WorldWideScience

Sample records for iki lava lake

  1. Monitoring the cooling of the 1959 Kīlauea Iki lava lake using surface magnetic measurements

    Gailler, Lydie; Kauahikaua, James P.

    2017-01-01

    Lava lakes can be considered as proxies for small magma chambers, offering a unique opportunity to investigate magma evolution and solidification. Repeated magnetic ground surveys over more than 50 years each show a large vertical magnetic intensity anomaly associated with Kīlauea Iki Crater, partly filled with a lava lake during the 1959 eruption of Kīlauea Volcano (Island of Hawai’i). The magnetic field values recorded across the Kīlauea Iki crater floor and the cooling lava lake below result from three simple effects: the static remnant magnetization of the rocks forming the steep crater walls, the solidifying lava lake crust, and the hot, but shrinking, paramagnetic non-magnetic lens (>540 °C). We calculate 2D magnetic models to reconstruct the temporal evolution of the geometry of this non-magnetic body, its depth below the surface, and its thickness. Our results are in good agreement with the theoretical increase in thickness of the solidifying crust with time. Using the 2D magnetic models and the theoretical curve for crustal growth over a lava lake, we estimate that the former lava lake will be totally cooled below the Curie temperature in about 20 years. This study shows the potential of magnetic methods for detecting and monitoring magmatic intrusions at various scales.

  2. A frozen record of density-driven crustal overturn in lava lakes: The example of Kilauea Iki 1959

    Stovall, W.K.; Houghton, Bruce F.; Harris, A.J.L.; Swanson, D.A.

    2009-01-01

    Lava lakes are found at basaltic volcanoes on Earth and other planetary bodies. Density-driven crustal foundering leading to surface renewal occurs repeatedly throughout the life of a lava lake. This process has been observed and described in a qualitative sense, but due to dangerous conditions, no data has been acquired to evaluate the densities of the units involved. Kilauea Iki pit crater in Hawai'i houses a lava lake erupted during a 2 month period in 1959. Part of the surface of the Kilauea Iki lake now preserves the frozen record of a final, incomplete, crustal-overturn cycle. We mapped this region and sampled portions of the foundering crust, as well as overriding and underlying lava, to constrain the density of the units involved in the overturn process. Overturn is driven by the advance of a flow front of fresh, low-density lava over an older, higher density surface crust. The advance of the front causes the older crust to break up, founder, and dive downwards into the lake to expose new, hot, low-density lava. We find density differences of 200 to 740 kg/m3 between the foundering crust and over-riding and under-lying lava respectively. In this case, crustal overturn is driven by large density differences between the foundering and resurfacing units. These differences lead, inevitably, to frequent crustal renewal: simple density differences between the surface crust and underlying lake lava make the upper layers of the lake highly unstable. ?? Springer-Verlag 2008.

  3. Fractionation of the platinum-group elments and Re during crystallization of basalt in Kilauea Iki Lava Lake, Hawaii

    Pitcher, L.; Helz, R.T.; Walker, R.J.; Piccoli, P.

    2009-01-01

    Kilauea Iki lava lake formed during the 1959 summit eruption of Kilauea Volcano, then crystallized and differentiated over a period of 35??years. It offers an opportunity to evaluate the fractionation behavior of trace elements in a uniquely well-documented basaltic system. A suite of 14 core samples recovered from 1967 to 1981 has been analyzed for 5 platinum-group elements (PGE: Ir, Os, Ru, Pt, Pd), plus Re. These samples have MgO ranging from 2.4 to 26.9??wt.%, with temperatures prior to quench ranging from 1140????C to ambient (110????C). Five eruption samples were also analyzed. Osmium and Ru concentrations vary by nearly four orders of magnitude (0.0006-1.40??ppb for Os and 0.0006-2.01??ppb for Ru) and are positively correlated with MgO content. These elements behaved compatibly during crystallization, mostly likely being concentrated in trace phases (alloy or sulfide) present in olivine phenocrysts or included chromite. Iridium also correlates positively with MgO, although less strongly than Os and Ru. The somewhat poorer correlation for Ir, compared with Os and Ru, may reflect variable loss of Ir as volatile IrF6 in some of the most magnesian samples. Rhenium is negatively correlated with MgO, behaving as an incompatible trace element. Its behavior in the lava lake is complicated by apparent volatile loss of Re, as suggested by a decrease in Re concentration with time of quenching for lake samples vs. eruption samples. Platinum and Pd concentrations are negatively, albeit weakly, correlated with MgO, so these elements were modestly incompatible during crystallization of the major silicate phases. Palladium contents peaked before precipitation of immiscible sulfide liquid, however, and decline sharply in the most differentiated samples. In contrast, Pt appears to have been unaffected by sulfide precipitation. Microprobe data confirm that Pd entered the sulfide liquid before Re, and that Pt is not strongly chalcophile in this system. Occasional high Pt values

  4. Eruptive behavior of the Marum/Mbwelesu lava lake, Vanuatu and comparisons with lava lakes on Earth and Io

    Radebaugh, Jani; Lopes, Rosaly M.; Howell, Robert R.; Lorenz, Ralph D.; Turtle, Elizabeth P.

    2016-08-01

    Observations from field remote sensing of the morphology, kinematics and temperature of the Marum/Mbwelesu lava lake in the Vanuatu archipelago in 2014 reveal a highly active, vigorously erupting lava lake. Active degassing and fountaining observed at the 50 m lava lake led to large areas of fully exposed lavas and rapid ( 5 m/s) movement of lava from the centers of upwelling outwards to the lake margins. These rapid lava speeds precluded the formation of thick crust; there was never more than 30% non-translucent crust. The lava lake was observed with several portable, handheld, low-cost, near-infrared imagers, all of which measured temperatures near 1000 °C and one as high as 1022 °C, consistent with basaltic temperatures. Fine-scale structure in the lava fountains and cooled crust was visible in the near infrared at 5 cm/pixel from 300 m above the lake surface. The temperature distribution across the lake surface is much broader than at more quiescent lava lakes, peaking 850 °C, and is attributed to the highly exposed nature of the rapidly circulating lake. This lava lake has many characteristics in common with other active lava lakes, such as Erta Ale in Ethiopia, being confined, persistent and high-temperature; however it was much more active than is typical for Erta Ale, which often has > 90% crust. Furthermore, it is a good analogue for the persistent, high-temperature lava lakes contained within volcanic depressions on Jupiter's moon Io, such as Pele, also believed from spacecraft and ground-based observations to exhibit similar behavior of gas emission, rapid overturn and fountaining.

  5. Deformation at Lava Lake Volcanoes: Lessons from Karthala

    Biggs, J.; Rust, A.; Owens, C.

    2014-12-01

    To remain hot, permanent lava lakes require a continuous connection to a magma reservoir. Depending on the state of the conduit, changes in magma pressure could result in changes in the lake level (hydraulic head) or be accommodated elastically leading to surface deformation. Observing deformation is therefore key to understanding the plumbing system associated with lava lakes. However, the majority of the world's lava lakes lie in difficult socio-economic or remote locations meaning that there are few ground-based observations, and it is often necessary to rely on satellite imagery. Karthala volcano experienced a sequence of eruptions in April 2005, Nov 2005, May 2006 and Jan 2007. The first 3 took place at the Choungou Chahale crater, which typically contains either a water or lava lake; the last formed a new pit crater to the north. Satellite thermal imagery (Hirn et al, 2008) does not show an anomaly during the first eruption, which had a phreatomagmatic component, but large thermal anomalies, associated with an ephemeral lava lake were detected during the Nov 2005 and May 2006 eruptions. The final eruption produced a smaller anomaly attributed to a minor lava flow. Here we present InSAR observations from 2004-2010. We find no significant deformation associated with the first three eruptions, but the January 2007 eruption was associated with ~25 cm of deformation near the volcano's summit, characteristic of a dyke intrusion aligned with the northern rift zone. We also observe an unusual pattern deformation along the coast which may be attributed to rapid settling of soft sediment or recent volcanic deposits triggered by seismic activity. We propose that the first eruption cleared the reservoir-summit connection and interacted with the water in Choungou Chahale. The following eruptions formed a lava lake, but without causing deformation. By the final eruption, the conduit had become blocked and magma intruded along the rift zone causing deformation but no

  6. Perspectives on basaltic magma crystallization and differentiation: Lava-lake blocks erupted at Mauna Loa volcano summit, Hawaii

    McCarter, Renee L.; Fodor, R.V.; Trusdell, Frank A.

    2006-01-01

    Explosive eruptions at Mauna Loa summit ejected coarse-grained blocks (free of lava coatings) from Moku'aweoweo caldera. Most are gabbronorites and gabbros that have 0–26 vol.% olivine and 1–29 vol.% oikocrystic orthopyroxene. Some blocks are ferrogabbros and diorites with micrographic matrices, and diorite veins (≤2 cm) cross-cut some gabbronorites and gabbros. One block is an open-textured dunite.The MgO of the gabbronorites and gabbros ranges ∼ 7–21 wt.%. Those with MgO >10 wt.% have some incompatible-element abundances (Zr, Y, REE; positive Eu anomalies) lower than those in Mauna Loa lavas of comparable MgO; gabbros (MgO <10 wt.%) generally overlap lava compositions. Olivines range Fo83–58, clinopyroxenes have Mg#s ∼83–62, and orthopyroxene Mg#s are 84–63 — all evolved beyond the mineral-Mg#s of Mauna Loa lavas. Plagioclase is An75–50. Ferrogabbro and diorite blocks have ∼ 3–5 wt.% MgO (TiO2 3.2–5.4%; K2O 0.8–1.3%; La 16–27 ppm), and a diorite vein is the most evolved (SiO2 59%, K2O 1.5%, La 38 ppm). They have clinopyroxene Mg#s 67–46, and plagioclase An57–40. The open-textured dunite has olivine ∼ Fo83.5. Seven isotope ratios are 87Sr/86Sr 0.70394–0.70374 and 143Nd/144Nd 0.51293–0.51286, and identify the suite as belonging to the Mauna Loa system.Gabbronorites and gabbros originated in solidification zones of Moku'aweoweo lava lakes where they acquired orthocumulate textures and incompatible-element depletions. These features suggest deeper and slower cooling lakes than the lava lake paradigm, Kilauea Iki, which is basalt and picrite. Clinopyroxene geobarometry suggests crystallization at <1 kbar P. Highly evolved mineral Mg#s, <75, are largely explained by cumulus phases exposed to evolving intercumulus liquids causing compositional ‘shifts.’ Ferrogabbro and diorite represent segregation veins from differentiated intercumulus liquids filter pressed into rigid zones of cooling lakes. Clinopyroxene

  7. Shallow and deep controls on lava lake surface motion at Kīlauea Volcano

    Patrick, Matthew R.; Orr, Tim R.; Swanson, Don; Lev, Einat

    2016-01-01

    Lava lakes provide a rare window into magmatic behavior, and lake surface motion has been used to infer deeper properties of the magmatic system. At Halema'uma'u Crater, at the summit of Kīlauea Volcano, multidisciplinary observations for the past several years indicate that lava lake surface motion can be broadly divided into two regimes: 1) stable and 2) unstable. Stable behavior is driven by lava upwelling from deeper in the lake (presumably directly from the conduit) and is an intrinsic process that drives lava lake surface motion most of the time. This stable behavior can be interrupted by periods of unstable flow (often reversals) driven by spattering – a shallowly-rooted process often extrinsically triggered by small rockfalls from the crater wall. The bursting bubbles at spatter sources create void spaces and a localized surface depression which draws and consumes surrounding surface crust. Spattering is therefore a location of lava downwelling, not upwelling. Stable (i.e. deep, upwelling-driven) and unstable (i.e. shallow, spattering-driven) behavior often alternate through time, have characteristic surface velocities, flow directions and surface temperature regimes, and also correspond to changes in spattering intensity, outgassing rates, lava level and seismic tremor. These results highlight that several processes, originating at different depths, can control the motion of the lava lake surface, and long-term interdisciplinary monitoring is required to separate these influences. These observations indicate that lake surface motion is not always a reliable proxy for deeper lake or magmatic processes. From these observations, we suggest that shallow outgassing (spattering), not lake convection, drives the variations in lake motion reported at Erta 'Ale lava lake.

  8. Operational tracking of lava lake surface motion at Kīlauea Volcano, Hawai‘i

    Patrick, Matthew R.; Orr, Tim R.

    2018-03-08

    Surface motion is an important component of lava lake behavior, but previous studies of lake motion have been focused on short time intervals. In this study, we implement the first continuous, real-time operational routine for tracking lava lake surface motion, applying the technique to the persistent lava lake in Halema‘uma‘u Crater at the summit of Kīlauea Volcano, Hawai‘i. We measure lake motion by using images from a fixed thermal camera positioned on the crater rim, transmitting images to the Hawaiian Volcano Observatory (HVO) in real time. We use an existing optical flow toolbox in Matlab to calculate motion vectors, and we track the position of lava upwelling in the lake, as well as the intensity of spattering on the lake surface. Over the past 2 years, real-time tracking of lava lake surface motion at Halema‘uma‘u has been an important part of monitoring the lake’s activity, serving as another valuable tool in the volcano monitoring suite at HVO.

  9. Explosive Volcanism in Io's Lava Lakes - The Key To Constraining Eruption Temperature?

    Davies, A. G.; Keszthelyi, L. P.; McEwen, A. S.

    2010-12-01

    Active lava lakes are open volcanic systems, where lava circulates between a magma chamber and the surface. Rare on Earth, lava lakes may be common on Io, the highly volcanic jovian moon (e.g., [1]). Io’s low atmospheric pressure means that activity within Io’s lava lakes may be explosive, exposing lava at near-liquid temperatures (currently poorly constrained for Io). Lava lakes are therefore important targets for future missions to Io [2, 3]. With this in mind, hand-held infrared imagers were used to collect thermal emission data from the phonolite Erebus (Antarctica) lava lake [4] and the basalt lava lake at Erta’Ale (Ethiopia). Temperature-area distributions and the integrated thermal emission spectra for each lava lake were determined from the data. These calculated spectra have been used to test models developed for analysis of remote sensing data of lava lakes and lava flows on both Earth and Io, where no ground-truth exists. The silicate cooling model [5] assumes, for the lava lake model variant, that the existing surface crust has been created at a fixed rate. Model output consists of a synthesized thermal emission spectrum, estimate of surface age range, and a rate of surface crust area formation. The cooling model provides accurate reproductions of actual thermal spectra and the total emitting area to within a few percent of actual emitting area. Model resurfacing rates broadly agree with observed behaviour at both lakes. Despite different composition lavas, the short-wavelength infrared thermal emission spectra from the two terrestrial lava lakes studied are very similar in shape, and, importantly, bear a striking similarity to spectra of Pele, an Io volcano that has been proposed to be a persistent, active lava lake [6] and which is the source of a 300-km high dust and gas plume. Our study of the cooling of the hottest lava exposed at Erta’Ale yields constraints on the ability of multispectral imagers to determine eruption temperature. We find

  10. Lava lake level as a gauge of magma reservoir pressure and eruptive hazard

    Patrick, Matthew R.; Anderson, Kyle R.; Poland, Michael P.; Orr, Tim R.; Swanson, Donald A.

    2015-01-01

    Forecasting volcanic activity relies fundamentally on tracking magma pressure through the use of proxies, such as ground surface deformation and earthquake rates. Lava lakes at open-vent basaltic volcanoes provide a window into the uppermost magma system for gauging reservoir pressure changes more directly. At Kīlauea Volcano (Hawaiʻi, USA) the surface height of the summit lava lake in Halemaʻumaʻu Crater fluctuates with surface deformation over short (hours to days) and long (weeks to months) time scales. This correlation implies that the lake behaves as a simple piezometer of the subsurface magma reservoir. Changes in lava level and summit deformation scale with (and shortly precede) changes in eruption rate from Kīlauea's East Rift Zone, indicating that summit lava level can be used for short-term forecasting of rift zone activity and associated hazards at Kīlauea.

  11. Lava lake activity at the summit of Kīlauea Volcano in 2016

    Patrick, Matthew R.; Orr, Tim R.; Swanson, Donald A.; Elias, Tamar; Shiro, Brian

    2018-04-10

    The ongoing summit eruption at Kīlauea Volcano, Hawai‘i, began in March 2008 with the formation of the Overlook crater, within Halema‘uma‘u Crater. As of late 2016, the Overlook crater contained a large, persistently active lava lake (250 × 190 meters). The accessibility of the lake allows frequent direct observations, and a robust geophysical monitoring network closely tracks subtle changes at the summit. These conditions present one of the best opportunities worldwide for understanding persistent lava lake behavior and the geophysical signals associated with open-vent basaltic eruptions. In this report, we provide a descriptive and visual summary of lava lake activity during 2016, a year consisting of continuous lava lake activity. The lake surface was composed of large black crustal plates separated by narrow incandescent spreading zones. The dominant motion of the surface was normally from north to south, but spattering produced transient disruptions to this steady motion. Spattering in the lake was common, consisting of one or more sites on the lake margin. The Overlook crater was continuously modified by the deposition of spatter (often as a thin veneer) on the crater walls, with frequent collapses of this adhered lava into the lake. Larger collapses, involving lithic material from the crater walls, triggered several small explosive events that deposited bombs and lapilli around the Halema‘uma‘u Crater rim, but these did not threaten public areas. The lava lake level varied over several tens of meters, controlled primarily by changes in summit magma reservoir pressure (in part driven by magma supply rates) and secondarily by fluctuations in spattering and gas release from the lake (commonly involving gas pistoning). The lake emitted a persistent gas plume, normally averaging 1,000–8,000 metric tons per day (t/d) of sulfur dioxide (SO2), as well as a constant fallout of small juvenile and lithic particles, including Pele’s hair and tears. The

  12. Thermal Remote Sensing of Lava Lakes on Io and Earth (Invited)

    Davies, A. G.; Keszthelyi, L. P.; McEwen, A. S.

    2013-12-01

    Volcanology has been transformed by remote sensing. For decades, Earth's volcanoes have been studied in the infrared by a wide variety of instruments on spacecraft at widely varying spectral, spatial and temporal resolutions, for which techniques have been developed to interpret and understand ongoing volcanic eruptions. The study of volcanism on Io, the only Solar System body besides Earth known to have ongoing, high temperature, silicate-based effusive and explosive volcanic eruptions, requires new remote sensing techniques. The extraordinary volcanism allows us to examine Io's interior and composition from the material erupted onto the surface. For Io, the biggest question in the wake of NASA's Galileo mission concerns the eruption temperature of Io's dominant silicate lavas [1,2]. Constraining eruption temperature constrains magma composition, in turn a reflection of the composition, physical state and tidal heating within Io. However, the extraction of lava eruption temperature from remote sensing data is difficult. Detector saturation is likely except when the hot material fills a tiny fraction of a resolution element, unless instruments are designed for this objective. High temperature lava surfaces cool rapidly, so remote observations can miss the peak temperature. Observations at different wavelengths must be acquired nearly simultaneously to derive accurate temperatures of very hot and dynamic sources [3]. Uncertainties regarding hot lava emissivity [4] also reduce the confidence in derived temperatures. From studying thermal emission data from different styles of volcanic activity on Earth by remote sensing in conjunction with contemporaneous observations on the ground, it is found that only certain styles of volcanic activity are suitable for deriving liquid lava temperatures [3]. Active lava lakes are particularly useful, especially during a phase of lava fountaining. Examination and analysis of FLIR data obtained at the Erta'Ale (Ethiopia) basaltic

  13. Continuous gravity measurements reveal a low-density lava lake at Kīlauea Volcano, Hawai‘i

    Carbone, Daniele; Poland, Michael P.; Patrick, Matthew R.; Orr, Tim R.

    2013-01-01

    On 5 March 2011, the lava lake within the summit eruptive vent at Kīlauea Volcano, Hawai‘i, began to drain as magma withdrew to feed a dike intrusion and fissure eruption on the volcanoʼs east rift zone. The draining was monitored by a variety of continuous geological and geophysical measurements, including deformation, thermal and visual imagery, and gravity. Over the first ∼14 hours of the draining, the ground near the eruptive vent subsided by about 0.15 m, gravity dropped by more than 100 μGal, and the lava lake retreated by over 120 m. We used GPS data to correct the gravity signal for the effects of subsurface mass loss and vertical deformation in order to isolate the change in gravity due to draining of the lava lake alone. Using a model of the eruptive vent geometry based on visual observations and the lava level over time determined from thermal camera data, we calculated the best-fit lava density to the observed gravity decrease — to our knowledge, the first geophysical determination of the density of a lava lake anywhere in the world. Our result, 950 +/- 300 kg m-3, suggests a lava density less than that of water and indicates that Kīlaueaʼs lava lake is gas-rich, which can explain why rockfalls that impact the lake trigger small explosions. Knowledge of such a fundamental material property as density is also critical to investigations of lava-lake convection and degassing and can inform calculations of pressure change in the subsurface magma plumbing system.

  14. Automated tracking of lava lake level using thermal images at Kīlauea Volcano, Hawai’i

    Patrick, Matthew R.; Swanson, Don; Orr, Tim R.

    2016-01-01

    Tracking the level of the lava lake in Halema‘uma‘u Crater, at the summit of Kīlauea Volcano, Hawai’i, is an essential part of monitoring the ongoing eruption and forecasting potentially hazardous changes in activity. We describe a simple automated image processing routine that analyzes continuously-acquired thermal images of the lava lake and measures lava level. The method uses three image segmentation approaches, based on edge detection, short-term change analysis, and composite temperature thresholding, to identify and track the lake margin in the images. These relative measurements from the images are periodically calibrated with laser rangefinder measurements to produce real-time estimates of lake elevation. Continuous, automated tracking of the lava level has been an important tool used by the U.S. Geological Survey’s Hawaiian Volcano Observatory since 2012 in real-time operational monitoring of the volcano and its hazard potential.

  15. Terrestrial Lava Lake Physical Parameter Estimation Using a Silicate Cooling Model - Implications for a Return to the Volcanic Moon, Io

    Davies, Ashley

    2010-05-01

    Active lava lakes are open volcanic systems, where lava circulates between a magma chamber and the surface. Rare on Earth, lava lakes may be common on Io, the highly volcanic moon of Jupiter (see [1]). Lava lakes are important targets for future missions to Io [2, 3] as they provide excellent targets at which to measure lava eruption temperature (see [2] for other targets). With this in mind, hand-held infrared imagers were used to collect in-situ thermal emission data from the anorthoclase phonolite lava lake at Erebus volcano (Antarctica) in December 2005 [1, 3] and the basalt lava lake at Erta'Ale volcano (Ethiopia) in September 2009. These data have been analysed to establish surface temperature and area distributions and the integrated thermal emission spectra for each lava lake. These spectra have been used to test models developed for analysis of remote sensing data of lava lakes and lava flows on both Earth and Io, where no ground-truth exists. The silicate cooling model [4] assumes, for the lava lake model variant, that the existing surface crust has been created at a fixed rate. Model output consists of a synthesized thermal emission spectrum, estimate of surface age range, and a rate of surface crust area formation. The cooling model provides accurate reproductions of actual thermal spectra and the total emitting area to within a few percent of actual emitting area. Despite different composition lavas, the integrated thermal emission spectra from the two terrestrial lava lakes studied are very similar in shape, and, importantly, bear a striking similarity to spectra of Pele, a feature on Io that has been proposed to be a persistent, active lava lake [1]. The 2005 Erebus lava lake had an area of ~820 m2 and a measured surface temperature distribution of 1090 K to 575 K with a broad peak from 730 K to 850 K [5]. Total heat loss was estimated to be 23.5 MW [5]. The model fit yielded an area of ~820 m2, temperatures from 1475 K to 699 K, and an average

  16. Geologic field-trip guide to Medicine Lake Volcano, northern California, including Lava Beds National Monument

    Donnelly-Nolan, Julie M.; Grove, Timothy L.

    2017-08-17

    Medicine Lake volcano is among the very best places in the United States to see and walk on a variety of well-exposed young lava flows that range in composition from basalt to rhyolite. This field-trip guide to the volcano and to Lava Beds National Monument, which occupies part of the north flank, directs visitors to a wide range of lava flow compositions and volcanic phenomena, many of them well exposed and Holocene in age. The writing of the guide was prompted by a field trip to the California Cascades Arc organized in conjunction with the International Association of Volcanology and Chemistry of the Earth’s Interior (IAVCEI) quadrennial meeting in Portland, Oregon, in August of 2017. This report is one of a group of three guides describing the three major volcanic centers of the southern Cascades Volcanic Arc. The guides describing the Mount Shasta and Lassen Volcanic Center parts of the trip share an introduction, written as an overview to the IAVCEI field trip. However, this guide to Medicine Lake volcano has descriptions of many more stops than are included in the 2017 field trip. The 23 stops described here feature a range of compositions and volcanic phenomena. Many other stops are possible and some have been previously described, but these 23 have been selected to highlight the variety of volcanic phenomena at this rear-arc center, the range of compositions, and for the practical reason that they are readily accessible. Open ground cracks, various vent features, tuffs, lava-tube caves, evidence for glaciation, and lava flows that contain inclusions and show visible evidence of compositional zonation are described and visited along the route.

  17. Emergence of Lava Dome from the Crater Lake of Kelud Volcano, East Java

    Sri Hidayati

    2014-06-01

    Full Text Available DOI: 10.17014/ijog.v4i4.83Kelud Volcano (+1731 m in East Java is one of the most active and dangerous volcanoes in Indonesia. A large lake occupies the summit crater. Historical eruptions generally only lasted for a very short time, mostly no longer than a few hours. The outburst is usually accompanied by pyroclastic flows. On August 2007, the activity of the volcano was initiated by the increase of the temperature of lake water and the change of the colour from typical green to yellow. Activities of the volcano are discussed following the swarms of volcano-tectonic (VT earthquakes on September 10th, September 26th to 29th, and October 24th to November 2nd. On September 26th to 29th, hypocentral distribution of those VT shifted from 5 km deep to just beneath the crater. The highest number of VT earthquakes occurred on November 1st attaining 50 events, then followed by a swarm of B-type events, where the number reached 1437 events in a day. The volcanic activity peaked on November 3rd when seismic records became saturated, which then was preceded by a sharp increase of lake temperature and a sudden deflation of radial tilt. It suggests that the lava extrusion forming a lava dome was taking place.

  18. Correlation of cycles in Lava Lake motion and degassing at Erebus Volcano, Antarctica

    Peters, Nial; Oppenheimer, Clive; Killingsworth, Drea Rae; Frechette, Jed; Kyle, Philip

    2014-08-01

    Several studies at Erebus volcano have recorded pulsatory behavior in many of the observable properties of its active lava lake. A strong correlation between the variations in surface speed of the lake and the composition of gas emitted has previously been noted. While previous studies have shown that the SO2 flux and the surface elevation exhibit pulsatory behavior with a similar period to that of the surface speed and gas composition, suggesting they are linked, a lack of overlap between the different measurements has prevented direct comparisons from being made. Using high time-resolution measurements of surface elevation, surface speed, gas composition, and SO2 flux, we demonstrate for the first time an unambiguous link between the cyclic behavior in each of these properties. We also show that the variation in gas composition may be explained by a subtle change in oxygen fugacity. The cycles are found to be in-phase with each other, with a small but consistent lag of 1-3 min between the peaks in surface elevation and surface speed. Explosive events are found to have no observable effect on the pulsatory behavior beyond the ˜5 min period required for lake refill. The close correspondences between the varying lake surface motion, gas flux and composition, and modeled oxygen fugacity suggest strong links between magma degassing, redox change, and the fluid dynamics of the shallow magmatic system.

  19. Satellite Geodesy Captures Offset Magma Supply Associated With Lava Lake Appearance at Masaya Volcano, Nicaragua

    Stephens, K. J.; Wauthier, C.

    2018-03-01

    Ascending and descending Interferometric Synthetic Aperture Radar data sets from various satellites (CSK, RSAT-2, ALOS-2, and Sentinel-1) show a maximum of ˜8 cm ground inflation in Masaya caldera over a 15 month period (6 November 2015 to 1 September 2016). The center of inflation is located in the NW part of the caldera, north of the active Santiago vent which has hosted a new lava lake since 11 December 2015. Simultaneous inversions of those Interferometric Synthetic Aperture Radar data sets using a neighbourhood algorithm demonstrate that a spherical magma reservoir explains the geodetic data, with a horizontal location ˜3 km north of the active Santiago vent and a depth-to-center ˜3 km. The associated modeled volume increase (˜0.0042 km3) is lower than the "excess" magma volume inferred from gas measurements from November 2015 to February 2016. The magma reservoir offset from the current center of eruptive activity may be the result of preexisting caldera structures.

  20. Changes in Mass Flux of Tephra from the Lava Lake in Overlook Crater, Kīlauea Volcano, Hawai`i

    Swanson, D. A.; Orr, T. R.; Patrick, M. R.

    2016-12-01

    The mass flux of tephra (mostly Pele's hair and tears, hollow spherules, and lithic clasts) from the lava lake in Overlook crater varies on short (seconds-minutes), intermediate (hours-days), and long (months) time scales. The tephra is collected almost daily from a network of 10 buckets within 400 m of, and 100-150 m above, the lava lake; bucket locations have not changed during the eruption. A mass accumulation rate (AR) is calculated for the network; since April 2008, the AR averages 0.17 g/m2/h ( 5×10-8 kg/m2/s). The tephra forms during almost constant spattering at the SE sink (the main downwelling site) and ephemeral sites along the crater wall, as well as from sporadic, rockfall-induced violent outgassing that can eject decimeter-size spatter clots onto the crater rim; the average AR excludes these violent events. The rockfalls, and nearly constant raveling from the crater wall, introduce lithic clasts into the tephra. The lithic content of the tephra has decreased with time, reflecting both greater wall stability and higher lake level, and was usually 7 m/s). At intermediate and long time scales, juvenile AR shows no correlation with measured SO2 output and only weak or no correlation with wind speed, but it often tracks the elevation of the lake surface—higher when lava is nearer the buckets. For example, both lava level and juvenile AR were unusually high in January-July 2016. Before 2016, however, 7-9 periods of heightened juvenile production (see figure below), each lasting several months, show no correlation with other monitored parameters—lake level, SO2, wind speed and direction, or downwelling location. Often AR gradually increased to a peak before falling off, sometimes to nearly zero. We speculate that such long-term variations result from changes in magma supply rate, gas concentration, or rise frequency of decoupled gas slugs. These changes may be too small or slow to detect by current geodetic and gas monitoring. They suggest a slowly

  1. Emplacement of Holocene silicic lava flows and domes at Newberry, South Sister, and Medicine Lake volcanoes, California and Oregon

    Fink, Jonathan H.; Anderson, Steven W.

    2017-07-19

    This field guide for the International Association of Volcanology and Chemistry of the Earth’s Interior (IAVCEI) Scientific Assembly 2017 focuses on Holocene glassy silicic lava flows and domes on three volcanoes in the Cascade Range in Oregon and California: Newberry, South Sister, and Medicine Lake volcanoes. Although obsidian-rich lava flows have been of interest to geologists, archaeologists, pumice miners, and rock hounds for more than a century, many of their emplacement characteristics had not been scientifically observed until two very recent eruptions in Chile. Even with the new observations, several eruptive processes discussed in this field trip guide can only be inferred from their final products. This makes for lively debates at outcrops, just as there have been in the literature for the past 30 years.Of the three volcanoes discussed in this field guide, one (South Sister) lies along the main axis defined by major peaks of the Cascade Range, whereas the other two lie in extensional tectonic settings east of the axis. These two tectonic environments influence volcano morphology and the magmatic and volcanic processes that form silicic lava flows and domes. The geomorphic and textural features of glass-rich extrusions provide many clues about their emplacement and the magma bodies that fed them.The scope of this field guide does not include a full geologic history or comprehensive explanation of hazards associated with a particular volcano or volcanic field. The geochemistry, petrology, tectonics, and eruption history of Newberry, South Sister, and Medicine Lake volcanic centers have been extensively studied and are discussed on other field excursions. Instead, we seek to explore the structural, textural, and geochemical evolution of well-preserved individual lava flows—the goal is to understand the geologic processes, rather than the development, of a specific volcano.

  2. Investigation of volcanic gas analyses and magma outgassing from Erta' Ale lava lake, Afar, Ethiopia

    Gerlach, T.M.

    1980-05-01

    The analyses of 18 volcanic gas samples collected over a two-hour period at 1075/sup 0/C from Erta' Ale lava lake in December 1971 and of 18 samples taken over a half-hour period at 1125 to 1135/sup 0/C in 1974 display moderately to intensely variable compositions. These variations result from imposed modifications caused by (1) atmospheric contamination and oxidation, (2) condensation and re-evaporation of water during collection, (3) analytical errors, and (4) chemical reactions between the erupted gases and a steel lead-in tube. Detailed examinations of the analyses indicate the erupted gases were at chemical equilibrium before collection. This condition was partially destroyed by the imposed modifications. High-temperature reaction equilibria were more completely preserved in the 1974 samples. Numerical procedures based on thermodynamic calculations have been used to restore each analysis to a composition representative of the erupted gases. These procedures have also been used to restore the anhydrous mean compositions reported for two series of collections taken at the lava lake in January 1973.

  3. Continuous gravity and tilt reveal anomalous pressure and density changes associated with gas pistoning within the summit lava lake of Kīlauea Volcano, Hawaiʻi

    Poland, Michael; Carbone, Daniele

    2018-01-01

    Gas piston events within the summit eruptive vent of Kīlauea Volcano, Hawai‘i, are characterized by increases in lava level and by decreases in seismic energy release, spattering, and degassing. During 2010–2011, gas piston events were especially well manifested, with lava level rises of tens of meters over the course of several hours, followed by a sudden drop to preevent levels. The changes in lava level were accompanied by directly proportional changes in gravity, but ground deformation determined from tilt was anticorrelative. The small magnitude of the gravity changes, compared to the large changes in volume within the vent during gas pistons, suggests that pistoning involves the accumulation of a very low‐density (100–200 kg/m3) foam at the top of the lava column. Co‐event ground tilt indicates that rise in lava level is paradoxically associated with deflation (the opposite is usually true), which can be modeled as an increase in the gas content of the magma column between the source reservoir and the surface. Gas pistoning behavior is therefore associated with not only accumulation of a shallow magmatic foam but also more bubbles within the feeder conduit, probably due to the overall decrease in gas emissions from the lava lake during piston events.

  4. Diverse lavas from closely spaced volcanoes drawing from a common parent: Emmons Lake Volcanic Center, Eastern Aleutian Arc

    Mangan, M.; Miller, T.; Waythomas, C.; Trusdell, F.; Calvert, A.; Layer, P.

    2009-01-01

    Emmons Lake Volcanic Center (ELVC) on the lower Alaskan Peninsula is one of the largest and most diverse volcanic centers in the Aleutian Arc. Since the Middle Pleistocene, eruption of ~ 350 km3 of basalt through rhyolite has produced a 30 km, arc front chain of nested calderas and overlapping stratovolcanoes. ELVC has experienced as many as five major caldera-forming eruptions, the most recent, at ~ 27 ka, produced ~ 50 km3 of rhyolitic ignimbrite and ash fall. These violent silicic events were interspersed with less energetic, but prodigious, outpourings of basalt through dacite. Holocene eruptions are mostly basaltic andesite to andesite and historically recorded activity includes over 40 eruptions within the last 200 yr, all from Pavlof volcano, the most active site in the Aleutian Arc. Geochemical and geophysical observations suggest that although all ELVC eruptions derive from a common clinopyroxene + spinel + plagioclase fractionating high-aluminum basalt parent in the lower crust, magma follows one of two closely spaced, but distinct paths to the surface. Under the eastern end of the chain, magma moves rapidly and cleanly through a relatively young (~ 28 ka), hydraulically connected dike plexus. Steady supply, short magma residence times, and limited interaction with crustal rocks preserve the geochemistry of deep crustal processes. Below the western part of the chain, magma moves haltingly through a long-lived (~ 500 ka) and complex intrusive column in which many generations of basaltic to andesitic melts have mingled and fractionated. Buoyant, silicic melts periodically separate from the lower parts of the column to feed voluminous eruptions of dacite and rhyolite. Mafic lavas record a complicated passage through cumulate zones and hydrous silicic residues as manifested by disequilibrium phenocryst textures, incompatible element enrichments, and decoupling of REEs and HFSEs ratios. Such features are absent in mafic lavas from the younger part of the chain

  5. Lava Lake Level Drop and Related Ground Subsidence in the Nyiragongo Main Crater (D.R.Congo) Measured by Close-Range Photogrammetry and InSAR Time-Series

    Smets, B.; d'Oreye, N.; Samsonov, S. V.; Nobile, A.; Geirsson, H.; Kervyn, F.

    2015-12-01

    Nyiragongo volcano is the most active African volcano and among the most active volcanoes on Earth. It is also among the infrequent volcanoes that host a long-lived lava lake. The morphology of the Nyiragongo main crater is characterized by 2 levels of remnant platforms partly preserved and attached to its inner flanks, which correspond to former lava lake levels, and by a bottom "active" platform, which delimits the current active lava lake. The elevation of the bottom platform increases through time, with successive lava lake overflows. After a period of low level between late 2010 and August 2011, the lava lake next came back to its highest level. However, on September 30, 2011, it started a long and progressive fall, reaching ~70 m below the bottom platform in July 2014. This recent evolution of the lava lake, which occurred at the same time period as eruptive events at the neighboring Nyamulagira volcano, was accompanied by a ground subsidence of the bottom platform, leading to the appearance of ring fissures. This ground deformation is restricted to the bottom platform and, hence, suggests a very shallow source for the observed movement. All these changes in the Nyiragongo main crater were recorded by time-series of photographs, allowing the 3D reconstruction of the crater using close-range photogrammetric techniques and, hence, a detailed measurement of the observed changes. The ground subsidence was also recorded by time-series of RADARSAT-2 and CosmoSky-Med SAR interferograms, providing more detailed information on the velocity of deformation. Based on field data and the photogrammetric and InSAR time-series measurements, several hypotheses on the cause(s) of these changes in the Nyiragongo crater are discussed. The present work also highlights the potential of close-range photogrammetry and high-resolution InSAR to study and monitor active volcanoes in Equatorial environment.

  6. The Development of a Low-Cost, Near Infrared, High-Temperature Thermal Imaging System and Its Application to the Retrieval of Accurate Lava Lake Temperatures at Masaya Volcano, Nicaragua

    Thomas Charles Wilkes

    2018-03-01

    Full Text Available Near infrared thermal cameras can provide useful low-cost imaging systems for high temperature applications, as an alternative to ubiquitous mid-/long-wavelength infrared systems. Here, we present a new Raspberry Pi-based near infrared thermal camera for use at temperatures of ≈>500 °C. We discuss in detail the building of the optical system, calibration using a Sakuma-Hattori model and quantification of uncertainties in remote temperature retrievals. We then present results from the deployment of the system on Masaya Volcano, Nicaragua, where the active lava lake was imaged. Temperatures reached a maximum of 1104 ± 14 °C and the lake radiative power output was found to range between 30 and 45 MW. To the best of our knowledge, this is the first published ground-based data on the thermal characteristics of this relatively nascent lava lake, which became visible in late 2015.

  7. Plume composition and volatile flux of Nyamulagira volcano, Democratic Republic of Congo, during birth and evolution of the lava lake, 2014-2015

    Bobrowski, N.; Giuffrida, G. B.; Arellano, S.; Yalire, M.; Liotta, M.; Brusca, L.; Calabrese, S.; Scaglione, S.; Rüdiger, J.; Castro, J. M.; Galle, B.; Tedesco, D.

    2017-12-01

    Very little is known about the volatile element makeup of the gaseous emissions of Nyamulagira volcano. This paper tries to fill this gap by reporting the first gas composition measurements of Nyamulagira's volcanic plume since the onset of its lava lake activity at the end of 2014. Two field surveys were carried out on 1 November 2014, and 13-15 October 2015. We applied a broad toolbox of volcanic gas composition measurement techniques in order to geochemically characterize Nyamulagira's plume. Nyamulagira is a significant emitter of SO2, and our measurements confirm this, as we recorded SO2 emissions of up to 14 kt/d during the studied period. In contrast to neighbouring Nyiragongo volcano, however, Nyamulagira exhibits relatively low CO2/SO2 molar ratios ( 92% of total gas emissions). Strong variations in the volatile composition, in particular for the CO2/SO2 ratio, were measured between 2014 and 2015, which appear to reflect the simultaneous variations in volcanic activity. We also determined the molar ratios for Cl/S, F/S and Br/S in the plume gas, finding values of 0.13 and 0.17, 0.06 and 0.11, and 2.3·10-4 and 1·10-4, in 2014 and 2015, respectively. A total gas emission flux of 48 kt/d was estimated for 2014. The I/S ratio in 2015 was found to be 3.6·10-6. In addition, we were able to distinguish between hydrogen halides and non-hydrogen halides in the volcanic plume. Considerable amounts of bromine (18-35% of total bromine) and iodine (8-18% of total iodine) were found in compounds other than hydrogen halides. However, only a negligible fraction of chlorine was found as compounds other than hydrogen chloride.

  8. Perge'den iki Procurator Yazıtı

    Onur, Fatih

    2008-01-01

    Perge'den iki Procurator Yazıtı Kısa bir süre önce Aşkım Özdizbay Perge'den iki adet Latince yazıtın kopyasını ve çevirisini, Prof. Dr. Haluk Abbasoğlu için hazırladıkları armağan kitabında yayımlamıştır. Verdiği bilgilere göre, bu yazıtlar 2004 – 2005 yılları Perge kazılarında, bir silmeli kaide üzerine sonradan yerleştirilmiş olarak ele geçmiştir. T. Claudius Plocamus'un onurlandırmalarını içeren metinler üzerine yapılan kısa bir araştırma ve sonuçlarının I.v.Perge (IK 54)�...

  9. Pele's tears and spheres: Examples from Kilauea Iki

    Porritt, L. A.; Russell, J. K.; Quane, S. L.

    2012-06-01

    Pele's tears are a well known curiosity commonly associated with low viscosity basaltic explosive eruptions. However, detailed studies of these pyroclasts are rare and, thus, there is no full explanation for their formation. These intriguing pyroclasts have smooth glassy surfaces, vesiculated interiors (∼30%), and fluidal morphologies trending towards teardrops and then spheres as they decrease in size to Pele's tears from the 1959 fire-fountaining eruption of Kilauea Iki has led to a reassessment of the mechanisms of magma disruption and fragmentation, timescales of relaxation, and cooling rates that are responsible for their formation. We conclude that the particle size distributions and vesicularities of Pele's tears are representative of the magma properties at the moment of explosive disruption. However, the morphology of these unique pyroclasts results from reshaping through viscous relaxation, driven by surface tension forces, on a time scale fast enough to compete with cooling times.

  10. Lunar Lava Tube Sensing

    York, Cheryl Lynn; Walden, Bryce; Billings, Thomas L.; Reeder, P. Douglas

    1992-01-01

    Large (greater than 300 m diameter) lava tube caverns appear to exist on the Moon and could provide substantial safety and cost benefits for lunar bases. Over 40 m of basalt and regolith constitute the lava tube roof and would protect both construction and operations. Constant temperatures of -20 C reduce thermal stress on structures and machines. Base designs need not incorporate heavy shielding, so lightweight materials can be used and construction can be expedited. Identification and characterization of lava tube caverns can be incorporated into current precursor lunar mission plans. Some searches can even be done from Earth. Specific recommendations for lunar lava tube search and exploration are (1) an Earth-based radar interferometer, (2) an Earth-penetrating radar (EPR) orbiter, (3) kinetic penetrators for lunar lava tube confirmation, (4) a 'Moon Bat' hovering rocket vehicle, and (5) the use of other proposed landers and orbiters to help find lunar lava tubes.

  11. Introducing Kansas Lava

    Gill, Andy; Bull, Tristan; Kimmell, Garrin; Perrins, Erik; Komp, Ed; Werling, Brett

    Kansas Lava is a domain specific language for hardware description. Though there have been a number of previous implementations of Lava, we have found the design space rich, with unexplored choices. We use a direct (Chalmers style) specification of circuits, and make significant use of Haskell overloading of standard classes, leading to concise circuit descriptions. Kansas Lava supports both simulation (inside GHCi), and execution via VHDL, by having a dual shallow and deep embedding inside our Signal type. We also have a lightweight sized-type mechanism, allowing for MATLAB style matrix based specifications to be directly expressed in Kansas Lava.

  12. Use of joint-growth directions and rock textures to infer thermal regimes during solidification of basaltic lava flows

    Degraff, James M.; Long, Philip E.; Aydin, Atilla

    1989-09-01

    Thermal contraction joints form in the upper and lower solidifying crusts of basaltic lava flows and grow toward the interior as the crusts thicken. Lava flows are thus divided by vertical joints that, by changes in joint spacing and form, define horizontal intraflow layers known as tiers. Entablatures are tiers with joint spacings less than about 40 cm, whereas colonnades have larger joint spacings. We use structural and petrographic methods to infer heat-transfer processes and to constrain environmental conditions that produce these contrasting tiers. Joint-surface morphology indicates overall joint-growth direction and thus identifies the level in a flow where the upper and lower crusts met. Rock texture provides information on relative cooling rates in the tiers of a flow. Lava flows without entablature have textures that develop by relatively slow cooling, and two joint sets that usually meet near their middles, which indicate mostly conductive cooling. Entablature-bearing flows have two main joint sets that meet well below their middles, and textures that indicate fast cooling of entablatures and slow cooling of colonnades. Entablatures always occur in the upper joint sets and sometimes alternate several times with colonnades. Solidification times of entablature-bearing flows, constrained by lower joint-set thicknesses, are much less than those predicted by a purely conductive cooling model. These results are best explained by a cooling model based on conductive heat transfer near a flow base and water-steam convection in the upper part of an entablature-bearing flow. Calculated solidification rates in the upper parts of such flows exceed that of the upper crust of Kilauea Iki lava lake, where water-steam convection is documented. Use of the solidification rates in an available model of water-steam convection yields permeability values that agree with measured values for fractured crystalline rock. We conclude, therefore, that an entablature forms when part

  13. Selected caves and lava-tube systems in and near Lava Beds National Monument, California

    Waters, Aaron Clement; Donnelly-Nolan, Julie M.; Rogers, Bruce W.

    1990-01-01

    Lava Beds National Monument (fig. 1) lies on the north slope of the huge Medicine Lake shield (fig. 2), a complex volcanic edifice of greater volume than the steep-sided Mount Shasta volcanic cone, which towers as a snowclad land mark 40 mi southwest of the monument (fig. 3).

  14. Hawaii Volcanism: Lava Forms

    National Oceanic and Atmospheric Administration, Department of Commerce — Over the last several million years the Hawaiian Islands have been built of successive lava flows. They are the most recent additions in a long line of volcanoes...

  15. Hawaii Lava Flows

    2001-01-01

    This sequence of ASTER nighttime thermal images shows the Pu'u O'o lava flows entering the sea at Kamokuna on the southeast side of the Island of Hawaii. Each image covers an area of 9 x 12 km. The acquisition dates are April 4 2000, May 13 2000, May 22 2000 (upper row) and June 30 2000, August 1 2000 and January 1 2001 (lower row). Thermal band 14 has been color coded from black (coldest) through blue, red, yellow and white (hottest). The first 5 images show a time sequence of a single eruptive phase; the last image shows flows from a later eruptive phase. The images are located at 19.3 degrees north latitude, 155 degrees west longitude. The U.S. science team is located at NASA's Jet Propulsion Laboratory, Pasadena, Calif. The Terra mission is part of NASA's Science Mission Directorate.

  16. King's Bowl Pit Crater, Lava Field and Eruptive Fissure, Idaho - A Multipurpose Volcanic Planetary Analog

    Hughes, S. S.; Garry, B.; Kobs-Nawotniak, S. E.; Sears, D. W. G.; Borg, C.; Elphic, R. C.; Haberle, C. W.; Kobayashi, L.; Lim, D. S. S.; Sears, H.; Skok, J. R.; Heldmann, J. L.

    2014-12-01

    King's Bowl (KB) and its associated eruptive fissure and lava field on the eastern Snake River Plain, is being investigated by the NASA SSERVI FINESSE (Field Investigations to Enable Solar System Science and Exploration) team as a planetary analog to similar pits on the Moon, Mars and Vesta. The 2,220 ± 100 BP basaltic eruption in Craters of the Moon National Monument and Preserve represents early stages of low shield growth, which was aborted when magma supply was cut off. Compared to mature shields, KB is miniscule, with ~0.02 km3 of lava over ~3 km2, yet the ~6 km long series of fissures, cracks and pits are well-preserved for analog studies of volcanic processes. The termination of eruption was likely related to proximity of the 2,270 ± 50 BP eruption of the much larger Wapi lava field (~5.5 km3 over 325 km2 area) on the same rift. Our investigation extends early work by R. Greeley and colleagues, focusing on imagery, compositional variations, ejecta distribution, dGPS profiles and LiDAR scans of features related to: (1) fissure eruptions - spatter ramparts, cones, feeder dikes, extension cracks; (2) lava lake formation - surface morphology, squeeze-ups, slab pahoehoe lava mounds, lava drain-back, flow lobe overlaps; and (3) phreatic steam blasts - explosion pits, ejecta blankets of ash and blocks. Preliminary results indicate multiple fissure eruptions and growth of a basin-filled lava lake up to ~ 10 m thick with outflow sheet lava flows. Remnant mounds of original lake crust reveal an early high lava lake level, which subsided as much as 5 m as the molten interior drained back into the fissure system. Rapid loss of magma supply led to the collapse of fissure walls allowing groundwater influx that triggered multiple steam blasts along at least 500 m. Early blasts occurred while lake magma pressure was still high enough to produce squeeze-ups when penetrated by ejecta blocks. The King's Bowl pit crater exemplifies processes of a small, but highly energetic

  17. Owyhee River intracanyon lava flows: does the river give a dam?

    Ely, Lisa L.; Brossy, Cooper C.; House, P. Kyle; Safran, Elizabeth B.; O'Connor, Jim E.; Champion, Duane E.; Fenton, Cassandra R.; Bondre, Ninad R.; Orem, Caitlin A.; Grant, Gordon E.; Henry, Christopher D.; Turrin, Brent D.

    2013-01-01

    Rivers carved into uplifted plateaus are commonly disrupted by discrete events from the surrounding landscape, such as lava flows or large mass movements. These disruptions are independent of slope, basin area, or channel discharge, and can dominate aspects of valley morphology and channel behavior for many kilometers. We document and assess the effects of one type of disruptive event, lava dams, on river valley morphology and incision rates at a variety of time scales, using examples from the Owyhee River in southeastern Oregon. Six sets of basaltic lava flows entered and dammed the river canyon during two periods in the late Cenozoic ca. 2 Ma–780 ka and 250–70 ka. The dams are strongly asymmetric, with steep, blunt escarpments facing up valley and long, low slopes down valley. None of the dams shows evidence of catastrophic failure; all blocked the river and diverted water over or around the dam crest. The net effect of the dams was therefore to inhibit rather than promote incision. Once incision resumed, most of the intracanyon flows were incised relatively rapidly and therefore did not exert a lasting impact on the river valley profile over time scales >106 yr. The net long-term incision rate from the time of the oldest documented lava dam, the Bogus Rim lava dam (≤1.7 Ma), to present was 0.18 mm/yr, but incision rates through or around individual lava dams were up to an order of magnitude greater. At least three lava dams (Bogus Rim, Saddle Butte, and West Crater) show evidence that incision initiated only after the impounded lakes filled completely with sediment and there was gravel transport across the dams. The most recent lava dam, formed by the West Crater lava flow around 70 ka, persisted for at least 25 k.y. before incision began, and the dam was largely removed within another 35 k.y. The time scale over which the lava dams inhibit incision is therefore directly affected by both the volume of lava forming the dam and the time required for sediment

  18. The delayed rectifier, IKI, is the major conductance in type I vestibular hair cells across vestibular end organs

    Ricci, A. J.; Rennie, K. J.; Correia, M. J.

    1996-01-01

    Hair cells were dissociated from the semicircular canal, utricle, lagena and saccule of white king pigeons. Type I hair cells were identified morphologically based on the ratios of neck width to cuticular plate width (NPR rectifier characterized previously in semicircular canal hair cells as IKI.

  19. LAVA Pressure Transducer Trade Study

    Oltman, Samuel B.

    2016-01-01

    The Regolith and Environment Science and Oxygen and Lunar Volatile Extraction (RESOLVE) payload will transport the (LAVA) subsystem to hydrogen-rich locations on the moon supporting NASA's in-situ resource utilization (ISRU) programs. There, the LAVA subsystem will analyze volatiles that evolve from heated regolith samples in order to quantify how much water is present. To do this, the system needs resilient pressure transducers (PTs) to calculate the moles in the gas samples. The PT trade study includes a comparison of newly-procured models to a baseline unit with prior flight history in order to determine the PT model with the best survivability in flight-forward conditions.

  20. Lava Flow at Kilauea, Hawaii

    2007-01-01

    On July 21, 2007, the world's most active volcano, Kilauea on Hawaii's Big Island, produced a new fissure eruption from the Pu'u O'o vent, which fed an open lava channel and lava flows toward the east. Access to the Kahauale'a Natural Area Reserve was closed due to fire and gas hazards. The two Advanced Spaceborne Thermal Emission and Reflection Radiometer (ASTER) nighttime thermal infrared images were acquired on August 21 and August 30, 2007. The brightest areas are the hottest lava flows from the recent fissure eruption. The large lava field extending down to the ocean is part of the Kupaianaha field. The most recent activity there ceased on June 20, but the lava is still hot and appears bright on the images. Magenta areas are cold lava flows from eruptions that occurred between 1969 and 2006. Clouds are cold (black) and the ocean is a uniform warm temperature, and light gray in color. These images are being used by volcanologists at the U.S. Geological Survey Hawaii Volcano Observatory to help monitor the progress of the lava flows. With its 14 spectral bands from the visible to the thermal infrared wavelength region, and its high spatial resolution of 15 to 90 meters (about 50 to 300 feet), ASTER images Earth to map and monitor the changing surface of our planet. ASTER is one of five Earth-observing instruments launched December 18, 1999, on NASA's Terra spacecraft. The instrument was built by Japan's Ministry of Economy, Trade and Industry. A joint U.S./Japan science team is responsible for validation and calibration of the instrument and the data products. The broad spectral coverage and high spectral resolution of ASTER provides scientists in numerous disciplines with critical information for surface mapping, and monitoring of dynamic conditions and temporal change. Example applications are: monitoring glacial advances and retreats; monitoring potentially active volcanoes; identifying crop stress; determining cloud morphology and physical properties

  1. Kīlauea summit eruption—Lava returns to Halemaʻumaʻu

    Babb, Janet L.; Wessells, Stephen M.; Neal, Christina A.

    2017-10-06

    In March 2008, a new volcanic vent opened within Halemaʻumaʻu, a crater at the summit of Kīlauea Volcano in Hawaiʻi Volcanoes National Park on the Island of Hawaiʻi. This new vent is one of two ongoing eruptions on the volcano. The other is on Kīlauea’s East Rift Zone, where vents have been erupting nearly nonstop since 1983. The duration of these simultaneous summit and rift zone eruptions on Kīlauea is unmatched in at least 200 years.Since 2008, Kīlauea’s summit eruption has consisted of continuous degassing, occasional explosive events, and an active, circulating lava lake. Because of ongoing volcanic hazards associated with the summit vent, including the emission of high levels of sulfur dioxide gas and fragments of hot lava and rock explosively hurled onto the crater rim, the area around Halemaʻumaʻu remains closed to the public as of 2017.Through historical photos of past Halemaʻumaʻu eruptions and stunning 4K imagery of the current eruption, this 24-minute program tells the story of Kīlauea Volcano’s summit lava lake—now one of the two largest lava lakes in the world. It begins with a Hawaiian chant that expresses traditional observations of a bubbling lava lake and reflects the connections between science and culture that continue on Kīlauea today.The video briefly recounts the eruptive history of Halemaʻumaʻu and describes the formation and continued growth of the current summit vent and lava lake. It features USGS Hawaiian Volcano Observatory scientists sharing their insights on the summit eruption—how they monitor the lava lake, how and why the lake level rises and falls, why explosive events occur, the connection between Kīlauea’s ongoing summit and East Rift Zone eruptions, and the impacts of the summit eruption on the Island of Hawaiʻi and beyond. The video is also available at the following U.S. Geological Survey Multimedia Gallery link (video hosted on YouTube): Kīlauea summit eruption—Lava returns to Halemaʻumaʻu

  2. LavaSIM: the effect of heat transfer in 3D on lava flow characteristics (Invited)

    Fujita, E.

    2013-12-01

    Characteristics of lava flow are governed by many parameters like lava viscosity, effusion rate, ground topography, etc. The accuracy and applicability of lava flow simulation code is evaluated whether the numerical simulation can reproduce these features quantitatively, which is important from both strategic and scientific points of views. Many lava flow simulation codes are so far proposed, and they are classified into two categories, i.e., the deterministic and the probabilistic models. LavaSIM is one of the former category models, and has a disadvantage of time consuming. But LavaSIM can solves the equations of continuity, motion, energy by step and has an advantage in the calculation of three-dimensional analysis with solid-liquid two phase flow, including the heat transfer between lava, solidified crust, air, water and ground, and three-dimensional convection in liquid lava. In other word, we can check the detailed structure of lava flow by LavaSIM. Therefore, this code can produce both channeled and fan-dispersive flows. The margin of the flow is solidified by cooling and these solidified crusts control the behavior of successive lava flow. In case of a channel flow, the solidified margin supports the stable central main flow and elongates the lava flow distance. The cross section of lava flow shows that the liquid lava flows between solidified crusts. As for the lava extrusion flow rate, LavaSIM can include the time function as well as the location of the vents. In some cases, some parts of the solidified wall may be broken by the pressure of successive flow and/or re-melting. These mechanisms could characterize complex features of the observed lava flows at many volcanoes in the world. To apply LavaSIM to the benchmark tests organized by V-hub is important to improve the lava flow evaluation technique.

  3. Probabilistically modeling lava flows with MOLASSES

    Richardson, J. A.; Connor, L.; Connor, C.; Gallant, E.

    2017-12-01

    Modeling lava flows through Cellular Automata methods enables a computationally inexpensive means to quickly forecast lava flow paths and ultimate areal extents. We have developed a lava flow simulator, MOLASSES, that forecasts lava flow inundation over an elevation model from a point source eruption. This modular code can be implemented in a deterministic fashion with given user inputs that will produce a single lava flow simulation. MOLASSES can also be implemented in a probabilistic fashion where given user inputs define parameter distributions that are randomly sampled to create many lava flow simulations. This probabilistic approach enables uncertainty in input data to be expressed in the model results and MOLASSES outputs a probability map of inundation instead of a determined lava flow extent. Since the code is comparatively fast, we use it probabilistically to investigate where potential vents are located that may impact specific sites and areas, as well as the unconditional probability of lava flow inundation of sites or areas from any vent. We have validated the MOLASSES code to community-defined benchmark tests and to the real world lava flows at Tolbachik (2012-2013) and Pico do Fogo (2014-2015). To determine the efficacy of the MOLASSES simulator at accurately and precisely mimicking the inundation area of real flows, we report goodness of fit using both model sensitivity and the Positive Predictive Value, the latter of which is a Bayesian posterior statistic. Model sensitivity is often used in evaluating lava flow simulators, as it describes how much of the lava flow was successfully modeled by the simulation. We argue that the positive predictive value is equally important in determining how good a simulator is, as it describes the percentage of the simulation space that was actually inundated by lava.

  4. Modeling Submarine Lava Flow with ASPECT

    Storvick, E. R.; Lu, H.; Choi, E.

    2017-12-01

    Submarine lava flow is not easily observed and experimented on due to limited accessibility and challenges posed by the fast solidification of lava and the associated drastic changes in rheology. However, recent advances in numerical modeling techniques might address some of these challenges and provide unprecedented insight into the mechanics of submarine lava flow and conditions determining its wide-ranging morphologies. In this study, we explore the applicability ASPECT, Advanced Solver for Problems in Earth's ConvecTion, to submarine lava flow. ASPECT is a parallel finite element code that solves problems of thermal convection in the Earth's mantle. We will assess ASPECT's capability to model submarine lava flow by observing models of lava flow morphology simulated with GALE, a long-term tectonics finite element analysis code, with models created using comparable settings and parameters in ASPECT. From these observations we will contrast the differing models in order to identify the benefits of each code. While doing so, we anticipate we will learn about the conditions required for end-members of lava flow morphology, for example, pillows and sheet flows. With ASPECT specifically we focus on 1) whether the lava rheology can be implemented; 2) how effective the AMR is in resolving morphologies of the solidified crust; 3) whether and under what conditions the end-members of the lava flow morphologies, pillows and sheets, can be reproduced.

  5. Lava tubes - Potential shelters for habitats

    Horz, F.

    Natural caverns occur on the moon in the form of 'lava tubes', which are the drained conduits of underground lava rivers. The inside dimensions of these tubes measure tens to hundreds of meters, and their roofs are expected to be thicker than 10 meters. Consequently, lava tube interiors offer an environment that is naturally protected from the hazards of radiation and meteorite impact. Further, constant, relatively benign temperatures of -20 C prevail. These are extremely favorable environmental conditions for human activities and industrial operations. Significant operational, technological, and economical benefits might result if a lunar base were constructed inside a lava tube.

  6. What factors control superficial lava dome explosivity?

    Boudon, Georges; Balcone-Boissard, Hélène; Villemant, Benoît; Morgan, Daniel J

    2015-09-30

    Dome-forming eruption is a frequent eruptive style and a major hazard on numerous volcanoes worldwide. Lava domes are built by slow extrusion of degassed, viscous magma and may be destroyed by gravitational collapse or explosion. The triggering of lava dome explosions is poorly understood: here we propose a new model of superficial lava-dome explosivity based upon a textural and geochemical study (vesicularity, microcrystallinity, cristobalite distribution, residual water contents, crystal transit times) of clasts produced by key eruptions. Superficial explosion of a growing lava dome may be promoted through porosity reduction caused by both vesicle flattening due to gas escape and syn-eruptive cristobalite precipitation. Both processes generate an impermeable and rigid carapace allowing overpressurisation of the inner parts of the lava dome by the rapid input of vesiculated magma batches. The relative thickness of the cristobalite-rich carapace is an inverse function of the external lava dome surface area. Explosive activity is thus more likely to occur at the onset of lava dome extrusion, in agreement with observations, as the likelihood of superficial lava dome explosions depends inversely on lava dome volume. This new result is of interest for the whole volcanological community and for risk management.

  7. A novel technology for measuring the eruption temperature of silicate lavas with remote sensing: Application to Io and other planets

    Davies, Ashley Gerard; Gunapala, Sarath; Soibel, Alexander; Ting, David; Rafol, Sir; Blackwell, Megan; Hayne, Paul O.; Kelly, Michael

    2017-09-01

    The highly variable and unpredictable magnitude of thermal emission from evolving volcanic eruptions creates saturation problems for remote sensing instruments observing eruptions on Earth and on Io, the highly volcanic moon of Jupiter. For Io, it is desirable to determine the temperature of the erupting lavas as this measurement constrains lava composition. One method of determining lava eruption temperature is by measuring radiant flux at two or more wavelengths and fitting a blackbody thermal emission function. Only certain styles of volcanic activity are suitable, those where detectable thermal emission is from a restricted range of surface temperatures close to the eruption temperature. Volcanic processes where this occurs include large lava fountains; smaller lava fountains common in active lava lakes; and lava tube skylights. Problems that must be overcome to obtain usable data are: (1) the rapid cooling of the lava between data acquisitions at different wavelengths, (2) the unknown magnitude of thermal emission, which has often led to detector saturation, and (3) thermal emission changing on a shorter timescale than the observation integration time. We can overcome these problems by using the HOT-BIRD detector and a novel, advanced digital readout circuit (D-ROIC) to achieve a wide dynamic range sufficient to image lava on Io without saturating. We have created an instrument model that allows various instrument parameters (including mirror diameter, number of signal splits, exposure duration, filter band pass, and optics transmissivity) to be tested to determine the detectability of thermal sources on Io's surface. We find that a short-wavelength infrared instrument on an Io flyby mission can achieve simultaneity of observations by splitting the incoming signal for all relevant eruption processes and still obtain data fast enough to remove uncertainties in accurate determination of the highest lava surface temperatures. Observations at 1 and 1.5 μm are

  8. Geomagnetic polarity zones for icelandic lavas

    Dagley, P.; Wilson, R.L.; Ade-Hall, J. M.; Walker, G.P.L.; Haggerty, S.E.; Sigurgeirsson, T.; Watkins, N.D.; Smith, P.J.; Edwards, J.; Grasty, R.L.

    1967-01-01

    Analysis of cores collected from a sequence of lavas in Eastern Iceland has made possible an accurate calculation of the average rate of reversal of the Earth's magnetic field. ?? 1967 Nature Publishing Group.

  9. Taylor instability in rhyolite lava flows

    Baum, B. A.; Krantz, W. B.; Fink, J. H.; Dickinson, R. E.

    1989-01-01

    A refined Taylor instability model is developed to describe the surface morphology of rhyolite lava flows. The effect of the downslope flow of the lava on the structures resulting from the Taylor instability mechanism is considered. Squire's (1933) transformation is developed for this flow in order to extend the results to three-dimensional modes. This permits assessing why ridges thought to arise from the Taylor instability mechanism are preferentially oriented transverse to the direction of lava flow. Measured diapir and ridge spacings for the Little and Big Glass Mountain rhyolite flows in northern California are used in conjunction with the model in order to explore the implications of the Taylor instability for flow emplacement. The model suggests additional lava flow features that can be measured in order to test whether the Taylor instability mechanism has influenced the flows surface morphology.

  10. Internal fabric development in complex lava domes

    Závada, Prokop; Kratinová, Zuzana; Kusbach, V.; Schulmann, K.

    2009-01-01

    Roč. 466, č. 1-2 (2009), s. 101-113 ISSN 0040-1951 R&D Projects: GA AV ČR KJB301110703; GA AV ČR KJB300120702 Grant - others:GA ČR(CZ) GA205/03/0204 Institutional research plan: CEZ:AV0Z30120515 Keywords : analogue modeling * lava extrusion * exogenous growth * crystal-rich lava * AMS Subject RIV: DB - Geology ; Mineralogy Impact factor: 1.935, year: 2009

  11. Phreatic explosions during basaltic fissure eruptions: Kings Bowl lava field, Snake River Plain, USA

    Hughes, Scott S.; Kobs Nawotniak, Shannon E.; Sears, Derek W. G.; Borg, Christian; Garry, William Brent; Christiansen, Eric H.; Haberle, Christopher W.; Lim, Darlene S. S.; Heldmann, Jennifer L.

    2018-02-01

    Physical and compositional measurements are made at the 7 km-long ( 2200 years B.P.) Kings Bowl basaltic fissure system and surrounding lava field in order to further understand the interaction of fissure-fed lavas with phreatic explosive events. These assessments are intended to elucidate the cause and potential for hazards associated with phreatic phases that occur during basaltic fissure eruptions. In the present paper we focus on a general understanding of the geological history of the site. We utilize geospatial analysis of lava surfaces, lithologic and geochemical signatures of lava flows and explosively ejected blocks, and surveys via ground observation and remote sensing. Lithologic and geochemical signatures readily distinguish between Kings Bowl and underlying pre-Kings Bowl lava flows, both of which comprise phreatic ejecta from the Kings Bowl fissure. These basalt types, as well as neighboring lava flows from the contemporaneous Wapi lava field and the older Inferno Chasm vent and outflow channel, fall compositionally within the framework of eastern Snake River Plain olivine tholeiites. Total volume of lava in the Kings Bowl field is estimated to be 0.0125 km3, compared to a previous estimate of 0.005 km3. The main (central) lava lake lost a total of 0.0018 km3 of magma by either drain-back into the fissure system or breakout flows from breached levees. Phreatic explosions along the Kings Bowl fissure system occurred after magma supply was cut off, leading to fissure evacuation, and were triggered by magma withdrawal. The fissure system produced multiple phreatic explosions and the main pit is accompanied by others that occur as subordinate pits and linear blast corridors along the fissure. The drop in magma supply and the concomitant influx of groundwater were necessary processes that led to the formation of Kings Bowl and other pits along the fissure. A conceptual model is presented that has relevance to the broader range of low-volume, monogenetic

  12. In situ NIR reflectance and LIBS measurements in lava tubes in preparation for future Mars missions

    Leveille, R.; Sobron, P.

    2017-12-01

    The ATiLT (Astrobiology Training in Lava Tubes) program addresses Mars astrobiology exploration objectives by performing field work and instrumental analyses in lava tubes as high fidelity analog environments to putative lava tubes on Mars. The main field location for ATiLT is the Lava Beds National Monument (LABE) in Northern California. LABE is situated on the lower north flank of the Medicine Lake Volcano of the Cascade arc. This location features hundreds of caves, most of which are relatively shallow, typically well above the water table, reaching 20-45m below land surface at their maximum depth. Some LABE caves feature `cold sinks' where cold air sinks and becomes trapped in deeper cave passages, thus allowing perennial ice to accumulate despite above freezing surface temperatures. Several lava tube caves in LABE also contain seasonal or perennial ice accumulations, which makes them excellent analogs to Mars lava tubes where the presence of ice has been predicted. While lava tubes are very attractive systems to test hypotheses related to habitability and the possibility for life on Mars, at present there are no comprehensive in-situ instrument-driven characterizations of the mineralogy and geochemistry of lava tubes. ATiLT fills this gap by providing detailed, in-situ investigations with scientific instruments relevant to Mars exploration. Our aim is to help constrain future exploration targets on Mars and define future mission operations and requirements. For this purpose, in May 2017 we carried out a field campaign in several lava tubes at LABE. We deployed two miniature spectroscopic sensors suitable for dark, humid, cave conditions: NIR reflectance (1-5 μm) and LIBS (300-900 nm). The advantages of combining NIR reflectance and LIBS are evident: LIBS can reveal the relative concentration of major (and often trace) elements present in a bulk sample, whereas NIR reflectance yields information on the individual mineral species and their chemical and

  13. Mineralogy and Petrology of Lava Flows (Tertiary-Quaternary) In Southeastern Idaho and at Black Mountain, Rich County, Utah

    Puchy, Barbara J.

    1981-01-01

    Lava flows of Tertiary-Quaternary age occur in Enoch Valley, Upper Valley, and Slug Valley in southeastern Idaho. The basalts in Upper Valley and Enoch Valley contain olivine (Fo69 to Fo37), plagioclase (An62 to An39), augite and Fe-Ti oxides. The lava in Slug Valley lacks plagioclase, but contains sanidine (Or70 to Or56) with a trace of biotite and amphibole, and thus, has been termed alkali trachyte. Black Mountain, on the eastern side of Bear Lake, northeastern Utah, is capped by basalt...

  14. Nornahraun lava morphology and mode of emplacement

    Pedersen, Gro B. M.; Höskuldsson, Armann; Riishuus, Morten S.; Jónsdóttir, Ingibjörg; Gudmundsson, Magnús T.; Sigmundsson, Freysteinn; Óskarsson, Birgir V.; Drouin, Vincent; Gallagher, Catherine; Askew, Rob; Moreland, William M.; Dürig, Tobias; Dumont, Stephanie; Þórdarson, Þór

    2015-04-01

    The ongoing Nornahraun eruption is the largest effusive eruption in Iceland since the Laki eruption in 1783-84, with an estimated lava volume of ~1.15 km3 covering an area of ~83.4 km2 (as of 5 JAN 2015). The eruption provides an unprecedented opportunity to study i) lava morphologies and their emplacement styles, ii) the transition from from open to closed lava pathways and iii) lava pond formation. Tracking of the lava advancement and morphology has been performed by GPS and GoPro cameras installed in 4×4 vehicles as well as video footage. Complimentary observations have been provided from aircraft platforms and by satellite data. Of particular importance for lava morphology observations are 1-12 m/pixel airborne SAR images (x-band). The Nornahraun flow field comprises a continuum of morphologies from pāhoehoe to 'a'ā, which have varied tem-porally and spatially. At the onset of the eruption 31 AUG, lava flows advanced rapidly (400-800 m/hr) from the 1.5 km long fissure as large slabby pāhoehoe [1-3] sheet lobes, 100-500 m wide and 0.3-1 m thick at the flow fronts. By 1 SEPT, the flows began channeling towards the NE constrained by the older Holuhraun I lava field and the to-pography of flood plain itself. A central open channel developed, feeding a 1-2 km wide active 'a'ā frontal lobe that advanced 1-2 km/day. In addition to its own caterpillar motion, the frontal lobe advanced in a series of 30-50 m long breakouts, predominantly slabby and rubbly pāhoehoe [4,5]. These breakouts had initial velocities of 10-30 m/hr and reached their full length within tens of minutes and subsequently inflated over hours. With the continuous advancement of the 'a'ā flow front, the breakouts were incorporated into the 'a'ā flow fronts and seldom preserved. At the margins of the frontal lava lobe, the breakouts were more sporadic, but predominantly rubbly pāhoehoe and slabby pāhoehoe, as at the flow front. The lava flow advanced ENE into Jökulsá á Fjöllum on 7 SEPT

  15. The Payun-Matru lava field: a source of analogues for Martian long lava flows

    Giacomini, L.; Pasquarè, G.; Massironi, M.; Frigeri, A.; Bistacchi, A.; Frederico, C.

    2007-08-01

    The Payun Matru Volcanic complex is a Quaternary fissural structure belonging to the back-arc extensional area of the Andes in the Mendoza Province (Argentina). The eastern portion of the volcanic structure is covered by a basaltic field of pahoehoe lava flows advanced over more than 180 km from the fissural feeding vents that are aligned with a E-W fault system (Carbonilla fault). Thanks to their widespread extension, these flows represent some of the largest lava flows in the world and the Pampas Onduladas flow can be considered the longest sub-aerial individual lava flow on the Earth surface [1,2]. These gigantic flows propagated over the nearly flat surface of the Pampean foreland, moving on a 0.3 degree slope. The very low viscosity of the olivine basalt lavas, coupled with the inflation process and an extensive system of lava tubes are the most probable explanation for their considerable length. The inflation process likely develop under a steady flow rate sustained for a long time [3]. A thin viscoelastic crust, built up at an early stage, is later inflated by the underlying fluid core, which remains hot and fluid thanks to the thermal-shield effect of the crust. The crust is progressively thickened by accretion from below and spreading is due to the continuous creation of new inflated lobes, which develop at the front of the flow. Certain morphological features are considered to be "fingerprints" of inflation [4, 5, 6]; these include tumuli, lava rises, lava lobes and ridges. All these morphologies are present in the more widespread Payun Matru lava flows that, where they form extensive sheetflows, can reach a maximum thickness of more than 20 meters. After the emplacement of the major flows, a second eruptive cycle involved the Payun Matru volcanic structure. During this stage thick and channelized flows of andesitic and dacitic lavas, accompanied the formation of two trachitic and trachiandesitic strato-volcanoes (Payun Matru and Payun Liso) culminated

  16. Ridge-like lava tube systems in southeast Tharsis, Mars

    Zhao, Jiannan; Huang, Jun; Kraft, Michael D.; Xiao, Long; Jiang, Yun

    2017-10-01

    Lava tubes are widely distributed in volcanic fields on a planetary surface and they are important means of lava transportation. We have identified 38 sinuous ridges with a lava-tube origin in southeast Tharsis. The lengths vary between 14 and 740 km, and most of them occur in areas with slopes rate, low lava viscosity, and sustained magma supply during a long period. Besides, lava flow inflation is also important in the formation of the ridge-like lava tubes and some associated features. These lava tubes provide efficient lateral pathways for magma transportation over the relatively low topographic slopes in southeast Tharsis, and they are important for the formation of long lava flows in this region. The findings of this study provide an alternative formation mechanism for sinuous ridges on the martian surface.

  17. Diverting lava flows in the lab

    Dietterich, Hannah; Cashman, Katharine V.; Rust, Alison C.; Lev, Einat

    2015-01-01

    Recent volcanic eruptions in Hawai'i, Iceland and Cape Verde highlight the challenges of mitigating hazards when lava flows threaten infrastructure. Diversion barriers are the most common form of intervention, but historical attempts to divert lava flows have met with mixed success and there has been little systematic analysis of optimal barrier design. We examine the interaction of viscous flows of syrup and molten basalt with barriers in the laboratory. We find that flows thicken immediately upslope of an obstacle, forming a localized bow wave that can overtop barriers. Larger bow waves are generated by faster flows and by obstacles oriented at a high angle to the flow direction. The geometry of barriers also influences flow behaviour. Barriers designed to split or dam flows will slow flow advance, but cause the flow to widen, whereas oblique barriers can effectively divert flows, but may also accelerate flow advance. We argue that to be successful, mitigation of lava-flow hazards must incorporate the dynamics of lava flow–obstacle interactions into barrier design. The same generalizations apply to the effect of natural topographic features on flow geometry and advance rates.

  18. Possible lava tube system in a hummocky lava flow at Daund ...

    R. Narasimhan (Krishtel eMaging) 1461 1996 Oct 15 13:05:22

    The presence of a branching and meandering lava tube system in the Daund flow, which represents the ..... is entirely related to the process of differential ero- sion and exhumation. Thus ... illuminating and thought provoking. References.

  19. İki uçlu bozukluk 1 ve iki uçlu bozukluk 2 depresyon tedavisi arasındaki farklar

    Sayar, Kemal

    2013-01-01

    İki uçlu bozukluk 1 ve 2 depresyonları, klinik açıdan farklılıklar gösterebilmektedir. İki uçlu bozukluk 2 ve iki uçlu bozukluk 1 depresyonların tedavisi arasındaki farklar ise tartışmalı bir alandır. Henüz İki uçlu bozukluk 2 depresyon tedavisi konusunda yeterince kanıt birikmemişse de ilk veriler her iki durumun tedavisinde farklar olması gerektiğini düşündürmektedir. Özellikle antidepresan kullanımı konusunda dikkatli olmak gerekmektedir.

  20. LAVA: Large scale Automated Vulnerability Addition

    2016-05-23

    LAVA: Large-scale Automated Vulnerability Addition Brendan Dolan -Gavitt∗, Patrick Hulin†, Tim Leek†, Fredrich Ulrich†, Ryan Whelan† (Authors listed...released, and thus rapidly become stale. We can expect tools to have been trained to detect bugs that have been released. Given the commercial price tag...low TCN) and dead (low liveness) program data is a powerful one for vulnera- bility injection. The DUAs it identifies are internal program quantities

  1. Modeling steam pressure under martian lava flows

    Dundas, Colin M.; Keszthelyi, Laszlo P.

    2013-01-01

    Rootless cones on Mars are a valuable indicator of past interactions between lava and water. However, the details of the lava–water interactions are not fully understood, limiting the ability to use these features to infer new information about past water on Mars. We have developed a model for the pressurization of a dry layer of porous regolith by melting and boiling ground ice in the shallow subsurface. This model builds on previous models of lava cooling and melting of subsurface ice. We find that for reasonable regolith properties and ice depths of decimeters, explosive pressures can be reached. However, the energy stored within such lags is insufficient to excavate thick flows unless they draw steam from a broader region than the local eruption site. These results indicate that lag pressurization can drive rootless cone formation under favorable circumstances, but in other instances molten fuel–coolant interactions are probably required. We use the model results to consider a range of scenarios for rootless cone formation in Athabasca Valles. Pressure buildup by melting and boiling ice under a desiccated lag is possible in some locations, consistent with the expected distribution of ice implanted from atmospheric water vapor. However, it is uncertain whether such ice has existed in the vicinity of Athabasca Valles in recent history. Plausible alternative sources include surface snow or an aqueous flood shortly before the emplacement of the lava flow.

  2. Hawaiian lavas: a window into mantle dynamics

    Jones, Tim; Davies, Rhodri; Campbell, Ian

    2017-04-01

    The emergence of double track volcanism at Hawaii has traditionally posed two problems: (i) the physical emergence of two parallel chains of volcanoes at around 3 Ma, named the Loa and Kea tracks after the largest volcanoes in their sequence, and (ii) the systematic geochemical differences between the erupted lavas along each track. In this study, we dissolve this distinction by providing a geodynamical explanation for the physical emergence of double track volcanism at 3 Ma and use numerical models of the Hawaiian plume to illustrate how this process naturally leads to each volcanic track sampling distinct mantle compositions, which accounts for much of the geochemical characteristics of the Loa and Kea trends.

  3. Lava tube shatter rings and their correlation with lava flux increases at Kīlauea Volcano, Hawai‘i

    Orr, T.R.

    2011-01-01

    Shatter rings are circular to elliptical volcanic features, typically tens of meters in diameter, which form over active lava tubes. They are typified by an upraised rim of blocky rubble and a central depression. Prior to this study, shatter rings had not been observed forming, and, thus, were interpreted in many ways. This paper describes the process of formation for shatter rings observed at Kīlauea Volcano during November 2005–July 2006. During this period, tilt data, time-lapse images, and field observations showed that episodic tilt changes at the nearby Pu‘u ‘Ō‘ō cone, the shallow magmatic source reservoir, were directly related to fluctuations in the level of lava in the active lava tube, with periods of deflation at Pu‘u ‘Ō‘ō correlating with increases in the level of the lava stream surface. Increases in lava level are interpreted as increases in lava flux, and were coincident with lava breakouts from shatter rings constructed over the lava tube. The repetitive behavior of the lava flux changes, inferred from the nearly continuous tilt oscillations, suggests that shatter rings form from the repeated rise and fall of a portion of a lava tube roof. The locations of shatter rings along the active lava tube suggest that they form where there is an abrupt decrease in flow velocity through the tube, e.g., large increase in tube width, abrupt decrease in tube slope, and (or) sudden change in tube direction. To conserve volume, this necessitates an abrupt increase in lava stream depth and causes over-pressurization of the tube. More than a hundred shatter rings have been identified on volcanoes on Hawai‘i and Maui, and dozens have been reported from basaltic lava fields in Iceland, Australia, Italy, Samoa, and the mainland United States. A quick study of other basaltic lava fields worldwide, using freely available satellite imagery, suggests that they might be even more common than previously thought. If so, this confirms that episodic

  4. What factors control the superficial lava dome explosivity?

    Boudon, Georges; Balcone-Boissard, Hélène; Villemant, Benoit; Morgan, Daniel J.

    2015-04-01

    Dome-forming eruption is a frequent eruptive style; lava domes result from intermittent, slow extrusion of viscous lava. Most dome-forming eruptions produce highly microcrystallized and highly- to almost totally-degassed magmas which have a low explosive potential. During lava dome growth, recurrent collapses of unstable parts are the main destructive process of the lava dome, generating concentrated pyroclastic density currents (C-PDC) channelized in valleys. These C-PDC have a high, but localized, damage potential that largely depends on the collapsed volume. Sometimes, a dilute ash cloud surge develops at the top of the concentrated flow with an increased destructive effect because it may overflow ridges and affect larger areas. In some cases, large lava dome collapses can induce a depressurization of the magma within the conduit, leading to vulcanian explosions. By contrast, violent, laterally directed, explosions may occur at the base of a growing lava dome: this activity generates dilute and turbulent, highly-destructive, pyroclastic density currents (D-PDC), with a high velocity and propagation poorly dependent on the topography. Numerous studies on lava dome behaviors exist, but the triggering of lava dome explosions is poorly understood. Here, seven dome-forming eruptions are investigated: in the Lesser Antilles arc: Montagne Pelée, Martinique (1902-1905, 1929-1932 and 650 y. BP eruptions), Soufrière Hills, Montserrat; in Guatemala, Santiaguito (1929 eruption); in La Chaîne des Puys, France (Puy de Dome and Puy Chopine eruptions). We propose a new model of superficial lava-dome explosivity based upon a textural and geochemical study (vesicularity, microcrystallinity, cristobalite distribution, residual water contents, crystal transit times) of clasts produced by these key eruptions. Superficial explosion of a growing lava dome may be promoted through porosity reduction caused by both vesicle flattening due to gas escape and syn-eruptive cristobalite

  5. A flexible open-source toolkit for lava flow simulations

    Mossoux, Sophie; Feltz, Adelin; Poppe, Sam; Canters, Frank; Kervyn, Matthieu

    2014-05-01

    Lava flow hazard modeling is a useful tool for scientists and stakeholders confronted with imminent or long term hazard from basaltic volcanoes. It can improve their understanding of the spatial distribution of volcanic hazard, influence their land use decisions and improve the city evacuation during a volcanic crisis. Although a range of empirical, stochastic and physically-based lava flow models exists, these models are rarely available or require a large amount of physical constraints. We present a GIS toolkit which models lava flow propagation from one or multiple eruptive vents, defined interactively on a Digital Elevation Model (DEM). It combines existing probabilistic (VORIS) and deterministic (FLOWGO) models in order to improve the simulation of lava flow spatial spread and terminal length. Not only is this toolkit open-source, running in Python, which allows users to adapt the code to their needs, but it also allows users to combine the models included in different ways. The lava flow paths are determined based on the probabilistic steepest slope (VORIS model - Felpeto et al., 2001) which can be constrained in order to favour concentrated or dispersed flow fields. Moreover, the toolkit allows including a corrective factor in order for the lava to overcome small topographical obstacles or pits. The lava flow terminal length can be constrained using a fixed length value, a Gaussian probability density function or can be calculated based on the thermo-rheological properties of the open-channel lava flow (FLOWGO model - Harris and Rowland, 2001). These slope-constrained properties allow estimating the velocity of the flow and its heat losses. The lava flow stops when its velocity is zero or the lava temperature reaches the solidus. Recent lava flows of Karthala volcano (Comoros islands) are here used to demonstrate the quality of lava flow simulations with the toolkit, using a quantitative assessment of the match of the simulation with the real lava flows. The

  6. Geologic map of Medicine Lake volcano, northern California

    Donnelly-Nolan, Julie M.

    2011-01-01

    Medicine Lake volcano forms a broad, seemingly nondescript highland, as viewed from any angle on the ground. Seen from an airplane, however, treeless lava flows are scattered across the surface of this potentially active volcanic edifice. Lavas of Medicine Lake volcano, which range in composition from basalt through rhyolite, cover more than 2,000 km2 east of the main axis of the Cascade Range in northern California. Across the Cascade Range axis to the west-southwest is Mount Shasta, its towering volcanic neighbor, whose stratocone shape contrasts with the broad shield shape of Medicine Lake volcano. Hidden in the center of Medicine Lake volcano is a 7 km by 12 km summit caldera in which nestles its namesake, Medicine Lake. The flanks of Medicine Lake volcano, which are dotted with cinder cones, slope gently upward to the caldera rim, which reaches an elevation of nearly 8,000 ft (2,440 m). The maximum extent of lavas from this half-million-year-old volcano is about 80 km north-south by 45 km east-west. In postglacial time, 17 eruptions have added approximately 7.5 km3 to its total estimated volume of 600 km3, and it is considered to be the largest by volume among volcanoes of the Cascades arc. The volcano has erupted nine times in the past 5,200 years, a rate more frequent than has been documented at all other Cascades arc volcanoes except Mount St. Helens.

  7. Lava inundation zone maps for Mauna Loa, Island of Hawaiʻi, Hawaii

    Trusdell, Frank A.; Zoeller, Michael H.

    2017-10-12

    Lava flows from Mauna Loa volcano, on the Island of Hawaiʻi, constitute a significant hazard to people and property. This report addresses those lava flow hazards, mapping 18 potential lava inundation zones on the island.

  8. Characteristics and genesis of porphyroclastic lava rock in Xiangshan

    Zhou Xiaohua; Wang Zhuning

    2012-01-01

    Due to the transitional characteristics of porphyroclastic lava rock in Xiangshan of Jiangxi province, there are a variety of views on its genesis, petrographic attribution. This is because the marginal facies of the porphyroclastic lava is with ignimbrite and tuff characteristics, its transition phase has the characteristics of lava, and its intermediate phase has the feature of sub-volcanic rocks, further more, different texture of the rocks bears transition relationship. By the study of mineral composition, REE pattern, trace elements, isotopes, we put forward that the porphyroclastic lava is formed by the remelting of basement metamorphic rocks. The rocks was believed to be formed in the environment similar to volcanics and subvolcanics, and quite different to plutonic rocks due to the features of low-structure of potassium feldspar phenocrysts and solution mechanism, because the porphyroclastic lava phenocrysts occurs as fragments and maybe related to cryptoexplosion. Therefore the rocks was believed to belong to the volcano extrusive facies. (authors)

  9. Remote sensing evidence of lava-ground ice interactions associated with the Lost Jim Lava Flow, Seward Peninsula, Alaska

    Marcucci, Emma C.; Hamilton, Christopher W.; Herrick, Robert R.

    2017-12-01

    Thermokarst terrains develop when ice-bearing permafrost melts and causes the overlying surface to subside or collapse. This process occurs widely throughout Arctic regions due to environmental and climatological factors, but can also be induced by localized melting of ground ice by active lava flows. The Lost Jim Lava Flow (LJLF) on the Seward Peninsula of Alaska provides evidence of former lava-ground ice interactions. Associated geomorphic features, on the scale of meters to tens of meters, were identified using satellite orthoimages and stereo-derived digital terrain models. The flow exhibits positive- and mixed-relief features, including tumuli ( N = 26) and shatter rings ( N = 4), as well as negative-relief features, such as lava tube skylights ( N = 100) and irregularly shaped topographic depressions ( N = 1188) that are interpreted to include lava-rise pits and lava-induced thermokarst terrain. Along the margins of the flow, there are also clusters of small peripheral pits that may be the products of meltwater or steam escape. On Mars, we observed morphologically similar pits near lava flow margins in northeastern Elysium Planitia, which suggests a common formation mechanism. Investigating the LJLF may therefore help to elucidate processes of lava-ground ice interaction on both Earth and Mars.

  10. Moonshot Laboratories' Lava Relief Google Mapping Project

    Brennan, B.; Tomita, M.

    2016-12-01

    The Moonshot Laboratories were conceived at the University Laboratory School (ULS) on Oahu, Hawaii as way to develop creative problem solvers able to resourcefully apply 21st century technologies to respond to the problems and needs of their communities. One example of this was involved students from ULS using modern mapping and imaging technologies to assist peers who had been displaced from their own school in Pahoe on the Big Island of Hawaii. During 2015, lava flows from the eruption of Kilauea Volcano were slowly encroaching into the district of Puna in 2015. The lava flow was cutting the main town of Pahoa in half, leaving no safe routes of passage into or out of the town. One elementary school in the path of the flow was closed entirely and a new one was erected north of the flow for students living on that side. Pahoa High School students and teachers living to the north were been forced to leave their school and transfer to Kea'au High School. These students were separated from friends, family and the community they grew up in and were being thrust into a foreign environment that until then had been their local rival. Using Google Mapping technologies, Moonshot Laboratories students created a dynamic map to introduce the incoming Pahoa students to their new school in Kea'au. Elements included a stylized My Maps basemap, YouTube video descriptions of the building, videos recorded by Google Glass showing first person experiences, and immersive images of classrooms were created using 360 cameras. During the first day of orientation at Kea'au for the 200 Pahoa students, each of them were given a tablet to view the map as they toured and got to know their new campus. The methods and technologies, and more importantly innovative thinking, used to create this map have enormous potential for how to educate all students about the world around us, and the issues facing it. http://www.moonshotincubator.com/

  11. Correlation of the Deccan and Rajahmundry Trap lavas: Are these the longest and largest lava flows on Earth?

    Self, S.; Jay, A. E.; Widdowson, M.; Keszthelyi, L. P.

    2008-05-01

    We propose that the Rajahmundry Trap lavas, found near the east coast of peninsular India , are remnants of the longest lava flows yet recognized on Earth (˜ 1000 km long). These outlying Deccan-like lavas are shown to belong to the main Deccan Traps. Several previous studies have already suggested this correlation, but have not demonstrated it categorically. The exposed Rajahmundry lavas are interpreted to be the distal parts of two very-large-volume pāhoehoe flow fields, one each from the Ambenali and Mahabaleshwar Formations of the Wai Sub-group in the Deccan Basalt Group. Eruptive conditions required to emplace such long flows are met by plausible values for cooling and eruption rates, and this is shown by applying a model for the formation of inflated pāhoehoe sheet flow lobes. The model predicts flow lobe thicknesses similar to those observed in the Rajahmundry lavas. For the last 400 km of flow, the lava flows were confined to the pre-existing Krishna valley drainage system that existed in the basement beyond the edge of the gradually expanding Deccan lava field, allowing the flows to extend across the subcontinent to the eastern margin where they were emplaced into a littoral and/or shallow marine environment. These lavas and other individual flow fields in the Wai Sub-group may exceed eruptive volumes of 5000 km 3, which would place them amongst the largest magnitude effusive eruptive units yet known. We suggest that the length of flood basalt lava flows on Earth is restricted mainly by the size of land masses and topography. In the case of the Rajahmundry lavas, the flows reached estuaries and the sea, where their advance was perhaps effectively terminated by cooling and/or disruption. However, it is only during large igneous province basaltic volcanism that such huge volumes of lava are erupted in single events, and when the magma supply rate is sufficiently high and maintained to allow the formation of very long lava flows. The Rajahmundry lava

  12. Basic limnology of fifty-one lakes in Costa Rica.

    Haberyan, Kurt A; Horn, Sally P; Umaña, Gerardo

    2003-03-01

    We visited 51 lakes in Costa Rica as part of a broad-based survey to document their physical and chemical characteristics and how these relate to the mode of formation and geographical distribution of the lakes. The four oxbow lakes were low in elevation and tended to be turbid, high in conductivity and CO2, but low in dissolved O2; one of these, L. Gandoca, had a hypolimnion essentially composed of sea water. These were similar to the four wetland lakes, but the latter instead had low conductivities and pH, and turbidity was often due to tannins rather than suspended sediments. The thirteen artificial lakes formed a very heterogenous group, whose features varied depending on local factors. The thirteen lakes dammed by landslides, lava flows, or lahars occurred in areas with steep slopes, and were more likely to be stratified than most other types of lakes. The eight lakes that occupy volcanic craters tended to be deep, stratified, clear, and cool; two of these, L. Hule and L. Río Cuarto, appeared to be oligomictic (tending toward meromictic). The nine glacial lakes, all located above 3440 m elevation near Cerro Chirripó, were clear, cold, dilute, and are probably polymictic. Cluster analysis resulted in three significant groups of lakes. Cluster 1 included four calcium-rich lakes (average 48 mg l-1), Cluster 2 included fourteen lakes with more Si than Ca+2 and higher Cl- than the other clusters, and Cluster 3 included the remaining thirty-three lakes that were generally less concentrated. Each cluster included lakes of various origins located in different geographical regions; these data indicate that, apart from the high-altitude glacial lakes and lakes in the Miravalles area, similarity in lake chemistry is independent of lake distribution.

  13. Hazard Monitoring of Growing Lava Flow Fields Using Seismic Tremor

    Eibl, E. P. S.; Bean, C. J.; Jónsdottir, I.; Hoskuldsson, A.; Thordarson, T.; Coppola, D.; Witt, T.; Walter, T. R.

    2017-12-01

    An effusive eruption in 2014/15 created a 85 km2 large lava flow field in a remote location in the Icelandic highlands. The lava flows did not threaten any settlements or paved roads but they were nevertheless interdisciplinarily monitored in detail. Images from satellites and aircraft, ground based video monitoring, GPS and seismic recordings allowed the monitoring and reconstruction of a detailed time series of the growing lava flow field. While the use of satellite images and probabilistic modelling of lava flows are quite common tools to monitor the current and forecast the future growth direction, here we show that seismic recordings can be of use too. We installed a cluster of seismometers at 15 km from the vents and recorded the ground vibrations associated with the eruption. This seismic tremor was not only generated below the vents, but also at the edges of the growing lava flow field and indicated the parts of the lava flow field that were most actively growing. Whilst the time resolution is in the range of days for satellites, seismic stations easily sample continuously at 100 Hz and could therefore provide a much better resolution and estimate of the lava flow hazard in real-time.

  14. Heat transfer measurements of the 1983 kilauea lava flow.

    Hardee, H C

    1983-10-07

    Convective heat flow measurements of a basaltic lava flow were made during the 1983 eruption of Kilauea volcano in Hawaii. Eight field measurements of induced natural convection were made, giving heat flux values that ranged from 1.78 to 8.09 kilowatts per square meter at lava temperatures of 1088 and 1128 degrees Celsius, respectively. These field measurements of convective heat flux at subliquidus temperatures agree with previous laboratory measurements in furnace-melted samples of molten lava, and are useful for predicting heat transfer in magma bodies and for estimating heat extraction rates for magma energy.

  15. Hardened Lava Meets Wind on Mars

    2006-01-01

    NASA's Mars Exploration Rover Spirit used its microscopic imager to capture this spectacular, jagged mini-landscape on a rock called 'GongGong.' Measuring only 3 centimeters (1.2 inches) across, this surface records two of the most important and violent forces in the history of Mars -- volcanoes and wind. GongGong formed billions of years ago in a seething, stirring mass of molten rock. It captured bubbles of gases that were trapped at great depth but had separated from the main body of lava as it rose to the surface. Like taffy being stretched and tumbled, the molten rock was deformed as it moved across an ancient Martian landscape. The tiny bubbles of gas were deformed as well, becoming elongated. When the molten lava solidified, the rock looked like a frozen sponge. Far from finished with its life, the rock then withstood billions of years of pelting by small sand grains carried by Martian dust storms that sometimes blanketed the planet. The sand wore away the surface until, little by little, the delicate strands that enclosed the bubbles of gas were breached and the spiny texture we see today emerged. Even now, wind continues to deposit sand and dust in the holes and crevices of the rock. Similar rocks can be found on Earth where the same complex interplay of volcanoes and weathering occur, whether it be the pelting of rocks by sand grains in the Mojave desert or by ice crystals in the frigid Antarctic. GongGong is one of a group of rocks studied by Spirit and informally named by the Athena Science Team to honor the Chinese New Year (the Year of the Dog). In Chinese mythology, GongGong was the god-king of water in the North Land. When he sacrificed his life to knock down Mount BuZhou, he defeated the bad Emperor in Heaven, freed the sun, moon and stars to go from east to west, and caused all the rivers in China to flow from west to east. Spirit's microscopic imager took this image during on the rover's 736th day, or sol, of exploring Mars (Jan. 28, 2006). The

  16. Taking the Temperature of a Lava Planet

    Kreidberg, Laura; Lopez, Eric; Cowan, Nick; Lupu, Roxana; Stevenson, Kevin; Louden, Tom; Malavolta, Luca

    2018-05-01

    Ultra-short period rocky planets (USPs) are an exotic class of planet found around less than 1% of stars. With orbital periods shorter than 24 hours, these worlds are blasted with stellar radiation that is expected to obliterate any traces of a primordial atmosphere and melt the dayside surface into a magma ocean. Observations of USPs have yielded several surprising results, including the measurement of an offset hotspot in the thermal phase curve of 55 Cancri e (which may indicate a thick atmosphere has survived), and a high Bond albedo for Kepler-10b, which suggests the presence of unusually reflective lava on its surface. To further explore the properties of USPs and put these results in context, we propose to observe a thermal phase curve of the newly discovered USP K2- 141b. This planet is a rocky world in a 6.7 hour orbit around a bright, nearby star. When combined with optical phase curve measured by K2, our observations will uniquely determine the planet's Bond albedo, precisely measure the offset of the thermal curve, and determine the temperature of the dayside surface. These results will cement Spitzer's role as a pioneer in the study of terrestrial planets beyond the Solar System, and provide a critical foundation for pursuing the optimal follow-up strategy for K2-141b with JWST.

  17. Terraced margins of inflated lava flows on Earth and Mars

    Zimbelman, J. R.; Garry, W. B.; Bleacher, J. E.; Crumpler, L. S.

    2011-12-01

    When fluid basaltic lava flows are emplaced over a shallow regional slope (typically much less than one degree), the lava flows often display impressive characteristics of inflation. Here we describe a distinctive marginal characteristic that is often developed along the margins of endogenously inflated basaltic lava flows; discreet topographic levels of the emplaced lava that are here termed 'terraced margins'. Terraced margins were first noted at the distal end of the Carrizozo lava flow in central New Mexico, where they are particularly well expressed, but terraces have also been observed along some margins of the McCartys lava flow (NM), the distal end of the 1859 Mauna Loa lava flow (HI), and lava flows at Craters of the Moon (ID). Differential Global Positioning System surveys across several terraced margins reveal consistent topographic characteristics: the upper surface of each terrace level is at roughly one half the height of the sheet lobe from which it emerges; when a terrace becomes the source of an additional outbreak, the upper surface of the second terrace is at roughly one half the height of the source terrace; often a subtle topographic depression is present along the contact between a terrace and its source sheet lobe, suggesting that the terrace outflow starts at a level roughly one-third the height of the source lobe; the upper surfaces of both the source sheet lobe and associated terraces are level to within tens of centimeters across length scales of many tens to hundreds of meters, indicative of inflation of all components. The field observations will be used as the constraints for modeling of the inflation and terracing mechanisms, an effort that has only recently started. The multiple imaging data sets now available for Mars have revealed the presence of terraced margins on some lava flows on Mars. Although detailed topographic data are not currently available for the Martian examples identified so far, the presence of terraced margins for

  18. LIMNOLOGY, LAKE BASINS, LAKE WATERS

    Petre GÂŞTESCU

    2009-06-01

    Full Text Available Limnology is a border discipline between geography, hydrology and biology, and is also closely connected with other sciences, from it borrows research methods. Physical limnology (the geography of lakes, studies lake biotopes, and biological limnology (the biology of lakes, studies lake biocoenoses. The father of limnology is the Swiss scientist F.A. Forel, the author of a three-volume entitled Le Leman: monographie limnologique (1892-1904, which focuses on the geology physics, chemistry and biology of lakes. He was also author of the first textbook of limnology, Handbuch der Seenkunde: allgemeine Limnologie,(1901. Since both the lake biotope and its biohydrocoenosis make up a single whole, the lake and lakes, respectively, represent the most typical systems in nature. They could be called limnosystems (lacustrine ecosystems, a microcosm in itself, as the American biologist St.A. Forbes put it (1887.

  19. The Disruption of Tephra Fall Deposits by Basaltic Lava Flows

    Brown, R. J.; Thordarson, T.; Self, S.; Blake, S.

    2010-12-01

    Complex physical and stratigraphic relationships between lava and proximal tephra fall deposits around vents of the Roza Member in the Columbia River Basalt Province, (CRBP), USA, illustrate how basaltic lavas can disrupt, dissect (spatially and temporally) and alter tephra fall deposits. Thin pahoehoe lobes and sheet lobes occur intercalated with tephra deposits and provide evidence for synchronous effusive and explosive activity. Tephra that accumulated on the tops of inflating pahoehoe flows became disrupted by tumuli, which dissected the overlying sheet into a series of mounds. During inflation of subjacent tumuli tephra percolated down into the clefts and rubble at the top of the lava, and in some cases came into contact with lava hot enough to thermally alter it. Lava breakouts from the tumuli intruded up through the overlying tephra deposit and fed pahoehoe flows that spread across the surface of the aggrading tephra fall deposit. Non-welded scoria fall deposits were compacted and welded to a depth of ~50 cm underneath thick sheet lobes. These processes, deduced from the field relationships, have resulted in considerable stratigraphic complexity in proximal regions. We also demonstrate that, when the advance of lava and the fallout of tephra are synchronous, the contacts of some tephra sheets can be diachronous across their extent. The net effect is to reduce the usefulness of pyroclastic deposits in reconstructing eruption dynamics.

  20. Lava delta deformation as a proxy for submarine slope instability

    Di Traglia, Federico; Nolesini, Teresa; Solari, Lorenzo; Ciampalini, Andrea; Frodella, William; Steri, Damiano; Allotta, Benedetto; Rindi, Andrea; Marini, Lorenzo; Monni, Niccolò; Galardi, Emanuele; Casagli, Nicola

    2018-04-01

    The instability of lava deltas is a recurrent phenomenon affecting volcanic islands, which can potentially cause secondary events such as littoral explosions (due to interactions between hot lava and seawater) and tsunamis. It has been shown that Interferometric Synthetic Aperture Radar (InSAR) is a powerful technique to forecast the collapse of newly emplaced lava deltas. This work goes further, demonstrating that the monitoring of lava deltas is a successful strategy by which to observe the long-term deformation of subaerial-submarine landslide systems on unstable volcanic flanks. In this paper, displacement measurements derived from Synthetic Aperture Radar (SAR) imagery were used to detect lava delta instability at Stromboli volcano (Italy). Recent flank eruptions (2002-2003, 2007 and 2014) affected the Sciara del Fuoco (SdF) depression, created a "stacked" lava delta, which overlies a pre-existing scar produced by a submarine-subaerial tsunamigenic landslide that occurred on 30 December 2002. Space-borne X-band COSMO-SkyMED (CSK) and C-band SENTINEL-1A (SNT) SAR data collected between February 2010 and October 2016 were processed using the SqueeSAR algorithm. The obtained ground displacement maps revealed the differential ground motion of the lava delta in both CSK and SNT datasets, identifying a stable area (characterized by less than 2 mm/y in both datasets) within the northern sector of the SdF and an unstable area (characterized by velocity fields on the order of 30 mm/y and 160 mm/y in the CSK and SNT datasets, respectively) in the central sector of the SdF. The slope stability of the offshore part of the SdF, as reconstructed based on a recently performed multibeam bathymetric survey, was evaluated using a 3D Limit Equilibrium Method (LEM). In all the simulations, Factor of Safety (F) values between 0.9 and 1.1 always characterized the submarine slope between the coastline and -250 m a.s.l. The critical surfaces for all the search volumes corresponded to

  1. Gypsum speleothems in lava tubes from Lanzarote, Canary Islands. Did you say gypsum?

    Huerta, Pedro; Martín-García, Rebeca; Rodríguez-Berriguete, Álvaro; Iglesia, A. la; Martín-Pérez, Andrea; Alonso-Zarza, Ana María

    2015-01-01

    Lanzarote is the easternmost island of the volcanic Canary archipielago considered together with Fuerteventura the low relief islands of the archipielago. These island receive less rain than 300 mm/year. Basaltic lava flows preserves lava tubes formed during cooling and solidification of external parts of lava, while internal parts were still hot and flowing. When lava flow stopped the lava abandoned the tubes, and the tubes preserved empty. These tubes actuate as caves and som...

  2. Astrobiology Training in Lava Tubes (ATiLT): Characterizing coralloid speleothems in basaltic lava tubes as a Mars analogue

    Ni, J.; Leveille, R. J.; Douglas, P.

    2017-12-01

    Coralloid speleothems or cave corals are small mineralised nodes that can take a variety of forms, and which develop through groundwater seepage and water-rock interaction in caves. They are found commonly on Earth in a plethora of caves, including lava tubes. Since lava tubes have been identified on the surface of Mars from remotely sensed images, there has been interest in studying Earth's lava tube systems as an analogue for understanding Martian lava environments. If cave minerals were found on Mars, they could indicate past or present water-rock interaction in the Martian subsurface. Martian lava tubes could also provide insights into habitable subsurface environments as well as conditions favourable for the synthesis and preservation of biosignatures. One of the aims of the Astrobiology Training in Lava Tubes (ATiLT) project is to analyze biosignatures and paleoenvironmental indicators in secondary cave minerals, which will be looked at in-situ and compared to collected field samples. In this study, secondary mineralization in lava cave systems from Lava Beds National Monument, CA is examined. In the field, coralloid speleothems have been observed growing on all surfaces of the caves, including cave ceilings, floors, walls and overhangs. They are also observed growing adjacent to biofilms, which sometimes fill in the cracks of the coralloid nodes. Preliminary results show the presence of opal, calcite, quartz and other minor minerals in the speleothems. This study seeks to understand the formation mechanism and source of these secondary minerals, as well as determine their possible relation to the biofilms. This will be done through the analysis of the water chemistry, isotope geochemistry and microscale mineralogy.

  3. The Influence of Topographic Obstacles on Basaltic Lava Flow Morphologies

    von Meerscheidt, H. C.; Brand, B. D.; deWet, A. P.; Bleacher, J. E.; Hamilton, C. W.; Samuels, R.

    2014-12-01

    Smooth pāhoehoe and jagged ´áā represent two end-members of a textural spectrum that reflects the emplacement characteristics of basaltic lava flows. However, many additional textures (e.g., rubbly and slabby pāhoehoe) reflect a range of different process due to lava flow dynamics or interaction with topography. Unfortunately the influence of topography on the distribution of textures in basaltic lava flows is not well-understood. The 18 ± 1.0 ka Twin Craters lava flow in the Zuni-Bandera field (New Mexico, USA) provides an excellent site to study the morphological changes of a lava flow that encountered topographic obstacles. The flow field is 0.2-3.8 km wide with a prominent central tube system that intersects and wraps around a 1000 m long ridge, oriented perpendicular to flow. Upstream of the ridge, the flow has low-relief inflation features extending out and around the ridge. This area includes mildly to heavily disrupted pāhoehoe with interdispersed agglutinated masses, irregularly shaped rubble and lava balls. Breakouts of ´áā and collapse features are also common. These observations suggest crustal disruption due to flow-thickening upstream from the ridge and the movement of lava out and around the obstacle. While the ridge influenced the path of the tube, which wraps around the southern end of the ridge, the series of collapse features and breakouts of ´áā along the tube system are more likely a result of changes in flux throughout the tube system because these features are found both upstream and downstream of the obstacle. This work demonstrates that topography can significantly influence the formation history and surface disruption of a flow field, and in some cases the influence of topography can be separated from the influences of changes in flux along a tube system.

  4. A Mechanism for Stratifying Lava Flows

    Rice, A.

    2005-12-01

    Relict lava flows (e.g., komatiites) are often reported to be zoned in the vertical, each zone separated by a sharp contact. Such stratifications in igneous flows, both intrusive and extrusive, can be treated as analogues of suspended loads of sediments in rivers and streams, and hence amenable to quantitative treatment derived for the hydraulic environment as long as dynamic similitude is assured. Situations typically encountered in the hydraulic environment are streams carrying a bed load at the bottom of the stream, the bed load separated by a sharp horizon from a sediment load carried above it. This sediment load may be topped by others of decreasing density as one moves to the surface of the flow, with perhaps the uppermost layer clear of any suspended matter. Rules exist for estimating the thickness D of these loads: one of them is given by D ~ 4.4V3/rgcvs where V is the shear velocity or average velocity of the flow, r = (ρs - ρl)/ρl where ρs is the density of the suspended solid matter, ρl the density of the fluid, g the acceleration of gravity, c the concentration of the particulate content and vs the settling velocity. The settling velocity is secured through Stoke's Law and the velocity of the flow is given by V = R2/3S1/2/n where R is the hydraulic radius, S the gradient along which the fluid flows and n is the Manning Coefficient. In the igneous case, the bed load would be composed of primocrysts, i.e., of the first crystals to come out of solution as the flow cools along its run. This would leave the upper portions of the flow more evolved except perhaps for a quenched crust riding atop the flow. As the viscosity of the flow is dependent not only on temperature but on composition and crystal content, the mean velocity of each layer will be different from the layer above and below it. This requires shear at the interface of adjoining stratifications, which brings into play another mechanism: dispersive pressure (the Bagnold effect). Dispersive

  5. Petrogenesis of basalt-trachyte lavas from Olmoti Crater, Tanzania

    Mollel, Godwin F.; Swisher, Carl C., III; McHenry, Lindsay J.; Feigenson, Mark D.; Carr, Michael J.

    2009-08-01

    Olmoti Crater is part of the Plio-Pleistocene Ngorongoro Volcanic Highland (NVH) in northern Tanzania to the south of Gregory Rift. The Gregory Rift is part of the eastern branch of the East African Rift System (EARS) that stretches some 4000 km from the Read Sea and Gulf of Aden in the north to the Zambezi River in Mozambique. Here, we (1) characterize the chemistry and mineral compositions of lavas from Olmoti Crater, (2) determine the age and duration of Olmoti volcanic activity through 40Ar/ 39Ar dating of Olmoti Crater wall lavas and (3) determine the genesis of Olmoti lavas and the relationship to other NVH and EARS volcanics and (4) their correlation with volcanics in the Olduvai and Laetoli stratigraphic sequences. Olmoti lavas collected from the lower part of the exposed crater wall section (OLS) range from basalt to trachyandesite whereas the upper part of the section (OUS) is trachytic. Petrography and major and trace element data reflect a very low degree partial melt origin for the Olmoti lavas, presumably of peridotite, followed by extensive fractionation. The 87Sr/ 86Sr data overlap whereas Nd and Pb isotope data are distinct between OLS and OUS samples. Interpretation of the isotope data suggests mixing of enriched mantle (EM I) with high-μ-like reservoirs, consistent with the model of Bell and Blenkinsop [Bell, K., Blenkinsop, J., 1987. Nd and Sr isotopic compositions of East African carbonatites: implications for mantle heterogeneity. Geology 5, 99-102] for East African carbonatite lavas. The isotope ratios are within the range of values defined by Oceanic Island Basalt (OIB) globally and moderate normalized Tb/Yb ratios (2.3-1.6) in these lavas suggest melting in the lithospheric mantle consistent with other studies in the region. 40Ar/ 39Ar incremental-heating analyses of matrix and anorthoclase separates from Olmoti OLS and OUS lavas indicate that volcanic activity was short in duration, lasting ˜200 kyr from 2.01 ± 0.03 Ma to 1.80 ± 0

  6. Analogue experiments as benchmarks for models of lava flow emplacement

    Garel, F.; Kaminski, E. C.; Tait, S.; Limare, A.

    2013-12-01

    During an effusive volcanic eruption, the crisis management is mainly based on the prediction of lava flow advance and its velocity. The spreading of a lava flow, seen as a gravity current, depends on its "effective rheology" and on the effusion rate. Fast-computing models have arisen in the past decade in order to predict in near real time lava flow path and rate of advance. This type of model, crucial to mitigate volcanic hazards and organize potential evacuation, has been mainly compared a posteriori to real cases of emplaced lava flows. The input parameters of such simulations applied to natural eruptions, especially effusion rate and topography, are often not known precisely, and are difficult to evaluate after the eruption. It is therefore not straightforward to identify the causes of discrepancies between model outputs and observed lava emplacement, whereas the comparison of models with controlled laboratory experiments appears easier. The challenge for numerical simulations of lava flow emplacement is to model the simultaneous advance and thermal structure of viscous lava flows. To provide original constraints later to be used in benchmark numerical simulations, we have performed lab-scale experiments investigating the cooling of isoviscous gravity currents. The simplest experimental set-up is as follows: silicone oil, whose viscosity, around 5 Pa.s, varies less than a factor of 2 in the temperature range studied, is injected from a point source onto a horizontal plate and spreads axisymmetrically. The oil is injected hot, and progressively cools down to ambient temperature away from the source. Once the flow is developed, it presents a stationary radial thermal structure whose characteristics depend on the input flow rate. In addition to the experimental observations, we have developed in Garel et al., JGR, 2012 a theoretical model confirming the relationship between supply rate, flow advance and stationary surface thermal structure. We also provide

  7. The Influence of Slope Breaks on Lava Flow Surface Disruption

    Glaze, Lori S.; Baloga, Stephen M.; Fagents, Sarah A.; Wright, Robert

    2014-01-01

    Changes in the underlying slope of a lava flow impart a significant fraction of rotational energy beyond the slope break. The eddies, circulation and vortices caused by this rotational energy can disrupt the flow surface, having a significant impact on heat loss and thus the distance the flow can travel. A basic mechanics model is used to compute the rotational energy caused by a slope change. The gain in rotational energy is deposited into an eddy of radius R whose energy is dissipated as it travels downstream. A model of eddy friction with the ambient lava is used to compute the time-rate of energy dissipation. The key parameter of the dissipation rate is shown to be rho R(sup 2/)mu, where ? is the lava density and mu is the viscosity, which can vary by orders of magnitude for different flows. The potential spatial disruption of the lava flow surface is investigated by introducing steady-state models for the main flow beyond the steepening slope break. One model applies to slow-moving flows with both gravity and pressure as the driving forces. The other model applies to fast-moving, low-viscosity, turbulent flows. These models provide the flow velocity that establishes the downstream transport distance of disrupting eddies before they dissipate. The potential influence of slope breaks is discussed in connection with field studies of lava flows from the 1801 Hualalai and 1823 Keaiwa Kilauea, Hawaii, and 2004 Etna eruptions.

  8. Relative ages of lava flows at Alba Patera, Mars

    Schneeberger, D.M.; Pieri, D.C.

    1987-01-01

    Many large lava flows on the flanks of Alba Patera are astonishing in their volume and length. As a suite, these flows suggest tremendously voluminous and sustained eruptions, and provide dimensional boundary conditions typically a factor of 100 larger than terrestrial flows. One of the most striking features associated with Alba Patera is the large, radially oriented lava flows that exhibit a variety of flow morphologies. These include sheet flows, tube fed and tube channel flows, and undifferentiated flows. Three groups of flows were studied; flows on the northwest flank, southeast flank, and the intracaldera region. The lava flows discussed probably were erupted as a group during the same major volcanic episode as suggested by the data presented. Absolute ages are poorly constrained for both the individual flows and shield, due in part to disagreement as to which absolute age curve is representative for Mars. A relative age sequence is implied but lacks precision due to the closeness of the size frequency curves

  9. Morphometric study of pillow-size spectrum among pillow lavas

    Walker, George P. L.

    1992-08-01

    Measurements of H and V (dimensions in the horizontal and vertical directions of pillows exposed in vertical cross-section) were made on 19 pillow lavas from the Azores, Cyprus, Iceland, New Zealand, Tasmania, the western USA and Wales. The median values of H and V plot on a straight line that defines a spectrum of pillow sizes, having linear dimensions five times greater at one end than at the other, basaltic toward the small-size end and andesitic toward the large-size end. The pillow median size is interpreted to reflect a control exercised by lava viscosity. Pillows erupted on a steep flow-foot slope in lava deltas can, however, have a significantly smaller size than pillows in tabular pillowed flows (inferred to have been erupted on a small depositonal slope), indicating that the slope angle also exercised a control. Pipe vesicles, generally abundant in the tabular pillowed flows and absent from the flow-foot pillows, have potential as a paleoslope indicator. Pillows toward the small-size end of the spectrum are smooth-surfaced and grew mainly by stretching of their skin, whereas disruption of the skin and spreading were important toward the large-size end. Disruption involved increasing skin thicknesses with increasing pillow size, and pillows toward the large-size end are more analogous with toothpaste lava than with pahoehoe and are inferred from their thick multiple selvages to have taken hours to grow. Pseudo-pillow structure is also locally developed. An example of endogenous pillow-lava growth, that formed intrusive pillows between ‘normal’ pillows, is described from Sicily. Isolated pillow-like bodies in certain andesitic breccias described from Iceland were previously interpreted to be pillows but have anomalously small sizes for their compositions; it is now proposed that they may lack an essential attribute of pillows, namely, the development of bulbous forms by the inflation of a chilled skin, and are hence not true pillows. Para-pillow lava is

  10. Recent flood lavas in the Elysium region of Mars

    Plescia, J.B.

    1990-01-01

    A volcanic origin is presently suggested for the Cerberus Formation region of smooth plains in the southeastern Elysium region of Mars, on the basis of its surface morphology, lobate edges, vents, and an embayment relation of the unit with adjacent, older units. The low viscosity lavas that filled a topographic depression in southeastern Elysium subsequently flowed into western Amazonic Planitia via channels formed by an earlier fluvial episode. A young, upper Amazonian dating is indicated by crater frequencies and stratigraphic relations, implying that large-scale eruptions of low-viscosity lava were still possible late in Martian history. 34 refs

  11. Thermophysical properties of the Lipari lavas (Southern Tyrrhenian Sea

    D. Russo

    1997-06-01

    Full Text Available Results of thermophysical investigations into the lavas of the island of Lipari (Southern Tyrrhenian Sea are presented. Samples selected for laboratory measurements belong to four main magmatic cycles, which produced basaltic-andesitic, andesitic and rhyolitic lavas. The wet-bulk density and the thermal conductivity measured on 69 specimens range from 1900 to 2760 kg m-3 and from 1.02 to 2.88 W m-1 K-1, respectively. Porosity is never negligible and its influence on density is maximum in rhyolites of the third cycle. The thermal conductivity is also influenced by the amount of glass. Rhyolitic obsidians show values lower than other rhyolites, although the latter rocks have a larger average porosity. The radioactive heat production determined on 36 specimens varies with the rock type, depending on the amount of U, Th and K. In basic lavas of the first cycle its value is 0.95°± 0.30 mW m-3, while in rhyolites of the fourth cycle it attains 6.68°±0.61 mW m-3. A comparison between results of g-ray spectrometry and X-ray fluorescence points out that the assumption of equilibrium in the decay series of the isotopic elements seems fulfilled. The information obtained is useful not only for the interpretation of geophysical surveys but also for the understanding of the geochemical characteristics of lavas.

  12. Lake Cadagno

    Tonolla, Mauro; Storelli, Nicola; Danza, Francesco

    2017-01-01

    Lake Cadagno (26 ha) is a crenogenic meromictic lake located in the Swiss Alps at 1921 m asl with a maximum depth of 21 m. The presence of crystalline rocks and a dolomite vein rich in gypsum in the catchment area makes the lake a typical “sulphuretum ” dominated by coupled carbon and sulphur...... cycles. The chemocline lies at about 12 m depth, stabilized by density differences of salt-rich water supplied by sub-aquatic springs to the monimolimnion and of electrolyte-poor surface water feeding the mixolimnion. Steep sulphide and light gradients in the chemocline support the growth of a large...... in the chemocline. Small-celled PSB together with the sulfate-reducing bacterium Desulfocapsa thiozymogenes sp. form stable aggregates in the lake, which represent small microenvironments with an internal sulphur cycle. Eukaryotic primary producers in the anoxic zones are dominated by Cryptomonas phaseolus...

  13. Playa Lakes

    Kansas Data Access and Support Center — This digital dataset provides information about the spatial distribution of soil units associated with playa lakes. Specific soil types have been designated by the...

  14. Formation of perched lava ponds on basaltic volcanoes: Interaction between cooling rate and flow geometry allows estimation of lava effusion rates

    Wilson, L.; Parfitt, E. A.

    1993-01-01

    Perched lava ponds are infrequent but distinctive topographic features formed during some basaltic eruptions. Two such ponds, each approximately 150 m in diameter, formed during the 1968 eruption at Napau Crater and the 1974 eruption of Mauna Ulu, both on Kilauea Volcano, Hawaii. Each one formed where a channelized, high volume flux lava flow encountered a sharp reduction of slope: the flow spread out radially and stalled, forming a well-defined terminal levee enclosing a nearly circular lava pond. We describe a model of how cooling limits the motion of lava spreading radially into a pond and compare this with the case of a channelized flow. The difference in geometry has a major effect, such that the size of a pond is a good indicator of the volume flux of the lava forming it. Lateral spreading on distal shallow slopes is a major factor limiting the lengths of lava flows.

  15. Using Lava Tube Skylight Thermal Emission Spectra to Determine Lava Composition on Io: Quantitative Constraints for Observations by Future Missions to the Jovian System.

    Davies, A. G.

    2008-12-01

    Deriving the composition of Io's dominant lavas (mafic or ultramafic?) is a major objective of the next missions to the jovian system. The best opportunities for making this determination are from observations of thermal emission from skylights, holes in the roof of a lava tube through which incandescent lava radiates, and Io thermal outbursts, where lava fountaining is taking place [1]. Allowing for lava cooling across the skylight, the expected thermal emission spectra from skylights of different sizes have been calculated for laminar and turbulent tube flow and for mafic and ultramafic composition lavas. The difference between the resulting mafic and ultramafic lava spectra has been quantified, as has the instrument sensitivity needed to acquire the necessary data to determine lava eruption temperature, both from Europa orbit and during an Io flyby. A skylight is an excellent target to observe lava that has cooled very little since eruption (California Institute of Technology, under contract to NASA. AGD is supported by a grant from the NASA OPR Program. References: [1] Davies, A. G., 1996, Icarus, 124, 45-61. [2] Keszthelyi, L., et al., 2006, JGS, 163, 253-264. [3] Davies, A. G., 2007, Volcanism on Io, Cambridge University Press. [4] Keszthelyi, L., et al., 2007, Icarus, 192, 491-502. [5] Davies, A. G., et al., 2006, Icarus, 184, 460-477.

  16. Morphology, volcanism, and mass wasting in Crater Lake, Oregon

    Bacon, C.R.; Gardner, J.V.; Mayer, L.A.; Buktenica, M.W.; Dartnell, P.; Ramsey, D.W.; Robinson, J.E.

    2002-01-01

    Crater Lake was surveyed nearly to its shoreline by high-resolution multibeam echo sounding in order to define its geologic history and provide an accurate base map for research and monitoring surveys. The bathymetry and acoustic backscatter reveal the character of landforms and lead to a chronology for the concurrent filling of the lake and volcanism within the ca. 7700 calibrated yr B.P. caldera. The andesitic Wizard Island and central-plattform volcanoes are composed of sequences of lava deltas that record former lake levels and demonstrate simultaneous activity at the two vents. Wizard Island eruptions ceased when the lake was ~80 m lower than at present. Lava streams from prominent channels on the surface of the central platform descended to feed extensive subaqueous flow fields on the caldera floor. The Wizard Island and central-platform volcanoes, andesitic Merriam Cone, and a newly discovered probable lava flow on the eastern floor of the lake apparently date from within a few hundred years of caldera collapse, whereas a small rhydacite dome was emplaced on the flank of Wizard Island at ca. 4800 cal. yr B.P. Bedrock outcrops on the submerged caldera walls are shown in detail and, in some cases, can be correlated with exposed geologic units of Mount Mazama. Fragmental debris making up the walls elsewhere consists of narrow talus cones forming a dendritic pattern that leads to fewer, wider ridges downslope. Hummocky topography and scattered blocks up to ~280 m long below many of the embayments in the caldera wall mark debris-avalanche deposits that probably formed in single events and commonly are affected by secondary failures. The flat-floored, deep basins contain relatively fine-grained sediment transported from the debris aprons by sheet-flow turbidity currents. Crater Lake apparently filled rapidly (ca. 400-750 yr) until reaching a permeable layer above glaciated lava identified by the new survey in the northeast caldera wall at ~1845 m elevation

  17. Pleniglacial sedimentation process reconstruction on laminated lacustrine sediments from lava-dammed Paleolake Alf, West Eifel Volcanic Field (Germany)

    Eichhorn, Luise; Pirrung, Michael; Zolitschka, Bernd; Büchel, Georg

    2017-09-01

    Differentiating between regularly seasonal, irregular and event-based clastic sedimentation is difficult if sedimentation structures resemble and dating methods are imprecise. In this study - clastic light and dark laminae from lava-dammed Paleolake Alf in the Late Pleistocene in the Quaternary West Eifel Volcanic Field are analyzed to clarify how they formed and if they are of annual origin and comparable to assumed periglacial varves from neighboring Lake Holzmaar. Therefore, a multiproxy approach is applied combining sediment thin section analysis which focuses on composition and structure with 14C dates. The results are compared to recently-formed annually-laminated clastic sediments of, e.g., the High Canadian Arctic. Observed sedimentation structures reveal sediment delivery by over- and interflows and deposition from suspension forming two characteristic microfacies: Type I graded laminae and Type II laminae with graded sublayers. Additionally, erosional bases and event deposits indicate episodic underflows. Thus, lamination is potentially seasonal but is significantly veiled by extreme runoff causing erosion and resuspension processes or a mixed water body preventing sediment delivery into the lake basin. However, sedimentation processes between watershed and lake could be reconstructed by comparing recent and paleosediment structures.

  18. Principles of lake sedimentology

    Janasson, L.

    1983-01-01

    This book presents a comprehensive outline on the basic sedimentological principles for lakes, and focuses on environmental aspects and matters related to lake management and control-on lake ecology rather than lake geology. This is a guide for those who plan, perform and evaluate lake sedimentological investigations. Contents abridged: Lake types and sediment types. Sedimentation in lakes and water dynamics. Lake bottom dynamics. Sediment dynamics and sediment age. Sediments in aquatic pollution control programmes. Subject index

  19. Geochemistry of obsidian from Krasnoe Lake on the Chukchi Peninsula (Northeastern Siberia)

    Popov, V. K.; Grebennikov, A. V.; Kuzmin, Ya. V.; Glascock, M. D.; Nozdrachev, E. A.; Budnitsky, S. Yu.; Vorobey, I. E.

    2017-09-01

    This report considers features of the geochemical composition of obsidian from beach sediments of Krasnoe Lake along the lower course of the Anadyr River, as well as from lava-pyroclastic rocks constituting the lake coastal outcrops and the surrounding branches of Rarytkin Ridge. The two geochemical types of obsidian, for the first time distinguished and researched, correspond in their chemical composition to lavas and ignimbrite-like tuffs of rhyolites from the Rarytkin area. The distinguished types represent the final stage of acidic volcanism in the West Kamchatkan-Koryak volcanic belt. It was assumed that the accumulation of obsidian in coastal pebble beds was caused by the erosion of extrusive domes and pyroclastic flows. The geochemical studies of obsidian artifacts from archeological sites of the regions of the Sea of Okhotsk, the Kolyma River, and the Chukchi Peninsula along with the correlation of geological and archeological samples show that Krasnoe Lake was an important source of "archeological" obsidian in Northeastern Siberia.

  20. Lava flooding of ancient planetary crusts: geometry, thickness, and volumes of flooded lunar impact basins

    Head, J.W.

    1982-01-01

    Estimates of lava volumes on planetary surfaces provide important data on the lava flooding history and thermal evolution of a planet. Lack of information concerning the configuration of the topography prior to volcanic flooding requires the use of a variety of techniques to estimate lava thicknesses and volumes. A technique is described and developed which provides volume estimates by artificially flooding unflooded lunar topography characteristic of certain geological environments, and tracking the area covered, lava thicknesses, and lava volumes. Comparisons of map patterns of incompletely buried topography in these artificially flooded areas are then made to lava-flooded topography on the Moon in order to estimate the actual lava volumes. This technique is applied to two areas related to lunar impact basins; the relatively unflooded Orientale basin, and the Archimedes-Apennine Bench region of the Imbrium basin. (Auth.)

  1. Pāhoehoe, `a`ā, and block lava: an illustrated history of the nomenclature

    Harris, Andrew J. L.; Rowland, Scott K.; Villeneuve, Nicolas; Thordarson, Thor

    2017-01-01

    Lava flows occur worldwide, and throughout history, various cultures (and geologists) have described flows based on their surface textures. As a result, surface morphology-based nomenclature schemes have been proposed in most languages to aid in the classification and distinction of lava surface types. One of the first to be published was likely the nine-class, Italian-language description-based classification proposed by Mario Gemmellaro in 1858. By far, the most commonly used terms to describe lava surfaces today are not descriptive but, instead, are merely words, specifically the Hawaiian words `a`ā (rough brecciated basalt lava) and pāhoehoe (smooth glassy basalt lava), plus block lava (thick brecciated lavas that are typically more silicic than basalt). `A`ā and pāhoehoe were introduced into the Western geological vocabulary by American geologists working in Hawai`i during the 1800s. They and other nineteenth century geologists proposed formal lava-type classification schemes for scientific use, and most of them used the Hawaiian words. In 1933, Ruy Finch added the third lava type, block lava, to the classification scheme, with the tripartite system being formalized in 1953 by Gordon Macdonald. More recently, particularly since the 1980s and based largely on studies of lava flow interiors, a number of sub-types and transitional forms of all three major lava types have been defined. This paper reviews the early history of the development of the pāhoehoe, `a`ā, and block lava-naming system and presents a new descriptive classification so as to break out the three parental lava types into their many morphological sub-types.

  2. Lava Tubes as Martian Analog sites on Hawaii Island

    Andersen, Christian; Hamilton, J. C.; Adams, M.

    2013-10-01

    The existence of geologic features similar to skylights seen in Mars Reconnaissance Orbiter HIRISE imagery suggest Martian lava tube networks. Along with pit craters, these features are evidence of a past era of vulcanism. If these were contemporary with the wet Mars eras, then it is suggestive that any Martian life may have retreated into these subsurface oases. Hawaii island has numerous lava tubes of differing ages, humidity, lengths and sizes that make ideal analog test environments for future Mars exploration. PISCES has surveyed multiple candidate sites during the past summer with a team of University of Hawaii at Hilo student interns. It should be noted that Lunar features have also been similarly discovered via Lunar Reconnaissance Orbiter LROC imagery.

  3. Numerical simulation of lava flow using a GPU SPH model

    Eugenio Rustico

    2011-12-01

    Full Text Available A smoothed particle hydrodynamics (SPH method for lava-flow modeling was implemented on a graphical processing unit (GPU using the compute unified device architecture (CUDA developed by NVIDIA. This resulted in speed-ups of up to two orders of magnitude. The three-dimensional model can simulate lava flow on a real topography with free-surface, non-Newtonian fluids, and with phase change. The entire SPH code has three main components, neighbor list construction, force computation, and integration of the equation of motion, and it is computed on the GPU, fully exploiting the computational power. The simulation speed achieved is one to two orders of magnitude faster than the equivalent central processing unit (CPU code. This GPU implementation of SPH allows high resolution SPH modeling in hours and days, rather than in weeks and months, on inexpensive and readily available hardware.

  4. Calculated viscosity-distance dependence for some actively flowing lavas

    Pieri, D.

    1987-01-01

    The importance of viscosity as a gauge of the various energy and momentum dissipation regimes of lava flows has been realized for a long time. Nevertheless, despite its central role in lava dynamics and kinematics, it remains among the most difficult of flow physical properties to measure in situ during an eruption. Attempts at reconstructing the actual emplacement viscosities of lava flows from their solidified topographic form are difficult. Where data are available on the position of an advancing flow front as a function of time, it is possible to calculate the effective viscosity of the front as a function of distance from the vent, under the assumptions of a steady state regime. As an application and test of an equation given, relevant parameters from five recent flows on Mauna Loa and Kilauea were utilized to infer the dynamic structure of their aggregate flow front viscosity as they advanced, up to cessation. The observed form of the viscosity-distance relation for the five active Hawaiian flows examined appears to be exponential, with a rapid increase just before the flows stopped as one would expect

  5. Wisata Bencana : Sebuah Studi Kasus Lava Tour Gunung Merapi

    Zein Mufarrih Muktaf

    2017-09-01

    ABSTRACK The emergence of ecotourism trends as part of nature tourism to be an offer for tourists who want to feel the sensation of different tourist. In addition to the emergence of ecotourism, also appeared many other sort of tourism, such as dark tourism and disaster tourism. Dark tourism and disaster tourism is interesting enough to be discussion. The quention of this research is how the phenomenon of disaster tourism on Lava Tour in Mount Merapi? The purpose of this research is to know the practice of disaster tour “Lava Tour” Mount Merapi. The object of research is community-based tourism in Lava Tour area located in Disaster Prone Area (Kawasan Rawan Bencana III. Research method using case study approach. The conclusion of this research is, first, disaster tour is educational tour which destruction, death and back a life as tourist attraction. Secondly, that disaster tour presents a trip or tour because tourists can direct to see the disaster site. Third, the role of communication between the community-based tourism to the tourists are very important, such as telling the chronology of events to the tourists. It is better if the source of information teller is a direct victim or a direct eye witness, because it is more authentic and convincing. Fourth, disaster tourism prefers the interaction between witnesses and tourists. Fifth, disaster tours can be part of disaster literacy, as witnesses or victims explain a lot about disaster. Keywod : disaster tourism; tour; Mount Merapi; Tourism Communication; disaster literacy

  6. Modeling risk assessment for nuclear processing plants with LAVA

    Smith, S.T.; Tisinger, R.M.

    1988-01-01

    Using the Los Alamos Vulnerability and Risk Assessment (LAVA) methodology, the authors developed a model for assessing risks associated with nuclear processing plants. LAVA is a three-part systematic approach to risk assessment. The first part is the mathematical methodology; the second is the general personal computer-based software engine; and the third is the application itself. The methodology provides a framework for creating applications for the software engine to operate upon; all application-specific information is data. Using LAVA, the authors build knowledge-based expert systems to assess risks in applications systems comprising a subject system and a safeguards system. The subject system model is sets of threats, assets, and undesirable outcomes. The safeguards system model is sets of safeguards functions for protecting the assets from the threats by preventing or ameliorating the undesirable outcomes, sets of safeguards subfunctions whose performance determine whether the function is adequate and complete, and sets of issues, appearing as interactive questionnaires, whose measures (in both monetary and linguistic terms) define both the weaknesses in the safeguards system and the potential costs of an undesirable outcome occurring

  7. Palæomagnetism of Hawaiian lava flows

    Doell, Richard R.; Cox, Allan

    1961-01-01

    PALÆOMAGNETIC investigations of volcanic rocks extruded in various parts of the world during the past several million years have generally revealed a younger sequence of lava flows magnetized nearly parallel to the field of a theoretical geocentric axial dipole, underlain by a sequence of older flows with exactly the opposite direction of remanent magnetization. A 180-degree reversal of the geomagnetic field, occurring near the middle of the Pleistocene epoch, has been inferred by many workers from such results1–3. This is a preliminary report of an investigation of 755 oriented samples collected from 152 lava flows on the island of Hawaii, selected to represent as many stratigraphic horizons as possible. (Sampling details are indicated in Table 1.) This work was undertaken because Hawaii's numerous thick sequences of lava flows, previously mapped as Pliocene to Historic by Stearns and Macdonald4, and afterwards assigned ages ranging from later Tertiary to Recent, by Macdonald and Davis5, appeared to offer an ideal opportunity to examine the most recent reversal of Earth's field.

  8. LAVA: a conceptual framework for automated risk assessment

    Smith, S.T.; Brown, D.C.; Erkkila, T.H.; FitzGerald, P.D.; Lim, J.J.; Massagli, L.; Phillips, J.R.; Tisinger, R.M.

    1986-01-01

    At the Los Alamos National Laboratory we are developing the framework for generating knowledge-based systems that perform automated risk analyses on an organization's assets. An organization's assets can be subdivided into tangible and intangible assets. Tangible assets include facilities, materiel, personnel, and time, while intangible assets include such factors as reputation, employee morale, and technical knowledge. The potential loss exposure of an asset is dependent upon the threats (both static and dynamic), the vulnerabilities in the mechanisms protecting the assets from the threats, and the consequences of the threats successfully exploiting the protective systems vulnerabilities. The methodology is based upon decision analysis, fuzzy set theory, natural-language processing, and event-tree structures. The Los Alamos Vulnerability and Risk Assessment (LAVA) methodology has been applied to computer security. LAVA is modeled using an interactive questionnaire in natural language and is fully automated on a personal computer. The program generates both summary reports for use by both management personnel and detailed reports for use by operations staff. LAVA has been in use by the Nuclear Regulatory Commission and the National Bureau of Standards for nearly two years and is presently under evaluation by other governmental agencies. 7 refs

  9. Study of the thermoluminescent properties of lava from different origins

    Molina, D.; Correcher, V.; Delgado, A.; Garcia G, J.

    2002-01-01

    In this work has been studied the thermoluminescent signal (Tl) of lava from different geographical area (Costa Rica, the Canary Islands, Hawaii, Iceland and Italy) and originating in distinct eruptions, for its possible use such as in the dating field (geological and archaeological) as in retrospective dosimetry. Due that the light emission is intimately related with the punctual defects existent in the structure of material associated to the presence of different mineral phases, it was realized a study by X-ray diffraction for determining the main components of the lava observing the presence, in distinct proportions of cristobalite, plagioclases (chalcosodic feldspars) and philosilicates (augite, montmorillonite, forsterite and actinolite). All the detected mineral components present Tl emission in the blue region. Each one of the lava were artificially irradiated for proving the dependence of the luminescent signal with the dose in the range 1 to 25 Gy, observing a linear response with the dose in all the cases and not appreciating saturation in the Tl emission. Such the appropriate signal of natural samples (TLN) as the irradiated samples in the laboratory (TLI) show a complex structure associated with a continuous distribution of traps at temperature higher than 100 C which could be explained as consequence of the dynamic formation-annihilation of centers [AlO 4 /alkali] + and [AlO 4 ] 0 . In TLI was observed that a nearer to 85 C appeared a maximum whose structure correspond a discrete distribution of traps, coexisting therefore the two types of traps structure. (Author)

  10. Observations of obsidian lava flow emplacement at Puyehue-Cordón Caulle, Chile

    Tuffen, H.; Castro, J. M.; Schipper, C. I.; James, M. R.

    2012-04-01

    The dynamics of obsidian lava flow emplacement remain poorly understood as active obsidian lavas are seldom seen. In contrast with well-documented basaltic lavas, we lack observational data on obsidian flow advance and temporal evolution. The ongoing silicic eruption at Puyehue-Cordón Caulle volcanic complex (PCCVC), southern Chile provides an unprecedented opportunity to witness and study obsidian lava on the move. The eruption, which started explosively on June 4th 2011, has since June 20 generated an active obsidian flow field that remains active at the time of writing (January 2012), with an area of ~6 km2, and estimated volume of ~0.18 km3. We report on observations, imaging and sampling of the north-western lava flow field on January 4th and 10th 2012, when vent activity was characterised by near-continuous ash venting and Vulcanian explosions (Schipper et al, this session) and was simultaneously feeding the advancing obsidian flow (Castro et al, this session). On January 4th the north-western lava flow front was characterised by two dominant facies: predominant rubbly lava approximately 30-40 m thick and mantled by unstable talus aprons, and smoother, thinner lobes of more continuous lava ~50 m in length that extended roughly perpendicular to the overall flow direction, forming lobes that protrude from the flow margin, and lacked talus aprons. The latter lava facies closely resembled squeeze-up structures in basaltic lava flows[1] and appeared to originate from and overlie the talus apron of the rubbly lava. Its upper surface consisted of smooth, gently folded lava domains cut by crevasse-like tension gashes. During ~2 hours of observation the squeeze-up lava lobe was the most frequent location of small-volume rockfalls, which occurred at ~1-10 minute intervals from the flow front and indicated a locus of lava advance. On January 10th the squeeze-up lava lobes had evolved significantly, with disruption and breakage of smooth continuous lava surfaces to form

  11. Great Lakes

    Edsall, Thomas A.; Mac, Michael J.; Opler, Paul A.; Puckett Haecker, Catherine E.; Doran, Peter D.

    1998-01-01

    The Great Lakes region, as defined here, includes the Great Lakes and their drainage basins in Minnesota, Wisconsin, Illinois, Indiana, Ohio, Pennsylvania, and New York. The region also includes the portions of Minnesota, Wisconsin, and the 21 northernmost counties of Illinois that lie in the Mississippi River drainage basin, outside the floodplain of the river. The region spans about 9º of latitude and 20º of longitude and lies roughly halfway between the equator and the North Pole in a lowland corridor that extends from the Gulf of Mexico to the Arctic Ocean.The Great Lakes are the most prominent natural feature of the region (Fig. 1). They have a combined surface area of about 245,000 square kilometers and are among the largest, deepest lakes in the world. They are the largest single aggregation of fresh water on the planet (excluding the polar ice caps) and are the only glacial feature on Earth visible from the surface of the moon (The Nature Conservancy 1994a).The Great Lakes moderate the region’s climate, which presently ranges from subarctic in the north to humid continental warm in the south (Fig. 2), reflecting the movement of major weather masses from the north and south (U.S. Department of the Interior 1970; Eichenlaub 1979). The lakes act as heat sinks in summer and heat sources in winter and are major reservoirs that help humidify much of the region. They also create local precipitation belts in areas where air masses are pushed across the lakes by prevailing winds, pick up moisture from the lake surface, and then drop that moisture over land on the other side of the lake. The mean annual frost-free period—a general measure of the growing-season length for plants and some cold-blooded animals—varies from 60 days at higher elevations in the north to 160 days in lakeshore areas in the south. The climate influences the general distribution of wild plants and animals in the region and also influences the activities and distribution of the human

  12. Key variables influencing patterns of lava dome growth and collapse

    Husain, T.; Elsworth, D.; Voight, B.; Mattioli, G. S.; Jansma, P. E.

    2013-12-01

    Lava domes are conical structures that grow by the infusion of viscous silicic or intermediate composition magma from a central volcanic conduit. Dome growth can be characterized by repeated cycles of growth punctuated by collapse, as the structure becomes oversized for its composite strength. Within these cycles, deformation ranges from slow long term deformation to sudden deep-seated collapses. Collapses may range from small raveling failures to voluminous and fast-moving pyroclastic flows with rapid and long-downslope-reach from the edifice. Infusion rate and magma rheology together with crystallization temperature and volatile content govern the spatial distribution of strength in the structure. Solidification, driven by degassing-induced crystallization of magma leads to the formation of a continuously evolving frictional talus as a hard outer shell. This shell encapsulates the cohesion-dominated soft ductile core. Here we explore the mechanics of lava dome growth and failure using a two-dimensional particle-dynamics model. This meshless model follows the natural evolution of a brittle carapace formed by loss of volatiles and rheological stiffening and avoids difficulties of hour-glassing and mesh-entangelment typical in meshed models. We test the fidelity of the model against existing experimental and observational models of lava dome growth. The particle-dynamics model follows the natural development of dome growth and collapse which is infeasible using simple analytical models. The model provides insight into the triggers that lead to the transition in collapse mechasnism from shallow flank collapse to deep seated sector collapse. Increase in material stiffness due to decrease in infusion rate results in the transition of growth pattern from endogenous to exogenous. The material stiffness and strength are strongly controlled by the magma infusion rate. Increase in infusion rate decreases the time available for degassing induced crystallization leading to a

  13. Disruption of tephra fall deposits caused by lava flows during basaltic eruptions

    Brown, R. J.; Thordarson, T.; Self, S.; Blake, S.

    2015-10-01

    Observations in the USA, Iceland and Tenerife, Canary Islands reveal how processes occurring during basaltic eruptions can result in complex physical and stratigraphic relationships between lava and proximal tephra fall deposits around vents. Observations illustrate how basaltic lavas can disrupt, dissect (spatially and temporally) and alter sheet-form fall deposits. Complexity arises through synchronous and alternating effusive and explosive activity that results in intercalated lavas and tephra deposits. Tephra deposits can become disrupted into mounds and ridges by lateral and vertical displacement caused by movement (including inflation) of underlying pāhoehoe lavas and clastogenic lavas. Mounds of tephra can be rafted away over distances of 100 s to 1,000 s m from proximal pyroclastic constructs on top of lava flows. Draping of irregular topography by fall deposits and subsequent partial burial of topographic depressions by later lavas can result in apparent complexity of tephra layers. These processes, deduced from field relationships, have resulted in considerable stratigraphic complexity in the studied proximal regions where fallout was synchronous or alternated with inflation of subjacent lava sheets. These mechanisms may lead to diachronous contact relationships between fall deposits and lava flows. Such complexities may remain cryptic due to textural and geochemical quasi-homogeneity within sequences of interbedded basaltic fall deposits and lavas. The net effect of these processes may be to reduce the usefulness of data collected from proximal fall deposits for reconstructing basaltic eruption dynamics.

  14. Erosion by flowing lava: Geochemical evidence in the Cave Basalt, Mount St. Helens, Washington

    Williams, D.A.; Kadel, S.D.; Greeley, R.; Lesher, C.M.; Clynne, M.A.

    2004-01-01

    We sampled basaltic lava flows and underlying dacitic tuff deposits in or near lava tubes of the Cave Basalt, Mount St. Helens, Washington to determine whether the Cave Basalt lavas contain geochemical evidence of substrate contamination by lava erosion. The samples were analyzed using a combination of wavelength-dispersive X-ray fluorescence spectrometry and inductively-coupled plasma mass spectrometry. The results indicate that the oldest, outer lava tube linings in direct contact with the dacitic substrate are contaminated, whereas the younger, inner lava tube linings are uncontaminated and apparently either more evolved or enriched in residual liquid. The most heavily contaminated lavas occur closer to the vent and in steeper parts of the tube system, and the amount of contamination decreases with increasing distance downstream. These results suggest that erosion by lava and contamination were limited to only the initially emplaced flows and that erosion was localized and enhanced by vigorous laminar flow over steeper slopes. After cooling, the initial Cave Basalt lava flows formed an insulating lining within the tubes that prevented further erosion by later flows. This interpretation is consistent with models of lava erosion that predict higher erosion rates closer to sources and over steeper slopes. A greater abundance of xenoliths and xenocrysts relative to xenomelts in hand samples indicates that mechanical erosion rather than thermal erosion was the dominant erosional process in the Cave Basalt, but further sampling and petrographic analyses must be performed to verify this hypothesis. ?? Springer-Verlag 2003.

  15. Temporal Chemical Data for Sediment, Water, and Biological Samples from the Lava Cap Mine Superfund Site, Nevada County, California-2006-2008

    Foster, Andrea L.; Ona-Nguema, Georges; Tufano, Kate; White, Richard III

    2010-01-01

    The Lava Cap Mine is located about 6 km east of the city of Grass Valley, Nevada County, California, at an elevation of about 900 m. Gold was hosted in quartz-carbonate veins typical of the Sierran Gold Belt, but the gold grain size was smaller and the abundance of sulfide minerals higher than in typical deposits. The vein system was discovered in 1860, but production was sporadic until the 1930s when two smaller operations on the site were consolidated, a flotation mill was built, and a 100-foot deep adit was driven to facilitate drainage and removal of water from the mine workings, which extended to 366 m. Peak production at the Lava Cap occurred between 1934 and 1943, when about 90,000 tons of ore per year were processed. To facilitate removal of the gold and accessory sulfide minerals, the ore was crushed to a very fine sand or silt grain size for processing. Mining operations at Lava Cap ceased in June 1943 due to War Production Board Order L-208 and did not resume after the end of World War II. Two tailings retention structures were built at the Lava Cap Mine. The first was a log dam located about 0.4 km below the flotation mill on Little Clipper Creek, and the second, built in 1938, was a larger earth fill and rip-rap structure constructed about 2 km downstream, which formed the water body now called Lost Lake. The log dam failed during a storm that began on December 31, 1996, and continued into January 1997; an estimated 8,000-10,000 m3 of tailings were released into Little Clipper Creek during this event. Most of the fine tailings were deposited in Lost Lake, dramatically increasing its turbidity and resulting in a temporary 1-1.5 m rise in lake level due to debris blocking the dam spillway. When the blockage was cleared, the lake level quickly lowered, leaving a ?bathtub ring? of very fine tailings deposited substantially above the water line. The U.S. Environmental Protection Agency (EPA) initiated emergency action in late 1997 at the mine site to reduce

  16. The Anatomy of the Blue Dragon: Changes in Lava Flow Morphology and Physical Properties Observed in an Open Channel Lava Flow as a Planetary Analogue

    Sehlke, A.; Kobs-Nawotniak, S. E.; Hughes, S. S.; Sears, D. W. G.; Downs, M.; Whittington, A. G.; Lim, D. S. S.; Heldmann, J. L.

    2017-12-01

    Lava terrains on other planets and moons exhibit morphologies similar to those found on Earth, such as smooth pāhoehoe transitioning to rough `a`ā terrains based on the viscosity - strain rate relationship of the lava. Therefore, the morphology of lava flows is governed by eruptive conditions such as effusion rate, underlying slope, and the fundamental thermo-physical properties of the lava, including temperature (T), composition (X), viscosity (η), fraction of crystals (φc) and vesicles (φb), as well as bulk density (ρ). These textural and rheological changes were previously studied for Hawaiian lava, where the lava flow started as channelized pāhoehoe and transitioned into `a`ā, demonstrating a systematic trend in T, X, η, φc, φb, and ρ. NASA's FINESSE focuses on Science and Exploration through analogue research. One of the field sites is Craters of the Moon, Idaho. We present field work done at a 3.0 km long lava flow belonging to the Blue Dragon lavas erupted from a chain of spatter cones, which then coalesced into channelized flows. We acquired UAV imagery along the entire length of the flow, and generated a high resolution DTM of 5 cm/pixel, from which we derived height profiles and surface roughness values. Field work included mapping the change in surface morphology and sample collection every 150 meters. In the laboratory, we measured φc, φb, and ρ for all collected samples. Viscosity measurements were carried out by concentric cylinder viscometry at subliquidus temperatures between 1310ºC to 1160ºC to study the rheology of the lava, enabling us to relate changes in flow behavior to T and φc. Our results are consistent with observations made for Hawaiian lava, including increasing bulk density downflow, and porosity changing from connected to isolated pore space. Crystallinity increases downflow, and the transition from pāhoehoe to `a`ā occurs between 1230ºC to 1150ºC, which is prompted by nucleation and growth of plagioclase

  17. Natural-Scale Lava Flow Experiments on Video: Variations with Temperature, Slope, and Effusion Rate

    Karson, J. A.; Wysocki, R.; Edwards, B. R.; Lev, E.

    2013-12-01

    Investigations of active basaltic lava flows and analog materials show that flow dynamics and final flow morphology are strongly determined by the rapidly evolving rheology of the lava crust which constrains the downslope advance of the lava flow. The non-dimensional factor Ψ (ratio of the time scale of crust formation to advective heat loss) provides a useful means of comparing different flows. The key parameters that control Ψ include the melt viscosity, temperature, effusion rate, and slope. Experimental lava flows, up to several meters long created in the Syracuse University Lava Project permit these variables to be investigated independently and in combination in volume-limited flows (Pele), that provide additional information on lava crust development. New, continuous flow (cooling-limited) experiments show downslope variations under constant flow conditions.

  18. A meta-analysis of aneurysm formation in laser assisted vascular anastomosis (LAVA)

    Chen, Chen; Peng, Fei; Xu, Dahai; Cheng, Qinghua

    2009-08-01

    Laser assisted vascular anastomosis (LAVA) is looked as a particularly promising non-suture method in future. However, aneurysm formation is one of the main reasons delay the clinical application of LAVA. Some scientists investigated the incidence of aneurysms in animal model. To systematically analyze the literature on reported incidence of aneurysm formation in LAVA therapy, we performed a meta-analysis comparing LAVA with conventional suture anastomosis (CSA) in animal model. Data were systematically retrieved and selected from PUBMED. In total, 23 studies were retrieved. 18 studies were excluded, and 5 studies involving 647 animals were included. Analysis suggested no statistically significant difference between LAVA and CSA (OR 1.24, 95%CI 0.66-2.32, P=0.51). Result of meta analysis shows that the technology of LAVA is very close to clinical application.

  19. Geology of the Tyrrhenus Mons Lava Flow Field, Mars

    Crown, David A.; Mest, Scott C.

    2014-11-01

    The ancient, eroded Martian volcano Tyrrhenus Mons exhibits a central caldera complex, layered flank deposits dissected by radial valleys, and a 1000+ km-long flow field extending to the southwest toward Hellas Planitia. Past studies suggested an early phase of volcanism dominated by large explosive eruptions followed by subsequent effusive activity at the summit and to the southwest. As part of a new geologic mapping study of northeast Hellas, we are examining the volcanic landforms and geologic evolution of the Tyrrhenus Mons flow field, including the timing and nature of fluvial activity and effects on volcanic units. New digital geologic mapping incorporates THEMIS IR (100 m/pixel) and CTX (5 m/pixel) images as well as constraints from MOLA topography.Mapping results to-date include delineation of the boundaries of the flow field, identification and mapping of volcanic and erosional channels within the flow field, and mapping and analysis of lava flow lobes. THEMIS IR and CTX images allow improved discrimination of the numerous flow lobes that are observed in the flow field, including refinement of the margins of previously known flows and identification of additional and smaller lobes. A prominent sinuous rille extending from Tyrrhenus Mons’ summit caldera is a major feature that supplied lava to the flow field. Smaller volcanic channels are common throughout the flow field; some occur in segments along crests of local topographic highs and may delineate lava tubes. In addition to volcanic channels, the flow field surface is characterized by several types of erosional channels, including wide troughs with scour marks, elongate sinuous channels, and discontinuous chains of elongate pits and troughs. High-resolution images reveal the widespread and significant effects of fluvial activity in the region, and further mapping studies will examine spatial and temporal interactions between volcanism and fluvial processes.

  20. NVP melt/magma viscosity: insight on Mercury lava flows

    Rossi, Stefano; Morgavi, Daniele; Namur, Olivier; Vetere, Francesco; Perugini, Diego; Mancinelli, Paolo; Pauselli, Cristina

    2016-04-01

    After more than four years of orbiting Mercury, NASA's MESSENGER spacecraft came to an end in late April 2015. MESSENGER has provided many new and surprising results. This session will again highlight the latest results on Mercury based on MESSENGER observations or updated modelling. The session will further address instrument calibration and science performance both retrospective on MESSENGER and on the ESA/JAXA BepiColombo mission. Papers covering additional themes related to Mercury are also welcomed. Please be aware that this session will be held as a PICO session. This will allow an intensive exchange of expertise and experience between the individual instruments and mission. NVP melt/magma viscosity: insight on Mercury lava flows S. Rossi1, D. Morgavi1, O. Namur2, D. Perugini1, F.Vetere1, P. Mancinelli1 and C. Pauselli1 1 Dipartimento di Fisica e Geologia, Università di Perugia, piazza Università 1, 06123 Perugia, Italy 2 Uni Hannover Institut für Mineralogie, Leibniz Universität Hannover, Callinstraβe 3, 30167 Hannover, Germany In this contribution we report new measurements of viscosity of synthetic komatitic melts, used the behaviour of silicate melts erupted at the surface of Mercury. Composition of Mercurian surface magmas was calculated using the most recent maps produced from MESSENGER XRS data (Weider et al., 2015). We focused on the northern hemisphere (Northern Volcanic Province, NVP, the largest lava flow on Mercury and possibly in the Solar System) for which the spatial resolution of MESSENGER measurements is high and individual maps of Mg/Si, Ca/Si, Al/Si and S/Si were combined. The experimental starting material contains high Na2O content (≈7 wt.%) that strongly influences viscosity. High temperature viscosity measurements were carried out at 1 atm using a concentric cylinder apparatus equipped with an Anton Paar RheolabQC viscometer head at the Department of Physics and Geology (PVRG_lab) at the University of Perugia (Perugia, Italy

  1. Multifractal characterization of Vesuvio lava-flow margins and its implications

    Luongo, G.; Mazzarella, A.; Di Donna, G.

    2000-09-01

    The digitized lava-flow margins of well-defined extended eruptions occurring at Vesuvio in 1760, 1794, 1861, 1906, 1929 and 1944 are found to follow fractal behaviours inside a scaling region enclosed between 50 and 400 m. Although the invariance region is well respected, the fractal dimension D varies from one lava flow to another: the more irregular the lava-flow margin, the larger the value of D. The ascertained dependence of D on the duration of premonitory activity, preceding the emission of lavas, might provide some insight into the inner volcanic processes before the eruption and into the dynamical processes operating during flow emplacement.

  2. Drained Lava Tubes and Lobes From Eocretaceous Paraná-Etendeka Province, Brazil

    Waichel, B. L.; Lima, E. F. D.; Mouro, L. D.; Briske, D. R.; Tratz, E. B.

    2017-12-01

    The identification of lava tubes in continental flood basalt provinces (CFBP) is difficult and reports of preserved drained tubes and lobes are rare. The large extension of CFBP must be related to an efficient transport of lava and tubes are the most efficient mechanism to transport lava in insulated pathways, like observed in modern volcanic fields. Looking for caves in the central portion of Paraná-Etendeka Province, we discovered drained lava tubes (4) and lobes (6) in a volcanic sequence constituted by pahoehoe flows. Lava tubes are: Casa de Pedra, Perau Branco, Dal Pae and Pinhão. The Casa de Pedra tube system is composed of two principal chambers with similar dimensions, reaching up to 10 m long and 4.0 m high connected by a narrow passage. The general form of the chamber is hemispherical, with re-entrances of ellipsoidal shape probably formed by small lava lobes and collapse structures in the roof. The second chamber is connected with three secondary lava tubes. Columns in the cave are formed when the flowing lava separates in two lava channels that join again further down the system, forming and anastomosing tube network. Lateral lava benches and lava drainings at the walls are observed in secondary tubes. The general lava flow is to SW. The Perau Branco system is composed of five tubes with ellipsoidal openings. The main features are the long tubes that emerge from the small flattened chambers. One tube is more than 20 m long, with alternating circular and flattened ellipsoidal sections. The general lava flow is to NE. Pinhão tube is spherical with 3 meters diameter and 15 m long, with lava flow orientation to NW. This tube has a bottleneck shape with linings (up to 3 cm thick), which are observed in the roof and walls. Dal Pae Tube is 10 m long with an ellipsoidal opening, bottleneck shape and orientation to NE. The lava flow directions measured in the tubes is to SW (Casa de Pedra, Pinhão) and NE (Perau Branco, Dal Pae) and this pattern is related to

  3. Bathymetry of Lake Michigan

    National Oceanic and Atmospheric Administration, Department of Commerce — Bathymetry of Lake Michigan has been compiled as a component of a NOAA project to rescue Great Lakes lake floor geological and geophysical data and make it more...

  4. Bathymetry of Lake Ontario

    National Oceanic and Atmospheric Administration, Department of Commerce — Bathymetry of Lake Ontario has been compiled as a component of a NOAA project to rescue Great Lakes lake floor geological and geophysical data and make it more...

  5. Bathymetry of Lake Superior

    National Oceanic and Atmospheric Administration, Department of Commerce — Bathymetry of Lake Superior has been compiled as a component of a NOAA project to rescue Great Lakes lake floor geological and geophysical data and make it more...

  6. Great Lakes Bathymetry

    National Oceanic and Atmospheric Administration, Department of Commerce — Bathymetry of Lakes Michigan, Erie, Saint Clair, Ontario and Huron has been compiled as a component of a NOAA project to rescue Great Lakes lake floor geological and...

  7. Bathymetry of Lake Huron

    National Oceanic and Atmospheric Administration, Department of Commerce — Bathymetry of Lake Huron has been compiled as a component of a NOAA project to rescue Great Lakes lake floor geological and geophysical data and make it more...

  8. Study of the thermoluminescent properties of lava from different origins; Estudio de las propiedades termoluminiscentes de lavas de diferentes origenes

    Molina, D. [Centro de Proteccion e Higiene de las Radiaciones, A.P. 6195, C.P. 10600, La Habana (Cuba); Correcher, V.; Delgado, A. [CIEMAT. Dosimetria de Radiaciones, Av. Complutense 22, Madrid 28040 (Spain); Garcia G, J. [CSIC. Museo Nacional de Ciencias Naturales, C/Jose Gutierrez Abascal 2. Madrid 28006 (Spain)

    2002-07-01

    In this work has been studied the thermoluminescent signal (Tl) of lava from different geographical area (Costa Rica, the Canary Islands, Hawaii, Iceland and Italy) and originating in distinct eruptions, for its possible use such as in the dating field (geological and archaeological) as in retrospective dosimetry. Due that the light emission is intimately related with the punctual defects existent in the structure of material associated to the presence of different mineral phases, it was realized a study by X-ray diffraction for determining the main components of the lava observing the presence, in distinct proportions of cristobalite, plagioclases (chalcosodic feldspars) and philosilicates (augite, montmorillonite, forsterite and actinolite). All the detected mineral components present Tl emission in the blue region. Each one of the lava were artificially irradiated for proving the dependence of the luminescent signal with the dose in the range 1 to 25 Gy, observing a linear response with the dose in all the cases and not appreciating saturation in the Tl emission. Such the appropriate signal of natural samples (TLN) as the irradiated samples in the laboratory (TLI) show a complex structure associated with a continuous distribution of traps at temperature higher than 100 C which could be explained as consequence of the dynamic formation-annihilation of centers [AlO{sub 4}/alkali]{sup +} and [AlO{sub 4}]{sup 0}. In TLI was observed that a nearer to 85 C appeared a maximum whose structure correspond a discrete distribution of traps, coexisting therefore the two types of traps structure. (Author)

  9. Volcanic eruptions on Io: Heat flow, resurfacing, and lava composition

    Blaney, Diana L.; Johnson, Torrence V.; Matson, Dennis L.; Veeder, Glenn J.

    1995-01-01

    We model an infrared outburst on Io as being due to a large, erupting lava flow which increased its area at a rate of 1.5 x 10(exp 5)/sq m and cooled from 1225 to 555 K over the 2.583-hr period of observation. The inferred effusion rate of 3 x 10(exp 5) cu m/sec for this eruption is very high, but is not unprece- dented on the Earth and is similar to the high eruption rates suggested for early lunar volcanism. Eruptions occur approxi- mately 6% of the time on Io. These eruptions provide ample resurfacing to explain Io's lack of impact craters. We suggest that the large total radiometric heat flow, 10(exp 14) W, and the size and temperature distribution of the thermal anomalies (McEwen et al. 1992; Veeder et al. 1994) can be accounted for by a series of silicate lava flows in various stages of cooling. We propose that the whole suite of Io's currently observed thermal anomalies was produced by multiple, high-eruptive-rate silicate flows within the past century.

  10. Remagnetization of lava flows spanning the last geomagnetic reversal

    Vella, Jérôme; Carlut, Julie; Valet, Jean-Pierre; Goff, Maxime Le; Soler, Vicente; Lopes, Fernando

    2017-08-01

    Large directional changes of remanent magnetization within lava flows that cooled during geomagnetic reversals have been reported in several studies. A geomagnetic scenario implies extremely rapid geomagnetic changes of several degrees per day, thus difficult to reconcile with the rate of the earth's core liquid motions. So far, no complete rock magnetic model provides a clear explanation. We revisited lava flows sandwiched between an underlying reverse and an overlying normal polarity flow marking the last reversal in three distinct volcanic sequences of the La Palma Island (Canary archipelago, Spain) that are characterized by a gradual evolution of the direction of their remanent magnetization from bottom to top. Cleaning efficiency of thermal demagnetization was not improved by very rapid heating and cooling rates as well as by continuous demagnetization using a Triaxe magnetometer. We did not observe partial self-reversals and minor changes in magnetic grain sizes are not related to the within-flow directional changes. Microscopic observations indicate poor exsolution, which suggests post-cooling thermochemical remagnetization processes. This scenario is strongly reinforced by laboratory experiments that show large resistance to thermal demagnetization when thermoremanence was acquired over a long time period. We speculate that in the present situation exsolution was reactivated during in field reheating and yielded formation of new magnetite, yet magnetic domain state rearrangements could also play a role. Initial reheating when the overlying flow took place, albeit moderate (less than 200-300 °C), was enough to produce overlying components with significantly higher unblocking temperatures.

  11. Mapping gullies, dunes, lava fields, and landslides via surface roughness

    Korzeniowska, Karolina; Pfeifer, Norbert; Landtwing, Stephan

    2018-01-01

    Gully erosion is a widespread and significant process involved in soil and land degradation. Mapping gullies helps to quantify past, and anticipate future, soil losses. Digital terrain models offer promising data for automatically detecting and mapping gullies especially in vegetated areas, although methods vary widely measures of local terrain roughness are the most varied and debated among these methods. Rarely do studies test the performance of roughness metrics for mapping gullies, limiting their applicability to small training areas. To this end, we systematically explored how local terrain roughness derived from high-resolution Light Detection And Ranging (LiDAR) data can aid in the unsupervised detection of gullies over a large area. We also tested expanding this method for other landforms diagnostic of similarly abrupt land-surface changes, including lava fields, dunes, and landslides, as well as investigating the influence of different roughness thresholds, resolutions of kernels, and input data resolution, and comparing our method with previously published roughness algorithms. Our results show that total curvature is a suitable metric for recognising analysed gullies and lava fields from LiDAR data, with comparable success to that of more sophisticated roughness metrics. Tested dunes or landslides remain difficult to distinguish from the surrounding landscape, partly because they are not easily defined in terms of their topographic signature.

  12. Disclosing the temperature of columnar jointing in lavas.

    Lamur, Anthony; Lavallée, Yan; Iddon, Fiona E; Hornby, Adrian J; Kendrick, Jackie E; von Aulock, Felix W; Wadsworth, Fabian B

    2018-04-12

    Columnar joints form by cracking during cooling-induced contraction of lava, allowing hydrothermal fluid circulation. A lack of direct observations of their formation has led to ambiguity about the temperature window of jointing and its impact on fluid flow. Here we develop a novel thermo-mechanical experiment to disclose the temperature of columnar jointing in lavas. Using basalts from Eyjafjallajökull volcano (Iceland) we show that contraction during cooling induces stress build-up below the solidus temperature (980 °C), resulting in localised macroscopic failure between 890 and 840 °C. This temperature window for incipient columnar jointing is supported by modelling informed by mechanical testing and thermal expansivity measurements. We demonstrate that columnar jointing takes place well within the solid state of volcanic rocks, and is followed by a nonlinear increase in system permeability of <9 orders of magnitude during cooling. Columnar jointing may promote advective cooling in magmatic-hydrothermal environments and fluid loss during geothermal drilling and thermal stimulation.

  13. Great Lakes Science Center

    Federal Laboratory Consortium — Since 1927, Great Lakes Science Center (GLSC) research has provided critical information for the sound management of Great Lakes fish populations and other important...

  14. Digital Geologic Map Database of Medicine Lake Volcano, Northern California

    Ramsey, D. W.; Donnelly-Nolan, J. M.; Felger, T. J.

    2010-12-01

    Medicine Lake volcano, located in the southern Cascades ~55 km east-northeast of Mount Shasta, is a large rear-arc, shield-shaped volcano with an eruptive history spanning nearly 500 k.y. Geologic mapping of Medicine Lake volcano has been digitally compiled as a spatial database in ArcGIS. Within the database, coverage feature classes have been created representing geologic lines (contacts, faults, lava tubes, etc.), geologic unit polygons, and volcanic vent location points. The database can be queried to determine the spatial distributions of different rock types, geologic units, and other geologic and geomorphic features. These data, in turn, can be used to better understand the evolution, growth, and potential hazards of this large, rear-arc Cascades volcano. Queries of the database reveal that the total area covered by lavas of Medicine Lake volcano, which range in composition from basalt through rhyolite, is about 2,200 km2, encompassing all or parts of 27 U.S. Geological Survey 1:24,000-scale topographic quadrangles. The maximum extent of these lavas is about 80 km north-south by 45 km east-west. Occupying the center of Medicine Lake volcano is a 7 km by 12 km summit caldera in which nestles its namesake, Medicine Lake. The flanks of the volcano, which are dotted with cinder cones, slope gently upward to the caldera rim, which reaches an elevation of nearly 2,440 m. Approximately 250 geologic units have been mapped, only half a dozen of which are thin surficial units such as alluvium. These volcanic units mostly represent eruptive events, each commonly including a vent (dome, cinder cone, spatter cone, etc.) and its associated lava flow. Some cinder cones have not been matched to lava flows, as the corresponding flows are probably buried, and some flows cannot be correlated with vents. The largest individual units on the map are all basaltic in composition, including the late Pleistocene basalt of Yellowjacket Butte (296 km2 exposed), the largest unit on the

  15. Lake Cadagno

    Tonolla, Mauro; Storelli, Nicola; Danza, Francesco

    2017-01-01

    cycles. The chemocline lies at about 12 m depth, stabilized by density differences of salt-rich water supplied by sub-aquatic springs to the monimolimnion and of electrolyte-poor surface water feeding the mixolimnion. Steep sulphide and light gradients in the chemocline support the growth of a large...... in the chemocline. Small-celled PSB together with the sulfate-reducing bacterium Desulfocapsa thiozymogenes sp. form stable aggregates in the lake, which represent small microenvironments with an internal sulphur cycle. Eukaryotic primary producers in the anoxic zones are dominated by Cryptomonas phaseolus...

  16. LiDAR-derived surface roughness signatures of basaltic lava types at the Muliwai a Pele Lava Channel, Mauna Ulu, Hawai`i

    Whelley, Patrick L.; Garry, W. Brent; Hamilton, Christopher W.; Bleacher, Jacob E.

    2017-11-01

    We used light detection and ranging (LiDAR) data to calculate roughness patterns (homogeneity, mean-roughness, and entropy) for five lava types at two different resolutions (1.5 and 0.1 m/pixel). We found that end-member types (´áā and pāhoehoe) are separable (with 95% confidence) at both scales, indicating that roughness patterns are well suited for analyzing types of lava. Intermediate lavas were also explored, and we found that slabby-pāhoehoe is separable from the other end-members using 1.5 m/pixel data, but not in the 0.1 m/pixel analysis. This suggests that the conversion from pāhoehoe to slabby-pāhoehoe is a meter-scale process, and the finer roughness characteristics of pāhoehoe, such as ropes and toes, are not significantly affected. Furthermore, we introduce the ratio ENT/HOM (derived from lava roughness) as a proxy for assessing local lava flow rate from topographic data. High entropy and low homogeneity regions correlate with high flow rate while low entropy and high homogeneity regions correlate with low flow rate. We suggest that this relationship is not directional, rather it is apparent through roughness differences of the associated lava type emplaced at the high and low rates, respectively.

  17. Paleomagnetism of Holocene lava flows from the Reykjanes Peninsula and the Tungnaá lava sequence (Iceland): implications for flow correlation and ages

    Pinton, Annamaria; Giordano, Guido; Speranza, Fabio; Þórðarson, Þorvaldur

    2018-01-01

    The impact of Holocene eruptive events from hot spots like Iceland may have had significant global implications; thus, dating and knowledge of past eruptions chronology is important. However, at high-latitude volcanic islands, the paucity of soils severely limits 14C dating, while the poor K content of basalts strongly restricts the use of K/Ar and Ar/Ar methods. Even tephrochronology, based on 14C age determinations, refers to layers that rarely lie directly above lava flows to be dated. We report on the paleomagnetic dating of 25 sites from the Reykjanes Peninsula and the Tungnaá lava sequence of Iceland. The gathered paleomagnetic directions were compared with the available reference paleosecular variation curves of the Earth magnetic field to obtain the possible emplacement age intervals. To test the method's validity, we sampled the precisely dated Laki (1783-1784 AD) and Eldgjà (934-938 AD) lavas. The age windows obtained for these events encompass the true flow ages. For sites from the Reykjanes peninsula and the Tugnaá lava sequence, we derived multiple possible eruption events and ages. In the Reykjanes peninsula, we propose an older emplacement age (immediately following the 870 AD Iceland Settlement age) for Ogmundarhraun and Kapelluhraun lava fields. For pre-historical (older than the settlement age) Tugnaá eruptions, the method has a dating precision of 300-400 years which allows an increase of the detail in the chronostratigraphy and distribution of lavas in the Tugnaá sequence.

  18. LiDAR-Derived Surface Roughness Signatures of Basaltic Lava Types at the Muliwai a Pele Lava Channel, Mauna Ulu, Hawai'i

    Whelley, Patrick L.; Garry, W. Brent; Hamilton, Christopher W.; Bleacher, Jacob E.

    2017-01-01

    We used light detection and ranging (LiDAR) data to calculate roughness patterns (homogeneity, mean-roughness, and entropy) for five lava types at two different resolutions (1.5 and 0.1 m/pixel). We found that end-member types (a a and pahoehoe) are separable (with 95% confidence) at both scales, indicating that roughness patterns are well suited for analyzing types of lava. Intermediate lavas were also explored, and we found that slabby-pahoehoe is separable from the other end-members using 1.5 m/pixel data, but not in the 0.1 m/pixel analysis. This suggests that the conversion from pahoehoe to slabby-pahoehoe is a meter-scale process, and the finer roughness characteristics of pahoehoe, such as ropes and toes, are not significantly affected. Furthermore, we introduce the ratio ENT/HOM (derived from lava roughness) as a proxy for assessing local lava flow rate from topographic data. High entropy and low homogeneity regions correlate with high flow rate while low entropy and high homogeneity regions correlate with low flow rate.We suggest that this relationship is not directional, rather it is apparent through roughness differences of the associated lava type emplaced at the high and low rates, respectively.

  19. LAVA: An Open-Source Approach To Designing LAMP (Loop-Mediated Isothermal Amplification DNA Signatures

    Gardner Shea N

    2011-06-01

    Full Text Available Abstract Background We developed an extendable open-source Loop-mediated isothermal AMPlification (LAMP signature design program called LAVA (LAMP Assay Versatile Analysis. LAVA was created in response to limitations of existing LAMP signature programs. Results LAVA identifies combinations of six primer regions for basic LAMP signatures, or combinations of eight primer regions for LAMP signatures with loop primers, which can be used as LAMP signatures. The identified primers are conserved among target organism sequences. Primer combinations are optimized based on lengths, melting temperatures, and spacing among primer sites. We compare LAMP signature candidates for Staphylococcus aureus created both by LAVA and by PrimerExplorer. We also include signatures from a sample run targeting all strains of Mycobacterium tuberculosis. Conclusions We have designed and demonstrated new software for identifying signature candidates appropriate for LAMP assays. The software is available for download at http://lava-dna.googlecode.com/.

  20. The genesis of a lava cave in the Deccan Volcanic Province (Maharashtra, India

    Nikhil R. Pawar

    2016-01-01

    Full Text Available Lava tubes and channels forming lava distributaries have been recognized from different parts of western Deccan Volcanic Province (DVP. Openings of smaller dimension have been documented from the pāhoehoe flows around Pune, in the western DVP. A small lava cave is exposed in Ghoradeshwar hill, near Pune. Detailed field studies of the physical characteristics, structure and morphology of the flows hosting the lava tube has been carried out. This is the first detailed documentation of a lava cave from the DVP. The lava cave occurs in a compound pāhoehoe flow of Karla Formation, characterized by the presence of lobes, toes and small scale features like squeeze-ups. Field observations and measurements reveal that the dimensions of the cave are small, with low roof and a maximum width of 108 cm. The cave morphology along the 20 m passage varies from circular to semi-circular, with a twilight zone to the north. The gentle micro-topography at Ghoradeshwar controlled the advancement of pāhoehoe lobes and toes within the sheet lobe. The pre-flow gradients towards the north led to the progression of flow from the east, where the cave opening is presently seen. Dimensions and related morphology of the lava cave suggest that it can be best described as a small sub-crustal cave formed by draining of an inflated of pāhoehoe lava lobe. At Ghoradeshwar, besides the natural lava cave, Buddhist caves carved in pāhoehoe lava flows are also observed, indicating that early man took advantage of the existing openings in pāhoehoe flows and sculpted the caves to suit their requirements.

  1. LAVA: A conceptual framework for automated risk assessment

    Smith, S.T.; Brown, D.C.; Erkkila, T.H.; FitzGerald, P.D.; Lim, J.J.; Massagli, L.; Phillips, J.R.; Tisinger, R.M.

    1986-01-01

    At the Los Alamos National Laboratory the authors are developing the framework for generating knowledge-based systems that perform automated risk analyses on an organizations's assets. An organization's assets can be subdivided into tangible and intangible assets. Tangible assets include facilities, material, personnel, and time, while intangible assets include such factors as reputation, employee morale, and technical knowledge. The potential loss exposure of an asset is dependent upon the threats (both static and dynamic), the vulnerabilities in the mechanisms protecting the assets from the threats, and the consequences of the threats successfully exploiting the protective systems vulnerabilities. The methodology is based upon decision analysis, fuzzy set theory, natural language processing, and event tree structures. The Los Alamos Vulnerability and Risk Assessment (LAVA) methodology has been applied to computer security. The program generates both summary reports for use by both management personnel and detailed reports for use by operations staff

  2. Observation of Possible Lava Tube Skylights by SELENE cameras

    Haruyama, Junichi; Hiesinger, Harald; van der Bogert, Carolyn

    We have discovered three deep hole-structures on the Moon in the Terrain Camera and Multi-band Imager on the SELENE. These holes are large depth to diameter ratios: Marius Hills Hole (MHH) is 65 m in diameter and 88-90 m in depth, Mare Tranquillitatis Hole (MTH) is 120 x 110 m in diameter and 180 m in depth, and Mare Ingenii Hole (MIH) is 140 x 110 m in diameter and deeper than 90 m. No volcanic material from the holes nor dike-relating pit craters is seen around the holes. They are possible lava tube skylights. These holes and possibly connected tubes have a lot of scientific interests and high potentialities as lunar bases.

  3. Intraflow width variations in Martian and terrestrial lava flows

    Peitersen, Matthew N.; Crown, David A.

    1997-03-01

    Flow morphology is used to interpret emplacement processes for lava flows on Earth and Mars. Accurate measurements of flow geometry are essential, particularly for planetary flows where neither compositional sampling nor direct observations of active flows may be possible. Width behavior may indicate a flow's response to topography, its emplacement regime, and its physical properties. Variations in width with downflow distance from the vent may therefore provide critical clues to flow emplacement processes. Flow width is also one of the few characteristics that can be readily measured from planetary mission data with accuracy. Recent analyses of individual flows at two terrestrial and four Martian sites show that widths within an individual flow vary by up to an order of magnitude. Width is generally thought to be correlated to topography; however, recent studies show that this relationship is neither straightforward nor easily quantifiable.

  4. Magnetic property zonation in a thick lava flow

    Audunsson, Haraldur; Levi, Shaul; Hodges, Floyd

    1992-04-01

    Intraflow structures and magmatic evolution in an extensive and thick (30-60 m) basaltic lava flow are examined on the basis of grain size and composition-dependent magnetic properties of titanomagnetite materials. Microprobe data indicate that the intraflow oxidation state Fe(3+)/Fe(2+) of the initially precipitated primary titanomagnetites increases with falling equilibrium temperature from the flow margins to a maximum near the center, the position of lowest equilibrium temperature. In contrast, Curie temperature measurements indicate that titanomagnetite oxidation increases with height in the flow. Modification of the initially symmetric equilibrium titanomagnetite compositions was caused by subsolidus high-temperature oxidation possibly due to hydrogen loss produced by dissociation of magmatic water, as well as unknown contributions of circulating air and percolating water from above. The titanomagnetites of the basal layer of the flow remain essentially unaltered.

  5. 230Th-238U disequilibria in historical lavas from Iceland

    Condomines, M.; Morand, P.; Alleegre, C.J.; Sigvaldason, G.

    1981-01-01

    The 230 Th- 238 U disequilibrium studies on historical lavas from Iceland show a relative homogeneity for Th/U ratios and also a variation for ( 230 Th/ 232 Th) activity ratios at the scale of the island. The ( 230 Th/ 238 U) disequilibrium ratio is always greater than 1 which indicates that partial melting produces magmas with Th/U ratios greater than those of the mantle source. Furthermore, there seems to be a correlation between the variations of ( 230 Th/ 232 Th) (and delta 18 O) ratios and the geographical location of the samples along the active zones of Iceland. We develop and discuss several models in order to explain these variations. (orig.)

  6. Dynamics of a fluid flow on Mars: Lava or mud?

    Wilson, Lionel; Mouginis-Mark, Peter J.

    2014-05-01

    A distinctive flow deposit southwest of Cerberus Fossae on Mars is analyzed. The flow source is a ∼20 m deep, ∼12 × 1.5 km wide depression within a yardang associated with the Medusae Fossae Formation. The flow traveled for ∼40 km following topographic lows to leave a deposit on average 3-4 km wide. The surface morphology of the deposit suggests that it was produced by the emplacement of a fluid flowing in a laminar fashion and possessing a finite yield strength. We use topographic data from a digital elevation model (DEM) to model the dynamics of the motion and infer that the fluid had a Bingham rheology with a plastic viscosity of ∼1 Pa s and a yield strength of ∼185 Pa. Although the low viscosity is consistent with the properties of komatiite-like lava, the combination of values of viscosity and yield strength, as well as the surface morphology of the flow, suggests that this was a mud flow. Comparison with published experimental data implies a solids content close to 60% by volume and a grain size dominated by silt-size particles. Comparison of the ∼1.5 km3 deposit volume with the ∼0.03 km3 volume of the source depression implies that ∼98% of the flow material was derived from depth in the crust. There are similarities between the deposit studied here, which we infer to be mud, and other flow deposits on Mars currently widely held to be lavas. This suggests that a re-appraisal of many of these deposits is now in order.

  7. Sedimentation influx and volcanic interactions in the Fuji Five Lakes: implications for paleoseismological records

    Lamair, Laura; Hubert-Ferrari, Aurélia; Yamamoto, Shinya; El Ouahabi, Meriam; Garrett, Ed; Shishikura, Masanobu; Schmidt, Sabine; Boes, Evelien; Obrochta, Stephen; Nakamura, Atsunori; Miyairi, Yosuke; Yokoyama, Yusuke; De Batist, Marc; Heyvaert, Vanessa M. A.

    2017-04-01

    The Fuji Fives Lakes are located at the foot of Mount Fuji volcano close to the triple junction, where the North American Plate, the Eurasian plate and the Philippine Sea Plate meet. These lakes are ideally situated to study Mount Fuji volcanism and the interaction between volcanism, changes in lake sedimentation rates and the ability of lakes to record paleoearthquakes. Here, we present newly acquired geological data of Lake Yamanaka and Lake Motosu, including seismic reflection profiles, gravity and piston cores. These two lakes and their respective watersheds were affected by several eruptions of Mount Fuji. Lake Yamanaka, a very shallow lake (max. depth 14 m), was heavily impacted by the scoria fall-out of the A.D. 1707 Hoei eruption of Mount Fuji. A detailed investigation of the effect of the Hoei eruption was conducted on short gravity cores, using high resolution XRD, C/N and 210Pb/137Cs analyses. The preliminary results suggest that the sedimentation rate of Lake Yamanaka drastically reduced after the Hoei eruption, followed by an increase until the present day. Similarly, lacustrine sedimentation in Lake Motosu (max. depth 122 m) was disturbed by Mount Fuji volcanism at a larger scale. The watershed of Lake Motosu was impacted by several lava flows and scoria cones. For example, the Omuro scoria cone reduced the catchment size of Lake Motosu and modified its physiography. The related scoria fall out covered an extensive part of the lake catchment and reduced terrigenous sedimentary influx to Lake Motosu. Within the deep basin of Lake Motosu, seismic reflection data shows two different periods that are distinguished by a major change in the dominant sedimentary processes. During the first period, sublacustrine landslides and turbidity currents were the dominant sedimentation processes. During the second one, the seismic stratigraphy evidences only deposition of numerous turbidites interrupting the hemipelagic sedimentation. Changes in sedimentary processes

  8. Devital dişlerin ıntrakoronal ağartmasında kullanılan iki farklı materyalin klinik etkinliğinin karşılaştırılması

    Keçeci, Diljin

    2009-01-01

    SüleymanDemirel Üniversitesi TIP FAKÜLTESİ DERGİSİ: 2006 Eylül; 13(3) Devital dişlerin ıntrakoronal ağartmasında kullanılan iki farklı materyalin klinik etkinliğinin karşılaştırılması Diljin Keçeci Devital diş renklenmeleri diş dizisinde kolayca ayırt edilebildiği için özellikle ön dişlerde estetik sorunlara yol açmaktadır. Bu çalışmada kanal tedavisi uygulanmış veya travmaya maruz kalmış, ön dişlerde ortaya çıkan renklenmelerin ağartılması amacıyla bir sodyum perborat (Starbrite, Dentr...

  9. Late Pleistocene Hansel Valley basaltic ash, northern Lake Bonneville, Utah, USA

    Miller, D.M.; Oviatt, Charles G.; Nash, B.P.

    2008-01-01

    The Hansel Valley ash bed lies within 5 cm of the base of deposits of Lake Bonneville (???28 ka) in the vicinity of Great Salt Lake and provides a useful stratigraphic marker for this area of the lake basin. However, it has not been matched to an eruptive edifice, presumably because such an edifice was eroded by waves of Lake Bonneville. We present data for the chemical composition of the tephra and for possible matching lavas and tephras of the region, as well as grain size data for the tephra in an attempt to identify the location of the eruption. Matches with other tephras are negative, but lavas near the coarsest ash deposits match well with the distinctive high values of TiO2 and P2O5 of the ash. Neither chemistry nor grain size data points uniquely to a source area, but an area near the northwest shore of Great Salt Lake and within Curlew Valley is most likely. The Hansel Valley ash is an example of an ash that has no direct numerical date from proximal deposits, despite considerable study, yet nonetheless is useful for stratigraphic studies by virtue of its known stratigraphic position and approximate age. Basaltic tephras commonly are not as widespread as their rhyolitic counterparts, and in some cases apparently are produced by eruptive sources that are short lived and whose edifices are not persistent. ?? 2007 Elsevier Ltd and INQUA.

  10. Limnology of Eifel maar lakes

    Scharf, Burkhard W; Björk, Sven

    1992-01-01

    ... & morphometry - Physical & chemical characteristics - Calcite precipitation & solution in Lake Laacher See - Investigations using sediment traps in Lake Gemundener Maar - Phytoplankton of Lake Weinfelder Maar...

  11. Lava Eruption and Emplacement: Using Clues from Hawaii and Iceland to Probe the Lunar Past

    Needham, Debra Hurwitz; Hamilton, C. W.; Bleacher, J. E.; Whelley, P. L.; Young, K. E.; Scheidt, S. P.; Richardson, J. A.; Sutton, S. S.

    2017-01-01

    Investigating recent eruptions on Earth is crucial to improving understanding of relationships between eruption dynamics and final lava flow morphologies. In this study, we investigated eruptions in Holuhraun, Iceland, and Kilauea, Hawaii to gain insight into the lava dynamics near the source vent, the initiation of lava channels, and the origin of down-channel features. Insights are applied to Rima Bode on the lunar nearside to deduce the sequence of events that formed this lunar sinuous rille system. These insights are crucial to correctly interpreting whether the volcanic features associated with Rima Bode directly relate to eruption conditions at the vent and, thus, can help us understand those eruption dynamics, or, alternatively, whether the features formed as a result of more localized influences on lava flow dynamics. For example, if the lava channel developed early in the eruption and was linked to pulses in vent activity, its morphology can be analyzed to interpret the flux and duration of the eruption. Conversely, if the lava channel initiated late in the eruption as the result of a catastrophic breaching of lava that had previously pooled within the vent [e.g., 1], then the final channel morphology will not indicate eruption dynamics but rather local dynamics associated with that breach event. Distinguishing between these two scenarios is crucial for correctly interpreting the intensity and duration of volcanic history on the Moon.

  12. Geochronology and geochemistry of lavas from the 1996 North Gorda Ridge eruption

    Rubin, K. H.; Smith, M. C.; Perfit, M. R.; Christie, D. M.; Sacks, L. F.

    1998-12-01

    Radiometric dating of three North Gorda Ridge lavas by the 210Po- 210Pb method confirms that an eruption occurred during a period of increased seismic activity along the ridge during late February/early March 1996. These lavas were collected following detection of enhanced T-phase seismicity and subsequent ocean bottom photographs documented the existence of a large pillow mound of fresh-appearing lavas. 210Po- 210Pb dating of these lavas indicates that an eruption coinciding with this seismicity did occur (within analytical error) and that followup efforts to sample the recent lava flows were successful. Compositions of the three confirmed young lavas and eleven other samples of this contiguous "new flow" sequence are distinct from older lavas from this area but are variable at a level outside analytical uncertainty. These intraflow variations can not easily be related to a single, common parent magma. Compositional variability within the new flow is compared to that of other recently documented individual flow sequences, and this comparison reveals a strong positive correlation of compositional variance with flow volumes spanning a range of >2 orders of magnitude. The geochemical heterogeneity in the North Gorda new flow probably reflects incomplete mixing of magmas generated from a heterogeneous mantle source or from slightly different melting conditions of a single source. The compositional variability, range in sample ages (up to 6 weeks) and range in active seismicity (4 weeks) imply that this relatively large flow was erupted over an interval of several weeks.

  13. Geochemical discrimination of five pleistocene Lava-Dam outburst-flood deposits, western Grand Canyon, Arizona

    Fenton, C.R.; Poreda, R.J.; Nash, B.P.; Webb, R.H.; Cerling, T.E.

    2004-01-01

    Pleistocene basaltic lava dams and outburst-flood deposits in the western Grand Canyon, Arizona, have been correlated by means of cosmogenic 3He (3Hec) ages and concentrations of SiO2, Na2O, K2O, and rare earth elements. These data indicate that basalt clasts and vitroclasts in a given outburst-flood deposit came from a common source, a lava dam. With these data, it is possible to distinguish individual dam-flood events and improve our understanding of the interrelations of volcanism and river processes. At least five lava dams on the Colorado River failed catastrophically between 100 and 525 ka; subsequent outburst floods emplaced basalt-rich deposits preserved on benches as high as 200 m above the current river and up to 53 km downstream of dam sites. Chemical data also distinguishes individual lava flows that were collectively mapped in the past as large long-lasting dam complexes. These chemical data, in combination with age constraints, increase our ability to correlate lava dams and outburst-flood deposits and increase our understanding of the longevity of lava dams. Bases of correlated lava dams and flood deposits approximate the elevation of the ancestral river during each flood event. Water surface profiles are reconstructed and can be used in future hydraulic models to estimate the magnitude of these large-scale floods.

  14. A Sinuous Tumulus over an Active Lava Tube at Klauea Volcano: Evolution, Analogs, and Hazard Forecasts

    Orr, Tim R.; Bleacher, Jacob E.; Patrick, Matthew R.; Wooten, Kelly M.

    2015-01-01

    Inflation of narrow tube-fed basaltic lava flows (tens of meters across), such as those confined by topography, can be focused predominantly along the roof of a lava tube. This can lead to the development of an unusually long tumulus, its shape matching the sinuosity of the underlying lava tube. Such a situation occurred during Klauea Volcanos (Hawaii, USA) ongoing East Rift Zone eruption on a lava tube active from July through November 2010. Short-lived breakouts from the tube buried the flanks of the sinuous, ridge-like tumulus, while the tumulus crest, its surface composed of lava formed very early in the flows emplacement history, remained poised above the surrounding younger flows. At least several of these breakouts resulted in irrecoverable uplift of the tube roof. Confined sections of the prehistoric Carrizozo and McCartys flows (New Mexico, USA) display similar sinuous, ridge-like features with comparable surface age relationships. We contend that these distinct features formed in a fashion equivalent to that of the sinuous tumulus that formed at Kilauea in 2010. Moreover, these sinuous tumuli may be analogs for some sinuous ridges evident in orbital images of the Tharsis volcanic province on Mars. The short-lived breakouts from the sinuous tumulus at Kilauea were caused by surges in discharge through the lava tube, in response to cycles of deflation and inflation (DI events) at Kilauea's summit. The correlation between DI events and subsequent breakouts aided in lava flow forecasting. Breakouts from the sinuous tumulus advanced repeatedly toward the sparsely populated Kalapana Gardens subdivision, destroying two homes and threatening others. Hazard assessments, including flow occurrence and advance forecasts, were relayed regularly to the Hawai?i County Civil Defense to aid their lava flow hazard mitigation efforts while this lava tube was active.

  15. Degassing driving crystallization of plagioclase phenocrysts in lava tube stalactites on Mount Etna (Sicily, Italy)

    Lanzafame, Gabriele; Ferlito, Carmelo

    2014-10-01

    Basaltic lava flows can form tubes in response to the cooling of the outer surface. We collected lava stalactites (frozen lava tears) and sampled lava from the ceilings of three lava tubes on Mount Etna. Comparison of the petrographic characters between ceiling lavas and relative stalactites reveals surprising differences in the groundmass textures and crystal compositions. Major and trace element contents in stalactites show only a slight increase in alkali and SiO2 compared to ceiling lava, whereas significant differences exist in composition and textures between plagioclases within the ceiling lava and those within the stalactites, being in the last case definitively more An-rich. We advance the hypothesis that the high temperature reached in the cave caused the exsolution of the volatiles still trapped in the dripping melt. The volatiles, mainly H2O, formed bubbles and escaped from the melt; such a water-loss might have promoted the silicate polymerization in the stalactites resulting in the growth of An-rich plagioclase phenocrysts. Our results have important implications: in fact plagioclase phenocrysts are usually associated with intratelluric growth and are often considered as the main petrologic evidence for the existence of a magma chamber. The textural and chemical features of plagioclases in stalactites prove that phenocryst growth in syn to post-eruptive conditions is plausible and clearly explains the relatively low viscosity of many phenocryst-rich lava flows on Mount Etna, as well as on many other volcanoes around the world. Therefore, we can conclude that plagioclase phenocrysts cannot exclusively be considered as having originated within a magma chamber.

  16. Formation processes of the 1909 Tarumai and the 1944 Usu lava domesin Hokkaido, Japan

    I. Yokoyama

    2004-06-01

    Full Text Available The formation of the two particular lava domes in Hokkaido, Japan is described and interpreted mainly from geophysical viewpoints. The 1909 eruption of Tarumai volcano was not violent but produced a lava dome over four days. The growth rate of the dome is discussed under the assumption that the lava flow was viscous and plastic fluid during its effusion. By Hagen-Poiseuille?s Law, the length of the conduit of the lava dome is rather ambiguously determined as a function of viscosity of the magma and diameter of the conduit. The 1944 Usu dome extruded as a parasitic cone of Usu volcano, not in the crater, but in a flat cornfield at the foot of the volcano. From the beginning to the end for more than 17 months, seismometric and geodetic observations of the dome activity were carried out by several pioneering geophysicists. Utilizing their data, pseudo growth curves of the dome at each stage can be drawn. The lava ascended rather uniformly, causing uplift of the ground surface until half-solidified lava reached the surface six months after the deformation began. Thereafter, the lava dome added lateral displacements and finally achieved its onion structure. These two lava domes are of contrasting character, one is andesitic and formed quickly while the other is dacitic and formed slowly, but both of them behaved as viscous and plastic flows during effusion. It is concluded that both the lava domes formed by uplift of magma forced to flow through the conduits, analogous to squeezing toothpaste out of a tube.

  17. Bathymetry of Lake Erie and Lake Saint Clair

    National Oceanic and Atmospheric Administration, Department of Commerce — Bathymetry of Lake Erie and Lake Saint Clair has been compiled as a component of a NOAA project to rescue Great Lakes lake floor geological and geophysical data and...

  18. Effect of the radiation in the thermoluminescent properties of lava

    Correcher, V; García, J

    2003-01-01

    Blue thermoluminescence (Tl) emission from different lavas of many places (Costa Rica, Canary Islands, Hawaii Islands, Iceland and Italy) corresponding to different eruptions has been studied to know its potential use in the field of dating and retrospective dosimetry. Due to the light emission is linked to the point defects of the crystalline lattice structure, X-ray diffraction analyses were performed to determine the components of this poly mineral material that mostly are cristobalite, plagioclase and phyllosilicates. Exposures to different doses (in a range of 1-25 Gy) were given to each sample to determine the evolution of the Tl signal with the irradiation under laboratory conditions. In all cases, a linear response could be observed and no saturation has been detected in this range of doses. Both natural (NTL) and induced (ITL) Tl signal exhibit a complex glow curve structure associated to a continuous trap distribution over 100 C that could be attributed to the formation-annihilation [Al0 sub 4 /alka...

  19. Nature and Significance of the High-Sr Aleutian Lavas

    Yogodzinski, G. M.; Arndt, S.; Turka, J. R.; Kelemen, P. B.; Vervoort, J. D.; Portnyagin, M.; Hoernle, K.

    2011-12-01

    Results of the Western Aleutian Volcano Expedition and German-Russian KALMAR cruises include the discovery of seafloor volcanism at the Ingenstrem Depression and at unnamed seamounts 300 km west of Buldir, the westernmost emergent volcano in the Aleutian arc. These discoveries indicate that the surface expression of active Aleutian volcanism goes below sea level just west of Buldir, but is otherwise continuous along the full length of the arc. Many lavas dredged from western Aleutian seamounts are basalts, geochemically similar to basalts from elsewhere in Aleutians and other arcs (La/Yb 4-8, Sr/Y700 ppm Sr), which are mostly plagioclase-hornblende andesites and dacites with low Y and middle-heavy rare-earth elements, fractionated trace element patterns (Sr/Y=50-200, La/Yb=9-25) and MORB-like isotopes (87Sr/86Sr 0.65) with 1250-1700 ppm Sr, 4-7 ppm Y, low abundances of all rare-earth elements (LaMexico. [1] Zimmer et al., 2010, J. Petrology, v. 51, p. 2411

  20. Dielectric properties of lava flows west of Ascraeus Mons, Mars

    Carter, L.M.; Campbell, B.A.; Holt, J.W.; Phillips, R.J.; Putzig, N.E.; Mattei, S.; Seu, R.; Okubo, C.H.; Egan, A.F.

    2009-01-01

    The SHARAD instrument on the Mars Reconnaissance Orbiter detects subsurface interfaces beneath lava flow fields northwest of Ascraeus Mons. The interfaces occur in two locations; a northern flow that originates south of Alba Patera, and a southern flow that originates at the rift zone between Ascraeus and Pavonis Montes. The northern flow has permittivity values, estimated from the time delay of echoes from the basal interface, between 6.2 and 17.3, with an average of 12.2. The southern flow has permittivity values of 7.0 to 14.0, with an average of 9.8. The average permittivity values for the northern and southern flows imply densities of 3.7 and 3.4 g cm-3, respectively. Loss tangent values for both flows range from 0.01 to 0.03. The measured bulk permittivity and loss tangent values are consistent with those of terrestrial and lunar basalts, and represent the first measurement of these properties for dense rock on Mars. Copyright 2009 by the American Geophysical Union.

  1. Evidence for Amazonian highly viscous lavas in the southern highlands on Mars

    Brož, Petr; Hauber, E.; Platz, T.; Balme, M.

    2015-01-01

    Roč. 415, 1 April (2015), s. 200-212 ISSN 0012-821X Institutional support: RVO:67985530 Keywords : Mars surface * volcanology * lava dome Subject RIV: DC - Siesmology, Volcanology, Earth Structure Impact factor: 4.326, year: 2015

  2. Extensive young silicic volcanism produces large deep submarine lava flows in the NE Lau Basin

    Embley, Robert W.; Rubin, Kenneth H.

    2018-04-01

    New field observations reveal that extensive (up to 402 km2) aphyric, glassy dacite lavas were erupted at multiple sites in the recent past in the NE Lau basin, located about 200 km southwest of Samoa. This discovery of volumetrically significant and widespread submarine dacite lava flows extends the domain for siliceous effusive volcanism into the deep seafloor. Although several lava flow fields were discovered on the flank of a large silicic seamount, Niuatahi, two of the largest lava fields and several smaller ones ("northern lava flow fields") were found well north of the seamount. The most distal portion of the northernmost of these fields is 60 km north of the center of Niuatahi caldera. We estimate that lava flow lengths from probable eruptive vents to the distal ends of flows range from a few km to more than 10 km. Camera tows on the shallower, near-vent areas show complex lava morphology that includes anastomosing tube-like pillow flows and ropey surfaces, endogenous domes and/or ridges, some with "crease-like" extrusion ridges, and inflated lobes with extrusion structures. A 2 × 1.5 km, 30-m deep depression could be an eruption center for one of the lava flow fields. The Lau lava flow fields appear to have erupted at presumptive high effusion rates and possibly reduced viscosity induced by presumptive high magmatic water content and/or a high eruption temperature, consistent with both erupted composition ( 66% SiO2) and glassy low crystallinity groundmass textures. The large areal extent (236 km2) and relatively small range of compositional variation ( σ = 0.60 for wt% Si02%) within the northern lava flow fields imply the existence of large, eruptible batches of differentiated melt in the upper mantle or lower crust of the NE Lau basin. At this site, the volcanism could be controlled by deep crustal fractures caused by the long-term extension in this rear-arc region. Submarine dacite flows exhibiting similar morphology have been described in ancient

  3. Mauna Loa lava accumulation rates at the Hilo drill site: Formation of lava deltas during a period of declining overall volcanic growth

    Lipman, P.W.; Moore, J.G.

    1996-01-01

    Accumulation rates for lava flows erupted from Mauna Loa, as sampled in the uppermost 280 m of the Hilo drill hole, vary widely for short time intervals (several thousand years), but overall are broadly similar to those documented elsewhere on this volcano since 100 ka. Thickness variations and accumulation rates for Mauna Loa lavas at the Hilo drill site have been strongly affected by local paleotopography, including funneling and ponding between Mauna Kea and Kilauea. In addition, gentle submerged slopes of Mauna Kea in Hilo Bay have permitted large shoreline displacements by Mauna Loa flows. Ages of eruptive intervals have been determined from published isotopic data and from eustatic sea level curves modified to include the isostatic subsidence of the island of Hawaii at 2.2-2.6 mm/yr. Prior to 10 ka, rates of Mauna Loa lava accumulation at the drill site varied from 0.6 to 4.3 mm/yr for dateable intervals, with an overall rate of 1.8 mm/yr. Major eruptive pulses at about 1.3 and 10 ka, each probably representing a single long-lived eruption based on lack of weathering between flow units, increase the overall accumulation rate to 2.4 mm/yr. The higher rate since 10 ka reflects construction of thick near-shoreline lava deltas as postglacial sea levels rose rapidly. Large lava deltas form only along coastal segments where initially subaerial slopes have been submerged by the combined effects of eustatic sea level rise, isostatic subsidence, or spreading of volcano flanks. Overall accumulation of 239 m of lava at the drill site since 100-120 ka closely balances submergence of the Hilo area, suggesting that processes of coastal lava deposition have been modulated by rise in sea level. The Hilo accumulation rate is slightly higher than average rates of 1-2 mm/yr determined elsewhere along the Mauna Loa coast, based on rates of shoreline coverage and dated sea cliff and fault scarp exposures. Low rates of coastal lava accumulation since 100 ka, near or below the rate

  4. The Chaitén rhyolite lava dome: Eruption sequence, lava dome volumes, rapid effusion rates and source of the rhyolite magma

    Pallister, John S.; Diefenbach, Angela K.; Burton, William C.; Munoz, Jorge; Griswold, Julia P.; Lara, Luis E.; Lowenstern, Jacob B.; Valenzuela, Carolina E.

    2013-01-01

    We use geologic field mapping and sampling, photogrammetric analysis of oblique aerial photographs, and digital elevation models to document the 2008-2009 eruptive sequence at Chaitén Volcano and to estimate volumes and effusion rates for the lava dome. We also present geochemical and petrologic data that contribute to understanding the source of the rhyolite and its unusually rapid effusion rates. The eruption consisted of five major phases: 1. An explosive phase (1-11 May 2008); 2. A transitional phase (11-31 May 2008) in which low-altitude tephra columns and simultaneous lava extrusion took place; 3. An exogenous lava flow phase (June-September 2008); 4. A spine extrusion and endogenous growth phase (October 2008-February 2009); and 5. A mainly endogenous growth phase that began after the collapse of a prominent Peléean spine on 19 February 2009 and continued until the end of the eruption (late 2009 or possibly earliest 2010). The 2008-2009 rhyolite lava dome has a total volume of approximately 0.8 km3. The effusion rate averaged 66 m3s-1 during the first two weeks and averaged 45 m3s-1 for the first four months of the eruption, during which 0.5 km3 of rhyolite lava was erupted. These are among the highest rates measured world-wide for historical eruptions of silicic lava. Chaitén’s 2008-2009 lava is phenocryst-poor obsidian and microcrystalline rhyolite with 75.3±0.3% SiO2. The lava was erupted at relatively high temperature and is remarkably similar in composition and petrography to Chaitén’s pre-historic rhyolite. The rhyolite’s normative composition plots close to that of low pressure (100-200 MPa) minimum melts in the granite system, consistent with estimates of approximately 5 to 10 km source depths based on phase equilibria and geodetic studies. Calcic plagioclase, magnesian orthopyroxene and aluminous amphibole among the sparse phenocrysts suggest derivation of the rhyolite by melt extraction from a more mafic magmatic mush. High temperature

  5. Lake or Pond WBID

    Vermont Center for Geographic Information — The VT DEC (Vermont Department of Environmental Conservation) manages an inventory of lake and pond information. The "Lakes and Ponds Inventory" stores the Water...

  6. National Lakes Assessment Data

    U.S. Environmental Protection Agency — The National Lakes Assessment (NLA) is a first-ever statistically-valid survey of the biological condition of lakes and reservoirs throughout the U.S. The U.S....

  7. DNR 24K Lakes

    Minnesota Department of Natural Resources — Medium scale lake polygons derived from the National Wetlands Inventory (NWI) polygons and MnDOT Basemap lake delineations. Integrated with the DNR 24K Streams...

  8. Measuring effusion rates of obsidian lava flows by means of satellite thermal data

    Coppola, D.; Laiolo, M.; Franchi, A.; Massimetti, F.; Cigolini, C.; Lara, L. E.

    2017-11-01

    Space-based thermal data are increasingly used for monitoring effusive eruptions, especially for calculating lava discharge rates and forecasting hazards related to basaltic lava flows. The application of this methodology to silicic, more viscous lava bodies (such as obsidian lava flows) is much less frequent, with only few examples documented in the last decades. The 2011-2012 eruption of Cordón Caulle volcano (Chile) produced a voluminous obsidian lava flow ( 0.6 km3) and offers an exceptional opportunity to analyze the relationship between heat and volumetric flux for such type of viscous lava bodies. Based on a retrospective analysis of MODIS infrared data (MIROVA system), we found that the energy radiated by the active lava flow is robustly correlated with the erupted lava volume, measured independently. We found that after a transient time of about 15 days, the coefficient of proportionality between radiant and volumetric flux becomes almost steady, and stabilizes around a value of 5 × 106 J m- 3. This coefficient (i.e. radiant density) is much lower than those found for basalts ( 1 × 108 J m- 3) and likely reflects the appropriate spreading and cooling properties of the highly-insulated, viscous flows. The effusion rates trend inferred from MODIS data correlates well with the tremor amplitude and with the plume elevation recorded throughout the eruption, thus suggesting a link between the effusive and the coeval explosive activity. Modelling of the eruptive trend indicates that the Cordón Caulle eruption occurred in two stages, either incompletely draining a single magma reservoir or more probably tapping multiple interconnected magmatic compartments.

  9. Analysis of Active Lava Flows on Kilauea Volcano, Hawaii, Using SIR-C Radar Correlation Measurements

    Zebker, H. A.; Rosen, P.; Hensley, S.; Mouginis-Mark, P. J.

    1995-01-01

    Precise eruption rates of active pahoehoe lava flows on Kilauea volcano, Hawaii, have been determined using spaceborne radar data acquired by the Space Shuttle Imaging Radar-C (SIR-C). Measurement of the rate of lava flow advance, and the determination of the volume of new material erupted in a given period of time, are among the most important observations that can be made when studying a volcano.

  10. Geochemistry of tholeiitic and alkalic lavas from the Koolau Range, Oahu, Hawaii

    Roden, M.F.; Frey, F.A.

    1984-01-01

    Lavas of the post-erosional, alkalic Honolulu Volcanics have significantly lower 87 Sr/ 86 Sr and higher 143 Nd/ 144 Nd than the older and underlying Koolau tholeiites which form the Koolau shield of eastern Oahu, Hawaii. Despite significant compositional variation within lavas forming the Honolulu Volcanics, these lavas are isotopically (Sr, Nd, Pb) very similar which contrasts with the isotopic heterogeneity of the Koolau tholeiites. Among Hawaiian tholeiitic suites, the Koolau lavas are geochemically distinct because of their lower iron contents and Sr and Nd isotopic ratios which range to bulk earth values. These geochemical data preclude simple models such as derivation of the Honolulu Volcanics and Koolau tholeiites from a common source by different degrees of melting or by mixing of two geochemically distinct sources. There may be no genetic relationship between the origin and evolution of these two lava suites; however, the trend shown by Koolau Range lavas of increasing 143 Nd/ 144 Nd and decreasing 87 Sr/ 86 Sr with decreasing eruption age and increasing alkalinity also occurs at Haleakala, East Molokai and Kauai volcaneoes. A complex mixing model proposed for Haleakala lavas can account for the variations in Sr and Nd isotopic ratios and processes occurring during ascent of relatively enriched mantle through relatively depleted MORB-related lithosphere. Although two isotopically distinct components may be sufficient to explain Sr and Nd isotopic variations at individual Hawaiian volcaneoes, more than two isotopically distinct materials are required to explain variations of Sr, Nd and Pb isotopic ratios in all Hawaiian lavas. (orig.)

  11. Evidence for contamination of recent Hawaiian lavas from 230Th-238U data

    Condomines, M.; Bernat, M.; Allegre, C.J.

    1976-01-01

    230 Th- 238 U radioactive disequilibrium was studied in the historical lava flows of the Mauna Loa and Kilauea, Hawaii. Large variations of the ( 230 Th/ 232 Th) ratio among lavas of the same volcano that were erupted at a few years' interval are interpreted as due to contamination. The contamination probably occurs by assimilation of zeolitic minerals formed by seawater interaction while the magma resides in a superficial chamber. (Auth.)

  12. Emplacement and erosive effects of the south Kasei Valles lava on Mars

    Dundas, Colin M.; Keszthelyi, Laszlo P.

    2014-01-01

    Although it has generally been accepted that the Martian outflow channels were carved by floods of water, observations of large channels on Venus and Mercury demonstrate that lava flows can cause substantial erosion. Recent observations of large lava flows within outflow channels on Mars have revived discussion of the hypothesis that the Martian channels are also produced by lava. An excellent example is found in south Kasei Valles (SKV), where the most recent major event was emplacement of a large lava flow. Calculations using high-resolution Digital Terrain Models (DTMs) demonstrate that this flow was locally turbulent, similar to a previously described flood lava flow in Athabasca Valles. The modeled peak local flux of approximately 106 m3 s−1 was approximately an order of magnitude lower than that in Athabasca, which may be due to distance from the vent. Fluxes close to 107 m3 s−1 are estimated in some reaches but these values are probably records of local surges caused by a dam-breach event within the flow. The SKV lava was locally erosive and likely caused significant (kilometer-scale) headwall retreat at several cataracts with tens to hundreds of meters of relief. However, in other places the net effect of the flow was unambiguously aggradational, and these are more representative of most of the flow. The larger outflow channels have lengths of thousands of kilometers and incision of a kilometer or more. Therefore, lava flows comparable to the SKV flow did not carve the major Martian outflow channels, although the SKV flow was among the largest and highest-flux lava flows known in the Solar System.

  13. The Etendeka lavas SWA/Namibia: geology, chemistry and spatial and temporal relationships

    Marsh, J.S.; Erlank, A.J.; Duncan, A.R.; Miller, R.McG.; Rex, D.C.

    1981-01-01

    The paper discusses a geologic survey on the Etendeka lavas in South West Africa/Namibia with special attention to the geology, chemistry and spatial and temporal relationships in the area. K/Ar age data indicate that the bulk of the Etendeka lavas are about 120 m.y. old. In the study use was also made of 87 Sr/ 86 Sr, 143 Nd/ 144 Nd, 206 Pb/ 204 Pb, 207 Pb/ 204 Pb and 208 Pb/ 204 Pb isotope ratios

  14. Subaqueous rhyolite block lavas in the Miocene Ushikiri Formation, Shimane Peninsula, SW Japan

    Kano, Kazuhiko; Takeuchi, Keiji; Yamamoto, Takahiro; Hoshizumi, Hideo

    1991-06-01

    A rhyolite mass of the Miocene Ushikiri Formation in the western part of the Shimane Peninsula, SW Japan, is a small subaqueous edifice about 600 m high and 4 km wide, formed at water depths between 200 and 1000 m. It consists mainly of three relatively flat, lava-flow units 50-300 m in maximum thickness, each of which includes lobes and their polyhedral fragments. The lava lobes are poorly to well vesiculated, glassy to microcrystalline and flow-banded and -folded. Compared with mafic pillows, they are large, having thick, quenched and brecciated, glassy crusts because of their high viscosity, surface tension and thermal conductivity. Their surfaces disintegrate into polyhedral fragments and grade into massive volcanic breccia. The massive volcanic breccia composed of the lobe fragments is poorly sorted and covered with stratified volcanic breccia of the same rock type. The rhyolite lavas commonly bifurcate in a manner similar to mafic pillow lavas. However, they are highly silicic with 1-5 vol.% phenocrysts and have elongated vesicles and flow-folds, implying that they were visco-plastic during flowage. Their surface features are similar to those of subaerial block lava. With respect to rheological and morphological features, they are subaqueous equivalents of block lava.

  15. Retrospective validation of a lava-flow hazard map for Mount Etna volcano

    Ciro Del Negro

    2011-12-01

    Full Text Available This report presents a retrospective methodology to validate a long-term hazard map related to lava-flow invasion at Mount Etna, the most active volcano in Europe. A lava-flow hazard map provides the probability that a specific point will be affected by potential destructive volcanic processes over the time period considered. We constructed this lava-flow hazard map for Mount Etna volcano through the identification of the emission regions with the highest probabilities of eruptive vents and through characterization of the event types for the numerical simulations and the computation of the eruptive probabilities. Numerical simulations of lava-flow paths were carried out using the MAGFLOW cellular automata model. To validate the methodology developed, a hazard map was built by considering only the eruptions that occurred at Mount Etna before 1981. On the basis of the probability of coverage by lava flows, the map was divided into ten classes, and two fitting scores were calculated to measure the overlap between the hazard classes and the actual shapes of the lava flows that occurred after 1981.

  16. Influence of conduit flow mechanics on magma rheology and the growth style of lava domes

    Husain, Taha; Elsworth, Derek; Voight, Barry; Mattioli, Glen; Jansma, Pamela

    2018-06-01

    We develop a 2-D particle-mechanics model to explore different lava-dome growth styles. These range from endogenous lava dome growth comprising expansion of a ductile dome core to the exogenous extrusion of a degassed lava plug resulting in generation of a lava spine. We couple conduit flow dynamics with surface growth of the evolving lava dome, fuelled by an open-system magma chamber undergoing continuous replenishment. The conduit flow model accounts for the variation in rheology of ascending magma that results from degassing-induced crystallization. A period of reduced effusive flow rates promote enhanced degassing-induced crystallization. A degassed lava plug extrudes exogenously for magmas with crystal contents (ϕ) of 78 per cent, yield strength >1.62 MPa, and at flow rates of 3 m3 s-1) for magma with lower relative yield strengths (p = 3 MPa) at the conduit exit is forced out by the high discharge rate pulse (2 process, which has been observed at Mount St. Helens and other locations, largely reflects gravitational loading of dome with a viscous core, with retardation by yield strength and talus friction.

  17. Experimental Insights on Natural Lava-Ice/Snow Interactions and Their Implications for Glaciovolcanic and Submarine Eruptions

    Edwards, B. R.; Karson, J.; Wysocki, R.; Lev, E.; Bindeman, I. N.; Kueppers, U.

    2012-12-01

    Lava-ice-snow interactions have recently gained global attention through the eruptions of ice-covered volcanoes, particularly from Eyjafjallajokull in south-central Iceland, with dramatic effects on local communities and global air travel. However, as with most submarine eruptions, direct observations of lava-ice/snow interactions are rare. Only a few hundred potentially active volcanoes are presently ice-covered, these volcanoes are generally in remote places, and their associated hazards make close observation and measurements dangerous. Here we report the results of the first large-scale experiments designed to provide new constraints on natural interactions between lava and ice/snow. The experiments comprised controlled effusion of tens of kilograms of melted basalt on top of ice/snow, and provide insights about observations from natural lava-ice-snow interactions including new constraints for: 1) rapid lava advance along the ice-lava interface; 2) rapid downwards melting of lava flows through ice; 3) lava flow exploitation of pre-existing discontinuities to travel laterally beneath and within ice; and 4) formation of abundant limu o Pele and non-explosive vapor transport from the base to the top of the lava flow with minor O isotope exchange. The experiments are consistent with observations from eruptions showing that lava is more efficient at melting ice when emplaced on top of the ice as opposed to beneath the ice, as well as the efficacy of tephra cover for slowing melting. The experimental extrusion rates are as within the range of those for submarine eruptions as well, and reproduce some features seen in submarine eruptions including voluminous production of gas rich cavities within initially anhydrous lavas and limu on lava surfaces. Our initial results raise questions about the possibility of secondary ingestion of water by submarine and glaciovolcanic lava flows, and the origins of apparent primary gas cavities in those flows. Basaltic melt moving down

  18. Contrasting perspectives on the Lava Creek Tuff eruption, Yellowstone, from new U-Pb and 40Ar/39Ar age determinations

    Wilson, Colin J. N.; Stelten, Mark E.; Lowenstern, Jacob B.

    2018-06-01

    The youngest major caldera-forming event at Yellowstone was the 630-ka eruption of the Lava Creek Tuff. The tuff as mapped consists of two major ignimbrite packages (members A and B), linked to widespread coeval fall deposits and formation of the Yellowstone Caldera. Subsequent activity included emplacement of numerous rhyolite flows and domes, and development of two structurally resurgent domes (Mallard Lake and Sour Creek) that accommodate strain due to continual uplift/subsidence cycles. Uplifted lithologies previously mapped on and adjacent to Sour Creek dome were thought to include the 2.08-Ma Huckleberry Ridge Tuff, cropping out beneath Lava Creek Tuff members A and B. Mapped outcrops of this Huckleberry Ridge Tuff material were sampled as welded ignimbrite (sample YR345) on Sour Creek dome, and at nearby Bog Creek as welded ignimbrite (YR311) underlain by an indurated lithic lag breccia containing blocks of another welded ignimbrite (YR324). Zircon near-rim U-Pb analyses from these samples yield weighted mean ages of 661 ± 13 ka (YR345: 95% confidence), 655 ± 11 ka (YR311), and 664 ± 15 ka (YR324) (combined weighted mean of 658.8 ± 6.6 ka). We also studied two samples of ignimbrite previously mapped as Huckleberry Ridge Tuff on the northeastern perimeter of the Yellowstone Caldera, 12 km ENE of Sour Creek dome. Sanidines from these samples yield 40Ar/39Ar age estimates of 634.5 ± 6.8 ka (8YC-358) and 630.9 ± 4.1 ka (8YC-359). These age data show that all these units represent previously unrecognized parts of the Lava Creek Tuff and do not have any relationship to the Huckleberry Ridge Tuff. Our observations and data imply that the Lava Creek eruption was more complex than is currently assumed, incorporating two tuff units additional to those currently mapped, and which themselves are separated by a time break sufficient for cooling and some reworking. The presence of a lag breccia suggests that a source vent lay nearby (Caldera boundary in this area

  19. Contrasting perspectives on the Lava Creek Tuff eruption, Yellowstone, from new U–Pb and 40Ar/39Ar age determinations

    Wilson, Colin J. N.; Stelten, Mark; Lowenstern, Jacob B.

    2018-01-01

    The youngest major caldera-forming event at Yellowstone was the ~ 630-ka eruption of the Lava Creek Tuff. The tuff as mapped consists of two major ignimbrite packages (members A and B), linked to widespread coeval fall deposits and formation of the Yellowstone Caldera. Subsequent activity included emplacement of numerous rhyolite flows and domes, and development of two structurally resurgent domes (Mallard Lake and Sour Creek) that accommodate strain due to continual uplift/subsidence cycles. Uplifted lithologies previously mapped on and adjacent to Sour Creek dome were thought to include the ~ 2.08-Ma Huckleberry Ridge Tuff, cropping out beneath Lava Creek Tuff members A and B. Mapped outcrops of this Huckleberry Ridge Tuff material were sampled as welded ignimbrite (sample YR345) on Sour Creek dome, and at nearby Bog Creek as welded ignimbrite (YR311) underlain by an indurated lithic lag breccia containing blocks of another welded ignimbrite (YR324). Zircon near-rim U–Pb analyses from these samples yield weighted mean ages of 661 ± 13 ka (YR345: 95% confidence), 655 ± 11 ka (YR311), and 664 ± 15 ka (YR324) (combined weighted mean of 658.8 ± 6.6 ka). We also studied two samples of ignimbrite previously mapped as Huckleberry Ridge Tuff on the northeastern perimeter of the Yellowstone Caldera, ~ 12 km ENE of Sour Creek dome. Sanidines from these samples yield 40Ar/39Ar age estimates of 634.5 ± 6.8 ka (8YC-358) and 630.9 ± 4.1 ka (8YC-359). These age data show that all these units represent previously unrecognized parts of the Lava Creek Tuff and do not have any relationship to the Huckleberry Ridge Tuff. Our observations and data imply that the Lava Creek eruption was more complex than is currently assumed, incorporating two tuff units additional to those currently mapped, and which themselves are separated by a time break sufficient for cooling and some reworking. The presence of a lag breccia suggests that a source

  20. Geochemistry of southern Pagan Island lavas, Mariana arc: The role of subduction zone processes

    Marske, J.P.; Pietruszka, A.J.; Trusdell, F.A.; Garcia, M.O.

    2011-01-01

    New major and trace element abundances, and Pb, Sr, and Nd isotopic ratios of Quaternary lavas from two adjacent volcanoes (South Pagan and the Central Volcanic Region, or CVR) located on Pagan Island allow us to investigate the mantle source (i.e., slab components) and melting dynamics within the Mariana intra-oceanic arc. Geologic mapping reveals a pre-caldera (780-9.4ka) and post-caldera (<9.4ka) eruptive stage for South Pagan, whereas the eruptive history of the older CVR is poorly constrained. Crystal fractionation and magma mixing were important crustal processes for lavas from both volcanoes. Geochemical and isotopic variations indicate that South Pagan and CVR lavas, and lavas from the northern volcano on the island, Mt. Pagan, originated from compositionally distinct parental magmas due to variations in slab contributions (sediment and aqueous fluid) to the mantle wedge and the extent of mantle partial melting. A mixing model based on Pb and Nd isotopic ratios suggests that the average amount of sediment in the source of CVR (~2.1%) and South Pagan (~1.8%) lavas is slightly higher than Mt. Pagan (~1.4%) lavas. These estimates span the range of sediment-poor Guguan (~1.3%) and sediment-rich Agrigan (~2.0%) lavas for the Mariana arc. Melt modeling demonstrates that the saucer-shaped normalized rare earth element (REE) patterns observed in Pagan lavas can arise from partial melting of a mixed source of depleted mantle and enriched sediment, and do not require amphibole interaction or fractionation to depress the middle REE abundances of the lavas. The modeled degree of mantle partial melting for Agrigan (2-5%), Pagan (3-7%), and Guguan (9-15%) lavas correlates with indicators of fluid addition (e.g., Ba/Th). This relationship suggests that the fluid flux to the mantle wedge is the dominant control on the extent of partial melting beneath Mariana arc volcanoes. A decrease in the amount of fluid addition (lower Ba/Th) and extent of melting (higher Sm/Yb), and

  1. Development of lava tubes in the light of observations at Mauna Ulu, Kilauea Volcano, Hawaii

    Peterson, D.W.; Holcomb, R.T.; Tilling, R.I.; Christiansen, R.L.

    1994-01-01

    During the 1969-1974 Mauna Ulu eruption on Kilauea's upper east rift zone, lava tubes were observed to develop by four principal processes: (1) flat, rooted crusts grew across streams within confined channels; (2) overflows and spatter accreted to levees to build arched roofs across streams; (3) plates of solidified crust floating downstream coalesced to form a roof; and (4) pahoehoe lobes progressively extended, fed by networks of distributaries beneath a solidified crust. Still another tube-forming process operated when pahoehoe entered the ocean; large waves would abruptly chill a crust across the entire surface of a molten stream crossing through the surf zone. These littoral lava tubes formed abruptly, in contrast to subaerial tubes, which formed gradually. All tube-forming processes were favored by low to moderate volume-rates of flow for sustained periods of time. Tubes thereby became ubiquitous within the pahoehoe flows and distributed a very large proportionof the lava that was produced during this prolonged eruption. Tubes transport lava efficiently. Once formed, the roofs of tubes insulate the active streams within, allowing the lava to retain its fluidity for a longer time than if exposed directly to ambient air temperature. Thus the flows can travel greater distances and spread over wider areas. Even though supply rates during most of 1970-1974 were moderate, ranging from 1 to 5 m3/s, large tube systems conducted lava as far as the coast, 12-13 km distant, where they fed extensive pahoehoe fields on the coastal flats. Some flows entered the sea to build lava deltas and add new land to the island. The largest and most efficient tubes developed during periods of sustained extrusion, when new lava was being supplied at nearly constant rates. Tubes can play a major role in building volcanic edifices with gentle slopes because they can deliver a substantial fraction of lava erupted at low to moderate rates to sites far down the flank of a volcano. We

  2. Morphologic and thermophysical characteristics of lava flows southwest of Arsia Mons, Mars

    Crown, David A.; Ramsey, Michael S.

    2017-08-01

    The morphologic and thermophysical characteristics of part of the extensive lava flow fields southwest of Arsia Mons (22.5-27.5°S, 120-130°W) have been examined using a combination of orbital VNIR and TIR datasets. THEMIS images provide context for the regional geology and record diurnal temperature variability that is diverse and unusual for flow surfaces in such close proximity. CTX images were used to distinguish dominant flow types and assess local age relationships between individual lava flows. CTX and HiRISE images provide detailed information on flow surface textures and document aeolian effects as they reveal fine-grained deposits in many low-lying areas of the flow surfaces as well as small patches of transverse aeolian ridges. Although this region is generally dust-covered and has a lower overall thermal inertia, the THEMIS data indicate subtle spectral variations within the population of lava flows studied. These variations could be due to compositional differences among the flows or related to mixing of flow and aeolian materials. Specific results regarding flow morphology include: a) Two main lava flow types (bright, rugged and dark, smooth as observed in CTX images) dominate the southwest Arsia Mons/NE Daedalia Planum region; b) the bright, rugged flows have knobby, ridged, and/or platy surface textures, commonly have medial channel/levee systems, and may have broad distal lobes; c) the dark, smooth flows extend from distributary systems that consist of combinations of lava channels, lava tubes, and/or sinuous ridges and plateaus; and d) steep-sided, terraced margins, digitate breakout lobes, and smooth-surfaced plateaus along lava channel/tube systems are interpreted as signatures of flow inflation within the dark, smooth flow type. These flows exhibit smoother upper surfaces, are thinner, and have more numerous, smaller lobes, which, along with their the channel-/tube-fed nature, indicate a lower viscosity lava than for the bright, rugged flows

  3. UAV-based remote sensing surveys of lava flow fields: a case study from Etna's 1974 channel-fed lava flows

    Favalli, Massimiliano; Fornaciai, Alessandro; Nannipieri, Luca; Harris, Andrew; Calvari, Sonia; Lormand, Charline

    2018-03-01

    During an eruption, time scales of topographic change are fast and involve vertical and planimetric evolution of millimeters to meters as the event progresses. Repeat production of high spatial resolution terrain models of lava flow fields over time scales of a few hours is thus a high-value capability in tracking the buildup of the deposit. Among the wide range of terrestrial and aerial methods available to collect such topographic data, the use of an unmanned aerial vehicle (UAV) as an acquisition platform, together with structure from motion (SfM) photogrammetry, has become especially useful. This approach allows high-frequency production of centimeter-scale terrain models over kilometer-scale areas, including dangerous and inaccessible zones, with low cost and minimal hazard to personnel. This study presents the application of such an integrated UAV-SfM method to generate a high spatial resolution digital terrain model and orthomosaic of Mount Etna's January-February 1974 lava flow field. The SfM method, applied to images acquired using a UAV platform, enabled the extraction of a very high spatial resolution (20 cm) digital elevation model and the generation of a 3-cm orthomosaic covering an area of 1.35 km2. This spatial resolution enabled us to analyze the morphology of sub-meter-scale features, such as folds, blocks, and cracks, over kilometer-scale areas. The 3-cm orthomosaic allowed us to further push the analysis to centimeter-scale grain size distribution of the lava surface. Using these data, we define three types of crust structure and relate them to positions within a channel-fed ´áā flow system. These crust structures are (i) flow parallel shear lines, (ii) raft zones, and (iii) folded zones. Flow parallel shear lines are found at the channel edges, and are 2-m-wide and 0.25-m-deep zones running along the levee base and in which cracking is intense. They result from intense shearing between the moving channel lava and the static levee lava. In

  4. Subaqueous geology and a filling model for Crater Lake, Oregon

    Nathenson, M.; Bacon, C.R.; Ramsey, D.W.

    2007-01-01

    Results of a detailed bathymetric survey of Crater Lake conducted in 2000, combined with previous results of submersible and dredge sampling, form the basis for a geologic map of the lake floor and a model for the filling of Crater Lake with water. The most prominent landforms beneath the surface of Crater Lake are andesite volcanoes that were active as the lake was filling with water, following caldera collapse during the climactic eruption of Mount Mazama 7700 cal. yr B.P. The Wizard Island volcano is the largest and probably was active longest, ceasing eruptions when the lake was 80 m lower than present. East of Wizard Island is the central platform volcano and related lava flow fields on the caldera floor. Merriam Cone is a symmetrical andesitic volcano that apparently was constructed subaqueously during the same period as the Wizard Island and central platform volcanoes. The youngest postcaldera volcanic feature is a small rhyodacite dome on the east flank of the Wizard Island edifice that dates from 4800 cal. yr B.P. The bathymetry also yields information on bedrock outcrops and talus/debris slopes of the caldera walls. Gravity flows transport sediment from wall sources to the deep basins of the lake. Several debris-avalanche deposits, containing blocks up to 280 m long, are present on the caldera floor and occur below major embayments in the caldera walls. Geothermal phenomena on the lake floor are bacterial mats, pools of solute-rich warm water, and fossil subaqueous hot spring deposits. Lake level is maintained by a balance between precipitation and inflow versus evaporation and leakage. High-resolution bathymetry reveals a series of up to nine drowned beaches in the upper 30 m of the lake that we propose reflect stillstands subsequent to filling of Crater Lake. A prominent wave-cut platform between 4 m depth and present lake level that commonly is up to 40 m wide suggests that the surface of Crater Lake has been at this elevation for a very long time

  5. Sensibility analysis of VORIS lava-flow simulations: application to Nyamulagira volcano, Democratic Republic of Congo

    Syavulisembo, A. M.; Havenith, H.-B.; Smets, B.; d'Oreye, N.; Marti, J.

    2015-03-01

    Assessment and management of volcanic risk are important scientific, economic, and political issues, especially in densely populated areas threatened by volcanoes. The Virunga area in the Democratic Republic of Congo, with over 1 million inhabitants, has to cope permanently with the threat posed by the active Nyamulagira and Nyiragongo volcanoes. During the past century, Nyamulagira erupted at intervals of 1-4 years - mostly in the form of lava flows - at least 30 times. Its summit and flank eruptions lasted for periods of a few days up to more than two years, and produced lava flows sometimes reaching distances of over 20 km from the volcano, thereby affecting very large areas and having a serious impact on the region of Virunga. In order to identify a useful tool for lava flow hazard assessment at the Goma Volcano Observatory (GVO), we tested VORIS 2.0.1 (Felpeto et al., 2007), a freely available software (http://www.gvb-csic.es) based on a probabilistic model that considers topography as the main parameter controlling lava flow propagation. We tested different Digital Elevation Models (DEM) - SRTM1, SRTM3, and ASTER GDEM - to analyze the sensibility of the input parameters of VORIS 2.0.1 in simulation of recent historical lava-flow for which the pre-eruption topography is known. The results obtained show that VORIS 2.0.1 is a quick, easy-to-use tool for simulating lava-flow eruptions and replicates to a high degree of accuracy the eruptions tested. In practice, these results will be used by GVO to calibrate VORIS model for lava flow path forecasting during new eruptions, hence contributing to a better volcanic crisis management.

  6. Diagnostic value of the fluoroscopic triggering 3D LAVA technique for primary liver cancer.

    Shen, Xiao-Yong; Chai, Chun-Hua; Xiao, Wen-Bo; Wang, Qi-Dong

    2010-04-01

    Primary liver cancer (PLC) is one of the common malignant tumors. Liver acquisition with acceleration volume acquisition (LAVA), which allows simultaneous dynamic enhancement of the hepatic parenchyma and vasculature imaging, is of great help in the diagnosis of PLC. This study aimed to evaluate application of the fluoroscopic triggering 3D LAVA technique in the imaging of PLC and liver vasculature. The clinical data and imaging findings of 38 adults with PLC (22 men and 16 women; average age 52 years), pathologically confirmed by surgical resection or biopsy, were collected and analyzed. All magnetic resonance images were obtained with a 1.5-T system (General Electrics Medical Systems) with an eight-element body array coil and application of the fluoroscopic triggering 3D LAVA technique. Overall image quality was assessed on a 5-point scale by two experienced radiologists. All the nodules and blood vessel were recorded and compared. The diagnostic accuracy and feasibility of LAVA were evaluated. Thirty-eight patients gave high quality images of 72 nodules in the liver for diagnosis. The accuracy of LAVA was 97.2% (70/72), and the coincidence rate between the extent of tumor judged by dynamic enhancement and pathological examination was 87.5% (63/72). Displayed by the maximum intensity projection reconstruction, nearly all cases gave satisfactory images of branches III and IV of the hepatic artery. Furthermore, small early-stage enhancing hepatic lesions and the parallel portal vein were also well displayed. Sequence of LAVA provides good multi-phase dynamic enhancement scanning of hepatic lesions. Combined with conventional scanning technology, LAVA effectively and safely displays focal hepatic lesions and the relationship between tumor and normal tissues, especially blood vessels.

  7. Limited role for thermal erosion by turbulent lava in proximal Athabasca Valles, Mars

    Cataldo, Vincenzo; Williams, David A.; Dundas, Colin M.; Kestay, Laszlo P.

    2015-01-01

    The Athabasca Valles flood lava is among the most recent (Mars and was probably emplaced turbulently. The Williams et al. (2005) model of thermal erosion by lava has been applied to what we term “proximal Athabasca,” the 75 km long upstream portion of Athabasca Valles. For emplacement volumes of 5000 and 7500 km3and average flow thicknesses of 20 and 30 m, the duration of the eruption varies between ~11 and ~37 days. The erosion of the lava flow substrate is investigated for three eruption temperatures (1270°C, 1260°C, and 1250°C), and volatile contents equivalent to 0–65 vol % bubbles. The largest erosion depths of ~3.8–7.5 m are at the lava source, for 20 m thick and bubble-free flows that erupted at their liquidus temperature (1270°C). A substrate containing 25 vol % ice leads to maximum erosion. A lava temperature 20°C below liquidus reduces erosion depths by a factor of ~2.2. If flow viscosity increases with increasing bubble content in the lava, the presence of 30–50 vol % bubbles leads to erosion depths lower than those relative to bubble-free lava by a factor of ~2.4. The presence of 25 vol % ice in the substrate increases erosion depths by a factor of 1.3. Nevertheless, modeled erosion depths, consistent with the emplacement volume and flow duration constraints, are far less than the depth of the channel (~35–100 m). We conclude that thermal erosion does not appear to have had a major role in excavating Athabasca Valles.

  8. Benchmarking computational fluid dynamics models of lava flow simulation for hazard assessment, forecasting, and risk management

    Dietterich, Hannah; Lev, Einat; Chen, Jiangzhi; Richardson, Jacob A.; Cashman, Katharine V.

    2017-01-01

    Numerical simulations of lava flow emplacement are valuable for assessing lava flow hazards, forecasting active flows, designing flow mitigation measures, interpreting past eruptions, and understanding the controls on lava flow behavior. Existing lava flow models vary in simplifying assumptions, physics, dimensionality, and the degree to which they have been validated against analytical solutions, experiments, and natural observations. In order to assess existing models and guide the development of new codes, we conduct a benchmarking study of computational fluid dynamics (CFD) models for lava flow emplacement, including VolcFlow, OpenFOAM, FLOW-3D, COMSOL, and MOLASSES. We model viscous, cooling, and solidifying flows over horizontal planes, sloping surfaces, and into topographic obstacles. We compare model results to physical observations made during well-controlled analogue and molten basalt experiments, and to analytical theory when available. Overall, the models accurately simulate viscous flow with some variability in flow thickness where flows intersect obstacles. OpenFOAM, COMSOL, and FLOW-3D can each reproduce experimental measurements of cooling viscous flows, and OpenFOAM and FLOW-3D simulations with temperature-dependent rheology match results from molten basalt experiments. We assess the goodness-of-fit of the simulation results and the computational cost. Our results guide the selection of numerical simulation codes for different applications, including inferring emplacement conditions of past lava flows, modeling the temporal evolution of ongoing flows during eruption, and probabilistic assessment of lava flow hazard prior to eruption. Finally, we outline potential experiments and desired key observational data from future flows that would extend existing benchmarking data sets.

  9. Simulation of core melt spreading with lava: theoretical background and status of validation

    Allelein, H.-J.; Breest, A.; Spengler, C.

    2000-01-01

    The goal of this paper is to present the GRS R and D achievements and perspectives of its approach to simulate ex-vessel core melt spreading. The basic idea followed by GRS is the analogy of core melt spreading to volcanic lava flows. A fact first proposed by Robson (1967) and now widely accepted is that lava rheologically behaves as a Bingham fluid, which is characterized by yield stress and plastic viscosity. Recent experimental investigations by Epstein (1996) reveal that corium-concrete mixtures may be described as Bingham fluids. The GRS code LAVA is based on a successful lava flow model, but is adapted to prototypic corium and corium-simulation spreading. Furthermore some detailed physical models such as a thermal crust model on the free melt surface and a model for heat conduction into the substratum are added. Heat losses of the bulk, which is represented by one mean temperature, are now determined by radiation and by temperature profiles in the upper crust and in the substratum. In order to reduce the weak mesh dependence of the original algorithm, a random space method of cellular automata is integrated, which removes the mesh bias without increasing calculation time. LAVA is successfully validated against a lot of experiments using different materials spread. The validation process has shown that LAVA is a robust and fast running code to simulate corium-type spreading. LAVA provides all integral information of practical interest (spreading length, height of the melt after stabilization) and seems to be an appropriate tool for handling large core melt masses within a plant application. (orig.)

  10. Aynı coğrafyada iki savaş: Troia ve Çanakkale savaşlarının karşılaştırılması

    Körpe, Reyhan

    2015-01-01

    Yaklaşık üç bin yıl arayla aynı topraklarda meydana gelen iki savaş, Troia ve Çanakkale Savaşları sadece coğrafi benzerlikleri değil, nedenleri, oluş şekli ve sonuçları ile birbirine benzemektedir. Birinci Dünya savaşının bir parçası olan Çanakkale Savaşı gibi, arkeolojik kaynaklar Homeros’un destanlaştırdığı Troia Savaşı’nın Tunç Çağların sonunda Batı Anadolu’daki çok büyük bir mücadelenin parçası olduğunu ortaya koymuştur. Çanakkale Savaşları sırasında kullanılan yöntemlerin antik çağ savaş...

  11. Geochemical and Thermodinamic Modeling of Segara Anak Lake and the 2009 Eruption of Rinjani Volcano, Lombok, Indonesia

    Akhmad Solikhin

    2014-06-01

    Anak Lake, and increasing of lake surface temperatures. The new lava flow from May - August 2009 eruption covers an area of 650,000 m2. The shoreline was significantly modified by the entry of lava into Segara Anak Lake. The area of the lake is reduced by 460,000 m2.

  12. Constraining Controls on the Emplacement of Long Lava Flows on Earth and Mars Through Modeling in ArcGIS

    Golder, K.; Burr, D. M.; Tran, L.

    2017-12-01

    Regional volcanic processes shaped many planetary surfaces in the Solar System, often through the emplacement of long, voluminous lava flows. Terrestrial examples of this type of lava flow have been used as analogues for extensive martian flows, including those within the circum-Cerberus outflow channels. This analogy is based on similarities in morphology, extent, and inferred eruptive style between terrestrial and martian flows, which raises the question of how these lava flows appear comparable in size and morphology on different planets. The parameters that influence the areal extent of silicate lavas during emplacement may be categorized as either inherent or external to the lava. The inherent parameters include the lava yield strength, density, composition, water content, crystallinity, exsolved gas content, pressure, and temperature. Each inherent parameter affects the overall viscosity of the lava, and for this work can be considered a subset of the viscosity parameter. External parameters include the effusion rate, total erupted volume, regional slope, and gravity. To investigate which parameter(s) may control(s) the development of long lava flows on Mars, we are applying a computational numerical-modelling to reproduce the observed lava flow morphologies. Using a matrix of boundary conditions in the model enables us to investigate the possible range of emplacement conditions that can yield the observed morphologies. We have constructed the basic model framework in Model Builder within ArcMap, including all governing equations and parameters that we seek to test, and initial implementation and calibration has been performed. The base model is currently capable of generating a lava flow that propagates along a pathway governed by the local topography. At AGU, the results of model calibration using the Eldgá and Laki lava flows in Iceland will be presented, along with the application of the model to lava flows within the Cerberus plains on Mars. We then

  13. Shatter Complex Formation in the Twin Craters Lava Flow, Zuni-Bandera Field, New Mexico

    von Meerscheidt, H. C.; Bleacher, J. E.; Brand, B. D.; deWet, A.; Samuels, R.; Hamilton, C.; Garry, W. B.; Bandfield, J. L.

    2013-12-01

    Lava channels, tubes and sheets are transport structures that deliver flowing lava to a flow front. The type of structure can vary within a flow field and evolve throughout an eruption. The 18.0 × 1.0 ka Twin Craters lava flow in the Zuni-Bandera lava field provides a unique opportunity to study morphological changes of a lava flow partly attributable to interaction with a topographic obstacle. Facies mapping and airborne image analysis were performed on an area of the Twin Craters flow that includes a network of channels, lava tubes, shatter features, and disrupted pahoehoe flows surrounding a 45 m tall limestone bluff. The bluff is 1000 m long (oriented perpendicular to flow.) The general flow characteristics upstream from the bluff include smooth, lobate pahoehoe flows and a >2.5 km long lava tube (see Samuels et al., this meeting.) Emplacement characteristics change abruptly where the flow encountered the bluff, to include many localized areas of disrupted pahoehoe and several pahoehoe-floored depressions. Each depression is fully or partly surrounded by a raised rim of blocky material up to 4 m higher than the surrounding terrain. The rim is composed of 0.05 - 4 m diameter blocks, some of which form a breccia that is welded by lava, and some of which exhibit original flow textures. The rim-depression features are interpreted as shatter rings based on morphological similarity to those described by Orr (2011.Bul Volcanol.73.335-346) in Hawai';i. Orr suggests that shatter rings develop when fluctuations in the lava supply rate over-pressurize the tube, causing the tube roof to repeatedly uplift and subside. A rim of shattered blocks and breccias remains surrounding the sunken tube roof after the final lava withdraws from the system. One of these depressions in the Twin Craters flow is 240 m wide and includes six mounds of shattered material equal in height to the surrounding undisturbed terrain. Several mounds have depressed centers floored with rubbly pahoehoe

  14. Rheology of arc dacite lavas: experimental determination at low strain rates

    Avard, Geoffroy; Whittington, Alan G.

    2012-07-01

    Andesitic-dacitic volcanoes exhibit a large variety of eruption styles, including explosive eruptions, endogenous and exogenous dome growth, and kilometer-long lava flows. The rheology of these lavas can be investigated through field observations of flow and dome morphology, but this approach integrates the properties of lava over a wide range of temperatures. Another approach is through laboratory experiments; however, previous studies have used higher shear stresses and strain rates than are appropriate to lava flows. We measured the apparent viscosity of several lavas from Santiaguito and Bezymianny volcanoes by uniaxial compression, between 1,109 and 1,315 K, at low shear stress (0.085 to 0.42 MPa), low strain rate (between 1.1 × 10-8 and 1.9 × 10-5 s-1), and up to 43.7 % total deformation. The results show a strong variability of the apparent viscosity between different samples, which can be ascribed to differences in initial porosity and crystallinity. Deformation occurs primarily by compaction, with some cracking and/or vesicle coalescence. Our experiments yield apparent viscosities more than 1 order of magnitude lower than predicted by models based on experiments at higher strain rates. At lava flow conditions, no evidence of a yield strength is observed, and the apparent viscosity is best approached by a strain rate- and temperature-dependent power law equation. The best fit for Santiaguito lava, for temperatures between 1,164 and 1,226 K and strain rates lower than 1.8 × 10-4 s-1, is log {η_{{app}}} = - 0.738 + 9.24 × {10^3}{/}T(K) - 0.654 \\cdot log dot{\\varepsilon } where η app is apparent viscosity and dot{\\varepsilon } is strain rate. This equation also reproduced 45 data for a sample from Bezymianny with a root mean square deviation of 0.19 log unit Pa s. Applying the rheological model to lava flow conditions at Santiaguito yields calculated apparent viscosities that are in reasonable agreement with field observations and suggests that

  15. Lava tubes and aquifer vulnerability in the upper Actopan River basin, Veracruz, México

    Espinasa-Pereña, R.; Delgado Granados, H.

    2011-12-01

    Rapid infiltration leads to very dry conditions on the surface of some volcanic terrains, with large allogenic streams sometimes sinking underground upon reaching a lava flow. Aquifers in lava flows tend to be heterogeneous and discontinuous, generally unconfined and fissured, and have high transmissivity. Springs associated with basalts may be very large but are typically restricted to lava-flow margins. Concern has been expressed regarding the potential for lava-tube caves to facilitate groundwater contamination similar to that afflicting some karst aquifers (Kempe et al., 2003; Kiernan et al., 2002; Halliday 2003). The upper Actopan River basin is a series of narrow valleys excavated in Tertiary volcanic brechias. Several extensive Holocene basaltic tube-fed lava flows have partially filled these valleys. The youngest and longest flow originates at El Volcancillo, a 780 ybP monogenetic volcano. It is over 50 km long, and was fed through a major master tube, the remains of which form several lava-tube caves (Gassos and Espinasa-Pereña, 2008). Another tube-fed flow initiates at a vent at the bottom of Barranca Huichila and can be followed for 7 km to where it is covered by the Volcancillo flow. The Huichila River is captured by this system of lava tubes and can be followed through several underground sections. In dry weather the stream disappears at a sump in one of these caves, although during hurricanes it overflows the tube, floods the Tengonapa plain, and finally sinks through a series of skylights into the master tube of the Volcancillo flow. Near villages, the cave entrances are used as trash dumps, which are mobilized during floods. These include household garbage, organic materials associated with agriculture and even medical supplies. This is a relatively recent phenomenon, caused by population growth and the building of houses above the lava flows. The water resurges at El Descabezadero, gushing from fractures in the lava above the underlying brechias

  16. Western Alaska ESI: LAKES (Lake Polygons)

    National Oceanic and Atmospheric Administration, Department of Commerce — This data set contains vector polygons representing lakes and land masses used in the creation of the Environmental Sensitivity Index (ESI) for Western Alaska. The...

  17. Pollution at Lake Mariut

    Nour ElDin, H.; Halim, S. N.; Shalby, E.

    2004-01-01

    Lake Mariut, south Alexandria, Egypt suffered in the recent decades from intensive pollution as a result of a continuous discharge of huge amounts of agriculture wastewater that contains a large concentration of the washed pesticides and fertilizers in addition to domestic and industrial untreated wastewater. The over flow from the lake is discharged directly to the sea through El-Max pumping station via EI-Umum drain. Lake Mariout is surrounded by a huge number of different industrial activities and also the desert road is cutting the lake, this means that a huge number of various pollutants cycle through the air and settle down in the lake, by the time and during different seasons these pollutants after accumulation and different chemical interactions will release again from the lake to the surrounding area affecting the surrounding zone

  18. Volcanic styles at Alba Patera, Mars: implications of lava flow morphology to the volcanic history

    Schneeberger, D.M.; Pieri, D.C.

    1988-01-01

    Alba Patera presents styles of volcanism that are unique to Mars. Its very low profile, large areal extent, unusually long and voluminous lava flows, and circumferential graben make it among Mars' most interesting volcanic features. Clues to Alba's volcanic history are preserved in its morphology and stratigraphy. Understanding the relationship of lava flow morphology to emplacement processes should enable estimates of viscosity, effusion rate, and gross composition to be made. Lava flows, with dimensions considered enormous by terrestrial standards, account for a major portion of the exposed surface of Alba Patera. These flows exhibit a range of morphologies. While most previous works have focused on the planimetric characteristics, attention was drawn to the important morphological attributes, paying particular attention to what the features suggest about the emplacement process

  19. Infrasound reveals transition to oscillatory discharge regime during lava fountaining: Implication for early warning

    Ulivieri, Giacomo; Ripepe, Maurizio; Marchetti, Emanuele

    2013-06-01

    present the analysis of ~4 million infrasonic signals which include 39 episodes of lava fountains recorded at 5.5 km from the active vents. We show that each eruptive episode is characterized by a distinctive trend in the amplitude, waveform, and frequency content of the acoustic signals, reflecting different explosive levels. Lava fountain starts with an ~93 min long violent phase of acoustic transients at ~1.25 Hz repeating every 2-5 s. Infrasound suddenly evolves into a persistent low-frequency quasi-monochromatic pressure oscillation at ~0.4 Hz. We interpret this shift as induced by the transition from the slug (discrete Strombolian) to churn flow (sustained lava fountain) regime that is reflecting an increase in the gas discharge rate. We calculate that infrasonic transition can occur at a gas superficial velocity of ≤76 m/s and it can be used to define infrasonic-based thresholds for an efficient early warning system.

  20. Susceptibility of lava domes to erosion and collapse by toppling on cooling joints

    Smith, John V.

    2018-01-01

    The shape of lava domes typically leads to the formation of radial patterns of cooling joints. These cooling joints define the orientation of the columnar blocks which plunge toward the center of the dome. In the lower parts of the dome the columns plunge into the dome at low angles and are relatively stable. Higher in the dome the columns plunge into the dome at steep angles. These steeply plunging columns are susceptible to toppling and, if the lower part of a dome is partially removed by erosion or collapse, the unstable part of the dome becomes exposed leading to toppling failure. Examples of this process are provided from coastal erosion of lava domes at Katsura Island, Shimane Peninsula, western Japan. An analogue model is presented to demonstrate the mechanism. It is proposed that the mechanism can contribute to collapse of lava domes during or after emplacement.

  1. Great Lakes Literacy Principles

    Fortner, Rosanne W.; Manzo, Lyndsey

    2011-03-01

    Lakes Superior, Huron, Michigan, Ontario, and Erie together form North America's Great Lakes, a region that contains 20% of the world's fresh surface water and is home to roughly one quarter of the U.S. population (Figure 1). Supporting a $4 billion sport fishing industry, plus $16 billion annually in boating, 1.5 million U.S. jobs, and $62 billion in annual wages directly, the Great Lakes form the backbone of a regional economy that is vital to the United States as a whole (see http://www.miseagrant.umich.edu/downloads/economy/11-708-Great-Lakes-Jobs.pdf). Yet the grandeur and importance of this freshwater resource are little understood, not only by people in the rest of the country but also by many in the region itself. To help address this lack of knowledge, the Centers for Ocean Sciences Education Excellence (COSEE) Great Lakes, supported by the U.S. National Science Foundation and the National Oceanic and Atmospheric Administration, developed literacy principles for the Great Lakes to serve as a guide for education of students and the public. These “Great Lakes Literacy Principles” represent an understanding of the Great Lakes' influences on society and society's influences on the Great Lakes.

  2. The Key Lake project

    1991-01-01

    Key Lake is located in the Athabasca sand stone basin, 640 kilometers north of Saskatoon, Saskatchewan, Canada. The three sources of ore at Key Lake contain 70 100 tonnes of uranium. Features of the Key Lake Project were described under the key headings: work force, mining, mill process, tailings storage, permanent camp, environmental features, worker health and safety, and economic benefits. Appendices covering the historical background, construction projects, comparisons of western world mines, mining statistics, Northern Saskatchewan surface lease, and Key Lake development and regulatory agencies were included

  3. Geochemistry of axial seamount lavas: Magmatic relationship between the Cobb Hotspot and the Juan de Fuca Ridge

    Rhodes, J. M.; Morgan, C.; Liias, R. A.

    1990-08-01

    Axial Seamount, located along the central portion of the Juan de Fuca Ridge axis and at the eastern end of the Cobb-Eickelberg Seamount Chain, is the current center of the Cobb Hotspot. The Axial Seamount lavas are transitional between N-type and E-type mid-ocean ridge basalt (MORB), characteristics that they share with lavas along the rest of the Juan de Fuca Ridge. There are, however, subtle, but distinct, differences between the seamount lavas and those of the adjoining ridge segments. These include higher Na2O, CaO, and Sr at a given MgO content and lower silica saturation in the seamount lavas as compared with the ridge lavas. Lava chemistry and bathymetry indicate that Axial Seamount is a discrete volcanic unit, with a more productive shallow magmatic plumbing system separate from the adjacent ridge segments. These high magma supply rates have sustained a continuously replenished, steady state magma reservoir that has erupted remarkably homogeneous lavas over a long time period. Despite this classic association of spreading center and hotspot volcanic activity, there is no evidence in the lavas for geochemical or isotopic enrichment typical of hotspot or mantle plume activity. The differences in composition between the Axial Seamount lavas and the Juan de Fuca Ridge lavas are attributed to melting processes rather than to any fundamental differences in their mantle source compositions. The higher magma production rates, higher Sr, and lower silica saturation in the seamount lavas relative to the ridge lavas are thought to be a consequence of melt initiation at greater depths. The melting column producing the seamount lavas is thought to be initiated in the stability field of spinel peridotite, whereas the ridge lavas are produced from a melting column initiated at shallower levels, possibly within or close to the stability field of plagioclase peridotite. Implicit in this interpretation is the conclusion that the Juan de Fuca Ridge lavas, and by analogy most

  4. Basaltic lava flows covering active aeolian dunes in the Paraná Basin in southern Brazil: Features and emplacement aspects

    Waichel, Breno L.; Scherer, Claiton M. S.; Frank, Heinrich T.

    2008-03-01

    Burial of active aeolian dunes by lava flows can preserve the morphology of the dunes and generate diverse features related to interaction between unconsolidated sediments and lavas. In the study area, located in southern Brazil, burial of aeolian deposits by Cretaceous basaltic lava flows completely preserved dunes, and generate sand-deformation features, sand diapirs and peperite-like breccia. The preserved dunes are crescentic and linear at the main contact with basalts, and smaller crescentic where interlayered with lavas. The various feature types formed on sediment surfaces by the advance of the flows reflect the emplacement style of the lavas which are compound pahoehoe type. Four feature types can be recognized: (a) type 1 features are related to the advance of sheet flows in dune-interdune areas with slopes > 5°, (b) type 2 is formed where the lava flows advance in lobes and climb the stoss slope of crescentic dunes (slopes 8-12°), (c) type 3 is generated by toes that descend the face of linear dunes (slopes 17-23°) and (d) type 4 occurs when lava lobes descend the stoss slope of crescentic dunes (slopes 10-15°). The direction of the flows, the disposition and morphology of the dunes and the ground slope are the main factors controlling formation of the features. The injection of unconsolidated sand in lava lobes forms diapirs and peperite-like breccias. Sand diapirs occur at the basal portion of lobes where the lava was more solidified. Peperite-like breccias occur in the inner portion where lava was more plastic, favoring the mingling of the components. The generation of both features is related to a mechanical process: the weight of the lava causes the injection of sand into the lava and the warming of the air in the pores of the sand facilitates this process. The lava-sediment interaction features presented here are consistent with previous reports of basalt lavas with unconsolidated arid sediments, and additional new sand-deformation features

  5. The isotopic composition of postshield lavas from Mauna Kea volcano, Hawaii

    Kennedy, A.K.; Fray, F.A.; Kwon, S.T.; West, H.B.

    1991-01-01

    The postshield eruptive stage of Mauna Kea volcano, Hawaii, can be divided into an early basaltic substage, the Hamakua Volcanics, containing picrites, ankaramites, alkalic and tholeiitic basalt, and a hawaiite substage, the Laupahoehoe Volcanics, containing only hawaiites and rare mugearites. Cumulate gabbroic xenoliths in Laupahoehoe Volcanics have isotopic ratios similar to the Hamakua Volcanics, and these gabbros provide constaints on the crustal evolution of Mauna Kea lavas. Because of the small variation in 87 Sr/ 86 Sr (0.70335-0.70362), 143 Nd/ 144 Nd (0.51297-0.51308) and 206 Pb/ 204 Pb (18.306-18.440), lavas from both substages must contain relatively fixed proportions of depleted, enriched and primitive mantle components. In addition, there is Sr, Nd and Pb isotopic overlap between tholeiitic and alkalic Hamakua basalts. However, the steep 207 Pb/ 204 Pb vs. 206 Pb/ 204 Pb arrays of postshield lavas from Mauna Kea, West Maui and Haleakala volcanoes and the existence of rare samples with high 207 Pb/ 204 Pb, up to 15.548, requires an unusual component in some Hawaiian lavas. This component is unlikely to be derived from sediments or MORB lithosphere, and it may be a minor plume component. Lavas erupted during the postshield stage of Mauna Kea volcano do not define a systematic temporal trend of varying 87 Sr/ 86 Sr and 143 Nd/ 144 Nd. This result contrasts with the temporal trend defined by lavas from Haleakala Volcano and provides evidence for important differences between the origin and evolution of different Hawaiian volcanoes. However, the Laupahoehoe Volcanics trend to lower 206 Pb/ 204 Pb ratios than the Hamakua Volcanics. (orig./WL)

  6. Eruption and emplacement dynamics of a thick trachytic lava flow of the Sancy volcano (France)

    Latutrie, Benjamin; Harris, Andrew; Médard, Etienne; Gurioli, Lucia

    2017-01-01

    A 70-m-thick, 2200-m-long (51 × 106 m3) trachytic lava flow unit underlies the Puy de Cliergue (Mt. Dore, France). Excellent exposure along a 400-m-long and 60- to 85-m-high section allows the flow interior to be accessed on two sides of a glacial valley that cuts through the unit. We completed an integrated morphological, structural, textural, and chemical analysis of the unit to gain insights into eruption and flow processes during emplacement of this thick silicic lava flow, so as to elucidate the chamber and flow dynamic processed that operate during the emplacement of such systems. The unit is characterized by an inverse chemical stratification, where there is primitive lava beneath the evolved lava. The interior is plug dominated with a thin basal shear zone overlying a thick basal breccia, with ramping affecting the entire flow thickness. To understand these characteristics, we propose an eruption model that first involves processes operating in the magma chamber whereby a primitive melt is injected into an evolved magma to create a mixed zone at the chamber base. The eruption triggered by this event first emplaced a trachytic dome, into which banded lava from the chamber base was injected. Subsequent endogenous dome growth led to flow down the shallow slope to the east on which the highly viscous (1012 Pa s) coulée was emplaced. The flow likely moved extremely slowly, being emplaced over a period of 4-10 years in a glacial manner, where a thick (>60-m) plug slid over a thin (5-m-thick) basal shear zone. Excellent exposure means that the Puy de Cliergue complex can be viewed as a case type location for understanding and defining the eruption and emplacement of thick, high-viscosity, silicic lava flow systems.

  7. Vertical Structural Variation and Their Development of the Sanukayama Rhyolite Lava in Kozushima Island, Japan

    Furukawa, K.; Uno, K.; Kanamaru, T.; Nakai, K.

    2017-12-01

    We revealed structural development of the Pleistocene Sanukayama rhyolite lava of Kozushima Island, Japan. The good exposure, with about 130 m thick, provides valuable opportunity to understand the vertical structural variation. This exposure corresponds to the upper half of the lava. The paleomagnetic results show that the lava emplaced in subaerial condition at least in the exposed part. The vertical lithofacies are divided into the pumiceous (25-40 m thick), obsidian (40-60 m), spherulitic (30-50 m) layers from top to base. The pumiceous layer is characterized by massive foliated pumice. The foliation dips are gradually changed from gentle (10-30°) in lower part to steep (around 90°) in upper part. This shows the balloon-like morphology. The massive pumiceous layer would be generated from late stage diapiric inflation of the lava (Fink and Manley, 1987). The obsidian layer is composed of massive and welded-brecciated parts. The ductile-deformed light-colored veins, with a few mm thick, are frequently developed. In the microscopic observation, the veins are composed of broken crystals and obsidian clasts indicating fracturing of the lava followed by ductile deformation such as the RFH process (Tuffen et al., 2003). In this layer, extensive vesiculation and microlite development must have been prevented by higher load pressure and faster cooling, respectively. Consequently, they resulted in formation of the obsidian. The spherulitic layer is characterized by development of the ductile-deformed flow banding. The microscopic observation shows that the bands are formed by the spherulite trail. Furthermore, the microlites are aligned within the spherulites. In the heat-retained inner part of the lava, microlites would be developed around the healed fractures. The microlites acted as nucleation site of spherulite. In transition layer between obsidian and spherulitic layers (obsidian layer. This would be caused by high flow-induced shear arising from their rheological

  8. Textural and rheological evolution of basalt flowing down a lava channel

    Robert, Bénédicte; Harris, Andrew; Gurioli, Lucia; Médard, Etienne; Sehlke, Alexander; Whittington, Alan

    2014-06-01

    The Muliwai a Pele lava channel was emplaced during the final stage of Mauna Ulu's 1969-1974 eruption (Kilauea, Hawaii). The event was fountain-fed and lasted for around 50 h, during which time a channelized flow system developed, in which a 6-km channel fed a zone of dispersed flow that extended a further 2.6 km. The channel was surrounded by initial rubble levees of 'a'a, capped by overflow units of limited extent. We sampled the uppermost overflow unit every 250 m down the entire channel length, collecting, and analyzing 27 air-quenched samples. Bulk chemistry, density and textural analyses were carried out on the sample interior, and glass chemistry and microlite crystallization analyses were completed on the quenched crust. Thermal and rheological parameters (cooling, crystallization rate, viscosity, and yield strength) were also calculated. Results show that all parameters experience a change around 4.5 km from the vent. At this point, there is a lava surface transition from pahoehoe to 'a'a. Lava density, microlite content, viscosity, and yield strength all increase down channel, but vesicle content and lava temperature decrease. Cooling rates were 6.7 °C/km, with crystallization rates increasing from 0.03 Фc/km proximally, to 0.14 Фc/km distally. Modeling of the channel was carried out using the FLOWGO thermo-rheological model and allowed fits for temperature, microlite content, and channel width when run using a three-phase viscosity model based on a temperature-dependent viscosity relation derived for this lava. The down flow velocity profile suggests an initial velocity of 27 m/s, declining to 1 m/s at the end of the channel. Down-channel, lava underwent cooling that induced crystallization, causing both the lava viscosity and yield strength to increase. Moreover, lava underwent degassing and a subsequent vesicularity decrease. This aided in increasing viscosity, with the subsequent increase in shearing promoting a transition to 'a'a.

  9. L-Band Polarimetric SAR Signatures of Lava Flows in the Northern Volcanic Zone, Iceland

    Dierking, Wolfgang; Haack, Henning

    1998-01-01

    Studies of radar scattering signatures typical for lava surfaces are needed in order to interprete SAR images of volcanic terrain on the Earth and on other planets, and to establish a physical basis for the choice of optimal radar configurations for geological mapping. The authors focus on a study...... of different morphologic types within a flow. The largest contrasts are observed at cross-polarization. The phase difference between the VV- and HH-channels may provide information about a vegetation cover on the lava. The radar signal scattered from the flows is dominated by surface scattering contributions...

  10. Lava channel formation during the 2001 eruption on Mount Etna: evidence for mechanical erosion.

    Ferlito, Carmelo; Siewert, Jens

    2006-01-20

    We report the direct observation of a peculiar lava channel that was formed near the base of a parasitic cone during the 2001 eruption on Mount Etna. Erosive processes by flowing lava are commonly attributed to thermal erosion. However, field evidence strongly suggests that models of thermal erosion cannot explain the formation of this channel. Here, we put forward the idea that the essential erosion mechanism was abrasive wear. By applying a simple model from tribology we demonstrate that the available data agree favorably with our hypothesis. Consequently, we propose that erosional processes resembling the wear phenomena in glacial erosion are possible in a volcanic environment.

  11. Studies of Young Hawai'ian Lava Tubes: Implications for Planetary Habitability and Human Exploration

    McAdam, Amy; Bleacher, Jacob; Young, Kelsey; Johnson, Sarah Stewart; Needham, Debra; Schmerr, Nicholas; Shiro, Brian; Garry, Brent; Whelley, Patrick; Knudson, Christine; hide

    2017-01-01

    Habitability: Subsurface environments may preserve records of habitability or biosignatures, with more stable environmental conditions compared to surface (e.g., smaller variations in temperature and humidity) and reduced exposure to radiation; Lava tubes are expected on Mars, and candidates are observed from orbit; Few detailed studies of microbial populations in terrestrial lava caves; Also contain a variety of secondary minerals; Microbial activity may play a role in mineral formation or be preserved in these minerals; Minerals can provide insight into fluids (e.g., pH, temperature).

  12. Dynamics of lava flow - Thickness growth characteristics of steady two-dimensional flow

    Park, S.; Iversen, J. D.

    1984-01-01

    The thickness growth characteristics of flowing lava are investigated using a heat balance model and a two-dimensional model for flow of a Bingham plastic fluid down an inclined plane. It is found that yield strength plays a crucial role in the thickening of a lava flow of given flow rate. To illustrate this point, downstream thickness profiles and yield strength distributions were calculated for flows with mass flow rates of 10,000 and 100,000 kg/m-sec. Higher flow rates led to slow cooling rates which resulted in slow rate of increase of yield strength and thus greater flow lengths.

  13. Evolution of - and Core-Dominated Lava Flows Using Scaling Analysis

    Castruccio, A.; Rust, A.; Sparks, R. S.

    2010-12-01

    We investigated the front evolution of simple lava flows on a slope using scaling arguments. For the retarding force acting against gravity, we analyzed three different cases: a flow controlled by a Newtonian viscosity, a flow controlled by the yield strength of a diffusively growing crust and a flow controlled by its core yield strength. These models were tested using previously published data of front evolution and volume discharge of 10 lava flow eruptions from 6 different volcanoes. Our analysis suggests that for basaltic eruptions with high effusion rate and low crystal content, (Hawaiian eruptions), the best fit of the data is with a Newtonian viscosity. For basaltic eruptions with lower effusion rates (Etna eruptions) or long duration andesitic eruptions (Lonquimay eruption, Chile) the flow is controlled by the yield strength of a growing crust. Finally, for very high crystalline lavas (Colima, Santiaguito) the flow is controlled by its core yield strength. The order of magnitude of the viscosities from our analysis is in the same range as previous studies using field measurements on the same lavas. The yield strength values for the growing crust and core of the flow are similar and with an order of magnitude of 10^5 Pa. This number is similar to yield strength values found in lava domes by different authors. The consistency of yield strength ~10^5 Pa is because larger stresses cause fracturing of very crystalline magma, which drastically reduces its effective strength. Furthermore, we used a 2-D analysis of a Bingham fluid flow on a slope to conclude that, for lower yield strength values, the flow is controlled mainly by its plastic viscosity and the lava can be effectively modelled as Newtonian. Our analysis provides a simple tool to evaluate the main controlling forces in the evolution of a lava flow, as well as the magnitude of its rheological properties, for eruptions of different compositions and conditions and may be useful to predict the evolution of

  14. Limnology of Eifel maar lakes

    Scharf, Burkhard W; Björk, Sven

    1992-01-01

    ... : Species composition & seasonal periodicity - Qualitative & quantitative investigations on cladoceran zooplankton of oligotrophic maar lakes - Population dynamics of pelagic copepods in maar lakes - Population dynamics...

  15. Lakes, Lagerstaetten, and Evolution

    Kordesch, E. G.; Park, L. E.

    2001-12-01

    The diversity of terrestrial systems is estimated to be greater than in the marine realm. However no hard data yet exists to substantiate this claim. Ancient lacustrine deposits may preserve an exceptionally diverse fossil fauna and aid in determining continental faunal diversities. Fossils preserved in lake deposits, especially those with exceptional preservation (i.e. Konservat Lagerstaetten), may represent a dependable method for determining species diversity changes in the terrestrial environment because of their faunal completeness. Important Konservat Lagerstaetten, such as the Green River Formation (US) and Messel (Germany), both Eocene in age, are found in lake sediments and show a remarkable faunal diversity for both vertebrates and invertebrates. To date information from nearly 25 lake lagerstaetten derived from different types of lake basins from the Carboniferous to the Miocene have been collected and described. Carboniferous sites derive from the cyclothems of Midcontinent of the US while many Cenozoic sites have been described from North and South America as well as Europe and Australia. Asian sites contain fossils from the Mesozoic and Cenozoic. With this data, insight into the evolutionary processes associated with lake systems can be examined. Do lakes act as unique evolutionary crucibles in contrast to marine systems? The speciation of cichlid fishes in present-day African lakes appears to be very high and is attributed to the diversity of environments found in large rift lakes. Is this true of all ancient lakes or just large rift lakes? The longevity of a lake system may be an important factor in allowing speciation and evolutionary processes to occur; marine systems are limited only in the existence of environments as controlled by tectonics and sea level changes, on the order of tens of millions of years. Rift lakes are normally the longest lived in the millions of years. Perhaps there are only certain types of lakes in which speciation of

  16. Concentric cylinder viscometry at subliquidus conditions on Mauna Ulu lavas, Kilauea Volcano, Hawaii

    Sehlke, A.; Robert, B.; Harris, A. J.; gurioli, L.; Whittington, A. G.

    2013-12-01

    The morphology of lava flows is controlled by the physical properties of the lava and its effusion rates, as well as environmental influences such as surface medium, slope and ambient temperature and pressure conditions. The important physical properties of lavas include viscosity (η), yield strength (σy), thermal diffusivity (κ) and heat capacity (CP), all of which strongly depend on temperature (T), composition (Χ), crystal fraction (φc) and vesicularity (φb). The crystal fraction (φc) typically increase as temperature decreases, and therefore is temperature dependent itself and influences the residual liquid composition (Χ). The rheological behavior of multi-phase lavas in lava flows is expressed as different flow types, forced from a smooth pahoehoe to a blocky ';a'a within a transition zone. Recent field studies of overflow units at the Muliwai a Pele lava flow erupted from Mauna Ulu in 1974 on Kilauea volcano (Hawaii) reveal a transition zone in a distance approximately 4.5 km from the vent as a result of a cooling gradient of 6 °C/km, crystallization rates of 0.05/km and a density increase from 1010 × 150 kg/m3 near to 1410 × 120 kg/m3 6 km distant from the vent due to degassing. Concentric cylinder viscometry under atmospheric conditions has been conducted in order to investigate the rheological response of crystal-liquid lava suspensions at different equilibrium temperatures for Mauna Ulu lavas. We detect first solid phases around 1230 °C being clinopyroxene, olivine and spinel, followed by plagioclase appearing as microlites as observed in natural rock samples. Measured apparent viscosities (ηapp) with applied strain rates between 50 s-1 and 0.3 s-1 at 1201 °C, 1192 °C and 1181 °C show a strong stress-strain rate dependency, classifying our 2-phase suspensions as Herschel-Bulkey fluids with an extrapolated apparent yield strength (τ0) around 200 to 150 Pa in presence of different crystal fractions, resulting in a 2.5 fold increase of

  17. Ecology of Meromictic Lakes

    Gulati, R.D.; Zadereev, E.S.; Degermendzhy, A.G.

    2017-01-01

    This volume presents recent advances in the research on meromictic lakes and a state-of-the art overview of this area. After an introduction to the terminology and geographic distribution of meromictic lakes, three concise chapters describe their physical, chemical and biological features. The

  18. A combined study of gas geochemistry, petrology, and lava effusion at Bagana, a unique persistently active lava cone in Papua New Guinea

    McCormick, B. T.; Salem, L. C.; Edmonds, M.; D'Aleo, R. N. M.; Aiuppa, A.; Arellano, S. R.; Wallius, J.; Galle, B.; Barry, P. H.; Ballentine, C. J.; Mulina, K.; Sindang, M.; Itikarai, I.; Wadge, G.; Lopez, T. M.; Fischer, T. P.

    2016-12-01

    Bagana volcano (Bougainville Island, Papua New Guinea) has exhibited nearly continuous extrusion of andesitic lava for over a century, but has largely been studied by satellite remote sensing. Satellite UV spectroscopy has revealed Bagana to be among the largest volcanic sources of sulfur dioxide worldwide. Satellite radar measurements of lava extrusion rate suggest that the entire edifice could have been built in only a few centuries. Bagana is dominantly constructed from lava flows, but also exhibits violent PDC-forming explosive eruptions, which threaten local populations.We present new multi-parameter data from fieldwork on Bagana in September 2016. UV spectrometers were deployed to ground-truth satellite observations of SO2 emissions, and track sub-daily variations in gas output. In situ measurements and sampling of emissions provide the first gas composition data for this volcano. Aerial imagery filmed by UAV was obtained to generate a high resolution DEM of the edifice for use in calibrating ongoing satellite radar studies of deformation and extrusion rate. Lava and tephra samples were gathered, with the aim of comparing melt composition and volatile content between eruptions of different style. The combination of gas geochemistry, geophysical monitoring from space, and petrology will be used to build a model framework to understand the pulsatory nature of Bagana's lava extrusion, and transitions to explosive activity.A campaign to a continuously active but poorly-studied volcano affords many opportunities for education and outreach. The campaign participants included early career scientists from five countries, who planned and carried out the fieldwork and exchanged expertise in a range of techniques. All work was undertaken in close collaboration with Rabaul Volcano Observatory, and was informed by their strategic monitoring goals, a valuable experience for the field team of synergising research activities with more operational concerns. Footage obtained

  19. Lake Afdera: a threatened saline lake in Ethiopia | Getahun | SINET ...

    Lake Afdera is a saline lake located in the Afar region, Northern Ethiopia. Because of its inaccessibility it is one of the least studied lakes of the country. It supports life including three species of fish of which two are endemic. Recently, reports are coming out that this lake is used for salt extraction. This paper gives some ...

  20. Lake trout in northern Lake Huron spawn on submerged drumlins

    Riley, Stephen C.; Binder, Thomas; Wattrus, Nigel J.; Faust, Matthew D.; Janssen, John; Menzies, John; Marsden, J. Ellen; Ebener, Mark P.; Bronte, Charles R.; He, Ji X.; Tucker, Taaja R.; Hansen, Michael J.; Thompson, Henry T.; Muir, Andrew M.; Krueger, Charles C.

    2014-01-01

    Recent observations of spawning lake trout Salvelinus namaycush near Drummond Island in northern Lake Huron indicate that lake trout use drumlins, landforms created in subglacial environments by the action of ice sheets, as a primary spawning habitat. From these observations, we generated a hypothesis that may in part explain locations chosen by lake trout for spawning. Most salmonines spawn in streams where they rely on streamflows to sort and clean sediments to create good spawning habitat. Flows sufficient to sort larger sediment sizes are generally lacking in lakes, but some glacial bedforms contain large pockets of sorted sediments that can provide the interstitial spaces necessary for lake trout egg incubation, particularly if these bedforms are situated such that lake currents can penetrate these sediments. We hypothesize that sediment inclusions from glacial scavenging and sediment sorting that occurred during the creation of bedforms such as drumlins, end moraines, and eskers create suitable conditions for lake trout egg incubation, particularly where these bedforms interact with lake currents to remove fine sediments. Further, these bedforms may provide high-quality lake trout spawning habitat at many locations in the Great Lakes and may be especially important along the southern edge of the range of the species. A better understanding of the role of glacially-derived bedforms in the creation of lake trout spawning habitat may help develop powerful predictors of lake trout spawning locations, provide insight into the evolution of unique spawning behaviors by lake trout, and aid in lake trout restoration in the Great Lakes.

  1. Lava Fountaining Discharge Regime driven by Slug-to-Churn Flow Transition. (Invited)

    Ripepe, M.; Pioli, L.; Marchetti, E.; Ulivieri, G.

    2013-12-01

    Lava fountaining episodes at Etna volcano appear characterized by the transition between Strombolian and Hawaiian end-member eruptive styles. There is no evidence for this transition in the seismic (i.e. seismic tremor) signal. However, infrasonic records provide unprecedented evidence on this flow transition. Each eruptive episode is characterized by distinctive common trend in the amplitude, waveform and frequency content of the infrasonic wavefield, which evidences the shift from discrete, and transient, strombolian to sustained, and oscillatory, lava fountain dynamics. Large scale experiments on the dynamics of two-phase flow of basaltic magmas show how the transition between different regimes mainly depends on gas volume flow, which in turn controls pressure distribution within the conduit and also magma vesicularity. In particular, while regular large bubble bursting is associated with slug flow regime, large amplitude and low frequency column oscillations are associated with churn flow. In large pipes, transition from slug to churn flow regime is independent on conduit diameter and it is reached at high superficial gas velocity. Lava fountaining episodes at Etna can be thus interpreted as induced by the transition from the slug (discrete strombolian) to churn flow (sustained lava fountain) regimes that is reflecting an increase in the gas discharge rate. Based on laboratory experiments, we calculate that transition between these two end-member explosive regimes at Etna occurs when gas superficial velocity is 76 m/s for near-the-vent stagnant magma conditions.

  2. Persistent growth of a young andesite lava cone: Bagana volcano, Papua New Guinea

    Wadge, G.; McCormick Kilbride, B. T.; Edmonds, M.; Johnson, R. W.

    2018-05-01

    Bagana, an andesite lava cone on Bougainville Island, Papua New Guinea, is thought to be a very young central volcano. We have tested this idea by estimating the volumes of lava extruded over different time intervals (1-, 2-, 3-, 9-, 15-, 70-years) using digital elevation models (DEMs), mainly created from satellite data. Our results show that the long-term extrusion rate at Bagana, measured over years to decades, has remained at about 1.0 m3 s-1. We present models of the total edifice volume, and show that, if our measured extrusion rates are representative, the volcano could have been built in only 300 years. It could also possibly have been built at a slower rate during a longer, earlier period of growth. Six kilometres NNW of Bagana, an andesite-dacite volcano, Billy Mitchell, had a large, caldera-forming plinian eruption 437 years ago. We consider the possibility that, as a result of this eruption, the magma supply was diverted from Billy Mitchell to Bagana. It seems that Bagana is a rare example of a very youthful, polygenetic, andesite volcano. The characteristics of such a volcano, based on the example of Bagana, are: a preponderance of lava products over pyroclastic products, a high rate of lava extrusion maintained for decades, a very high rate of SO2 emission, evidence of magma batch fractionation and location in a trans-tensional setting at the end of an arc segment above a very steeply dipping and rapidly converging subduction zone.

  3. A rock- and paleomagnetic study of a Holocene lava flow in Central Mexico

    Vlag, P.; Alva-Valdivia, L.; Boer, C.B. de; Gonzalez, S.; Urrutia-Fucugauchi, J.

    1999-01-01

    Magnetic measurements of the Tres Cruces lava flow (ca. 8500 years BP, Central Mexico) show the presence of two remanence carriers, a Ti-rich titanomagnetite with a Curie temperature between 350 and 400 °C and a Ti-poor magnetite with a Curie temperature close to 580°C. Magnetic changes after

  4. Reconstruction of the dynamics of the 1800-1801 Hualalai eruption: Implications for planetary lava flows

    Baloga, Stephen; Spudis, Paul

    1993-01-01

    The 1800-1801 eruption of alkalic basalt from the Hualalai volcano, Hawaii provides a unique opportunity for investigating the dynamics of lava flow emplacement with eruption rates and compositions comparable to those that have been suggested for planetary eruptions. Field observations suggest new considerations must be used to reconstruct the emplacement of these lava flows. These observations are: (1) the flow traversed the 15 km from the vent to the sea so rapidly that no significant crust formed and an observation of the eruption reported that the flow reach the sea from the vent in approximately 1 hour; (2) the drainage of beds of xenolith nodules indicates a highly fluid, low viscosity lava; (3) overspills and other morphologic evidence for a very low viscosity host fluid; (4) no significant longitudinal increase in flow thickness that might be associated with an increase in the rheological properties of the lava; and (5) the relatively large size of channels associated with the flow, up to 80 meters across and several km long. Models for many geologic mass movements and fast moving fluids with various loadings and suspensions are discussed.

  5. Structural and temporal requirements for geomagnetic field reversal deduced from lava flows.

    Singer, Brad S; Hoffman, Kenneth A; Coe, Robert S; Brown, Laurie L; Jicha, Brian R; Pringle, Malcolm S; Chauvin, Annick

    2005-03-31

    Reversals of the Earth's magnetic field reflect changes in the geodynamo--flow within the outer core--that generates the field. Constraining core processes or mantle properties that induce or modulate reversals requires knowing the timing and morphology of field changes that precede and accompany these reversals. But the short duration of transitional field states and fragmentary nature of even the best palaeomagnetic records make it difficult to provide a timeline for the reversal process. 40Ar/39Ar dating of lavas on Tahiti, long thought to record the primary part of the most recent 'Matuyama-Brunhes' reversal, gives an age of 795 +/- 7 kyr, indistinguishable from that of lavas in Chile and La Palma that record a transition in the Earth's magnetic field, but older than the accepted age for the reversal. Only the 'transitional' lavas on Maui and one from La Palma (dated at 776 +/- 2 kyr), agree with the astronomical age for the reversal. Here we propose that the older lavas record the onset of a geodynamo process, which only on occasion would result in polarity change. This initial instability, associated with the first of two decreases in field intensity, began approximately 18 kyr before the actual polarity switch. These data support the claim that complete reversals require a significant period for magnetic flux to escape from the solid inner core and sufficiently weaken its stabilizing effect.

  6. Sill and lava geochemistry of the mid-Norway and NE Greenland conjugate margins

    Neumann, Else-Ragnhild; Svensen, Henrik; Tegner, Christian

    2013-01-01

    This paper presents major, trace-elements, and Sr-Nd isotopes for two prominent sills formed during the opening of the North Atlantic, sampled by the Utgard borehole (6607/5-2) in the VOring Plateau. The Utgard sills are compared to opening-related lavas recovered from ODP Leg 104 Hole 642E farth...

  7. Piiriäärne lava valmistub taas esietenduseks / Margus Haav

    Haav, Margus, 1969-

    2008-01-01

    Lõuna-Eestis Lilli külas algaval Nava lava festivalil tuuakse publiku ette Nava talu peremehe Jaak Kõdari näidend "Jukra", lavastaja Silvia Soro. Üht kandvat rolli mängib näitleja Lembit Eelmäe

  8. Paleomagnetism and geochronology of the Pliocene-Pleistocene lavas in Iceland

    McDougall, Ian; Wensink, H.

    Potassium-argon dates are reported on five basalt samples from the Pliocene-Pleistocene sequence of lavas in the Jökuldalur area, northeastern Iceland. These dates confirm the correlations previously made with the geological time scale by means of paleomagnetic stratigraphy. The R1 and N2 polarity

  9. Catchment response to lava damming: integrating field observation, geochronology and landscape evolution modelling

    Van Gorp, Wouter; Schoorl, Jeroen M.; Temme, Arnaud J. A. M.; Reimann, Tony; Wijbrans, Jan R.; Maddy, Darrel; Demir, Tuncer; Veldkamp, Tom

    2016-01-01

    Combining field reconstruction and landscape evolution modelling can be useful to investigate the relative role of different drivers on catchment response. The Geren Catchment (~45 km2) in western Turkey is suitable for such a study, as it has been influenced by uplift, climate change and lava

  10. Paleomagnetism of Eocene Talerua Member Lavas on Hareøen Island, West Greenland

    Abrahamsen, N.; Schmidt, Anne G.; Riisager, P.

    2005-01-01

    The results of a palaeomagnetic sampling carried out along two vertical profiles (altogether 19 lavaflows, 126 samples) covering the entire stratigraphy of the Talerua Member lavas (~39 Myr old) that outcrop on the island Hareøen are presented and represent some of the youngest volcanism in the W...

  11. Nerillidae (Annelida) from the Corona lava tube, Lanzarote, with description of Meganerilla cesari, n. sp

    Worsaae, Katrine; Martínez, A; Núñez, J

    2009-01-01

    Five species of Nerillidae are previously known from Atlantic cave systems. Another four species of Nerillidae are reported here from the Corona lava tube (Lanzarote, Canary Islands) presenting the first records of Mesonerilla and Meganerilla from anchialine environments. We here describe...

  12. Anchialine fauna of the Corona lava tunnel (Lanzarote,Canary Islands): diversity, endemism and distribution

    Martínez, Alexandro; Palmero, A M; Brito, M C

    2009-01-01

    A checklist of 77 taxa recorded from the anchialine sections of the Corona lava tube is provided, including information on habitats, faunal distribution within the cave, and main references. Of the nine major groups recorded, Crustacea shows the highest diversity with 31 species and the highest d...

  13. Silica-poor, mafic alkaline lavas from ocean islands and continents

    Strongly silica-poor (ne-normative), mafic alkaline lavas generally represented by olivine nephelinites, nephelinites, melilitites, and olivine melilitites have erupted at various locations during Earth's history. On the basis of bulk-rock Mg#, high concentrations of Na2O, TiO2, and K2O, and trace element geochemistry, it has ...

  14. Communicating Science to Officials and People at Risk During a Slow-Motion Lava Flow Crisis

    Neal, C. A.; Babb, J.; Brantley, S.; Kauahikaua, J. P.

    2015-12-01

    From June 2014 through March 2015, Kīlauea Volcano's Púu ´Ō´ō vent on the East Rift Zone produced a tube-fed pāhoehoe lava flow -the "June 27th flow" - that extended 20 km downslope. Within 2 months of onset, flow trajectory towards populated areas in the Puna District caused much concern. The USGS Hawaiian Volcano Observatory (HVO) issued a news release of increased hazard on August 22 and began participating in public meetings organized by Hawai`i County Mayor and Civil Defense two days later. On September 4, HVO upgraded the volcano alert level to WARNING based on an increased potential for lava to reach homes and infrastructure. Ultimately, direct impacts were modest: lava destroyed one unoccupied home and one utility pole, crossed a rural roadway, and partially inundated a waste transfer station, a cemetery, and agricultural land. Anticipation that lava could reach Pāhoa Village and cross the only major access highway, however, caused significant disruption. HVO scientists employed numerous methods to communicate science and hazard information to officials and the at-risk public: daily (or more frequent) written updates of the lava activity, flow front locations and advance rates; frequent updates of web-hosted maps and images; use of the 'lines of steepest descent' method to indicate likely lava flow paths; consistent participation in well-attended community meetings; bi-weekly briefings to County, State, and Federal officials; correspondence with the public via email and recorded phone messages; participation in press conferences and congressional briefings; and weekly newspaper articles (Volcano Watch). Communication lessons both learned and reinforced include: (1) direct, frequent interaction between scientists and officials and at-risk public builds critical trust and understanding; (2) images, maps, and presentations must be tailored to audience needs; (3) many people are unfamiliar with maps (oblique aerial photographs were more effective); (4

  15. Perception of Lava Flow Hazards and Risk at Mauna Loa and Hualalai Volcanoes, Kona, Hawaii

    Gregg, C. E.; Houghton, B. F.; Johnston, D. M.; Paton, D.; Swanson, D. A.

    2001-12-01

    The island of Hawaii is composed of five sub-aerially exposed volcanoes, three of which have been active since 1801 (Kilauea, Mauna Loa, Hualalai). Hawaii has the fastest population growth in the state and the local economy in the Kona districts (i.e., western portion of the island) is driven by tourism. Kona is directly vulnerable to future lava flows from Mauna Loa and Hualalai volcanoes, as well as indirectly from the effects of lava flows elsewhere that may sever the few roads that connect Kona to other vital areas on the island. A number of factors such as steep slopes, high volume eruptions, and high effusion rates, combine to mean that lava flows from Hualalai and Mauna Loa can be fast-moving and hence unusually hazardous. The proximity of lifelines and structures to potential eruptive sources exacerbates societies' risk to future lava flows. Approximately \\$2.3 billion has been invested on the flanks of Mauna Loa since its last eruption in 1984 (Trusdell 1995). An equivalent figure has not yet been determined for Hualalai, but an international airport, several large resort complexes, and Kailua-Kona, the second largest town on the island, are down-slope and within 15km of potential eruptive Hualalai vents. Public and perhaps official understanding of specific lava flow hazards and the perceptions of risk from renewed volcanism at each volcano are proportional to the time lapsed since the most recent eruption that impacted Kona, rather than a quantitative assessment of risk that takes into account recent growth patterns. Lava flows from Mauna Loa and Hualalai last directly impacted upon Kona during the notorious 1950 and circa 1801 eruptions, respectively. Various non-profit organizations; local, state and federal government entities; and academic institutions have disseminated natural hazard information in Kona but despite the intuitive appeal that increased hazard understanding and risk perception results in increased hazard adjustment adoption, this

  16. Lava Simulation and Risk Assessment During The July 2001 Etnean Eruption

    Crisci, G. M.; di Gregorio, S.; Rongo, R.; Spataro, W.

    SCIARA, a two-dimensional cellular automata model for the simulation of lava flows, has been in the past validated on real cases of Etnean eruptions. Its lastest release, SCIARA-hex1 was applied on the 1991-93 Etnean eruption in validation phase. The simulation results are satisfying within limits to forecast the lava flow path. The pre- sented version isnSt more sophisticated than the previous version, because it does- nSt manage lava layers at different temperatures in the same cell and their distinct outflows, but its speed permitted to generate a large number of scenarios in quickly evolving emergence situation. Moreover, SCIARA-hex1 was applied recently during the Etnean crisis in the summer of 2001, when a new eruption threatened the town of Nicolosi. The emission, that started on July 18th 2001, represented during the cri- sis the main danger for the towns of Nicolosi and Belpasso; it was, in its maximum extension, only four kilometres away from the Nicolosi. The study was done in collab- oration with the Italian National Institute of Geophysics and Vulcanology of Catania. This Sreal timeT application proved that SCIARA is a reliable and flexible tool for & cedil;forecasting lava flow paths and for assessing hazard in the Etnean area, besides being useful for the creation of real scenarios. In SCIARA, lava flows are viewed as a dy- namic system based on local interactions with discrete time and space, where space is represented by hexagonal cells, which specification (state) describes the character- istics (substates) of the corresponding piece of space. The neighbouring of a cell c, specifying the interacting cells, is given by its adjacent cells. The computation of the new values of the substates in the cells gives the evolution of the phenomenon. The distribution of the lava is crucial in the definition of the model: it is based on a proce- dure of minimisation of the differences. Moreover, with respect to previous SCIARA models, spurious symmetries

  17. Mantle sources and magma evolution of the Rooiberg lavas, Bushveld Large Igneous Province, South Africa

    Günther, T.; Haase, K. M.; Klemd, R.; Teschner, C.

    2018-06-01

    We report a new whole-rock dataset of major and trace element abundances and 87Sr/86Sr-143Nd/144Nd isotope ratios for basaltic to rhyolitic lavas from the Rooiberg continental large igneous province (LIP). The formation of the Paleoproterozoic Rooiberg Group is contemporaneous with and spatially related to the layered intrusion of the Bushveld Complex, which stratigraphically separates the volcanic succession. Our new data confirm the presence of low- and high-Ti mafic and intermediate lavas (basaltic—andesitic compositions) with > 4 wt% MgO, as well as evolved rocks (andesitic—rhyolitic compositions), characterized by MgO contents of N, Nb/Y and Ti/Y), indicating a different petrogenesis. MELTS modelling shows that the evolved lavas are formed by fractional crystallization from the mafic low-Ti lavas at low-to-moderate pressures ( 4 kbar). Primitive mantle-normalized trace element patterns of the Rooiberg rocks show an enrichment of large ion lithophile elements (LILE), rare-earth elements (REE) and pronounced negative anomalies of Nb, Ta, P, Ti and a positive Pb anomaly. Unaltered Rooiberg lavas have negative ɛNdi (- 5.2 to - 9.4) and radiogenic ɛSri (6.6 to 105) ratios (at 2061 Ma). These data overlap with isotope and trace element compositions of purported parental melts to the Bushveld Complex, especially for the lower zone. We suggest that the Rooiberg suite originated from a source similar to the composition of the B1-magma suggested as parental to the Bushveld Lower Zone, or that the lavas represent eruptive successions of fractional crystallization products related to the ultramafic cumulates that were forming at depth. The Rooiberg magmas may have formed by 10-20% crustal assimilation by the fractionation of a very primitive mantle-derived melt within the upper crust of the Kaapvaal Craton. Alternatively, the magmas represent mixtures of melts from a primitive, sub-lithospheric mantle plume and an enriched sub-continental lithospheric mantle (SCLM

  18. The role of unsteady effusion rates on inflation in long-lived lava flow fields

    Rader, E.; Vanderkluysen, L.; Clarke, A.

    2017-11-01

    The emission of volcanic gases and particles can have global and lasting environmental effects, but their timing, tempo, and duration can be problematic to quantify for ancient eruptions where real-time measurements are absent. Lava flows, for example, may be long-lasting, and their impact is controlled by the rate, tempo, and vigor of effusion. These factors are currently difficult to derive from the geologic record but can have large implications for the atmospheric impact of an eruption. We conducted a set of analogue experiments on lava flow inflation aiming at connecting lava morphologies preserved in the rock record to eruption tempo and dynamics through pulsating effusion rates. Inflation, a process where molten material is injected beneath the crust of an active lava flow and lifts it upwards, is a common phenomenon in basaltic volcanic systems. This mechanism requires three components: a) a coherent, insulating crust; b) a wide-spread molten core; and c) pressure built up beneath the crust from a sustained supply of molten material. Inflation can result in a lava flow growing tens of meters thick, even in flow fields that expand hundreds of square kilometers. It has been documented that rapid effusion rates tend to create channels and tubes, isolating the active part of the flow from the stagnant part, while slow effusion rates may cause crust to form quickly and seize up, forcing lava to overtop the crust. However, the conditions that allow for inflation of large flow fields have not previously been evaluated in terms of effusion rate. By using PEG 600 wax and a programmable pump, we observe how, by pulsating effusion rate, inflation occurs even in very low viscosity basaltic eruptions. We show that observations from inflating Hawaiian lava flows correlate well with experimental data and indicate that instantaneous effusion rates may have been 3 times higher than average effusion rates during the emplacement of the 23 January 1988 flow at Kīlauea (Hawai

  19. Blowing off steam: Tuffisite formation as a regulator for lava dome eruptions

    Jackie Evan Kendrick

    2016-04-01

    Full Text Available Tuffisites are veins of variably sintered, pyroclastic particles that form in conduits and lava domes as a result of localized fragmentation events during gas-and-ash explosions. Those observed in-situ on the active 2012 lava dome of Volcán de Colima range from voids with intra-clasts showing little movement and interpreted to be failure-nuclei, to sub-parallel lenses of sintered granular aggregate interpreted as fragmentation horizons, through to infilled fractures with evidence of viscous remobilization. All tuffisites show evidence of sintering. Further examination of the complex fracture-and-channel patterns reveals viscous backfill by surrounding magma, suggesting that lava fragmentation was followed by stress relaxation and continued viscous deformation as the tuffisites formed. The natural tuffisites are more permeable than the host andesite, and have a wide range of porosity and permeability compared to a narrower window for the host rock, and gauging from their significant distribution across the dome, we posit that the tuffisite veins may act as important outgassing pathways. To investigate tuffisite formation we crushed and sieved andesite from the lava dome and sintered it at magmatic temperatures for different times. We then assessed the healing and sealing ability by measuring porosity and permeability, showing that sintering reduces both over time. During sintering the porosity-permeability reduction occurs due to the formation of viscous necks between adjacent grains, a process described by the neck-formation model of Frenkel (1945. This process leads the granular starting material to a porosity-permeability regime anticipated for effusive lavas, and which describes the natural host lava as well as the most impervious of natural tuffisites. This suggests that tuffisite formation at Volcán de Colima constructed a permeable network that enabled gas to bleed passively from the magma. We postulate that this progressively reduced

  20. Submarine Rejuvenated-Stage Lavas Offshore Molokai, Oahu, Kauai, and Niihau, Hawaii

    Clague, D. A.; Cousens, B. L.; Davis, A. S.; Dixon, J. E.; Hon, K.; Moore, J. G.; Reynolds, J. R.

    2003-12-01

    Rejuvenated-stage lavas from the Hawaiian Islands form many distinctive landmarks, such as Diamond Head. They have been relatively well studied due to their primitive, strongly alkaline compositions (alkalic basalt, basanite, nephelinite, melilitite, phonolite). More recently, compositionally similar lavas have been mapped and sampled on the deep seafloor around the islands. Rejuvenated-stage cones also occur on the submarine flanks of the islands. A Pisces V submersible dive collected samples from the only submarine cone on the north slope of East Molokai. The alkalic basalt to basanite composition lava is similar to the subaerial Kalaupapa basalt (Clague and Moore, 2003). MBARI Tiburon ROV dives recovered nephelinite from a lone steep cone on the northeast slope of Oahu, alkalic basalt from two shallow steep cones just west of the Koko Rift, and alkalic basalt from the submarine flank of Diamond Head on Oahu's south flank. These lavas are generally similar to subaerial Honolulu Volcanics, although the isotopic data extend to higher Sr isotopic values. Other MBARI Tiburon ROV dives recovered alkalic basalt and basanite from 8 separate steep cones on the south flank of Kauai. Once again, these lavas are chemically similar to those from the subaerial Koloa Volcanics. Samples from one of these cones contained common xenoliths of upper mantle lherzolite and harzburgite. Seven MBARI Tiburon ROV dives on the northwest flank of Niihau sampled 6 flat-topped cones and 5 pointed cones. The lavas from the flat-topped cones are alkalic basalt similar to rejuvenated Kiekie Basalt on Niihau Island whereas the lavas from the pointed cones are basanite, hawaiite, and tephrophonolite that are chemically distinct from the Kiekie Basalt, but similar to rejuvenated-stage lavas on Kauai and Oahu. Volcaniclastic deposits were observed and sampled at many of the sites offshore Niihau, Kauai, and Oahu, as well as the North Arch. Breadcrust and spindle bombs and spatter were found

  1. The airborne lava-seawater interaction plume at Kilauea Volcano, Hawai'i

    Edmonds, M.; Gerlach, T.M.

    2006-01-01

    Lava flows into the sea at Kīlauea Volcano, Hawaiʻi, and generates an airborne gas and aerosol plume. Water (H2O), hydrogen chloride (HCl), carbon dioxide (CO2), nitrogen dioxide (NO2) and sulphur dioxide (SO2) gases were quantified in the plume in 2004–2005, using Open Path Fourier Transform infra-red Spectroscopy. The molar abundances of these species and thermodynamic modelling are used to discuss their generation. The range in molar HCl / H2O confirms that HCl is generated when seawater is boiled dry and magnesium salts are hydrolysed (as proposed by [T.M. Gerlach, J.L. Krumhansl, R.O. Fournier, J. Kjargaard, Acid rain from the heating and evaporation of seawater by molten lava: a new volcanic hazard, EOS (Trans. Am. Geophys. Un.) 70 (1989) 1421–1422]), in contrast to models of Na-metasomatism. Airborne droplets of boiled seawater brine form nucleii for subsequent H2O and HCl condensation, which acidifies the droplets and liberates CO2 gas from bicarbonate and carbonate. NO2 is derived from the thermal decomposition of nitrates in coastal seawater, which takes place as the lava heats droplets of boiled seawater brine to 350–400 °C. SO2 is derived from the degassing of subaerial lava flows on the coastal plain. The calculated mass flux of HCl from a moderate-sized ocean entry significantly increases the total HCl emission at Kīlauea (including magmatic sources) and is comparable to industrial HCl emitters in the United States. For larger lava ocean entries, the flux of HCl will cause intense local environmental hazards, such as high localised HCl concentrations and acid rain.

  2. Petrogenesis of Rinjani Post-1257-Caldera-Forming-Eruption Lava Flows

    Heryadi Rachmat

    2016-06-01

    Full Text Available DOI:10.17014/ijog.3.2.107-126After the catastrophic 1257 caldera-forming eruption, a new chapter of Old Rinjani volcanic activity beganwith the appearance of Rombongan and Barujari Volcanoes within the caldera. However, no published petrogeneticstudy focuses mainly on these products. The Rombongan eruption in 1944 and Barujari eruptions in pre-1944, 1966,1994, 2004, and 2009 produced basaltic andesite pyroclastic materials and lava flows. A total of thirty-one sampleswere analyzed, including six samples for each period of eruption except from 2004 (only one sample. The sampleswere used for petrography, whole-rock geochemistry, and trace and rare earth element analyses. The Rombonganand Barujari lavas are composed of calc-alkaline and high K calc-alkaline porphyritic basaltic andesite. The magmashows narrow variation of SiO2 content that implies small changes during its generation. The magma that formedRombongan and Barujari lavas is island-arc alkaline basalt. Generally, data show that the rocks are enriched in LargeIon Lithophile Elements (LILE: K, Rb, Ba, Sr, and Ba and depleted in High Field Strength Elements (HFSE: Y, Ti,and Nb which are typically a suite from a subduction zone. The pattern shows a medium enrichment in Light REEand relatively depleted in Heavy REE. The processes are dominantly controlled by fractional crystallization andmagma mixing. All of the Barujari and Rombongan lavas would have been produced by the same source of magmawith little variation in composition caused by host rock filter process. New flux of magma would likely have occurredfrom pre-1944 until 2009 period that indicates slightly decrease and increase of SiO2 content. The Rombongan andBarujari lava generations show an arc magma differentiation trend.

  3. Lake sturgeon population characteristics in Rainy Lake, Minnesota and Ontario

    Adams, W.E.; Kallemeyn, L.W.; Willis, D.W.

    2006-01-01

    Rainy Lake contains a native population of lake sturgeon Acipenser fulvescens that has been largely unstudied. The aims of this study were to document the population characteristics of lake sturgeon in Rainy Lake and to relate environmental factors to year-class strength for this population. Gill-netting efforts throughout the study resulted in the capture of 322 lake sturgeon, including 50 recaptures. Lake sturgeon in Rainy Lake was relatively plump and fast growing compared with a 32-population summary. Population samples were dominated by lake sturgeon between 110 and 150 cm total length. Age–structure analysis of the samples indicated few younger (<10 years) lake sturgeon, but the smallest gill net mesh size used for sampling was 102 mm (bar measure) and would not retain small sturgeon. Few lake sturgeon older than age 50 years were captured, and maximum age of sampled fish was 59 years. Few correlations existed between lake sturgeon year-class indices and both annual and monthly climate variables, except that mean June air temperature was positively correlated with year-class strength. Analysis of Rainy Lake water elevation and resulting lake sturgeon year-class strength indices across years yielded consistent but weak negative correlations between late April and early June, when spawning of lake sturgeon occurs. The baseline data collected in this study should allow Rainy Lake biologists to establish more specific research questions in the future.

  4. Yellowstone Lake Nanoarchaeota

    Scott eClingenpeel

    2013-09-01

    Full Text Available Considerable Nanoarchaeota novelty and diversity were encountered in Yellowstone Lake, Yellowstone National Park, where sampling targeted lake floor hydrothermal vent fluids, streamers and sediments associated with these vents, and in planktonic photic zones in three different regions of the lake. Significant homonucleotide repeats (HR were observed in pyrosequence reads and in near full-length Sanger sequences, averaging 112 HR per 1,349 bp clone and could confound diversity estimates derived from pyrosequencing, resulting in false nucleotide insertions or deletions (indels. However, Sanger sequencing of two different sets of PCR clones (110 bp, 1349 bp demonstrated that at least some of these indels are real. The majority of the Nanoarchaeota PCR amplicons were vent associated; however, curiously, one relatively small Nanoarchaeota OTU (70 pyrosequencing reads was only found in photic zone water samples obtained from a region of the lake furthest removed from the hydrothermal regions of the lake. Extensive pyrosequencing failed to demonstrate the presence of an Ignicoccus lineage in this lake, suggesting the Nanoarchaeota in this environment are associated with novel Archaea hosts. Defined phylogroups based on near full-length PCR clones document the significant Nanoarchaeota 16S rRNA gene diversity in this lake and firmly establish a terrestrial clade distinct from the marine Nanoarcheota as well as from other geographical locations.

  5. Whiting in Lake Michigan

    2002-01-01

    Satellites provide a view from space of changes on the Earth's surface. This series of images from the Sea-viewing Wide Field-of-view Sensor (SeaWiFS) aboard the Orbview-2 satellite shows the dramatic change in the color of Lake Michigan during the summer. The bright color that appears in late summer is probably caused by calcium carbonate-chalk-in the water. Lake Michigan always has a lot of calcium carbonate in it because the floor of the lake is limestone. During most of the year the calcium carbonate remains dissolved in the cold water, but at the end of summer the lake warms up, lowering the solubility of calcium carbonate. As a result, the calcium carbonate precipitates out of the water, forming clouds of very small solid particles that appear as bright swirls from above. The phenomenon is appropriately called a whiting event. A similar event occured in 1999, but appears to have started later and subsided earlier. It is also possible that a bloom of the algae Microcystis is responsible for the color change, but unlikely because of Lake Michigan's depth and size. Microcystis blooms have occured in other lakes in the region, however. On the shore of the lake it is possible to see the cities of Chicago, Illinois, and Milwaukee, Wisconsin. Both appear as clusters of gray-brown pixels. Image courtesy the SeaWiFS Project, NASA/Goddard Space Flight Center, and ORBIMAGE

  6. Basic limnology of fifty-one lakes in Costa Rica

    Kurt A. Haberyan

    2003-03-01

    Full Text Available We visited 51 lakes in Costa Rica as part of a broad-based survey to document their physical and chemical characteristics and how these relate to the mode of formation and geographical distribution of the lakes. The four oxbow lakes were low in elevation and tended to be turbid, high in conductivity and CO2 , but low in dissolved O2 ; one of these, L. Gandoca, had a hypolimnion essentially composed of sea water. These were similar to the four wetland lakes, but the latter instead had low conductivities and pH, and turbidity was often due to tannins rather than suspended sediments. The thirteen artificial lakes formed a very heterogenous group, whose features varied depending on local factors. The thirteen lakes dammed by landslides, lava flows, or lahars occurred in areas with steep slopes, and were more likely to be stratified than most other types of lakes. The eight lakes that occupy volcanic craters tended to be deep, stratified, clear, and cool; two of these, L. Hule and L. Río Cuarto, appeared to be oligomictic (tending toward meromictic. The nine glacial lakes, all located above 3440 m elevation near Cerro Chirripó, were clear, cold, dilute, and are probably polymictic. Cluster analysis resulted in three significant groups of lakes. Cluster 1 included four calcium-rich lakes (average 48 mg l-1, Cluster 2 included fourteen lakes with more Si than Ca+2 and higher Cl- than the other clusters, and Cluster 3 included the remaining thirty-three lakes that were generally less concentrated. Each cluster included lakes of various origins located in different geographical regions; these data indicate that, apart from the high-altitude glacial lakes and lakes in the Miravalles area, similarity in lake chemistry is independent of lake distribution.Se visitaron 51 lagos en Costa Rica como parte de un sondeo de lagos más amplio, con el fin de documentar sus carácteristicas físicas y químicas y las relaciones entre estas carácteristicas y el modo

  7. Engineering geology model of the Crater Lake outlet, Mt. Ruapehu, New Zealand, to inform rim breakout hazard

    Cook, Stefan C. W.; Kennedy, Ben M.; Villeneuve, Marlène C.

    2018-01-01

    Mt. Ruapehu, in the central North Island of New Zealand, hosts a hot acidic Crater Lake over the active volcanic vent with a surface elevation of c. 2530 m.a.s.l. Volcanic activity and other montane processes have previously resulted in catastrophic releases of some or all of the c. 10 Mm3 of water retained in the lake, creating serious hazards downstream. A major lahar in March 2007 exposed a 10 m high face representative of the rock units impounding the lake, providing an opportunity to conduct both field and laboratory analysis to characterise the rock mass conditions at the outlet to assess the stability of the outlet area. This paper presents an engineering geology model of Crater Lake outlet. Our model shows three andesitic geological units at the outlet, each with different geological histories and physical and mechanical properties, which impact its stability. Geotechnical methods used to characterise the outlet include laboratory testing of the strength, stiffness, porosity and unit weight, and field-based rock mass characterisation using the geological strength index (GSI) and rock mass rating (RMR). Field observations, geomorphology mapping, historic and contemporary photographs, and laboratory results are combined to create cross sections that provide key information for establishing the engineering geology model. The units are recognised in what is informally termed the Crater Lake Formation: i) The upper surface layer is a c. 2 m thick sub-horizontal dark grey lava unit (Armoured Lava Ledge) with sub-horizontal cooling joints spaced at 0.2 m to 2.0 m intervals. The intact rock has a porosity range of 15-27%, density range of 1723-2101 kg/m3, GSI range of 45-75, and unconfined compressive strength (UCS) range of 19-48 MPa. ii) Below this, and outcropping down the majority of the outlet waterfall is a poorly sorted breccia unit composed of block and matrix material (Lava Breccia). The blocks range from 0.1 m to 0.8 m in diameter with an average porosity

  8. Ecology of playa lakes

    Haukos, David A.; Smith, Loren M.

    1992-01-01

    Between 25,000 and 30,000 playa lakes are in the playa lakes region of the southern high plains (Fig. 1). Most playas are in west Texas (about 20,000), and fewer, in New Mexico, Oklahoma, Kansas, and Colorado. The playa lakes region is one of the most intensively cultivated areas of North America. Dominant crops range from cotton in southern areas to cereal grains in the north. Therefore, most of the native short-grass prairie is gone, replaced by crops and, recently, grasses of the Conservation Reserve Program. Playas are the predominant wetlands and major wildlife habitat of the region.More than 115 bird species, including 20 species of waterfowl, and 10 mammal species have been documented in playas. Waterfowl nest in the area, producing up to 250,000 ducklings in wetter years. Dominant breeding and nesting species are mallards and blue-winged teals. During the very protracted breeding season, birds hatch from April through August. Several million shorebirds and waterfowl migrate through the area each spring and fall. More than 400,000 sandhill cranes migrate through and winter in the region, concentrating primarily on the larger saline lakes in the southern portion of the playa lakes region.The primary importance of the playa lakes region to waterfowl is as a wintering area. Wintering waterfowl populations in the playa lakes region range from 1 to 3 million birds, depending on fall precipitation patterns that determine the number of flooded playas. The most common wintering ducks are mallards, northern pintails, green-winged teals, and American wigeons. About 500,000 Canada geese and 100,000 lesser snow geese winter in the playa lakes region, and numbers of geese have increased annually since the early 1980’s. This chapter describes the physiography and ecology of playa lakes and their attributes that benefit waterfowl.

  9. Emplacement dynamics and lava field evolution of the flood basalt eruption at Holuhraun, Iceland: Observations from field and remote sensing data

    Pedersen, Gro; Höskuldsson, Armann; Riishuus, Morten S.; Jónsdóttir, Ingibjörg; Thórdarson, Thorvaldur; Dürig, Tobias; Gudmundsson, Magnus T.; Durmont, Stephanie

    2016-04-01

    The Holuhraun eruption (Aug 2014- Feb 2015) is the largest effusive eruption in Iceland since the Laki eruption in 1783-84, with an estimated lava volume of ~1.6 km3 covering an area of ~83 km2. The eruption provides an unprecedented opportunity to study i) lava morphologies and their emplacement styles, ii) Morphological transitions iii) the transition from open to closed lava pathways and iv) the implication of lava pond formation. This study is based on three different categories of data; field data, airborne data and satellite data. The field data include tracking of the lava advancement by Global Positioning System (GPS) measurements and georeferenced GoPro cameras allowing classification of the lava margin morphology. Furthermore, video footage on-site documented lava emplacement. Complimentary observations have been provided from aircraft platforms and by satellite data. Of particular importance for lava morphology observations are 1-12 m/pixel airborne Synthetic Aperture Radar (SAR) images (x-band), as well as SAR data from TerraSAR-X and COSMO-SkyMed satellites. The Holuhraun lava field comprises a continuum of morphologies from pāhoehoe to 'a'ā, which have varied temporally and spatially. Shelly pāhoehoe lava was the first morphology to be observed (08-29). Spatially, this lava type was not widely distributed, but was emplaced throughout the eruption close to the vent area and the lava channels. Slabby pāhoehoe lava was initially observed the 08-31 and was observed throughout most of the eruption during the high-lava-flux phase of new lava lobe emplacement. 'A'ā lavas were the dominating morphology the first three months of the eruption and was first observed 09-01 like Rubbly pāhoehoe lava. Finally, Spiny pāhoehoe lava was first observed the 09-05 as a few marginal outbreaks along the fairly inactive parts of the 'a'ā lava lobe. However, throughout the eruption this morphology became more important and from mid-November/beginning of December the

  10. A sinuous tumulus over an active lava tube at Kīlauea Volcano: evolution, analogs, and hazard forecasts

    Orr, Tim R.; Bleacher, Jacob E.; Patrick, Matthew R.; Wooten, Kelly M.

    2015-01-01

    Inflation of narrow tube-fed basaltic lava flows (tens of meters across), such as those confined by topography, can be focused predominantly along the roof of a lava tube. This can lead to the development of an unusually long tumulus, its shape matching the sinuosity of the underlying lava tube. Such a situation occurred during Kīlauea Volcano's (Hawai'i, USA) ongoing East Rift Zone eruption on a lava tube active from July through November 2010. Short-lived breakouts from the tube buried the flanks of the sinuous, ridge-like tumulus, while the tumulus crest, its surface composed of lava formed very early in the flow's emplacement history, remained poised above the surrounding younger flows. At least several of these breakouts resulted in irrecoverable uplift of the tube roof. Confined sections of the prehistoric Carrizozo and McCartys flows (New Mexico, USA) display similar sinuous, ridge-like features with comparable surface age relationships. We contend that these distinct features formed in a fashion equivalent to that of the sinuous tumulus that formed at Kīlauea in 2010. Moreover, these sinuous tumuli may be analogs for some sinuous ridges evident in orbital images of the Tharsis volcanic province on Mars. The short-lived breakouts from the sinuous tumulus at Kīlauea were caused by surges in discharge through the lava tube, in response to cycles of deflation and inflation (DI events) at Kīlauea's summit. The correlation between DI events and subsequent breakouts aided in lava flow forecasting. Breakouts from the sinuous tumulus advanced repeatedly toward the sparsely populated Kalapana Gardens subdivision, destroying two homes and threatening others. Hazard assessments, including flow occurrence and advance forecasts, were relayed regularly to the Hawai'i County Civil Defense to aid their lava flow hazard mitigation efforts while this lava tube was active.

  11. A sinuous tumulus over an active lava tube at Kīlauea Volcano: Evolution, analogs, and hazard forecasts

    Orr, Tim R.; Bleacher, Jacob E.; Patrick, Matthew R.; Wooten, Kelly M.

    2015-01-01

    Inflation of narrow tube-fed basaltic lava flows (tens of meters across), such as those confined by topography, can be focused predominantly along the roof of a lava tube. This can lead to the development of an unusually long tumulus, its shape matching the sinuosity of the underlying lava tube. Such a situation occurred during Kīlauea Volcano's (Hawai'i, USA) ongoing East Rift Zone eruption on a lava tube active from July through November 2010. Short-lived breakouts from the tube buried the flanks of the sinuous, ridge-like tumulus, while the tumulus crest, its surface composed of lava formed very early in the flow's emplacement history, remained poised above the surrounding younger flows. At least several of these breakouts resulted in irrecoverable uplift of the tube roof. Confined sections of the prehistoric Carrizozo and McCartys flows (New Mexico, USA) display similar sinuous, ridge-like features with comparable surface age relationships. We contend that these distinct features formed in a fashion equivalent to that of the sinuous tumulus that formed at Kīlauea in 2010. Moreover, these sinuous tumuli may be analogs for some sinuous ridges evident in orbital images of the Tharsis volcanic province on Mars. The short-lived breakouts from the sinuous tumulus at Kīlauea were caused by surges in discharge through the lava tube, in response to cycles of deflation and inflation (DI events) at Kīlauea's summit. The correlation between DI events and subsequent breakouts aided in lava flow forecasting. Breakouts from the sinuous tumulus advanced repeatedly toward the sparsely populated Kalapana Gardens subdivision, destroying two homes and threatening others. Hazard assessments, including flow occurrence and advance forecasts, were relayed regularly to the Hawai'i County Civil Defense to aid their lava flow hazard mitigation efforts while this lava tube was active.

  12. Halls Lake 1990

    National Oceanic and Atmospheric Administration, Department of Commerce — Salt marsh habitats along the shoreline of Halls Lake are threatened by wave erosion, but the reconstruction of barrier islands to reduce this erosion will modify or...

  13. Lake Level Reconstructions

    National Oceanic and Atmospheric Administration, Department of Commerce — Records of past lake levels, mostly related to changes in moisture balance (evaporation-precipitation). Parameter keywords describe what was measured in this data...

  14. The Key Lake project

    Glattes, G.

    1985-01-01

    Aspects of project financing for the share of the Canadian subsidiary of Uranerzbergbau-GmbH, Bonn, in the uranium mining and milling facility at Key Lake, Saskatchewan, by a Canadian bank syndicate. (orig.) [de

  15. Great Lakes Ice Charts

    National Oceanic and Atmospheric Administration, Department of Commerce — Charts show ice extent and concentration three times weekly during the ice season, for all lakes except Ontario, from the 1973/74 ice season through the 2001/2002...

  16. Foy Lake paleodiatom data

    U.S. Environmental Protection Agency — Percent abundance of 109 diatom species collected from a Foy Lake (Montana, USA) sediment core that was sampled every ∼5–20 years, yielding a ∼7 kyr record over 800...

  17. Dragon Lake, Siberia

    2002-01-01

    Nicknamed 'Dragon Lake,' this body of water is formed by the Bratskove Reservoir, built along the Angara river in southern Siberia, near the city of Bratsk. This image was acquired in winter, when the lake is frozen. This image was acquired by Landsat 7's Enhanced Thematic Mapper plus (ETM+) sensor on December 19, 1999. This is a natural color composite image made using blue, green, and red wavelengths. Image provided by the USGS EROS Data Center Satellite Systems Branch

  18. Influence of sediment recycling on the trace element composition of primitive arc lavas

    Collinet, M.; Jagoutz, O. E.

    2017-12-01

    Primitive calc-alkaline lavas from continental arcs are, on average, enriched in incompatible elements compared to those from intra-oceanic arcs. This relative enrichment is observed in different groups of trace elements: LILE (e.g. K, Rb), LREE to MREE (La-Dy) and HFSE (e.g.Zr, Nb) and is thought to result from (1) a transfer of material from the subducting slab to the mantle wedge at higher temperature than in intra-oceanic margins and/or (2) lower average degrees of melting in the mantle wedge, as a consequence of thicker overlying crusts and higher average pressures of melting. In addition to thicker overlying crusts and generally higher slab temperatures, continental margins are characterized by larger volumes of rock exposed above sea level and enhanced erosion rates compared to intra-oceanic arcs. As several geochemical signatures of arc lavas attest to the importance of sediment recycling in subduction zones, we explore the possibility that the high concentrations of incompatible elements in primitive lavas from continental arcs directly reflect a larger input of sediment to the subduction system. Previous efforts to quantify the sediment flux to oceanic trenches focused on the thickness of pelagic and hemipelagic sediments on top of the plate entering the subduction zone (Plank and Langmuir, 1993, Nature). These estimates primarily relied on the sediment layer drilled outboard from the subduction system and likely underestimate the volume of sediment derived from the arc itself. Accordingly, we find that such estimates of sediment flux do not correlate with the concentration of incompatible elements in primitive arc lavas. To account for regional contributions of coarser detrital sediments, usually delivered to oceanic trenches by turbidity currents, we apply to arc segments a model that quantifies the sediment load of rivers based on the average relief, area, temperature and runoff of their respective drainage areas (Syvitski et al., 2003, Sediment. Geol

  19. Numerical analysis of pressure and porosity evolution in lava domes during periodic degassing conditions

    Hyman, D.; Bursik, M. I.; Pitman, E. B.

    2017-12-01

    The collapse or explosive breakup of growing and degassing lava domes presents a significant hazard due to the generation of dense, mobile pyroclastic flows as well as the wide dispersal of dense ballistic blocks. Lava dome stability is in large part governed by the balance of transport and storage of gas within the pore space. Because pore pressurization reduces the effective stress within a dome, the transient distribution of elevated gas pressure is critically important to understanding dome break up. We combine mathematical and numerical analyses to gain a better understanding of the temporal variation in gas flow and storage within the dome system. In doing so, we develop and analyze new governing equations describing nonlinear gas pressure diffusion in a deforming dome with an evolving porosity field. By relating porosity, permeability, and pressure, we show that the flux of gas through a dome is highly sensitive to the porosity distribution and viscosity of the lava, as well as the timescale and magnitude of the gas supply. The numerical results suggest that the diffusion of pressure and porosity variations play an integral role in the cyclic growth and destruction of small domes.The nearly continuous cycles of lava dome growth, pressurization, and failure that have characterized the last two decades of eruptive history at Volcán Popocatépetl, Mexico provide excellent natural data with which to compare new models of transient dome pressurization. At Popocatépetl, periodic pressure increases brought on by changes in gas supply into the base of the dome may play a role in its cyclic growth and destruction behavior. We compare our model of cyclic pressurization with lava dome survival data from Popocatépetl. We show that transient changes in pore pressure explain how small lava domes evolve to a state of criticality before explosion or collapse. Additionally, numerical analyses presented here suggest that short-term oscillations cannot arise within the dome

  20. Lake Chad, Chad, Africa

    1992-01-01

    Hydrologic and ecologic changes in the Lake Chad Basin are shown in this Oct 1992 photograph. In space photo documentation, Lake Chad was at its greatest area extent (25,000 sq. km.) during Gemini 9 in June 1966 (see S66-38444). Its reduction during the severe droughts from 1968 to 1974 was first noted during Skylab (1973-1974). After the drought began again in 1982, the lake reached its minimum extent (1,450 sq. km.) in Space Shuttle photographs taken in 1984 and 1985. In this STS-52 photograph, Lake Chad has begun to recover. The area of the open water and interdunal impoundments in the southern basin (the Chari River Basin) is estimated to be 1,900 to 2100 sq. km. Note the green vegetation in the valley of the K'Yobe flow has wetted the northern lake basin for the first time in several years. There is evidence of biomass burning south of the K'Yobe Delta and in the vegetated interdunal areas near the dike in the center of the lake. Also note the dark 'Green Line' of the Sahel (the g

  1. Resilience and Restoration of Lakes

    Stephen R. Carpenter

    1997-06-01

    Full Text Available Lake water quality and ecosystem services are normally maintained by several feedbacks. Among these are nutrient retention and humic production by wetlands, nutrient retention and woody habitat production by riparian forests, food web structures that cha nnel phosphorus to consumers rather than phytoplankton, and biogeochemical mechanisms that inhibit phosphorus recycling from sediments. In degraded lakes, these resilience mechanisms are replaced by new ones that connect lakes to larger, regional economi c and social systems. New controls that maintain degraded lakes include runoff from agricultural and urban areas, absence of wetlands and riparian forests, and changes in lake food webs and biogeochemistry that channel phosphorus to blooms of nuisance al gae. Economic analyses show that degraded lakes are significantly less valuable than normal lakes. Because of this difference in value, the economic benefits of restoring lakes could be used to create incentives for lake restoration.

  2. Is Lake Chabot Eutrophic?

    Pellegrini, K.; Logan, J.; Esterlis, P.; Lew, A.; Nguyen, M.

    2013-12-01

    Introduction/Abstract: Lake Chabot is an integral part of the East Bay watershed that provides habitats for animals and recreation for humans year-round. Lake Chabot has been in danger of eutrophication due to excessive dumping of phosphorous and nitrogen into the water from the fertilizers of nearby golf courses and neighboring houses. If the lake turned out to be eutrophified, it could seriously impact what is currently the standby emergency water supply for many Castro Valley residents. Eutrophication is the excessive richness of nutrients such as nitrogen and phosphorus in a lake, usually as a result of runoff. This buildup of nutrients causes algal blooms. The algae uses up most of the oxygen in the water, and when it dies, it causes the lake to hypoxify. The fish in the lake can't breathe, and consequently suffocate. Other oxygen-dependant aquatic creatures die off as well. Needless to say, the eutrophication of a lake is bad news for the wildlife that lives in or around it. The level of eutrophication in our area in Northern California tends to increase during the late spring/early summer months, so our crew went out and took samples of Lake Chabot on June 2. We focused on the area of the lake where the water enters, known on the map as Honker Bay. We also took readings a ways down in deeper water for comparison's sake. Visually, the lake looked in bad shape. The water was a murky green that glimmered with particulate matter that swirled around the boat as we went by. In the Honker Bay region where we focused our testing, there were reeds bathed in algae that coated the surface of the lake in thick, swirling patterns. Surprisingly enough, however, our test results didn't reveal any extreme levels of phosphorous or nitrogen. They were slightly higher than usual, but not by any significant amount. The levels we found were high enough to stimulate plant and algae growth and promote eutrophication, but not enough to do any severe damage. After a briefing with a

  3. Computational modeling of lava domes using particle dynamics to investigate the effect of conduit flow mechanics on flow patterns

    Husain, Taha Murtuza

    Large (1--4 x 106 m3) to major (> 4 x 106 m3) dome collapses for andesitic lava domes such as Soufriere Hills Volcano, Montserrat are observed for elevated magma discharge rates (6--13 m3/s). The gas rich magma pulses lead to pressure build up in the lava dome that result in structural failure of the over steepened canyon-like walls which may lead to rockfall or pyroclastic flow. This indicates that dome collapse intimately related to magma extrusion rate. Variation in magma extrusion rate for open-system magma chambers is observed to follow alternating periods of high and low activity. Periodic behavior of magma exhibits a rich diversity in the nature of its eruptive history due to variation in magma chamber size, total crystal content, linear crystal growth rate and magma replenishment rate. Distinguished patterns of growth were observed at different magma flow rates ranging from endogenous to exogenous dome growth for magma with varying strengths. Determining the key parameters that control the transition in flow pattern of the magma during its lava dome building eruption is the main focus. This dissertation examines the mechanical effects on the morphology of the evolving lava dome on the extrusion of magma from a central vent using a 2D particle dynamics model. The particle dynamics model is coupled with a conduit flow model that incorporates the kinetics of crystallization and rheological stiffening to investigate important mechanisms during lava dome building eruptions. Chapter I of this dissertation explores lava dome growth and failure mechanics using a two-dimensional particle-dynamics model. The model follows the evolution of fractured lava, with solidification driven by degassing induced crystallization of magma. The particle-dynamics model emulates the natural development of dome growth and rearrangement of the lava dome which is difficult in mesh-based analyses due to mesh entanglement effects. The deformable talus evolves naturally as a frictional

  4. Channelized lava flows at the East Pacific Rise crest 9°-10°N: the importance of off-axis lava transport in developing the architecture of young oceanic crust

    Soule, S.A.; Fornari, D.J.; Perfit, M.R.; Tivey, M.A.; Ridley, W.I.; Schouten, Hans

    2005-01-01

     Submarine lava flows are the building blocks of young oceanic crust. Lava erupted at the ridge axis is transported across the ridge crest in a manner dictated by the rheology of the lava, the characteristics of the eruption, and the topography it encounters. The resulting lava flows can vary dramatically in form and consequently in their impact on the physical characteristics of the seafloor and the architecture of the upper 50–500 m of the oceanic crust. We have mapped and measured numerous submarine channelized lava flows at the East Pacific Rise (EPR) crest 9°–10°N that reflect the high-effusion-rate and high-flow-velocity end-member of lava eruption and transport at mid-ocean ridges. Channel systems composed of identifiable segments 50–1000 m in length extend up to 3 km from the axial summit trough (AST) and have widths of 10–50 m and depths of 2–3 m. Samples collected within the channels are N-MORB with Mg# indicating eruption from the AST. We produce detailed maps of lava surface morphology across the channel surface from mosaics of digital images that show lineated or flat sheets at the channel center bounded by brecciated lava at the channel margins. Modeled velocity profiles across the channel surface allow us to determine flux through the channels from 0.4 to 4.7 × 103m3/s, and modeled shear rates help explain the surface morphology variation. We suggest that channelized lava flows are a primary mechanism by which lava accumulates in the off-axis region (1–3 km) and produces the layer 2A thickening that is observed at fast and superfast spreading ridges. In addition, the rapid, high-volume-flux eruptions necessary to produce channelized flows may act as an indicator of the local magma budget along the EPR. We find that high concentrations of channelized lava flows correlate with local, across-axis ridge morphology indicative of an elevated magma budget. Additionally, in locations where channelized flows are located dominantly to the east

  5. Glacial lake inventory and lake outburst potential in Uzbekistan.

    Petrov, Maxim A; Sabitov, Timur Y; Tomashevskaya, Irina G; Glazirin, Gleb E; Chernomorets, Sergey S; Savernyuk, Elena A; Tutubalina, Olga V; Petrakov, Dmitriy A; Sokolov, Leonid S; Dokukin, Mikhail D; Mountrakis, Giorgos; Ruiz-Villanueva, Virginia; Stoffel, Markus

    2017-08-15

    Climate change has been shown to increase the number of mountain lakes across various mountain ranges in the World. In Central Asia, and in particular on the territory of Uzbekistan, a detailed assessment of glacier lakes and their evolution over time is, however lacking. For this reason we created the first detailed inventory of mountain lakes of Uzbekistan based on recent (2002-2014) satellite observations using WorldView-2, SPOT5, and IKONOS imagery with a spatial resolution from 2 to 10m. This record was complemented with data from field studies of the last 50years. The previous data were mostly in the form of inventories of lakes, available in Soviet archives, and primarily included localized in-situ data. The inventory of mountain lakes presented here, by contrast, includes an overview of all lakes of the territory of Uzbekistan. Lakes were considered if they were located at altitudes above 1500m and if lakes had an area exceeding 100m 2 . As in other mountain regions of the World, the ongoing increase of air temperatures has led to an increase in lake number and area. Moreover, the frequency and overall number of lake outburst events have been on the rise as well. Therefore, we also present the first outburst assessment with an updated version of well-known approaches considering local climate features and event histories. As a result, out of the 242 lakes identified on the territory of Uzbekistan, 15% are considered prone to outburst, 10% of these lakes have been assigned low outburst potential and the remainder of the lakes have an average level of outburst potential. We conclude that the distribution of lakes by elevation shows a significant influence on lake area and hazard potential. No significant differences, by contrast, exist between the distribution of lake area, outburst potential, and lake location with respect to glaciers by regions. Copyright © 2017 Elsevier B.V. All rights reserved.

  6. Structural Analysis of Silicic Lavas Reveals the Importance of Endogenous Flow During Emplacement

    Andrews, G. D.; Martens, A.; Isom, S.; Maxwell, A.; Brown, S. R.

    2017-12-01

    Recent observations of silicic lava flows in Chile strongly suggest sustained, endogeneous flow beneath an insulating carapace, where the flow advances through breakouts at the flow margin. New mapping of vertical exposures around the margin of Obsidian Dome, California, has identified discreet lobe structures in cross-section, suggesting that flow-front breakouts occured there during emplacement. The flow lobes are identified through structural measurements of flow-banding orientation and the stretching directions of vesicles. Newly acquired lidar of the Inyo Domes, including Obsidian Dome, is being analyzed to better understand the patterns of folding on the upper surface of the lavas, and to test for fold vergence patterns that may distinguish between endogenous and exogenous flow.

  7. Perched Lava Pond Complex on South Rift of Axial Volcano Revealed in AUV Mapping

    Paduan, J. B.; Clague, D. A.; Caress, D. W.; Thomas, H. J.

    2013-12-01

    An extraordinary lava pond complex is located on Axial Volcano's distal south rift. It was discovered in EM300 multibeam bathymetry collected in 1998, and explored and sampled with ROVs Tiburon in 2005 and Doc Ricketts in 2013. It was surveyed with the MBARI Mapping AUV D. Allan B. in 2011, in a complicated mission first flying above the levees at constant depth, then skimming ~5 m over the levees at a different constant depth to survey the floors, then twice switching to constant altitude mode to map outside the ponds. The AUV navigation was adjusted using the MB-System tool mbnavadjust so that bathymetric features match in overlapping and crossing swaths. The ~1-m resolution AUV bathymetry reveals extremely rough terrain, where low-resolution EM300 data had averaged acoustic returns and obscured details of walls, floors, a breach and surrounding flows, and gives context to the ROV observations and samples. The 6 x 1.5 km pond complex has 4 large and several smaller drained ponds with rims 67 to 106 m above the floors. The combined volume before draining was 0.56 km3. The ponds overflowed to build lobate-flow levees with elongate pillows draping outer flanks, then drained, leaving lava veneer on vertical inner walls. Levee rim depths vary by only 10 m and are deeper around the southern ponds. Deep collapse-pits in the levees suggest porosity of pond walls. The eastern levee of the northeastern pond breached, draining the interconnected ponds, and fed thick, rapidly-emplaced, sheet-flows along the complex's east side. These flows travelled at least 5.5 km down-rift and have 19-33 m deep drained ponds. They extended up-rift as well, forming a 10 x 2.5 km ponded flow with level 'bathtub rings' as high as 35 m above the floor marking that flow's high-stand. Despite the breach, at least 0.066 km3 of the molten interior of the large ponds also drained back down the eruptive fissures, as the pond floors are deeper than the sill and sea floor outside the complex. Tumulus

  8. Partial pressures of oxygen, phosphorus and fluorine in some lunar lavas

    Nash, W. P.; Hausel, W. D.

    1973-01-01

    Lunar sample 14310 is a feldspar-rich basalt which shows no evidence of shock deformation or recrystallization. Pyroxenes include Mg-rich orthopyroxene, pigeonite and augite; pyroxferroite occurs in the interstitial residuum. Plagioclase feldspars are zoned from An(96) to An(67), and variations in feldspar compositions do not necessarily indicate loss of Na during eruption of the lava. Opaque phases include ilmenite, ulvospinel, metallic iron, troilite, and schreibersite. Both whitlockite and apatite are present, and the interstitial residua contain baddeleyite, tranquillityite and barium-rich sanidine. Theoretical calculations provide estimates of partial pressures of oxygen, phosphorus, and fluorine in lunar magmas. In general, partial pressures of oxygen are restricted by the limiting assemblages of iron-wuestite and ilmenite-iron-rutile; phosphorus partial pressures are higher in lunar magmas than in terrestrial lavas. The occurrence of whitlockite indicates significantly lower fugacities of fluorine in lunar magmas than in terrestrial magmas.

  9. Hadley Rille, lava tubes and mare volcanism at the Apollo 15 site

    Greeley, R.; Spudis, P.D.

    1985-01-01

    Hadley Rille appears to be a collapsed lava tube/channel, whose formation history may be more intimately related to the mare units sampled at 15 than was previously thought. More work is needed relating samples and observations from Apollo 15 to the rille and its geologic evolution. As the only sinuous rille visited during the Apollo missions, Hadley Rille represents a data source that is directly applicable to the deciphering of processes involved in lunar mare volcanism

  10. The mechanism of flow and fabric development in mechanically anisotropic trachyte lava

    Závada, Prokop; Schulmann, K.; Lexa, O.; Hrouda, F.; Haloda, J.; Týcová, P.

    2009-01-01

    Roč. 31, č. 11 (2009), s. 1295-1307 ISSN 0191-8141 R&D Projects: GA AV ČR KJB301110703 Grant - others:GA ČR(CZ) GA205/03/0204 Institutional research plan: CEZ:AV0Z30120515 Keywords : trachyte * anisotropy of magnetic susceptibility * fibre-slip mechanism * lava dome * mechanical anisotropy * sanidine Subject RIV: DB - Geology ; Mineralogy Impact factor: 1.732, year: 2009

  11. Resolution of lava tubes with ground penetrating radar: preliminary results from the TubeX project

    Esmaeili, S.; Kruse, S.; Garry, W. B.; Whelley, P.; Young, K.; Jazayeri, S.; Bell, E.; Paylor, R.

    2017-12-01

    As early as the mid 1970's it was postulated that planetary tubes or caves on other planetary bodies (i.e., the Moon or Mars) could provide safe havens for human crews, protect life and shield equipment from harmful radiation, rapidly fluctuating surface temperatures, and even meteorite impacts. What is not clear, however, are the exploration methods necessary to evaluate a potential tube-rich environment to locate suitable tubes suitable for human habitation. We seek to address this knowledge gap using a suite of instruments to detect and document tubes in a terrestrial analog study at Lava Beds National Monument, California, USA. Here we describe the results of ground penetrating radar (GPR) profiles and light detection and ranging (LiDAR) scans. Surveys were conducted from the surface and within four lava tubes (Hercules Leg, Skull, Valentine and, Indian Well Caves) with varying flow composition, shape, and complexity. Results are shown across segments of these tubes where the tubes are 10 m in height and the ceilings are 1 - 10 m below the surface. The GPR profiles over the tubes are, as expected, complex, due to scattering from fractures in roof material and three-dimensional heterogeneities. Point clouds derived from the LiDAR scans of both the interior and exterior of the lava tubes provide precise positioning of the tube geometry and depth of the ceiling and floor with respect to the surface topography. GPR profiles over LiDAR-mapped tube cross-sections are presented and compared against synthetic models of radar response to the measured geometry. This comparison will help to better understand the origins of characteristic features in the radar profiles. We seek to identify the optimal data processing and migration approaches to aid lava tube exploration of planetary surfaces.

  12. Lake Morphometry for NHD Lakes in Tennessee Region 6 HUC

    U.S. Environmental Protection Agency — Lake morphometry metrics are known to influence productivity in lakes and are important for building various types of ecological and environmental models of lentic...

  13. Lake Morphometry for NHD Lakes in Ohio Region 5 HUC

    U.S. Environmental Protection Agency — Lake morphometry metrics are known to influence productivity in lakes and are important for building various types of ecological and environmental models of lentic...

  14. Lake Morphometry for NHD Lakes in California Region 18 HUC

    U.S. Environmental Protection Agency — Lake morphometry metrics are known to influence productivity in lakes and are important for building various types of ecological and environmental models of lentic...

  15. Subduction Contributions in the Trans-Mexican Volcanic Belt: Implications from Lava Chemistry and Hf-Nd-Pb Isotopes

    Cai, Y.; Goldstein, S. L.; Langmuir, C. H.; Gómez-Tuena, A.; Lagatta, A.; Straub, S. M.; Martín Del Pozzo, A.

    2007-05-01

    Despite thick continental crust, near primitive lavas erupt throughout the Trans-Mexican Volcanic Belt (TMVB). In order to distinguish and better constrain subduction contributions and effects of crustal contamination, we analyzed samples representing subducting sediments from DSDP Site 487, and Quaternary lavas from stratovolcanoes and cinder cones, including alkaline "high-Nb" lavas from the Sierra Chichinautzin Volcanic Field (SCVF) showing negligible subduction signature in its trace element chemistry and representing melts of the mantle wedge. Our primary observations and implications are: (1) The high-Nb SCVF `intraplate' lavas define a linear trend along the "Nd-Hf mantle-crust array", defining the composition of the mantle wedge. (2) Popocatepetl and Nevado de Toluca stratovolcanoes show the highest Nd and Hf isotope ratios, higher than the `intraplate' lavas, indicating their sources are more "depleted mantle-like" than the regional mantle wedge. (3) The Popo and Toluca chemical and isotopic trends sharply contrast with Pico de Orizaba, which shows classic indications of crustal contamination (e.g. high 207Pb/204Pb, low Nd-Hf isotope ratios), consistent with contamination by local Precambrian crust. (4) Higher Nd-Hf isotopes in Popo and Toluca lavas also correlate with lower Pb isotope ratios, and lower Lu/Hf and Zr/Hf. Together, these data indicate contributions from subducted Pacific oceanic crust and hydrothermal sediment. (5) Popo and Toluca are also enriched in Th/LREE compared with `intraplate' lavas, reflecting subducted sediment contributions. (6) Nd-Hf isotope ratios of hydrothermal sediment from DSDP Site 487 lie on the "seawater array", with high Hf isotope ratios compared to the "mantle-crust array". Popo and Toluca Nd-Hf isotopes display a shallower slope than the "intraplate lava Nd-Hf array", reflecting contributions from hydrothermal sediment. Popocatepetl and Toluca lavas therefore avoid substantial crustal contamination of mantle wedge

  16. Emplacement of Xenolith Nodules in the Kaupulehu Lava Flow, Hualalai Volcano, Hawaii

    Guest, J. E.; Spudis, P. D.; Greeley, R.; Taylor, G. J.; Baloga, S. M.

    1995-01-01

    The basaltic Kaupulehu 1800-1801 lava flow of Hualalai Volcano, Hawaii contains abundant ultramafic xenoliths. Many of these xenoliths occur as bedded layers of semi-rounded nodules, each thinly coated with a veneer (typically 1 mm thick) of lava. The nodule beds are analogous to cobble deposits of fluvial sedimentary systems. Although several mechanisms have been proposed for the formation of the nodule beds, it was found that, at more than one locality, the nodule beds are overbank levee deposits. The geological occurrence of the nodules, certain diagnostic aspects of the flow morphology and consideration of the inferred emplacement process indicate that the Kaupulehu flow had an exceptionally low viscosity on eruption and that the flow of the lava stream was extremely rapid, with flow velocities of at least 10 m/s (more than 40 km/h. This flow is the youngest on Hualalai Volcano and future eruptions of a similar type would pose considerable hazard to life as well as property.

  17. Lava-flow hazard on the SE flank of Mt. Etna (Southern Italy)

    Crisci, G. M.; Iovine, G.; Di Gregorio, S.; Lupiano, V.

    2008-11-01

    A method for mapping lava-flow hazard on the SE flank of Mt. Etna (Sicily, Southern Italy) by applying the Cellular Automata model SCIARA -fv is described, together with employed techniques of calibration and validation through a parallel Genetic Algorithm. The study area is partly urbanised; it has repeatedly been affected by lava flows from flank eruptions in historical time, and shows evidence of a dominant SSE-trending fracture system. Moreover, a dormant deep-seated gravitational deformation, associated with a larger volcano-tectonic phenomenon, affects the whole south-eastern flank of the volcano. The Etnean 2001 Mt. Calcarazzi lava-flow event has been selected for model calibration, while validation has been performed by considering the 2002 Linguaglossa and the 1991-93 Valle del Bove events — suitable data for back analysis being available for these recent eruptions. Quantitative evaluation of the simulations, with respect to the real events, has been performed by means of a couple of fitness functions, which consider either the areas affected by the lava flows, or areas and eruption duration. Sensitivity analyses are in progress for thoroughly evaluating the role of parameters, topographic input data, and mesh geometry on model performance; though, preliminary results have already given encouraging responses on model robustness. In order to evaluate lava-flow hazard in the study area, a regular grid of n.340 possible vents, uniformly covering the study area and located at 500 m intervals, has been hypothesised. For each vent, a statistically-significant number of simulations has been planned, by adopting combinations of durations, lava volumes, and effusion-rate functions, selected by considering available volcanological data. Performed simulations have been stored in a GIS environment for successive analyses and map elaboration. Probabilities of activation, empirically based on past behaviour of the volcano, can be assigned to each vent of the grid, by

  18. Gas bubble dimensions in Archean lava flows indicate low air pressure at 2.7 Ga

    Som, S. M.; Buick, R.; Hagadorn, J.; Blake, T.; Perreault, J.; Harnmeijer, J.; Catling, D. C.

    2014-12-01

    Air pressure constrains atmospheric composition, which, in turn, is linked to the Earth system through biogeochemical cycles and fluxes of volatiles from and to the Earth's interior. Previous studies have only placed maximum levels on surface air pressure for the early Earth [1]. Here, we calculate an absolute value for Archean barometric pressure using gas bubble size (vesicle) distributions in uninflated basaltic lava flows that solidified at sea level 2.7 billion years ago in the Pilbara Craton, Western Australia. These vesicles have been filled in by secondary minerals deposited during metasomatism and so are now amydules, but thin sections show that infilling did not change vesicle dimensions. Amygdule dimensions are measured using high-resolution X-ray tomography from core samples obtained from the top and bottom of the lava flows. The modal size expressed at the top and at the bottom of an uninflated flow can be linked to atmospheric pressure using the ideal gas law. Such a technique has been verified as a paleoaltimeter using Hawaiian Quaternary lava flows [2]. We use statistical methods to estimate the mean and standard deviation of the volumetric size of the amygdules by applying 'bootstrap'resampling and the Central Limit Theorem. Our data indicate a surprisingly low atmospheric pressure. Greater nitrogen burial under anaerobic conditions likely explains lower pressure. Refs: [1] Som et al. (2012) Nature 484, 359-262. D. L. Sahagian et al. (2002) J. Geol., 110, 671-685.

  19. Hekla Volcano, Iceland, in the 20th Century: Lava Volumes, Production Rates, and Effusion Rates

    Pedersen, G. B. M.; Belart, J. M. C.; Magnússon, E.; Vilmundardóttir, O. K.; Kizel, F.; Sigurmundsson, F. S.; Gísladóttir, G.; Benediktsson, J. A.

    2018-02-01

    Lava flow thicknesses, volumes, and effusion rates provide essential information for understanding the behavior of eruptions and their associated deformation signals. Preeruption and posteruption elevation models were generated from historical stereo photographs to produce the lava flow thickness maps for the last five eruptions at Hekla volcano, Iceland. These results provide precise estimation of lava bulk volumes: V1947-1948 = 0.742 ± 0.138 km3, V1970 = 0.205 ± 0.012 km3, V1980-1981 = 0.169 ± 0.016 km3, V1991 = 0.241 ± 0.019 km3, and V2000 = 0.095 ± 0.005 km3 and reveal variable production rate through the 20th century. These new volumes improve the linear correlation between erupted volume and coeruption tilt change, indicating that tilt may be used to determine eruption volume. During eruptions the active vents migrate 325-480 m downhill, suggesting rough excess pressures of 8-12 MPa and that the gradient of this excess pressure increases from 0.4 to 11 Pa s-1 during the 20th century. We suggest that this is related to increased resistance along the eruptive conduit.

  20. The origin of Venusian channels: Modelling of thermal erosion by lava

    Bussey, D. B. J.; Sorensen, S-A.; Guest, J. E.

    1993-01-01

    Magellan imagery has revealed that channels, apparently volcanic in origin, are abundant on the surface of Venus. There has been much debate about the origin of these channels. Are they the result of erosional (either thermal or mechanical) or constructional processes? A common characteristic of the simple sinuous channels is that they show evidence of erosion near their source and then become purely constructional, forming levees and in some cases roofing over completely. One method of showing that thermal erosion is capable of producing the type of channels seen is to use computer modeling incorporating the physical conditions on Venus and the physical characteristics of the different types of lava that may have been erupted. It is possible to calculate, relatively easily, two channel parameters. The first is the erosion rate, which combined with eruption duration, gives depth. The second is for how long after leaving the source the erupted lava will continue to be capable of thermal erosion before constructional processes dominate. Making assumptions about the rheology of the lava (e.g., assume it behaves as a Bingham plastic) along with the slope angle yields a flow velocity and therefore a distance over which thermal erosion will take place. Due to the resolution (both vertical and horizontal) of the Magellan altimetric data, the distance from the source that the channel is erosional can be much more accurately measured than the depth of the channel. This will remain the case until stereo imagery becomes available for large areas of the planet.

  1. THE AESTHETICS AND DYNAMICS OF LAVA: An interdisciplinary course in which the volcano is brought to the students.

    Wysocki, R.; Karson, J. A.

    2017-12-01

    The power, fury, and nearly indescribably beauty of flowing lava has permeated the entirety of human existence. Being in the presence of flowing lava redefines the educational experience magnitudes beyond that of the classroom, online and/or an analog experiment. For the last 8 years the Syracuse University Lava Project (SULP) has presented this unique immersive experience nearly weekly year-round. It is through this intensely direct education experience that Pre-K to Post Doc students are exposed to a fundamental geomorphic mechanism: flowing lava. The SULP facility is located in the Syracuse Sculpture Studio and 1.1 Ga basalt is turned into 1200°C molten lava flowing from a reconfigured bronze furnace. Originally conceived as a means to find art material via scientific experiment the project has evolved into a truly one-of-a-kind interdisciplinary course "The Aesthetics and Dynamics of Lava," a course populated by students from across the academic spectrum. Students in this cross-listed course design their own investigations with lava- art or science or some combination - in the context of our background presentations as a launching point. Key benefits include interacting with faculty from very different backgrounds and with very different scholarly/funding systems and students with different outlooks, to engage in multiple modes of learning. Students use scientific tools and processes (FLIR camera, microprobe, thin sections, etc.) as well as those from art and design to produce reports in a variety of formats: traditional written reports, video projects, computer modeling, online presentations, sculpture, photography, etc. Our collaboration has truly blurred the lines between science and art, creating a learning environment in which students from across all academic disciplines work together to share their diverse impressions of lava flow events through shared projects, broadening their perspectives and enabling them to see one another's worlds from new points

  2. LAV@HAZARD: a Web-GIS Framework for Real-Time Forecasting of Lava Flow Hazards

    Del Negro, C.; Bilotta, G.; Cappello, A.; Ganci, G.; Herault, A.

    2014-12-01

    Crucial to lava flow hazard assessment is the development of tools for real-time prediction of flow paths, flow advance rates, and final flow lengths. Accurate prediction of flow paths and advance rates requires not only rapid assessment of eruption conditions (especially effusion rate) but also improved models of lava flow emplacement. Here we present the LAV@HAZARD web-GIS framework, which combines spaceborne remote sensing techniques and numerical simulations for real-time forecasting of lava flow hazards. By using satellite-derived discharge rates to drive a lava flow emplacement model, LAV@HAZARD allows timely definition of parameters and maps essential for hazard assessment, including the propagation time of lava flows and the maximum run-out distance. We take advantage of the flexibility of the HOTSAT thermal monitoring system to process satellite images coming from sensors with different spatial, temporal and spectral resolutions. HOTSAT was designed to ingest infrared satellite data acquired by the MODIS and SEVIRI sensors to output hot spot location, lava thermal flux and discharge rate. We use LAV@HAZARD to merge this output with the MAGFLOW physics-based model to simulate lava flow paths and to update, in a timely manner, flow simulations. Thus, any significant changes in lava discharge rate are included in the predictions. A significant benefit in terms of computational speed was obtained thanks to the parallel implementation of MAGFLOW on graphic processing units (GPUs). All this useful information has been gathered into the LAV@HAZARD platform which, due to the high degree of interactivity, allows generation of easily readable maps and a fast way to explore alternative scenarios. We will describe and demonstrate the operation of this framework using a variety of case studies pertaining to Mt Etna, Sicily. Although this study was conducted on Mt Etna, the approach used is designed to be applicable to other volcanic areas around the world.

  3. The composition and distribution of the rejuvenated component across the Hawaiian plume: Hf-Nd-Sr-Pb isotope systematics of Kaula lavas and pyroxenite xenoliths

    Bizimis, Michael; Salters, Vincent J. M.; Garcia, Michael O.; Norman, Marc D.

    2013-10-01

    Rejuvenated volcanism refers to the reemergence of volcanism after a hiatus of 0.5-2 Ma following the voluminous shield building stage of Hawaiian volcanoes. The composition of the rejuvenated source and its distribution relative to the center of the plume provide important constraints on the origin of rejuvenated volcanism. Near-contemporaneous lavas from the Kaula-Niihau-Kauai ridge and the North Arch volcanic field that are aligned approximately orthogonally to the plume track can constrain the lateral geochemical heterogeneity and distribution of the rejuvenated source across the volcanic chain. Nephelinites, phonolites and pyroxenite xenoliths from Kaula Island have radiogenic Hf, Nd and unradiogenic Sr isotope compositions consistent with a time-integrated depleted mantle source. The pyroxenites and nephelinites extend to the lowest 208Pb/204Pb reported in Hawaiian rocks. These data, along with new Pb isotope data from pyroxenites from the Salt Lake Crater (Oahu) redefine the composition of the depleted end-member of the Hawaiian rejuvenated source at 208Pb/204Pb=37.35±0.05, 206Pb/204Pb = 17.75±0.03, ɛNd = 9-10, ɛHf ˜16-17 and 87Sr/88Sr Niihau-Kauai-North Arch transect are consistent with a larger proportion of the rejuvenated depleted component in the periphery of the plume track rather than along its axis.

  4. Real-estate lakes

    Rickert, David A.; Spieker, Andrew Maute

    1971-01-01

    Since the dawn of civilization waterfront land has been an irresistible attraction to man. Throughout history he has sought out locations fronting on oceans, rivers, and lakes. Originally sought for proximity .to water supply and transportation, such locations are now sought more for their esthetic qualities and for recreation. Usable natural waterfront property is limited, however, and the more desirable sites in many of our urban areas have already been taken. The lack of available waterfront sites has led to the creation of many artificial bodies of water. The rapid suburbanization that has characterized urban growth in America since the end of World War II, together with increasing affluence and le-isure time, has created a ready market for waterfront property. Accordingly, lake-centered subdivisions and developments dot the suburban landscape in many of our major urban areas. Literally thousands of lakes surrounded by homes have materialized during this period of rapid growth. Recently, several "new town" communities have been planned around this lake-centered concept. A lake can be either an asset or a liaoility to a community. A clean, clear, attractively landscaped lake is a definite asset, whereas a weed-choked, foul-smelling mudhole is a distinct liability. The urban environment poses both problems and imaginative opportunities in the development of lakes. Creation of a lake causes changes in all aspects of the environment. Hydrologic systems and ecological patterns are usually most severely altered. The developer should be aware of the potential changes; it is not sufficient merely to build a dam across a stream or to dig a hole in the ground. Development of Gl a successful lake requires careful planning for site selection and design, followed by thorough and cc ntinual management. The purpose of this report is to describe the characteristics of real-estate lakes, to pinpoint potential pmblems, and to suggest possible planning and management guidelines

  5. Terrestrial analogs to lunar sinuous rilles - Kauhako Crater and channel, Kalaupapa, Molokai, and other Hawaiian lava conduit systems

    Coombs, C.R.; Hawke, B.R.; Wilson, L.

    1990-01-01

    Two source vents, one explosive and one effusive erupted to form a cinder cone and low lava shield that together compose the Kalaupapa peninsula of Molokai, Hawaii, A 50-100-m-wide channel/tube system extends 2.3 km northward from kauhako crater in the center of the shield. Based on modeling, a volume of up to about 0.2 cu km of lava erupted at a rate of 260 cu m/sec to flow through the Kauhako conduit system in one of the last eruptive episodes on the peninsula. Channel downcutting by thermal erosion occurred at a rate of about 10 micron/sec to help form the 30-m-deep conduit. Two smaller, secondary tube systems formed east of the main lava channel/tube. Several other lava conduit systems on the islands of Oahu and Hawaii were also compared to the Kauhako and lunar sinuous rille systems. These other lava conduits include Whittington, Kupaianaha, and Mauna Ulu lava tubes. Morphologically, the Hawaiian tube systems studied are very similar to lunar sinuous rilles in that they have deep head craters, sinuous channels, and gentle slopes. Thermal erosion is postulated to be an important factor in the formation of these terrestrial channel systems and by analogy is inferred to be an important process involved in the formation of lunar sinuous rilles. 28 refs

  6. Rapid fluvial incision of a late Holocene lava flow: Insights from LiDAR, alluvial stratigraphy, and numerical modeling

    Sweeney, Kristin; Roering, Joshua J.

    2016-01-01

    Volcanic eruptions fundamentally alter landscapes, paving over channels, decimating biota, and emplacing fresh, unweathered material. The fluvial incision of blocky lava flows is a geomorphic puzzle. First, high surface permeability and lack of sediment should preclude geomorphically effective surface runoff and dissection. Furthermore, past work has demonstrated the importance of extreme floods in driving incision via column toppling and plucking in columnar basalt, but it is unclear how incision occurs in systems where surface blocks are readily mobile. We examine rapid fluvial incision of the Collier lava flow, an andesitic Holocene lava flow in the High Cascades of Oregon. Since lava flow emplacement ∼1600 yr ago, White Branch Creek has incised bedrock gorges up to 8 m deep into the coherent core of the lava flow and deposited >0.2 km3 of sediment on the lava flow surface. Field observation points to a bimodal discharge regime in the channel, with evidence for both annual snowmelt runoff and outburst floods from Collier glacier, as well as historical evidence of vigorous glacial meltwater. To determine the range of discharge events capable of incision in White Branch Creek, we used a mechanistic model of fluvial abrasion. We show that the observed incision implies that moderate flows are capable of both initiating channel formation and sustaining incision. Our results have implications for the evolution of volcanic systems worldwide, where glaciation and/or mass wasting may accelerate fluvial processes by providing large amounts of sediment to otherwise porous, sediment-starved landscapes.

  7. Tracking lava flow emplacement on the east rift zone of Kilauea, Hawai’i with synthetic aperture radar (SAR) coherence

    Dietterich, Hannah R.; Poland, Michael P.; Schmidt, David; Cashman, Katharine V.; Sherrod, David R.; Espinosa, Arkin Tapia

    2012-01-01

    Lava flow mapping is both an essential component of volcano monitoring and a valuable tool for investigating lava flow behavior. Although maps are traditionally created through field surveys, remote sensing allows an extraordinary view of active lava flows while avoiding the difficulties of mapping on location. Synthetic aperture radar (SAR) imagery, in particular, can detect changes in a flow field by comparing two images collected at different times with SAR coherence. New lava flows radically alter the scattering properties of the surface, making the radar signal decorrelated in SAR coherence images. We describe a new technique, SAR Coherence Mapping (SCM), to map lava flows automatically from coherence images independent of look angle or satellite path. We use this approach to map lava flow emplacement during the Pu‘u ‘Ō‘ō-Kupaianaha eruption at Kīlauea, Hawai‘i. The resulting flow maps correspond well with field mapping and better resolve the internal structure of surface flows, as well as the locations of active flow paths. However, the SCM technique is only moderately successful at mapping flows that enter vegetation, which is also often decorrelated between successive SAR images. Along with measurements of planform morphology, we are able to show that the length of time a flow stays decorrelated after initial emplacement is linearly related to the flow thickness. Finally, we use interferograms obtained after flow surfaces become correlated to show that persistent decorrelation is caused by post-emplacement flow subsidence.

  8. Lake Michigan lake trout PCB model forecast post audit

    Scenario forecasts for total PCBs in Lake Michigan (LM) lake trout were conducted using the linked LM2-Toxics and LM Food Chain models, supported by a suite of additional LM models. Efforts were conducted under the Lake Michigan Mass Balance Study and the post audit represents th...

  9. Methane emissions from permafrost thaw lakes limited by lake drainage.

    van Huissteden, J.; Berrittella, C.; Parmentier, F.J.W.; Mi, Y.; Maximov, T.C.; Dolman, A.J.

    2011-01-01

    Thaw lakes in permafrost areas are sources of the strong greenhouse gas methane. They develop mostly in sedimentary lowlands with permafrost and a high excess ground ice volume, resulting in large areas covered with lakes and drained thaw-lake basins (DTLBs; refs,). Their expansion is enhanced by

  10. Hydrochemistry of the Lake Magadi basin, Kenya

    Jones, B.F.; Eugster, H.P.; Rettig, S.L.

    1977-01-01

    bicarbonate are the dominant anions, and mechanisms by which they are extracted from the solution include precipitation of alkali and alkaline-earth carbonates, and degassing, as well as precipitation and re-solution of efflorescent crusts. Much sulfate is apparently lost from solution by sorption as well as subsurface reduction. Seasonal runoff, principally from the valley floor north of Lake Magadi, is considered to be the principal recharge to the Magadi ground water system. Evaporative concentration is the overall process responsible for the chemical evolution of the brines. This includes not only simple evaporation, but also mineral precipitation as films and cements in the unsaturated zone, re-solution, and reprecipitation of efflorescent crusts, with consequent recycling of salts. In fact, a large fraction of the solutes are acquired through dissolution of efflorescent crusts. Data were obtained for borehole brines from as deep as 297 m. They show the existence of two distinct brine bodies below the present lake, one shallow, coexistent with bedded salts, and highly concentrated (260 g/kg average dissolved solids), and the other deeper in lacustrine sediments or fractured lavas, and only half as concentrated. ?? 1977.

  11. Great Lakes Environmental Database (GLENDA)

    U.S. Environmental Protection Agency — The Great Lakes Environmental Database (GLENDA) houses environmental data on a wide variety of constituents in water, biota, sediment, and air in the Great Lakes area.

  12. Functional microbiology of soda lakes

    Sorokin, D.Y.; Banciu, H.L.; Muyzer, G.

    2015-01-01

    Soda lakes represent unique permanently haloalkaline system. Despite the harsh conditions, they are inhabited by abundant, mostly prokaryotic, microbial communities. This review summarizes results of studies of main functional groups of the soda lake prokaryotes responsible for carbon, nitrogen and

  13. Controls on Lava Flow Morphology and Propagation: Using Laboratory Analogue Experiments

    Peters, S.; Clarke, A. B.

    2017-12-01

    The morphology of lava flows is controlled by eruption rate, composition, cooling rate, and topography [Fink and Griffiths, 1990; Gregg and Fink, 2000, 2006]. Lava flows are used to understand how volcanoes, volcanic fields, and igneous provinces formed and evolved [Gregg and Fink., 1996; Sheth, 2006]. This is particularly important for other planets where compositional data is limited and historical context is nonexistent. Numerical modeling of lava flows remains challenging, but has been aided by laboratory analog experiments [Gregg and Keszrthelyi, 2004; Soule and Cashman, 2004]. Experiments using polyethylene glycol (PEG) 600 wax have been performed to understand lava flow emplacement [Fink and Griffiths, 1990, 1992; Gregg and Fink, 2000]. These experiments established psi (hereafter denoted by Ψ), a dimensionless parameter that relates crust formation and advection timescales of a viscous gravity current. Four primary flow morphologies corresponding to discreet Ψ ranges were observed. Gregg and Fink [2000] also investigated flows on slopes and found that steeper slopes increase the effective effusion rate producing predicted morphologies at lower Ψ values. Additional work is needed to constrain the Ψ parameter space, evaluate the predictive capability of Ψ, and determine if the preserved flow morphology can be used to indicate the initial flow conditions. We performed 514 experiments to address the following controls on lava flow morphology: slope (n = 282), unsteadiness/pulsations (n = 58), slope & unsteadiness/pulsations (n = 174), distal processes, and emplacement vs. post-emplacement morphologies. Our slope experiments reveal a similar trend to Gregg and Fink [2000] with the caveat that very high and very low local & source eruption rates can reduce the apparent predictive capability of Ψ. Predicted Ψ morphologies were often produced halfway through the eruption. Our pulse experiments are expected to produce morphologies unique to each eruption rate

  14. Distinctly different parental magmas for plutons and lavas in the central Aleutian arc

    Cai, Y.; Rioux, M. E.; Kelemen, P. B.; Goldstein, S. L.; Bolge, L.; Kylander-Clark, A. R.

    2014-12-01

    While it is generally agreed that continental crust is generated by arc magmatism, average arc lavas are basaltic while the bulk continental crust is andesitic, and this has led to many models for secondary reprocessing of the arc crust in order to form continental crust. We report new data on calc-alkaline plutons in the central Aleutians showing that they have distinctly different sources compared to Holocene tholeiitic lavas. Therefore the lavas are not representative of the net magmatic transfer from the mantle into the arc crust. Eocene to Miocene (9-39 Ma) intermediate to felsic plutonic rocks from the central Aleutian arc show higher SiO2 at a given Mg#, higher ɛNd- and ɛHf-values, and lower Pb isotope ratios than Holocene volcanic rocks from the same region. Instead, the plutonic rocks resemble volcanics from the western Aleutians isotopically, and have chemical compositions similar to bulk continental crust. These data could reflect temporal variation of Aleutian magma source compositions, from Eocene-Miocene "isotopically depleted" and predominantly calc-alkaline to Holocene "isotopically enriched" and predominantly tholeiitic. Alternatively, they may reflect different transport and emplacement processes for the magmas that form plutons and lavas: calc-alkaline magmas with higher Si content and high viscosity may preferentially form plutons, perhaps after extensive mid-crustal degassing of initially high water contents. The latter case implies that the upper and middle arc crust is more like the calc-alkaline bulk composition of the continental crust than the lavas alone. Crustal reprocessing mechanisms that preserve upper and middle arc crust, while removing lower arc crust, can account for the genesis and evolution of continental crust. Since gabbroic lower arc crust extends from ca 20-40 km depth, and is density stable over most of this depth range, "delamination" of dense lithologies [1] may not be sufficient to accomplish this. Alternatively

  15. Lateral Variability of Lava flow Morphologies in the Deccan Traps Large Igneous Province (India)

    Vanderkluysen, L.; Rader, E. L.; Self, S.; Clarke, A. B.; Sheth, H.; Moyer, D. K.

    2016-12-01

    In continental flood basalt provinces (CFBs), lava flow morphologies have traditionally been classified in two distinct groups recognizable in the field, expressing two different modes of lava flow emplacement mechanisms: (a) compound lava flow fields dominated by meter-sized pāhoehoe toes and lobes; and (b) inflated sheet lobes tens to hundreds of meters in width and meters to tens of meters in height. Temporal transitions between these two emplacement styles have been recognized in many mafic large igneous provinces worldwide and seem to be a fundamental feature of CFBs. However, lateral variations in these morphologies remain poorly studied and understood. In the Deccan CFB of India, two principal hypotheses have been proposed to account for possible lateral variations in lava flow facies: that smaller toes and lobes occur in distal regions of flow fields, representing breakouts at the edges of larger inflated lavas; or on the contrary that smaller toes and lobes represent proximal facies. We conducted a field study focusing on two of the Deccan's formations, the Khandala and the Poladpur, located in the middle and upper sections of the province's defined chemostratigraphy. We studied nine sections along a 600 km long E-W transect, with the easternmost sections representing the most distal outcrops, ≥ 500 km away from inferred vents. The Khandala Formation is traditionally described as a sequence of three thick inflated sheet lobes in the well-exposed sections of the western Deccan. However, in the central Deccan, we find the Khandala to be much thicker overall, with half of its thickness dominated by small, meter-sized toes and lobes. Inflated sheet lobes of the Khandala are thinner on average in the central Deccan than further to the east or west. We document this transition as occurring progressively in outcrops only 80 km apart. In the Poladpur, the average thickness of inflated sheet lobes increases in distal outcrops of the eastern Deccan. We interpret

  16. Crystal-rich lava dome extrusion during vesiculation: An experimental study

    Pistone, Mattia; Whittington, Alan G.; Andrews, Benjamin J.; Cottrell, Elizabeth

    2017-11-01

    Lava dome-forming eruptions represent a common eruptive style and a major hazard at numerous active volcanoes worldwide. The extrusion mechanics of crystal-rich lava domes and the influence of volatiles on the transition from viscous to brittle behaviour during lava dome extrusion remain unclear. Understanding how gas exsolution and crystallinity control effusive versus explosive eruption behaviour is essential. Here, we present new experimental results on the rheology of synthesised, crystal-rich (50 to 80 vol% quartz crystals), hydrous (4.2 wt% H2O in the glass) dacite samples, which vesiculate from 5 to 27 vol% gas bubbles at high temperatures (from glass transition temperature to 797 °C) during deformation conducted in a parallel plate viscometer (constant stress at 0.63-0.64 MPa, and variable strain-rates ranging from 8.32·10- 8 to 3.58·10- 5 s- 1). The experiments reproduce certain aspects of lava dome deformation in volcanic conduits during vesiculation of the residual melt, instigated in the experiments by increasing temperature. During gas exsolution (i.e. nucleation and growth of gas-pressurised bubbles) and volume inflation, we find that the rheological lubrication of the system during deformation is strongly dictated by the initial crystallinity. At crystal contents < 60 vol%, gas bubbles form and coalesce during expansion and viscous deformation, favouring strain localisation and gas permeability within shear bands, which control the overall sample rheology. At crystallinities of 60 to 70 vol%, gas exsolution generates pressurisation (i.e. pore pressure increase) within the bubbles trapped in the solid crystal clusters, and embryonic formation of microscopic fractures through melt and crystals drives the system to a brittle behaviour. At higher crystallinity (80 vol%) vesiculation leads to large pressurisation, which then triggers extensive brittle fragmentation. Through macroscopic fractures, outgassing determines the rheological stalling of the

  17. Microplastic pollution in lakes and lake shoreline sediments - A case study on Lake Bolsena and Lake Chiusi (central Italy).

    Fischer, Elke Kerstin; Paglialonga, Lisa; Czech, Elisa; Tamminga, Matthias

    2016-06-01

    Rivers and effluents have been identified as major pathways for microplastics of terrestrial sources. Moreover, lakes of different dimensions and even in remote locations contain microplastics in striking abundances. This study investigates concentrations of microplastic particles at two lakes in central Italy (Lake Bolsena, Lake Chiusi). A total number of six Manta Trawls have been carried out, two of them one day after heavy winds occurred on Lake Bolsena showing effects on particle distribution of fragments and fibers of varying size categories. Additionally, 36 sediment samples from lakeshores were analyzed for microplastic content. In the surface waters 2.68 to 3.36 particles/m(3) (Lake Chiusi) and 0.82 to 4.42 particles/m(3) (Lake Bolsena) were detected, respectively. Main differences between the lakes are attributed to lake characteristics such as surface and catchment area, depth and the presence of local wind patterns and tide range at Lake Bolsena. An event of heavy winds and moderate rainfall prior to one sampling led to an increase of concentrations at Lake Bolsena which is most probable related to lateral land-based and sewage effluent inputs. The abundances of microplastic particles in sediments vary from mean values of 112 (Lake Bolsena) to 234 particles/kg dry weight (Lake Chiusi). Lake Chiusi results reveal elevated fiber concentrations compared to those of Lake Bolsena what might be a result of higher organic content and a shift in grain size distribution towards the silt and clay fraction at the shallow and highly eutrophic Lake Chiusi. The distribution of particles along different beach levels revealed no significant differences. Copyright © 2016 Elsevier Ltd. All rights reserved.

  18. Sanctuaries for lake trout in the Great Lakes

    Stanley, Jon G.; Eshenroder, Randy L.; Hartman, Wilbur L.

    1987-01-01

    Populations of lake trout, severely depleted in Lake Superior and virtually extirpated from the other Great Lakes because of sea lamprey predation and intense fishing, are now maintained by annual plantings of hatchery-reared fish in Lakes Michigan, Huron, and Ontario and parts of Lake Superior. The extensive coastal areas of the Great Lakes and proximity to large populations resulted in fishing pressure on planted lake trout heavy enough to push annual mortality associated with sport and commercial fisheries well above the critical level needed to reestablish self-sustaining stocks. The interagency, international program for rehabilitating lake trout includes controlling sea lamprey abundance, stocking hatchery-reared lake trout, managing the catch, and establishing sanctuaries where harvest is prohibited. Three lake trout sanctuaries have been established in Lake Michigan: the Fox Island Sanctuary of 121, 500 ha, in the Chippewa-Ottawa Treaty fishing zone in the northern region of the lake; the Milwaukee Reef Sanctuary of 160, 000 ha in midlake, in boundary waters of Michigan and Wisconsin; and Julian's Reef Sanctuary of 6, 500 ha, in Illinois waters. In northern Lake Huron, Drummond Island Sanctuary of 55, 000 ha is two thirds in Indian treaty-ceded waters in Michigan and one third in Ontario waters of Canada. A second sanctuary, Six Fathom Bank-Yankee Reef Sanctuary, in central Lake Huron contains 168, 000 ha. Sanctuary status for the Canadian areas remains to be approved by the Provincial government. In Lake Superior, sanctuaries protect the spawning grounds of Gull Island Shoal (70, 000 ha) and Devils Island Shoal (44, 000 ha) in Wisconsin's Apostle Island area. These seven sanctuaries, established by the several States and agreed upon by the States, Indian tribes, the U.S. Department of the Interior, and the Province of Ontario, contribute toward solving an interjurisdictional fishery problem.

  19. Water quality of Lake Austin and Town Lake, Austin, Texas

    Andrews, Freeman L.; Wells, Frank C.; Shelby, Wanda J.; McPherson, Emma

    1988-01-01

    Lake Austin and Town Lake are located on the Colorado River in Travis County, central Texas, and serve as a source of water for municipal and industrial water supplies, electrical-power generation, and recreation for more than 500,000 people in the Austin metropolitan area. Lake Austin, located immediately downstream of Lake Travis, extends for more than 20 miles into the western edge of the city of Austin. Town Lake extends through the downtown area of the city of Austin for nearly 6 miles where the Colorado River is impounded by Longhorn Dam.

  20. Lake Morphometry for NHD Lakes in Great Lakes Region 4 HUC

    U.S. Environmental Protection Agency — Lake morphometry metrics are known to influence productivity in lakes and are important for building various types of ecological and environmental models of lentic...

  1. Transient Tsunamis in Lakes

    Couston, L.; Mei, C.; Alam, M.

    2013-12-01

    A large number of lakes are surrounded by steep and unstable mountains with slopes prone to failure. As a result, landslides are likely to occur and impact water sitting in closed reservoirs. These rare geological phenomena pose serious threats to dam reservoirs and nearshore facilities because they can generate unexpectedly large tsunami waves. In fact, the tallest wave experienced by contemporary humans occurred because of a landslide in the narrow bay of Lituya in 1958, and five years later, a deadly landslide tsunami overtopped Lake Vajont's dam, flooding and damaging villages along the lakefront and in the Piave valley. If unstable slopes and potential slides are detected ahead of time, inundation maps can be drawn to help people know the risks, and mitigate the destructive power of the ensuing waves. These maps give the maximum wave runup height along the lake's vertical and sloping boundaries, and can be obtained by numerical simulations. Keeping track of the moving shorelines along beaches is challenging in classical Eulerian formulations because the horizontal extent of the fluid domain can change over time. As a result, assuming a solid slide and nonbreaking waves, here we develop a nonlinear shallow-water model equation in the Lagrangian framework to address the problem of transient landslide-tsunamis. In this manner, the shorelines' three-dimensional motion is part of the solution. The model equation is hyperbolic and can be solved numerically by finite differences. Here, a 4th order Runge-Kutta method and a compact finite-difference scheme are implemented to integrate in time and spatially discretize the forced shallow-water equation in Lagrangian coordinates. The formulation is applied to different lake and slide geometries to better understand the effects of the lake's finite lengths and slide's forcing mechanism on the generated wavefield. Specifically, for a slide moving down a plane beach, we show that edge-waves trapped by the shoreline and free

  2. Technologies for lake restoration

    Helmut KLAPPER

    2003-09-01

    Full Text Available Lakes are suffering from different stress factors and need to be restored using different approaches. The eutrophication remains as the main water quality management problem for inland waters: both lakes and reservoirs. The way to curb the degradation is to stop the nutrient sources and to accelerate the restoration with help of in-lake technologies. Especially lakes with a long retention time need (eco- technological help to decrease the nutrient content in the free water. The microbial and other organic matter from sewage and other autochthonous biomasses, causes oxygen depletion, which has many adverse effects. In less developed countries big reservoirs function as sewage treatment plants. Natural aeration solves problems only partly and many pollutants tend to accumulate in the sediments. The acidification by acid rain and by pyrite oxidation has to be controlled by acid neutralizing technologies. Addition of alkaline chemicals is useful only for soft waters, and technologies for (microbial alkalinization of very acidic hardwater mining lakes are in development. The corrective measures differ from those in use for eutrophication control. The salinization and water shortage mostly occurs if more water is used than available. L. Aral, L. Tschad, the Dead Sea or L. Nasser belong to waters with most severe environmental problems on a global scale. Their hydrologic regime needs to be evaluated. The inflow of salt water at the bottom of some mining lakes adds to stability of stratification, and thus accumulation of hydrogen sulphide in the monimolimnion of the meromictic lakes. Destratification, which is the most used technology, is only restricted applicable because of the dangerous concentrations of the byproducts of biological degradation. The contamination of lakes with hazardous substances from industry and agriculture require different restoration technologies, including subhydric isolation and storage, addition of nutrients for better self

  3. Lakes on Mars

    Cabrol, Nathalie A

    2014-01-01

    On Earth, lakes provide favorable environments for the development of life and its preservation as fossils. They are extremely sensitive to climate fluctuations and to conditions within their watersheds. As such, lakes are unique markers of the impact of environmental changes. Past and current missions have now demonstrated that water once flowed at the surface of Mars early in its history. Evidence of ancient ponding has been uncovered at scales ranging from a few kilometers to possibly that of the Arctic ocean. Whether life existed on Mars is still unknown; upcoming missions may find critic

  4. Continuous terrestrial geodetic monitoring of the 2007 Lava Fan in the Sciara de Fuoco (Stromboli volcano, Italy)

    Puglisi, G.; Bonforte, A.; Cantarero, M.; Spata, A.

    2009-12-01

    At the end of the 2002-2003 eruption, a terrestrial monitoring system was set up to regularly measure the movements of benchmarks installed inside the Sciara del Fuoco (hereafter SdF) (Puglisi et al., 2005). This system, named THEODOROS, is based on a remotely controlled robotized Total Station installed near Punta Labronzo, on the northern border of the SdF. The 2007 eruption caused a dramatic change in the operations of THEODOROS. Indeed, the 2007 lava flows destroyed all the benchmarks installed on the northern part of the SdF, leaving only those on its central part. This eruption produced a lava fan at the base of the SdF, due to the rapid cooling of the lava flows on entering the sea. The continuous overlapping of several flows during the eruption built a thick lava body (the fan); it was emplaced on a very steep slope, partially originated during the landslides occurring in December 2002, producing a hazardous condition due to the potential sudden sliding of this fan into the sea. In order to monitor the stability of this lava fan, a new terrestrial geodetic network, was implemented on 6 April 2007, by installing 5 reflectors along a profile crossing the lava body, approximately over the old coastline. Later, in June 2007, 4 more reflectors were installed at higher and lower altitudes with respect to the previous profile, to obtain more information on the overall deformation of the lava body. Measurements were rather noisy during the first months, but a better definition of the reference system strongly improved the quality of the data. The position of the 9 benchmarks over the lava fan enable the areal distribution of the deformation to be drawn. The measurements carried out every 10 minutes allow following their motion with high temporal detail. The data collected since the end of the eruption highlighted a significant downslope motion of the entire lava fan, decreasing from the South to the North, where the body is buttressed by the rocky northern wall of

  5. Quantification of the CO2 emitted from volcanic lakes in Pico Island (Azores)

    Andrade, César; Cruz, José; Viveiros, Fátima; Branco, Rafael

    2017-04-01

    This study shows the results of the diffuse CO2 degassing surveys performed in lakes from Pico volcanic Island (Azores archipelago, Portugal). Detailed flux measurements using the accumulation chamber method were made at six lakes (Capitão, Caiado, Paul, Rosada, Peixinho and Negra) during two field campaigns, respectively, in winter (February 2016) and late summer (September 2016). Pico is the second largest island of the Azores archipelago with an area of 444.8 km2; the oldest volcanic unit is dated from about 300,000 years ago. The edification of Pico was mainly due to Hawaiian and Strombolian type volcanic activity, resulting in pahoehoe and aa lava flows of basaltic nature, as well as scoria and spatter cones. Three main volcanic complexes are identified in the island, namely (1) the so-called Montanha Volcanic Complex, corresponding to a central volcano located in the western side of the island that reaches a maximum altitude of 2351 m, (2) the São Roque-Piedade Volcanic Complex, and (3) the Topo-Lajes Volcanic Complex, this last one corresponding to the remnants of a shield volcano located in the south coast. The studied lakes are spread along the São Roque-Piedade Volcanic Complex at altitudes between 785 m and 898 m. Three are associated with depressions of undifferentiated origin (Caiado, Peixinho, Negra), two with depressions of tectonic origin (Capitão, Paul), while Rosada lake is located inside a scoria cone crater. The lakes surface areas vary between 1.25x10-2 and 5.38x10-2 km2, and the water column maximum depth is 7.9 m (3.5-7.9 m). The water storage ranges between 3.6x104 to 9.1x104 m3, and the estimated residence time does not exceed 1.8x10-1 years. A total of 1579 CO2 flux measurements were made during both surveys (868 in summer and 711 in the winter campaign), namely 518 in Caiado lake (293; 225), 358 in Paul (195; 163), 279 in Capitão (150, 129), 200 in Rosada (106, 94), 171 in Peixinho (71, 100) and 53 measurements in Negra lake. Negra

  6. Terrestrial CDOM in Lakes of Yamal Peninsula: Connection to Lake and Lake Catchment Properties

    Yury Dvornikov

    2018-01-01

    Full Text Available In this study, we analyze interactions in lake and lake catchment systems of a continuous permafrost area. We assessed colored dissolved organic matter (CDOM absorption at 440 nm (a(440CDOM and absorption slope (S300–500 in lakes using field sampling and optical remote sensing data for an area of 350 km2 in Central Yamal, Siberia. Applying a CDOM algorithm (ratio of green and red band reflectance for two high spatial resolution multispectral GeoEye-1 and Worldview-2 satellite images, we were able to extrapolate the a(λCDOM data from 18 lakes sampled in the field to 356 lakes in the study area (model R2 = 0.79. Values of a(440CDOM in 356 lakes varied from 0.48 to 8.35 m−1 with a median of 1.43 m−1. This a(λCDOM dataset was used to relate lake CDOM to 17 lake and lake catchment parameters derived from optical and radar remote sensing data and from digital elevation model analysis in order to establish the parameters controlling CDOM in lakes on the Yamal Peninsula. Regression tree model and boosted regression tree analysis showed that the activity of cryogenic processes (thermocirques in the lake shores and lake water level were the two most important controls, explaining 48.4% and 28.4% of lake CDOM, respectively (R2 = 0.61. Activation of thermocirques led to a large input of terrestrial organic matter and sediments from catchments and thawed permafrost to lakes (n = 15, mean a(440CDOM = 5.3 m−1. Large lakes on the floodplain with a connection to Mordy-Yakha River received more CDOM (n = 7, mean a(440CDOM = 3.8 m−1 compared to lakes located on higher terraces.

  7. Preliminary Paleomagnetic Data From Santa Mariá Volcano, Guatemala and Their Bearing on the Mono Lake and Hilina Pali Excursions

    Escobar Wolf, R. P.; Diehl, J. F.; Rose, W. I.; Singer, B. S.

    2005-12-01

    Paleomagnetic directions determined from oriented block samples collected by Rose et al. in 1977 ( Journal of Geology) and from eight paleomagnetic sites drilled in lava flows from Santa Maria volcano, Guatemala in 1990 define a pattern of variation similar to the pattern of geomagnetic field changes recorded by the sediments of the Wilson Creek Formation near Mono Lake, California. This led Conway et al. in 1994 ( Journal of Geology) to suggest that these flows had recorded the Mono Lake Excursion (MLE). The correlation was made on pattern recognition alone and relied almost entirely the well- defined inclination dataset than on the declination data; no radioisotopic ages were available. In March of 2005 we returned to the crater of Santa Mariá and drilled 23 lava flows from the original sections of Rose et al; block samples for 40Ar/39Ar were also collected. Unfortunately aggradation in the crater due to mass wasting made it impossible to sample all the flows of Rose et al. At each site or lava flow, four to seven cores were drilled and oriented with a sun compass. Samples cut from the drilled cores were magnetically cleaned using alternation field demagnetization and analyzed using principle component analysis. Thermal demagnetization is currently underway. The resulting inclination waveform (over 70° of change from +60° to -12°) is very similar to those previously reported in the literature for the MLE, but the declination waveform shows little variation (<25°; mean declination is 13.4°) throughout the stratigraphic sequence that we collected. Consequently, VGP data from the lava flows do not show the classic clockwise and counterclockwise loops as seen at the Wilson Creek section and at other MLE locations. Instead the directions (VGPs) tend to cluster in three distinct groups with the lowermost lava flows (5) and uppermost lava flows (3) clustering near the expected axial dipole inclination for the region (~28 °) while lava flows from the middle of the

  8. Temporal and Spatial Variability in the Geochemistry of Axial and CoAxial Segment Lavas and their Mantle Sources

    Smith, M. C.; Perfit, M. R.; Davis, C.; Kamenov, G. D.

    2011-12-01

    Three spatially related volcanic eruptions along the CoAxial Segment of the Juan de Fuca Ridge (JdFR) have documented emplacements between 1981 and 1993. Two of the historic flows outcrop at the "Flow Site" and were emplaced within less than 12 years and 500 m from one another. The third was emplaced at the "Floc Site" to the south in the 1980s. Previous studies have documented that CoAxial lavas are among the most incompatible element and isotopically depleted lavas along the entire JdFR, whereas the Axial Seamount segment immediately south of CoAxial has erupted the most chemically enriched lavas south of the Endeavor Segment. Geochemical studies have shown little temporal change in the chemistry of recent Axial Seamount eruptives, whereas CoAxial lavas exhibit distinct chemical differences over short time periods. Significant chemical differences observed among depleted CoAxial lavas emplaced close to one another in space and time are in marked contrast to the relatively constant chemical characteristics of enriched lavas erupted at the magmatically more robust Axial segment only 10's of kilometers to the south and west. New trace element and isotopic (Sr, Nd, Pb) geochemical analyses of historic and older CoAxial lavas have resulted in better documentation of interflow and intraflow chemical variation providing an improved understanding of spatial/temporal chemical variability in lavas, and further insight into JdFR magmatic processes. Modeling of major and trace element abundances suggest that the observed intraflow chemical variation within CoAxial lavas is largely due to shallow-level fractional crystallization but that a single fractional crystallization model cannot account for all interflow chemical variation. In fact, elemental and isotopic data require different parental magmas for each of the three recent CoAxial Segment lava flows suggesting very short-term differences or changes in the chemical character of the mantle source region. In particular

  9. Arsenic species in weathering mine tailings and biogenic solids at the Lava Cap Mine Superfund Site, Nevada City, CA

    Ashley Roger P

    2011-01-01

    Full Text Available Abstract Background A realistic estimation of the health risk of human exposure to solid-phase arsenic (As derived from historic mining operations is a major challenge to redevelopment of California's famed "Mother Lode" region. Arsenic, a known carcinogen, occurs in multiple solid forms that vary in bioaccessibility. X-ray absorption fine-structure spectroscopy (XAFS was used to identify and quantify the forms of As in mine wastes and biogenic solids at the Lava Cap Mine Superfund (LCMS site, a historic "Mother Lode" gold mine. Principal component analysis (PCA was used to assess variance within water chemistry, solids chemistry, and XAFS spectral datasets. Linear combination, least-squares fits constrained in part by PCA results were then used to quantify arsenic speciation in XAFS spectra of tailings and biogenic solids. Results The highest dissolved arsenic concentrations were found in Lost Lake porewater and in a groundwater-fed pond in the tailings deposition area. Iron, dissolved oxygen, alkalinity, specific conductivity, and As were the major variables in the water chemistry PCA. Arsenic was, on average, 14 times more concentrated in biologically-produced iron (hydroxide than in mine tailings. Phosphorous, manganese, calcium, aluminum, and As were the major variables in the solids chemistry PCA. Linear combination fits to XAFS spectra indicate that arsenopyrite (FeAsS, the dominant form of As in ore material, remains abundant (average: 65% in minimally-weathered ore samples and water-saturated tailings at the bottom of Lost Lake. However, tailings that underwent drying and wetting cycles contain an average of only 30% arsenopyrite. The predominant products of arsenopyrite weathering were identified by XAFS to be As-bearing Fe (hydroxide and arseniosiderite (Ca2Fe(AsO43O3•3H2O. Existence of the former species is not in question, but the presence of the latter species was not confirmed by additional measurements, so its identification is

  10. American pika in a low-elevation lava landscape: expanding the known distribution of a temperature-sensitive species.

    Shinderman, Matt

    2015-09-01

    In 2010, the American pika (Ochotona princeps fenisex) was denied federal protection based on limited evidence of persistence in low-elevation environments. Studies in nonalpine areas have been limited to relatively few environments, and it is unclear whether patterns observed elsewhere (e.g., Bodie, CA) represent other nonalpine habitats. This study was designed to establish pika presence in a new location, determine distribution within the surveyed area, and evaluate influences of elevation, vegetation, lava complexity, and distance to habitat edge on pika site occupancy. In 2011 and 2012, we conducted surveys for American pika on four distinct subalpine lava flows of Newberry National Volcanic Monument, Oregon, USA. Field surveys were conducted at predetermined locations within lava flows via silent observation and active searching for pika sign. Site habitat characteristics were included as predictors of occupancy in multinomial regression models. Above and belowground temperatures were recorded at a subsample of pika detection sites. Pika were detected in 26% (2011) and 19% (2012) of survey plots. Seventy-four pika were detected outside survey plot boundaries. Lava complexity was the strongest predictor of pika occurrence, where pika were up to seven times more likely to occur in the most complicated lava formations. Pika were two times more likely to occur with increasing elevation, although they were found at all elevations in the study area. This study expands the known distribution of the species and provides additional evidence for persistence in nonalpine habitats. Results partially support the predictive occupancy model developed for pika at Craters of the Moon National Monument, another lava environment. Characteristics of the lava environment clearly influence pika site occupancy, but habitat variables reported as important in other studies were inconclusive here. Further work is needed to gain a better understanding of the species' current

  11. Poet Lake Crystal Approval

    This September 19, 2016 letter from EPA approves the petition from Poet Biorefining-Lake Crystal, regarding non-grandfathered ethanol produced through a dry mill process, qualifying under the Clean Air Act for renewable fuel (D-code 6) RINs under the RFS

  12. Lake Kariba, Zimbabwe

    1984-02-01

    Feb 1, 1984 ... rings word opgesom terwyl sommige van die lesse wat by Kariba geleer is en 'n ... one area of the lake must have an effect, directly or indirectly, on other consumer organisms in the aquatic environment. Con- sidering ... are liable to attain their high density at the price of other taxa. ... be measured. Data on ...

  13. IN LAKE TANA, ETHIOPIA

    Turbidity showed depressed effect on biomass ... Key words/phrases: Biomass, duration of development, Lake Tana, large-turbid ... 36°45'-38°14'E and at an altitude of 1830 In, a.s.l. ... 30 cm mouth opening, 1.2 m cod end), which was ... times of the three copepods were measured under .... The greatest density values were.

  14. Lake whitefish diet, condition, and energy density in Lake Champlain and the lower four Great Lakes following dreissenid invasions

    Herbst, Seth J.; Marsden, J. Ellen; Lantry, Brian F.

    2013-01-01

    Lake Whitefish Coregonus clupeaformis support some of the most valuable commercial freshwater fisheries in North America. Recent growth and condition decreases in Lake Whitefish populations in the Great Lakes have been attributed to the invasion of the dreissenid mussels, zebra mussels Dreissena polymorpha and quagga mussels D. bugensis, and the subsequent collapse of the amphipod, Diporeia, a once-abundant high energy prey source. Since 1993, Lake Champlain has also experienced the invasion and proliferation of zebra mussels, but in contrast to the Great Lakes, Diporeia were not historically abundant. We compared the diet, condition, and energy density of Lake Whitefish from Lake Champlain after the dreissenid mussel invasion to values for those of Lake Whitefish from Lakes Michigan, Huron, Erie, and Ontario. Lake Whitefish were collected using gill nets and bottom trawls, and their diets were quantified seasonally. Condition was estimated using Fulton's condition factor (K) and by determining energy density. In contrast to Lake Whitefish from some of the Great Lakes, those from Lake Champlain Lake Whitefish did not show a dietary shift towards dreissenid mussels, but instead fed primarily on fish eggs in spring, Mysis diluviana in summer, and gastropods and sphaeriids in fall and winter. Along with these dietary differences, the condition and energy density of Lake Whitefish from Lake Champlain were high compared with those of Lake Whitefish from Lakes Michigan, Huron, and Ontario after the dreissenid invasion, and were similar to Lake Whitefish from Lake Erie; fish from Lakes Michigan, Huron, and Ontario consumed dreissenids, whereas fish from Lake Erie did not. Our comparisons of Lake Whitefish populations in Lake Champlain to those in the Great Lakes indicate that diet and condition of Lake Champlain Lake Whitefish were not negatively affected by the dreissenid mussel invasion.

  15. Direct evidence for the origin of low-18O silicic magmas: Quenched samples of a magma chamber's partially-fused granitoid walls, Crater Lake, Oregon

    Bacon, C.R.; Adami, L.H.; Lanphere, M.A.

    1989-01-01

    Partially fused granitoid blocks were ejected in the climactic eruption of Mount Mazama, which was accompanied by collapse of Crater Lake caldera. Quartz, plagioclase, and glass in the granitoids have much lower δ 18 O values (-3.4 to +4.9per mille) than any fresh lavas of Mount Mazama and the surrounding region (+5.8 to +7.0per mille). Oxygen isotope fractionation between phases in granitoids is consistent with equilibrium at T≥900deg C following subsolidus exchange with hydrothermal fluids of meteoric origin. Assimilation of ≅ 10-20% of material similar to these granitoids can account for the O and Sr isotopic compositions of lavas and juvenile pyroclasts derived from the climactic magma chamber, many of which have δ 18 O values ≅ 0.5per mille or more lower than comparable lavas of Mount Mazama. The O isotope data provide the only clear evidence for such assimilation because the mineralogy and chemical and radiogenic isotopic compositions of the granitoids (dominantly granodiorite) are similar to those of erupted juvenile magmas. The granitoid blocks from Crater Lake serve as direct evidence for the origin of 18 O depletion in large, shallow silicic magma bodies. (orig.)

  16. Modeling mechanical and thermo-mechanical erosion by flowing lava at Raglan, Cape Smith Belt, New Québec, Canada

    Cataldo, V.; Williams, D. A.; Lesher, C. M.

    2015-12-01

    The 1.5-D Williams et al. model of thermal erosion by turbulent lava was recently applied to the Athabasca Valles lava channel on Mars, in an attempt to establish the importance of thermal erosion in excavating this ~80-100 m deep outflow channel. The modeled erosion depths (0.4-7.5 m) are far less than the depth of the channel which, combined with the short duration of the eruption, suggests that mechanical erosion may have had a greater role. Several studies suggest that mechanical erosion by lava is more important in channel-tube formation than previously thought, under certain circumstances. How would we be able to distinguish between mechanical and thermal erosion? By investigating model results when substrate properties change, as we move from a consolidated, mechanically strong substrate to a partially consolidated or unconsolidated, mechanically weaker substrate. The Proterozoic Raglan komatiitic basalt lava channel of the Cape Smith Belt, New Québec, Canada is a complex erosional environment involving invasive erosion of both sediment and gabbro substrates - which makes it a critical test case. The lava eroded an upper layer of soft sediment, with erosion at the tops, bottoms, and sides of the conduit, through underlying gabbro, and then burrowed laterally into underlying sediment, a scenario requiring a two-dimensional modeling approach. Using the available field data, we will simulate two-dimensional thermomechanical and mechanical erosion interfaces on all sides of a turbulent lava flow by creating a finite-element mesh. The mesh will be defined by the geometry of the lava flow at those lava conduits for which data on lava and substrate composition, lava thickness, slope of the ground, conduit area and volume, and lava flow length are available. Ultimately, this model will be applied to lunar sinuous rilles and martian lava channels for which the use of a two-dimensional approach is needed.

  17. Microbiology of Lonar Lake and other soda lakes

    Paul Antony, Chakkiath; Kumaresan, Deepak; Hunger, Sindy; Drake, Harold L; Murrell, J Colin; Shouche, Yogesh S

    2013-01-01

    Soda lakes are saline and alkaline ecosystems that are believed to have existed throughout the geological record of Earth. They are widely distributed across the globe, but are highly abundant in terrestrial biomes such as deserts and steppes and in geologically interesting regions such as the East African Rift valley. The unusual geochemistry of these lakes supports the growth of an impressive array of microorganisms that are of ecological and economic importance. Haloalkaliphilic Bacteria and Archaea belonging to all major trophic groups have been described from many soda lakes, including lakes with exceptionally high levels of heavy metals. Lonar Lake is a soda lake that is centered at an unusual meteorite impact structure in the Deccan basalts in India and its key physicochemical and microbiological characteristics are highlighted in this article. The occurrence of diverse functional groups of microbes, such as methanogens, methanotrophs, phototrophs, denitrifiers, sulfur oxidizers, sulfate reducers and syntrophs in soda lakes, suggests that these habitats harbor complex microbial food webs that (a) interconnect various biological cycles via redox coupling and (b) impact on the production and consumption of greenhouse gases. Soda lake microorganisms harbor several biotechnologically relevant enzymes and biomolecules (for example, cellulases, amylases, ectoine) and there is the need to augment bioprospecting efforts in soda lake environments with new integrated approaches. Importantly, some saline and alkaline lake ecosystems around the world need to be protected from anthropogenic pressures that threaten their long-term existence. PMID:23178675

  18. Lake trout rehabilitation in Lake Erie: a case history

    Cornelius, Floyd C.; Muth, Kenneth M.; Kenyon, Roger

    1995-01-01

    Native lake trout (Salvelinus namaycush) once thrived in the deep waters of eastern Lake Erie. The impact of nearly 70 years of unregulated exploitation and over 100 years of progressively severe cultural eutrophication resulted in the elimination of lake trout stocks by 1950. Early attempts to restore lake trout by stocking were unsuccessful in establishing a self-sustaining population. In the early 1980s, New York's Department of Environmental Conservation, Pennsylvania's Fish and Boat Commission, and the U.S. Fish and Wildlife Service entered into a cooperative program to rehabilitate lake trout in the eastern basin of Lake Erie. After 11 years of stocking selected strains of lake trout in U.S. waters, followed by effective sea lamprey control, lake trout appear to be successfully recolonizing their native habitat. Adult stocks have built up significantly and are expanding their range in the lake. Preliminary investigations suggest that lake trout reproductive habitat is still adequate for natural reproduction, but natural recruitment has not been documented. Future assessments will be directed toward evaluation of spawning success and tracking age-class cohorts as they move through the fishery.

  19. Lava and Life: New investigations into the Carson Volcanics, lower Kimberley Basin, north Western Australia

    Orth, Karin; Phillips, Chris; Hollis, Julie

    2014-05-01

    The Carson Volcanics are the only volcanic unit in the Paleoproterozoic Kimberley Basin and are part of a poorly studied Large Igneous Province (LIP) that was active at 1790 Ma. New work focussing on this LIP in 2012 and 2013 involved helicopter-supported traverses and sampling of the Carson Volcanics in remote areas near Kalumburu in far north Western Australia's Kimberley region. The succession is widespread and flat lying to gently dipping. It consists of three to six basalt units with intercalated sandstone and siltstone. The basalts are 20-40 m thick, but can be traced up to 60 km along strike. The basalt can be massive or amygdaloidal and commonly display polygonal to subhorizontal and rare vertical columnar jointing. Features of the basalt include ropy lava tops and basal pipe vesicles consistent with pahoehoe lavas. The intercalated cross-bedded quartzofeldspathic sandstone and siltstone vary in thickness up to 40 m and can be traced up to 40 km along strike. Peperite is common and indicates interaction between wet, unconsolidated sediment and hot lava. Stromatolitic chert at the top of the formation represents the oldest life found within the Kimberley region. Mud cracks evident in the sedimentary rocks, and stromatolites suggest an emergent broad tidal flat environment. The volcanics were extruded onto a wide marginal margin setting subject to frequent flooding events. Thickening of the volcanic succession south and the palaeocurrents in the underlying King Leopold Sandstone and the overlying Warton Sandstone suggest that this shelf sloped to the south. The type of basalt and the basalt morphology indicate a low slope gradient of about 1°.

  20. Contenidos de uranio de lavas recientes en el sector sur de los Andes centrales

    Guerra, N.

    1984-12-01

    Full Text Available We have studied the distribution of U in modern lava -flows of the southern part from the Central Andes (16°-28° S. For a given SiO2, content of the rocks, U abundance increases from west to east in a transects to the Andean Belt, while the depth of the subduction zone increases and the thickness of the continental curst decreases. Besides, U content tends to inerease steadly with the latitude, while the thick of the continental crust and the depth of the seismic zone decreases southward. Thus, on the basis of the available data, we are in a position to suggest that the U behavior in the studied lavas depends on the alkalanity and magmatic history of each volcanic center.

    Se presenta un estudio de distribución de U en lavas modernas del sector sur de los Andes centrales (16°-28° S. Para rocas de contenidos similares en SiO2 la abundancia de U crece de oeste a este en un perfil transversal al cordón andino, mientras que aumenta la profundidad de subducción, y disminuye la potencia de la corteza continental. Además, mientras la potencia de la corteza continental y la profundidad de la zona sísmica de Benioff disminuyen hacia el sur, U tiende a aumentar con la latitud. Así, y basado en los datos disponibles, estamos en posición de sugerir que el comportamiento de U en las rocas estudiadas, depende de la alcalinidad y de la historia magmática de cada centro volcánico.

  1. Thermoluminescence age determination of Mt. Fuji lava dome, Takahara volcano, North Kanto, Central Japan

    Takashima, Isao

    1999-01-01

    Mt. Fuji lava dome thought to be formed by recent action of Takahara volcano, is reported to be due to eruption at the Holocene epoch age on 1,000 or 6,500 years ago. However, on either of them the lava dome did not directly conduct its age measurement, and its age is obtained indirectly from eruption age of tephra estimated to be same age. Recently, precision thermo-luminescence (TL) method is improved and upgraded, by using which formulation of the Mayu-yama in the Unzen volcano was cleared to be about 4,000 years ago which corresponded to be very young. In this paper, by using the TL method for lava dome racks, it was attempted to remove uncertainty forming an indirect age estimation shown as previously. As a result, adopted samples showed 6.5 to 7.4 ka in age value, which showed a good agreement under considering of error. This result was older than 1,000 and some years, and was younger than 20,000 to 25,000 years, which showed a good agreement with 6,500 years ago, obtained by combining closed layer order survey and 14-C age. It is thought to be an important contribution in future forecasting of volcano eruption that the last period action of the Takahara volcano must be at the Holocene epoch age. And, as limited to a quartz containing sample, this can be said to show priority of TL method for a method to directly obtain age of younger dome rock than 10,000 years. (G.K.)

  2. Nature and extent of lava-flow aquifers beneath Pahute Mesa, Nevada Test Site

    Prothro, L.B.; Drellack, S.L. Jr.

    1997-09-01

    Work is currently underway within the Underground Test Area subproject of the US Department of Energy/Nevada Operations Office Environmental Restoration Program to develop corrective action plans in support of the overall corrective action strategy for the Nevada Test Site as established in the Federal Facility Agreement and Consent Order (FFACO, 1996). A closure plan is currently being developed for Pahute Mesa, which has been identified in the FFACO as consisting of the Western and Central Pahute Mesa Corrective Action Units. Part of this effort requires that hydrogeologic data be compiled for inclusion in a regional model that will be used to predict a contaminant boundary for these Corrective Action Units. Hydrogeologic maps have been prepared for use in the model to define the nature and extent of aquifers and confining units that might influence the flow of contaminated groundwater from underground nuclear tests conducted at Pahute Mesa. Much of the groundwater flow beneath Pahute Mesa occurs within lava-flow aquifers. An understanding of the distribution and hydraulic character of these important hydrogeologic units is necessary to accurately model groundwater flow beneath Pahute Mesa. This report summarizes the results of a study by Bechtel Nevada geologists to better define the hydrogeology of lava-flow aquifers at Pahute Mesa. The purpose of this study was twofold: (1) aid in the development of the hydrostratigraphic framework for Pahute Mesa, and (2) provide information on the distribution and hydraulic character of lava-flow aquifers beneath Pahute Mesa for more accurate computer modeling of the Western and Central Pahute Mesa Corrective Action Units.

  3. Morphological and structural changes at the Merapi lava dome monitored using Unmanned Aerial Vehicles (UAVs)

    Darmawan, H.; Walter, T. R.; Brotopuspito, K. S.; Subandriyo, S.; Nandaka, M. A.

    2017-12-01

    Six gas-driven explosions between 2012 and 2014 had changed the morphology and structures of the Merapi lava dome. The explosions mostly occurred during rainfall season and caused NW-SE elongated open fissures that dissected the lava dome. In this study, we conducted UAVs photogrammetry before and after the explosions to investigate the morphological and structural changes and to assess the quality of the UAV photogrammetry. The first UAV photogrammetry was conducted on 26 April 2012. After the explosions, we conducted Terrestrial Laser Scanning (TLS) survey on 18 September 2014 and repeated UAV photogrammetry on 6 October 2015. We applied Structure from Motion (SfM) algorithm to reconstruct 3D SfM point clouds and photomosaics of the 2012 and 2015 UAVs images. Topography changes has been analyzed by calculating height difference between the 2012 and 2015 SfM point clouds, while structural changes has been investigated by visual comparison between the 2012 and 2015 photo mosaics. Moreover, a quality assessment of the results of UAV photogrammetry has been done by comparing the 3D SfM point clouds to TLS dataset. Result shows that the 2012 and 2015 SfM point clouds have 0.19 and 0.57 m difference compared to the TLS point cloud. Furthermore, topography, and structural changes reveal that the 2012-14 explosions were controlled by pre-existing structures. The volume of the 2012-14 explosions is 26.400 ± 1320 m3 DRE. In addition, we find a structurally delineated unstable block at the southern front of the dome which potentially collapses in the future. We concluded that the 2012-14 explosions occurred due to interaction between magma intrusion and rain water and were facilitated by pre-existing structures. The unstable block potentially leads to a rock avalanche hazard. Furthermore, our drone photogrammetry results show very promising and therefore we recommend to use drone for topography mapping in lava dome building volcanoes.

  4. Late Holocene volcanism at Medicine Lake Volcano, northern California Cascades

    Donnelly-Nolan, Julie M.; Champion, Duane E.; Grove, Timothy L.

    2016-05-23

    Late Holocene volcanism at Medicine Lake volcano in the southern Cascades arc exhibited widespread and compositionally diverse magmatism ranging from basalt to rhyolite. Nine well-characterized eruptions have taken place at this very large rear-arc volcano since 5,200 years ago, an eruptive frequency greater than nearly all other Cascade volcanoes. The lavas are widely distributed, scattered over an area of ~300 km2 across the >2,000-km2 volcano. The eruptions are radiocarbon dated and the ages are also constrained by paleomagnetic data that provide strong evidence that the volcanic activity occurred in three distinct episodes at ~1 ka, ~3 ka, and ~5 ka. The ~1-ka final episode produced a variety of compositions including west- and north-flank mafic flows interspersed in time with fissure rhyolites erupted tangential to the volcano’s central caldera, including the youngest and most spectacular lava flow at the volcano, the ~950-yr-old compositionally zoned Glass Mountain flow. At ~3 ka, a north-flank basalt eruption was followed by an andesite eruption 27 km farther south that contains quenched basalt inclusions. The ~5-ka episode produced two caldera-focused dacitic eruptions. Quenched magmatic inclusions record evidence of intrusions that did not independently reach the surface. The inclusions are present in five andesitic, dacitic, and rhyolitic host lavas, and were erupted in each of the three episodes. Compositional and mineralogic evidence from mafic lavas and inclusions indicate that both tholeiitic (dry) and calcalkaline (wet) parental magmas were present. Petrologic evidence records the operation of complex, multi-stage processes including fractional crystallization, crustal assimilation, and magma mixing. Experimental evidence suggests that magmas were stored at 3 to 6 km depth prior to eruption, and that both wet and dry parental magmas were involved in generating the more silicic magmas. The broad distribution of eruptive events and the relative

  5. The peculiar geochemical signatures of São Miguel (Azores) lavas: Metasomatised or recycled mantle sources?

    Beier, Christoph; Stracke, Andreas; Haase, Karsten M.

    2007-07-01

    The island of São Miguel, Azores consists of four large volcanic systems that exhibit a large systematic intra-island Sr-Nd-Pb-Hf isotope and trace element variability. The westernmost Sete Cidades volcano has moderately enriched Sr-Nd-Pb-Hf isotope ratios. In contrast, lavas from the easternmost Nordeste volcano have unusually high Sr and Pb and low Nd and Hf isotope ratios suggesting a long-term evolution with high Rb/Sr, U/Pb, Th/Pb, Th/U and low Sm/Nd and Lu/Hf parent-daughter ratios. They have trace element concentrations similar to those of the HIMU islands, with the exception of notably higher alkali element (Cs, Rb, K, Ba) and Th concentrations. The time-integrated parent-daughter element evolution of both the Sete Cidades and Nordeste source matches the incompatibility sequence commonly observed during mantle melting and consequently suggests that the mantle source enrichment is caused by a basaltic melt, either as a metasomatic agent or as recycled oceanic crust. Our calculations show that a metasomatic model involving a small degree basaltic melt is able to explain the isotopic enrichment but, invariably, produces far too enriched trace element signatures. We therefore favour a simple recycling model. The trace element and isotopic signatures of the Sete Cidades lavas are consistent with the presence of ancient recycled oceanic crust that has experienced some Pb loss during sub-arc alteration. The coherent correlation of the parent-daughter ratios (e.g. Rb/Sr, Th/U, U/Pb) and incompatible element ratios (e.g. Nb/Zr, Ba/Rb, La/Nb) with the isotope ratios in lavas from the entire island suggest that the Sete Cidades and Nordeste source share a similar genetic origin. The more enriched trace element and isotopic variations of Nordeste can be reproduced by recycled oceanic crust in the Nordeste source that contains small amounts of evolved lavas (˜ 1-2%), possibly from a subducted seamount. The rare occurrence of enriched source signatures comparable to

  6. MRCP and 3D LAVA imaging of extrahepatic cholangiocarcinoma at 3 T MRI

    Li, N.; Liu, C.; Bi, W.; Lin, X.; Jiao, H. [Shandong Medical Imaging Research Institute, Shandong University, Jinan (China); Zhao, P., E-mail: Gavinsdu@163.com [Department of Radiology, Shandong Provincial Hospital, Shandong University, Jinan (China)

    2012-06-15

    Extrahepatic cholangiocarcinoma (CCA) is a primary bile duct malignant tumour with poor prognosis. Familiarity with their varied imaging characteristics can be helpful in developing a correct diagnosis and in optimal treatment planning, and thus contribute to a better prognosis. The purpose of this article is to illustrate the typical appearances of extrahepatic CCA on magnetic resonance cholangiopancreatography (MRCP) and three-dimensional (3D) LAVA (liver acquisition with volume acceleration) sequences at 3 T magnetic resonance imaging (MRI), and to discuss the superiority of the two techniques in the diagnosis of CCA.

  7. Misalignment of Lava Flows from Topographic Slope Directions Reveals Late Amazonian Deformation at Arsia Mons, Mars

    Waring, B. A.; Chadwick, J.; McGovern, P. J., Jr.; Tucker, W.

    2017-12-01

    Arsia Mons is the southernmost of the three large Tharsis Montes near the equator of Mars and one of the largest volcanoes in the solar system. The main edifice of Arsia is about 440 km in diameter, the summit is over 9 km above the surrounding plains and has a pronounced 110 km caldera. Like the other Tharsis volcanoes, Arsia has a large, Late Amazonian glacial deposit on its NW flank. Previous crater retention studies for lava flows on Arsia have shown that the volcano experienced significant volcanic activity in the past 200 Ma. In this study, numerous long (>25 km), thin lava flows on the plains surrounding Arsia were mapped and used as indicators of the topographic slope direction at the time of their emplacement. The azimuthal orientation of each flow was compared with the present-day slope directions on the surrounding plains, derived from Mars Orbiter Laser Altimeter (MOLA) topographic data. The results reveal regions around Arsia where the flows no longer conform to the topography, indicating deformation in the time since the flows where emplaced. In a region of Daedalia Planum to the SE of Arsia, modern slope directions adjacent to 40 long lava flows are consistently misaligned from the paleo-slopes indicated by the lava flow orientations, with an angular offset that averages 7.2° in the clockwise direction. Crater size-frequency measurements for these tilted plains using CraterStats software indicate that the deformation responsible for the misaligned flows took place since 330 ± 10 Ma. Conversely, part of Daedalia Planum to the southwest of Arsia is younger, with a crater retention age of 160 ± 6 Ma, and this area shows no consistent flow-topography misalignments. These observations suggest that extensive regional deformation occurred between the two dates, consistent with other evidence for significant volcanism at Arsia in the Late Amazonian at about 200 Ma. Geophysical modelling using the finite element program COMSOL Multiphysics is planned to

  8. Evidence for komatiite-type lavas on Mars from Phobos ISM data and other observations

    Reyes, David P.; Christensen, Philip R.

    1994-01-01

    Data from the Phobos 2 Imaging Spectrometer for Mars (ISM), compiled by Mustard et al. (1993), and other observations support the existence of komatiitic lavas on Mars. Mustard et al. (1993) determined from ISM data that the composition of the low-albedo materials covering the Syrtis Major plateau originally consisted of augite-bearing basalt containing both augite and pigeonite, with no appreciable amount of olivine. This description is consistent with a komatiitic basalt. Komatiite is significant for the Earth because it contains a high amount of MgO, implying generation under unique circumstances compared to more typical basaltic compositions and may be similarly important for Mars.

  9. The Influence of Topography on the Emplacement Dynamics of Martian Lava flows

    Tremblay, J.; Fitch, E. P.; Fagents, S. A.

    2017-12-01

    Lava flows on the Martian surface exhibit a diverse array of complex morphologies. Previous emplacement models, based on terrestrial flows, do not fully account for these observed complex morphologies. We assert that the topography encountered by the flow can exert substantial control over the thermal, rheological, and morphological evolution of the flow, and that these effects can be better incorporated into flow models to predict Martian flow morphologies. Our development of an updated model can be used to account for these topographical effects and better constrain flow parameters. The model predicts that a slope break or flow meander induces eddy currents within the flow, resulting in the disruption of the flow surface crust. The exposure of the flow core results in accelerated cooling of the flow and a resultant increase in viscosity, leading to slowing of the flow. A constant source lava flux and a stagnated flow channel would then result in observable morphological changes, such as overflowing of channel levees. We have identified five morphological types of Martian flows, representing a range of effusion rates, eruption durations and topographic settings, which are suitable for application of our model. To characterize flow morphology, we used imaging and topographic data sets to collect data on flow dimensions. For eight large (50 to hundreds of km long) channelized flows in the Tharsis region, we used the MOLA 128 ppd DEM and/or individual MOLA shot points to derive flow cross-sectional thickness profiles, from which we calculated the cross-sectional area of the flow margins adjacent to the main channel. We found that the largest flow margin cross sectional areas (excluding the channel) occur in association with a channel bend, typically near the bend apex. Analysis of high-resolution images indicates that these widened flow margins are the result of repeated overflows of the channel levees and emplacement of short flow lobes adjacent to the main flow. In

  10. Lava ultimate resin nano ceramic for CAD/ CAM: customization case study.

    Koller, M; Arnetzl, G V; Holly, L; Arnetzl, G

    2012-01-01

    Lava Ultimate Resin Nano Ceramic (RNC) blocks are innovative new CAD/CAM materials that make it possible to achieve superior esthetic results in easy steps. The blocks are made of nano ceramic particles embedded in a highly cured resin matrix. Therefore, composite materials can be used to characterize and adjust resin nano ceramic restorations after milling. The milled RNC restorations can be individualized intra-orally or extra-orally, either before or after insertion. Unlike conventional ceramic restorations, customization and glaze firing is neither necessary nor possible with RNC restorations. This opens up the opportunity for intraoral individualization and adaptation of the restorations.

  11. Remotely Characterizing the Topographic and Thermal Evolution of Kīlauea's Lava Flow Field

    Rumpf, M. E.; Vaughan, R. G.; Poland, M. P.

    2017-12-01

    New technologies in satellite data acquisition and the continuous development of analysis software capabilities are greatly improving the ability of scientists to monitor volcanoes in near-real-time. Satellite-based thermal infrared (TIR) data are used to monitor and analyze new and ongoing volcanic activity by identifying and quantifying surface thermal characteristics and lava flow discharge rates. Improved detector sensitivities provide unprecedented spatial detail in visible to shortwave infrared (VSWIR) satellite imagery. The acquisition of stereo and tri-stereo visible imagery, as well as SAR, by an increasing number of satellite systems enables the creation of digital elevation models (DEMs) at higher temporal frequencies and resolutions than in the past. Free, user-friendly software programs, such as NASA's Ames Stereo Pipeline and Google Earth Engine, ease the accessibility and usability of satellite data to users unfamiliar with traditional analysis techniques. An effective and efficient integration of these technologies can be utilized towards volcano monitoring.Here, we use the active lava flows from the East Rift Zone vents of Kīlauea Volcano, Hawai`i as a testing ground for developing new techniques in multi-sensor volcano remote sensing. We use DEMs generated from stereo and tri-stereo images captured by the WorldView3 and Pleiades satellite systems to assess topographic changes over time at the active flow fields. Time-series data of lava flow area, thickness, and discharge rate developed from thermal emission measurements collected by ASTER, Landsat 8, and WorldView3 are compared to satellite-detected topographic changes and to ground observations of flow development to identify behavioral patterns and to monitor flow field evolution. We explore methods of combining these visual and TIR data sets collected by multiple satellite systems with a variety of resolutions and repeat times. Our ultimate goal is to develop integrative tools for near

  12. The dynamics of a channel-fed lava flow on Pico Partido volcano, Lanzarote

    Woodcock, Duncan; Harris, Andrew

    2006-09-01

    A short length of channel on Pico Partido volcano, Lanzarote, provides us the opportunity to examine the dynamics of lava flowing in a channel that extends over a sudden break in slope. The 1 2-m-wide, 0.5 2-m-deep channel was built during the 1730 1736 eruptions on Lanzarote and exhibits a sinuous, well-formed channel over a steep (11° slope) 100-m-long proximal section. Over-flow units comprising smooth pahoehoe sheet flow, as well as evidence on the inner channel walls for multiple (at least 11) flow levels, attest to unsteady flow in the channel. In addition, superelevation is apparent at each of the six bends along the proximal channel section. Superelevation results from banking of the lava as it moves around the bend thus causing preferential construction of the outer bank. As a result, the channel profile at each bend is asymmetric with an outer bank that is higher than the inner bank. Analysis of superelevation indicates flow velocities of ~8 m s 1. Our analysis of the superelevation features is based on an inertia-gravity balance, which we show is appropriate, even though the down-channel flow is in laminar flow. We use a viscosity-gravity balance model, together with the velocities calculated from superelevation, to obtain viscosities in the range 25 60 Pa s (assuming that the lava behaved as a Newtonian liquid). Estimated volume fluxes are in the range 7 12 m3 s 1. An apparent down-flow increase in derived volume flux may have resulted from variable supply or bulking up of the flow due to vesiculation. Where the channel moves over a sharp break in slope and onto slopes of ~6°, the channel becomes less well defined and widens considerably. At the break of slope, an elongate ridge extends across the channel. We speculate that this ridge was formed as a result of a reduction in velocity immediately below the break of slope to allow deposition of entrained material or accretion of lava to the channel bed as a result of a change in flow regime or depth.

  13. Evolution of alkaline lakes - Lake Van case study

    Tillman Meyer, Felix; Viehberg, Finn; Bahroun, Sonya; Wolf, Annabel; Immenhauser, Adrian; Kwiecien, Ola

    2017-04-01

    Lake Van in Eastern Anatolia (Turkey) is the largest terminal soda lake on Earth. The lake sedimentary profile covers ca. 600 ka (Stockhecke et al. 2014) Based on lithological changes, the presence of freshwater microfossils and close-to-freshwater pH value in the pore water, members of ICDP PALEOVAN concluded that Lake Van might have started as an open lake. Here we show paleontological and geochemical evidence in favour of this idea and constrain the time, when Lake Van likely transformed into a closed lake. Additionally we provide the first conceptual model of how this closure may have happened. Our archives of choice are inorganic and biogenic carbonates, separated by wet sieving. We identified microfossil assemblages (fraction > 125 µm) and performed high-resolution oxygen isotope (delta18O) and elemental (Mg/Ca, Sr/Ca) analyses of the fraction plants growing in the photic zone as food supply. These two aspects point to an increasing salinity in a shallowing lake. The delta18O values of inorganic carbonates are relatively low during the initial phase of Lake Van and increase abruptly (ca. 7‰) after 530 ka BP. At approximately the same time combination of Sr/Ca and Mg/Ca data suggest first occurrence of aragonite. Again, these findings suggest geochemical changes of the lake water concurrent with transition documented by microfossils. Comparison between Lake Van and Lake Ohrid (Lacey et al. 2016) delta18O data, precludes regional climate change (e.g.: increased evaporation) as the main driver of observed changes. With no evidence for increased volcanic or tectonic activity (e.g.: tephra layers, deformation structures, slumping) in the Lake Van sedimentary profile around 530 ka, it seems unlikely that a pyroclastic flow blocked the outflow of the lake. Alternatively, a portion of inflow has been diverged which might have caused a change in the hydrological balance and lake level falling below its outlet. However, as no geomorphological data confirming this

  14. Predicting Maximum Lake Depth from Surrounding Topography

    Lake volume aids understanding of the physical and ecological dynamics of lakes, yet is often not readily available. The data needed to calculate lake volume (i.e. bathymetry) are usually only collected on a lake by lake basis and are difficult to obtain across broad regions. ...

  15. Lake-level frequency analysis for Devils Lake, North Dakota

    Wiche, Gregg J.; Vecchia, Aldo V.

    1996-01-01

    Two approaches were used to estimate future lake-level probabilities for Devils Lake. The first approach is based on an annual lake-volume model, and the second approach is based on a statistical water mass-balance model that generates seasonal lake volumes on the basis of seasonal precipitation, evaporation, and inflow. Autoregressive moving average models were used to model the annual mean lake volume and the difference between the annual maximum lake volume and the annual mean lake volume. Residuals from both models were determined to be uncorrelated with zero mean and constant variance. However, a nonlinear relation between the residuals of the two models was included in the final annual lakevolume model.Because of high autocorrelation in the annual lake levels of Devils Lake, the annual lake-volume model was verified using annual lake-level changes. The annual lake-volume model closely reproduced the statistics of the recorded lake-level changes for 1901-93 except for the skewness coefficient. However, the model output is less skewed than the data indicate because of some unrealistically large lake-level declines. The statistical water mass-balance model requires as inputs seasonal precipitation, evaporation, and inflow data for Devils Lake. Analysis of annual precipitation, evaporation, and inflow data for 1950-93 revealed no significant trends or long-range dependence so the input time series were assumed to be stationary and short-range dependent.Normality transformations were used to approximately maintain the marginal probability distributions; and a multivariate, periodic autoregressive model was used to reproduce the correlation structure. Each of the coefficients in the model is significantly different from zero at the 5-percent significance level. Coefficients relating spring inflow from one year to spring and fall inflows from the previous year had the largest effect on the lake-level frequency analysis.Inclusion of parameter uncertainty in the model

  16. Lake-wide distribution of Dreissena in Lake Michigan, 1999

    Fleischer, Guy W.; DeSorcie, Timothy J.; Holuszko, Jeffrey D.

    2001-01-01

    The Great Lakes Science Center has conducted lake-wide bottom trawl surveys of the fish community in Lake Michigan each fall since 1973. These systematic surveys are performed at depths of 9 to 110 m at each of seven index sites around Lake Michigan. Zebra mussel (Dreissena polymorpha) populations have expanded to all survey locations and at a level to sufficiently contribute to the bottom trawl catches. The quagga (Dreissena bugensis), recently reported in Lake Michigan, was likely in the catches though not recognized. Dreissena spp. biomass ranged from about 0.6 to 15 kg/ha at the various sites in 1999. Dreissenid mussels were found at depths of 9 to 82 m, with their peak biomass at 27 to 46 m. The colonization of these exotic mussels has ecological implications as well as potential ramifications on the ability to sample fish consistently and effectively with bottom trawls in Lake Michigan.

  17. The diversity of benthic mollusks of Lake Victoria and Lake Burigi ...

    Molluscan diversity, abundance and distribution in sediments of Lake Victoria and its satellite lake, Lake Burigi, were investigated. The survey was carried out in January and February 2002 for Lake Victoria and in March and April 2002 for Lake Burigi. Ten genera were recorded from four zones of Lake Victoria while only ...

  18. Wintering bats of the upper Snake River Plain: occurrence in lava-tube caves

    Genter, D.L.

    1986-04-30

    Distribution and habitat selection of hibernating bats at the Idaho National Engineering Laboratory (INEL) and adjacent area are reported. Exploration of over 30 lava-tube caves revealed that two species, Myotis leibii and Plecotus townsendii, hibernate in the upper Snake River Plain. Five species, M. lucifugus, M. evotis, Eptesicus fuscus, Lasionycteris noctivagans, and Lasiurus cinereus are considered migratory. Myotis leibii and P. townsendii hibernate throughout much of the area, occasionally in mixed-species groups. Myotis leibii uses the dark and protected regions of the cave, usually wedged into tiny pockets and crevices near or at the highest portion of the ceiling. Individuals of P. townsendii may be found at any height or depth in the cave. Temperature appears to be primary limiting factor in habitat selection. Myotis leibii was found in significantly cooler air temperatures than P. townsendii. Neither species tolerated continuous temperatures below 1.5 C. Relative humidity does not seem to be a significant factor in the distribution or habitat selection of the two species in lava-tube caves. 18 references, 1 figure, 1 table.

  19. Identification of gap cooling phenomena from LAVA-4 experiment using MELCOR

    Park, Jong-Hwa; Kim, Dong-Ha; Kim, See-Darl; Kim, Sang-Baik; Kim, Hee-Dong

    2000-01-01

    During the severe accident, whether the hot debris in. lower head will be cool-down or not is the important issue concerning the plant safety. KAERI has launched the 'LAVA' experimental program to examine the existence of initial gap and its effect on the cooling of hot debris. The objective of this study is to identify the gap cooling phenomena from the analysis of simulation results on LAVA-4 experiment using MELCOR1.8.4 code. Three parameters on the debris coolability in MELCOR are the quenching heat transfer coefficient for the interaction between molten Al 2 O 3 and water, the heat transfer coefficient from debris to wall and the diameter of the particulate debris for calculating the available heat transfer area with water. The sensitivity study was performed with these three parameters. However it was believed that there must be a gap between debris and inside wall during the transient. MELCOR1.8.4 does not consider these gap-cooling phenomena. Therefore a conceptual gap-cooling model has been developed and implemented into the lower plenum model in MELCOR to take into account the gap effect in the lower plenum. When the 'gap model' is implemented, the peak temperature of the vessel wall was reduced and its cooling rate was increased. (author)

  20. Viewing lava safely: an epidemiology of hiker injury and illness in Hawaii Volcanoes National Park.

    Heggie, Travis W; Heggie, Tracey M

    2004-01-01

    To report the injuries and illnesses encountered by wilderness hikers in Hawaii Volcanoes National Park attempting to hike to active lava flows and to investigate the roles that demographics, prior hiking experience, hiking behavior, and preparedness play in hiker vulnerability to injury and illness. During an 8-week period, daily on-site exit interviews of lava hikers were conducted by a uniformed park ranger and park volunteer. Information about the hiker's home residence, wilderness hiking experience, preparedness, health status, and health problems encountered during the hike was collected from a total of 804 hikers. A high rate of injury and illness was found among the study population. Scrapes and abrasions (59%), blisters (51%), and muscle strains and sprains (47%) were the most common injuries. Dehydration (77%) and respiratory irritation (46%) were the most common illnesses. Lower extremities were the most common site of injuries, and beginning hikers were the most vulnerable to injury and illness. Many hikers were inexperienced tourists willing to disregard warning signs and enter high-risk areas. Hawaii Volcanoes National Park is one of 22 US national park units with volcanic resources. The injuries and illnesses reported by the study group identify the impact that this type of environment can have on the safety of wilderness users in areas with similar resources. Recreating in remote and severe areas has inherent risks, but the high rate of injuries and illnesses sustained by the hikers of this study can potentially be reduced through the development of more direct risk management methods.

  1. Proximal Monitoring of the 2011–2015 Etna Lava Fountains Using MSG-SEVIRI Data

    Stefano Corradini

    2018-04-01

    Full Text Available From 2011 to 2015, 49 lava fountains occurred at Etna volcano. In this work, the measurements carried out from the Spinning Enhanced Visible and InfraRed Imager (SEVIRI instrument, on board the Meteosat Second Generation (MSG geostationary satellite, are processed to realize a proximal monitoring of the eruptive activity for each event. The SEVIRI measurements are managed to provide the time series of start and duration of eruption and fountains, Time Averaged Discharge Rate (TADR and Volcanic Plume Top Height (VPTH. Due to its temperature responsivity, the eruptions start and duration, fountains start and duration and TADR are realized by exploiting the SEVIRI 3.9 μm channel, while the VPTH is carried out by applying a simplified procedure based on the SEVIRI 10.8 μm brightness temperature computation. For each event, the start, duration and TADR have been compared with ground-based observations. The VPTH time series is compared with the results obtained from a procedures-based on the volcanic cloud center of mass tracking in combination with the Hybrid Single-Particle Lagrangian Integrated Trajectory (HYSPLIT back-trajectories. The results indicate that SEVIRI is generally able to detect the start of the lava emission few hours before the ground measurements. A good agreement is found for both the start and the duration of the fountains and the VPTH with mean differences of about 1 h, 50 min and 1 km respectively.

  2. Pisgah Lava Cave Communication Test: Science Case Study for the Networked Constellations Initiative

    Belov, K.; Ellison, D.; Fraeman, A.

    2017-01-01

    As part of the science case study for the Networked Constellations initiative, a team of JPL scientists explore the possibility of a mission to study the lava caves on Mars. Natural caves on Mars and the Moon present a unique opportunity to learn about the planetary geology and to provide a shelter for human explorers. Due to power and communication challenges, a network of assets has significant advantages over a single asset sent inside a cave. However, communication between the assets and the data downlink present significant difficulties due to the presence of rough walls, boulders, and other obstacles with unknown dielectric constant inside a typical cave, disturbing the propagation of the radio waves. A detailed study is needed to establish the limitations of the current communication technologies and to develop requirements for the new communication technology applicable to the cave environment. On May 4 of 2017, Konstantin Belov, Doug Ellison, and Abby Fraeman visited a lava cave in Pisgah, CA. The purpose of the visit was to build a 3D map of the cave, which could be used to create a model of radio wave propagation, and to conduct a series of communication tests using off-the-shelf equipment to verify the in-cave communication challenges. This experiment should be considered as a simple 'proof of concept' and is the subject of this report.

  3. Seismic experiments on Showa-Shinzan lava dome using firework shots

    Miyamachi, Hiroki; Watanabe, Hidefumi; Moriya, Takeo; Okada, Hiromu

    1987-11-01

    Seismic experiments were conducted on Showa-Shinzan, a parasitic lava dome of volcano Usu, Hokkaido, which was formed during 1943 1945 activity. Since we found that firework shots fired on the ground can effectively produce seismic waves, we placed many seismometers on and around the dome during the summer festivals in 1984 and 1985. The internal structure had been previously studied using a prospecting technique employing dynamite blasts in 1954. The measured interval velocity across the dome in 1984 ranges 1.8 2.2 km/s drastically low compared to the results (3.0 4.0 km/s) in 1954; in addition, the velocity is 0.3 0.5 km/s higher than that in the surrounding area. The variation of the observed first arrival amplitudes can be explained by geometrical spreading in the high velocity lava dome. These observations show a marked change in the internal physical state of the dome corresponding to a drop in the measured highest temperature at fumaroles on the dome from 800°C in 1947 to 310°C in 1986.

  4. Elliot Lake progress report

    Findlay, W.; Scott, A.S.

    1980-01-01

    The intent of the Elliot Lake remedial program is to identify houses in Elliot Lake with annual average WL's in excess of 0.02, discover the routes of radon entry into identified houses and close enough of them to reduce the annual average WL to an acceptable level, and to demonstrate that the annual average WL is below 0.02 in houses where remedial work was not thought necessary as well as in houses where remedial work has been completed. The remedial program is organized into two subprograms, the survey program and the remedial action program. By December 31, 1979 more than 17000 survey measurements had been carried out, identifying 157 houses where remedial action was required and confirming that no action was needed in 413 houses. Remedial work had been completed on 98 houses

  5. Angora Fire, Lake Tahoe

    2007-01-01

    On the weekend of June 23, 2007, a wildfire broke out south of Lake Tahoe, which stretches across the California-Nevada border. By June 28, the Angora Fire had burned more than 200 homes and forced some 2,000 residents to evacuate, according to The Seattle Times and the Central Valley Business Times. On June 27, the Advanced Spaceborne Thermal Emission and Reflection Radiometer (ASTER) on NASA's Terra satellite captured this image of the burn scar left by the Angora fire. The burn scar is dark gray, or charcoal. Water bodies, including the southern tip of Lake Tahoe and Fallen Leaf Lake, are pale silvery blue, the silver color a result of sunlight reflecting off the surface of the water. Vegetation ranges in color from dark to bright green. Streets are light gray, and the customary pattern of meandering residential streets and cul-de-sacs appears throughout the image, including the area that burned. The burn scar shows where the fire obliterated some of the residential areas just east of Fallen Leaf Lake. According to news reports, the U.S. Forest Service had expressed optimism about containing the fire within a week of the outbreak, but a few days after the fire started, it jumped a defense, forcing the evacuation of hundreds more residents. Strong winds that had been forecast for June 27, however, did not materialize, allowing firefighters to regain ground in controlling the blaze. On June 27, authorities hoped that the fire would be completely contained by July 3. According to estimates provided in the daily report from the National Interagency Fire Center, the fire had burned 3,100 acres (about 12.5 square kilometers) and was about 55 percent contained as of June 28. Some mandatory evacuations remained in effect. NASA image by Jesse Allen, using data provided courtesy of the NASA/GSFC/MITI/ERSDAC/JAROS, and U.S./Japan ASTER Science Team.

  6. Great Lakes Energy Institute

    Alexander, J. Iwan [Case Western Reserve Univ., Cleveland, OH (United States)

    2012-11-18

    The vision of the Great Lakes Energy Institute is to enable the transition to advanced, sustainable energy generation, storage, distribution and utilization through coordinated research, development, and education. The Institute will place emphasis on translating leading edge research into next generation energy technology. The Institute’s research thrusts focus on coordinated research in decentralized power generation devices (e.g. fuel cells, wind turbines, solar photovoltaic devices), management of electrical power transmission and distribution, energy storage, and energy efficiency.

  7. Limnology of Lake Midmar

    Breen, CM

    1983-12-01

    Full Text Available goals. Those which seem important to us are: the identification of the limnological responses affecting water quality which are of universal application. Some such as phosphorus load are well known whereas others may still require to be identified... Figure 17 Pattern of release of total nitrogen and phosphorus from decomposing vegetation ............................. 56 Figure 18 Changes in the amounts of total phosphorus within the lake, the inflow and the outflow on a weekly basis....... 59...

  8. Assessing the origin of unusual organic formations in lava caves from Canary Islands (Spain)

    Miller, Ana Z.; de la Rosa, Jose M.; Garcia-Sanchez, Angela M.; Pereira, Manuel F. C.; Jurado, Valme; Fernández, Octavio; Knicker, Heike; Saiz-Jimenez, Cesareo

    2016-04-01

    Lava tubes, like other caves, contain a variety of speleothems formed in the initial stage of a lava tube formation or due to leaching and subsequent precipitation of secondary minerals. Primary and secondary mineral formations in lava caves are mainly composed of silicate minerals, although secondary minerals common in limestone caves have been also reported in this type of caves. In addition, unusual colored deposits have been found on the walls and ceilings of lava tubes, some of them of unknown origin and composition. A brown to black-colored mud-like deposits was observed in "Llano de los Caños" Cave, La Palma Island, Canary Islands, Spain. These black deposits coat the wall and ceiling of the lava tube where sub-horizontal fractures occur. FESEM-EDS, X-ray micro-computed tomography and mineralogical analyses were conducted for morphological, 3D microstructural and compositional characterization of these unusual speleothem samples. These techniques revealed that they are mainly composed of amorphous materials, suggesting an organic carbon composition. Hence, analytical pyrolysis (Py-GC/MS), solid-state 13C Nuclear Magnetic Resonance (NMR) and stable isotope analysis were applied to assess the nature and origin of the black deposits. The combination of these analytical tools permits the identification of specific biomarkers (di- and triterpenoids) for tracing the potential sources of the organic compounds in the speleothems. For comparison purposes, samples from the topsoil and overlaying vegetation were also analyzed. Chromatograms resulting from the Py-GC/MS showed an abundance of polysaccharides, lipids and terpenoids typically derived from the vegetation of the area (Erica arborea). In addition, levoglucosan, polycyclic aromatic hydrocarbons and N-containing heterocyclic compounds were detected. They probably derived from the leaching of charred vegetation resulting from a wildfire occurred in the area in 2012. The lack of the typical pattern of odd

  9. Flow banding in basaltic pillow lavas from the Early Archean Hooggenoeg Formation, Barberton Greenstone Belt, South Africa

    Robins, Brian; Sandstå, Nils Rune; Furnes, Harald; de Wit, Maarten

    2010-07-01

    Well-preserved pillow lavas in the uppermost part of the Early Archean volcanic sequence of the Hooggenoeg Formation in the Barberton Greenstone Belt exhibit pronounced flow banding. The banding is defined by mm to several cm thick alternations of pale green and a dark green, conspicuously variolitic variety of aphyric metabasalt. Concentrations of relatively immobile TiO2, Al2O3 and Cr in both varieties of lava are basaltic. Compositional differences between bands and variations in the lavas in general have been modified by alteration, but indicate mingling of two different basalts, one richer in TiO2, Al2O3, MgO, FeOt and probably Ni and Cr than the other, as the cause of the banding. The occurrence in certain pillows of blebs of dark metabasalt enclosed in pale green metabasalt, as well as cores of faintly banded or massive dark metabasalt, suggest that breakup into drops and slugs in the feeder channel to the lava flow initiated mingling. The inhomogeneous mixture was subsequently stretched and folded together during laminar shear flow through tubular pillows, while diffusion between bands led to partial homogenisation. The most common internal pattern defined by the flow banding in pillows is concentric. In some pillows the banding defines curious mushroom-like structures, commonly cored by dark, variolitic metabasalt, which we interpret as the result of secondary lateral flow due to counter-rotating, transverse (Dean) vortices induced by the axial flow of lava towards the flow front through bends, generally downward, in the tubular pillows. Other pillows exhibit weakly-banded or massive, dark, variolitic cores that are continuous with wedge-shaped apophyses and veins that intrude the flow banded carapace. These cores represent the flow of hotter and less viscous slugs of the dark lava type into cooled and stiffened pillows.

  10. Osmium isotope variations accompanying the eruption of a single lava flow field in the Columbia River Flood Basalt Province

    Vye-Brown, C.; Gannoun, A.; Barry, T. L.; Self, S.; Burton, K. W.

    2013-04-01

    Geochemical interpretations of continental flood basalts usually assume that individual lava flows represent compositionally homogenous and rapidly erupted products of large well-mixed magma reservoirs. However, inflated pāhoehoe lavas may develop over considerable periods of time and preserve chemical variations that can be temporally linked through flow formation to eruption sequence thus providing an understanding of magma evolution over the timescale of a single eruption. This study presents comprehensive major, trace element and Re-Os isotope data for a single eruption that formed the 2660 km3 Sand Hollow flow field in the Columbia River Basalt Province, USA. Major and trace element variations accompanying flow emplacement (e.g. MgO 3.09-4.55 wt%, Ni 17.5-25.6 ppm) are consistent with fractional crystallisation, but other petrogenetic processes or variable sources cannot be distinguished. However, there is a systematic shift in the initial 187Os/188Os isotope composition of the magma (age corrected to 15.27 Ma), from 0.174 (lava core) to 1.444 (lava crust) within a single 35 m thick sheet lobe. Lava crust values are more radiogenic than any known mantle source, consistent with previous data indicating that neither an enriched reservoir nor the sub-continental lithospheric mantle are likely to have sourced these basalts. Rather, these data indicate that lavas emplaced during the earliest stages of eruption have higher degrees of crustal contamination. These results highlight the limitations of applying chemostratigraphic correlation across continental flood basalt provinces, the use of single data points to define melt sources and magmatic processes, and the dangers of using conventional isochron techniques in such basalt sequences for absolute chronology.

  11. Field and experimental constraints on the rheology of arc basaltic lavas: the January 2014 Eruption of Pacaya (Guatemala)

    Soldati, A.; Sehlke, A.; Chigna, G.; Whittington, A.

    2016-06-01

    We estimated the rheology of an active basaltic lava flow in the field, and compared it with experimental measurements carried out in the laboratory. In the field we mapped, sampled, and recorded videos of the 2014 flow on the southern flank of Pacaya, Guatemala. Velocimetry data extracted from videos allowed us to determine that lava traveled at ˜2.8 m/s on the steep ˜45° slope 50 m from the vent, while 550 m further downflow it was moving at only ˜0.3 m/s on a ˜4° slope. Estimates of effective viscosity based on Jeffreys' equation increased from ˜7600 Pa s near the vent to ˜28,000 Pa s downflow. In the laboratory, we measured the viscosity of a representative lava composition using a concentric cylinder viscometer, at five different temperatures between 1234 and 1199 °C, with crystallinity increasing from 0.1 to 40 vol%. The rheological data were best fit by power law equations, with the flow index decreasing as crystal fraction increased, and no detectable yield strength. Although field-based estimates are based on lava characterized by a lower temperature, higher crystal and bubble fraction, and with a more complex petrographic texture, field estimates and laboratory measurements are mutually consistent and both indicate shear-thinning behavior. The complementary field and laboratory data sets allowed us to isolate the effects of different factors in determining the rheological evolution of the 2014 Pacaya flows. We assess the contributions of cooling, crystallization, and changing ground slope to the 3.7-fold increase in effective viscosity observed in the field over 550 m, and conclude that decreasing slope is the single most important factor over that distance. It follows that the complex relations between slope, flow velocity, and non-Newtonian lava rheology need to be incorporated into models of lava flow emplacement.

  12. Abdominal MRI at 3.0 T: LAVA-Flex compared with conventional fat suppression T1-weighted images.

    Li, Xing Hui; Zhu, Jiang; Zhang, Xiao Ming; Ji, Yi Fan; Chen, Tian Wu; Huang, Xiao Hua; Yang, Lin; Zeng, Nan Lin

    2014-07-01

    To study liver imaging with volume acceleration-flexible (LAVA-Flex) for abdominal magnetic resonance imaging (MRI) at 3.0 T and compare the image quality of abdominal organs between LAVA-Flex and fast spoiled gradient-recalled (FSPGR) T1-weighted imaging. Our Institutional Review Board approval was obtained in this retrospective study. Sixty-nine subjects had both FSPGR and LAVA-Flex sequences. Two radiologists independently scored the acquisitions for image quality, fat suppression quality, and artifacts and the values obtained were compared with the Wilcoxon signed rank test. According to the signal intensity (SI) measurements, the uniformity of fat suppression, the contrast between muscle and fat and normal liver and liver lesions were compared by the paired t-test. The liver and spleen SI on the fat-only phase were analyzed in the fatty liver patients. Compared with FSPGR imaging, LAVA-Flex images had better and more homogenous fat suppression and lower susceptibility artifact (qualitative scores: 4.70 vs. 4.00, 4.86% vs. 7.14%, 4.60 and 4.10, respectively). The contrast between muscle and fat and between the liver and pathologic lesions was significantly improved on the LAVA-Flex sequence. The contrast value of the fatty liver and spleen was higher than that of the liver and spleen. The LAVA-Flex sequence offers superior and more homogenous fat suppression of the abdomen than does the FSPGR sequence. The fat-only phase can be a simple and effective method of assessing fatty liver. © 2013 Wiley Periodicals, Inc.

  13. Interferometric synthetic aperture radar study of Okmok volcano, Alaska, 1992-2003: Magma supply dynamics and postemplacement lava flow deformation

    Lu, Z.; Masterlark, Timothy; Dzurisin, Daniel

    2005-01-01

    Okmok volcano, located in the central Aleutian arc, Alaska, is a dominantly basaltic complex topped with a 10-km-wide caldera that formed circa 2.05 ka. Okmok erupted several times during the 20th century, most recently in 1997; eruptions in 1945, 1958, and 1997 produced lava flows within the caldera. We used 80 interferometric synthetic aperture radar (InSAR) images (interferograms) to study transient deformation of the volcano before, during, and after the 1997 eruption. Point source models suggest that a magma reservoir at a depth of 3.2 km below sea level, located beneath the center of the caldera and about 5 km northeast of the 1997 vent, is responsible for observed volcano-wide deformation. The preeruption uplift rate decreased from about 10 cm yr−1 during 1992–1993 to 2 ∼ 3 cm yr−1 during 1993–1995 and then to about −1 ∼ −2 cm yr−1 during 1995–1996. The posteruption inflation rate generally decreased with time during 1997–2001, but increased significantly during 2001–2003. By the summer of 2003, 30 ∼ 60% of the magma volume lost from the reservoir in the 1997 eruption had been replenished. Interferograms for periods before the 1997 eruption indicate consistent subsidence of the surface of the 1958 lava flows, most likely due to thermal contraction. Interferograms for periods after the eruption suggest at least four distinct deformation processes: (1) volcano-wide inflation due to replenishment of the shallow magma reservoir, (2) subsidence of the 1997 lava flows, most likely due to thermal contraction, (3) deformation of the 1958 lava flows due to loading by the 1997 flows, and (4) continuing subsidence of 1958 lava flows buried beneath 1997 flows. Our results provide insights into the postemplacement behavior of lava flows and have cautionary implications for the interpretation of inflation patterns at active volcanoes.

  14. Restoring life to acidified lakes

    Shepard, M

    1986-05-01

    In 1983 EPRI initiated the lake acidification mitigation project (LAMP) in order to examine the long-term ecosystem effects of liming lakes, and to develop a model for calculating optimal liming doses. Investigations were carried out at lakes under 3 sets of conditions: reacidification, maintenance liming and preventive maintenance liming. The research so far has indicated that liming is a safe and effective technique.

  15. Radioecological characteristics of Lake Zarnowieckie

    Soszka, G.J.; Grzybowska, D.; Rostek, J.; Pietruszewski, A.; Wardaszko, T.; Kalinowska, A.; Tomczak, J.

    1986-01-01

    Results are presented of the radioecological studies carried out in Lake Zarnowieckie as a part of pre-operational investigations related to the construction of a nuclear power station at this lake. Concentrations of essential radionuclides were determined in water, bottom sediments and selected plants and animals. Analyses were made of the distribution and spreading of 90 Sr and 137 Cs in the lake ecosystem and in the near-by meadows. 28 refs., 6 figs., 6 tabs. (author)

  16. Experimental study of the surface thermal signature of gravity currents: application to the assessment of lava flow effusion rate

    Garel, F.; Kaminski, E.; Tait, S.; Limare, A.

    2011-12-01

    During an effusive volcanic eruption, the crisis management is mainly based on the prediction of lava flows advance and its velocity. As the spreading of lava flows is mainly controlled by its rheology and the eruptive mass flux, the key question is how to evaluate them during the eruption (rather than afterwards.) A relationship between the heat flux lost by the lava at its surface and the eruption rate is likely to exist, based on the first-order argument that higher eruption rates should correspond to larger power radiated by a lava flow. The semi-empirical formula developed by Harris and co-workers (e.g. Harris et al., Bull. Volc. 2007) is currently used to estimate lava flow rate from satellite surveys yielding the surface temperatures and area of the lava flow field. However, this approach is derived from a static thermal budget of the lava flow and does not explicitly model the time-evolution of the surface thermal signal. Here we propose laboratory experiments and theoretical studies of the cooling of a viscous axisymmetric gravity current fed at constant flux rate. We first consider the isoviscous case, for which the spreading is well-know. The experiments using silicon oil and the theoretical model both reveal the establishment of a steady surface thermal structure after a transient time. The steady state is a balance between surface cooling and heat advection in the flow. The radiated heat flux in the steady regime, a few days for a basaltic lava flow, depends mainly on the effusion rate rather than on the viscosity. In this regime, one thermal survey of the radiated power could provide a consistent estimate of the flow rate if the external cooling conditions (wind) are reasonably well constrained. We continue to investigate the relationship between the thermal radiated heat flux and the effusion rate by using in the experiments fluids with temperature-dependent viscosity (glucose syrup) or undergoing solidification while cooling (PEG wax). We observe a

  17. Environmental Monitoring, Water Quality - Lakes Assessments - Attaining

    NSGIC Education | GIS Inventory — This layer shows only attaining lakes of the Integrated List. The Lakes Integrated List represents lake assessments in an integrated format for the Clean Water Act...

  18. Algae Bloom in a Lake

    David Sanabria

    2008-01-01

    Full Text Available The objective of this paper is to determine the likelihood of an algae bloom in a particular lake located in upstate New York. The growth of algae in this lake is caused by a high concentration of phosphorous that diffuses to the surface of the lake. Our calculations, based on Fick's Law, are used to create a mathematical model of the driving force of diffusion for phosphorous. Empirical observations are also used to predict whether the concentration of phosphorous will diffuse to the surface of this lake within a specified time and under specified conditions.

  19. Submerged Grove in Lake Onogawa

    Sato, Yasuhiro; Nakamura, Soken; Ochiai, Masahiro

    1996-01-01

    Abstract : The first record by ultrasonic echo sounding on the distribution of the submerged standing trees on the bottom of Lake Onogawa is presented. Lake Onogawa is a dammed lake formed at the time of the eruption of the volcano Mt.Bandai in 1888. Since then the original vegetation of the dammed valley has remained submerged. Many submerged standing trees are distributed on the bottom within about 600m from the northeast end of the lake. The density of the trees in this area is sufficient ...

  20. Lake Charles CCS Project

    Leib, Thomas [Leucadia Energy, LLC, Salt Lake City, UT (United States); Cole, Dan [Denbury Onshore, LLC, Plano, TX (United States)

    2015-06-30

    In late September 2014 development of the Lake Charles Clean Energy (LCCE) Plant was abandoned resulting in termination of Lake Charles Carbon Capture and Sequestration (CCS) Project which was a subset the LCCE Plant. As a result, the project was only funded through Phase 2A (Design) and did not enter Phase 2B (Construction) or Phase 2C (Operations). This report was prepared relying on information prepared and provided by engineering companies which were engaged by Leucadia Energy, LLC to prepare or review Front End Engineering and Design (FEED) for the Lake Charles Clean Energy Project, which includes the Carbon Capture and Sequestration (CCS) Project in Lake Charles, Louisiana. The Lake Charles Carbon Capture and Sequestration (CCS) Project was to be a large-scale industrial CCS project intended to demonstrate advanced technologies that capture and sequester carbon dioxide (CO2) emissions from industrial sources into underground formations. The Scope of work was divided into two discrete sections; 1) Capture and Compression prepared by the Recipient Leucadia Energy, LLC, and 2) Transport and Sequestration prepared by sub-Recipient Denbury Onshore, LLC. Capture and Compression-The Lake Charles CCS Project Final Technical Report describes the systems and equipment that would be necessary to capture CO2 generated in a large industrial gasification process and sequester the CO2 into underground formations. The purpose of each system is defined along with a description of its equipment and operation. Criteria for selection of major equipment are provided and ancillary utilities necessary for safe and reliable operation in compliance with environmental regulations are described. Construction considerations are described including a general arrangement of the CCS process units within the overall gasification project. A cost estimate is provided, delineated by system area with cost breakdown showing equipment, piping and materials

  1. Do Mensalão à Lava Jato: a ascensão da barganha e da colaboração premiada no Processo Penal

    Renato de Souza Matos Filho

    2017-01-01

    DO MENSALÃO À LAVA JATO: A ASCENSÃO DA BARGANHA E DA COLABORAÇÃO PREMIADA NO PROCESSO PENAL FROM MENSALÃO TO LAVA JATO: THE RISE OF BARGAINING AND AWARD-WINNING COLLABORATION IN CRIMINAL PROCEDURE Renato de Souza Matos Filho

  2. Do Mensalão à Lava Jato: a ascensão da barganha e da colaboração premiada no Processo Penal

    Matos Filho, Renato de Souza

    2017-01-01

    DO MENSALÃO À LAVA JATO: A ASCENSÃO DA BARGANHA E DACOLABORAÇÃO PREMIADA NO PROCESSO PENALFROM MENSALÃO TO LAVA JATO: THE RISE OF BARGAINING AND AWARD-WINNING COLLABORATION IN CRIMINAL PROCEDURERenato de Souza Matos Filho

  3. Factors influencing the height of Hawaiian lava fountains: implications for the use of fountain height as an indicator of magma gas content

    Parfitt, E.A.; Wilson, L.; Neal, C.A.

    1995-01-01

    The heights of lava fountains formed in Hawaiian-style eruptions are controlled by magma gas content, volume flux and the amounts of lava re-entrainment and gas bubble coalescence. Theoretical models of lava fountaining are used to analyse data on lava fountain height variations collected during the 1983-1986 Pu'u 'O'o vent of Kilauea volcano, Hawaii. The results show that the variable fountain heights can be largely explained by the impact of variations in volume flux and amount of lava re-entrainment on erupting magmas with a constant gas content of ???0.32 wt.% H2O. However, the gas content of the magma apparently declined by ???0.05 wt.% during the last 10 episodes of the eruption series and this decline is attributed to more extensive pre-eruption degassing due to a shallowing of the sub-vent feeder dike. It is concluded that variations in lava fountain height cannot be simply interpreted as variations in gas content, as has previously been suggested, but that fountain height can still be a useful guide to minimum gas contents. Where sufficient data are available on eruptive volume fluxes and extent of lava entrainment, greatly improved estimates can be made of magma gas content from lava fountain height. ?? 1995 Springer-Verlag.

  4. An evaluation of the influence of the experimental cooling rate along with other thermomagnetic effects to explain anomalously low paleointensities obtained for historic lavas of Mt. Etna (Italy)

    de Groot, L.V.; Mullender, T.A.T.; Dekkers, M.J.

    2013-01-01

    Methodological aspects in obtaining reliable absolute palaeointensity estimates have attracted renewed attention in recent years. Obtaining a reliable palaeointensity from lavas, however, still is notoriously difficult: in many cases lavas have been shown to be a non-ideal recorder of the

  5. Holocene Lake-Level Fluctuations of Lake Aricota, Southern Peru

    Placzek, Christa; Quade, Jay; Betancourt, Julio L.

    2001-09-01

    Lacustrine deposits exposed around Lake Aricota, Peru (17° 22‧S), a 7.5-km2 lake dammed by debris flows, provide a middle to late Holocene record of lake-level fluctuations. Chronological context for shoreline deposits was obtained from radiocarbon dating of vascular plant remains and other datable material with minimal 14C reservoir effects (<350 yr). Diatomites associated with highstands several meters above the modern lake level indicate wet episodes. Maximum Holocene lake level was attained before 6100 14C yr B.P. and ended ∼2700 14C yr B.P. Moderately high lake levels occurred at 1700 and 1300 14C yr B.P. The highstand at Lake Aricota during the middle Holocene is coeval with a major lowstand at Lake Titicaca (16°S), which is only 130 km to the northeast and shares a similar climatology. Comparisons with other marine and terrestrial records highlight emerging contradictions over the nature of mid-Holocene climate in the central Andes.

  6. Late Neoproterozoic adakitic lavas in the Arabian-Nubian shield, Sinai Peninsula, Egypt

    Abdelfadil, Khaled M.; Obeid, Mohamed A.; Azer, Mokhles K.; Asimow, Paul D.

    2018-06-01

    The Sahiya and Khashabi volcano-sedimentary successions are exposed near the southern tip of the Sinai Peninsula, the northernmost segment of the Arabian-Nubian Shield (ANS). These Neoproterozoic successions include a series of intermediate to acidic lavas and associated pyroclastic deposits. Field observations and geochemical data reveal two distinct eruptive phases. The lavas representing each phase are intercalated with volcaniclastic greywackes and siltstones. The first eruptive phase, well exposed at Wadi Sahiya, includes basaltic andesite, andesite and dacite with minor rhyolite. The rocks of this sequence are at most weakly deformed and slightly metamorphosed. The second eruptive phase, well exposed at Wadi Khashabi, includes only undeformed and unmetamorphosed dacite and rhyolite. The two volcano-sedimentary successions were separated and dismembered during intrusion of post-collisional calc-alkaline and alkaline granites. Geochemical compositions of the Sahiya and Khashabi volcanic rocks confirm the field data indicating discrete phases of magmatism, however all the compositions observed might plausibly be derived from a common source and be related to one another dominantly through fractional crystallization. The low and variable Mg# values (55-33) measured in the basaltic andesites and andesites preclude their equilibration with a mantle source. Rather, even the most primitive observed lavas are already the products of significant fractional crystallization, dominated by removal of amphibole and plagioclase. Continued fractionation eventually produced dacite and rhyolite marked by significant depletion in Y and HREE. The gradual appearance of negative Nb-Ta anomalies with increasing SiO2 through both suites suggests at least some component of progressive crustal contamination. The medium- to high-K calc-alkaline character of the Sahiya and Khashabi volcanics could be explained either by their formation at an active continental margin or by a two

  7. Investigating lava flows at Quizapu Volcano, on the ground and in the air

    Lev, E.; Ruprecht, P.; Moon, R. S.

    2017-12-01

    The emplacement of silicic and intermediate lava flows is not often witnessed directly, and thus quantitative assessment of existing flows is a critical step in the interpretation of flow dynamics and eruption conditions. Two key parameters - lava rheology and effusion rate - are both difficult to assess many years after the eruption ended. Yet both are reflected in observables such as flow morphology (including roughness, folding and inflation structures), and micro-texture (including vesicularity, crystallinity, and microlite content). Therefore, it is important to collect data sets of high spatial resolution of both samples and topography of a target flow. We present a case study from Quizapu volcano (Chile), where an 1846 effusive eruption emplaced a suite of large lava flows, spanning composition from silicis andesitic to dacite. We focus on two major flow lobes, which, despite originating from the same eruption, and traversing similar topography, exhibit different large-scale structure: The southern flow (SF) has a uniform, smooth, almost straight geometry, while the northern flow (NF) has undulating boundaries and irregular width and thickness. We collected and utilized two sets of data: 1) thousands of aerial photos collected during 12 UAV flights, and 2) 68 hand samples which covered both the main channels and the levees of both flows in a systematic grid pattern. We present outcomes from analysis of samples for 3D structure, crystallinity, and vesicularity using X-ray microtomography, for micrstructure using thin sections and SEM, and for major and trace element composition using XRF. The aerial photographs were used to construct high-resolution (few cm) digital elevation models (DEMs) of several segments of each flow. From the DEMs we extracted along- and across-flow profiles which reveal morphological differences between NF and SF, with pressure ridges at NF wider and taller than those of SF. However, both flows share a common trend line in the

  8. The Summer 1997 Eruption at Pillan Patera on Io: Implications for Ultrabasic Lava Flow Emplacement

    Williams, David A.; Davies, Ashley G.; Keszthelyi, Laszlo P.; Greeley, Ronald

    2001-01-01

    Galileo data and numerical modeling were used to investigate the summer 1977 eruption at Pillan Patera on Io. This event, now defined as "Pillanian" eruption style, included a high-temperature (greater than 1600 C), possible ultrabasic , 140-km-high plume eruption that deposited dark, orthopyroxene-rich pyroclastic material over greater than 125,000 sq km, followed by emplacement of dark flow-like material over greater than 3100 sq km to the north of the caldera. We estimate that the high-temperature, energetic episode of this eruption had a duration of 52 - 167 days between May and September 1997, with peak eruption temperatures around June 28, 1997. Galileo 20 m/pixel images of part of the Pillan flow field show a wide-spread, rough, pitted surface that is unlike any flow surface we have seen before. We suggest that this surface may have resulted from: 1. A fractured lava crust formed during rapid, low-viscosity lava surging, perhaps including turbulent flow emplacement. 2. Disruption of the lava flow by explosive interaction with a volatile-rich substrate. or 3. A combination of 1 and 2 with or without accumulation of pyroclastic material on the surface. Well-developed flow lobes are observed, suggesting that this is a relatively distant part of the flow field.Shadow measurements at flow margins indicate a thickness of-8 - 10 m. We have modeled the emplacement of putative ultrabasic flow from the summer 1997 Pillan eruption using constraints from new Galileo data. Results suggest that either laminar sheet flows or turbulent channelized flows could have traveled 50 - 150 km on a flat, unobstructed surface, which is consistent with the estimated length of the Pillan flow field (approx. 60 km). Our modeling suggests low thermal erosion rates (less than 4.1 m/d), and that the formation of deep (greater than 20 m) erosion channels was unlikely, especially distal to the source. We calculate a volumetric flow rate of approx. 2 - 7 x 10(exp 3)cu m/s, which is greater

  9. PYRAMID LAKE RENEWEABLE ENERGY PLAN

    HIGH DESERT GEOCULTURE, LLC

    2009-06-06

    The Pyramid Lake Renewable Energy Plan covers these areas: energy potential (primarily focusing on geothermal resource potential, but also more generally addressing wind energy potential); renewable energy market potential; transmission system development; geothermal direct use potential; and business structures to accomplish the development objectives of the Pyramid Lake Paiute Tribe.

  10. Choking Lake Winnipeg

    Byrne, J. M.; Little, L. J.; Dodgson, K. A.; MacDonald, R. J.; Graham, J.

    2009-12-01

    The problems of waterway eutrophication and coastal zone hypoxia are reaching epidemic proportions. Fresh water and coastal marine environments around the world are suffering unprecedented pollution loadings. We are developing an education program to address the dramatic need for public, community and K-12 education about the harsh impacts of elevated nutrient loads on fresh and marine water environments. The Lake Winnipeg watershed is adopted as the poster child of fresh water eutrophication in western North America. The watershed, one of the largest on the continent, is in rapid decline due to pollution, population pressures and water diversion. A concerted education program is needed to change personal and society actions that negatively impact the Winnipeg watershed; and the confluence of the watershed - Lake Winnipeg. But the education program goes beyond Lake Winnipeg. Negative impacts of nutrient loads are adversely affecting environments right to the oceans. Major dead zones that are expanding on our continental shelves due to nutrient overloading threaten to coalesce into extensive regions of marine life die-off. This presentation outlines the documentary education production process under development. We are building a series of Public Service Announcements (PSAs) for national television networks. The PSAs will direct educators, stakeholders and citizens to an associated website with educational video clips detailing the issues of eutrophication and hypoxia. The video clips or webisodes, present interviews with leading scientists. The discussions address the causes of the problems, and presents workable solutions to nutrient overloads from a variety of sources. The webisodes are accompanied by notes and advice to teachers on ways and means to use the webisodes in classrooms. The project is fully funed by a group of Canadian Community Foundations, with the understanding the work wil be available free to educators anywhere in the world. Our education

  11. Lake Carnegie, Western Australia

    2002-01-01

    Ephemeral Lake Carnegie, in Western Australia, fills with water only during periods of significant rainfall. In dry years, it is reduced to a muddy marsh. This image was acquired by Landsat 7's Enhanced Thematic Mapper plus (ETM+) sensor on May 19, 1999. This is a false-color composite image made using shortwave infrared, infrared, and red wavelengths. The image has also been sharpened using the sensor's panchromatic band. Image provided by the USGS EROS Data Center Satellite Systems Branch. This image is part of the ongoing Landsat Earth as Art series.

  12. Areally Extensive Surface Bedrock Exposures on Mars: Many Are Clastic Rocks, Not Lavas

    Rogers, A. Deanne; Warner, Nicholas H.; Golombek, Matthew P.; Head, James W.; Cowart, Justin C.

    2018-02-01

    Areally extensive exposures of intact olivine/pyroxene-enriched rock, as well as feldspar-enriched rock, are found in isolated locations throughout the Martian highlands. The petrogenetic origin(s) of these rock units are not well understood, but some previous studies favored an effusive volcanic origin partly on the basis of distinctive composition and relatively high thermal inertia. Here we show that the regolith development, crater retention, and morphological characteristics for many of these "bedrock plains" are not consistent with competent lavas and reinterpret the high thermal inertia orbital signatures to represent friable materials that are more easily kept free of comminution products through eolian activity. Candidate origins include pyroclastic rocks, impact-generated materials, or detrital sedimentary rocks. Olivine/pyroxene enrichments in bedrock plains relative to surrounding materials could have potentially formed through deflation and preferential removal of plagioclase.

  13. Alkaline lavas from southern Mendoza, Argentina, extend the Patagonian DUPAL mantle field to the north

    Soager, N.; Holm, P. M.; Llambias, E.

    2010-12-01

    The lavas sampled around Río Colorado ~37°S at the border of Mendoza and Neuquén provinces, Argentina, define an OIB-like end-member composition for the Pleistocene and Holocene activity in the Payún Matrú volcanic field. Although positioned in the far back-arc of the Andes, only a few lavas show signs of involvement of slab fluids or crustal contamination such as relatively high LILEs relative to Nb. The very low La/Nb (~0.66) and Zr/Nb (~5) and high U/Pb (0.3-0.4) of the end-member composition clearly distinguish the source from normal MORB mantle, while high Ba/Nb (~10) and K/Nb (370-400) compared to FOZO and HIMU type OIBs suggest an EM type of mantle. Overall, the trace element patterns of the Río Colorado lavas are similar to the central and north Patagonian intraplate basalts and to South Atlantic E-MORB affected by the Discovery plume and the LOMU component (le Roux et al., 2002, EPSL 203). The isotopic composition of the Río Colorado component has a 206Pb/204Pb = 18.4, 207Pb/204Pb = 15.58, 208Pb/204Pb = 38.3, 87Sr/86Sr = 0.70353 and 143Nd/144Nd = 0.51285. This composition overlaps the central and north Patagonian intraplate basalts in Pb-isotopic space but is slightly less enriched in Sr and Nd-isotopes. It is distinctly different from the FOZO like composition of the south Patagonian intraplate basalts and the nearby Juan Fernandéz plume but similar to the South Atlantic N-MORB and MORB from the southern Chile Ridge segment 4 (Sturm et al., 1999, JGR 104) described as DUPAL type. The DUPAL-MORB type isotopic composition and the plume-like trace element patterns of the Río Colorado lavas suggest the presence of a weak plume beneath the area. The eruption of the large Payún Matrú volcano and the gigantic Pleistocene flood basalts also calls for a thermal anomaly to produce these melts during a weakly compressive tectonic regime with no significant addition of slab fluids. This was supported by Burd et al. (2008, Abstr., 7th Int. Sym. And. Geo

  14. New and revised 14C dates for Hawaiian surface lava flows: Paleomagnetic and geomagnetic implications

    Pressline, N.; Trusdell, F.A.; Gubbins, David

    2009-01-01

    Radiocarbon dates have been obtained for 30 charcoal samples corresponding to 27 surface lava flows from the Mauna Loa and Kilauea volcanoes on the Island of Hawaii. The submitted charcoal was a mixture of fresh and archived material. Preparation and analysis was undertaken at the NERC Radiocarbon Laboratory in Glasgow, Scotland, and the associated SUERC Accelerator Mass Spectrometry facility. The resulting dates range from 390 years B.P. to 12,910 years B.P. with corresponding error bars an order of magnitude smaller than previously obtained using the gas-counting method. The new and revised 14C data set can aid hazard and risk assessment on the island. The data presented here also have implications for geomagnetic modelling, which at present is limited by large dating errors. Copyright 2009 by the American Geophysical Union.

  15. Paleomagnetism and geochronology from the Lunayyir and Khaybar lava fields, Saudi Arabia

    Vigliotti, Luigi; Cai, Yue; Rasul, Najeeb M. A.; Ligi, Marco

    2017-04-01

    The Arabian Peninsula was one of the first plates to be investigated using paleomagnetic data (Irving & Tarling, 1961). However, very few additional results appeared in the literature since then and the available information are far from sufficient to explain the tectonics of the Red Sea region. In order to better constrain the tectonic history of the Arabian craton in the Tertiary, we carried out a combined paleomagnetic and Ar/Ar geochronological study on volcanic rocks from the Khaybar and Lunayyir Harrats (lava fields) plus a site of sediments deposited below the Miocene rocks in the former area. 86 hand-oriented samples were collected from 17 sites and progressive thermal or alternating field demagnetization isolated stable characteristic magnetizations (ChRM) that are consistent with a primary magnetization only in the Late Quaternary lava flows from the Lunayyir. Whole rock 39Ar/40Ar step-heating analyses yield whole-rock plateau ages of 12.8 to 16.3 Ma for four alkaline lava flows from Khaybar area, which is consistent with the estimated age range of the region-wide late Cenozoic alkaline volcanism in western Saudi Arabia. The paleomagnetic data from the rocks collected in this region appear to be affected by lightning and weathering and no significant tectonic/plate movement can be inferred from the obtained results. The direction of the high coercivity chemical remanent magnetization (CRM) isolated after thermal cleaning from the Pre-Miocene siltstones (D=169.6°, I=-44.8°; α95=5.4°) is consistent with the existing paleomagnetic results. The associated VGP (314.4°E, 80.6°N, A95=6.8°) is close to the Pliocene VGP of the Arabian Plate and CCW rotated (R=14.86°±6.38°) with respect to the Oligocene African VGP. The Lunayyir paleomagnetic data set of 11 Quaternary lava flows (D=0.31°, I=36.9°, α95=10.5) is statistically indistinguishable from the present field and the virtual geomagnetic poles (VGP: 214.1°E, 85.1°N; A95=12.3°) indicate a

  16. Sedimentary input into the source of Martinique lavas: a Li perspective

    Tang, M.; Chauvel, C.; Rudnick, R. L.

    2013-12-01

    The Lesser Antilles arc is known for the prominent continental crustal signatures in its lavas. It thus provides an ideal target for studying crustal recycling in subduction zones. Martinique Island, located in the middle of the Lesser Antilles arc, has been well characterized for its elemental and radiogenic isotope geochemistry (Labanieh et al., 2012). We measured Li isotopes in the Martinique lavas as well as sediments cored at the southern (Site 144) and northern part (Site 543) of the subducting slab. The sediments show a large isotopic variation (δ7Li ~ -4.2‰ to +3.2‰) but the average δ7Li of -1.1 × 2.4‰ (1 σ, n = 15) is significantly lower than that of N-MORB (δ7Li = + 3.4 × 0.7‰, 1 σ, Tomascak et al., 2008), reflecting the influence of chemical weathering in the continental provenance. Although the subducting sediments display marked mineralogical and chemical shifts from south to north due to different deposition distances to the continental platform (Carpentier et al., 2009), their average Li isotopic compositions are indiscernible from each other. With a few exceptions, the Li isotopic compositions of the Martinique lavas are systematically lighter than MORB, giving an average δ7Li of 1.6 × 1.4‰ (1 σ, n = 25, 4 exceptions excluded). The δ7Li values show no correlation with any radiogenic isotope ratios (206Pb/204Pb, 87Sr/86Sr, 143Nd/144Nd and 176Hf/177Hf), Li/Y ratio, La/Sm ratio and SiO2 content. Therefore, the light Li isotopic composition likely reflects the source characteristics rather than contamination within the arc crust. Incorporation of the isotopically light sediments from Site 144 and 543 in the source may explain the depletion of 7Li in the Martinique lavas. A two-end-member mixing model requires 2-5% addition of the sediments into the depleted mantle source, compared with 1-10% sediments constrained by radiogenic isotopes (Carpentier et al., 2008). References Carpentier, M., Chauvel, C., & Mattielli, N., 2008. Pb

  17. Parallel Genetic Algorithms for calibrating Cellular Automata models: Application to lava flows

    D'Ambrosio, D.; Spataro, W.; Di Gregorio, S.; Calabria Univ., Cosenza; Crisci, G.M.; Rongo, R.; Calabria Univ., Cosenza

    2005-01-01

    Cellular Automata are highly nonlinear dynamical systems which are suitable far simulating natural phenomena whose behaviour may be specified in terms of local interactions. The Cellular Automata model SCIARA, developed far the simulation of lava flows, demonstrated to be able to reproduce the behaviour of Etnean events. However, in order to apply the model far the prediction of future scenarios, a thorough calibrating phase is required. This work presents the application of Genetic Algorithms, general-purpose search algorithms inspired to natural selection and genetics, far the parameters optimisation of the model SCIARA. Difficulties due to the elevated computational time suggested the adoption a Master-Slave Parallel Genetic Algorithm far the calibration of the model with respect to the 2001 Mt. Etna eruption. Results demonstrated the usefulness of the approach, both in terms of computing time and quality of performed simulations

  18. Electrical resistivity tomography applied to a complex lava dome: 2D and 3D models comparison

    Portal, Angélie; Fargier, Yannick; Lénat, Jean-François; Labazuy, Philippe

    2015-04-01

    The study of volcanic domes growth (e.g. St. Helens, Unzen, Montserrat) shows that it is often characterized by a succession of extrusion phases, dome explosions and collapse events. Lava dome eruptive activity may last from days to decades. Therefore, their internal structure, at the end of the eruption, is complex and includes massive extrusions and lava lobes, talus and pyroclastic deposits as well as hydrothermal alteration. The electrical resistivity tomography (ERT) method, initially developed for environmental and engineering exploration, is now commonly used for volcano structure imaging. Because a large range of resistivity values is often observed in volcanic environments, the method is well suited to study the internal structure of volcanic edifices. We performed an ERT survey on an 11ka years old trachytic lava dome, the Puy de Dôme volcano (French Massif Central). The analysis of a recent high resolution DEM (LiDAR 0.5 m), as well as other geophysical data, strongly suggest that the Puy de Dôme is a composite dome. 11 ERT profiles have been carried out, both at the scale of the entire dome (base diameter of ~2 km and height of 400 m) on the one hand, and at a smaller scale on the summit part on the other hand. Each profile is composed of 64 electrodes. Three different electrode spacing have been used depending on the study area (35 m for the entire dome, 10 m and 5 m for its summit part). Some profiles were performed with half-length roll-along acquisitions, in order to keep a good trade-off between depth of investigation and resolution. Both Wenner-alpha and Wenner-Schlumberger protocols were used. 2-D models of the electrical resistivity distribution were computed using RES2DINV software. In order to constrain inversion models interpretation, the depth of investigation (DOI) method was applied to those results. It aims to compute a sensitivity index on inversion results, illustrating how the data influence the model and constraining models

  19. Petrology and age of alkalic lava from the Ratak Chain of the Marshall Islands

    Davis, A.S.; Pringle, M.S.; Pickthorn, L.-B.G.; Clague, D.A.; Schwab, W.C.

    1989-01-01

    Volcanic rock dredged from the flanks of four volcanic edifices in the Ratak chain of the Marshall Islands consist of alkalic lava that erupted above sea level or in shallow water. Compositions of recovered samples are predominantly differentiated alkalic basalt and hawaiite but include strongly alkalic melilitite. Whole rock 40Ar/39Ar total fusion and incremental heating ages of 87.3 ?? 0.6 Ma and 82.2 ?? 1.6 Ma determined for samples from Erikub Seamount and Ratak Guyot, respectively, are within the range predicted by plate rotation models but show no age progression consistent with a simple hot spot model. Variations in isotopic and some incompatible element ratios suggest interisland heterogeneity. -from Authors

  20. Cooling and crystallization of rhyolite-obsidian lava: Insights from micron-scale projections on plagioclase microlites

    Sano, Kyohei; Toramaru, Atsushi

    2017-07-01

    To reveal the cooling process of a rhyolite-obsidian flow, we studied the morphology of plagioclase microlites in the Tokachi-Ishizawa lava of Shirataki, northern Hokkaido, Japan, where the structure of the lava can be observed from obsidian at the base of the flow to the innermost rhyolite. Needle-like micron-scale textures, known as "projections", occur on the short side surfaces of the plagioclase microlites. Using FE-SEM we discovered a positive correlation between the lengths and spacings of these projections. On the basis of the instability theory of an interface between melt and crystal, and to understand the length and spacing data, we developed a model that explains the positive correlation and allows us to simultaneously estimate growth rates and growth times. Applying the model to our morphological data and the estimated growth rates and growth times, we suggest that the characteristics of the projections reflect the degree of undercooling, which in turn correlates with lava structure (the obsidian at the margin of the flow experienced a higher degree of undercooling than the interior rhyolite). The newly developed method provides insights into the degree of undercooling during the final stages of crystallization of a rhyolitic lava flow.

  1. Physical Volcanological and Petrogenetic Implications of Intra-lava Flow Geochemical Heterogeneity in the Columbia River Flood Basalt Province, USA.

    Vye, C. L.; Barry, T. L.; Self, S.; Gannoun, A.; Burton, K. W.

    2007-12-01

    Continental flood basalt lava flows are widely assumed to represent compositionally uniform and rapidly erupted products of large well-mixed magma reservoirs. However, this study presents new data to illustrate systematic element and isotope variations within the flow field formed by an individual flood basalt eruption, both vertically within each sheet lobe and laterally between the constituent lobes. Such variation is significant in chemostratigraphic correlation of flood basalt lava units, in identifying source variability during one eruption, and in petrogenetic modeling. We investigate the extent and cause of compositional variation through tracing lava sheet lobes in a 2,660 cubic kilometer pahoehoe flow field formed during a single eruption in the Columbia River Basalt Province, USA. This is based on features related to emplacement by the inflation mechanism. This method of emplacement is supported by small but statistically significant and systematic major and trace element variation e.g. MgO 3.09- 4.55 wt%, Ni 17.5-25.6 ppm, indicative of fractional crystallisation. Re-Os isotopes indicate progressive crustal contamination of the magma over the timescale of a single flood basalt eruption. By establishing this physical volcanological framework, we determine a temporal link with the supply of lava from the vent(s) and apply it to investigate sequential magmatic evolution during the timescale of one eruption.

  2. LAVA Subsystem Integration and Testing for the RESOLVE Payload of the Resource Prospector Mission: Mass Spectrometers and Gas Chromatography

    Coan, Mary R.; Stewart, Elaine M.

    2015-01-01

    The Regolith and Environment Science & Oxygen and Lunar Volatile Extraction (RESOLVE) payload is part of Resource Prospector (RP) along with a rover and a lander that are expected to launch in 2020. RP will identify volatile elements that may be combined and collected to be used for fuel, air, and water in order to enable deeper space exploration. The Resource Prospector mission is a key part of In-Situ Resource Utilization (ISRU). The demand for this method of utilizing resources at the site of exploration is increasing due to the cost of resupply missions and deep space exploration goals. The RESOLVE payload includes the Lunar Advanced Volatile Analysis (LAVA) subsystem. The main instrument used to identify the volatiles evolved from the lunar regolith is the Gas Chromatograph-Mass Spectrometer (GC-MS). LAVA analyzes the volatiles emitted from the Oxygen and Volatile Extraction Node (OVEN) Subsystem. The objective of OVEN is to obtain, weigh, heat and transfer evolved gases to LAVA through the connection between the two subsystems called the LOVEN line. This paper highlights the work completed during a ten week internship that involved the integration, testing, data analysis, and procedure documentation of two candidate mass spectrometers for the LAVA subsystem in order to aid in determining which model to use for flight. Additionally, the examination of data from the integrated Resource Prospector '15 (RP' 15) field test will be presented in order to characterize the amount of water detected from water doped regolith samples.

  3. On a classification of central Eruptions according to Gas Pressure of the Magma and Viscosity of the Lava

    Escher, B.G.

    1933-01-01

    In the above title the word magma is used to signify the solution plus the gas disolved in it under pressure and the word lava for the magma that has partially or entirety lost its content of gas. A clear differentiation of the types of eruptions is not easy, because the character of an eruption

  4. Field-based description of rhyolite lava flows of the Calico Hills Formation, Nevada National Security Site, Nevada

    Sweetkind, Donald S.; Bova, Shiera C.

    2015-01-01

    Contaminants introduced into the subsurface of Pahute Mesa, Nevada National Security Site, by underground nuclear testing are of concern to the U.S. Department of Energy and regulators responsible for protecting human health and safety. The potential for contaminant movement away from the underground test areas at Pahute Mesa and into the accessible environment is greatest by groundwater transport through fractured volcanic rocks. The 12.9 Ma (mega-annums, million years) Calico Hills Formation, which consists of a mixture of rhyolite lava flows and intercalated nonwelded and bedded tuff and pyroclastic flow deposits, occurs in two areas of the Nevada National Security Site. One area is north of the Rainier Mesa caldera, buried beneath Pahute Mesa, and serves as a heterogeneous volcanic-rock aquifer but is only available to study through drilling and is not described in this report. A second accumulation of the formation is south of the Rainier Mesa caldera and is exposed in outcrop along the western boundary of the Nevada National Security Site at the Calico Hills near Yucca Mountain. These outcrops expose in three dimensions an interlayered sequence of tuff and lava flows similar to those intercepted in the subsurface beneath Pahute Mesa. Field description and geologic mapping of these exposures described lithostratigraphic variations within lava flows and assisted in, or at least corroborated, conceptualization of the rhyolite lava-bearing parts of the formation.

  5. PyFLOWGO: An open-source platform for simulation of channelized lava thermo-rheological properties

    Chevrel, Magdalena Oryaëlle; Labroquère, Jérémie; Harris, Andrew J. L.; Rowland, Scott K.

    2018-02-01

    Lava flow advance can be modeled through tracking the evolution of the thermo-rheological properties of a control volume of lava as it cools and crystallizes. An example of such a model was conceived by Harris and Rowland (2001) who developed a 1-D model, FLOWGO, in which the velocity of a control volume flowing down a channel depends on rheological properties computed following the thermal path estimated via a heat balance box model. We provide here an updated version of FLOWGO written in Python that is an open-source, modern and flexible language. Our software, named PyFLOWGO, allows selection of heat fluxes and rheological models of the user's choice to simulate the thermo-rheological evolution of the lava control volume. We describe its architecture which offers more flexibility while reducing the risk of making error when changing models in comparison to the previous FLOWGO version. Three cases are tested using actual data from channel-fed lava flow systems and results are discussed in terms of model validation and convergence. PyFLOWGO is open-source and packaged in a Python library to be imported and reused in any Python program (https://github.com/pyflowgo/pyflowgo)

  6. L-Lake macroinvertebrate community

    Specht, W.L.

    1996-06-01

    To characterize the present benthic macroinvertebrate community of L-Lake, Regions 5 and 7 of the reservoir were sampled in September 1995 at the same locations sampled in 1988 and 1989 during the L-Lake monitoring program. The macroinvertebrate community of 1995 is compared to that of 1988 and 1989. The species composition of L-Lake`s macroinvertebrate community has changed considerably since 1988-1989, due primarily to maturation of the reservoir ecosystem. L-Lake contains a reasonably diverse macroinvertebrate community that is capable of supporting higher trophic levels, including a diverse assemblage of fish species. The L-Lake macroinvertebrate community is similar to those of many other southeastern reservoirs, and there is no indication that the macroinvertebrate community is perturbed by chemical or physical stressors.

  7. L-Lake macroinvertebrate community

    Specht, W.L.

    1996-06-01

    To characterize the present benthic macroinvertebrate community of L-Lake, Regions 5 and 7 of the reservoir were sampled in September 1995 at the same locations sampled in 1988 and 1989 during the L-Lake monitoring program. The macroinvertebrate community of 1995 is compared to that of 1988 and 1989. The species composition of L-Lake's macroinvertebrate community has changed considerably since 1988-1989, due primarily to maturation of the reservoir ecosystem. L-Lake contains a reasonably diverse macroinvertebrate community that is capable of supporting higher trophic levels, including a diverse assemblage of fish species. The L-Lake macroinvertebrate community is similar to those of many other southeastern reservoirs, and there is no indication that the macroinvertebrate community is perturbed by chemical or physical stressors

  8. Lithologic combinations in Romanesque churches of Álava, northern Spain

    Martínez-Torres, L. M.

    2014-03-01

    Full Text Available Certain windows and doorways on twenty five Romanesque churches of Álava (XII–XIII centuries were built using six types of rock in nine different combinations. These compositions were intended to highlight the contrast in colour between different rocks, from which it can be deduced that the openings were not hewn to be painted. After almost seven centuries during which the use of stone was anecdotal, Romanesque artists burst in with colourful blends, demonstrating a broad knowledge of the characteristics of each rock and its availability. The uniqueness of these openings is represented on lithologic maps which, in addition to facilitating its analysis and dissemination, serve as a reference in its restoration.Algunas ventanas y portadas de veinticinco iglesias románicas de Álava (siglos XII-XIII fueron construidas con hasta seis tipos de rocas en nueve combinaciones diferentes. Estas composiciones pretendían resaltar el contraste cromático entre rocas distintas, de lo que se deduce que los vanos no fueron tallados para ser policromados. Después de casi siete siglos en los que el uso de la piedra fuera anecdótico, los artistas románicos irrumpen con mezclas coloristas, mostrando un amplio conocimiento de las características de cada roca y su disponibilidad. La singularidad de estos vanos está representada en mapas litológicos que, además de facilitar su análisis y divulgación, servirán de referencia en su restauración

  9. Paleosecular Variation of Plio-Pleistocene Lavas from the Loiyangalani Region of Kenya

    Opdyke, N. D.; Kent, D. V.; Huang, K.; Foster, D.; Patel, J.

    2008-12-01

    The data reported here is part of a study of Pliocene-Pleistocene lavas in Kenya to document the paleosecular variation and time-averaged geomagnetic field direction near to the Equator. We sampled 32 sites (10 oriented cores each) in lavas to the south and the northeast of Loiyangalani that are mapped and dated as Plio-Pleistocene in age (less than ~5 Ma) and associated with Mt. Kulal and the Longipi eruption centers. The samples from this collection were returned to the US, sliced into samples and progressively demagnetized using alternating field demagnetization. The Loiyangalani sites yielded excellent results and are seemingly unaffected by lightning, which seems to be infrequent at this latitude, in this arid environment; all but one site gave acceptable data with an alpha95 of 10° or less. There are 17 reverse sites (Dec = 183.4°, Inc = 0.9°, alpha95 = 6.7°) and 15 normal sites (Dec = 358.4°, Inc = -1.2°, alpha95 = 4.7°). The reversal test is positive suggesting that the normal and reverse polarity populations both represent a reasonable time average. The site means were combined yielding an overall mean direction of Dec = 1.1°, Inc = -1.1°, alpha95 = 4.1°. The inclination is shallower than expected for a geocentric axial dipole field (delta I = -6°); accordingly, the site VGPs give a mean pole position at Lon = 205.1° E, Lat = 86.8° N, Alpha95 = 3°, which is significantly far-sided with respect to the geographic axis. The angular standard deviation of the VGPs is 9.3°, which is a relatively low angular dispersion compared to most PSVL models such as Model G.

  10. Transitions in Lava Emplacement Recorded in the Deccan Traps Sequence (India)

    Vanderkluysen, L.; Self, S.; Jay, A. E.; Sheth, H. C.; Clarke, A. B.

    2015-12-01

    Transitions in the style of lava flow emplacement are recognized in the stratigraphic sequence of several mafic large igneous provinces (LIPs), including the Etendeka (Namibia), the Faeroe Islands (North Atlantic LIP), the Ethiopian Traps, and the Deccan Traps (India). These transitions, from units dominated by meter-sized pāhoehoe toes and lobes to those dominated by inflated sheet lobes tens to hundreds of meters in width and meters to tens of meters in height, seems to be a fundamental feature of LIP emplacement. In the Deccan, this volcanological transition is thought to coincide with deeper changes to the volcano-magmatic system expressed, notably, in the trace element and isotopic signature of erupted flows. We investigated this transition in the Deccan Traps by logging eight sequences along the Western Ghats, an escarpment in western India where the Deccan province is thickest and best exposed. The Deccan province, which once covered ~1 million km2 of west-central India, is subdivided in eleven chemo-stratigraphic formations in the type sections of the Western Ghats. Where the lower Deccan formations are exposed, we found that as much as 65% of the exposed thickness (below the Khandala Formation) is made up of sheet lobes, from 40% in the Bhimashankar Formation to 75% in the Thakurvadi Formation. Near the bottom of the sequence, 25% of the Neral Formation is composed of sheet lobes ≥15 m in thickness. On this basis, the traditional view that inflated sheet lobes are an exclusive feature of the upper part of the stratigraphy must be challenged. Several mechanisms have been proposed to explain the development of compound flows and inflated sheet lobes, involving one or more of the following factors: underlying slope, varying effusion rate, and source geometry. Analogue experiments are currently under way to test the relative influence of each of these factors in the development of different lava flow morphologies in LIPs.

  11. Influence of extrusion rate and magma rheology on the growth of lava domes: Insights from particle-dynamics modeling

    Husain, Taha; Elsworth, Derek; Voight, Barry; Mattioli, Glen; Jansma, Pamela

    2014-09-01

    Lava domes are structures that grow by the extrusion of viscous silicic or intermediate composition magma from a central volcanic conduit. Repeated cycles of growth are punctuated by collapse, as the structure becomes oversized for the strength of the composite magma that rheologically stiffens and strengthens at its surface. Here we explore lava dome growth and failure mechanics using a two-dimensional particle-dynamics model. The model follows the evolution of fractured lava, with solidification driven by degassing induced crystallization of magma. The particle-dynamics model emulates the natural development of dome growth and rearrangement of the lava dome which is difficult in mesh-based analyses due to mesh entanglement effects. The deformable talus evolves naturally as a frictional carapace that caps a ductile magma core. Extrusion rate and magma rheology together with crystallization temperature and volatile content govern the distribution of strength in the composite structure. This new model is calibrated against existing observational models of lava dome growth. Results show that the shape and extent of the ductile core and the overall structure of the lava dome are strongly controlled by the infusion rate. The effects of extrusion rate on magma rheology are sensitive to material stiffness, which in turn is a function of volatile content and crystallinity. Material stiffness and material strength are key model parameters which govern magma rheology and subsequently the morphological character of the lava dome and in turn stability. Degassing induced crystallization causes material stiffening and enhances material strength reflected in non-Newtonian magma behavior. The increase in stiffness and strength of the injected magma causes a transition in the style of dome growth, from endogenous expansion of a ductile core, to stiffer and stronger intruding material capable of punching through the overlying material and resulting in the development of a spine or

  12. Assessing the effusion rate of lava flows from their thermal radiated energy: theoretical study and lab-scale experiments

    Garel, F.; Kaminski, E.; Tait, S.; Limare, A.

    2010-12-01

    A quantitative monitoring of lava flow is required to manage a volcanic crisis, in order to assess where the flow will go, and when will it stop. As the spreading of lava flows is mainly controlled by its rheology and the eruptive mass flux, the key question is how to evaluate them during the eruption (rather than afterwards.) A relationship between the lava flow temperature and the eruption rate is likely to exist, based on the first-order argument that higher eruption rates should correspond to larger energy radiated by a lava flow. The semi-empirical formula developed by Harris and co-workers (e.g. Harris et al., 2007) is used to estimate lava flow rate from satellite observations. However, the complete theoretical bases of this technique, especially its domain of validity, remain to be firmly established. Here we propose a theoretical study of the cooling of a viscous axisymmetric gravity current fed at constant flux rate to investigate whether or not this approach can and/or should be refined and/or modify to better assess flow rates. Our study focuses on the influence of boundary conditions at the surface of the flow, where cooling can occur both by radiation and convection, and at the base of the flow. Dimensionless numbers are introduced to quantify the relative interplay between the model parameters, such as the lava flow rate and the efficiency of the various cooling processes (conduction, convection, radiation.) We obtain that the thermal evolution of the flow can be described as a two-stage evolution. After a transient phase of dynamic cooling, the flow reaches a steady state, characterized by a balance between surface and base cooling and heat advection in the flow, in which the surface temperature structure is constant. The duration of the transient phase and the radiated energy in the steady regime are shown to be a function of the dimensionless numbers. In the case of lava flows, we obtain that the steady state regime is reached after a few days. In

  13. Plateaus and sinuous ridges as the fingerprints of lava flow inflation in the Eastern Tharsis Plains of Mars

    Bleacher, Jacob E.; Orr, Tim R.; de Wet, Andrew P.; Zimbelman, James R.; Hamilton, Christopher W.; Brent Garry, W.; Crumpler, Larry S.; Williams, David A.

    2017-08-01

    The Tharsis Montes rift aprons are composed of outpourings of lava from chaotic terrains to the northeast and southwest flank of each volcano. Sinuous and branching channel networks that are present on the rift aprons suggest the possibility of fluvial processes in their development, or erosion by rapidly emplaced lavas, but the style of lava flow emplacement throughout rift apron development is not clearly understood. To better characterize the style of lava emplacement and role of fluvial processes in rift apron development, we conducted morphological mapping of the Pavonis Mons southwest rift apron and the eastern Tharsis plains using images from the High Resolution Imaging Science Experiment (HiRISE), Mars Orbiter Camera (MOC), Context Camera (CTX), Thermal Emission Imaging System (THEMIS), and High Resolution Stereo Camera (HRSC) along with the Mars Orbiter Laser Altimeter (MOLA) Precision Experiment Data Records (PEDRs) and gridded data. Our approach was to: (1) search for depositional fans at the slope break between the rift apron and adjacent low slope plains; (2) determine if there is evidence that previously formed deposits might have been buried by plains units; (3) characterize the Tharsis plains morphologies east of Pavonis Mons; and (4) assess their relationship to the rift apron units. We have not identified topographically significant depositional fans, nor did we observe evidence to suggest that plains units have buried older rift apron units. Flow features associated with the rift apron are observed to continue across the slope break onto the plains. In this area, the plains are composed of a variety of small fissures and low shield vents around which broad channel-fed and tube-fed flows have been identified. We also find broad, flat-topped plateaus and sinuous ridges mixed among the channels, tubes and vents. Flat-topped plateaus and sinuous ridges are morphologies that are analogous to those observed on the coastal plain of Hawai'i, where lava

  14. Middle Pleistocene infill of Hinkley Valley by Mojave River sediment and associated lake sediment: Depositional architecture and deformation by strike-slip faults

    Miller, David; Haddon, Elizabeth; Langenheim, Victoria; Cyr, Andrew J.; Wan, Elmira; Walkup, Laura; Starratt, Scott W.

    2018-01-01

    Hinkley Valley in the Mojave Desert, near Barstow about 140 km northeast of Los Angeles and midway between Victorville Valley and the Lake Manix basin, contains a thick sedimentary sequence delivered by the Mojave River. Our study of sediment cores drilled in the valley indicates that Hinkley Valley was probably a closed playa basin with stream inflow from four directions prior to Mojave River inflow. The Mojave River deposited thick and laterally extensive clastic wedges originating from the southern valley that rapidly filled much of Hinkley Valley. Sedimentary facies representing braided stream, wetland, delta, and lacustrine depositional environments all are found in the basin fill; in some places, the sequence is greater than 74 m (245 ft) thick. The sediment is dated in part by the presence of the ~631 ka Lava Creek B ash bed low in the section, and thus represents sediment deposition after Victorville basin was overtopped by sediment and before the Manix basin began to be filled. Evidently, upstream Victorville basin filled with sediment by about 650 ka, causing the ancestral Mojave River to spill to the Harper and Hinkley basins, and later to Manix basin.Initial river sediment overran wetland deposits in many places in southern Hinkley Valley, indicating a rapidly encroaching river system. These sediments were succeeded by a widespread lake (“blue” clay) that includes the Lava Creek B ash bed. Above the lake sediment lies a thick section of interlayered stream sediment, delta and nearshore lake sediment, mudflat and/or playa sediment, and minor lake sediment. This stratigraphic architecture is found throughout the valley, and positions of lake sediment layers indicate a successive northward progression in the closed basin. A thin overlapping sequence at the north end of the valley contains evidence for a younger late Pleistocene lake episode. This late lake episode, and bracketing braided stream deposits of the Mojave River, indicate that the river

  15. Emplacement model of obsidian-rhyolite magma deduced from complete internal section of the Akaishiyama lava, Shirataki, northern Hokkaido, Japan

    Wada, K.; Sano, K.

    2016-12-01

    Simultaneously explosive and effusive eruptions of silicic magmas has shed light on the vesiculation and outgassing history of ascending magmas in the conduit and emplacement model of obsidian-rhyolite lavas (Castro et al., 2014; Shipper et al, 2013). As well as the knowledge of newly erupted products such as 2008-2009 Chaitén and 2011-2012 Cordón Caule eruptions, field and micro-textural evidences of well-exposed internal structure of obsidian-rhyolite lava leads to reveal eruption processes of silicic magmas. The Shirataki monogenetic volcano field, 2.2 million year age, northern Hokkaido, Japan, contains many outcrops of obsidian and vesiculated rhyolite zones (SiO2=76.7-77.4 wt.%). Among their outcrops, Akaishiyama lava shows good exposures of internal sections from the top to the bottom along the Kyukasawa valley with thickness of about 190 meters, showing the symmetrical structure comprising a upper clastic zone (UCZ; 5m thick), an upper dense obsidian zone (UDO; 15m), an upper banded obsidian zone (UBO; 70-80m), a central rhyolite zone (CR; 65m), a lower banded obsidian zone (LBO; 15m), a lower dense obsidian zone (LDO; 20m), and a lower clastic zone (LCZ; 3m). The upper banded obsidian zone is characterized by existence of spherulite concentration layers with tuffisite veins and rhyolite enclaves. Spherulites consisting of albite, cristobalaite and obsidian glass, are clustered in the dense obsidian. Tuffisite veins show brecciated obsidians in tuffaceous matrix, showing an outgassing path during the emplacement of obsidian lava. Perpendicular dip of spherulite parallel rows indicates the banded zone itself was the domain of vent area. From the observation of these occurrences in the internal section and rock texture, we show the qualitative formation model of Shirataki obsidian-rhyolite lava.

  16. Monitoring Inflation and Emplacement During the 2014-2015 Kilauea Lava Flow With an Unmanned Aerial Vehicle

    Perroy, R. L.; Turner, N.; Hon, K. A.; Rasgado, V.

    2015-12-01

    Unmanned aerial vehicles (UAVs) provide a powerful new tool for collecting high resolution on-demand spatial data over volcanic eruptions and other active geomorphic processes. These data can be used to improve hazard forecasts and emergency response efforts, and also allow users to economically and safely observe and quantify lava flow inflation and emplacement on spatially and temporally useful scales. We used a small fixed-wing UAV with a modified point-and-shoot camera to repeatedly map the active front of the 2014-2015 Kīlauea lava flow over a one-month period in late 2014, at times with a two-hour repeat interval. An additional subsequent flight was added in July, 2015. We used the imagery from these flights to generate a time-series of 5-cm resolution RGB and near-infrared orthoimagery mosaics and associated digital surface models using structure from motion. Survey-grade positional control was provided by ground control points with differential GPS. Two topographic transects were repeatedly surveyed across the flow surface, contemporaneously with UAV flights, to independently confirm topographic changes observed in the UAV-derived surface models. Vertical errors were generally 10 cm. Inside our 50 hectare study site, the flow advanced at a rate of 0.47 hectares/day during the first three weeks of observations before abruptly stalling out 4 m. New outbreak areas, both on the existing flow surface and along the flow margins, were readily mapped across the study area. We detected sinuous growing inflation ridges within the flow surface that correlated with subsequent outbreaks of new lava, suggesting that repeat UAV flights can provide a means of better predicting pahoehoe lava flow behavior over flat or uneven topography. Our results show that UAVs can generate accurate and digital surface models quickly and inexpensively over rapidly changing active pahoehoe lava flows.

  17. 75 FR 34934 - Safety Zone; Fireworks for the Virginia Lake Festival, Buggs Island Lake, Clarksville, VA

    2010-06-21

    ...-AA00 Safety Zone; Fireworks for the Virginia Lake Festival, Buggs Island Lake, Clarksville, VA AGENCY... Fireworks for the Virginia Lake Festival event. This action is intended to restrict vessel traffic movement... Virginia Lake Festival, Buggs Island Lake, Clarksville, VA (a) Regulated Area. The following area is a...

  18. Holocene lake-level fluctuations of Lake Aricota, Southern Peru

    Placzek, C.; Quade, Jay; Betancourt, J.L.

    2001-01-01

    Lacustrine deposits exposed around Lake Aricota, Peru (17?? 22???S), a 7.5-km2 lake dammed by debris flows, provide a middle to late Holocene record of lake-level fluctuations. Chronological context for shoreline deposits was obtained from radiocarbon dating of vascular plant remains and other datable material with minimal 14C reservoir effects (Titicaca (16?? S), which is only 130 km to the northeast and shares a similar climatology. Comparisons with other marine and terrestrial records highlight emerging contradictions over the nature of mid-Holocene climate in the central Andes. ?? 2001 University of Washington.

  19. Forest blowdown and lake acidification

    Dobson, J.E.; Rush, R.M.; Peplies, R.W.

    1990-01-01

    The authors examine the role of forest blowdown in lake acidification. The approach combines geographic information systems (GIS) and digital remote sensing with traditional field methods. The methods of analysis consist of direct observation, interpretation of satellite imagery and aerial photographs, and statistical comparison of two geographical distributions-one representing forest blow-down and another representing lake chemistry. Spatial and temporal associations between surface water pH and landscape disturbance are strong and consistent in the Adirondack Mountains of New York. In 43 Adirondack Mountain watersheds, lake pH is associated with the percentage of the watershed area blown down and with hydrogen ion deposition (Spearman rank correlation coefficients of -0.67 and -0.73, respectively). Evidence of a temporal association is found at Big Moose Lake and Jerseyfield Lake in New York and the Lygners Vider Plateau of Sweden. They conclude that forest blowdown facilities the acidification of some lakes by altering hydrologic pathways so that waters (previously acidified by acid deposition and/or other sources) do not experience the neutralization normally available through contact with subsurface soils and bedrock. Increased pipeflow is suggested as a mechanism that may link the biogeochemical impacts of forest blowdown to lake chemistry

  20. Discovery of modern (post-1850 CE) lavas in south-central British Columbia, Canada: Origin from coal fires or intraplate volcanism?

    Canil, Dante; Mihalynuk, Mitch; Lacourse, Terri

    2018-01-01

    We describe three unusual lavas in the Northern Cordillera in south-central British Columbia, Canada, occurring as spatter, scoria and blocks over small 400 m2 areas. The lavas coat and weld cobbles and pebbles in glacial till and are vesicular and glassy with microlites of clinopyroxene and plagioclase, and xenocrysts of quartz, feldspar or clinopyroxene. Chemically the lavas are basaltic trachyandesite (55-61 wt% SiO2) with trace element patterns similar to average British Columbia upper crust, except for having higher V and lower Zr, Hf, Nb, Th and U. Melting experiments and plagioclase-melt thermometry on the glasses, and phase equilibrium in simple systems, require liquidus temperatures of 1150-1300 °C. Interaction of the liquids with carbonaceous matter at low pressure formed Fe metal spherules and SiC. Radiocarbon ages of charcoal and dendrochronology show the lavas are modern, emplaced in the last 120 years. The similar bulk composition of these lavas to several other Quaternary-aged volcanic centers in the North American Cordillera, some of which show recent seismic activity, could suggest a possible tectonic origin, but the deposits are unusually small and show no central vent for emplacement. Conversely, the balance of evidence would suggest an origin from coal fires or hot gas venting, but is less consistent with the observed calc- and per-alkaline lava compositions, and the lack of known local coal-bearing strata as a heat source. Other anthropogenic origins for the lavas are considered less plausible.

  1. Primary vesicles, vesicle-rich segregation structures and recognition of primary and secondary porosities in lava flows from the Paraná igneous province, southern Brazil

    Barreto, Carla Joana S.; de Lima, Evandro F.; Goldberg, Karin

    2017-04-01

    This study focuses on a volcanic succession of pāhoehoe to rubbly lavas of the Paraná-Etendeka Province exposed in a single road profile in southernmost Brazil. This work provides an integrated approach for examining primary vesicles and vesicle-rich segregation structures at the mesoscopic scale. In addition, this study provides a quantitative analysis of pore types in thin section. We documented distinct distribution patterns of vesicle and vesicle-rich segregation structures according to lava thickness. In compound pāhoehoe lavas, the cooling allows only vesicles (pipe vesicles to be frozen into place. In inflated pāhoehoe lavas, vesicles of different sizes are common, including pipe vesicles, and also segregation structures such as proto-cylinders, cylinders, cylinder sheets, vesicle sheets, and pods. In rubbly lavas, only vesicles of varying sizes occur. Gas release from melt caused the formation of primary porosity, while hydrothermal alteration and tectonic fracturing are the main processes that generated secondary porosity. Although several forms of porosity were created in the basaltic lava flows, the precipitation of secondary minerals within the pores has tended to reduce the original porosities. Late-stage fractures could create efficient channel networks for possible hydrocarbon/groundwater migration and entrapment owing to their ability to connect single pores. Quantitative permeability data should be gathered in future studies to confirm the potential of these lavas for store hydrocarbons or groundwater.

  2. Sedimentary and Volcanic Records of the Laschamp and Mono Lake Excursions from Australia and New Zealand

    Ingham, E. M.; Roberts, A. P.; Turner, G. M.; Heslop, D.; Ronge, T.; Conway, C.; Leonard, G.; Townsend, D.; Tiedemann, R.; Lamy, F.; Calvert, A. T.

    2014-12-01

    Geomagnetic excursions are short-lived deviations of the geomagnetic field from the normal range of secular variation. Despite significant advances in geomagnetic excursion research over the past 20 years, fundamental questions remain concerning the typical duration and global morphology of excursional geomagnetic fields. To answer such questions, more high-resolution, chronologically well-constrained excursion records are required, particularly from the Southern Hemisphere. We present preliminary paleomagnetic records of the Laschamp (~41 ka) and Mono Lake (~35 ka) excursions from three marine sediment cores from the Bounty Trough, New Zealand margin, and complementary volcanic records of the Laschamp excursion from lavas of Mt Ruapehu, New Zealand. Relatively high sedimentation rates of 12 - 26 cm/kyr in the Bounty Trough during glacial periods allow identification of excursional field behavior at each of the studied core locations. Each core displays one or two excursional events, with rapid directional swings between stable normal polarity and reversed excursional directions, each associated with coincident relative paleointensity minima. These anomalous paleomagnetic directions are interpreted to represent the Laschamp and Mono Lake excursions, based on a combination of tephrochronology, radiocarbon dating, and cyclostratigraphy (defined from core-scanning X-ray fluorescence and magnetic susceptibility records). Beside these records, we present results from fourteen lava flows, on Mt Ruapehu, for which 40Ar-39Ar dating indicates ages of between 39 and 45 ka. The step heating 40Ar-39Ar experiments produced particularly flat age plateaus, with corresponding 2 s.d. errors mostly approaching 1 kyr. The youngest and oldest flows carry normal polarity magnetization, however six flows, dated between 41 and 43 ka, display transitional field characteristics. Three of these flows display a declination swing of around 180o, which coincides with a previously published

  3. Microplastics in Taihu Lake, China.

    Su, Lei; Xue, Yingang; Li, Lingyun; Yang, Dongqi; Kolandhasamy, Prabhu; Li, Daoji; Shi, Huahong

    2016-09-01

    In comparison with marine environments, the occurrence of microplastics in freshwater environments is less understood. In the present study, we investigated microplastic pollution levels during 2015 in Taihu Lake, the third largest Chinese lake located in one of the most developed areas of China. The abundance of microplastics reached 0.01 × 10(6)-6.8 × 10(6) items/km(2) in plankton net samples, 3.4-25.8 items/L in surface water, 11.0-234.6 items/kg dw in sediments and 0.2-12.5 items/g ww in Asian clams (Corbicula fluminea). The average abundance of microplastics was the highest in plankton net samples from the southeast area of the lake and in the sediments from the northwest area of the lake. The northwest area of the lake was the most heavily contaminated area of the lake, as indicated by chlorophyll-α and total phosphorus. The microplastics were dominated by fiber, 100-1000 μm in size and cellophane in composition. To our best knowledge, the microplastic levels measured in plankton net samples collected from Taihu Lake were the highest found in freshwater lakes worldwide. The ratio of the microplastics in clams to each sediment sample ranged from 38 to 3810 and was negatively correlated to the microplastic level in sediments. In brief, our results strongly suggest that high levels of microplastics occurred not only in water but also in organisms in Taihu Lake. Copyright © 2016 Elsevier Ltd. All rights reserved.

  4. Key Lake spill. Final report

    1984-03-01

    On January 5, 1984 contaminated water overflowed a storage reservoir at the Key Lake uranium mill onto the ice on a neighboring lake, into a muskeg area and onto a road. Outflow continued for two days, partially undercutting a retaining dyke. This report concludes the spill was the result of poor operation by the Key Lake Mining Corp.. The environmental impact will be minimal after cleanup. Improvements can be made in the regulatory process, and it is necessary to prepare for possible future mishaps

  5. 2010 Great Lakes Restoration Initiative Bathymetric Lidar: Lake Superior

    National Oceanic and Atmospheric Administration, Department of Commerce — The data contained in this file contain hydrographic and topographic data collected by the Fugro LADS Mk II system along the Lake Superior coast of Minnessota,...

  6. Siliceous alterations of the Montana Senalo lavas, Timanfaya eruption (1730-1736) (Lanzarote, Canary Islands); Las alteraciones siliceas de las lavas de Montana Senalo, eruption de Timanfaya (1730-1736) (Lanzarote, Islas Canarias)

    Carmona, J.; Romero, C.; Doniz, J.; Garcia, A.

    2009-07-01

    The presence of hydrothermal alterations within the lavas of Timanfaya eruption (1730-1736), with high proportions of quartz and opal, suggests the effective circulation of hot fluids. The source of these fluids would be located under the island, where silica would be dissolved from sandstones and radiolarites, moving this way towards the surface as Si(OH){sub 4} colloids. Study of opal indicates the presence of A-initial CT and C phases in the collected samples, which, considering the time needed for producing this phase transformations in the diagenetic evolution of opal (10,000-50,000 years), suggests an accelerating process, probably related with either the presence of fluid circulation or weathering processes. Such circumstances are necessary for explaining the presence of such components affecting 300 years old lavas. (Author) 36 refs.

  7. Memories of Earth Formation in the Modern Mantle: W Isotopic Composition of Flood Basalt Lavas

    Rizo Garza, H. L.; Walker, R. J.; Carlson, R.; Horan, M. F.; Mukhopadhyay, S.; Francis, D.; Jackson, M. G.

    2015-12-01

    Four and a half billion years of geologic activity has overprinted much of the direct evidence for processes involved in Earth's formation and its initial chemical differentiation. Xenon isotopic ratios [1] and 3He/22Ne ratios [2] suggest that heterogeneities formed during Earth's accretion have been preserved to the present time. New opportunities to learn about early Earth history have opened up with the development of analytical techniques that allow high precision analysis of short-lived isotopic systems. The Hf-W system (t½ = 8.9 Ma) is particularly valuable for studying events that occurred during the first ~50 Ma of Solar System history. Here we report new data for ~ 60 Ma Baffin Bay and ~ 120 Ma Ontong Java Plateau lava samples. Both are large igneous provinces that may have sampled a primitive, less degassed deep mantle reservoir that has remained isolated since shortly after Earth formation [3,4]. Three samples analyzed have 182W/184W ratios that are 10 to 48 ppm higher than our terrestrial standard. These excesses in 182W are the highest ever measured in terrestrial rocks, and may reflect 182W ingrowth in an early-formed high Hf/W mantle domain that was produced by magma ocean differentiation [5]. Long and short-lived Sm-Nd systematics in these samples, however, are inconsistent with this hypothesis. The 182W excessses could rather reflect the derivation of these lavas from a mantle reservoir that was isolated from late accretionary additions [6]. The chondritic initial Os isotopic compositions and highly siderophile element abundances of these samples, however, are inconsistent with this interpretation. Tungsten concentrations for the Baffin Bay and Ontong Java Plateau samples range from 23 ppb to 62 ppb, and are negatively correlated with their 182W/184W ratios. We propose that the source reservoirs for these flood basalts likely formed through Hf/W fractionation caused by core-forming events occuring over a protacted time interval during Earth

  8. Preliminary results from an integrated, multi-parameter, experiment at the Santiaguito lava dome complex, Guatemala

    De Angelis, S.; Rietbrock, A.; Lavallée, Y.; Lamb, O. D.; Lamur, A.; Kendrick, J. E.; Hornby, A. J.; von Aulock, F. W.; Chigna, G.

    2016-12-01

    Understanding the complex processes that drive volcanic unrest is crucial to effective risk mitigation. Characterization of these processes, and the mechanisms of volcanic eruptions, is only possible when high-resolution geophysical and geological observations are available over comparatively long periods of time. In November 2014, the Liverpool Earth Observatory, UK, in collaboration with the Instituto Nacional de Sismologia, Meteorologia e Hidrologia (INSIVUMEH), Guatemala, established a multi-parameter geophysical network at Santiaguito, one of the most active volcanoes in Guatemala. Activity at Santiaguito throughout the past decade, until the summer of 2015, was characterized by nearly continuous lava dome extrusion accompanied by frequent and regular small-to-moderate gas or gas-and-ash explosions. Over the past two years our network collected a wealth of seismic, acoustic and deformation data, complemented by campaign visual and thermal infrared measurements, and rock and ash samples. Here we present preliminary results from the analysis of this unique dataset. Using acoustic and thermal data collected during 2014-2015 we were able to assess volume fractions of ash and gas in the eruptive plumes. The small proportion of ash inferred in the plumes confirms estimates from previous, independent, studies, and suggests that these events did not involve significant magma fragmentation in the conduit. The results also agree with the suggestion that sacrificial fragmentation along fault zones in the conduit region, due to shear-induced thermal vesiculation, may be at the origin of such events. Finally, starting in the summer of 2015, our experiment captured the transition to a new phase of activity characterized by vigorous vulcanian-style explosions producing large, ash-rich, plumes and frequent hazardous pyroclastic flows, as well as the formation a large summit crater. We present evidence of this transition in the geophysical and geological data, and discuss its

  9. Investigating the Early Atmospheres of Earth and Mars through Rivers, Raindrops, and Lava Flows

    Som, Sanjoy M.

    2010-11-01

    twice present levels and perhaps well below present levels. To constrain this further, I re-evaluate a published paleobarometry technique using the vesicle size-distribution in simply emplaced lava flows and apply it to sea-level erupted lava flows from the 2.7 billion year old Fortescue group of Western Australia. Results from three flows suggest a range for atmospheric pressure 0.07 history of the nitrogen cycle by implying that the development of the nitrogenase enzyme necessary for nitrogen fixation happened very early on in the development of life.

  10. Jordan Lake Watershed Protection District

    Town of Chapel Hill, North Carolina — Polygon representing the area of the Jordan Lake Watershed Protection District. The Watershed Protection District (PDF) is a sensitive area of land that drains to...

  11. Great Lakes Environmental Research Laboratory

    Federal Laboratory Consortium — NOAA-GLERL and its partners conduct innovative research on the dynamic environments and ecosystems of the Great Lakes and coastal regions to provide information for...

  12. Paleosecular variations from lake sediments

    Lund, S.P.; Banerjee, S.K.

    1979-01-01

    Data are presented on the secular variations of the magnetization of wet and dry lake sediments for 17 North American locations. The usefullness of this data in terms of the geomagnetic field is discussed

  13. Spatial distribution of seepage at a flow-through lake: Lake Hampen, Western Denmark

    Kidmose, Jacob Baarstrøm; Engesgaard, Peter Knudegaard; Nilsson, Bertel

    2011-01-01

    recharge patiern of the lake and relating these to the geologic history of the lake. Recharge of the surrounding aquifer by lake water occurs off shore in a narrow zone, as measured from lake–groundwater gradients. A 33-m-deep d18O profi le at the recharge side shows a lake d18O plume at depths...... that corroborates the interpretation of lake water recharging off shore and moving down gradient. Inclusion of lake bed heterogeneity in the model improved the comparison of simulated and observed discharge to the lake. The apparent age of the discharging groundwater to the lake was determined by CFCs, resulting...

  14. Can small zooplankton mix lakes?

    Simoncelli, S.; Thackeray, S.J.; Wain, D.J.

    2017-01-01

    The idea that living organisms may contribute to turbulence and mixing in lakes and oceans (biomixing) dates to the 1960s, but has attracted increasing attention in recent years. Recent modeling and experimental studies suggest that marine organisms can enhance turbulence as much as winds and tides in oceans, with an impact on mixing. However, other studies show opposite and contradictory results, precluding definitive conclusions regarding the potential importance of biomixing. For lakes, on...

  15. Lake Turkana National Parks Kenya.

    2005-01-01

    Lake Turkana is the largest, most northerly and most saline of Africa's Rift Valley lakes and an outstanding laboratory for the study of plant and animal communities. The three National Parks are a stopover for migrant waterfowl and are major breeding grounds for the Nile crocodile and hippopotamus. The Koobi Fora deposits are rich in pre-human, mammalian, molluscan and other fossil remains and have contributed more to the understanding of Quaternary palaeoenvironments than any other site on ...

  16. Radiocarbon dating of lake sediments

    Pocevičius, Matas

    2016-01-01

    Matas Pocevičius, Radiocarbon dating of lake sediments, bachelor thesis, Vilnius University, Faculty of Physics, Department of General Physics and Spectroscopy, physics, Vilnius, 45 p., 2016. The aim of this study is to evaluate the possibility of radiocarbon dating application for Tapeliai lake bottom sediments. The literature review discusses topics related to accelerator mass spectrometry, principles of radiocarbon formation, importance of nuclear fallout for 14C, possible applications of ...

  17. Inflation Features of the Distal Pahoehoe Portion of the 1859 Mauna Loa Flow, Hawaii; Implications for Evaluating Planetary Lava Flows

    Zimbelman, J. R.; Garry, W. B.; Bleacher, Jacob E.; Crumpler, L S.

    2011-01-01

    The 1859 eruption of Mauna Loa, Hawaii, resulted in the longest subaerial lava flow on the Big Island. Detailed descriptions were made of the eruption both from ships and following hikes by groups of observers; the first three weeks of the eruption produced an `a`a flow that reached the ocean, and the following 10 months produced a pahoehoe flow that also eventually reached the ocean. The distal portion of the 1859 pahoehoe flow component includes many distinctive features indicative of flow inflation. Field work was conducted on the distal 1859 pahoehoe flow during 2/09 and 3/10, which allowed us to document several inflation features, in or-der evaluate how well inflated landforms might be detected in remote sensing data of lava flows on other planets.

  18. Managing uncertainty: Lessons from volcanic lava disruption of transportation infrastructure in Puna, Hawaii.

    Kim, Karl; Pant, Pradip; Yamashita, Eric

    A recent lava flow in Puna, Hawaii, threatened to close one of the major highways serving the region. This article provides background information on the volcanic hazards and describes events, responses, and challenges associated with managing a complex, long-duration disaster. In addition to the need to better understand geologic hazards and threats, there is a need for timely information and effective response and recovery of transportation infrastructure. This requires coordination and sharing of information between scientists, emergency managers, transportation planners, government agencies, and community organizations. Transportation assets play a critical role in terms of problem definition, response, and recovery. The challenges with managing a long-duration event include: (1) determining when a sufficient threat level exists to close roads; (2) identifying transportation alternatives; (3) assessing impacts on communities including the direct threats to homes, businesses, structures, and infrastructure; (4) engaging communities in planning and deliberation of choices and alternatives; and (5) managing uncertainties and different reactions to hazards, threats, and risks. The transportation planning process provides a pathway for addressing initial community concerns. Focusing not just on roadways but also on travel behavior before, during, and after disasters is a vital aspect of building resilience. The experience in Puna with the volcano crisis is relevant to other communities seeking to adapt and manage long-term threats such as climate change, sea level risk, and other long-duration events.

  19. Electromagnetic Simulations of Ground-Penetrating Radar Propagation near Lunar Pits and Lava Tubes

    Zimmerman, M. I.; Carter, L. M.; Farrell, W. M.; Bleacher, J. E.; Petro, N. E.

    2013-01-01

    Placing an Orion capsule at the Earth-Moon L2 point (EML2) would potentially enable telerobotic operation of a rover on the lunar surface. The Human Exploration Virtual Institute (HEVI) is proposing that rover operations be carried out near one of the recently discovered lunar pits, which may provide radiation shielding for long duration human stays as well as a cross-disciplinary, science-rich target for nearer-term telerobotic exploration. Ground penetrating radar (GPR) instrumentation included onboard a rover has the potential to reveal many details of underground geologic structures near a pit, as well as characteristics of the pit itself. In the present work we employ the full-wave electromagnetic code MEEP to simulate such GPR reflections from a lunar pit and other subsurface features including lava tubes. These simulations will feed forward to mission concepts requiring knowledge of where to hide from harmful radiation and other environmental hazards such as plama charging and extreme diurnal temperatures.

  20. Muerte violenta en 1822: una fosa común en Ocio (Zambrana, Álava

    Berjón, M.A.

    2012-01-01

    Full Text Available En la excavación llevada a cabo en el suelo de la Ermita de Nuestra Señora de Asunción en Ocio (Zambrana, Álava en 2010, se expusieron un total de 48 enterramientos individuales y uno de tipo colectivo. Este último corresponde a una fosa común en la que se hallaban 13 individuos de sexo masculino que murieron en un mismo episodio de carácter violento. Todos los individuos presentan lesiones en cráneo o/y en el cuerpo compatibles con el paso de proyectil de arma de fuego de plomo, así como heridas incisas provocadas por arma cortante, además de traumas directos. En la investigación histórica realizada se ha podido saber que en un enfrentamiento bélico en 1822 se produjo la muerte simultánea de 13 vecinos de la localidad de Brinas (próxima a Ocio. Este suceso estaría relacionado con las luchas entre absolutistas o realistas y liberales o constitucionalistas, en los prolegómenos de la Primera Guerra Carlista.

  1. Peak discharge of a Pleistocene lava-dam outburst flood in Grand Canyon, Arizona, USA

    Fenton, Cassandra R.; Webb, Robert H.; Cerling, Thure E.

    2006-03-01

    The failure of a lava dam 165,000 yr ago produced the largest known flood on the Colorado River in Grand Canyon. The Hyaloclastite Dam was up to 366 m high, and geochemical evidence linked this structure to outburst-flood deposits that occurred for 32 km downstream. Using the Hyaloclastite outburst-flood deposits as paleostage indicators, we used dam-failure and unsteady flow modeling to estimate a peak discharge and flow hydrograph. Failure of the Hyaloclastite Dam released a maximum 11 × 10 9 m 3 of water in 31 h. Peak discharges, estimated from uncertainty in channel geometry, dam height, and hydraulic characteristics, ranged from 2.3 to 5.3 × 10 5 m 3 s -1 for the Hyaloclastite outburst flood. This discharge is an order of magnitude greater than the largest known discharge on the Colorado River (1.4 × 10 4 m 3 s -1) and the largest peak discharge resulting from failure of a constructed dam in the USA (6.5 × 10 4 m 3 s -1). Moreover, the Hyaloclastite outburst flood is the oldest documented Quaternary flood and one of the largest to have occurred in the continental USA. The peak discharge for this flood ranks in the top 30 floods (>10 5 m 3 s -1) known worldwide and in the top ten largest floods in North America.

  2. Mafic inclusions in Yosemite granites and Lassen Pk lavas: records of complex crust-mantle interactions

    Reid, J.B. Jr.; Flinn, J.E.

    1985-01-01

    This study compares three small-scale magmatic systems dominated by mafic/felsic interaction that appear to be analogs to the evolution of their larger host systems: mafic inclusions from modern Lassen Pk lavas along with inclusions and related synplutonic dike materials from granitoids in the Tuolumne Intrusive Series. Each system represents quickly chilled mafic melt previously contaminated by digestion of rewarmed, super-solidus felsic hosts. Contaminants occur in part as megacrysts of reworked oligoclase with lesser hb and biot. Within each group MgO-variation diagrams for Fe, Ca, Ti, Si are strikingly linear (r>.96); alkalis are decidedly less regular, and many hybrid rocks show a curious, pronounced Na enrichment. Field data, petrography, and best fit modeling suggests this may result from flow concentration of oligoclase xenocrysts within contaminated synplutonic dikes, and is preserved in the inclusions when dike cores chill as pillows in their felsic host. Dissolution of mafic inclusions erases these anomalies and creates a more regular series of two-component mafic-felsic mixtures in the large host system. The inclusions and dikes thus appear to record a variety of late-stage mafic-felsic interactive processes that earlier and on a larger scale created much of the compositional variety of their intermediate host rocks.

  3. Dismantling the Deep Earth: Geochemical Constraints from Hotspot Lavas for the Origin and Lengthscales of Mantle Heterogeneity

    2008-02-01

    inclusions fi-rm a recently discovered high ’He/ 4 H the ielt source but that is not detectable in whole basalt from Samoa [25]. Our strategy is to...can compare: canl be inferred fi-om the neat-uniforma ratios obtained thlem to similarly corrected Samoan whole-rock lavas oit) ielt inclusijons from...Rb correction. Although the number,ftlataluintsis limited, the data are consistent 3.2. Major and frace element characteristics /i mwlt with Ielt

  4. Aquatic macrophyte richness in Danish lakes in relation to alkalinity, transparency, and lake area

    Vestergaard, Ole Skafte; Sand-Jensen, Kaj

    2000-01-01

    We examined the relationship between environmental factors and the richness of submerged macrophytes species in 73 Danish lakes, which are mainly small, shallow, and have mesotrophic to hypertrophic conditions. We found that mean species richness per lake was only 4.5 in acid lakes of low...... alkalinity but 12.3 in lakes of high alkalinity due to a greater occurrence of the species-rich group of elodeids. Mean species richness per lake also increased significantly with increasing Secchi depth. No significant relationship between species richness and lake surface area was observed among the entire...... group of lakes or a subset of eutrophic lakes, as the growth of submerged macrophytes in large lakes may be restricted by wave action in shallow water and light restriction in deep water. In contrast, macrophyte species richness increased with lake surface area in transparent lakes, presumably due...

  5. Effects of lake trout refuges on lake whitefish and cisco in the Apostle Islands Region of Lake Superior

    Zuccarino-Crowe , Chiara M.; Taylor, William W.; Hansen, Michael J.; Seider, Michael J.; Krueger, Charles C.

    2016-01-01

    Lake trout refuges in the Apostle Islands region of Lake Superior are analogous to the concept of marine protected areas. These refuges, established specifically for lake trout (Salvelinus namaycush) and closed to most forms of recreational and commercial fishing, were implicated as one of several management actions leading to successful rehabilitation of Lake Superior lake trout. To investigate the potential significance of Gull Island Shoal and Devils Island Shoal refuges for populations of not only lake trout but also other fish species, relative abundances of lake trout, lake whitefish (Coregonus clupeaformis), and cisco (Coregonus artedi) were compared between areas sampled inside versus outside of refuge boundaries. During 1982–2010, lake trout relative abundance was higher and increased faster inside the refuges, where lake trout fishing was prohibited, than outside the refuges. Over the same period, lake whitefish relative abundance increased faster inside than outside the refuges. Both evaluations provided clear evidence that refuges protected these species. In contrast, trends in relative abundance of cisco, a prey item of lake trout, did not differ significantly between areas inside and outside the refuges. This result did not suggest indirect or cascading refuge effects due to changes in predator levels. Overall, this study highlights the potential of species-specific refuges to benefit other fish species beyond those that were the refuges' original target. Improved understanding of refuge effects on multiple species of Great Lakes fishes can be valuable for developing rationales for refuge establishment and predicting associated fish community-level effects.

  6. Temporal geochemical trends in northern Luzon arc lavas (Philippines): implications on metasomatic processes in the island arc mantle

    Maury, R.C.; Bellon, H.; Jacques, D.; Defant, J.; Joron, J.L.; Mcdermott, F.; Vidal, Ph.

    1998-01-01

    Neogene and Quaternary lavas from Batan, Babuyan de Claro, Camiguin and Calayan islands (northern Luzon arc) display temporal increases in incompatible elements including Cs, Rb, Ba, K, La, Ce, Th, U, Ta, Hf and Zr from volcanoes older than 3 Ma to younger ones. These enrichments occur either within a single island (Batan) or within an island group (from Calayan to Camiguin and Babuyan). We show that these enrichments result from incompatible element input into the mantle wedge rather than from partial melting or fractionation effects. The fact that highly incompatible elements display temporal enrichment patterns in Batan lavas whatever their chemical properties indicates that hydrous fluids are not the only metasomatic agents operating in the mantle wedge and that slab-derived melts (adakitic magmas) may also be involved. The coupled temporal variation patterns of large ion lithophile elements and Sr-Nd isotopes suggest that the metasomatic budgets beneath the southern group of islands are mainly controlled by hydrous fluids inputs. In contrast, young Batan lavas likely derive from a mantle source mostly metasomatized by adakitic magmas. (authors)

  7. Grand Sarcoui volcano (Chaîne des Puys, Massif Central, France), a case study for monogenetic trachytic lava domes

    Miallier, D.; Pilleyre, T.; Boivin, P.; Labazuy, P.; Gailler, L.-S.; Rico, J.

    2017-10-01

    The Grand Sarcoui is a prominent trachytic volcano of the intraplate Quaternary volcanic field of Chaîne des Puys (Massif Central, France), which fulfills basic requirements for being qualified as monogenetic. Grand Sarcoui looks like a simple axisymmetric lava dome, but close observation reveals a complex and dissymmetric structure and composition. The construction of the dome, about 12.5 ka ago, combined both endogenous and exogenous growth which resulted in variable modes of emplacement and textures of the lava. One of its most interesting features is a large ( 0.29 106 m2) fan of deposits bearing hummocks and secondary hydro-eruption craters. Cross sections of these deposits demonstrate that they originated from a sector collapse accompanied by a blast-like event. The dome is covered by a thin layer of lapilli and ash, attributed to a delayed summit eruption which occurred about 10.6 ka ago, surprisingly late after its construction. So, this volcano has, at a reduced scale, features that are more usually observed in large composite volcanoes. However, some of these features differ slightly from those that have been documented to date, and they remain partly unexplained. This shows that monogenetic, well preserved, trachytic lava domes, are uncommon and poorly known, unlike rhyolitic, andesitic and dacitic domes.

  8. Compositional and volumetric development of a monogenetic lava flow field: The historical case of Paricutin (Michoacán, Mexico)

    Larrea, Patricia; Salinas, Sergio; Widom, Elisabeth; Siebe, Claus; Abbitt, Robbyn J. F.

    2017-12-01

    Paricutin volcano is the youngest and most studied monogenetic volcano in the Michoacán-Guanajuato volcanic field (Mexico), with an excellent historical record of its nine years (February 1943 to March 1952) of eruptive activity. This eruption offered a unique opportunity to observe the birth of a new volcano and document its entire eruption. Geologists surveyed all of the eruptive phases in progress, providing maps depicting the volcano's sequential growth. We have combined all of those previous results and present a new methodological approach, which utilizes state of the art GIS mapping tools to outline and identify the 23 different eruptive phases as originally defined by Luhr and Simkin (1993). Using these detailed lava flow distribution maps, the volume of each of the flows was estimated with the aid of pre- and post-eruption digital elevation models. Our procedure yielded a total lava flow volume ranging between 1.59 and 1.68 km3 DRE, which is larger than previous estimates based on simpler methods. In addition, compositional data allowed us to estimate magma effusion rates and to determine variations in the relative proportions of the different magma compositions issued during the eruption. These results represent the first comprehensive documentation of the combined chemical, temporal, and volumetric evolution of the Paricutin lava field and provide key constraints for petrological interpretations of the nature of the magmatic plumbing system that fed the eruption.

  9. Lava cave microbial communities within mats and secondary mineral deposits: implications for life detection on other planets.

    Northup, D E; Melim, L A; Spilde, M N; Hathaway, J J M; Garcia, M G; Moya, M; Stone, F D; Boston, P J; Dapkevicius, M L N E; Riquelme, C

    2011-09-01

    Lava caves contain a wealth of yellow, white, pink, tan, and gold-colored microbial mats; but in addition to these clearly biological mats, there are many secondary mineral deposits that are nonbiological in appearance. Secondary mineral deposits examined include an amorphous copper-silicate deposit (Hawai'i) that is blue-green in color and contains reticulated and fuzzy filament morphologies. In the Azores, lava tubes contain iron-oxide formations, a soft ooze-like coating, and pink hexagons on basaltic glass, while gold-colored deposits are found in lava caves in New Mexico and Hawai'i. A combination of scanning electron microscopy (SEM) and molecular techniques was used to analyze these communities. Molecular analyses of the microbial mats and secondary mineral deposits revealed a community that contains 14 phyla of bacteria across three locations: the Azores, New Mexico, and Hawai'i. Similarities exist between bacterial phyla found in microbial mats and secondary minerals, but marked differences also occur, such as the lack of Actinobacteria in two-thirds of the secondary mineral deposits. The discovery that such deposits contain abundant life can help guide our detection of life on extraterrestrial bodies.

  10. The morphology and evolution of the Stromboli 2002-2003 lava flow field--An example of a basaltic flow field emplaced on a steep slope

    Lodato, Luigi; Harris, A.; Spampinato, L.; Calvari, Sonia; Dehn, J.; Patrick, M.

    2007-01-01

    The use of a hand-held thermal camera during the 2002–2003 Stromboli effusive eruption proved essential in tracking the development of flow field structures and in measuring related eruption parameters, such as the number of active vents and flow lengths. The steep underlying slope on which the flow field was emplaced resulted in a characteristic flow field morphology. This comprised a proximal shield, where flow stacking and inflation caused piling up of lava on the relatively flat ground of the vent zone, that fed a medial–distal lava flow field. This zone was characterized by the formation of lava tubes and tumuli forming a complex network of tumuli and flows linked by tubes. Most of the flow field was emplaced on extremely steep slopes and this had two effects. It caused flows to slide, as well as flow, and flow fronts to fail frequently, persistent flow front crumbling resulted in the production of an extensive debris field. Channel-fed flows were also characterized by development of excavated debris levees in this zone (Calvari et al. 2005). Collapse of lava flow fronts and inflation of the upper proximal lava shield made volume calculation very difficult. Comparison of the final field volume with that expecta by integrating the lava effusion rates through time suggests a loss of ~70% erupted lava by flow front crumbling and accumulation as debris flows below sea level. Derived relationships between effusion rate, flow length, and number of active vents showed systematic and correlated variations with time where spreading of volume between numerous flows caused an otherwise good correlation between effusion rate, flow length to break down. Observations collected during this eruption are useful in helping to understand lava flow processes on steep slopes, as well as in interpreting old lava–debris sequences found in other steep-sided volcanoes subject to effusive activity.

  11. Changes in Rongbuk lake and Imja lake in the Everest region of Himalaya

    Chen, W.; Doko, T.; Liu, C.; Ichinose, T.; Fukui, H.; Feng, Q.; Gou, P.

    2014-12-01

    The Himalaya holds the world record in terms of range and elevation. It is one of the most extensively glacierized regions in the world except the Polar Regions. The Himalaya is a region sensitive to climate change. Changes in the glacial regime are indicators of global climate changes. Since the second half of the last century, most Himalayan glaciers have melted due to climate change. These changes directly affected the changes of glacial lakes in the Himalayan region due to the glacier retreat. New glacial lakes are formed, and a number of them have expanded in the Everest region of the Himalayas. This paper focuses on the two glacial lakes which are Imja Lake, located at the southern slope, and Rongbuk Lake, located at the northern slope in the Mt. Everest region, Himalaya to present the spatio-temporal changes from 1976 to 2008. Topographical conditions between two lakes were different (Kruskal-Wallis test, p < 0.05). Rongbuk Lake was located at 623 m higher than Imja Lake, and radiation of Rongbuk Lake was higher than the Imja Lake. Although size of Imja Lake was larger than the Rongbuk Lake in 2008, the growth speed of Rongbuk Lake was accelerating since 2000 and exceeds Imja Lake in 2000-2008. This trend of expansion of Rongbuk Lake is anticipated to be continued in the 21st century. Rongbuk Lake would be the biggest potential risk of glacial lake outburst flood (GLOF) at the Everest region of Himalaya in the future.

  12. Tracking lava flow emplacement on the east rift zone of Kīlauea, Hawai‘i, with synthetic aperture radar coherence

    Dietterich, Hannah R.; Poland, Michael P.; Schmidt, David A.; Cashman, Katharine V.; Sherrod, David R.; Espinosa, Arkin Tapia

    2012-05-01

    Lava flow mapping is both an essential component of volcano monitoring and a valuable tool for investigating lava flow behavior. Although maps are traditionally created through field surveys, remote sensing allows an extraordinary view of active lava flows while avoiding the difficulties of mapping on location. Synthetic aperture radar (SAR) imagery, in particular, can detect changes in a flow field by comparing two images collected at different times with SAR coherence. New lava flows radically alter the scattering properties of the surface, making the radar signal decorrelated in SAR coherence images. We describe a new technique, SAR Coherence Mapping (SCM), to map lava flows automatically from coherence images independent of look angle or satellite path. We use this approach to map lava flow emplacement during the Pu`u `Ō`ō-Kupaianaha eruption at Kīlauea, Hawai`i. The resulting flow maps correspond well with field mapping and better resolve the internal structure of surface flows, as well as the locations of active flow paths. However, the SCM technique is only moderately successful at mapping flows that enter vegetation, which is also often decorrelated between successive SAR images. Along with measurements of planform morphology, we are able to show that the length of time a flow stays decorrelated after initial emplacement is linearly related to the flow thickness. Finally, we use interferograms obtained after flow surfaces become correlated to show that persistent decorrelation is caused by post-emplacement flow subsidence.

  13. Spruce Lake Dam reconstruction

    Snyder, G. [SGE Acres Ltd., Fredericton, NB (Canada); Barnard, J. [SGE Acres Ltd., St. John' s, NF (Canada); Vriezen, C. [City of Saint John, NF (Canada); Stephenson, M. [Jacques Whitford Environment Ltd., Fredericton, NB (Canada)

    2004-09-01

    Spruce Lake Dam was constructed in 1898 as part of the water supply system for Saint John, New Brunswick. The original dam was a 6 meter high, 140 meter long concrete gravity dam with an intake structure at its mid point and an overflow spillway at the left abutment. A rehabilitation project was launched in 2001 to bring the deteriorated dam into conformance with the dam safety guidelines of the Canadian Dam Association. The project criteria included minimal disruption to normal operation of water supply facilities and no negative effect on water quality. The project involved installation of a new low level outlet, removal of a gate house and water intake pipes, replacement of an access road culvert in the spillway channel, and raising the earth dam section by 1.8 meters to allow for increased water storage. The new raised section has an impervious core. The project also involved site and geotechnical investigations as well as hydrotechnical and environmental studies. This presentation described the final design of the remedial work and the environmental permitting procedures. Raising the operating level of the system proved successful as demonstrated by the fewer number of pumping days required after dam rehabilitation. The dam safety assessment under the Canadian Environmental Assessment Act began in April 2001, and the rehabilitation was completed by the end of 2002. 1 tab., 8 figs.

  14. Spray Lakes reclamation project

    Zacaruk, M.R.

    1996-01-01

    When the level of the Spray Lakes (Alberta) reservoir was lowered by four metres, 208 ha of shoreline was exposed offering little to no wildlife benefit and only limited recreation potential. A reclamation plan for 128 ha of shoreline was therefore developed. A wild life-palatable, self-sustaining vegetation cover was established. Approximately 90 ha was scarified, and/or had tree stumps removed prior to seeding, while approximately 40 ha was seeded and fertilized only. The remaining 80 ha of shoreline was not revegetated due to limited access; these areas will be allowed to re-establish naturally from the forested edge. The species were selected based on their adaptation to alkaline soils, drought tolerance, persistence in a stand and rooting characteristics, as well as palatability to wildlife. Alfalfa, white clover and fall rye were seeded. In general, all areas of the reclamation plan are successfully revegetated. Areas which were recontoured are stable and non-eroding. Success was most significant in areas which had been scarified, then seeded and trackpacked. Areas that were seeded and fertilized only were less well established at the end of the first year, but showed improvement in the second and third years. The area will be monitored to ensure the reclaimed vegetation is self-sustaining

  15. Water-quality effects on Baker Lake of recent volcanic activity at Mount Baker, Washington

    Bortleson, Gilbert Carl; Wilson, Reed T.; Foxworthy, B.L.

    1976-01-01

    Increased volcanic activity on Mount Baker, which began in March 1975, represents the greatest known activity of a Cascade Range volcano since eruptions at Lassen Peak, Calif. during 1914-17. Emissions of dust and increased emanations of steam, other gases, and heat from the Sherman Crater area of the mountain focused attention on the possibility of hazardous events, including lava flows, pyroclastic eruptions, avalanches, and mudflows. However, the greatest undesirable natural results that have been observed after one year of the increased activity are an increase in local atmospheric pollution and a decrease in the quality of some local water resources, including Baker Lake. Baker Lake, a hydropower reservoir behind Upper Baker Dam, supports a valuable fishery resource and also is used for recreation. The lake's feedwater is from Baker River and many smaller streams, some of which, like Boulder Creek, drain parts of Mount Baker. Boulder Creek receives water from Sherman Crater, and its channel is a likely route for avalanches or mudflows that might originate in the crater area. Boulder Creek drains only about 5 percent of the total drainage area of Baker Lake, but during 1975 carried sizeable but variable loads of acid and dissolved minerals into the lake. Sulfurous gases and the fumarole dust from Sherman Crater are the main sources for these materials, which are brought into upper Boulder Creek by meltwater from the crater. In September 1973, before the increased volcanic activity, Boulder Creek near the lake had a pH of 6.0-6.6; after the increase the pH ranged as low as about 3.5. Most nearby streams had pH values near 7. On April 29, in Boulder Creek the dissolved sulfate concentration was 6 to 29 times greater than in nearby creeks or in Baker River; total iron was 18-53 times greater than in nearby creeks; and other major dissolved constituents generally 2 to 7 times greater than in the other streams. The short-term effects on Baker Lake of the acidic

  16. The reproduction of lake trout in southern Lake Superior

    Eschmeyer, Paul H.

    1955-01-01

    The principal spawning grounds of lake trout (Salvelinus namaycush namaycush) in United States waters of southern Lake Superior are on rocky shoals at depths of less than 20 fathoms. Most spawning occurs in October and early November. Of the mature fish collected on or near the spawning grounds, 60 to 69 percent were males. Among mature fish the average length of females was greater than that of males; few males less than 24 inches or females less than 26 inches in total length were caught. Recoveries of lake trout tagged on the spawning grounds showed that some males remained in the immediate area for a period of several weeks during the spawning season. Marked fish showed a tendency to return during later years to spawning grounds on which they had been tagged, even though many of them ranged long distances between spawning seasons.

  17. Equatorial paleomagnetic time-averaged field results from 0-5 Ma lavas from Kenya and the latitudinal variation of angular dispersion

    Opdyke, Neil D.; Kent, Dennis V.; Huang, Kainian; Foster, David A.; Patel, J. P.

    2010-05-01

    Lavas of Pliocene-Pleistocene age were sampled in two regions in Kenya: Mount Kenya on the equator and the Loiyangalani region, east of Lake Turkana, at about 3°N. We sampled 100 sites distributed around the Mount Kenya Massif and to the northeast along the Nyambini Range. The equator bisects Mount Kenya, and all sites were sampled within 40' of the equator. Thirty-two sites were sampled in the Loiyangalani area, making a total of 132 sites. Many sites from the Mount Kenya study were severely affected by lightning; however, after progressive AF demagnetization 69 sites yielded directions with α95 equal to or less than 10°. Normal polarity sites dominate (N = 58 and a mean of declination (dec) = 1.2°, inclination (inc) = -0.7°, and α95 = 3.6°) with only 11 reverse polarity sites (mean of dec = 182.3°, inc = 0.6°, and α95 = 7.2°); no transitional directions were identified. Inverting the reverse sites yields a combined mean direction of dec = l.4°, inc = -0.7°, and α95 = 3.2°. This result is not significantly different from what is expected from the geocentric axial dipole for the mean locality (dec = 0° and inc = 0°); a quadrupole component was not resolved. The samples from the Loiyangalani region were not seriously affected by lightning, and all 32 sites gave satisfactory data with α95 less than 10° (17 reverse sites, dec = 183.4°, inc = 0.8°, and α95 = 6.7°; 15 normal sites, dec = 358.6°, inc = -1.1°, and α95 = 4.7°); after inverting the reverse sites the combined mean was dec = 1.1°, inc = -1.0°, and α95 = 4.1°. Altogether, we had a total of 101 successful sites. A virtual geomagnetic pole (VGP) was calculated from each site mean; the VGP dispersion is low, with Sb = 10.9° for Mount Kenya and 9.8° for the Loiyangalani region. This dispersion agrees with updated Model G of McElhinny and McFadden (1997) and model TK03 of Tauxe and Kent (2004) that was tuned to the compilation of McElhinny and McFadden (1997) but disagrees with the

  18. Recent warming of lake Kivu.

    Katsev, Sergei; Aaberg, Arthur A; Crowe, Sean A; Hecky, Robert E

    2014-01-01

    Lake Kivu in East Africa has gained notoriety for its prodigious amounts of dissolved methane and dangers of limnic eruption. Being meromictic, it is also expected to accumulate heat due to rising regional air temperatures. To investigate the warming trend and distinguish between atmospheric and geothermal heating sources, we compiled historical temperature data, performed measurements with logging instruments, and simulated heat propagation. We also performed isotopic analyses of water from the lake's main basin and isolated Kabuno Bay. The results reveal that the lake surface is warming at the rate of 0.12°C per decade, which matches the warming rates in other East African lakes. Temperatures increase throughout the entire water column. Though warming is strongest near the surface, warming rates in the deep waters cannot be accounted for solely by propagation of atmospheric heat at presently assumed rates of vertical mixing. Unless the transport rates are significantly higher than presently believed, this indicates significant contributions from subterranean heat sources. Temperature time series in the deep monimolimnion suggest evidence of convection. The progressive deepening of the depth of temperature minimum in the water column is expected to accelerate the warming in deeper waters. The warming trend, however, is unlikely to strongly affect the physical stability of the lake, which depends primarily on salinity gradient.

  19. Recent warming of lake Kivu.

    Sergei Katsev

    Full Text Available Lake Kivu in East Africa has gained notoriety for its prodigious amounts of dissolved methane and dangers of limnic eruption. Being meromictic, it is also expected to accumulate heat due to rising regional air temperatures. To investigate the warming trend and distinguish between atmospheric and geothermal heating sources, we compiled historical temperature data, performed measurements with logging instruments, and simulated heat propagation. We also performed isotopic analyses of water from the lake's main basin and isolated Kabuno Bay. The results reveal that the lake surface is warming at the rate of 0.12°C per decade, which matches the warming rates in other East African lakes. Temperatures increase throughout the entire water column. Though warming is strongest near the surface, warming rates in the deep waters cannot be accounted for solely by propagation of atmospheric heat at presently assumed rates of vertical mixing. Unless the transport rates are significantly higher than presently believed, this indicates significant contributions from subterranean heat sources. Temperature time series in the deep monimolimnion suggest evidence of convection. The progressive deepening of the depth of temperature minimum in the water column is expected to accelerate the warming in deeper waters. The warming trend, however, is unlikely to strongly affect the physical stability of the lake, which depends primarily on salinity gradient.

  20. 33 CFR 162.134 - Connecting waters from Lake Huron to Lake Erie; traffic rules.

    2010-07-01

    ... 33 Navigation and Navigable Waters 2 2010-07-01 2010-07-01 false Connecting waters from Lake Huron to Lake Erie; traffic rules. 162.134 Section 162.134 Navigation and Navigable Waters COAST GUARD... REGULATIONS § 162.134 Connecting waters from Lake Huron to Lake Erie; traffic rules. (a) Detroit River. The...

  1. 33 CFR 162.132 - Connecting waters from Lake Huron to Lake Erie; communications rules.

    2010-07-01

    ... 33 Navigation and Navigable Waters 2 2010-07-01 2010-07-01 false Connecting waters from Lake Huron to Lake Erie; communications rules. 162.132 Section 162.132 Navigation and Navigable Waters COAST... NAVIGATION REGULATIONS § 162.132 Connecting waters from Lake Huron to Lake Erie; communications rules. (a...

  2. 33 CFR 162.130 - Connecting waters from Lake Huron to Lake Erie; general rules.

    2010-07-01

    ... 33 Navigation and Navigable Waters 2 2010-07-01 2010-07-01 false Connecting waters from Lake Huron to Lake Erie; general rules. 162.130 Section 162.130 Navigation and Navigable Waters COAST GUARD... REGULATIONS § 162.130 Connecting waters from Lake Huron to Lake Erie; general rules. (a) Purpose. The...

  3. 33 CFR 162.138 - Connecting waters from Lake Huron to Lake Erie; speed rules.

    2010-07-01

    ... 33 Navigation and Navigable Waters 2 2010-07-01 2010-07-01 false Connecting waters from Lake Huron to Lake Erie; speed rules. 162.138 Section 162.138 Navigation and Navigable Waters COAST GUARD... REGULATIONS § 162.138 Connecting waters from Lake Huron to Lake Erie; speed rules. (a) Maximum speed limit for...

  4. 33 CFR 162.136 - Connecting waters from Lake Huron to Lake Erie; anchorage grounds.

    2010-07-01

    ... 33 Navigation and Navigable Waters 2 2010-07-01 2010-07-01 false Connecting waters from Lake Huron to Lake Erie; anchorage grounds. 162.136 Section 162.136 Navigation and Navigable Waters COAST GUARD... REGULATIONS § 162.136 Connecting waters from Lake Huron to Lake Erie; anchorage grounds. (a) In the Detroit...

  5. 33 CFR 162.140 - Connecting waters from Lake Huron to Lake Erie; miscellaneous rules.

    2010-07-01

    ... 33 Navigation and Navigable Waters 2 2010-07-01 2010-07-01 false Connecting waters from Lake Huron to Lake Erie; miscellaneous rules. 162.140 Section 162.140 Navigation and Navigable Waters COAST... NAVIGATION REGULATIONS § 162.140 Connecting waters from Lake Huron to Lake Erie; miscellaneous rules. (a...

  6. Energy density of lake whitefish Coregonus clupeaformis in Lakes Huron and Michigan

    Pothoven, S.A.; Nalepa, T.F.; Madenjian, C.P.; Rediske, R.R.; Schneeberger, P.J.; He, J.X.

    2006-01-01

    We collected lake whitefish Coregonus clupeaformis off Alpena and Tawas City, Michigan, USA in Lake Huron and off Muskegon, Michigan USA in Lake Michigan during 2002–2004. We determined energy density and percent dry weight for lake whitefish from both lakes and lipid content for Lake Michigan fish. Energy density increased with increasing fish weight up to 800 g, and then remained relatively constant with further increases in fish weight. Energy density, adjusted for weight, was lower in Lake Huron than in Lake Michigan for both small (≤800 g) and large fish (>800 g). Energy density did not differ seasonally for small or large lake whitefish or between adult male and female fish. Energy density was strongly correlated with percent dry weight and percent lipid content. Based on data from commercially caught lake whitefish, body condition was lower in Lake Huron than Lake Michigan during 1981–2003, indicating that the dissimilarity in body condition between the lakes could be long standing. Energy density and lipid content in 2002–2004 in Lake Michigan were lower than data for comparable sized fish collected in 1969–1971. Differences in energy density between lakes were attributed to variation in diet and prey energy content as well as factors that affect feeding rates such as lake whitefish density and prey abundance.

  7. Preparation of aluminium lakes by electrocoagulation

    Prapai Pradabkham

    2008-01-01

    Aluminium lakes have been prepared by electrocoagulation employing aluminium as electrodes. The electrocoagulation is conducted in an aqueous alcoholic solution and is completed within one hour. The dye content in the lake ranges approximately between 4-32%.

  8. Global Lake and River Ice Phenology Database

    National Oceanic and Atmospheric Administration, Department of Commerce — The Global Lake and River Ice Phenology Database contains freeze and thaw/breakup dates as well as other descriptive ice cover data for 865 lakes and rivers in the...

  9. Lake Tahoe Water Quality Improvement Programs

    Information on the Lake Tahoe watershed, EPA's protection efforts, water quality issues, effects of climate, change, Lake Tahoe Total Maximum Daily Load (TMDL), EPA-sponsored projects, and list of partner agencies.

  10. Biota - 2011 Vegetation Inventory - Marsh Lake, MN

    Army Corps of Engineers, Department of the Army, Department of Defense — 2011 Vegetation Classification for Marsh Lake, MN Vegetation Project Report, OMBIL Environmental Stewardship - Level 1 Inventory. Marsh Lake is located on the...

  11. Zooplankton communities in a large prealpine lake, Lake Constance: comparison between the Upper and the Lower Lake

    Gerhard MAIER

    2005-08-01

    Full Text Available The zooplankton communities of two basins of a large lake, Lake Constance, were compared during the years 2002 and 2003. The two basins differ in morphology, physical and chemical conditions. The Upper Lake basin has a surface area of 470 km2, a mean depth of 100 and a maximum depth of 250 m; the Lower Lake basin has a surface area of 62 km2, a mean depth of only 13 and a maximum depth of 40 m. Nutrient, chlorophyll-a concentrations and mean temperatures are somewhat higher in the Lower than in the Upper Lake. Total abundance of rotifers (number per m2 lake surface was higher and rotifer development started earlier in the year in the Lower than in the Upper Lake. Total abundance of crustaceans was higher in the Upper Lake in the year 2002; in the year 2003 no difference in abundance could be detected between the lake basins, although in summer crustacean abundance was higher in the Lower than in the Upper Lake. Crustacean communities differed significantly between lake basins while there was no apparent difference in rotifer communities. In the Lower Lake small crustaceans, like Bosmina spp., Ceriodaphnia pulchella and Thermocyclops oithonoides prevailed. Abundance (number per m2 lake surface of predatory cladocerans, large daphnids and large copepods was much lower in the Lower than in the Upper Lake, in particular during the summer months. Ordination with nonmetric multidimensional scaling (NMS separated communities of both lakes along gradients that correlated with temperature and chlorophyll a concentration. Clutches of copepods were larger in the Lower than in the Upper Lake. No difference could be detected in clutch size of large daphnids between lake basins. Our results show that zooplankton communities in different basins of Lake Constance can be very different. They further suggest that the lack of large crustaceans in particular the lack of large predatory cladocerans in the Lower Lake can have negative effects on growth and

  12. 33 CFR 162.220 - Hoover Dam, Lake Mead, and Lake Mohave (Colorado River), Ariz.-Nev.

    2010-07-01

    ... 33 Navigation and Navigable Waters 2 2010-07-01 2010-07-01 false Hoover Dam, Lake Mead, and Lake... REGULATIONS § 162.220 Hoover Dam, Lake Mead, and Lake Mohave (Colorado River), Ariz.-Nev. (a) Lake Mead and... the axis of Hoover Dam and that portion of Lake Mohave (Colorado River) extending 4,500 feet...

  13. Correlations between topography and intraflow width behavior in Martian and terrestrial lava flows

    Peitersen, Matthew N.; Crown, David A.

    2000-02-01

    Local correlations between topography and width behavior within lava flows at Puu Oo, Mount Etna, Glass Mountain, Cerro Bayo, Alba Patera, Tyrrhena Patera, Elysium Mons, and Olympus Mons were investigated. For each flow, width and slope data were both referenced via downflow distance as a sequence of points; the data were then divided into collections of adjacent three-point features and two-point segments. Four discrete types of analyses were conducted: (1) Three-point analysis examined positional correlations between width and slope features, (2) two-point analysis did the same for flow segments, (3) mean slope analysis included segment slope comparisons, and (4) sudden width behavior analysis measured abruptness of width changes. The distribution of types of correlations compared to random combinations of features and segments does not suggest a significant correlation between flow widths and local underlying slopes and indicates that for these flows at least, other factors have more influence on changes in width than changes in underlying topography. Mean slopes underlying narrowing, widening, and constant flow width segments were calculated. An inverse correlation between slope and width was found only at Mount Etna, where slopes underlying narrowing segments were greater than those underlying widening in 62% of the examined flows. For the majority of flows at Mount Etna, Puu Oo, and Olympus Mons, slopes were actually greatest under constant width segments; this may imply a topographically dependent resistance to width changes. The rate of change of width was also examined. Sudden width changes are relatively common at Puu Oo, Mount Etna, Elysium Mons, and Tyrrhena Patera and relatively rare at Glass Mountain, Cerro Bayo, Olympus Mons, and Alba Patera. After correction for mapping scale, Puu Oo, Mount Etna, Olympus Mons, and Alba Patera appear to fall on the same trend; Glass Mount exhibits unusually small amounts of sudden width behavior, and Tyrrhena Patera

  14. Cognate xenoliths in Mt. Etna lavas: witnesses of the high-velocity body beneath the volcano

    Corsaro, Rosa Anna; Rotolo, Silvio Giuseppe; Cocina, Ornella; Tumbarello, Gianvito

    2014-01-01

    Various xenoliths have been found in lavas of the 1763 ("La Montagnola"), 2001, and 2002-03 eruptions at Mt. Etna whose petrographic evidence and mineral chemistry exclude a mantle origin and clearly point to a cognate nature. Consequently, cognate xenoliths might represent a proxy to infer the nature of the high-velocity body (HVB) imaged beneath the volcano by seismic tomography. Petrography allows us to group the cognate xenoliths as follows: i) gabbros with amphibole and amphibole-bearing mela-gabbros, ii) olivine-bearing leuco-gabbros, iii) leuco-gabbros with amphibole, and iv) Plg-rich leuco gabbros. Geobarometry estimates the crystallization pressure of the cognate xenoliths between 1.9 and 4.1 kbar. The bulk density of the cognate xenoliths varies from 2.6 to 3.0 g/cm3. P wave velocities (V P ), calculated in relation to xenolith density, range from 4.9 to 6.1 km/s. The integration of mineralogical, compositional, geobarometric data, and density-dependent V P with recent literature data on 3D V P seismic tomography enabled us to formulate the first hypothesis about the nature of the HVB which, in the depth range of 3-13 km b.s.l., is likely made of intrusive gabbroic rocks. These are believed to have formed at the "solidification front", a marginal zone that encompasses a deep region (>5 km b.s.l.) of Mt. Etna's plumbing system, within which magma crystallization takes place. The intrusive rocks were afterwards fragmented and transported as cognate xenoliths by the volatile-rich and fast-ascending magmas of the 1763 "La Montagnola", 2001 and 2002-03 eruptions.

  15. Carbonatite and silicate melt metasomatism of the mantle surrounding the Hawaiian plume: Evidence from volatiles, trace elements, and radiogenic isotopes in rejuvenated-stage lavas from Niihau, Hawaii

    Dixon, Jacqueline; Clague, David A.; Cousens, Brian; Monsalve, Maria Luisa; Uhl, Jessika

    2008-09-01

    We present new volatile, trace element, and radiogenic isotopic compositions for rejuvenated-stage lavas erupted on Niihau and its submarine northwest flank. Niihau rejuvenated-stage Kiekie Basalt lavas are mildly alkalic and are isotopically similar to, though shifted to higher 87Sr/86Sr and lower 206Pb/204Pb than, rejuvenated-stage lavas erupted on other islands and marginal seafloor settings. Kiekie lavas display trace element heterogeneity greater than that of other rejuvenated-stage lavas, with enrichments in Ba, Sr, and light-rare earth elements resulting in high and highly variable Ba/Th and Sr/Ce. The high Ba/Th lavas are among the least silica-undersaturated of the rejuvenated-stage suite, implying that the greatest enrichments are associated with the largest extents of melting. Kiekie lavas also have high and variable H2O/Ce and Cl/La, up to 620 and 39, respectively. We model the trace element concentrations of most rejuvenated-stage lavas by small degrees (˜1% to 9%) of melting of depleted peridotite recently metasomatized by a few percent of an enriched incipient melt (0.5% melting) of the Hawaiian plume. Kiekie lavas are best explained by 4% to 13% partial melting of a peridotite source metasomatized by up to 0.2% carbonatite, similar in composition to oceanic carbonatites from the Canary and Cape Verde Islands, with lower proportion of incipient melt than that for other rejuvenated-stage lavas. Primary H2O and Cl of the carbonatite component must be high, but variability in the volatile data may be caused by heterogeneity in the carbonatite composition and/or interaction with seawater. Our model is consistent with predictions based on carbonated eclogite and peridotite melting experiments in which (1) carbonated eclogite and peridotite within the Hawaiian plume are the first to melt during plume ascent; (2) carbonatite melt metasomatizes plume and surrounding depleted peridotite; (3) as the plume rises, silica-undersaturated silicate melts are also

  16. Permanent terrestrial geodetic system for monitoring the stability of the 2007 Lava Fan in the Sciara de Fuoco (Stromboli volcano, Italy)

    Bonforte, A.; Cantarero, M.; Puglisi, G.; Spata, A.

    2009-04-01

    At the end of the 2002-2003 eruption, a terrestrial monitoring system was installed for routinely measuring the movements of benchmarks installed inside the Sciara del Fuoco (hereafter SdF) (Puglisi et al., 2005). This system, named THEODOROS, is based on a remotely controlled robotized Total Station installed near Punta Labronzo, on the northern border of the SdF. The 2007 eruption caused a dramatic change in the operations of THEODOROS. The 2007 lava flows, indeed, destroyed all benchmarks installed on the northern part of the SdF, leaving only those on its central part. This eruption produced a lava fan at the base of the SdF, due to the rapid cooling of the lava flows when entering into the sea. the continuous overlapping of several flows during the eruption, indeed, build a thick lava body (the fan); it was emplaced on a very steep slope, partially originated during the landslides occurred on December 2002, producing an hazard condition due to the possible fast sliding of this fan into the sea. In order to monitor the stability of this lava fan, a new terrestrial geodetic network, was implemented on 6 April 2007, by installing 5 reflectors along a profile crossing the lava body, approximately over the old coastline. Later on, in June 2007, 4 further reflectors were installed at higher and lower altitude with respect to the previous profile, to obtain more information on the overall deformation of the lava body. Measurements were rather noisy during the first months, but a better definition of the reference system strongly improved the quality of the data. The position of the 9 benchmarks over the lava fan allows the areal distribution of the deformation to be drawn. The measurements carried out every 10 minutes allow us to follow with high temporal detail their motion. The data collected since the end of the eruption highlighted a significant downslope motion of the entire lava fan, decreasing from the South to the North, where the body is buttressed by the

  17. lakemorpho: Calculating lake morphometry metrics in R.

    Hollister, Jeffrey; Stachelek, Joseph

    2017-01-01

    Metrics describing the shape and size of lakes, known as lake morphometry metrics, are important for any limnological study. In cases where a lake has long been the subject of study these data are often already collected and are openly available. Many other lakes have these data collected, but access is challenging as it is often stored on individual computers (or worse, in filing cabinets) and is available only to the primary investigators. The vast majority of lakes fall into a third category in which the data are not available. This makes broad scale modelling of lake ecology a challenge as some of the key information about in-lake processes are unavailable. While this valuable in situ information may be difficult to obtain, several national datasets exist that may be used to model and estimate lake morphometry. In particular, digital elevation models and hydrography have been shown to be predictive of several lake morphometry metrics. The R package lakemorpho has been developed to utilize these data and estimate the following morphometry metrics: surface area, shoreline length, major axis length, minor axis length, major and minor axis length ratio, shoreline development, maximum depth, mean depth, volume, maximum lake length, mean lake width, maximum lake width, and fetch. In this software tool article we describe the motivation behind developing lakemorpho , discuss the implementation in R, and describe the use of lakemorpho with an example of a typical use case.

  18. Study of pollution in Rawal lake

    Ahmad, M.; Khan, M.I.A.; Nisar, M.; Kaleem, M.Y.

    1999-01-01

    It was intended to establish effects of pollution on quality of water of Rawal Lake, Islamabad. Six stations were located for collection of water. The data collected and analyzed so far indicated increasing pollution in the lake Increase in growth of hydrophytes in quite evident, leading towards process of eutrophication of the lake. (author)

  19. Decline of the world's saline lakes

    Wayne A. Wurtsbaugh; Craig Miller; Sarah E. Null; R. Justin DeRose; Peter Wilcock; Maura Hahnenberger; Frank Howe; Johnnie Moore

    2017-01-01

    Many of the world’s saline lakes are shrinking at alarming rates, reducing waterbird habitat and economic benefits while threatening human health. Saline lakes are long-term basin-wide integrators of climatic conditions that shrink and grow with natural climatic variation. In contrast, water withdrawals for human use exert a sustained reduction in lake inflows and...

  20. A reactive nitrogen budget for Lake Michigan

    The reactive nitrogen budget for Lake Michigan was reviewed and updated, making use of recent estimates of watershed and atmospheric nitrogen loads. The updated total N load to Lake Michigan was approximately double the previous estimate from the Lake Michigan Mass Balance study ...

  1. Historical changes to Lake Washington and route of the Lake Washington Ship Canal, King County, Washington

    Chrzastowski, Michael J.

    1983-01-01

    Lake Washington, in the midst of the greater Seattle metropolitan area of the Puget Sound region (fig. 1), is an exceptional commercial, recreational, and esthetic resource for the region . In the past 130 years, Lake Washington has been changed from a " wild " lake in a wilderness setting to a regulated lake surrounded by a growing metropolis--a transformation that provides an unusual opportunity to study changes to a lake's shoreline and hydrologic characteristics -resulting from urbanization.

  2. First evidence of successful natural reproduction by planted lake trout in Lake Huron

    Nester, Robert T.; Poe, Thomas P.

    1984-01-01

    Twenty-two lake trout (Salvelinus namaycush) swim-up fry, 24-27 mm long, were captured with emergent fry traps and a tow net in northwestern Lake Huron on a small nearshore reef off Alpena, Michigan, between May 10 and June 1, 1982. These catches represent the first evidence of successful production of swim-up fry by planted, hatchery-reared lake trout in Lake Huron since the lake trout rehabilitation program began in 1973.

  3. Horizontal drilling under Lake Erie

    Meller, R.

    2001-07-01

    Drilling oil wells under Lake Erie calls for horizontal drilling wells to be drilled from shore out into the pay-zone under the lake. The nature and characteristics of horizontal wells as compared to vertical wells are explored. Considerations that have to be taken into account in drilling horizontal wells are explained (the degree of curvature, drilling fluid quality, geosteering in the pay-zone, steering instrumentation, measurements while drilling (MWD), logging while drilling (LWD)). The concept and reasons for extended reach wells are outlined, along with characteristic features of multilateral wells.

  4. The Lake and the City

    Konstantin Lidin

    2013-09-01

    Full Text Available The article considers relations between the city of Irkutsk and Lake Baikal in terms of cultural geography. Baikal is included in the UNESCO world heritage list. Unlike the majority of lakes also included in this list, Baikal’s coast is inhabited, especially its southern part. Similar situation is, for example, in the cluster “the city of Bergen – Geiranger village – Geirangerfjord” in Norway. The comparative analysis shows how Norway’s positive experience of the system “a city – a village – a natural phenomenon” could be used in order to make Irkutsk more attractive for tourists and citizens.

  5. Protecting the endangered lake salmon

    Soimakallio, H.; Oesch, P.

    1997-01-01

    In addition to the Ringed Seal, the labyrinthine Saimaa lake system created after the Ice Age also trapped a species of salmon, whose entire life cycle became adapted to fresh water. In order to improve the living conditions of this lake salmon which - like the ringed seal - is today classified as an endangered species, an intensive research programme has been launched. The partners include the Finnish Game and Fisheries Research Institute, fishing and environmental authorities and - in collaboration with UPM-Kymmene Oy and Kuurnan Voima Oy - the IVO subsidiary Pamilo Oy

  6. LAKE BAIKAL: Underwater neutrino detector

    Anon.

    1991-01-01

    A new underwater detector soon to be deployed in Lake Baikal in Siberia, the world's deepest lake with depths down to 1.7 kilometres, could help probe the deepest mysteries of physics. One of the big unsolved problems of astrophysics is the origin of very energetic cosmic rays. However there are many ideas on how particles could be accelerated by exotic concentrations of matter and provide the majority of the Galaxy's high energy particles. Clarification would come from new detectors picking up the energetic photons and neutrinos from these sources

  7. Protecting the endangered lake salmon

    Soimakallio, H.; Oesch, P. [ed.

    1997-11-01

    In addition to the Ringed Seal, the labyrinthine Saimaa lake system created after the Ice Age also trapped a species of salmon, whose entire life cycle became adapted to fresh water. In order to improve the living conditions of this lake salmon which - like the ringed seal - is today classified as an endangered species, an intensive research programme has been launched. The partners include the Finnish Game and Fisheries Research Institute, fishing and environmental authorities and - in collaboration with UPM-Kymmene Oy and Kuurnan Voima Oy - the IVO subsidiary Pamilo Oy

  8. Post Audit of Lake Michigan Lake Trout PCB Model Forecasts

    The Lake Michigan (LM) Mass Balance Study was conducted to measure and model polychlorinated biphenyls (PCBs) and other anthropogenic substances to gain a better understanding of the transport, fate, and effects of these substances within the system and to aid managers in the env...

  9. Feeding ecology of lake whitefish larvae in eastern Lake Ontario

    Johnson, James H.; McKenna, James E.; Chalupnicki, Marc A.; Wallbridge, Tim; Chiavelli, Rich

    2009-01-01

    We examined the feeding ecology of larval lake whitefish (Coregonus clupeaformis) in Chaumont Bay, Lake Ontario, during April and May 2004-2006. Larvae were collected with towed ichthyoplankton nets offshore and with larval seines along the shoreline. Larval feeding periodicity was examined from collections made at 4-h intervals over one 24-h period in 2005. Inter-annual variation in diet composition (% dry weight) was low, as was spatial variation among collection sites within the bay. Copepods (81.4%), primarily cyclopoids (59.1%), were the primary prey of larvae over the 3-year period. Cladocerans (8.1%; mainly daphnids, 6.7%) and chironomids (7.3%) were the other major prey consumed. Larvae did not exhibit a preference for any specific prey taxa. Food consumption of lake whitefish larvae was significantly lower at night (i.e., 2400 and 0400 h). Substantial variation in diet composition occurred over the 24-h diel study. For the 24-h period, copepods were the major prey consumed (50.4%) and their contribution in the diet ranged from 29.3% (0400 h) to 85.9% (1200 h). Chironomids made up 33.4% of the diel diet, ranging from 8.0% (0800 h) to 69.9% (0400 h). Diel variation in the diet composition of lake whitefish larvae may require samples taken at several intervals over a 24-h period to gain adequate representation of their feeding ecology.

  10. Mitigation of lava flow invasion hazard through optimized barrier configuration aided by numerical simulation: The case of the 2001 Etna eruption

    Scifoni, S.; Coltelli, M.; Marsella, M.; Proietti, C.; Napoleoni, Q.; Vicari, A.; Del Negro, C.

    2010-04-01

    Lava flow spreading along the flanks of Etna volcano often produces damages to the land and proprieties. The impact of these eruptions could be mitigated by building artificial barriers for controlling and slowing down the lava, as recently experienced in 1983, 1991-1993, 2001 and 2002. This study investigates how numerical simulations can be adopted for evaluating the effectiveness of barrier construction and for optimizing their geometry, considering as test case the lava flows emplaced on Etna's south flank during 2001. The flow temporal evolutions were reconstructed deriving the effusion rate trends, together with the pre-eruption topography were adopted as input data of the MAGFLOW simulation code. Three simulations were then conducted to simulate lava flow with and without barriers. The first aimed at verifying the reconstruction of the effusion rate trends, while the others at assessing the performance of the barrier system realized during the eruption in comparison with an alternative solution here proposed. A quantitative analysis carried out on the first simulation confirms the suitability of the selected test case. The comparison of the three simulated thickness distributions showed both the effectiveness of the barriers in slowing down the lava flow and the sensitivity of the MAGFLOW code to the topographical variations represented by the barriers. Finally, for reducing both the time necessary to erect the barrier and the barrier environmental impact, the gabion's barrier construction was analyzed. The implemented and tested procedure enforces the capability of using numerical simulations for designing optimized lava flow barriers aimed at making swifter mitigatory actions upon lava flows and improving the effectiveness of civil protection interventions during emergencies.

  11. Isotope techniques in lake water studies

    Gourcy, L.

    1999-01-01

    Freshwater lakes are among the most easily exploitable freshwater resources. Lakes are also recognized as major sedimentological features in which stored material can be used to study recent climate and pollution evolution. To adequately preserve these important landscape features, and to use them as climatic archives, an improved understanding of processes controlling their hydrologic and bio-geochemical environments if necessary. This article briefly describes the IAEA activities related to the study of lakes in such areas as lake budget, lake dynamics, water contamination, and paleolimnological investigations

  12. A glassy lava flow from Toconce volcano and its relation with the Altiplano-Puna Magma Body in Central Andes

    Godoy, B.; Rodriguez, I.; Aguilera, F.

    2012-12-01

    Toconce is a composite stratovolcano located at the San Pedro - Linzor volcanic chain (SPLVC). This volcanic chain distributes within the Altiplano-Puna region (Central Andes) which is characterized by extensive rhyodacitic-to-rhyolitic ignimbritic fields, and voluminous domes of dacitic-to-rhyolitic composition (de Silva, 1989). The felsic melts that gave origin to ignimbrites and domes at this area were generated by mixing of mantle-derived magmas and anatectic melts assimilated during their ascent through the thick crust. Thus, partially molten layers exist in the upper crust below the APVC (de Silva et al., 2006). Evidence of large volumes of such melts has been also proposed by geophysical methods (i.e. the Altiplano-Puna Magma Body; Chmielowsky et al., 1999) In this work, petrography and whole rock, mineralogical and melt inclusions geochemistry of a glassy lava flow of Toconce volcano are presented. Petrographically, this lava flow shows a porphyric texture, with euhdral to subhedral plagioclase, ortho- and clino-pyroxene phenocrysts immersed in a glassy groundmass. Geochemically, the lava flow has 64.7% wt. SiO2. The glassy groundmass (~70% wt. SiO2) is more felsic than all the lavas in the volcanic chain (47-68% wt., Godoy et al., 2011). Analyzed orthopyroxene-hosted melt inclusions show an even higher SiO2 content (72-75% wt.), and a decreasing on Al2O3, Na2O, and CaO content with differentiation. Crystallization pressures of this lava flow, obtained using Putirka's two-pyroxene and clinopyroxene-liquid models (Putirka, 2008), range between 6 and 9 kbar. According to crystallization pressures, and major element composition, a felsic source located at shallow crustal pressures - where plagioclase is a stable mineralogical phase - originated the inclusions. This could be related to the presence of the Altiplano-Puna Magma Body (APMB) located below SPLVC. On the other hand, glassy groundmass, and disequilibrium textures in minerals of this lava flow could

  13. Thermal history of Hawaiian pāhoehoe lava crusts at the glass transition: implications for flow rheology and emplacement

    Gottsmann, Joachim; Harris, Andrew J. L.; Dingwell, Donald B.

    2004-12-01

    We have investigated the thermal history of glassy pāhoehoe crusts across their glass transition. Ten different samples obtained between 1993 and 2003 from the active flow field of the Pu'u 'O'o-Kupaianaha eruption on Hawaii (USA) have been analysed using relaxation geospeedometry. This method employs differential scanning calorimetry to quantify the enthalpic relaxation of the glass to monitor the natural time-temperature (t-T) path followed by the melt during cooling across its glass transition. Cooling rates across the glass transition interval (at 1000- 900 K) have been found to vary between 8 and 140 K/min. The associated glass transition temperatures are up to 400 K, lower than previously anticipated by others. Melt viscosities at the glass transition for these crusts range from 10 9.4 to 10 10.7 Pa s. We have compared the t-T paths quantified via relaxation geospeedometry with those obtained from direct measurements on the active flow field. The calorimetrically determined cooling rates are consistent with either simple cooling from eruption temperatures to temperatures below the glass transition or more complex cooling paths, including periods of reheating and short-term annealing within the glass transition interval. By quantifying the relaxation times associated with these contrasting cooling histories, we show that secondary vesiculation of pāhoehoe flow crusts may be favoured by complex, nonlinear t-T paths within the glass transition. These constraints also allow us to evaluate the time scales associated with the crystallisation and inflation of flow lobes at the glass transition for different pāhoehoe lava flow types. Our results provide important quantifications of rheological parameters at the lower temperature range of viscoelastic deformation in basaltic lava flows. As such, the results may be helpful in refining models for the generation of continental flood basalt flows, as well as models of basaltic lava flow propagation for hazard

  14. The Use of Surveillance Cameras for the Rapid Mapping of Lava Flows: An Application to Mount Etna Volcano

    Mauro Coltelli

    2017-02-01

    Full Text Available In order to improve the observation capability in one of the most active volcanic areas in the world, Mt. Etna, we developed a processing method to use the surveillance cameras for a quasi real-time mapping of syn-eruptive processes. Following an evaluation of the current performance of the Etna permanent ground NEtwork of Thermal and Visible Sensors (Etna_NETVIS, its possible implementation and optimization was investigated to determine the locations of additional observation sites to be rapidly set up during emergencies. A tool was then devised to process time series of ground-acquired images and extract a coherent multi-temporal dataset of georeferenced map. The processed datasets can be used to extract 2D features such as evolution maps of active lava flows. The tool was validated on ad-hoc test fields and then adopted to map the evolution of two recent lava flows. The achievable accuracy (about three times the original pixel size and the short processing time makes the tool suitable for rapidly assessing lava flow evolutions, especially in the case of recurrent eruptions, such as those of the 2011–2015 Etna activity. The tool can be used both in standard monitoring activities and during emergency phases (eventually improving the present network with additional mobile stations when it is mandatory to carry out a quasi-real-time mapping to support civil protection actions. The developed tool could be integrated in the control room of the Osservatorio Etneo, thus enabling the Etna_NETVIS for mapping purposes and not only for video surveillance.

  15. Geomorphology and petrography of the Angeles lava flow and the Monte de la Cruz cinder cone, Barva Volcano, Costa Rica

    Rojas, Vanessa; Barahona, Dione; Alvarado, Guillermo E

    2017-01-01

    A geomorphological and pretrographic study was carried out at the lava flow Angeles and the Monte de la Cruz cone in the foothills of the Volcan Barva in Costa Rica. The 1967 aerial photographs at scale 1: 17,000 and 1: 13,000, 1992 at scale 1: 60,000 and TERRA 1997 at scale 1: 40,000 were used for the photogeological study, supplemented with the analysis of the eastern sector of the Hoja Topografica Barva (1: 50 000) of the Instituto Geografico Nacional (IGN) and other topographic maps at different scales (1: 25 000 and 1: 10 000), in addition to the digital elevation models developed through Sistemas de Informacion Geografica (SIG). The information extracted from the wells of the Sistema Nacional de Aguas Subterraneas, Riego y Avenamiento (SENARA) for underground control was reinterpreted. In the field work thicknesses were measured and an estimation of the volumes, dimensions of the cast and other associated geoforms was made. Likewise, 9 samples of rock were selected for the elaboration of thin sections and for their respective petrographic analysis, which allowed to define the main lava flow units and their possible flows. As a result of the volcanic activity of the cone, two flow units of the Angeles wash were identified, the Lower Angels unit and the Superior Angels unit. Petrographically, Angeles Inferior was reciprocated with an andesitic vesical basaltic lava with a porphyritic to slightly glomeroporphyric hypocrystalline texture, with plagioclase, clinopyroxene, orthopyroxene, olivine and opaque phenocrysts. On the other hand, Superior Angeles has been vesicular andesitic with a hypocrystalline texture, glomeroporfiritica to serial glomeroporfiritica, with plagioclase, clinopyroxene, orthopyroxene, olivine and opaque phenocrysts. Morphologically, kipukas and levees were observed. Regionally, it was observed that the Monte de la Cruz cone, along with other smaller satellite cones, are aligned N19 O W along 8.5 km, evidencing an origin associated with a

  16. Isotopic patterns in silicic ignimbrites and lava flows of the Mogan and lower Fataga Formations, Gran Canaria, Canary Islands

    Cousens, B.L.; Tilton, G.R.; Spera, F.J.

    1990-01-01

    We report the Sr, Pb, and Nd isotopic composition of thirty-six intercalated extracaldera silicic ignimbrites and basaltic lavas of the Miocene Hogarzales, Mogan, and Fataga Formations, Gran Canaria, Canary Islands. The aims are to constrain petrogenetic models for the silicic volcanics, and determine mantle source characteristics and temporal variations between 14.2 and ≅ 12.1 Ma. Feldspars from the extracaldera silicic ignimbrites are identical in isotopic composition to coeval extracaldera basaltic lavas, supporting a fractional crystallization model for the evolved lavas from parental Hogarzales basalts. 87 Sr/ 86 Sr ratios range from 0.70306 to 0.70341, 206 Pb/ 204 Pb from 19.32 to 19.90, 207 Pb/ 204 Pb from 15.56 to 15.65, and 208 Pb/ 204 Pb from 38.82 to 39.65. 143 Nd/ 144 Nd ratios are nearly constant at 0.512913±15. The source of Gran Canaria magmas is heterogeneous on small scales of both time and distance. Isotope-isotope and isotope-incompatible element plots suggest mixing between well-mixed, slightly enriched mantle (similar to PREMA as defined by Zindler and Hart) and the HIMU mantle component. The proportion of HIMU component (low 87 Sr/ 86 Sr, high 206 Pb/ 204 Pb) increases upsection. Stratigraphic patterns in major, trace element, and isotopic compositions may be explained by the influx of a geochemically distinct ''Fataga'' magma into the Tejeda magma chamber, which mixed with and/or finally completely displaced existing ''Lower Mogan'' magmas. Alternatively, mixing of these two end members could occur in the mantle, prior to injection into the chamber. There is no evidence of lithospheric/asthenospheric contamination in the late-stage shield magmas on Gran Canaria. (orig.)

  17. Decline of the world's saline lakes

    Wurtsbaugh, Wayne A.; Miller, Craig; Null, Sarah E.; Derose, R. Justin; Wilcock, Peter; Hahnenberger, Maura; Howe, Frank; Moore, Johnnie

    2017-11-01

    Many of the world's saline lakes are shrinking at alarming rates, reducing waterbird habitat and economic benefits while threatening human health. Saline lakes are long-term basin-wide integrators of climatic conditions that shrink and grow with natural climatic variation. In contrast, water withdrawals for human use exert a sustained reduction in lake inflows and levels. Quantifying the relative contributions of natural variability and human impacts to lake inflows is needed to preserve these lakes. With a credible water balance, causes of lake decline from water diversions or climate variability can be identified and the inflow needed to maintain lake health can be defined. Without a water balance, natural variability can be an excuse for inaction. Here we describe the decline of several of the world's large saline lakes and use a water balance for Great Salt Lake (USA) to demonstrate that consumptive water use rather than long-term climate change has greatly reduced its size. The inflow needed to maintain bird habitat, support lake-related industries and prevent dust storms that threaten human health and agriculture can be identified and provides the information to evaluate the difficult tradeoffs between direct benefits of consumptive water use and ecosystem services provided by saline lakes.

  18. Ohio Lake Erie Commission Homepage

    management of Lake Erie: including, water quality protection, fisheries management, wetlands restoration over 365 projects since 1993. Projects have focused on an array of issues critical to the effective quality of its waters and ecosystem, and to promote economic development of the region by ensuring the

  19. Schistosomiasis in Lake Malawi villages

    Madsen, Henry; Bloch, Paul; Makaula, Peter

    2011-01-01

    Historically, open shorelines of Lake Malawi were free from schistosome, Schistosoma haematobium, transmission, but this changed in the mid-1980s, possibly as a result of over-fishing reducing density of molluscivore fishes. Very little information is available on schistosome infections among...

  20. Pollutant transformations over Lake Michigan

    Alkezweeny, A.J.; Arbuthnot, D.R.; Busness, K.M.; Easter, R.C.; Hales, J.M.; Lee, R.N.; Young, J.M.

    1979-01-01

    An aircraft, a chartered boat, and a constant altitude balloon were used to study pollutant transformations over Lake Michigan in a Lagrangian frame of reference. The experiments were conducted during the summer under strong atmospheric stability where diffusion and dry deposition of pollutants can be neglected

  1. The lakes of the Jordan Rift Valley

    Gat, J.R.

    2001-01-01

    This paper presents a summary of the proceedings of a workshop on the Lakes of the Jordan Rift Valley that was held in conjunction with the CRP on The Use of Isotope Techniques in Lake Dynamics Investigations. The paper presents a review of the geological, hydrogeological and physical limnological setting of the lakes in the Jordan Rift Valley, Lake Hula, Lake Kinneret and the Dead Sea. This is complemented by a description of the isotope hydrology of the system that includes the use of a wide range of isotopes: oxygen-18, deuterium, tritium, carbon-14, carbon-13, chlorine isotopes, boron-11 and helium-3/4. Environmental isotope aspects of the salt balances of the lakes, their palaeolimnology and biogeochemical tracers are also presented. The scope of application of isotopic tracers is very broad and provides a clear insight into many aspects of the physical, chemical and biological limnology of the Rift Valley Lakes. (author)

  2. Eutrophication potential of Payette Lake, Idaho

    Woods, Paul F.

    1997-01-01

    Payette Lake was studied during water years 1995-96 to determine the 20.5-square-kilometer lake's assimilative capacity for nutrients and, thus, its eutrophication potential. The study included quantification of hydrologic and nutrient budgets, characterization of water quality in the limnetic and littoral zones, development of an empirical nutrient load/lake response model, and estimation of the limnological effects of a large-scale forest fire in the lake's 373-square-kilometer watershed during the autumn of 1994. Streamflow from the North Fork Payette River, the lake's primary tributary, delivered about 73 percent of the lake's inflow over the 2 years. Outflow from the lake, measured since 1908, was 128 and 148 percent of the long-term average in 1995 and 1996, respectively. The larger volumes of outflow reduced the long-term average water-

  3. Simulating the lava flow formed during the 2014-2015 Holuhraun eruption (Bardarbunga volcanic system, Iceland) by using the new F-L probabilistic code

    Tarquini, Simone; de'Michieli Vitturi, Mattia; Jensen, Esther H.; Barsotti, Sara; Pedersen, Gro B. M.; Coppola, Diego

    2015-04-01

    The 2014-2015 fissure eruption in Holuhraun started when a new code (named F-L) was being developed. The availability of several digital Elevation Models of the area inundated by the lava and the availability of continuously updated maps of the flow (collected in the field and through remote sensing imagery) provided an excellent opportunity for testing and calibrating the new code against an evolving flow field. Remote sensing data also provided a constrain on the effusion rate. Existing numerical codes for the simulation of lava flow emplacement are based either on the solution of some simplification of the physical governing equations of this phenomenon (the so-called "deterministic codes" - e.g. Hidaka et al. 2005; Crisci et al. 2010), or, instead, on the evidence that lava flows tend to follow the steepest descent path from the vent downhill (the so-called "probabilistic codes" - e.g. Favalli et al. 2005). F-L is a new code for the simulation of lava flows, which rests on an approach similar to the one introduced by Glaze and Baloga (2013), and can be ascribed to the "probabilistic family" of lava flow simulation codes. Nevertheless, in contrast with other probabilistic codes (e.g. Favalli et al. 2005), this code explicitly tackles not only the direction of expansion of the growing flow and the area covered, but also the volume of the emplaced lava over time, and hence the supply rate. As a result, this approach bridges the stochastic point of view of a plain probabilistic code with one of the most critical among the input parameters considered by deterministic codes, which is the effusion rate during the course of an eruption. As such, a similar code, in principle, can tackle several aspects which were previously not addressed within the probabilistic approach, which are: (i) the 3D morphology of the flow field (i.e. thickness), (ii) the implications of the effusion rate in the growth of the flow field, and (iii) the evolution of the lava coverage over time

  4. Synthetic analyses of the LAVA experimental results on in-vessel corium retention through gap cooling

    Kang, Kyoung Ho; Cho, Young Ro; Koo, Kil Mo; Park, Rae Joon; Kim, Jong Hwan; Kim, Jong Tae; Ha, Kwang Sun; Kim, Sang Baik; Kim, Hee Dong

    2001-03-01

    LAVA(Lower-plenum Arrested Vessel Attack) has been performed to gather proof of gap formation between the debris and lower head vessel and to evaluate the effect of the gap formation on in-vessel cooling. Through the total of 12 tests, the analyses on the melt relocation process, gap formation and the thermal and mechanical behaviors of the vessel were performed. The thermal behaviors of the lower head vessel were affected by the formation of the fragmented particles and melt pool during the melt relocation process depending on mass and composition of melt and subcooling and depth of water. During the melt relocation process 10.0 to 20.0 % of the melt mass was fragmented and also 15.5 to 47.5 % of the thermal energy of the melt was transferred to water. The experimental results address the non-adherence of the debris to the lower head vessel and the consequent gap formation between the debris and the lower head vessel in case there was an internal pressure load across the vessel abreast with the thermal load induced by the thermite melt. The thermal behaviors of the lower head vessel during the cooldown period were mainly affected by the heat removal characteristics through this gap, which were determined by the possibilities of the water ingression into the gap depending on the melt composition of the corium simulant. The enhanced cooling capacity through the gap was distinguished in the Al 2 O 3 melt tests. It could be inferred from the analyses on the heat removal capacity through the gap that the lower head vessel could effectively cooldown via heat removal in the gap governed by counter current flow limits(CCFL) even if 2mm thick gap should form in the 30 kg Al 2 O 3 melt tests, which was also confirmed through the variations of the conduction heat flux in the vessel and rapid cool down of the vessel outer surface in the Al 2 O 3 melt tests. In the case of large melt mass of 70 kg Al 2 O 3 melt, however, the infinite possibility of heat removal through the

  5. Evidence from lava flows for complex polarity transitions: The new composite Steens Mountain reversal record

    Jarboe, Nicholas A.; Coe, Robert S.; Glen, Jonathan M. G.

    2011-01-01

    Geomagnetic polarity transitions may be significantly more complex than are currently depicted in many sedimentary and lava-flow records. By splicing together paleomagnetic results from earlier studies at Steens Mountain with those from three newly studied sections of Oregon Plateau flood basalts at Catlow Peak and Poker Jim Ridge 70–90 km to the southeast and west, respectively, we provide support for this interpretation with the most detailed account of a magnetic field reversal yet observed in volcanic rocks. Forty-five new distinguishable transitional (T) directions together with 30 earlier ones reveal a much more complex and detailed record of the 16.7 Ma reversed (R)-to-normal (N) polarity transition that marks the end of Chron C5Cr. Compared to the earlier R-T-N-T-N reversal record, the new record can be described as R-T-N-T-N-T-R-T-N. The composite record confirms earlier features, adds new west and up directions and an entire large N-T-R-T segment to the path, and fills in directions on the path between earlier directional jumps. Persistent virtual geomagnetic pole (VGP) clusters and separate VGPs have a preference for previously described longitudinal bands from transition study compilations, which suggests the presence of features at the core–mantle boundary that influence the flow of core fluid and distribution of magnetic flux. Overall the record is consistent with the generalization that VGP paths vary greatly from reversal to reversal and depend on the location of the observer. Rates of secular variation confirm that the flows comprising these sections were erupted rapidly, with maximum rates estimated to be 85–120 m ka−1 at Catlow and 130–195 m ka−1 at Poker Jim South. Paleomagnetic poles from other studies are combined with 32 non-transitional poles found here to give a clockwise rotation of the Oregon Plateau of 11.4°± 5.6° with respect to the younger Columbia River Basalt Group flows to the north and 14.5°± 4.6° with respect

  6. Integrated, multi-parameter, investigation of eruptive dynamics at Santiaguito lava dome, Guatemala

    Lavallée, Yan; De Angelis, Silvio; Rietbrock, Andreas; Lamb, Oliver; Hornby, Adrian; Lamur, Anthony; Kendrick, Jackie E.; von Aulock, Felix W.; Chigna, Gustavo

    2016-04-01

    Understanding the nature of the signals generated at volcanoes is central to hazard mitigation efforts. Systematic identification and understanding of the processes responsible for the signals associated with volcanic activity are only possible when high-resolution data are available over relatively long periods of time. For this reason, in November 2014, the Liverpool Earth Observatory (LEO), UK, in collaboration with colleagues of the Instituto Nacional de Sismologia, Meteorologia e Hidrologia (INSIVUMEH), Guatemala, installed a large multi-parameter geophysical monitoring network at Santiaguito - the most active volcano in Guatemala. The network, which is to date the largest temporary deployment on Santiaguito, includes nine three-component broadband seismometers, three tiltmeters, and five infrasound microphones. Further, during the initial installation campaign we conducted visual and thermal infrared measurements of surface explosive activity and collected numerous rock samples for geochemical, geophysical and rheological characterisation. Activity at Santiaguito began in 1922, with the extrusion of a series of lava domes. In recent years, persistent dome extrusion has yielded spectacularly episodic piston-like motion displayed by characteristic tilt/seismic patterns (Johnson et al, 2014). This cyclicity episodically concludes with gas emissions or gas-and-ash explosions, observed to progress along a complex fault system in the dome. The explosive activity is associated with distinct geophysical signals characterised by the presence of very-long period earthquakes as well as more rapid inflation/deflation cycles; the erupted ash further evidences partial melting and thermal vesiculation resulting from fault processes (Lavallée et al., 2015). One year of data demonstrates the regularity of the periodicity and intensity of the explosions; analysis of infrasound data suggests that each explosion expulses on the order of 10,000-100,000 kg of gas and ash. We

  7. Isotopic constraints on the genesis and evolution of basanitic lavas at Haleakala, Island of Maui, Hawaii

    Phillips, Erin H.; Sims, K.W.W.; Sherrod, David R.; Salters, Vincent; Blusztajn, Jurek; Dulaiova, Henrieta

    2016-01-01

    To understand the dynamics of solid mantle upwelling and melting in the Hawaiian plume, we present new major and trace element data, Nd, Sr, Hf, and Pb isotopic compositions, and 238U–230Th–226Ra and 235U–231Pa–227Ac activities for 13 Haleakala Crater nepheline normative basanites with ages ranging from ∼900 to 4100 yr B.P. These basanites of the Hana Volcanics exhibit an enrichment in incompatible trace elements and a more depleted isotopic signature than similarly aged Hawaiian shield lavas from Kilauea and Mauna Loa. Here we posit that as the Pacific lithosphere beneath the active shield volcanoes moves away from the center of the Hawaiian plume, increased incorporation of an intrinsic depleted component with relatively low 206Pb/204Pb produces the source of the basanites of the Hana Volcanics. Haleakala Crater basanites have average (230Th/238U) of 1.23 (n = 13), average age-corrected (226Ra/230Th) of 1.25 (n = 13), and average (231Pa/235U) of 1.67 (n = 4), significantly higher than Kilauea and Mauna Loa tholeiites. U-series modeling shows that solid mantle upwelling velocity for Haleakala Crater basanites ranges from ∼0.7 to 1.0 cm/yr, compared to ∼10 to 20 cm/yr for tholeiites and ∼1 to 2 cm/yr for alkali basalts. These modeling results indicate that solid mantle upwelling rates and porosity of the melting zone are lower for Hana Volcanics basanites than for shield-stage tholeiites from Kilauea and Mauna Loa and alkali basalts from Hualalai. The melting rate, which is directly proportional to both the solid mantle upwelling rate and the degree of melting, is therefore greatest in the center of the Hawaiian plume and lower on its periphery. Our results indicate that solid mantle upwelling velocity is at least 10 times higher at the center of the plume than at its periphery under Haleakala.

  8. Lava flow field emplacement studies of Manua Ulu (Kilauea Volcano, Hawai'i, United States) and Venus, using field and remote sensing analyses

    Byrnes, Jeffrey Myer

    2002-04-01

    This work examines lava emplacement processes by characterizing surface units using field and remote sensing analyses in order to understand the development of lava flow fields. Specific study areas are the 1969--1974 Mauna Ulu compound flow field, (Kilauea Volcano, Hawai'i, USA), and five lava flow fields on Venus: Turgmam Fluctus, Zipaltonal Fluctus, the Tuli Mons/Uilata Fluctus flow complex, the Var Mons flow field, and Mylitta Fluctus. Lava surface units have been examined in the field and with visible-, thermal-, and radar-wavelength remote sensing datasets for Mauna Ulu, and with radar data for the Venusian study areas. For the Mauna Ulu flow field, visible characteristics are related to color, glass abundance, and dm- to m-scale surface irregularities, which reflect the lava flow regime, cooling, and modification due to processes such as coalescence and inflation. Thermal characteristics are primarily affected by the abundance of glass and small-scale roughness elements (such as vesicles), and reflect the history of cooling, vesiculation and degassing, and crystallization of the lava. Radar characteristics are primarily affected by unit topography and fracturing, which are related to flow inflation, remobilization, and collapse, and reflect the local supply of lava during and after unit emplacement. Mauna Ulu surface units are correlated with pre-eruption topography, lack a simple relationship to the main feeder lava tubes, and are distributed with respect to their position within compound flow lobes and with distance from the vent. The Venusian lava flow fields appear to have developed through emplacement of numerous, thin, simple and compound flows, presumably over extended periods of time, and show a wider range of radar roughness than is observed at Mauna Ulu. A potential correlation is suggested between flow rheology and surface roughness. Distributary flow morphologies may result from tube-fed flows, and flow inflation is consistent with observed

  9. Miocene Basaltic Lava Flows and Dikes of the Intervening Area Between Picture Gorge and Steens Basalt of the CRBG, Eastern Oregon

    Cahoon, E. B.; Streck, M. J.

    2016-12-01

    Mid-Miocene basaltic lavas and dikes are exposed in the area between the southern extent of the Picture Gorge Basalt (PGB) and the northern extent of Steens Basalt in a wide corridor of the Malheur National Forest, eastern Oregon. An approximate mid-Miocene age of sampled basaltic units is indicated by stratigraphic relationships to the 16 Ma Dinner Creek Tuff. Lavas provide an opportunity to extend and/or revise distribution areas of either CRBG unit and explore the petrologic transition between them. The PGB and the Steens Basalt largely represent geochemically distinct tholeiitic units of the CRBG; although each unit displays internal complexity. Lavas of PGB are relatively primitive (MgO 5-9 wt.%) while Steens Basalt ranges in MgO from >9 to 3 wt.% but both units are commonly coarsely porphyritic. Conversely, Steens Basalt compositions are on average more enriched in highly incompatible elements (e.g. Rb, Th) and relatively enriched in the lesser incompatible elements (e.g. Y, Yb) compared to the Picture Gorge basalts. These compositional signatures produce inclined and flat patterns on mantle-normalized incompatible trace element plots but with similar troughs and spikes, respectively. New compositional data from our study area indicate basaltic lavas can be assigned as PGB lava flows and dikes, and also to a compositional group chemically distinct between Steens Basalt and PGB. Distribution of lava flows with PGB composition extend this CRBG unit significantly south/southeast closing the exposure gap between PGB and Steens Basalt. We await data that match Steens Basalt compositions but basaltic lavas with petrographic features akin to Steens Basalt have been identified in the study area. Lavas of the transitional unit share characteristics with Upper Steens and Picture Gorge basalt types, but identify a new seemingly unique composition. This composition is slightly more depleted in the lesser incompatible elements (i.e. steeper pattern) on mantle normalized

  10. Contaminant Monitoring Strategy for Henrys Lake, Idaho

    John S. Irving; R. P. Breckenridge

    1992-12-01

    Henrys Lake, located in southeastern Idaho, is a large, shallow lake (6,600 acres, {approx} 17.1 feet maximum depth) located at 6,472 feet elevation in Fremont Co., Idaho at the headwaters of the Henrys Fork of the Snake River. The upper watershed is comprised of high mountains of the Targhee National Forest and the lakeshore is surrounded by extensive flats and wetlands, which are mostly privately owned. The lake has been dammed since 1922, and the upper 12 feet of the lake waters are allocated for downriver use. Henrys Lake is a naturally productive lake supporting a nationally recognized ''Blue Ribbon'' trout fishery. There is concern that increasing housing development and cattle grazing may accelerate eutrophication and result in winter and early spring fish kills. There has not been a recent thorough assessment of lake water quality. However, the Department of Environmental Quality (DEQ) is currently conducting a study of water quality on Henrys Lake and tributary streams. Septic systems and lawn runoff from housing developments on the north, west, and southwest shores could potentially contribute to the nutrient enrichment of the lake. Many houses are on steep hillsides where runoff from lawns, driveways, etc. drain into wetland flats along the lake or directly into the lake. In addition, seepage from septic systems (drainfields) drain directly into the wetlands enter groundwater areas that seep into the lake. Cattle grazing along the lake margin, riparian areas, and uplands is likely accelerating erosion and nutrient enrichment. Also, cattle grazing along riparian areas likely adds to nutrient enrichment of the lake through subsurface flow and direct runoff. Stream bank and lakeshore erosion may also accelerate eutrophication by increasing the sedimentation of the lake. Approximately nine streams feed the lake (see map), but flows are often severely reduced or completely eliminated due to irrigation diversion. In addition, subsurface

  11. Life history of lake herring of Green Bay, Lake Michigan

    Smith, Stanford H.

    1956-01-01

    Although the lake herring has been an important contributor to the commercial fish production of Green Bay, little has been known about it. This study is based on field observations and data from about 6,500 lake herring collected over the period 1948 to 1952. Relatively nonselective commercial pound nets were a primary source of material for the study of age and growth. Commercial and experimental gill nets were used to obtain data on gear selectivity and vertical distribution. Scales were employed to investigate age and growth. Age group IV normally dominated commercial catches during the first half of the calendar year and age group III the last half. At these ages the fish averaged about 10.5 inches in length. The season's growth started in May, was most rapid in July, and terminated near the end of October. The sexes grew at the same rate. Selectivity of fishing gear was found to influence the estimation of growth. Geographical and annual differences in growth are shown. Factors that might contribute to discrepancies in calculated growth are evaluated. Possible real and apparent causes of growth compensation are given. The relation between length and weight is shown to vary with sex, season, year, and method of capture. Females were relatively more plentiful in commercial catches in February than in May through December. The percentage of females decreased with increase in age in pound-net catches but increased with age in gill-net samples. Within a year class the percentage of females decreased with increase in age. Most Green Bay lake herring mature during their second or third year of life. They are pelagic spawners with most intensive spawning over shallow areas. Spawning takes place between mid-November and mid-December, and eggs hatch in April and May. Lake herring ovaries contained from 3,500 to 11,200 eggs (averaged 6,375). Progress of spawning by age, sex, and length is given. Lake herring were distributed at all depths in Green Bay in early May, were

  12. Spatial and temporal genetic diversity of lake whitefish (Coregonus clupeaformis (Mitchill)) from Lake Huron and Lake Erie

    Stott, Wendylee; Ebener, Mark P.; Mohr, Lloyd; Hartman, Travis; Johnson, Jim; Roseman, Edward F.

    2013-01-01

    Lake whitefish (Coregonus clupeaformis (Mitchill)) are important commercially, culturally, and ecologically in the Laurentian Great Lakes. Stocks of lake whitefish in the Great Lakes have recovered from low levels of abundance in the 1960s. Reductions in abundance, loss of habitat and environmental degradation can be accompanied by losses of genetic diversity and overall fitness that may persist even as populations recover demographically. Therefore, it is important to be able to identify stocks that have reduced levels of genetic diversity. In this study, we investigated patterns of genetic diversity at microsatellite DNA loci in lake whitefish collected between 1927 and 1929 (historical period) and between 1997 and 2005 (contemporary period) from Lake Huron and Lake Erie. Genetic analysis of lake whitefish from Lakes Huron and Erie shows that the amount of population structuring varies from lake to lake. Greater genetic divergences among collections from Lake Huron may be the result of sampling scale, migration patterns and demographic processes. Fluctuations in abundance of lake whitefish populations may have resulted in periods of increased genetic drift that have resulted in changes in allele frequencies over time, but periodic genetic drift was not severe enough to result in a significant loss of genetic diversity. Migration among stocks may have decreased levels of genetic differentiation while not completely obscuring stock boundaries. Recent changes in spatial boundaries to stocks, the number of stocks and life history characteristics of stocks further demonstrate the potential of coregonids for a swift and varied response to environmental change and emphasise the importance of incorporating both spatial and temporal considerations into management plans to ensure that diversity is preserved.

  13. TECTONIC VERSUS VOLCANIC ORIGIN OF THE SUMMIT DEPRESSION AT MEDICINE LAKE VOLCANO, CALIFORNIA

    Mark Leon Gwynn

    2010-05-01

    Medicine Lake Volcano is a Quaternary shield volcano located in a tectonically complex and active zone at the transition between the Basin and Range Province and the Cascade Range of the Pacific Province. The volcano is topped by a 7x12 km elliptical depression surrounded by a discontinuous constructional ring of basaltic to rhyolitic lava flows. This thesis explores the possibility that the depression may have formed due to regional extension (rift basin) or dextral shear (pull-apart basin) rather than through caldera collapse and examines the relationship between regional tectonics and localized volcanism. Existing data consisting of temperature and magnetotelluric surveys, alteration mineral studies, and core logging were compiled and supplemented with additional core logging, field observations, and fault striae studies in paleomagnetically oriented