gao, Wei-Xia; Liu, Ying

    2013-01-01

    To investigate myeloid-derived suppressor cell (MDSC) accumulation and interleukin 10 (IL-10) and interleukin 12 (IL-12) levels during the onset of asthma in both pediatric patients and mouse models, as well as their possible roles in the development of asthma. Peripheral blood samples were gathered from children with asthma attacks (attack group) and alleviated asthma (alleviated group), as well as two control groups, children with pneumonia and healthy children. The pathological characteristics of asthma in asthmatic mice, budesonide-treated asthmatic mice, and normal control mice were also evaluated by immunohistochemistry (IHC) and hematoxylin and eosin (H&E) staining. MDSC accumulation and serum IL-10 levels were significantly elevated in the children with asthma compared with the budesonide-treated alleviated group, normal healthy controls, and pneumonia controls (p0.05). The level of serum IL-12 in the asthmatic children was drastically reduced compared to the budesonide-treated alleviated group, healthy controls, and pneumonia controls (pasthma was positively correlated with the level of serum IL-10 and negatively correlated with the level of serum IL-12. The levels of MDSCs and IL-10 in asthmatic mice were significantly higher than those in the normal control mice (both pasthma, the accumulation of MDSCs and the level of serum IL-10 increase, while the level of IL-12 decreases. These fluctuations may play an important role in the development of asthma.

  12. Astrocytic Gap Junctional Communication is Reduced in Amyloid-β-Treated Cultured Astrocytes, but not in Alzheimer's Disease Transgenic Mice

    Directory of Open Access Journals (Sweden)

    Nancy F Cruz

    2010-07-01

    Full Text Available Alzheimer's disease is characterized by accumulation of amyloid deposits in brain, progressive cognitive deficits and reduced glucose utilization. Many consequences of the disease are attributed to neuronal dysfunction, but roles of astrocytes in its pathogenesis are not well understood. Astrocytes are extensively coupled via gap junctions, and abnormal trafficking of metabolites and signalling molecules within astrocytic syncytia could alter functional interactions among cells comprising the neurovascular unit. To evaluate the influence of amyloid-β on astrocyte gap junctional communication, cultured astrocytes were treated with monomerized amyloid-β1-40 (1 μmol/l for intervals ranging from 2 h to 5 days, and the areas labelled by test compounds were determined by impaling a single astrocyte with a micropipette and diffusion of material into coupled cells. Amyloid-β-treated astrocytes had rapid, sustained 50-70% reductions in the area labelled by Lucifer Yellow, anionic Alexa Fluor® dyes and energy-related compounds, 6-NBDG (a fluorescent glucose analogue, NADH and NADPH. Amyloid-β treatment also caused a transient increase in oxidative stress. In striking contrast with these results, spreading of Lucifer Yellow within astrocytic networks in brain slices from three regions of 8.5-14-month-old control and transgenic Alzheimer's model mice was variable, labelling 10-2000 cells; there were no statistically significant differences in the number of dye-labelled cells among the groups or with age. Thus amyloid-induced dysfunction of gap junctional communication in cultured astrocytes does not reflect the maintenance of dye transfer through astrocytic syncytial networks in transgenic mice; the pathophysiology of Alzheimer's disease is not appropriately represented by the cell culture system.

  13. Astrocytic gap junctional communication is reduced in amyloid-β-treated cultured astrocytes, but not in Alzheimer's disease transgenic mice.

    Science.gov (United States)

    Cruz, Nancy F; Ball, Kelly K; Dienel, Gerald A

    2010-08-17

    Alzheimer's disease is characterized by accumulation of amyloid deposits in brain, progressive cognitive deficits and reduced glucose utilization. Many consequences of the disease are attributed to neuronal dysfunction, but roles of astrocytes in its pathogenesis are not well understood. Astrocytes are extensively coupled via gap junctions, and abnormal trafficking of metabolites and signalling molecules within astrocytic syncytia could alter functional interactions among cells comprising the neurovascular unit. To evaluate the influence of amyloid-beta on astrocyte gap junctional communication, cultured astrocytes were treated with monomerized amyloid-β(1-40) (1 μmol/l) for intervals ranging from 2 h to 5 days, and the areas labelled by test compounds were determined by impaling a single astrocyte with a micropipette and diffusion of material into coupled cells. Amyloid-β-treated astrocytes had rapid, sustained 50-70% reductions in the area labelled by Lucifer Yellow, anionic Alexa Fluor® dyes and energy-related compounds, 6-NBDG (a fluorescent glucose analogue), NADH and NADPH. Amyloid-β treatment also caused a transient increase in oxidative stress. In striking contrast with these results, spreading of Lucifer Yellow within astrocytic networks in brain slices from three regions of 8.5-14-month-old control and transgenic Alzheimer's model mice was variable, labelling 10-2000 cells; there were no statistically significant differences in the number of dye-labelled cells among the groups or with age. Thus amyloid-induced dysfunction of gap junctional communication in cultured astrocytes does not reflect the maintenance of dye transfer through astrocytic syncytial networks in transgenic mice; the pathophysiology of Alzheimer's disease is not appropriately represented by the cell culture system.

  14. Conditional IL-2 gene deletion: consequences for T cell proliferation

    Directory of Open Access Journals (Sweden)

    Kendall A Smith

    2012-05-01

    Full Text Available To explore the role of interleukin-2 (IL-2 in T cell proliferation, and to circumvent the IL-2 deficiency autoimmune syndrome of conventional il2 gene deletion, mice were created to allow conditional il2 gene deletion when treated with the estrogen analogue, tamoxifen (TAM as adults. Splenocytes from four different mouse strains, C57Bl/6 wild type (WT, conventional IL-2 (-/-, TAM-treated Cre recombinase negative (Cre-/IL2fl/fl, and Cre+/IL-2fl/fl (Cre+, were activated with anti-CD3 and anti-CD28, and monitored for CD4+ and CD8+ T cell lymphocyte blastogenesis, aerobic glycolysis, BrdU incorporation into newly synthesized DNA, and CFSE dye dilution to monitor cell division. IL-2 production was monitored by quantitative ELISA and multiple additional cytokines were monitored by protein-bead arrays. Splenocytes from conventional IL-2 (-/- and TAM-treated Cre+ mice resulted in undetectable IL-2 production, so that both strains were IL-2 deficient. As monitored by flow cytometry, activated CD4+ and CD8+ T cells from WT, Cre+ and Cre- mice all underwent blastogenesis, whereas far fewer cells from conventional IL-2 (-/- mice did so. By comparison, only cells from IL-2 sufficient WT and Cre- switched to aerobic glycolysis as evidenced by a drop in media pH. Blastogenesis was mirrored by BrdU incorporation and CFSE dye dilution by CD4+ and CD8+ T cells from WT, Cre+ and Cre- mice, which were all equivalent, while proliferation of cells from conventional IL-2 (-/- mice was compromised. Splenocytes from IL-2 deficient conventional IL-2 (-/- mice produced low or undetectable other γc-chain cytokines (IL-4, IL-7, IL-9, IL-13, IL-15, and IL-21, whereas production of these γc-chain cytokines from IL-2-deficient conditional IL-2 (-/- Cre+ mice were comparable with WT and Cre- mice. These results indicate that CD4+ and CD8+ T cell blastogenesis cannot be attributable to IL-2 alone, but a switch to aerobic glycolysis is attributable to IL-2, and proliferation

  15. Detailed immunohistochemical characterization of temporal and spatial progression of Alzheimer's disease-related pathologies in male triple-transgenic mice

    Directory of Open Access Journals (Sweden)

    Bowers William J

    2008-08-01

    Full Text Available Abstract Background Several transgenic animal models genetically predisposed to develop Alzheimer's disease (AD-like pathology have been engineered to facilitate the study of disease pathophysiology and the vetting of potential disease-modifying therapeutics. The triple transgenic mouse model of AD (3xTg-AD harbors three AD-related genetic loci: human PS1M146V, human APPswe, and human tauP301L. These mice develop both amyloid plaques and neurofibrillary tangle-like pathology in a progressive and age-dependent manner, while these pathological hallmarks are predominantly restricted to the hippocampus, amygdala, and the cerebral cortex the main foci of AD neuropathology in humans. This model represents, at present, one of the most advanced preclinical tools available and is being employed ever increasingly in the study of mechanisms underlying AD, yet a detailed regional and temporal assessment of the subtleties of disease-related pathologies has not been reported. Methods and results In this study, we immunohistochemically documented the evolution of AD-related transgene expression, amyloid deposition, tau phosphorylation, astrogliosis, and microglial activation throughout the hippocampus, entorhinal cortex, primary motor cortex, and amygdala over a 26-month period in male 3xTg-AD mice. Intracellular amyloid-beta accumulation is detectable the earliest of AD-related pathologies, followed temporally by phospho-tau, extracellular amyloid-beta, and finally paired helical filament pathology. Pathology appears to be most severe in medial and caudal hippocampus. While astrocytic staining remains relatively constant at all ages and regions assessed, microglial activation appears to progressively increase temporally, especially within the hippocampal formation. Conclusion These data fulfill an unmet need in the ever-widening community of investigators studying 3xTg-AD mice and provide a foundation upon which to design future experiments that seek to

  16. Transsynaptic transport of wheat germ agglutinin expressed in a subset of type II taste cells of transgenic mice

    Directory of Open Access Journals (Sweden)

    Mosinger Bedrich

    2008-10-01

    Full Text Available Abstract Background Anatomical tracing of neural circuits originating from specific subsets of taste receptor cells may shed light on interactions between taste cells within the taste bud and taste cell-to nerve interactions. It is unclear for example, if activation of type II cells leads to direct activation of the gustatory nerves, or whether the information is relayed through type III cells. To determine how WGA produced in T1r3-expressing taste cells is transported into gustatory neurons, transgenic mice expressing WGA-IRES-GFP driven by the T1r3 promoter were generated. Results Immunohistochemistry showed co-expression of WGA, GFP and endogenous T1r3 in the taste bud cells of transgenic mice: the only taste cells immunoreactive for WGA were the T1r3-expressing cells. The WGA antibody also stained intragemmal nerves. WGA, but not GFP immunoreactivity was found in the geniculate and petrosal ganglia of transgenic mice, indicating that WGA was transported across synapses. WGA immunoreactivity was also found in the trigeminal ganglion, suggesting that T1r3-expressing cells make synapses with trigeminal neurons. In the medulla, WGA was detected in the nucleus of the solitary tract but also in the nucleus ambiguus, the vestibular nucleus, the trigeminal nucleus and in the gigantocellular reticular nucleus. WGA was not detected in the parabrachial nucleus, or the gustatory cortex. Conclusion These results show the usefulness of genetically encoded WGA as a tracer for the first and second order neurons that innervate a subset of taste cells, but not for higher order neurons, and demonstrate that the main route of output from type II taste cells is the gustatory neuron, not the type III cells.

  17. Bee venom phospholipase A2 protects against acetaminophen-induced acute liver injury by modulating regulatory T cells and IL-10 in mice.

    Science.gov (United States)

    Kim, Hyunseong; Keum, Dong June; Kwak, Jung won; Chung, Hwan-Suck; Bae, Hyunsu

    2014-01-01

    The aim of this study was to investigate the protective effects of phospholipase A2 (PLA2) from bee venom against acetaminophen-induced hepatotoxicity through CD4+CD25+Foxp3+ T cells (Treg) in mice. Acetaminophen (APAP) is a widely used antipyretic and analgesic, but an acute or cumulative overdose of acetaminophen can cause severe hepatic failure. Tregs have been reported to possess protective effects in various liver diseases and kidney toxicity. We previously found that bee venom strongly increased the Treg population in splenocytes and subsequently suppressed immune disorders. More recently, we found that the effective component of bee venom is PLA2. Thus, we hypothesized that PLA2 could protect against liver injury induced by acetaminophen. To evaluate the hepatoprotective effects of PLA2, C57BL/6 mice or interleukin-10-deficient (IL-10-/-) mice were injected with PLA2 once a day for five days and sacrificed 24 h (h) after acetaminophen injection. The blood sera were collected 0, 6, and 24 h after acetaminophen injection for the analysis of aspartate aminotransferase (AST) and alanine aminotransferase (ALT). PLA2-injected mice showed reduced levels of serum AST, ALT, proinflammatory cytokines, and nitric oxide (NO) compared with the PBS-injected control mice. However, IL-10 was significantly increased in the PLA2-injected mice. These hepatic protective effects were abolished in Treg-depleted mice by antibody treatment and in IL-10-/- mice. Based on these findings, it can be concluded that the protective effects of PLA2 against acetaminophen-induced hepatotoxicity can be mediated by modulating the Treg and IL-10 production.

  18. Bee venom phospholipase A2 protects against acetaminophen-induced acute liver injury by modulating regulatory T cells and IL-10 in mice.

    Directory of Open Access Journals (Sweden)

    Hyunseong Kim

    Full Text Available The aim of this study was to investigate the protective effects of phospholipase A2 (PLA2 from bee venom against acetaminophen-induced hepatotoxicity through CD4+CD25+Foxp3+ T cells (Treg in mice. Acetaminophen (APAP is a widely used antipyretic and analgesic, but an acute or cumulative overdose of acetaminophen can cause severe hepatic failure. Tregs have been reported to possess protective effects in various liver diseases and kidney toxicity. We previously found that bee venom strongly increased the Treg population in splenocytes and subsequently suppressed immune disorders. More recently, we found that the effective component of bee venom is PLA2. Thus, we hypothesized that PLA2 could protect against liver injury induced by acetaminophen. To evaluate the hepatoprotective effects of PLA2, C57BL/6 mice or interleukin-10-deficient (IL-10-/- mice were injected with PLA2 once a day for five days and sacrificed 24 h (h after acetaminophen injection. The blood sera were collected 0, 6, and 24 h after acetaminophen injection for the analysis of aspartate aminotransferase (AST and alanine aminotransferase (ALT. PLA2-injected mice showed reduced levels of serum AST, ALT, proinflammatory cytokines, and nitric oxide (NO compared with the PBS-injected control mice. However, IL-10 was significantly increased in the PLA2-injected mice. These hepatic protective effects were abolished in Treg-depleted mice by antibody treatment and in IL-10-/- mice. Based on these findings, it can be concluded that the protective effects of PLA2 against acetaminophen-induced hepatotoxicity can be mediated by modulating the Treg and IL-10 production.

  19. TL transgenic mouse strains

    International Nuclear Information System (INIS)

    Obata, Y.; Matsudaira, Y.; Hasegawa, H.; Tamaki, H.; Takahashi, T.; Morita, A.; Kasai, K.

    1993-01-01

    As a result of abnormal development of the thymus of these mice, TCR αβ lineage of the T cell differentiation is disturbed and cells belonging to the TCR γδ CD4 - CD8 - double negative (DN) lineage become preponderant. The γδ DN cells migrate into peripheral lymphoid organs and constitute nearly 50% of peripheral T cells. Immune function of the transgenic mice is severely impaired, indicating that the γδ cells are incapable of participating in these reactions. Molecular and serological analyses of T-cell lymphomas reveal that they belong to the γδ lineage. Tg.Tla a -3-1 mice should be useful in defining the role of TL in normal and abnormal T cell differentiation as well as in the development of T-cell lymphomas, and further they should facilitate studies on the differentiation and function of γδ T cells. We isolated T3 b -TL gene from B6 mice and constructed a chimeric gene in which T3 b -TL is driven by the promoter of H-2K b . With the chimeric gene, two transgenic mouse strains, Tg. Con.3-1 and -2 have been derived in C3H background. Both strains express TL antigen in various tissues including skin. The skin graft of transgenic mice on C3H and (B6 X C3H)F 1 mice were rejected. In the mice which rejected the grafts, CD8 + TCRαβ cytotoxic T cells (CTL) against TL antigens were recognized. The recognition of TL by CTL did not require the antigen presentation by H-2 molecules. The results indicated that TL antigen in the skin becomes a transplantation antigen and behaves like a typical allogeneic MHC class I antigen. The facts that (B6 X C3H)F 1 mice rejected the skin expressing T3 b -TL antigen and induced CTL that killed TL + lymphomas of B6 origin revealed that TL antigen encoded by T3 b -TL is recognized as non-self in B6 mice. Experiments are now extended to analyze immune responses to TL antigen expressed on autochthonous T cell lymphomas. (J.P.N.)

  20. Growth hormone receptor antagonist (GHA) transgenic mice have increased subcutaneous adipose tissue mass, altered glucose homeostasis, and no change in white adipose tissue cellular senescence

    Science.gov (United States)

    Comisford, Ross; Lubbers, Ellen R.; Householder, Lara; Suer, Ozan; Tchkonia, Tamara; Kirkland, James L.; List, Edward O.; Kopchick, John J.; Berryman, Darlene E.

    2015-01-01

    Background Growth hormone (GH) resistant/deficient mice experience improved glucose homeostasis and substantially increased lifespan. Recent evidence suggests long-lived GH resistant/deficient mice are protected from white adipose tissue (WAT) dysfunction, including WAT cellular senescence, impaired adipogenesis and loss of subcutaneous WAT in old age. This preservation of WAT function has been suggested to be a potential mechanism for the extended lifespan of these mice. OBJECTIVE The objective of this study was to examine white adipose tissue (WAT) senescence, WAT distribution, and glucose homeostasis in dwarf growth hormone receptor antagonist (GHA) transgenic mice, a unique mouse strain having decreased GH action but normal longevity. METHODS 18mo old female GHA mice and wild type (WT) littermate controls were used. Prior to dissection, body composition, fasting blood glucose, and glucose and insulin tolerance tests were performed. WAT distribution was determined by weighing four distinct WAT depots at the time of dissection. Cellular senescence in four WAT depots was assessed using senescence-associated β-galactosidase (SA-β-gal) staining to quantify the senescent cell burden and real time qPCR to quantify gene expression of senescence markers p16 and IL-6. RESULTS GHA mice had a 22% reduction in total body weight, 33% reduction in lean mass, and a 10% increase in body fat percentage compared to WT controls. GHA mice had normal fasting blood glucose and improved insulin sensitivity; however, they exhibited impaired glucose tolerance. Moreover, GHA mice displayed enhanced lipid storage in the inguinal subcutaneous WAT depot (p<.05) and a 1.7 fold increase in extra-/intraperitoneal WAT ratio compared to controls (p<.05). Measurements of WAT cellular senescence showed no difference between GHA mice and WT controls. CONCLUSIONS Similar to other mice with decreased GH action, female GHA mice display reduced age-related lipid redistribution and improved insulin

  1. Characterization of somatostatin receptors and associated signaling pathways in pancreas of R6/2 transgenic mice.

    Science.gov (United States)

    Somvanshi, Rishi K; Jhajj, Amrit; Heer, Michael; Kumar, Ujendra

    2018-02-01

    The present study describes the status of somatostatin receptors (SSTRs) and their colocalization with insulin (β), glucagon (α) and somatostatin (δ) producing cells in the pancreatic islets of 11weeks old R6/2 Huntington's Disease transgenic (HD tg) and age-matched wild type (wt) mice. We also determined expression of tyrosine hydroxylase (TH), glutamic acid decarboxylase (GAD) and presynaptic marker synaptophysin (SYP) in addition to signal transduction pathways associated with diabetes. In R6/2 mice, islets are relatively smaller in size, exhibit enhanced expression and nuclear inclusion of mHtt along with the loss of insulin, glucagon and somatostatin expression. In comparison to wt, R6/2 mice display enhanced mRNA for all SSTRs except SSTR2. In the pancreatic lysate, SSTR1, 4 and 5 immunoreactivity decreases whereas SSTR3 immunoreactivity increases with no discernible changes in SSTR2 immunoreactivity. Furthermore, at the cellular level, R6/2 mice exhibit a receptor specific distributional pattern of SSTRs like immunoreactivity and colocalization with β, α and δ cells. While GAD expression is increased, TH and SYP immunoreactivity was decreased in R6/2 mice, anticipating a cross-talk between the CNS and pancreas in diabetes pathophysiology. We also dissected out the changes in signaling pathway and found decreased activation and expression of PKA, AKT, ERK1/2 and STAT3 in R6/2 mice pancreas. These findings suggest that the impaired organization of SSTRs within islets may lead to perturbed hormonal regulation and signaling. These interconnected complex events might shed new light on the pathogenesis of diabetes in neurodegenerative diseases and the role of SSTRs in potential therapeutic intervention. Copyright © 2017 Elsevier B.V. All rights reserved.

  2. Helicobacter hepaticus HHGI1 is a pathogenicity island associated with typhlocolitis in B6.129-IL10tm1Cgn mice

    Science.gov (United States)

    Ge, Zhongming; Sterzenbach, Torsten; Whary, Mark; Rickman, Barry; Rogers, Arlin; Shen, Zeli; Taylor, Nancy S.; Schauer, David B.; Josenhans, Christine; Suerbaum, Sebastian; Fox, James G.

    2008-01-01

    Helicobacter hepaticus strain 3B1 (H. hepaticus) contains a genomic island of ∼71 kb, HHGI1, with some of the common features shared among known bacterial pathogenicity islands. In this study, we characterized the pathogenic potential of HHGI1 by infecting B6.129-IL10tm1Cgn (IL10-/-) mice with an isogenic mutant (namely HhPAId1) lacking 19 predicted genes within HHGI1. In contrast to H. hepaticus (P < 0.001), HhPAId1did not cause typhlocolitis and hyperplasia in IL10-/- mice. Colonization levels of HhPAId1 were significantly higher in the cecum (P <0.007) and similar in the colon (P=0.27) when compared to H. hepaticus by 13 or 16 weeks post inoculation (WPI). The magnitude of the Th1-associated IgG2c response against HhPAId1 was less than that against H. hepaticus (P < 0.004). There was no significant difference in Th2-associated IgG1 responses against these two strains. Cecal and colonic mRNA levels of proinflammatory cytokines IFN-γ, TNF-α and IL-17a in the HhPAId1-infected mice were significantly lower than those in the H. hepaticus-infected mice (P <0.05) at 13 WPI. These results demonstrate that genes in the HHGI1 contribute to the pathogenicity of H. hepaticus, at least in part via up-regulation of proinflammatory mediators IFN-γ, TNF-α and IL-17a. PMID:18538610

  3. IL-15 protects NKT cells from inhibition by tumor-associated macrophages and enhances antimetastatic activity

    Science.gov (United States)

    Liu, Daofeng; Song, Liping; Wei, Jie; Courtney, Amy N.; Gao, Xiuhua; Marinova, Ekaterina; Guo, Linjie; Heczey, Andras; Asgharzadeh, Shahab; Kim, Eugene; Dotti, Gianpietro; Metelitsa, Leonid S.

    2012-01-01

    Vα24-invariant NKT cells inhibit tumor growth by targeting tumor-associated macrophages (TAMs). Tumor progression therefore requires that TAMs evade NKT cell activity through yet-unknown mechanisms. Here we report that a subset of cells in neuroblastoma (NB) cell lines and primary tumors expresses membrane-bound TNF-α (mbTNF-α). These proinflammatory tumor cells induced production of the chemokine CCL20 from TAMs via activation of the NF-κB signaling pathway, an effect that was amplified in hypoxia. Flow cytometry analyses of human primary NB tumors revealed selective accumulation of CCL20 in TAMs. Neutralization of the chemokine inhibited in vitro migration of NKT cells toward tumor-conditioned hypoxic monocytes and localization of NKT cells to NB grafts in mice. We also found that hypoxia impaired NKT cell viability and function. Thus, CCL20-producing TAMs served as a hypoxic trap for tumor-infiltrating NKT cells. IL-15 protected antigen-activated NKT cells from hypoxia, and transgenic expression of IL-15 in adoptively transferred NKT cells dramatically enhanced their antimetastatic activity in mice. Thus, tumor-induced chemokine production in hypoxic TAMs and consequent chemoattraction and inhibition of NKT cells represents a mechanism of immune escape that can be reversed by adoptive immunotherapy with IL-15–transduced NKT cells. PMID:22565311

  4. IL-15 protects NKT cells from inhibition by tumor-associated macrophages and enhances antimetastatic activity.

    Science.gov (United States)

    Liu, Daofeng; Song, Liping; Wei, Jie; Courtney, Amy N; Gao, Xiuhua; Marinova, Ekaterina; Guo, Linjie; Heczey, Andras; Asgharzadeh, Shahab; Kim, Eugene; Dotti, Gianpietro; Metelitsa, Leonid S

    2012-06-01

    Vα24-invariant NKT cells inhibit tumor growth by targeting tumor-associated macrophages (TAMs). Tumor progression therefore requires that TAMs evade NKT cell activity through yet-unknown mechanisms. Here we report that a subset of cells in neuroblastoma (NB) cell lines and primary tumors expresses membrane-bound TNF-α (mbTNF-α). These proinflammatory tumor cells induced production of the chemokine CCL20 from TAMs via activation of the NF-κB signaling pathway, an effect that was amplified in hypoxia. Flow cytometry analyses of human primary NB tumors revealed selective accumulation of CCL20 in TAMs. Neutralization of the chemokine inhibited in vitro migration of NKT cells toward tumor-conditioned hypoxic monocytes and localization of NKT cells to NB grafts in mice. We also found that hypoxia impaired NKT cell viability and function. Thus, CCL20-producing TAMs served as a hypoxic trap for tumor-infiltrating NKT cells. IL-15 protected antigen-activated NKT cells from hypoxia, and transgenic expression of IL-15 in adoptively transferred NKT cells dramatically enhanced their antimetastatic activity in mice. Thus, tumor-induced chemokine production in hypoxic TAMs and consequent chemoattraction and inhibition of NKT cells represents a mechanism of immune escape that can be reversed by adoptive immunotherapy with IL-15-transduced NKT cells.

  5. Chronic exercise ameliorates the neuroinflammation in mice carrying NSE/htau23

    International Nuclear Information System (INIS)

    Leem, Yea-Hyun; Lee, Young-Ik; Son, Hee-Jeong; Lee, Sang-Ho

    2011-01-01

    Research highlights: → The progress of neurodegeration are directly linked to the neuroinflammatory response. → We investigate whether exercise improves the neuroinflammation using T g -NSE/htau23 mice. → This provides insights that exercise may beneficial effects on the neuroinflammatory disorders. -- Abstract: The objective of the present study was to investigate whether chronic endurance exercise attenuates the neuroinflammation in the brain of mice with NSE/htau23. In this study, the tau-transgenic (Tg) mouse, Tg-NSE/htau23, which over expresses human Tau23 in its brain, was subjected to chronic exercise for 3 months, from 16 months of age. The brains of Tg mice exhibited increased immunoreactivity and active morphological changes in GFAP (astrocyte marker) and MAC-1 (microglia marker) expression in an age-dependent manner. To identify the effects of chronic exercise on gliosis, the exercised Tg mice groups were treadmill run at a speed of 12 m/min (intermediate exercise group) or 19 m/min (high exercise group) for 1 h/day and 5 days/week during the 3 month period. The neuroinflammatory response characterized by activated astroglia and microglia was significantly repressed in the exercised Tg mice in an exercise intensity-dependent manner. In parallel, chronic exercise in Tg mice reduced the increased expression of TNF-α, IL-6, IL-1β, COX-2, and iNOS. Consistently with these changes, the levels of phospho-p38 and phospho-ERK were markedly downregulated in the brain of Tg mice after exercise. In addition, nuclear NF-κB activity was profoundly reduced after chronic exercise in an exercise intensity-dependent manner. These findings suggest that chronic endurance exercise may alleviate neuroinflammation in the Tau pathology of Alzheimer's disease.

  6. Peripheral blood MDSCs, IL-10 and IL-12 in children with asthma and their importance in asthma development.

    Directory of Open Access Journals (Sweden)

    Yan-Li Zhang

    Full Text Available OBJECTIVE: To investigate myeloid-derived suppressor cell (MDSC accumulation and interleukin 10 (IL-10 and interleukin 12 (IL-12 levels during the onset of asthma in both pediatric patients and mouse models, as well as their possible roles in the development of asthma. METHODS: Peripheral blood samples were gathered from children with asthma attacks (attack group and alleviated asthma (alleviated group, as well as two control groups, children with pneumonia and healthy children. The pathological characteristics of asthma in asthmatic mice, budesonide-treated asthmatic mice, and normal control mice were also evaluated by immunohistochemistry (IHC and hematoxylin and eosin (H&E staining. RESULTS: MDSC accumulation and serum IL-10 levels were significantly elevated in the children with asthma compared with the budesonide-treated alleviated group, normal healthy controls, and pneumonia controls (p0.05. The level of serum IL-12 in the asthmatic children was drastically reduced compared to the budesonide-treated alleviated group, healthy controls, and pneumonia controls (p<0.05, whereas the latter three groups showed no significant differences in their serum IL-12 levels. The percentage of MDSCs in children with asthma was positively correlated with the level of serum IL-10 and negatively correlated with the level of serum IL-12. The levels of MDSCs and IL-10 in asthmatic mice were significantly higher than those in the normal control mice (both p<0.05 and were reduced after budesonide treatment (both p<0.05. IL-12 expression in the asthmatic mice was significantly lower than the control and was increased upon budesonide treatment (both p<0.05. CONCLUSION: During the onset of asthma, the accumulation of MDSCs and the level of serum IL-10 increase, while the level of IL-12 decreases. These fluctuations may play an important role in the development of asthma.

  7. Adjuvant effects of recombinant giant panda (Ailuropoda melanoleuca) IL-18 on the canine distemper disease vaccine in mice

    OpenAIRE

    YAN, Yue; NIU, Lili; DENG, Jiabo; WANG, Qiang; YU, Jianqiu; ZHANG, Yizheng; WANG, Jianxi; CHEN, Jiao; WEI, Changhe; TAN, Xuemei

    2014-01-01

    Canine distemper virus (CDV) is a morbillivirus known to cause morbidity and mortality in a broad range of animals. Giant pandas (Ailuropoda melanoleuca), especially captive ones, are susceptible to natural infection with CDV. Interleukin-18 (IL-18) is a powerful adjuvant molecule that can enhance the development of antigen-specific immunity and vaccine efficacy. In this study, a giant panda IL-18 gene eukaryotic expression plasmid (pcAmIL-18) was constructed. Female BALB/c mice were muscular...

  8. Cytokeratin 19 promoter directs the expression of Cre recombinase in various epithelia of transgenic mice.

    Science.gov (United States)

    Zhao, Gui-Feng; Zhao, Shuang; Liu, Jia-Jie; Wu, Ji-Cheng; He, Hao-Yu; Ding, Xiao-Qing; Yu, Xue-Wen; Huang, Ke-Qiang; Li, Zhi-Jie; Zheng, Hua-Chuan

    2017-03-14

    Cytokeratin 19 (K19) is expressed in various differentiated cells, including gastric, intestinal and bronchial epithelial cells, and liver duct cells. Here, we generated a transgenic mouse line, K19-Cre, in which the expression of Cre recombinase was controlled by the promoter of K19. To test the tissue distribution and excision activity of Cre recombinase, K19-Cre transgenic mice were bred with Rosa26 reporter strain and a mouse strain that carries PTEN conditional alleles (PTENLoxp/Loxp). At mRNA level, Cre was strongly expressed in the stomach, lung and intestine, while in stomach, lung, and liver at protein level. The immunoreactivity to Cre was strongly observed the cytoplasm of gastric, bronchial and intestinal epithelial cells. Cre activity was detectable in gastric, bronchial and intestinal epithelial cells, according to LacZ staining. In K19-Cre/PTEN Loxp/Loxp mice, PTEN was abrogated in stomach, intestine, lung, liver and breast, the former two of which were verified by in situ PCR. There appeared breast cancer with PTEN loss. These data suggest that K19 promoter may be a useful tool to study the pathophysiological functions of cytokeratin 19-positive cells, especially gastrointestinal epithelial cells. Cell specificity of neoplasia is not completely attributable to the cell-specific expression of oncogenes and cell-specific loss of tumor suppressor genes.

  9. Multifunctional Effects of Mangosteen Pericarp on Cognition in C57BL/6J and Triple Transgenic Alzheimer’s Mice

    Directory of Open Access Journals (Sweden)

    Hei-Jen Huang

    2014-01-01

    Full Text Available Mangosteen- (Garcinia mangostana- based nutraceutical compounds have long been reported to possess multiple health-promoting properties. The current study investigated whether mangosteen pericarp (MP could attenuate cognitive dysfunction. First, we found that treatment with MP significantly reduced the cell death and increased the brain-derived neurotrophic factor (BDNF level in an organotypic hippocampal slice culture (OHSC. We then investigated the effects of age and MP diet on the cognitive function of male C57BL/6J (B6 mice. After 8-month dietary supplementation, the MP diet (5000 ppm significantly attenuated the cognitive impairment associated with anti-inflammation, increasing BDNF level and decreasing p-tau (phospho-tau S202 in older B6 mice. We further applied MP dietary supplementation to triple transgenic Alzheimer’s disease (3×Tg-AD mice from 5 to 13 months old. The MP diet exerted neuroprotective, antioxidative, and anti-inflammatory effects and reduced the Aβ deposition and p-tau (S202/S262 levels in the hippocampus of 3×Tg-AD mice, which might further attenuate the deficit in spatial memory retrieval. Thus, these results revealed that the multifunctional properties of MP might offer a promising supplementary diet to attenuate cognitive dysfunction in AD.

  10. Transgenic Overexpression of the Proprotein Convertase Furin Enhances Skin Tumor Growth

    Directory of Open Access Journals (Sweden)

    Jian Fu

    2012-04-01

    Full Text Available Furin, one of the members of the family of proprotein convertases (PCs, ubiquitously expressed as a type I membrane-bound proteinase, activates several proteins that contribute to tumor progression. In vitro studies using cancer cell lines and clinical specimens demonstrated that furin processes important substrates such as insulin-like growth factor 1 receptor (IGF-1R and transforming growth factor β, leading to increased tumor growth and progression. Despite the numerous studies associating furin with tumor development, its effects in preclinical models has not been comprehensively studied. In this study, we sought to determine the protumorigenic role of furin in vivo after a two-stage chemical carcinogenesis protocol in transgenic mice in which furin expression was targeted to the epidermal basal layer. We found that processing of the PC substrate IGF-1R and the proliferation rate of mouse epidermis was enhanced in transgenic mice when compared with their WT counterparts. Histopathologic diagnoses of the tumors demonstrated that furin transgenic mice (line F47 developed twice as many squamous carcinomas as the control, WT mice (P < .002. Similarly, tumors cells from transgenic mice were able to process PC substrates more efficiently than tumor cells from WT mice. Furthermore, furin expression resulted in a higher SCC volume in transgenic mice as well as an increase in the percentage of high-grade SCC, including poorly differentiated and spindle cell carcinomas. In conclusion, expression of furin in the basal layer of the epidermis increased tumor development and enhanced tumor growth, supporting the consideration of furin as a potential target for cancer treatment.

  11. Increased severity of experimental autoimmune encephalomyelitis, chronic macrophage/microglial reactivity, and demyelination in transgenic mice producing tumor necrosis factor-alpha in the central nervous system

    DEFF Research Database (Denmark)

    Taupin, V; Renno, T; Bourbonnière, L

    1997-01-01

    are a target of immune attack. TNF-alpha also regulates macrophage activity which could contribute to autoimmune inflammation. We have expressed TNF-alpha at disease-equivalent levels in the central nervous system of transgenic mice, using a myelin basic protein (MBP) promoter. These mice were normal...

  12. Expression of a partially deleted gene of human type II procollagen (COL2A1) in transgenic mice produces a chondrodysplasia

    Energy Technology Data Exchange (ETDEWEB)

    Vandenberg, P.; Khillan, J.S.; Prockop, D.J.; Helminen, H.; Kontusaari, S.; Ala-Kokko, L. (Thomas Jefferson Univ., Philadelphia, PA (United States))

    1991-09-01

    A minigene version of the human gene for type II procollagen (COL2AI) was prepared that lacked a large central region containing 12 of the 52 exons and therefore 291 of the 1523 codons of the gene. The construct was modeled after sporadic in-frame deletions of collagen genes that cause synthesis of shortened pro{alpha} chains that associate with normal pro{alpha} chains and thereby cause degradation of the shortened and normal pro{alpha} chains through a process called procollagen suicide. The gene construct was used to prepare five lines of transgenic mice expressing the minigene. A large proportion of the mice expressing the minigene developed a phenotype of a chondrodysplasia with dwarfism, short and thick limbs, a short snout, a cranial bulge, a cleft palate, and delayed mineralization of bone. A number of mice died shortly after birth. Microscopic examination of cartilage revealed decreased density and organization of collagen fibrils. In cultured chondrocytes from the transgenic mice, the minigene was expressed as shortened pro{alpha}1(II) chains that were disulfide-linked to normal mouse pro{alpha}1(II) chains. Therefore, the phenotype is probably explained by depletion of the endogenous mouse type II procollagen through the phenomenon of procollagen suicide.

  13. Foxp3⁺ regulatory T cells delay expulsion of intestinal nematodes by suppression of IL-9-driven mast cell activation in BALB/c but not in C57BL/6 mice.

    Science.gov (United States)

    Blankenhaus, Birte; Reitz, Martina; Brenz, Yannick; Eschbach, Marie-Luise; Hartmann, Wiebke; Haben, Irma; Sparwasser, Tim; Huehn, Jochen; Kühl, Anja; Feyerabend, Thorsten B; Rodewald, Hans-Reimer; Breloer, Minka

    2014-02-01

    Accumulating evidence suggests that IL-9-mediated immunity plays a fundamental role in control of intestinal nematode infection. Here we report a different impact of Foxp3⁺ regulatory T cells (Treg) in nematode-induced evasion of IL-9-mediated immunity in BALB/c and C57BL/6 mice. Infection with Strongyloides ratti induced Treg expansion with similar kinetics and phenotype in both strains. Strikingly, Treg depletion reduced parasite burden selectively in BALB/c but not in C57BL/6 mice. Treg function was apparent in both strains as Treg depletion increased nematode-specific humoral and cellular Th2 response in BALB/c and C57BL/6 mice to the same extent. Improved resistance in Treg-depleted BALB/c mice was accompanied by increased production of IL-9 and accelerated degranulation of mast cells. In contrast, IL-9 production was not significantly elevated and kinetics of mast cell degranulation were unaffected by Treg depletion in C57BL/6 mice. By in vivo neutralization, we demonstrate that increased IL-9 production during the first days of infection caused accelerated mast cell degranulation and rapid expulsion of S. ratti adults from the small intestine of Treg-depleted BALB/c mice. In genetically mast cell-deficient (Cpa3-Cre) BALB/c mice, Treg depletion still resulted in increased IL-9 production but resistance to S. ratti infection was lost, suggesting that IL-9-driven mast cell activation mediated accelerated expulsion of S. ratti in Treg-depleted BALB/c mice. This IL-9-driven mast cell degranulation is a central mechanism of S. ratti expulsion in both, BALB/c and C57BL/6 mice, because IL-9 injection reduced and IL-9 neutralization increased parasite burden in the presence of Treg in both strains. Therefore our results suggest that Foxp3⁺ Treg suppress sufficient IL-9 production for subsequent mast cell degranulation during S. ratti infection in a non-redundant manner in BALB/c mice, whereas additional regulatory pathways are functional in Treg-depleted C57BL/6

  14. Oral Escherichia coli Colonization Factor Antigen I (CFA/I) Fimbriae Ameliorate Arthritis via IL-35, not IL-27

    Science.gov (United States)

    Kochetkova, Irina; Thornburg, Theresa; Callis, Gayle; Holderness, Kathryn; Maddaloni, Massimo; Pascual, David W.

    2014-01-01

    A Salmonella therapeutic expressing enterotoxigenic E. coli colonization factor antigen I (CFA/I) fimbriae protects against collagen-induced arthritis (CIA) by eliciting two regulatory T cell (Treg) subsets: TGF-β-producing Foxp3−CD39+CD4+ and IL-10-producing Foxp3+CD39+CD4+ T cells. However, it is unclear if CFA/I fimbriae alone are protective, and if other regulatory cytokines are involved especially in the context for the EBI3-sharing cytokines, Treg-derived IL-35 and APC-derived IL-27, both capable of suppressing Th17 cells and regulating autoimmune diseases. Subsequent evaluation revealed that a single oral dose of purified, soluble CFA/I fimbriae protected against CIA as effectively as Salmonella-CFA/I, and found Foxp3+CD39+CD4+ T cells as the source of secreted IL-35, whereas IL-27 production by CD11c+ cells was inhibited. Inquiring into their relevance, CFA/I fimbriae-treated IL-27 receptor-deficient (WSX-1−/−) mice were equally protected against CIA as wild-type mice suggesting a limited role for IL-27. In contrast, CFA/I fimbriae-mediated protection was abated in EBI3−/− mice accompanied by the loss of TGF-β- and IL-10-producing Tregs. Adoptive transfer of B6 CD39+CD4+ T cells to EBI3−/− mice with concurrent CFA/I plus IL-35 treatment effectively stimulated Tregs suppressing proinflammatory CII-specific Th cells. Opposingly, recipients co-transferred with B6 and EBI3−/− CD39+CD4+ T cells and treated with CFA/I plus IL-35 failed in protecting mice implicating the importance for endogenous IL-35 to confer CFA/I-mediated protection. Thus, CFA/I fimbriae stimulate IL-35 required for the co-induction of TGF-β and IL-10. PMID:24337375

  15. Transgenic mice expressing a Huntington s disease mutation are resistant to quinolinic acid-induced striatal excitotoxicity

    OpenAIRE

    Hansson, Oskar; Petersén, Åsa; Leist, Marcel; Nicotera, Pierluigi; Castilho, Roger F.; Brundin, Patrik

    1999-01-01

    Huntington’s disease (HD) is a hereditary neurodegenerative disorder presenting with chorea, dementia, and extensive striatal neuronal death. The mechanism through which the widely expressed mutant HD gene mediates a slowly progressing striatal neurotoxicity is unknown. Glutamate receptor-mediated excitotoxicity has been hypothesized to contribute to the pathogenesis of HD. Here we show that transgenic HD mice expressing exon 1 of a human HD gene with an expanded number of CAG repeats (line R...

  16. Exposure of mice to the nitroso metabolite of sulfamethoxazole stimulates interleukin 5 production by CD4+ T-cells

    International Nuclear Information System (INIS)

    Hopkins, Josephine E.; Naisbitt, Dean J.; Humphreys, Neil; Dearman, Rebecca J.; Kimber, Ian; Park, B. Kevin

    2005-01-01

    Sulfamethoxazole hypersensitivity may be caused by production of the protein-reactive metabolite nitroso sulfamethoxazole (SMX-NO) and interaction of SMX-NO with T-cells. We have characterised the nature of the immune response induced by administration of sulfamethoxazole, sulfamethoxazole metabolites and nitrosobenzene to BALB/c mice. Drugs were administered over a 13-day period to induce polarised cytokine secretion profiles. Proliferation was measured by [ 3 H] thymidine incorporation. Cytokine secretion was monitored by ELISA. Results were compared with those provoked by exposure to type 1 and type 2 chemical allergens, 2,4-dinitrochlorobenzene (DNCB) and trimellitic anhydride (TMA). CD4 + or CD8 + T-cells were depleted ex vivo to identify the primary source of cytokines. Lymph node activation was observed following treatment with DNCB, TMA, nitrosobenzene and SMX-NO, but not with sulfamethoxazole or sulfamethoxazole hydroxylamine (SMX-NHOH). DNCB and TMA induced type 1 and type 2 cytokine profiles, respectively. SMX-NO treatment stimulated the production of high levels of IL-5, variable amounts of IFN-γ, and relatively low levels of IL-10 and IL-4. Nitrosobenzene-activated lymph node cells secreted only low levels of IFN-γ and IL-5. Depletion of CD4 + or CD8 + T-cells from SMX-NO stimulated lymph node cells revealed that CD4 + T-cells were the major source of IL-5. In conclusion, the data presented indicates that subcutaneous administration to mice of SMX-NO, but not the parent drug, stimulated the secretion of high levels of IL-5 from activated CD4 + T-cells, which is consistent with the clinical profile of the drug

  17. Chronic cannabidiol treatment improves social and object recognition in double transgenic APPswe/PS1∆E9 mice.

    Science.gov (United States)

    Cheng, David; Low, Jac Kee; Logge, Warren; Garner, Brett; Karl, Tim

    2014-08-01

    Patients suffering from Alzheimer's disease (AD) exhibit a decline in cognitive abilities including an inability to recognise familiar faces. Hallmark pathological changes in AD include the aggregation of amyloid-β (Aβ), tau protein hyperphosphorylation as well as pronounced neurodegeneration, neuroinflammation, neurotoxicity and oxidative damage. The non-psychoactive phytocannabinoid cannabidiol (CBD) exerts neuroprotective, anti-oxidant and anti-inflammatory effects and promotes neurogenesis. CBD also reverses Aβ-induced spatial memory deficits in rodents. Thus we determined the therapeutic-like effects of chronic CBD treatment (20 mg/kg, daily intraperitoneal injections for 3 weeks) on the APPswe/PS1∆E9 (APPxPS1) transgenic mouse model for AD in a number of cognitive tests, including the social preference test, the novel object recognition task and the fear conditioning paradigm. We also analysed the impact of CBD on anxiety behaviours in the elevated plus maze. Vehicle-treated APPxPS1 mice demonstrated impairments in social recognition and novel object recognition compared to wild type-like mice. Chronic CBD treatment reversed these cognitive deficits in APPxPS1 mice without affecting anxiety-related behaviours. This is the first study to investigate the effect of chronic CBD treatment on cognition in an AD transgenic mouse model. Our findings suggest that CBD may have therapeutic potential for specific cognitive impairments associated with AD.

  18. Neuronal erythropoietin overexpression protects mice against age-related hearing loss (presbycusis).

    Science.gov (United States)

    Monge Naldi, Arianne; Belfrage, Celina; Jain, Neha; Wei, Eric T; Canto Martorell, Belén; Gassmann, Max; Vogel, Johannes

    2015-12-01

    So far, typical causes of presbycusis such as degeneration of hair cells and/or primary auditory (spiral ganglion) neurons cannot be treated. Because erythropoietin's (Epo) neuroprotective potential has been shown previously, we determined hearing thresholds of juvenile and aged mice overexpressing Epo in neuronal tissues. Behavioral audiometry revealed in contrast to 5 months of age, that 11-month-old Epo-transgenic mice had up to 35 dB lower hearing thresholds between 1.4 and 32 kHz, and at the highest frequencies (50-80 kHz), thresholds could be obtained in aged Epo-transgenic only but not anymore in old C57BL6 control mice. Click-evoked auditory brainstem response showed similar results. Numbers of spiral ganglion neurons in aged C57BL6 but not Epo-transgenic mice were dramatically reduced mainly in the basal turn, the location of high frequencies. In addition, there was a tendency to better preservation of inner and outer hair cells in Epo-transgenic mice. Hence, Epo's known neuroprotective action effectively suppresses the loss of spiral ganglion cells and probably also hair cells and, thus, development of presbycusis in mice. Copyright © 2015 Elsevier Inc. All rights reserved.

  19. Age-related changes in core body temperature and activity in triple-transgenic Alzheimer’s disease (3xTgAD mice

    Directory of Open Access Journals (Sweden)

    Elysse M. Knight

    2013-01-01

    Alzheimer’s disease (AD is characterised, not only by cognitive deficits and neuropathological changes, but also by several non-cognitive behavioural symptoms that can lead to a poorer quality of life. Circadian disturbances in core body temperature and physical activity are reported in AD patients, although the cause and consequences of these changes are unknown. We therefore characterised circadian patterns of body temperature and activity in male triple transgenic AD mice (3xTgAD and non-transgenic (Non-Tg control mice by remote radiotelemetry. At 4 months of age, daily temperature rhythms were phase advanced and by 6 months of age an increase in mean core body temperature and amplitude of temperature rhythms were observed in 3xTgAD mice. No differences in daily activity rhythms were seen in 4- to 9-month-old 3xTgAD mice, but by 10 months of age an increase in mean daily activity and the amplitude of activity profiles for 3xTgAD mice were detected. At all ages (4–10 months, 3xTgAD mice exhibited greater food intake compared with Non-Tg mice. The changes in temperature did not appear to be solely due to increased food intake and were not cyclooxygenase dependent because the temperature rise was not abolished by chronic ibuprofen treatment. No β-amyloid (Aβ plaques or neurofibrillary tangles were noted in the hypothalamus of 3xTgAD mice, a key area involved in temperature regulation, although these pathological features were observed in the hippocampus and amygdala of 3xTgAD mice from 10 months of age. These data demonstrate age-dependent changes in core body temperature and activity in 3xTgAD mice that are present before significant AD-related neuropathology and are analogous to those observed in AD patients. The 3xTgAD mouse might therefore be an appropriate model for studying the underlying mechanisms involved in non-cognitive behavioural changes in AD.

  20. Age-related changes in core body temperature and activity in triple-transgenic Alzheimer’s disease (3xTgAD) mice

    Science.gov (United States)

    Knight, Elysse M.; Brown, Timothy M.; Gümüsgöz, Sarah; Smith, Jennifer C. M.; Waters, Elizabeth J.; Allan, Stuart M.; Lawrence, Catherine B.

    2013-01-01

    SUMMARY Alzheimer’s disease (AD) is characterised, not only by cognitive deficits and neuropathological changes, but also by several non-cognitive behavioural symptoms that can lead to a poorer quality of life. Circadian disturbances in core body temperature and physical activity are reported in AD patients, although the cause and consequences of these changes are unknown. We therefore characterised circadian patterns of body temperature and activity in male triple transgenic AD mice (3xTgAD) and non-transgenic (Non-Tg) control mice by remote radiotelemetry. At 4 months of age, daily temperature rhythms were phase advanced and by 6 months of age an increase in mean core body temperature and amplitude of temperature rhythms were observed in 3xTgAD mice. No differences in daily activity rhythms were seen in 4- to 9-month-old 3xTgAD mice, but by 10 months of age an increase in mean daily activity and the amplitude of activity profiles for 3xTgAD mice were detected. At all ages (4–10 months), 3xTgAD mice exhibited greater food intake compared with Non-Tg mice. The changes in temperature did not appear to be solely due to increased food intake and were not cyclooxygenase dependent because the temperature rise was not abolished by chronic ibuprofen treatment. No β-amyloid (Aβ) plaques or neurofibrillary tangles were noted in the hypothalamus of 3xTgAD mice, a key area involved in temperature regulation, although these pathological features were observed in the hippocampus and amygdala of 3xTgAD mice from 10 months of age. These data demonstrate age-dependent changes in core body temperature and activity in 3xTgAD mice that are present before significant AD-related neuropathology and are analogous to those observed in AD patients. The 3xTgAD mouse might therefore be an appropriate model for studying the underlying mechanisms involved in non-cognitive behavioural changes in AD. PMID:22864021

  1. Clinical significance of determination of changes of EPS IL-1β, IL-2, IL-10 and LDH5/LDH1 levels in patients with chronic prostatitis

    International Nuclear Information System (INIS)

    Chen Yongchang

    2009-01-01

    Objective: To investigate the clinical significance of the changes of expressed prostatic secretion IL-1β, IL-2, IL-10 and LDH5/LDH1 levels in patients with chronic prostatitis. Methods: Expressed prostatic secretion IL-1β, IL-2, IL-10 (with Radioimmunoassay) and LDH5/LDH1 (with cellulose acetate membrane electrophoresis) levels were determined in 32 patients with chronic prostatitis and 35 controls. These 32 patients were of 3 groups: 1)chronic bacterial prostatitis (CBP, n=10) 2) chronic pelvic pain syndrome IIIA (CPPS IIIA n=9) 3) CPPSIIIB n=13. Results: Expressed prostatic secretion levels of IL-1β, IL-2 and LDH5/LDH1 were significantly higher in patients with chronic bacterial prostatitis (CBP) groups than those in controls (all P 0.05). But the expressed prostatic secretion levels of IL-10 were still significantly lower in patients with chronic nonbacterial prostatitis, chronic pelvic pain syndrome(CPPSIIIB) groups than those in controls (all P<0.05). Conclusion: There were changes of expressed prostatic secretion IL-1β, IL-2, IL-10 and LDH5/LDH1 levels in patients with chronic prostatitis. Combined determination of the expressed prostatic secretion 4 markers levels is valuable for the diagnosis of chronic prostatitis and CPPSIII and for differentiation of CPPSIII types. (authors)

  2. Complex genomic rearrangement in CCS-LacZ transgenic mice.

    Science.gov (United States)

    Stroud, Dina Myers; Darrow, Bruce J; Kim, Sang Do; Zhang, Jie; Jongbloed, Monique R M; Rentschler, Stacey; Moskowitz, Ivan P G; Seidman, Jonathan; Fishman, Glenn I

    2007-02-01

    The cardiac conduction system (CCS)-lacZ insertional mouse mutant strain genetically labels the developing and mature CCS. This pattern of expression is presumed to reflect the site of transgene integration rather than regulatory elements within the transgene proper. We sought to characterize the genomic structure of the integration locus and identify nearby gene(s) that might potentially confer the observed CCS-specific transcription. We found rearrangement of chromosome 7 between regions D1 and E1 with altered transcription of multiple genes in the D1 region. Several lines of evidence suggested that regulatory elements from at least one gene, Slco3A1, influenced CCS-restricted reporter gene expression. In embryonic hearts, Slco3A1 was expressed in a spatial pattern similar to the CCS-lacZ transgene and was similarly neuregulin-responsive. At later stages, however, expression patterns of the transgene and Slco3A1 diverged, suggesting that the Slco3A1 locus may be necessary, but not sufficient to confer CCS-specific transgene expression in the CCS-lacZ line. (c) 2007 Wiley-Liss, Inc.

  3. Caffeine synergizes with another coffee component to increase plasma GCSF: linkage to cognitive benefits in Alzheimer's mice.

    Science.gov (United States)

    Cao, Chuanhai; Wang, Li; Lin, Xiaoyang; Mamcarz, Malgorzata; Zhang, Chi; Bai, Ge; Nong, Jasson; Sussman, Sam; Arendash, Gary

    2011-01-01

    Retrospective and prospective epidemiologic studies suggest that enhanced coffee/caffeine intake during aging reduces risk of Alzheimer's disease (AD). Underscoring this premise, our studies in AD transgenic mice show that long-term caffeine administration protects against cognitive impairment and reduces brain amyloid-β levels/deposition through suppression of both β- and γ-secretase. Because coffee contains many constituents in addition to caffeine that may provide cognitive benefits against AD, we examined effects of caffeinated and decaffeinated coffee on plasma cytokines, comparing their effects to caffeine alone. In both AβPPsw+PS1 transgenic mice and non-transgenic littermates, acute i.p. treatment with caffeinated coffee greatly and specifically increased plasma levels of granulocyte-colony stimulating factor (GCSF), IL-10, and IL-6. Neither caffeine solution alone (which provided high plasma caffeine levels) or decaffeinated coffee provided this effect, indicating that caffeine synergized with some as yet unidentified component of coffee to selectively elevate these three plasma cytokines. The increase in GCSF is particularly important because long-term treatment with coffee (but not decaffeinated coffee) enhanced working memory in a fashion that was associated only with increased plasma GCSF levels among all cytokines. Since we have previously reported that long-term GCSF treatment enhances cognitive performance in AD mice through three possible mechanisms (e.g., recruitment of microglia from bone marrow, synaptogenesis, and neurogenesis), the same mechanisms could be complimentary to caffeine's established ability to suppress Aβ production. We conclude that coffee may be the best source of caffeine to protect against AD because of a component in coffee that synergizes with caffeine to enhance plasma GCSF levels, resulting in multiple therapeutic actions against AD.

  4. Transgenic overexpression of ADAM12 suppresses muscle regeneration and aggravates dystrophy in aged mdx mice

    DEFF Research Database (Denmark)

    Jørgensen, Louise Helskov; Jensen, Charlotte Harken; Wewer, Ulla M

    2007-01-01

    mice (ADAM12(+)) after a knife cut lesion and observed that the regeneration process was significantly impaired. ADAM12 seemed to inhibit the satellite cell response and delay myoblast differentiation. These results discourage long-term therapeutic use of ADAM12. They also point to impaired...... effect of ADAM12 was suggested to be mediated via a membrane-stabilizing up-regulation of utrophin, alpha7B integrin, and dystroglycans. Ectopic ADAM12 expression in normal mouse skeletal muscle also improved regeneration after freeze injury, presumably by the same mechanism. Hence, it was suggested...... overexpressing ADAM12 (ADAM12(+)/mdx mice), even though their utrophin levels were mildly elevated compared with age-matched controls. Thus, membrane stabilization was not sufficient to provide protection during prolonged disease. Consequently, we reinvestigated skeletal muscle regeneration in ADAM12 transgenic...

  5. The IL-17F/IL-17RC Axis Promotes Respiratory Allergy in the Proximal Airways

    Directory of Open Access Journals (Sweden)

    Antonella De Luca

    2017-08-01

    Full Text Available The interleukin 17 (IL-17 cytokine and receptor family is central to antimicrobial resistance and inflammation in the lung. Mice lacking IL-17A, IL-17F, or the IL-17RA subunit were compared with wild-type mice for susceptibility to airway inflammation in models of infection and allergy. Signaling through IL-17RA was required for efficient microbial clearance and prevention of allergy; in the absence of IL-17RA, signaling through IL-17RC on epithelial cells, predominantly by IL-17F, significantly exacerbated lower airway Aspergillus or Pseudomonas infection and allergic airway inflammation. In contrast, following infection with the upper respiratory pathogen Staphylococcus aureus, the IL-17F/IL-17RC axis mediated protection. Thus, IL-17A and IL-17F exert distinct biological effects during pulmonary infection; the IL-17F/IL-17RC signaling axis has the potential to significantly worsen pathogen-associated inflammation of the lower respiratory tract in particular, and should be investigated further as a therapeutic target for treating pathological inflammation in the lung.

  6. Evidence of a novel aggrecan-degrading activity in cartilage: Studies of mice deficient in both ADAMTS-4 and ADAMTS-5.

    Science.gov (United States)

    Rogerson, Fraser M; Stanton, Heather; East, Charlotte J; Golub, Suzanne B; Tutolo, Leonie; Farmer, Pamela J; Fosang, Amanda J

    2008-06-01

    To characterize aggrecan catabolism and the overall phenotype in mice deficient in both ADAMTS-4 and ADAMTS-5 (TS-4/TS-5 Delta-cat) activity. Femoral head cartilage from the joints of TS-4/TS-5 Delta-cat mice and wild-type mice were cultured in vitro, and aggrecan catabolism was stimulated with either interleukin-1alpha (IL-1alpha) or retinoic acid. Total aggrecan release was measured, and aggrecanase activity was examined by Western blotting using neoepitope antibodies for detecting cleavage at EGE 373-374 ALG, SELE 1279-1280 GRG, FREEE 1467-1468 GLG, and AQE 1572-1573 AGEG. Aggrecan catabolism in vivo was examined by Western blotting of cartilage that had been extracted immediately ex vivo. TS-4/TS-5 Delta-cat mice were viable, fertile, and phenotypically normal. TS-4/TS-5 Delta-cat cartilage explants did not release aggrecan in response to IL-1alpha, and there was no detectable increase in aggrecanase neoepitopes. TS-4/TS-5 Delta-cat cartilage explants released aggrecan in response to retinoic acid. There was no retinoic acid-stimulated cleavage at either EGE 373-374 ALG or AQE 1572-1573 AGEG. There was a low level of cleavage at SELE 1279-1280 GRG and major cleavage at FREEE 1467-1468 GLG. Ex vivo, cleavage at FREEE 1467-1468 GLG was substantially reduced, but still present, in TS-4/TS-5 Delta-cat mouse cartilage compared with wild-type mouse cartilage. An aggrecanase other than ADAMTS-4 and ADAMTS-5 is expressed in mouse cartilage and is up-regulated by retinoic acid but not IL-1alpha. The novel aggrecanase appears to have different substrate specificity from either ADAMTS-4 or ADAMTS-5, cleaving E-G bonds but not E-A bonds. Neither ADAMTS-4 nor ADAMTS-5 is required for normal skeletal development or aggrecan turnover in cartilage.

  7. The developmental expression of fluorescent proteins in organotypic hippocampal slice cultures from transgenic mice and its use in the determination of excitotoxic neurodegeneration

    DEFF Research Database (Denmark)

    Noraberg, Jens; Jensen, Carsten V; Bonde, Christian

    2007-01-01

    Transgenic mice, expressing fluorescent proteins in neurons and glia, provide new opportunities for real-time microscopic monitoring of degenerative and regenerative structural changes. We have previously validated and compared a number of quantifiable markers for neuronal damage and cell death...... changes, as well as the opportunity to monitor reversible changes or long-term effects in the event of minor damage. As a first step, we present: a) the developmental expression in organotypic hippocampal brain slice cultures of transgenic fluorescent proteins, useful for the visualisation of neuronal...... transgenic mouse strains which express fluorescent proteins in their neurons and/or astroglial cells. From the time of explantation, and subsequently for up to nine weeks in culture, the transgenic neuronal fluorescence displayed the expected characteristics of a developmental, in vivo-like increase...

  8. Anthrax lethal factor as an immune target in humans and transgenic mice and the impact of HLA polymorphism on CD4+ T cell immunity.

    Science.gov (United States)

    Ascough, Stephanie; Ingram, Rebecca J; Chu, Karen K; Reynolds, Catherine J; Musson, Julie A; Doganay, Mehmet; Metan, Gökhan; Ozkul, Yusuf; Baillie, Les; Sriskandan, Shiranee; Moore, Stephen J; Gallagher, Theresa B; Dyson, Hugh; Williamson, E Diane; Robinson, John H; Maillere, Bernard; Boyton, Rosemary J; Altmann, Daniel M

    2014-05-01

    Bacillus anthracis produces a binary toxin composed of protective antigen (PA) and one of two subunits, lethal factor (LF) or edema factor (EF). Most studies have concentrated on induction of toxin-specific antibodies as the correlate of protective immunity, in contrast to which understanding of cellular immunity to these toxins and its impact on infection is limited. We characterized CD4+ T cell immunity to LF in a panel of humanized HLA-DR and DQ transgenic mice and in naturally exposed patients. As the variation in antigen presentation governed by HLA polymorphism has a major impact on protective immunity to specific epitopes, we examined relative binding affinities of LF peptides to purified HLA class II molecules, identifying those regions likely to be of broad applicability to human immune studies through their ability to bind multiple alleles. Transgenics differing only in their expression of human HLA class II alleles showed a marked hierarchy of immunity to LF. Immunogenicity in HLA transgenics was primarily restricted to epitopes from domains II and IV of LF and promiscuous, dominant epitopes, common to all HLA types, were identified in domain II. The relevance of this model was further demonstrated by the fact that a number of the immunodominant epitopes identified in mice were recognized by T cells from humans previously infected with cutaneous anthrax and from vaccinated individuals. The ability of the identified epitopes to confer protective immunity was demonstrated by lethal anthrax challenge of HLA transgenic mice immunized with a peptide subunit vaccine comprising the immunodominant epitopes that we identified.

  9. Transgenic Mice Over-Expressing RBP4 Have RBP4-Dependent and Light-Independent Retinal Degeneration.

    Science.gov (United States)

    Du, Mei; Phelps, Eric; Balangue, Michael J; Dockins, Aaron; Moiseyev, Gennadiy; Shin, Younghwa; Kane, Shelley; Otalora, Laura; Ma, Jian-Xing; Farjo, Rafal; Farjo, Krysten M

    2017-08-01

    Transgenic mice overexpressing serum retinol-binding protein (RBP4-Tg) develop progressive retinal degeneration, characterized by microglia activation, yet the precise mechanisms underlying retinal degeneration are unclear. Previous studies showed RBP4-Tg mice have normal ocular retinoid levels, suggesting that degeneration is independent of the retinoid visual cycle or light exposure. The present study addresses whether retinal degeneration is light-dependent and RBP4-dependent by testing the effects of dark-rearing and pharmacological lowering of serum RBP4 levels, respectively. RBP4-Tg mice reared on normal mouse chow in normal cyclic light conditions were directly compared to RBP4-Tg mice exposed to chow supplemented with the RBP4-lowering compound A1120 or dark-rearing conditions. Quantitative retinal histological analysis was conducted to assess retinal degeneration, and electroretinography (ERG) and optokinetic tracking (OKT) tests were performed to assess retinal and visual function. Ocular retinoids and bis-retinoid A2E were quantified. Dark-rearing RBP4-Tg mice effectively reduced ocular bis-retinoid A2E levels, but had no significant effect on retinal degeneration or dysfunction in RBP4-Tg mice, demonstrating that retinal degeneration is light-independent. A1120 treatment lowered serum RBP4 levels similar to wild-type mice, and prevented structural retinal degeneration. However, A1120 treatment did not prevent retinal dysfunction in RBP4-Tg mice. Moreover, RBP4-Tg mice on A1120 diet had significant worsening of OKT response and loss of cone photoreceptors compared to RBP4-Tg mice on normal chow. This may be related to the very significant reduction in retinyl ester levels in the retina of mice on A1120-supplemented diet. Retinal degeneration in RBP4-Tg mice is RBP4-dependent and light-independent.

  10. Experimental reinfection of BALB/c mice with different recombinant type I/III strains of Toxoplasma gondii: involvement of IFN-gamma and IL-10.

    Science.gov (United States)

    Brandão, Geane Peroni; Melo, Maria Norma; Gazzinelli, Ricardo Tostes; Caetano, Braulia Costa; Ferreira, Adriana Melo; Silva, Letícia Azevedo; Vitor, Ricardo Wagner Almeida

    2009-03-01

    To assess reinfection of BALB/c mice with different Toxoplasma gondii strains, the animals were prime infected with the non-virulent D8 strain and challenged with virulent recombinant strains. Thirty days after challenge, brain cysts were obtained from surviving BALB/c mice and inoculated in Swiss mice to obtain tachyzoites for DNA extraction and PCR-RFLP analysis to distinguish the different T. gondii strains present in possible co-infections. Anti-Toxoplasma immune responses were evaluated in D8-primed BALB/c mice by detecting IFN-gamma and IL-10 produced by T cells and measuring immunoglobulin levels in serum samples. PCR-RFLP demonstrated that BALB/c mice were reinfected with the EGS strain at 45 days post prime infection (dpi) and with the EGS and CH3 strains at 180 dpi. High levels of IFN-gamma were detected after D8 infection, with no significant difference between 45 and 180-day intervals. However, higher IL-10 levels and higher plasmatic IgG1 and IgA were detected from samples obtained 180 days after infection. BALB/c mice were susceptible to reinfection with different recombinant T. gondii strains and this susceptibility correlated with enhancement of IL-10 production.

  11. Metabolically induced liver inflammation leads to NASH and differs from LPS- or IL-1β-induced chronic inflammation.

    Science.gov (United States)

    Liang, Wen; Lindeman, Jan H; Menke, Aswin L; Koonen, Debby P; Morrison, Martine; Havekes, Louis M; van den Hoek, Anita M; Kleemann, Robert

    2014-05-01

    The nature of the chronic inflammatory component that drives the development of non-alcoholic steatohepatitis (NASH) is unclear and possible inflammatory triggers have not been investigated systematically. We examined the effect of non-metabolic triggers (lipopolysaccharide (LPS), interleukin-1β (IL-1β), administered by slow-release minipumps) and metabolic dietary triggers (carbohydrate, cholesterol) of inflammation on the progression of bland liver steatosis (BS) to NASH. Transgenic APOE3*Leiden.huCETP (APOE3L.CETP) mice fed a high-fat diet (HFD) developed BS after 10 weeks. Then, inflammatory triggers were superimposed or not (control) for six more weeks. Mouse livers were analyzed with particular emphasis on hallmarks of inflammation which were defined in human liver biopsies with and without NASH. Livers of HFD-treated control mice remained steatotic and did not progress to NASH. All four inflammatory triggers activated hepatic nuclear factor-κB (NF-κB) significantly and comparably (≥5-fold). However, HFD+LPS or HFD+IL-1β did not induce a NASH-like phenotype and caused intrahepatic accumulation of almost exclusively mononuclear cells. By contrast, mice treated with metabolic triggers developed NASH, characterized by enhanced steatosis, hepatocellular hypertrophy, and formation of mixed-type inflammatory foci containing myeloperoxidase-positive granulocytes (neutrophils) as well as mononuclear cells, essentially as observed in human NASH. Specific for the metabolic inducers was an activation of the proinflammatory transcription factor activator protein-1 (AP-1), neutrophil infiltration, and induction of risk factors associated with human NASH, that is, dyslipidemia (by cholesterol) and insulin resistance (by carbohydrate). In conclusion, HFD feeding followed by NF-κB activation per se (LPS, IL-1β) does not promote the transition from BS to NASH. HFD feeding followed by metabolically evoked inflammation induces additional inflammatory components

  12. Eμ/miR-125b transgenic mice develop lethal B-cell malignancies.

    Science.gov (United States)

    Enomoto, Y; Kitaura, J; Hatakeyama, K; Watanuki, J; Akasaka, T; Kato, N; Shimanuki, M; Nishimura, K; Takahashi, M; Taniwaki, M; Haferlach, C; Siebert, R; Dyer, M J S; Asou, N; Aburatani, H; Nakakuma, H; Kitamura, T; Sonoki, T

    2011-12-01

    MicroRNA-125b-1 (miR-125b-1) is a target of a chromosomal translocation t(11;14)(q24;q32) recurrently found in human B-cell precursor acute lymphoblastic leukemia (BCP-ALL). This translocation results in overexpression of miR-125b controlled by immunoglobulin heavy chain gene (IGH) regulatory elements. In addition, we found that six out of twenty-one BCP-ALL patients without t(11;14)(q24;q32) showed overexpression of miR-125b. Interestingly, four out of nine patients with BCR/ABL-positive BCP-ALL and one patient with B-cell lymphoid crisis that had progressed from chronic myelogenous leukemia overexpressed miR-125b. To examine the role of the deregulated expression of miR-125b in the development of B-cell tumor in vivo, we generated transgenic mice mimicking the t(11;14)(q24;q32) (Eμ/miR-125b-TG mice). Eμ/miR-125b-TG mice overexpressed miR-125b driven by IGH enhancer and promoter and developed IgM-negative or IgM-positive lethal B-cell malignancies with clonal proliferation. B cells obtained from the Eμ/miR-125b-TG mice were resistant to apoptosis induced by serum starvation. We identified Trp53inp1, a pro-apoptotic gene induced by cell stress, as a novel target gene of miR-125b in hematopoietic cells in vitro and in vivo. Our results provide direct evidence that miR-125b has important roles in the tumorigenesis of precursor B cells.

  13. Primary transmission of chronic wasting disease versus scrapie prions from small ruminants to transgenic mice expressing ovine and cervid prion protein

    Science.gov (United States)

    Identifying transmissible spongiform encephalopathy (TSE) reservoirs that could lead to disease re-emergence is imperative to U.S. scrapie eradication efforts. Transgenic mice expressing the cervid (TgElk) or ovine (Tg338) prion protein have aided characterization of chronic wasting disease (CWD) an...

  14. The parietal epithelial cell: a key player in the pathogenesis of focal segmental glomerulosclerosis in Thy-1.1 transgenic mice.

    NARCIS (Netherlands)

    Smeets, B.; Loeke, N. te; Dijkman, H.B.P.M.; Steenbergen, M.; Lensen, J.F.M.; Begieneman, M.P.; Kuppevelt, A.H.M.S.M. van; Wetzels, J.F.M.; Steenbergen, E.

    2004-01-01

    Focal segmental glomerulosclerosis (FSGS) is a hallmark of progressive renal disease. Podocyte injury and loss have been proposed as the critical events that lead to FSGS. In the present study, the authors have examined the development of FSGS in Thy-1.1 transgenic (tg) mice, with emphasis on the

  15. Identification of NY-BR-1-specific CD4(+) T cell epitopes using HLA-transgenic mice.

    Science.gov (United States)

    Gardyan, Adriane; Osen, Wolfram; Zörnig, Inka; Podola, Lilli; Agarwal, Maria; Aulmann, Sebastian; Ruggiero, Eliana; Schmidt, Manfred; Halama, Niels; Leuchs, Barbara; von Kalle, Christof; Beckhove, Philipp; Schneeweiss, Andreas; Jäger, Dirk; Eichmüller, Stefan B

    2015-06-01

    Breast cancer represents the second most common cancer type worldwide and has remained the leading cause of cancer-related deaths among women. The differentiation antigen NY-BR-1 appears overexpressed in invasive mammary carcinomas compared to healthy breast tissue, thus representing a promising target antigen for T cell based tumor immunotherapy approaches. Since efficient immune attack of tumors depends on the activity of tumor antigen-specific CD4(+) effector T cells, NY-BR-1 was screened for the presence of HLA-restricted CD4(+) T cell epitopes that could be included in immunological treatment approaches. Upon NY-BR-1-specific DNA immunization of HLA-transgenic mice and functional ex vivo analysis, a panel of NY-BR-1-derived library peptides was determined that specifically stimulated IFNγ secretion among splenocytes of immunized mice. Following in silico analyses, four candidate epitopes were determined which were successfully used for peptide immunization to establish NY-BR-1-specific, HLA-DRB1*0301- or HLA-DRB1*0401-restricted CD4(+) T cell lines from splenocytes of peptide immunized HLA-transgenic mice. Notably, all four CD4(+) T cell lines recognized human HLA-DR-matched dendritic cells (DC) pulsed with lysates of NY-BR-1 expressing human tumor cells, demonstrating natural processing of these epitopes also within the human system. Finally, CD4(+) T cells specific for all four CD4(+) T cell epitopes were detectable among PBMC of breast cancer patients, showing that CD4(+) T cell responses against the new epitopes are not deleted nor inactivated by self-tolerance mechanisms. Our results present the first NY-BR-1-specific HLA-DRB1*0301- and HLA-DRB1*0401-restricted T cell epitopes that could be exploited for therapeutic intervention against breast cancer. © 2014 UICC.

  16. CCL2/CCL5 secreted by the stroma induce IL-6/PYK2 dependent chemoresistance in ovarian cancer.

    Science.gov (United States)

    Pasquier, Jennifer; Gosset, Marie; Geyl, Caroline; Hoarau-Véchot, Jessica; Chevrot, Audrey; Pocard, Marc; Mirshahi, Massoud; Lis, Raphael; Rafii, Arash; Touboul, Cyril

    2018-02-19

    Minimal residual disease is the main issue of advanced ovarian cancer treatment. According to the literature and previous results, we hypothesized that Mesenchymal Stromal Cells (MSC) could support this minimal residual disease by protecting ovarian cancer cells (OCC) from chemotherapy. In vitro study confirmed that MSC could induce OCC chemoresistance without contact using transwell setting. Further experiments showed that this induced chemoresistance was dependent on IL-6 OCC stimulation. We combined meticulous in vitro profiling and tumor xenograft models to study the role of IL-6 in MSC/OCC intereactions. We demonstrated that Tocilizumab® (anti-IL-6R therapy) in association with chemotherapy significantly reduced the peritoneal carcinosis index (PCI) than chemotherapy alone in mice xenografted with OCCs+MSCs. Further experiments showed that CCL2 and CCL5 are released by MSC in transwell co-culture and induce OCCs IL-6 secretion and chemoresistance. Finally, we found that IL-6 induced chemoresistance was dependent on PYK2 phosphorylation. These findings highlight the potential key role of the stroma in protecting minimal residual disease from chemotherapy, thus favoring recurrences. Future clinical trials targeting stroma could use anti-IL-6 therapy in association with chemotherapy.

  17. Foxp3⁺ regulatory T cells delay expulsion of intestinal nematodes by suppression of IL-9-driven mast cell activation in BALB/c but not in C57BL/6 mice.

    Directory of Open Access Journals (Sweden)

    Birte Blankenhaus

    2014-02-01

    Full Text Available Accumulating evidence suggests that IL-9-mediated immunity plays a fundamental role in control of intestinal nematode infection. Here we report a different impact of Foxp3⁺ regulatory T cells (Treg in nematode-induced evasion of IL-9-mediated immunity in BALB/c and C57BL/6 mice. Infection with Strongyloides ratti induced Treg expansion with similar kinetics and phenotype in both strains. Strikingly, Treg depletion reduced parasite burden selectively in BALB/c but not in C57BL/6 mice. Treg function was apparent in both strains as Treg depletion increased nematode-specific humoral and cellular Th2 response in BALB/c and C57BL/6 mice to the same extent. Improved resistance in Treg-depleted BALB/c mice was accompanied by increased production of IL-9 and accelerated degranulation of mast cells. In contrast, IL-9 production was not significantly elevated and kinetics of mast cell degranulation were unaffected by Treg depletion in C57BL/6 mice. By in vivo neutralization, we demonstrate that increased IL-9 production during the first days of infection caused accelerated mast cell degranulation and rapid expulsion of S. ratti adults from the small intestine of Treg-depleted BALB/c mice. In genetically mast cell-deficient (Cpa3-Cre BALB/c mice, Treg depletion still resulted in increased IL-9 production but resistance to S. ratti infection was lost, suggesting that IL-9-driven mast cell activation mediated accelerated expulsion of S. ratti in Treg-depleted BALB/c mice. This IL-9-driven mast cell degranulation is a central mechanism of S. ratti expulsion in both, BALB/c and C57BL/6 mice, because IL-9 injection reduced and IL-9 neutralization increased parasite burden in the presence of Treg in both strains. Therefore our results suggest that Foxp3⁺ Treg suppress sufficient IL-9 production for subsequent mast cell degranulation during S. ratti infection in a non-redundant manner in BALB/c mice, whereas additional regulatory pathways are functional in

  18. Morphine Tolerance and Physical Dependence Are Altered in Conditional HIV-1 Tat Transgenic Mice.

    Science.gov (United States)

    Fitting, Sylvia; Stevens, David L; Khan, Fayez A; Scoggins, Krista L; Enga, Rachel M; Beardsley, Patrick M; Knapp, Pamela E; Dewey, William L; Hauser, Kurt F

    2016-01-01

    Despite considerable evidence that chronic opiate use selectively affects the pathophysiologic consequences of human immunodeficiency virus type 1 (HIV-1) infection in the nervous system, few studies have examined whether neuro-acquired immune deficiency syndrome (neuroAIDS) might intrinsically alter the pharmacologic responses to chronic opiate exposure. This is an important matter because HIV-1 and opiate abuse are interrelated epidemics, and HIV-1 patients are often prescribed opiates as a treatment of HIV-1-related neuropathic pain. Tolerance and physical dependence are inevitable consequences of frequent and repeated administration of morphine. In the present study, mice expressing HIV-1 Tat in a doxycycline (DOX)-inducible manner [Tat(+)], their Tat(-) controls, and control C57BL/6 mice were chronically exposed to placebo or 75-mg morphine pellets to explore the effects of Tat induction on morphine tolerance and dependence. Antinociceptive tolerance and locomotor activity tolerance were assessed using tail-flick and locomotor activity assays, respectively, and physical dependence was measured with the platform-jumping assay and recording of other withdrawal signs. We found that Tat(+) mice treated with DOX [Tat(+)/DOX] developed an increased tolerance in the tail-flick assay compared with control Tat(-)/DOX and/or C57/DOX mice. Equivalent tolerance was developed in all mice when assessed by locomotor activity. Further, Tat(+)/DOX mice expressed reduced levels of physical dependence to chronic morphine exposure after a 1-mg/kg naloxone challenge compared with control Tat(-)/DOX and/or C57/DOX mice. Assuming the results seen in Tat transgenic mice can be generalized to neuroAIDS, our findings suggest that HIV-1-infected individuals may display heightened analgesic tolerance to similar doses of opiates compared with uninfected individuals and show fewer symptoms of physical dependence. Copyright © 2015 by The American Society for Pharmacology and Experimental

  19. Mangifera indica L. extract (Vimang improves the aversive memory in spinocerebellar ataxia type 2 transgenic mice.

    Directory of Open Access Journals (Sweden)

    Natasha Maurmann

    2014-06-01

    Full Text Available Context: The spinocerebellar ataxia type 2 (SCA-2 is a progressive neurodegenerative disorder without specific therapy identified, and it is related to the loss of function in the cerebellum, mitochondrial dysfunction, oxidative stress and neurotoxic processes. Scientific evidence indicates that Mangifera indica L. aqueous extract (MiE and its major constituent (mangiferin display antioxidant, anti-inflammatory and neuroprotective actions. Aims: To investigate the MiE and mangiferin effects on behavioral outcomes of neurological function in SCA-2 transgenic mice. Methods: The SCA-2 transgenic mice were daily and orally administered during 12 months with MiE (10, 50, and 100 mg/kg, mangiferin (10 mg/kg or vehicle. It was evaluated locomotion (open-field, aversive memory (inhibitory avoidance and declarative memory (object recognition. To explore possible cellular mechanisms underlying the in vivo effects was also evaluated their effects on nerve grow factor (NGF and tumor necrosis factor-α (TNF-α levels in the human glioblastoma cell line U138-MG supernatant. Results: MiE administration did not affect the object recognition memory, but mangiferin did. The natural extract improved selectively the aversive memory in SCA-2 mice, indicating that MiE can affect behavioral parameters regarding fear-related memory. MiE also induced a significant increase in supernatant levels of NGF and TNF-α in vitro in human U138-MG glioblastoma cells. Conclusions: The results suggest that MiE enhances the aversive memory through a mechanism that might involve an increase in neurotrophin and cytokine levels. These findings constitute the basis for the use of the natural extract in the prevention/treatment of memory deficits in SCA-2.

  20. Enhanced endotoxin sensitivity in fps/fes-null mice with minimal defects in hematopoietic homeostasis.

    Science.gov (United States)

    Zirngibl, Ralph A; Senis, Yotis; Greer, Peter A

    2002-04-01

    The fps/fes proto-oncogene encodes a cytoplasmic protein tyrosine kinase implicated in growth factor and cytokine receptor signaling and thought to be essential for the survival and terminal differentiation of myeloid progenitors. Fps/Fes-null mice were healthy and fertile, displayed slightly reduced numbers of bone marrow myeloid progenitors and circulating mature myeloid cells, and were more sensitive to lipopolysaccharide (LPS). These phenotypes were rescued using a fps/fes transgene. This confirmed that Fps/Fes is involved in, but not required for, myelopoiesis and that it plays a role in regulating the innate immune response. Bone marrow-derived Fps/Fes-null macrophages showed no defects in granulocyte-macrophage colony-stimulating factor-, interleukin 6 (IL-6)-, or IL-3-induced activation of signal transducer and activator of transcription 3 (Stat3) and Stat5A or LPS-induced degradation of I kappa B or activation of p38, Jnk, Erk, or Akt.