WorldWideScience

Sample records for iii iron magnesium

  1. Precipitation of iron (III) using magnesium oxide in fluidized bed

    International Nuclear Information System (INIS)

    Esteban-Bocardo, P. A.; Ferreira-Rocha, S. D.

    2006-01-01

    A process for iron (III) removal by hydroxide precipitation from and acid synthetic inorganic effluent using magnesium oxide as an alternative precipitant agent in a fluidized bed was developed. An acid synthetic inorganic effluent containing 100 and 200 mg/l of ferric ions (pH=1.0) was continuously fed up to the acrylic column (30 cm high and 2 cm diameter) during 180 minutes. Magnesium oxide pulp (3% v/v) was injected at the beginning of the experiment in order to allow the iron hydroxides precipitation. The concentration and pH profiles agreed in their curves, while the pH profile rose,the concentration profile decreased and a high percentage of iron removal /higher to 99%) was reached. Extremely low iron concentrations have been reached, thus permitting to attend to the environmental standard of 10.0 mg/l for discharge of effluent containing ferric ions established by the law DN 10/86 of COPAM (Conselho de Politica Ambiental do Estado de Minas Gerais-Brazil). (Author)

  2. Precipitation of iron (III) using magnesium oxide in fluidized bed; Precipitacion de hierro (III) utilizando oxido de magnesio en lecho fluidizado

    Energy Technology Data Exchange (ETDEWEB)

    Esteban-Bocardo, P. A.; Ferreira-Rocha, S. D.

    2006-07-01

    A process for iron (III) removal by hydroxide precipitation from and acid synthetic inorganic effluent using magnesium oxide as an alternative precipitant agent in a fluidized bed was developed. An acid synthetic inorganic effluent containing 100 and 200 mg/l of ferric ions (pH=1.0) was continuously fed up to the acrylic column (30 cm high and 2 cm diameter) during 180 minutes. Magnesium oxide pulp (3% v/v) was injected at the beginning of the experiment in order to allow the iron hydroxides precipitation. The concentration and pH profiles agreed in their curves, while the pH profile rose,the concentration profile decreased and a high percentage of iron removal (higher to 99%) was reached. Extremely low iron concentrations have been reached, thus permitting to attend to the environmental standard of 10.0 mg/l for discharge of effluent containing ferric ions established by the law DN 10/86 of COPAM (Conselho de Politica Ambiental do Estado de Minas Gerais-Brazil). (Author)

  3. N-butylamine functionalized graphene oxide for detection of iron(III) by photoluminescence quenching.

    Science.gov (United States)

    Gholami, Javad; Manteghian, Mehrdad; Badiei, Alireza; Ueda, Hiroshi; Javanbakht, Mehran

    2016-02-01

    An N-butylamine functionalized graphene oxide nanolayer was synthesized and characterized by ultraviolet (UV)-visible spectrometry, Fourier transform infrared spectroscopy, X-ray photoelectron spectroscopy, and transmission electron microscopy. Detection of iron(III) based on photoluminescence spectroscopy was investigated. The N-butylamine functionalized graphene oxide was shown to specifically interact with iron (III), compared with other cationic trace elements including potassium (I), sodium (I), calcium (II), chromium (III), zinc (II), cobalt (II), copper (II), magnesium (II), manganese (II), and molybdenum (VI). The quenching effect of iron (III) on the luminescence emission of N-butylamine functionalized graphene oxide layer was used to detect iron (III). The limit of detection (2.8 × 10(-6)  M) and limit of quantitation (2.9 × 10(-5)  M) were obtained under optimal conditions. Copyright © 2015 John Wiley & Sons, Ltd.

  4. Tissue levels of iron, copper, zinc and magnesium in iron deficient rats

    African Journals Online (AJOL)

    The effects of iron deficiency on the levels of iron, copper, zinc and magnesium in the brain, liver, kidney, heart and lungs of albino rats (Rattus novergicus) was investigated. Forty rats were divided into two groups and the first group was fed a control diet containing 1.09g iron/kg diet while the test group was fed diet ...

  5. Sorption of trace amounts of gallium (III) on iron (III) oxide

    International Nuclear Information System (INIS)

    Music, S.; Gessner, M.; Wolf, R.H.H.

    1979-01-01

    The sorption of trace amounts of gallium(III) on iron(III) oxide has been studied as a function of pH. Optimum conditions have been found for the preconcentration of traces of gallium(III) by iron(III) oxide. The influence of surface active substances and of complexing agents on the sorption of trace amounts of gallium(III) on iron(III) oxide has been also studied. (orig.) [de

  6. Sorption of trace amounts of gallium (III) on iron (III) oxide

    Energy Technology Data Exchange (ETDEWEB)

    Music, S; Gessner, M; Wolf, R H.H. [Institut Rudjer Boskovic, Zagreb (Yugoslavia)

    1979-01-01

    The sorption of trace amounts of gallium(III) on iron(III) oxide has been studied as a function of pH. Optimum conditions have been found for the preconcentration of traces of gallium(III) by iron(III) oxide. The influence of surface active substances and of complexing agents on the sorption of trace amounts of gallium(III) on iron(III) oxide has been also studied.

  7. Oxidation of Dodecanoate Intercalated Iron(II)–Iron(III) Layered Double Hydroxide to Form 2D Iron(III) (Hydr)oxide Layers

    DEFF Research Database (Denmark)

    Huang, Li‐Zhi; Ayala‐Luis, Karina B.; Fang, Liping

    2013-01-01

    hydroxide planar layer were preserved during the oxidation, as shown by FTIR spectroscopy. The high positive charge in the hydroxide layer produced by the oxidation of iron(II) to iron(III) is partially compensated by the deprotonation of hydroxy groups, as shown by X‐ray photoelectron spectroscopy...... between the alkyl chains of the intercalated dodecanoate anions play a crucial role in stabilizing the structure and hindering the collapse of the iron(II)–iron(III) (hydr)oxide structure during oxidation. This is the first report describing the formation of a stable planar layered octahedral iron......(III) (hydr)oxide. oxGRC12 shows promise as a sorbent and host for hydrophobic reagents, and as a possible source of single planar layers of iron(III) (hydr)oxide....

  8. Multisensor system for determination of iron(II), iron(III) and uranium(VI) in complex solutions

    International Nuclear Information System (INIS)

    Legin, A.V.; Seleznev, B.L.; Rudnitskaya, A.M.; Vlasov, Yu.G.

    1998-01-01

    The aim of the present paper is the development and analytical evaluation of a multisensor system for determination of low content of iron(II), iron(III) and uranium(VI) in complex aqueous media. Sensor array included sensors on the basis of chalcogenide vitreous materials with redox and ionic cross-sensitivities, crystalline silver sulphide electrode, noble metal electrodes Pt, Au, Ag and redox sensor on the basis of oxide glass. Potentiometric measurements have been taken in a conventional electrochemical cell vs. a standard Ag/AgCl reference electrode. All measurements have been taken at room temperature. Calibration solutions contained UO 2 (NO 3 ) 2 in concentration range 10 -6 -1,610 -5 mol/L, K 3 Fe(CN) 6 and K 4 Fe(CN) 6 or FeSO 4 (NH 4 ) 2 SO 4 and FeCl 3 , with the ratio of Fe(II)/Fe(III) concentration from 100:1 to 1:100, the total concentration of Fe was 10 -4 and 10 -5 mol/L. All solutions have been made on the background electrolyte of calcium and magnesium chlorides and sulphates with the fixed content of 5-27 mmol/L of each component which is a typical one for groundwater or mining water. Sensor potentials have been processed by a back-propagation artificial neural net. Average error of determination of Fe(II) and Fe(III) is about 20 %, of uranium(VI) - 40 %. It was found that sensitivity of the sensor array to iron and uranium is irrespective of the chemical form of these species

  9. Determination of calcium and magnesium in nuclear grade alumina by ion chromatography technique

    International Nuclear Information System (INIS)

    Hespanhol, E.C.B.; Pires, M.A.F.; Atalla, L.T.

    1987-07-01

    A simple method for solubilization of alumina and separation of magnesium and calcium from alumina matrix was developed by initial coprecipitation of those elements with iron(III) hydroxide. Calcium and magnesium were later separated from iron chloride anionic complex in a Dowex 1-X 10 anionic exchange resin. The ion chromatography tecnnique was employed for the analysis of calcium and magnesium. One hundred percent recovery for calcium and magnesium was obtained in their separation from alumina. A precision of 6% and 10% for magnesium and calcium, respectively, was obtained in alumina samples analysis which contain less than 0,02% of magnesium and less than 0,08% of calcium. (Author) [pt

  10. A study of phosphate absorption by magnesium iron hydroxycarbonate.

    Science.gov (United States)

    Du, Yi; Rees, Nicholas; O'Hare, Dermot

    2009-10-21

    A study of the mechanism of phosphate adsorption by magnesium iron hydroxycarbonate, [Mg(2.25)Fe(0.75)(OH)(6)](CO(3))(0.37).0.65H(2)O over a range of pH has been carried out. The efficiency of the phosphate removal from aqueous solution has been investigated between pH 3-9 and the resulting solid phases have been studied by elemental analysis, XRD, FT-IR, Raman, HRTEM, EDX and solid-state MAS (31)P NMR. The analytical and spectroscopic data suggest that phosphate removal from solution occurs not by anion intercalation of the relevant phosphorous oxyanion (H(2)PO(4)(-) or HPO(4)(2-)) into the LDH but by the precipitation of either an insoluble iron hydrogen phosphate hydrate and/or a magnesium phosphate hydrate.

  11. Incremental binding free energies of aluminum (III) vs. magnesium (II) complexes

    International Nuclear Information System (INIS)

    Mercero, Jose M.; Mujika, Jon I.; Matxain, Jon M.; Lopez, Xabier; Ugalde, Jesus M.

    2003-01-01

    A sequential ligand addition to the aluminum (III) cation has been studied using the B3LYP functional and a combined all-electron/pseudopotentials basis set. The aluminum complexes are compared with analogous magnesium (II) complexes. Different thermodynamical data, such as incremental binding energies, enthalpies, entropies and free energies, are presented for these addition reactions. While the magnesium (II) cation can only accommodate three negatively charged ligands, aluminum (III) accommodates four even after including bulk solvent effects. The main differences between both cations complexing with the neutral ligands, is that aluminum (III) is not able to form complexes with methanol until the number of methanol ligands is equal to 3. Magnesium (II) prefers to bind methanol and formamide when the number of ligands is small, while aluminum prefers formamide. For the largest complexes both cations prefer to bind water

  12. Sorption of small amounts of europium(III) on iron(III) hydroxide and oxide

    International Nuclear Information System (INIS)

    Music, S.; Gessner, M.; Wolf, R.H.H.

    1979-01-01

    The sorption of small amounts of europium(III) on iron(III) hydroxide and oxide has been studied as a function of pH. The mechanism of sorption is discussed. Optimum conditions have been found for the preconcentration of small or trace amounts of europium(III) by iron(III) hydroxide and oxide. The influence of complexing agents (EDTA, oxalate, tartrate and 5-sulfosalicylic acid) on the sorption of small amounts of europium(III) on iron(III) oxide has also been studied. (author)

  13. Magnesium and iron nanoparticles production using microorganisms and various salts

    Science.gov (United States)

    Kaul, R. K.; Kumar, P.; Burman, U.; Joshi, P.; Agrawal, A.; Raliya, R.; Tarafdar, J. C.

    2012-09-01

    Response of five fungi and two bacteria to different salts of magnesium and iron for production of nanoparticles was studied. Pochonia chlamydosporium, and Aspergillus fumigatus were exposed to three salts of magnesium while Curvularia lunata, Chaetomium globosum, A. fumigatus, A. wentii and the bacteria Alcaligenes faecalis and Bacillus coagulans were exposed to two salts of iron for nanoparticle production. The results revealed that P. chlamydosporium induces development of extracellular nanoparticles in MgCl2 solution while A. fumigatus produces also intracellular nanoparticles when exposed to MgSO4 solution. C. globosum was found as the most effective in producing nanoparticles when exposed to Fe2O3 solution. The FTIR analysis of the nanoparticles obtained from Fe2O3 solution showed the peaks similar to iron (Fe). In general, the species of the tested microbes were selective to different chemicals in their response for synthesis of nanoparticles. Further studies on their characterization and improving the efficiency of promising species of fungi need to be undertaken before tapping their potential as nanonutrients for plants.

  14. The synthesis of chlorophyll-a biosynthetic precursors and methyl substituted iron porphyrins

    International Nuclear Information System (INIS)

    Matera, K.M.

    1988-01-01

    The biosynthetic intermediates were incubated in a plant system. The activity levels calculated show that magnesium 6-acrylate porphyrins and one of the magnesium 6-β-hydroxypropionate porphyrins are not intermediates. In addition, plant systems incubated with 18 O 2 were found to synthesize magnesium 2,4-divinyl pheoporphyrin-a 5 incorporated with 18 O at the 9-carbonyl oxygen. Mass spectroscopy confirmed the presence of the oxygen label, thus eliminating one of two hypothesized pathways to chlorophyll-a. An overall description is given of iron porphyrins and iron porphyrin containing proteins. The function of the propionic side chains of the heme prosthetic group during electron transport reactions will be investigated. The synthesis of a series of iron(III) hexamethyl porphyrins with increasingly longer substituents in the remaining two peripheral positions of the porphyrin is described. Models for NMR studies of iron chlorin containing enzymes are discussed. Iron(III) pyropheophorbide-a and methyl pyropheophorbide-a were synthesized in addition to 5-CD 3 , 10-CD 2 iron(III) pyropheophorbide-a and methyl pyropheophorbide-a. Together, these pyropheophorbides were used to assign NMR resonances and ultimately provide a model for other iron chlorins. The synthesis of nickel(II) anhydro-mesorhodoporphyrin from zinc(III) anhydromesorhodochlorin is described; this nickel porphyrin was used as a standard for ring current calculations of reduced nickel analogs of anhydromesorhodoporphyrin

  15. Effect of Iron and Magnesium on Alloy AL9M Structure and Properties

    Science.gov (United States)

    Bazhenov, V. E.; Koltygin, A. V.; Belov, V. D.

    2017-09-01

    The effect of iron impurity on the structure and properties of aluminum alloy AL9M, especially its action on magnesium distribution within the structure, is studied. The microstructure of a cast component of this alloy broken during operation is analyzed. It is shown that iron impurity has an unfavorable effect on structure and mechanical properties of a casting due to appearance of Al9Fe2Si and Al18Fe2Mg7Si10 intermetallics. Formation of these intermetallics consumes a considerable amount of magnesium and lowers the content of the Q(Al5Cu2Mg8Si6) strengthening phase in the alloy structure.

  16. Combined iron and magnesium isotope geochemistry of pyroxenite xenoliths from Hannuoba, North China Craton: implications for mantle metasomatism

    Science.gov (United States)

    Zhao, Xin Miao; Cao, Hui Hui; Mi, Xue; Evans, Noreen J.; Qi, Yu Han; Huang, Fang; Zhang, Hong Fu

    2017-06-01

    We present high-precision iron and magnesium isotopic data for diverse mantle pyroxenite xenoliths collected from Hannuoba, North China Craton and provide the first combined iron and magnesium isotopic study of such rocks. Compositionally, these xenoliths range from Cr-diopside pyroxenites and Al-augite pyroxenites to garnet-bearing pyroxenites and are taken as physical evidence for different episodes of melt injection. Our results show that both Cr-diopside pyroxenites and Al-augite pyroxenites of cumulate origin display narrow ranges in iron and magnesium isotopic compositions (δ57Fe = -0.01 to 0.09 with an average of 0.03 ± 0.08 (2SD, n = 6); δ26Mg = - 0.28 to -0.25 with an average of -0.26 ± 0.03 (2SD, n = 3), respectively). These values are identical to those in the normal upper mantle and show equilibrium inter-mineral iron and magnesium isotope fractionation between coexisting mantle minerals. In contrast, the garnet-bearing pyroxenites, which are products of reactions between peridotites and silicate melts from an ancient subducted oceanic slab, exhibit larger iron isotopic variations, with δ57Fe ranging from 0.12 to 0.30. The δ57Fe values of minerals in these garnet-bearing pyroxenites also vary widely (-0.25 to 0.08 in olivines, -0.04 to 0.25 in orthopyroxenes, -0.07 to 0.31 in clinopyroxenes, 0.07 to 0.48 in spinels and 0.31-0.42 in garnets). In addition, the garnet-bearing pyroxenite shows light δ26Mg (-0.43) relative to the mantle. The δ26Mg of minerals in the garnet-bearing pyroxenite range from -0.35 for olivine and orthopyroxene, to -0.34 for clinopyroxene, 0.04 for spinel and -0.68 for garnet. These measured values stand in marked contrast to calculated equilibrium iron and magnesium isotope fractionation between coexisting mantle minerals at mantle temperatures derived from theory, indicating disequilibrium isotope fractionation. Notably, one phlogopite clinopyroxenite with an apparent later metasomatic overprint has the heaviest δ57Fe

  17. Anemia and iron, zinc, copper and magnesium deficiency in Mexican adolescents: National Health and Nutrition Survey 2006.

    Science.gov (United States)

    De la Cruz-Góngora, Vanessa; Gaona, Berenice; Villalpando, Salvador; Shamah-Levy, Teresa; Robledo, Ricardo

    2012-01-01

    To describe the frequency of anemia and iron, zinc, copper and magnesium deficiencies among Mexican adolescents in the probabilistic survey ENSANUT 2006. The sample included 2447 adolescents aged 12 to 19 y. Capillary hemoglobin and venous blood samples were collected to measure the concentrations of ferritin, sTFR, CRP, zinc, iron, copper and magnesium. Logistic regression models were constructed to assess the risk for mineral deficiencies. The overall prevalence of anemia was 11.8 and 4.6%, body iron deficiency 18.2 and 7.9% for females and males, respectively. Overall prevalence of tissue iron deficiency was 6.9%, low serum copper were 14.4 and 12.25%; zinc 28.4 and 24.5%, magnesium 40 and 35.3%; for females and males, respectively. There is a high prevalence of mineral deficiency in Mexican adolescents; females were more prone to have more mineral deficiencies. Nutritional interventions are necessaries in order to reduce and control them.

  18. Separation of valence forms of chromium(III) and chromium(VI) by coprecipitation with iron(III) hydroxide

    International Nuclear Information System (INIS)

    Nazirmadov, B.; Khamidov, B.O.; Egorova, L.A.

    1989-01-01

    The sorption of 9.62·10 -5 M of Cr (III) and Cr (VI) with iron hydroxide in 1 M potassium nitrate and potassium chloride was investigated in relation to the pH of the medium. Experimental data on the sorption of chromium(III) and chromium(VI) with iron(III) hydroxide made it possible to determine the region of practically complete concentration of Cr (III) and Cr (VI) (pH = 3-6.5). The results from spectrophotometric investigations, calculated data on the distribution of the hydroxocationic forms of chromium(III) and the anions of chromium(IV), and their sorption by iron-(III) hydroxide made it possible to characterize the sorbability of the cationic and anionic forms of chromium in various degrees of oxidation. On this basis a method was developed for the separation of chromium(III) and chromium(VI) by coprecipitation on iron(III) hydroxide and their separation from the iron(III) hydroxide support

  19. Interactions between iron(III)-hydroxide polymaltose complex and commonly used medications / laboratory studies in rats.

    Science.gov (United States)

    Funk, Felix; Canclini, Camillo; Geisser, Peter

    2007-01-01

    Simple iron salts, such as iron sulphate, often interact with food and other medications reducing bioavailability and tolerability. Iron(III)-hydroxide polymaltose complex (IPC, Maltofer) provides a soluble form of non-ionic iron, making it an ideal form of oral iron supplementation. The physicochemical properties of IPC predict a low potential for interactions. The effects of co-administration with aluminium hydroxide (CAS 21645-51-2), acetylsalicylic acid (CAS 50-78-2), bromazepam (CAS 1812-30-2), calcium acetate (CAS 62-54-4), calcium carbonate (CAS 471-34-1), auranofin (CAS 34031-32-8), magnesium-L-aspartate hydrochloride (CAS 28184-71-6), methyldopa sesquihydrate (CAS 41372-08-1), paracetamol (CAS 103-90-2), penicillamine (CAS 52-67-5), sulfasalazine (CAS 599-79-1), tetracycline hydrochloride (CAS 64-75-5), calcium phosphate (CAS 7757-93-9) in combination with vitamin D3 (CAS 67-97-0), and a multi-vitamin preparation were tested in rats fed an iron-deficient diet. Uptake of iron from radiolabelled IPC with and without concomitant medications was compared. None of the medicines tested had a significant effect on iron uptake. Iron-59 retrieval from blood and major storage organs was 64-76% for IPC alone compared with 59-85% following co-administration with other medications. It is concluded that, under normal clinical conditions, IPC does not interact with these medications.

  20. Measurement of iron, magnesium and chromium concentrations in the saliva of the patients undergoing fixed orthodontic treatment

    Directory of Open Access Journals (Sweden)

    Valiollah Arash

    2012-09-01

    Full Text Available Introduction: Stainless steel alloy used in orthodontics has elements such as iron - magnesium and chromium , which may be released due to corrosion in the mouth . The aim of this study was to evaluate the changes of these elements in the saliva of patients undergoing fixed orthodontic treatment. Methods: In a clinical study with simple non- random sampling , 1ml saliva of 11 patients (7 females and 4 males who needed fixed orthodontic treatment and had no restorations or crowns were collected. During the fixed orthodontic treatment at successive times ( a day, a week, a month , two months and six months , 1 ml of saliva was collected and evaluated for the amount of iron ( spectrophotometry, chromium ( atomic absorption, and magnesium ( spectrophotometry . Bracket , band and wire used in all patients were stainless steel alloy and were manufactured by Dentaurum Company. After sample collection , the data analysis was performed with " Azeri- 5" and "10SPSS" software and repeated measures test. Results: The mean concentration of iron 66.326±0.541, chromium 0.483±0.324 and magnesium 0.552±293 decreased during the study but these results were not statistical y significant (p>0.05. Conclusions: Iron , chromium and magnesium concentration do not exceed the standard limits in saliva during orthodontic treatment.

  1. Transgenic petunia with the iron(III)-phytosiderophore transporter gene acquires tolerance to iron deficiency in alkaline environments.

    Science.gov (United States)

    Murata, Yoshiko; Itoh, Yoshiyuki; Iwashita, Takashi; Namba, Kosuke

    2015-01-01

    Iron is an essential nutrient for all plants. However, terrestrial plants often suffer from iron deficiency in alkaline soil due to its extremely low solubility. Alkaline soil accounts for about 30% of all cultivated ground in the world. Plants have evolved two distinct strategies, I and II, for iron uptake from the soil. Dicots and non-graminaceous monocots use Strategy I, which is primarily based on the reduction of iron(III) to iron(II) and the uptake of iron(II) by the iron-regulated transporter, IRT1. In contrast, graminaceous plants use Strategy II to efficiently acquire insoluble iron(III). Strategy II comprises the synthesis and secretion of iron-chelating phytosiderophores, such as mugineic acids and the Yellow Stripe 1 transporter proteins of the iron(III)-phytosiderophore complex. Barley, which exhibits the highest tolerance to iron deficiency in alkaline soil among graminaceous plants, utilizes mugineic acids and the specific iron(III)-mugineic acids transporter, HvYS1. In this study, we established the transgenic plant Petunia hybrida, which originally had only Strategy I, by introducing the HvYS1 transporter gene derived from barley. When the transgenic plants were grown hydroponically in media containing the iron(III)-2'-deoxymugineic acid complex, free 2'-deoxymugineic acid and its iron(III) complex were detected in the root extract of the transgenic plant by electrospray ionization-Fourier transform-ion cyclotron resonance mass spectrometry. The growth of the transgenic petunia was significantly better than that of the control host in alkaline conditions. Consequently, the transgenic plant acquired a significantly enhanced tolerance to alkaline hydroponic media in the presence of the iron(III)-2'-deoxymugineic acid complex. Furthermore, the flower color of the transgenic plant deepened. The results showed that iron-phytosiderophore complexes and their transporters can potentially be utilized to overcome the worldwide iron uptake problems to diverse

  2. Transgenic petunia with the iron(III-phytosiderophore transporter gene acquires tolerance to iron deficiency in alkaline environments.

    Directory of Open Access Journals (Sweden)

    Yoshiko Murata

    Full Text Available Iron is an essential nutrient for all plants. However, terrestrial plants often suffer from iron deficiency in alkaline soil due to its extremely low solubility. Alkaline soil accounts for about 30% of all cultivated ground in the world. Plants have evolved two distinct strategies, I and II, for iron uptake from the soil. Dicots and non-graminaceous monocots use Strategy I, which is primarily based on the reduction of iron(III to iron(II and the uptake of iron(II by the iron-regulated transporter, IRT1. In contrast, graminaceous plants use Strategy II to efficiently acquire insoluble iron(III. Strategy II comprises the synthesis and secretion of iron-chelating phytosiderophores, such as mugineic acids and the Yellow Stripe 1 transporter proteins of the iron(III-phytosiderophore complex. Barley, which exhibits the highest tolerance to iron deficiency in alkaline soil among graminaceous plants, utilizes mugineic acids and the specific iron(III-mugineic acids transporter, HvYS1. In this study, we established the transgenic plant Petunia hybrida, which originally had only Strategy I, by introducing the HvYS1 transporter gene derived from barley. When the transgenic plants were grown hydroponically in media containing the iron(III-2'-deoxymugineic acid complex, free 2'-deoxymugineic acid and its iron(III complex were detected in the root extract of the transgenic plant by electrospray ionization-Fourier transform-ion cyclotron resonance mass spectrometry. The growth of the transgenic petunia was significantly better than that of the control host in alkaline conditions. Consequently, the transgenic plant acquired a significantly enhanced tolerance to alkaline hydroponic media in the presence of the iron(III-2'-deoxymugineic acid complex. Furthermore, the flower color of the transgenic plant deepened. The results showed that iron-phytosiderophore complexes and their transporters can potentially be utilized to overcome the worldwide iron uptake problems

  3. Nanoparticulate iron(III) oxo-hydroxide delivers safe iron that is well absorbed and utilised in humans

    Science.gov (United States)

    Pereira, Dora I.A.; Bruggraber, Sylvaine F.A.; Faria, Nuno; Poots, Lynsey K.; Tagmount, Mani A.; Aslam, Mohamad F.; Frazer, David M.; Vulpe, Chris D.; Anderson, Gregory J.; Powell, Jonathan J.

    2014-01-01

    Iron deficiency is the most common nutritional disorder worldwide with substantial impact on health and economy. Current treatments predominantly rely on soluble iron which adversely affects the gastrointestinal tract. We have developed organic acid-modified Fe(III) oxo-hydroxide nanomaterials, here termed nano Fe(III), as alternative safe iron delivery agents. Nano Fe(III) absorption in humans correlated with serum iron increase (P solubility. The most promising preparation (iron hydroxide adipate tartrate: IHAT) showed ~80% relative bioavailability to Fe(II) sulfate in humans and, in a rodent model, IHAT was equivalent to Fe(II) sulfate at repleting haemoglobin. Furthermore, IHAT did not accumulate in the intestinal mucosa and, unlike Fe(II) sulfate, promoted a beneficial microbiota. In cellular models, IHAT was 14-fold less toxic than Fe(II) sulfate/ascorbate. Nano Fe(III) manifests minimal acute intestinal toxicity in cellular and murine models and shows efficacy at treating iron deficiency anaemia. From the Clinical Editor This paper reports the development of novel nano-Fe(III) formulations, with the goal of achieving a magnitude less intestinal toxicity and excellent bioavailability in the treatment of iron deficiency anemia. Out of the tested preparations, iron hydroxide adipate tartrate met the above criteria, and may become an important tool in addressing this common condition. PMID:24983890

  4. Study of Ascorbic Acid as Iron(III Reducing Agent for Spectrophotometric Iron Speciation

    Directory of Open Access Journals (Sweden)

    Antesar Elmagirbi

    2012-10-01

    Full Text Available The study of ascorbic acid as a reducing agent for iron(III has been investigated in order to obtain an alternative carcinogenic reducing agent, hydroxylamine, used in spectrophotometric standard method based on the formation of a red-orange complex of Fe(II-o-phenanthroline. The study was optimised with regards to ascorbic acid concentration as well as pH solution. The results showed that ascorbic acid showed maximum capacity as reducing agent of iron(III under concentration of 4.46.10-4 M and pH solution of 1-4.Under these conditions, ascorbic acid reduced iron(III proportionally and performed similarly to that of hydroxylamine.  The method gave result to linear calibration over the range of 0.2-2 mg/L withhigh accuracy of 97 % and relative standard deviation of less than 2 %. This method was successfully applied to assay iron speciation in water samples.

  5. Iron (III) oxyhydroxide in isopropyl alcohol preparation, characterization and solvothermal treatment

    International Nuclear Information System (INIS)

    Carvalho, E.L.C.N.; Jafelicci Junior, M.

    1989-01-01

    Iron (III) nitrate hydrolysis was carried out in isopropyl alcohol solution by an aqueous amonia gas stream resulting in iron (III) oxyhydroxide sol. It has been investigated in this work the solvothermal treatment of this colloidal system at 120 0 C and 24 hours. Iron (III) oxyhydroxide freshly obtained and solvothermally treated. Samples were dryed by lyophilization. Products obtained were characterized by the following techniques: spectrophotometric iron analysis by 1,10-orthophenantroline complexation method, powder X-ray diffraction, vibrational infrared spectra and differential thermal analysis. After solvothermal treatment resulting product was crystallized into hematite, while freshly iron (III) oxyhydroxide was non crystalline. Both of them are very active powder, showing high water adsorption [pt

  6. Measuring marine iron(III) complexes by CLE-AdSV

    NARCIS (Netherlands)

    Town, R.M.; Leeuwen, van H.P.

    2005-01-01

    Iron(iii) speciation data, as determined by competitive ligand exchange?adsorptive stripping voltammetry (CLE-AdSV), is reconsidered in the light of the kinetic features of the measurement. The very large stability constants reported for iron(iii) in marine ecosystems are shown to be possibly due to

  7. Moessbauer study of iron(III) salicylates

    Energy Technology Data Exchange (ETDEWEB)

    Mahesh, K; Sharma, N D; Gupta, D C [Kurukshetra Univ. (India). Dept. of Physics; Puri, D M [Kurukshetra Univ. (India). Dept. of Chemistry

    1979-07-01

    Moessbauer infrared and magnetic studies of different basic salicylates of iron(III) are reported. Comparison of observed isomer shift and quadrupole splitting with the earlier work allows to assign the trinuclear chain structure to the complexes wherein the central iron atom in the chain is considered to be octahedrally coordinated in case of salicylate and 4-aminosalicylate derivatives, and pentacoordinated for the thiosalicylate with the terminal iron atom in tetrahedral symmetry. The Moessbauer parameters and ..mu..sub(eff)-value indicate the high spin state of the central iron atom and low spin state for the terminal ones.

  8. Toxicological studies and antimicrobial properties of some Iron(III ...

    African Journals Online (AJOL)

    Two iron(III) complexes of Ciprofloxacin were synthesized by reaction of the ligand with iron(III) chloride hexahydrate in different solutions. The nature of bonding of the ligands and the structure of the isolated metal complexes were elucidated on the basis of their physical and spectroscopic studies. The infrared spectra ...

  9. Kinetic Study of Iron (III) Salicyl Hydroxamate Complexes

    International Nuclear Information System (INIS)

    Ali, K.; Ashiq, U.; Ara, R.; Kazmi, R.

    2005-01-01

    The formation of Salicylhydroxamic acid iron (III) complexes were studied at different pH. The reaction at pH 8 and 6 between iron nitrate and salicylhydroxamic acid is very fast and reddish brown colour with iron at 425 nm appears within seconds i.e. within mixing time. The concentration of salicylhydroxamic acid was 20-80 times higher than the concentration of iron (III) solution in order to fulfill pseudo first order conditions. The reddish brown colour appears within mixing time and further change in colour was very slow and observed at 425 nm wave length. The rate constant at pH 8 is 0.1886 sec and at pH 6 is 1.472 sec. The sharp appearance of colour is due to formation of 1:1 and 1:2 complexes while the observed slow change in colour may be due to rearrangement of salicylhydroxamic acid from bidentate to tridentate or it may be due to the formation of 1:3 complex. In the next set of reactions the 1:1 complex of salicylhydroxamic acid iron (III) was prepared by mixing iron (III) and salicylhydroxamic acid in 1:1 mole ratio and then the formation of 1:2 complex was observed at pH 5, 4.5 and 4. The concentration of salicylhydroxamic acid solution was 2-10 times higher than the 1:1 complex of salicylhydroxamic acid iron (III) complex. The observed reactions were very fast and were not truly a first order reaction. The rate constant is 24.85 sec at pH 4.5 and 16.98 sec at pH4. The reaction of 1:1 complex with salicylhydroxamic acid at pH3 was very fast. The lamda max of iron complex is 500 nm and of final mixture is 476 nm. The reaction was assumed to be reversible. The absorbance of both species at a particular wavelength is additive. Using this property the equilibrium constant was calculated which was not constant at different ratios of 1:1 complex and salicylhydroxamic acid, which further indicate the possibility of rearrangement reaction. (author)

  10. Mononuclear non-heme iron(III)

    Indian Academy of Sciences (India)

    Home; Journals; Journal of Chemical Sciences; Volume 123; Issue 2. Mononuclear non-heme iron(III) complexes of linear and tripodal tridentate ligands as functional models for catechol dioxygenases: Effect of -alkyl substitution on regioselectivity and reaction rate. Mallayan Palaniandavar Kusalendiran Visvaganesan.

  11. Disproportionation of hydroxylamine by water-soluble iron(III) porphyrinate compounds.

    Science.gov (United States)

    Bari, Sara E; Amorebieta, Valentín T; Gutiérrez, María M; Olabe, José A; Doctorovich, Fabio

    2010-01-01

    The reactions of hydroxylamine (HA) with several water-soluble iron(III) porphyrinate compounds, namely iron(III) meso-tetrakis-(N-ethylpyridinium-2yl)-porphyrinate ([Fe(III)(TEPyP)](5+)), iron(III) meso-tetrakis-(4-sulphonatophenyl)-porphyrinate ([Fe(III)(TPPS)](3-)), and microperoxidase 11 ([Fe(III)(MP11)]) were studied for different [Fe(III)(Porph)]/[HA] ratios, under anaerobic conditions at neutral pH. Efficient catalytic processes leading to the disproportionation of HA by these iron(III) porphyrinates were evidenced for the first time. As a common feature, only N(2) and N(2)O were found as gaseous, nitrogen-containing oxidation products, while NH(3) was the unique reduced species detected. Different N(2)/N(2)O ratios obtained with these three porphyrinates strongly suggest distinctive mechanistic scenarios: while [Fe(III)(TEPyP)](5+) and [Fe(III)(MP11)] formed unknown steady-state porphyrinic intermediates in the presence of HA, [Fe(III)(TPPS)](3-) led to the well characterized soluble intermediate, [Fe(II)(TPPS)NO](4-). Free-radical formation was only evidenced for [Fe(III)(TEPyP)](5+), as a consequence of a metal centered reduction. We discuss the catalytic pathways of HA disproportionation on the basis of the distribution of gaseous products, free radicals formation, the nature of porphyrinic intermediates, the Fe(II)/Fe(III) redox potential, the coordinating capabilities of each complex, and the kinetic analysis. The absence of NO(2)(-) revealed either that no HAO-like activity was operative under our reaction conditions, or that NO(2)(-), if formed, was consumed in the reaction milieu.

  12. Arsenic removal with iron(II) and iron(III) in waters with high silicate and phosphate concentrations.

    Science.gov (United States)

    Roberts, Linda C; Hug, Stephan J; Ruettimann, Thomas; Billah, Morsaline; Khan, Abdul Wahab; Rahman, Mohammad Tariqur

    2004-01-01

    Arsenic removal by passive treatment, in which naturally present Fe(II) is oxidized by aeration and the forming iron(III) (hydr)oxides precipitate with adsorbed arsenic, is the simplest conceivable water treatment option. However, competing anions and low iron concentrations often require additional iron. Application of Fe(II) instead of the usually applied Fe(III) is shown to be advantageous, as oxidation of Fe(II) by dissolved oxygen causes partial oxidation of As(III) and iron(III) (hydr)oxides formed from Fe(II) have higher sorption capacities. In simulated groundwater (8.2 mM HCO3(-), 2.5 mM Ca2+, 1.6 mM Mg2+, 30 mg/L Si, 3 mg/L P, 500 ppb As(III), or As(V), pH 7.0 +/- 0.1), addition of Fe(II) clearly leads to better As removal than Fe(III). Multiple additions of Fe(II) further improved the removal of As(II). A competitive coprecipitation model that considers As(III) oxidation explains the observed results and allows the estimation of arsenic removal under different conditions. Lowering 500 microg/L As(III) to below 50 microg/L As(tot) in filtered water required > 80 mg/L Fe(III), 50-55 mg/L Fe(II) in one single addition, and 20-25 mg/L in multiple additions. With As(V), 10-12 mg/L Fe(II) and 15-18 mg/L Fe(III) was required. In the absence of Si and P, removal efficiencies for Fe(II) and Fe(III) were similar: 30-40 mg/L was required for As(II), and 2.0-2.5 mg/L was required for As(V). In a field study with 22 tubewells in Bangladesh, passive treatment efficiently removed phosphate, but iron contents were generally too low for efficient arsenic removal.

  13. Iron, Magnesium, Vitamin D, and Zinc Deficiencies in Children Presenting with Symptoms of Attention-Deficit/Hyperactivity Disorder

    Directory of Open Access Journals (Sweden)

    Amelia Villagomez

    2014-09-01

    Full Text Available Attention-Deficit/Hyperactivity Disorder (ADHD is a neurodevelopmental disorder increasing in prevalence. Although there is limited evidence to support treating ADHD with mineral/vitamin supplements, research does exist showing that patients with ADHD may have reduced levels of vitamin D, zinc, ferritin, and magnesium. These nutrients have important roles in neurologic function, including involvement in neurotransmitter synthesis. The aim of this paper is to discuss the role of each of these nutrients in the brain, the possible altered levels of these nutrients in patients with ADHD, possible reasons for a differential level in children with ADHD, and safety and effect of supplementation. With this knowledge, clinicians may choose in certain patients at high risk of deficiency, to screen for possible deficiencies of magnesium, vitamin D, zinc, and iron by checking RBC-magnesium, 25-OH vitamin D, serum/plasma zinc, and ferritin. Although children with ADHD may be more likely to have lower levels of vitamin D, zinc, magnesium, and iron, it cannot be stated that these lower levels caused ADHD. However, supplementing areas of deficiency may be a safe and justified intervention.

  14. Iron(III) citrate speciation in aqueous solution.

    Science.gov (United States)

    Silva, Andre M N; Kong, XiaoLe; Parkin, Mark C; Cammack, Richard; Hider, Robert C

    2009-10-28

    Citrate is an iron chelator and it has been shown to be the major iron ligand in the xylem sap of plants. Furthermore, citrate has been demonstrated to be an important ligand for the non-transferrin bound iron (NTBI) pool occurring in the plasma of individuals suffering from iron-overload. However, ferric citrate chemistry is complicated and a definitive description of its aqueous speciation at neutral pH remains elusive. X-Ray crystallography data indicates that the alcohol function of citrate (Cit4-) is involved in Fe(III) coordination and that deprotonation of this functional group occurs upon complex formation. The inability to include this deprotonation in the affinity constant calculations has been a major source of divergence between various reports of iron(III)-citrate affinity constants. However the recent determination of the alcoholic pKa of citric acid (H4Cit) renders the reassessment of the ferric citrate system possible. The aqueous speciation of ferric citrate has been investigated by mass spectrometry and EPR spectroscopy. It was observed that the most relevant species are a monoiron dicitrate species and dinuclear and trinuclear oligomeric complexes, the relative concentration of which depends on the solution pH value and the iron : citric acid molar ratio. Spectrophotometric titration was utilized for affinity constant determination and the formation constant for the biologically relevant [Fe(Cit)2]5- is reported for the first time.

  15. Effect of iron(III) ion on moso bamboo pyrolysis under microwave irradiation.

    Science.gov (United States)

    Dong, Qing; Li, Xiangqian; Wang, Zhaoyu; Bi, Yanhong; Yang, Rongling; Zhang, Jinfeng; Luo, Hongzhen; Niu, Miaomiao; Qi, Bo; Lu, Chen

    2017-11-01

    The effect of iron(III) ion on microwave pyrolysis of moso bamboo was investigated. Hydrofluoric acid washing was used as a pilot process to demineralize moso bamboo in order to eliminate the influences of the other inorganics contained in moso bamboo itself. The results indicated that the addition of iron(III) ion increased the maximal reaction temperatures under microwave condition dependent on the amount of the added iron(III) ion. The production of the non-condensable gases was promoted by the addition of iron(III) ion mainly at the expense of liquid products. Iron(III) ion exhibited the positive effect for syngas production and inhibited the formation of CO 2 and CH 4 . The formation of Fe 2 O 3 and Fe 3 O 4 was found during microwave pyrolysis and the mechanism of the two metallic oxides formation was described in this work. Copyright © 2017 Elsevier Ltd. All rights reserved.

  16. Effect of Iron Impurity on the Phase Composition, Structure and Properties of Magnesium Alloys Containing Manganese and Aluminum

    Science.gov (United States)

    Volkova, E. F.

    2017-07-01

    Results of a study of the interaction between iron impurity and manganese and aluminum alloying elements during formation of phase composition in alloys of the Mg - Mn, Mg - Al, Mg - Al - Mn, and Mg - Al - Zn - Mn systems are presented. It is proved that this interaction results in introduction of Fe into the intermetallic phase. The phase compositions of model magnesium alloys and commercial alloys MA2-1 and MA5 are studied. It is shown that both manganese and aluminum may bind the iron impurity into phases. Composite Fe-containing intermetallic phases of different compositions influence differently the corrosion resistance of magnesium alloys.

  17. Kinetics and mechanism of oxidation of glycine by iron(III)

    Indian Academy of Sciences (India)

    Kinetics and mechanism of oxidation of glycine by iron(III)-1,10-phenanthroline complex has been studied in perchloric acid medium. The reaction is first order with respect to iron(III) and glycine. An increase in (phenanthroline) increases the rate, while increase in [H+] decreases the rate. Hence it can be inferred that the ...

  18. Iron(III) species formed during iron(II) oxidation and iron-core formation in bacterioferritin of Escherichia coli

    International Nuclear Information System (INIS)

    Hawkins, C.; Treffry, A.; Mackey, J.; Williams, J.M.; Andrews, S.C.; Guest, J.R.; Harrison, P.M.

    1996-01-01

    This paper describes a preliminary investigation of the mechanisms of Fe(II) oxidation and storage of Fe(III) in the bacterioferritin of Escherichia coli (EcBFR). Using Moessbauer spectroscopy to examine the initial oxidation of iron by EcBFR it is confirmed that this ferritin exhibits 'ferroxidase' activity and is shown that dimeric and monomeric iron species are produced as intermediates. The characteristics of ferroxidase activity in EcBFR is compare d with those of human H-chain ferritin (HuHF) and discuss the different Moessbauer parameters of their dimeric iron with reference to the structures of their di-metal sites. In addition, it is presented preliminary findings suggesting that after an initial 'burst', the rate of oxidation is greatly reduced, possibly due to blockage of the ferroxidase centre by bound iron. A new component, not found in HuHF and probably representing a small cluster of Fe(III) atoms, is reported

  19. Mononuclear non-heme iron(III) complexes of linear and tripodal ...

    Indian Academy of Sciences (India)

    The rate of oxygenation depends on the solvent and the. Lewis acidity of iron(III) ... has been achieved by non-heme iron enzymes and their ..... oxygen atoms of nitrate ion (figure 3). ... enhanced covalency of iron-catecholate interaction and.

  20. ROLE OF IRON (II, III) HYDROXYCARBONATE GREEN RUST IN ARSENIC REMEDIATION USING ZEROVALENT IRON IN COLUMN TESTS

    Science.gov (United States)

    We examined corrosion products of zerovalent iron (Peerless iron) that was used in three column tests for removing arsenic under dynamic flow conditions with and without added phosphate and silicate. Iron(II, III) hydroxycarbonate and magnetite were major iron corrosion products...

  1. Iron, zinc, copper and magnesium nutritional status in Mexican children aged 1 to 11 years.

    Science.gov (United States)

    Morales-Ruán, Ma del Carmen; Villalpando, Salvador; García-Guerra, Armando; Shamah-Levy, Teresa; Robledo-Pérez, Ricardo; Avila-Arcos, Marco Antonio; Rivera, Juan A

    2012-01-01

    To describe the micronutrient nutritional status of a national sample of 1-11 year old Mexican children surveyed in 2006 in National Health and Nutrition Survey (ENSANUT 2006) and their association with dietary and sociodemographic factors. Serum samples were used (n=5 060) to measure the concentrations of ferritin, transferrin receptor, zinc, copper and magnesium. Prevalence of deficiencies in 1-4 and 5-11y old children were for iron (using low ferritin) 26.0 and 13.0%; zinc, 28.1 and 25.8%, respectively; and copper, ≈30% in both age groups. Magnesium low serum concentrations (MLSC), were found in 12.0% and 28.4% of the children, respectively. Being beneficiary of Liconsa (OR=0.32; C.I.95%, 0.17-0.61) or belonging to higher socioeconomic status (OR=0.63; C.I.95%, 0.41-0.97) were protective against iron deficiency. Increasing age (OR=0.59; C.I.95%, 1.19-1.32) and living in the Central Region (OR=0.59; C.I.95%, 0.36-0.97) were protective against MLSC. Deficiencies of iron and zinc are serious public health problems in Mexican children.

  2. An isoelectronic NO dioxygenase reaction using a nonheme iron(III)-peroxo complex and nitrosonium ion.

    Science.gov (United States)

    Yokoyama, Atsutoshi; Han, Jung Eun; Karlin, Kenneth D; Nam, Wonwoo

    2014-02-18

    Reaction of a nonheme iron(III)-peroxo complex, [Fe(III)(14-TMC)(O2)](+), with NO(+), a transformation which is essentially isoelectronic with that for nitric oxide dioxygenases [Fe(III)(O2˙(-)) + NO], affords an iron(IV)-oxo complex, [Fe(IV)(14-TMC)(O)](2+), and nitrogen dioxide (NO2), followed by conversion to an iron(III)-nitrato complex, [Fe(III)(14-TMC)(NO3)(F)](+).

  3. Mechanism of oxidation of L-methionine by iron(III)-1,10 ...

    Indian Academy of Sciences (India)

    Unknown

    Abstract. Kinetics and mechanism of oxidation of L-methionine by iron(III)–1,10- phenanthroline complex have been studied in perchloric acid medium. The reaction is first order each in iron(III) and methionine. Increase in [phenanthroline] increases the rate while increase in [HClO4] decreases it. While the reactive species ...

  4. An isoelectronic NO dioxygenase reaction using a nonheme iron(III)-peroxo complex and nitrosonium ion†

    Science.gov (United States)

    Yokoyama, Atsutoshi; Han, Jung Eun; Karlin, Kenneth D.; Nam, Wonwoo

    2014-01-01

    Reaction of a nonheme iron(III)-peroxo complex, [FeIII(14-TMC)(O2)]+, with NO+, a transformation which is essentially isoelectronic with that for nitric oxide dioxygenases [Fe(III)(O2•−) + NO], affords an iron(IV)-oxo complex, [FeIV(14-TMC)(O)]2+, and nitrogen dioxide (NO2), followed by conversion to an iron(III)-nitrato complex, [FeIII(14-TMC)(NO3)(F)]+. PMID:24394960

  5. An isoelectronic NO dioxygenase reaction using a nonheme iron(III)-peroxo complex and nitrosonium ion†

    OpenAIRE

    Yokoyama, Atsutoshi; Han, Jung Eun; Karlin, Kenneth D.; Nam, Wonwoo

    2014-01-01

    Reaction of a nonheme iron(III)-peroxo complex, [FeIII(14-TMC)(O2)]+, with NO+, a transformation which is essentially isoelectronic with that for nitric oxide dioxygenases [Fe(III)(O2•−) + NO], affords an iron(IV)-oxo complex, [FeIV(14-TMC)(O)]2+, and nitrogen dioxide (NO2), followed by conversion to an iron(III)-nitrato complex, [FeIII(14-TMC)(NO3)(F)]+.

  6. Laboratory evaluation of PAH oxidation by magnesium peroxides and iron oxides mixtures as reactive material for groundwater remediation

    International Nuclear Information System (INIS)

    Valderrama, C.; Gamisans, X.; Cortina, J.L.; Farran, A.; Marti, V.

    2005-01-01

    contaminant(s) of concern; 2) the total oxidant requirements, pH dependence and relative reaction rate, and 3) the reaction by-products formed. The main goal of this work the evaluation of mixtures of magnesium peroxide and iron oxides as reactive materials for Poly-aromatic Hydrocarbons (PAH) degradation reagents in permeable reactive barriers or zones. One goal of this study is to examine and determine the release rate of hydrogen peroxide from magnesium peroxide by means of laboratory experiments. The magnesium peroxide from two different sources (i.e. Regenesis and Solvay) will be compared. Another objective is to study how a catalyst such as iron speeds up the degradation of PAHs. Not only the release rate will be studied, but also the dissolution process of magnesium peroxide. The experiments mentioned above will be carried out in both batch and continuous reactors. The results of this study showed that the magnesium peroxide from Solvay can release more hydrogen peroxide than the magnesium peroxide from Regenesis. The oxidation factors for the two preparations are quite similar, even though the release of hydrogen peroxide differs greatly. Another point, which ought to be considered, is the minor effect of iron oxides in the degradation of PAHs. The dissolution process of magnesium peroxide is a complex process with magnesium hydroxide as the main reaction by product. So, magnesium peroxides can be used as a hydrogen peroxide releasing compound. Further studies on the removal mechanisms should be performed to identify the oxidation products as well as the sorption properties of magnesium hydroxide. The heterogeneous oxidation of a family of poly-aromatic hydrocarbons (anthracene, pyrene, fluorene and naphthalene) proceeds with a highly efficiency ratio and following a first order kinetic

  7. Microbial Reducibility of Fe(III Phases Associated with the Genesis of Iron Ore Caves in the Iron Quadrangle, Minas Gerais, Brazil

    Directory of Open Access Journals (Sweden)

    Ceth W. Parker

    2013-11-01

    Full Text Available The iron mining regions of Brazil contain thousands of “iron ore caves” (IOCs that form within Fe(III-rich deposits. The mechanisms by which these IOCs form remain unclear, but the reductive dissolution of Fe(III (hydroxides by Fe(III reducing bacteria (FeRB could provide a microbiological mechanism for their formation. We evaluated the susceptibility of Fe(III deposits associated with these caves to reduction by the FeRB Shewanella oneidensis MR-1 to test this hypothesis. Canga, an Fe(III-rich duricrust, contained poorly crystalline Fe(III phases that were more susceptible to reduction than the Fe(III (predominantly hematite associated with banded iron formation (BIF, iron ore, and mine spoil. In all cases, the addition of a humic acid analogue enhanced Fe(III reduction, presumably by shuttling electrons from S. oneidensis to Fe(III phases. The particle size and quartz-Si content of the solids appeared to exert control on the rate and extent of Fe(III reduction by S. oneidensis, with more bioreduction of Fe(III associated with solid phases containing more quartz. Our results provide evidence that IOCs may be formed by the activities of Fe(III reducing bacteria (FeRB, and the rate of this formation is dependent on the physicochemical and mineralogical characteristics of the Fe(III phases of the surrounding rock.

  8. Magnetic interactions in iron (III) porphyrin chlorides

    International Nuclear Information System (INIS)

    Ernst, J.; Subramanian, Japyesan; Fuhrhop, J.H.

    1977-01-01

    Intermolecular exchange interactions in iron(III) porphyrin chlorides (porphyrin = OEP, proto, TPP) have been studied by X-ray structure, EPR and magnetic susceptibility studies. The crystal structure of Fe(III)OEP-Cl was found to be different from that of the other two. Different types of exchange broadened EPR-spectra are obtained which are attributable to the arrangement in the crystals. The EPR results correlate well with magnetic susceptibility data. (orig.) [de

  9. Self-assembled Targeting of Cancer Cells by Iron(III)-doped, Silica Nanoparticles

    OpenAIRE

    Mitchell, K.K. Pohaku; Sandoval, S.; Cortes-Mateos, M. J.; Alfaro, J.G.; Kummel, A. C.; Trogler, W.C.

    2014-01-01

    Iron(III)-doped silica nanoshells are shown to possess an in vitro cell-receptor mediated targeting functionality for endocytosis. Compared to plain silica nanoparticles, iron enriched ones are shown to be target-specific, a property that makes them potentially better vehicles for applications, such as drug delivery and tumor imaging, by making them more selective and thereby reducing the nanoparticle dose. Iron(III) in the nanoshells can interact with endogenous transferrin, a serum protein ...

  10. Graphitic encapsulation of MgO and Fe3C nanoparticles in the reaction of iron pentacarbonyl with magnesium

    International Nuclear Information System (INIS)

    Dyjak, Sławomir; Cudziło, Stanisław; Polański, Marek; Budner, Bogusław; Bystrzycki, Jerzy

    2013-01-01

    A simple method to produce highly ordered carbon nanostructures by combustion synthesis is presented. Graphite-encapsulated magnesium oxide, iron carbide nanoparticles and carbon nanobelts were synthesized by the one-step reduction of iron pentacarbonyl with magnesium. High-resolution transmission electron microscopy analysis of the products revealed nanocrystalline MgO and Fe 3 C particles surrounded by a well-crystallized, tight graphite film. The possible formation mechanism is presented and discussed. - Highlights: • We present a simple method to produce highly ordered carbon nanostructures by combustion synthesis. • The cubic MgO particles are completely coated by tight graphitic shells. • The mechanism of formation a distant carbon film on MgO surface has been discussed. • The presented method can be applied to synthesis of other core-shell structures

  11. Serum and tissue contents of copper, calcium, iron and magnesium elements in cases of acne vulgaris after zinc therapy

    International Nuclear Information System (INIS)

    El-Said, S.M.; El-Bedewi, A.F.

    2002-01-01

    The effect of zinc therapy on some trace elements contents in serum and skin was studied in normal group (forty) and patients group with acne vulgaris (26 males and 14 females) with age ranged between 14-30 year. They were under medical treatment with 330 mg oral zinc sulfate for 12 weeks. Highly significant decreases in both serum and tissue contents of copper and calcium were detected, as well as, highly significant decrease in the serum content of magnesium was recorded. The serum content of iron was highly significantly increased and that for tissue content was slightly significantly increased. It could be concluded that zinc therapy could be valuable through modulation of copper. calcium, iron and magnesium in acne patients

  12. Arene activation by a nonheme iron(III)-hydroperoxo complex: pathways leading to phenol and ketone products.

    Science.gov (United States)

    Faponle, Abayomi S; Banse, Frédéric; de Visser, Sam P

    2016-07-01

    Iron(III)-hydroperoxo complexes are found in various nonheme iron enzymes as catalytic cycle intermediates; however, little is known on their catalytic properties. The recent work of Banse and co-workers on a biomimetic nonheme iron(III)-hydroperoxo complex provided evidence of its involvement in reactivity with arenes. This contrasts the behavior of heme iron(III)-hydroperoxo complexes that are known to be sluggish oxidants. To gain insight into the reaction mechanism of the biomimetic iron(III)-hydroperoxo complex with arenes, we performed a computational (density functional theory) study. The calculations show that iron(III)-hydroperoxo reacts with substrates via low free energies of activation that should be accessible at room temperature. Moreover, a dominant ketone reaction product is observed as primary products rather than the thermodynamically more stable phenols. These product distributions are analyzed and the calculations show that charge interaction between the iron(III)-hydroxo group and the substrate in the intermediate state pushes the transferring proton to the meta-carbon atom of the substrate and guides the selectivity of ketone formation. These studies show that the relative ratio of ketone versus phenol as primary products can be affected by external interactions of the oxidant with the substrate. Moreover, iron(III)-hydroperoxo complexes are shown to selectively give ketone products, whereas iron(IV)-oxo complexes will react with arenes to form phenols instead.

  13. Gamma irradiation effects of 51Cr(III) isotope exchange in doped magnesium chromate - zinc chromate mixtures

    International Nuclear Information System (INIS)

    Mahfouz, R.M.

    1984-01-01

    Gamma irradiation effects of 51 Cr(III) isotope exchange in magnesium chromate - zinc chromate mixtures doped with 51 Cr(III) were investigated. It was found that γ irradiation has an oxidation effect and the percentage of exchanged 51 Cr(VI) increases with the increasing γ-ray dose. The data are explained in terms of mechanistic model involving metal and ligand vacancies exchange and substitution reactions. (author)

  14. Complexation Effect on Redox Potential of Iron(III)-Iron(II) Couple: A Simple Potentiometric Experiment

    Science.gov (United States)

    Rizvi, Masood Ahmad; Syed, Raashid Maqsood; Khan, Badruddin

    2011-01-01

    A titration curve with multiple inflection points results when a mixture of two or more reducing agents with sufficiently different reduction potentials are titrated. In this experiment iron(II) complexes are combined into a mixture of reducing agents and are oxidized to the corresponding iron(III) complexes. As all of the complexes involve the…

  15. Application of sorption method on hydroxides for purification of some reactive from iron(III) markings

    International Nuclear Information System (INIS)

    Rakhmonberdiev, A.D.; Khamidov, B.O.

    1986-01-01

    The method of purification of solutions of citric acid, tartaric acid and their salts, potassium hydroxide, potassium nitrate and chloride, sodium perchlorate from iron (III) impurities by means of sorption method on zirconium hydroxide is elaborated. The control of iron(III) content in solutions is conducted by inversion voltammetry method with mercury-graphite electrode. It is defined that complete sorption of iron (III) ions achieves at ph =4÷14.

  16. Heterobimetallic gadolinium(III)-iron(III) complex of DTPA-bis(3-hydroxytyramide)

    International Nuclear Information System (INIS)

    Parac-Vogt, Tatjana N.; Kimpe, Kristof; Binnemans, Koen

    2004-01-01

    A derivative of diethylenetriamine-N,N,N',N'',N''-pentaacetic acid (DTPA), carrying two catechol functional groups has been synthesised by the reaction between DTPA-bis(anhydride) and 3-hydroxytyramine (dopamine). The ligand DTPA-bis(3-hydroxytyramide), [DTPA(HTA) 2 ], is able to form stable heterobimetallic complexes with gadolinium(III) and iron(III) ions. The gadolinium(III) occupies the internal coordination cage of DTPA formed by three nitrogens, two carboxylate and two amide oxygens, while the [Fe(NTA)(H 2 O) 2 ] (nitrilotriacetic acid, NTA) binds to catechol units by the substitution of two water ligands. The formation of polymeric species was avoided by using the tripodal NTA ligand. The heterobimetallic complex was characterised by means of visible absorption spectroscopy, electron spray ionisation-mass spectrometry (ESI-MS), and nuclear magnetic resonance (NMR) spectroscopy

  17. Thermodynamics of complex formation of natural iron(III)porphyrins with neutral ligands

    International Nuclear Information System (INIS)

    Lebedeva, Nataliya Sh.; Yakubov, Sergey P.; Vyugin, Anatoly I.; Parfenyuk, Elena V.

    2003-01-01

    Calorimetric titrations in benzene and chloroform at 298.15 K have been performed to give the complexes stability constants and the thermodynamic parameters for the complex formation of nature iron(III)porphyrins with pyridine. Stoichimetry of the complexes formed has been determined. It has been found that the thermodynamic parameters obtained depend on nature of peripheral substituents of the porphyrins. The estimation of the influence of Cl - and Ac - ions on the processes studied has been carried out. Using thermodynamic analysis method, the crystallsolvates of nature iron(III)porphyrins with benzene have been studied. Stoichiometry, thermal and energetic stability of the π-π-complexes formed have been determined. The data obtained have been used to the estimate solvent effect on the thermodynamic parameters of axial coordination of pyridine on the iron(III)porphyrins in benzene

  18. Effect of treatment with single total-dose intravenous iron versus daily oral iron(III-hydroxide polymaltose on moderate puerperal iron-deficiency anemia

    Directory of Open Access Journals (Sweden)

    Iyoke CA

    2017-05-01

    Full Text Available Chukwuemeka Anthony Iyoke,1 Fausta Chioma Emegoakor,1 Euzebus Chinonye Ezugwu,1 Lucky Osaheni Lawani,2 Leonard Ogbonna Ajah,1 Jude Anazoeze Madu,3 Hyginus Uzo Ezegwui,1 Frank Okechukwu Ezugwu4 1Department of Obstetrics and Gynaecology, University of Nigeria, Enugu Campus, 2Department of Obstetrics and Gynaecology, Federal Teaching Hospital, Abakaliki, 3Department of Haematology, University of Nigeria, Nsukka, 4Department of Obstetrics and Gynaecology, College of Medicine, Enugu State University, Enugu, Nigeria Background: Iron-deficiency anemia is the most common nutritional cause of anemia in pregnancy and is often responsible for puerperal anemia. Puerperal anemia can impair postpartum maternal and neonatal well-being. Objective: To determine the effect of treatment of moderate puerperal iron-deficiency anemia using a single intravenous total-dose iron dextran versus daily single dose oral iron(III-hydroxide polymaltose. Methodology: A randomized controlled study in which postpartum women with moderate iron-deficiency anemia were randomized into treatment with either a single total-dose intravenous iron dextran or with daily single doses of oral iron(III-hydroxide polymaltose tablets for 6 weeks. Effects on hemoglobin concentration using either method were compared at 6 weeks postpartum. Analysis was per protocol using SPSS version 17 for windows. P-values ≤0.05 were considered significant. Results: Two hundred eighty-four women were recruited for the study: 142 women received single total dose intravenous infusion of iron dextran while 142 received daily oral iron(III-hydroxide polymaltose tablets. Approximately 84.0% (237/282 completed the study and were analyzed including 81% (115/142 of those randomized to injectable iron therapy compared to 85.9% (122/142 of those randomized to oral treatment. The proportions of women who had attained hemoglobin concentration of at least 10 g/dL by the 6 weeks postpartum visit did not differ

  19. Adsorption Characteristics of Different Adsorbents and Iron(III Salt for Removing As(V from Water

    Directory of Open Access Journals (Sweden)

    Josip Ćurko

    2016-01-01

    Full Text Available The aim of this study is to determine the adsorption performance of three types of adsorbents for removal of As(V from water: Bayoxide® E33 (granular iron(III oxide, Titansorb® (granular titanium oxide and a suspension of precipitated iron(III hydroxide. Results of As(V adsorption stoichiometry of two commercial adsorbents and precipitated iron(III hydroxide in tap and demineralized water were fitted to Freundlich and Langmuir adsorption isotherm equations, from which adsorption constants and adsorption capacity were calculated. The separation factor RL for the three adsorbents ranged from 0.04 to 0.61, indicating effective adsorption. Precipitated iron(III hydroxide had the greatest, while Titansorb had the lowest capacity to adsorb As(V. Comparison of adsorption from tap or demineralized water showed that Bayoxide and precipitated iron(III hydroxide had higher adsorption capacity in demineralized water, whereas Titansorb showed a slightly higher capacity in tap water. These results provide mechanistic insights into how commonly used adsorbents remove As(V from water.

  20. Experimental and Computational Evidence for the Mechanism of Intradiol Catechol Dioxygenation by Non-Heme Iron(III) Complexes

    Science.gov (United States)

    Jastrzebski, Robin; Quesne, Matthew G; Weckhuysen, Bert M; de Visser, Sam P; Bruijnincx, Pieter C A

    2014-01-01

    Catechol intradiol dioxygenation is a unique reaction catalyzed by iron-dependent enzymes and non-heme iron(III) complexes. The mechanism by which these systems activate dioxygen in this important metabolic process remains controversial. Using a combination of kinetic measurements and computational modelling of multiple iron(III) catecholato complexes, we have elucidated the catechol cleavage mechanism and show that oxygen binds the iron center by partial dissociation of the substrate from the iron complex. The iron(III) superoxide complex that is formed subsequently attacks the carbon atom of the substrate by a rate-determining C=O bond formation step. PMID:25322920

  1. In Vitro Bioavailability of Calcium, Magnesium, Iron, Zinc, and Copper from Gluten-Free Breads Supplemented with Natural Additives.

    Science.gov (United States)

    Regula, J; Cerba, A; Suliburska, J; Tinkov, A A

    2018-03-01

    The aim of this study was to measure the content of calcium, magnesium, iron, zinc, and copper and determine the bioavailability of these ingredients in gluten-free breads fortified with milk and selected seeds. Due to the increasing prevalence of celiac disease and mineral deficiencies, it has become necessary to produce food with higher nutritional values which maintains the appropriate product characteristics. This study was designed for gluten-free breads fortified with milk and seeds such as flax, poppy, sunflower seeds, pumpkin seeds or nuts, and flour with amaranth. Subsequently, digestion was performed in vitro and the potential bioavailability of the minerals was measured. In the case of calcium, magnesium, iron, and copper, higher bioavailability was observed in rice bread, and, in the case of copper and zinc, in buckwheat bread. This demonstrated a clear increase in bioavailability of all the minerals when the bread were enriched. However, satisfactory results are obtained only for the individual micronutrients.

  2. Quasi-isentropic Compression of Iron and Magnesium Oxide to 3 Mbar at the Omega Laser Facility

    Science.gov (United States)

    Wang, J.; Smith, R. F.; Coppari, F.; Eggert, J. H.; Boehly, T.; Collins, G.; Duffy, T. S.

    2011-12-01

    Developing a high-pressure, modest temperature ramp compression drive permits exploration of new regions of thermodynamic space, inaccessible through traditional methods of shock or static compression, and of particular relevance to material conditions found in planetary interiors both within and outside our solar system. Ramp compression is a developing technique that allows materials to be compressed along a quasi-isentropic path and provides the ability to study materials in the solid state to higher pressures than can be achieved with diamond anvil cell or shock wave methods. Iron and magnesium oxide are geologically important materials each representative of one of the two major interior regions (core and mantle) of terrestrial planets. An experimental platform for ramp loading of iron (Fe) and magnesium oxide (MgO), has been established and tested in experiments at the Omega Laser Facility, University of Rochester. Omega is a 60-beam ultraviolet (352 nm) neodymium glass laser which is capable of delivery kilojoules of energy in ~10 ns pulses onto targets of a few mm in dimension. In the current experiments, we used a composite ramped laser pulse involving typically 15 beams with total energy of 2.6-3.3 kJ. The laser beams were used to launch spatially planar ramp compression waves into Fe and MgO targets. Each target had four steps that were approximately 5-7 μm thick. Detection of the ramp wave arrival and its velocity at the free surface of each step was made using a VISAR velocity interferometer. Through the use of Lagrangian analysis on the measured wave profiles, stress-density states in iron and magnesium oxide have been determined to pressures of 291 GPa and 260 GPa respectively. For Fe, the α-ɛ transition of iron is overdriven by an initial shock pulse of ~90.1 GPa followed by ramp compression to the peak pressure. The results will be compared with shock compression and diamond anvil cell data for both materials. We acknowledge the Omega staff at

  3. ARSENIC INTERACTION WITH IRON (II, III) HYDROXYCARBONATE GREEN RUST: IMPLICATIONS FOR ARSENIC REMEDIATION

    Science.gov (United States)

    Zerovalent iron is being used in permeable reactive barriers (PRBs) to remediate groundwater arsenic contamination. Iron(II, III) hydroxycarbonate green rust is a major corrosion product of zerovalent iron under anaerobic conditions. The interaction between arsenic and this green...

  4. Spectroscopic study of silicate glass structure. Application to the case of iron and magnesium

    International Nuclear Information System (INIS)

    Rossano, Stephanie

    2008-01-01

    During the last 10 years, I focused my research topics on silicate glass structure. More specifically I have been interested by two main components of natural and technological silicate glasses, Fe and Mg. Using solid state spectroscopic methods adapted to the disordered nature of glass coupled to molecular dynamics simulation and modeling or ab initio calculation, I have studied the environment of iron and magnesium and their impact on glass properties. Information on the distribution of environments in glasses have been extracted. (author)

  5. Nano-Structured Magnesium Oxide Coated Iron Ore: Its Application to the Remediation of Wastewater Containing Lead.

    Science.gov (United States)

    Nagarajah, Ranjini; Jang, Min; Pichiah, Saravanan; Cho, Jongman; Snyder, Shane A

    2015-12-01

    Magnetically separable nano-structured magnesium oxide coated iron ore (IO(MgO)) was prepared using environmentally benign chemicals, such as iron ore (IO), magnesium(II) nitrate hexahydrate [Mg(NO3)2 x 6H2O] and urea; via an easy and fast preparation method. The lO(MgO) was characterized using X-ray diffraction (XRD), field-emission scanning electron microscopy (FE-SEM), energy-dispersive X-ray spectroscopy (EDS) and alternating gradient magnetometer (AGM) analyses. The isotherm and kinetic studies indicated that lO(MgO) has a comparably higher Langmuir constant (K(L), 1.69 L mg(-1)) and maximum sorption capacity (33.9 mg g(-1)) for lead (Pb) than other inorganic media. Based on MgO amount, the removal capacity of Pb by IO(MgO) was 2,724 mg Pb (g MgO)(-1), which was higher than that (1,980 mg g(-1)) for flowerlike magnesium oxide nanostructures reported by Cao et al. The kinetics, FE-SEM, elemental mapping and XRD results revealed that the substitution followed by precipitation was identified as the mechanism of Pb removal and plumbophyllite (Pb2Si4O10 x H2O) was the precipitated phase of Pb. A leaching test revealed that IOMgO) had negligible concentrations of leached Fe at pH 4-9. Since the base material, IO, is cheap and easily available, lO(MgO) could be produced in massive amounts and used for remediation of wastewater containing heavy metals, applying simple and fast magnetic separation.

  6. Biomimetic oxidation of piperine and piplartine catalyzed by iron(III) and manganese(III) porphyrins.

    Science.gov (United States)

    Schaab, Estela Hanauer; Crotti, Antonio Eduardo Miller; Iamamoto, Yassuko; Kato, Massuo Jorge; Lotufo, Letícia Veras Costa; Lopes, Norberto Peporine

    2010-01-01

    Synthetic metalloporphyrins, in the presence of monooxygen donors, are known to mimetize various reactions of cytochrome P450 enzymes systems in the oxidation of drugs and natural products. The oxidation of piperine and piplartine by iodosylbenzene using iron(III) and manganese(III) porphyrins yielded mono- and dihydroxylated products, respectively. Piplartine showed to be a more reactive substrate towards the catalysts tested. The structures of the oxidation products were proposed based on electrospray ionization tandem mass spectrometry.

  7. Isolation of microorganisms involved in reduction of crystalline iron(III) oxides in natural environments.

    Science.gov (United States)

    Hori, Tomoyuki; Aoyagi, Tomo; Itoh, Hideomi; Narihiro, Takashi; Oikawa, Azusa; Suzuki, Kiyofumi; Ogata, Atsushi; Friedrich, Michael W; Conrad, Ralf; Kamagata, Yoichi

    2015-01-01

    Reduction of crystalline Fe(III) oxides is one of the most important electron sinks for organic compound oxidation in natural environments. Yet the limited number of isolates makes it difficult to understand the physiology and ecological impact of the microorganisms involved. Here, two-stage cultivation was implemented to selectively enrich and isolate crystalline iron(III) oxide reducing microorganisms in soils and sediments. Firstly, iron reducers were enriched and other untargeted eutrophs were depleted by 2-years successive culture on a crystalline ferric iron oxide (i.e., goethite, lepidocrocite, hematite, or magnetite) as electron acceptor. Fifty-eight out of 136 incubation conditions allowed the continued existence of microorganisms as confirmed by PCR amplification. High-throughput Illumina sequencing and clone library analysis based on 16S rRNA genes revealed that the enrichment cultures on each of the ferric iron oxides contained bacteria belonging to the Deltaproteobacteria (mainly Geobacteraceae), followed by Firmicutes and Chloroflexi, which also comprised most of the operational taxonomic units (OTUs) identified. Venn diagrams indicated that the core OTUs enriched with all of the iron oxides were dominant in the Geobacteraceae while each type of iron oxides supplemented selectively enriched specific OTUs in the other phylogenetic groups. Secondly, 38 enrichment cultures including novel microorganisms were transferred to soluble-iron(III) containing media in order to stimulate the proliferation of the enriched iron reducers. Through extinction dilution-culture and single colony isolation, six strains within the Deltaproteobacteria were finally obtained; five strains belonged to the genus Geobacter and one strain to Pelobacter. The 16S rRNA genes of these isolates were 94.8-98.1% identical in sequence to cultured relatives. All the isolates were able to grow on acetate and ferric iron but their physiological characteristics differed considerably in

  8. The preparation of magnetite from iron(III) and iron(II) salt solutions

    International Nuclear Information System (INIS)

    Segal, D.L.

    1980-10-01

    Methods are described for the preparation of magnetite from iron(III) and iron(II) salt solutions at temperatures between 295 to 373 K. The effect of the reagent concentration, a chelating agent and different alkali-metal cations on the formation of magnetite has been investigated. The magnetite samples have been examined by X-ray diffraction, transmission electron microscopy, adsorption of nitrogen, emission spectroscopy, X-ray photoelectron spectroscopy and by determination of the point of zero charge. A review of previous work on the preparation of magnetite in an aqueous environment is also included. This work is relevant to the corrosion processes which can occur in the water coolant circuits of nuclear reactors. (author)

  9. Differences and Comparisons of the Properties and Reactivities of Iron(III)–hydroperoxo Complexes with Saturated Coordination Sphere

    Science.gov (United States)

    Faponle, Abayomi S; Quesne, Matthew G; Sastri, Chivukula V; Banse, Frédéric; de Visser, Sam P

    2015-01-01

    Heme and nonheme monoxygenases and dioxygenases catalyze important oxygen atom transfer reactions to substrates in the body. It is now well established that the cytochrome P450 enzymes react through the formation of a high-valent iron(IV)–oxo heme cation radical. Its precursor in the catalytic cycle, the iron(III)–hydroperoxo complex, was tested for catalytic activity and found to be a sluggish oxidant of hydroxylation, epoxidation and sulfoxidation reactions. In a recent twist of events, evidence has emerged of several nonheme iron(III)–hydroperoxo complexes that appear to react with substrates via oxygen atom transfer processes. Although it was not clear from these studies whether the iron(III)–hydroperoxo reacted directly with substrates or that an initial O–O bond cleavage preceded the reaction. Clearly, the catalytic activity of heme and nonheme iron(III)–hydroperoxo complexes is substantially different, but the origins of this are still poorly understood and warrant a detailed analysis. In this work, an extensive computational analysis of aromatic hydroxylation by biomimetic nonheme and heme iron systems is presented, starting from an iron(III)–hydroperoxo complex with pentadentate ligand system (L52). Direct C–O bond formation by an iron(III)–hydroperoxo complex is investigated, as well as the initial heterolytic and homolytic bond cleavage of the hydroperoxo group. The calculations show that [(L52)FeIII(OOH)]2+ should be able to initiate an aromatic hydroxylation process, although a low-energy homolytic cleavage pathway is only slightly higher in energy. A detailed valence bond and thermochemical analysis rationalizes the differences in chemical reactivity of heme and nonheme iron(III)–hydroperoxo and show that the main reason for this particular nonheme complex to be reactive comes from the fact that they homolytically split the O–O bond, whereas a heterolytic O–O bond breaking in heme iron(III)–hydroperoxo is found. PMID:25399782

  10. Toxicological studies and antimicrobial properties of some Iron(III ...

    African Journals Online (AJOL)

    SERVER

    2007-12-17

    Dec 17, 2007 ... Two iron(III) complexes of Ciprofloxacin were synthesized by reaction of the ... The infrared spectra suggest that two classes of compounds were obtained: molecular complex in .... Soluble in H2O, MeOH, EtOH; Mol. cond.

  11. Mechanism of oxidation of L-methionine by iron(III)

    Indian Academy of Sciences (India)

    phenanthroline complex have been studied in perchloric acid medium. The reaction is first order each in iron(III) and methionine. Increase in [phenanthroline] increases the rate while increase in [HClO4] decreases it. While the reactive species of the ...

  12. Determinação de ferro (III em produtos farmacêuticos por titulação fotométrica = Determination of iron (III in pharmaceutical products by photometric titration

    Directory of Open Access Journals (Sweden)

    Airton Vicente Pereira

    2011-01-01

    Full Text Available Este trabalho descreve a montagem de um sistema de titulacao fotometrica simples e de baixo custo para a determinacao de ferro (III em produtos farmaceuticos. O sistema de titulacao fotometrica foi construido utilizando-se a bomba peristaltica de um espectrofotometro convencional. O procedimento e baseado na titulacao de ferro (III com EDTA e acido salicilico como indicador. A absorcao do complexo ferro (III-acido salicilico foi monitorada espectrofotometricamente em 525 nm. O limite de quantificacao foi de 5 ƒÝg de ferro (III. O procedimento de titulacao fotometrica foi aplicado para a determinacao de ferro (III em amostras contendo sulfato ferroso e hidroxido ferrico polimaltosado. O procedimento mostrou sensibilidade, reprodutibilidade e precisao para a utilizacao em analise rotineira de ferro (III em produtos farmaceuticos.This paper describes a simple, precise and low-cost photometrictitration method for iron (III determination in pharmaceutical preparations. The photometric titration system was constructed using the peristaltic pump of a conventional spectrophotometer. The method is based on titration of iron (III with EDTA using salicylic acid as indicator. The absorption of the iron (III-salicylic acid complex wasmonitored spectrophotometrically at 525 nm. The limit of quantification was 5 ƒÝg of iron (III. The photometric titration procedure was applied for the determination of iron (III in samples of ferrous sulfate and ferric hydroxide polymaltose complex. The procedure showed sensibility, reproducibility and accuracy for use as a method for the routine analysis of iron (III in pharmaceutical formulations.

  13. Organic iron (III) complexing ligands during an iron enrichment experiment in the western subarctic North Pacific

    Science.gov (United States)

    Kondo, Yoshiko; Takeda, Shigenobu; Nishioka, Jun; Obata, Hajime; Furuya, Ken; Johnson, William Keith; Wong, C. S.

    2008-06-01

    Complexation of iron (III) with natural organic ligands was investigated during a mesoscale iron enrichment experiment in the western subarctic North Pacific (SEEDS II). After the iron infusions, ligand concentrations increased rapidly with subsequent decreases. While the increases of ligands might have been partly influenced by amorphous iron colloids formation (12-29%), most in-situ increases were attributable to the Dilution of the fertilized patch may have contributed to the rapid decreases of the ligands. During the bloom decline, ligand concentration increased again, and the high concentrations persisted for 10 days. The conditional stability constant was not different between inside and outside of the fertilized patch. These results suggest that the chemical speciation of the released iron was strongly affected by formation of the ligands; the production of ligands observed during the bloom decline will strongly impact the iron cycle and bioavailability in the surface water.

  14. Microbial dissimilatory iron(III) reduction: Studies on the mechanism and on processes of environmental relevance

    OpenAIRE

    Jahn, Michael

    2005-01-01

    Many microbes are able to respire aerobically oxygen or anaerobically other electron acceptors for example sulphate, nitrate, manganese(IV) or Fe(III). As iron minerals are widespread in nature, dissimilatory iron(III) reduction by different microorganisms is a very important process of anaerobic respiration. The general goal of this work was to improve the knowledge of processes, in which iron-reducing microbes are said to play an important role. For this purpose, in one part the focus wa...

  15. ARSENATE AND ARSENITE SORPTION AND ARSENITE OXIDATION BY IRON (II, III) HYDROXYCARBONATE GREEN RUST

    Science.gov (United States)

    Iron (II, III) hydroxycarbonate green rust is a major corrosion product of zerovalent iron that is being used in permeable reactive barriers to remediate groundwater arsenic contamination. To optimize the design of iron barriers, it is important to evaluate the influence of geoch...

  16. Applications of inorganic ion exchangers; I-sorption and fixation of some radionuclides in synthetic iron (III)titanate ion exchanger

    International Nuclear Information System (INIS)

    Abou-Mesalam, M.M.; El-Naggar, I.M.

    2002-01-01

    Iron(III) titanate as inorganic ion exchange material has been synthesized by addition of ferric nitrate solution to titanium tetrachloride (dissolved in 4M HCI) with molar ratio equal to unity. The data obtained proposed that the chemical formula of iron(III) titanate may written either as Fe 1 .3 (TiO). 2h 2 O or Fe(TiO 4 ) 0 .76.1.5H 2 O. The surface area values of unloaded and loaded iron(III) titanate with Cs + , Co 2 + and Eu 3 + ions were measured using BET-technique. The selectiy sequence for sorption of Cs + , Co 2 + and Fu 3 + ions on iron (III) titanate was found to be; Co 2 + > Eu 3 + > Cs + . The leach rate values of Cs + , Co 2 + and Fu 3 + ions from iron (II) titanate heated to 1000 degree C different leachants were determined and shows lower values compared to those obtained from unheated iron (III) titanate (dried at 50 degree C) which elucidate the suitability of iron (III) titanate in fixation of Cs + , Co 2 + and Eu 3 + ions by thermal treatment up to1000 degree.

  17. The long term tsunami impact: Evolution of iron speciation and major elements concentration in tsunami deposits from Thailand.

    Science.gov (United States)

    Kozak, Lidia; Niedzielski, Przemyslaw

    2017-08-01

    The article describes the unique studies of the chemical composition changes of new geological object (tsunami deposits in south Thailand - Andaman Sea Coast) during four years (2005-2008) from the beginning of formation of it (deposition of tsunami transported material, 26 December 2004). The chemical composition of the acid leachable fraction of the tsunami deposits has been studied in the scope of concentration macrocompounds - concentration of calcium, magnesium, iron, manganese and iron speciation - the occurrence of Fe(II), Fe(III) and non-ionic iron species described as complexed iron (Fe complex). The changes of chemical composition and iron speciation in the acid leachable fraction of tsunami deposits have been observed with not clear tendencies of changes direction. For iron speciation changes the transformation of the Fe complex to Fe(III) has been recorded with no significant changes of the level of Fe(II). Copyright © 2017 Elsevier Ltd. All rights reserved.

  18. Ion-Selective Electrode for the Determination of Iron(III in Vitamin Formulations

    Directory of Open Access Journals (Sweden)

    Teixeira Marcos Fernando de S.

    1998-01-01

    Full Text Available A coated graphite-epoxy ion-selective electrode for iron(III, based on the ion-pair formed between [Fe(citrate2]3- and the tricaprylylmethylammonium cation (Aliquat 336 in a poly(vinylchloride (PVC matrix has been constructed. A thin membrane film of this ion-pair, dibutylphthalate (DBPh in PVC was deposited directly onto a Perspex® tube, which contained a graphite-epoxy conductor substrate. The coating solution was prepared by dissolving 30% (w/w of PVC in 10 mL of tetrahydrofuran following addition of 65% (w/w DBPh and 5% (w/w of the ionic pair. The effect of pH, citrate concentration and some cations on the electrode response has been investigated. The E(mV vs. log [Fe(citrate2]3- electrode response was linear for iron(III concentration from 1.0 x 10-3 mol/L to 1.0 x 10-1 mol/L in 1.0 mol/L citrate medium, with a slope of 19.3 ± 0.5 mV/decade and a useful lifetime of at least six months (more than 800 determinations for each polymeric membrane used. The detection limit was 7.5 x 10-4 mol/L and the relative standard deviation was less than 3% for a solution containing 5.0 x 10-3 mol/L of iron(III (n = 10. The application of this electrode for iron(III determination in samples of vitamin formulations is described. The results obtained with this procedure are in close agreement with those obtained using AA spectrophotometry (r = 0.9999.

  19. Anodic Stripping Voltammetric Detection of Arsenic(III) at Platinum-Iron(III) Nanoparticle Modified Carbon Nanotube on Glassy Carbon Electrode

    International Nuclear Information System (INIS)

    Shin, Seung Hyun; Hong, Hun Gi

    2010-01-01

    The electrochemical detection of As(III) was investigated on a platinum-iron(III) nanoparticles modified multiwalled carbon nanotube on glassy carbon electrode(nanoPt-Fe(III)/MWCNT/GCE) in 0.1 M H 2 SO 4 . The nanoPt-Fe(III)/ MWCNT/GCE was prepared via continuous potential cycling in the range from .0.8 to 0.7 V (vs. Ag/AgCl), in 0.1 M KCl solution containing 0.9 mM K 2 PtCl 6 and 0.6 mM FeCl 3 . The Pt nanoparticles and iron oxide were co-electrodeposited into the MWCNT-Nafion composite film on GCE. The resulting electrode was examined by cyclic voltammetry (CV), scanning electron microscopy (SEM), and anodic stripping voltammetry (ASV). For the detection of As(III), the nanoPt-Fe(III)/MWCNT/GCE showed low detection limit of 10 nM (0.75 ppb) and high sensitivity of 4.76 μAμM -1 , while the World Health Organization's guideline value of arsenic for drinking water is 10 ppb. It is worth to note that the electrode presents no interference from copper ion, which is the most serious interfering species in arsenic detection

  20. Chemical state analysis of iron(III) compounds precipitated homogeneously from solutions containing urea by means of Moessbauer spectrometry and x-ray diffractometry

    International Nuclear Information System (INIS)

    Ujihira, Yusuke; Ohyabu, Matashige; Murakami, Tetsuro; Horie, Tsuyoshi.

    1978-01-01

    Chemical states of iron(III) compounds, precipitated homogeneously by heating the iron(III) salt solution at 363 K in the presence of urea, was studied by means of Moessbauer spectrometry and X-ray diffractometry. The pH-time relation of urea hydrolysis revealed that the precipitation process from homogeneous solution is identical to the hydrolysis of iron(III) ion at pH around 2 under the homogeneous supply of OH - ion, which is generated by hydrolysis of urea. Accordingly, iron(III) oxide hydroxide or similar compounds to the hydrolysis products of iron(III) ion was precipitated by the precipitation from homogeneous solution methods. Akaganeite (β-FeOOH) was crystallized from 0.1 M iron(III) chloride solution. Goethite(α-FeOOH) and hematite(α-Fe 2 O 3 ) was precipitated from 0.1 M iron(III) nitrate solution, vigorous liberation of OH - ion favoring the crystallization of hematite. The addition of chloride ion to the solution resulted in the formation of akaganeite. Basic salt of iron sulfate[NH 4 Fe 3 (OH) 6 (SO 4 ) 2 ] and goethite were formed from 0.1 M iron(III) sulfate solution, the former being obtained in the more moderate condition of the urea hydrolysis ( 363 K). (author)

  1. CHEMICAL INTERACTIONS OF ARSENATE, ARSENITE, PHOSPHATE, AND SILICATE WITH IRON (II, III) HYDROXYCARBONATE GREEN RUST

    Science.gov (United States)

    Granular zerovalent iron has been proposed to be used as a medium in permeable reactive barriers (PRBs) to remove arsenic from contaminated groundwater. Iron(II, III) hydroxycarbonate green rust (carbonate green rust, or CGR) is a major corrosion product of zerovalent iron under ...

  2. Multisensor system for determination of iron(II), iron(III), uranium(VI) and uranium(IV) in complex solutions

    International Nuclear Information System (INIS)

    Legin, A.V.; Seleznev, B.L.; Rudnitskaya, A.M.; Vlasov, Yu.G.; Tverdokhlebov, S.V.; Mack, B.; Abraham, A.; Arnold, T.; Baraniak, L.; Nitsche, H.

    1999-01-01

    Development and analytical evaluation of a multisensor system based on the principles of 'electronic tongue' for the determination of low contents of uranium(VI), uranium(IV), iron(II) and iron(III) in complex aqueous media have been carried out. A set of 29 different chemical sensors on the basis of all- solid-state crystalline and vitreous materials with enhanced electronic conductivity and redox and ionic cross-sensitivity have been incorporated into the sensor array. Multidimensional data have been processed by pattern recognition methods such as artificial neural networks and partial least squares. It has been demonstrated that Fe(II) and Fe(III) contents in the range from 10 -7 to 10 -4 mol L -1 of total iron concentration can be determined with the average precision of about 25 %. U(VI) and U(IV) contents can been determined with the average precision of 10-40% depending on the concentration. The developed multisensor system can be applied in future for the analysis of mining and borehole waters as well other contaminated natural media, including on-site measurements. (author)

  3. Determination of calcium, copper, chromium, iron, magnesium, manganese, potassium, sodium and zinc in ethanol by atomic absorption spectrometry

    International Nuclear Information System (INIS)

    Fernandes, E.A.N.

    1981-01-01

    The direct determinacao of calcium, copper, chomium, iron, magnesium, manganese, potassium, sodium and zinc in ethanol by atomic absorption spectrometry with, air-acetylene flame is proposed. Effects of fuel/oxidant ratio, burner height and water content in the samples were investigated in detail. The method allows the determition of the elements with good precision (r.s.d. -1 for the elements tested. (author) [pt

  4. Reactivity of tris(acetylacetonato) iron(III) with tridentate [ONO] donor Schiff base as an access to newer mixed-ligand iron(III) complexes

    Science.gov (United States)

    Bhattacharjee, Chira R.; Goswami, Pankaj; Pramanik, Harun A. R.; Paul, Pradip C.; Mondal, Paritosh

    2011-05-01

    Two new mixed-ligand iron(III) complexes, [Fe(L n)(acac)(C 2H 5OH)] incorporating coordinated ethanol from the reaction solvent were accessed from the reaction of [Fe(acac) 3] with [ONO] donor dibasic tridentate unsymmetrical Schiff base ligands derived from condensation of 2-hydroxy-1-napthaldehyde with 2-aminophenol (H 2L 1) or 2-aminobenzoic acid (H 2L 2). The thermal study (TGA-DTA) provided evidence for weakly bound ethanol which is readily substituted by neutral N-donor molecule imidazole, benzimidazole or pyridine to produce an array of newer complexes, [Fe(L n)(acac)X] ( n = 1, 2; X = Im, Bim, Py). The compounds were characterized by elemental analyses, FT-IR, UV-vis, solution electrical conductivity, FAB mass, 1H and 13C NMR spectroscopy. Room temperature magnetic susceptibility measurements ( μeff ˜ 5.8 B.M.) are consistent with spin-free octahedral iron(III) complexes. Cyclic voltammetry of ethanol complexes revealed a quasi-reversible one electron redox response (Δ Ep > 100 mV) for the Fe(III)/Fe(II) couple. Low half wave redox potential ( E1/2) values suggested easy redox susceptibility. The ground state geometries of the ethanol and imidazole complexes have been ascertained to be distorted octahedral by density functional theory using DMol3 program at BLYP/DNP level.

  5. Reply to Comments on Measuring marine iron(III) complexes by CLE-AdSV

    NARCIS (Netherlands)

    Town, R.M.; Leeuwen, van H.P.

    2005-01-01

    The interpretation of CLE-AdSV based iron(iii) speciation data for marine waters has been called into question in light of the kinetic features of the measurement. The implications of the re-think may have consequences for understanding iron biogeochemistry and its impact on ecosystem functioning.

  6. Moessbauer spectroscopic evidence for iron(III) complexation and reduction in acidic aqueous solutions of indole-3-butyric acid

    International Nuclear Information System (INIS)

    Kovacs, K.; Kuzmann, E.; Vertes, A.; Kamnev, A.A.; Shchelochkov, A.G.; Medzihradszky-Schweiger, H.; Mink, J.; Hungarian Academy of Sciences, Budapest

    2004-01-01

    Moessbauer spectroscopic studies were carried out in acidic (pH 2.3) 57 Fe III nitrate containing aqueous solutions of indole-3-butyric acid (IBA), rapidly frozen in liquid nitrogen at various periods of time after mixing the reagents. The data obtained show that in solution in the presence of IBA, iron(III) forms a complex with a dimeric structure characterised by a quadrupole doublet, whereas without IBA under similar conditions iron(III) exhibits a broad spectral feature due to a slow paramagnetic spin relaxation which, at liquid nitrogen temperature, results in a large anomalous line broadening (or, at T = 4.2 K, in a hyperfine magnetic splitting). The spectra of 57 Fe III +IBA solutions, kept at ambient temperature under aerobic conditions for increasing periods of time before freezing, contained a gradually increasing contribution of a component with a higher quadrupole splitting. The Moessbauer parameters for that component are typical for iron(II) aquo complexes, thus showing that under these conditions gradual reduction of iron(III) occurs, so that the majority (85%) of dissolved iron(III) is reduced within 2 days. The Moessbauer parameters for the iron(III)-IBA complex in aqueous solution and in the solid state (separated from the solution by filtration) were found to be similar, which may indicate that the dissolved and solid complexes have the same composition and/or iron(III) coordination environment. For the solid complex, the data of elemental analysis suggest the following composition of the dimer: [L 2 Fe-(OH) 2 -FeL 2 ] (where L is indole-3-butyrate). This structure is also in agreement with the data of infrared spectroscopic study of the complex reported earlier, with the side-chain carboxylic group in indole-3-butyrate as a bidentate ligand. The Moessbauer parameters for the solid 57 Fe III -IBA complex at T = 80 K and its acetone solution rapidly frozen in liquid nitrogen were virtually identical, which indicates that the complex retains its

  7. Biochemistry of the normal dura mater of the human brain determination of water, sodium, potassium, calcium, phosphorus, magnesium, copper, iron, sulfur and nitrogen contents

    Directory of Open Access Journals (Sweden)

    Horacio M. Canelas

    1969-06-01

    Full Text Available The concentrations of water, sodium, potassium, calcium, phosphorus, magnesium, copper, iron, sulfur, and nitrogen were determined in samples of apparently normal dura mater removed from 18 subjects recently dead by craniocerebral trauma. The average concentrations expressed in dry weight were: water 79.55 g/100 g ± 2.52; sodium 1.63 mequiv/100 g ±0.27; potassium 3.68 mequiv/100 g ± 0.66; calcium 119.84 mg/100 g ± 107.40; phosphorus 68.2 mg/100 g ± 34.5; magnesium 0.61 mequiv/100 g ± 0.37; copper 249.8 /xg/100 g ± 109.4; iron 0.82 mg/100 g ± 0.28; sulfur 490.7 mg/100 g ± 22.5; nitrogen 3.33 g/100 g ± 0.17.

  8. Nanocrystalline Axially Bridged Iron Phthalocyanine Polymeric Conductor: (μ-Thiocyanato(phthalocyaninatoiron(III

    Directory of Open Access Journals (Sweden)

    Eiza Shimizu

    2016-01-01

    Full Text Available Skewered Iron(III phthalocyanine conducting polymer can be constructed with the utilization of axial thiocyanato ligands ((μ-thiocyanato(phthalocyaninatoiron(III; (FeIII(Pc(SCNn thereby creating additional avenues for electron transport through a linear SCN bridge, apart from the intermolecular π-π orbital overlap between the Pc molecules. In this paper, we report on the conversion of bulk FeIII(Pc(SCNn polymeric organic conductor into crystalline nanostructures through horizontal vapor phase growth process. The needle-like nanostructures are deemed to provide more ordered and, thus, more π-π interactive interskewer FeIII(Pc(SCNn polymer orientation, resulting in a twofold increase of its electrical conductivity per materials density unit.

  9. Wide Strip Casting Technology of Magnesium Alloys

    Science.gov (United States)

    Park, W.-J.; Kim, J. J.; Kim, I. J.; Choo, D.

    Extensive investigations relating to the production of high performance and low cost magnesium sheet by strip casting have been performed for the application to automotive parts and electronic devices. Research on magnesium sheet production technology started in 2004 by Research Institute of Industrial Science and Technology (RIST) with support of Pohang Iron and Steel Company (POSCO). POSCO has completed the world's first plant to manufacture magnesium coil. Another big project in order to develop wide strip casting technology for the automotive applications of magnesium sheets was started in succession.

  10. Identification and Spectroscopic Characterization of Nonheme Iron(III) Hypochlorite Intermediates**

    Science.gov (United States)

    Draksharapu, Apparao; Angelone, Davide; Quesne, Matthew G; Padamati, Sandeep K; Gómez, Laura; Hage, Ronald; Costas, Miquel; Browne, Wesley R; de Visser, Sam P

    2015-01-01

    FeIII–hypohalite complexes have been implicated in a wide range of important enzyme-catalyzed halogenation reactions including the biosynthesis of natural products and antibiotics and post-translational modification of proteins. The absence of spectroscopic data on such species precludes their identification. Herein, we report the generation and spectroscopic characterization of nonheme FeIII–hypohalite intermediates of possible relevance to iron halogenases. We show that FeIII-OCl polypyridylamine complexes can be sufficiently stable at room temperature to be characterized by UV/Vis absorption, resonance Raman and EPR spectroscopies, and cryo-ESIMS. DFT methods rationalize the pathways to the formation of the FeIII-OCl, and ultimately FeIV=O, species and provide indirect evidence for a short-lived FeII-OCl intermediate. The species observed and the pathways involved offer insight into and, importantly, a spectroscopic database for the investigation of iron halogenases. PMID:25663379

  11. Different arsenate and phosphate incorporation effects on the nucleation and growth of iron(III) (Hydr)oxides on quartz.

    Science.gov (United States)

    Neil, Chelsea W; Lee, Byeongdu; Jun, Young-Shin

    2014-10-21

    Iron(III) (hydr)oxides play an important role in the geochemical cycling of contaminants in natural and engineered aquatic systems. The ability of iron(III) (hydr)oxides to immobilize contaminants can be related to whether the precipitates form heterogeneously (e.g., at mineral surfaces) or homogeneously in solution. Utilizing grazing incidence small-angle X-ray scattering (GISAXS), we studied heterogeneous iron(III) (hydr)oxide nucleation and growth on quartz substrates for systems containing arsenate and phosphate anions. For the iron(III) only system, the radius of gyration (Rg) of heterogeneously formed precipitates grew from 1.5 to 2.5 (± 1.0) nm within 1 h. For the system containing 10(-5) M arsenate, Rg grew from 3.6 to 6.1 (± 0.5) nm, and for the system containing 10(-5) M phosphate, Rg grew from 2.0 to 4.0 (± 0.2) nm. While the systems containing these oxyanions had more growth, the system containing only iron(III) had the most nucleation events on substrates. Ex situ analyses of homogeneously and heterogeneously formed precipitates indicated that precipitates in the arsenate system had the highest water content and that oxyanions may bridge iron(III) hydroxide polymeric embryos to form a structure similar to ferric arsenate or ferric phosphate. These new findings are important because differences in nucleation and growth rates and particle sizes will impact the number of available reactive sites and the reactivity of newly formed particles toward aqueous contaminants.

  12. Direct-reading spectrochemical analysis of magnesium alloys

    International Nuclear Information System (INIS)

    Roca Adell, M.

    1964-01-01

    A Quantometer has been applied to the determination of aluminum, berylium, calcium, iron, silicon and zinc in magnesium alloys Magnox, after the conversion of the samples to the oxide. For the aluminum, whose concentration is relatively high, the conducting briquets technique with an interrupted discharge is employed, using the magnesium as the internal standard. For the other elements a total burning method with direct current arc is employed, using also the magnesium as the internal standard. (Author) 7 refs

  13. Complexation equilibria and spectrophotometric determination of iron(III) with 1-amino-4-hydroxyanthraquinone.

    Science.gov (United States)

    Abu-Bakr, M S; Sedaira, H; Hashem, E Y

    1994-10-01

    The complex equilibria of iron(III) with 1-amino-4-hydroxyanthraquinone (AMHA) were studied spectrophotometrically in 40% (v/v) ethanol and an ionic strength of 0.1M (NaClO(4)). The complexation reactions were demonstrated and characterized using graphical logarithmic analysis of the absorbance-pH graphs. A simple, rapid, selective and sensitive method for the spectrophotometric determination of trace amounts of Fe(III) is developed based on the formation of Fe(AMHA) complex at pH 2.5 (lambda(max) = 640 nm, epsilon approximately = 2.1 x 10(4) L. mol(-1) . cm(-1)) in the presence of a large number of foreign ions. Interferences caused by palladium(II) was masked by the addition of cyanide ions. The method has been applied to the determination of iron in some synthetic samples and polymetallic iron ores.

  14. Sulphate analysis in uranium leach iron(III) chloride solutions by inductively coupled argon plasma spectrometry

    International Nuclear Information System (INIS)

    Nirdosh, I.; Lakhani, S.; Yunus, M.Z.M.

    1993-01-01

    Inductively coupled Argon Plasma Spectrometry is used for the indirect determination of sulphate in iron(III) chloride leach solution of Elliot Lake uranium ores via addition of a known amount of barium ions and analyzing for excess of barium. The ore contains ∼ 7 wt% pyrite, FeS 2 , as the major mineral which oxidizes to generate sulphate during leaching with Fe(III). The effects of pH, the concentrations of Fe(III) and chloride ions and for presence of ethanol in the test samples on the accuracy of analysis are studied. It is found that unlike the Rhodizonate method, removal of iron(III) from or addition of ethanol to the test sample prior to analysis are not required. Linear calibration curves are obtained. (author)

  15. A study of the solvent effect on the chemical interaction between ortho-positronium and iron(III)-chloride

    International Nuclear Information System (INIS)

    Vertes, A.

    1980-01-01

    The chemical rate constant (k) between ortho-positronium (o-Ps) and iron(III)-chloride was measured in donor solvents as benzene, acetone, pyridine and ethanol. The minimal k was obtained in benzene and the maximal one in acetone. The minimal k value was explained by the low dispersity of FeCl 3 in benzene, and the high rate of the interaction in acetone was considered to be the result of the presence of monomer and dimer iron(III)-species and of the chloride coordination to iron(III). The probability of Ps formation depended only on the character of the solvent and not on the concentration of the FeCl 3 solute. (author)

  16. Neodymium Recovery by Chitosan/Iron(III Hydroxide [ChiFer(III] Sorbent Material: Batch and Column Systems

    Directory of Open Access Journals (Sweden)

    Hary Demey

    2018-02-01

    Full Text Available A low cost composite material was synthesized for neodymium recovery from dilute aqueous solutions. The in-situ production of the composite containing chitosan and iron(III hydroxide (ChiFer(III was improved and the results were compared with raw chitosan particles. The sorbent was characterized using Fourier transform infrared spectroscopy (FTIR and scanning electron microscopy-energy dispersive X-ray analyses (SEM-EDX. The equilibrium studies were performed using firstly a batch system, and secondly a continuous system. The sorption isotherms were fitted with the Langmuir, Freundlich, and Sips models; experimental data was better described with the Langmuir equation and the maximum sorption capacity was 13.8 mg g-1 at pH 4. The introduction of iron into the biopolymer matrix increases by four times the sorption uptake of the chitosan; the individual sorption capacity of iron (into the composite was calculated as 30.9 mg Nd/g Fe. The experimental results of the columns were fitted adequately using the Thomas model. As an approach to Nd-Fe-B permanent magnets effluents, a synthetic dilute effluent was simulated at pH 4, in order to evaluate the selectivity of the sorbent material; the overshooting of boron in the column system confirmed the higher selectivity toward neodymium ions. The elution step was carried out using MilliQ-water with the pH set to 3.5 (dilute HCl solution.

  17. Nuclear reactor shield including magnesium oxide

    International Nuclear Information System (INIS)

    Rouse, C.A.; Simnad, M.T.

    1981-01-01

    An improvement is described for nuclear reactor shielding of a type used in reactor applications involving significant amounts of fast neutron flux. The reactor shielding includes means providing structural support, neutron moderator material, neutron absorber material and other components, wherein at least a portion of the neutron moderator material is magnesium in the form of magnesium oxide either alone or in combination with other moderator materials such as graphite and iron

  18. Treatment of chemical warfare agents by zero-valent iron nanoparticles and ferrate(VI)/(III) composite

    International Nuclear Information System (INIS)

    Zboril, Radek; Andrle, Marek; Oplustil, Frantisek; Machala, Libor; Tucek, Jiri; Filip, Jan; Marusak, Zdenek; Sharma, Virender K.

    2012-01-01

    Highlights: ► Ferrate(VI) has been found to be highly efficient to decontaminate chemical warfare agents. ► Fast degradation of sulfur mustard, soman and compound VX by ferrate(VI). ► Nanoscale zero-valent iron particles are considerably less efficient in degradation of studied warfare agents compared to ferrate(VI). - Abstract: Nanoscale zero-valent iron (nZVI) particles and a composite containing a mixture of ferrate(VI) and ferrate(III) were prepared by thermal procedures. The phase compositions, valence states of iron, and particle sizes of iron-bearing compounds were determined by combination of X-ray powder diffraction, Mössbauer spectroscopy and scanning electron microscopy. The applicability of these environmentally friendly iron based materials in treatment of chemical warfare agents (CWAs) has been tested with three representative compounds, sulfur mustard (bis(2-chlorethyl) sulfide, HD), soman ((3,3′-imethylbutan-2-yl)-methylphosphonofluoridate, GD), and O-ethyl S-[2-(diisopropylamino)ethyl] methylphosphonothiolate (VX). Zero-valent iron, even in the nanodimensional state, had a sluggish reactivity with CWAs, which was also observed in low degrees of CWAs degradation. On the contrary, ferrate(VI)/(III) composite exhibited a high reactivity and complete degradations of CWAs were accomplished. Under the studied conditions, the estimated first-order rate constants (∼10 −2 s −1 ) with the ferrate(VI)/(III) composite were several orders of magnitude higher than those of spontaneous hydrolysis of CWAs (10 −8 –10 −6 s −1 ). The results demonstrated that the oxidative technology based on application of ferrate(VI) is very promising to decontaminate CWAs.

  19. Treatment of chemical warfare agents by zero-valent iron nanoparticles and ferrate(VI)/(III) composite

    Energy Technology Data Exchange (ETDEWEB)

    Zboril, Radek, E-mail: zboril@prfnw.upol.cz [Regional Centre of Advanced Technologies and Materials, Departments of Physical Chemistry and Experimental Physics, 17. listopadu 1192/12, 771 46 Olomouc (Czech Republic); Andrle, Marek; Oplustil, Frantisek [Military Institute VOP-026 Sternberk, Division in Brno, Rybkova 8, 602 00 Brno (Czech Republic); Machala, Libor; Tucek, Jiri; Filip, Jan; Marusak, Zdenek [Regional Centre of Advanced Technologies and Materials, Departments of Physical Chemistry and Experimental Physics, 17. listopadu 1192/12, 771 46 Olomouc (Czech Republic); Sharma, Virender K., E-mail: vsharma@fit.edu [Chemistry Department, Florida Institute of Technology, 150 West University Boulevard, Melbourne, FL 32901 (United States); Center of Ferrate Excellence, Florida Institute of Technology, 150 West University Boulevard, Melbourne, FL 32901 (United States)

    2012-04-15

    Highlights: Black-Right-Pointing-Pointer Ferrate(VI) has been found to be highly efficient to decontaminate chemical warfare agents. Black-Right-Pointing-Pointer Fast degradation of sulfur mustard, soman and compound VX by ferrate(VI). Black-Right-Pointing-Pointer Nanoscale zero-valent iron particles are considerably less efficient in degradation of studied warfare agents compared to ferrate(VI). - Abstract: Nanoscale zero-valent iron (nZVI) particles and a composite containing a mixture of ferrate(VI) and ferrate(III) were prepared by thermal procedures. The phase compositions, valence states of iron, and particle sizes of iron-bearing compounds were determined by combination of X-ray powder diffraction, Moessbauer spectroscopy and scanning electron microscopy. The applicability of these environmentally friendly iron based materials in treatment of chemical warfare agents (CWAs) has been tested with three representative compounds, sulfur mustard (bis(2-chlorethyl) sulfide, HD), soman ((3,3 Prime -imethylbutan-2-yl)-methylphosphonofluoridate, GD), and O-ethyl S-[2-(diisopropylamino)ethyl] methylphosphonothiolate (VX). Zero-valent iron, even in the nanodimensional state, had a sluggish reactivity with CWAs, which was also observed in low degrees of CWAs degradation. On the contrary, ferrate(VI)/(III) composite exhibited a high reactivity and complete degradations of CWAs were accomplished. Under the studied conditions, the estimated first-order rate constants ({approx}10{sup -2} s{sup -1}) with the ferrate(VI)/(III) composite were several orders of magnitude higher than those of spontaneous hydrolysis of CWAs (10{sup -8}-10{sup -6} s{sup -1}). The results demonstrated that the oxidative technology based on application of ferrate(VI) is very promising to decontaminate CWAs.

  20. Magnesium, Iron and Aluminum in LLNL Air Particulate and Rain Samples with Reference to Magnesium in Industrial Storm Water

    Energy Technology Data Exchange (ETDEWEB)

    Esser, Bradley K. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States); Bibby, Richard K. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States); Fish, Craig [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States)

    2016-08-25

    Storm water runoff from the Lawrence Livermore National Laboratory’s (LLNL’s) main site and Site 300 periodically exceeds the Discharge Permit Numeric Action Level (NAL) for Magnesium (Mg) under the Industrial General Permit (IGP) Order No. 2014-0057-DWQ. Of particular interest is the source of magnesium in storm water runoff from the site. This special study compares new metals data from air particulate and precipitation samples from the LLNL main site and Site 300 to previous metals data for storm water from the main site and Site 300 and alluvial sediment from the main site to investigate the potential source of elevated Mg in storm water runoff. Data for three metals (Mg, Iron {Fe}, and Aluminum {Al}) were available from all media; data for additional metals, such as Europium (Eu), were available from rain, air particulates, and alluvial sediment. To attribute source, this study compared metals concentration data (for Mg, Al, and Fe) in storm water and rain; metal-metal correlations (Mg with Fe, Mg with Al, Al with Fe, Mg with Eu, Eu with Fe, and Eu with Al) in storm water, rain, air particulates, and sediments; and metal-metal ratios ((Mg/Fe, Mg/Al, Al/Fe, Mg/Eu, Eu/Fe, and Eu/Al) in storm water, rain, air particulates and sediments. The results presented in this study are consistent with a simple conceptual model where the source of Mg in storm water runoff is air particulate matter that has dry-deposited on impervious surfaces and subsequently entrained in runoff during precipitation events. Such a conceptual model is consistent with 1) higher concentrations of metals in storm water runoff than in precipitation, 2) the strong correlation of Mg with Aluminum (Al) and Iron (Fe) in both storm water and air particulates, and 3) the similarity in metal mass ratios between storm water and air particulates in contrast to the dissimilarity of metal mass ratios between storm water and precipitation or alluvial sediment. The strong correlation of Mg with Fe and Al

  1. Cloud point extraction of iron(III) and vanadium(V) using 8-quinolinol derivatives and Triton X-100 and determination of 10(-7)moldm(-3) level iron(III) in riverine water reference by a graphite furnace atomic absorption spectroscopy.

    Science.gov (United States)

    Ohashi, Akira; Ito, Hiromi; Kanai, Chikako; Imura, Hisanori; Ohashi, Kousaburo

    2005-01-30

    The cloud point extraction behavior of iron(III) and vanadium(V) using 8-quinolinol derivatives (HA) such as 8-quinolinol (HQ), 2-methyl-8-quinolinol (HMQ), 5-butyloxymethyl-8-quinolinol (HO(4)Q), 5-hexyloxymethyl-8-quinolinol (HO(6)Q), and 2-methyl-5-octyloxymethyl-8-quinolinol (HMO(8)Q) and Triton X-100 solution was investigated. Iron(III) was extracted with HA and 4% (v/v) Triton X-100 in the pH range of 1.70-5.44. Above pH 4.0, more than 95% of iron(III) was extracted with HQ, HMQ, and HMO(8)Q. Vanadium(V) was also extracted with HA and 4% (v/v) Triton X-100 in the pH range of 2.07-5.00, and the extractability increased in the following order of HMQ HQ cloud point extraction was applied to the determination of iron(III) in the riverine water reference by a graphite furnace atomic absorption spectroscopy. When 1.25 x 10(-3)M HMQ and 1% (v/v) Triton X-100 were used, the found values showed a good agreement with the certified ones within the 2% of the R.S.D. Moreover, the effect of an alkyl group on the solubility of 5-alkyloxymethyl-8-quinolinol and 2-methyl-5-alkyloxymethyl-8-quinolinol in 4% (v/v) Triton X-100 at 25 degrees C was also investigated.

  2. Magnesium fluoride recovery method

    International Nuclear Information System (INIS)

    Gay, R.L.; McKenzie, D.E.

    1989-01-01

    A method of obtaining magnesium fluoride substantially free from radioactive uranium from a slag formed in the production of metallic uranium by the reduction of depleted uranium tetrafluoride with metallic magnesium in a retort wherein the slag contains the free metals magnesium and uranium and also oxides and fluorides of the metals. The slag having a radioactivity level of at least about 7,000 rhoCi/gm. The method comprises the steps of: grinding the slag to a median particle size of about 200 microns; contacting the ground slag in a reaction zone with an acid having a strength of from about 0.5 to 1.5 N for a time of from about 4 to about 20 hours in the presence of a catalytic amount of iron; removing the liquid product; treating the particulate solid product; repeating the last two steps at least one more time to produce a solid residue consisting essentially of magnesium fluoride substantially free of uranium and having a residual radioactivity level of less than about 1000 rhoCi/gm

  3. NO2-induced synthesis of nitrato-iron(III) porphyrin with diverse ...

    Indian Academy of Sciences (India)

    found serendipitously in the reaction of [Fe(4-Me-TPP)Cl] with nitrous acid, which ... Nitric oxide and its derivatives nitrite and nitrate ion ... oxide.2 Nitrate is produced in heme proteins from oxi- ... and nitrogen assimilation.4 Iron nitrate(III) porphyrins ... one-pot method.15 ... of the compound was determined based on the lack.

  4. The hydrolysis of iron(III) and iron(ll) ions between 25 deg C and 375 deg C

    Energy Technology Data Exchange (ETDEWEB)

    Lewis, Derek

    1971-11-15

    Some data on the stabilities of the known iron (III) and iron (II) ions are presented, that have been obtained in a theoretical study of the iron-water system at temperatures up to the critical temperature. In this study, estimates of the stability constants of the various ions in dilute solution have been made by a method based on the equations of classical thermodynamics and empirical equations for the change with temperature of ionic heat capacity. The data indicate that hydrolysis increases so rapidly with temperature that the Fe+3 - ion is practically non-existent above about 150 deg C and, except in very acid solutions, the Fe+2 - ion is a relatively minor constituent above about 250 deg C. The most stable of the ions over a wide range of conditions are probably Fe(OH){sub 2}+ , Fe(OH)+ and HFeO{sub 2}-

  5. Stabilization through precipitation in a system of colloidal iron(III) pyrophosphate salts

    NARCIS (Netherlands)

    van Leeuwen, Y.M.; Velikov, K.P.; Kegel, W.K.

    2012-01-01

    The ionic strength of a solution decreases during the precipitation of an insoluble salt, which can cause an initially unstable colloidal system to stabilize during its formation. We show this effect in the precipitation and aging of colloidal iron(III) pyrophosphate, where we observe two distinct

  6. Hydrogen-Bonding Interactions Trigger a Spin-Flip in Iron(III) Porphyrin Complexes**

    Science.gov (United States)

    Sahoo, Dipankar; Quesne, Matthew G; de Visser, Sam P; Rath, Sankar Prasad

    2015-01-01

    A key step in cytochrome P450 catalysis includes the spin-state crossing from low spin to high spin upon substrate binding and subsequent reduction of the heme. Clearly, a weak perturbation in P450 enzymes triggers a spin-state crossing. However, the origin of the process whereby enzymes reorganize their active site through external perturbations, such as hydrogen bonding, is still poorly understood. We have thus studied the impact of hydrogen-bonding interactions on the electronic structure of a five-coordinate iron(III) octaethyltetraarylporphyrin chloride. The spin state of the metal was found to switch reversibly between high (S=5/2) and intermediate spin (S=3/2) with hydrogen bonding. Our study highlights the possible effects and importance of hydrogen-bonding interactions in heme proteins. This is the first example of a synthetic iron(III) complex that can reversibly change its spin state between a high and an intermediate state through weak external perturbations. PMID:26109743

  7. Spin-crossover behavior of polymeric iron(III) complexes

    International Nuclear Information System (INIS)

    Maeda, Yonezo; Miyamoto, Makoto; Takashima, Yoshimasa; Oshio, Hiroaki

    1989-01-01

    Polymeric spin-crossover iron(III) complexes possessing poly(4-vinylpyridine), poly(N-vinylimidazole) or poly(octylmethacrylate-co-4-vinylpyridine) as ligand are prepared. In this experience enriched 57 Fe was used to get strong Moessbauer absorption. The enriched behavior of the complexes were examined by magnetic susceptibilities measurement, and Moessbauer and esr spectroscopies. Some of them show spin-state behavior over a wide range of temperature. Some of them show rapid spin-state interexchange compared to the Moessbauer time scale and others not. Spin-crossover behavior of polymeric complexes is characterized of wide spin-state transition temperature range

  8. Resonance Raman detection of iron-ligand vibrations in cyano(pyridine)(octaethylporphinato)iron(III): Effects of pyridine basicity on the Fe-CN bond strength

    International Nuclear Information System (INIS)

    Uno, Tadayuki; Hatano, Keiichiro; Nishimura, Yoshifumi; Arata, Yoji

    1988-01-01

    The influence of axial ligand basicity on the bonding of iron(III) in cyano adducts of octaethylporphyrin has been studied by resonance Raman spectroscopy. In a six-coordinate ferric low-spin complex, cyano(pyridine)(octaethylporphinato)iron(III), Fe(OEP)(CN)(py), Raman lines at 449 and 191 cm -1 were assigned to the ν(Fe-CN) and ν(Fe-py) stretching modes, respectively. When pyridine was displaced with its derivatives, py-X, where X = 4-cyano, 3-acetyl, 3-methyl, 4-methyl, 3,4-dimethyl, and 4-dimethylamino, the ν(Fe-CN) stretching frequency was found to decrease in the complex with a high pyridine basicity. It was concluded that the stronger the trans pyridine basicity, the weaker the iron-carbon (cyanide) bond. A clear frequency shift was observed in the ν 4 model, though most of the porphyrin vibrations were insensitive to the ligand substitution. The frequency of the ν 4 mode, which is the C a -N(pyrrole) breathing vibration of the porphyrin skeleton, was found to increase with an increase in pyridine basicity. This is contrary to what was found in ferrous low-spin hemes as CO complexes. The ν 4 shift in the CN complexes was explained in terms of forward π donation; donation of electrons from the porphyrin π orbital to the d π vacancy of the low-spin iron(III) weakened the C a -N(pyrrole) bonds and hence decreased the ν 4 frequency. 32 references, 8 figures

  9. Experimental and Computational Evidence for the Mechanism of Intradiol Catechol Dioxygenation by Non- Heme Iron(III) Complexes

    NARCIS (Netherlands)

    Jastrzebski, Robin; Quesne, Matthew G.; Weckhuysen, Bert M.; de Visser, Sam P.; Bruijnincx, Pieter C. A.

    2014-01-01

    Catechol intradiol dioxygenation is a unique reaction catalyzed by iron-dependent enzymes and nonheme iron(III) complexes. The mechanism by which these systems activate dioxygen in this important metabolic process remains controversial. Using a combination of kinetic measurements and computational

  10. Structure and Magnetic Properties of a Dodecanuclear Twisted-Ring Iron(III) Cluster.

    Science.gov (United States)

    Caneschi, Andrea; Cornia, Andrea; Fabretti, Antonio C; Gatteschi, Dante

    1999-05-03

    An unprecedented nonplanar structure characterizes the complex [Fe(OCH 3 ) 2 (dbm)] 12 (on the left in the picture), which contains the largest cyclic ferric cluster yet reported with chemically equivalent bridging units. It is made up of twelve high-spin, antiferromagnetically coupled iron(III) centers and neatly reacts with Na I or Li I templates in organic solution to give hexairon(III) coronates (right). Fe=•, O=○, NaI or LiI=• Hdbm=dibenzoylmethane. © 1999 WILEY-VCH Verlag GmbH, Weinheim, Fed. Rep. of Germany.

  11. Studies of. gamma. -ray irradiation effects on tris(. beta. -diketonato)iron(III) and cobalt(III) coordination compounds by means of Moessbauer spectroscopy and magnetic susceptibility measurements

    Energy Technology Data Exchange (ETDEWEB)

    Sakai, Y.; Endo, K.; Sano, H. (Tokyo Metropolitan Univ. (Japan). Faculty of Science)

    1981-06-01

    Both absorption Moessbauer spectroscopy and magnetic susceptibility measurements on tris(..beta..-diketonato)iron(III) and cobalt(III) compounds indicate that ligands which have phenyl group as a substituent are more stable to ..gamma..-ray radiolysis, in accordance with previous results of emission Moessbauer spectroscopic studies of /sup 57/Co-labelled tris (..beta..-diketonato)cobalt(III) compounds.

  12. Reactivity of catecholamine-driven Fenton reaction and its relationships with iron(III) speciation.

    Science.gov (United States)

    Melin, Victoria; Henríquez, Adolfo; Freer, Juanita; Contreras, David

    2015-03-01

    Fenton reaction is the main source of free radicals in biological systems. The reactivity of this reaction can be modified by several factors, among these iron ligands are important. Catecholamine (dopamine, epinephrine, and norepinephrine) are able to form Fe(III) complexes whose extension in the coordination number depends upon the pH. Fe(III)-catecholamine complexes have been related with the development of several pathologies. In this work, the ability of catecholamines to enhance the oxidative degradation of an organic substrate (veratryl alcohol, VA) through Fenton and Fenton-like reactions was studied. The initial VA degradation rate at different pH values and its relationship to the different iron species present in solution were determined. Furthermore, the oxidative degradation of VA after 24 hours of reaction and its main oxidation products were also determined. The catecholamine-driven Fenton and Fenton-like systems showed higher VA degradation compared to unmodified Fenton or Fenton-like systems, which also showed an increase in the oxidation state of the VA degradation product. All of this oxidative degradation takes place at pH values lower than 5.50, where the primarily responsible species would be the Fe(III) mono-complex. The presence of Fe(III) mono-complex is essential in the ability of catecholamines to increase the oxidative capacity of Fenton systems.

  13. Understanding the role of multiheme cytochromes in iron(III) reduction and arsenic mobilization by Shewanella sp. ANA-3

    Science.gov (United States)

    Reyes, C.; Duenas, R.; Saltikov, C.

    2006-12-01

    The reduction of Fe (III) to Fe (II) and of arsenate (As (V)) to arsenite (As (III)) by Fe (III) reducing and As (V) respiring prokaryotes such as the bacterium Shewanella sp. ANA-3 may contribute to arsenic mobilization in aquifers contaminated with arsenic, specifically in places such as Bangladesh. Under oxic conditions As (V) predominates and is often adsorbed onto mineral surfaces such as amorphous ferrihydrite. However, under anoxic conditions As (III) predominates, sorbs to fewer minerals, and has a greater hydrologic mobility compared to As (V). The genetic mechanism underlying arsenic release from subsurface material most likely involves a combination of respiratory gene clusters (e.g. mtr/omc and arr). In this study, we are investigating the genetic pathways underlying arsenic mobilization. We have generated various mutations in the mtr/omc gene cluster, which encodes several outermembrane decaheme c-type cytochromes. Deletions in one mtr/omc gene did not eliminate iron reduction. However, strains carrying multiple gene deletions were greatly impaired in iron reduction abilities. Work is currently underway to generate combinations of iron reduction and arsenate reduction single and double mutants that will be used to investigate microbial mobilization of arsenic in flow-through columns containing As (V)-HFO coated sand. This work will address the importance of arsenate reduction and iron reduction in the mobilization of arsenic.

  14. Moessbauer spectroscopic study on valence-detrapping and trapping of mixed-valence trinuclear iron (III, III, II) fluorine-substitute benzoate complexes

    International Nuclear Information System (INIS)

    Sakai, Y.; Onaka, S.; Ogiso, R.; Takayama, T.; Takahashi, M.; Nakamoto, T.

    2012-01-01

    Four mixed-valence trinuclear iron(III, III, II) fluorine-substituted benzoate complexes were synthesized; Fe 3 O(C 6 F 5 COO) 6 (C 5 H 5 N) 3 ·CH 2 Cl 2 (1), Fe 3 O(C 6 F 5 COO) 6 (C 5 H 5 N) 3 (2), Fe 3 O(2H-C 6 F 4 COO) 6 (C 5 H 5 N) 3 (3), and Fe 3 O(4H-C 6 F 4 COO) 6 (C 5 H 5 N) 3 (4). By means of 57 Fe-Moessbauer spectroscopy, valence-detrapping and trapping phenomena have been investigated for the four mixed-valence complexes. The valence state of three iron ions is trapped at lower temperatures while it is fully detrapped at higher temperatures for 1. Valence detrapping is not observed for 2, 3, and 4 even at room temperature, although Moessbauer spectra for 3 and 4 show a complicated temperature dependence. (author)

  15. Magnesium silicide production and silane synthesis on its basis

    International Nuclear Information System (INIS)

    Taurbaev, T.I.; Mukashev, F.A.; Manakov, S.M.; Francev, U.V.; Kalblanbekov, B.M.; Akhter, P.; Abbas, M.; Hussain, A.

    2003-01-01

    We had developed an alternative method of production of magnesium silicide with use of ferroalloys of silicon. Magnesium silicide is raw material for silane synthesis. The essence of the method consist of sintering FS -75 (ferrosilicium with 75 % of silicon and 25 % of iron, made by ferroalloy factories) with metal magnesium at temperature of 650 deg. C. The X-ray analysis has shown formation of magnesium silicide. That is further used for synthesis of silane. The output of silane is 60 % in respect of the contents of silicon. After removing the water vapors the mass-spectrometer analysis has estimated the purity of silane as 99.95 % with no detection of phosphine and diborane. (author)

  16. Iron(III) Fluorinated Porphyrins: Greener Chemistry from Synthesis to Oxidative Catalysis Reactions.

    Science.gov (United States)

    Rebelo, Susana L H; Silva, André M N; Medforth, Craig J; Freire, Cristina

    2016-04-12

    Iron(III) fluorinated porphyrins play a central role in the biomimetics of heme enzymes and enable cleaner routes to the oxidation of organic compounds. The present work reports significant improvements in the eco-compatibility of the synthesis of 5,10,15,20-tetrakis-pentafluorophenylporphyrin (H₂TPFPP) and the corresponding iron complex [Fe(TPFPP)Cl], and the use of [Fe(TPFPP)Cl] as an oxidation catalyst in green conditions. The preparations of H₂TPFPP and [Fe(TPFPP)Cl] typically use toxic solvents and can be made significantly greener and simpler using microwave heating and optimization of the reaction conditions. In the optimized procedure it was possible to eliminate nitrobenzene from the porphyrin synthesis and replace DMF by acetonitrile in the metalation reaction, concomitant with a significant reduction of reaction time and simplification of the purification procedure. The Fe(III)porphyrin is then tested as catalyst in the selective oxidation of aromatics at room temperature using a green oxidant (hydrogen peroxide) and green solvent (ethanol). Efficient epoxidation of indene and selective oxidation of 3,5-dimethylphenol and naphthalene to the corresponding quinones is observed.

  17. Thioether-ligated iron(ii) and iron(iii)-hydroperoxo/alkylperoxo complexes with an H-bond donor in the second coordination sphere†

    OpenAIRE

    Widger, Leland R.; Jiang, Yunbo; McQuilken, Alison C.; Yang, Tzuhsiung; Siegler, Maxime A.; Matsumura, Hirotoshi; Moënne-Loccoz, Pierre; Kumar, Devesh; de Visser, Sam P.; Goldberg, David P.

    2014-01-01

    The non-heme iron complexes, [FeII(N3PySR)(CH3CN)](BF4)2 (1) and [FeII(N3PyamideSR)](BF4)2 (2), afford rare examples of metastable Fe(iii)-OOH and Fe(iii)-OOtBu complexes containing equatorial thioether ligands and a single H-bond donor in the second coordination sphere. These peroxo complexes were characterized by a range of spectroscopic methods and density functional theory studies. The influence of a thioether ligand and of one H-bond donor on the stability and spectroscopic properties of...

  18. Determination of silver in fresh water by atomic absorption spectrometry following flotation preconcentration by iron(III) collectors

    Energy Technology Data Exchange (ETDEWEB)

    Cundeva, K.; Stafilov, T. [Institute of Chemistry, Faculty of Science, St. Cyril and Methodius University, Skopje (Yugoslavia)

    1997-08-01

    Colloid precipitate flotation of silver from fresh water is applied for preconcentration and separation. Optimal conditions using hydrated iron(III) oxide and iron(III) tetramethylenedithiocarbamate as collectors were investigated. Various factors affecting the silver recovery, including collector mass, nature of the supporting electrolyte, pH of the working medium, electrokinetic potential of the collector particle surfaces, type of surfactant, induction time etc., were checked. Within the optimal pH range (5.5-6.5) silver was separated quantitatively (94.9- 100.0%) with 30 mg Fe(III) as collector. The content of silver was determined by electrothermal atomic absorption spectrometry and compared to that from inductively coupled plasma-atomic emission spectrometry. The detection limit of silver by the method described is 0.01 {mu}g/L. (orig.) With 2 figs., 3 tabs.

  19. Extracellular polymeric substances mediate bioleaching/biocorrosion via interfacial processes involving iron(III) ions and acidophilic bacteria.

    Science.gov (United States)

    Sand, Wolfgang; Gehrke, Tilman

    2006-01-01

    Extracellular polymeric substances seem to play a pivotal role in biocorrosion of metals and bioleaching, biocorrosion of metal sulfides for the winning of precious metals as well as acid rock drainage. For better control of both processes, the structure and function of extracellular polymeric substances of corrosion-causing or leaching bacteria are of crucial importance. Our research focused on the extremophilic bacteria Acidithiobacillus ferrooxidans and Leptospirillum ferrooxidans, because of the "simplicity" and knowledge about the interactions of these bacteria with their substrate/substratum and their environment. For this purpose, the composition of the corresponding extracellular polymeric substances and their functions were analyzed. The extracellular polymeric substances of both species consist mainly of neutral sugars and lipids. The functions of the exopolymers seem to be: (i) to mediate attachment to a (metal) sulfide surface, and (ii) to concentrate iron(III) ions by complexation through uronic acids or other residues at the mineral surface, thus, allowing an oxidative attack on the sulfide. Consequently, dissolution of the metal sulfide is enhanced, which may result in an acceleration of 20- to 100-fold of the bioleaching process over chemical leaching. Experiments were performed to elucidate the importance of the iron(III) ions complexed by extracellular polymeric substances for strain-specific differences in oxidative activity for pyrite. Strains of A. ferrooxidans with a high amount of iron(III) ions in their extracellular polymeric substances possess greater oxidation activity than those with fewer iron(III) ions. These data provide insight into the function of and consequently the advantages that extracellular polymeric substances provide to bacteria. The role of extracellular polymeric substances for attachment under the conditions of a space station and resulting effects like biofouling, biocorrosion, malodorous gases, etc. will be discussed.

  20. Study of Serum Magnesium in Surgical Stress

    Directory of Open Access Journals (Sweden)

    Sandip D. Lambe

    2016-10-01

    Full Text Available Background: A deficiency of magnesium is of clinical importance in hospitalized patients. The prevalence of hypomagnesaemia is high in critically ill patients. Knowing the important role of magnesium in surgical cases, it is necessary to anticipate and diagnose magnesium deficiency prior to surgery and in the immediate postoperative period to correct it. Aims and Objectives: The aim of this study was to analyse serum magnesium levels in patients undergoing emergency surgical procedures, planned surgical procedures and normal healthy matched controls and to compare the serum magnesium levels in all the three groups. Materials and Methods: The study participants were divided into three groups: i Group I: patients undergoing emergency major surgery ii Group II: patients undergoing planned major surgery iii Group III: normal healthy controls. Serum Magnesium investigation was done by Xylidyl Blue Method using UV-1800/Shimadzu UV-Spectrophotometer. Results: The mean serum Magnesium in control group was found to be 2.16 ± 0.30 mg/dl. In patients undergoing planned surgery, pre-operative serum magnesium was normal (2.16 ± 0.22 mg/dl but decreased significantly on postoperative day 3 (1.63 ± 0.27 mg/dl and day 6 (1.97 ± 0.12 mg/dl and returned to normal level by post-operative day 9 (2.14 ± 0.14 mg/dl compared to controls. In patients undergoing emergency surgery, serum magnesium was decreased pre-operatively (1.90 ± 0.48 mg/dl.Further significant reduction was found at post-operative day 3 (1.38 ± 0.28 mg/dl, day 6 (1.59 ± 0.30 mg/dl and day 9 (1.88 ± 0.46 mg/dl compared to controls. Mean serum Magnesium overall in emergency surgery patients was reduced significantly compared to planned surgery patients. Conclusion: A transient fall in the serum Magnesium as compared to its pre-operative level was seen in every patient undergoing surgical procedure due to surgical stress. In patients undergoing emergency surgical procedure, the decrease was

  1. Fabrication and Application of Iron(III-Oxide Nanoparticle/Polydimethylsiloxane Composite Cone in Microfluidic Channels

    Directory of Open Access Journals (Sweden)

    Cheng-Chun Huang

    2012-01-01

    Full Text Available This paper presented the fabrication and applications of an iron(III-oxide nanoparticle/polydimethylsiloxane (PDMS cone as a component integrated in lab on a chip. The two main functions of this component were to capture magnetic microbeads in the microfluid and to mix two laminar fluids by generating disturbance. The iron(III-oxide nanoparticle/PDMS cone was fabricated by automatic dispensing and magnetic shaping. Three consecutive cones of 300 μm in height were asymmetrically placed along a microchannel of 2 mm in width and 1.1 mm in height. Flow passing the cones was effectively redistributed for Renolds number lower than . Streptavidin-coated magnetic microbeads which were bound with biotin were successfully captured by the composite cones as inspected under fluorescence microscope. The process parameters for fabricating the composite cones were investigated. The fabricated cone in the microchannel could be applied in lab on a chip for bioassay in the future.

  2. Spin-crossover in an iron(III)-bispidine-alkylperoxide system.

    Science.gov (United States)

    Bautz, Jochen; Comba, Peter; Que, Lawrence

    2006-09-04

    The iron(II) complex of a tetradentate bispidine ligand with two tertiary amines and two pyridine groups (L = dimethyl [3,7-dimethyl-9,9'-dihydroxy-2,4-di-(2-pyridyl)-3,7-diazabicyclo nonan-1,5-dicaboxylate]) is oxidized with tert-butyl hydroperoxide to the corresponding end-on tert-butylperoxo complex [Fe(III)(L)(OOtBu)(X)]n+ (X = solvent, anion). UV-vis, resonance Raman, and EPR spectroscopy, as a function of the solvent, show that this is a spin-crossover compound. The experimentally observed Raman vibrations for both low-spin and high-spin isomers are in good agreement with those computed by DFT.

  3. As(III) and As(V) sorption on iron-modified non-pyrolyzed and pyrolyzed biomass from Petroselinum crispum (parsley).

    Science.gov (United States)

    Jiménez-Cedillo, M J; Olguín, M T; Fall, C; Colin-Cruz, A

    2013-03-15

    The sorption of As(III) and As(V) from aqueous solutions onto iron-modified Petroselinum crispum (PCFe) and iron-modified carbonaceous material from the pyrolysis of P. crispum (PCTTFe) was investigated. The modified sorbents were characterized with scanning electron microscopy. The sorbent elemental composition was determined with energy-dispersive X-ray spectroscopy (EDS). The principal functional groups from the sorbents were determined with FT-IR. The specific surfaces and points of zero charge (pzc) of the materials were also determined. As(III) and As(V) sorption onto the modified sorbents were performed in a batch system. After the sorption process, the As content in the liquid and solid phases was determined with atomic absorption and neutron activation analyses, respectively. After the arsenic sorption processes, the desorption of Fe from PCFe and PCTTFe was verified with atomic absorption spectrometry. The morphology of PC changed after iron modification. The specific area and pzc differed significantly between the iron-modified non-pyrolyzed and pyrolyzed P. crispum. The kinetics of the arsenite and arsenate sorption processes were described with a pseudo-second-order model. The Langmuir-Freundlich model provided the isotherms with the best fit. Less than 0.02% of the Fe was desorbed from the PCFe and PCTTFe after the As(III) and As(V) sorption processes. Copyright © 2013 Elsevier Ltd. All rights reserved.

  4. Experimental investigation of aluminum complexing with sodium ion and of gallium and iron (III) speciation in natural solutions

    International Nuclear Information System (INIS)

    Diakonov, Igor

    1995-01-01

    The aim of this work is to acquire thermodynamic data on the aqueous complexes forming between sodium and aluminum, gallium and hydroxide, and iron (III) and hydroxide. These data will provide for a better understanding of the transport and distribution of these elements in surface and hydrothermal fluids. Stability constants of the sodium-aluminate complex (Na Al(OH) 4 deg.) were obtained from boehmite solubility measurements at temperatures from 125 to 350 deg. C in alkaline solutions containing from 0.1 to 1 mol/L sodium. Complementary potentiometric measurements were performed with a sodium selective electrode, between 75 and 200 deg C (the potentiometric study was carried out by Gleb Pokrovski). Analyses of these data within the framework of the revised Helgeson-Kirkham-Flowers (HKF) model allowed determination of the HKF parameters for Na Al(OH) 4 deg. and calculation of its thermodynamic properties to 800 deg. C and 5 kb. The results of this work show that Na Al(OH) 4 deg. complex formation increases significantly the solubility of aluminum-bearing minerals and consequently aluminum mobility in hydrothermal fluids. Gallium speciation in surface and hydrothermal fluids is dominated by the negatively charged species, Ga(OH) 4 - . The thermodynamic properties of this species were determined from of OEGaOOH solubility measurements as a function of pH and temperature from 25 to 250 deg. C. In general, the variation of gallium aqueous speciation with pH is similar to that of aluminum other than at temperatures less than 200 deg. C over the pH range 3 - 6. This difference can account for the independent behavior of gallium versus aluminum in numerous low temperature natural systems. The thermodynamic properties of Fe(OH) 3 deg. which dominates the speciation of Fe(III) in surface waters and Fe(OH) 4 - were determined from hematite solubility measurements as a function of pH, oxygen pressure and temperature from 110 to 300 deg. C. The available thermodynamic data on

  5. Formation of environmentally persistent free radical (EPFR) in iron(III) cation-exchanged smectite clay.

    Science.gov (United States)

    Nwosu, Ugwumsinachi G; Roy, Amitava; dela Cruz, Albert Leo N; Dellinger, Barry; Cook, Robert

    2016-01-01

    Environmentally persistent free radicals (EPFRs) have been found at a number of Superfund sites, with EPFRs being formed via a proposed redox process at ambient environmental conditions. The possibility of such a redox process taking place at ambient environmental conditions is studied utilizing a surrogate soil system of phenol and iron(III)-exchanged calcium montmorillonite clay, Fe(III)CaM. Sorption of phenol by the Fe(III)CaM is demonstrated by Fourier-transformed infra-red (FT-IR) spectroscopy, as evidenced by the peaks between 1345 cm(-1) and 1595 cm(-1), and at lower frequencies between 694 cm(-1) and 806 cm(-1), as well as X-ray diffraction (XRD) spectroscopy, as shown by an increase in interlayer spacing within Fe(III)CaM. The formation and characterization of the EPFRs is determined by electron paramagnetic resonance (EPR) spectroscopy, showing phenoxyl-type radical with a g-factor of 2.0034 and ΔHP-P of 6.1 G at an average concentration of 7.5 × 10(17) spins per g. EPFRs lifetime data are indicative of oxygen and water molecules being responsible for EPFR decay. The change in the oxidation state of the iron redox center is studied by X-ray absorption near-edge structure (XANES) spectroscopy, showing that 23% of the Fe(III) is reduced to Fe(II). X-ray photoemission spectroscopy (XPS) results confirm the XANES results. These findings, when combined with the EPFR concentration data, demonstrate that the stoichiometry of the EPFR formation under the conditions of this study is 1.5 × 10(-2) spins per Fe(II) atom.

  6. Characterization of a tricationic trigonal bipyramidal iron(IV) cyanide complex, with a very high reduction potential, and its iron(II) and iron(III) congeners.

    Science.gov (United States)

    England, Jason; Farquhar, Erik R; Guo, Yisong; Cranswick, Matthew A; Ray, Kallol; Münck, Eckard; Que, Lawrence

    2011-04-04

    Currently, there are only a handful of synthetic S = 2 oxoiron(IV) complexes. These serve as models for the high-spin (S = 2) oxoiron(IV) species that have been postulated, and confirmed in several cases, as key intermediates in the catalytic cycles of a variety of nonheme oxygen activating enzymes. The trigonal bipyramidal complex [Fe(IV)(O)(TMG(3)tren)](2+) (1) was both the first S = 2 oxoiron(IV) model complex to be generated in high yield and the first to be crystallographically characterized. In this study, we demonstrate that the TMG(3)tren ligand is also capable of supporting a tricationic cyanoiron(IV) unit, [Fe(IV)(CN)(TMG(3)tren)](3+) (4). This complex was generated by electrolytic oxidation of the high-spin (S = 2) iron(II) complex [Fe(II)(CN)(TMG(3)tren)](+) (2), via the S = 5/2 complex [Fe(III)(CN)(TMG(3)tren)](2+) (3), the progress of which was conveniently monitored by using UV-vis spectroscopy to follow the growth of bathochromically shifting ligand-to-metal charge transfer (LMCT) bands. A combination of X-ray absorption spectroscopy (XAS), Mössbauer and NMR spectroscopies was used to establish that 4 has a S = 0 iron(IV) center. Consistent with its diamagnetic iron(IV) ground state, extended X-ray absorption fine structure (EXAFS) analysis of 4 indicated a significant contraction of the iron-donor atom bond lengths, relative to those of the crystallographically characterized complexes 2 and 3. Notably, 4 has an Fe(IV/III) reduction potential of ∼1.4 V vs Fc(+/o), the highest value yet observed for a monoiron complex. The relatively high stability of 4 (t(1/2) in CD(3)CN solution containing 0.1 M KPF(6) at 25 °C ≈ 15 min), as reflected by its high-yield accumulation via slow bulk electrolysis and amenability to (13)C NMR at -40 °C, highlights the ability of the sterically protecting, highly basic peralkylguanidyl donors of the TMG(3)tren ligand to support highly charged high-valent complexes.

  7. Adsorption and transformation of selected human-used macrolide antibacterial agents with iron(III) and manganese(IV) oxides

    International Nuclear Information System (INIS)

    Feitosa-Felizzola, Juliana; Hanna, Khalil; Chiron, Serge

    2009-01-01

    The adsorption/transformation of two members (clarithromycin and roxithromycin) of the macrolide (ML) antibacterial agents on the surface of three environmental subsurface sorbents (clay, iron(III) and manganese(IV) oxy-hydroxides) was investigated. The adsorption fitted well to the Freundlich model with a high sorption capacity. Adsorption probably occurred through a surface complexation mechanism and was accompanied by slow degradation of the selected MLs. Transformation proceeded through two parallel pathways: a major pathway was the hydrolysis of the cladinose sugar, and to a lesser extent the hydrolysis of the lactone ring. A minor pathway was the N-dealkylation of the amino sugar. This study indicates that Fe(III) and Mn(IV) oxy-hydroxides in aquatic sediments may play an important role in the natural attenuation of MLs. Such an attenuation route yields a range of intermediates that might retain some of their biological activity. - Iron(III) and manganese(IV) oxy-hydroxides in aquatic sediments may play an important role in the natural attenuation of macrolide antibacterial agents

  8. Adsorption and transformation of selected human-used macrolide antibacterial agents with iron(III) and manganese(IV) oxides

    Energy Technology Data Exchange (ETDEWEB)

    Feitosa-Felizzola, Juliana [Laboratoire Chimie Provence, Aix-Marseille Universites-CNRS (UMR 6264), 3 place Victor Hugo, 13331 Marseille Cedex 3 (France); Hanna, Khalil [Laboratoire de Chimie Physique et Microbiologie pour l' Environnement, CNRS-Universite Henri Poincare-Nancy 1 (UMR 7564), 405 rue de Vandoeuvre, 54600 Villers-les-Nancy (France); Chiron, Serge [Laboratoire Chimie Provence, Aix-Marseille Universites-CNRS (UMR 6264), 3 place Victor Hugo, 13331 Marseille Cedex 3 (France)], E-mail: serge.chiron@univ-provence.fr

    2009-04-15

    The adsorption/transformation of two members (clarithromycin and roxithromycin) of the macrolide (ML) antibacterial agents on the surface of three environmental subsurface sorbents (clay, iron(III) and manganese(IV) oxy-hydroxides) was investigated. The adsorption fitted well to the Freundlich model with a high sorption capacity. Adsorption probably occurred through a surface complexation mechanism and was accompanied by slow degradation of the selected MLs. Transformation proceeded through two parallel pathways: a major pathway was the hydrolysis of the cladinose sugar, and to a lesser extent the hydrolysis of the lactone ring. A minor pathway was the N-dealkylation of the amino sugar. This study indicates that Fe(III) and Mn(IV) oxy-hydroxides in aquatic sediments may play an important role in the natural attenuation of MLs. Such an attenuation route yields a range of intermediates that might retain some of their biological activity. - Iron(III) and manganese(IV) oxy-hydroxides in aquatic sediments may play an important role in the natural attenuation of macrolide antibacterial agents.

  9. Carbon-13 magnetic relaxation rates or iron (III) complexes of some biogenic amines and parent compounds in aqueous solutions

    International Nuclear Information System (INIS)

    Lai, A.; Monduzzi, M.; Saba, G.

    1980-01-01

    Spin-lattice relaxation rates (R 1 ) from naturally occuring C-13 F.T. N.M.R. spectra of some catecholamines and parent compounds with Iron(III) at pD = 4 were determined in order to elucidate the molecular mechanism underlying their association in aqueous solutions. Complexation was observed only for catecholic ligands. The R 1 values were used to calculate iron-carbon scaled distances, and two complexation models were proposed where the catecholic function binds Fe(III) in the first and second coordination spheres respectively. The latter case was shown to be the consistent with the molecular geometries. (orig.)

  10. Competition of dipositive metal ions for Fe (III) binding sites in chelation therapy of Iron Load

    International Nuclear Information System (INIS)

    Rehmani, Fouzia S.

    2005-01-01

    Iron overload is a condition in which excessive iron deposited in the liver, kidney and spleen of human beings in the patients of beta thalassemia and sickle cell anemia. Instead of its importance iron could be toxic when in excess, it damages the tissues. For the treatment of iron overload, a drug desferrioxamine mesylate has been used. It is linear trihydroxamic acid, a natural siderophore produced by streptomyces which removes the extra iron from body. Salicylhydroxamate type siderphore. In present research salicylhydroxamate was used for the complexation with dipositive metal ions which are available in biological environments such as Mn (II), Co (II), Ni (II) and Cu (II). The aim of our work was to study the competition reactions between Fe (III) and other dipositive ions; to calculate the thermodynamic data of chelation of these metal ions complexes with hydroxamate by computer program and comparison with hydroxamate complexes. (author)

  11. Scientific Opinion on the safety of the complexation product of sodium tartrate and iron(III) chloride as a food additive

    OpenAIRE

    2015-01-01

    The complexation product of sodium tartrates and iron(III) chloride (Fe mTA) is proposed for use as an anti-caking agent, only in salt or its substitutes, with a maximum use level of 106 mg Fe mTA/kg salt. Fe mTA can be expected to dissociate into its constituent iron(III) and tartrate components upon ingestion. Studies in rats demonstrated that up to 90 % of ingested DL-tartrate or tartaric acid were absorbed, studies in humans suggested that only 20 % of an ingested dose of tartaric acid we...

  12. FmvB: A Francisella tularensis Magnesium-Responsive Outer Membrane Protein that Plays a Role in Virulence.

    Directory of Open Access Journals (Sweden)

    Xiaojun Wu

    Full Text Available Francisella tularensis is the causative agent of the lethal disease tularemia. Despite decades of research, little is understood about why F. tularensis is so virulent. Bacterial outer membrane proteins (OMPs are involved in various virulence processes, including protein secretion, host cell attachment, and intracellular survival. Many pathogenic bacteria require metals for intracellular survival and OMPs often play important roles in metal uptake. Previous studies identified three F. tularensis OMPs that play roles in iron acquisition. In this study, we examined two previously uncharacterized proteins, FTT0267 (named fmvA, for Francisella metal and virulence and FTT0602c (fmvB, which are homologs of the previously studied F. tularensis iron acquisition genes and are predicted OMPs. To study the potential roles of FmvA and FmvB in metal acquisition and virulence, we first examined fmvA and fmvB expression following pulmonary infection of mice, finding that fmvB was upregulated up to 5-fold during F. tularensis infection of mice. Despite sequence homology to previously-characterized iron-acquisition genes, FmvA and FmvB do not appear to be involved iron uptake, as neither fmvA nor fmvB were upregulated in iron-limiting media and neither ΔfmvA nor ΔfmvB exhibited growth defects in iron limitation. However, when other metals were examined in this study, magnesium-limitation significantly induced fmvB expression, ΔfmvB was found to express significantly higher levels of lipopolysaccharide (LPS in magnesium-limiting medium, and increased numbers of surface protrusions were observed on ΔfmvB in magnesium-limiting medium, compared to wild-type F. tularensis grown in magnesium-limiting medium. RNA sequencing analysis of ΔfmvB revealed the potential mechanism for increased LPS expression, as LPS synthesis genes kdtA and wbtA were significantly upregulated in ΔfmvB, compared with wild-type F. tularensis. To provide further evidence for the potential

  13. Comparing soluble ferric pyrophosphate to common iron salts and chelates as sources of bioavailable iron in a Caco-2 cell culture model.

    Science.gov (United States)

    Zhu, Le; Glahn, Raymond P; Nelson, Deanna; Miller, Dennis D

    2009-06-10

    Iron bioavailability from supplements and fortificants varies depending upon the form of the iron and the presence or absence of iron absorption enhancers and inhibitors. Our objectives were to compare the effects of pH and selected enhancers and inhibitors and food matrices on the bioavailability of iron in soluble ferric pyrophosphate (SFP) to other iron fortificants using a Caco-2 cell culture model with or without the combination of in vitro digestion. Ferritin formation was the highest in cells treated with SFP compared to those treated with other iron compounds or chelates. Exposure to pH 2 followed by adjustment to pH 7 markedly decreased FeSO(4) bioavailability but had a smaller effect on bioavailabilities from SFP and sodium iron(III) ethylenediaminetetraacetate (NaFeEDTA), suggesting that chelating agents minimize the effects of pH on iron bioavailability. Adding ascorbic acid (AA) and cysteine to SFP in a 20:1 molar ratio increased ferritin formation by 3- and 2-fold, respectively, whereas adding citrate had no significant effect on the bioavailability of SFP. Adding phytic acid (10:1) and tannic acid (1:1) to iron decreased iron bioavailability from SFP by 91 and 99%, respectively. The addition of zinc had a marked inhibitory effect on iron bioavailability. Calcium and magnesium also inhibited iron bioavailability but to a lesser extent. Incorporating SFP in rice greatly reduced iron bioavailability from SFP, but this effect can be partially reversed with the addition of AA. SFP and FeSO(4) were taken up similarly when added to nonfat dry milk. Our results suggest that dietary factors known to enhance and inhibit iron bioavailability from various iron sources affect iron bioavailability from SFP in similar directions. However, the magnitude of the effects of iron absorption inhibitors on SFP iron appears to be smaller than on iron salts, such as FeSO(4) and FeCl(3). This supports the hypothesis that SFP is a promising iron source for food fortification

  14. Hubungan Status Gizi, Asupan Besi, dan Magnesium dengan Gangguan Tidur Anak Usia 5-7 Tahun di Kampung Melayu, Jakarta Timur Tahun 2012

    Directory of Open Access Journals (Sweden)

    William Cheng

    2014-12-01

    Full Text Available AbstrakTidur adalah hal yang penting bagi anak karena terjadi peningkatan aktivitas susunan saraf pusat tertentu untuk memberikan efek fisiologis bagi tubuh. Banyak faktor yang menyebabkan gangguan tidur, salah satu yang dapat dimodifikasi adalah faktor nutrisi. Aspek nutrisi yang diperkirakan berkaitanadalah status gizi, asupan besi, dan asupan  magnesium. Status gizi merupakan parameter secara umum keseimbangan antara derajat kebutuhan fisik anak terhadap nutrien. Besi dan magnesium berhubungan karena mempengaruhi substansi yang berperan dalam pengaturan fisiologi tidur. Penelitian ini merupakan studi  observasi-analitik untuk mengetahui  hubungan status gizi, asupan besi, dan asupan magnesium dengan gangguan tidur pada anak usia 5-7 tahun dengan metode cross-sectional  dari data sekunder pada anak-anak di Posyandu Kampung Melayu, berupa status antopometri, asupan besi, asupan magnesium, dan skor gangguan tidur dengan kuesioner Sleep Disturbance Scale for Children (SDSC. Gangguan tidur dinyatakan bila skor SDSC melewati angka39. Prevalensi anak yang mengalami gangguan tidur pada penelitian ini adalah 23,1%. Pada uji chi square untuk hubungan indeks Berat Badan/Umur dan Tinggi Badan/Umur dengan gangguan tidur didapatkan p>0,05 yang menyatakan bahwa tidak ada hubungan secara statistik. Pada uji chi square untuk hubungan asupan besi dan magnesium dengan gangguan tidur, didapatkan p>0,05 yang menandakan tidak terdapat hubungan secara statistik.Kata kunci: asupan besi, asupan  magnesium, gangguan tidur, dan status gizi.AbstractSleep is essential for children because there is enhancement of neural system activities that give physiologic effects for the body. There are several factors that relate with sleep disturbances, where one of the modifiable factors is nutrition. Nutritional status, iron intake, and magnesium intake are examples of nutrition that are believed to relate with sleep. Nutritional status represents thebalance between

  15. Radiochemical study of the sorption of iodate ions on iron(III) hydroxide precipitate

    International Nuclear Information System (INIS)

    Music, S.; Sipalo-Zuljevic, J.; Wolf, R.H.H.

    1980-01-01

    The sorption of iodate ions on iron(III) hydroxide in dependence on the pH, the aging time of the precipitate and the duration of the contact between the sorbate and the sorbent have been studied. Na 131 IO 3 was used as a radioactive indicator. The sorption mechanism has been discussed in terms of electrostatic and ion-exchange processes at the solid/liquid interface. (author)

  16. Moessbauer studies of iron(III)-(indole-3-alkanoic acids) systems in frozen aqueous solutions

    International Nuclear Information System (INIS)

    Kovacs, K.; Kuzmann, E.; Homonnay, Z.; Szilagyi, P.A.; Vertes, A.; Kamnev, A.A.; Sharma, V.K.

    2005-01-01

    Moessbauer investigations of iron(III) salts in aqueous solutions in the presence of indole-3-alkanoic acid ligands are described. The measurements showed two parallel reactions between the ligands and ferric ions: a complex formation and a redox process. The oxidation process takes place in the ligands, and a part of Fe 3+ is reduced to Fe 2+ . (author)

  17. Iron-Mediated Homogeneous ICAR ATRP of Methyl Methacrylate under ppm Level Organometallic Catalyst Iron(III Acetylacetonate

    Directory of Open Access Journals (Sweden)

    Jian Wu

    2016-01-01

    Full Text Available Atom Transfer Radical Polymerization (ATRP is an important polymerization process in polymer synthesis. However, a typical ATRP system has some drawbacks. For example, it needs a large amount of transition metal catalyst, and it is difficult or expensive to remove the metal catalyst residue in products. In order to reduce the amount of catalyst and considering good biocompatibility and low toxicity of the iron catalyst, in this work, we developed a homogeneous polymerization system of initiators for continuous activator regeneration ATRP (ICAR ATRP with just a ppm level of iron catalyst. Herein, we used oil-soluble iron (III acetylacetonate (Fe(acac3 as the organometallic catalyst, 1,1′-azobis (cyclohexanecarbonitrile (ACHN with longer half-life period as the thermal initiator, ethyl 2-bromophenylacetate (EBPA as the initiator, triphenylphosphine (PPh3 as the ligand, toluene as the solvent and methyl methacrylate (MMA as the model monomer. The factors related with the polymerization system, such as concentration of Fe(acac3 and ACHN and polymerization kinetics, were investigated in detail at 90 °C. It was found that a polymer with an acceptable molecular weight distribution (Mw/Mn = 1.43 at 45.9% of monomer conversion could be obtained even with 1 ppm of Fe(acac3, making it needless to remove the residual metal in the resultant polymers, which makes such an ICAR ATRP process much more industrially attractive. The “living” features of this polymerization system were further confirmed by chain-extension experiment.

  18. Determinação de ferro (III em produtos farmacêuticos por titulação fotométrica - doi: 10.4025/actascihealthsci.v33i1.8034 Determination of iron (III in pharmaceutical products by photometric titration - doi: 10.4025/actascihealthsci.v33i1.8034

    Directory of Open Access Journals (Sweden)

    Flávio Luís Beltrame

    2011-05-01

    Full Text Available Este trabalho descreve a montagem de um sistema de titulação fotométrica simples e de baixo custo para a determinação de ferro (III em produtos farmacêuticos. O sistema de titulação fotométrica foi construído utilizando-se a bomba peristáltica de um espectrofotômetro convencional. O procedimento é baseado na titulação de ferro (III com EDTA e ácido salicílico como indicador. A absorção do complexo ferro (III-ácido salicílico foi monitorada espectrofotometricamente em 525 nm. O limite de quantificação foi de 5 µg de ferro (III. O procedimento de titulação fotométrica foi aplicado para a determinação de ferro (III em amostras contendo sulfato ferroso e hidróxido férrico polimaltosado. O procedimento mostrou sensibilidade, reprodutibilidade e precisão para a utilização em análise rotineira de ferro (III em produtos farmacêuticos.This paper describes a simple, precise and low-cost photometric titration method for iron (III determination in pharmaceutical preparations. The photometric titration system was constructed using the peristaltic pump of a conventional spectrophotometer. The method is based on titration of iron (III with EDTA using salicylic acid as indicator. The absorption of the iron (III-salicylic acid complex was monitored spectrophotometrically at 525 nm. The limit of quantification was 5 µg of iron (III. The photometric titration procedure was applied for the determination of iron (III in samples of ferrous sulfate and ferric hydroxide polymaltose complex. The procedure showed sensibility, reproducibility and accuracy for use as a method for the routine analysis of iron (III in pharmaceutical formulations.

  19. Synthesis, iron(III) complexation properties, molecular dynamics simulations and P. aeruginosa siderophore-like activity of two pyoverdine analogs.

    Science.gov (United States)

    Antonietti, Viviane; Boudesocque, Stéphanie; Dupont, Laurent; Farvacques, Natacha; Cézard, Christine; Da Nascimento, Sophie; Raimbert, Jean-François; Socrier, Larissa; Robin, Thierry-Johann; Morandat, Sandrine; El Kirat, Karim; Mullié, Catherine; Sonnet, Pascal

    2017-09-08

    P. aeruginosa ranks among the top five organisms causing nosocomial infections. Among the many novel strategies for developing new therapeutics against infection, targeting iron uptake mechanism seems promising as P. aeruginosa needs iron for its growth and survival. To scavenge iron, the bacterium produces siderophores possessing a very high affinity towards Fe(III) ions such as pyoverdines. In this work, we decided to study two pyoverdine analogs, aPvd2 and aPvd3, structurally close to the endogen pyoverdine. The pFe constants calculated with the values of formation showed a high affinity of aPvd3 towards Fe(III). Molecular dynamics calculations demonstrated that aPvd3-Fe forms with Fe(III) stable 1:1 complexes in water, whereas aPvd2 does not. Only aPvd3 is able to increase the bacterial growth and represents thus an alternative to pyoverdine for iron acquisition by the bacterium. The aPvd2-3 interaction studies with a lipid membrane indicated that they were unable to interact and to cross the plasma membrane of bacteria by passive diffusion. Consequently, the penetration of aPvd3 is ruled by a transport membrane protein. These results showed that aPvd3 may be used to inhibit pyoverdine uptake or to promote the accumulation and release of antibiotics into the cell following a Trojan horse strategy. Copyright © 2017 Elsevier Masson SAS. All rights reserved.

  20. Investigation of the interaction of iron(III) complexes with dAMP by ESI-MS, MALDI-MS and potentiometric titration: insights into synthetic nuclease behavior.

    Science.gov (United States)

    Fernandes, Christiane; Oliveira Moreira, Rafaela; Lube, Leonardo M; Horn, Adolfo; Szpoganicz, Bruno; Sherrod, Stacy; Russell, David H

    2010-06-07

    We report herein the characterization by electrospray ionization (ESI) mass spectrometry (MS), matrix assisted laser desorption ionization (MALDI-MS) and potentiometric titration of three iron(III) compounds: [Fe(III)(HPClNOL)Cl2]·NO3 (1), [Cl(HPClNOL)Fe(III)-(μ-O)-Fe(III)(HPClNOL)Cl]·Cl2·H2O (2) and [(SO4)(HPClNOL)Fe(III)-(μ-O)-Fe(III)(HPClNOL)(SO4)]·6H2O (3), where HPClNOL= 1-(bis-pyridin-2-ylmethyl-amino)-3-chloropropan-2-ol). Despite the fact that the compounds have distinct structures in solid state and non-buffered solution, all compounds present similar ESI and MALDI mass spectra in a buffered medium (pH 7.0). At this pH, the species [(PClNOL)Fe(III)-(μ-O)-Fe(III)(PClNOL)](2+) (m/z 354) was observed for all the compounds under investigation. Potentiometric titration confirms a similar behavior for all compounds, indicating that the dihydroxo form [(OH)(HPClNOL)Fe(III)-(μ-O)-Fe(III)(HPClNOL)(OH)](2+) is the major species at pH 7.0, for all the compounds. The products of the interaction between compounds (1), (2) and (3) and dAMP (2'-deoxyadenosine-5'-monophosphate) in a buffered medium (pH 7.0) were identified by MALDI-MS/MS. The fragmentation data obtained by MS/MS allow one to identify the nature of the interaction between the iron(III) compounds and dAMP, revealing the direct interaction between the iron center and phosphate groups.

  1. Iron(iii) bis(pyrazol-1-yl)acetate based decanuclear metallacycles: synthesis, structure, magnetic properties and DFT calculations.

    Science.gov (United States)

    Gajewska, Małgorzata J; Bieńko, Alina; Herchel, Radovan; Haukka, Matti; Jerzykiewicz, Maria; Ożarowski, Andrzej; Drabent, Krzysztof; Hung, Chen-Hsiung

    2016-09-27

    The synthesis, structural aspects, magnetic interpretation and theoretical rationalizations for a new member of the ferric wheel family, a decanuclear iron(iii) complex with the formula [Fe 10 (bdtbpza) 10 (μ 2 -OCH 3 ) 20 ] (1), featuring the N,N,O tridentate bis(3,5-di-tert-butylpyrazol-1-yl)acetate ligand, are reported. The influence of the steric effect on both the core geometry and coordination mode is observed. Temperature dependent (2.0-300 K range) magnetic susceptibility studies carried out on complexes 1 established unequivocally antiferromagnetic (AF) interactions between high-spin iron(iii) centers (S = 5/2), leading to a ground state S = 0. The mechanism of AF intramolecular coupling was proved using a broken-symmetry approach within the density functional method at the B3LYP/def2-TZVP(-f)/def2-SVP level of theory.

  2. Amorphous iron (II) carbonate

    DEFF Research Database (Denmark)

    Sel, Ozlem; Radha, A.V.; Dideriksen, Knud

    2012-01-01

    Abstract The synthesis, characterization and crystallization energetics of amorphous iron (II) carbonate (AFC) are reported. AFC may form as a precursor for siderite (FeCO3). The enthalpy of crystallization (DHcrys) of AFC is similar to that of amorphous magnesium carbonate (AMC) and more...

  3. Mercury methylation coupled to iron reduction by dissimilatory iron-reducing bacteria.

    Science.gov (United States)

    Si, Youbin; Zou, Yan; Liu, Xiaohong; Si, Xiongyuan; Mao, Jingdong

    2015-03-01

    Iron reduction and mercury methylation by dissimilatory iron-reducing bacteria (DIRB), Geobacter sulfurreducens and Shewanella oneidensis, were studied, and the relationship of mercury methylation coupled to iron reduction was determined. The ability of both bacteria for reducing iron was tested, and Fe(III) reduction occurred with the highest rate when ferric oxyhydroxide was used as a terminal electron acceptor. G. sulfurreducens had proven to mediate the production of methylmercury (MeHg), and a notable increase of MeHg following the addition of inorganic Hg was observed. When the initial concentration of HgCl2 was 500nM, about 177.03nM of MeHg was determined at 8d after G. sulfurreducens inoculation. S. oneidensis was tested negligible for Hg methylation and only 12.06nM of MeHg was determined. Iron reduction could potentially influence Hg methylation rates. The increase in MeHg was consistent with high rate of iron reduction, indicating that Fe(III) reduction stimulated the formation of MeHg. Furthermore, the net MeHg concentration increased at low Fe(III) additions from 1.78 to 3.57mM, and then decreased when the added Fe(III) was high from 7.14 to 17.85mM. The mercury methylation rate was suppressed with high Fe(III) additions, which might have been attributable to mercury complexation and low availability. Copyright © 2014 Elsevier Ltd. All rights reserved.

  4. Reverse osmosis membrane composition, structure and performance modification by bisulphite, iron(III), bromide and chlorite exposure.

    Science.gov (United States)

    Ferrer, O; Gibert, O; Cortina, J L

    2016-10-15

    Reverse osmosis (RO) membrane exposure to bisulphite, chlorite, bromide and iron(III) was assessed in terms of membrane composition, structure and performance. Membrane composition was determined by Rutherford backscattering spectrometry (RBS) and membrane performance was assessed by water and chloride permeation, using a modified version of the solution-diffusion model. Iron(III) dosage in presence of bisulphite led to an autooxidation of the latter, probably generating free radicals which damaged the membrane. It comprised a significant raise in chloride passage (chloride permeation coefficient increased 5.3-5.1 fold compared to the virgin membrane under the conditions studied) rapidly. No major differences in terms of water permeability and membrane composition were observed. Nevertheless, an increase in the size of the network pores, and a raise in the fraction of aggregate pores of the polyamide (PA) layer were identified, but no amide bond cleavage was observed. These structural changes were therefore, in accordance with the transport properties observed. Copyright © 2016 Elsevier Ltd. All rights reserved.

  5. Sorption of microamount of colloidal silver iodide on hydrated iron(III) oxide

    International Nuclear Information System (INIS)

    Kepak, F.; Nova, J.

    1975-01-01

    Sorption of a microamount of colloidal silver iodide labelled with 131 I on hydrated iron/III/ oxide suspension was studied. The sorption dependence upon pH, sorbent amount, and inert electrolyte concentration has revealed that sorption of silver iodide reaches no more than 63%. The sorption lasted one hour during which the maximum value was reached. Desorption time was one hour, as well. Except for measuring the sorption dependence on pH, the sorption pH was 7.0, temperature 24+-2 0 C. (F.G.)

  6. Direct-reading spectrochemical analysis of magnesium alloys; Analisis espectroquimico de lectura directa de aleaciones de magnesio

    Energy Technology Data Exchange (ETDEWEB)

    Roca Adell, M

    1964-07-01

    A Quantometer has been applied to the determination of aluminum, berylium, calcium, iron, silicon and zinc in magnesium alloys Magnox, after the conversion of the samples to the oxide. For the aluminum, whose concentration is relatively high, the conducting briquets technique with an interrupted discharge is employed, using the magnesium as the internal standard. For the other elements a total burning method with direct current arc is employed, using also the magnesium as the internal standard. (Author) 7 refs.

  7. Iron(III) protoporphyrin IX-single-wall carbon nanotubes modified electrodes for hydrogen peroxide and nitrite detection

    International Nuclear Information System (INIS)

    Turdean, Graziella L.; Popescu, Ionel Catalin; Curulli, Antonella; Palleschi, Giuseppe

    2006-01-01

    Iron(III) protoporphyrin IX (Fe(III)P), adsorbed either on single-walled carbon nanotubes (SWCNT) or on hydroxyl-functionalized SWCNT (SWCNT-OH), was incorporated within a Nafion matrix immobilized on the surface of a graphite electrode. From cyclic voltammetric measurements, performed under different experimental conditions (pH and potential scan rate), it was established that the Fe(III)P/Fe(II)P redox couple involves 1e - /1H + . The heterogeneous electron transfer process occurred faster when Fe(III)P was adsorbed on SWCNT-OH (∼11 s -1 ) than on SWCNT (∼4.9 s -1 ). Both the SWCNT-Fe(III)P- and SWCNT-OH-Fe(III)P-modified graphite electrodes exhibit electrocatalytic activity for H 2 O 2 and nitrite reduction. The modified electrodes sensitivities were found varying in the following sequences: S SWCNT-OH-Fe(III)P = 2.45 mA/M ∼ S SWCNT-Fe(III)P = 2.95 mA/M > S Fe(III)P = 1.34 mA/M for H 2 O 2 , and S SWCNT-Fe(III)P = 3.54 mA/M > S Fe(III)P 1.44 mA/M > S SWCNT-OH-Fe(III)P = 0.81 mA/M for NO 2 -

  8. Impact of Microcystis aeruginosa Exudate on the Formation and Reactivity of Iron Oxide Particles Following Fe(II) and Fe(III) Addition.

    Science.gov (United States)

    Garg, Shikha; Wang, Kai; Waite, T David

    2017-05-16

    Impact of the organic exudate secreted by a toxic strain of Microcystis aeruginosa on the formation, aggregation, and reactivity of iron oxides that are formed on addition of Fe(II) and Fe(III) salts to a solution of the exudate is investigated in this study. The exudate has a stabilizing effect on the particles formed with decreased aggregation rate and increased critical coagulant concentration required for diffusion-limited aggregation to occur. These results suggest that the presence of algal exudates from Microcystis aeruginosa may significantly influence particle aggregation both in natural water bodies where Fe(II) oxidation results in oxide formation and in water treatment where Fe(III) salts are commonly added to aid particle growth and contaminant capture. The exudate also affects the reactivity of iron oxide particles formed with exudate coated particles undergoing faster dissolution than bare iron oxide particles. This has implications to iron availability, especially where algae procure iron via dissolution of iron oxide particles as a result of either reaction with reducing moieties, light-mediated ligand to metal charge transfer and/or reaction with siderophores. The increased reactivity of exudate coated particles is attributed, for the most part, to the smaller size of these particles, higher surface area and increased accessibility of surface sites.

  9. Electronic structure of deep levels in silicon. A study of gold, magnesium, and iron centers in silicon

    International Nuclear Information System (INIS)

    Thilderkvist, A. L.

    1994-02-01

    The electronic structure of gold, magnesium and iron related deep centers in silicon is investigated. Their deep and shallow levels are studied by means of fourier transform spectroscopy, combined with uniaxial stress and Zeeman spectroscopy. The neutral substitutional gold center in silicon is investigated and the center is paramagnetic, S=1/2, with g||≅2.8 and g≅0, and has a static distortion. Reorientation between different equivalent distortions is observed even at 1.9 K. A gold pair center in silicon is studied and several line series, with a zero-phonon line followed by several phonon replicas, are observed. Uniaxial stress and Zeeman results reveal a trigonal symmetry of the center, which together with the high dissociation energy of 1.7 eV suggests that the center consists of two nearest-neighbor substitutional gold atoms. A divacancy model is employed to explain the electronic properties of the center. The interstitial magnesium double donor in silicon in its two charge states Mg o and Mg + is investigated. Deviations in the binding energies of the excited states from those calculated within the effective-mass theory (EMT) are found and explained by a perturbation in the central-cell region. The quadratic Zeeman effect of shallow donors in silicon is analyzed within the framework of the EMT using a numerical approach. The wave functions are calculated in a discrete radial mesh and the Zeeman Hamiltonian has be evaluated for the lowest excited states for fields up to 6 T. The neutral interstitial iron defect in silicon gives rise to two sets of line spectra. The first set arises when an electron is excited to a shallow donor like state where the electron is decoupled from the Fe + core which has a 4 T 1 ground state term. The second set arises when an excited electron of a 1 symmetry is coupled by exchange interaction to the core, yielding at 5 T 1 final state. Experiments determine the multiplet splitting of the 4 T 1 and 5 T 1 states due to spring

  10. Magnesium, magnesium alloys, and magnesium composites

    National Research Council Canada - National Science Library

    Gupta, M; Sharon, Nai Mui Ling

    2011-01-01

    "Properties of Magnesium Composites for Material Scientists, Engineers and Selectors is the first book-length reference to provide an insight into current and future magnesium-based materials in terms...

  11. Nonanuclear Spin-Crossover Complex Containing Iron(II) and Iron(III) Based on a 2,6-Bis(pyrazol-1-yl)pyridine Ligand Functionalized with a Carboxylate Group.

    Science.gov (United States)

    Abhervé, Alexandre; Recio-Carretero, María José; López-Jordà, Maurici; Clemente-Juan, Juan Modesto; Canet-Ferrer, Josep; Cantarero, Andrés; Clemente-León, Miguel; Coronado, Eugenio

    2016-09-19

    The synthesis and magnetostructural characterization of [Fe(III)3(μ3-O)(H2O)3[Fe(II)(bppCOOH)(bppCOO)]6](ClO4)13·(CH3)2CO)6·(solvate) (2) are reported. This compound is obtained as a secondary product during synthesis of the mononuclear complex [Fe(II)(bppCOOH)2](ClO4)2 (1). The single-crystal X-ray diffraction structure of 2 shows that it contains the nonanuclear cluster of the formula [Fe(III)3(μ3-O)(H2O)3[Fe(II)(bppCOOH)(bppCOO)]6](13+), which is formed by a central Fe(III)3O core coordinated to six partially deprotonated [Fe(II)(bppCOOH)(bppCOO)](+) complexes. Raman spectroscopy studies on single crystals of 1 and 2 have been performed to elucidate the spin and oxidation states of iron in 2. These studies and magnetic characterization indicate that most of the iron(II) complexes of 2 remain in the low-spin (LS) state and present a gradual and incomplete spin crossover above 300 K. On the other hand, the Fe(III) trimer shows the expected antiferromagnetic behavior. From the structural point of view, 2 represents the first example in which bppCOO(-) acts as a bridging ligand, thus forming a polynuclear magnetic complex.

  12. Detection of the electronic structure of iron-(iii)-oxo oligomers forming in aqueous solutions.

    Science.gov (United States)

    Seidel, Robert; Kraffert, Katrin; Kabelitz, Anke; Pohl, Marvin N; Kraehnert, Ralph; Emmerling, Franziska; Winter, Bernd

    2017-12-13

    The nature of the small iron-oxo oligomers in iron-(iii) aqueous solutions has a determining effect on the chemical processes that govern the formation of nanoparticles in aqueous phase. Here we report on a liquid-jet photoelectron-spectroscopy experiment for the investigation of the electronic structure of the occurring iron-oxo oligomers in FeCl 3 aqueous solutions. The only iron species in the as-prepared 0.75 M solution are Fe 3+ monomers. Addition of NaOH initiates Fe 3+ hydrolysis which is followed by the formation of iron-oxo oligomers. At small enough NaOH concentrations, corresponding to approximately [OH]/[Fe] = 0.2-0.25 ratio, the iron oligomers can be stabilized for several hours without engaging in further aggregation. Here, we apply a combination of non-resonant as well as iron 2p and oxygen 1s resonant photoelectron spectroscopy from a liquid microjet to detect the electronic structure of the occurring species. Specifically, the oxygen 1s partial electron yield X-ray absorption (PEY-XA) spectra are found to exhibit a peak well below the onset of liquid water and OH - (aq) absorption. The iron 2p absorption gives rise to signal centered between the main absorption bands typical for aqueous Fe 3+ . Absorption bands in both PEY-XA spectra are found to correlate with an enhanced photoelectron peak near 20 eV binding energy, which demonstrates the sensitivity of resonant photoelectron (RPE) spectroscopy to mixing between iron and ligand orbitals. These various signals from the iron-oxo oligomers exhibit maximum intensity at [OH]/[Fe] = 0.25 ratio. For the same ratio, we observe changes in the pH as well as in complementary Raman spectra, which can be assigned to the transition from monomeric to oligomeric species. At approximately [OH]/[Fe] = 0.3 we begin to observe particles larger than 1 nm in radius, detected by small-angle X-ray scattering.

  13. Manganese associated nanoparticles agglomerate of iron(III) oxide: synthesis, characterization and arsenic(III) sorption behavior with mechanism.

    Science.gov (United States)

    Gupta, Kaushik; Maity, Arjun; Ghosh, Uday Chand

    2010-12-15

    Three samples of manganese associated hydrous iron(III) oxide (MNHFO), prepared by incinerating metal hydroxide precipitate at T (± 5)=90, 300 and 600°C, showed increase of crystalline nature in XRD patterns with decreasing As(III) removal percentages. TEM images showed the increase of crystallinity from sample-1 (MNHFO-1) to sample-3 (MNHFO-3). Dimensions (nm) of particles estimated were 5.0, 7.0 and 97.5. Optimization of pH indicated that MNHFO-1 could remove aqueous As(III) efficiently at pH between 3.0 and 7.0. Kinetic and equilibrium data of reactions under the experimental conditions described the pseudo-second order and the Langmuir isotherm equations very well, respectively. The Langmuir capacity (q(m)) estimated was 691.04 mmol kg(-1). The values of enthalpy, Gibb's free energy and entropy changes (ΔH(0)=+23.23 kJ mol(-1), ΔG(0)=-3.43 to -7.20 kJ mol(-1) at T=283-323K, ΔS(0)=+0.094 kJ mol(-1)K(-1)) suggested that the reaction was endothermic, spontaneous and took place with increasing entropy. The As(III) sorbed by MNHFO-1 underwent surface oxidation to As(V), and evidences appeared from the XPS and FTIR investigations. MNHFO-1 packed column (internal diameter: 1.0 cm, height: 3.7 cm) filtered 11.5 dm(3) groundwater (105 μg As dm(-3)) with reducing arsenic concentration to ≤ 10 μg dm(-3). Copyright © 2010 Elsevier B.V. All rights reserved.

  14. The sorption of inorganic arsenic on modified sepiolite: Effect of hydrated iron(III-oxide

    Directory of Open Access Journals (Sweden)

    Ilić Nikola I.

    2014-01-01

    Full Text Available The sorption of inorganic arsenic species, As(III and As(V, from water by sepiolite modified with hydrated iron(III oxide was investigated at 25 °C through batch studies. The influence of the initial pH value, the initial As concentrations, the contact time and types of water on the sorption capacity was investigated. Two types of water were used, deionized and groundwater. The maximal sorption capacity for As(III from deionized water was observed at initial and final pH value 7.0, while the bonding of As(V was observed to be almost pH independent for pH value in the range from 2.0 to 7.0, and the significant decrease in the sorption capacity was observed at pH values above 7.0. The sorption capacity at initial pH 7.0 was about 10 mg gˉ1 for As(III and 4.2 mg gˉ1 for As(V in deionized water. The capacity in groundwater was decreased by 40 % for As(III and by 20 % for As(V. The Langmuir model and pseudo-second order kinetic model revealed good agreement with the experimental results. The results show that Fe(III-modified sepiolite exhibits significant affinity for arsenic removal and it has a potential for the application in water purification processes. [Projekat Ministarstva nauke Republike Srbije, br. III 45019, III 43009 i TR 37010

  15. Mussel-Inspired Protein Nanoparticles Containing Iron(III)-DOPA Complexes for pH-Responsive Drug Delivery.

    Science.gov (United States)

    Kim, Bum Jin; Cheong, Hogyun; Hwang, Byeong Hee; Cha, Hyung Joon

    2015-06-15

    A novel bioinspired strategy for protein nanoparticle (NP) synthesis to achieve pH-responsive drug release exploits the pH-dependent changes in the coordination stoichiometry of iron(III)-3,4-dihydroxyphenylalanine (DOPA) complexes, which play a major cross-linking role in mussel byssal threads. Doxorubicin-loaded polymeric NPs that are based on Fe(III)-DOPA complexation were thus synthesized with a DOPA-modified recombinant mussel adhesive protein through a co-electrospraying process. The release of doxorubicin was found to be predominantly governed by a change in the structure of the Fe(III)-DOPA complexes induced by an acidic pH value. It was also demonstrated that the fabricated NPs exhibited effective cytotoxicity towards cancer cells through efficient cellular uptake and cytosolic release. Therefore, it is anticipated that Fe(III)-DOPA complexation can be successfully utilized as a new design principle for pH-responsive NPs for diverse controlled drug-delivery applications. © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  16. Bacteria attenuation by iron electrocoagulation governed by interactions between bacterial phosphate groups and Fe(III) precipitates

    NARCIS (Netherlands)

    Delaire, Caroline; van Genuchten, Case M.; Amrose, Susan E.; Gadgil, Ashok J.

    2016-01-01

    Iron electrocoagulation (Fe-EC) is a low-cost process in which Fe(II) generated from an Fe(0) anode reacts with dissolved O2 to form (1) Fe(III) precipitates with an affinity for bacterial cell walls and (2) bactericidal reactive oxidants. Previous work suggests that Fe-EC is a promising treatment

  17. The Efficiency of Strontium-90 Desorption Using Iron (III Solutions in the Decontamination Process of Radioactive Soils

    Directory of Open Access Journals (Sweden)

    Olga Vladimirovna Cheremisina

    2018-03-01

    Full Text Available The paper presents the investigation on the estimated efficiency of iron (III chloride solutions in the decontamination process of radioactive soils with 90 Sr, according to kinetic and thermodynamic characteristics of the desorption process. The specific 90 Sr radioactivity of soil samples was (3.9±0.3·104 Bq·g. The adsorption isotherms of Sr 2+ and Fe 3+ are described with the Langmuir equation. The values of Gibbs energy G0298 = -4.65 kJ·mol -1 and equilibrium ion exchange constant Keq = 6,5 confirm the hypothesis of strontium removal from soils with iron (III cations. The effectiveness of the method is substantiated by experimental and calculated results of this study samples of radioactive soils are deactivated in 90% after 9.5 hours, whereas the kinetic constant is 6.77·10 s -1 . The suggested method of soil cleanup with 0.2 M Fe 3+ solutions is optimal and complies with the environmental requirements.

  18. Investigation of iron(III) reduction and trace metal interferences in the determination of dissolved iron in seawater using flow injection with luminol chemiluminescence detection

    Energy Technology Data Exchange (ETDEWEB)

    Ussher, Simon J. [School of Earth, Ocean and Environmental Sciences (SEOES), University of Plymouth, Drake Circus, Plymouth PL4 8AA (United Kingdom); Milne, Angela [School of Earth, Ocean and Environmental Sciences (SEOES), University of Plymouth, Drake Circus, Plymouth PL4 8AA (United Kingdom); Department of Oceanography, Florida State University, Tallahassee, FL 32306-4320 (United States); Landing, William M. [Department of Oceanography, Florida State University, Tallahassee, FL 32306-4320 (United States); Attiq-ur-Rehman, Kakar [Department of Chemistry, University of Balochistan, Quetta (Pakistan); Seguret, Marie J.M.; Holland, Toby [School of Earth, Ocean and Environmental Sciences (SEOES), University of Plymouth, Drake Circus, Plymouth PL4 8AA (United Kingdom); Achterberg, Eric P. [National Oceanography Centre, University of Southampton, European Way, Southampton SO14 3ZH (United Kingdom); Nabi, Abdul [Department of Chemistry, University of Balochistan, Quetta (Pakistan); Worsfold, Paul J., E-mail: pworsfold@plymouth.ac.uk [School of Earth, Ocean and Environmental Sciences (SEOES), University of Plymouth, Drake Circus, Plymouth PL4 8AA (United Kingdom)

    2009-10-12

    A detailed investigation into the performance of two flow injection-chemiluminescence (FI-CL) manifolds (with and without a preconcentration column) for the determination of sub-nanomolar dissolved iron (Fe(II) + Fe(III)), following the reduction of Fe(III) by sulphite, in seawater is described. Kinetic experiments were conducted to examine the efficiency of reduction of inorganic Fe(III) with sulphite under different conditions and a rigorous study of the potential interference caused by other transition metals present in seawater was conducted. Using 100 {mu}M concentrations of sulphite a reduction time of 4 h was sufficient to quantitatively reduce Fe(III) in seawater. Under optimal conditions, cobalt(II) and vanadium(IV)/(III) were the major positive interferences and strategies for their removal are reported. Specifically, cobalt(II) was masked by the addition of dimethylglyoxime to the luminol solution and vanadium(IV) was removed by passing the sample through an 8-hydroxyquinoline column in a low pH carrier stream. Manganese(II) also interfered by suppression of the CL response but this was not significant at typical open ocean concentrations.

  19. Predictive modelling of Fe(III) precipitation in iron removal process for bioleaching circuits.

    Science.gov (United States)

    Nurmi, Pauliina; Ozkaya, Bestamin; Kaksonen, Anna H; Tuovinen, Olli H; Puhakka, Jaakko A

    2010-05-01

    In this study, the applicability of three modelling approaches was determined in an effort to describe complex relationships between process parameters and to predict the performance of an integrated process, which consisted of a fluidized bed bioreactor for Fe(3+) regeneration and a gravity settler for precipitative iron removal. Self-organizing maps were used to visually evaluate the associations between variables prior to the comparison of two different modelling methods, the multiple regression modelling and artificial neural network (ANN) modelling, for predicting Fe(III) precipitation. With the ANN model, an excellent match between the predicted and measured data was obtained (R (2) = 0.97). The best-fitting regression model also gave a good fit (R (2) = 0.87). This study demonstrates that ANNs and regression models are robust tools for predicting iron precipitation in the integrated process and can thus be used in the management of such systems.

  20. Adsorption characteristics of As(III) from aqueous solution on iron oxide coated cement (IOCC)

    International Nuclear Information System (INIS)

    Kundu, Sanghamitra; Gupta, A.K.

    2007-01-01

    Contamination of potable groundwater with arsenic is a serious health hazard, which calls for proper treatment before its use as drinking water. The objective of the present study is to assess the effectiveness of iron oxide coated cement (IOCC) for As(III) adsorption from aqueous solution. Batch studies were conducted to study As(III) adsorption onto IOCC at ambient temperature as a function of adsorbent dose, pH, contact time, initial arsenic concentration and temperature. Kinetics reveal that the uptake of As(III) ion is very rapid and most of fixation occurs within the first 20 min of contact. The pseudo-second order rate equation successfully described the adsorption kinetics. Langmuir, Freundlich, Redlich-Peterson (R-P), and Dubinin-Radushkevich (D-R) models were used to describe the adsorption isotherms at different initial As(III) concentrations and at 30 g l -1 fixed adsorbent dose. The maximum adsorption capacity of IOCC for As(III) determined from the Langmuir isotherm was 0.69 mg g -1 . The mean free energy of adsorption (E) calculated from the D-R isotherm was found to be 2.86 kJ mol -1 which suggests physisorption. Thermodynamic parameters indicate an exothermic nature of adsorption and a spontaneous and favourable process. The results suggest that IOCC can be suitably used for As(III) removal from aqueous solutions

  1. Mechanism of Oxidation of Ethane to Ethanol at Iron(IV)-Oxo Sites in Magnesium-Diluted Fe2(dobdc).

    Science.gov (United States)

    Verma, Pragya; Vogiatzis, Konstantinos D; Planas, Nora; Borycz, Joshua; Xiao, Dianne J; Long, Jeffrey R; Gagliardi, Laura; Truhlar, Donald G

    2015-05-06

    The catalytic properties of the metal-organic framework Fe2(dobdc), containing open Fe(II) sites, include hydroxylation of phenol by pure Fe2(dobdc) and hydroxylation of ethane by its magnesium-diluted analogue, Fe0.1Mg1.9(dobdc). In earlier work, the latter reaction was proposed to occur through a redox mechanism involving the generation of an iron(IV)-oxo species, which is an intermediate that is also observed or postulated (depending on the case) in some heme and nonheme enzymes and their model complexes. In the present work, we present a detailed mechanism by which the catalytic material, Fe0.1Mg1.9(dobdc), activates the strong C-H bonds of ethane. Kohn-Sham density functional and multireference wave function calculations have been performed to characterize the electronic structure of key species. We show that the catalytic nonheme-Fe hydroxylation of the strong C-H bond of ethane proceeds by a quintet single-state σ-attack pathway after the formation of highly reactive iron-oxo intermediate. The mechanistic pathway involves three key transition states, with the highest activation barrier for the transfer of oxygen from N2O to the Fe(II) center. The uncatalyzed reaction, where nitrous oxide directly oxidizes ethane to ethanol is found to have an activation barrier of 280 kJ/mol, in contrast to 82 kJ/mol for the slowest step in the iron(IV)-oxo catalytic mechanism. The energetics of the C-H bond activation steps of ethane and methane are also compared. Dehydrogenation and dissociation pathways that can compete with the formation of ethanol were shown to involve higher barriers than the hydroxylation pathway.

  2. Comparison of sodium, potassium, calcium, magnesium, zinc, copper and iron concentrations of elements in 24-h urine and spot urine in hypertensive patients with healthy renal function.

    Science.gov (United States)

    Zhang, Tianjing; Chang, Xiaoyu; Liu, Wanlu; Li, Xiaoxia; Wang, Faxuan; Huang, Liping; Liao, Sha; Liu, Xiuying; Zhang, Yuhong; Zhao, Yi

    2017-12-01

    Sodium, potassium, calcium, magnesium, zinc, copper and iron are associated with the sequela of hypertension. The most reliable method for testing those elements is by collecting 24-h urine samples. However, this is cumbersome and collection of spot urine is more convenient in some circumstance. The aim of this study was to compare the concentrations of different elements in 24-h urine and spot urine. Data was collected from a sub-study of China Salt Substitute and Stroke Study. 240 participants were recruited randomly from 12 villages in two counties in Ningxia, China. Both spot and 24-h urine specimens were collected from each patient. Routine urine test was conducted, and concentration of elements was measured using microwave digestion and Inductively Coupled Plasma-Optical Emission Spectrometry. Partial correlation analysis and Spearman correlation analysis were used to investigate the concentration of different elements and the relationship between 24- h urine and spot urine. A partial correlation in sodium, potassium, calcium, magnesium and iron was found between paired 24-h urine and spot urine samples except copper and zinc: 0.430, 0.426, 0.550, 0.221 and 0.191 respectively. Spot urine can replace 24-h urine for estimating some of the elements in hypertensive patients with normal renal function. Copyright © 2017 Elsevier GmbH. All rights reserved.

  3. Impact of two iron(III) chelators on the iron, cadmium, lead and nickel accumulation in poplar grown under heavy metal stress in hydroponics.

    Science.gov (United States)

    Mihucz, Victor G; Csog, Árpád; Fodor, Ferenc; Tatár, Enikő; Szoboszlai, Norbert; Silaghi-Dumitrescu, Luminiţa; Záray, Gyula

    2012-04-15

    Poplar (Populus jacquemontiana var. glauca cv. Kopeczkii) was grown in hydroponics containing 10 μM Cd(II), Ni(II) or Pb(II), and Fe as Fe(III) EDTA or Fe(III) citrate in identical concentrations. The present study was designed to compare the accumulation and distribution of Fe, Cd, Ni and Pb within the different plant compartments. Generally, Fe and heavy-metal accumulation were higher by factor 2-7 and 1.6-3.3, respectively, when Fe(III) citrate was used. Iron transport towards the shoot depended on the Fe(III) chelate and, generally, on the heavy metal used. Lead was accumulated only in the root. The amounts of Fe and heavy metals accumulated by poplar were very similar to those of cucumber grown in an identical way, indicating strong Fe uptake regulation of these two Strategy I plants: a cultivar and a woody plant. The Strategy I Fe uptake mechanism (i.e. reducing Fe(III) followed by Fe(II) uptake), together with the Fe(III) chelate form in the nutrient solution had significant effects on Fe and heavy metal uptake. Poplar appears to show phytoremediation potential for Cd and Ni, as their transport towards the shoot was characterized by 51-54% and 26-48% depending on the Fe(III) supply in the nutrient solution. Copyright © 2012 Elsevier GmbH. All rights reserved.

  4. Moessbauer spectroscopic studies of alkylammonium iron(III) complexes

    International Nuclear Information System (INIS)

    Katada, M.; Kozawa, S.; Nakajima, Y.

    2006-01-01

    Alkylammonium iron(III) complexes, [(n-C n H 2n+1 )mNH 4-m ] 3 [Fe(CN) 6 ] were prepared and studied by Moessbauer spectroscopy, XRD, and DSC. In the complexes with m=2, the temperature dependences of the area intensity of Moessbauer are correlated to the motion of alkyl chains. The temperature dependence of the complex with n=4 was linear and smaller than that of other complexes. Especially in the complex with n=6, the deviation from the linear was the largest in the complexes observed. This result is attributed to the structural difference of the complex. The complexes with n≥8 consist of two-dimensional layer structure. The temperature dependence of the area intensity was similar to each other. This means that the motion of alkyl chain in these complexes are almost the same. The values of quadrupole splitting for the complexes were larger those that of the complexes (m=1). This indicates that the form of [Fe(CN) 6 ] 3- ion is affected by the differences of the number of alkyl groups. (author)

  5. Investigation of iron(III) complex with crown-porphyrin

    Energy Technology Data Exchange (ETDEWEB)

    Pankratov, Denis A., E-mail: pankratov@radio.chem.msu.ru; Dolzhenko, Vladimir D. [Lomonosov Moscow State University (Russian Federation); Stukan, Reonald A. [Semenov Institute of Chemical Physics, Russian Academy of Sciences (Russian Federation); Al Ansari, Yana F.; Savinkina, Elena V. [Lomonosov Moscow State Academy of Fine Chemical Technology (Russian Federation); Kiselev, Yury M. [Lomonosov Moscow State University (Russian Federation)

    2013-08-15

    Iron complex of 5-(4-(((4 Prime -hydroxy-benzo-15-crown-5)-5 Prime -yl)diazo)phenyl)-10,15, 20-triphenylporphyrin was investigated by {sup 57}Fe Moessbauer spectroscopy and EPR. Two Fe sites were identified; they give two differing signals, doublet and wide absorption in a large velocity interval. EPR spectra of solutions of the complex in chloroform at room temperature also show two signals with g = 2.064, A{sub Fe} = 0.032 cm{sup - 1}; g = 2.015, A{sub Fe} = 0.0034 cm{sup - 1}. The doublet asymmetry is studied vs. temperature and normal angle to the sample plane and gamma-beam. The isomer shift {delta} in the doublet varies from 0.25 to 0.41 mm/s in the 360-5 K temperature range, whereas quadruple splitting value is constant, {Delta} {approx} 0.65 mm/s. The relax absorption may be described as a wide singlet ({delta} = 0.30- 0.44 mm/s and {Gamma} = 2.83-3.38 mm/s); its relative area strongly depends on temperature. According to {delta}, both signals are assigned to Fe(III)

  6. Iron(III Fluorinated Porphyrins: Greener Chemistry from Synthesis to Oxidative Catalysis Reactions

    Directory of Open Access Journals (Sweden)

    Susana L. H. Rebelo

    2016-04-01

    Full Text Available Iron(III fluorinated porphyrins play a central role in the biomimetics of heme enzymes and enable cleaner routes to the oxidation of organic compounds. The present work reports significant improvements in the eco-compatibility of the synthesis of 5,10,15,20-tetrakis-pentafluorophenylporphyrin (H2TPFPP and the corresponding iron complex [Fe(TPFPPCl], and the use of [Fe(TPFPPCl] as an oxidation catalyst in green conditions. The preparations of H2TPFPP and [Fe(TPFPPCl] typically use toxic solvents and can be made significantly greener and simpler using microwave heating and optimization of the reaction conditions. In the optimized procedure it was possible to eliminate nitrobenzene from the porphyrin synthesis and replace DMF by acetonitrile in the metalation reaction, concomitant with a significant reduction of reaction time and simplification of the purification procedure. The Fe(IIIporphyrin is then tested as catalyst in the selective oxidation of aromatics at room temperature using a green oxidant (hydrogen peroxide and green solvent (ethanol. Efficient epoxidation of indene and selective oxidation of 3,5-dimethylphenol and naphthalene to the corresponding quinones is observed.

  7. A Novel Sensor for Monitoring of Iron(III) Ions Based on Porphyrins

    Science.gov (United States)

    Vlascici, Dana; Fagadar-Cosma, Eugenia; Popa, Iuliana; Chiriac, Vlad; Gil-Agusti, Mayte

    2012-01-01

    Three A3B porphyrins with mixed carboxy-, phenoxy-, pyridyl-, and dimethoxy-substituent functionalization on the meso-phenyl groups were obtained by multicomponent synthesis, fully characterized and used as ionophores for preparing PVC-based membrane sensors selective to iron(III). The membranes have an ionophore:PVC:plasticizer composition ratio of 1:33:66. Sodium tetraphenylborate was used as additive (20 mol% relative to ionophore). The performance characteristics (linear concentration range, slope and selectivity) of the sensors were investigated. The best results were obtained for the membrane based on 5-(4-carboxyphenyl)-10,15,20-tris(4-phenoxyphenyl)-porphyrin plasticized with bis(2-ethylhexyl)sebacate, in a linear range from 1 × 10−7–1 × 10−1 M with a slope of 21.6 mV/decade. The electrode showed high selectivity with respect to alkaline and heavy metal ions and a response time of 20 s. The influence of pH on the sensor response was studied. The sensor was used for a period of six weeks and the utility has been tested for the quantitative determination of Fe(III) in recovered solutions from spent lithium ion batteries and for the quantitative determination of Fe(III) in tap water samples. PMID:22969395

  8. A novel sensor for monitoring of iron(III) ions based on porphyrins.

    Science.gov (United States)

    Vlascici, Dana; Fagadar-Cosma, Eugenia; Popa, Iuliana; Chiriac, Vlad; Gil-Agusti, Mayte

    2012-01-01

    Three A(3)B porphyrins with mixed carboxy-, phenoxy-, pyridyl-, and dimethoxy-substituent functionalization on the meso-phenyl groups were obtained by multicomponent synthesis, fully characterized and used as ionophores for preparing PVC-based membrane sensors selective to iron(III). The membranes have an ionophore:PVC:plasticizer composition ratio of 1:33:66. Sodium tetraphenylborate was used as additive (20 mol% relative to ionophore). The performance characteristics (linear concentration range, slope and selectivity) of the sensors were investigated. The best results were obtained for the membrane based on 5-(4-carboxyphenyl)-10,15,20-tris(4-phenoxyphenyl)-porphyrin plasticized with bis(2-ethylhexyl)sebacate, in a linear range from 1 × 10(-7)-1 × 10(-1) M with a slope of 21.6 mV/decade. The electrode showed high selectivity with respect to alkaline and heavy metal ions and a response time of 20 s. The influence of pH on the sensor response was studied. The sensor was used for a period of six weeks and the utility has been tested for the quantitative determination of Fe(III) in recovered solutions from spent lithium ion batteries and for the quantitative determination of Fe(III) in tap water samples.

  9. Obstruction of photoinduced electron transfer from excited porphyrin to graphene oxide: a fluorescence turn-on sensing platform for iron (III ions.

    Directory of Open Access Journals (Sweden)

    Zhong De Liu

    Full Text Available A comparative research of the assembly of different porphyrin molecules on graphene oxide (GO and reduced graphene oxide (RGO was carried out, respectively. Despite the cationic porphyrin molecules can be assembled onto the surfaces of graphene sheets, including GO and RGO, to form complexes through electrostatic and π-π stacking interactions, the more obvious fluorescence quenching and the larger red-shift of the Soret band of porphyrin molecule in RGO-bound states were observed than those in GO-bound states, due to the difference of molecular flattening in degree. Further, more interesting finding was that the complexes formed between cationic porphyrin and GO, rather than RGO sheets, can facilitate the incorporation of iron (III ions into the porphyrin moieties, due to the presence of the oxygen-contained groups at the basal plane of GO sheets served as auxiliary coordination units, which can high-efficiently obstruct the electron transfer from excited porphyrin to GO sheets and result in the occurrence of fluorescence restoration. Thus, a fluorescence sensing platform has been developed for iron (III ions detection in this contribution by using the porphyrin/GO nanohybrids as an optical probe, and our present one exhibited rapid and sensitive responses and high selectivity toward iron (III ions.

  10. Iron(III) diethylenetriaminepentaacetic acid complex on polyallylamine functionalized multiwalled carbon nanotubes: immobilization, direct electrochemistry and electrocatalysis.

    Science.gov (United States)

    Liu, Hailing; Cui, Yanyun; Li, Pan; Zhou, Yiming; Zhu, Xiaoshu; Tang, Yawen; Chen, Yu; Lu, Tianhong

    2013-05-07

    A nonenzymatic iron(III) diethylenetriaminepentaacetic acid (Fe(III)-DETPA) complex based amperometric sensor for the analytical determination of hydrogen peroxide was developed. By combining the electrostatic interaction between the Fe(III)-DETPA complex and polyallylamine (PAH) functionalized multiwalled carbon nanotubes (MWCNTs) as well as the ionotropic crosslinking interaction between PAH and ethylenediamine-tetramethylene phosphonic acid (EDTMP), the electroactive Fe(III)-DETPA complex was successfully incorporated within the MWCNT matrix, and firmly immobilized on the Au substrate electrode. The fabricated electrochemical sensor was characterized with scanning electron microscopy (SEM), transmission electron microscopy (TEM) and electrochemical methods. The influences of solution pH and ionic strength on the electrochemical sensor were investigated. The prepared electrochemical sensor had a fast response to hydrogen peroxide (<3 s) and an excellent linear range of concentration from 1.25 × 10(-8) to 4.75 × 10(-3) M with a detection limit of 6.3 × 10(-9) M under the optimum conditions.

  11. Coumarin-Based Fluorescent Probes for Dual Recognition of Copper(II and Iron(III Ions and Their Application in Bio-Imaging

    Directory of Open Access Journals (Sweden)

    Olimpo García-Beltrán

    2014-01-01

    Full Text Available Two new coumarin-based “turn-off” fluorescent probes, (E-3-((3,4-dihydroxybenzylideneamino-7-hydroxy-2H-chromen-2-one (BS1 and (E-3-((2,4-dihydroxybenzylideneamino-7-hydroxy-2H-chromen-2-one (BS2, were synthesized and their detection of copper(II and iron(III ions was studied. Results show that both compounds are highly selective for Cu2+ and Fe3+ ions over other metal ions. However, BS2 is detected directly, while detection of BS1 involves a hydrolysis reaction to regenerate 3-amino-7-hydroxycoumarin (3 and 3,4-dihydroxybenzaldehyde, of which 3 is able to react with copper(II or iron(III ions. The interaction between the tested compounds and copper or iron ions is associated with a large fluorescence decrease, showing detection limits of ca. 10−5 M. Preliminary studies employing epifluorescence microscopy demonstrate that Cu2+ and Fe3+ ions can be imaged in human neuroblastoma SH-SY5Y cells treated with the tested probes.

  12. Influence of reaction chamber shape on cast-iron spheroidization process in-mold

    Directory of Open Access Journals (Sweden)

    S. Pietrowski

    2010-01-01

    Full Text Available This paper presents a results concerning the influence of reaction chamber shape on cast – iron spheroidization process in form. The volume of the tested reaction chambers was about 118000mm3. Reaction chambers in the shape of: rectangular, cylinder and spherical cap were examined. It has been shown that the best graphite spheroidizing process was provided by spherical cap chamber shape. The reaction of cast – iron with magnesium in reaction chamber depends on the flow of cast – iron in the chamber. In rectangular and cylinder shape chambers proceed the impact of diphase stream on flat bottom wall. It causes the creation on its surface film, called: cast – iron “film”, where single grains of magnesium master alloy exist. The largest part of master alloy is drifted by liquid cast – iron to the top and only there graphite spheroidization process proceed. In the spherical cap shape reaction chamber, as a result of rotation movement of liquid cast – iron throughout its volume, graphite spheroidization process proceed. Apart from the reaction chamber shape, applying of mixing chamber ensure full cast – iron spheroidization process.

  13. Effect of Melting Techniques on Ductile Iron castings Properties

    Directory of Open Access Journals (Sweden)

    Bockus, S.

    2006-01-01

    Full Text Available The study was designed to investigate the effects of the charge, melting conditions, nodularizing and inoculation on the ductile iron castings properties. Results showed that the temperature and holding time of the melt in an induction furnace and the intensity of spheroidizing effect on the carbon and residual magnesium contents in the ductile iron castings. The same grade of ductile iron may be obtained using different chemical compositions. The castings of ductile iron will be ferritic as-cast only when large amount of pig iron in the charge and in addition some-steps inoculating treatment are used.

  14. The role of order-disorder transitions in the quest for molecular multiferroics: structural and magnetic neutron studies of a mixed valence iron(II)-iron(III) formate framework.

    Science.gov (United States)

    Cañadillas-Delgado, Laura; Fabelo, Oscar; Rodríguez-Velamazán, J Alberto; Lemée-Cailleau, Marie-Hélène; Mason, Sax A; Pardo, Emilio; Lloret, Francesc; Zhao, Jiong-Peng; Bu, Xian-He; Simonet, Virginie; Colin, Claire V; Rodríguez-Carvajal, Juan

    2012-12-05

    Neutron diffraction studies have been carried out to shed light on the unprecedented order-disorder phase transition (ca. 155 K) observed in the mixed-valence iron(II)-iron(III) formate framework compound [NH(2)(CH(3))(2)](n)[Fe(III)Fe(II)(HCOO)(6)](n). The crystal structure at 220 K was first determined from Laue diffraction data, then a second refinement at 175 K and the crystal structure determination in the low temperature phase at 45 K were done with data from the monochromatic high resolution single crystal diffractometer D19. The 45 K nuclear structure reveals that the phase transition is associated with the order-disorder of the dimethylammonium counterion that is weakly anchored in the cavities of the [Fe(III)Fe(II)(HCOO)(6)](n) framework. In the low-temperature phase, a change in space group from P31c to R3c occurs, involving a tripling of the c-axis due to the ordering of the dimethylammonium counterion. The occurrence of this nuclear phase transition is associated with an electric transition, from paraelectric to antiferroelectric. A combination of powder and single crystal neutron diffraction measurements below the magnetic order transition (ca. 37 K) has been used to determine unequivocally the magnetic structure of this Néel N-Type ferrimagnet, proving that the ferrimagnetic behavior is due to a noncompensation of the different Fe(II) and Fe(III) magnetic moments.

  15. Influence of weak magnetic field and tartrate on the oxidation and sequestration of Sb(III) by zerovalent iron: Batch and semi-continuous flow study.

    Science.gov (United States)

    Fan, Peng; Sun, Yuankui; Qiao, Junlian; Lo, Irene M C; Guan, Xiaohong

    2018-02-05

    The influence of weak magnetic field (WMF) and tartrate on the oxidation and sequestration of Sb(III) by zerovalent iron (ZVI) was investigated with batch and semi-continuous reactors. The species analysis of antinomy in aqueous solution and solid precipitates implied that both Sb(III) adsorption preceding its conversion to Sb(V) in solid phase and Sb(III) oxidation to Sb(V) preceding its adsorption in aqueous phase occurred in the process of Sb(III) sequestration by ZVI. The application of WMF greatly increased the rate constants of Sb tot (total Sb) and Sb(III) disappearance during Sb(III)-tartrate and uncomplexed-Sb(III) sequestration by ZVI. The enhancing effect of WMF was primarily due to the accelerated ZVI corrosion in the presence of WMF, as evidenced by the influence of WMF on the change of solution and solid properties with reaction. However, tartrate greatly retarded Sb removal by ZVI. It was because tartrate inhibited ZVI corrosion, competed with Sb(III) and Sb(V) for the active surface sites, increased the negative surface charge of the generated iron (hydr)oxides due to its adsorption, and formed soluble complexes with Fe(III). The positive effect of WMF on Sb(III)-tartrate and uncomplexed-Sb(III) removal by ZVI was also verified with a magnetic semi-continuous reactor. Copyright © 2017 Elsevier B.V. All rights reserved.

  16. Oxide films on magnesium and magnesium alloys

    International Nuclear Information System (INIS)

    Shih, T.-S.; Liu, J.-B.; Wei, P.-S.

    2007-01-01

    Magnesium alloys are very active and readily ignite during heating and melting. In this study, we discuss the combustion of magnesium and magnesium alloys and propose prospective anti-ignition mechanisms for magnesium alloys during the heating process. When magnesium and magnesium alloys were heated in air, the sample surfaces produced layers of thermally formed oxides. These thermally formed oxides played an important role in affecting the combustion of the magnesium and magnesium alloys. When magnesium was heated in air, brucite that formed in the early stage was then transformed into periclase by dehydroxylation. By extending the heating time, more periclase formed and increased in thickness which was associated with microcracks formation. When magnesium was heated in a protective atmosphere (SF 6 ), a film of MgF 2 formed at the interface between the oxide layer and the Mg substrate. This film generated an anti-ignition behavior which protected the substrate from oxidation. When solution-treated AZ80 alloy was heated, spinel developed at the interface between the thermally formed oxide layer and the Mg substrate, improving the anti-ignition properties of the substrate. In addition, we also explain the effects of beryllium in an AZB91 alloy on the ignition-proofing behavior

  17. Manganese-incorporated iron(III) oxide-graphene magnetic nanocomposite: synthesis, characterization, and application for the arsenic(III)-sorption from aqueous solution

    Energy Technology Data Exchange (ETDEWEB)

    Nandi, Debabrata; Gupta, Kaushik; Ghosh, Arup Kumar [Presidency University, Department of Chemistry and Biochemistry (India); De, Amitabha [Saha Institute of Nuclear Physics, Chemical Science Division (India); Banerjee, Sangam [Saha Institute of Nuclear Physics, Surface Physics Division (India); Ghosh, Uday Chand, E-mail: ucghosh@yahoo.co.in [Presidency University, Department of Chemistry and Biochemistry (India)

    2012-12-15

    High specific surface area of graphene (GR) has gained special scientific attention in developing magnetic GR nanocomposite aiming to apply for the remediation of diverse environmental problems like point-of-use water purification and simultaneous separation of contaminants applying low external magnetic field (<1.0 T) from ground water. Fabrication of magnetic manganese-incorporated iron(III) oxide (Mn{sub x}{sup 2+}Fe{sub 2-x}{sup 3+}O{sub 4}{sup 2-}) (IMBO)-GR nanocomposite is reported by exfoliating the GR layers. Latest microscopic, spectroscopic, powder X-ray diffraction, BET surface area, and superconducting quantum interference device characterizations showed that the material is a magnetic nanocomposite with high specific surface area (280 m{sup 2} g{sup -1}) and pore volume (0.3362 cm{sup 3} g{sup -1}). Use of this composite for the immobilization of carcinogenic As(III) from water at 300 K and pH {approx}7.0 showed that the nanocomposite has higher binding efficiency with As(III) than the IMBO owing to its high specific surface area. The composite showed almost complete (>99.9 %) As(III) removal ({<=}10 {mu}g L{sup -1}) from water. External magnetic field of 0.3 T efficiently separated the water dispersed composite (0.01 g/10 mL) at room temperature (300 K). Thus, this composite is a promising material which can be used effectively as a potent As(III) immobilizer from the contaminated groundwater (>10 {mu}g L{sup -1}) to improve drinking water quality.

  18. Kinetics and mechanism of reduction of iron(iii) kojic acid complex by hydroquinone and l-cysteine

    International Nuclear Information System (INIS)

    Hussain, Z.; Perviaz, M.; Kazmi, S.A.; Johnson, A.S.; Offiong, O.E.

    2014-01-01

    The effect of pH on the kinetics of reduction of iron(III) kojic acid complex by hydroquinone (H/sub 2/Q) and L-cysteine (L-Cys) was studied in the pH range of 2.34 - 4.03 for H/sub 2/Q and 3.04 - 5.5 for L-cysteine at ionic strength of 0.5 M and at 35 degree C. The pseudo-first order rate constants for the reduction of Fe(KA)3 by L-cysteine and hydroquinone increase linearly with increasing reductant concentration, indicating first-order kinetics in reductant concentration. However, whereas the rate of reduction by H2Q increases with increasing pH, an opposite trend was observed in the case of reduction by L-cysteine. Plausible rate laws and mechanisms have been proposed in line with these observations. Activation parameters (delta H no and delta S no) were evaluated for the reduction of iron (III) kojic acid complex by cysteine and the values obtained are 35.25 kJmol-1, -141.4 JK-1mol-1 and 28.14 kJmol-1 , 161.2 JK-1mol-1 for pH 4.5 and 3.52 respectively. (author)

  19. Aquachloridobis[5-(2-pyridyl-1H-tetrazolato-κN1]iron(III

    Directory of Open Access Journals (Sweden)

    Bo Wang

    2009-08-01

    Full Text Available The title compound, [Fe(C6H4N52Cl(H2O], was synthesized by hydrothermal reaction of FeCl3 with 2-(1H-tetrazol-5-ylpyridine. The iron(III metal centre exhibits a distorted octahedral coordination geometry provided by four N atoms from two bidentate organic ligands, one water O atom and one chloride anion. The pyridine and tetrazole rings are nearly coplanar [dihedral angles = 4.32 (15 and 5.04 (14°]. In the crystal structure, intermolecular O—H...N hydrogen bonds link the complex molecules into a two-dimensional network parallel to (100.

  20. Anemia and iron, zinc, copper and magnesium deficiency in Mexican adolescents: National Health and Nutrition Survey 2006 Anemia y deficiencia de hierro, zinc, cobre y magnesio en adolescentes mexicanos: resultados de la ENSANUT 2006

    Directory of Open Access Journals (Sweden)

    Vanessa De la Cruz-Góngora

    2012-04-01

    Full Text Available OBJETIVE: To describe the frequency of anemia and iron, zinc, copper and magnesium deficiencies among Mexican adolescents in the probabilistic survey ENSANUT 2006. MATERIALS AND METHODS: The sample included 2447 adolescents aged 12 to 19 y. Capillary hemoglobin and venous blood samples were collected to measure the concentrations of ferritin, sTFR, CRP, zinc, iron, copper and magnesium. Logistic regression models were constructed to assess the risk for mineral deficiencies. RESULTS: The overall prevalence of anemia was 11.8 and 4.6%, body iron deficiency 18.2 and 7.9% for females and males, respectively. Overall prevalence of tissue iron deficiency was 6.9%, low serum copper were14.4 and 12.25%; zinc 28.4 and 24.5%, magnesium 40 and 35.3%; for females and males, respectively. CONCLUSIONS: There is a high prevalence of mineral deficiency in Mexican adolescents; females were more prone to have more mineral deficiencies. Nutritional interventions are necessaries in order to reduce and control them.OBJETIVO: Describir la prevalencia de anemia y deficiencia de hierro, zinc, cobre y magnesio en adolescentes mexicanos en la encuesta probabilística ENSANUT 2006. MATERIAL Y MÉTODOS: La muestra incluyó 2447 adolescentes de 12 a 19 años de edad. Se tomó hemoglobina capilar y muestras de sangre venosa para medir las concentraciones séricas de ferritina, sTFR, CRP, zinc, hierro, cobre y magnesio. Se construyeron modelos de regresión logística para evaluar el riesgo de deficiencia de minerales. RESULTADOS: La prevalencia de anemia fue de 11.8% en mujeres y 4.6% en hombres. Las deficiencias de hierro fueron de 18.2 y 7.9% La deficiencia tisular de hierro fue 6.9%; la baja concentración de cobre fue de 14.4 y 12.25% la de zinc de 28.4 y 24.5%, la de magnesio fue 40 y 35.3% en mujeres y hombres, respectivamente. CONCLUSIONES: Existe una alta prevalencia de deficiencia de minerales en los adolescentes; las mujeres tuvieron mayor riesgo. Son necesarias

  1. Adsorption studies of iron(III) on chitin

    Indian Academy of Sciences (India)

    Unknown

    of particle size and dosage of the adsorbant, contact time, initial concentration of the adsorbate and tem- perature were experimentally ... Adsorption; chitin; variable parameters; fraction of adsorption; temperature effect. 1. Introduction. Iron is one of the ... about the presence of iron in drinking water is its ob- jectionable taste.

  2. Zoning and contamination rate of magnesium and heavy metals of iron, zinc and copper in the north and northwest aquifer of Khoy (Zourabad based on GIS and determining the contaminated source

    Directory of Open Access Journals (Sweden)

    Fariborz Khodadadi

    2015-04-01

    Full Text Available Introduction Heavy metals are the most toxic pollutants in aquatic ecosystems. This contamination can result from the release of heavy metal elements during alteration and weathering of ultramafic and mafic rocks (ophiolite zones. Among the important metals and pollutants in the ophiolite; chromium, cobalt, nickel, iron, magnesium, manganese, zinc and copper could be noted. Basically, a mass of serpentine consists of serpentine, amphibole, talc, chlorite, magnetite, and the remainder of olivine, pyroxene and spinel (Kil et al., 2010. In such areas, the prevailing cold climate, during the serpentinization, chloritization and epidotiization, the activity of the solvent, such as chloride, fluoride, carbonates, sulfide, sulfosalt would be able to import the elements such as magnesium and iron, copper and zinc into the soil and groundwater. The study area is located in northwestern Iran. This area is located in the northwest of the city of Khoy. Because of the proximity to the north and northwest Khoy plains with ophiolite rocks, the soil of this region could possibly show the potential of contamination with heavy metals. Due to the toxicity and disease of unauthorized grades of these elements in groundwater in the study area, this study is focused on the more contaminated groundwater of the areas. Materials and methods In this study, over a period of 5 days, sampling from 42 water sources, including fountains, aqueducts, wells, piezometers and wells in operation, was performed. The container was washed with acid and then rinsed 3 times with the water sample. The pH and temperature of the water in the samples was measured in the field. Then to each of the samples was taken from 2 to 5 ml of concentrated nitric acid (This causes that the metal elements would not adsorbed or precipitated by these particles and pH of the samples was measured with litmus paper to reach level 2. This was done to ensure the consolidation of the water samples. Analysis of

  3. Transformation of Nitrate and Toluene in Groundwater by Sulfur Modified Iron(SMI-III)

    Science.gov (United States)

    Lee, W.; Park, S.; Lim, J.; Hong, U.; Kwon, S.; Kim, Y.

    2009-12-01

    In Korea, nitrate and benzene, toluene, ethylbenzene, and xylene isomers (BTEX) are frequently detected together as ground water contaminants. Therefore, a system simultaneously treating both nitrate (inorganic compound) and BTEX (organic compounds) is required to utilize groundwater as a water resource. In this study, we investigated the efficiency of Sulfur Modified Iron (SMI-III) in treating both nitrate and BTEX contaminated groundwater. Based on XRD (X-Ray Diffraction) analysis, the SMI-III is mainly composed of Fe3O4, S, and Fe. A series of column tests were conducted at three different empty bed contact times (EBCTs) for each compound. During the experiments, removal efficiency for both nitrate and toluene were linearly correlated with EBCT, suggesting that SMI-III have an ability to transform both nitrate and toluene. The concentration of SO42- and oxidation/reduction potential (ORP) were also measured. After exposed to nitrate contaminated groundwater, the composition of SMI-III was changed to Fe2O3, Fe3O4, Fe, and Fe0.95S1.05. The trends of effluent sulfate concentrations were inversely correlated with effluent nitrate concentrations, while the trends of ORP values, having the minimum values of -480 mV, were highly correlated with effluent nitrate concentrations. XRD analysis before and after exposed to nitrate contaminated groundwater, sulfate production, and nitrite detection as a reductive transformation by-product of nitrate suggest that nitrate is reductively transformed by SMI-III. Interestingly, in the toluene experiments, the trends of ORP values were inversely correlated with effluent toluene concentrations, suggesting that probably degrade through oxidation reaction. Consequently, nitrate and toluene probably degrade through reduction and oxidation reaction, respectively and SMI-III could serve as both electron donor and acceptor.

  4. Serum magnesium is associated with the risk of dementia.

    Science.gov (United States)

    Kieboom, Brenda C T; Licher, Silvan; Wolters, Frank J; Ikram, M Kamran; Hoorn, Ewout J; Zietse, Robert; Stricker, Bruno H; Ikram, M Arfan

    2017-10-17

    To determine if serum magnesium levels are associated with the risk of all-cause dementia and Alzheimer disease. Within the prospective population-based Rotterdam Study, we measured serum magnesium levels in 9,569 participants, free from dementia at baseline (1997-2008). Participants were subsequently followed up for incident dementia, determined according to the DSM-III-R criteria, until January 1, 2015. We used Cox proportional hazard regression models to associate quintiles of serum magnesium with incident all-cause dementia. We used the third quintile as a reference group and adjusted for age, sex, Rotterdam Study cohort, educational level, cardiovascular risk factors, kidney function, comorbidities, other electrolytes, and diuretic use. Our study population had a mean age of 64.9 years and 56.6% were women. During a median follow-up of 7.8 years, 823 participants were diagnosed with all-cause dementia. Both low serum magnesium levels (≤0.79 mmol/L) and high serum magnesium levels (≥0.90 mmol/L) were associated with an increased risk of dementia (hazard ratio [HR] 1.32, 95% confidence interval [CI] 1.02-1.69, and HR 1.30, 95% CI 1.02-1.67, respectively). Both low and high serum magnesium levels are associated with an increased risk of all-cause dementia. Our results warrant replication in other population-based studies. © 2017 American Academy of Neurology.

  5. Avaliação da eficácia do uso intravenoso de sacarato de hidróxido de ferro III no tratamento de pacientes adultos com anemia ferropriva Evaluation of the efficacy of intravenous iron III-hydroxide saccharate for treating adult patients with iron deficiency anemia

    Directory of Open Access Journals (Sweden)

    Rodolfo D. Cançado

    2007-06-01

    Full Text Available O objetivo desse estudo foi avaliar a eficácia do uso intravenoso de sacarato de hidróxido de ferro III no tratamento de pacientes adultos com anemia ferropriva. No período de janeiro de 2003 a dezembro de 2005, estudamos cinqüenta pacientes com anemia ferropriva que apresentaram intolerância e/ou resposta inadequada ao tratamento com ferro por via oral e/ou valor de hemoglobina inferior a 7,0 g/dL. Os principais exames laboratoriais realizados foram: hemograma completo, contagem de reticulócitos, ferro sérico, capacidade total de ligação de ferro e ferritina sérica. Os pacientes receberam uma dose semanal de 200 mg de sacarato de hidróxido de ferro III diluído em 250 mL de soro fisiológico a 0,9%, administrado por via intravenosa em trinta minutos. O tratamento foi realizado até a obtenção do valor de hemoglobina igual ou maior que 12,0 g/dL para mulheres e 13,0 g/dL para homens, ou até a administração da dose total de ferro parenteral recomendada para cada paciente. A idade mediana dos cinqüenta pacientes estudados foi de 45 anos, variando entre 28 e 76 anos; quarenta (80,0% eram do sexo feminino. A causa mais comum de anemia ferropriva no sexo feminino foi sangramento uterino anormal observado em 25/40 pacientes (62,5% e, no sexo masculino, gastrectomia parcial em 7/10 (70,0%. Vinte e quatro (48,0% pacientes foram incluídos nesse estudo por falta de resposta à terapia com ferro oral, 22 (44,0% por intolerância ao ferro oral e quatro (8,0% por hemoglobina The objective of this study was to evaluate the efficacy of intravenous iron III-hydroxide saccharate to treat adult patients with iron deficiency anemia. Between January 2003 and December 2005 we studied 50 patients with iron deficiency anemia who presented intolerance or inadequate response to oral iron therapy, or hemoglobin level < 7 g/dL. The main laboratory tests performed were: complete blood cell count, reticulocyte count, serum iron, total iron-binding capacity

  6. Nitrogen loss from anaerobic ammonium oxidation coupled to Iron(III) reduction in a riparian zone.

    Science.gov (United States)

    Ding, Bangjing; Li, Zhengkui; Qin, Yunbin

    2017-12-01

    Anaerobic ammonium oxidation coupled to iron(III) reduction (termed Feammox) is a recently discovered pathway of nitrogen cycling. However, little is known about the pathways of N transformation via Feammox process in riparian zones. In this study, evidence for Feammox in riparian zones with or without vegetation cover was demonstrated using isotope tracing technique and high-throughput sequencing technology. The results showed that Feammox could occur in riparian zones, and demonstrated that N 2 directly from Feammox was dominant Feammox pathway. The Feammox rates in vegetated soil samples was 0.32-0.37 mg N kg -1 d -1 , which is higher than that in un-vegetated soil samples (0.20 mg N kg -1 d -1 ). Moreover, the growth of vegetation led to a 4.99-6.41% increase in the abundance of iron reducing bacteria (Anaeromyxobacter, Pseudomonas and Geobacter) and iron reducing bacteria play an essential role in Feammox process. An estimated loss of 23.7-43.9 kg N ha -1 year -1 was associated with Feammox in the examined riparian zone. Overall, the co-occurrence of ammonium oxidation and iron reduction suggest that Feammox can play an essential role in the pathway of nitrogen removal in riparian zones. Copyright © 2017 Elsevier Ltd. All rights reserved.

  7. Accumulation and distribution of iron, cadmium, lead and nickel in cucumber plants grown in hydroponics containing two different chelated iron supplies.

    Science.gov (United States)

    Csog, Árpád; Mihucz, Victor G; Tatár, Eniko; Fodor, Ferenc; Virág, István; Majdik, Cornelia; Záray, Gyula

    2011-07-01

    Cucumber plants grown in hydroponics containing 10 μM Cd(II), Ni(II) and Pb(II), and iron supplied as Fe(III) EDTA or Fe(III) citrate in identical concentrations, were investigated by total-reflection X-ray fluorescence spectrometry with special emphasis on the determination of iron accumulation and distribution within the different plant compartments (root, stem, cotyledon and leaves). The extent of Cd, Ni and Pb accumulation and distribution were also determined. Generally, iron and heavy-metal contaminant accumulation was higher when Fe(III) citrate was used. The accumulation of nickel and lead was higher by about 20% and 100%, respectively, if the iron supply was Fe(III) citrate. The accumulation of Cd was similar. In the case of Fe(III) citrate, the total amounts of Fe taken up were similar in the control and heavy-metal-treated plants (27-31 μmol/plant). Further, the amounts of iron transported from the root towards the shoot of the control, lead- and nickel-contaminated plants were independent of the iron(III) form. Although Fe mobility could be characterized as being low, its distribution within the shoot was not significantly affected by the heavy metals investigated. Copyright © 2011 Elsevier GmbH. All rights reserved.

  8. NIVELES SÉRICOS DE MAGNESIO, HIERRO Y COBRE EN POBLACIÓN DE ADULTOS DE CIUDAD BOLÍVAR, ESTADO BOLÍVAR, VENEZUELA I SERUM LEVELS OF MAGNESIUM , IRON AND COPPER IN ADULT POPULATION FROM CIUDAD BOLIVAR, BOLIVAR STATE, VENEZUELA

    Directory of Open Access Journals (Sweden)

    María Caride

    2014-02-01

    Full Text Available Determination of bioelements concentrations in serum are considered very important, since they allow to establish reference levels that can be used to detect essential elements deficiency or poisoning by their excess. The aim of this study was to identify the serum levels of magnesium, iron and copper in a population of apparently healthy adults, residents of an urban area of Ciudad Bolivar, Bolivar State, The sample consisted of 57 individuals (28 men and 29 women that were not occupationally exposed residents in Ciudad Bolivar, aged between 25 and 60 years. Bioelements were determined by Inductively Coupled Plasma Optical Emission Spectrometry (ICP-OES after acid digestion of serum samples. The average concentration values (± SD of magnesium, iron and copper obtained were, respectively, 22 ± 3 mg.L-1, 1.1 ± 0.2 mg.L-1 y 1.0 ± 0.2 mg.L-1. Regarding the studied bioelement levels, only magnesium levels of men were significantly higher (p < 0.05 than the levels of women. The mean concentrations of bioelements were within ranges of reference values reported in the literature for healthy people, but significantly different (p < 0,05 to those from Merida, another region from Venezuela, and a possible consequence of changes in eating habits and environment conditions among these two Venezuelan regions.

  9. Magnesium Gluconate

    Science.gov (United States)

    Magnesium gluconate is used to treat low blood magnesium. Low blood magnesium is caused by gastrointestinal disorders, prolonged vomiting or ... disease, or certain other conditions. Certain drugs lower magnesium levels as well.This medication is sometimes prescribed ...

  10. Sorption of Am(III) on attapulgite/iron oxide magnetic composites. Effect of pH, ionic strength and humic acid

    International Nuclear Information System (INIS)

    Yu, T.; East China Institute of Technology, Fuzhou, Jiangxi; Fan, Q.H.; Wu, W.S.; Lanzhou Univ., Gansu; Liu, S.P.; Pan, D.Q.; Zhang, Y.Y.; Li, P.

    2012-01-01

    Attapulgite/iron oxide magnetic (ATP/IOM) composites was prepared, and the sorption behavior of Am(III) on that composites was studied as a function of pH, ionic strength, the solid-to-liquid ratio (m/V), contact time, and the concentration of Am(III) under ambient conditions using batch technique. The time to achieve the sorption equilibrium was less than 5 h. The sorption of Am(III) on ATP/IOM composites was strongly affected by pH and ionic strength. Though ion exchange reaction contributed to Am(III) sorption over low pH range and low ionic strength, the sorption was mainly dominated by surface complexion (i.e., outer- and/or inner-sphere complexes) in the whole observed pH range. In the presence of humic acid (HA), the sorption edge of Am(III) on ATP/IOM composites obviously shifted to lower pH; but Am(III) sorption gradually became weak after pH exceeded 4, which may be mainly in terms of the soluble complexes of HA-Am(III). (orig.)

  11. Biodegradation of pharmaceuticals and endocrine disruptors with oxygen, nitrate, manganese (IV), iron (III) and sulfate as electron acceptors

    Science.gov (United States)

    Schmidt, Natalie; Page, Declan; Tiehm, Andreas

    2017-08-01

    Biodegradation of pharmaceuticals and endocrine disrupting compounds was examined in long term batch experiments for a period of two and a half years to obtain more insight into the effects of redox conditions. A mix including lipid lowering agents (e.g. clofibric acid, gemfibrozil), analgesics (e.g. diclofenac, naproxen), beta blockers (e.g. atenolol, propranolol), X-ray contrast media (e.g. diatrizoic acid, iomeprol) as well as the antiepileptic carbamazepine and endocrine disruptors (e.g. bisphenol A, 17α-ethinylestradiol) was analyzed in batch tests in the presence of oxygen, nitrate, manganese (IV), iron (III), and sulfate. Out of the 23 selected substances, 14 showed a degradation of > 50% of their initial concentrations under aerobic conditions. The beta blockers propranolol and atenolol and the analgesics pentoxifylline and naproxen showed a removal of > 50% under anaerobic conditions. In particular naproxen proved to be degradable with oxygen and under most anaerobic conditions, i.e. with manganese (IV), iron (III), or sulfate. The natural estrogens estriol, estrone and 17β-estradiol showed complete biodegradation under aerobic and nitrate-reducing conditions, with a temporary increase of estrone during transformation of estriol and 17β-estradiol. Transformation of 17β-estradiol under Fe(III)-reducing conditions resulted in an increase of estriol as well. Concentrations of clofibric acid, carbamazepine, iopamidol and diatrizoic acid, known for their recalcitrance in the environment, remained unchanged.

  12. In vitro studies on interactions of iron salts and complexes with food-stuffs and medicaments.

    Science.gov (United States)

    Geisser, P

    1990-07-01

    It has been shown in the present study that food components such as phytic acid, oxalic acid, tannin, sodium alginate, choline and choline salts, vitamins A, D3 and E, soy oil and soy flour, do not undergo any interactions with iron(III)-hydroxide polymaltose complex (Ferrum Hausmann). Phytic acid, oxalic acid, tannin and sodium alginate, however, react with iron(II) or iron(III)-salts at pH values of 3.0, 5.5 and 8.0, giving rise to iron complexes. Trimethylamine-N-oxide, which is present in fish meal, reacts with iron(II)-sulphate to produce iron(III) reaction products; it does not react with iron(III)-hydroxide polymaltose complex. Special soybean flours show no irreversible adsorption or precipitation with iron(III)-hydroxyide polymaltose complex over the pH range 3.0-8.0, in contrast to iron(II)-sulphate. Antacids containing aluminium hydroxide, talc, ion exchange resins or other unabsorbable, insoluble components absorb iron(III)-hydroxide polymaltose complex in the pH range 3.0-8.0 in a reversible manner, while the strong adsorption or precipitation observed with iron(II)-sulphate at pH 8.0 is irreversible. No interaction was observed between the steroid hormones studied and iron(II)-sulphate or iron(III)-hydroxide polymaltose complex. On the basis of the measured compatibilities, iron(III)-hydroxide polymaltose complex can be administered orally simultaneously with many other drugs, without prejudicing the absorption of iron or of the other drug as is often seen with iron(II) and iron(III) salts.

  13. Kinetics and Products of Chromium(VI) Reduction by Iron(II/III)-Bearing Clay Minerals.

    Science.gov (United States)

    Joe-Wong, Claresta; Brown, Gordon E; Maher, Kate

    2017-09-05

    Hexavalent chromium is a water-soluble pollutant, the mobility of which can be controlled by reduction of Cr(VI) to less soluble, environmentally benign Cr(III). Iron(II/III)-bearing clay minerals are widespread potential reductants of Cr(VI), but the kinetics and pathways of Cr(VI) reduction by such clay minerals are poorly understood. We reacted aqueous Cr(VI) with two abiotically reduced clay minerals: an Fe-poor montmorillonite and an Fe-rich nontronite. The effects of ionic strength, pH, total Fe content, and the fraction of reduced structural Fe(II) [Fe(II)/Fe(total)] were examined. The last variable had the largest effect on Cr(VI) reduction kinetics: for both clay minerals, the rate constant of Cr(VI) reduction varies by more than 3 orders of magnitude with Fe(II)/Fe(total) and is described by a linear free energy relationship. Under all conditions examined, Cr and Fe K-edge X-ray absorption near-edge structure spectra show that the main Cr-bearing product is a Cr(III)-hydroxide and that Fe remains in the clay structure after reacting with Cr(VI). This study helps to quantify our understanding of the kinetics of Cr(VI) reduction by Fe(II/III)-bearing clay minerals and may improve predictions of Cr(VI) behavior in subsurface environments.

  14. Effect of magnesium treatment and glucose levels on delayed cerebral ischemia in patients with subarachnoid hemorrhage: a substudy of the Magnesium in Aneurysmal Subarachnoid Haemorrhage trial (MASH-II).

    Science.gov (United States)

    Leijenaar, Jolien F; Dorhout Mees, Sanne M; Algra, Ale; van den Bergh, Walter M; Rinkel, Gabriel J E

    2015-10-01

    Magnesium treatment did not improve outcome in patients with aneurysmal subarachnoid haemorrhage in the Magnesium in Aneurysmal Subarachnoid Haemorrhage II trial. We hypothesized that high glucose levels may have offset a potential beneficial effect to prevent delayed cerebral ischemia. We investigated if magnesium treatment led to less delayed cerebral ischemia and if glucose levels interacted with magnesium treatment in the Magnesium in Aneurysmal Subarachnoid Haemorrhage II trial. To investigate the effect of magnesium treatment on occurrence of delayed cerebral ischemia and the interaction between glucose levels and magnesium treatment in subarachnoid hemorrhage patients. The Magnesium in Aneurysmal Subarachnoid Haemorrhage was a phase III randomized placebo-controlled trial assessing the effect of magnesium sulphate on clinical outcome in aneurysmal subarachnoid hemorrhage patients. For the current study, we included only the patients admitted to the University Medical Centre-Utrecht. We calculated hazard ratios for occurrence of delayed cerebral ischemia in patients treated with magnesium vs. placebo for the entire study population, and separately in the subgroups of patients with high and low mean fasting and mean daily glucose levels until onset of delayed cerebral ischemia. We used the cross-product of magnesium and glucose in the regression analysis to evaluate whether an interaction between magnesium and glucose existed. We included 616 patients: 307 received magnesium and 309 placebo; 156 patients had delayed cerebral ischemia. Hazard ratio for magnesium on occurrence of delayed cerebral ischemia was 1·0 (95% confidence interval: 0·7-1·4). Results were similar in patients with low or high fasting or daily glucose levels. We found no interactions between magnesium treatment and high fasting (P = 0·54) and daily glucose (P = 0·60). Magnesium treatment did not reduce the risk of delayed cerebral ischemia in patients with aneurysmal

  15. Mononuclear nonheme iron(III) complexes that show superoxide dismutase-like activity and antioxidant effects against menadione-mediated oxidative stress.

    Science.gov (United States)

    Hitomi, Yutaka; Iwamoto, Yuji; Kashida, Akihiro; Kodera, Masahito

    2015-05-21

    This communication describes the superoxide dismutase (SOD)-like activity of mononuclear iron(III) complexes with pentadentate monocarboxylamido ligands. The SOD activity can be controlled by the electronic nature of the substituent group on the ligand. The nitro-substituted complex showed clear cytoprotective activity against menadione-mediated oxidative stress in cultured cells.

  16. Sorption of samarium in iron (II) and (III) phosphates in aqueous systems

    International Nuclear Information System (INIS)

    Diaz F, J.C.

    2006-01-01

    The radioactive residues that are stored in the radioactive confinements its need to stay isolated of the environment while the radioactivity levels be noxious. An important mechanism by which the radioactive residues can to reach the environment, it is the migration of these through the underground water. That it makes necessary the investigation of reactive materials that interacting with those radionuclides and that its are able to remove them from the watery resources. The synthesis and characterization of materials that can be useful in Environmental Chemistry are very important because its characteristics are exposed and its behavior in chemical phenomena as the sorption watery medium is necessary to use it in the environmental protection. In this work it was carried out the sorption study of the samarium III ion in the iron (II) and (III) phosphate; obtaining the sorption isotherms in function of pH, of the phosphate mass and of the concentration of the samarium ion using UV-visible spectroscopy to determine the removal percentage. The developed experiments show that as much the ferrous phosphate as the ferric phosphate present a great affinity by the samarium III, for what it use like reactive material in contention walls can be very viable because it sorption capacity has overcome 90% to pH values similar to those of the underground and also mentioning that the form to obtain these materials is very economic and simple. (Author)

  17. The separation and determination of trace elements in iron ore

    International Nuclear Information System (INIS)

    Jones, E.A.

    1977-01-01

    The separation, concentration, and determination of trace elements in iron ores are described. After the sample has been dissolved, the iron is separated by liquid-liquid extraction with a liquid cation-exchanger, di-(2-ethylhexyl) phosphoric acid. The trace elements aluminium, cadmium, calcium, chromium, cobalt, copper, lead, magnesium, manganese, mercury, potassium, sodium, vanadium, and zinc are determined in the aqueous phase by atomic-absorption spectrophotometry

  18. PREDICTION OF THE SPECTROSCOPIC PARAMETERS OF NEW IRON COMPOUNDS: HYDRIDE OF IRON CYANIDE/ISOCYANIDE, HFeCN/HFeNC

    Energy Technology Data Exchange (ETDEWEB)

    Redondo, Pilar; Barrientos, Carmen; Largo, Antonio, E-mail: predondo@qf.uva.es [Departamento de Química Física y Química Inorgánica Facultad de Ciencias, Universidad de Valladolid Campus Miguel Delibes Paseo de Belén 7, E-47011, Valladolid (Spain)

    2016-09-01

    Iron is the most abundant transition metal in space. Its abundance is similar to that of magnesium, and until today only, FeO and FeCN have been detected. However, magnesium-bearing compounds such as MgCN, MgNC, and HMgNC are found in IRC+10216. It seems that the hydrides of iron cyanide/isocyanide could be good candidates to be present in space. In the present work we carried out a characterization of the different minima on the quintet and triplet [C, Fe, H, N] potential energy surfaces, employing several theoretical approaches. The most stable isomers are predicted to be hydride of iron cyanide HFeCN, and isocyanide HFeNC, in their {sup 5}Δ states. Both isomers are found to be quasi-isoenergetics. The HFeNC isomer is predicted to lie about 0.5 kcal/mol below HFeCN. The barrier for the interconversion process is estimated to be around 6.0 kcal/mol, making this process unfeasible under low temperature conditions, such as those in the interstellar medium. Therefore, both HFeCN and HFeNC could be candidates for their detection. We report geometrical parameters, vibrational frequencies, and rotational constants that could help with their experimental characterization.

  19. PREDICTION OF THE SPECTROSCOPIC PARAMETERS OF NEW IRON COMPOUNDS: HYDRIDE OF IRON CYANIDE/ISOCYANIDE, HFeCN/HFeNC

    International Nuclear Information System (INIS)

    Redondo, Pilar; Barrientos, Carmen; Largo, Antonio

    2016-01-01

    Iron is the most abundant transition metal in space. Its abundance is similar to that of magnesium, and until today only, FeO and FeCN have been detected. However, magnesium-bearing compounds such as MgCN, MgNC, and HMgNC are found in IRC+10216. It seems that the hydrides of iron cyanide/isocyanide could be good candidates to be present in space. In the present work we carried out a characterization of the different minima on the quintet and triplet [C, Fe, H, N] potential energy surfaces, employing several theoretical approaches. The most stable isomers are predicted to be hydride of iron cyanide HFeCN, and isocyanide HFeNC, in their 5 Δ states. Both isomers are found to be quasi-isoenergetics. The HFeNC isomer is predicted to lie about 0.5 kcal/mol below HFeCN. The barrier for the interconversion process is estimated to be around 6.0 kcal/mol, making this process unfeasible under low temperature conditions, such as those in the interstellar medium. Therefore, both HFeCN and HFeNC could be candidates for their detection. We report geometrical parameters, vibrational frequencies, and rotational constants that could help with their experimental characterization.

  20. Novel spin transition between S = 5/2 and S = 3/2 in highly saddled iron(III) porphyrin complexes at extremely low temperatures.

    Science.gov (United States)

    Ohgo, Yoshiki; Chiba, Yuya; Hashizume, Daisuke; Uekusa, Hidehiro; Ozeki, Tomoji; Nakamura, Mikio

    2006-05-14

    A novel spin transition between S = 5/2 and S = 3/2 has been observed for the first time in five-coordinate, highly saddled iron(III) porphyrinates by EPR and SQUID measurements at extremely low temperatures.

  1. Production of magnesium metal

    Science.gov (United States)

    Blencoe, James G [Harriman, TN; Anovitz, Lawrence M [Knoxville, TN; Palmer, Donald A [Oliver Springs, TN; Beard, James S [Martinsville, VA

    2010-02-23

    A process of producing magnesium metal includes providing magnesium carbonate, and reacting the magnesium carbonate to produce a magnesium-containing compound and carbon dioxide. The magnesium-containing compound is reacted to produce magnesium metal. The carbon dioxide is used as a reactant in a second process. In another embodiment of the process, a magnesium silicate is reacted with a caustic material to produce magnesium hydroxide. The magnesium hydroxide is reacted with a source of carbon dioxide to produce magnesium carbonate. The magnesium carbonate is reacted to produce a magnesium-containing compound and carbon dioxide. The magnesium-containing compound is reacted to produce magnesium metal. The invention further relates to a process for production of magnesium metal or a magnesium compound where an external source of carbon dioxide is not used in any of the reactions of the process. The invention also relates to the magnesium metal produced by the processes described herein.

  2. 21 CFR 186.1374 - Iron oxides.

    Science.gov (United States)

    2010-04-01

    ... 21 Food and Drugs 3 2010-04-01 2009-04-01 true Iron oxides. 186.1374 Section 186.1374 Food and... Substances Affirmed as GRAS § 186.1374 Iron oxides. (a) Iron oxides (oxides of iron, CAS Reg. No. 1332-37-2) are undefined mixtures of iron (II) oxide (CAS Reg. No. 1345-25-1, black cubic crystals) and iron (III...

  3. Adrenaline and triiodothyronine modify the iron handling in the freshwater air-breathing fish Anabas testudineus Bloch: role of ferric reductase in iron acquisition.

    Science.gov (United States)

    Rejitha, V; Peter, M C Subhash

    2013-01-15

    The effects of in vivo adrenaline and triiodothyronine (T(3)) on ferric reductase (FR) activity, a membrane-bound enzyme that reduces Fe(III) to Fe(II) iron, were studied in the organs of climbing perch (Anabas testudineus Bloch). Adrenaline injection (10 ng g(-1)) for 30 min produced significant inhibition of FR activity in the liver and kidney and that suggests a role for this stress hormone in iron acquisition in this fish. Short-term T(3) injection (40 ng g(-1)) reduced FR activity in the gills of fed fish but not in the unfed fish. Similar reduction of FR activity was also obtained in the intestine and kidney of fed fish after T(3) injection. Feeding produced pronounced decline in FR activity in the spleen but T(3) challenge in fed and unfed fish increased its activity in this iron storing organ and that point to the sensitivity of FR system to feeding activity. The in vitro effects of Fe on FR activity in the gill explants of freshwater fish showed correlations of FR with Na(+), K(+)-ATPase and H(+)-ATPase activities. Substantial increase in the FR activity was found in the gill explants incubated with all the tested doses of Fe(II) iron (1.80, 3.59 and 7.18 μM) and Fe(III) iron (1.25, 2.51 and 5.02 μM) and this indicate that FR and Na pump activity are positively correlated. On the contrary, substantial reduction of gill H(+)-ATPase activity was found in the gill explants incubated with Fe(II) iron and Fe(III) iron indicating that perch gills may not require a high acidic microenvironment for the reduction of Fe(III) iron. Accumulation of iron in the gill explants after Fe(III) iron incubation implies a direct relationship between Fe acquisition and FR activity in this tissue. The inverse correlation between FR activity and H(+)-ATPase activity in Fe(II) or Fe(III) loaded gills and the significant positive correlations of FR activity with total [Fe] content in the Fe(III) loaded gills substantiate that FR which shows sensitivity to sodium and proton pumps

  4. Extraction of iron(III) with diphenyl-2-pyridylmethane dissolved in benzene from aqueous chloride solutions

    International Nuclear Information System (INIS)

    Suhail Ahmed; Shamas-Ud-Zuha; Abdul Ghafoor; Ejaz, M.

    1978-01-01

    The mechanism of extraction has been investigated by partition, slope analysis and loading-ratio data. The results obtained give a picture of the mechanism of extraction of FeCl 4 - ions in relation to the hydration and solvation of the compound extracted. The possible formula of the extracted species is (DPPM)sub(3)Hsub(3)Osup(+)(Hsub(2)O)sub(n)-FeClsub(4)sup(-). In dilute aqueous hydrochloric acid systems the influence of the concentration of a number of salts with cations of different electrical potentials (Ze/r), on iron(III) extraction, has been studied. Splitting of the organic phases occurs at high acid and/or high salt concentrations. The phenomenon is explained on the basis of the variability of the hydration number. Investigations have been made to understand the parameters controlling the extraction of the metal and it is shown that the extraction offers a simple, fast and selective separation method of iron from solutions. (author)

  5. Polypyrrole–titanium(IV) doped iron(III) oxide nanocomposites: Synthesis, characterization with tunable electrical and electrochemical properties

    International Nuclear Information System (INIS)

    Nandi, Debabrata; Ghosh, Arup Kumar; Gupta, Kaushik; De, Amitabha; Sen, Pintu; Duttachowdhury, Ankan; Ghosh, Uday Chand

    2012-01-01

    Highlights: ► Synthesis and characterization of polymer nanocomposite based on titanium doped iron(III) oxide. ► Electrical conductivity increased 100 times in composite with respect to polymer. ► Electrochemical capacitance of polymer composites increased with nanooxide content. ► Thermal stability of the polymer enhanced with nano oxide content. -- Abstract: Titanium(IV)-doped synthetic nanostructured iron(III) oxide (NITO) and polypyrrole (PPy) nanocomposites was fabricated by in situ polymerization using FeCl 3 as initiator. The polymer nanocomposites (PNCs) and pure NITO were characterized by X-ray diffraction, Föurier transform infrared spectroscopy, scanning electron microscopy, electron dispersive X-ray spectroscopy, transmission electron microscopy, etc. Thermo gravimetric and differential thermal analyses showed the enhancement of thermal stability of PNCs than the pure polymer. Electrical conductivity of the PNCs had increased significantly from 0.793 × 10 −2 S/cm to 0.450 S/cm with respect to the PPy, and that had been explained by 3-dimensional variable range hopping (VRH) conduction mechanisms. In addition, the specific capacitance of PNCs had increased from 147 F/g to 176 F/g with increasing NITO content than that of pure NITO (26 F/g), presumably due to the growing of mesoporous structure with increasing NITO content in PNCs which reduced the charge transfer resistance significantly.

  6. Timeline (Bioavailability) of Magnesium Compounds in Hours: Which Magnesium Compound Works Best?

    Science.gov (United States)

    Uysal, Nazan; Kizildag, Servet; Yuce, Zeynep; Guvendi, Guven; Kandis, Sevim; Koc, Basar; Karakilic, Aslı; Camsari, Ulas M; Ates, Mehmet

    2018-04-21

    Magnesium is an element of great importance functioning because of its association with many cellular physiological functions. The magnesium content of foods is gradually decreasing due to food processing, and magnesium supplementation for healthy living has become increasingly popular. However, data is very limited on the bioavailability of various magnesium preparations. The aim of this study is to investigate the bioavailability of five different magnesium compounds (magnesium sulfate, magnesium oxide, magnesium acetyl taurate, magnesium citrate, and magnesium malate) in different tissues. Following a single dose 400 mg/70 kg magnesium administration to Sprague Dawley rats, bioavailability was evaluated by examining time-dependent absorption, tissue penetration, and the effects on the behavior of the animals. Pharmacokinetically, the area under the curve calculation is highest in the magnesium malate. The magnesium acetyl taurate was found to have the second highest area under the curve calculation. Magnesium acetyl taurate was rapidly absorbed, able to pass through to the brain easily, had the highest tissue concentration level in the brain, and was found to be associated with decreased anxiety indicators. Magnesium malate levels remained high for an extended period of time in the serum. The commonly prescribed dietary supplements magnesium oxide and magnesium citrate had the lowest bioavailability when compared to our control group. More research is needed to investigate the bioavailability of magnesium malate and acetyl taurate compounds and their effects in specific tissues and on behavior.

  7. Aqua complex of iron(III) and 5-chloro-3-(2-(4,4-dimethyl-2,6-dioxocyclohexylidene)hydrazinyl)-2-hydroxybenzenesulfonate: Structure and catalytic activity in Henry reaction

    Science.gov (United States)

    Mahmudov, Kamran T.; Kopylovich, Maximilian N.; Haukka, Matti; Mahmudova, Gunay S.; Esmaeila, Espandi F.; Chyragov, Famil M.; Pombeiro, Armando J. L.

    2013-09-01

    A water-soluble iron(III) complex [Fe(H2O)3(L)]·5H2O (1) was prepared by reaction of iron(III) chloride with 5-chloro-3-(2-(4,4-dimethyl-2,6-dioxocyclohexylidene)hydrazinyl)-2-hydroxy-benzenesulfonic acid (H3L). The complex was characterized by IR, 1H NMR and ESI-MS spectroscopies, elemental and X-ray crystal structural analyses. The coordination environment of the central iron(III) is a distorted octahedron, three sites being occupied by L3- ligand, which chelates in O,N,O fashion, while three other sites are filled with the water molecules. The uncoordinated water molecules are held in the channels of the overall 3D supramolecular structure by the carbonyl and sulfonyl groups of L3- and the ligated waters. Apart from the multiple hydrogen bonds, an intermolecular charge-assisted O···Cl halogen bonding with 3.044 Å distance was described. 1 acts as an effective catalyst in the Henry reaction producing nitroaldols from nitroethane and various aldehydes with yields up to 90% and threo/erythro diastereoselectivity ranging from 3:1 to 1:1.

  8. Magnesium and Osteoporosis

    Directory of Open Access Journals (Sweden)

    Ferda Özdemir

    2004-03-01

    Full Text Available Osteoporosis (OP is a condition of bone fragility resulting from micro-architectural deterioration and decreased bone mass. OP depends on the interaction of genetic, hormonal, environmental and nutritional factors. Chronic low intakes of vitamin D and possibly magnesium, zinc, fluoride and vitamins K, B12, B6 and folic acid may predispose to osteoporosis. Magnesium is a mineral needed by every cell of your body. It helps maintain normal muscle and nerve function, keeps heart rhythm steady, and bones strong. Mg serves as co-factors for enzymes that help build bone matrix. Magnesium deficiency occurs due to excessive loss of magnesium in urine, gastrointestinal system disorders that cause a loss of magnesium or limit magnesium absorption, or a chronic low intake of magnesium. Signs of magnesium deficiency include confusion, disorientation, loss of appetite, depression, muscle contractions and cramps, tingling, numbness, abnormal heart rhythms, coronary spasm, and seizures. Magnesium deficiency alters calcium metabolism and the hormones that regulates calcium. Several studies have suggested that magnesium supplementation may improve bone mineral density and prevent fractures.

  9. Magnesium Borohydride: From Hydrogen Storage to Magnesium Battery**

    OpenAIRE

    Mohtadi, Rana; Matsui, Masaki; Arthur, Timothy S; Hwang, Son-Jong

    2012-01-01

    Beyond hydrogen storage: The first example of reversible magnesium deposition/stripping onto/from an inorganic salt was seen for a magnesium borohydride electrolyte. High coulombic efficiency of up to 94 % was achieved in dimethoxyethane solvent. This Mg(BH_4)_2 electrolyte was utilized in a rechargeable magnesium battery.

  10. Dietary pattern, serum magnesium, ferritin, C-reactive protein and anaemia among older people.

    Science.gov (United States)

    Xu, Xiaoyue; Hall, John; Byles, Julie; Shi, Zumin

    2017-04-01

    Epidemiological data of dietary patterns and anaemia among older Chinese remains extremely scarce. We examined the association between dietary patterns and anaemia in older Chinese, and to assess whether biomarkers of serum magnesium, C-reactive protein (CRP) and serum ferritin can mediate these associations. We analysed the 2009 China Health and Nutrition Survey data (2401 individuals aged ≥60 years for whom both dietary and biomarker data are available). Dietary data was obtained using 24 h-recall over three consecutive days. Fasting blood samples and anthropometry measurement were also collected. Factor analysis was used to identify dietary patterns. Factor scores representing dietary patterns were used in Poisson regression models to explore the association between each dietary pattern and anaemia. Of the 2401 participants, 18.9% had anaemia, 1.9% had anaemia related to inflammation (AI), and 1.3% had iron-deficiency anaemia (IDA). A traditional dietary pattern (high intake of rice, pork and vegetables) was positively associated with anaemia; a modern dietary pattern (high intake of fruit and fast food) was inversely associated with anaemia. Progressively lower magnesium and BMI levels were associated with increasing traditional dietary quartiles; while a progressively higher magnesium and BMI levels were associated with increasing modern dietary quartiles (p  0.05) in CRP and serum ferritin across quartiles for either dietary pattern. In the fully adjusted model, the prevalence ratio (PR) of anaemia, comparing the fourth quartile to the first quartile, was 1.75 (95% CI: 1.33; 2.29) for a traditional dietary pattern, and 0.89 (95% CI: 0.68; 1.16) for a modern dietary pattern. The association between dietary patterns and anaemia is mediated by serum magnesium. Traditional dietary pattern is associated with a higher prevalence of anaemia among older Chinese. Future studies need to examine whether correcting micronutrient deficiency (e.g. magnesium) by

  11. Control of cast iron and casts manufacturing by Inmold method

    Directory of Open Access Journals (Sweden)

    S. Pietrowski

    2009-07-01

    Full Text Available In this paper the usability of cast iron spheroidizing process in mould control by ATD method as well as by ultrasonic method were presented. Structure of instrumentation needed for control form performance of cast iron spheroidizing by Inmold method was illustrated. Author, pointed out that amount of magnesium master alloy should obtain 0,8 ÷ 1,0% of mass in form at all. Such quantity of preliminary alloy assure of obtain of nodular graphite in cast iron. In consequence of this, is reduce the cast iron liquidus temperature and decrease of recalescence temperature of graphite-eutectic crystallization in compare with initial cast iron. Control of casts can be carried out by ultrasonic method. In plain cast iron, ferritic-pearlitic microstructure is obtaining. Additives of 1,5% Cu ensure pearlitic structure.

  12. Abrupt spin transition with thermal hysteresis of iron(III) complex [Fe(III)(Him)2(hapen)]AsF6 (Him = imidazole, H2hapen = N,N'-bis(2-hydroxyacetophenylidene)ethylenediamine).

    Science.gov (United States)

    Fujinami, Takeshi; Koike, Masataka; Matsumoto, Naohide; Sunatsuki, Yukinari; Okazawa, Atsushi; Kojima, Norimichi

    2014-02-17

    The solvent-free spin crossover iron(III) complex [Fe(III)(Him)2(hapen)]AsF6 (Him = imidazole, H2hapen = N,N'-bis(2-hydroxyacetophenylidene)ethylenediamine), exhibiting thermal hysteresis, was synthesized and characterized. The Fe(III) ion has an octahedral coordination geometry, with N2O2 donor atoms of the planar tetradentate ligand (hapen) and two nitrogen atoms of two imidazoles at the axial positions. One of two imidazoles is hydrogen-bonded to the phenoxo oxygen atom of hapen of the adjacent unit to give a hydrogen-bonded one-dimensional chain, while the other imidazole group is free from hydrogen bonding. The temperature dependencies of the magnetic susceptibilities and Mössbauer spectra revealed an abrupt spin transition between the high-spin (S = 5/2) and low-spin (S = 1/2) states, with thermal hysteresis.

  13. Heterogeneous biomimetic catalysis using iron porphyrin for cyclohexane oxidation promoted by chitosan

    Science.gov (United States)

    Huang, Guan; Liu, Yao; Cai, Jing Li; Chen, Xiang Feng; Zhao, Shu Kai; Guo, Yong An; Wei, Su Juan; Li, Xu

    2017-04-01

    This study investigates how ligands modulate metalloporphyrin activity with the goal of producing a practical biomimetic catalyst for use in the chemical industry. We immobilized iron porphyrinate [iron-tetrakis-(4-sulfonatophenyl)-porphyrin; Fe(III) (TPPS)] on powdered chitosan (pd-CTS) to form an immobilized catalyst Fe(III) (TPPS)/pd-CTS, which was characterized using modern spectroscopic techniques and used for catalytic oxidation of cyclohexane with O2. Amino coordination to iron porphyrin in Fe(III) (TPPS)/pd-CTS altered the electron cloud density around the iron cation, probably by reducing the activation energy of Fe(III) (TPPS) and raising the reactivity of the iron ion catalytic center, thereby improving the catalytic efficiency. One milligram of Fe(III) (TPPS) catalyst can be reused three times for the oxidation reaction to yield an average of 22.9 mol% of cyclohexanone and cyclohexanol.

  14. Biocorrosion rate and mechanism of metallic magnesium in model arterial environments

    Science.gov (United States)

    Bowen, Patrick K.

    A new paradigm in biomedical engineering calls for biologically active implants that are absorbed by the body over time. One popular application for this concept is in the engineering of endovascular stents that are delivered concurrently with balloon angioplasty. These devices enable the injured vessels to remain patent during healing, but are not needed for more than a few months after the procedure. Early studies of iron- and magnesium-based stents have concluded that magnesium is a potentially suitable base material for such a device; alloys can achieve acceptable mechanical properties and do not seem to harm the artery during degradation. Research done up to the onset of research contained in this dissertation, for the most part, failed to define realistic physiological corrosion mechanisms, and failed to correlate degradation rates between in vitro and in vivo environments. Six previously published works form the basis of this dissertation. The topics of these papers include (1) a method by which tensile testing may be applied to evaluate biomaterial degradation; (2) a suite of approaches that can be used to screen candidate absorbable magnesium biomaterials; (3) in vivo-in vitro environmental correlations based on mechanical behavior; (4) a similar correlation on the basis of penetration rate; (5) a mid-to-late stage physiological corrosion mechanism for magnesium in an arterial environment; and (6) the identification of corrosion products in degradable magnesium using transmission electron microscopy.

  15. Study of solubility of akaline earth metals in liquid iron and in alloys on its base

    International Nuclear Information System (INIS)

    Ageev, Yu.A.; Archugov, S.A.

    1985-01-01

    Solubility of magnesium, calcium, strontium and barium in liquid iron and its alloys with aluminium, silicon, nickel, chromium and carbon at 1600 deg C has been measured. Interaction parameters taking account of the effect of added elements on alkaline earth metal solubility in liquid iron have been estimated

  16. Spectroscopic, potentiometric and theoretical studies on the binding properties of a novel tripodal polycatechol-imine ligand towards iron(III)

    Science.gov (United States)

    Kanungo, B. K.; Sahoo, Suban K.; Baral, Minati

    2008-12-01

    A novel multidentate tripodal ligand, cis, cis-1,3,5-tris[(2,3-dihydroxybenzylidene)aminomethyl]cyclohexane (TDBAC, L) containing one catechol unit in each arms of a tripodal amine, cis, cis-1,3,5-tris(aminomethyl)cyclohexane was investigated as a chelator for iron(III) through potentiometric and spectrophotometric methods in an aqueous medium of 0.1N ionic strength and 25 ± 1 °C as well as in ethanol by continuous variation method. From pH metric in water, three protonation constants characterized for the three-hydroxyl groups of the catechol units at ortho were used as input data to evaluate the stability constants of the complexes. Formation of monomeric complexes FeLH 3, FeLH 2, FeLH and FeL were depicted. In ethanol, formation of complexes FeL, Fe 2L and Fe 3L were characterized. Structures of the complexes were explained by using the experimental evidences and predicted through molecular modeling calculations. The ligand showed potential to coordinate iron(III) through three imine nitrogens and three catecholic oxygens at ortho to form a tris(iminocatecholate) type complex.

  17. Application Of Bacterial Iron Reduction For The Removal Of Iron Impurities From Industrial Silica Sand And Kaolin

    Science.gov (United States)

    Zegeye, A.; Yahaya, S.; Fialips, C. I.; White, M.; Manning, D. A.; Gray, N.

    2008-12-01

    Biogeochemical evidence exists to support the potential importance of crystalline or amorphous Fe minerals as electron acceptor for Fe reducing bacteria in soils and subsurface sediments. This microbial metabolic activity can be exploited as alternative method in different industrial applications. For instance, the removal of ferric iron impurities from minerals for the glass and paper industries currently rely on physical and chemical treatments having substantial economical and environmental disadvantages. The ability to remove iron by other means, such as bacterial iron reduction, may reduce costs, allow lower grade material to be mined, and improve the efficiency of mineral processing. Kaolin clay and silica sand are used in a wide range of industrial applications, particularly in paper, ceramics and glass manufacturing. Depending on the geological conditions of deposition, they are often associated with iron (hydr)oxides that are either adsorbed to the mineral surfaces or admixed as separate iron bearing minerals. In this study, we have examined the Fe(III) removal efficiency from kaolin and silica sand by a series of iron- reducing bacteria from the Shewanella species (S. alga BrY, S. oneidensis MR-1, S. putrefaciens CN32 and S. putrefaciens ATCC 8071) in the presence of anthraquinone 2,6 disulfonate (AQDS). We have also investigated the effectiveness of a natural organic matter, extracted with the silica sand, as a substitute to AQDS for enhancing Fe(III) reduction kinetics. The microbial reduction of Fe(III) was achieved using batch cultures under non-growth conditions. The rate and the extent of Fe(III) reduction was monitored as a function of the initial Fe(III) content, Shewanella species and temperature. The bacterially- treated minerals were analyzed by transmission electron microscopy (TEM) and X-ray diffraction (XRD) to observe any textural and mineralogical transformation. The whiteness and ISO brightness of the kaolin was also measured by

  18. The Effect of Temperature and Ionic Strength on the Oxidation of Iodide by Iron(III): A Clock Reaction Kinetic Study

    Science.gov (United States)

    Bauer, Jurica; Tomisic, Vladislav; Vrkljan, Petar B. A.

    2012-01-01

    A laboratory exercise has recently been reported in which the students use the initial rates method based on the clock reaction approach to deduce the rate law and propose a reaction mechanism for the oxidation of iodide by iron(III) ions. The same approach is used in the exercise proposed herein; the students determine the dependence of the…

  19. Reactive oxygen species and associated reactivity of peroxymonosulfate activated by soluble iron species

    Science.gov (United States)

    Watts, Richard J.; Yu, Miao; Teel, Amy L.

    2017-10-01

    The activation of peroxymonosulfate by iron (II), iron (III), and iron (III)-EDTA for in situ chemical oxidation (ISCO) was compared using nitrobenzene as a hydroxyl radical probe, anisole as a hydroxyl radical + sulfate radical probe, and hexachloroethane as a reductant + nucleophile probe. In addition, activated peroxymonosulfate was investigated for the treatment of the model groundwater contaminants perchloroethylene (PCE) and trichloroethylene (TCE). The relative activities of hydroxyl radical and sulfate radical in the degradation of the probe compounds and PCE and TCE were isolated using the radical scavengers tert-butanol and isopropanol. Iron (II), iron (III), and iron (III)-EDTA effectively activated peroxymonosulfate to generate hydroxyl radical and sulfate radical, but only a minimal flux of reductants or nucleophiles. Iron (III)-EDTA was a more effective activator than iron (II) and iron (III), and also provided a non-hydroxyl radical, non-sulfate radical degradation pathway. The contribution of sulfate radical relative to hydroxyl radical followed the order of anisole > > TCE > PCE > > nitrobenzene; i.e., sulfate radical was less dominant in the oxidation of more oxidized target compounds. Sulfate radical is often assumed to be the primary oxidant in activated peroxymonosulfate and persulfate systems, but the results of this research demonstrate that the reactivity of sulfate radical with the target compound must be considered before drawing such a conclusion.

  20. Reactive oxygen species and associated reactivity of peroxymonosulfate activated by soluble iron species.

    Science.gov (United States)

    Watts, Richard J; Yu, Miao; Teel, Amy L

    2017-10-01

    The activation of peroxymonosulfate by iron (II), iron (III), and iron (III)-EDTA for in situ chemical oxidation (ISCO) was compared using nitrobenzene as a hydroxyl radical probe, anisole as a hydroxyl radical+sulfate radical probe, and hexachloroethane as a reductant+nucleophile probe. In addition, activated peroxymonosulfate was investigated for the treatment of the model groundwater contaminants perchloroethylene (PCE) and trichloroethylene (TCE). The relative activities of hydroxyl radical and sulfate radical in the degradation of the probe compounds and PCE and TCE were isolated using the radical scavengers tert-butanol and isopropanol. Iron (II), iron (III), and iron (III)-EDTA effectively activated peroxymonosulfate to generate hydroxyl radical and sulfate radical, but only a minimal flux of reductants or nucleophiles. Iron (III)-EDTA was a more effective activator than iron (II) and iron (III), and also provided a non-hydroxyl radical, non-sulfate radical degradation pathway. The contribution of sulfate radical relative to hydroxyl radical followed the order of anisole>TCE>PCE >nitrobenzene; i.e., sulfate radical was less dominant in the oxidation of more oxidized target compounds. Sulfate radical is often assumed to be the primary oxidant in activated peroxymonosulfate and persulfate systems, but the results of this research demonstrate that the reactivity of sulfate radical with the target compound must be considered before drawing such a conclusion. Published by Elsevier B.V.

  1. Magnesium borohydride: from hydrogen storage to magnesium battery.

    Science.gov (United States)

    Mohtadi, Rana; Matsui, Masaki; Arthur, Timothy S; Hwang, Son-Jong

    2012-09-24

    Beyond hydrogen storage: The first example of reversible magnesium deposition/stripping onto/from an inorganic salt was seen for a magnesium borohydride electrolyte. High coulombic efficiency of up to 94 % was achieved in dimethoxyethane solvent. This Mg(BH(4))(2) electrolyte was utilized in a rechargeable magnesium battery. Copyright © 2012 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  2. The prospects of biodegradable magnesium-based alloys in osteosynthesis

    Directory of Open Access Journals (Sweden)

    V. N. Chorny

    2013-12-01

    Full Text Available In the analytical review of the literature the main stages of development of biodegradable magnesium alloys in surgery and traumatology were discussed. The analysis revealed the main problems: there is no way to control the speed of the biological resorption alloys, the effects of products of magnesium degradation on the tissues and the organism in general are not studied, there is no information on the characteristics of the regeneration of bone tissue when implanted magnesium implanted magnesium alloys Materials for osteosynthesis with metal clamps made of steel X18H9T are used in 25,0-52,2% of cases, the corrosion of fasteners reaches 18-21%. Corrosion of the metal clips leads to the increase of the concentration of iron, chromium, nickel and titanium in the surrounding tissue. Electrochemical processes in metallic implants occurs due to their structural and chemical inhomogeneous. The microstructure of stainless steel is presented by differently oriented grains. Therefore, the question remains relevant to finding biodegradable materials suitable for implants for osteosynthesis, which could be completely metabolized by the organism, without causing of the pathological effects on the surrounding tissue and the body. The property of magnesium metal dissolved in the tissues of a living organism is known since the 19th century. Payr suggested the use of magnesium metal needles for the treatment of angiomas, in order to achieve thrombosis surrounding the tumor. In 1937 Lambotte made a post in the French Surgical Academy on the application of the osteosynthesis of the shin bone clamps with alloy Dow-metal (magnesium - 92% Aluminum - 8% + traces of manganese, made in the form of loops and screws. In 1938, Earl D. Mc.Braid and published their positive experience with plates and screws made of material similar in composition to the Dow-metal for osteosynthesis of fractures of the arm and forearm bones. Magnesium alloys may be used as a material for

  3. Facile and reversible formation of iron(III)-oxo-cerium(IV) adducts from nonheme oxoiron(IV) complexes and cerium(III)

    Energy Technology Data Exchange (ETDEWEB)

    Draksharapu, Apparao; Rasheed, Waqas; Klein, Johannes E.M.N.; Que, Lawrence Jr. [Department of Chemistry and Center for Metals in Biocatalysis, University of Minnesota, Minneapolis, MN (United States)

    2017-07-24

    Ceric ammonium nitrate (CAN) or Ce{sup IV}(NH{sub 4}){sub 2}(NO{sub 3}){sub 6} is often used in artificial water oxidation and generally considered to be an outer-sphere oxidant. Herein we report the spectroscopic and crystallographic characterization of [(N4Py)Fe{sup III}-O-Ce{sup IV}(OH{sub 2})(NO{sub 3}){sub 4}]{sup +} (3), a complex obtained from the reaction of [(N4Py)Fe{sup II}(NCMe)]{sup 2+} with 2 equiv CAN or [(N4Py)Fe{sup IV}=O]{sup 2+} (2) with Ce{sup III}(NO{sub 3}){sub 3} in MeCN. Surprisingly, the formation of 3 is reversible, the position of the equilibrium being dependent on the MeCN/water ratio of the solvent. These results suggest that the Fe{sup IV} and Ce{sup IV} centers have comparable reduction potentials. Moreover, the equilibrium entails a change in iron spin state, from S=1 Fe{sup IV} in 2 to S=5/2 in 3, which is found to be facile despite the formal spin-forbidden nature of this process. This observation suggests that Fe{sup IV}=O complexes may avail of reaction pathways involving multiple spin states having little or no barrier. (copyright 2017 Wiley-VCH Verlag GmbH and Co. KGaA, Weinheim)

  4. Thermo-Kinetic Investigation of Comparative Ligand Effect on Cysteine Iron Redox Reaction

    Directory of Open Access Journals (Sweden)

    Masood Ahmad Rizvi

    2015-03-01

    Full Text Available Transition metal ions in their free state bring unwanted biological oxidations generating oxidative stress. The ligand modulated redox potential can be indispensable in prevention of such oxidative stress by blocking the redundant bio-redox reactions. In this study we investigated the comparative ligand effect on the thermo-kinetic aspects of biologically important cysteine iron (III redox reaction using spectrophotometric and potentiometric methods. The results were corroborated with the complexation effect on redox potential of iron(III-iron(II redox couple. The selected ligands were found to increase the rate of cysteine iron (III redox reaction in proportion to their stability of iron (II complex (EDTA < terpy < bipy < phen. A kinetic profile and the catalytic role of copper (II ions by means of redox shuttle mechanism for the cysteine iron (III redox reaction in presence of 1,10-phenanthroline (phen ligand is also reported.

  5. Adsorção de arsênio(V pela quitosana ferro - III reticulada Asorption of arsenic (V by crosslinked iron-III-chitosan

    Directory of Open Access Journals (Sweden)

    Tathyane Fagundes

    2008-01-01

    Full Text Available The removal of As(V by a crosslinked iron(III-chitosan adsorbent was evaluated under various conditions. The adsorption capacity of CH-FeCL was around 54 mg/g of As(V. The kinetics of adsorption obeys a pseudo-first-order model with rate constants equal to 0.022, 0.028, and 0.033 min-1 at 15, 25 and 35 ºC respectively. Adsorption data were well described by the Langmuir model, although they could be modeled also by the Langmuir-Freundlich equation. The maximum adsorption capacity, calculated with the Langmuir model, was 127 mg g-1 of As(V. The inhibition by competing anions is dependant on their kind and valence.

  6. Transport of surface-modified iron nanoparticle in porous media and application to arsenic(III) remediation

    International Nuclear Information System (INIS)

    Kanel, Sushil Raj; Nepal, Dhriti; Manning, Bruce; Choi, Heechul

    2007-01-01

    The surface-modified iron nanoparticles (S-INP) were synthesized, characterized and tested for the remediation of arsenite (As(III)), a well known toxic groundwater contaminant of concern. The S-INP material was fully dispersed in the aqueous phase with a particle size distribution of 2-10 nm estimated from high-resolution transmission electron microscopy (HR-TEM). X-ray photoelectron spectroscopy (XPS) revealed that an Fe(III) oxide surface film was present on S-INP in addition to the bulk zero-valent Fe 0 oxidation state. Transport of S-INP through porous media packed in 10 cm length column showed particle breakthroughs of 22.1, 47.4 and 60 pore volumes in glass beads, unbaked sand, and baked sand, respectively. Un-modified INP was immobile and aggregated on porous media surfaces in the column inlet area. Results using S-INP pretreated 10 cm sand-packed columns containing ∼2 g of S-INP showed that 100 % of As(III) was removed from influent solutions (flow rate 1.8 mL min -1 ) containing 0.2, 0.5 and 1.0 mg L -1 As(III) for 9, 7 and 4 days providing 23.3, 20.7 and 10.4 L of arsenic free water, respectively. In addition, it was found that 100% of As(III) in 0.5 mg/L solution (flow rate 1.8 mL min -1 ) was removed by S-INP pretreated 50 cm sand packed column containing 12 g of S-INP for more than 2.5 months providing 194.4 L of arsenic free water. Field emission scanning electron microscopy (FE-SEM) showed S-INP had transformed to elongated, rod-like shaped corrosion product particles after reaction with As(III) in the presence of sand. These results suggest that S-INP has great potential to be used as a mobile, injectable reactive material for in-situ sandy groundwater aquifer treatment of As(III)

  7. Magnesium in pregnancy.

    Science.gov (United States)

    Dalton, Lynne M; Ní Fhloinn, Deirdre M; Gaydadzhieva, Gergana T; Mazurkiewicz, Ola M; Leeson, Heather; Wright, Ciara P

    2016-09-01

    Magnesium deficiency is prevalent in women of childbearing age in both developing and developed countries. The need for magnesium increases during pregnancy, and the majority of pregnant women likely do not meet this increased need. Magnesium deficiency or insufficiency during pregnancy may pose a health risk for both the mother and the newborn, with implications that may extend into adulthood of the offspring. The measurement of serum magnesium is the most widely used method for determining magnesium levels, but it has significant limitations that have both hindered the assessment of deficiency and affected the reliability of studies in pregnant women. Thus far, limited studies have suggested links between magnesium inadequacy and certain conditions in pregnancy associated with high mortality and morbidity, such as gestational diabetes, preterm labor, preeclampsia, and small for gestational age or intrauterine growth restriction. This review provides recommendations for further study and improved testing using measurement of red cell magnesium. Pregnant women should be counseled to increase their intake of magnesium-rich foods such as nuts, seeds, beans, and leafy greens and/or to supplement with magnesium at a safe level. © The Author(s) 2016. Published by Oxford University Press on behalf of the International Life Sciences Institute. All rights reserved. For Permissions, please e-mail: journals.permissions@oup.com.

  8. Corrosion and hydrogen permeation of A216 Grade WCA steel in hydrothermal magnesium-containing brines

    International Nuclear Information System (INIS)

    Haberman, J.H.; Frydrych, D.J.; Westerman, R.E.

    1988-03-01

    Corrosion rates determined at 1 month in 150/degree/C brine increased with magnesium concentration. The structure of the corrosion product, as determined by x-ray diffraction, depended upon the magnesium concentration. In brines with less than 10,000 ppM magnesium, the primary corrosion product had a spinel structure characteristic of magnetite or magnesioferrite. In brines containing magnesium concentrations greater than 20,000 ppM, the primary corrosion product had the amakinite structure characteristic of a complex iron-magnesium hydroxide. The high corrosion rates observed in brines containing high magnesium concentrations suggest that the corrosion products having the amakinite structure is less protective than corrosion products having the spinel structure. Corrosion rates in high-magnesium (inclusion) brine determined over a 6-month test duration were essentially constant. Hydrogen permeation rates observed in exposing mild steel to high-Mg/sup 2/plus// brine at 150/degree/C could be potentially damaging to a mild steel waste package container. The rate of hydrogen permeation was proportional to the brine flow rate in the autoclave. Thiourea additions to the brine increased the hydrogen permeation rate; sulfate and bromide ion additions did not. The maximum gaseous hydrogen pressure attainable is not known (based on 3Fe /plus/ 4H 2 O /plus/ Fe(sub 3)O /plus/ 4H 2 , would be /approximately/900 atmospheres), and the dependence of permeation rate on temperature is not known. 8 refs., 13 figs., 3 tabs

  9. Iron Coordination and Halogen-Bonding Assisted Iodosylbenzene Activation

    DEFF Research Database (Denmark)

    Wegeberg, Christina; Poulsen de Sousa, David; McKenzie, Christine

    catalytic mixtures using soluble terminal oxygen transfer agents. Isolation of a reactive iron-terminal oxidant adduct, an unique Fe(III)-OIPh complex, is facilitated by strong stabilizing supramolecular halogen-bonding. L3-edge XANES suggests +1.6 for the average oxidation state for the iodine atom3......The iron complex of the hexadentate ligand N,N,N'-tris(2-pyridylmethyl)ethylendiamine-N'-acetate (tpena) efficiently catalyzes selective oxidations of electron-rich olefins and sulfides by insoluble iodosylbenzene (PhIO). Surprisingly, these reactions are faster and more selective than homogenous...... in the iron(III)-coordinated PhIO. This represents a reduction of iodine relative to the original “hypervalent” (+3) PhIO. The equivalent of electron density must be removed from the {(tpena)Fe(III)O} moiety, however Mössbauer spectroscopy shows that the iron atom is not high valent....

  10. 2 : 2 Fe(III): ligand and "adamantane core" 4 : 2 Fe(III): ligand (hydr)oxo complexes of an acyclic ditopic ligand

    DEFF Research Database (Denmark)

    Ghiladi, Morten; Larsen, Frank B.; McKenzie, Christine J.

    2005-01-01

    A bis-hydroxo-bridged diiron(III) complex and a bis-mu-oxo-bis-mu-hydroxo-bridged tetrairon( III) complex are isolated from the reaction of 2,6-bis((N, N'-bis-(2-picolyl) amino) methyl)-4-tert-butylphenol (Hbpbp) with iron perchlorate in acidic and neutral solutions respectively. The X-ray struct......A bis-hydroxo-bridged diiron(III) complex and a bis-mu-oxo-bis-mu-hydroxo-bridged tetrairon( III) complex are isolated from the reaction of 2,6-bis((N, N'-bis-(2-picolyl) amino) methyl)-4-tert-butylphenol (Hbpbp) with iron perchlorate in acidic and neutral solutions respectively. The X...

  11. Synthesis of nanometer-sized fayalite and magnesium-iron(II) mixture olivines

    Energy Technology Data Exchange (ETDEWEB)

    Qafoku, Odeta; Ilton, Eugene S.; Bowden, Mark E.; Kovarik, Libor; Zhang, Xin; Kukkadapu, Ravi K.; Engelhard, Mark H.; Thompson, Christopher J.; Schaef, Herbert T.; McGrail, Bernard Peter; Rosso, Kevin M.; Loring, John S.

    2018-04-01

    Olivines are divalent orthosilicates with important geologic, biological, and industrial significance and are typically comprised of mixtures of Mg2+ and Fe2+ ranging from forsterite (Mg2SiO4) to fayalite (Fe2SiO4). Investigating the role of Fe(II) in olivine reactivity requires the ability to synthesize olivines that are nanometer-sized, have different percentages of Mg2+ and Fe2+, and have good bulk and surface purity. This article demonstrates a new method for synthesizing nanosized fayalite and Mg-Fe mixture olivines. First, carbonaceous precursors are generated from sucrose, PVA, colloidal silica, Mg2+, and Fe3+. Second, these precursors are calcined in air to burn carbon and create mixtures of Fe(III)-oxides, forsterite, and SiO2. Finally, calcination in reducing CO-CO2 gas buffer leads to Fe(II)-rich olivines. XRD, Mössbauer, and IR analyses verify good bulk purity and composition. XPS indicates that surface iron is in its reduced Fe(II) form, and surface Si is consistent with olivine. SEM shows particle sizes predominately between 50 and 450 nm, and BET surface areas are 2.8-4.2 m2/g. STEM HAADF analysis demonstrates even distributions of Mg and Fe among the available M1 and M2 sites of the olivine crystals. These nanosized Fe(II)-rich olivines are suitable for laboratory studies with in situ probes that require mineral samples with high reactivity at short timescales.

  12. The Efficiency of Strontium-90 Desorption Using Iron (III) Solutions in the Decontamination Process of Radioactive Soils

    OpenAIRE

    Olga Vladimirovna Cheremisina; Vasiliy Sergeev; Varvara Alabusheva; Alexander Fedorov; Alexandra Iliyna

    2018-01-01

    The paper presents the investigation on the estimated efficiency of iron (III) chloride solutions in the decontamination process of radioactive soils with 90 Sr, according to kinetic and thermodynamic characteristics of the desorption process. The specific 90 Sr radioactivity of soil samples was (3.9±0.3)·104 Bq·g. The adsorption isotherms of Sr 2+ and Fe 3+ are described with the Langmuir equation. The values of Gibbs energy G0298 = -4.65 kJ·mol -1 and equilibrium ion exchange constant ...

  13. Magnesium stannide as a high-capacity anode for magnesium-ion batteries

    Science.gov (United States)

    Nguyen, Dan-Thien; Song, Seung-Wan

    2017-11-01

    Driven by the limited global resources of lithium, magnesium metal batteries are considered as potential energy storage systems. The battery chemistry of magnesium metal anode, however, limits the selection of electrolytes, cathode materials and working temperature, making the realization of magnesium metal batteries complicated. Herein, we report the development of a new magnesium-insertion anode, magnesium stannide (Mg2Sn), and demonstrate reversible electrochemical Mg2+-extraction and insertion of Mg2Sn anode at 0.2 V versus Mg, delivering discharge capacity of 270 mAhg-1 in a half-cell with the electrolyte of PhMgCl/THF and enabling of room temperature magnesium-ion batteries with Mg2Sn anode combined with Mg-free oxide cathode and conventional-type electrolyte of Mg(TFSI)2/diglyme. The combination of Mg2Sn anode with various cathodes and electrolytes holds great promise for enabling room temperature magnesium-ion batteries.

  14. Potassium iron(III)hexacyanoferrate(II) supported on polymethylmethacrylate ion-exchanger for removal of strontium(II)

    International Nuclear Information System (INIS)

    Taj, S.; Ashraf Chaudhry, M.; Mazhar, M.

    2009-01-01

    Potassium iron(III)hexacyanoferrate(II) supported on poly metylmethacrylate has been synthesized and investigated for the strontium(II) removal from HNO 3 and HCl solutions. The ion exchange material characterized by different techniques and found to be stable in 1.0-4.0 M HNO 3 solutions, has been used to elaborate different parameters related to ion exchange and sorption processes involved. The data collected suggested its use to undertake removal of Sr(II) from more acidic active waste solutions. Thus the material synthesized had been adjudged to present better chances of application for Sr(II) removal as compared to other such materials. (author)

  15. Effect of magnesium deficiency on renal magnesium and calcium transport in the rat.

    OpenAIRE

    Carney, S L; Wong, N L; Quamme, G A; Dirks, J H

    1980-01-01

    Recollection of micropuncture experiments were performed on acutely thyroparathyroidectomized rats rendered magnesium deficient by dietary deprivation. Urinary magnesium excretion fell from a control of 15 to 3% of the filtered load after magnesium restriction. The loop of Henle, presumably the thick ascending limb, was the major modulator for renal magnesium homeostasis. The transport capacity for magnesium, however, was less in deficient rats than control animals. Absolute magnesium reabsor...

  16. Influence of Atmospheric Processes on the Solubility and Composition of Iron in Saharan Dust.

    Science.gov (United States)

    Longo, Amelia F; Feng, Yan; Lai, Barry; Landing, William M; Shelley, Rachel U; Nenes, Athanasios; Mihalopoulos, Nikolaos; Violaki, Kalliopi; Ingall, Ellery D

    2016-07-05

    Aerosol iron was examined in Saharan dust plumes using a combination of iron near-edge X-ray absorption spectroscopy and wet-chemical techniques. Aerosol samples were collected at three sites located in the Mediterranean, the Atlantic, and Bermuda to characterize iron at different atmospheric transport lengths and time scales. Iron(III) oxides were a component of aerosols at all sampling sites and dominated the aerosol iron in Mediterranean samples. In Atlantic samples, iron(II and III) sulfate, iron(III) phosphate, and iron(II) silicates were also contributors to aerosol composition. With increased atmospheric transport time, iron(II) sulfates are found to become more abundant, aerosol iron oxidation state became more reduced, and aerosol acidity increased. Atmospheric processing including acidic reactions and photoreduction likely influence the form of iron minerals and oxidation state in Saharan dust aerosols and contribute to increases in aerosol-iron solubility.

  17. Oxidative Debromination and Degradation of Tetrabromo-bisphenol A by a Functionalized Silica-Supported Iron(III-tetrakis(p-sulfonatophenylporphyrin Catalyst

    Directory of Open Access Journals (Sweden)

    Masami Fukushima

    2013-05-01

    Full Text Available Tetrabromobisphenol A (TBBPA, a commonly used brominated flame retardant, also functions as an endocrine disruptor. Thus, the degradation of TBBPA has attracted considerable interest among the scientific community. Iron(III-porphyrin complexes are generally regarded as “green” catalysts and have been reported to catalyze the efficient degradation and dehalogenation of halogenated phenols in environmental wastewaters. However, they are quickly deactivated due to self-degradation in the presence of an oxygen donor, such as KHSO5. In the present study, an iron(III-tetrakis (p-sulfonatophenyl-porphyrin (FeTPPS was immobilized on imidazole-modified silica (FeTPPS/IPS via coordination of the Fe(III with the nitrogen atom in imidazole to suppress self-degradation and thus enhance the catalyst reusability. The oxidative degradation and debromination of TBBPA and the influence of humic acid (HA, a major component in leachates, on the oxidation of TBBPA was investigated. More than 95% of the TBBPA was degraded in the pH range from 3 to 8 in the absence of HA, while the optimal pH for the reaction was at pH 8 in the presence of HA. Although the rate of degradation was decreased in the presence of HA, over 95% of the TBBPA was degraded within 12 h in the presence of 28 mg-C L−1 of HA. At pH 8, the FeTPPS/IPS catalyst could be reused up to 10 times without any detectable loss of activity for TBBPA for degradation and debromination, even in the presence of HA.

  18. Heterogeneous biomimetic catalysis using iron porphyrin for cyclohexane oxidation promoted by chitosan

    Energy Technology Data Exchange (ETDEWEB)

    Huang, Guan, E-mail: huangg66@126.com; Liu, Yao; Cai, Jing Li; Chen, Xiang Feng; Zhao, Shu Kai; Guo, Yong An; Wei, Su Juan; Li, Xu

    2017-04-30

    Graphical abstract: A biomimetic catalyst of iron-tetrakis(4-sulfonatophenyl)porphyrin immobilized on powdered chitosan achieves efficient cyclohexane oxidation with high ketone and alcohol yields. - Highlights: • Fe (TPPS)/pd-CTS is an excellent catalyst for cyclohexane oxidation. • Amino ligation alters the electron cloud density around the iron cation. • Amino coordination likely reduces the activation energy of Fe (TPPS). • The catalyst achieved 22.9 mol% yields of cyclohexanone and cyclohexanol. - Abstract: This study investigates how ligands modulate metalloporphyrin activity with the goal of producing a practical biomimetic catalyst for use in the chemical industry. We immobilized iron porphyrinate [iron-tetrakis-(4-sulfonatophenyl)-porphyrin; Fe(III) (TPPS)] on powdered chitosan (pd-CTS) to form an immobilized catalyst Fe(III) (TPPS)/pd-CTS, which was characterized using modern spectroscopic techniques and used for catalytic oxidation of cyclohexane with O{sub 2}. Amino coordination to iron porphyrin in Fe(III) (TPPS)/pd-CTS altered the electron cloud density around the iron cation, probably by reducing the activation energy of Fe(III) (TPPS) and raising the reactivity of the iron ion catalytic center, thereby improving the catalytic efficiency. One milligram of Fe(III) (TPPS) catalyst can be reused three times for the oxidation reaction to yield an average of 22.9 mol% of cyclohexanone and cyclohexanol.

  19. Magnesium, magnesium alloys, and magnesium composites

    National Research Council Canada - National Science Library

    Gupta, M; Sharon, Nai Mui Ling

    2011-01-01

    .... With the popularity of magnesium-based materials in the automotive, aerospace, electronics, and sports equipment industries, and its unique role as a lightweight, energy-saving and high-performance...

  20. Electrolytic photodissociation of chemical compounds by iron oxide electrodes

    Science.gov (United States)

    Somorjai, Gabor A.; Leygraf, Christofer H.

    1984-01-01

    Chemical compounds can be dissociated by contacting the same with a p/n type semi-conductor diode having visible light as its sole source of energy. The diode consists of low cost, readily available materials, specifically polycrystalline iron oxide doped with silicon in the case of the n-type semi-conductor electrode, and polycrystalline iron oxide doped with magnesium in the case of the p-type electrode. So long as the light source has an energy greater than 2.2 electron volts, no added energy source is needed to achieve dissociation.

  1. Myth or Reality-Transdermal Magnesium?

    Science.gov (United States)

    Gröber, Uwe; Werner, Tanja; Vormann, Jürgen; Kisters, Klaus

    2017-07-28

    In the following review, we evaluated the current literature and evidence-based data on transdermal magnesium application and show that the propagation of transdermal magnesium is scientifically unsupported. The importance of magnesium and the positive effects of magnesium supplementation are extensively documented in magnesium deficiency, e.g., cardiovascular disease and diabetes mellitus. The effectiveness of oral magnesium supplementation for the treatment of magnesium deficiency has been studied in detail. However, the proven and well-documented oral magnesium supplementation has become questioned in the recent years through intensive marketing for its transdermal application (e.g., magnesium-containing sprays, magnesium flakes, and magnesium salt baths). In both, specialist and lay press as well as on the internet, there are increasing numbers of articles claiming the effectiveness and superiority of transdermal magnesium over an oral application. It is claimed that the transdermal absorption of magnesium in comparison to oral application is more effective due to better absorption and fewer side effects as it bypasses the gastrointestinal tract.

  2. Iron (III Ion Sensor Based on the Seedless Grown ZnO Nanorods in 3 Dimensions Using Nickel Foam Substrate

    Directory of Open Access Journals (Sweden)

    Mazhar Ali Abbasi

    2013-01-01

    Full Text Available In the present work, the seedless, highly aligned and vertical ZnO nanorods in 3 dimensions (3D were grown on the nickel foam substrate. The seedless grown ZnO nanorods were characterised by field emission scanning electron microscopy (FESEM, high resolution transmission electron microscopy (HRTEM, and X-ray diffraction (XRD techniques. The characterised seedless ZnO nanorods in 3D on nickel foam were highly dense, perpendicular to substrate, grown along the (002 crystal plane, and also composed of single crystal. In addition to this, these seedless ZnO nanorods were functionalized with trans-dinitro-dibenzo-18-6 crown ether, a selective iron (III ion ionophore, along with other components of membrane composition such as polyvinyl chloride (PVC, 2-nitopentylphenyl ether as plasticizer (NPPE, and tetrabutyl ammonium tetraphenylborate (TBATPB as conductivity increaser. The sensor electrode has shown high linearity with a wide range of detection of iron (III ion concentrations from 0.005 mM to 100 mM. The low limit of detection of the proposed ion selective electrode was found to be 0.001 mM. The proposed sensor also described high storage stability, selectivity, reproducibility, and repeatability and a quick response time of less than 10 s.

  3. [Peritoneal fluid iron levels in women with endometriosis].

    Science.gov (United States)

    Polak, Grzegorz; Wertel, Iwona; Tarkowski, Rafał; Kotarski, Jan

    2010-01-01

    Endometriosis is characterized by a cyclic hemorrhage within the peritoneal cavity. Accumulating data suggests that iron homeostasis in the peritoneal cavity may be disrupted by endometriosis. The aim of our study was to evaluate iron levels in peritoneal fluid (PF) of women with and without endometriosis. Seventy-five women were studied: 50 women with endometriosis and, as a reference group, 25 patients with functional follicle ovarian cysts. Iron concentrations in the PF were measured using a commercially available colorimetric assay kit. Iron concentrations were significantly higher in PF from women with endometriosis as compared to the reference group. Patients with stages III/IV endometriosis had significantly higher PF iron concentrations than women with stages I/II of the disease. Disrupted iron homeostasis in the peritoneal cavity of women with endometriosis plays a role in the pathogenesis of the disease.

  4. Magnesium stearine production via direct reaction of palm stearine and magnesium hydroxide

    Science.gov (United States)

    Pratiwi, M.; Ylitervo, P.; Pettersson, A.; Prakoso, T.; Soerawidjaja, T. H.

    2017-06-01

    The fossil oil production could not compensate with the increase of its consumption, because of this reason the renewable alternative energy source is needed to meet this requirement of this fuel. One of the methods to produce hydrocarbon is by decarboxylation of fatty acids. Vegetable oil and fats are the greatest source of fatty acids, so these can be used as raw material for biohydrocarbon production. From other researchers on their past researchs, by heating base soap from divalent metal, those metal salts will decarboxylate and produce hydrocarbon. This study investigate the process and characterization of magnesium soaps from palm stearine by Blachford method. The metal soaps are synthesized by direct reaction of palm stearine and magnesium hydroxide to produce magnesium stearine and magnesium stearine base soaps at 140-180°C and 6-10 bar for 3-6 hours. The operation process which succeed to gain metal soaps is 180°C, 10 bar, for 3-6 hours. These metal soaps are then compared with commercial magnesium stearate. Based on Thermogravimetry Analysis (TGA) results, the decomposition temperature of all the metal soaps were 250°C. Scanning Electron Microscope with Energy Dispersive X-ray (SEM-EDX) analysis have shown the traces of sodium sulphate for magnesium stearate commercial and magnesium hydroxide for both type of magnesium stearine soaps. The analysis results from Microwave Plasma-Atomic Emission Spectrometry (MP-AES) have shown that the magnesium content of magnesium stearine approximate with magnesium stearate commercial and lower compare with magnesium stearine base soaps. These experiments suggest that the presented saponification process method could produced metal soaps comparable with the commercial metal soaps.

  5. Low magnesium level

    Science.gov (United States)

    Low magnesium level is a condition in which the amount of magnesium in the blood is lower than normal. The medical ... that convert or use energy ( metabolism ). When the level of magnesium in the body drops below normal, ...

  6. System and process for production of magnesium metal and magnesium hydride from magnesium-containing salts and brines

    Science.gov (United States)

    McGrail, Peter B.; Nune, Satish K.; Motkuri, Radha K.; Glezakou, Vassiliki-Alexandra; Koech, Phillip K.; Adint, Tyler T.; Fifield, Leonard S.; Fernandez, Carlos A.; Liu, Jian

    2016-11-22

    A system and process are disclosed for production of consolidated magnesium metal products and alloys with selected densities from magnesium-containing salts and feedstocks. The system and process employ a dialkyl magnesium compound that decomposes to produce the Mg metal product. Energy requirements and production costs are lower than for conventional processing.

  7. Study on competitive adsorption mechanism among oxyacid-type heavy metals in co-existing system: Removal of aqueous As(V), Cr(III) and As(III) using magnetic iron oxide nanoparticles (MIONPs) as adsorbents

    Science.gov (United States)

    Lin, Sen; Lian, Cheng; Xu, Meng; Zhang, Wei; Liu, Lili; Lin, Kuangfei

    2017-11-01

    The adsorption and co-adsorption of As(V), Cr(VI) and As(III) onto the magnetic iron oxide nanoparticles (MIONPs) surface were investigated comprehensively to clarify the competitive processes. The results reflected that the MIONPs had remarkable preferential adsorption to As(V) compared with Cr(VI) and As(III). And it was determined, relying on the analysis of heavy metals variations on the MIONPs surface at different co-adsorption stages using FTIR and XPS, that the inner-sphere complexation made vital contribution to the preferential adsorption for As(V), corresponding with the replacement experiments where As(V) could grab extensively active sites on the MIONPs pre-occupied by As(III) or Cr(V) uniaxially. The desorption processes displayed that the strongest affinity between the MIONPs and As(V) where As(III) and Cr(VI) were more inclined to wash out. It is wish to provide a helpful direction with this study for the wastewater treatment involving multiple oxyacid-type heavy metals using MIONPs as adsorbents.

  8. Anticorrosive magnesium hydroxide coating on AZ31 magnesium alloy by hydrothermal method

    International Nuclear Information System (INIS)

    Zhu Yanying; Wu Guangming; Xing Guangjian; Li Donglin; Zhao Qing; Zhang Yunhong

    2009-01-01

    Magnesium alloys are potential biodegradable biomaterials in orthopedic surgery. However, the rapid degradation rate has limited their application in biomedical field. A great deal of studies have been done to improve the resistance of magnesium alloys. In this article, An anticorrosive magnesium hydroxide coating with a thickness of approximately 100μm was formed on an AZ31 magnesium alloy by hydrothermal method. The morphology of the coatings were observed by an optical microscope and SEM. And the samples were soaked in hank's solution (37 deg. C) to investigate the corrosion resistance. Magnesium alloy AZ31 with magnesium hydroxide coatings present superior corrosion resistance than untreated samples.

  9. Magnesium and Space Flight

    Science.gov (United States)

    Smith, Scott M.; Zwart, Sara R.

    2015-01-01

    Magnesium is an essential nutrient for muscle, cardiovascular, and bone health on Earth, and during space flight. We sought to evaluate magnesium status in 43 astronauts (34 male, 9 female; 47 ± 5 years old, mean ± SD) before, during, and after 4–6-month space missions. We also studied individuals participating in a ground analog of space flight (head-down-tilt bed rest; n = 27 (17 male, 10 female), 35 ± 7 years old). We evaluated serum concentration and 24-h urinary excretion of magnesium, along with estimates of tissue magnesium status from sublingual cells. Serum magnesium increased late in flight, while urinary magnesium excretion was higher over the course of 180-day space missions. Urinary magnesium increased during flight but decreased significantly at landing. Neither serum nor urinary magnesium changed during bed rest. For flight and bed rest, significant correlations existed between the area under the curve of serum and urinary magnesium and the change in total body bone mineral content. Tissue magnesium concentration was unchanged after flight and bed rest. Increased excretion of magnesium is likely partially from bone and partially from diet, but importantly, it does not come at the expense of muscle tissue stores. While further study is needed to better understand the implications of these findings for longer space exploration missions, magnesium homeostasis and tissue status seem well maintained during 4–6-month space missions. PMID:26670248

  10. Magnesium and Space Flight

    Directory of Open Access Journals (Sweden)

    Scott M. Smith

    2015-12-01

    Full Text Available Magnesium is an essential nutrient for muscle, cardiovascular, and bone health on Earth, and during space flight. We sought to evaluate magnesium status in 43 astronauts (34 male, 9 female; 47 ± 5 years old, mean ± SD before, during, and after 4–6-month space missions. We also studied individuals participating in a ground analog of space flight (head-down-tilt bed rest; n = 27 (17 male, 10 female, 35 ± 7 years old. We evaluated serum concentration and 24-h urinary excretion of magnesium, along with estimates of tissue magnesium status from sublingual cells. Serum magnesium increased late in flight, while urinary magnesium excretion was higher over the course of 180-day space missions. Urinary magnesium increased during flight but decreased significantly at landing. Neither serum nor urinary magnesium changed during bed rest. For flight and bed rest, significant correlations existed between the area under the curve of serum and urinary magnesium and the change in total body bone mineral content. Tissue magnesium concentration was unchanged after flight and bed rest. Increased excretion of magnesium is likely partially from bone and partially from diet, but importantly, it does not come at the expense of muscle tissue stores. While further study is needed to better understand the implications of these findings for longer space exploration missions, magnesium homeostasis and tissue status seem well maintained during 4–6-month space missions.

  11. Analysis of the structure of poly-3-hydroxybutyrate ultrathin fibers modified with iron (III) complex with tetraphenylporphyrin

    Science.gov (United States)

    Olkhov, A. A.; Karpova, S. G.; Lobanov, A. V.; Tyubaeva, P. M.; Artemov, N. S.; Iordansky, A. L.

    2017-12-01

    In the treatment of many infectious diseases and cancer, transdermal systems based on solid polymer matrices or gels containing functional substances with antiseptic (antibacterial) properties are often used. One of the most promising types of matrices with antiseptic properties are the ones of nano- and microfiber-bonded cloth obtained by electrospinning based on biopolymer poly(3-hydroxybutyrate). The present work investigates the effects of iron (III) complex with tetraphenylporphyrin and the influence on the geometry, crystalline order and molecular dynamics in the intercrystalline (amorphous phase) of ultrathin PHB fibers.

  12. Efficient catalytic cycloalkane oxidation employing a "helmet" phthalocyaninato iron(III) complex.

    Science.gov (United States)

    Brown, Elizabeth S; Robinson, Jerome R; McCoy, Aaron M; McGaff, Robert W

    2011-06-14

    We have examined the catalytic activity of an iron(III) complex bearing the 14,28-[1,3-diiminoisoindolinato]phthalocyaninato (diiPc) ligand in oxidation reactions with three substrates (cyclohexane, cyclooctane, and indan). This modified metallophthalocyaninato complex serves as an efficient and selective catalyst for the oxidation of cyclohexane and cyclooctane, and to a far lesser extent indan. In the oxidations of cyclohexane and cyclooctane, in which hydrogen peroxide is employed as the oxidant under inert atmosphere, we have observed turnover numbers of 100.9 and 122.2 for cyclohexanol and cyclooctanol, respectively. The catalyst shows strong selectivity for alcohol (vs. ketone) formation, with alcohol to ketone (A/K) ratios of 6.7 and 21.0 for the cyclohexane and cyclooctane oxidations, respectively. Overall yields (alcohol + ketone) were 73% for cyclohexane and 92% for cyclooctane, based upon the total hydrogen peroxide added. In the catalytic oxidation of indan under similar conditions, the TON for 1-indanol was 10.1, with a yield of 12% based upon hydrogen peroxide. No 1-indanone was observed in the product mixture.

  13. Glasses Containing Iron (II, III) Oxides For Immobilization Of Radioactive Technetium

    International Nuclear Information System (INIS)

    Kruger, A.A.; Heo, J.; Xu, K.; Choi, J.K.; Hrma, P.R.; Um, W.

    2011-01-01

    Technetium-99 (Tc-99) has posed serious environmental threats as US Department of Energy's high-level waste. This work reports the vitrification of Re, as surrogate for Tc-99, by iron-borosilicate and iron-phosphate glasses, respectively. Iron-phosphate glasses can dissolve Re as high as ∼ 1.2 wt. %, which can become candidate waste forms for Tc-99 disposal, while borosilicate glasses can retain less than 0.1 wt. % of Re due to high melting temperature and long melting duration. Vitrification of Re as Tc-99's mimic was investigated using iron-borosilicate and iron-phosphate glasses. The retention of Re in borosilicate glasses was less than 0.1 wt. % and more than 99 wt. % of Re were volatilized due to high melting temperature and long melting duration. Because the retention of Re in iron-phosphate glasses is as high as 1.2 wt. % and the volatilization is reduced down to ∼50 wt. %, iron-phosphate glasses can be one of the glass waste form candidates for Tc (or Re) disposal. The investigations of chemical durability and leaching test of iron-phosphate glasses containing Re are now underway to test the performance of the waste form.

  14. Mechanistic Study of Monodisperse Iron Oxide Nanocrystals ...

    African Journals Online (AJOL)

    To gain better insight into the formation of iron oxide nanocrystals from the solution phase thermal decomposition of iron (III) oleate complex, different reaction conditions including time, heating ramp, as well as concentrations of iron oleate precursor and oleic acid ligand were systematically varied and the resulting ...

  15. Iron Profile and Glycaemic Control in Patients with Type 2 Diabetes Mellitus

    Directory of Open Access Journals (Sweden)

    Gunjan Misra

    2016-12-01

    Full Text Available Iron overload is increasingly being connected to insulin resistance in Type 2 Diabetes Mellitus (T2DM patients. Free iron causes the assembly of reactive oxygen species that invariably steer the body’s homeostasis towards oxidative stress-mediated diabetic complications. This study aims to assess the serum iron, total iron binding capacity (TIBC, and percentage transferrin saturation (Tsat of 150 subjects divided into three groups (I,II,III of 50. Healthy individuals (controls constituted Group I. Group II consisted of T2DM patients with optimal glycaemic control. T2DM patients with suboptimal glycaemic control formed group III. Mean serum free iron concentration was 105.34 ± 3.5, 107.33 ± 3.45, and 125.58 ± 3.45 μg/dL in Group I, Group II, and Group III, respectively. Mean serum TIBC concentration in Group I, Group II, and Group III was 311.39 ± 5.47, 309.63 ± 6.1, and 284.2 ± 3.18 μg/dL, respectively. Mean serum transferrin saturation (% in Group I, Group II, and Group III was 34.17 ± 1.21, 35.02 ± 1.2, and 44.39 ± 1.07, respectively. The difference between TIBC, mean serum free iron concentration, and transferrin saturation between Group I and Group III (for all, p values <0.001, as well as between Group II and Group III (p values 0.0012, 0.0015, and <0.0001, respectively was statistically significant. The fasting plasma glucose values of Groups II and III were significantly higher than those of Group I, (p < 0.0001. Glycated haemoglobin (HbA1c values were also shown to increase from Group I to II and then III, and the increase was highly significant (all p values <0.0001. Thus, decreased glycaemic control and an increase in the glycation of haemoglobin was the key to elevation in serum iron values and alterations in other parameters. However, a significant correlation was absent between serum iron and HbA1c (r = 0.05 and transferrin saturation (r = 0.0496 in Group III.

  16. Kinetic, spectroscopic and chemical modification study of iron release from transferrin; iron(III) complexation to adenosine triphosphate

    International Nuclear Information System (INIS)

    Thompson, C.P.

    1985-01-01

    Amino acids other than those that serve as ligands have been found to influence the chemical properties of transferrin iron. The catalytic ability of pyrophosphate to mediate transferrin iron release to a terminal acceptor is largely quenched by modification non-liganded histine groups on the protein. The first order rate constants of iron release for several partially histidine modified protein samples were measured. A statistical method was employed to establish that one non-liganded histidine per metal binding domain was responsible for the reduction in rate constant. These results imply that the iron mediated chelator, pyrophosphate, binds directly to a histidine residue on the protein during the iron release process. EPR spectroscopic results are consistent with this interpretation. Kinetic and amino acid sequence studies of ovotransferrin and lactoferrin, in addition to human serum transferrin, have allowed the tentative assignment of His-207 in the N-terminal domain and His-535 in the C-terminal domain as the groups responsible for the reduction in rate of iron release. The above concepts have been extended to lysine modified transferrin. Complexation of iron(II) to adenosine triphosphate (ATP) was also studied to gain insight into the nature of iron-ATP species present at physiological pH. 31 P NMR spectra are observed when ATP is presented in large excess

  17. Trace elements and heavy metals in hair of stage III breast cancer patients.

    Science.gov (United States)

    Benderli Cihan, Yasemin; Sözen, Selim; Oztürk Yıldırım, Sema

    2011-12-01

    This prospective study was designed to compare the hair levels of 36 elements in 52 patients with stage III breast cancer to those of an equal number of healthy individuals. Principal component and cluster analysis were used for source of identification and apportionment of heavy metals and trace elements in these two groups. A higher average level of iron was found in samples from patients while controls had higher levels of calcium. Both patients and controls had elevated levels of tin, magnesium, zinc, and sodium. Almost all element values in cancer patients showed higher dispersion and asymmetry than in healthy controls. Between the two groups, there were statistically significant differences in the concentrations of silver, arsenic, gold, boron, barium, beryllium, calcium, cadmium, cerium, cobalt, cesium, gadolinium, manganese, nickel, lead, antimony, scandium, selenium, and zinc (p heavy metals and trace elements in the hair of breast cancer patients in comparison to healthy controls. These results could be of significance in the diagnosis of breast cancer.

  18. Reconstruction of Extracellular Respiratory Pathways for Iron(III Reduction in Shewanella oneidensis strain MR-1

    Directory of Open Access Journals (Sweden)

    Dan eCoursolle

    2012-02-01

    Full Text Available Shewanella oneidensis strain MR-1 is a facultative anaerobic bacterium capable of respiring a multitude of electron acceptors, many of which require the Mtr respiratory pathway. The core Mtr respiratory pathway includes a periplasmic c-type cytochrome (MtrA, an integral outer membrane β-barrel protein (MtrB and an outer membrane-anchored c-type cytochrome (MtrC. Together, these components facilitate transfer of electrons from the c-type cytochrome CymA in the cytoplasmic membrane to electron acceptors at and beyond the outer membrane. The genes encoding these core proteins have paralogs in the S. oneidensis genome (mtrB and mtrA each have four while mtrC has three and some of the paralogs of mtrC and mtrA are able to form functional Mtr complexes. We demonstrate that of the additional three mtrB paralogs found in the S. oneidensis genome, only MtrE can replace MtrB to form a functional respiratory pathway to soluble iron(III citrate. We also evaluate which mtrC / mtrA paralog pairs (a total of 12 combinations are able to form functional complexes with endogenous levels of mtrB paralog expression. Finally, we reconstruct all possible functional Mtr complexes and test them in a S. oneidensis mutant strain where all paralogs have been eliminated from the genome. We find that each combination tested with the exception of MtrA / MtrE / OmcA is able to reduce iron(III citrate at a level significantly above background. The results presented here have implications towards the evolution of anaerobic extracellular respiration in Shewanella and for future studies looking to increase the rates of substrate reduction for water treatment, bioremediation, or electricity production.

  19. Use of Fe(III) oxalate for oxidativewastewater treatment; Einsatz von Fe(III)-Oxalat zur chemisch-oxidativen Abwasserbehandlung

    Energy Technology Data Exchange (ETDEWEB)

    Kim, S.M.; Vogelpohl, A. [Clausthal Univ., Clausthal-Zellerfeld (Germany). Inst. fuer Thermische Verfahrenstechnik

    1998-08-01

    Iron(III)-oxalate was used as an iron catalyst for the Photo Fenton reaction. Iron(III) oxalations ([Fe(C{sub 2}O{sub 4}){sub 3}]{sup 3-}) are reduced to Fe(II) by irradiation using near UV-light ({lambda} = 300 - 400 nm) or visible light ({lambda} > 400 nm). At the same time, CO{sub 2}{sup -} or C{sub 2}O{sub 4}{sup -}-radicals originate, which cause the secondary reduction of Fe(III) to Fe(II). By means of the photolytically regenerated Fe(II) ions, hydroxyl radicals are increasingly formed, so that the degradation of organic substances is accelerated. The work aimed to assess the catalytic effect of Fe(III) oxalate for photochemical oxidation processes and to establish the parameters influencing further treatment of leachate from a municipal waste sanitary landfill by means of technical-scale experiments. (orig.) [Deutsch] In der vorliegenden Arbeit wurde Eisen(III)-Oxalat als Eisenkatalysator fuer die Photo-Fenton-Reaktion eingesetzt. Eisen(III)-Oxalationen ([Fe(C{sub 2}O{sub 4}){sub 3}]{sup 3-}) werden durch Strahlung mit nahem UV-Licht ({lambda}=300 bis 400 nm) oder mit sichtbarem Licht ({lambda}>400 nm) zu Fe(II) reduziert. Gleichzeitig entstehen CO{sub 2}{sup .-} oder C{sub 2}O{sub 4}{sup .-}-Radikale, die eine sekundaere Reduktion von Fe(III) zu Fe(II) bewirken. Mit Hilfe der photolytiisch regenerierten Fe(II)-Ionen werden vermehrt Hydroxylradikale gebildet und damit die Abbaugeschwindigkeit der organischen Substanzen beschleunigt. Ziel der hier vorgestellten Arbeit war es, die katalytische Wirkung von Fe(III)-Oxalat fuer photochemische Oxidationsverfahren abzuschaetzen und die Einflussparameter zur weitergehenden Behandlung eines Deponiesickerwassers aus Hausmuelldeponie anhand von Technikumsversuchen zu ermitteln. (orig.)

  20. In vitro studies on magnesium uptake by rumen epithelium using magnesium-28

    International Nuclear Information System (INIS)

    Martens, H.; Harmeyer, J.; Breves, G.

    1976-01-01

    Magnesium-28 transfer across the rumen epithelium has been studied using surviving epithelia in an in vitro system. Net absorption of magnesium in the direction from lumen to blood could be observed as the result of two opposite unidirectional fluxes of different magnitude. Net uptake of magnesium occurred against an electrical potential difference, and was associated with the presence of an unaltered transmural potential difference in the mucosal tissue. Both the net transfer of magnesium and the transmural potential difference decreased during two hours of incubation. Unidirectional fluxes of magnesium and net efflux from the lumen were markedly reduced although not completely inhibited by the addition of ouabain (10 -4 mol/l). The findings suggest that the mechanism of magnesium absorption by the rumen epithelium can be considered as an active transport process, and that the rumen is the main area of magnesium absorption in the living animal. (author)

  1. Lithium, rubidium and cesium ion removal using potassium iron(III) hexacyanoferrate(II) supported on polymethylmethacrylate

    International Nuclear Information System (INIS)

    Shabana Taj; Din Muhammad; Ashraf Chaudhry, M.; Muhammad Mazhar

    2011-01-01

    Potassium iron(III) hexacyanoferrate(II) supported on poly methyl methacrylate, has been developed and investigated for the removal of lithium, rubidium and cesium ions. The material is capable of sorbing maximum quantities of these ions from 5.0, 2.5 and 4.5 M HNO 3 solutions respectively. Sorption studies, conducted individually for each metal ion, under optimized conditions, demonstrated that it was predominantly physisorption in the case of lithium ion while shifting to chemisorption with increasing ionic size. Distribution coefficient (K d ) values followed the order Cs + > Rb + > Li + at low concentrations of metal ions. Following these findings Cs + can preferably be removed from 1.5 to 5 M HNO 3 nuclear waste solutions. (author)

  2. Synthesis, Physicochemical Properties, and Antimicrobial Studies of Iron (III Complexes of Ciprofloxacin, Cloxacillin, and Amoxicillin

    Directory of Open Access Journals (Sweden)

    Fabian I. Eze

    2014-01-01

    Full Text Available Iron (III complexes of ciprofloxacin, amoxicillin, and cloxacillin were synthesized and their aqueous solubility profiles, relative stabilities, and antimicrobial properties were evaluated. The complexes showed improved aqueous solubility when compared to the corresponding ligands. Relative thermal and acid stabilities were determined spectrophotometrically and the results showed that the complexes have enhanced thermal and acid stabilities when compared to the pure ligands. Antimicrobial studies showed that the complexes have decreased activities against most of the tested microorganisms. Ciprofloxacin complex, however, showed almost the same activity as the corresponding ligand. Job’s method of continuous variation suggested 1 : 2 metals to ligand stoichiometry for ciprofloxacin complex but 1 : 1 for cloxacillin complex.

  3. [Study on the relationship between PMI and the concentration of magnesium and iron in the vitreous humor of rabbit after death].

    Science.gov (United States)

    Xu, Xiao-ming; Gong, Zhi-qiang; Sun, Yue-gang

    2002-05-01

    To seek a exact method of estimating postmortem interval (PMI). This study detected the concentration of magnesium (Mg) and iron (Fe) in vitreous humor of rabbit at 96 h after death and explored the relationship between their concentration and PMI using a method ICP-MS. The concentra-tion of Mg in vitreous humor of rabbit at 48 h after death and Fe in vitreous humor of rabbit at 6-48 h after death were related to PMI significantly. The formulae of the relationship between PMI and Mg concentrations is y = 0.0738x2 + 0.6997x + 11.45 (within 48 h, R2 = 0.9119). The formulae of the relationship between PMI and Fe concentrations is y = 0.0411x2 - 0.3148x + 1.4113 (within 6-48 h, R2 = 0.9594). The concentration of Mg in vitreous humor of rabbit at 48 h after death and Fe in vitreous humor of rabbit at 6-48 h after death may be as reference indicator to estimate PMI.

  4. Magnesium, magnesium alloys, and magnesium composites

    National Research Council Canada - National Science Library

    Gupta, M; Sharon, Nai Mui Ling

    2011-01-01

    ... of science, characteristics, and applications. It emphasizes the properties of magnesium-based composites and the effects of different types of reinforcements, from micron length to nanometer scale, on the properties of the resulting composites...

  5. Effect of operating parameters on indium (III) ion removal by iron electrocoagulation and evaluation of specific energy consumption

    Energy Technology Data Exchange (ETDEWEB)

    Chou, Wei-Lung, E-mail: wlchou0388@hotmail.com [Department of Safety, Health and Environmental Engineering, Hungkuang University, Sha-Lu, Taichung 433, Taiwan (China); Wang, Chih-Ta [Department of Safety Health and Environmental Engineering, Chung Hwa University of Medical Technology, Tainan Hsien 717, Taiwan (China); Huang, Kai-Yu [Department of Safety, Health and Environmental Engineering, Hungkuang University, Sha-Lu, Taichung 433, Taiwan (China)

    2009-08-15

    The aim of this study is to investigate the effects of operating parameters on the specific energy consumption and removal efficiency of synthetic wastewater containing indium (III) ions by electrocoagulation in batch mode using an iron electrode. Several parameters, including different electrode pairs, supporting electrolytes, initial concentration, pH variation, and applied voltage, were investigated. In addition, the effects of applied voltage, supporting electrolyte, and initial concentration on indium (III) ion removal efficiency and specific energy consumption were investigated under the optimum balance of reasonable removal efficiency and relative low energy consumption. Experiment results indicate that a Fe/Al electrode pair is the most efficient choice of the four electrode pairs in terms of energy consumption. The optimum supporting electrolyte concentration, initial concentration, and applied voltage were found to be 100 mg/l NaCl, 20 mg/l, and 20 V, respectively. A higher pH at higher applied voltage (20 or 30 V) enhanced the precipitation of indium (III) ion as insoluble indium hydroxide, which improved the removal efficiency. Results from the indium (III) ion removal kinetics show that the kinetics data fit the pseudo second-order kinetic model well. Finally, the composition of the sludge produced was characterized with energy dispersion spectra (EDS).

  6. Effect of operating parameters on indium (III) ion removal by iron electrocoagulation and evaluation of specific energy consumption

    International Nuclear Information System (INIS)

    Chou, Wei-Lung; Wang, Chih-Ta; Huang, Kai-Yu

    2009-01-01

    The aim of this study is to investigate the effects of operating parameters on the specific energy consumption and removal efficiency of synthetic wastewater containing indium (III) ions by electrocoagulation in batch mode using an iron electrode. Several parameters, including different electrode pairs, supporting electrolytes, initial concentration, pH variation, and applied voltage, were investigated. In addition, the effects of applied voltage, supporting electrolyte, and initial concentration on indium (III) ion removal efficiency and specific energy consumption were investigated under the optimum balance of reasonable removal efficiency and relative low energy consumption. Experiment results indicate that a Fe/Al electrode pair is the most efficient choice of the four electrode pairs in terms of energy consumption. The optimum supporting electrolyte concentration, initial concentration, and applied voltage were found to be 100 mg/l NaCl, 20 mg/l, and 20 V, respectively. A higher pH at higher applied voltage (20 or 30 V) enhanced the precipitation of indium (III) ion as insoluble indium hydroxide, which improved the removal efficiency. Results from the indium (III) ion removal kinetics show that the kinetics data fit the pseudo second-order kinetic model well. Finally, the composition of the sludge produced was characterized with energy dispersion spectra (EDS).

  7. Effect of Organic Substances on the Efficiency of Fe(Ii to Fe(Iii Oxidation and Removal of Iron Compounds from Groundwater in the Sedimentation Process

    Directory of Open Access Journals (Sweden)

    Krupińska Izabela

    2017-09-01

    Full Text Available One of the problems with iron removal from groundwater is organic matter. The article presents the experiments involved groundwater samples with a high concentration of total iron - amounting to 7.20 mgFe/dm3 and an increased amount of organic substances (TOC from 5.50 to 7.50 mgC/dm3. The water samples examined differed in terms of the value of the ratio of the TOC concentration and the concentration of total iron (D. It was concluded that with increase in the coexistence ratio of organic substances and total iron in water (D = [TOC]/[Fetot], efficiency of Fe(II to Fe(III oxidization with dissolved oxygen decreased, while the oxidation time was increasing. This rule was not demonstrated for potassium manganate (VII when used as an oxidizing agent. The application of potassium manganate (VII for oxidation of Fe(II ions produced the better results in terms of total iron concentration reduction in the sedimentation process than the oxidation with dissolved oxygen.

  8. Effect of Organic Substances on the Efficiency of Fe(Ii) to Fe(Iii) Oxidation and Removal of Iron Compounds from Groundwater in the Sedimentation Process

    Science.gov (United States)

    Krupińska, Izabela

    2017-09-01

    One of the problems with iron removal from groundwater is organic matter. The article presents the experiments involved groundwater samples with a high concentration of total iron - amounting to 7.20 mgFe/dm3 and an increased amount of organic substances (TOC from 5.50 to 7.50 mgC/dm3). The water samples examined differed in terms of the value of the ratio of the TOC concentration and the concentration of total iron (D). It was concluded that with increase in the coexistence ratio of organic substances and total iron in water (D = [TOC]/[Fetot]), efficiency of Fe(II) to Fe(III) oxidization with dissolved oxygen decreased, while the oxidation time was increasing. This rule was not demonstrated for potassium manganate (VII) when used as an oxidizing agent. The application of potassium manganate (VII) for oxidation of Fe(II) ions produced the better results in terms of total iron concentration reduction in the sedimentation process than the oxidation with dissolved oxygen.

  9. APPLICATION OF SPHEROIDIZING «CHIPS»-MASTER ALLOY ON COPPER BASE CONTAINING NANOSCALE PARTICLES OF YTTRIUM OXIDE FOR HIGH-STRENGTH CAST IRON

    Directory of Open Access Journals (Sweden)

    A. S. Kalinichenko

    2016-01-01

    Full Text Available The peculiarity of the technology of obtaining high-strength cast iron is application in out-furnace treatment various inoculants containing magnesium. In practice of foundry production spheroidizing master alloys based on ferrosilicon (Fe-Si-Mg type and «heavy» alloying alloys on copper and nickel base are widespread. The urgent issue is to improve their efficiency by increasing the degree of magnesium assimilation, reduction of specific consumption of additives, and minimizing dust and gas emissions during the process of spheroidizing treatment of liquid iron. One method of solving this problem is the use of inoculants in a compact form in which the process of dissolution proceeds more efficiently. For example, rapidly quenched granules or «chip»-inoculants are interesting to apply.The aim of present work was to study the peculiarities of production and application of «Chips»-inoculants on copper and magnesium base with additions of yttrium oxide. The principle of mechatronics was used, including the briquetting inoculants’ components after their mixing with the subsequent high-speed mechanical impact and obtaining plates with a thickness of 1–2 mm.Spheroidizing treatment of molten metal has been produced by ladle method using «Chips»-inoculants in the amount of 0.8%. Secondary graphitization inoculation was not performed. Studies have shown that when the spheroidizing treatment of ductile iron was performed with inoculants developed, the process of interaction of magnesium with the liquid melt runs steadily without significant pyroeffect and emissions of metal outside of the ladle.This generates a structure of spheroidal graphite of regular shape (SGf5. The presence in the inoculant of yttrium oxide has a positive impact on the spheroidal graphite counts and the tendency of high-strength cast iron to form «white» cast iron structure. Mechanical properties of the obtained alloy correspond to high-strength cast iron HSCI60.

  10. Iron-57 and iridium-193 Moessbauer spectroscopic studies of supported iron-iridium catalysts

    International Nuclear Information System (INIS)

    Berry, F.J.; Jobson, S.

    1988-01-01

    57 Fe and 193 Ir Moessbauer spectroscopy shows that silica- and alumina-supported iron-iridium catalysts formed by calcination in air contain mixtures of small particle iron(III) oxide and iridium(IV) oxide. The iridium dioxide in both supported catalysts is reduced in hydrogen to metallic iridium. The α-Fe 2 O 3 in the silica supported materials is predominantly reduced in hydrogen to an iron-iridium alloy whilst in the alumina-supported catalyst the iron is stabilised by treatment in hydrogen as iron(II). Treatment of a hydrogen-reduced silica-supported iron catalyst in hydrogen and carbon monoxide is accompanied by the formation of iron carbides. Carbide formation is not observed when the iron-iridium catalysts are treated in similar atmospheres. The results from the bimetallic catalysts are discussed in terms of the hydrogenation of associatively adsorbed carbon monoxide and the selectivity of supported iron-iridium catalysts to methanol formation. (orig.)

  11. Magnesium Hydroxide

    Science.gov (United States)

    Magnesium hydroxide is used on a short-term basis to treat constipation.This medication is sometimes prescribed ... Magnesium hydroxide come as a tablet and liquid to take by mouth. It usually is taken as ...

  12. Magnesium nutrition of apple trees. III. Comparison of different methods of magnesium fertilization

    Directory of Open Access Journals (Sweden)

    A. Sadowski

    2015-06-01

    Full Text Available In the period 1969-1973 two experiments were performed in young orchards in Central Poland: a four-year experiment at Julianów, on sandy loamy soil on underlying sand and one-year experiment at Kośmin, on sandy loam soil on clay loam. At Kosmin, in spite of a high Mg content in the subsoil, Mg deficiency symptoms appeared, because of shallow rooting owing to poor aeration. In both experiments, foliar sprays with epsomite were less effective than fertilization to the soil; at Kośmin even eight sprays were less effective than soil dressings. Mg losses from a sandy soil due to leaching were high, particularly where sand was present in the whole profile; under these conditions the least losses of Mg were from split doses of epsomite (Mg3x120. Single doses of epsomite were the most effective in increasing leaf Mg content, reducing Mg deficiency symptoms and promoting growth of trees in the first year after application; in the later years split doses of epsomite and a single initial dose of magnesium lime were more effective. Effects of Mg fertilization on growth and yields of apples were rather slight, when K fertilizer doses were low. No effect of Mg fertilization upon fruit drop and fruit quality was found. Preliminary recommendations for practice are given.

  13. Research Progress in Plasma arc welding of Magnesium Alloys and Magnesium Matrix Composites

    Science.gov (United States)

    Hui, Li; Yang, Zou; Yongbo, Li; Lei, Jiao; Ruijun, Hou

    2017-11-01

    Magnesium alloys and magnesium matrix composites by means of its excellent performance have wide application prospect in electronics, automotive, biotechnology, aerospace field, and welding technology has become a key of restricting its application. This paper describes the welding characteristics of magnesium, the obvious advantages in the application and the domestic and foreign research advance technology of plasma arc welding of magnesium, and summarizes the existing problems and development trends of plasma arc welding technology of magnesium.

  14. FOCUS ON MAGNESIUM BASED DRUGS

    Directory of Open Access Journals (Sweden)

    I. I. Esenova

    2011-01-01

    Full Text Available Magnesium deficiency in the organism is one of the most common human deficiency states. The prevalence of magnesium deficiency is about 15%, and suboptimal magnesium level is observed more than in 30% of people in the general population. Clinical signs of hypomagnesaemia are observed in 40% of patients in general care hospitals, in 70% of patients - in intensive care units, and magnesium deficiency occurs in 90% of patients with acute coronary syndrome. Magnesium metabolic disorders in the organism accelerate significantly development of complications of coronary heart disease, hypertension, type 2 diabetes, asthma and a number of neurological and psychiatric diseases. The value of this macro in the body is well studied, and its daily need is identified depending on age and sex. It is known that magnesium intake with the food does not cover an organism need. It is a rationale for preventive and therapeutic use of magnesium based drugs in various diseases. Organic salts of magnesium are recommended for these purposes. Magnesium metabolic disorders, approaches to pharmacotherapeutic correction of magnesium deficiency, advantages of magnesium salts of orotic acid are reviewed.

  15. Modification of glassy carbon electrode with multi-walled carbon nanotubes and iron(III)-porphyrin film: Application to chlorate, bromate and iodate detection

    International Nuclear Information System (INIS)

    Salimi, Abdollah; MamKhezri, Hussein; Hallaj, Rahman; Zandi, Shiva

    2007-01-01

    In this study, multi-wall carbon nanotubes (MWCTs) is evaluated as a transducer, stabilizer and immobilization matrix for the construction of amperometric sensor based on iron-porphyrin. 5,10,15,20-Tetraphenyl-21H,23H-porphine iron(III) chloride (Fe(III)P) adsorbed on MWCNTs immobilized on the surface of glassy carbon electrode. Cyclic voltammograms of the Fe(III)P-incorporated-MWCNTs indicate a pair of well-defined and nearly reversible redox couple with surface confined characteristics at wide pH range (2-12). The surface coverage (Γ) and charge transfer rate constant (k s ) of Fe(III)P immobilized on MWCNTs were 7.68 x 10 -9 mol cm -2 and 1.8 s -1 , respectively, indicating high loading ability of MWCNTs for Fe(III)P and great facilitation of the electron transfer between Fe(III)P and carbon nanotubes immobilized on the electrode surface. Modified electrodes exhibit excellent electrocatalytic activity toward reduction of ClO 3 - , IO 3 - and BrO 3 - in acidic solutions. The catalytic rate constants for catalytic reduction of bromate, chlorate and iodate were 6.8 x 10 3 , 7.4 x 10 3 and 4.8 x 10 2 M -1 s -1 , respectively. The hydrodynamic amperometry of rotating-modified electrode at constant potential versus reference electrode was used for detection of bromate, chlorate and iodate. The detection limit, linear calibration range and sensitivity for chlorate, bromate and iodate detections were 0.5 μM, 2 μM to 1 mM, 8.4 nA/μM, 0.6 μM, 2 μM to 0.15 mM, 11 nA/μM, and 2.5 μM, 10 μM to 4 mM and 1.5 nA/μM, respectively. Excellent electrochemical reversibility of the redox couple, good reproducibility, high stability, low detection limit, long life time, fast amperometric response time, wide linear concentration range, technical simplicity and possibility of rapid preparation are great advantages of this sensor. The obtained results show promising practical application of the Fe(III)P-MWCNTs-modified electrode as an amperometric sensor for chlorate, iodate and

  16. Modification of glassy carbon electrode with multi-walled carbon nanotubes and iron(III)-porphyrin film: Application to chlorate, bromate and iodate detection

    Energy Technology Data Exchange (ETDEWEB)

    Salimi, Abdollah [Department of Chemistry, University of Kurdistan, P.O. Box 416, Sanandaj (Iran, Islamic Republic of); Nanotechnology Research Center of University of Kurdistan, P.O. Box 416, Sanandaj (Iran, Islamic Republic of); E-mail: absalimi@uok.ac.ir; MamKhezri, Hussein [Department of Chemistry, University of Kurdistan, P.O. Box 416, Sanandaj (Iran, Islamic Republic of); Hallaj, Rahman [Department of Chemistry, University of Kurdistan, P.O. Box 416, Sanandaj (Iran, Islamic Republic of); Zandi, Shiva [Laboratory of Biochemistry, Kurdistan Medical University, Sanandaj (Iran, Islamic Republic of)

    2007-06-10

    In this study, multi-wall carbon nanotubes (MWCTs) is evaluated as a transducer, stabilizer and immobilization matrix for the construction of amperometric sensor based on iron-porphyrin. 5,10,15,20-Tetraphenyl-21H,23H-porphine iron(III) chloride (Fe(III)P) adsorbed on MWCNTs immobilized on the surface of glassy carbon electrode. Cyclic voltammograms of the Fe(III)P-incorporated-MWCNTs indicate a pair of well-defined and nearly reversible redox couple with surface confined characteristics at wide pH range (2-12). The surface coverage ({gamma}) and charge transfer rate constant (k {sub s}) of Fe(III)P immobilized on MWCNTs were 7.68 x 10{sup -9} mol cm{sup -2} and 1.8 s{sup -1}, respectively, indicating high loading ability of MWCNTs for Fe(III)P and great facilitation of the electron transfer between Fe(III)P and carbon nanotubes immobilized on the electrode surface. Modified electrodes exhibit excellent electrocatalytic activity toward reduction of ClO{sub 3} {sup -}, IO{sub 3} {sup -} and BrO{sub 3} {sup -} in acidic solutions. The catalytic rate constants for catalytic reduction of bromate, chlorate and iodate were 6.8 x 10{sup 3}, 7.4 x 10{sup 3} and 4.8 x 10{sup 2} M{sup -1} s{sup -1}, respectively. The hydrodynamic amperometry of rotating-modified electrode at constant potential versus reference electrode was used for detection of bromate, chlorate and iodate. The detection limit, linear calibration range and sensitivity for chlorate, bromate and iodate detections were 0.5 {mu}M, 2 {mu}M to 1 mM, 8.4 nA/{mu}M, 0.6 {mu}M, 2 {mu}M to 0.15 mM, 11 nA/{mu}M, and 2.5 {mu}M, 10 {mu}M to 4 mM and 1.5 nA/{mu}M, respectively. Excellent electrochemical reversibility of the redox couple, good reproducibility, high stability, low detection limit, long life time, fast amperometric response time, wide linear concentration range, technical simplicity and possibility of rapid preparation are great advantages of this sensor. The obtained results show promising practical

  17. CHRONIC HEART FAILURE AND IRON-DEFICIENT ANEMIA

    Directory of Open Access Journals (Sweden)

    M. V. Melnik

    2015-12-01

    Full Text Available 62 chronic heart failure (CHF patients with iron-deficient anemia (IDA were studied. Standard CHF therapy (angiotensin converting enzyme inhibitors, β-blockers, diuretics, cardiac glycosides was accompanied with the correction of iron deficiency by intravenous injection of Venofer and subsequent Ferro-Folgamma prescription (average daily dose of iron 137,75±5mg. After treatment serum iron level increased by 95,5% and hemoglobin level – by 9,8%. Left ventricular ejection fraction increased by 32,2% and physical activity tolerance – by 47,6%. Before treatment 32 CHF patients with IDA (51,6% had III functional class (FC of CHF according to NYHA and 16 patients (25,8% – IV FC. After treatment I FC was observed in 18 CHF patients (29%, II FC – in 26 patients and only 18 patients demonstrated III FC of CHF.

  18. CHRONIC HEART FAILURE AND IRON-DEFICIENT ANEMIA

    Directory of Open Access Journals (Sweden)

    M. V. Melnik

    2007-01-01

    Full Text Available 62 chronic heart failure (CHF patients with iron-deficient anemia (IDA were studied. Standard CHF therapy (angiotensin converting enzyme inhibitors, β-blockers, diuretics, cardiac glycosides was accompanied with the correction of iron deficiency by intravenous injection of Venofer and subsequent Ferro-Folgamma prescription (average daily dose of iron 137,75±5mg. After treatment serum iron level increased by 95,5% and hemoglobin level – by 9,8%. Left ventricular ejection fraction increased by 32,2% and physical activity tolerance – by 47,6%. Before treatment 32 CHF patients with IDA (51,6% had III functional class (FC of CHF according to NYHA and 16 patients (25,8% – IV FC. After treatment I FC was observed in 18 CHF patients (29%, II FC – in 26 patients and only 18 patients demonstrated III FC of CHF.

  19. Magnesium Oxide

    Science.gov (United States)

    Magnesium is an element your body needs to function normally. Magnesium oxide may be used for different reasons. Some people use it as ... one to four times daily depending on which brand is used and what condition you have. Follow ...

  20. A highly sensitive amperometric sensor for oxygen based on iron(II) tetrasulfonated phthalocyanine and iron(III) tetra-(N-methyl-pyridyl)-porphyrin multilayers

    International Nuclear Information System (INIS)

    Duarte, Juliana C.; Luz, Rita C.S.; Damos, Flavio S.; Tanaka, Auro A.; Kubota, Lauro T.

    2008-01-01

    The development of a highly sensitive sensor for oxygen is proposed using a glassy carbon (GC) electrode modified with alternated layers of iron(II) tetrasulfonated phthalocyanine (FeTsPc) and iron(III) tetra-(N-methyl-pyridyl)-porphyrin (FeT4MPyP). The modified electrode showed excellent catalytic activity for the oxygen reduction. The reduction potential of the oxygen was shifted about 330 mV toward less negative values with this modified electrode, presenting a peak current much higher than those observed on a bare GC electrode. Cyclic voltammetry and rotating disk electrode (RDE) experiments indicated that the oxygen reduction reaction involves 4 electrons with a heterogenous rate constant (k obs ) of 3 x 10 5 mol -1 L s -1 . A linear response range from 0.2 up to 6.4 mg L -1 , with a sensitivity of 4.12 μA L mg -1 (or 20.65 μA cm -2 L mg -1 ) and a detection limit of 0.06 mg L -1 were obtained with this sensor. The repeatability of the proposed sensor, evaluated in terms of relative standard deviation (R.S.D.) was 2.0% for 10 measurements of a solution of 6.4 mg L -1 oxygen. The sensor was applied to determine oxygen in pond and tap water samples showing to be a promising tool for this purpose

  1. THE WIDESPREAD OF Fe(III)-REDUCING BACTERIA IN NATURAL ECOSYSTEMS OF ECUADOR.

    Science.gov (United States)

    Tashyrev, O B; Govorukha, V M

    2015-01-01

    The widespread of Fe(III)-reducing microorganisms in natural ecosystems of Ecuador of La Favorita, Tungurahua volcano and Papallacta areas was experimentally proved. High efficiency of microbial precipitation of soluble iron compounds was also demonstrated. Obtained results indicate the potential ability of Fe(III)-reducing microorganisms to influence the formation of carbon and iron vector fluxes in ecosystems, as well as development of effective biotechnologies of water purification from iron compounds.

  2. Iron oxide redox chemistry and nuclear fuel disposal

    International Nuclear Information System (INIS)

    Jobe, D.J.; Lemire, R.J.; Taylor, P.

    1997-04-01

    Solubility and stability data for iron (III) oxides and aqueous Fe(II) and Fe(III) species are reviewed, and selected values are used to calculate potential-pH diagrams for the iron system at temperatures of 25 and 100 deg C, chloride activities {C1 - } = 10 -2 and 1 mol/kg, total carbonate activity {C T } = 10 -3 mol/kg, and iron(III) oxide/oxyhydroxide solubility products (25 deg C values) K sp = {Fe 3+ }{OH - } 3 = 10 -38.5 , 10 -40 and 10 -42 . The temperatures and anion concentrations bracket the range of conditions expected in a Canadian nuclear fuel waste disposal vault. The three solubility products represent a conservative upper limit, a most probable value, and a minimum credible value, respectively, for the iron oxides likely to be important in controlling redox conditions in a disposal vault for CANDU nuclear reactor fuel. Only in the first of these three cases do the calculated redox potentials significantly exceed values under which oxidative dissolution of the fuel may occur. (author)

  3. Development of biodegradable magnesium alloy stents with coating

    Directory of Open Access Journals (Sweden)

    Lorenza Petrini

    2014-07-01

    Full Text Available Biodegradable stents are attracting the attention of many researchers in biomedical and materials research fields since they can absolve their specific function for the expected period of time and then gradually disappear. This feature allows avoiding the risk of long-term complications such as restenosis or mechanical instability of the device when the vessel grows in size in pediatric patients. Up to now biodegradable stents made of polymers or magnesium alloys have been proposed. However, both the solutions have limitations. The polymers have low mechanical properties, which lead to devices that cannot withstand the natural contraction of the blood vessel: the restenosis appears just after the implant, and can be ascribed to the compliance of the stent. The magnesium alloys have much higher mechanical properties, but they dissolve too fast in the human body. In this work we present some results of an ongoing study aiming to the development of biodegradable stents made of a magnesium alloy that is coated with a polymer having a high corrosion resistance. The mechanical action on the blood vessel is given by the magnesium stent for the desired period, being the stent protected against fast corrosion by the coating. The coating will dissolve in a longer term, thus delaying the exposition of the magnesium stent to the corrosive environment. We dealt with the problem exploiting the potentialities of a combined approach of experimental and computational methods (both standard and ad-hoc developed for designing magnesium alloy, coating and scaffold geometry from different points of views. Our study required the following steps: i selection of a Mg alloy suitable for stent production, having sufficient strength and elongation capability; ii computational optimization of the stent geometry to minimize stress and strain after stent deployment, improve scaffolding ability and corrosion resistance; iii development of a numerical model for studying stent

  4. Economically attractive route for the preparation of high quality magnetic nanoparticles by the thermal decomposition of iron(III) acetylacetonate.

    Science.gov (United States)

    Effenberger, Fernando B; Couto, Ricardo A; Kiyohara, Pedro K; Machado, Giovanna; Masunaga, Sueli H; Jardim, Renato F; Rossi, Liane M

    2017-03-17

    The thermal decomposition (TD) methods are among the most successful in obtaining magnetic nanoparticles with a high degree of control of size and narrow particle size distribution. Here we investigated the TD of iron(III) acetylacetonate in the presence of oleic acid, oleylamine, and a series of alcohols in order to disclose their role and also investigate economically attractive alternatives for the synthesis of iron oxide nanoparticles without compromising their size and shape control. We have found that some affordable and reasonably less priced alcohols, such as 1,2-octanediol and cyclohexanol, may replace the commonly used and expensive 1,2-hexadecanediol, providing an economically attractive route for the synthesis of high quality magnetic nanoparticles. The relative cost for the preparation of Fe 3 O 4 NPs is reduced to only 21% and 9% of the original cost when using 1,2-octanediol and cyclohexanol, respectively.

  5. Increased water hardness and magnesium levels may increase occurrence of urolithiasis in cows from the Burdur region (Turkey).

    Science.gov (United States)

    Sahinduran, S; Buyukoglu, T; Gulay, M S; Tasci, F

    2007-08-01

    Objectives of the study were to measure water hardness in Burdur, and to establish its possible association with urolithiasis in cattle. Water samples were obtained from different stables (n = 15). Water hardness and the concentrations of potassium, calcium, magnesium, sodium, iron, zinc, manganese and copper ions were calculated from these water samples. Total hardness of the samples (mean 285 ppm) exceeded the standards and the water was characterized by high content of magnesium ions. Kidneys (n = 500) were collected randomly from slaughterhouses and examined for urolithiasis. Urolithiasis was observed in 102 kidneys (20.4%). The weights of the stones were between 0.02 and 237.44 g and the colour varied from white to brown. The calculi collected had various shapes and composed of calcium apatite (42.45%), struvite (20.15%), magnesium carbonate (15.15%), calcium carbonate (12.12%), and calcium phosphate cystine (10.13%). It was concluded that high water hardness with high magnesium ion concentrations in water may contribute to urolithiasis and needs to be investigated further in future studies.

  6. Effect of calcium on adsorptive removal of As(III) and As(V) by iron oxide-based adsorbents

    KAUST Repository

    Uwamariya, V.

    2014-06-25

    The effects of calcium on the equilibrium adsorption capacity of As(III) and As(V) onto iron oxide-coated sand (IOCS) and granular ferric hydroxide (GFH) were investigated through batch experiments, rapid small-scale column tests (RSSCT) and kinetics modelling. Batch experiments showed that at calcium concentrations≤20 mg/L, high As(III) and As(V) removal efficiencies by IOCS and GFH are achieved at pH 6. An increase of the calcium concentration to 40 and 80 mg/L reversed this trend, giving higher removal efficiencies at higher pH (8). The adsorption capacities of IOCS and GFH at an equilibrium arsenic concentration of 10 g/L were found to be between 2.0 and 3.1 mg/g for synthetic water without calcium and between 2.8 and 5.3 mg/g when 80 mg/L of calcium was present at the studied pH values. After 10 hours of filter run in RSSCT, approximately 1000 empty bed volumes, the ratios of C/Co for As(V) were 26% and 18% for calcium-free model water; and only 1% and 0.2% after addition of 80 mg/L of Ca for filter columns with IOCS and GFH, respectively. The adsorption of As(III) and As(V) onto GFH follows a second-order reaction, with and without addition of calcium. The adsorption of As(III) and As(V) onto IOCS follows a first-order reaction without calcium addition, and moves to the second-reaction-order kinetics when calcium is added. Based on the intraparticle diffusion model, the main controlling mechanism for As(III) adsorption is intraparticle diffusion, while surface diffusion contributes greatly to the adsorption of As(V).

  7. Magnesium motorcycle applications

    International Nuclear Information System (INIS)

    Jianyong Cao; Zonghe Zhang; Dongxia Xiang; Jun Wang

    2005-01-01

    Magnesium, the lightest engineering structural metal, has been comprehensively used in castings of aviation and aerospace, communication and transportation, and IT components. This paper introduced the history, advantages and difficulties of magnesium castings for motorcycle application as well as its application state in China. It also indicated the production situation of magnesium motorcycle components in CQMST and difficulties need to overcome for further development. (orig.)

  8. Synthesis and characterization of iron (II and III) phosphates by X-ray diffraction and Scanning Electron Microscopy of high vacuum

    International Nuclear Information System (INIS)

    Diaz F, J.C.; Solis M, L.; Garcia R, G.; Romero G, E.T.

    2002-01-01

    The XRD and Sem techniques for determining the mineralogical and structural composition of iron II and III phosphates have been used. The mineralogical and structural composition of the materials revealed that they are the ferrous phosphate and the ferric phosphate. The contribution of the synthesis and characterization of these phosphates is that they can be used as components in the geological barriers capable to avoiding the dispersion from the hazardous radioactive materials to the environment. (Author)

  9. Magnesium sulfate reduces formalin-induced orofacial pain in rats with normal magnesium serum levels.

    Science.gov (United States)

    Srebro, Dragana P; Vučković, Sonja M; Dožić, Ivan S; Dožić, Branko S; Savić Vujović, Katarina R; Milovanović, Aleksandar P; Karadžić, Branislav V; Prostran, Milica Š

    2018-02-01

    In humans, orofacial pain has a high prevalence and is often difficult to treat. Magnesium is an essential element in biological a system which controls the activity of many ion channels, neurotransmitters and enzymes. Magnesium produces an antinociceptive effect in neuropathic pain, while in inflammatory pain results are not consistent. We examined the effects of magnesium sulfate using the rat orofacial formalin test, a model of trigeminal pain. Male Wistar rats were injected with 1.5% formalin into the perinasal area, and the total time spent in pain-related behavior (face rubbing) was quantified. We also spectrophotometrically determined the concentration of magnesium and creatine kinase activity in blood serum. Magnesium sulfate administered subcutaneously (0.005-45mg/kg) produced significant antinociception in the second phase of the orofacial formalin test in rats at physiological serum concentration of magnesium. The effect was not dose-dependent. The maximum antinociceptive effect of magnesium sulfate was about 50% and was achieved at doses of 15 and 45mg/kg. Magnesium did not affect increase the levels of serum creatine kinase activity. Preemptive systemic administration of magnesium sulfate as the only drug can be used to prevent inflammatory pain in the orofacial region. Its analgesic effect is not associated with magnesium deficiency. Copyright © 2017 Institute of Pharmacology, Polish Academy of Sciences. Published by Elsevier B.V. All rights reserved.

  10. Function of magnesium aluminate hydrate and magnesium nitrate ...

    Indian Academy of Sciences (India)

    MgO was added both as spinel (MgAl2O4) forming precursor i.e. magnesium aluminate hydrate, and magnesium nitrate. Sintering investigations were conducted in the temperature range 1500–1600°C with 2 h soaking. Structural study of sintered pellets was carried out by extensive XRD analysis. Scanning electron mode ...

  11. Growth of Thermophilic and Hyperthermophilic Fe(III)-Reducing Microorganisms on a Ferruginous Smectite as the Sole Electron Acceptor▿

    Science.gov (United States)

    Kashefi, Kazem; Shelobolina, Evgenya S.; Elliott, W. Crawford; Lovley, Derek R.

    2008-01-01

    Recent studies have suggested that the structural Fe(III) within phyllosilicate minerals, including smectite and illite, is an important electron acceptor for Fe(III)-reducing microorganisms in sedimentary environments at moderate temperatures. The reduction of structural Fe(III) by thermophiles, however, has not previously been described. A wide range of thermophilic and hyperthermophilic Archaea and Bacteria from marine and freshwater environments that are known to reduce poorly crystalline Fe(III) oxides were tested for their ability to reduce structural (octahedrally coordinated) Fe(III) in smectite (SWa-1) as the sole electron acceptor. Two out of the 10 organisms tested, Geoglobus ahangari and Geothermobacterium ferrireducens, were not able to conserve energy to support growth by reduction of Fe(III) in SWa-1 despite the fact that both organisms were originally isolated with solid-phase Fe(III) as the electron acceptor. The other organisms tested were able to grow on SWa-1 and reduced 6.3 to 15.1% of the Fe(III). This is 20 to 50% less than the reported amounts of Fe(III) reduced in the same smectite (SWa-1) by mesophilic Fe(III) reducers. Two organisms, Geothermobacter ehrlichii and archaeal strain 140, produced copious amounts of an exopolysaccharide material, which may have played an active role in the dissolution of the structural iron in SWa-1 smectite. The reduction of structural Fe(III) in SWa-1 by archaeal strain 140 was studied in detail. Microbial Fe(III) reduction was accompanied by an increase in interlayer and octahedral charges and some incorporation of potassium and magnesium into the smectite structure. However, these changes in the major element chemistry of SWa-1 smectite did not result in the formation of an illite-like structure, as reported for a mesophilic Fe(III) reducer. These results suggest that thermophilic Fe(III)-reducing organisms differ in their ability to reduce and solubilize structural Fe(III) in SWa-1 smectite and that SWa-1

  12. Wastewater engineering applications of BioIronTech process based on the biogeochemical cycle of iron bioreduction and (biooxidation

    Directory of Open Access Journals (Sweden)

    Volodymyr Ivanov

    2014-12-01

    Full Text Available Bioreduction of Fe(III and biooxidation of Fe(II can be used in wastewater engineering as an innovative biotechnology BioIronTech, which is protected for commercial applications by US patent 7393452 and Singapore patent 106658 “Compositions and methods for the treatment of wastewater and other waste”. The BioIronTech process comprises the following steps: 1 anoxic bacterial reduction of Fe(III, for example in iron ore powder; 2 surface renovation of iron ore particles due to the formation of dissolved Fe2+ ions; 3 precipitation of insoluble ferrous salts of inorganic anions (phosphate or organic anions (phenols and organic acids; 4 (biooxidation of ferrous compunds with the formation of negatively, positively, or neutrally charged ferric hydroxides, which are good adsorbents of many pollutants; 5 disposal or thermal regeration of ferric (hydroxide. Different organic substances can be used as electron donors in bioreduction of Fe(III. Ferrous ions and fresh ferrous or ferric hydroxides that are produced after iron bioreduction and (biooxidation adsorb and precipitate diferent negatively charged molecules, for example chlorinated compounds of sucralose production wastewater or other halogenated organics, as well as phenols, organic acids, phosphate, and sulphide. Reject water (return liquor from the stage of sewage sludge dewatering on municipal wastewater treatment plants represents from 10 to 50% of phosphorus load when being recycled to the aeration tank. BioIronTech process can remove/recover more than 90% of phosphorous from this reject water thus replacing the conventional process of phosphate precipitation by ferric/ferrous salts, which are 20–100 times more expensive than iron ore, which is used in BioIronTech process. BioIronTech process can remarkably improve the aerobic and anaerobic treatments of municipal and industrial wastewaters, especially anaerobic digestion of lipid- and sulphate-containing food-processing wastewater. It

  13. Intramuscular versus Subcutaneous Administration of Iron Dextran in Suckling Piglets

    Directory of Open Access Journals (Sweden)

    M. Svoboda

    2007-01-01

    Full Text Available The aim of the study was to compare the development of red blood cell indices after subcutaneous versus intramuscular administration of iron dextran to suckling piglets during early postnatal period. The piglets in group I (n = 17 were injected subcutaneously (into groin with 200 mg Fe3+ as iron dextran on day 3 of life. In group II (n = 16, the piglets received intramuscular injection (into gluteal muscles of 200 mg Fe3+ as iron dextran on day 3 of life. In group III (n = 10, the piglets did not receive any iron till the age of 3 days. The blood was taken and analyzed (Hb, PCV, RBC, MCV, MCH, MCHC, Fe on days 3, 7, 14, 21, 28 and 35. Haematological indices of piglets in group III were characteristic for hypochromic anaemia. Anaemia in group III had a detrimental effect on the growth rate of piglets. The development of red blood cell indices and iron concentration in blood plasma in subcutaneously treated piglets did not differ significantly from that of intramuscularly-treated group. Both treatments prevented development of anaemia.

  14. [Effects of iron on azoreduction by Shewanella decolorationis S12].

    Science.gov (United States)

    Chen, Xing-Juan; Xu, Mei-Ying; Sun, Guo-Ping

    2010-01-01

    The effects of soluble and insoluble Fe(III) on anaerobic azoreduction by Shewanella decolorationis S12 were examined in a series of experiments. Results showed that the effects of iron on anaerobic azoreduction depended on the solubility and concentration of the compounds. Azoreduction was inhibited by insoluble Fe(III) and 0.05-2 mmol/L Fe2 O3 all decelerated the azoreduction activity of 0.2 mmol/L amaranth, but the increase in the concentrations of Fe2O3 did not cause an increasing inhibition. Soluble Fe(III) of which concentration less than 0.4 mmol/L enhanced azoreduction activity of 0.2 mmol/L amaranth but there was no linear relationship between the concentration of soluble Fe(III) and azoreduction activity. Soluble Fe(III) of which concentration more than 1 mmol/L inhibited azoreduction activity of 0.2 mmol/L amaranth and an increasing concentration resulted in an increased inhibition. The inhibition was strengthened under the conditions of limited electron donor. On the other hand, soluble Fe(III) and Fe(II) could relieve the inhibition of azoreduction by dicumarol which blocked quinone cycle. It suggests that in addition to quinone cycle, there is a Fe(III) Fe(II) cycle shuttling electrons in cytoplasmic and periplasmic environment. That is the reason why low concentration of soluble Fe(III) or Fe (II) can enhance azoreduction of S. decolorationis S12. It also indicates that insoluble Fe(III) and high concentration of soluble Fe(III) do compete with azo dye for electrons once it acts as electron acceptor. Thus, when iron and azo dye coexisted, iron could serve as an electron transfer agent or electron competitive inhibitor for anaerobic azoreduction under different conditions. High efficiency of azoreduction can be achieved through controlling the solubility and concentration of irons.

  15. Polypyridyl iron(II) complexes showing remarkable photocytotoxicity ...

    Indian Academy of Sciences (India)

    reported a high spin (S=5/2) ternary iron(III) complex. [Fe(BHA)(L)Cl] of a ... designed low-spin iron(II) complexes as a new class of ..... They were moderately soluble in methanol, ethanol and .... Cell permeable DCFDA on oxidation by cel-.

  16. Magnesium compounds

    Science.gov (United States)

    Kramer, D.A.

    2007-01-01

    Seawater and natural brines accounted for about 52 percent of U.S. magnesium compounds production in 2006. Dead-burned magnesia was produced by Martin Marietta Magnesia Specialties from well brines in Michigan. Caustic-calcined magnesia was recovered from sea-water by Premier Chemicals in Florida; from well brines in Michigan by Martin Marietta and Rohm and Haas; and from magnesite in Nevada by Premier Chemicals. Intrepid Potash-Wendover and Great Salt Lake Minerals recovered magnesium chloride brines from the Great Salt Lake in Utah. Magnesium hydroxide was produced from brucite by Applied Chemical Magnesias in Texas, from seawater by SPI Pharma in Delaware and Premier Chemicals in Florida, and by Martin Marietta and Rohm and Haas from their operations mentioned above. About 59 percent of the magnesium compounds consumed in the United States was used for refractories that are used mainly to line steelmaking furnaces. The remaining 41 percent was consumed in agricultural, chemical, construction, environmental and industrial applications.

  17. Ductile cast iron obtaining by Inmold method with use of LOST FOAM process

    Directory of Open Access Journals (Sweden)

    T. Pacyniak

    2010-01-01

    Full Text Available The possibility of manufacturing of ductile cast iron castings by Inmold method with use of LOST FOAM process was presented in this work. The spheroidization was carried out by magnesium master alloy in amounts of 1% casting mass. Nodulizer was located in the reactive chamber in the gating system made of foamed polystyrene. Pretests showed, that there are technical possibilities of manufacturing of casts from ductile cast iron in the LOST FOAM process with use of spheroidization in mould.

  18. Innovative Vacuum Distillation for Magnesium Recycling

    Science.gov (United States)

    Zhu, Tianbai; Li, Naiyi; Mei, Xiaoming; Yu, Alfred; Shang, Shixiang

    Magnesium recycling now becomes a very important subject as magnesium consumption increases fast around the world. All commonly used magnesium die-casting alloys can be recycled and recovered to the primary metal quality. The recycled materials may be comprised of biscuits, sprues, runners, flash, overflows, dross, sludge, scrap parts, and old parts that are returned from service, An innovative magnesium recycle method, vacuum distillation, is developed and proved out to be able to recycle magnesium scraps, especially machining chips, oily magnesium, smelting sludge, dross or the mixture. With this process at a specific temperature and environment condition, magnesium in scraps can be gasified and then solidified to become crystal magnesium crown. This `recycled' magnesium crown is collected and used as the raw material of magnesium alloys. The experimental results show the vacuum distillation is a feasible and plausible method to recycle magnesium. Further, the cost analysis will be addressed in this paper.

  19. The iron-chelate transporter OsYSL9 plays a role in iron distribution in developing rice grains.

    Science.gov (United States)

    Senoura, Takeshi; Sakashita, Emi; Kobayashi, Takanori; Takahashi, Michiko; Aung, May Sann; Masuda, Hiroshi; Nakanishi, Hiromi; Nishizawa, Naoko K

    2017-11-01

    Rice OsYSL9 is a novel transporter for Fe(II)-nicotianamine and Fe(III)-deoxymugineic acid that is responsible for internal iron transport, especially from endosperm to embryo in developing seeds. Metal chelators are essential for safe and efficient metal translocation in plants. Graminaceous plants utilize specific ferric iron chelators, mugineic acid family phytosiderophores, to take up sparingly soluble iron from the soil. Yellow Stripe 1-Like (YSL) family transporters are responsible for transport of metal-phytosiderophores and structurally similar metal-nicotianamine complexes. Among the rice YSL family members (OsYSL) whose functions have not yet been clarified, OsYSL9 belongs to an uncharacterized subgroup containing highly conserved homologs in graminaceous species. In the present report, we showed that OsYSL9 localizes mainly to the plasma membrane and transports both iron(II)-nicotianamine and iron(III)-deoxymugineic acid into the cell. Expression of OsYSL9 was induced in the roots but repressed in the nonjuvenile leaves in response to iron deficiency. In iron-deficient roots, OsYSL9 was induced in the vascular cylinder but not in epidermal cells. Although OsYSL9-knockdown plants did not show a growth defect under iron-sufficient conditions, these plants were more sensitive to iron deficiency in the nonjuvenile stage compared with non-transgenic plants. At the grain-filling stage, OsYSL9 expression was strongly and transiently induced in the scutellum of the embryo and in endosperm cells surrounding the embryo. The iron concentration was decreased in embryos of OsYSL9-knockdown plants but was increased in residual parts of brown seeds. These results suggested that OsYSL9 is involved in iron translocation within plant parts and particularly iron translocation from endosperm to embryo in developing seeds.

  20. INVESTIGATION OF MAGNESIUM ALLOYS MACHINABILITY

    Directory of Open Access Journals (Sweden)

    Berat Barıs BULDUM

    2013-01-01

    Full Text Available Magnesium is the lightest structural metal. Magnesium alloys have a hexagonal lattice structure, which affects the fundamental properties of these alloys. Plastic deformation of the hexagonal lattice is more complicated than in cubic latticed metals like aluminum, copper and steel. Magnesium alloy developments have traditionally been driven by industry requirements for lightweight materials to operate under increasingly demanding conditions. Magnesium alloys have always been attractive to designers due to their low density, only two thirds that of aluminium and its alloys [1]. The element and its alloys take a big part of modern industry needs. Especially nowadays magnesium alloys are used in automotive and mechanical (trains and wagons manufacture, because of its lightness and other features. Magnesium and magnesium alloys are the easiest of all metals to machine, allowing machining operations at extremely high speed. All standard machining operations such as turning, drilling, milling, are commonly performed on magnesium parts.

  1. Improving the Corrosion Resistance of Biodegradable Magnesium Alloys by Diffusion Coating Process

    Science.gov (United States)

    Levy, Galit Katarivas; Aghion, Eli

    Magnesium alloys suffer from accelerated corrosion in physiological environment and hence their use as a structural material for biodegradable implants is limited. The present study focuses on a diffusion coating treatment that amplifies the beneficial effect of Neodymium on the corrosion resistance of magnesium alloys. The diffusion coating layer was obtained by applying 1 µm Nd coating on EW10X04 magnesium alloy using Electron-gun evaporator and PVD process. The coated alloy was heat treated at 350°C for 3 hours in a protective atmosphere of N2+0.2%SF6. The micro structure characteristics were evaluated by SEM, XRD, and XPS; the corrosion resistance was examined by potentiodynamic polarization and EIS analysis. The corrosion resistance of the diffusion coated alloy was significantly improved compared to the uncoated material. This was related to: (i) formation of Nd2O3 in the outer scale, (ii) integration of Nd in the MgO oxide layer, and (iii) formation of secondary phase Mg41Nd5 along the grain boundaries of α-Mg.

  2. Influence of dihydroxybenzenes on paracetamol and ciprofloxacin degradation and iron(III) reduction in Fenton processes.

    Science.gov (United States)

    Costa E Silva, Beatriz; de Lima Perini, João Angelo; Nogueira, Raquel F Pupo

    2017-03-01

    The degradation of paracetamol (PCT) and ciprofloxacin (CIP) was compared in relation to the generation of dihydroxylated products, Fe(III) reduction and reaction rate in the presence of dihydroxybenzene (DHB) compounds, or under irradiation with free iron (Fe 3+ ) or citrate complex (Fecit) in Fenton or photo-Fenton process. The formation of hydroquinone (HQ) was observed only during PCT degradation in the dark, which increased drastically the rate of PCT degradation, since HQ formed was able to reduce Fe 3+ and contributed to PCT degradation efficiency. When HQ was initially added, PCT and CIP degradation rate in the dark was much higher in comparison to the absence of HQ, due to the higher and faster formation of Fe 2+ at the beginning of reaction. In the absence of HQ, no CIP degradation was observed; however, when HQ was added after 30 min, the degradation rate increased drastically. Ten PCT hydroxylated intermediates were identified in the absence of HQ, which could contribute for Fe(III) reduction and consequently to the degradation in a similar way as HQ. During CIP degradation, only one product of hydroxyl radical attack on benzene ring and substitution of the fluorine atom was identified when HQ was added to the reaction medium.

  3. The first iron(III) complexes with cyclin-dependent kinase inhibitors: Magnetic, spectroscopic (IR, ES+ MS, NMR, Fe-57 Mossbauer), theoretical, and biological activity studies

    Czech Academy of Sciences Publication Activity Database

    Trávníček, Zdeněk; Popa, Igor; Čajan, Michal; Zbořil, R.; Kryštof, Vladimír; Mikulík, J.

    2010-01-01

    Roč. 104, č. 4 (2010), s. 405-417 ISSN 0162-0134 R&D Projects: GA MŠk 1M0512; GA ČR GA301/08/1649 Institutional research plan: CEZ:AV0Z50380511 Keywords : Iron(III) complexes * 57Fe Mössbauer spectroscopy * CDK inhibition Subject RIV: CA - Inorganic Chemistry Impact factor: 3.317, year: 2010

  4. Sorption of samarium in iron (II) and (III) phosphates in aqueous systems; Sorcion de samario en fosfatos de hierro (II) y (III) en sistemas acuosos

    Energy Technology Data Exchange (ETDEWEB)

    Diaz F, J C

    2006-07-01

    The radioactive residues that are stored in the radioactive confinements its need to stay isolated of the environment while the radioactivity levels be noxious. An important mechanism by which the radioactive residues can to reach the environment, it is the migration of these through the underground water. That it makes necessary the investigation of reactive materials that interacting with those radionuclides and that its are able to remove them from the watery resources. The synthesis and characterization of materials that can be useful in Environmental Chemistry are very important because its characteristics are exposed and its behavior in chemical phenomena as the sorption watery medium is necessary to use it in the environmental protection. In this work it was carried out the sorption study of the samarium III ion in the iron (II) and (III) phosphate; obtaining the sorption isotherms in function of pH, of the phosphate mass and of the concentration of the samarium ion using UV-visible spectroscopy to determine the removal percentage. The developed experiments show that as much the ferrous phosphate as the ferric phosphate present a great affinity by the samarium III, for what it use like reactive material in contention walls can be very viable because it sorption capacity has overcome 90% to pH values similar to those of the underground and also mentioning that the form to obtain these materials is very economic and simple. (Author)

  5. Coupling of Carbon Dioxide with Epoxides Efficiently Catalyzed by Thioether-Triphenolate Bimetallic Iron(III) Complexes: Catalyst Structure-Reactivity Relationship and Mechanistic DFT Study

    KAUST Repository

    Della Monica, Francesco; Vummaleti, Sai V. C.; Buonerba, Antonio; Nisi, Assunta De; Monari, Magda; Milione, Stefano; Grassi, Alfonso; Cavallo, Luigi; Capacchione, Carmine

    2016-01-01

    A series of dinuclear iron(III)I complexes supported by thioether-triphenolate ligands have been prepared to attain highly Lewis acidic catalysts. In combination with tetrabutylammonium bromide (TBAB) they are highly active catalysts in the synthesis of cyclic organic carbonates through the coupling of carbon dioxide to epoxides with the highest initial turnover frequencies reported to date for the conversion of propylene oxide to propylene carbonate for iron-based catalysts (5200h-1; 120°C, 2MPa, 1h). In particular, these complexes are shown to be highly selective catalysts for the coupling of carbon dioxide to internal oxiranes affording the corresponding cyclic carbonates in good yield and with retention of the initial stereochemical configuration. A density functional theory (DFT) investigation provides a rational for the relative high activity found for these Fe(III) complexes, showing the fundamental role of the hemilabile sulfur atom in the ligand skeleton to promote reactivity. Notably, in spite of the dinuclear nature of the catalyst precursor only one metal center is involved in the catalytic cycle. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  6. Coupling of Carbon Dioxide with Epoxides Efficiently Catalyzed by Thioether-Triphenolate Bimetallic Iron(III) Complexes: Catalyst Structure-Reactivity Relationship and Mechanistic DFT Study

    KAUST Repository

    Della Monica, Francesco

    2016-08-25

    A series of dinuclear iron(III)I complexes supported by thioether-triphenolate ligands have been prepared to attain highly Lewis acidic catalysts. In combination with tetrabutylammonium bromide (TBAB) they are highly active catalysts in the synthesis of cyclic organic carbonates through the coupling of carbon dioxide to epoxides with the highest initial turnover frequencies reported to date for the conversion of propylene oxide to propylene carbonate for iron-based catalysts (5200h-1; 120°C, 2MPa, 1h). In particular, these complexes are shown to be highly selective catalysts for the coupling of carbon dioxide to internal oxiranes affording the corresponding cyclic carbonates in good yield and with retention of the initial stereochemical configuration. A density functional theory (DFT) investigation provides a rational for the relative high activity found for these Fe(III) complexes, showing the fundamental role of the hemilabile sulfur atom in the ligand skeleton to promote reactivity. Notably, in spite of the dinuclear nature of the catalyst precursor only one metal center is involved in the catalytic cycle. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  7. Spectrophotometric determination of iron (III) in tap water using 8 ...

    African Journals Online (AJOL)

    ajl yemi

    2011-11-14

    Nov 14, 2011 ... Beers law was obeyed in the range of 1 to 14 ug/ml Fe3+. The recovery was between 98.60 ... Federal and state regulations limit the iron content of drinking water to <1 ppm, though iron is easily .... weighed and dissolved in chloroform in a 100 ml volumetric flask and made up to the mark with chloroform.

  8. ARSENIC ADSORPTION AND REDUCTION IN IRON-RICH SOILS NEARBY LANDFILLS IN NORTHWEST FLORIDA

    Directory of Open Access Journals (Sweden)

    Hongqin Xue

    2016-01-01

    Full Text Available In Florida, soils are mainly composed of Myakka, an acid soil characterized by a subsurface accumulation of humus and Al(III and Fe(III oxides. Downgradient of the landfills in Northwest Florida, elevated levels of iron and arsenic observations had been made in the groundwater from monitoring wells, which was attributed to the geomicrobial iron and arsenic reduction. There is thus an immediate research need for a better understanding of the reduction reactions that are responsible for the mobilization of iron and arsenic in the subsurface soil nearby landfills. Owing to the high Fe(III oxide content, As(V adsorption reactions with Fe(III oxide surfaces are particularly important, which may control As(V reduction. This research focused on the investigation of the biogeochemical processes of the subsurface soil nearby landfills of Northwest Florida. Arsenic and iron reduction was studied in batch reactors and quantified based on Monod-type microbial kinetic growth simulations. As(V adsorption in iron-rich Northwest Floridian soils was further investigated to explain the reduction observations. It was demonstrated in this research that solubilization of arsenic in the subsurface soil nearby landfills in Northwest Florida would likely occur under conditions favoring Fe(III dissimilatory reduction.

  9. Magnesium compounds

    Science.gov (United States)

    Kramer, D.A.

    2012-01-01

    Seawater and natural brines accounted for about 57 percent of magnesium compounds produced in the United States in 2011. Dead-burned magnesia was produced by Martin Marietta Magnesia Specialties LLC from well brines in Michigan. Caustic-calcined magnesia was recovered from seawater by Premier Magnesia LLC in Florida, from well brines in Michigan by Martin Marietta and from magnesite in Nevada by Premier Magnesia. Intrepid Potash Wendover LLC and Great Salt Lake Minerals Corp. recovered magnesium chloride brines from the Great Salt Lake in Utah. Magnesium hydroxide was produced from seawater by SPI Pharma Inc. in Delaware and Premier Magnesia in Florida, and by Martin Marietta from its brine operation in Michigan.

  10. Magnesium-based implants: a mini-review.

    Science.gov (United States)

    Luthringer, Bérengère J C; Feyerabend, Frank; Willumeit-Römer, Regine

    2014-01-01

    The goal of this review is to bring to the attention of the readership of Magnesium Research another facet of the importance of magnesium, i.e. magnesium-based biomaterials. A concise history of biomaterials and magnesium are thus presented. In addition, historical and current, clinical magnesium-based applications are presented.

  11. Zinc toxicity among galvanization workers in the iron and steel industry.

    Science.gov (United States)

    El Safty, Amal; El Mahgoub, Khalid; Helal, Sawsan; Abdel Maksoud, Neveen

    2008-10-01

    Galvanization is the process of coating steel or cast iron pieces with zinc, allowing complete protection against corrosion. The ultimate goal of this work was to assess the effect of occupational exposure to zinc in the galvanization process on different metals in the human body and to detect the association between zinc exposure and its effect on the respiratory system. This study was conducted in 111 subjects in one of the major companies in the iron and steel industry. There were 61 subjects (workers) who were involved in the galvanization process. Fifty adult men were chosen as a matched reference group from other departments of the company. All workers were interviewed using a special questionnaire on occupational history and chest diseases. Ventilatory functions and chest X rays were assessed in all examined workers. Also, complete blood counts were performed, and serum zinc, iron, copper, calcium, and magnesium levels were tested. This study illustrated the relation between zinc exposure in the galvanization process and high zinc levels among exposed workers, which was associated with a high prevalence rate of metal fume fever (MFF) and low blood copper and calcium levels. There was no statistically significant difference between the exposed and control groups with regards to the magnesium level. No long-term effect of metals exposure was detected on ventilatory functions or chest X rays among the exposed workers.

  12. Moessbauer study of Fe(III)-reducing sugar complexes

    International Nuclear Information System (INIS)

    Wolowiec, S.; Drabent, K.

    1985-01-01

    Iron(III) complexes with glucose, galactose, mannose and lactose were prepared. The Moessbauer and magnetic susceptibility data demonstrate the polymeric structure of the complexes. The thermal behaviour of the Fe(III)-glucose complex was monitored by Moessbauer spectroscopy. (author)

  13. Selectivity and Activity of Iron Molybdate Catalysts in Oxidation of Methanol

    Directory of Open Access Journals (Sweden)

    Khalid Khazzal Hummadi

    2009-06-01

    Full Text Available The selectivity and activity of iron molybdate catalysts prepared by different methods are compared with those of a commercial catalyst in the oxidation of methanol to formaldehyde in a continuous tubular bed reactor at 200-350 oC (473-623 oK, 10 atm (1013 kPa, with a methanol-oxygen mixture fixed at 5.5% by volume methanol: air ratio. The iron(III molybdate catalyst prepared by co-precipitation and filtration had a selectivity towards formaldehyde in methanol oxidation comparable with a commercial catalyst; maximum selectivity (82.3% was obtained at 573oK when the conversion was 59.7%. Catalysts prepared by reacting iron (III and molybdate by kneading or precipitation followed by evaporation, omitting a filtration stage, were less active and less selective. The selectivity-activity relationships of these catalysts as a function of temperature were discussed in relation to the method of preparation, surface areas and composition. By combing this catalytic data with data from the patent literature we demonstrate a synergy between iron and molybdenum in regard to methanol oxidation to formaldehyde; the optimum composition corresponded to an iron mole fraction 0.2-0.3. The selectivity to formaldehyde was practically constant up to an iron mole fraction 0.3 and then decreased at higher iron concentrations. The iron component can be regarded as the activity promoter. The iron molybdate catalysts can thus be related to other two-component MoO3-based selective oxidation catalysts, e.g. bismuth and cobalt molybdates. The iron oxide functions as a relatively basic oxide abstracting, in the rate-controlling step, a proton from the methyl of a bound methoxy group of chemisorbed methanol. It was proposed that a crucial feature of the sought after iron(III molybdate catalyst is the presence of -O-Mo-O-Fe-O-Mo-O- groups as found in the compound Fe2(MoO43 and for Fe3+ well dispersed in MoO3 generally. At the higher iron(III concentrations the loss of

  14. Ionized magnesium in plasma and erythrocytes for the assessment of low magnesium status in alcohol dependent patients.

    Science.gov (United States)

    Ordak, Michal; Maj-Zurawska, Magdalena; Matsumoto, Halina; Bujalska-Zadrozny, Magdalena; Kieres-Salomonski, Ilona; Nasierowski, Tadeusz; Muszynska, Elzbieta; Wojnar, Marcin

    2017-09-01

    Studies on the homeostasis of magnesium in alcohol-dependent patients have often been characterized by low hypomagnesemia detection rates. This may be due to the fact that the content of magnesium in blood serum constitutes only 1% of the average magnesium level within the human body. However, the concentration of ionized magnesium is more physiologically important and makes up 67% of the total magnesium within a human organism. There are no data concerning the determination of the ionized fraction of magnesium in patients addicted to alcohol and its influence on mental health status. This study included 100 alcohol-dependent patients and 50 healthy subjects. The free magnesium fraction was determined using the potentiometric method by means of using ion-selective electrodes. The total magnesium level was determined by using a biochemical Indiko Plus analyzer. In this study, different psychometric scales were applied. Our results confirm the usefulness of ionized magnesium concentrations in erythrocytes and plasma as a diagnostic parameter of low magnesium status in alcohol-dependent patients. The lower the concentration of ionized magnesium, the worse the quality of life an alcohol-dependent person might experience. In the case of total magnesium, no such correlation was determined. Copyright © 2017 Elsevier B.V. All rights reserved.

  15. CO2 fixation using magnesium silicate minerals part 1: Process description and performance

    International Nuclear Information System (INIS)

    Fagerlund, Johan; Nduagu, Experience; Romão, Inês; Zevenhoven, Ron

    2012-01-01

    This paper describes a staged carbonation process for magnesium silicate mineral carbonation. This carbon dioxide capture and storage (CCS) alternative involves the production of magnesium hydroxide, followed by its carbonation in a pressurised fluidised bed (PFB) reactor. The goal is to utilise the heat of the carbonation reaction to drive the Mg(OH) 2 production step. The results show that Mg(OH) 2 can be produced successfully (up to 78% Mg extraction extent achieved so far) and efficiently from different serpentinite minerals from locations worldwide (Finland, Lithuania, Australia, Portugal…). From the extraction step, ammonium sulphate is recovered while iron oxides (from the mineral) are obtained as by-products. The carbonation step, while still being developed, resulted in >50%-wt conversion in 10 min (500 °C, 20 bar) for > 300 μm serpentinite-derived Mg(OH) 2 particles. Thus the reaction rate achieved so far is much faster than what is currently being considered fast in the field of mineral carbonation. -- Highlights: ► Magnesium silicate-based rock can sequester CO 2 as stable magnesium carbonate. ► Abundance of rock material offers a larger capacity than other CCS methods. ► Mg(OH) 2 production is followed by its carbonation in a pressurised fluidised bed. ► Carbonation reaches >50% in around 10 min for >0.3 mm particles. ► Mg(OH) 2 produced from different rock material show the same performance.

  16. Thermodynamic model for solution behavior and solid-liquid equilibrium in Na-Al(III)-Fe(III)-Cr(III)-Cl-H2O system at 25°C

    Science.gov (United States)

    André, Laurent; Christov, Christomir; Lassin, Arnault; Azaroual, Mohamed

    2018-03-01

    The knowledge of the thermodynamic behavior of multicomponent aqueous electrolyte systems is of main interest in geo-, and environmental-sciences. The main objective of this study is the development of a high accuracy thermodynamic model for solution behavior, and highly soluble M(III)Cl3(s) (M= Al, Fe, Cr) minerals solubility in Na-Al(III)-Cr(III)-Fe(III)-Cl-H2O system at 25°C. Comprehensive thermodynamic models that accurately predict aluminium, chromium and iron aqueous chemistry and M(III) mineral solubilities as a function of pH, solution composition and concentration are critical for understanding many important geochemical and environmental processes involving these metals (e.g., mineral dissolution/alteration, rock formation, changes in rock permeability and fluid flow, soil formation, mass transport, toxic M(III) remediation). Such a model would also have many industrial applications (e.g., aluminium, chromium and iron production, and their corrosion, solve scaling problems in geothermal energy and oil production). Comparisons of solubility and activity calculations with the experimental data in binary and ternary systems indicate that model predictions are within the uncertainty of the data. Limitations of the model due to data insufficiencies are discussed. The solubility modeling approach, implemented to the Pitzer specific interaction equations is employed. The resulting parameterization was developed for the geochemical Pitzer formalism based PHREEQC database.

  17. Manganese and iron oxidation by fungi isolated from building stone.

    Science.gov (United States)

    de la Torre, M A; Gomez-Alarcon, G

    1994-01-01

    Acid and nonacid generating fungal strains isolated from weathered sandstone, limestone, and granite of Spanish cathedrals were assayed for their ability to oxidize iron and manganese. In general, the concentration of the different cations present in the mineral salt media directly affected Mn(IV) oxide formation, although in some cases, the addition of glucose and nitrate to the culture media was necessary. Mn(II) oxidation in acidogenic strains was greater in a medium containing the highest concentrations of glucose, nitrate, and manganese. High concentrations of Fe(II), glucose, and mineral salts were optimal for iron oxidation. Mn(IV) precipitated as oxides or hydroxides adhered to the mycelium. Most of the Fe(III) remained in solution by chelation with organic acids excreted by acidogenic strains. Other metabolites acted as Fe(III) chelators in nonacidogenic strains, although Fe(III) deposits around the mycelium were also detected. Both iron and manganese oxidation were shown to involve extracellular, hydrosoluble enzymes, with maximum specific activities during exponential growth. Strains able to oxidize manganese were also able to oxidize iron. It is concluded that iron and manganese oxidation reported in this work were biologically induced by filamentous fungi mainly by direct (enzymatic) mechanisms.

  18. Flashphotolysis investigations of the influence of the ionic strength on the kinetics of energy transfer reactions. Investigation of the reaction of Tb(III)- and Eu(III)-trisdipicolinate with different charged iron compounds

    International Nuclear Information System (INIS)

    Dorle, A.

    1999-01-01

    Luminescent lanthanide complexes are especially important as labels for the investigation of biological substances. The rare earths are employed as probes and are often able to substitute more expensive radioactive labels. The kinetic investigations of the reactions of Tb(III)- and Eu(III)-trisdipicolinate (charge: 3**-) with different charged iron complexes as quenchers (charge: 3 - , 1 - , 2 + ) (solvent: H 2 O) at varying ionic strength give results that can help to find out more details about how the intermolecular energy transfer takes place. By creating a Stern-Volmer plot one can get the rate constant of the luminescent quenching: Plotting the rate constants of quenching taken from the timeresolved flashphotolysis measurement (y-axis) versus the concentration of the quencher (x-axis) the resulting slope equals a rate constant k 2 of 2 nd order. (author)

  19. Electric field tuning of magnetism in heterostructure of yttrium iron garnet film/lead magnesium niobate-lead zirconate titanate ceramic

    Science.gov (United States)

    Lian, Jianyun; Ponchel, Freddy; Tiercelin, Nicolas; Chen, Ying; Rémiens, Denis; Lasri, Tuami; Wang, Genshui; Pernod, Philippe; Zhang, Wenbin; Dong, Xianlin

    2018-04-01

    In this paper, the converse magnetoelectric (CME) effect by electric field tuning of magnetization in an original heterostructure composed of a polycrystalline yttrium iron garnet (YIG) film and a lead magnesium niobate-lead zirconate titanate (PMN-PZT) ceramic is presented. The magnetic performances of the YIG films with different thicknesses under a DC electric field applied to the PMN-PZT ceramics and a bias magnetic field are investigated. All the magnetization-electric field curves are found to be in good agreement with the butterfly like strain curve of the PMN-PZT ceramic. Both the sharp deformation of about 2.5‰ of PMN-PZT and the easy magnetization switching of YIG are proposed to be the reasons for the strongest CME interaction in the composite at the small electric coercive field of PMN-PZT (4.1 kV/cm) and the small magnetic coercive field of YIG (20 Oe) where the magnetic susceptibility reaches its maximum value. A remarkable CME coefficient of 3.1 × 10-7 s/m is obtained in the system with a 600 nm-thick YIG film. This heterostructure combining multiferroics and partially magnetized ferrite concepts is able to operate under a small or even in the absence of an external bias magnetic field and is more compact and power efficient than the traditional magnetoelectric devices.

  20. Bismuth iron oxide thin films using atomic layer deposition of alternating bismuth oxide and iron oxide layers

    Energy Technology Data Exchange (ETDEWEB)

    Puttaswamy, Manjunath; Vehkamäki, Marko [University of Helsinki, Department of Chemistry, P.O. Box 55, FI-00014 Helsinki (Finland); Kukli, Kaupo, E-mail: kaupo.kukli@helsinki.fi [University of Helsinki, Department of Chemistry, P.O. Box 55, FI-00014 Helsinki (Finland); University of Tartu, Institute of Physics, W. Ostwald 1, EE-50411 Tartu (Estonia); Dimri, Mukesh Chandra [National Institute of Chemical Physics and Biophysics, Akadeemia tee 23, EE-12618 Tallinn (Estonia); Kemell, Marianna; Hatanpää, Timo; Heikkilä, Mikko J. [University of Helsinki, Department of Chemistry, P.O. Box 55, FI-00014 Helsinki (Finland); Mizohata, Kenichiro [University of Helsinki, Department of Physics, P.O. Box 64, FI-00014 Helsinki (Finland); Stern, Raivo [National Institute of Chemical Physics and Biophysics, Akadeemia tee 23, EE-12618 Tallinn (Estonia); Ritala, Mikko; Leskelä, Markku [University of Helsinki, Department of Chemistry, P.O. Box 55, FI-00014 Helsinki (Finland)

    2016-07-29

    Bismuth iron oxide films with varying contributions from Fe{sub 2}O{sub 3} or Bi{sub 2}O{sub 3} were prepared using atomic layer deposition. Bismuth (III) 2,3-dimethyl-2-butoxide, was used as the bismuth source, iron(III) tert-butoxide as the iron source and water vapor as the oxygen source. The films were deposited as stacks of alternate Bi{sub 2}O{sub 3} and Fe{sub 2}O{sub 3} layers. Films grown at 140 °C to the thickness of 200–220 nm were amorphous, but crystallized upon post-deposition annealing at 500 °C in nitrogen. Annealing of films with intermittent bismuth and iron oxide layers grown to different thicknesses influenced their surface morphology, crystal structure, composition, electrical and magnetic properties. Implications of multiferroic performance were recognized in the films with the remanent charge polarization varying from 1 to 5 μC/cm{sup 2} and magnetic coercivity varying from a few up to 8000 A/m. - Highlights: • Bismuth iron oxide thin films were grown by atomic layer deposition at 140 °C. • The major phase formed in the films upon annealing at 500 °C was BiFeO{sub 3}. • BiFeO{sub 3} films and films containing excess Bi favored electrical charge polarization. • Slight excess of iron oxide enhanced saturative magnetization behavior.

  1. FEATURES OF SPHEROIDIZING MODIFICATION OF HIGH-STRENGTH CAST IRON WITH MASTER ALLOYS BASED ON COPPER

    Directory of Open Access Journals (Sweden)

    A. S. Kalinichenko

    2016-01-01

    Full Text Available The increase of efficiency of modification process for ductile iron is topically, thereby increasing its mechanical and operational properties. For these purposes, in practice, various magnesium containing alloys are used, including «heavy» ones on the basis of Copper and Nickel. The analysis has shown that the application of bulk inoculating alloys based on copper basis were not effectively due to long dissolution period. From this point of view, the interest is high-speed casting, allowing the production of inoculating alloys in the form of strips – chips that are characterized by a low dissolution time and low piroeffekt. The aim of this work is to study the features of structure formation in nodular cast iron using different spheroidizing alloys based on copper. Studies have shown that the transition from the use of briquetted form alloys based on copper and magnesium to the «chips-inoculating alloys» allowed increasing the efficiency of the spheroidizing process. Further improvement in the quality of ductile iron can be achieved by the use in «chip-inoculating alloys» additives of nanosized yttrium oxide powder. 

  2. The Nature of the intermediates in the reactions of Fe(III)- and Mn(III)-microperoxidase-8 with H2O2 : a rapid kinetic study

    NARCIS (Netherlands)

    Primus, J.L.; Grunenwald, S.; Hagedoorn, P.L.; Albrecht-Gary, A.M.; Mandon, D.; Veeger, C.

    2002-01-01

    Kinetic studies were performed with microperoxidase-8 (Fe(III)MP-8), the proteolytic breakdown product of horse heart cytochrome c containing an octapeptide linked to an iron protoporphyrin IX. Mn(III) was substituted for Fe(III) in Mn(III)MP-8.The mechanism of formation of the reactive metal-oxo

  3. Choline Magnesium Trisalicylate

    Science.gov (United States)

    Choline magnesium trisalicylate is used to relieve the pain, tenderness, inflammation (swelling), and stiffness caused by arthritis and painful ... used to relieve pain and lower fever. Choline magnesium trisalicylate is in a class of nonsteroidal anti- ...

  4. Material and technique of S i-Mo heatresistant vermicular iron exhaust manifold

    Directory of Open Access Journals (Sweden)

    Jin Yong-xi

    2006-08-01

    Full Text Available Si-Mo vermicular iron is an ideal material for exhaust manifold that works in high temperature and therm alcycle conditions because its properties oftherm alfatigue resistance and thermal distortion resistance are significantly better than that of gray cast iron and nodular iron. This paper explains that the verm icularity of Si-Mo verm icular iron is better to be controlled approxim ately to 50% for the applications of exhaust manifold castings, and generalizes the successful experience ofverm icularizing technique thatuses sandwich(pouroverprocess combining with cored-wire injection in trough process together,and uses rare earths-magnesium-silicon as verm icularizing alloy in Disa high speed molding line and autom atic plug rod airpressure pouring furnace. In addition, this paper also describes the method to solve the shrinkage hole and porosity defects in the exhaustm anifold production.

  5. Combustion and extinction of magnesium fires

    International Nuclear Information System (INIS)

    Malet, J.C.; Duverger de Cuy, G.

    1988-01-01

    The studies made in France on magnesium combustion and extinguishing means are associated at the nuclear fuel of the graphite-gas reactor. Safety studies are made for ameliorate our knowledge on: - magnesium combustion - magnesium fire propagation - magnesium fire extinguishing [fr

  6. Magnesium deficiency: What is our status

    Science.gov (United States)

    Low magnesium intake has been implicated in a broad range of cardiometabolic conditions, including diabetes, hypertension, and cardiovascular disease. Dietary magnesium and total body magnesium status have a widely-used but imperfect biomarker in serum magnesium. Despite serum magnesium’s limitation...

  7. Utilization of subsurface microbial electrochemical systems to elucidate the mechanisms of competition between methanogenesis and microbial iron(III)/humic acid reduction in Arctic peat soils

    Science.gov (United States)

    Friedman, E. S.; Miller, K.; Lipson, D.; Angenent, L. T.

    2012-12-01

    High-latitude peat soils are a major carbon reservoir, and there is growing concern that previously dormant carbon from this reservoir could be released to the atmosphere as a result of continued climate change. Microbial processes, such as methanogenesis and carbon dioxide production via iron(III) or humic acid reduction, are at the heart of the carbon cycle in Arctic peat soils [1]. A deeper understanding of the factors governing microbial dominance in these soils is crucial for predicting the effects of continued climate change. In previous years, we have demonstrated the viability of a potentiostatically-controlled subsurface microbial electrochemical system-based biosensor that measures microbial respiration via exocellular electron transfer [2]. This system utilizes a graphite working electrode poised at 0.1 V NHE to mimic ferric iron and humic acid compounds. Microbes that would normally utilize these compounds as electron acceptors donate electrons to the electrode instead. The resulting current is a measure of microbial respiration with the electrode and is recorded with respect to time. Here, we examine the mechanistic relationship between methanogenesis and iron(III)- or humic acid-reduction by using these same microbial-three electrode systems to provide an inexhaustible source of alternate electron acceptor to microbes in these soils. Chamber-based carbon dioxide and methane fluxes were measured from soil collars with and without microbial three-electrode systems over a period of four weeks. In addition, in some collars we simulated increased fermentation by applying acetate treatments to understand possible effects of continued climate change on microbial processes in these carbon-rich soils. The results from this work aim to increase our fundamental understanding of competition between electron acceptors, and will provide valuable data for climate modeling scenarios. 1. Lipson, D.A., et al., Reduction of iron (III) and humic substances plays a major

  8. Oxidation of Cr(III)-Fe(III) Mixed-phase Hydroxides by Chlorine: Implications on the Control of Hexavalent Chromium in Drinking Water.

    Science.gov (United States)

    Chebeir, Michelle; Liu, Haizhou

    2018-05-17

    The occurrence of chromium (Cr) as an inorganic contaminant in drinking water is widely reported. One source of Cr is its accumulation in iron-containing corrosion scales of drinking water distribution systems as Cr(III)-Fe(III) hydroxide, i.e., FexCr(1-x)(OH)3(s), where x represents the Fe(III) molar content and typically varies between 0.25 and 0.75. This study investigated the kinetics of inadvertent hexavalent chromium Cr(VI) formation via the oxidation of FexCr(1-x)(OH)3(s) by chlorine as a residual disinfectant in drinking water, and examined the impacts of Fe(III) content and drinking water chemical parameters including pH, bromide and bicarbonate on the rate of Cr(VI) formation. Data showed that an increase in Fe(III) molar content resulted in a significant decrease in the stoichiometric Cr(VI) yield and the rate of Cr(VI) formation, mainly due to chlorine decay induced by Fe(III) surface sites. An increase in bicarbonate enhanced the rate of Cr(VI) formation, likely due to the formation of Fe(III)-carbonato surface complexes that slowed down the scavenging reaction with chlorine. The presence of bromide significantly accelerated the oxidation of FexCr(1-x)(OH)3(s) by chlorine, resulting from the catalytic effect of bromide acting as an electron shuttle. A higher solution pH between 6 and 8.5 slowed down the oxidation of Cr(III) by chlorine. These findings suggested that the oxidative conversion of chromium-containing iron corrosion products in drinking water distribution systems can lead to the occurrence of Cr(VI) at the tap, and the abundance of iron, and a careful control of pH, bicarbonate and bromide levels can assist the control of Cr(VI) formation.

  9. Fenton-like chemistry in water: Oxidation catalysis by Fe(III) and H2O2

    NARCIS (Netherlands)

    Ensing, B.; Buda, F.; Baerends, E.J.

    2003-01-01

    The formation of active intermediates from the Fenton-like reagent (a mixture of iron(III) ions and hydrogen peroxide) in aqueous solution has been investigated using static DFT calculations and Car-Parrinello molecular dynamics simulations. We show the spontaneous formation of the iron(III)

  10. Liquid-liquid extraction of iron (III) from Ouenza iron ore leach liquor ...

    African Journals Online (AJOL)

    The effect of several parameters, such as contact time, HCl concentration, TBP concentration and chloride inorganic salt (KCl) concentration on the efficiency of extraction of iron was examined at 19±2°C. It was found that, for 2 min 3M TBP in presence of 5M HCl and 2 M KCl solutions led to a high yiel of extraction (98.57 ...

  11. Spider silk as a template for obtaining magnesium oxide and magnesium hydroxide fibers

    Directory of Open Access Journals (Sweden)

    Dmitrović Svetlana

    2018-01-01

    Full Text Available Spider silk fibers, collected from Pholcus Phalangioides spider were used as a template for obtaining magnesium oxide (MgO, periclase as well as magnesium hydroxide (Mg(OH2, brucite fibers. Magnesium oxide fibers were obtained in a simple manner by heat induced decomposition of magnesium salt (MgCl2 in the presence of the spider silk fibers, while magnesium hydroxide fibers were synthesized by hydration of MgO fibers at 50, 70 and 90 C, for 48 and 96 h. According to Scanning electron microscopy (SEM, dimensions of spider silk fibers determined the dimension of synthesized MgO fibers, while for Mg(OH2 fibers, the average diameter was increased with prolonging the hydration period. The surface of Mg(OH2 fibers was noticed to be covered with brucite in a form of plates. X-Ray diffraction (XRD analysis showed that MgO fibers were single-phased (the pure magnesium oxide fibers were obtained, while Mg(OH2 fibers were two- or single-phased brucite depending on incubation period, and/or incubation temperature. [Project of the Serbian Ministry of Education, Science and Technological Development, Grant no. 45012

  12. Magnesium Technology : Preface

    NARCIS (Netherlands)

    Sillekens, W.H.; Agnew, S.R.; Neelameggham, N.R.; Mathaudhu, S.N.

    2011-01-01

    The Magnesium Technology Symposium, which takes place every year at the TMS Annual Meeting & Exhibition, is one of the largest yearly gatherings of magnesium specialists in the world. Papers are presented in all aspects of the field, ranging from primary production to applications to recycling.

  13. The Corrosion of Magnesium and of the Magnesium Aluminum Alloys Containing Manganese

    Science.gov (United States)

    Boyer, J A

    1927-01-01

    The extensive use of magnesium and its alloys in aircraft has been seriously handicapped by the uncertainties surrounding their resistance to corrosion. This problem has been given intense study by the American Magnesium Corporation and at the request of the Subcommittee on Materials for Aircraft of the National Advisory Committee for Aeronautics this report was prepared on the corrosion of magnesium. The tentative conclusions drawn from the experimental facts of this investigation are as follows: the overvoltage of pure magnesium is quite high. On immersion in salt water the metal corrodes with the liberation of hydrogen until the film of corrosion product lowers the potential to a critical value. When the potential reaches this value it no longer exceeds the theoretical hydrogen potential plus the overvoltage of the metal. Rapid corrosion consequently ceases. When aluminum is added, especially when in large amounts, the overvoltage is decreased and hydrogen plates out at a much lower potential than with pure magnesium. The addition of small amount of manganese raises the overvoltage back to practically that of pure metal, and the film is again negative.

  14. Spin-State-Controlled Photodissociation of Iron(III) Azide to an Iron(V) Nitride Complex

    Czech Academy of Sciences Publication Activity Database

    Andris, E.; Navrátil, R.; Jašík, J.; Sabenya, G.; Costas, M.; Srnec, Martin; Roithová, J.

    2017-01-01

    Roč. 56, č. 45 (2017), s. 14057-14060 ISSN 1521-3773 Institutional support: RVO:61388955 Keywords : Ion spectroscopy * Iron(V) nitride * Photodissociation Subject RIV: CF - Physical ; Theoretical Chemistry OBOR OECD: Physical chemistry

  15. Functional Significance of Iron Deficiency. Annual Nutrition Workshop Series, Volume III.

    Science.gov (United States)

    Enwonwu, Cyril O., Ed.

    Iron deficiency anemia impairs cognitive performance, physical capacity, and thermoregulation. Recent evidence suggests that these functional impairments are also evident in subclinical nonanemic iron deficiency. Very little is known about the relevance of the latter to the health of blacks, who have been shown to have the highest prevalence of…

  16. The [Fe(III)[Fe(III)(L1)2]3] star-type single-molecule magnet.

    Science.gov (United States)

    Saalfrank, Rolf W; Scheurer, Andreas; Bernt, Ingo; Heinemann, Frank W; Postnikov, Andrei V; Schünemann, Volker; Trautwein, Alfred X; Alam, Mohammad S; Rupp, Holger; Müller, Paul

    2006-06-21

    Star-shaped complex [Fe(III)[Fe(III)(L1)2]3] (3) was synthesized starting from N-methyldiethanolamine H2L1 (1) and ferric chloride in the presence of sodium hydride. For 3, two different high-spin iron(III) ion sites were confirmed by Mössbauer spectroscopy at 77 K. Single-crystal X-ray structure determination revealed that 3 crystallizes with four molecules of chloroform, but, with only three molecules of dichloromethane. The unit cell of 3.4CHCl3 contains the enantiomers (delta)-[(S,S)(R,R)(R,R)] and (lambda)-[(R,R)(S,S)(S,S)], whereas in case of 3.3CH2Cl2 four independent molecules, forming pairs of the enantiomers [lambda-(R,R)(R,R)(R,R)]-3 and [lambda-(S,S)(S,S)(S,S)]-3, were observed in the unit cell. According to SQUID measurements, the antiferromagnetic intramolecular coupling of the iron(III) ions in 3 results in a S = 10/2 ground state multiplet. The anisotropy is of the easy-axis type. EPR measurements enabled an accurate determination of the ligand-field splitting parameters. The ferric star 3 is a single-molecule magnet (SMM) and shows hysteretic magnetization characteristics below a blocking temperature of about 1.2 K. However, weak intermolecular couplings, mediated in a chainlike fashion via solvent molecules, have a strong influence on the magnetic properties. Scanning tunneling microscopy (STM) and scanning tunneling spectroscopy (STS) were used to determine the structural and electronic properties of star-type tetranuclear iron(III) complex 3. The molecules were deposited onto highly ordered pyrolytic graphite (HOPG). Small, regular molecule clusters, two-dimensional monolayers as well as separated single molecules were observed. In our STS measurements we found a rather large contrast at the expected locations of the metal centers of the molecules. This direct addressing of the metal centers was confirmed by DFT calculations.

  17. Surface decoration of amine-rich carbon nitride with iron nanoparticles for arsenite (As{sup III}) uptake: The evolution of the Fe-phases under ambient conditions

    Energy Technology Data Exchange (ETDEWEB)

    Georgiou, Y., E-mail: yiannisgeorgiou@hotmail.com [Physics Department, University of Ioannina, Ioannina 45110 (Greece); Mouzourakis, E., E-mail: emouzou@cc.uoi.gr [Physics Department, University of Ioannina, Ioannina 45110 (Greece); Bourlinos, A.B., E-mail: bourlino@cc.uoi.gr [Physics Department, University of Ioannina, Ioannina 45110 (Greece); Regional Centre of Advanced Technologies and Materials, Faculty of Science, Department of Physical Chemistry and Experimental Physics, Palacky University in Olomouc, 77146 (Czech Republic); Zboril, R., E-mail: radek.zboril@upol.cz [Regional Centre of Advanced Technologies and Materials, Faculty of Science, Department of Physical Chemistry and Experimental Physics, Palacky University in Olomouc, 77146 (Czech Republic); Karakassides, M.A., E-mail: mkarakas@cc.uoi.gr [Department of Materials Science and Engineering, University of Ioannina, Ioannina 45110 (Greece); Douvalis, A.P., E-mail: adouval@uoi.gr [Physics Department, University of Ioannina, Ioannina 45110 (Greece); Bakas, Th., E-mail: tbakas@cc.uoi.gr [Physics Department, University of Ioannina, Ioannina 45110 (Greece); Deligiannakis, Y., E-mail: ideligia@cc.uoi.gr [Physics Department, University of Ioannina, Ioannina 45110 (Greece)

    2016-07-15

    Highlights: • Novel hybrid based on carbon nitride and iron nanoparticles (gC{sub 3}N{sub 4}-rFe). • gC{sub 3}N{sub 4}-rFe superior As{sup III} sorbent(76.5 mg g{sup −1}). • Surface complexation modeling of As{sup III} adsorption. • Dual mode EPR,monitoring of Fe{sup 2+} and Fe{sup 3+} evolution. - Abstract: A novel hybrid material (gC{sub 3}N{sub 4}-rFe) consisting of amine-rich graphitic carbon nitride (gC{sub 3}N{sub 4}), decorated with reduced iron nanoparticles (rFe) is presented. XRD and TEM show that gC{sub 3}N{sub 4}-rFe bears aggregation-free Fe-nanoparticles (10 nm) uniformly dispersed over the gC{sub 3}N{sub 4} surface. In contrast, non-supported iron nanoparticles are strongly aggregated, with non-uniform size distribution (20–100 nm). {sup 57}Fe-Mössbauer spectroscopy, dual-mode electron paramagnetic resonance (EPR) and magnetization measurements, allow a detailed mapping of the evolution of the Fe-phases after exposure to ambient O{sub 2}. The as-prepared gC{sub 3}N{sub 4}-rFe bears Fe{sup 2+} and Fe° phases, however only after long exposure to ambient O{sub 2}, a Fe-oxide layer is formed around the Fe° core. In this [Fe°/Fe-oxide] core-shell configuration, the gC{sub 3}N{sub 4}-rFe hybrid shows enhanced As{sup III} uptake capacity of 76.5 mg g{sup −1}, i.e., ca 90% higher than the unmodified carbonaceous support, and 300% higher than the non-supported Fe-nanoparticles. gC{sub 3}N{sub 4}-rFe is a superior As{sup III} sorbent i.e., compared to its single counterparts or vs. graphite/graphite oxide or activated carbon analogues (11–36 mg g{sup −1}). The present results demonstrate that the gC{sub 3}N{sub 4} matrix is not simply a net that holds the particles, but rather an active component that determines particle formation dynamics and ultimately their redox profile, size and surface dispersion homogeneity.

  18. Moessbauer investigation of iron uptake in wheat

    Energy Technology Data Exchange (ETDEWEB)

    Kovacs, K., E-mail: kkriszti@bolyai.elte.hu [Eoetvoes Lorand University, Laboratory of Nuclear Chemistry, Institute of Chemistry (Hungary); Kuzmann, E. [Hungarian Academy of Sciences, Laboratory of Nuclear Chemistry, Chemical Research Center (Hungary); Fodor, F.; Cseh, E. [Eoetvoes Lorand University, Department of Plant Physiology (Hungary); Homonnay, Z.; Vertes, A. [Eoetvoes Lorand University, Laboratory of Nuclear Chemistry, Institute of Chemistry (Hungary)

    2008-07-15

    Iron uptake and distribution in wheat roots were studied with {sup 57}Fe Moessbauer spectroscopy. Plants were grown both in iron sufficient and in iron deficient nutrient solutions. Moessbauer spectra of the frozen iron sufficient roots exhibited three iron(III) components with the typical average Moessbauer parameters of {delta} = 0.50 mm s{sup -1}, {Delta} = 0.43 mm s{sup -1}, {delta} = 0.50 mm s{sup -1}, {Delta} = 0.75 mm s{sup -1} and {delta} = 0.50 mm s{sup -1}, {Delta} = 1.20 mm s{sup -1} at 80 K. These doublets are very similar to those obtained earlier for cucumber [0], which allows us to suppose that iron is stored in a very similar way in different plants. No ferrous iron could be identified in any case, not even in the iron deficient roots, which confirms the mechanism proposed for iron uptake in the graminaceous plants.

  19. Iron oxide nanoparticles for plant nutrition? A preliminary Mössbauer study

    Energy Technology Data Exchange (ETDEWEB)

    Homonnay, Z., E-mail: homonnay@caesar.elte.hu [EötvösLoránd University, Institute of Chemistry (Hungary); Tolnai, Gy. [Research Centre for Natural Sciences, Institute of Materials and Environmental Chemistry (Hungary); Fodor, F.; Solti, Á. [EötvösLoránd University, Institute of Biology (Hungary); Kovács, K.; Kuzmann, E.; Ábrahám, A. [EötvösLoránd University, Institute of Chemistry (Hungary); Szabó, E. Gy.; Németh, P.; Szabó, L.; Klencsár, Z. [Research Centre for Natural Sciences, Institute of Materials and Environmental Chemistry (Hungary)

    2016-12-15

    One of the most important micronutrients for plants is iron. We have prepared iron(III) oxyhydroxide and magnetite nanoparticles with the aim to use them as possible nutrition source for plants. The iron(III)-oxide/oxyhydroxide nanoparticles prepared under our experimental conditions as colloidal suspensions proved to be 6-line ferrihydrite nanoparticles as verified by XRD, TEM/SAED and Mössbauer spectroscopy measurements. {sup 57}Fe Mössbauer spectra of magnetite nanoparticles prepared under different preparation conditions could be analyzed on the basis of a common model based on the superposition of four sextet components displaying Gaussian-shaped hyperfine magnetic field distributions.

  20. Thermodynamic model for solution behavior and solid-liquid equilibrium in Na-Al(III-Fe(III-Cr(III-Cl-H2O system at 25°C

    Directory of Open Access Journals (Sweden)

    André Laurent

    2018-03-01

    Full Text Available The knowledge of the thermodynamic behavior of multicomponent aqueous electrolyte systems is of main interest in geo-, and environmental-sciences. The main objective of this study is the development of a high accuracy thermodynamic model for solution behavior, and highly soluble M(IIICl3(s (M= Al, Fe, Cr minerals solubility in Na-Al(III-Cr(III-Fe(III-Cl-H2O system at 25°C. Comprehensive thermodynamic models that accurately predict aluminium, chromium and iron aqueous chemistry and M(III mineral solubilities as a function of pH, solution composition and concentration are critical for understanding many important geochemical and environmental processes involving these metals (e.g., mineral dissolution/alteration, rock formation, changes in rock permeability and fluid flow, soil formation, mass transport, toxic M(III remediation. Such a model would also have many industrial applications (e.g., aluminium, chromium and iron production, and their corrosion, solve scaling problems in geothermal energy and oil production. Comparisons of solubility and activity calculations with the experimental data in binary and ternary systems indicate that model predictions are within the uncertainty of the data. Limitations of the model due to data insufficiencies are discussed. The solubility modeling approach, implemented to the Pitzer specific interaction equations is employed. The resulting parameterization was developed for the geochemical Pitzer formalism based PHREEQC database.

  1. Role of dust alkalinity in acid mobilization of iron

    OpenAIRE

    A. Ito; Y. Feng

    2010-01-01

    Atmospheric processing of mineral aerosols by acid gases (e.g., SO2, HNO3, N2O5, and HCl) may play a key role in the transformation of insoluble iron (Fe in the oxidized or ferric (III) form) to soluble forms (e.g., Fe(II), inorganic soluble species of Fe(III), and organic complexes of iron). On the other hand, mineral dust particles have a potential of neutralizing the acidic species due to the alkali...

  2. On the structure and spin states of Fe(III)-EDDHA complexes.

    Science.gov (United States)

    Gómez-Gallego, Mar; Fernández, Israel; Pellico, Daniel; Gutiérrez, Angel; Sierra, Miguel A; Lucena, Juan J

    2006-07-10

    DFT methods are suitable for predicting both the geometries and spin states of EDDHA-Fe(III) complexes. Thus, extensive DFT computational studies have shown that the racemic-Fe(III) EDDHA complex is more stable than the meso isomer, regardless of the spin state of the central iron atom. A comparison of the energy values obtained for the complexes under study has also shown that high-spin (S = 5/2) complexes are more stable than low-spin (S = 1/2) ones. These computational results matched the experimental results of the magnetic susceptibility values of both isomers. In both cases, their behavior has been fitted as being due to isolated high-spin Fe(III) in a distorted octahedral environment. The study of the correlation diagram also confirms the high-spin iron in complex 2b. The geometry optimization of these complexes performed with the standard 3-21G* basis set for hydrogen, carbon, oxygen, and nitrogen and the Hay-Wadt small-core effective core potential (ECP) including a double-xi valence basis set for iron, followed by single-point energy refinement with the 6-31G* basis set, is suitable for predicting both the geometries and the spin-states of EDDHA-Fe(III) complexes. The presence of a high-spin iron in Fe(III)-EDDHA complexes could be the key to understanding their lack of reactivity in electron-transfer processes, either chemically or electrochemically induced, and their resistance to photodegradation.

  3. Adsorption of antimony onto iron oxyhydroxides: Adsorption behavior and surface structure

    Energy Technology Data Exchange (ETDEWEB)

    Guo, Xuejun; Wu, Zhijun [State Key Laboratory of Water Environment Simulation, School of Environment, Beijing Normal University, No. 19 Xinjiekouwai Street, Beijing 100875 (China); He, Mengchang, E-mail: hemc@bnu.edu.cn [State Key Laboratory of Water Environment Simulation, School of Environment, Beijing Normal University, No. 19 Xinjiekouwai Street, Beijing 100875 (China); Meng, Xiaoguang [Center for Environmental Systems, Stevens Institute of Technology, Hoboken, NJ 07030 (United States); Jin, Xin [State Key Laboratory of Water Environment Simulation, School of Environment, Beijing Normal University, No. 19 Xinjiekouwai Street, Beijing 100875 (China); Qiu, Nan; Zhang, Jing [Beijing Synchrotron Radiation Facility (BSRF), Institute of High Energy Physics, Chinese Academy of Sciences, Beijing 100049 (China)

    2014-07-15

    Graphical abstract: - Highlights: • Antimony adsorption depended on the Sb species, pH, and the type of iron oxides. • Sb(V) adsorption favored at acidic pH, Sb(III) adsorption optimized in wider pH. • Antimony was adsorbed onto the iron oxides by the inner-sphere surface complex. • Bidentate mononuclear ({sup 2}E) was the dominant form of Sb incorporated into HFO. • XAFS and XPS indicated Sb(III) adsorbed was slowly oxidized to Sb(V). - Abstract: Antimony is detected in soil and water with elevated concentration due to a variety of industrial applications and mining activities. Though antimony is classified as a pollutant of priority interest by the United States Environmental Protection Agency (USEPA) and Europe Union (EU), very little is known about its environmental behavior and adsorption mechanism. In this study, the adsorption behaviors and surface structure of antimony (III/V) on iron oxides were investigated using batch adsorption techniques, surface complexation modeling (SCM), X-ray photon spectroscopy (XPS) and extended X-ray absorption fine structure spectroscopy (EXAFS). The adsorption isotherms and edges indicated that the affinity of Sb(V) and Sb(III) toward the iron oxides depended on the Sb species, solution pH, and the characteristics of iron oxides. Sb(V) adsorption was favored at acidic pH and decreased dramatically with increasing pH, while Sb(III) adsorption was constant over a broad pH range. When pH is higher than 7, Sb(III) adsorption by goethite and hydrous ferric oxide (HFO) was greater than Sb(V). EXAFS analysis indicated that the majority of Sb(III), either adsorbed onto HFO or co-precipitated by FeCl{sub 3}, was oxidized into Sb(V) probably due to the involvement of O{sub 2} in the long duration of sample preservation. Only one Sb–Fe subshell was filtered in the EXAFS spectra of antimony adsorption onto HFO, with the coordination number of 1.0–1.9 attributed to bidentate mononuclear edge-sharing ({sup 2}E) between Sb and

  4. Photoluminescence of magnesium-associated color centers in LiF crystals implanted with magnesium ions

    Science.gov (United States)

    Nebogin, S. A.; Ivanov, N. A.; Bryukvina, L. I.; V. Shipitsin, N.; E. Rzhechitskii, A.; Papernyi, V. L.

    2018-05-01

    In the present paper, the effect of magnesium nanoparticles implanted in a LiF crystal on the optical properties of color centers is studied. The transmittance spectra and AFM images demonstrate effective formation of the color centers and magnesium nanoparticles in an implanted layer of ∼ 60-100 nm in thickness. Under thermal annealing, a periodical structure is formed on the surface of the crystal and in the implanted layer due to self-organization of the magnesium nanoparticles. Upon excitation by argon laser with a wavelength of 488 nm at 5 K, in a LiF crystal, implanted with magnesium ions as well as in heavily γ-irradiated LiF: Mg crystals, luminescence of the color centers at λmax = 640 nm with a zero-phonon line at 601.5 nm is observed. The interaction of magnesium nanoparticles and luminescing color centers in a layer implanted with magnesium ions has been revealed. It is shown that the luminescence intensity of the implanted layer at a wavelength of 640 nm is by more than two thousand times higher than that of a heavily γ-irradiated LiF: Mg crystal. The broadening of the zero-phonon line at 601.5 nm in the spectrum of the implanted layer indicates the interaction of the emitting quantum system with local field of the surface plasmons of magnesium nanoparticles. The focus of this work is to further optimize the processing parameters in a way to result in luminescence great enhancement of color centers by magnesium nanoparticles in LiF.

  5. Phase III randomized trial comparing intravenous to oral iron in patients with cancer-related iron deficiency anemia not on erythropoiesis stimulating agents.

    Science.gov (United States)

    Noronha, Vanita; Joshi, Amit; Patil, Vijay Maruti; Banavali, Shripad D; Gupta, Sudeep; Parikh, Purvish M; Marfatia, Shalaka; Punatar, Sachin; More, Sucheta; Goud, Supriya; Nakti, Dipti; Prabhash, Kumar

    2018-04-01

    We aimed to find the optimal route of iron supplementation in patients with malignancy and iron deficiency (true or functional) anemia not receiving erythropoiesis stimulating agents (ESA). Adult patients with malignancy requiring chemotherapy, hemoglobin (Hb) 10% were randomized to intravenous (IV) iron sucrose or oral ferrous sulfate. The primary endpoint was change in Hb from baseline to 6 weeks. Secondary endpoints included blood transfusion, quality of life (QoL), toxicity, response and overall survival. A total of 192 patients were enrolled over 5 years: 98 on IV arm and 94 on oral arm. Median age was 51 years; over 95% patients had solid tumors. The mean absolute increase in Hb at 6 weeks was 0.11 g/dL (standard deviation [SD]: 1.48) in IV arm and -0.16 g/dL (SD: 1.36) in oral arm, P = 0.23. Twenty-three percent patients on IV iron and 18% patients on oral iron had a rise in Hb of ≥1 g/dL at 6 weeks, P = 0.45. Thirteen patients (13.3%) on the IV iron arm and 14 patients (14.9%) on the oral arm required blood transfusion, P = 1.0. Gastrointestinal toxicity (any grade) developed in 41% patients on IV iron and 44% patients on oral iron, P = 1.0. 5 patients on IV iron and none on oral iron had hypersensitivity, P = 0.06. QoL was not significantly different between the two arms. IV iron was not superior to oral iron in patients with malignancy on chemotherapy and iron deficiency anemia. © 2017 John Wiley & Sons Australia, Ltd.

  6. Magnesium oxychloride cement concrete

    Indian Academy of Sciences (India)

    TECS

    exposure to water and salt attack by replacing 10% magnesium chloride solution by magnesium sulphate solution ... Having tremendous load bearing capacity, it can withstand .... retention coefficients for similar concrete compositions.

  7. The ground states of iron(III) porphines: role of entropy-enthalpy compensation, Fermi correlation, dispersion, and zero-point energies.

    Science.gov (United States)

    Kepp, Kasper P

    2011-10-01

    Porphyrins are much studied due to their biochemical relevance and many applications. The density functional TPSSh has previously accurately described the energy of close-lying electronic states of transition metal systems such as porphyrins. However, a recent study questioned this conclusion based on calculations of five iron(III) porphines. Here, we compute the geometries of 80 different electronic configurations and the free energies of the most stable configurations with the functionals TPSSh, TPSS, and B3LYP. Zero-point energies and entropy favor high-spin by ~4kJ/mol and 0-10kJ/mol, respectively. When these effects are included, and all electronic configurations are evaluated, TPSSh correctly predicts the spin of all the four difficult phenylporphine cases and is within the lower bound of uncertainty of any known theoretical method for the fifth, iron(III) chloroporphine. Dispersion computed with DFT-D3 favors low-spin by 3-53kJ/mol (TPSSh) or 4-15kJ/mol (B3LYP) due to the attractive r(-6) term and the shorter distances in low-spin. The very large and diverse corrections from TPSS and TPSSh seem less consistent with the similarity of the systems than when calculated from B3LYP. If the functional-specific corrections are used, B3LYP and TPSSh are of equal accuracy, and TPSS is much worse, whereas if the physically reasonable B3LYP-computed dispersion effect is used for all functionals, TPSSh is accurate for all systems. B3LYP is significantly more accurate when dispersion is added, confirming previous results. Copyright © 2011 Elsevier Inc. All rights reserved.

  8. 21 CFR 184.1443 - Magnesium sulfate.

    Science.gov (United States)

    2010-04-01

    ... 21 Food and Drugs 3 2010-04-01 2009-04-01 true Magnesium sulfate. 184.1443 Section 184.1443 Food... Specific Substances Affirmed as GRAS § 184.1443 Magnesium sulfate. (a) Magnesium sulfate (MgSO4·7H2O, CAS... magnesium oxide, hydroxide, or carbonate with sulfuric acid and evaporating the solution to crystallization...

  9. Mineral resource of the month: magnesium

    Science.gov (United States)

    Kramer, Deborah A.

    2012-01-01

    Magnesium is the eighthmost abundant element in Earth’s crust, and the second-most abundant metal ion in seawater. Although magnesium is found in more than 60 minerals, only brucite, dolomite, magnesite and carnallite are commercially important for their magnesium content. Magnesium and its compounds also are recovered from seawater, brines found in lakes and wells, and bitterns (salts).

  10. 21 CFR 184.1431 - Magnesium oxide.

    Science.gov (United States)

    2010-04-01

    ... 21 Food and Drugs 3 2010-04-01 2009-04-01 true Magnesium oxide. 184.1431 Section 184.1431 Food and... Substances Affirmed as GRAS § 184.1431 Magnesium oxide. (a) Magnesium oxide (MgO, CAS Reg. No. 1309-48-4... powder (light) or a relatively dense white powder (heavy) by heating magnesium hydroxide or carbonate...

  11. 21 CFR 184.1426 - Magnesium chloride.

    Science.gov (United States)

    2010-04-01

    ... 21 Food and Drugs 3 2010-04-01 2009-04-01 true Magnesium chloride. 184.1426 Section 184.1426 Food... Specific Substances Affirmed as GRAS § 184.1426 Magnesium chloride. (a) Magnesium chloride (MgC12·6H2O, CAS... hydrochloric acid solution and crystallizing out magnesium chloride hexahydrate. (b) The ingredient meets the...

  12. Significance of Iron(II,III) Hydroxycarbonate Green Rust in Arsenic Remediation Using Zerovalent Iron in Laboratory Column Tests

    Science.gov (United States)

    We examined the corrosion products of zerovalent iron used in three column tests for removing arsenic from water under dynamic flow conditions. Each column test lasted three- to four-months using columns consisting of a 10.3-cm depth of 50 : 50 (w : w, Peerless iron : sand) in t...

  13. Iron transport and storage in the coccolithophore: Emiliania huxleyi.

    Science.gov (United States)

    Hartnett, Andrej; Böttger, Lars H; Matzanke, Berthold F; Carrano, Carl J

    2012-11-01

    Iron is an essential element for all living organisms due to its ubiquitous role in redox and other enzymes, especially in the context of respiration and photosynthesis. The iron uptake and storage systems of terrestrial/higher plants are now reasonably well understood with two basic strategies for iron uptake being distinguished: strategy I plants use a mechanism involving soil acidification and induction of Fe(III)-chelate reductase (ferrireductase) and Fe(II) transporter proteins while strategy II plants have evolved sophisticated systems based on high-affinity, iron specific, binding compounds called phytosiderophores. In contrast, there is little knowledge about the corresponding systems in marine plant-like lineages. Herein we report a study of the iron uptake and storage mechanisms in the coccolithophore Emiliania huxleyi. Short term radio-iron uptake studies indicate that iron is taken up by Emiliania in a time and concentration dependent manner consistent with an active transport process. Based on inhibitor studies it appears that iron is taken up directly as Fe(iii). However if a reductive step is involved the Fe(II) must not be accessible to the external environment. Upon long term exposure to (57)Fe we have been able, using a combination of Mössbauer and XAS spectroscopies, to identify a single metabolite which displays spectral features similar to the phosphorus-rich mineral core of bacterial and plant ferritins.

  14. Studies on effect of Microbial Iron Chelators on Candida Albican

    International Nuclear Information System (INIS)

    Rehmani, Fouzia S.; Milicent, S.; Zaheer-Uddin

    2005-01-01

    Iron is an essential for the life of all microbe cells. It generally exists in the oxidized form Fe(III). Even under anaerobic reducing condition the metal appear to be taken up as Fe(III). Thus free-living microorganisms require specific and effective ferric ion transport system to cope with low availability of the metal. In iron deficient environment they produce a low molecular weight specific chelators called siderphores or microbial iron chelators. Siderphores compete for limited supplied of iron. These compounds came out of the cell but can not re-enter without iron due to high affinity of these siderphores often have more than one catechol/hydroxamate functions and are multidentate (usually hexadentate ligands). The aim of the present research is to check the effect of iron chelators, namely gallic acid and salisyl hydroxamate on the growth of Candida albican in vitro. C. albican is the opportunistic paltogen present as the normal flora inside human body. In vivo the growth of C. albican is distributed by the use of antibiotics and immuno suppressers. In cases of iron over-dosage in human being, the patients are treated with certain a-iron chelators. Hence an attempt is made to notice the effect that might be inhibition or enhancement of the organism in vitro. (author)

  15. Impact of microgalvanic corrosion on the degradation morphology of WE43 and pure magnesium under exposure to simulated body fluid

    Energy Technology Data Exchange (ETDEWEB)

    Kalb, H., E-mail: Hermann.Kalb@biomed.uni-erlangen.de [Max Schaldach Endowed Professorship for Biomedical Engineering, Center for Medical Physics and Technology, Friedrich-Alexander-University Erlangen-Nuremberg, Henkestrasse 91, Erlangen 91052 (Germany); Rzany, A., E-mail: Alexander.Rzany@biomed.uni-erlangen.de [Max Schaldach Endowed Professorship for Biomedical Engineering, Center for Medical Physics and Technology, Friedrich-Alexander-University Erlangen-Nuremberg, Henkestrasse 91, Erlangen 91052 (Germany); Hensel, B., E-mail: Bernhard.Hensel@biomed.uni-erlangen.de [Max Schaldach Endowed Professorship for Biomedical Engineering, Center for Medical Physics and Technology, Friedrich-Alexander-University Erlangen-Nuremberg, Henkestrasse 91, Erlangen 91052 (Germany)

    2012-04-15

    Highlights: Black-Right-Pointing-Pointer Localized Corrosion of WE43 and pure magnesium under static exposure to SBF. Black-Right-Pointing-Pointer Vigorous hydrogen evolution at particles, which act as micro-cathodes. Black-Right-Pointing-Pointer Zr at WE43 and Fe at pure magnesium are dominant micro-cathodes. Black-Right-Pointing-Pointer Protection of surrounding bulk and volcano-shaped depositions. Black-Right-Pointing-Pointer A comprehensive corrosion model including a corrosion double-layer is proposed. - Abstract: Corrosion of magnesium alloys was studied during exposure to simulated body fluid (SBF). Microgalvanic processes dominate degradation morphology and formation of the corrosion/conversion layer. Localized corrosion with vigorous hydrogen evolution was observed at zirconium- and iron-rich precipitates that act as micro-cathodes. These are surrounded by volcano-shaped deposits of Mg(OH){sub 2}. Circular areas around cathodic centers were found to be protected from corrosion, while bulk degradation takes place in between. In SBF, conversion to a corrosion double layer was demonstrated. Differences observed for WE43 and pure magnesium (Mg) are discussed within the framework of a comprehensive model of the mechanisms of corrosion.

  16. Absorption of iron in the aged; investigation of mucosal-uptake, mucosal-transfer and retention of a physiological dose of inorganic iron

    International Nuclear Information System (INIS)

    Marx, J.J.M.

    1976-01-01

    Iron (II) and iron (III) uptake by the mucosal cells, the retention in the body, and the mucosal-transport fraction were studied in 40 healthy people over 65 years old, in 30 young adults and in 20 patients with iron-deficiency. The study was performed with 59 Fe as a tracer and 51 Cr as an inert indicator. The radioactivity was measured with a whole body scanner 24 hours and 24 days after ingestion

  17. Lightweight Heat Pipes Made from Magnesium

    Science.gov (United States)

    Rosenfeld, John N.; Zarembo, Sergei N.; Eastman, G. Yale

    2010-01-01

    Magnesium has shown promise as a lighter-weight alternative to the aluminum alloys now used to make the main structural components of axially grooved heat pipes that contain ammonia as the working fluid. Magnesium heat-pipe structures can be fabricated by conventional processes that include extrusion, machining, welding, and bending. The thermal performances of magnesium heat pipes are the same as those of equal-sized aluminum heat pipes. However, by virtue of the lower mass density of magnesium, the magnesium heat pipes weigh 35 percent less. Conceived for use aboard spacecraft, magnesium heat pipes could also be attractive as heat-transfer devices in terrestrial applications in which minimization of weight is sought: examples include radio-communication equipment and laptop computers.

  18. 21 CFR 862.1495 - Magnesium test system.

    Science.gov (United States)

    2010-04-01

    ... magnesium levels in serum and plasma. Magnesium measurements are used in the diagnosis and treatment of hypomagnesemia (abnormally low plasma levels of magnesium) and hypermagnesemia (abnormally high plasma levels of magnesium). (b) Classification. Class I. ...

  19. Siderophore-mediated iron dissolution from nontronites is controlled by mineral cristallochemistry

    Directory of Open Access Journals (Sweden)

    Damien eParrello

    2016-03-01

    Full Text Available Bacteria living in oxic environments experience iron deficiency due to limited solubility and slow dissolution kinetics of iron-bearing minerals. To cope with iron deprivation, aerobic bacteria have evolved various strategies, including release of siderophores or other organic acids that scavenge external Fe(III and deliver it to the cells. This research investigated the role of siderophores produced by Pseudomonas aeruginosa in the acquisition of Fe(III from two iron-bearing colloidal nontronites (NAu-1 and NAu-2, comparing differences in bioavailability related with site occupancy and distribution of Fe(III in the two lattices. To avoid both the direct contact of the mineral colloids with the bacterial cells and the uncontrolled particle aggregation, nontronite suspensions were homogenously dispersed in a porous silica gel before the dissolution experiments. A multiparametric approach coupling UV-vis spectroscopy and spectral decomposition algorithm was implemented to monitor simultaneously the solubilisation of Fe and the production of pyoverdine in microplate-based batch experiments. Both nontronites released Fe in a particle concentration-dependent manner when incubated with the wild-type P. aeruginosa strain, however iron released from NAu-2 was substantially greater than from NAu-1. The profile of organic acids produced in both cases was similar and may not account for the difference in the iron dissolution efficiency. In contrast, a pyoverdine-deficient mutant was unable to mobilise Fe(III from either nontronite, whereas iron dissolution occurred in abiotic experiments conducted with purified pyoverdine. Overall, our data provide evidence that P. aeruginosa indirectly mobilise Fe from nontronites primarily through the production of pyoverdine. The structural Fe present on the edges of Nau-2 rather than Nau-1 particles appears to be more bio-accessible, indicating that the distribution of Fe, in the tetrahedron and/or in the octahedron

  20. Iron(II) and Iron(III) Spin Crossover: Toward an Optimal Density Functional

    DEFF Research Database (Denmark)

    Siig, Oliver S; Kepp, Kasper P.

    2018-01-01

    Spin crossover (SCO) plays a major role in biochemistry, catalysis, materials, and emerging technologies such as molecular electronics and sensors, and thus accurate prediction and design of SCO systems is of high priority. However, the main tool for this purpose, density functional theory (DFT......), is very sensitive to applied methodology. The most abundant SCO systems are Fe(II) and Fe(III) systems. Even with average good agreement, a functional may be significantly more accurate for Fe(II) or Fe(III) systems, preventing balanced study of SCO candidates of both types. The present work investigates....../precise, inaccurate/imprecise) are observed. More generally, our work illustrates the importance not only of overall accuracy but also of balanced accuracy for systems likely to occur in context....

  1. Radioactive 210Po in magnesium supplements

    International Nuclear Information System (INIS)

    Struminska-Parulska, Dagmara Ida

    2016-01-01

    The aim of this pioneer study was to determine polonium 210 Po in the most popular magnesium supplements in Poland and estimate the possible related dose assessment to the consumers. The analyzed magnesium pharmaceutics contained organic or inorganic magnesium compounds; some from natural sources. The objectives of this research were to investigate the naturally occurring 210 Po activity concentrations in magnesium supplements, find the correlations between 210 Po concentration in medicament and magnesium chemical form, and calculate the effective radiation dose connected to analyzed magnesium supplement consumption. The highest 210 Po activity concentrations were determined in mineral tablets made from sedimentary rocks, namely dolomite - 3.84 ± 0.15 mBq g -1 (sample Mg17). The highest annual radiation dose from 210 Po taken with 1 tablet of magnesium supplement per day or with 400 mg of pure Mg daily would come from sample Mg17 (dolomite) - 1.35 ± 0.5 and 8.44 ± 0.33 μSv year -1 respectively.

  2. Natural clinoptilolite exchanged with iron: characterization and catalytic activity in nitrogen monoxide reduction

    Directory of Open Access Journals (Sweden)

    Daria Tito-Ferro

    2016-12-01

    Full Text Available The aim of this work was to characterize the natural clinoptilolite from Tasajeras deposit, Cuba, modified by hydrothermal ion-exchange with solutions of iron (II sulfate and iron (III nitrate in acid medium. Besides this, its catalytic activity to reduce nitrogen monoxide with carbon monoxide/propene in the presence of oxygen was evaluated. The characterization was performed by Mössbauer and UV-Vis diffuse reflectance spectroscopies and adsorption measurements. The obtained results lead to conclude that in exchanged samples, incorporated divalent and trivalent irons are found in octahedral coordination. Both irons should be mainly in cationic extra-framework positions inside clinoptilolite channels as charge compensating cations, and also as iron oxy-hydroxides resulting from limited hydrolysis of these cations. The iron (III exchanged samples has a larger amount of iron oxy-hydroxides agglomerates. The iron (II exchanged samples have additionally iron (II sulfate adsorbed. The catalytic activity in the nitrogen monoxide reduction is higher in the exchanged zeolites than starting. Among all samples, those exchanged of iron (II has the higher catalytic activity. This lead to outline that, main catalytically active centers are associated with divalent iron.

  3. Alkoxide-based magnesium electrolyte compositions for magnesium batteries

    Science.gov (United States)

    Dai, Sheng; Sun, Xiao-Guang; Liao, Chen; Guo, Bingkun

    2018-01-30

    Alkoxide magnesium halide compounds having the formula: RO--Mg--X (1) wherein R is a saturated or unsaturated hydrocarbon group that is unsubstituted, or alternatively, substituted with one or more heteroatom linkers and/or one or more heteroatom-containing groups comprising at least one heteroatom selected from fluorine, nitrogen, oxygen, sulfur, and silicon; and X is a halide atom. Also described are electrolyte compositions containing a compound of Formula (1) in a suitable polar aprotic or ionic solvent, as well as magnesium batteries in which such electrolytes are incorporated.

  4. Corrosion resistance of multilayered magnesium phosphate/magnesium hydroxide film formed on magnesium alloy using steam-curing assisted chemical conversion method

    International Nuclear Information System (INIS)

    Ishizaki, Takahiro; Kudo, Ruriko; Omi, Takeshi; Teshima, Katsuya; Sonoda, Tsutomu; Shigematsu, Ichinori; Sakamoto, Michiru

    2012-01-01

    Anticorrosive multilayered films were successfully prepared on magnesium alloy AZ31 by chemical conversion treatment, followed by steam curing treatment. The crystal structures, chemical composition, surface morphologies, chemical bonding states of the film was characterized using X-ray diffraction (XRD), X-ray photoelectron spectroscopy (XPS), and field emission scanning electron microscope (FE-SEM) measurements. All the films had thicknesses of ranging from 24 to 32 μm. The film had two layers that were composed of crystalline NH 4 MgPO 4 ·H 2 O, Mg 2 PO 4 OH·3H 2 O, Mg(OH) 2 and amorphous MgO. The outer layers include magnesium, oxygen, and phosphorous, and the inner layers include magnesium and oxygen. The corrosion resistant performances of the multilayered films in 5 wt% NaCl aqueous solution were investigated by electrochemical and gravimetric measurements. The potentiodynamic polarization curves revealed that the corrosion current density (j corr ) of all the film coated magnesium alloys decreased by more than four orders of magnitude as compared to that of the bare magnesium alloy, indicating that all the films had an inhibiting effect of corrosion reaction. Gravimetric measurements showed that the average corrosion rates obtained from the weight loss rates were estimated to be in the ranges of ca. 0.085–0.129 mm/y. American Society for Testing and Materials (ASTM) standard D 3359-02 cross cut tape test revealed that the adhesion of our anticorrosive multilayered film to the magnesium alloy surface was very good.

  5. Nanostructured magnesium increases bone cell density.

    Science.gov (United States)

    Weng, Lucy; Webster, Thomas J

    2012-12-07

    Magnesium has attracted some attention in orthopedics due to its biodegradability and mechanical properties. Since magnesium is an essential natural mineral for bone growth, it can be expected that as a biomaterial, it would support bone formation. However, upon degradation in the body, magnesium releases OH(-) which results in an alkaline pH that can be detrimental to cell density (for example, osteoblasts or bone forming cells). For this reason, modification of magnesium may be necessary to compensate for such detrimental effects to cells. This study created biologically inspired nanoscale surface features on magnesium by soaking magnesium in various concentrations of NaOH (from 1 to 10 N) and for various periods of time (from 10 to 30 min). The results provided the first evidence of increased roughness, surface energy, and consequently greater osteoblast adhesion, after 4 h as well as density up to 7 days on magnesium treated with any concentration of NaOH for any length of time compared to untreated controls. For these reasons, this study suggests that soaking magnesium in NaOH could be an inexpensive, simple and effective manner to promote osteoblast functions for numerous orthopedic applications and, thus, should be further studied.

  6. Iron persistence in a distal hydrothermal plume supported by dissolved-particulate exchange

    Science.gov (United States)

    Fitzsimmons, Jessica N.; John, Seth G.; Marsay, Christopher M.; Hoffman, Colleen L.; Nicholas, Sarah L.; Toner, Brandy M.; German, Christopher R.; Sherrell, Robert M.

    2017-02-01

    Hydrothermally sourced dissolved metals have been recorded in all ocean basins. In the oceans' largest known hydrothermal plume, extending westwards across the Pacific from the Southern East Pacific Rise, dissolved iron and manganese were shown by the GEOTRACES program to be transported halfway across the Pacific. Here, we report that particulate iron and manganese in the same plume also exceed background concentrations, even 4,000 km from the vent source. Both dissolved and particulate iron deepen by more than 350 m relative to 3He--a non-reactive tracer of hydrothermal input--crossing isopycnals. Manganese shows no similar descent. Individual plume particle analyses indicate that particulate iron occurs within low-density organic matrices, consistent with its slow sinking rate of 5-10 m yr-1. Chemical speciation and isotopic composition analyses reveal that particulate iron consists of Fe(III) oxyhydroxides, whereas dissolved iron consists of nanoparticulate Fe(III) oxyhydroxides and an organically complexed iron phase. The descent of plume-dissolved iron is best explained by reversible exchange onto slowly sinking particles, probably mediated by organic compounds binding iron. We suggest that in ocean regimes with high particulate iron loadings, dissolved iron fluxes may depend on the balance between stabilization in the dissolved phase and the reversibility of exchange onto sinking particles.

  7. Calcium and magnesium determination

    International Nuclear Information System (INIS)

    Bhattacharya, S.K.

    1982-01-01

    The roles of calcium and magnesium in human health and disease have been extensively studied. Calcium and magnesium have been determined in biological specimens by atomic absorption spectroscopy using stiochiometric nitrous oxide-acetylene flame

  8. Estudo polarográfico sobre a determinação de Fe(III utilizando-se a técnica da polarografia de pulso diferencial Polarographic study about the determination of Fe(III using the technique of differencial pulse polarography

    Directory of Open Access Journals (Sweden)

    Luiz Manoel Aleixo

    2001-12-01

    Full Text Available A differential pulse polarographic study with the objective to determine iron (III in presense of copper (II in a supporting electrolyte based on citrate - EDTA was made. The best experimental conditions found were a supporting electrolyte of citrate 0.25 mol L-1, EDTA 0.050 mol L-1 and KNO3 0.50 mol L-1, pH 5.00. In this media iron (III showed a polarographic peak in -0.08 V and the copper (II in -0.34 V, both vs. Ag/AgCl (saturated KCl. Thus, a analytical method was developed and applied to determine iron (III in brass alloy, a matrix were copper is in large excess over iron. The results obtained showed no interference of copper in the iron determination. The value of 0.21% of iron in the sample alloy composition was obtained and the method was validated by atomic absortion and recovery test, and the results exhibited a good agreement with the proposed method.

  9. Iron-EHPG as an hepatobiliary MR contrast agent: initial imaging and biodistribution studies

    International Nuclear Information System (INIS)

    Lauffer, R.B.; Greif, W.L.; Stark, D.D.; Vincent, A.C.; Saini, S.; Wedeen, V.J.; Brady, T.J.

    1988-01-01

    A paramagnetic relaxation agent targeted to functioning hepatocytes of the liver and excreted into the bile would be useful in the enhancement of normal liver and biliary anatomy in MR imaging. We sought to demonstrate the feasibility of this approach using the prototype hepatobiliary MR contrast agent, iron(III) ethylenebis-(2-hydroxyphenylglycine) (Fe(EHPG) - ). The biodistribution, relaxation enhancement, and imaging characteristics of Fe(EHPG) - were compared to those of the non-specific iron chelate iron(III) diethylenetriaminepentaacetic acid (Fe(DTPA) 2- ), which has a comparable effect on water proton relaxation times. (author)

  10. A SEARCH FOR MAGNESIUM IN EUROPA'S ATMOSPHERE

    International Nuclear Information System (INIS)

    Hörst, S. M.; Brown, M. E.

    2013-01-01

    Europa's tenuous atmosphere results from sputtering of the surface. The trace element composition of its atmosphere is therefore related to the composition of Europa's surface. Magnesium salts are often invoked to explain Galileo Near Infrared Mapping Spectrometer spectra of Europa's surface, thus magnesium may be present in Europa's atmosphere. We have searched for magnesium emission in the Hubble Space Telescope Faint Object Spectrograph archival spectra of Europa's atmosphere. Magnesium was not detected and we calculate an upper limit on the magnesium column abundance. This upper limit indicates that either Europa's surface is depleted in magnesium relative to sodium and potassium, or magnesium is not sputtered as efficiently resulting in a relative depletion in its atmosphere.

  11. Spin dynamics in mesoscopic size magnetic systems: A 1HNMR study in rings of iron (III) ions

    International Nuclear Information System (INIS)

    Lascialfari, A.; Gatteschi, D.; Borsa, F.; Cornia, A.

    1997-01-01

    Two magnetic molecular clusters containing almost coplanar rings of iron (III) ions with spinS=5/2 have been investigated by 1 H NMR and relaxation measurements. The first system, which will be referred to as Fe6, is a molecule of general formula [NaFe 6 (OCH 3 ) 12 (C 17 O 4 H 15 ) 6 ] + ClO 4 - or [NaFe 6 (OCH 3 ) 12 (C 15 H 11 O 2 ) 6 ] + ClO 4 - or [LiFe 6 (OCH 3 ) 12 (C 15 H 11 O 2 ) 6 ] + ClO 4 - while the second type of ring, denoted Fe10, corresponds to the molecule [Fe 10 (OCH 3 ) 20 (C 2 H 2 O 2 Cl) 10 ]. The 1 H NMR linewidth is broadened by the nuclear dipolar interaction and by the dipolar coupling of the protons with the iron (III) paramagnetic moment. It is found that the nuclear spin-lattice relaxation rate, T 1 -1 , of the proton is a sensitive probe of the Fe spin dynamics. In both clusters, T 1 -1 decreases with decreasing temperatures from room temperature, goes through a peak just below about 30 K in Fe6 and 10 K in Fe10, and it drops exponentially to very small values at helium temperature. The temperature dependence of the relaxation rate is discussed in terms of the fluctuations of the local spins within the allowed total spin configurations in the framework of the weak collision theory to describe the nuclear relaxation. We use the calculated energy levels for the Fe6 ring based on a Heisenberg Hamiltonian and the value of J obtained from the fit of the magnetic susceptibility to describe semiquantitatively the behavior of T 1 -1 vs T. The exponential drop of T 1 -1 at low temperature is consistent with a nonmagnetic singlet ground state separated by an energy gap from the first excited triplet state. (Abstract Truncated)

  12. Production technique of vermicular graphite iron cylinder head of vehicle diesel engine

    Directory of Open Access Journals (Sweden)

    Zhou Gen

    2008-11-01

    Full Text Available The 25 years’production and application have proved that vermicular graphite iron cylinder heads with vermicularity ≥50% satisfy the machinability and performance demand of diesel engine. The method, in which using cupola-induction furnace duplex melting and pour-over process with rare earth-ferrosilicon or rare earthsilicon compound as vermicularizing alloy plus rare earth-magnesium-ferrosilicon as stirring alloy, is an optimal vermicularizing process for obtaining satisfi ed vermicularity. Using top kiss risers, enlarging kissing areas and expanding covering width and making ingates to freeze earlier are the effective measures to eliminate shrinkage, blowhole and oxide inclusions in the vermicular graphite iron cylinder heads.

  13. Remediation of DDT-contaminated water and soil by using pretreated iron byproducts from the automotive industry.

    Science.gov (United States)

    Satapanajaru, Tunlawit; Anurakpongsatorn, Patana; Pengthamkeerati, Patthra

    2006-01-01

    The objective of this study was to quantify the effectiveness of different pretreated iron byproducts from the automotive industry to degrade DDT [(1,1,1-trichloro-2,2-bis(4-chlorophenyl) ethane] in aqueous solutions and soil slurry. Iron byproducts from automotive manufacturing were pretreated by three different methods (heating, solvent and 0.5N HCl acid washing) prior to experimentation. All pretreated irons were used at 5% (wt v-1) to treat 0.014 mM (5 mgL-1) of DDT in aqueous solution. Among the pretreated irons, acid pretreated iron results in the fastest destruction rates, with a pseudo first-order degradation rate of 0.364 d-1. By lowering the pH of the DDT aqueous solution from 9 to 3, destruction kinetic rates increase more than 20%. In addition, when DDT-contaminated soil slurry (3.54 mg kg-1) was incubated with 5% (wt v-1) acid-pretreated iron, more than 90% destruction of DDT was observed within 8 weeks. Moreover, DDT destruction kinetics were enhanced when Fe(II), Fe(III) or Al(III) sulfate salts were added to the soil slurry, with the following order of destruction kinetics: Al(III) sulfate > Fe(III) sulfate > Fe(II) sulfate. These results provide proof-of concept that inexpensive iron byproducts of the automotive industry can be used to remediate DDT-contaminated water and soil.

  14. Corrosion of magnesium and some magnesium alloys in gas cooled reactors

    International Nuclear Information System (INIS)

    Caillat, R.; Darras, R.

    1958-01-01

    The results of corrosion tests on magnesium and some magnesium alloys (Mg-Zr and Mg-Zr-Zn) in moist air (like G1 reactor) and in CO 2 : (like G2, G3, EDF1 reactors) are reported. The maximum temperature for exposure of magnesium to moist air without any risk of corrosion is 350 deg. C. Indeed, the oxidation rate follows a linear law above 350 deg. C although it reaches a constant level and keeps on very low under 350 deg. C. However, as far as corrosion is concerned this temperature limit can be raised up to 500 deg. C if moist air is very slightly charged with fluorinated compounds. Under pressure of CO 2 , these three materials oxidate much more slowly even if 500 deg. C is reached. The higher is the temperature, the higher is the constant level of the weight increase and the quicker is reached this one. However, Mg-Zr alloy behaves quite better than pure magnesium and especially than Mg-Zr-Zn alloy. (author) [fr

  15. Iron minerals formed by dissimilatory iron-and sulfur reducing bacteria studied by Moessbauer spectrometry

    International Nuclear Information System (INIS)

    Chistyakova, N. I.; Rusakov, V. S.; Nazarova, K. A.; Koksharov, Yu. A.; Zavarzina, D. G.; Greneche, J.-M.

    2008-01-01

    Zero-field and in-field Moessbauer investigations and electron paramagnetic resonance (EPR) measurements to follow the kinetics of the iron mineral formation by thermophilic dissimilatory anaerobic Fe(III)-reducing bacteria (strain Z-0001) and anaerobic alkaliphilic bacteria (strain Z-0531) were carried out.

  16. Chemical Castration Using Iron (III Chloride Hexahydrate (KEBIRI KIMIAWI MENGGUNAKAN FERIKLORIDA HEKSAHIDRAT

    Directory of Open Access Journals (Sweden)

    Mokhamad Fakhrul Ulum

    2017-09-01

    Full Text Available Chemical castration is a method that can be applied easily without any surgical intervention in animals. This study utilized iron (III chloride hexahydrate (FeCl3.6H2O as a new material for chemical castration in mice. Twenty seven adult male mice were divided into five groups: FeCl3 20% (n = 6, FeCl3 10% (n = 6, FeCl3 5.0% (n = 6, FeCl3 2.5% (n = 6, and control NaCl 0.9% (n = 3. A 0.2 mL of NaCl 0.9% or FeCl3 in various concentrations was injected intra-testicularly on each testis of the mice. Post-castration survival rate with LD50 values was obtained at the concentrations between 2.5-5.0% of FeCl3 groups, and 100% mice survived in the control group. The size of testis and concentration of spermatozoa decreased, in contrast with the increased concentration of FeCl3 solution used seven days post-injection compared to the control group. ABSTRAK Kebiri/kastrasi kimiawi secara injeksi intra-testis merupakan metode pengebiriam yang dapat dilakukan dengan mudah tanpa prosedur bedah pada hewan. Penelitian ini memanfaatkan larutan besi (ferri/III klorida (FeCl3 sebagai bahan baru untuk tindakan kebiri kimiawi pada mencit. Mencit jantan dewasa umur lima bulan sebanyak 27 ekor dibagi dalam lima kelompok yaitu FeCl3 20% (n=6, FeCl3 10% (n=6, FeCl3 5,0% (n=6, FeCl3 2,5% (n=6 dan kontrol NaCl 0,9% (n=3. Larutan FeCl3 sebanyak 0,2 mL diinjeksikan secara intra-testikel pada setiap organ testis. Daya hidup pascakebiri injeksi nilai LD 50 diperoleh pada kelompok FeCl3 konsentrasi di antara 2,5-5,0 % dan kelompok kontrol 100 % hidup. Organ testis dalam skrotum mengalami pengecilan ukuran dan konsentrasi spermatozoa mengalami penurunan seiring dengan peningkatan konsentrasi larutan FeCl3 yang digunakan setelah tujuh hari pasca injeksi dibandingkan dengan kontrol.

  17. Nanostructured magnesium increases bone cell density

    International Nuclear Information System (INIS)

    Weng, Lucy; Webster, Thomas J

    2012-01-01

    Magnesium has attracted some attention in orthopedics due to its biodegradability and mechanical properties. Since magnesium is an essential natural mineral for bone growth, it can be expected that as a biomaterial, it would support bone formation. However, upon degradation in the body, magnesium releases OH − which results in an alkaline pH that can be detrimental to cell density (for example, osteoblasts or bone forming cells). For this reason, modification of magnesium may be necessary to compensate for such detrimental effects to cells. This study created biologically inspired nanoscale surface features on magnesium by soaking magnesium in various concentrations of NaOH (from 1 to 10 N) and for various periods of time (from 10 to 30 min). The results provided the first evidence of increased roughness, surface energy, and consequently greater osteoblast adhesion, after 4 h as well as density up to 7 days on magnesium treated with any concentration of NaOH for any length of time compared to untreated controls. For these reasons, this study suggests that soaking magnesium in NaOH could be an inexpensive, simple and effective manner to promote osteoblast functions for numerous orthopedic applications and, thus, should be further studied. (paper)

  18. Spectrophotometric determination of ethionamide in pharmaceuticals using Folin–Ciocalteu reagent and iron(III-ferricyanide as chromogenic agents

    Directory of Open Access Journals (Sweden)

    Nagib A.S. Qarah

    2017-09-01

    Full Text Available Two simple and sensitive spectrophotometric methods are described for the determination of ethionamide (ETM in pure drug and tablets. The first method is based on the reduction of Folin–Ciocalteu (F–C reagent by ETM in sodium carbonate medium to form a blue coloured complex, which was measured at 760 nm (Molybdenum–tungsten blue method. In the second method (Prussian blue method, iron(III was reduced to iron(II by ETM in HCl medium, in which iron(II was complexed with ferricyanide, and the resulting Prussian blue was also measured at 760 nm. The absorbance measured in each case was related to the ETM concentration. The experimental conditions were carefully studied and optimised. Beer's law was obeyed in concentration ranges of 1–40 μg/ml and 0.2–4.0 μg/ml with the Molybdenum-tungsten blue method and the Prussian blue method, respectively, with corresponding molar absorptivity values of 5.72 × 103 and 3.18 × 104 l/(mol·cm. The limits of detection (LOD and quantification (LOQ were 0.09 and 0.27 μg/ml for the Molybdenum-tungsten blue method and 0.01 and 0.04 μg/ml for the Prussian blue method. Within-day and between-day relative standard deviations (%RSD at three different concentration levels were <3%, and the respective relative errors (%RE were ≤2%, implying good accuracy and precision of the methods. The proposed methods were successfully applied to the determination of ETM in bulk powder and tablets, and the results demonstrated that the methods were as accurate and precise as the official method.

  19. How do operating conditions affect As(III) removal by iron electrocoagulation?

    Science.gov (United States)

    Delaire, Caroline; Amrose, Susan; Zhang, Minghui; Hake, James; Gadgil, Ashok

    2017-04-01

    Iron electrocoagulation (Fe-EC) has been shown to effectively remove arsenic from contaminated groundwater at low cost and has the potential to improve access to safe drinking water for millions of people. Understanding how operating conditions, such as the Fe dosage rate and the O 2 recharge rate, affect arsenic removal at different pH values is crucial to maximize the performance of Fe-EC under economic constraints. In this work, we improved upon an existing computational model to investigate the combined effects of pH, Fe dosage rate, and O 2 recharge rate on arsenic removal in Fe-EC. We showed that the impact of the Fe dosage rate strongly depends on pH and on the O 2 recharge rate, which has important practical implications. We identified the process limiting arsenic removal (As(III) oxidation versus As(V) adsorption) at different pH values, which allowed us to interpret the effect of operating conditions on Fe-EC performance. Finally, we assessed the robustness of the trends predicted by the model, which assumes a constant pH, against lab experiments reproducing more realistic conditions where pH is allowed to drift during treatment as a result of equilibration with atmospheric CO 2 . Our results provide a nuanced understanding of how operating conditions impact arsenic removal by Fe-EC and can inform decisions regarding the operation of this technology in a range of groundwaters. Copyright © 2017 Elsevier Ltd. All rights reserved.

  20. Selective Iron(III ion uptake using CuO-TiO2 nanostructure by inductively coupled plasma-optical emission spectrometry

    Directory of Open Access Journals (Sweden)

    Rahman Mohammed M

    2012-12-01

    Full Text Available Abstract Background CuO-TiO2 nanosheets (NSs, a kind of nanomaterials is one of the most attracting class of transition doped semiconductor materials due to its interesting and important optical, electrical, and structural properties and has many technical applications, such as in metal ions detection, photocatalysis, Chemi-sensors, bio-sensors, solar cells and so on. In this paper the synthesis of CuO-TiO2 nanosheets by the wet-chemically technique is reported. Methods CuO-TiO2 NSs were prepared by a wet-chemical process using reducing agents in alkaline medium and characterized by UV/vis., FT-IR spectroscopy, X-ray photoelectron spectroscopy (XPS, powder X-ray diffraction (XRD, and field-emission scanning electron microscopy (FE-SEM etc. Results The structural and optical evaluation of synthesized NSs were measured by XRD pattern, Fourier transform infrared (FT-IR and UV–vis spectroscopy, respectively which confirmed that the obtained NSs are well-crystalline CuO-TiO2 and possessing good optical properties. The morphological analysis of CuO-TiO2 NSs was executed by FE-SEM, which confirmed that the doped products were sheet-shaped and growth in large quantity. Here, the analytical efficiency of the NSs was applied for a selective adsorption of iron(III ion prior to detection by inductively coupled plasma-optical emission spectrometry (ICP-OES. The selectivity of NSs towards various metal ions, including Au(III, Cd(II, Co(II, Cr(III, Fe(III, Pd(II, and Zn(II was analyzed. Conclusions Based on the selectivity study, it was confirmed that the selectivity of doped NSs phase was the most towards Fe(III ion. The static adsorption capacity for Fe(III was calculated to be 110.06 mgg−1. Results from adsorption isotherm also verified that the adsorption process was mainly monolayer-adsorption onto a surface containing a finite number of CuO-TiO2 NSs adsorption sites.

  1. The fate of arsenic adsorbed on iron oxides in the presence of arsenite-oxidizing bacteria.

    Science.gov (United States)

    Zhang, Zhennan; Yin, Naiyi; Du, Huili; Cai, Xiaolin; Cui, Yanshan

    2016-05-01

    Arsenic (As) is a redox-active metalloid whose toxicity and mobility in soil depend on its oxidation state. Arsenite [As(III)] can be oxidized by microbes and adsorbed by minerals in the soil. However, the combined effects of these abiotic and biotic processes are not well understood. In this study, the fate of arsenic in the presence of an isolated As(III)-oxidizing bacterium (Pseudomonas sp. HN-1, 10(9) colony-forming units (CFUs)·ml(-1)) and three iron oxides (goethite, hematite, and magnetite at 1.6 g L(-1)) was determined using batch experiments. The total As adsorption by iron oxides was lower with bacteria present and was higher with iron oxides alone. The total As adsorption decreased by 78.6%, 36.0% and 79.7% for goethite, hematite and magnetite, respectively, due to the presence of bacteria. As(III) adsorbed on iron oxides could also be oxidized by Pseudomonas sp. HN-1, but the oxidation rate (1.3 μmol h(-1)) was much slower than the rate in the aqueous phase (96.2 μmol h(-1)). Therefore, the results of other studies with minerals only might overestimate the adsorptive capacity of solids in natural systems; the presence of minerals might hinder As(III) oxidation by microbes. Under aerobic conditions, in the presence of iron oxides and As(III)-oxidizing bacteria, arsenic is adsorbed onto iron oxides within the adsorption capacity, and As(V) is the primary form in the solid and aqueous phases. Copyright © 2016 Elsevier Ltd. All rights reserved.

  2. Nutrition and magnesium absorption

    NARCIS (Netherlands)

    Brink, E.J.

    1992-01-01

    The influence of various nutrients present in dairy products and soybean-based products on absorption of magnesium has been investigated. The studies demonstrate that soybean protein versus casein lowers apparent magnesium absorption in rats through its phytate component. However, true

  3. Ratcheting Strain and Microstructure Evolution of AZ31B Magnesium Alloy under a Tensile-Tensile Cyclic Loading.

    Science.gov (United States)

    Yan, Zhifeng; Wang, Denghui; Wang, Wenxian; Zhou, Jun; He, Xiuli; Dong, Peng; Zhang, Hongxia; Sun, Liyong

    2018-03-28

    In this paper, studies were conducted to investigate the deformation behavior and microstructure change in a hot-rolled AZ31B magnesium alloy during a tensile-tensile cyclic loading. The relationship between ratcheting effect and microstructure change was discussed. The ratcheting effect in the material during current tensile-tensile fatigue loading exceeds the material's fatigue limit and the development of ratcheting strain in the material experienced three stages: initial sharp increase stage (Stage I); steady stage (Stage II); and final abrupt increase stage (Stage III). Microstructure changes in Stage I and Stage II are mainly caused by activation of basal slip system. The Extra Geometrically Necessary Dislocations (GNDs) were also calculated to discuss the relationship between the dislocation caused by the basal slip system and the ratcheting strain during the cyclic loading. In Stage III, both the basal slip and the {11-20} twins are found active during the crack propagation. The fatigue crack initiation in the AZ31B magnesium alloy is found due to the basal slip and the {11-20} tensile twins.

  4. Second program of materials irradiation within VISA-2 Project, Parts I-II, Part II; Drugi program ozracivanja materijala po projektu VISA-2, I-II Deo, II Deo

    Energy Technology Data Exchange (ETDEWEB)

    Pavicevic, M; Smokovic, Z [Institute of Nuclear Sciences Boris Kidric, Odeljenje za reaktorsku eksperimentalnu tehniku, Vinca, Beograd (Serbia and Montenegro)

    1965-03-15

    This second program of irradiating the materials in special VISA-2 experimental channels includes irradiation of 8 capsules with French graphite, magnesium and aluminium oxides, zircaloy, leak tight capsules with Zirconium and steel samples; capsules with domestic graphite, iron, domestic steel and molybdenum samples. This volume of the report includes design specification and engineering drawings of VISA-2 different irradiation capsules to be used and of the devices needed for completing the task.

  5. Iron-based radiochromic systems for UV dosimetry applications

    Science.gov (United States)

    Lee, Hannah J.; Alqathami, Mamdooh; Blencowe, Anton; Ibbott, Geoffrey

    2018-01-01

    Phototherapy treatment using ultraviolet (UV) A and B light sources has long existed as a treatment option for various skin conditions. Quality control for phototherapy treatment recommended by the British Association of Dermatologists and British Photodermatology Group generally focused on instrumentation-based dosimetry measurements. The purpose of this study was to present an alternative, easily prepared dosimeter system for the measurement of UV dose and as a simple quality assurance technique for phototherapy treatments. Five different UVA-sensitive radiochromic dosimeter formulations were investigated and responded with a measurable and visible optical change both in solution and in gel form. Iron(III) reduction reaction formulations were found to be more sensitive to UVA compared to iron(II) oxidation formulations. One iron(III) reduction formulation was found to be especially promising due to its sensitivity to UVA dose, ease of production, and linear response up to a saturation point.

  6. Magnesium-DNA interactions and the possible relation of magnesium to carcinogenesis. Irradiation and free radicals.

    Science.gov (United States)

    Anastassopoulou, J; Theophanides, T

    2002-04-01

    Magnesium deficiency causes renal complications. The appearance of several diseases is related to its depletion in the human body. In radiotherapy, as well as in chemotherapy, especially in treatment of cancers with cis-platinum, hypomagnesaemia is observed. The site effects of chemotherapy that are due to hypomagnesaemia are decreased using Mg supplements. The role of magnesium in DNA stabilization is concentration dependent. At high concentrations there is an accumulation of Mg binding, which induces conformational changes leading to Z-DNA, while at low concentration there is deficiency and destabilization of DNA. The biological and clinical consequences of abnormal concentrations are DNA cleavage leading to diseases and cancer. Carcinogenesis and cell growth are also magnesium-ion concentration dependent. Several reports point out that the interaction of magnesium in the presence of other metal ions showed that there is synergism with Li and Mn, but there is magnesium antagonism in DNA binding with the essential metal ions in the order: Zn>Mg>Ca. In the case of toxic metals such as Cd, Ga and Ni there is also antagonism for DNA binding. It was found from radiolysis of deaerated aqueous solutions of the nucleoside 5'-guanosine monophosphate (5'-GMP) in the presence as well as in the absence of magnesium ions that, although the addition of hydroxyl radicals (*OH) has been increased by 2-fold, the opening of the imidazole ring of the guanine base was prevented. This effect was due to the binding of Mg2+ ions to N7 site of the molecule by stabilizing the five-member ring imitating cis-platinum. It was also observed using Fourier Transform Infrared spectroscopy, Raman spectroscopy and Fast Atom Bombardment mass spectrometry that *OH radicals subtract H atoms from the C1', C4' and C5' sites of the nucleotide. Irradiation of 5'-GMP in the presence of oxygen (2.5 x 10(-4) M) shows that magnesium is released from the complex. There is spectroscopic evidence that

  7. The Siderocalin/Enterobactin Interaction: A Link between Mammalian Immunity and Bacterial Iron Transport

    Energy Technology Data Exchange (ETDEWEB)

    Meux, Susan C.

    2008-05-12

    The siderophore enterobactin (Ent) is produced by enteric bacteria to mediate iron uptake. Ent scavenges iron and is taken up by the bacteria as the highly stable ferric complex [Fe{sup III}(Ent)]{sup 3-}. This complex is also a specific target of the mammalian innate immune system protein, Siderocalin (Scn), which acts as an anti-bacterial agent by specifically sequestering siderophores and their ferric complexes during infection. Recent literature suggesting that Scn may also be involved in cellular iron transport has increased the importance of understanding the mechanism of siderophore interception and clearance by Scn; Scn is observed to release iron in acidic endosomes and [Fe{sup III}(Ent)]{sup 3-} is known to undergo a change from catecholate to salicylate coordination in acidic conditions, which is predicted to be sterically incompatible with the Scn binding pocket (also referred to as the calyx). To investigate the interactions between the ferric Ent complex and Scn at different pH values, two recombinant forms of Scn with mutations in three residues lining the calyx were prepared: Scn-W79A/R81A and Scn-Y106F. Binding studies and crystal structures of the Scn-W79A/R81A:[Fe{sup III}(Ent)]{sup 3-} and Scn-Y106F:[Fe{sup III}(Ent)]{sup 3-} complexes confirm that such mutations do not affect the overall conformation of the protein but do weaken significantly its affinity for [Fe{sup III}(Ent)]{sup 3-}. Fluorescence, UV-Vis and EXAFS spectroscopies were used to determine Scn/siderophore dissociation constants and to characterize the coordination mode of iron over a wide pH range, in the presence of both mutant proteins and synthetic salicylate analogs of Ent. While Scn binding hinders salicylate coordination transformation, strong acidification results in the release of iron and degraded siderophore. Iron release may therefore result from a combination of Ent degradation and coordination change.

  8. Reductive dehalogenation by layered iron(II)-iron(III) hydroxides and related iron(II) containing solids

    DEFF Research Database (Denmark)

    Yin, Weizhao

    In the present PhD project, novel synthesis and modifications of layered Fe(II)-Fe(III) hydroxides (green rusts, GRs) were investigated with focus on improved dehalogenation of carbon tetrachloride by using modified green rusts and/or altered reaction conditions. The Ph.D. project has comprised: 1...... sulphate green rust formation by aerial oxidation of FeII or co-precipitation by adding Fe(III) salt to Fe(II). In comparison with traditional green rust synthesis, pure GRs were synthesized in minutes. 2. Enhanced dehalogenation of CT by GR in presence of selected amino acids. In presence of glycine......, chloroform (CF) formation is effectively suppressed: less than 10% of CT is transformed to CF, and more than 90% of dehalogenation products are found to be formic acid and carbon monoxide in presence of 60 mM glycine; while a 80% of CF recovery was obtained without amino acids addition. 3. A “switch...

  9. Glycine buffered synthesis of layered iron(II)-iron(III) hydroxides (green rusts)

    DEFF Research Database (Denmark)

    Yin, Weizhao; Huang, Lizhi; Pedersen, Emil Bjerglund

    2017-01-01

    Layered Fe(II)-Fe(III) hydroxides (green rusts, GRs) are efficient reducing agents against oxidizing contaminants such as chromate, nitrate, selenite, and nitroaromatic compounds and chlorinated solvents. In this study, we adopted a buffered precipitation approach where glycine (GLY) was used...

  10. Porous bioresorbable magnesium as bone substitute

    Energy Technology Data Exchange (ETDEWEB)

    Wen, C.E.; Yamada, Y.; Shimojima, K.; Chino, Y.; Hosokawa, H.; Mabuchi, M. [Inst. for Structural and Engineering Materials, National Inst. of Advanced Industrial Science and Technology, Nagoya (Japan)

    2003-07-01

    Recently magnesium has been recognized as a very promising biomaterial for bone substitutes because of its excellent properties of biocompatibility, biodegradability and bioresorbability. In the present study, magnesium foams were fabricated by using a powder metallurgical process. Scanning electron microscopy equipped with energy dispersive X-ray spectrometer (EDS) and compressive tester were used to characterize the porous magnesium. Results show that the Young's modulus and the peak stress of the porous magnesium increase with decreasing porosity and pore size. This study suggests that the mechanical properties of the porous magnesium with the low porosity of 35% and/or with the small pore size of about 70 {mu}m are close to those of human cancellous bones. (orig.)

  11. Small for Gestational Age and Magnesium: Intrauterine magnesium deficiency may induce metabolic syndrome in later life

    Directory of Open Access Journals (Sweden)

    Junji Takaya

    2015-12-01

    Full Text Available Magnesium deficiency during pregnancy as a result of insufficient or low intake of magnesium is common in developing and developed countries. Previous reports have shown that intracellular magnesium of cord blood platelets is lower among small for gestational age (SGA groups than that of appropriate for gestational age (AGA groups, suggesting that intrauterine magnesium deficiency may result in SGA. Additionally, the risk of adult-onset diseases such as insulin resistance syndrome is greater among children whose mothers were malnourished during pregnancy, and who consequently had a low birth weight. In a number of animal models, poor nutrition during pregnancy leads to offspring that exhibit pathophysiological changes similar to human diseases. The offspring of pregnant rats fed a magensium restricted diet have developed hypermethylation in the hepatic 11β-hydroxysteroid dehydrogenase-2 promoter. These findings indicate that maternal magnesium deficiencies during pregnancy influence regulation of non-imprinted genes by altering the epigenetic regulation of gene expression, thereby inducing different metabolic phenotypes. Magnesium deficiency during pregnancy may be responsible for not only maternal and fetal nutritional problems, but also lifelong consequences that affect the offspring throughout their life. Epidemiological, clinical, and basic research on the effects of magnesium deficiency now indicates underlying mechanisms, especially epigenetic processes.

  12. Magnesium in Prevention and Therapy

    Science.gov (United States)

    Gröber, Uwe; Schmidt, Joachim; Kisters, Klaus

    2015-01-01

    Magnesium is the fourth most abundant mineral in the body. It has been recognized as a cofactor for more than 300 enzymatic reactions, where it is crucial for adenosine triphosphate (ATP) metabolism. Magnesium is required for DNA and RNA synthesis, reproduction, and protein synthesis. Moreover, magnesium is essential for the regulation of muscular contraction, blood pressure, insulin metabolism, cardiac excitability, vasomotor tone, nerve transmission and neuromuscular conduction. Imbalances in magnesium status—primarily hypomagnesemia as it is seen more common than hypermagnesemia—might result in unwanted neuromuscular, cardiac or nervous disorders. Based on magnesium’s many functions within the human body, it plays an important role in prevention and treatment of many diseases. Low levels of magnesium have been associated with a number of chronic diseases, such as Alzheimer’s disease, insulin resistance and type-2 diabetes mellitus, hypertension, cardiovascular disease (e.g., stroke), migraine headaches, and attention deficit hyperactivity disorder (ADHD). PMID:26404370

  13. Kinetic studies on the oxidation of oxyhemoglobin by biologically active iron thiosemicarbazone complexes: relevance to iron-chelator-induced methemoglobinemia.

    Science.gov (United States)

    Basha, Maram T; Rodríguez, Carlos; Richardson, Des R; Martínez, Manuel; Bernhardt, Paul V

    2014-03-01

    The oxidation of oxyhemoglobin to methemoglobin has been found to be facilitated by low molecular weight iron(III) thiosemicarbazone complexes. This deleterious reaction, which produces hemoglobin protein units unable to bind dioxygen and occurs during the administration of iron chelators such as the well-known 3-aminopyridine-2-pyridinecarbaldehyde thiosemicarbazone (3-AP; Triapine), has been observed in the reaction with Fe(III) complexes of some members of the 3-AP structurally-related thiosemicarbazone ligands derived from di-2-pyridyl ketone (HDpxxT series). We have studied the kinetics of this oxidation reaction in vitro using human hemoglobin and found that the reaction proceeds with two distinct time-resolved steps. These have been associated with sequential oxidation of the two different oxyheme cofactors in the α and β protein chains. Unexpected steric and hydrogen-bonding effects on the Fe(III) complexes appear to be the responsible for the observed differences in the reaction rate across the series of HDpxxT ligand complexes used in this study.

  14. Corrosion of Magnesium in Multimaterial System

    Energy Technology Data Exchange (ETDEWEB)

    Joshi, Vineet V.; Agnew, Sean

    2017-08-16

    The TMS Magnesium Committee has been actively involved in presenting cutting-edge research and development and the latest trends related to magnesium and its alloys to industry and academia. Topics including magnesium alloy development, applications, mechanism of deformation and corrosion, thermomechanical processing, modelling, etc. have been captured year after year through the Magnesium Technology symposium and conference proceedings at TMS and through special topics in JOM. Every year, based on the unanimous endorsement from the industry and academia, a topic is selected to address the latest developments within this subject in JOM. In continuation with last year’s coverage of Advances and Achievements in In-Situ Analysis of Corrosions and Structure–Property Relationship in Mg Alloys,[1] this year’s topic focuses on the Corrosion of Magnesium in Multimaterial Systems. Magnesium, the lightest of all the structural materials, has garnered much interest in the transportation, electronics packaging, defense equipments and industries alike and are more commonly being incorporated in multimaterial design concepts.[2-4] However, the application of the same is limited due to its highly corrosive nature, and understanding and mitigating the corrosion of magnesium has been a major research challenge.

  15. The reference range of serum, plasma and erythrocyte magnesium

    Directory of Open Access Journals (Sweden)

    Suzanna Immanuel

    2006-12-01

    Full Text Available The interest in the clinical importance of serum magnesium level has just recently begun with the analysis and findings of abnormal magnesium level in cardiovascular, metabolic and neuromuscular disorder. Although the serum level does not reflect the body magnesium level, but currently, only serum magnesium determination is widely used. Erythrocyte magnesium is considered more sensitive than serum magnesium as it reflects intracellular magnesium status. According to NCCLS (National Committee for Clinical Laboratory Standards every laboratory is recommended to have its own reference range for the tests it performs, including magnesium determination. The reference range obtained is appropriate for the population and affected by the method and technique. This study aimed to find the reference range of serum and plasma magnesium and also intracellular magnesium i.e. erythrocyte magnesium by direct method, and compare the results of serum and plasma magnesium. Blood was taken from 114-blood donor from Unit Transfusi Darah Daerah (UTDD Budhyarto Palang Merah Indonesia (PMI DKI Jakarta, consisted of 57 male and 57 female, aged 17 – 65 years, clinically healthy according to PMI donor criteria. Blood was taken from blood set, collected into 4 ml vacuum tube without anticoagulant for serum magnesium determination and 3 ml vacuum tube with lithium heparin for determination of erythrocyte and plasma magnesium Determination of magnesium level was performed with clinical chemistry auto analyzer Hitachi 912 by Xylidil Blue method colorimetrically. This study showed no significant difference between serum and heparinized plasma extra cellular magnesium. The reference range for serum or plasma magnesium was 1.30 – 2.00 mEq/L and for erythrocyte magnesium was 4.46 - 7.10 mEq/L. (Med J Indones 2006; 15:229-35Keywords: Reference range, extracellular magnesium, intracellular magnesium

  16. Magnesium Tube Hydroforming

    International Nuclear Information System (INIS)

    Liewald, M.; Pop, R.; Wagner, S.

    2007-01-01

    Magnesium alloys can be considered as alternative materials towards achieving light weight structures with high material stiffness. The formability of two magnesium alloys, viz. AZ31 and ZM21 has been experimentally tested using the IHP forming process. A new die set up for hot IHP forming has been designed and the process experimentally investigated for temperatures up to 400 deg. C. Both alloys exhibit an increase in formability with increasing forming temperature. The effect of annealing time on materials forming properties shows a fine grained structure for sufficient annealing times as well as deterioration with a large increase at the same time. The IHP process has also been used to demonstrate practicability and feasibility for real parts from manufacture a technology demonstrator part using the magnesium alloy ZM21

  17. Iron Deficiency Anaemia in Pregnancy and Postpartum: Pathophysiology and Effect of Oral versus Intravenous Iron Therapy

    Directory of Open Access Journals (Sweden)

    Alhossain A. Khalafallah

    2012-01-01

    Full Text Available Nutritional iron-deficiency anaemia (IDA is the most common disorder in the world, affecting more than two billion people. The World Health Organization’s global database on anaemia has estimated a prevalence of 14% based on a regression-based analysis. Recent data show that the prevalence of IDA in pregnant women in industrialized countries is 17.4% while the incidence of IDA in developing countries increases significantly up to 56%. Although oral iron supplementation is widely used for the treatment of IDA, not all patients respond adequately to oral iron therapy. This is due to several factors including the side effects of oral iron which lead to poor compliance and lack of efficacy. The side effects, predominantly gastrointestinal discomfort, occur in a large cohort of patients taking oral iron preparations. Previously, the use of intravenous iron had been associated with undesirable and sometimes serious side effects and therefore was underutilised. However, in recent years, new type II and III iron complexes have been developed, which offer better compliance and toleration as well as high efficacy with a good safety profile. In summary, intravenous iron can be used safely for a rapid repletion of iron stores and correction of anaemia during and after pregnancy.

  18. Biocorrosion properties and blood and cell compatibility of pure iron as a biodegradable biomaterial.

    Science.gov (United States)

    Zhang, Erlin; Chen, Haiyan; Shen, Feng

    2010-07-01

    Biocorrosion properties and blood- and cell compatibility of pure iron were studied in comparison with 316L stainless steel and Mg-Mn-Zn magnesium alloy to reveal the possibility of pure iron as a biodegradable biomaterial. Both electrochemical and weight loss tests showed that pure iron showed a relatively high corrosion rate at the first several days and then decreased to a low level during the following immersion due to the formation of phosphates on the surface. However, the corrosion of pure iron did not cause significant increase in pH value to the solution. In comparison with 316L and Mg-Mn-Zn alloy, the pure iron exhibited biodegradable property in a moderate corrosion rate. Pure iron possessed similar dynamic blood clotting time, prothrombin time and plasma recalcification time to 316L and Mg-Mn-Zn alloy, but a lower hemolysis ratio and a significant lower number density of adhered platelets. MTT results revealed that the extract except the one with 25% 24 h extract actually displayed toxicity to cells and the toxicity increased with the increasing of the iron ion concentration and the incubation time. It was thought there should be an iron ion concentration threshold in the effect of iron ion on the cell toxicity.

  19. Magnesium-phosphate-glass cements with ceramic-type properties

    Science.gov (United States)

    Sugama, T.; Kukacka, L.E.

    1982-09-23

    Rapid setting magnesium phosphate (Mg glass) cementitious materials consisting of magnesium phosphate cement paste, polyborax and water-saturated aggregate, exhibits rapid setting and high early strength characteristics. The magnesium glass cement is prepared from a cation-leachable powder and a bivalent metallic ion-accepting liquid such as an aqueous solution of diammonium phosphate and ammonium polyphosphate. The cation-leachable powder includes a mixture of two different magnesium oxide powders processed and sized differently which when mixed with the bivalent metallic ion-accepting liquid provides the magnesium glass cement consisting primarily of magnesium ortho phosphate tetrahydrate, with magnesium hydroxide and magnesium ammonium phosphate hexahydrate also present. The polyborax serves as a set-retarder. The resulting magnesium mono- and polyphosphate cements are particularly suitable for use as a cementing matrix in rapid repair systems for deteriorated concrete structures as well as construction materials and surface coatings for fireproof structures.

  20. Magnesium phosphate glass cements with ceramic-type properties

    Science.gov (United States)

    Sugama, Toshifumi; Kukacka, Lawrence E.

    1984-03-13

    Rapid setting magnesium phosphate (Mg glass) cementitious materials consisting of magnesium phosphate cement paste, polyborax and water-saturated aggregate exhibiting rapid setting and high early strength characteristics. The magnesium glass cement is prepared from a cation-leachable powder and a bivalent metallic ion-accepting liquid such as an aqueous solution of diammonium phosphate and ammonium polyphosphate. The cation-leachable powder includes a mixture of two different magnesium oxide powders processed and sized differently which when mixed with the bivalent metallic ion-accepting liquid provides the magnesium glass cement consisting primarily of magnesium ortho phosphate tetrahydrate, with magnesium hydroxide and magnesium ammonium phosphate hexahydrate also present. The polyborax serves as a set-retarder. The resulting magnesium mono- and polyphosphate cements are particularly suitable for use as a cementing matrix in rapid repair systems for deteriorated concrete structures as well as construction materials and surface coatings for fireproof structures.

  1. Magnesium deficiency and increased inflammation: current perspectives

    Directory of Open Access Journals (Sweden)

    Nielsen FH

    2018-01-01

    Full Text Available Forrest H Nielsen Research Nutritionist Consultant, Grand Forks, ND, USA Abstract: Animal studies have shown that magnesium deficiency induces an inflammatory response that results in leukocyte and macrophage activation, release of inflammatory cytokines and acute-phase proteins, and excessive production of free radicals. Animal and in vitro studies indicate that the primary mechanism through which magnesium deficiency has this effect is through increasing cellular Ca2+, which is the signal that results in the priming of cells to give the inflammatory response. Primary pro-inflammatory cytokines such as tumor necrosis factor-α and interleukin (IL-1; the messenger cytokine IL-6; cytokine responders E-selectin, intracellular adhesion molecule-1 and vascular cell adhesion molecule-1; and acute-phase reactants C-reactive protein and fibrinogen have been determined to associate magnesium deficiency with chronic low-grade inflammation (inflammatory stress. When magnesium dietary intake, supplementation, and/or serum concentration suggest/s the presence of magnesium deficiency, it often is associated with low-grade inflammation and/or with pathological conditions for which inflammatory stress is considered a risk factor. When magnesium intake, supplementation, and/or serum concentration suggest/s an adequate status, magnesium generally has not been found to significantly affect markers of chronic low-grade inflammation or chronic disease. The consistency of these findings can be modified by other nutritional and metabolic factors that affect inflammatory and oxidative stress. In spite of this, findings to date provide convincing evidence that magnesium deficiency is a significant contributor to chronic low-grade inflammation that is a risk factor for a variety of pathological conditions such as cardiovascular disease, hypertension, and diabetes. Because magnesium deficiency commonly occurs in countries where foods rich in magnesium are not consumed in

  2. Effect of Magnesium Hydride on the Corrosion Behavior of Pure Magnesium in 0.1 M NaCl Solution

    OpenAIRE

    Xu, Shanna; Dong, Junhua; Ke, Wei

    2010-01-01

    The effect of magnesium hydride on the corrosion behavior of pure magnesium in 0.1 M NaCl solution was investigated using the gas collection method, potentiostatic current decay test, and in situ Raman spectrum. The formation of magnesium hydride (MgH2, Mg2H4) was observed at the cathodic region. Applying anodic potential leads to decomposition of magnesium hydride. Magnesium hydride plays an important role on the negative difference effect (NDE) in both the cathodic and anodic regions.

  3. Redox behaviors of iron by absorption spectroscopy and redox potential measurement

    International Nuclear Information System (INIS)

    Oh, Jae Yong

    2010-02-01

    This work is performed to study the redox (reduction/oxidation) behaviors of iron in aqueous system by a combination of absorption spectroscopy and redox potential measurements. There are many doubts on redox potential measurements generally showing low accuracies and high uncertainties. In the present study, redox potentials are measured by utilizing various redox electrodes such as Pt, Au, Ag, and glassy carbon (GC) electrodes. Measured redox potentials are compared with calculated redox potentials based on the chemical oxidation speciation of iron and thermodynamic data by absorption spectroscopy, which provides one of the sensitive and selective spectroscopic methods for the chemical speciation of Fe(II/III). From the comparison analyses, redox potential values measured by the Ag redox electrode are fairly consistent with those calculated by the chemical aqueous speciation of iron in the whole system. In summary, the uncertainties of measured redox potentials are closely related with the total Fe concentration and affected by the formation of mixed potentials due to Fe(III) precipitates in the pH range of 6 ∼ 9 beyond the solubility of Fe(III), whilst being independent of the initially prepared concentration ratios between Fe(II) and Fe(III)

  4. Production technique of vermicular graphite iron cylinder head of vehicle diesel engine

    OpenAIRE

    Zhou Gen; Liu Wanhua

    2008-01-01

    The 25 years’production and application have proved that vermicular graphite iron cylinder heads with vermicularity ≥50% satisfy the machinability and performance demand of diesel engine. The method, in which using cupola-induction furnace duplex melting and pour-over process with rare earth-ferrosilicon or rare earthsilicon compound as vermicularizing alloy plus rare earth-magnesium-ferrosilicon as stirring alloy, is an optimal vermicularizing process for obtaining satisfi ed vermicularity. ...

  5. Corrosion and protection of magnesium alloys

    Energy Technology Data Exchange (ETDEWEB)

    Ghali, E. [Laval Univ., Quebec City, PQ (Canada). Dept. of Mining and Metallurgy

    2000-07-01

    The oxide film on magnesium offers considerable surface protection in rural and some industrial environments and the corrosion rate lies between that of aluminum and low carbon steels. Galvanic coupling of magnesium alloys, high impurity content such as Ni, Fe, Cu and surface contamination are detrimental for corrosion resistance of magnesium alloys. Alloying elements can form secondary particles which are noble to the Mg matrix, thereby facilitating corrosion, or enrich the corrosion product thereby possibly inhibiting the corrosion rate. Bimetallic corrosion resistance can be increased by fluxless melt protection, choice of compatible alloys, insulating materials, and new high-purity alloys. Magnesium is relatively insensible to oxygen concentration. Pitting, corrosion in the crevices, filiform corrosion are observed. Granular corrosion of magnesium alloys is possible due to the cathodic grain-boundary constituent. More homogeneous microstructures tend to improve corrosion resistance. Under fatigue loading conditions, microcrack initiation in Mg alloys is related to slip in preferentially oriented grains. Coating that exclude the corrosive environments can provide the primary defense against corrosion fatigue. Magnesium alloys that contain neither aluminum nor zinc are the most SCC resistant. Compressive surface residual stresses as that created by short peening increase SCC resistance. Cathodic polarization or cladding with a SCC resistant sheet alloy are good alternatives. Effective corrosion prevention for magnesium alloy components and assemblies should start at the design stage. Selective surface preparation, chemical treatment and coatings are recommended. Oil application, wax coating, anodizing, electroplating, and painting are possible alternatives. Recently, it is found that a magnesium hydride layer, created on the magnesium surface by cathodic charging in aqueous solution is a good base for painting. (orig.)

  6. From iron coordination compounds to metal oxide nanoparticles.

    Science.gov (United States)

    Iacob, Mihail; Racles, Carmen; Tugui, Codrin; Stiubianu, George; Bele, Adrian; Sacarescu, Liviu; Timpu, Daniel; Cazacu, Maria

    2016-01-01

    Various types, shapes and sizes of iron oxide nanoparticles were obtained depending on the nature of the precursor, preparation method and reaction conditions. The mixed valence trinuclear iron acetate, [Fe 2 III Fe II O(CH 3 COO) 6 (H 2 O) 3 ]·2H 2 O (FeAc1), μ 3 -oxo trinuclear iron(III) acetate, [Fe 3 O(CH 3 COO) 6 (H 2 O) 3 ]NO 3 ∙4H 2 O (FeAc2), iron furoate, [Fe 3 O(C 4 H 3 OCOO) 6 (CH 3 OH) 3 ]NO 3 ∙2CH 3 OH (FeF), iron chromium furoate, FeCr 2 O(C 4 H 3 OCOO) 6 (CH 3 OH) 3 ]NO 3 ∙2CH 3 OH (FeCrF), and an iron complex with an original macromolecular ligand (FePAZ) were used as precursors for the corresponding oxide nanoparticles. Five series of nanoparticle samples were prepared employing either a classical thermal pathway (i.e., thermal decomposition in solution, solvothermal method, dry thermal decomposition/calcination) or using a nonconventional energy source (i.e., microwave or ultrasonic treatment) to convert precursors into iron oxides. The resulting materials were structurally characterized by wide-angle X-ray diffraction and Fourier transform infrared, Raman, energy-dispersive X-ray, and X-ray fluorescence spectroscopies, as well as thermogravimetric analysis. The morphology was characterized by transmission electron microscopy, atomic force microscopy and dynamic light scattering. The parameters were varied within each route to fine tune the size and shape of the formed nanoparticles.

  7. Effect of Magnesium Hydride on the Corrosion Behavior of Pure Magnesium in 0.1 M NaCl Solution

    Directory of Open Access Journals (Sweden)

    Shanna Xu

    2010-01-01

    Full Text Available The effect of magnesium hydride on the corrosion behavior of pure magnesium in 0.1 M NaCl solution was investigated using the gas collection method, potentiostatic current decay test, and in situ Raman spectrum. The formation of magnesium hydride (MgH2, Mg2H4 was observed at the cathodic region. Applying anodic potential leads to decomposition of magnesium hydride. Magnesium hydride plays an important role on the negative difference effect (NDE in both the cathodic and anodic regions.

  8. Phylogenetic diversity of dissimilatory ferric iron reducers in paddy soil of Hunan, South China

    Energy Technology Data Exchange (ETDEWEB)

    Wang Xin-Jun [State Key Lab. of Urban and Regional Ecology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, BJ (China); Graduate Univ., Chinese Academy of Sciences, BJ (China); Yang Jing; Chen Xue-Ping; Sun Guo-Xin [State Key Lab. of Urban and Regional Ecology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, BJ (China); Zhu Yong-Guan [State Key Lab. of Urban and Regional Ecology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, BJ (China); Key Lab. of Urban Environment and Health, Inst. of Urban Environment, Chinese Academy of Sciences, Xiamen (China)

    2009-12-15

    Purpose: Dissimilatory iron-reducing bacteria have been described by both culture-dependent and -independent methods in various environments, including freshwater, marine sediments, natural wetlands, and contaminated aquifers. However, little is known about iron-reducing microbial communities in paddy soils. The goal of this study was to characterize iron-reducing microbial communities in paddy soil. Moreover, the effect of dissolved and solid-phase iron (III) species on the iron-reducing microbial communities was also investigated by enrichment cultures. Methods: Ferric citrate and ferrihydrite were used respectively to set up enrichment cultures of dissimilatory ironreducing microorganisms using 1% inoculum of soil samples, and the iron reduction was measured. Moreover, bacterial DNA was extracted and 16S rRNA genes were PCR-amplified, and subsequently analyzed by the clone library and terminal restriction fragment length polymorphism (T-RFLP). Results: Phylogenetic analysis of 16S rRNA gene sequences extracted from the enrichment cultures revealed that Bradyrhizobium, Bacteroides, Clostridium and Ralstonia species were the dominant bacteria in the ferric citrate enrichment. However, members of the genera Clostridium, Bacteroides, and Geobacter were the dominant micro-organisms in the ferrihydrite enrichment. Analysis of enrichment cultures by T-RFLP strongly supported the cloning and sequencing results. Conclusions: The present study demonstrated that dissimilatory iron-reducing consortia in As-contaminated paddy soil are phylogenetically diverse. Moreover, iron (III) sources as a key factor have a strong effect on the iron (III)-reducing microbial community structure and relative abundance in the enrichments. In addition, Geobacter species are selectively enriched by ferrihydrite enrichment cultures. (orig.)

  9. 21 CFR 582.5431 - Magnesium oxide.

    Science.gov (United States)

    2010-04-01

    ... 21 Food and Drugs 6 2010-04-01 2010-04-01 false Magnesium oxide. 582.5431 Section 582.5431 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) ANIMAL... Supplements 1 § 582.5431 Magnesium oxide. (a) Product. Magnesium oxide. (b) Conditions of use. This substance...

  10. 21 CFR 582.1431 - Magnesium oxide.

    Science.gov (United States)

    2010-04-01

    ... 21 Food and Drugs 6 2010-04-01 2010-04-01 false Magnesium oxide. 582.1431 Section 582.1431 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) ANIMAL... Additives § 582.1431 Magnesium oxide. (a) Product. Magnesium oxide. (b) Conditions of use. This substance is...

  11. 21 CFR 582.5443 - Magnesium sulfate.

    Science.gov (United States)

    2010-04-01

    ... 21 Food and Drugs 6 2010-04-01 2010-04-01 false Magnesium sulfate. 582.5443 Section 582.5443 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) ANIMAL... Supplements 1 § 582.5443 Magnesium sulfate. (a) Product. Magnesium sulfate. (b) Conditions of use. This...

  12. Thermodynamic analysis of growth of iron oxide films by MOCVD ...

    Indian Academy of Sciences (India)

    Abstract. Thermodynamic calculations, using the criterion of minimization of total Gibbs free energy of the system, have been carried out for the metalorganic chemical vapour deposition (MOCVD) process involving the -ketoesterate complex of iron [tris(-butyl-3-oxo-butanoato)iron(III) or Fe(tbob)3] and molecular oxygen.

  13. Imparting passivity to vapor deposited magnesium alloys

    Science.gov (United States)

    Wolfe, Ryan C.

    Magnesium has the lowest density of all structural metals. Utilization of low density materials is advantageous from a design standpoint, because lower weight translates into improved performance of engineered products (i.e., notebook computers are more portable, vehicles achieve better gas mileage, and aircraft can carry more payload). Despite their low density and high strength to weight ratio, however, the widespread implementation of magnesium alloys is currently hindered by their relatively poor corrosion resistance. The objective of this research dissertation is to develop a scientific basis for the creation of a corrosion resistant magnesium alloy. The corrosion resistance of magnesium alloys is affected by several interrelated factors. Among these are alloying, microstructure, impurities, galvanic corrosion effects, and service conditions, among others. Alloying and modification of the microstructure are primary approaches to controlling corrosion. Furthermore, nonequilibrium alloying of magnesium via physical vapor deposition allows for the formation of single-phase magnesium alloys with supersaturated concentrations of passivity-enhancing elements. The microstructure and surface morphology is also modifiable during physical vapor deposition through the variation of evaporation power, pressure, temperature, ion bombardment, and the source-to-substrate distance. Aluminum, titanium, yttrium, and zirconium were initially chosen as candidates likely to impart passivity on vapor deposited magnesium alloys. Prior to this research, alloys of this type have never before been produced, much less studied. All of these metals were observed to afford some degree of corrosion resistance to magnesium. Due to the especially promising results from nonequilibrium alloying of magnesium with yttrium and titanium, the ternary magnesium-yttrium-titanium system was investigated in depth. While all of the alloys are lustrous, surface morphology is observed under the scanning

  14. Separation of magnesium from magnesium chloride and zirconium and/or hafnium subchlorides in the production of zirconium and/or hafnium sponge metal

    International Nuclear Information System (INIS)

    Abodishish, H.A.M.; Adams, R.J.; Kearl, S.R.

    1992-01-01

    This patent describes the producing of a refractory metal wherein a sponge refractory metal is produced as an intermediate product by the use of magnesium with the incidental production of magnesium chloride, and wherein residual magnesium is separated from the magnesium chloride and from refractory metal to a vacuum distillation step which fractionally distills the magnesium, the magnesium chloride, and the metal sub-chlorides; the steps of: recovering fractionally distilled vapors of magnesium chloride and metal sub-chlorides from a sponge refractory metal; separately condensing the vapors as separately recovered; and recycling the separately recovered magnesium at a purity of at least about 96%

  15. Gas-phase complexes formed between amidoxime ligands and vanadium or iron investigated using electrospray ionization mass spectrometry.

    Science.gov (United States)

    Mustapha, Adetayo M; Pasilis, Sofie P

    2016-08-15

    Amidoxime-functionalized sorbents can be used to extract uranium from seawater. Iron(III) and vanadium(V) may compete with uranium for adsorption sites. We use 2,6-dihydroxyiminopiperidine (DHIP) and N(1) ,N(5) -dihydroxypentanediimidamide (DHPD) to model amidoxime functional groups and characterize the vanadium(V) and iron(III) complexes with these ligands. We also examine the effect of iron(III) and vanadium(V) on uranyl(VI) complexation by DHIP and DHPD. The experiments were carried out in positive ion mode using a quadrupole ion trap mass spectrometer equipped with an electrospray ionization source. The effect on the mass spectra of changes in ligand, metal:ligand mole ratio, and pH was examined. Iron(III) formed a 1:2 metal:ligand complex with DHIP at all metal:ligand mole ratios and pH values investigated; it formed both 1:2 and 1:3 metal:ligand complexes with DHPD. Vanadium(V) formed 1:1 and 1:2 metal:ligand complexes with DHIP. A 1:2 metal:ligand complex was formed with DHPD at all vanadium(V):DHPD mole ratios investigated. Changes in solution pH did not affect the ions observed. The relative binding affinities of the metal ions towards DHIP followed the order iron(III) > vanadium(V) > uranyl(VI). This study presents a first look at the gas-phase vanadium(V)- and iron(III)-DHIP and -DHPD complexes using electrospray ionization mass spectrometry. These metals form stronger complexes with amidoxime ligands than uranyl(VI), and will affect uranyl(VI) adsorption to amidoxime-based sorbents. Copyright © 2016 John Wiley & Sons, Ltd. Copyright © 2016 John Wiley & Sons, Ltd.

  16. Kinetics of chromium (VI) reduction by ferrous iron

    International Nuclear Information System (INIS)

    Batchelor, B.; Schlautman, M.; Hwang, I.; Wang, R.

    1998-09-01

    Chromium is a primary inorganic contaminant of concern at the Pantex Plant. Chromium concentrations have been found to be two orders of magnitude higher than the drinking water standards, particularly in certain wells in the perched aquifer below Zone 12. In situ reduction of a mobile form of chromium, Cr(VI) to an immobile form, Cr(III), was examined as a viable option to active soil restoration. Successfully immobilizing chromium in the vadose zone as Cr(III) will reduce the amount of chromium that reaches the groundwater table. The results from the solution experiments indicated that chromium was rapidly and stoichiometrically reduced by Fe(II) in solution. Also, the slurry experiments showed that the aquifer solids removed Fe(II) from solution, but a portion of the iron removed remained available for reaction with Cr(VI), but at a slower rate. A model to predict different amounts of iron pseudo-components was developed, which allowed prediction of iron amounts required to reduce chromium under in situ conditions

  17. Theoretical analysis of the binding of iron(III) protoporphyrin IX to 4-methoxyacetophenone thiosemicarbazone via DFT-D3, MEP, QTAIM, NCI, ELF, and LOL studies.

    Science.gov (United States)

    Nkungli, Nyiang Kennet; Ghogomu, Julius Numbonui

    2017-07-01

    Thiosemicarbazones display diverse pharmacological properties, including antimalarial activities. Their pharmacological activities have been studied in depth, but little of this research has focused on their antimalarial mode of action. To elucidate this antimalarial mechanism, we investigated the nature of the interactions between iron(III) protoporphyrin IX (Fe(III)PPIX) and the thione-thiol tautomers of 4-methoxyacetophenone thiosemicarbazone (MAPTSC). Dispersion-corrected density functional theory (DFT-D3), the quantum theory of atoms in molecules (QTAIM), the noncovalent interaction (NCI) index, the electron localization function (ELF), the localized orbital locator (LOL), and thermodynamic calculations were employed in this work. Fe(III)PPIX-MAPTSC binding is expected to inhibit hemozoin formation, thereby preventing Fe(III)PPIX detoxification in plasmodia. Preliminary studies geared toward the identification of atomic binding sites in the thione-thiol tautomers of MAPTSC were carried out using molecular electrostatic potential (MEP) maps and conceptual DFT-based local reactivity indices. The thionic sulfur and the 2 N-azomethine nitrogen/thiol sulfur of, respectively, the thione and thiol tautomers of MAPTSC were identified as the most favorable nucleophilic sites for electrophilic attack. The negative values of the computed Fe(III)PPIX-MAPTSC binding energies, enthalpies, and Gibbs free energies are indicative of the existence and stability of Fe(III)PPIX-MAPTSC complexes. MAPTSC-Fe(III) coordinate bonds and strong hydrogen bonds (N-H···O) between the NH 2 group in MAPTSC and the C=O group in one propionate side chain of Fe(III)PPIX are crucial to Fe(III)PPIX-MAPTSC binding. QTAIM, NCI, ELF, and LOL analyses revealed a subtle interplay of weak noncovalent interactions dominated by dispersive-like van der Waals interactions between Fe(III)PPIX and MAPTSC that stabilize the Fe(III)PPIX-MAPTSC complexes.

  18. Assessment of serum magnesium levels and its outcome in neonates of eclamptic mothers treated with low-dose magnesium sulfate regimen

    Science.gov (United States)

    Das, Monalisa; Chaudhuri, Patralekha Ray; Mondal, Badal C.; Mitra, Sukumar; Bandyopadhyay, Debasmita; Pramanik, Sushobhan

    2015-01-01

    Objectives: Magnesium historically has been used for treatment and/or prevention of eclampsia. Considering the low body mass index of Indian women, a low-dose magnesium sulfate regime has been introduced by some authors. Increased blood levels of magnesium in neonates is associated with increased still birth, early neonatal death, birth asphyxia, bradycardia, hypotonia, gastrointestinal hypomotility. The objective of this study was to assess safety of low-dose magnesium sulfate regimen in neonates of eclamptic mothers treated with this regimen. Materials and Methods: This was a cross-sectional observational study of 100 eclampsia patients and their neonates. Loading dose and maintenance doses of magnesium sulfate were administered to patients by combination of intravenous and intramuscular routes. Maternal serum and cord blood magnesium levels were estimated. Neonatal outcome was assessed. Results: Bradycardia was observed in 18 (19.15%) of the neonates, 16 (17.02%) of the neonates were diagnosed with hypotonia. Pearson Correlation Coefficient showed Apgar scores decreased with increase in cord blood magnesium levels. Unpaired t-test showed lower Apgar scores with increasing dose of magnesium sulfate. The Chi-square/Fisher's exact test showed significant increase in hypotonia, birth asphyxia, intubation in delivery room, Neonatal Intensive Care Unit (NICU) care requirement, with increasing dose of magnesium sulfate. (P ≤ 0.05). Conclusion: Several neonatal complications are significantly related to increasing serum magnesium levels. Overall, the low-dose magnesium sulfate regimen was safe in the management of eclamptic mothers, without toxicity to their neonates. PMID:26600638

  19. The magnesium chelation step in chlorophyll biosynthesis

    Energy Technology Data Exchange (ETDEWEB)

    Weinstein, J.

    1990-11-01

    In photosynthetic organisms, the biogenesis of energy transducing membranes requires the coordinate synthesis of prosthetic groups, proteins, and various lipids. Two of the major prosthetic groups, chlorophyll and heme, share a common biosynthetic pathway that diverges at the point of metal insertion into protoporphyrin IX (Proto). Insertion of iron leads to the formation of hemes, while insertion of magnesium is the first step unique to chlorophyll formation. This project is directed toward identifying the enzyme(s) responsible for magnesium chelation and elucidating the mechanism which regulates the flux of precursors through the branch point enzymes in isolated chloroplasts. Using intact chloroplasts from greening cucumber cotyledons, we have confirmed the ATP requirement for Mg-Proto formation. Use of non-hydrolyzable ATP analogs, uncouplers and ionophores has led to the conclusions that ATP hydrolysis is necessary, but that this hydrolysis is not linked to the requirement for membrane intactness by transmembrane ion gradients or electrical potentials. The enzyme(s) are flexible with respect to the porphyrin substrate specificity, accepting porphyrins with -vinyl, -ethyl, or -H substituents at the 2 and 4 positions. The activity increases approximately four-fold during greening. Possible physiological feedback inhibitors such as heme, protochlorophyllide, and chlorophyllide had no specific effect on the activity. The activity has now been assayed in barely, corn and peas, with the system from peas almost ten-fold more active than the cucumber system. Work is continuing in pea chloroplasts with the development of a continuous assay and investigation of the feasibility of characterizing an active, organelle-free preparation. 6 figs.

  20. Synthesis and characterization of Fe(III-piperazine-derived complexes encapsulated in zeolite Y

    Directory of Open Access Journals (Sweden)

    Márcio E. Berezuk

    2012-01-01

    Full Text Available Zeolite-encapsulated complexes have been widely applied in hydrocarbon oxidation catalysis. The "ship-in-a-bottle" encapsulation of iron(III complexes containing piperazine and piperazine-derivative ligands in zeolite-Y is described. The flexible ligand methodology was employed and the efficiency and reproducibility of the procedure was investigated. The catalysts were characterized employing several techniques and the results indicate the presence of coordinated and uncoordinated iron(III ions inside and outside the zeolitic cage.

  1. Improved cytotoxicity testing of magnesium materials

    Energy Technology Data Exchange (ETDEWEB)

    Fischer, Janine [Helmholtz-Zentrum Geesthacht, Institute of Materials Research, Department for Structural Research on Macromolecules, Max-Planck Str. 1, D - 21502 Geesthacht (Germany); Proefrock, Daniel [Helmholtz-Zentrum Geesthacht, Institute for Coastal Research, Department for Marine Bioanalytical Chemistry, Max-Planck Str. 1, D - 21502 Geesthacht (Germany); Hort, Norbert [Helmholtz-Zentrum Geesthacht, Institute of Materials Research, Department for Magnesium Processing, Max-Planck Str. 1, D - 21502 Geesthacht (Germany); Willumeit, Regine; Feyerabend, Frank [Helmholtz-Zentrum Geesthacht, Institute of Materials Research, Department for Structural Research on Macromolecules, Max-Planck Str. 1, D - 21502 Geesthacht (Germany)

    2011-06-25

    Metallic magnesium (Mg) and its alloys are highly suitable for medical applications as biocompatible and biodegradable implant materials. Magnesium has mechanical properties similar to bone, stimulates bone regeneration, is an essential non-toxic element for the human body and degrades completely within the body environment. In consequence, magnesium is a promising candidate as implant material for orthopaedic applications. Protocols using the guideline of current ISO standards should be carefully evaluated when applying them for the characterization of the cytotoxic potential of degradable magnesium materials. For as-cast material we recommend using 10 times more extraction medium than recommended by the ISO standards to obtain reasonable results for reliable cytotoxicity rankings of degradable materials in vitro. In addition primary isolated human osteoblasts or mesenchymal stem cells should be used to test magnesium materials.

  2. Improved cytotoxicity testing of magnesium materials

    International Nuclear Information System (INIS)

    Fischer, Janine; Proefrock, Daniel; Hort, Norbert; Willumeit, Regine; Feyerabend, Frank

    2011-01-01

    Metallic magnesium (Mg) and its alloys are highly suitable for medical applications as biocompatible and biodegradable implant materials. Magnesium has mechanical properties similar to bone, stimulates bone regeneration, is an essential non-toxic element for the human body and degrades completely within the body environment. In consequence, magnesium is a promising candidate as implant material for orthopaedic applications. Protocols using the guideline of current ISO standards should be carefully evaluated when applying them for the characterization of the cytotoxic potential of degradable magnesium materials. For as-cast material we recommend using 10 times more extraction medium than recommended by the ISO standards to obtain reasonable results for reliable cytotoxicity rankings of degradable materials in vitro. In addition primary isolated human osteoblasts or mesenchymal stem cells should be used to test magnesium materials.

  3. On the ionization of interstellar magnesium

    International Nuclear Information System (INIS)

    Gurzadyan, G.A.

    1977-01-01

    It has been shown that two concentric ionization zones of interstellar magnesium must exist around each star: internal, with a radius coinciding with that of the zone of hydrogen ionization Ssub(H); and external, with a radius greater than Ssub(H), by one order. Unlike interstellar hydrogen, interstellar magnesium is ionized throughout the Galaxy. It also transpires that the ionizing radiation of ordinary hot stars cannot provide for the observed high degree of ionization of interstellar magnesium. The discrepance can be eliminated by assuming the existence of circumstellar clouds or additional ionization sources of interstellar magnesium (X-ray background radiation, high-energy particles, etc.). Stars of the B5 and BO class play the main role in the formation of ionization zones of interstellar magnesium; the contribution of O class stars is negligible (<1%). (Auth.)

  4. Influence of iron redox transformations on plutonium sorption to sediments

    Energy Technology Data Exchange (ETDEWEB)

    Hixon, A.E.; Powell, B.A. [Environmental Engineering and Earth Sciences, Clemson Univ., Clemson, SC (United States); Hu, Y.J.; Nitsche, H. [Dept. of Chemistry, Univ. of California, Berkeley, CA (United States); Lawrence Berkeley National Lab., Berkeley, CA (United States); Kaplan, D.I. [Savannah River National Lab., Aiken, SC (United States); Kukkadapu, R.K.; Qafoku, O. [Pacific Northwest National Lab., Richland, WA (United States)

    2010-07-01

    Plutonium subsurface mobility is primarily controlled by its oxidation state, which in turn is loosely coupled to the oxidation state of iron in the system. Experiments were conducted to examine the effect of sediment iron mineral composition and oxidation state on plutonium sorption and reduction. A pH 6.3 vadose zone sediment containing iron oxides and iron-containing phyllosilicates was treated with various complexants (ammonium oxalate) and reductants (hydroxylamine hydrochloride and dithionite-citrate-bicarbonate (DCB)) to selectively leach and/or reduce iron oxide and phyllosilicate/clay Fe(III). {sup 57}Fe-Moessbauer spectroscopy was used to identify initial iron mineral composition of the sediment and monitor dissolution and reduction of iron oxides and reduction of phyllosilicate Fe(III). {sup 57}Fe-Moessbauer spectroscopy showed that the Fe-mineral composition of the untreated sediment is: 25-30% hematite, 60-65% small-particle/Al-goethite, and < 10% Fe(III) in phyllosilicate; there was no detectable Fe(II). Upon reduction with a strong chemical reductant (dithionite-citrate-bicarbonate buffer), much of the hematite and goethite was removed. Partial reduction of phyllosilicate Fe(III) was evident in the sediments subjected to DCB treatment. Sorption of Pu(V) was monitored over one week for the untreated and each of five treated sediment fractions. Plutonium oxidation state speciation in the aqueous and solid phases was monitored using solvent extraction, coprecipitation, and XANES. The rate of sorption appears to correlate with the fraction of Fe(II) in the sediment (untreated or treated). Pu(V) was the only oxidation state measured in the aqueous phase, irrespective of treatment, whereas Pu(IV) and much smaller amounts of Pu(V) and Pu(VI) were measured in the solid phase. Surface-mediated reduction of Pu(V) to Pu(IV) occurred in treated and untreated sediment samples; Pu(V) remained on untreated sediment surface for two days before reducing to Pu

  5. Spectrophotometric determination of phosphorus in iron alloys employing a flow injection system

    OpenAIRE

    Gervasio,Ana P. G.; Miranda,Carlos E. S.; Luca,Gilmara C.; Tumang,Cristiane A.; Campos,Luis F. P.; Reis,Boaventura F.

    2001-01-01

    A flow-injection procedure for spectrophotometric determination of phosphorus in electrolytic iron and iron alloys is proposed. The method is based on the ammonium molybdate reaction followed by stannous chloride reduction in acidic medium. In order to circumvent the severe interference caused by the major constituents such as Fe(III) and Cr(III), a mini-column packed with AG50W-X8 resin was coupled to the manifold. A sample throughput of 40 determinations per hour, a dynamical range from P 0...

  6. Crystal structures and Moessbauer spectra of spin-crossover iron(III) complexes of quinquedentate ligands

    International Nuclear Information System (INIS)

    Maeda, Yonezo; Noda, Yosuke; Oshio, Hiroki; Takashima, Yoshimasa; Matsumoto, Naohide

    1994-01-01

    Magnetic properties, Moessbauer spectra and crystal structures of spin-crossover iron(III) complexes with a quinquedentate ligand [FeLX]BPh 4 are reported. X and L denote a unidentate ligand and a quinquedentate ligand, respectively. [Fe(mbpN)(im)]BPh 4 shows spin-crossover behavior in an appropriate organic solvent, and [Fe(mbpN)(lut)]BPh 4 , [Fe(bpN)(py)]BPh 4 and [Fe(salten)X]BPh 4 (X = 4me-py or 2me-im) show spin-crossover behavior in a solid and in an organic solvent. It was found that the ligand field strength of salten was stronger than that of mbpN. The rates of spin-state interexchange in the complexes are as fast as the inverse of the lifetime (1 x 10 -7 s) of the Moessbauer nuclear level. The Moessbauer spectroscopic behavior of [Fe(mbpN)(lut)]BPh 4 and [Fe(bpN)(py)]BPh 4 is different to that of [Fe(salten)X]BPh 4 (X = 4me-py or 2me-im). The difference was ascribed to the different geometrical positions of the corresponding anions. (orig.)

  7. Trace elements studies on Karachi populations, part III: blood copper, zinc, magnesium and lead levels in psychiatric patients with disturbed behavior

    International Nuclear Information System (INIS)

    Manser, W.T.

    1989-01-01

    Blood levels of copper, zinc, magnesium and lead were determined in 29 males and 15 females suffering from disturbed behavior. As far as we could ascertain they were under no medication and belong to low income groups. Male patients had significantly higher levels than female patients for zinc but there was no sexual difference for magnesium or cooper. In patients copper and lead levels were higher than for normals, but no difference could be found for Mg and Zn. At least one metal abnormality was observed in 19 of the males and 9 (60.0%) of the female patients. (author)

  8. Magnesium balances and 28Mg studies in man

    International Nuclear Information System (INIS)

    Spencer, H.; Schwartz, R.; Osis, D.

    1988-01-01

    The intestinal absorption of magnesium was determined under strictly controlled dietary conditions in patients with normal renal function and also in patients with chronic renal failure. The average net absorption of magnesium of patients with normal renal function, expressed as percent of the magnesium intake, was 48.5%, while that of patients with chronic renal failure was significantly lower, 17%. Increasing the calcium intake from a low calcium intake of 200 mg/day to different higher intake levels up to 2000 mg/day did not change the magnesium balance nor the net absorption of magnesium of both types of patients. The lack of effect of the higher calcium intake on the absorption of magnesium was confirmed in 28 Mg studies in which an oral dose of 28 Mg, as the chloride, was given. The excretion of the absorbed magnesium into the intestine, the endogenous fecal magnesium, was low. Also, increasing the phosphorus intake up to 2000 mg/day in subjects with normal renal function did not affect the magnesium balance, regardless of the calcium intake

  9. Ultrafast electron and energy transfer in dye-sensitized iron oxide and oxyhydroxide nanoparticles

    DEFF Research Database (Denmark)

    Gilbert, Benjamin; Katz, Jordan E.; Huse, Nils

    2013-01-01

    photo-initiated interfacial electron transfer. This approach enables time-resolved study of the fate and mobility of electrons within the solid phase. However, complete analysis of the ultrafast processes following dye photoexcitation of the sensitized iron(iii) oxide nanoparticles has not been reported....... We addressed this topic by performing femtosecond transient absorption (TA) measurements of aqueous suspensions of uncoated and DCF-sensitized iron oxide and oxyhydroxide nanoparticles, and an aqueous iron(iii)–dye complex. Following light absorption, excited state relaxation times of the dye of 115...... a four-state model of the dye-sensitized system, finding electron and energy transfer to occur on the same ultrafast timescale. The interfacial electron transfer rates for iron oxides are very close to those previously reported for DCF-sensitized titanium dioxide (for which dye–oxide energy transfer...

  10. The solvent extraction of zinc, iron, and indium from chloride solutions by neutral organophosphorus compounds

    International Nuclear Information System (INIS)

    Preston, J.S.; Du Preez, A.C.

    1985-01-01

    The preparation of several neutral organophosphorus compounds and their evaluation as selective extractants for zinc in chloride media are described. The compounds belong to the series trialkyl phosphates (RO) 3 PO, dialkyl alkylphosphonates R'PO(OR) 2 , alkyl dialkylphosphinates R 2 'PO(OR), and trialkyl-phosphine oxides R 3 'PO. They were characterized by measurement of their physical properties (melting and boiling points, refractive indices, and densities), and their purities were confirmed by osmometric determination of their molecular masses; by carbon and hydrogen microanalysis; by the titrimetric determination of acidic impurities; and, for liquid products, by comparison of their experimental molar refractivities with empirical values. Metal-distribution equilibria were determined for solutions of the extractants in xylene and aqueous phase containing 0,5 to 5,0 M sodium chloride. Moderately good selectivities were shown for zinc(II) over iron(III), and excellent selectivities were shown for zinc(II) over iron(II), copper(II), lead(II), and cadmium(II). The extraction of indium(III) was similar to that of zinc(II). The extraction of zinc(III), iron(III), and indium(III) increased markedly through the series. (RO) 3 PO 2 2 'PO(OR) 3 'PO. The incorporation of phenyl groups into the compounds led to weaker extraction. The extracted complexes of zinc(II), iron(III), and indium(III) have the stoichiometries ZnCl 2 L 2 ,FeCl 3 L 2 (H 2 O), and InCl 3 L 2 (H 2 O) respectively, where L represents the neutral organophosphorus compound

  11. Aluminum Hydroxide and Magnesium Hydroxide

    Science.gov (United States)

    Aluminum Hydroxide, Magnesium Hydroxide are antacids used together to relieve heartburn, acid indigestion, and upset stomach. They ... They combine with stomach acid and neutralize it. Aluminum Hydroxide, Magnesium Hydroxide are available without a prescription. ...

  12. Method development for the determination of calcium, copper, magnesium, manganese, iron, potassium, phosphorus and zinc in different types of breads by microwave induced plasma-atomic emission spectrometry.

    Science.gov (United States)

    Ozbek, Nil; Akman, Suleyman

    2016-06-01

    A novel method was developed for the determination of calcium, magnesium, potassium, iron, copper, zinc, and manganese and phosphorous in various kinds of breads samples sold in Turkey by microwave plasma-atomic emission spectrometry (MIP-AES). Breads were dried at 100 °C for one day, ground thoroughly and then digested using nitric acid/hydrogen per oxide (3:1). The analytes in certified reference wheat flour and maize flour samples were determined in the uncertainty limits of the certified values as well as the analytes added to the mixture of ground bread and acid mixture prior to digestion were recovered quantitatively (>90%). Therefore, all determinations were made by linear calibration technique using aqueous standards. The LOD values for Ca, Cu, Fe, K, Mg, Mn, P and Zn were 13.1, 0.28, 4.47, 118, 1.10, 0.41, 7550 and 3.00 ng mL(-1), respectively. No spectral interference was detected at the working wavelengths of the analytes. Copyright © 2016 Elsevier Ltd. All rights reserved.

  13. Serum magnesium levels in patients with pre-eclampsia and eclampsia with different regimens of magnesium sulphate

    Directory of Open Access Journals (Sweden)

    Arpita Singh

    2013-01-01

    Full Text Available Background Pre-eclampsia and the subsequent eclampsia account for a common cause of maternal mortality worldwide and efforts aimed at reducing its menace are vital. Objective To estimate the serum magnesium levels in pre-eclampsia and eclampsia and to study the effect of using different regimens of magnesium sulphate. Methods 70 cases of pre-eclampsia and eclampsia and 35 normal pregnant women as controls were studied. Serum magnesium levels were estimated using Atomic Absorption Spectrophotometer (Model AAS-4139 at baseline and at frequent intervals during gestation and the overall parameters were meticulously observed. Results Majority(60%ofstudiedcaseswasnulliparawithgestationageof36-40 weeks. Statistically significant reduction of mean diastolic blood pressure and protein-urea was observed after using both intramuscular and intravenous regimens of magnesium sulphate. Mean initial serum magnesium level (mg/dl±SD was 1.81±0.58 in group A,1.55±0.41 in group B and 1.49±0.41 in group C. Mean serum magnesium levels during first 4 hours after therapy were statistically significant between intramuscular and intravenous regimen groups while same were statistically insignificant at 8,12,16,24 and 32 hours. Besides, few minor side effects including headache, vomiting, reduced tendon reflexes and thrombocytopenia, no severe side effects and no maternal mortality were seen. Conclusion Hypomagnesemia occurs during states of preeclampsia and eclampsia, and, administration of magnesium sulphate is effective and safe in preventing maternal mortality.

  14. Serum magnesium levels in patients with pre-eclampsia and eclampsia with different regimens of magnesium sulphate

    Directory of Open Access Journals (Sweden)

    Arpita Singh

    2013-03-01

    Full Text Available Background Pre-eclampsia and the subsequent eclampsia account for a common cause of maternal mortality worldwide and efforts aimed at reducing its menace are vital. Objective To estimate the serum magnesium levels in pre-eclampsia and eclampsia and to study the effect of using different regimens of magnesium sulphate. Methods 70 cases of pre-eclampsia and eclampsia and 35 normal pregnant women as controls were studied. Serum magnesium levels were estimated using Atomic Absorption Spectrophotometer (Model AAS-4139 at baseline and at frequent intervals during gestation and the overall parameters were meticulously observed. Results Majority (60% of studied cases was nullipara with gestation age of 36-40 weeks. Statistically significant reduction of mean diastolic blood pressure and protein-urea was observed after using both intramuscular and intravenous regimens of magnesium sulphate. Mean initial serum magnesium level (mg/dl±SD was 1.81±0.58 in group A,1.55±0.41 in group B and 1.49±0.41 in group C. Mean serum magnesium levels during first 4 hours after therapy were statistically significant between intramuscular and intravenous regimen groups while same were statistically insignificant at 8,12,16,24 and 32 hours. Besides, few minor side effects including headache, vomiting, reduced tendon reflexes and thrombocytopenia, no severe side effects and no maternal mortality were seen. Conclusion Hypomagnesemia occurs during states of preeclampsia and eclampsia, and, administration of magnesium sulphate is effective and safe in preventing maternal mortality.

  15. Role of dust alkalinity in acid mobilization of iron

    Directory of Open Access Journals (Sweden)

    A. Ito

    2010-10-01

    Full Text Available Atmospheric processing of mineral aerosols by acid gases (e.g., SO2, HNO3, N2O5, and HCl may play a key role in the transformation of insoluble iron (Fe in the oxidized or ferric (III form to soluble forms (e.g., Fe(II, inorganic soluble species of Fe(III, and organic complexes of iron. On the other hand, mineral dust particles have a potential of neutralizing the acidic species due to the alkaline buffer ability of carbonate minerals (e.g., CaCO3 and MgCO3. Here we demonstrate the impact of dust alkalinity on the acid mobilization of iron in a three-dimensional aerosol chemistry transport model that includes a mineral dissolution scheme. In our model simulations, most of the alkaline dust minerals cannot be entirely consumed by inorganic acids during the transport across the North Pacific Ocean. As a result, the inclusion of alkaline compounds in aqueous chemistry substantially limits the iron dissolution during the long-range transport to the North Pacific Ocean: only a small fraction of iron (<0.2% dissolves from hematite in the coarse-mode dust aerosols with 0.45% soluble iron initially. On the other hand, a significant fraction of iron (1–2% dissolves in the fine-mode dust aerosols due to the acid mobilization of the iron-containing minerals externally mixed with carbonate minerals. Consequently, the model quantitatively reproduces higher iron solubility in smaller particles as suggested by measurements over the Pacific Ocean. It implies that the buffering effect of alkaline content in dust aerosols might help to explain the inverse relationship between aerosol iron solubility and particle size. We also demonstrate that the iron solubility is sensitive to the chemical specification of iron-containing minerals in dust. Compared with the dust sources, soluble iron from combustion sources contributes to a relatively marginal effect for deposition of soluble iron over the North

  16. Iron(III) complexes of certain tetradentate phenolate ligands as ...

    Indian Academy of Sciences (India)

    non-heme iron enzymes, which catalyse the oxidative cleavage of catechols to cis, cis-muconic acids with the incorporation of ... nature of heterocyclic rings of the ligands and the methyl substituents on them regulate the electronic spectral features .... and simple substitution reactions.19,21 The complexes of [H2(L5)] and ...

  17. Synthesis of carbon nanotubes by CVD method using iron and molybdenum-based catalysts supported on ceramic matrices

    International Nuclear Information System (INIS)

    Teixeira, Ana Paula de Carvalho

    2010-01-01

    Molybdenum is known for its synergistic effect in the synthesis of carbon nanotubes (CNs) by chemical vapor deposition (CVD method). When added to typical catalysts like iron, nickel, and cobalt, even in small quantities, it is increases the yield of these nanostructures. The presence of Mo also has an influence on the type and number of CN walls formed. Although this effect is widely documented in the literature, there is not yet a consensus about the mechanism of action of molybdenum in catalytic systems. The objective of the present work is to study the influence of molybdenum on the catalytic activity of iron nanoparticle-based catalysts supported on magnesium oxide (Fe/MgO system) in the synthesis of carbon nanotubes by the CVD method. The Mo concentration was systematically varied from null to molar ratio values four times greater than the quantity of Fe, and the obtained material (catalysts and carbon nanotubes) were broadly characterized by different techniques. In order to also study the influence of the preparation method on the final composition of the catalytic system phases, the catalytic systems (Fe/MgO e FeMo x /MgO) were synthesized by two different methods: co-precipitation and impregnation. The greatest CN yields were observed for the catalysts prepared by coprecipitation. The difference was attributed to better dispersion of the Fe and Mo phases in the catalyst ceramic matrix. In the precipitation stage, it was observed the formation of layered double hydroxides whose concentration increased with the Mo content up to the ratio of Mo/Fe equal to 0.2. This phase is related to a better distribution of Fe and Mo in this concentration range. Another important characteristic observed is that the ceramic matrix is not inert. It can react both with Fe and Mo and form the iron solid solution in the magnesium oxide and the phases magnesium-ferrite (MgFe 2 0 4 ) and magnesium molybdate (MgMo0 4 ). The MgFe 2 0 4 phase is observed in all catalytic systems

  18. Computational micromechanics of bioabsorbable magnesium stents.

    Science.gov (United States)

    Grogan, J A; Leen, S B; McHugh, P E

    2014-06-01

    Magnesium alloys are a promising candidate material for an emerging generation of absorbable metal stents. Due to its hexagonal-close-packed lattice structure and tendency to undergo twinning, the deformation behaviour of magnesium is quite different to that of conventional stent materials, such as stainless steel 316L and cobalt chromium L605. In particular, magnesium exhibits asymmetric plastic behaviour (i.e. different yield behaviours in tension and compression) and has lower ductility than these conventional alloys. In the on-going development of absorbable metal stents it is important to assess how the unique behaviour of magnesium affects device performance. The mechanical behaviour of magnesium stent struts is investigated in this study using computational micromechanics, based on finite element analysis and crystal plasticity theory. The plastic deformation in tension and bending of textured and non-textured magnesium stent struts with different numbers of grains through the strut dimension is investigated. It is predicted that, unlike 316L and L605, the failure risk and load bearing capacity of magnesium stent struts during expansion is not strongly affected by the number of grains across the strut dimensions; however texturing, which may be introduced and controlled in the manufacturing process, is predicted to have a significant influence on these measures of strut performance. Copyright © 2014 Elsevier Ltd. All rights reserved.

  19. Synthesis, characterization and stability of Cr(III) and Fe(III) hydroxides

    Energy Technology Data Exchange (ETDEWEB)

    Papassiopi, N.; Vaxevanidou, K.; Christou, C.; Karagianni, E.; Antipas, G.S.E., E-mail: gantipas@metal.ntua.gr

    2014-01-15

    Highlights: • Fe(III)–Cr(III) hydroxides enhance groundwater quality better than pure Cr(III) compounds. • Crystalline Cr(OH){sub 3}·3H{sub 2}O was unstable, with a solubility higher than 50 μg/l. • Amorphous Cr(OH){sub 3}(am) was stable with a solubility lower than 50 μg/l in the range 5.7 < pH < 11. • For mixed Fe{sub 0.75}Cr{sub 0.25}(OH){sub 3}, the stability region was extended to 4.8 < pH < 13.5. -- Abstract: Chromium is a common contaminant of soils and aquifers and constitutes a major environmental problem. In nature, chromium usually exists in the form of two oxidation states, trivalent, Cr(III), which is relatively innocuous for biota and for the aquatic environment, and hexavalent, Cr(VI) which is toxic, carcinogenic and very soluble. Accordingly, the majority of wastewater and groundwater treatment technologies, include a stage where Cr(VI) is reduced to Cr(III), in order to remove chromium from the aqueous phase and bind the element in the form of environmentally stable solid compounds. In the absence of iron the final product is typically of the form Cr(OH){sub 3}·xH{sub 2}O whereas in the presence of iron the precipitate is a mixed Fe{sub (1−x)}Cr{sub x}(OH){sub 3} phase. In this study, we report on the synthesis, characterisation and stability of mixed (Fe{sub x},Cr{sub 1−x})(OH){sub 3} hydroxides as compared to the stability of Cr(OH){sub 3}. We established that the plain Cr(III) hydroxide, abiding to the approximate molecular formula Cr(OH){sub 3}·3H{sub 2}O, was crystalline, highly soluble, i.e. unstable, with a tendency to transform into the stable amorphous hydroxide Cr(OH){sub 3}(am) phase. Mixed Fe{sub 0.75}Cr{sub 0.25}(OH){sub 3} hydroxides were found to be of the ferrihydrite structure, Fe(OH){sub 3}, and we correlated their solubility to that of a solid solution formed by plain ferrihydrite and the amorphous Cr(III) hydroxide. Both our experimental results and thermodynamic calculations indicated that mixed Fe(III)–Cr(III

  20. Radioactive {sup 210}Po in magnesium supplements

    Energy Technology Data Exchange (ETDEWEB)

    Struminska-Parulska, Dagmara Ida [Gdansk Univ. (Poland). Environmental Chemistry and Radiochemistry Chair

    2016-08-01

    The aim of this pioneer study was to determine polonium {sup 210}Po in the most popular magnesium supplements in Poland and estimate the possible related dose assessment to the consumers. The analyzed magnesium pharmaceutics contained organic or inorganic magnesium compounds; some from natural sources. The objectives of this research were to investigate the naturally occurring {sup 210}Po activity concentrations in magnesium supplements, find the correlations between {sup 210}Po concentration in medicament and magnesium chemical form, and calculate the effective radiation dose connected to analyzed magnesium supplement consumption. The highest {sup 210}Po activity concentrations were determined in mineral tablets made from sedimentary rocks, namely dolomite - 3.84 ± 0.15 mBq g{sup -1} (sample Mg17). The highest annual radiation dose from {sup 210}Po taken with 1 tablet of magnesium supplement per day or with 400 mg of pure Mg daily would come from sample Mg17 (dolomite) - 1.35 ± 0.5 and 8.44 ± 0.33 μSv year{sup -1} respectively.

  1. Effects of Short-term Feeding Magnesium before Slaughter on Blood Metabolites and Postmortem Muscle Traits of Halothane-carrier Pigs

    Directory of Open Access Journals (Sweden)

    Jing Chen

    2013-06-01

    Full Text Available Fifty-four, mixed-sex, halothane-carrier crossbred (Yorkshire×Landrace pigs with an average initial BW of 108.2±0.8 kg were randomly allotted to one of three dietary treatments for 5 d before slaughter: i a control corn-soybean meal finisher diet devoid of supplemental magnesium; ii a diet supplemented with 1.5 g/kg of elemental Mg from magnesium acetate; and iii a diet supplemented with 1.5 g/kg of elemental Mg from magnesium sulfate heptahydrate. Serum creatine kinase (CK, lactate and glucose were analyzed at slaughter. Muscles from longissimus (LM were packaged and stored to simulate display storage for muscle lactate and glycogen determinations at 0, 1, 2, 3, and 4 d. Mg supplementation reduced (p0.05 on serum glucose. Daily change of muscle lactate concentration linearly increased (p<0.01, while glucose concentration linearly decreased (p<0.05 as storage time increased in all treatments. However, dietary Mg acetate and Mg sulfate supplementation in pigs elevated (p<0.05 muscle glycogen and reduced (p<0.05 muscle lactate concentrations, especially during the first 2 d of display, compared with pigs fed the control diet. This study suggests that short-term feeding of magnesium acetate and magnesium sulfate to heterozygous carriers of the halothane gene has beneficial effects on stress response and pork quality by improving blood and muscle biochemical indexes.

  2. Distinction between magnesium diboride and tetraboride by kelvin probe force microscopy

    International Nuclear Information System (INIS)

    Kim, Du-Na; Caron, Arnaud; Park, Hai Woong

    2016-01-01

    We analyze mixtures of magnesium diboride and tetraboride synthesized with magnesium powders of different shapes. To distinguish between magnesium diboride and tetraboride we use the contrast of kelvin probe force microscopy. The microstructural morphology strongly depends on the shape of the magnesium powders used in the reaction between magnesium and magnesium tetraboride to form magnesium diboride. With spherical magnesium powder an equiaxed microstructure of magnesium diboride is formed with residual magnesium tetraboride at the grain boundaries. With plate-like magnesium powders elongated magnesium diboride grains are formed. In this case, residual magnesium tetraboride is found to agglomerate.

  3. Mechanistic Study of Magnesium Carbonate Semibatch Reactive Crystallization with Magnesium Hydroxide and CO2

    DEFF Research Database (Denmark)

    Han, B.; Qu, H. Y.; Niemi, H.

    2014-01-01

    This work investigates semibatch precipitation of magnesium carbonate at ambient temperature and pressure using Mg(OH)(2) and CO2 as starting materials. A thermal analysis method was developed that reflects the dissolution rate of Mg(OH)(2) and the formation of magnesium carbonate. The method...... the liquid and solid phases. A stirring rate of 650 rpm was found to be the optimum speed as the flow rate of CO2 was 1 L/min. Precipitation rate increased with gas flow rate, which indicates that mass transfer of CO2 plays a critical role in this precipitation case. Magnesium carbonate trihydrate...

  4. Solvation of magnesium dication: molecular dynamics simulation and vibrational spectroscopic study of magnesium chloride in aqueous solutions.

    Science.gov (United States)

    Callahan, Karen M; Casillas-Ituarte, Nadia N; Roeselová, Martina; Allen, Heather C; Tobias, Douglas J

    2010-04-22

    Magnesium dication plays many significant roles in biochemistry. While it is available to the environment from both ocean waters and mineral salts on land, its roles in environmental and atmospheric chemistry are still relatively unknown. Several pieces of experimental evidence suggest that contact ion pairing may not exist at ambient conditions in solutions of magnesium chloride up to saturation concentrations. This is not typical of most ions. There has been disagreement in the molecular dynamics literature concerning the existence of ion pairing in magnesium chloride solutions. Using a force field developed during this study, we show that contact ion pairing is not energetically favorable. Additionally, we present a concentration-dependent Raman spectroscopic study of the Mg-O(water) hexaaquo stretch that clearly supports the absence of ion pairing in MgCl(2) solutions, although a transition occurring in the spectrum between 0.06x and 0.09x suggests a change in solution structure. Finally, we compare experimental and calculated observables to validate our force field as well as two other commonly used magnesium force fields, and in the process show that ion pairing of magnesium clearly is not observed at higher concentrations in aqueous solutions of magnesium chloride, independent of the choice of magnesium force field, although some force fields give better agreement to experimental results than others.

  5. Intradermal administration of magnesium sulphate and magnesium chloride produces hypesthesia to mechanical but hyperalgesia to heat stimuli in humans

    Directory of Open Access Journals (Sweden)

    Ikemoto Tatsunori

    2009-08-01

    Full Text Available Abstract Background Although magnesium ions (Mg2+ are known to display many similar features to other 2+ charged cations, they seem to have quite an important and unique role in biological settings, such as NMDA blocking effect. However, the role of Mg2+ in the neural transmission system has not been studied as sufficiently as calcium ions (Ca2+. To clarify the sensory effects of Mg2+ in peripheral nervous systems, sensory changes after intradermal injection of Mg2+ were studied in humans. Methods Magnesium sulphate, magnesium chloride and saline were injected into the skin of the anterior region of forearms in healthy volunteers and injection-induced irritating pain ("irritating pain", for short, tactile sensation, tactile pressure thresholds, pinch-pain changes and intolerable heat pain thresholds of the lesion were monitored. Results Flare formation was observed immediately after magnesium sulphate or magnesium chloride injection. We found that intradermal injections of magnesium sulphate and magnesium chloride transiently caused irritating pain, hypesthesia to noxious and innocuous mechanical stimulations, whereas secondary hyperalgesia due to mechanical stimuli was not observed. In contrast to mechanical stimuli, intolerable heat pain-evoking temperature was significantly decreased at the injection site. In addition to these results, spontaneous pain was immediately attenuated by local cooling. Conclusion Membrane-stabilizing effect and peripheral NMDA-blocking effect possibly produced magnesium-induced mechanical hypesthesia, and extracellular cation-induced sensitization of TRPV1 channels was thought to be the primary mechanism of magnesium-induced heat hyperalgesia.

  6. Effect of magnesium hydride on the corrosion behavior of an AZ91 magnesium alloy in sodium chloride solution

    International Nuclear Information System (INIS)

    Chen Jian; Dong Junhua; Wang Jianqiu; Han Enhou; Ke Wei

    2008-01-01

    The effect of magnesium hydride on the corrosion behavior of an as-cast AZ91 alloy in 3.5 wt.% NaCl solution was investigated using gas collection method and potentiostatic test. The Pourbaix diagram of Mg-H 2 O system was built using thermodynamic calculation. It was possible that magnesium hydride could form in the whole pH range in theory. The experimental results showed that at cathodic region, magnesium hydride formed on surface, which was the controlling process for the corrosion behavior of AZ91 alloy; at anodic region and free corrosion potential, magnesium hydride model and partially protective film model, monovalent magnesium ion model and particle undermining model were responsible for the corrosion process of AZ91 alloy

  7. Higher dietary magnesium intake and higher magnesium status are associated with lower prevalence of coronary heart disease in patients with type 2 diabetes

    NARCIS (Netherlands)

    Gant, C.M.; Soedamah-Muthu, S.S.; Binnenmars, S.H.; Bakker, S.J.L.; Navis, G.; Laverman, G.D.

    2018-01-01

    In type 2 diabetes mellitus (T2D), the handling of magnesium is disturbed. Magnesium deficiency may be associated with a higher risk of coronary heart disease (CHD). We investigated the associations between (1) dietary magnesium intake; (2) 24 h urinary magnesium excretion; and (3) plasma magnesium

  8. Second program of materials irradiation within VISA-2 Project, Parts I-II, Part I; Drugi program ozracivanja materijala po projektu VISA-2, I-II Deo, I Deo

    Energy Technology Data Exchange (ETDEWEB)

    Pavicevic, M; Smokovic, Z [Institute of Nuclear Sciences Boris Kidric, Odeljenje za reaktorsku eksperimentalnu tehniku, Vinca, Beograd (Serbia and Montenegro)

    1965-03-15

    This second program of irradiating the materials in special VISA-2 experimental channels includes irradiation of 8 capsules with French graphite, magnesium and aluminium oxides, zircaloy, leak tight capsules with Zirconium and steel samples; capsules with domestic graphite, iron, domestic steel and molybdenum samples. The samples are irradiated in the integral fast neutron flux of 2 10{sup 20} n/cm{sup 2}. Temperature of the samples is measured continuously. This task includes activities which are necessary for completing the irradiation procedures.

  9. Nutrient intake and blood iron status of male collegiate soccer players.

    Science.gov (United States)

    Noda, Yuka; Iide, Kazuhide; Masuda, Reika; Kishida, Reina; Nagata, Atsumi; Hirakawa, Fumiko; Yoshimura, Yoshitaka; Imamura, Hiroyuki

    2009-01-01

    The purpose of this study was: 1) to collect baseline data on nutrient intake in order to advise athletes about nutrition practices that might enhance performance, and 2) to evaluate the dietary iron intake and blood iron status of Japanese collegiate soccer players. The subjects were 31 soccer players and 15 controls. Dietary information was obtained with a food frequency questionnaire. The mean carbohydrate (6.9 g.kg-1 BW) and protein (1.3 g/kg) intakes of the soccer players were marginal in comparisons with recommended targets. The mean intakes of calcium, magnesium, vitamin A, B1, B2, and C were lower than the respective Japanese recommended dietary allowances (RDAs) or adequate dietary intakes in the soccer players. The mean intakes of green and other vegetables, milk and dairy products, fruits, and eggs were lower than the recommended targets. Thus, we recommended athletes to increase the intake of these foodstuffs along with slight increase in carbohydrate and lean meat. The mean intake of iron was higher than the respective RDA in the soccer players. A high prevalence of hemolysis (71%) in the soccer players was found. None of the soccer players and controls had anemia. Two soccer players had iron depletion, while none was found in the controls. In those players who had iron deficiency, the training load need to be lowered and/or iron intake may be increased.

  10. Serum magnesium concentration in drug-addicted patients.

    Science.gov (United States)

    Karakiewicz, Beata; Kozielec, Tadeusz; Brodowski, Jacek; Chlubek, Dariusz; Noceń, Iwona; Starczewski, Andrzej; Brodowska, Agnieszka; Laszczyńska, Maria

    2007-03-01

    Drug addiction is a complex problem which leads to many somatic, psychic and social diseases. It is accompanied by the disturbed metabolism of various macro and micronutrients. The aim of this study was to assess serum magnesium concentration in drug-addicted patients and analyze whether Human Immunodeficiency Virus (HIV) infection and methadone treatment affect the level of serum magnesium in these patients. The examination was conducted in a group of 83 people - patients of Szczecin-Zdroje Psychiatric Hospital (Poland). They were 21 to 49 years old, and the mean age was 32 +/- 7 years. The control group consisted of 81 healthy individuals. Flame atomic-absorption spectrometry method was used to determine the magnesium concentration. The total serum magnesium concentration was calculated for the whole patient group, subgroups of women and men, a subgroup of people infected with HIV, and a subgroup receiving methadone substitution treatment. How magnesium behaves depending on age and addiction period, was checked. The mean concentration of magnesium in blood serum of the patients examined was 0.57 mmol/L, which was significantly lower than in the control group. In the subgroup of men it was 0.57 mmol/L, and in the subgroup of women - 0.55 mmol/L; the differences were not statistically significant. In the patient group nobody had the appropriate magnesium concentration in blood serum. No significant correlation was found between the magnesium concentration, age of the patients and addiction period. In the subgroup of seropositive people the mean concentration of magnesium was 0.55 mmol/L, and in the subgroup of non-infected patients - 0.58 mmol/L; the difference was not statistically significant. The mean concentration of magnesium in the subgroup treated with methadone was 0.59 mmol/L, and in the subgroup not involved in this type of therapy - 0.55 mmol/L; it was not a statistically significant difference.

  11. On iron radionuclide interactions and in situ measurement of iron corrosion products

    International Nuclear Information System (INIS)

    Puranen, A.; Jonsson, M.; Cui, D.; Scheidegger, A.M.; Wersin, P.; Spahiu, K.

    2005-01-01

    Full text of publication follows: In performance assessments of hard rock repositories, it is conservatively assumed that waste canisters are breached and that the spent fuel will get into contact with groundwater after 1000 years. When the canister eventually fails to protect HLW from groundwater, dissolved radionuclides from HLW will react with iron canister materials. The reactivity will depend on the conditions in solution and at the iron-water interface. To improve our understanding on the redox chemistry at near field conditions, batch experiments are conducted by contacting polished iron foils with a synthetic groundwater solution containing 10 mM NaCl, 2 mM NaHCO 3 and 5 ppm Se(IV), Se(VI), Tc(VII) and U(VI) in a glove box filled with Ar + 0.03% CO 2 gas mixture. The reaction rates are measured by analysing Se, Tc and U concentrations by ICP-MS. Iron corrosion products formed during the reaction(s) is monitored in-situ by a Layer Raman spectrometer through an optical window. The corrosion potential of the iron foil as well as the Eh and pH values of the bulk solution are recorded continuously during the experiment. The reacted iron foil is embedded with EPOXY resin, and the cross section will be analysed by SEM-EDS and XAS. The preliminary experimental results shows that with the formation of iron green rust FeII 4 FeIII 2 (OH) 12 CO 3 on iron foil, the rates of redox reactions between iron and the negatively charged radionuclides species are increased. The observation is explained by the fact that radionuclide anionic species can be first adsorbed then reduced on the positively charged outer surface of iron green rust. The positive charge is a result of the electrical balance of the negative charges of carbonate contained between the layered iron hydroxides in the green rust. Reduced forms of radionuclides are identified in the iron corrosion products. The results suggest that the formation of iron green rust as a corrosion product on the surface of iron

  12. [Influence of Dissimilatory Iron Reduction on the Speciation and Bioavailability of Heavy Metals in Soil].

    Science.gov (United States)

    Si, You-bin; Wang, Juan

    2015-09-01

    Fe(III) dissimilatory reduction by microbes is an important process of producing energy in the oxidation of organic compounds under anaerobic condition with Fe(III) as the terminal electron acceptor and Fe(II) as the reduction product. This process is of great significance in element biogeochemical cycle. Iron respiration has been described as one of the most ancient forms of microbial metabolism on the earth, which is bound up with material cycle in water, soil and sediments. Dissimilatory iron reduction plays important roles in heavy metal form transformation and the remediation of heavy metal and radionuclide contaminated soils. In this paper, we summarized the research progress of iron reduction in the natural environment, and discussed the influence and the mechanism of dissimilatory iron reduction on the speciation and bioavailability of heavy metals in soil. The effects of dissimilatory iron reduction on the speciation of heavy metals may be attributed to oxidation and reduction, methytation and immobilization of heavy metals in relation to their bioavailability in soils. The mechanisms of Fe(III) dissimilatory reduction on heavy metal form transformation contain biological and chemical interactions, but the mode of interaction remains to be further investigated.

  13. Determination of stability constants of iron(III and chromium(III-nitrilotriacetate-methyl cysteine mixed complexes by electrophoretic technique

    Directory of Open Access Journals (Sweden)

    Brij Bhushan Tewari

    2004-06-01

    Full Text Available The stability constants of Fe(III and Cr(III with methyl cysteine and nitrilotriacetate (NTA were determined by paper electrophoretic technique. Beside binary ternary complexes have also been studied, in which nitrilotriacetate and methyl cysteine acts as primary and secondary ligand, respectively. The stability constants of mixed ligand complexes metal (M-nitrilotriacetate-methyl cysteine have been found to be 5.72 plus or minus 0.09 and 5.54 plus or minus 0.11 (log K values for Fe(III and Cr(III complexes, respectively, at 35 oC and ionic strength 0.1 M.

  14. Turn-on fluorogenic and chromogenic detection of Fe(III) and its application in living cell imaging

    International Nuclear Information System (INIS)

    Sivaraman, Gandhi; Sathiyaraja, Vijayaraj; Chellappa, Duraisamy

    2014-01-01

    Two rhodamine-based sensors RDI-1, RDI-2 was designed and synthesized by incorporation of the rhodamine 6G fluorophore and 2-formyl imidazole as the recognizing unit via the imine linkages. RDI-1, RDI-2 exhibits very high selectivity and an excellent sensitivity towards Fe(III) ions in aqueous buffer solution on compared with other probes. The color change from colorless to pink and turn-on fluorescence after binding with iron (III) was observed. Based on jobs plot and ESI-MS studies, the 1:1 binding mode was proposed. Live cell imaging experiments with each probe showed that these probes widely applicable to detect Fe 3+ in living cells. -- Highlights: • Two rhodamine based probes was synthesized and used to recognize iron (III). • The chemosensors can be applied to detect iron(III) ions by color and turn-on fluorescent changes. • The very low detection limit was reported. • The applicability of these probes for live cell fluorescence imaging was studied

  15. Turn-on fluorogenic and chromogenic detection of Fe(III) and its application in living cell imaging

    Energy Technology Data Exchange (ETDEWEB)

    Sivaraman, Gandhi; Sathiyaraja, Vijayaraj; Chellappa, Duraisamy, E-mail: dcmku123@gmail.com

    2014-01-15

    Two rhodamine-based sensors RDI-1, RDI-2 was designed and synthesized by incorporation of the rhodamine 6G fluorophore and 2-formyl imidazole as the recognizing unit via the imine linkages. RDI-1, RDI-2 exhibits very high selectivity and an excellent sensitivity towards Fe(III) ions in aqueous buffer solution on compared with other probes. The color change from colorless to pink and turn-on fluorescence after binding with iron (III) was observed. Based on jobs plot and ESI-MS studies, the 1:1 binding mode was proposed. Live cell imaging experiments with each probe showed that these probes widely applicable to detect Fe{sup 3+} in living cells. -- Highlights: • Two rhodamine based probes was synthesized and used to recognize iron (III). • The chemosensors can be applied to detect iron(III) ions by color and turn-on fluorescent changes. • The very low detection limit was reported. • The applicability of these probes for live cell fluorescence imaging was studied.

  16. Iron-Mediated Oxidation of Methoxyhydroquinone under Dark Conditions: Kinetic and Mechanistic Insights.

    Science.gov (United States)

    Yuan, Xiu; Davis, James A; Nico, Peter S

    2016-02-16

    Despite the biogeochemical significance of the interactions between natural organic matter (NOM) and iron species, considerable uncertainty still remains as to the exact processes contributing to the rates and extents of complexation and redox reactions between these important and complex environmental components. Investigations on the reactivity of low-molecular-weight quinones, which are believed to be key redox active compounds within NOM, toward iron species, could provide considerable insight into the kinetics and mechanisms of reactions involving NOM and iron. In this study, the oxidation of 2-methoxyhydroquinone (MH2Q) by ferric iron (Fe(III)) under dark conditions in the absence and presence of oxygen was investigated within a pH range of 4-6. Although Fe(III) was capable of stoichiometrically oxidizing MH2Q under anaerobic conditions, catalytic oxidation of MH2Q was observed in the presence of O2 due to further cycling between oxygen, semiquinone radicals, and iron species. A detailed kinetic model was developed to describe the predominant mechanisms, which indicated that both the undissociated and monodissociated anions of MH2Q were kinetically active species toward Fe(III) reduction, with the monodissociated anion being the key species accounting for the pH dependence of the oxidation. The generated radical intermediates, namely semiquinone and superoxide, are of great importance in reaction-chain propagation. The kinetic model may provide critical insight into the underlying mechanisms of the thermodynamic and kinetic characteristics of metal-organic interactions and assist in understanding and predicting the factors controlling iron and organic matter transformation and bioavailability in aquatic systems.

  17. The Role of Magnesium in Neurological Disorders

    Directory of Open Access Journals (Sweden)

    Anna E. Kirkland

    2018-06-01

    Full Text Available Magnesium is well known for its diverse actions within the human body. From a neurological standpoint, magnesium plays an essential role in nerve transmission and neuromuscular conduction. It also functions in a protective role against excessive excitation that can lead to neuronal cell death (excitotoxicity, and has been implicated in multiple neurological disorders. Due to these important functions within the nervous system, magnesium is a mineral of intense interest for the potential prevention and treatment of neurological disorders. Current literature is reviewed for migraine, chronic pain, epilepsy, Alzheimer’s, Parkinson’s, and stroke, as well as the commonly comorbid conditions of anxiety and depression. Previous reviews and meta-analyses are used to set the scene for magnesium research across neurological conditions, while current research is reviewed in greater detail to update the literature and demonstrate the progress (or lack thereof in the field. There is strong data to suggest a role for magnesium in migraine and depression, and emerging data to suggest a protective effect of magnesium for chronic pain, anxiety, and stroke. More research is needed on magnesium as an adjunct treatment in epilepsy, and to further clarify its role in Alzheimer’s and Parkinson’s. Overall, the mechanistic attributes of magnesium in neurological diseases connote the macromineral as a potential target for neurological disease prevention and treatment.

  18. Biological activity of Fe(III) aquo-complexes towards ferric chelate reductase (FCR).

    Science.gov (United States)

    Escudero, Rosa; Gómez-Gallego, Mar; Romano, Santiago; Fernández, Israel; Gutiérrez-Alonso, Ángel; Sierra, Miguel A; López-Rayo, Sandra; Nadal, Paloma; Lucena, Juan J

    2012-03-21

    In this study we have obtained experimental evidence that confirms the high activity of aquo complexes III and IV towards the enzyme FCR, responsible for the reduction of Fe(III) to Fe(II) in the process of iron acquisition by plants. The in vivo FCR assays in roots of stressed cucumber plants have shown a higher efficiency of the family of complexes III and a striking structure-activity relationship with the nature of the substituent placed in a phenyl group far away from the metal center. The results obtained in this work demonstrate that all the aquo compounds tested interact efficiently with the enzyme FCR and hence constitute a new concept of iron chelates that could be of great use in agronomy.

  19. As(III) oxidation by MnO2 during groundwater treatment.

    Science.gov (United States)

    Gude, J C J; Rietveld, L C; van Halem, D

    2017-03-15

    The top layer of natural rapid sand filtration was found to effectively oxidise arsenite (As(III)) in groundwater treatment. However, the oxidation pathway has not yet been identified. The aim of this study was to investigate whether naturally formed manganese oxide (MnO 2 ), present on filter grains, could abiotically be responsible for As(III) oxidation in the top of a rapid sand filter. For this purpose As(III) oxidation with two MnO 2 containing powders was investigated in aerobic water containing manganese(II) (Mn(II)), iron(II) (Fe(II)) and/or iron(III) (Fe(III)). The first MnO 2 powder was a very pure - commercially available - natural MnO 2 powder. The second originated from a filter sand coating, produced over 22 years in a rapid filter during aeration and filtration. Jar test experiments showed that both powders oxidised As(III). However, when applying the MnO 2 in aerated, raw groundwater, As(III) removal was not enhanced compared to aeration alone. It was found that the presence of Fe(II)) and Mn(II) inhibited As(III) oxidation, as Fe(II) and Mn(II) adsorption and oxidation were preferred over As(III) on the MnO 2 surface (at pH 7). Therefore it is concluded that just because MnO 2 is present in a filter bed, it does not necessarily mean that MnO 2 will be available to oxidise As(III). However, unlike Fe(II), the addition of Fe(III) did not hinder As(III) oxidation on the MnO 2 surface; resulting in subsequent effective As(V) removal by the flocculating hydrous ferric oxides. Copyright © 2016 Elsevier Ltd. All rights reserved.

  20. Nanostructured magnesium has fewer detrimental effects on osteoblast function

    Directory of Open Access Journals (Sweden)

    Weng L

    2013-05-01

    Full Text Available Lucy Weng, Thomas J Webster School of Engineering and Department of Orthopedics, Brown University, Providence, RI, USA Abstract: Efforts have been made recently to implement nanoscale surface features on magnesium, a biodegradable metal, to increase bone formation. Compared with normal magnesium, nanostructured magnesium has unique characteristics, including increased grain boundary properties, surface to volume ratio, surface roughness, and surface energy, which may influence the initial adsorption of proteins known to promote the function of osteoblasts (bone-forming cells. Previous studies have shown that one way to increase nanosurface roughness on magnesium is to soak the metal in NaOH. However, it has not been determined if degradation of magnesium is altered by creating nanoscale features on its surface to influence osteoblast density. The aim of the present in vitro study was to determine the influence of degradation of nanostructured magnesium, created by soaking in NaOH, on osteoblast density. Our results showed a less detrimental effect of magnesium degradation on osteoblast density when magnesium was treated with NaOH to create nanoscale surface features. The detrimental degradation products of magnesium are of significant concern when considering use of magnesium as an orthopedic implant material, and this study identified a surface treatment, ie, soaking in NaOH to create nanoscale features for magnesium that can improve its use in numerous orthopedic applications. Keywords: nanostructured magnesium, degradation, detrimental effects, osteoblasts

  1. Corrosion Screening of EV31A Magnesium and Other Magnesium Alloys using Laboratory-Based Accelerated Corrosion and Electro-Chemical Methods

    Science.gov (United States)

    2014-07-01

    Spray. Journal of Failure Analysis and Prevention 2008, 8 (2), 164–175. 34. Aluminium Alloy 5083, Plate and Sheet; SAE-AMS-QQ-A-250/6S; SAE...Corrosion Screening of EV31A Magnesium and Other Magnesium Alloys Using Laboratory-Based Accelerated Corrosion and Electro-chemical Methods...Magnesium and Other Magnesium Alloys Using Laboratory-Based Accelerated Corrosion and Electro-chemical Methods Brian E. Placzankis, Joseph P

  2. Iron in the aquifer system of Suffolk County, New York, 1990–98

    Science.gov (United States)

    Brown, Craig J.; Walter, Donald A.; Colabufo, Steven

    1999-01-01

    High concentrations of dissolved iron in ground water contribute to the biofouling of public-supply wells, and the treatment and remediation of biofouling are costly. Water companies on Long Island, N.Y., spend several million dollars annually to recondition, redevelop, and replace supply wells and distribution lines; treat dissolved iron with sequestering agents or by filtration; and respond to iron-related complaints by customers. This report summarizes the results of studies done by the U.S. Geological Survey, in cooperation with the Suffolk County Water Authority, to characterize the geochemistry and microbiology of iron in the aquifer system of Suffolk County. This information should be helpful for the siting and operation of supply wells.Concentrations of dissolved iron in Long Island's ground water, and the frequency of iron biofouling of wells, are highest in ground-water-discharge zones, particularly near the south shore. Ground water along a deep north-south flowpath of the Magothy aquifer in southwestern Suffolk County becomes anaerobic (oxygen deficient) and Fe(III) reducing at a distance of 8 to 10 kilometers south of the ground-water divide, and this change coincides with the downgradient increase in dissolved iron concentrations. The distribution of organic carbon, and the distribution and local variations in reactivity of Fe(III), in Magothy aquifer sediments have resulted in localized differences in redox microenvironments. For example, Fe(III)-reducing zones are associated with anaerobic conditions, where relatively large amounts of Fe(III) oxyhydroxide grain coatings are present, whereas sulfate-reducing zones are associated with lignite-rich lenses of silt and clay and appear to have developed in response to the depletion of available Fe(III) oxyhydroxides. The sulfate-reducing zones are characterized by relatively low concentrations of dissolved iron (resulting from iron-disulfide precipitation) and may be large enough to warrant water

  3. Colorimetric Determination of the Iron(III)-Thiocyanate Reaction Equilibrium Constant with Calibration and Equilibrium Solutions Prepared in a Cuvette by Sequential Additions of One Reagent to the Other

    Science.gov (United States)

    Nyasulu, Frazier; Barlag, Rebecca

    2011-01-01

    The well-known colorimetric determination of the equilibrium constant of the iron(III-thiocyanate complex is simplified by preparing solutions in a cuvette. For the calibration plot, 0.10 mL increments of 0.00100 M KSCN are added to 4.00 mL of 0.200 M Fe(NO[subscript 3])[subscript 3], and for the equilibrium solutions, 0.50 mL increments of…

  4. Hydrostatic extrusion of magnesium alloys

    NARCIS (Netherlands)

    Sillekens, W.H.; Bohlen, J.

    2012-01-01

    This chapter deals with the capabilities and limitations of the hydrostatic extrusion process for the manufacturing of magnesium alloy sections. Firstly, the process basics for the hydrostatic extrusion of materials in general and of magnesium in particular are introduced. Next, some recent research

  5. Magnesium bicarbonate as an in situ uranium lixiviant

    International Nuclear Information System (INIS)

    Sibert, J.W.

    1984-01-01

    In the subsurface solution mining of mineral values, especially uranium, in situ, magnesium bicarbonate leaching solution is used instead of sodium, potassium and ammonium carbonate and bicarbonates. The magnesium bicarbonate solution is formed by combining carbon dioxide with magnesium oxide and water. The magnesium bicarbonate lixivant has four major advantages over prior art sodium, potassium and ammonium bicarbonates

  6. Magnesium supplement in pregnancy-induced hypertension. A clinicopathological study

    DEFF Research Database (Denmark)

    Rudnicki, M; Junge, Jette; Frølich, A

    1990-01-01

    as a double-blind randomized controlled study in which 11 women were allocated to magnesium and 7 to placebo treatment. The treatment comprised a 48-hour intravenous magnesium/placebo infusion followed by daily oral magnesium/placebo intake until one day after delivery. Magnesium supplement increased birth....... There was no significant difference when the magnesium group, the placebo group and the control group were compared separately. The present study suggests that magnesium supplement has a beneficial effect on fetal growth in pregnancy-induced hypertension. With regard to the light and electron microscopic changes we were...... unable to demonstrate any significant difference between the magnesium, placebo and control groups....

  7. Preparation and corrosion resistance of magnesium phytic acid/hydroxyapatite composite coatings on biodegradable AZ31 magnesium alloy.

    Science.gov (United States)

    Zhang, Min; Cai, Shu; Zhang, Feiyang; Xu, Guohua; Wang, Fengwu; Yu, Nian; Wu, Xiaodong

    2017-06-01

    In this work, a magnesium phytic acid/hydroxyapatite composite coating was successfully prepared on AZ31 magnesium alloy substrate by chemical conversion deposition technology with the aim of improving its corrosion resistance and bioactivity. The influence of hydroxyapatite (HA) content on the microstructure and corrosion resistance of the coatings was investigated. The results showed that with the increase of HA content in phytic acid solution, the cracks on the surface of the coatings gradually reduced, which subsequently improved the corrosion resistance of these coated magnesium alloy. Electrochemical measurements in simulated body fluid (SBF) revealed that the composite coating with 45 wt.% HA addition exhibited superior surface integrity and significantly improved corrosion resistance compared with the single phytic acid conversion coating. The results of the immersion test in SBF showed that the composite coating could provide more effective protection for magnesium alloy substrate than that of the single phytic acid coating and showed good bioactivity. Magnesium phytic acid/hydroxyapatite composite, with the desired bioactivity, can be synthesized through chemical conversion deposition technology as protective coatings for surface modification of the biodegradable magnesium alloy implants. The design idea of the new type of biomaterial is belong to the concept of "third generation biomaterial". Corrosion behavior and bioactivity of coated magnesium alloy are the key issues during implantation. In this study, preparation and corrosion behavior of magnesium phytic acid/hydroxyapatite composite coatings on magnesium alloy were studied. The basic findings and significance of this paper are as follows: 1. A novel environmentally friendly, homogenous and crack-free magnesium phytic acid/hydroxyapatite composite coating was fabricated on AZ31 magnesium alloy via chemical conversion deposition technology with the aim of enhancing its corrosion resistance and

  8. High Prevalence of Inadequate Calcium and Iron Intakes by Mexican Population Groups as Assessed by 24-Hour Recalls.

    Science.gov (United States)

    Sánchez-Pimienta, Tania G; López-Olmedo, Nancy; Rodríguez-Ramírez, Sonia; García-Guerra, Armando; Rivera, Juan A; Carriquiry, Alicia L; Villalpando, Salvador

    2016-09-01

    A National Health and Nutrition Survey (ENSANUT) conducted in Mexico in 1999 identified a high prevalence of inadequate mineral intakes in the population by using 24-h recall questionnaires. However, the 1999 survey did not adjust for within-person variance. The 2012 ENSANUT implemented a more up-to-date 24-h recall methodology to estimate usual intake distributions and prevalence of inadequate intakes. We examined the distribution of usual intakes and prevalences of inadequate intakes of calcium, iron, magnesium, and zinc in the Mexican population in groups defined according to sex, rural or urban area, geographic region of residence, and socioeconomic status (SES). We used dietary intake data obtained through the 24-h recall automated multiple-pass method for 10,886 subjects as part of ENSANUT 2012. A second measurement on a nonconsecutive day was obtained for 9% of the sample. Distributions of usual intakes of the 4 minerals were obtained by using the Iowa State University method, and the prevalence of inadequacy was estimated by using the Institute of Medicine's Estimated Average Requirement cutoff. Calcium inadequacy was 25.6% in children aged 1-4 y and 54.5-88.1% in subjects >5 y old. More than 45% of subjects >5 y old had an inadequate intake of iron. Less than 5% of children aged 12 y had inadequate intakes of magnesium, whereas zinc inadequacy ranged from <10% in children aged <12 y to 21.6% in men aged ≥20 y. Few differences were found between rural and urban areas, regions, and tertiles of SES. Intakes of calcium, iron, magnesium, and zinc are inadequate in the Mexican population, especially among adolescents and adults. These results suggest a public health concern that must be addressed. © 2016 American Society for Nutrition.

  9. Nanostructured magnesium has fewer detrimental effects on osteoblast function

    Science.gov (United States)

    Weng, Lucy; Webster, Thomas J

    2013-01-01

    Efforts have been made recently to implement nanoscale surface features on magnesium, a biodegradable metal, to increase bone formation. Compared with normal magnesium, nanostructured magnesium has unique characteristics, including increased grain boundary properties, surface to volume ratio, surface roughness, and surface energy, which may influence the initial adsorption of proteins known to promote the function of osteoblasts (bone-forming cells). Previous studies have shown that one way to increase nanosurface roughness on magnesium is to soak the metal in NaOH. However, it has not been determined if degradation of magnesium is altered by creating nanoscale features on its surface to influence osteoblast density. The aim of the present in vitro study was to determine the influence of degradation of nanostructured magnesium, created by soaking in NaOH, on osteoblast density. Our results showed a less detrimental effect of magnesium degradation on osteoblast density when magnesium was treated with NaOH to create nanoscale surface features. The detrimental degradation products of magnesium are of significant concern when considering use of magnesium as an orthopedic implant material, and this study identified a surface treatment, ie, soaking in NaOH to create nanoscale features for magnesium that can improve its use in numerous orthopedic applications. PMID:23674891

  10. Nanostructured magnesium has fewer detrimental effects on osteoblast function.

    Science.gov (United States)

    Weng, Lucy; Webster, Thomas J

    2013-01-01

    Efforts have been made recently to implement nanoscale surface features on magnesium, a biodegradable metal, to increase bone formation. Compared with normal magnesium, nanostructured magnesium has unique characteristics, including increased grain boundary properties, surface to volume ratio, surface roughness, and surface energy, which may influence the initial adsorption of proteins known to promote the function of osteoblasts (bone-forming cells). Previous studies have shown that one way to increase nanosurface roughness on magnesium is to soak the metal in NaOH. However, it has not been determined if degradation of magnesium is altered by creating nanoscale features on its surface to influence osteoblast density. The aim of the present in vitro study was to determine the influence of degradation of nanostructured magnesium, created by soaking in NaOH, on osteoblast density. Our results showed a less detrimental effect of magnesium degradation on osteoblast density when magnesium was treated with NaOH to create nanoscale surface features. The detrimental degradation products of magnesium are of significant concern when considering use of magnesium as an orthopedic implant material, and this study identified a surface treatment, ie, soaking in NaOH to create nanoscale features for magnesium that can improve its use in numerous orthopedic applications.

  11. The role of magnesium in the electrochemical behaviour of 5XXX aluminium-magnesium alloys

    NARCIS (Netherlands)

    Flores Ramirez, J.R.

    2006-01-01

    An investigation concerning the effects of magnesium on the intergranular corrosion susceptibility of AA5XXX aluminium alloys was carried out. In the present work, magnesium is found to be highly mobile in the bulk metal as well as in the aluminium oxide. This mobility is also found to be dependent

  12. Anti-corrosion mechanism of epoxy-resin and different content Fe2O3 coatings on magnesium alloy

    Science.gov (United States)

    Jin, Tao; Kong, Fan-mei; Bai, Rui-qin; Zhang, Ru-liang

    2016-12-01

    In this study, anti-corrosion coatings were prepared and coated successfully on magnesium alloy substrates by mixing nanopowders, solvent, curing agent with epoxy resin. The effect of the amount of iron trioxide (Fe2O3) on the adhesion strength and corrosion resistance on magnesium alloy was investigated with standard protocols, and electrochemical measurements were also made in 3.5 wt.% NaCl solutions. The surface morphology and corrosion mechanism after corrosion tests was characterized using FESEM analysis. Nanoparticles in matrix acted as filler, and interstitial cross-linked spaces and other coating artifacts regions (micro cracks and voids) would all affect the anti-corrosion properties of coating. The results showed the proper powder content not only provided adhesion strength to these coatings but also improved obviously their anticorrosion. Hydrogen bound to the amine nitrogen (1N) could take part in the curing process rather than hydrogen of the amide site due to the smaller Δ G and the more stable configuration.

  13. Iron specificity of a biosensor based on fluorescent pyoverdin immobilized in sol-gel glass

    Science.gov (United States)

    2011-01-01

    Two current technologies used in biosensor development are very promising: 1. The sol-gel process of making microporous glass at room temperature, and 2. Using a fluorescent compound that undergoes fluorescence quenching in response to a specific analyte. These technologies have been combined to produce an iron biosensor. To optimize the iron (II or III) specificity of an iron biosensor, pyoverdin (a fluorescent siderophore produced by Pseudomonas spp.) was immobilized in 3 formulations of porous sol-gel glass. The formulations, A, B, and C, varied in the amount of water added, resulting in respective R values (molar ratio of water:silicon) of 5.6, 8.2, and 10.8. Pyoverdin-doped sol-gel pellets were placed in a flow cell in a fluorometer and the fluorescence quenching was measured as pellets were exposed to 0.28 - 0.56 mM iron (II or III). After 10 minutes of exposure to iron, ferrous ion caused a small fluorescence quenching (89 - 97% of the initial fluorescence, over the range of iron tested) while ferric ion caused much greater quenching (65 - 88%). The most specific and linear response was observed for pyoverdin immobilized in sol-gel C. In contrast, a solution of pyoverdin (3.0 μM) exposed to iron (II or III) for 10 minutes showed an increase in fluorescence (101 - 114%) at low ferrous concentrations (0.45 - 2.18 μM) while exposure to all ferric ion concentrations (0.45 - 3.03 μM) caused quenching. In summary, the iron specificity of pyoverdin was improved by immobilizing it in sol-gel glass C. PMID:21554740

  14. Determining Iron Content in Foods by Spectrophotometry.

    Science.gov (United States)

    Adams, Paul E.

    1995-01-01

    Describes a laboratory experiment for secondary school chemistry students utilizing the classic reaction between the iron(III) ion and the thiocyanate ion. The experiment also works very well in other chemistry courses as an experience in spectrophotometric analysis. (PVD)

  15. Solubilities of magnesium-L-ascorbate, calcium-L-ascorbate, magnesium-L-glutamate, magnesium-D-gluconate, calcium-D-gluconate, calcium-D-heptagluconate, L-aspartic acid, and 3-nitrobenzoic acid in water

    Energy Technology Data Exchange (ETDEWEB)

    Mishelevich, Alexander [Department of Chemical Engineering, Ben Gurion University of the Negev, Beer Sheva 84105 (Israel); Apelblat, Alexander [Department of Chemical Engineering, Ben Gurion University of the Negev, Beer Sheva 84105 (Israel)], E-mail: apelblat@bgu.ac.il

    2008-05-15

    The solubility in water of magnesium-L-ascorbate, calcium-L-ascorbate, magnesium-L-glutamate, magnesium-D-gluconate, calcium-D-gluconate, calcium-D-heptagluconate, L-aspartic acid, and 3-nitrobenzoic acid was determined in the 278.15 K to 343.15 K temperature range. The solubility of these compounds served to permit the evaluation of the apparent molar enthalpies of solution.

  16. Solubilities of magnesium-L-ascorbate, calcium-L-ascorbate, magnesium-L-glutamate, magnesium-D-gluconate, calcium-D-gluconate, calcium-D-heptagluconate, L-aspartic acid, and 3-nitrobenzoic acid in water

    International Nuclear Information System (INIS)

    Mishelevich, Alexander; Apelblat, Alexander

    2008-01-01

    The solubility in water of magnesium-L-ascorbate, calcium-L-ascorbate, magnesium-L-glutamate, magnesium-D-gluconate, calcium-D-gluconate, calcium-D-heptagluconate, L-aspartic acid, and 3-nitrobenzoic acid was determined in the 278.15 K to 343.15 K temperature range. The solubility of these compounds served to permit the evaluation of the apparent molar enthalpies of solution

  17. Ex-situ activation of magnesium acceptors in InGaN/LED-structures

    Energy Technology Data Exchange (ETDEWEB)

    Kusch, Gunnar; Frentrup, Martin; Stellmach, Joachim; Kolbe, Tim; Wernicke, Tim; Pristovsek, Markus; Kneissl, Michael [Technische Universitaet Berlin, Institut fuer Festkoerperphysik, Hardenbergstr. 36, 10623 Berlin (Germany)

    2011-07-01

    One of the main problems limiting the output power of group-III-nitride compound light emitting diodes (LEDs) and laser diodes (LD) is the p-doping of nitrides with magnesium (Mg). During metal-organic vapor phase epitaxy (MOVPE) growth of (Al)GaN:Mg magnesium acceptors are passivated by hydrogen (H). By thermal annealing under nitrogen atmosphere the Mg-H bond can be cracked, thus activating the Mg acceptor. We have investigated ex-situ Mg-activation of the p-GaN layer and p-AlGaN electron blocking layer (EBL) in LEDs grown by MOVPE. Especially the activation of the AlGaN EBL is crucial. Simulations show, that a high doping level is required for effective electron blocking and a high injection efficiency. Additionally the acceptor activation energy is expected to increase with increasing Al-content, reducing the free hole concentration in the EBL. Electroluminescence spectroscopy (EL) was performed to determine the influence of the activation on the external quantum efficiency of the LED structure. Furthermore we used CV measurements to determine the Mg-acceptor concentration.

  18. Low Temperature Synthesis of Magnesium Aluminate Spinel

    International Nuclear Information System (INIS)

    Lebedovskaya, E.G.; Gabelkov, S.V.; Litvinenko, L.M.; Logvinkov, D.S.; Mironova, A.G.; Odejchuk, M.A.; Poltavtsev, N.S.; Tarasov, R.V.

    2006-01-01

    The low-temperature synthesis of magnesium-aluminum spinel is carried out by a method of thermal decomposition in combined precipitated hydrates. The fine material of magnesium-aluminium spinel with average size of coherent dispersion's area 4...5 nanometers is obtained. Magnesium-aluminum spinel and initial hydrates were investigated by methods of the differential thermal analysis, the x-ray phase analysis and measurements of weight loss during the dehydration and thermal decomposition. It is established that synthesis of magnesium-aluminum spinel occurs at temperature 300 degree C by method of the x-ray phase analysis

  19. Effect of voltage on the characteristics of magnesium-lanthanum deposits synthesized by an electrodeposition process

    Energy Technology Data Exchange (ETDEWEB)

    Sahli, M. [Laboratoire de Physique Energétique, Université de Constantine 1 (Algeria); Chetehouna, K.; Gascoin, N. [INSA-CVL, Univ. Orléans, PRISME, EA 4229, F-18020, Bourges (France); Bellel, N. [Laboratoire de Physique Energétique, Université de Constantine 1 (Algeria); Tadini, P., E-mail: tadini.pietro@gmail.com [INSA-CVL, Univ. Orléans, PRISME, EA 4229, F-18020, Bourges (France)

    2017-04-15

    This work deals with the characterization of magnesium-lanthanum powders deposits produced with an electrodeposition technique using an aqueous solution based on magnesium chloride and lanthanum(III) nitrate. In recent years, the interest for magnesium-based alloys is growing due to their potential use as solid state systems for hydrogen storage. This work is a preliminary study on the synthesis of magnesium-lanthanum powders oriented to their later evaluation in systems for hydrogen storage. Magnesium and Lanthanum are deposited on a copper plate used as a cathode. Chemical composition, structure and morphology are investigated by EDS, XRD, FTIR and SEM. The effect of voltage on powders characteristics is studied considering three values (3, 3.5 and 4 V). EDS analysis shows the presence of three major elements (Mg, La and O) with a little amount of Cl. The weight percentages of Mg and O increase whereas the one of La decreases with the growth of voltage. Morphological characterization reveals that heterogeneous chemical structures are formed on the surface of the electrode and the size of aggregates decreases with the increase of voltage. From the results of X-ray analysis the deposits reveal the significant presence of two phases: Mg(OH){sub 2} and La(OH){sub 3}. The peaks originating from the Mg(OH){sub 2} phase has a non-monotonic behavior and those of La(OH){sub 3} phase increase with the increase of voltage. FTIR analysis confirms the presence of the two phases identified in XRD diffractograms and exhibits that their corresponding transmittance values increase for higher voltage values. - Highlights: • Synthesis of magnesium-lanthanum deposits by an electrodeposition process. • Voltage effect is investigated using different physicochemical analysis techniques (EDS, XRD, FTIR and SEM). • The EDS analysis shows the presence of three major elements (Mg, La and O) and a little amount of Cl. • Two phases, namely Mg(OH){sub 2} and La(OH){sub 3} are

  20. Effect of oxygen on the hydrogenation properties of magnesium films

    DEFF Research Database (Denmark)

    Ostenfeld, Christopher Worsøe; Chorkendorff, Ib

    2006-01-01

    The effect of magnesium oxide on the magnesium and hydrogen desorption properties of magnesium films have been investigated. We find that by capping metallic magnesium films with oxide overlayers the apparent desorption energy of magnesium is increased from 146 kJ/mol to 314 kJ/mol. The results...... are discussed in light of previous investigations of ball-milled magnesium powders....

  1. The potential for ionic liquid electrolytes to stabilise the magnesium interface for magnesium/air batteries

    International Nuclear Information System (INIS)

    Khoo, Timothy; Howlett, Patrick C.; Tsagouria, Maureen; MacFarlane, Douglas R.; Forsyth, Maria

    2011-01-01

    Magnesium/air batteries are a possible high-energy density power source that, to date, have not received strong commercial interest due to issues with the corrosion of the magnesium and evaporation of the electrolyte. In this work we report on the use of ionic liquid based electrolytes to stabilise the metal/electrolyte interface and their impact on the electrochemical performance. Galvanostatic measurements indicate that the water content of the ionic liquid electrolyte plays an important role in the cell discharge characteristics. Surface characterisation using EIS, ATR-FTIR and powder diffraction examined the unique properties of the surface film formed on the magnesium anode.

  2. From iron(III) precursor to magnetite and vice versa

    International Nuclear Information System (INIS)

    Gotic, M.; Jurkin, T.; Music, S.

    2009-01-01

    The syntheses of nanosize magnetite particles by wet-chemical oxidation of Fe 2+ have been extensively investigated. In the present investigation the nanosize magnetite particles were synthesised without using the Fe(II) precursor. This was achieved by γ-irradiation of water-in-oil microemulsion containing only the Fe(III) precursor. The corresponding phase transformations were monitored. Microemulsions (pH ∼ 12.5) were γ-irradiated at a relatively high dose rate of ∼22 kGy/h. Upon 1 h of γ-irradiation the XRD pattern of the precipitate showed goethite and unidentified low-intensity peaks. Upon 6 h of γ-irradiation, reductive conditions were achieved and substoichiometric magnetite (∼Fe 2.71 O 4 ) particles with insignificant amount of goethite particles found in the precipitate. Hydrated electrons (e aq - ), organic radicals and hydrogen gas as radiolytic products were responsible for the reductive dissolution of iron oxide in the microemulsion and the reduction Fe 3+ → Fe 2+ . Upon 18 h of γ-irradiation the precipitate exhibited dual behaviour, it was a more oxidised product than the precipitate obtained after 6 h of γ-irradiation, but it contained magnetite particles in a more reduced form (∼Fe 2.93 O 4 ). It was presumed that the reduction and oxidation processes existed as concurrent competitive processes in the microemulsion. After 18 h of γ-irradiation the pH of the medium shifted from the alkaline to the acidic range. The high dose rate of ∼22 kGy/h was directly responsible for this shift to the acidic range. At a slightly acidic pH a further reduction of Fe 3+ → Fe 2+ resulted in the formation of more stoichiometric magnetite particles, whereas the oxidation conditions in the acidic medium permitted the oxidation Fe 2+ → Fe 3+ . The Fe 3+ was much less soluble in the acidic medium and it hydrolysed and recrystallised as goethite. The γ-irradiation of the microemulsion for 25 h at a lower dose rate of 16 kGy/h produced pure

  3. Irradiation effects in magnesium and aluminium alloys

    International Nuclear Information System (INIS)

    Sturcken, E.F.

    1979-01-01

    Effects of neutron irradiation on microstructure, mechanical properties and swelling of several magnesium and aluminium alloys were studied. The neutron fluences of 2-3 X 10 22 n/cm 2 , >0.2 MeV produced displacement doses of 20 to 45 displacements per atom (dpa). Ductility of the magnesium alloys was severely reduced by irradiation induced recrystallization and precipitation of various forms. Precipitation of transmuted silicon occurred in the aluminium alloys. However, the effect on ductility was much less than for the magnesium alloys. The magnesium and aluminium alloys had excellent resistance to swelling: The best magnesium alloy was Mg/3.0 wt% Al/0.19 wt% Ca; its density decreased by only 0.13%. The best aluminium alloy was 6063, with a density decrease of 0.22%. (Auth.)

  4. Effects of iron-reducing bacteria and nitrate-reducing bacteria on the transformations of iron corrosion products, magnetite and siderite, formed at the surface of non-alloy steel

    International Nuclear Information System (INIS)

    Etique, Marjorie

    2014-01-01

    Radioactive waste is one of the major problems facing the nuclear industry. To circumvent this issue France plans to store vitrified high-level nuclear waste in a stainless steel container, placed into a non-alloy steel overpack, at a depth of 500 m in an argillaceous formation. The main iron corrosion products formed at the surface of the non-alloy steel are siderite (Fe II CO 3 ) and magnetite (Fe II Fe III 2 O 4 ). These compounds are formed in the anoxic conditions present in the nuclear waste repository and play a protective role against corrosion as a passive layer. This work aims to investigate the activity of nitrate-reducing bacteria (NRB, Klebsiella mobilis) and iron-reducing bacteria (IRB, Shewanella putrefaciens) during the transformation of siderite and magnetite, especially those involved in anoxic iron biogeochemical cycle. Klebsiella mobilis and Shewanella putrefaciens were first incubated with siderite or magnetite suspensions (high surface specific area) in order to exacerbate the microbial iron transformation, subsequently incubated with a magnetite/siderite film synthesized by anodic polarization at applied current density. The transformation of siderite and magnetite by direct or indirect microbial processes led to the formation of carbonated green rust (Fe II 4 Fe III 2 (OH) 12 CO 3 ). As a transient phase shared by several bacterial reactions involving Fe II and Fe III , this compound is the cornerstone of the anoxic iron biogeochemical cycle. The novelty of this thesis is the consideration of bacterial metabolisms of NRB and IRB often overlooked in bio-corrosion processes. (author) [fr

  5. Role of iron species in the photo-transformation of phenol in artificial and natural seawater

    International Nuclear Information System (INIS)

    Calza, Paola; Massolino, Cristina; Pelizzetti, Ezio; Minero, Claudio

    2012-01-01

    The role played by iron oxides (goethite and akaganeite) and iron(II)/(III) species as photo-sensitizers toward the transformation of organic matter was examined in saline water using phenol as a model molecule. The study was carried out in NaCl 0.7 M solution at pH 8, artificial (ASW) and natural (NSW) seawater, in a device simulating solar light spectrum and intensity. Under illumination phenol decomposition occurs in all the investigated cases. Conversely, dark experiments show that no reaction takes place, implying that phenol transformation is a light- activated process. Following the addition of Fe(II) ions to aerated solutions, Fe(II) is easily oxidized to Fe(III) and hydrogen peroxide is formed. Regardless of the addition of Fe(II) or Fe(III) ions, photo-activated degradation is mediated by Fe(III) species. Several (and different) hydroxylated and halogenated intermediates were identified. In ASW, akaganeite promotes the formation of ortho and para chloro derivatives (2- and 4-chlorophenol, 2,4-dichlorophenol and 2,4,6-trichlorophenol), while goethite induces the formation of 3-chlorophenol and bromophenols. Conversely, Fe(II) or Fe(III) addition causes the formation of 3- and 4-chlorophenol and 2,3- or 3,4-dichlorophenol. 4-Bromophenol was only identified when irradiating Fe(II) spiked solutions. Natural seawater sampled in the Gulf of Trieste, Italy, has been spiked with phenol and irradiated. Phenol photo-induced transformation in NSW mediated by natural photosensitizers occurs and leads to the formation of numerous halophenols, condensed products and nitrophenols. When NSW is spiked with phenol and iron oxides, Fe(II) or Fe(III), halophenols production is enhanced. A close analogy exists between Fe(III), Fe(II)/goethite in ASW and NSW products. Different halophenols production in the natural seawater samples depends on Fe(II)/goethite (above all for 3-chlorophenol, 2,3-dichlorophenol and 4-bromophenol formation) and on Fe(III) colloidal species (3

  6. Electrolytes for magnesium electrochemical cells

    Science.gov (United States)

    Burrell, Anthony K.; Sa, Niya; Proffit, Danielle Lee; Lipson, Albert; Liao, Chen; Vaughey, John T.; Ingram, Brian J.

    2017-07-04

    An electrochemical cell includes a high voltage cathode configured to operate at 1.5 volts or greater; an anode including Mg.sup.0; and an electrolyte including an ether solvent and a magnesium salt; wherein: a concentration of the magnesium salt in the ether is 1 M or greater.

  7. Arsenite and ferrous iron oxidation linked to chemolithotrophic denitrification for the immobilization of arsenic in anoxic environments

    Science.gov (United States)

    Sun, W.; Sierra-Alvarez, R.; Milner, L.; Oremland, R.; Field, J.A.

    2009-01-01

    The objective of this study was to explore a bioremediation strategy based on injecting NO3- to support the anoxic oxidation of ferrous iron (Fe(II)) and arsenite (As(III)) in the subsurface as a means to immobilize As in the form of arsenate (As(V)) adsorbed onto biogenic ferric (Fe(III)) (hydr)oxides. Continuous flows and filled columns were used to simulate a natural anaerobic groundwater and sediment system with co-occurring As(III) and Fe(II) in the presence (column SF1) or absence (column SF2) of nitrate, respectively. During operation for 250 days, the average influent arsenic concentration of 567 ??g L-1 was reduced to 10.6 (??9.6) ??g L-1 in the effluent of column SF1. The cumulative removal of Fe(II) and As(III) in SF1 was 6.5 to 10-fold higher than that in SF2. Extraction and measurement of the mass of iron and arsenic immobilized on the sand packing of the columns were close to the iron and arsenic removed from the aqueous phase during column operation. The dominant speciation of the immobilized iron and arsenic was Fe(III) and As(V) in SF1, compared with Fe(II) and As(III) in SF2. The speciation was confirmed by X-ray diffraction (XRD) and X-ray photoelectron spectroscopy (XPS). The results indicate that microbial oxidation of As(III) and Fe(II) linked to denitrification resulted in the enhanced immobilization of aqueous arsenic in anaerobic environments by forming Fe(III) (hydr)oxide coated sands with adsorbed As(V). ?? 2009 American Chemical Society.

  8. Evaluation of the influence of UV/IR radiation on iron release from ferritin

    International Nuclear Information System (INIS)

    Gritzkov, M.; Kochev, V.; Vladimirova, L

    2010-01-01

    In the present work the influence of UV/IR radiation on the iron-releasing process from ferritin is investigated. The ferritins are a family of iron-storing proteins playing a key role in the biochemical reactions between iron and oxygen-processes of exclusive importance for the existence of all living organisms. The iron is stored within the ferritin core in the form of insoluble crystals containing Fe(III). Therefore for its release, the mineral matrix has to be decomposed, usually through a reduction of Fe(III) to Fe(II). Our study considers the action of UV/IR radiation on the structure of the protein molecule. Eventual changes in the ferritin conformation under the irradiation could result in the change of channel forming regions responsible for the iron efflux. This can be assess by the quantity of Fe (II) obtained in a subsequent mobilization procedure evoked by exogenous reducing agents. In our case the content of the reduced iron is determined electrochemically by the method of potentiometric titration. As already was shown, this method promises to become highly useful for quantitative evaluation of released Fe 2+ . (Author)

  9. The convenient preparation of stable aryl-coated zerovalent iron nanoparticles

    Directory of Open Access Journals (Sweden)

    Olga A. Guselnikova

    2015-05-01

    Full Text Available A novel approach for the in situ synthesis of zerovalent aryl-coated iron nanoparticles (NPs based on diazonium salt chemistry is proposed. Surface-modified zerovalent iron NPs (ZVI NPs were prepared by simple chemical reduction of iron(III chloride aqueous solution followed by in situ modification using water soluble arenediazonium tosylate. The resulting NPs, with average iron core diameter of 21 nm, were coated with a 10 nm thick organic layer to provide long-term protection in air for the highly reactive zerovalent iron core up to 180 °C. The surface-modified iron NPs possess a high grafting density of the aryl group on the NPs surface of 1.23 mmol/g. FTIR spectroscopy, XRD, HRTEM, TGA/DTA, and elemental analysis were performed in order to characterize the resulting material.

  10. Molecular-level spectroscopic investigations of the complexation and photodegradation of catechol to/by iron(III)

    Science.gov (United States)

    Al-Abadleh, Hind; Tofan-Lazar, Julia; Situm, Arthur; Slikboer, Samantha

    2014-05-01

    Surface water plays a crucial role in facilitating or inhibiting surface reactions in atmospheric aerosols. Little is known about the role of surface water in the complexation of organic molecules to transition metals in multicomponent aerosol systems. We will show results from real time diffuse reflectance infrared Fourier transform spectroscopy (DRIFTS) experiments for the in situ complexation of catechol to Fe(III) and its photosensitized degradation under dry and humid conditions. Catechol was chosen as a simple model for humic-like substances (HULIS) in aerosols and aged polyaromatic hydrocarbons (PAH). It has also been detected in secondary organic aerosols (SOA) formed from the reaction of hydroxyl radicals with benzene. Given the importance of the iron content in aerosols and its biogeochemistry, our studies were conducted using FeCl3. For comparison, these surface-sensitive studies were complemented with bulk aqueous ATR-FTIR, UV-vis, and HPLC measurements for structural, quantitative and qualitative information about complexes in the bulk, and potential degradation products. The implications of our studies on understanding interfacial and condensed phase chemistry relevant to multicomponent aerosols, water thin islands on buildings, and ocean surfaces containing transition metals will be discussed.

  11. Iron-sulfide redox flow batteries

    Science.gov (United States)

    Xia, Guan-Guang; Yang, Zhenguo; Li, Liyu; Kim, Soowhan; Liu, Jun; Graff, Gordon L

    2013-12-17

    Iron-sulfide redox flow battery (RFB) systems can be advantageous for energy storage, particularly when the electrolytes have pH values greater than 6. Such systems can exhibit excellent energy conversion efficiency and stability and can utilize low-cost materials that are relatively safer and more environmentally friendly. One example of an iron-sulfide RFB is characterized by a positive electrolyte that comprises Fe(III) and/or Fe(II) in a positive electrolyte supporting solution, a negative electrolyte that comprises S.sup.2- and/or S in a negative electrolyte supporting solution, and a membrane, or a separator, that separates the positive electrolyte and electrode from the negative electrolyte and electrode.

  12. EFFECT OF MAGNESIUM SULFATE (A LAXATIVE) ON ...

    African Journals Online (AJOL)

    use with little success . Magnesium sulfate also known as Epsom salt or bitter salt is a hydrate salt with a chemical name of magnesium sulfate heptahydrate . Chemical formula is MgSO. 7HO and trade name is. Andrews liver salt. Dried magnesium sulfate is an osmotic laxative or a saline laxative that acts by increasing the.

  13. Immunological Response to Biodegradable Magnesium Implants

    Science.gov (United States)

    Pichler, Karin; Fischerauer, Stefan; Ferlic, Peter; Martinelli, Elisabeth; Brezinsek, Hans-Peter; Uggowitzer, Peter J.; Löffler, Jörg F.; Weinberg, Annelie-Martina

    2014-04-01

    The use of biodegradable magnesium implants in pediatric trauma surgery would render surgical interventions for implant removal after tissue healing unnecessary, thereby preventing stress to the children and reducing therapy costs. In this study, we report on the immunological response to biodegradable magnesium implants—as an important aspect in evaluating biocompatibility—tested in a growing rat model. The focus of this study was to investigate the response of the innate immune system to either fast or slow degrading magnesium pins, which were implanted into the femoral bones of 5-week-old rats. The main alloying element of the fast-degrading alloy (ZX50) was Zn, while it was Y in the slow-degrading implant (WZ21). Our results demonstrate that degrading magnesium implants beneficially influence the immune system, especially in the first postoperative weeks but also during tissue healing and early bone remodeling. However, rodents with WZ21 pins showed a slightly decreased phagocytic ability during bone remodeling when the degradation rate reached its maximum. This may be due to the high release rate of the rare earth-element yttrium, which is potentially toxic. From our results we conclude that magnesium implants have a beneficial effect on the innate immune system but that there are some concerns regarding the use of yttrium-alloyed magnesium implants, especially in pediatric patients.

  14. Synthesis of green nano iron particles (GnIP) and their application in adsorptive removal of As(III) and As(V) from aqueous solution

    Energy Technology Data Exchange (ETDEWEB)

    Prasad, Kumar Suranjit, E-mail: suranjit@gmail.com [Department of Environmental Studies, Faculty of Science, The M. S. University of Baroda, Vadodara, 390002, Gujarat (India); Gandhi, Pooja, E-mail: poojagandhi.3090@gmail.com [Department of Environmental Sciences, Ashok and Rita Patel Institute of Integrated Study and Research in Biotechnology and Allied Sciences (ARIBAS), New Vallabh Vidyanagar, Anand, Gujarat, 388121 (India); Selvaraj, Kaliaperumal, E-mail: k.selvaraj@ncl.res.in [Nano and Computational Materials Lab, Catalysis Division, National Chemical Laboratory, Council of Scientific and Industrial Research, Pune, 411008 (India)

    2014-10-30

    Graphical abstract: - Highlights: • Colloidal GnIP synthesised using extract of Mint leaves were entrapped in chitosan beads. • GnIP loaded beads were employed for removal of As ions, showed excellent removal efficiency. • Iron and chitosan are cost effective materials hence can be a good adsorbent for removal of arsenic. - Abstract: The present study reports a new approach to synthesise nano iron particles using leaf extract of Mint (Mentha spicata L.) plant. The synthesised GnIPs were subjected to detailed adsorption studies for removal of arsenite and arsenate from aqueous solution of defined concentration. Iron nanoparticles synthesised using leaf extract showed UV–vis absorption peaks at 360 and 430 nm. TEM result showed the formation of polydispersed nanoparticles of size ranging from 20 to 45 nm. Nanoparticles were found to have core–shell structure. The planer reflection of selected area electron diffraction (SAED) and XRD analysis suggested that iron particles were crystalline and belonged to fcc (face centred cubic) type. Energy-dispersive X-ray analysis (EDAX) shows that Fe was an integral component of synthesised nanoparticles. The content of Fe in nanoparticles was found to be 40%, in addition to other elements like C (16%), O (19%) and Cl (23%). FT-IR study suggested that functional groups like -NH, -C=O, -C=N and -C=C were involved in particle formation. The removal efficiency of GnIP-chitosan composite for As(III) and As(V) was found to be 98.79 and 99.65%. Regeneration of adsorbent suggested that synthesised green GnIP may work as an effective tool for removal of arsenic from contaminated water.

  15. Synthesis of green nano iron particles (GnIP) and their application in adsorptive removal of As(III) and As(V) from aqueous solution

    International Nuclear Information System (INIS)

    Prasad, Kumar Suranjit; Gandhi, Pooja; Selvaraj, Kaliaperumal

    2014-01-01

    Graphical abstract: - Highlights: • Colloidal GnIP synthesised using extract of Mint leaves were entrapped in chitosan beads. • GnIP loaded beads were employed for removal of As ions, showed excellent removal efficiency. • Iron and chitosan are cost effective materials hence can be a good adsorbent for removal of arsenic. - Abstract: The present study reports a new approach to synthesise nano iron particles using leaf extract of Mint (Mentha spicata L.) plant. The synthesised GnIPs were subjected to detailed adsorption studies for removal of arsenite and arsenate from aqueous solution of defined concentration. Iron nanoparticles synthesised using leaf extract showed UV–vis absorption peaks at 360 and 430 nm. TEM result showed the formation of polydispersed nanoparticles of size ranging from 20 to 45 nm. Nanoparticles were found to have core–shell structure. The planer reflection of selected area electron diffraction (SAED) and XRD analysis suggested that iron particles were crystalline and belonged to fcc (face centred cubic) type. Energy-dispersive X-ray analysis (EDAX) shows that Fe was an integral component of synthesised nanoparticles. The content of Fe in nanoparticles was found to be 40%, in addition to other elements like C (16%), O (19%) and Cl (23%). FT-IR study suggested that functional groups like -NH, -C=O, -C=N and -C=C were involved in particle formation. The removal efficiency of GnIP-chitosan composite for As(III) and As(V) was found to be 98.79 and 99.65%. Regeneration of adsorbent suggested that synthesised green GnIP may work as an effective tool for removal of arsenic from contaminated water

  16. Magnesium substitution in the structure of orthopedic nanoparticles: A comparison between amorphous magnesium phosphates, calcium magnesium phosphates, and hydroxyapatites

    International Nuclear Information System (INIS)

    Nabiyouni, Maryam; Ren, Yufu; Bhaduri, Sarit B.

    2015-01-01

    As biocompatible materials, magnesium phosphates have received a lot of attention for orthopedic applications. During the last decade multiple studies have shown advantages for magnesium phosphate such as lack of cytotoxicity, biocompatibility, strong mechanical properties, and high biodegradability. The present study investigates the role of Mg +2 and Ca +2 ions in the structure of magnesium phosphate and calcium phosphate nanoparticles. To directly compare the effect of Mg +2 and Ca +2 ions on structure of nanoparticles and their biological behavior, three groups of nanoparticles including amorphous magnesium phosphates (AMPs) which release Mg +2 , calcium magnesium phosphates (CMPs) which release Mg +2 and Ca +2 , and hydroxyapatites (HAs) which release Ca +2 were studied. SEM, TEM, XRD, and FTIR were used to evaluate the morphology, crystallinity, and chemical properties of the particles. AMP particles were homogeneous nanospheres, whereas CMPs were combinations of heterogeneous nanorods and nanospheres, and HAs which contained heterogeneous nanosphere particles. Cell compatibility was monitored in all groups to determine the cytotoxicity effect of particles on studied MC3T3-E1 preosteoblasts. AMPs showed significantly higher attachment rate than the HAs after 1 day and both AMPs and CMPs showed significantly higher proliferation rate when compared to HAs after 7 days. Gene expression level of osteoblastic markers ALP, COL I, OCN, OPN, RUNX2 were monitored and they were normalized to GAPDH housekeeping gene. Beta actin expression level was monitored as the second housekeeping gene to confirm the accuracy of results. In general, AMPs and CMPs showed higher expression level of osteoblastic genes after 7 days which can further confirm the stimulating role of Mg + 2 and Ca +2 ions in increasing the proliferation rate, differentiation, and mineralization of MC3T3-E1 preosteoblasts. - Highlights: • Role of Mg 2+ and Ca 2+ ions in proliferation, and differentiation

  17. Investigation of magnesium oxychloride cement at the initial hardening stage

    Directory of Open Access Journals (Sweden)

    Averina Galina

    2018-01-01

    Full Text Available The paper investigates the process of variation of magnesium oxychloride cement deformations at the initial hardening stage depending on the activity of magnesium oxide powder which is determined by the parameters of the source material burning. Investigation is focused on magnesium cements obtained from pure magnesium hydroxide. Source materials were burnt at various temperatures with the purpose to obtain magnesium oxide powder with different activity. Regular content of hydrated phases was determined in hardened magnesium cement prepared on the basis of binders with different activity. The study reveals the influence of magnesium oxide powder activity on the process of deformation occurrence in hardened magnesium cement and its tendency to crack formation.

  18. XPS and FTIR spectroscopic study on microwave treated high phosphorus iron ore

    International Nuclear Information System (INIS)

    Omran, Mamdouh; Fabritius, Timo; Elmahdy, Ahmed M.; Abdel-Khalek, Nagui A.; El-Aref, Mortada; Elmanawi, Abd El-Hamid

    2015-01-01

    Highlights: • The effect of microwave radiation on structure and chemical state of high phosphorus iron ore was studied. • FTIR analyses showed that after microwave radiation the functional chemical groups of phosphorus bearing minerals (fluorapatite) dissociated. • High resolution XPS analyses of Fe 2p peaks showed that after microwave radiation a portion of Fe(+III) was reduced to Fe(+II). • Microwave radiation had a positive effect on the magnetic properties of iron oxide, through formation of ferromagnetic phases. - Abstract: A growing interest in microwave heating has emerged recently. Several potential microwave applications regarding minerals’ processing have been investigated. This paper investigates the effect of microwave radiation on Egyptian high phosphorus iron ore. Three different iron ore samples have varying Fe 2 O 3 and P 2 O 5 contents and mineralogical textures were studied. A comparative study has been carried out between untreated and microwave treated iron ore. XRD and FTIR analyses showed that after microwave radiation the crystallinity of iron bearing minerals (hematite) increased, while the functional chemical groups of phosphorus bearing minerals (fluorapatite) and other gangues dissociated. High resolution XPS analyses of Fe 2p peaks showed that after microwave radiation a portion of Fe(+III) was reduced to Fe(+II). This means that after microwave radiation iron oxide (hematite, Fe 3+ ) transformed into more magnetic phase. The results indicated that microwave radiation had a positive effect on the magnetic properties of iron oxide, through formation of ferromagnetic phases

  19. Recrystallization of magnesium deformed at low temperatures

    International Nuclear Information System (INIS)

    Fromageau, R.; Pastol, J.L.; Revel, G.

    1978-01-01

    The recrystallization of magnesium was studied after rolling at temperatures ranging between 248 and 373 K. For zone refined magnesium the annealing behaviour as observed by electrical resistivity measurements showed two stages at about 250 K and 400 K due respectively to recrystallization and grain growth. The activation energy associated with the recrystallization stage was 0.75 +- 0.01 eV. In less pure magnesium, with nominal purity 99.99 and 99.9%, the recrystallization stage was decomposed into two substages. Activation energies were determined in relation with deformation temperature and purity. The magnesium of intermediate purity (99.99%) behaved similarly to the lowest purity metal when it was deformed at high temperature and to the purest magnesium when the deformation was made at low temperature. This behaviour was discussed in connection with the theories of Luecke and Cahn. (Auth.)

  20. Benefits of magnesium wheels for consumer cars

    Science.gov (United States)

    Frishfelds, Vilnis; Timuhins, Andrejs; Bethers, Uldis

    2018-05-01

    Advantages and disadvantages of magnesium wheels are considered based on a mechanical model of a car. Magnesium wheels are usually applied to racing cars as they provide slightly better strength/weight ratio than aluminum alloys. Do they provide notable benefits also for the everyday user when the car speeds do not exceed allowed speed limit? Distinct properties of magnesium rims are discussed. Apart from lighter weight of magnesium alloys, they are also good in dissipating the energy of vibrations. The role of energy dissipation in the rim of a wheel is estimated by a quarter car model. Improvements to safety by using the magnesium wheels are considered. Braking distance and responsiveness of the car is studied both with and without using an Anti Blocking System (ABS). Influence of rim weight on various handling parameters of the car is quantitatively tested.